

MapReduce on Windows Azure

Daytona – Client Application User Guide

Microsoft eXtreme Computing Group xcgngage@microsoft.com 1

Daytona – Client Application User Guide

Table of Contents

1 Overview .. 2

2 Technical Details ... 2

2.1 Syntax ... 2

3 Commands.. 3

3.1 createpkg .. 3

3.2 deletepkg .. 3

3.3 submitapp .. 4

3.4 listapps ... 5

3.5 getapp... 5

3.6 abortapp ... 10

3.7 deleteapp ... 10

3.8 getlogs .. 11

3.8.1 Raw logs .. 11

3.8.2 Applications... 12

3.8.3 Jobs ... 12

3.8.4 Map Tasks ... 13

3.8.5 Reduce Tasks ... 14

3.8.6 Map Output Download Attempts ... 15

3.9 getcounters .. 16

4 Sample – K-Means Clustering ... 17

4.1 Upload Input Data .. 17

4.2 Submit Application ... 17

4.3 Monitor Application ... 17

Microsoft eXtreme Computing Group xcgngage@microsoft.com 2

Daytona – Client Application User Guide

1 Overview

This document details out the usage of MapReduce client tool (mrclient.exe). The tool is a

simple console application, created using Daytona framework APIs, to perform common

operations like application submission, monitoring etc. against a deployment from command-

line. The tool also serves a purpose to showcase the steps to build applications using Daytona

framework.

2 Technical Details

The tool has a dependency on the following assemblies and these should be present in the

same directory as the tool:

 Microsoft.WindowsAzure.StorageClient.dll

 Research.MapReduce.Core.dll

2.1 Syntax

mrclient [-cs <connection string>] –c <command> [<switch>...] [-h] [-?]

By default, the connection string specified by ‘StorageConnectionString’ setting in the

application configuration file is used to connect to the Windows Azure storage account. This

connection string can be overridden by the optional ‘–cs’ argument on command-line.

The command to be executed (e.g. to upload a package) is specified by the mandatory ‘–c’

argument. Details of these commands are provided in sections below. A command may require

a set of command-specific switches to work. If any, these are provided as command-line

arguments following the command name.

If the optional ‘–h’ or ‘-?’ arguments are specified while invoking the tool, all other arguments

are ignored and the tool just prints a usage string.

Either a hyphen character (-) or a front-slash (/) can be used as the argument specifier.

In the event of a parser or command error, the response starts with ‘Error:’ as shown below:

D:\>mrclient.exe

Error: '-c' argument must be provided exactly once.

…

Use '-?' for help.

If a command executes successfully, the command-specific response is returned as shown

below:

D:\>mrclient.exe -c createpkg -name wc -dir

"D:\MSR_CCF_Engagements\Daytona\Source\Research.MapReduce.Samples.WordCount\b

in\Debug" -searchpat "*.dll|*.exe"

Microsoft eXtreme Computing Group xcgngage@microsoft.com 3

Daytona – Client Application User Guide

PackageOwner: v-samaur

PackageName: wc

PackageDirectory:

D:\MSR_CCF_Engagements\Daytona\Source\Research.MapReduce.Samples.WordCount\bi

n\Debug

SearchPatterns: *.dll|*.exe

3 Commands

3.1 createpkg

This command creates a new application package in the Windows Azure storage account used

by Daytona.

Switch Required Description

owner False Name of the package owner. If not specified, current logged in
user is considered as the package owner.

name False Name of the created package. If not specified, a name will be
auto-generated.

dir False Full path to the directory where assemblies of the package are
located. If not specified, the current working directory is treated
as the package directory.

searchpat False Search pattern to identify the files to be included in the package
from the package directory. By default, a search pattern of *.dll is
used which means that all files with .dll extension are treated as
package files. Multiple search patterns can be used by separating
them with a pipe (|) character. For example, to search for both
*.dll and *.exe patterns, use a combined pattern of *.dll|*.exe.

A sample usage looks like:

mrclient.exe -c createpkg -name wc -dir

"D:\MSR_CCF_Engagements\Daytona\Source\Research.MapReduce.Samples.WordCount\b

in\Debug" -searchpat "*.dll|*.exe"

The command response has the following format:

PackageOwner: <Package owner>

PackageName: <Created package name>

PackageDirectory: <Package directory used>

SearchPatterns: <Search patterns used>

3.2 deletepkg

This command deletes an application package from the storage.

Switch Required Description

owner False Name of the package owner. If not specified, current logged in user is

Microsoft eXtreme Computing Group xcgngage@microsoft.com 4

Daytona – Client Application User Guide

considered as the package owner.

name True Name of the package to be deleted.

A sample usage looks like:

mrclient.exe -c deletepkg -name wc

The command returns an empty response.

3.3 submitapp

This command submits a MapReduce application for execution. Switches other than those

specified below are considered as controller arguments.

Switch Required Description

owner False Name of the application owner. If not specified, current
logged in user is considered as the application owner.

name False The application name. If not specified, a name is generated
by the system.

ctr True Assembly qualified name of the controller's type.

reusepkgowner False If an existing package is to be used, this switch defines the
package owner. If 'reusepkgname' is specified and this
switch is not specified, current logged in user is considered
as the package owner.

reusepkgname False Name of an existing package to be used in the application.
This switch is mutually exclusive to 'newpkgowner',
'newpkgname, `dir' and `searchpat' switches.

newpkgowner False Owner of the created package if `reusepkgname' switch is
not specified. If this switch is also not specified, current
logged in user name is considered.

newpkgname False Name of the created package if ‘reusepkgname’ switch is
not specified. If this switch is also not specified, the
package name is auto generated.

dir False Directory hosting the package assemblies if
‘reusepkgname’ switch is not specified. If this switch is also
not specified, the current working directory is treated as
the package directory.

searchpat False Search pattern used to search the package directory if
‘reusepkgname’ switch is not specified. If this switch is also
not specified, a search pattern of *.dll is used.

A sample usage looks like:

mrclient -c submitapp -name "word count 1" -newpkgname wcpkg -dir

D:\MSR_CCF_Engagements\Daytona\Test\bin\Debug -ctr

"Research.MapReduce.Test.Common.WCLib.Controller, Research.MapReduce.Test,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"

Microsoft eXtreme Computing Group xcgngage@microsoft.com 5

Daytona – Client Application User Guide

The command responds with the following format.

ApplicationOwner: <Application owner>

ApplicationName: <Application name>

ReusedPackageOwner: <Existing package owner >

ReusedPackageName: <Name of the existing package>

NewPackageOwner: <Owner of the package if created>

NewPackageName: <Name of the package if created>

PackageDirectory: <Package directory if a package is created>

SearchPatterns: <Search patterns used if a package is created>

3.4 listapps

This command lists applications submitted to the service which pass the filtering criteria

specified by the switches.

Switch Required Description

 owner False List applications owned by the specified user. If not specified,
all applications irrespective of the owner are listed.

createdafter False List applications that were created after this datetime. If not
specified, a datetime of 1900-01-01 is considered.

createdbefore False List applications that were created before this datetime.If not
specified, current UTC datetime is considered.

state False List applications that have this state. If not specified, all
applications irrespective of the state are listed.

A sample usage looks like:

mrclient -c listapps -createdafter 2011-1-1

The command responds with the following format.

Owner: <Owner filter>

CreatedAfter: <CreatedAfter filter>

CreatedBefore: <CreatedBefore filter>

State: <State filter>

Applications:

User Name DateCreated DateStarted DateCompleted State

---- ---- ----------- ----------- ------------- -----

<User> <App> <DateCreated> <DateStarted> <DateCompleted> <State>

...

3.5 getapp

This command gets the details of an application.

Switch Required Description

owner False Name of the application owner. If not specified, current
logged in user is considered as the application owner.

name True The application name.

Microsoft eXtreme Computing Group xcgngage@microsoft.com 6

Daytona – Client Application User Guide

logdir False If specified, an application execution report, named
App_<AppOwner>_<AppName>.csv, is created in this
directory.
While preparing the report, this directory is searched for any
existing logs for the application. If found, the execution
report is prepared from these logs. Otherwise, application
logs are downloaded from the table storage and then the
report is prepared.

forcedownload False This switch can be used only in combination with the ‘logdir’
switch. If set to ‘True’, application logs are downloaded from
the table storage even if they are present in the log
directory. This is useful, for example, when the application is
still running and its latest execution information is to be
retrieved. Or, only a subset of application logs were
downloaded earlier due to an incorrect time range provided
to the ‘getlogs’ command.

A sample usage looks like:

mrclient -c getapp -name "word count 1"

The command responds with the following format.

ApplicationOwner: <Owner of the application>

LogDirectory: <Directory hosting the log information>

ForceDownload: <Forcedownload switch>

DateCreated: <DateCreated of the application>

DateStarted: <DateStarted of the application>

DateCompleted: <DateCompleted of the application>

State: <State of the application>

FailReason: <FailReason of the application>

Arguments:

 <ArgumentName>: <ArgumentValue>

 ...

Results:

 <ResultName>: <ResultValue>

 ...

If the ‘logdir’ switch is specified, two report files App_<AppOwner>_<AppName>.csv and

App_<AppOwner>_<AppName>_MapOutputDownloadAttempts.csv are created in the log

directory. The former contains various metrics about the application, its jobs and tasks while

the latter contains details about the attempts made by reducers to download the map phase

output.

The App_<AppOwner>_<AppName>.csv file contains comma-separated values with following

columns:

Column Name Description

AppOwner Owner of the application.

AppName Name of the application.

Microsoft eXtreme Computing Group xcgngage@microsoft.com 7

Daytona – Client Application User Guide

AppId The internal unique identifier assigned to the
application.

AppState Can be one of {Waiting, Running, Concluded}

AppWaitDurationInMs Duration of the period when the application
was in a waiting loop due to a limit on
concurrent applications.

AppStartTime Time when the application started.

AppEndTime Time when the application concluded.

AppExecDurationInMs Execution duration of the application.

AppError Error encountered during application
execution.

CtrCreateTime Time when the controller was created.

CtrCreateDurationInMs Time taken to download the package and
instantiate the controller.

CtrStartTime Time when the controller started.

CtrEndTime Time when the controller concluded.

CtrExecDurationInMs Execution duration of the controller.

CtrResultSaveDurationInMs Time taken to save Controller results.

JobId An identifier generated for the job instance
when it was created. The same job instance
can be executed multiple times, so this value
does not uniquely identify a job execution. To
uniquely identify the execution, use this value
in conjunction with JobIterationCount below.

JobIterationCount Identifies the job iteration when the same job
instance is executed multiple times.

JobExecutionId The unique identifier assigned to each job
iteration.

JobState Can be one of {Started, MapPhase,
ReducePhase, Concluded}.

JobStartTime Time when Job.Run() is invoked.

JobEndTime Time when the job concluded.

JobExecDurationInMs Execution duration of the job.

JobError Error encountered during job execution.

JobInitDurationInMs Time taken to invoke the GetPartitions method
of the IDataPartitioner and initialize other
structures for the Job.

TaskType Can be one of {Map, Reduce}

TaskNumber Index of this task.

TaskDispatchCount When a slave crashes, tasks running on that
slave are re-dispatched to other active slaves.
This number identifies the dispatch count of
this task.

TaskDispatchId The unique identifier assigned to a task

Microsoft eXtreme Computing Group xcgngage@microsoft.com 8

Daytona – Client Application User Guide

dispatch.

TaskTrackerId Identifies the task tracker that executed this
task.

RoleInstance Identifies the Windows Azure role instance
(VM) that execution this task.

MapState Can be one of {Dispatched, Created, Running,
Concluded}

MapDispatchTime Time when the task was dispatched to a slave
for execution.

MapCreateTime Time when the task is constructed on a slave.

MapCreateDurationInMs The duration to download Application package
and initialize other task related structures.

MapCreateError Error encountered during task creation.

MapTaskStartTime Time when the task started its execution.

MapTaskEndTime Time when the task concluded its execution.

MapTaskExecDurationInMs Duration of task execution.

MapTaskExecError Error encountered during task execution.

MapperConfigureDurationInMs Time taken to complete IMapper.Configure
invocation.

GetRecordsDurationInMs Time taken to complete
IRecordReader.GetRecords invocation.

MapInputEnumerationDurationInMs Cumulative time taken to enumerate all input
records.

MapInputRecordCount Total number of input records.

MapperExecDurationInMs Cumulative time taken to complete all
IMapper.Map invocations.

KeyPartConfigureDurationInMs Time taken to complete
IKeyPartitioner.Configure invocation.

MapOutputSaveDurationInMs Cumulative time taken to complete all
MapOutputCollection.Add invocations.

MapOutputRecordCount Total number of output records produced by
the Map() invocations.

CombinerOutputRecordCount Total number of output records produced by
the combiners.

MapResponseTime Time when MapResponse is sent from the
slave.

ReduceState Can be one of {InitDispatched, Created,
StartDispatched, Ready, Started, Downloading,
Running, Concluded}

ReduceInitDispatchTime Time when the InitilizeReduceRequest is sent
to a slave.

ReduceCreateTime Time when the task is constructed on a slave.

ReduceCreateDurationInMs The duration to download Application package
and initialize other task related structures.

Microsoft eXtreme Computing Group xcgngage@microsoft.com 9

Daytona – Client Application User Guide

ReduceCreateError Error encountered during task creation.

ReduceStartDispatchTime Time when the StartReduceRequest is sent to
the slave.

ReduceReadyTime Time when the Reduce task is queued for
execution. This happens in response to
receiving the StartReduceRequest by the slave.

ReduceTaskStartTime Time when the task started its execution.

ReduceDownloadConcludeTime Reduce task waits for the Map phase output to
be downloaded before invoking IReducer etc.
This value captures the time when the Reduce
task comes out of the wait loop.

ReduceDownloadWaitDurationInMs Duration when the task was waiting for the
map output to be downloaded.

ReduceTaskEndTime Time when the task concluded its execution.

ReduceTaskExecDurationInMs Duration of task execution.

ReduceTaskExecError Error encountered during task execution.

ReducerConfigureDurationInMs Time taken to complete the invocation of
IReducer.Configure.

ReduceInputRecordCount Total number of input records.

ReduceInputEnumerationDurationInMs Cumulative time taken to enumerate all input
records.

ReducerExecDurationInMs Cumulative time taken to complete all
IReducer.Reduce invocations.

ReduceInvocations Total number of Reduce() invocations. This is
generally equal to the number of distinct keys
present in the Reducer input.

RecordWriterWriteDurationInMs Total time taken by IRecordWriter.Write() to
complete. The method in turn enumerates
input records, invokes IReducer.Reduce,
persists output and executes other custom
logic.

ReduceOutputRecordCount Total number of output records. This is
generally equal to the number of Reduce()
invocations.

ReduceResponseTime Time when the ReduceResponse is sent from
the slave.

The report file contains information in a de-normalized fashion with many empty columns in a

row. For example, the row containing summary information of an application has empty Job

and Task related columns. Likewise, the summary row of a Job has empty Task columns and all

application-level metric columns are also empty as shown below.

AppOwner AppName JobId JobIteration AppState … JobState JobStartTime

alice w-count Running

Microsoft eXtreme Computing Group xcgngage@microsoft.com 10

Daytona – Client Application User Guide

alice w-count 3A1E2… 1 MapPhase 2011-01-01T…

The App_<AppOwner>_<AppName>_MapOutputDownloadAttempts.csv file contains comma-

separated values with following columns:

Column Name Description

TaskDispatchId Dispatch id of the Reduce Task.

MapTask Map task number.

AttemptId The unique identifier assigned to this attempt.

StartTime Download start time.

ConcludeTime Download complete time.

DurationInMs Download duration.

RecordCount Count of the records downloaded.

Retries The number of times this download was
retried.

Error Error encountered during download.

3.6 abortapp

This command requests the service to abort a running application.

Switch Required Description

owner False Name of the application owner. If not specified, current logged in user
is considered as the application owner.

name True The application name.

A sample usage looks like:

mrclient -c abortapp -name "word count 1"

The command returns an empty response.

3.7 deleteapp

This command deletes application information from the storage.

Switch Required Description

owner False Name of the application owner. If not specified, current logged in user
is considered as the application owner.

name True The application name.

A sample usage looks like:

mrclient -c deleteapp -name "word count 1"

The command returns an empty response.

Microsoft eXtreme Computing Group xcgngage@microsoft.com 11

Daytona – Client Application User Guide

3.8 getlogs

This command downloads Daytona logs generated within a specified time range. The command

also formats the downloaded logs in a more readable format to assess the state and

performance of applications that executed within the time range.

Switch Required Description

start True Log entries created after this time will be downloaded.

end True Log entries created before this time will be downloaded.

dir False Directory where logs will be download. If not specified, current
working directory is treated as the log directory.

threads False Number of threads to employ while downloading the logs.

A sample usage looks like:
mrclient -c getlogs -start 2011-11-09T00:00:00Z -end 2011-11-09T00:10:00Z

The command responds with the following format.

LogDirectory: <The log directory>

Threads: <Threads employed>

After execution, the command creates a sub-directory named <start>_<end> in the log

directory that hosts the log information for the requested time range. If the sub-directory

already exists, it is overwritten. Multiple files containing data as comma-separated values are

then created in this sub-directory. Sub-sections below describe the content of these files.

3.8.1 Raw logs

A file named WADLogsTable.csv is created that contains all log entries as they are present in the

WADLogsTable within the requested time range. The file contains comma-separated values

with following columns:

Column Name Description

PartitionKey Partition key of this entry.

RowKey Row key of this entry.

Timestamp Time when this entry was created.

EventTickCount Time when the event responsible for creating this entry was raised.

DeploymentId Id of the Daytona cluster deployment.

Role E.g. Research.MapReduce.CloudHost.Slave.

RoleInstance Identifies a VM.

Level Event level.

EventId Event type.

Pid Process that raised this event.

Tid Thread that raised this event.

Message Event message.

Microsoft eXtreme Computing Group xcgngage@microsoft.com 12

Daytona – Client Application User Guide

3.8.2 Applications

A file named Applications.csv is created that contains a list of all applications that began their

lifecycle within the requested time range. The fact that the application has started is inferred

from log entries - specifically an entry corresponding to the ‘Application Downloaded’ event.

The file contains comma-separated values with following columns:

Column Name Description

ApplicationOwner Owner of the application.

ApplicationName Name of the application.

ApplicationId An internal identifier generated by the framework to
uniquely identify the application.

AppState Can be one of {Waiting, Running, Concluded}

AppWaitDurationInMs Duration of the period when the application was in a
waiting loop due to a limit on concurrent applications.

AppStartTime Time when the application started.

AppEndTime Time when the application concluded.

AppExecDurationInMs Execution duration of the application.

AppError Error encountered during application execution.

CtrCreateTime Time when the controller was created.

CtrCreateDurationInMs Time taken to download the package and instantiate the
controller.

CtrStartTime Time when the controller started.

CtrEndTime Time when the controller concluded.

CtrExecDurationInMs Execution duration of the controller.

CtrResultSaveDurationInMs Time taken to save Controller results.

Since the information above is inferred from log entries within the requested time range, some

of the columns may be empty if log entries are missing. For example, if there is no log entry

corresponding to an ‘Application Concluded’ event, ‘AppEndTime’ and ‘AppExecDurationInMs’

will not be populated. This might happen if the time range is not properly selected or the row

corresponding to the ‘Application Concluded’ event is yet to be shipped to WADLogsTable.

3.8.3 Jobs

A file named Jobs.csv is created that contains state and performance related information of

jobs as inferred from log entries. Each row represents an execution of a job instance. A job

instance, during its lifetime, can undergo execution multiple times. The file contains comma-

separated values with following columns:

Microsoft eXtreme Computing Group xcgngage@microsoft.com 13

Daytona – Client Application User Guide

Column Name Description

AppId Unique identifier of the parent application as described above.

JobId An identifier generated for the job instance when it was created.
The same job instance can be executed multiple times, so this
value does not uniquely identify a job execution. To uniquely
identify the execution, either use this value in conjunction with
JobIterationCount below or use the surrogate key JobExecutionId.

JobExecutionId Each job execution is uniquely identified by this value.

JobIterationCount Identifies the job iteration when the same job instance is executed
multiple times.

JobState Can be one of {Started, MapPhase, ReducePhase, Concluded}.

JobStartTime Time when Job.Run() is invoked.

JobEndTime Time when the job concluded.

JobExecDurationInMs Execution duration of the job.

JobError Error encountered during job execution.

JobInitDurationInMs Time taken to invoke the GetPartitions method of the
IDataPartitioner and initialize other structures for the Job.

3.8.4 Map Tasks

A file named MapTasks.csv is created that contains state and performance related information

of Map tasks as inferred from log entries. Each row represents one dispatch of a Map task. The

file contains comma-separated values with following columns:

Column Name Description

JobExecutionId Execution based unique identifier of the parent job as
described above.

TaskNo Index of this task.

TaskDispatchCount When a slave crashes, tasks running on that slave are
re-dispatched to other active slaves. This number
identifies the dispatch count of this task.

TaskDispatchId Each task dispatch is allotted this system generated
unique identifier.

TaskTrackerId Identifies the task tracker that executed this task.

RoleInstance Identifies the Windows Azure role instance (VM) that
executed this task.

MapState Can be one of {Dispatched, Created, Running,
Concluded}

MapDispatchTime Time when the task was dispatched to a slave for
execution.

MapCreateTime Time when the task is constructed on a slave.

MapCreateDurationInMs The duration to download Application package and
initialize other task related structures.

MapCreateError Error encountered during task creation.

Microsoft eXtreme Computing Group xcgngage@microsoft.com 14

Daytona – Client Application User Guide

MapTaskStartTime Time when the task started its execution.

MapTaskEndTime Time when the task concluded its execution.

MapTaskExecDurationInMs Duration of task execution.

MapTaskExecError Error encountered during task execution.

MapperConfigureDurationInMs Time taken to complete IMapper.Configure invocation.

GetRecordsDurationInMs Time taken to complete IRecordReader.GetRecords
invocation.

MapInputEnumerationDurationI
nMs

Cumulative time taken to enumerate all input records.

MapInputRecordCount Total number of input records.

MapperExecDurationInMs Cumulative time taken to complete all IMapper.Map
invocations.

KeyPartConfigureDurationInMs Time taken to complete IKeyPartitioner.Configure
invocation.

MapOutputSaveDurationInMs Cumulative time taken to complete all
MapOutputCollection.Add invocations.

MapOutputRecordCount Total number of output records produced by the Map()
invocations.

CombinerOutputRecordCount Total number of output records produced by the
combiners.

MapResponseTime Time when MapResponse is sent from the slave.

3.8.5 Reduce Tasks

A file named ReduceTasks.csv is created that contains state and performance related

information of Reduce tasks as inferred from log entries. Each row represents one dispatch of a

Reduce task. The file contains comma-separated values with following columns:

Column Name Description

JobExecutionId Execution based identifier of the parent job as
described above.

TaskNo Index of this task.

TaskDispatchCount When a slave crashes, tasks running on that machine
are re-dispatched to other active slaves. This number
identifies the dispatch count of this task.

TaskDispatchId Each task dispatch is allotted this system generated
unique identifier.

TaskTrackerId Identifies the task tracker that executed this task.

RoleInstance Identifies the Windows Azure role instance (VM) that
executed this task.

ReduceState Can be one of {InitDispatched, Created,
StartDispatched, Ready, Started, Downloading,
Running, Concluded}

ReduceInitDispatchTime Time when the InitilizeReduceRequest is sent to a

Microsoft eXtreme Computing Group xcgngage@microsoft.com 15

Daytona – Client Application User Guide

slave.

ReduceCreateTime Time when the task is constructed on a slave.

ReduceCreateDurationInMs The duration to download Application package and
initialize other task related structures.

ReduceCreateError Error encountered during task creation.

ReduceStartDispatchTime Time when the StartReduceRequest is sent to the
slave.

ReduceReadyTime Time when the Reduce task is queued for execution.
This happens in response to receiving the
StartReduceRequest by the slave.

ReduceTaskStartTime Time when the task started its execution.

ReduceDownloadConcludeTime Reduce task waits for the Map phase output to be
downloaded before invoking IReducer etc. This value
captures the time when the Reduce task comes out of
the wait loop.

ReduceDownloadWaitDurationIn
Ms

Duration when the task was waiting for the map
output to be downloaded.

ReduceTaskEndTime Time when the task concluded its execution.

ReduceTaskExecDurationInMs Duration of task execution.

ReduceTaskExecError Error encountered during task execution.

ReducerConfigureDurationInMs Time taken to complete the invocation of
IReducer.Configure.

ReduceInputRecordCount Total number of input records.

ReduceInputEnumerationDuratio
nInMs

Cumulative time taken to enumerate all input records.

ReducerExecDurationInMs Cumulative time taken to complete all
IReducer.Reduce invocations.

ReduceInvocations Total number of Reduce() invocations.

RecordWriterWriteDurationInMs Total time taken by IRecordWriter.Write() to
complete. The method in turn enumerates input
records, invokes IReducer.Reduce, persists output and
executes other custom logic.

ReduceOutputRecordCount Total number of output records.

3.8.6 Map Output Download Attempts

A file named MapOutputDownloadAttempts.csv is created that contains the details of each

attempt from reducers to download map phase data. The file contains comma-separated values

with following columns:

Column Name Description

TaskDispatchId Dispatch id of the Reduce Task.

MapTask Map task number.

AttemptId The unique identifier assigned to this attempt.

Microsoft eXtreme Computing Group xcgngage@microsoft.com 16

Daytona – Client Application User Guide

StartTime Download start time.

ConcludeTime Download complete time.

DurationInMs Download duration.

RecordCount Count of the records downloaded.

Retries The number of times this download was
retried.

Error Error encountered during download.

3.9 getcounters

This command downloads Daytona performance counters and translates them into a more

readable format so that they can be correlated with application execution info retrieved using

other commands (e.g. getlogs and getapp).

Switch Required Description

start True Log entries created after this time will be downloaded.

end True Log entries created before this time will be downloaded.

dir False Directory where logs will be download. If not specified, current
working directory is treated as the log directory.

The command responds with the following format.

LogDirectory: <Directory to download counters to>

After execution, the command creates a sub-directory named <start>_<end> in the log

directory that hosts the performance counters information for the requested time range. If the

sub-directory already exists, it is overwritten. Multiple files containing data as comma-

separated values are then created in this sub-directory. Each file corresponds to a performance

counter and has the following columns:

Column Name Description

RoleInstance Identifies the Windows Azure role instance
that generated this counter value.

EventTickCount Time at which the counter value was
recorded.

Timestamp Time at which this row was created. This may
differ from when the counter was actually
recorded.

Value Value of the counter.

Microsoft eXtreme Computing Group xcgngage@microsoft.com 17

Daytona – Client Application User Guide

4 Sample – K-Means Clustering

This section exhibits the usage of client tool to submit and monitor K-means clustering

example.

4.1 Upload Input Data

Using any of the available tools to access Windows Azure Storage (e.g. Azure Storage Explorer),

upload the Research.MapReduce.Samples.KMeansClustering\Resources\sampleinput.csv file to

a blob container say ‘km-input’. Figure below shows the uploaded blob using Visual Studio

server explorer. Take note of the input blob URL which is used later as a controller argument.

Also, create a container to contain the output data say ‘km-output’.

4.2 Submit Application

To submit an application from client tool, use ‘submitapp’ command. The same command can

be used to create a new package for the application and set controller’s parameters. A sample

command is shown below:

mrclient -c submitapp -name "kmeans" -newpkgname km-pkg -dir

"D:\MSR_CCF_Engagements\Daytona\Source\Research.MapReduce.Samples.KMeansClust

ering\bin\Debug" -searchpat "*.dll|*.exe" -ctr

"Research.MapReduce.Samples.KMeansClustering.KMeansClusteringController,

Research.MapReduce.Samples.KMeansClustering, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=null" -InputDataLocation

http://127.0.0.1:10000/devstoreaccount1/km-input/sampleinput.csv -

OutputDataLocation km-output -Mappers 10 -Reducers 2 -ClusterColumns

Duration,Time -JobTimeoutInMinutes 10

4.3 Monitor Application

Use the ‘getapp’ or ‘listapps’ command to check the status of this application. Figure below

shows a sample output.

http://azurestorageexplorer.codeplex.com/

Microsoft eXtreme Computing Group xcgngage@microsoft.com 18

Daytona – Client Application User Guide

After the logs have been shipped to Windows Azure storage, use the ‘getapp’ command with ‘–

logdir’ switch to generate various execution reports.

mrclient -c getapp -name kmeans -logdir d:\applogs -forcedownload true

