

Keith Brown

Pluralsight, LLC

Sesha Mani

Microsoft Corporation

Microsoft Code Name "Geneva"
Framework Whitepaper for

Developers

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

2 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

Legal Information
This is a preliminary document and may be changed substantially prior to final commercial release of the

software described herein.

The information contained in this document represents the current view of Microsoft Corporation on

the issues discussed as of the date of publication. Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft

cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights

under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval

system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or

otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property

rights covering subject matter in this document. Except as expressly provided in any written license

agreement from Microsoft, the furnishing of this document does not give you any license to these

patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted in examples herein are fictitious. No association with any real

company, organization, product, domain name, e-mail address, logo, person, place, or event is intended

or should be inferred.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, CardSpace, Windows, Windows Server, are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

3 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

About this Paper
The goal of this whitepaper is to help developers get started building claims-aware applications using

Microsoft© Code Name “Geneva” Framework. In this paper I introduce concepts and terminology to

help developers understand the benefits and concepts behind the claims-based model of identity. My

target audience does not consist of security experts, rather those familiar with ASP.NET or Windows

Communication Foundation (WCF) programming, and who are building web applications or services that

care about authentication and authorization. As such, my focus will be on building relying parties using

Geneva Framework. I will talk about issuance and security token services (STS) and will provide an

example of an STS built using Geneva Framework. However, that is not the focus of this paper.

Identity Challenges
Most developers are not security experts and many feel uncomfortable being given the job of

authenticating, authorizing, and personalizing experiences for users. It’s not a subject that has been

traditionally taught in computer science curriculum, and there’s a long history of these features being

ignored until late in the software development lifecycle.

It’s not surprising nowadays to see a single company with tens or hundreds of web applications and

services, many of which have their own private silo for user identities, and most of which are hardwired

to use one particular means of authentication. Developers know how tedious it is to build identity

support into each application, and IT pros know how expensive it is to manage the resulting set of

applications.

One very useful step toward solving the problem has been to centralize user accounts into an enterprise

directory. Commonly it’s the IT pro that knows the most effective and efficient way to query the

directory, but today the task is typically left up to the developer. And in the face of mergers,

acquisitions, and partnerships, the developer might be faced with accessing more than one directory,

using more than one API.

In the Microsoft .NET Framework, there are lots of different ways of building identity support into an

application, and each communication framework treats identity differently, with different object

models, different storage models, and so on. Even in ASP.NET, developers can get confused about where

they should look for identity: should they look at the HttpContext.User property? What about

Thread.CurrentPrincipal?

The rampant use of passwords has lead to a cottage industry for phishers1. And with so many

applications doing their own thing, it’s difficult for a company to upgrade to stronger authentication

techniques.

1
 Phishing is all about convincing a user to divulge sensitive information (such as passwords). This is commonly

done by sending an email that masquerades as being from a legitimate company with which the user may have an
account. The email includes a link that leads to the attacker’s website, convincingly built to look like the legitimate

http://en.wikipedia.org/wiki/Phishing

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

4 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

A Better Solution
One step toward solving these problems is to stop building custom identity plumbing and user account

databases into every new application that comes along. But even developers who rely on a central

enterprise directory still feel the pain of mergers, acquisitions, and external partnerships, and may even

be blamed for poor performance that is actually due to another application bogging down the directory

with inefficient queries. The claims-based solution described in this paper avoids asking developers to

connect to any particular enterprise directory in order to look up identity details for users. Instead, the

user’s request arrives with all of the identity details the application needs to do its job. By the time the

user arrives with these claims, the user has already been authenticated, and the application can go

about its business without worrying about managing or finding user accounts.

Factoring authentication out of applications leads to many benefits for developers, IT pros, and users.

Simply put, there are less user accounts for everyone to manage, and the resulting centralization of

authentication makes it easier to upgrade to stronger authentication methods as they evolve, and even

federate identity with other platforms and organizations.

This paper will help you, as a developer, to understand the claims-based identity model and take

advantage of it using Geneva Framework, the new framework from Microsoft that is focused on

identity.

What is Geneva Framework?
Geneva Framework is a set of .NET Framework classes; it is a framework for implementing claims-based

identity in your applications. By using it, you’ll more easily reap the benefits of claims-based systems

described in this paper. Geneva Framework can be used in any web application or web service that uses

the .NET Framework version 3.5.

Geneva Framework is just one part of Microsoft’s Geneva software family that implements the shared

industry vision for an interoperable Identity Metasystem. Geneva comprises three components:

“Geneva” Server, Windows CardSpace “Geneva”, and “Geneva” Framework. Together, these three

components form the core of Microsoft’s new claims based access platform. You can refer to the

Geneva website for more information about the server and CardSpace components. The white paper

“Introducing “Geneva”” provides an overview on the full set of Geneva technologies. As of this writing,

beta releases of all the three products are available for download.

Claims-based identity model
When you build claims-aware applications, the user presents her identity to your application as a set of

claims (see Figure 1). One claim could be the user’s name, another might be her email address. The idea

here is that an external identity system is configured to give your application everything it needs to

company’s website. When the user “logs on”, her password is captured by the attacker, along with any other
information the user is duped into giving away.

http://www.microsoft.com/geneva
http://www.microsoft.com/geneva

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

5 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

know about the user with each request she makes, along with cryptographic assurance that the identity

data you receive comes from a trusted source.

Web App/Service

User Name:

Roles:

Email:

IsOfLegalVotingAge:

Alice

Manager, Staff

alice@fabrikam.com

True

Figure 1: User Presents Claims

Under this model, single sign-on is much easier to achieve, and your application is no longer responsible

for:

 Authenticating users

 Storing user accounts and passwords

 Calling to enterprise directories to look up user identity details

 Integrating with identity systems from other platforms or companies

Under this model, your application makes identity-related decisions based on claims supplied by the

user. This could be anything from simple application personalization with the user’s first name, to

authorizing the user to access higher valued features and resources in your application.

It’s not Just About Federation
The claims-based model of identity has been incubating for awhile now inside Microsoft. The original

reason for proposing this model was to enable federation between organizations, but over time it’s

become apparent that claims aren’t just for federation. But some of these terms still linger on. For

example, when you use Geneva Framework in your ASP.NET application, one way to perform claims

processing is to enable an Geneva Framework component called the WS-Federation Authentication

Module. Don’t let the word “federation” throw you off. There are clear benefits to building applications

that outsource authentication and authorization. Any company that has, or plans to have in the future,

more than one web application or web service, can benefit by starting with a claims-based model for

identity.

Introduction to Claims-Based Identity
In this section of the paper, I’m going to introduce some terminology and concepts so that you, as a

developer, can get your head around this new architecture for identity. Let’s start with some

terminology.

Identity
The word “identity” is a very overloaded term. So far I’ve been using it to describe the problem space

that includes authentication, authorization, etc. But for the purposes of describing the programming

model in Geneva Framework, I will use the term identity to describe a set of attributes (well, claims as

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

6 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

you’ll see shortly) that describe a user or some other entity in the system that you care about from a

security standpoint.

Claim
You can think of a claim as a bit of identity information such as name, email address, age, membership

in the Sales role, and so on. The more claims your application receives, the more you’ll know about your

user. You may be wondering why I’m using the word “claim”, instead of the more traditional

“attributes”, commonly used in the enterprise directory world. The reason has to do with the delivery

method – in this model your application doesn’t look up user attributes in a directory. Instead, the user

delivers claims to your application, and you’re going to examine them with a certain measure of doubt.

Each claim is made by an issuer, and you’ll trust the claim only as much as you trust the issuer. You’ll

trust a claim made by your company’s domain controller more than you would if it were made by the

user herself! As you’ll see shortly, the Claim class in Geneva Framework has an Issuer property that

allows you to find out who issued the claim.

Security Token
The user delivers a set of claims to your application piggybacked along with her request. In a web

service, these claims are carried in the security header of the SOAP envelope. In a browser-based web

application, the claims arrive via an HTTP POST from the user’s browser, and may later be cached in a

cookie if a session is desired. Regardless of how they arrive, they must be serialized somehow, and this is

where security tokens come in. A security token is a serialized set of claims that is digitally signed by the

issuing authority. The signature is important – it gives you assurance that the user didn’t just make up a

bunch of claims and send them to you. In low security situations where cryptography isn’t necessary or

desired, you can use unsigned tokens, but that’s not a scenario I’m going to focus on in this paper.

One of the core features in Geneva Framework is the ability to create and read security tokens. Geneva

Framework and the underlying plumbing in the .NET Framework handles all the cryptographic heavy

lifting, and presents your application with a set of claims that you can read.

Issuing Authority
There are lots of different types of issuing authorities, from domain controllers that issue Kerberos

tickets, to certificate authorities that issue X.509 certificates, but the specific type of authority I’ll be

talking about in this paper issues security tokens that contain claims. The issuing authority I’m speaking

of is a web application or web service that knows how to issue security tokens. It must have enough

knowledge to be able to issue the proper claims for the target relying party given the user making the

request, and may be responsible for interacting with user stores to look up claims and authenticate the

users themselves.

Whatever issuing authority you choose to buy or build, it will play a central role in your identity solution.

When you factor authentication out of your application by relying on claims, you’re ultimately just

passing responsibility to that authority and asking it to authenticate users on your behalf.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

7 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

Security Token Service (STS)
A security token service (STS) is the plumbing that builds, signs, and issues security tokens according to

the interoperable protocols that I’ll discuss in the upcoming section called Standards. There’s a lot of

work that goes into implementing these protocols, but Geneva Framework does all of this heavy lifting

for you, making it feasible for someone who isn’t an expert in the protocols to get an STS up and running

with very little effort.

Geneva Server, one of the products featured in Geneva technologies, is a security token service that you

can use instead of building your own STS. You might be wondering what Geneva Server uses for

implementing the protocols and building a security token. Yes, you guessed it right, it uses Geneva

Framework for all of this heavy lifting.

If you want to build your own STS, Geneva Framework offers all the necessary APIs to make your job

easy. It’s up to you to figure out how to implement the logic, or rules that drive it (often referred to as

security policy).

Relying Party (RP)
When you build an application that relies on claims, you are building a relying party. Some synonyms

that you may have heard are, claims aware application, or claims-based application. Web applications

and web services can both be built this way, as you’ll see later in this paper.

Basic Scenario
Now that you’ve learned some basic terminology, here’s an example of a claims-based system in action.

STS

Smart

Client

Relying Party

(Web Service)

Authority

(Web Service)

2
.
G

e
t
C

la
im

s

1. Get Policy

3. Send Claims

Active Client

(WS-Trust)

Figure 2: Basic Scenario with Web Services

Figure 2Figure 2 shows a claims-aware web service (the relying party) and a smart client that wants to

use that service. The relying party exposes policy that describes its addresses, bindings, and contracts.

But the policy also includes a list of claims that the relying party needs, for example user name, email

address, and role memberships. The policy also tells the smart client the address of the STS (another

web service in the system) where it should retrieve these claims. After retrieving this policy (1), the

client now knows where to go to authenticate: the STS. The smart client makes a web service request (2)

to the STS, requesting the claims that the relying party asked for via its policy. The job of the STS is to

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

8 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

authenticate the user and return a security token that gives the relying party all of the claims it needs.

The smart client then makes its request to the relying party(3), sending the security token along in the

security SOAP header. The relying party now receives claims with each request, and simply rejects any

requests that don’t include a security token from the issuing authority that it trusts.

Standards
In order to make all of this interoperable, several WS-* standards are used in the above scenario. Policy

is retrieved using HTTP GET and the policy itself is structured according to the WS-Policy specification.

The STS exposes endpoints that implement the WS-Trust specification, which describes how to request

and receive security tokens. Most STSs today issue SAML tokens (Security Assertion Markup Language).

SAML is an industry-recognized XML vocabulary that can be used to represent claims in an interoperable

way. This adherence to standards means that you can purchase an STS instead of building it yourself. Or,

if you end up in a sticky multi-platform situation, this allows you to communicate with an STS on an

entirely different platform and achieve single sign-on across all of your applications, regardless of

platform. Identity federation also becomes an option, as I’ll explain shortly.

Browser-based Applications
Smart clients aren’t the only ones who can participate in the world of claims-based identity. Browser-

based applications (also referred to as passive clients2) can participate as well. Figure 3 shows how this

works. The user points her browser at a claims-aware web application (relying party). The web

application redirects the browser to the STS so the user can be authenticated. The STS in Figure 3 is

wrapped by a simple web application that reads the incoming request, authenticates the user via

standard HTTP mechanisms, and then creates a SAML token and emits a bit of JavaScript that causes the

browser to initiate an HTTP POST that sends the SAML token back to the relying party. The SAML token

in the POST body contains the claims that the relying party requested. At this point it is common for the

relying party to package the claims into a cookie so that the user doesn’t have to be redirected for each

request. The WS-Federation specification includes a section3 that describes how to do these things in an

interoperable way.

2
 Smart clients are referred to as “active” because they have plumbing (WCF, for example) that can parse policy

and implement WS-Trust directly. Web browsers are referred to as “passive” because they can’t typically be
modified to do these things directly, so cookies, redirection, and JavaScript are used mimic the WS-Trust protocol
in a browser-friendly way.
3
 Section 13, to be precise. You may have heard this referred to in the past as the passive requestor profile,

although as of this writing, the latest version of WS-Federation undergoing standardization no longer uses this
term.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

9 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

STS

Browser
Relying Party

(Web App)

Authority

(Web App)

2
.
R

e
d

ir
e

c
t

1. HTTP GET

3. HTTP POST

Passive Client

(WS-Federation)

Figure 3: Basic Scenario with a Web Browser

Identity Federation
When you build claims-aware web applications and services, you decouple yourself from any one user

store. All you want to know is that an authority you trust has given you the identity details you need

about the user who is using your application. You don’t have to worry about what domain or security

realm that user happens to be part of. This makes it a lot easier to federate identity with other platforms

or organizations.

Here’s a concrete scenario that will help get your head around this idea. Let’s say a company called

Fabrikam is in the business of manufacturing bicycles, and thousands of bike shops around the world

carry their bikes. Fabrikam has a website that allows their retailers to get information about bikes, make

purchases, and so on.

When a new retailer (Bob) starts a business and wants to sell Fabrikam’s bikes, he contacts Fabrikam,

signs some agreements, and tells Fabrikam about his employees: who should be allowed to use

Fabrikam’s retailer website, who should be allowed to make purchases, and so on. Fabrikam issues a

user name and password for each employee at Bob’s bike shop, and configures its website to grant

those users different levels of access depending on their job.

Over time, Bob ends up doing business with lots of other bike manufacturers, each of which has their

own proprietary mechanism for purchasing. Some use the web, and some rely on fax and phone calls.

It’s easy for Bob to forget about all of these niggling details when he’s doing his best just to sell bikes

every day. So when Alice joins as a new employee, it takes Bob awhile to remember that he has to call

Fabrikam (and all of the other manufacturers) and let them know that Alice should be allowed to make

purchases. Alice’s first few weeks on the job are a bit daunting as she learns all of the passwords she

needs to know for the various systems she’ll be using, and she’ll be denied access to Fabrikam’s retailer

website until Bob gets around to calling Fabrikam to add Alice as a user.

What happens when Alice’s role in Bob’s company changes, or even worse, if she leaves the company

entirely? When does Fabrikam find out about this?

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

10 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

What we have here are two companies that have established a trust relationship, a covenant, between

one another. Fabrikam relies on Bob to indicate which employees should have access to Fabrikam’s

resources, and what level of access each should have. Identity federation is all about automating this

covenant. Since Fabrikam already trusts Bob to tell the truth about his employees, it makes sense to let

Bob’s system authenticate those employees and automatically give Fabrikam the details about each

employee’s current role in the company.

Once Bob is responsible for authenticating his own staff, Fabrikam no longer has to issue user accounts

for Bob’s employees. When Alice logs into her computer at Bob’s bike shop, that login can be used to tell

Fabrikam who Alice is, and what role she plays in Bob’s organization. If Alice leaves the company, all Bob

has to remember to do is disable her user account, and she’ll no longer be able to use Fabrikam’s

website, or any other manufacturer’s website that federates with Bob. When Alice changes jobs, and

Bob adjusts her group memberships in his directory, Fabrikam discovers that change the next time Alice

logs on and uses Fabrikam’s web application. What we have now is single sign-on across organizations,

and this is a good thing, not just for developers, but for IT pros, users, and shareholders alike.

Even within a single company, federation can be useful. If you end up with two different

implementations, say Java-based and Microsoft .NET-connected, as long as your applications are built to

support federated identity, you have a clear path to achieve single sign-on, and all of the benefits it

provides.

Identity federation works by introducing a second issuer. Your applications still trust the same STS they

used to, and it will continue to issue all of the tokens that your application needs. But now instead of

directly authenticating all users directly, your STS will be configured to accept SAML tokens from partner

organizations, leaving it to them to authenticate users in their own realm in a way that makes sense.

Relying Party

STS

Authority

STS

Authority

FabrikamBob’s shop

Client
3

1 2

Figure 4: Bob's bike shop federates with Fabrikam

In Figure 4, the client is in a different security realm over in Bob’s bike shop, while the relying party is

still in Fabrikam’s data center. In this case, the client (Alice, say) authenticates with Bob’s STS (1) and

gets a security token that she can send to Fabrikam. This token indicates that Alice has been

authenticated by Bob’s security infrastructure, and includes claims that specify what roles she plays in

Bob’s organization. The client sends this token to Fabrikam’s STS, where it evaluates the claims, decides

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

11 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

whether Alice should be allowed to access the relying party in question, and issues a second security

token that contains the claims the relying party expects. The client sends this second token to the

relying party(3), which now discovers Alice as a new user, and allows her to access the application

according to the claims issued by Fabrikam’s STS.

Note that the relying party didn’t have to concern itself with validating a security token from Bob’s bike

shop. Fabrikam’s authority did all of that heavy lifting: making certain to issue security tokens only to

trusted partners that have previously established a relationship with Fabrikam. In this example, the

relying party will always get tokens from its own STS. If it sees a token from anywhere else, it will reject

it outright. This keeps your applications as simple as possible.

Relying Party

STS

Authority

(.NET)

STS

Authority

(Java)

.NET AppsJava Users

Client
3

1 2

Figure 5: Cross-Platform Identity Federation

Figure 5 shows a company that uses .NET Framework and Geneva Framework to build its applications.

They have recently merged with another company whose IT platform is based on Java. Because the

Microsoft .NET-connected applications are already claims-aware, the company was able to install an STS

built on Java technology and suddenly the Microsoft .NET-connected applications became accessible to

users in the Java-based directory, with no changes to application code or even application configuration.

Information Cards and the Identity Selector
I don’t have room in this paper to motivate and explain the ideas behind information cards and identity

selectors like Windows CardSpace™, but you can read more about these topics here:

http://msdn.microsoft.com/en-us/library/aa480189.aspx.

Suffice it to say that an identity selector provides a few additional features that are important in many

scenarios:

 Helps users manage multiple identities for the Web

 Helps users select an appropriate identity for a given relying party

 Protects user privacy

 Gives consumers a non-phishable credential

An identity selector can be very helpful in federation scenarios. Consider Fabrikam’s STS in Figure 4.

Fabrikam has many partners, not just Bob’s bike shop. If you asked Fabrikam for its policy, it would

http://msdn.microsoft.com/en-us/library/aa480189.aspx

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

12 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

supply a long list of trusted issuers. And imagine if the trust chain was longer, with three or four STSs

involved: if you start at the relying party and work backward, you find a whole tree of possible paths

from a leaf STS to the relying party. When the identity selector pops up in this case, the only cards that

will be lit up are identities that represent leaves on that tree. So when the user selects a particular card,

the identity selector knows exactly which path of trust to follow in order to get the required security

token.

Geneva Framework includes an ASP.NET control, the InformationCard control, that makes it easy for you

to pop up the user’s identity selector. The Geneva Framework includes a few samples focused on this

control to get you started.

Now that I’ve introduced some terminology and concepts behind the claims-based identity model, it’s

time to look at the programming model of Geneva Framework.

Programming Claims: Geneva Framework
Claims-based identity has been evolving within the Microsoft .NET Framework during the last few years.

Active Directory Federation Services (ADFS) was released with Microsoft Windows Server® 2003 R2, and

included its own claims-based programming model. Soon afterward, the .NET Framework version 3.0

shipped with a little assembly called System.IdentityModel.dll, which included classes like Claim and

ClaimSet, and WCF exposed an AuthorizationContext that allowed you to access these in a web service.

Another pillar of this new framework was CardSpace, and some sample code was released that helped

to decrypt and parse SAML tokens obtained by dereferencing an information card. And while WCF

already has all the plumbing you need to build an STS from scratch, many of the classes you’d need to

use are marked internal, making the task rather challenging for anyone outside of the WCF team. Suffice

it to say that in the .NET Framework 3.0 timeframe, the developer story around claims wasn’t very

appealing.

Geneva Framework solves this problem. It was designed to unify and simplify claims-based applications.

It builds on top of WCF’s plumbing to implement WS-Trust and comes with an HttpModule called the

WS-Federation Authentication Module (FAM) that make it trivial to implement WS-Federation in a

browser-based application by simply tweaking your web.config file a bit.

The Geneva Framework Object Model for Claims
When you build a relying party with Geneva Framework, you’re shielded from all of the cryptographic

heavy lifting that Geneva Framework (and its underlying WCF plumbing) does for you. It decrypts the

security token passed from the client, validates its signature, validates any proof keys4, shreds the token

into a set of claims, and presents them to you via an easy-to-consume object model.

Geneva Framework represents a claim with the Claim class, whose key properties are shown in Figure 6.

4
 A proof key provides assurance that the token wasn’t stolen and used by someone other than the subject who

requested it. To learn more about proof keys, see the discussion of Kerberos in The Developer’s Guide to Identity.

http://msdn.microsoft.com/en-us/library/aa480245.aspx

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

13 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

public class Claim {

 // some members omitted for brevity

 public virtual string ClaimType { get; }

 public virtual string Value { get; }

 public virtual string ValueType { get; }

 public virtual IDictionary<string, string> Properties

 public virtual string Issuer { get; }

 public virtual string OriginalIssuer { get; }

 public virtual IClaimsIdentity Subject { get; }

}

Claim

ClaimType (string)

Value (string)

ValueType (string)

Properties (Dictionary)

OriginalIssuer (string)

Subject (IClaimsIdentity)

Issuer (string)

Figure 6: Claim

Claim.ClaimType is a string (typically a URI) that tells you what the claim means. For example, a claim

with a ClaimType of "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname” represents a

user’s first name. This claim type was defined by Microsoft5 for use with CardSpace. A ClaimType of

”http://myclaimtype/role” might be your own simple representation of a role. The point here is that you

don’t have to wait around for some standards body to define a claim type that you need – as long as you

and your issuer agree on what a particular claim means, you can call it anything you want!

Once you know the type of the claim, you can read its value from Claim.Value. In order to reduce

dependencies and simplify administration, Geneva Framework represents the value of a claim with a

string instead of anything more complicated (such as an object reference that could point to any CLR

type). So an integer value of 42 would be represented as “42”. An email address is very naturally

represented in a string. Anything more complicated and it is recommended to use standard XML schema

types to serialize the value into a string. This is where Claim.ValueType comes in; it helps you figure out

how to deserialize the value of the claim by telling you the format of the value. The

Microsoft.IdentityModel.ClaimValueTypes class (Figure 7) includes a number of helpful value types that

can be used to represent claims, and of course you can define your own if you build your own issuer.

public static class ClaimValueTypes {

 // I have omitted some elements for brevity

 public const string Boolean = "http://www.w3.org/2001/XMLSchema#boolean";

 public const string Date = "http://www.w3.org/2001/XMLSchema#date";

 public const string Datetime = "http://www.w3.org/2001/XMLSchema#dateTime";

 public const string Double = "http://www.w3.org/2001/XMLSchema#double";

 public const string Email = "http://www.w3.org/2001/XMLSchema#Email";

 public const string Integer = "http://www.w3.org/2001/XMLSchema#integer";

 public const string String = "http://www.w3.org/2001/XMLSchema#string";

 public const string Uri = "http://www.w3.org/2001/XMLSchema#anyURI";

 public const string UpnName = ”http://www.w3.org/2001/XMLSchema#UpnName";

}

Figure 7: ClaimValueTypes

Claims are supposed to be about the subject, typically a human who is using your application. But

sometimes you want more information about the claim itself. Take an email claim as an example. Maybe

along with the email address, you want the issuer to tell you when the email address last changed. This

is the reason for the Claim.Properties collection. Geneva Framework allows an STS to add metadata

5
 This and several other fundamental claim types are documented in the Identity Selector Interop Profile

specification.

http://download.microsoft.com/download/1/1/a/11ac6505-e4c0-4e05-987c-6f1d31855cd2/Identity-Selector-Interop-Profile-v1.pdf
http://download.microsoft.com/download/1/1/a/11ac6505-e4c0-4e05-987c-6f1d31855cd2/Identity-Selector-Interop-Profile-v1.pdf
http://download.microsoft.com/download/1/1/a/11ac6505-e4c0-4e05-987c-6f1d31855cd2/Identity-Selector-Interop-Profile-v1.pdf

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

14 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

about a claim to this collection, and it’ll be sent along with the claim so that your application can make

use of it.

One claim that might seem a bit like metadata is the authentication method. Did the user present a

password? An information card? A smart card? These sorts of questions often come up in high security

scenarios, and some applications restrict features or resources based on the strength of the technique

used to authenticate the user. Geneva Framework represents this information as a claim, as you’ll see in

the Step-up Authentication section below.

The Claim class includes a property called Issuer. This is a simple string that gives your application a

name for the issuer of the claim. In federation scenarios, a chain of two or more issuers are involved (as

shown earlier in Figure 4). In this case, Claim.Issuer names the last issuer in the chain (Fabrikam in Figure

4), while Claim.OriginalIssuer names the first issuer in the chain (Bob’s shop in the same figure). You can

use both of these tidbits to personalize or authorize access. For example, in Figure 4, Fabrikam might

want to have a special discount page that only users from Bob’s Bike Shop are allowed to use.

But many (probably most) applications won’t care precisely who issued the claims in the user’s identity;

all these applications need to worry about is that the issuer is one it should trust. In order to answer this

question of trust, Geneva Framework includes an abstract class called IssuerNameRegistry. There are a

couple of built-in implementations of this abstraction that allow you to specify trusted issuers via

configuration, or you can derive from this class and implement GetIssuerName yourself. This method

takes a security token as input and returns a name as output. This allows you to pick an issuer naming

scheme that makes sense for your application, and it also allows you to validate and determine if a

security token comes from an issuer that you trust. If you don’t like a particular security token for any

reason whatsoever, you simply throw an exception from GetIssuerName in order to indicate to Geneva

Framework that the request should be denied.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

15 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

Introducing IClaimsIdentity

Remember IIdentity from the .NET Framework? It is a very simple interface that allows you to discover

the user’s name. Since an issuer has the ability to tell you much more than just a name, Geneva

Framework defines a new interface that extends IIdentity. It’s called, aptly enough, IClaimsIdentity. In

Geneva Framework, when you look at a user’s identity, you can get her name the same way you always

have, but you can also look at IClaimsIdentity.Claims to get more bits of the user’s identity, like her

email address.

Claims Identity

(represents the

user)
Claims

Claim
Subject

public interface IClaimsIdentity : IIdentity {

 ClaimCollection Claims { get; }

 // other members omitted for now

}

Figure 8: Getting at Claims via IClaimsIdentity

Figure 8 shows how claims are exposed from IClaimsIdentity via the Claims property (I will show the full

definition of this interface a bit later in Figure 12). Keep in mind that the user whose identity you are

examining is called the subject. Note how you can enumerate the list of claims in the identity via the

Claims collection, and you can get back to the subject’s IClaimsIdentity via the Subject property of any of

those claims.

IClaimsPrincipal

Remember how Geneva Framework extended the existing IIdentity interface with IClaimsIdentity? Well,

Geneva Framework also extends IPrincipal with IClaimsPrincipal (see Figure 9).

public interface IClaimsPrincipal : IPrincipal {

 ClaimsIdentityCollection Identities { get; }

}

Figure 9: IClaimsPrincipal

IClaimsPrincipal exposes a collection of identities, each of which implements IClaimsIdentity. In the

common case, there will be a single issuer and a single token, and the Identities collection will only have

one element. In this mainstream case, you can use IPrincipal.Identity to get at the identity as usual. But

it’s possible in advanced scenarios for a relying party to ask (via policy) for more than one security token,

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

16 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

potentially from different issuers, in which case having access to a collection of identities becomes

important.

In some scenarios it’s useful to write your own class that implements IPrincipal and IClaimsPrincipal. You

can do this simply by deriving from ClaimsAuthenticationManager and implementing the Authenticate

method. The Authenticate method has access to the IClaimsPrincipal originally created by the

framework, and you can make necessary transformations to the existing claims or completely replace

the existing IClaimsPrincipal with your own implementation. Geneva Framework will then use your

IClaimsPrincipal and make it available via Thread.CurrentPrincipal and other means that an ASP.Net

developer would use to obtain the caller’s IPrincipal, such as HttpContext.User.

ClaimsPrincipal

public class ClaimsPrincipal : IClaimsPrincipal {

 // from IPrincipal

 public IIdentity Identity { get; }

 public bool IsInRole(string role);

 // from IClaimsPrincipal

 ClaimsIdentityCollection Identities { get; }

}

Figure 10: ClaimsPrincipal

The ClaimsPrincipal class (Figure 10) is the default implementation of IClaimsPrincipal, and while it

implements the Identities property of IClaimsPrincipal, it also implements the more familiar IsInRole

method and Identity property from IPrincipal. And since a typical relying party will receive a single

IClaimsIdentity in the Identities collection, ClaimsPrincipal.Identity simply returns the first element in the

Identities collection, as shown in Figure 11.

public IIdentity Identity {

 get {

 if (this._identities.Count > 0)

 return this._identities[0];

 else return null;

 }

}

Figure 11: ClaimsIdentity.Identity property implementation

IClaimsIdentity Defined

So if all it has to work with is a set of arbitrary claims, how does Geneva Framework implement

IPrincipal.IsInRole or IIdentity.Name, which are commonly used by application developers in existing

web applications and services? One possible approach would have been to predefine a ClaimType for

roles and a ClaimType for names, and force everyone to use them, but Geneva Framework is more

flexible than that. In your system, the type of claim you pick to represent a role or name might be very

different than what another company would choose. The Geneva Framework solution becomes clear

when you look at the full definition of IClaimsIdentity (Figure 12). Geneva Framework decided to leave

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

17 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

this up to your application and easily configure NameClaimType and RoleClaimTypes to indicate which

claims represent the user’s name and her roles in the web.config under Microsoft.IdentityModel

section.

public interface IClaimsIdentity : IIdentity {

 ClaimCollection Claims { get; }

 string NameClaimType { get; set; }

 ICollection<string> RoleClaimTypes { get; }

 string Label { get; set; }

 IClaimsIdentity Delegate { get; set; }

}

Figure 12: IClaimsIdentity

This has an exciting implication for developers: any code you have that already relies on IPrincipal and

IIdentity doesn’t need to change. If you’re using the PrincipalPermission attribute to control access to a

web service method, you can continue to use it as long as your issuer specifies the same set of roles that

your service was expecting. If you’re using ASP.NET’s LoginView control, it’ll also continue to work

because it’s based on IPrincipal.IsInRole().

If there are no NameClaimType or RoleClaimTypes configured in the application then by default Geneva

Framework uses “http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name” for NameClaimType

and “http://schemas.microsoft.com/ws/2008/06/identity/claims/role” for RoleClaimTypes. Note that

while it’s possible that the issuer may set NameClaimType and RoleClaimTypes when it creates an

IClaimsIdentity these properties are not serialized as part of the security token and so they don’t flow

between the STS and the relying party. It is uncommon to have STS decide which roles that the

application need to use.

In looking at Figure 12, you might be wondering about the Label and Delegate properties. Label is a

string that can be used to distinguish one identity from another in the more complicated case where a

relying party receives multiple security tokens (as I mentioned earlier, this is an uncommon case, so the

Label property won’t be used by the vast majority of developers). Note that while it’s possible that this

may change in the future, in this version of Geneva Framework, Label is not serialized as part of the

security token and so it doesn’t flow between the STS and the relying party.

The Delegate property is a more interesting and advanced topic. It helps support the delegation of

credentials in multi-tier systems, where a middle tier makes requests to a back end system while “acting

as” the client. I’ll cover this optional feature in more detail later in this paper.

How to get at Identity
So far you’ve learned how Geneva Framework represents claims, subjects, and issuers, and how it

extends the traditional IPrincipal and IIdentity interfaces to add support for claims-based identity. But

where do you get at these interfaces? There are lots of places where IPrincipal and IIdentity are already

exposed in the .NET Framework, and with Geneva Framework you should continue to use them: for

example, Thread.CurrentPrincipal from the .NET Framework, or HttpContext.User from ASP.NET. In a

relying party, Geneva Framework sets up all of these properties so that you can access IClaimsPrincipal

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

18 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

and IClaimsIdentity from any of these familiar places. Figure 13 shows a couple of different ways to get

at the user’s identity in a typical web application.

protected void Page_Load(object sender, EventArgs e) {

 IClaimsPrincipal p =

(IClaimsPrincipal)Thread.CurrentPrincipal;

 IClaimsIdentity ci = p.Identities[0];

 DisplayClaims(ci);

}

protected void Page_Load(object sender, EventArgs e) {

 IClaimsIdentity ci = (IClaimsIdentity)User.Identity;

 DisplayClaims(ci);

}

Figure 13: Accessing IClaimsIdentity

Programming with Claims: a Practical Example
The Geneva Framework object model for claims may seem a bit complicated at first glance, with

subjects, issuers, claim types and values, but in practice it’s very easy to use. Figure 14 shows a typical

example from a claims-aware ASP.NET web application. This example sends a personalized email to the

user when she clicks a button.

protected void SendLetter_Click(object sender, EventArgs e)

{

 IClaimsIdentity id =

((IClaimsPrincipal)Thread.CurrentPrincipal).Identities[0];

 // you can use a simple foreach loop to find a claim...

 string usersEmail = null;

 foreach (Claim c in id.Claims) {

 if (c.ClaimType == System.IdentityModel.Claims.ClaimTypes.Email) {

 usersEmail = c.Value;

 break;

 }

 }

 // you can also use LINQ to find a claim

 string usersFirstName = (from c in id.Claims

 where c.ClaimType == System.IdentityModel.Claims.ClaimTypes.GivenName

 select c).First().Value;

 StringBuilder body = new StringBuilder();

 body.AppendFormat("Dear {0},", usersFirstName);

 body.AppendLine();

 body.AppendLine("Thank you for shopping with us!");

 new SmtpClient().Send(new MailMessage(

 "admin@fabrikam.com",

 usersEmail,

 "Message from Fabrikam",

 body.ToString()));

}

Figure 14: Sending a Personalized Email

In this example, the code uses Thread.CurrentPrincipal to access the user’s identity. Then it loops

through all of the claims for the user via IClaimsIdentity.Claims, looking for the ones it needs right now:

first name and email address. It then uses those claims to send a personalized email message to the

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

19 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

user. The example also shows two ways of finding claims. The code finds the email claim by with a

foreach loop, and uses a LINQ expression to find the first name claim. Both techniques work just fine.

Configuring Geneva Framework
The code in Figure 14 made a lot of assumptions. It assumed the caller was authenticated and that her

first name and email address had been sent as claims. The reason this program can make these

assumptions is because it has a web.config file that wires up the WS-Federation Authentication Module

(FAM) from Geneva Framework and configures it with the address of an STS that can authenticate the

user and supply these types of claims. Figure 15 shows the relevant parts of web.config for the

personalized email example.

<configuration>

 <configSections>

 <section name="microsoft.identityModel"

type="Microsoft.IdentityModel.Configuration.MicrosoftIdentityModelSection, Microsoft.IdentityModel,

Version=0.5.1.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

 </configSections>

 <system.web>

 <compilation debug="true">

 <assemblies>

 <add assembly="Microsoft.IdentityModel, Version=..." />

 </assemblies>

 </compilation>

 <authentication mode="None"/>

 <authorization>

 <deny users="?"/>

 </authorization>

 <httpModules>

 <add name="WSFederationAuthenticationModule"

 type="Microsoft.IdentityModel.Web.WSFederationAuthenticationModule..." />

 <add name="SessionAuthenticationModule"

 type="Microsoft.IdentityModel.Web.SessionAuthenticationModule..." />

 </httpModules>

 </system.web>

 <microsoft.identityModel>

 <issuerNameRegistry type=”Microsoft.IdentityModel.Tokens.ConfigurationBasedIssuerNameRegistry”>

<trustedIssuers>

 <add thumbprint=”…” name=”...CN=SampleSTS...” />

</trustedIssuers>

 </issuerNameRegistry>

 <audienceUris>

 <add value="https://localhost/MyWebApp" />

 </audienceUris>

 <federatedAuthentication enabled="true">

 <wsFederation passiveRedirectEnabled="true"

 issuer="https://localhost/STS/"

 realm="https://localhost/MyWebApp" />

 </federatedAuthentication>

 <serviceCertificate>

 <certificateReference x509FindType='FindBySubjectName' findValue='localhost' storeLocation='LocalMachine'

storeName='My' />

 </serviceCertificate>

 </microsoft.identityModel>

</configuration>

Figure 15: Typical Geneva Framework Configuration for a Relying Party

There are two things going on here in the <system.web> section. The config first references the Geneva

Framework assembly, Microsoft.IdentityModel.dll. Then it wires up the FAM, which is an HttpModule

that plugs into ASP.NET pipeline so that it can listen for the AuthenticateRequest event.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

20 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

SessionAuthenticationModule enables sessions by issuing cookies. I’ll explain in more detail how the

FAM fits into the ASP.NET pipeline later in this paper.

The <microsoft.identityModel> section is new to Geneva Framework. Application can configure a list of

trusted issuers in <issuerNameRegistry> element by choosing the issuerNameRegistry type as

ConfigurationBasedIssuerNameRegistry. The <audienceUris> section is the place to list the target URIs to

which the FAM should expect security tokens to be delivered. If the STS posts a security token to a URI

not in this list then FAM throws an exception. Also you should note that FAM performs a case sensitive

URI comparison between the incoming URI and the list from <audienceUris> section, so it is important

to consider case when you configure this setting.

The <federatedAuthentication> section is where you configure the FAM. Setting enabled=”true” tells the

FAM to work its magic in the AuthenticateRequest event and convert incoming security tokens into an

IClaimsPrincipal. The <wsFederation> section with passiveRedirectEnabled set to “true” tells the FAM

that when a user points her browser at the application, the FAM should automatically redirect the

browser to a particular STS (the issuer attribute indicates the URL for the STS) where the user will be

authenticated and receive a security token. When the user’s browser is redirected, the value of the

realm attribute will be included in the request to the STS, telling it which application is in use. The

<serviceCertificate> section is where you would specify the application certificate that FAM should use

to decrypt incoming security tokens.

Understanding the WS-Federation Authentication Module (FAM)
The FAM is an HttpModule that is specifically designed to make it easy to build federated claims-aware

web applications using ASP.NET 2.0. There are two options available to build federated claims-aware

web applications. One option is to use the FAM and SessionAuthenticationModule and provide passive

redirect based protection; another option is to provide a login page that uses the

FederatedPassiveSignIn control, which is an ASP.NET control offered by Geneva Framework. I’ll cover

the control aspects in a separate section; I’ll focus on the FAM in this section.

As the name implies the FAM is capable of handling the WS-Federation protocol; while

SessionAuthenticationModule is specifically designed to be protocol-agnostic and handle session

cookies. Both of these modules are a required bit of plumbing that must be configured, as I showed

earlier in Figure 15, in your federated claims-aware web application. You may wonder why these are two

separate modules. The motivation for this split is to provide the flexibility for configuring additional

authentication modules in conjunction with the protocol-agnostic SessionAuthenticationModule.

In essence the FAM extracts the claims from the security token issued by an STS and makes them easily
accessible to the application. However, it is possible that some applications may not have an STS and
just want to convert Windows authentication information into an IClaimsPrincipal that is usable by the
claims-aware aspects of the application. Geneva Framework provides an authentication module for this
scenario too; ClaimsPrincipalHttpModule is the class that addresses this scenario. In this scenario the
default claims generated are based on the Windows identity and includes user name, group SIDs, and
other authentication information. This module eliminates the application’s need to get a security token

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

21 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

from an STS and provides a way to always have claims-based principal available in an ASP.NET
application.

FAM Events
As is typical with HttpModules in ASP.NET, the FAM fires off several events that allow you to customize

its default processing. Keep in mind that all of the work done by the FAM occurs during the ASP.NET

AuthenticateRequest event. All of the events fired by the FAM will occur during this part of the ASP.NET

request pipeline.

ConfigurationLoading/Loaded

ASP.NET programmers are already familiar with the Application_Start event, which fires during the very

first request that comes through the pipeline once an application starts up. The ConfigurationLoading

and ConfigurationLoaded events are similar to this: the first time the FAM processes an

AuthenticateRequest event, it lazily loads its settings from web.config and gives you a chance to

dynamically change that configuration by handling these events. There are certain aspects of the FAM

that are not available through configuration, and ConfigurationLoaded is a useful event to handle in case

you want to programmatically configure the FAM beyond what’s in web.config.

SecurityTokenReceived

This is a very useful event that fires with every message that contains a WS-Federation passive sign-in

response, right before the FAM does its work. One important thing you can do here is to reject the

token before the FAM processes it. You have access to the security token received and you can

implement your own custom validation code that decides whether the token is rejected or not.

If you want to leave some pages that get WS-Federation passive messages open to anonymous access

then you can set the FAM’s Cancel property to “true” which makes the FAM not do anything and you

can configure the authorization policy in the ASP.NET pipeline to allow anonymous access to those

pages.

SecurityTokenValidated

This event is raised after the security token is validated by the FAM and an IClaimsPrincipal is created

with the claims extracted from the token. Note that the IClaimsPrincipal that is available as a property of

the event arguments has already passed through any configured claims authentication manager, which

has done the necessary transformations. One of the simplest things you can do here is to audit this

event for successful token validations that occur in the application.

SessionSecurityTokenCreated

Early in this paper I showed how browser-based applications receive claims from an STS via an HTTP

POST. At this stage of processing, the FAM has received the security token, validated and parsed it into a

set of claims, created a session security token with those claims in it, and is ready to issue a cookie to

cache that session security token for a little while (so that the user isn’t constantly getting redirected

back to the STS). Geneva Framework calls the contents of this cookie a “session security token”, and has

a class called SessionSecurityToken to represent it.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

22 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

By handling this event you’ll be informed whenever fresh claims have been delivered from an STS and

are about to be cached for a configured time in a cookie. If you plan on storing claim values in an

application data store, this would be a great time to do that. See the ‘Caching Claim Values Over Time’

section for an example. Also, by handling this event you have the opportunity to modify the session

security token per your needs. The FAM takes any modifications made to the session security token and

then writes out a cookie with the modified session security token in it. For example if you want the

cookie to be issued for single use only instead of persisting for the session, you can set the

WriteSessionCookie property of SessionSecurityTokenCreatedEventArgs to “false”.

SignedIn

This event fires right after the IClaimsPrincipal is set in the appropriate places (Thread.CurrentPrincipal

and HttpContext.Current.User). As you can imagine this event doesn’t have any event arguments and its

main purpose is to allow applications to audit the user signed-in event.

SignInError

At this stage of processing the FAM has received the token from an STS, extracted claims from it, and

created a session security token, but encounters an error when it tries to write out a cookie with the

session security token. This event is also triggered when errors occur in token validation process.

You can use this event to handle the exceptions thrown by the FAM and convert them to user-friendly

messages per your needs. Also, during application development this event is very helpful in debugging

the cause of the exceptions thrown.

SigningOut

At this stage of processing, the user has indicated her desire to sign out of your application. This doesn’t

always happen: some users simply stop making requests to your application without explicitly signing

out. But when this event does fire, you can use it as a way to more aggressively release resources that

you may have been holding for the user. If you have a good reason to do so, you can choose to cancel

the SignOut operation via your event handler and keep the user signed in.

SignedOut

This event fires when the user or application has triggered sign-out process and the FAM has deleted the

cookie corresponding to the session. As you can imagine this event doesn’t have any event arguments

and its main purpose is to allow applications to audit the event that the user has signed out.

SessionAuthenticationModule Events

SessionSecurityTokenEventReceived

Once a session security token has been issued in the form of a cookie, during all subsequent requests

(until the session security token expires) the SessionAuthenticationModule will simply read the contents

of this cookie instead of redirecting the browser back to the STS. By default session security tokens are

set to expire after 10 minutes; however, at runtime, applications typically extend the lifetime as needed.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

23 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

This event is triggered after the session security token is received and processed by

SessionAuthenticationModule. One possible use of this event is to allow applications to check for

expiration of the session security token and extend the lifetime as needed. You can find an example of

this in the Geneva Framework samples collection: Samples\Extensibility\Claims Aware AJAX

Application, in the AjaxRP (relying party) project.

ConfigurationLoading/Loaded

Similar to the FAM events described above, the SessionAuthenticationModule fires the

ConfigurationLoading and ConfigurationLoaded events. The details I’ve covered on these events for the

FAM are true for the SessionAuthenticationModule as well. You can find an example of this in the

Geneva Framework samples collection: Samples\End-to-end Scenario\Identity Delegation, in the WFE

(web front-end) project.

Ideas for Hooking FAM and SessionAuthenticationModule Events
Here are some practical examples of how you can hook FAM events to achieve various goals.

Substitute your own Principal
Claims are very simple to read – just enumerate a collection and look for the claim type you want. But if

you’ve got a lot of code that depends on claims, this can get tedious. Recall the code I wrote that used

claims to send a personalized email message to the user (Figure 14). Wouldn’t it be easier instead to

write code like that shown in Figure 16?

protected void SendLetter_Click(object sender, EventArgs e) {

 MyPrincipal customPrincipal = (MyPrincipal)Thread.CurrentPrincipal;

 StringBuilder body = new StringBuilder();

 body.AppendFormat("Dear {0},", customPrincipal.FirstName);

 body.AppendLine();

 body.AppendLine("Thank you for shopping with us!");

 new SmtpClient().Send(new MailMessage(

 "admin@fabrikam.com",

 customPrincipal.Email,

 "Message from Fabrikam",

 body.ToString()));

}

Figure 16: Simplified Personalized Email Example

In this new version, you don’t have to enumerate claims to find the user’s first name and email address.

A custom principal class already has that sorted out, and the code can simply use its properties to access

the claims. This is even more useful if you have claims that are more complicated than strings. Because

Geneva Framework passes all claims as strings, you may need to deserialize the value of a claim into an

instance of a class. Using a custom principal to expose this is a great way to centralize this code. Figure

17 shows the implementation of the custom principal used in the code above.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

24 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

public class MyPrincipal : ClaimsPrincipal, IMyClaims {

 public MyPrincipal(IClaimsPrincipal claimsPrincipal)

 : base(claimsPrincipal)

 {}

 public string FirstName { get; set; }

 public string Email { get; set; }

}

Figure 17: Custom Principal Definition

With this class definition, all you need to do now is ensure that the FAM uses an instance of MyPrincipal

instead of the default ClaimsPrincipal when it sets up the user’s identity. The SecurityTokenValidated

event in the FAM is the place to do this, as shown in Figure 18.

void WSFederationAuthenticationModule_SecurityTokenValidated(object sender,

 SecurityTokenValidatedArgs args) {

 MyPrincipal customPrincipal = new MyPrincipal(args.ClaimsPrincipal);

 foreach (Claim c in args.ClaimsPrincipal.Identities[0].Claims) {

 if (c.ClaimType == System.IdentityModel.Claims.ClaimTypes.GivenName)

 customPrincipal.FirstName = c.Value;

 if (c.ClaimType == System.IdentityModel.Claims.ClaimTypes.Email)

 customPrincipal.Email = c.Value;

 }

 args.ClaimsPrincipal = customPrincipal;

}

Figure 18: Injecting a Custom Principal

You can also achieve the same customization by creating a custom claims authentication manager and

overriding the Authenticate method.

Caching Claim Values over Time
One of the first things you’ll notice when you build a claims-aware web application is that you no longer

need to provision user accounts. This is one of the responsibilities that you can shrug off when you rely

on an external party (your issuing authority) to authenticate your users. But even claims-aware

applications may need to store per-user data such as preferences. And sometimes it makes sense to

store claims for later use. For example, what if you wanted to send an email blast out to every user of

your application?

The solution to this problem is simple: just keep a record of the claims you think you might want to

remember during times when the user may not be logged on. The user’s name and contact information

are prime candidates for a profile. Just keep in mind that as soon as you write that data, it’s by definition

stale, and will only become more so as time goes by, so you should update the user’s profile every time

you think you might have fresh information from your issuer. It’s also wise to keep a timestamp of the

last time the information was updated, so you can track just how stale the information is.

The SessionSecurityTokenCreated event fired by the FAM is a great place to freshen the user’s profile,

because it only fires when the FAM parses actual claims posted from the STS. Figure 19 shows an

example of how this could be done in global.asax:

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

25 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

void WSFederationAuthenticationModule_SessionSecurityTokenCreated(object sender,

SessionSecurityTokenCreatedEventArgs args)

{

 string usersFirstName = null;

 string usersEmailAddress = null;

 foreach (Claim c in args.ClaimsPrincipal.Identities[0].Claims)

 {

 if (c.ClaimType == System.IdentityModel.Claims.ClaimTypes.GivenName)

 usersFirstName = c.Value;

 if (c.ClaimType == System.IdentityModel.Claims.ClaimTypes.Email)

 usersEmailAddress = c.Value;

 }

 DateTime lastUpdated = DateTime.Now;

 // the definition of this method is up to you

 UpdateUserProfile(usersFirstName, usersEmailAddress, lastUpdated);

}

void UpdateUserProfile(string firstName, string email, DateTime lastUpdated)

{

 // update whatever data store you're using to store profile details

}

Figure 19: Tracking Claims in a User Profile

Controls
Geneva Framework includes a couple of helpful ASP.NET controls that help an end user get involved

with authentication in passive scenarios. For example, you can have different instances of these controls

that redirect the user to different issuers, depending on your needs, as I describe in the section on

authentication assurance. All of these controls derive from a base control that supplies common

properties such as whether you want a session to result, or just a single blast of claims. Typically these

controls are embedded to login pages; and there are lots of references on how to configure a login page

using Forms Authentication in ASP.Net.

Once the user signs in using either of these controls, you can discover the resulting claims using the

same mechanisms I’ve discussed throughout this paper.

InformationCard
This control generates the required HTML to trigger a browser to pop up an identity selector, and makes

it easy for a web page to obtain claims from both personal as well as managed information cards.

The properties of this control allow you to specify the issuer you trust, the type of token you require,

and the claim types that you require.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

26 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

<%@ Register Assembly="Microsoft.IdentityModel, ..."

 Namespace="Microsoft.IdentityModel.Web.Controls"

 TagPrefix="idfx" %>

<idfx:InformationCard

 ID="InformationCard1"

 runat="server"

 DisplayRememberMe="False"

 SignInMode="Session"

 SignInText="Sign in to Fabrikam using an Information Card"

 TitleText="Click here"

 Issuer="http://localhost/ManagedCardSTS/windows.svc"

 IssuerPolicy="https://localhost/ManagedCardSTS/windows.svc/mex"

 RequiredClaims="[space delimited list of claim types go here]"

 OnSignInError="OnSignInError"

 DisplayType="CardTile"

 RequireUserInteraction="True"

/>

Figure 20: The InformationCard Control

Figure 24 shows an example of this control on a web page, along with the ASP.NET Register directive

you’ll need in order to use it. For a sample application that uses this control refer to the Geneva

Framework samples collection and Samples\Getting Started\Simple Web Application with Information

Card Signin.

One property that I want to highlight in this InformationCard control; that is “DisplayType” property,

which can be set to either “CardTile” or “None”. CardTile display type is a new feature added in

Windows CardSpace “Geneva”. If you are familiar with current version of Windows CardSpace shipping

in .Net Framework 3.0 you would have noticed the CardSpace UI that pops up when you click on an

Information Card control. This CardTile feature is to make the login experience user friendly and show

the card image on the web page or application itself. The sample mentioned above illustrates this; but

note that you would need to install the Windows CardSpace Geneva before trying out the sample.

FederatedPassiveSignIn
This login control is similar to the InformationCard control in that it initiates a login when the user clicks

it, but instead of popping an identity selector, this simply redirects the user’s browser to a passive STS.

This login control effectively works the same as the FAM but the functionality is happening in the scope

of login page instead being in the ASP.Net pipeline. This control can be useful if you want to allow

various levels of authentication for a given page. For example, the AuthAssurance example

(Samples\End-to-end Scenario\Authentication Assurance) uses this control to prompt the user to sign

in with a certificate.

http://go.microsoft.com/fwlink/?LinkID=122266

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

27 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

<%@ Register Assembly="Microsoft.IdentityModel, ..."

 Namespace="Microsoft.IdentityModel.Web.Controls"

 TagPrefix="idfx" %>

<idfx:FederatedPassiveSignIn

 runat="Server"

 TitleText="Sign In to Access More Features"

 SignInText="Sign In"

 Issuer="https://localhost/MyPassiveSTS/Login.aspx"

 Realm="https://localhost/MyRelyingParty/"

 OnSignInError="MyErrorHandler"

 VisibleWhenSignedIn="false"

 AutoSignIn="false"

 DisplayRememberMe="false"/>

Figure 21: The FederatedPassiveSignIn Control

Figure 25 shows an example of this control on a web page, along with the ASP.NET Register directive

you’ll need in order to use it. Look at Samples\End-to-end Scenario\Authentication Assurance for an

example of how this control can be used.

Using Geneva Framework in Web Services
So far all of my examples have been browser-based web applications. Now I’d like to show how you can

use Geneva Framework to build and consume claims-aware services.

Writing a Claims-Aware Service
A claims-aware web service expects to receive a security token (SAML by default) in the security header

of the SOAP envelope. This security token identifies the user (subject) to the web service (relying party).

But the service usually also proves its identity to the user, and in claims-based systems this is done by

configuring the service with a certificate.

WCF already supports building web services that accept tokens issued from an STS. Your service just

needs to indicate to WCF the address of the STS’s metadata. In order to do this, today you need to

create a WSFederationHttpBinding or a custom WCF binding, which is easy to do both in code and

config.

The example I’ll be walking through here is from the Geneva Framework samples collection:

Samples\End-to-end Scenario\Identity Delegation. The relying party in this example in the Service2

project, and all of the code for this web service can be found in Service2.cs. If you examine the Main()

method, you’ll see how to construct the required binding in code (you can also do this in config if you

prefer). The bit that you’ll customize for your own web service is the IssuedSecurityTokenParameters

class, which specifies the type of token being requested (SAML 1.1 in this example), and the addresses

of the metadata and WS-Trust endpoints for the issuer’s STS, which in this example is also built using

Geneva Framework in the STS project.

There’s nothing special about the ServiceHost configuration other than the explicit shutting off of a

couple of certificate validation features that WCF normally runs, in order to support the test certificate

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

28 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

that ships with the samples. This is not appropriate in production code, where you normally want to

validate certificate chains and check for certificate revocation.

So far, nothing about this web service is Geneva Framework specific. The line of code that calls

FederatedServiceCredentials.ConfigureServiceHost() is where Geneva Framework comes in. This call

gives Geneva Framework a chance to install Geneva Framework specific behaviors that hook Geneva

Framework into WCF’s claims-processing pipeline. This means that from inside your service method

(ClaimsAwareWebService.ComputeResponse in this example), you’ll be able to reach up into Geneva

Framework via Thread.CurrentPrincipal and use the simplified Geneva Framework object model to read

the claims sent with the request. The code for reading claims in a web service looks exactly the same as

it does in my earlier browser-based examples. Once you’ve got the claims, it’s the exact same

programming model as in the ASP.NET environment: IClaimsPrincipal, IClaimsIdentity, and Claim. One

point to note is that once Geneva Framework is enabled for a WCF service

ServiceSecurityContext.Current can no longer be used in that service.

Calling a Claims-Aware Service
WCF already has everything a client needs to call a claims-based service, so you don’t need Geneva

Framework on the client side at all! All the client needs is the .NET Framework 3.0, so when you’re

developing a smart client, you can work the way you are used to with WCF, which is typically to point

Visual Studio or svcutil.exe at the metadata address for the service you want to call, and generate a

proxy that you can use to make those calls. The binding that the service configured will be exposed via

WSDL, and that will give the client all the information it needs, including the type of token required by

the relying party and the address of the STS from which it should be obtained. Keep in mind that the

binding in this config file wasn’t written by hand: it was generated by svcutil.exe along with the proxy.

If you examine the code in Client.cs, you’ll see that there’s nothing interesting going on here; the smart

client developer is blissfully unaware of the way identity is being managed on the back end.

Using Geneva Framework to Build a Security Token Service
This paper is primarily aimed at developers building relying parties, but I would be remiss if I didn’t at

least briefly discuss how an STS can be built using Geneva Framework.

Issuing Authority versus STS
Before I show you how to implement an STS using Geneva Framework, here’s an important caveat: in

any non-trivial claims-based system, the STS is a very small part of an issuing authority. The STS is the

component that accepts incoming requests, validates, decrypts, and shreds incoming security tokens

into claims, and does the opposite for outgoing security tokens. Geneva Framework takes care of all of

that heavy lifting. But what Geneva Framework does not do is provide a framework for managing or

administering policy, which you can think of as the logic, or the rules, behind the STS.

Here’s an example of some of the questions that an issuer’s policy could answer:

 What applications am I providing security tokens for?

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

29 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

 What claims do those applications care about?

 How should I authenticate users?

 Do different apps have different authentication requirements?

 What partners am I federating with?

So if you’re trying to figure out whether you should build your own STS or use one that was built by

someone else (like the “Geneva” Server, for example), most people would be much better off buying

one.

If, on the other hand, your company wants to do something that existing products don’t support, you

can use Geneva Framework to get started building your own authority.

What an Issuer has to Work With
A request for a security token includes details about what claims the relying party needs. This might

come in the form of a WS-Policy document from the relying party that explicitly lists which claim types it

needs. On the other hand, it might simply be a string that identifies a particular relying party, in which

case it’s the issuer’s job to know what claims that particular application needs.

Recall from Figure 2 that the request originates from the user (the subject), and it’s the issuer’s job to

either authenticate that user, or bounce her to some other STS to be authenticated. In the latter case,

the issuer will receive a set of claims about the subject from the upstream issuer.

So ultimately the issuer has a couple of very important categories of information to work with:

information about the subject, and information about the relying party.

The issuer must take this information, along with any contextual data it may need (time of day, etc.) and

either reject the request if it can’t satisfy the relying party’s needs, or issue a security token containing

claims that will make the relying party happy.

Where does the issuer look to get claims? If the user is part of the issuer’s enterprise, the user’s record

in the enterprise directory would be a natural source for claims. Sometimes user data is stored in other,

less obvious places such as SQL databases, so the issuer might need to look in multiple places to get the

claims that the relying party needs. But centralizing this logic for looking up claims is very useful: as your

organization adds more and more applications, they all benefit by not having to figure out how to query

the various user stores themselves. Issuers are typically configured by IT pros, and they usually know

best where to get any given attribute for a user, since they manage identity on a daily basis.

Geneva Framework STS Architecture
Geneva Framework includes a base class, SecurityTokenService, which you derive from to create a

custom STS. There are two key methods that you must override in your derived class, which are shown

in Figure 20.

http://go.microsoft.com/fwlink/?LinkId=122266

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

30 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

protected abstract Scope GetScope(IClaimsPrincipal subject,

RequestSecurityToken request)

protected abstract IClaimsIdentity GetOutputClaimsIdentity(IClaimsPrincipal subject,

 RequestSecurityToken request,

 Scope scope)

Figure 22: Methods to Override on SecurityTokenService

 The first method, GetScope, gives you the opportunity to normalize the relying party’s address and

choose signing and encryption keys (security tokens are typically encrypted so that only the relying party

can read them, and signed by the issuing authority). If you’re accessing a database during any of this

work, you can also use that database round-trip to prefetch data that GetOutputClaimsIdentity will

need, in the interest of efficiency.

The second method, GetOutputClaimsIdentity, lets you define the claims that will be folded into an

IClaimsIdentity that will be serialized into a security token. GetOutputClaimsIdentity is the method that

should fire off all of the logic in your issuer, evaluating the claims for the subject, information about the

relying party, and ultimately result in a set of claims exposed from an IClaimsIdentity implementation.

By overriding these two methods, you’ve effectively wired the STS up to your policy for claims issuance.

Now all you have to do is actually issue those claims, and how you do that depends on whether you are

exposing your STS for active or passive clients.

WS-Trust (for Active Clients) Example
The example I’ll use for this discussion is from the Geneva Framework samples collection:

Samples\Getting Started\Simple Claims Aware Web Service. There are three projects in this solution: a

WCF client, a WCF service for the relying party, and a WCF service for the STS. The STS project is called

SimpleActiveSTS-VS2008, and that’s what I’ll be focusing on here.

Start by opening the MySecurityTokenService.cs file and note how the sample derives a class from

SecurityTokenService and overrides the two methods I discussed earlier. In GetScope, you’ll see a

signing certificate for the service being specified as part of the scope. This is the certificate of the issuer,

and its private key will be used to sign any security tokens issued by this STS. You’ll also notice that a

certificate is being specified to use for encrypting the token so the relying party can read it. This is the

certificate of the relying party, and its public key will be used to encrypt the tokens issued by this STS to

the relying party.

This is one reason why this example is called “Simple”. The STS is hardcoded to issue tokens for one

relying party only: the web service in the ClaimsAwareWebService-VS2008 project. A real STS would

need to support multiple relying parties to be useful, and thus would need to keep a list of certificates

and provide some way of managing that list.

Now have a look at the GetOutputClaimsIdentity override. The body of this method pulls out the

subject’s IClaimsIdentity that resulted from the STS authenticating the user (using Windows integrated

authentication, which is the default client authentication method in WCF). You can see that it creates a

new IClaimsIdentity and simply copies the name claim it gets by authenticating the user with Windows

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

31 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

integrated authentication, then adds one new claim, one that represents the user’s age. Note the

ClaimType (http://GenevaSamples/2008/05/AgeClaim) used here is a URI defined by the issuer; this is a

simple example of creating a custom claim that allows you to communicate arbitrary identity details to

relying parties, and as long as the issuer and relying party agree on what the claim means, it’s all good!

In practice, it would make more sense to look up the user’s date of birth in a user store, but this

example is focused on how you use Geneva Framework to issue claims. If you build your own issuer

using an example like this, where you get the claims is entirely up to you.

To see how the issuer exposes its WS-Trust endpoint to the world, open SimpleActiveSTS.cs and have a

look at the Main() method. You’ll notice down towards the bottom of the code that ServiceHost is not

used; instead, the sample uses a derived host that Geneva Framework supplies called

WSTrustServiceHost. This class simplifies configuring WCF to expose a WS-Trust endpoint. Note that in

configuring the host, you specify the security token service configuration instance and the WS-Trust

endpoint you want to expose, although you don’t have to actually implement it yourself. The security

token service configuration has the property SecurityTokenService which is set to the type of the custom

class that you derived from SecurityTokenService (MySecurityTokenService in this example).

When you run this sample, if you watch closely, you’ll see that the client first makes a call to the STS, (it

prints out the claims it’s issuing to its console window). Then, a moment later, you’ll see that the relying

party receives the claims and prints them out into its console window.

WS-Federation (for Passive Clients) Example
The example I’ll use for this discussion is from the Geneva Framework samples collection: Samples\End-

to-end Scenario\Federation For Web Apps. For this discussion let us focus on the FPSTS project. Unlike

the active example, there is no client project because there is no smart client; this is a browser-based

example.

When you are building a passive STS for browsers, the way you expose your STS to the world is by

handling HTTP requests from a browser, and in this example, a web page called Default.aspx is used. The

ASPX page itself isn’t very interesting, but if you look at the code behind file, Default.aspx.cs, you’ll see

some boilerplate code that processes WS-Federation requests. This particular example handles the

request in Page_PreRender, and if you look inside that method, you’ll see the request being read and

deserialized into a WSFederationMessage object, which is a helper class provided by Geneva

Framework. Note that you don’t actually need to use an ASPX page to process the request – if you know

how to build an ASP.NET HttpHandler, it would work just as well.

The ProcessSignInRequest helper method is the most interesting section of code in this example. It

creates an instance of custom security token service (which looks exactly like it did in the Active

example) and calls its Issue method (Figure 21), passing in the caller’s identity and the details of the

request. Note the use of WSFederationSerializer, which supplies the impedance mismatch between the

active and passive scenarios. It is used to deserialize the incoming request into a RequestSecurityToken

that can be consumed by the STS, and also to serialize the resulting RequestSecurityTokenResponse

http://genevasamples/2008/05/AgeClaim

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

32 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

from the STS into a response message that includes JavaScript to auto-post the response back to the

relying party.

public virtual RequestSecurityTokenResponse Issue(IClaimsPrincipal principal,

 RequestSecurityToken request)

Figure 23: SecurityTokenService.Issue

Delegation and ActAs
When you build a multi-tier system, typically with a web front end and a collection of web services and

other resources on the back end, you have a tough choice to make. Should the web front end use its

own identity to access those back end resources, or should delegate the user’s credentials to make

those requests? If you choose the first option, you end up with what is known as a trusted subsystem

model. If you choose the second, you’ll need some way to delegate the client’s identity to the back end.

There are performance and security tradeoffs for both of these choices, with the trusted subsystem

model generally favoring performance over security and the delegation model generally favoring

security over performance. Sometimes it makes sense to have a mixture of these models where high

volume, low value transactions are handled using the trusted subsystem model, but low-volume, high

value transactions requiring the original caller’s credentials. Regardless of how you design your system,

it’s important to note that the claims-based model of identity and the implementation in Geneva

Framework supports delegation of credentials.

The web front end, once it receives a client’s token, can make calls using its own identity to back end

claims-aware web services. No special code is required to do this. But if the web front end wishes to

delegate the client’s credentials, it needs to retrieve the bootstrap token and send it along with its

request for a security token for the back end web service.

Back End

Web Service

STS

Issuing

Authority

Alice’s

Browser

1. G
et C

la
im

s
fo

r A
lic

e

Alice Bob

2. Alice 4. Bob ActAs Alice
Web Front

End

(browser-

based app)

3
.
G

e
t
C

la
im

s
 f
o

r

B
o

b
 A

c
tA

s
 A

lic
e

Figure 24: ActAs Scenario

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

33 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

Figure 22 shows a typical ActAs scenario. Alice has pointed her browser at a web application that, as

part of its implementation, makes use of a back end web service. Alice’s browser goes through the

passive redirection handshake just like normal in order to present a security token to the web front end.

This is where things get interesting: the web front end which, for the sake of this discussion, runs under

an identity called Bob, takes Alice’s token and submits it as an “ActAs” parameter in his request to get a

security token for the back end web service. The issuing authority notes that Bob wants to make

requests to the back end using Alice’s credentials, and so crafts an IClaimsIdentity for Alice and an

IClaimsIdentity for Bob, and links them together via the Delegate property, as shown in Figure 23. These

identities are serialized into a security token for the back end, where Geneva Framework rehydrates this

same structure so that the back end can see that this is Alice making the request (but technically, Bob is

delegating her credentials). The back end can then perform appropriate access control, typically granting

access based on Alice’s level of permission. The back end can also audit the request, typically noting the

fact that Bob delegated Alice’s credentials to make the request. This is richer than the current model of

delegation in Kerberos on the Windows platform today, where the back end has no programmatic way

to discover that Alice’s credentials were delegated by some middle tier component.

In the claims-based model, the back end can see that Alice went to the web front end (Bob) and that

Bob delegated her credentials to get to the back end. If the back end were to receive a token for Alice

without Bob as a delegate, it would know that Alice was accessing the back end directly, and could take

appropriate action (deny the request, perhaps).

Claims

Identity

(Alice)

Claims

Identity

(Bob)

Delegate

Figure 25: Geneva Framework Programming Model for Delegation

Consider the information the authority gets in this scenario. The authority knows which target relying

party is the target of the request (the back end web service). It knows who is making the request (Bob)

and knows that Bob wants to act on Alice’s behalf. The authority may decide not to issue a security

token in this case if Alice is a sensitive user such as an administrator with very high privilege. Or it may

issue a token with a restricted set of claims to limit what Bob can do while using Alice’s credentials. Or it

may issue an entirely different set of claims based on what the back end needs. The authority might

decide to deny direct requests from Alice to talk to the back end, if that is desirable. The only limitation

is the policy supported by the STS that you buy. Of course, if you implement your own STS, you’ll only be

limited by your imagination.

The Geneva Framework samples collection includes an example of ActAs (Samples\End-to-end

Scenario\Identity Delegation), and I’d like to point out some of the more interesting bits. I’ll start with a

look at the web front end (the WFE project), which uses ActAs to delegate the client’s identity to a back

end web service. In global.asax.cs, you’ll see an example of handling the ConfigurationLoaded event

fired by SessionAuthenticationModule to wire up a channel factory with custom binding configured to

Service2.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

34 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

In this example, the web front end handles the passive redirect to the STS and makes use of bootstrap

tokens collection preserved by Geneva Framework; you can see this code in default.aspx.cs in the

Page_Load method. Note how the Geneva Framework is exposing the bootstrap tokens collection

through session security token’s property. This capability removes the burden of caching bootstrap

tokens in your application.

When the web front end wishes to make a call to the back end web service (the Service2 project), it pulls

the user’s bootstrap token out of session security token and prepares a WCF channel for Service2. You

can see this code in Page_Load. It then uses an Geneva Framework supplied helper class called

FederatedClientCredentials to configure its ChannelFactory to Service2; then creates a channel using

CreateChannelActingAs method to perform a web service request using two sets of credentials (one

user acting as another). The user’s security token is specified as the ActAs credentials, and the channel is

used to make a call to Service2’s ComputeResponse operation. On the relevant note it is helpful to point

out that Geneva Framework offers APIs to easily add the capability of sending WSTrust messages from a

WCF client to WSTrust-based token services; WSTrustClient class empowers you to add this capability.

However, before the channel can make the request to Service2, it needs to get an appropriate token

from the STS that Service2 trusts. If you look in the STSBackend project, you’ll find the guts of this STS,

and you’ll see how this request gets processed. In MySecurityTokenService.cs, have a look at the

GetOutputClaimsIdentity override. Note how the request argument includes an ActAs property that

allows the issuer to see the IClaimsIdentity of the original client (via the Subject property). This sample

issuer is very simple. It creates a new ClaimsIdentity by copying the IClaimsIdentity of the ActAs user

(this is the identity from the original user’s security token that was passed via ActAs), appending a

second identity for the caller (the web front end) to the end of the delegate chain.

Note that this is a very simple example that demonstrates how ActAs works. In the real world, the issuer

would likely perform at least checks similar to the checks that domain controllers in Windows deal with

Kerberos delegation. Typical policy queries might include the following:

 Is the caller trusted to delegate credentials?

 For which users?

 To which relying parties?

The resulting SAML token that is issued will include the entire chain of identities. In this case there will

be only two: the original client, and the web front end. You can see this deserialized by Geneva

Framework in the back end web service, Service2. Open Service2.cs and note that the code prints out

the caller’s claims, (which in this case will be the user sitting behind the browser). It also traverses the

delegate chain via IClaimsIdentity.Delegate, printing out the claims for each subject that delegated the

user’s credentials.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

35 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

Authentication Assurance
Sometimes, in order to find a balance between security and usability, it’s good to have different levels of

authentication. For example, for high volume, low value transactions, you might allow the user to

authenticate with a user name and password via a web form. And for convenience, you might create a

session via a cookie so that the user doesn’t have to log in every time she submits a request.

But for those infrequent, high value transactions, you may want stronger authentication. Maybe there’s

a particular web page that exposes a sensitive feature, and your security policy absolutely requires the

user to prove her identity using multi-factor authentication (such as a smart card with a PIN) before

granting access. What you need here is authentication assurance – when the user arrives at the sensitive

web page, you need to have assurance from the authenticating authority that the user has indeed

proved possession of her smart card, and knowledge of her PIN code.

The STS can inform the relying party of the type of authentication that it used by injecting a special

authentication method claim. The sample I’m going to discuss uses this technique, and can be found in

the Geneva Framework samples collection: Samples\End-to-end Scenario\Authentication Assurance.

There are two issuers in this example: AuthPasssiveSTSWindows, and AuthPassiveSTSCert. The first uses

Windows integrated authentication, and the second requires the client to present a certificate, which is

a stronger but more cumbersome form of authentication. Each issuer adds an Authentication claim into

the list of claims for the user, indicating the form of authentication used. You can see this in the

GetOutputClaimsIdentity method found in the App_Code\CustomSecurityTokenService.cs file for each

of these projects.

The relying party in this example is a browser-based application (called AuthAssuranceRP) that exposes a

low value page (LowValueResourcePage.aspx) and a high value page (HighValueResourcePage.aspx). The

low value page simply checks to see if the user is authenticated, and if not, redirects to default.aspx, on

which is an instance of the FederatedPassiveSignIn control. This control presents the user with a link she

can click in order to initiate the WS-Federation passive redirect to AuthPassiveSTSWindows, which uses

Windows authentication to authenticate the user quickly and without much hassle.

Regardless of whether the user is authenticated or not, when she visits HighValueResourcePage.aspx,

the code checks not only whether the user is authenticated, but if she also has an authentication

method claim with the expected claim value of “CertOrSmartCard” and is only issued by

AuthPassiveSTSCert STS, which requires the user to authenticate with a certificate (or smart card, if you

have that infrastructure). So instead of redirecting the user to default.aspx, the high value page redirects

to a separate sign-in page specifically for high-assurance logins. This is easy to implement; if you look at

HighAssuranceSignInPage.aspx, you’ll see another instance of the FederatedPassiveSignIn control that

redirects to the AuthPassiveSTSCert STS instead.

In order to handle the scenario where the user logs in once using Windows authentication, and then logs

in a second time using a cert, one would imagine that the sample has a bit of plumbing to do. But

Geneva Framework handles this scenario seamlessly; the FAM simply refreshes its session security token

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

36 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

with the latest claims received. This means that when the user initially logged in with Windows

authentication, the FAM issues a session security token with the claims issued in that case; when the

user performs steps up authentication with a certificate, the FAM sees that the user is already

authenticated and a new token has been issued, so it refreshes the session security token with the new

collection of claims. If an application wants the second set of claims to be appended to the initial set it

needs to preserve the initial set of claims and then redirect the user to the second issuer and use a

custom claims authentication manager to append the new claims to the initial claims. In essence Geneva

Framework offers more flexibility so that you can achieve these advanced scenarios in your claims-

aware applications.

Overview of Geneva Claims to Windows Token Service (GTS)
When you introduce claims-based model together with federated authentication into your existing

multi-tiered system, typically with a web front end and a group of web services and other resources on

the back end, it is likely that you would follow an incremental approach in migrating the back end

services to claims-based model. For an interim migration period you would need to create the

compatibility between services that are claims-aware and federated, and services that are not claims-

aware. Typically, these claims-unaware services require Windows identity to authenticate the requests.

On a related note, the back end services might depend on other software products that require a

Windows identity and don’t recognize the security tokens issued by an STS. For example, imagine a back

end service that communicates with a SQL-based data store that requires a Windows identity for

authentication.

 In summary, we need a solution that acts as a bridge between the services that are federated and

services that are not federated; a solution that provides a way to get a Windows identity from the

security tokens issued by an STS. The claims-aware services can then use that solution to get the

Windows identity of the user from the STS issued security tokens and then calls into the back end

services that are not claims-aware. Geneva Framework offers such a solution: the “Geneva Claims To

Windows Token Service” or in short form “GTS”.

GTS is a Windows service that offers APIs to get a Windows identity by passing in the value of UPN claim.

The most helpful API is UpnLogon, which takes a UPN claim value as a string and returns a Windows

identity for that user. There are some additional steps to make this service work in the cases where you

want to use the Windows identity returned from this service to access resources in remote servers (in

other words, flowing identity off of the box); in that case, you would need to configure your Active

Directory to allow constrained delegation. Also note that GTS needs the callers identities explicitly listed

in its configuration file, wtshost.exe.config, which is located in the Geneva Framework install folder, in

the “allowedCallers” property; it doesn’t accept requests from all authenticated users in the system

unless it is configured to do so.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

37 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

Back End

Web Service

(not claims-

aware)

STS

Issuing

Authority

Alice’s

Browser

1. G
et C

laim
s fo

r A
lic

e

Alice

2. Alice submits claims
4.Submit Alice Windows

Identity
Web Front End

(claims-aware)

3.GTS converts claims to

Windows Identity

Bob

Figure 264: Geneva Claims To NT Token Service (GTS)

Figure 24 illustrates a typical GTS usage scenario. Alice has pointed her browser to a web application,

which is a claims-aware application and, as part of its implementation, makes use of a back end service

that is not claims aware. The normal passive redirect handshake happens in order to get a security token

from STS and present it to the web front end. Now the interesting part starts: the web front end extracts

claims from the security token, and notes that the content that Alice trying to access needs to be

obtained from the back end web service, which is not a claims-aware service and requires the Windows

identity of Alice. For the sake of this discussion, let’s assume that web front end runs under an identity

called Bob and is configured as the only allowed caller to the GTS. The web front end extracts the UPN

claim value from the token and makes a request to GTS. Since Bob is configured in the allowed callers

list, the GTS processes the request and returns the Windows identity of Alice. The web front end

impersonates Alice and then calls to the back end service and gets access to the resources. The

important point to note here is that the back end doesn’t have to know anything about the claims model

for this scenario to work.

It is possible that in some scenarios the web front end might request resources from the back end

service more frequently and it would be more efficient to always have access to the Windows identity of

Alice instead of calling to the GTS for each individual request. To address this scenario, Geneva

Framework introduces a ‘mapToWindows’ configuration setting that can be set in the

<Microsoft.IdentityModel> section of the application’s configuration file. When the mapToWindows

property is set to ‘true’, Geneva Framework always creates an instance of WindowsClaimsIdentity,

which includes both the claims identity and Windows identity aspects of Alice, instead of a

ClaimsIdentity upon successful token authentication. This means that the Windows identity of Alice is

always available to the web front end.

The samples collection in Geneva Framework has an illustration (Samples\Extensibility\Convert Claims

to NT Token) on how to configure the GTS and call its UPNLogon interface. Refer to the sample’s readme

file to get the background information about the projects included in the sample and to run the sample.

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

38 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

Provisioning STSes in an relying party application using FedUtil
At the core of a federated solution lies the trust establishment between the relying party applications

and STSes. Applications need a way to understand the characteristics of STSes before they can choose to

accept claims issued by them. This is where federation metadata specifications play a vital role in

defining the common characteristics of the STSes so that any relying party application can use a

common mechanism to retrieve those characteristics. The most interesting STS characteristics from

relying party applications stand point is the list of claims offered by an STS and the STS token signing

key. RP applications typically require specific claims for their application logic and must examine the list

of claims offered by an STS before establishing trust with it. On the other hand STSes would need to

understand the characteristics of applications before they can establish trust with them. Wouldn’t it be

very helpful to have a tool that is capable of reading the STS metadata and automatically configuring

relying party applications to trust these STSes, as well as a tool that produces an application’s metadata

that can be consumed by an STS. Geneva Framework offers a tool called FedUtil, which stands for

‘Federation Utility for Easy STS Provisioning’, to address these needs. This tool comes handy when you

want to configure your federated claims-aware application to trust an STS and to indicate the

application’s required claims. It also helps in publishing a metadata about that application so that the

STS can obtain the relevant information.

Web Front End

(Relying Party App)

2. Fetch STS metadata

4. Fetch RP metadata

Issuing Authority

(STS)

1. Configure application

info in FedUtil

3. Select claims required

FedUtil Alice Bob

Figure 25: FedUtil tool

Figure 25 illustrates a typical flow involved in provisioning an STS to an application. Assume a scenario

where FedUtil is installed in the web front end and an STS needs to be provisioned to the relying party, a

typical ASP.NET application. Alice is the site administrator of the web front end and Bob is the STS

administrator. Alice and Bob have agreed to provision the STS to the application and vice versa; Bob

shares the metadata endpoint of the STS with Alice (through phone or email or other means) and asks

for the application’s metadata URL from Alice.

Alice runs FedUtil and specifies the location of the configuration file of the application (its web.config

file) and the certificate to be used for encrypting purposes (1). FedUtil configures the application with

the necessary Geneva Framework settings and enables the FAM and SessionAuthenticationModule.

Alice then proceeds and specifies the metadata URL of the STS (2) that Bob provided earlier; FedUtil

fetches the STS characteristics and shows the list of claims offered. Alice selects the claims that are

required by the application (3). FedUtil creates a metadata document, which is an XML file, and places it

© 2008 Microsoft Corporation. All rights reserved. Terms of Use | Trademarks | Privacy Statement

39 Microsoft Code Name "Geneva" Framework Whitepaper for Developers

in the application folder itself. These three steps comprise the provisioning of STS in an application. Alice

notifies Bob of the metadata URL of the application; Bob follows the STS administrator’s guide and runs

the STS trust establishment wizard, specifies the application’s metadata URL and makes sure that the

STS is configured to emit the claims that Alice’s application requires. This lets the STS establishes the

trust with RP. This concludes the trust establishment on both the RP and STS sides.

Note that this is a very simple example that demonstrates how FedUtil works. In the real world, the

issuer would require more than just metadata, such as out-of-band business agreements and policy

settings. Typical policy queries might include the following:

 Is the relying party trusted to delegate credentials?

 Does the relying party specify user accounts?

Summary
As an application developer, by building claims-aware web applications and services, you’ll spend less

time worrying about where to find identity attributes for users and have more time to focus on building

a great application that solves real business problems. By relying on claims, you’ll be able to personalize

your applications more effectively, and implement important security features such as authorization and

auditing, without baking one particular authentication method into your application, or writing queries

against a corporate directory. By centralizing identity management in this fashion, the IT professionals

can build the most efficient possible queries against their directories and give your application the

identity details that it needs about users. And becoming claims-aware means you’ll be in much better

shape when you’re asked to implement single sign-on and perhaps even identity federation.

Geneva Framework is a framework for building claims-aware web applications and services, and even

issuing authorities, should you need to roll your own. Or better yet, get a pre-built authority like the

Geneva Server.

Federated claims-based identity is the wave of the future. Get on board with Geneva Framework today!

