

CLAIMS-BASED IDENTITY FOR

WINDOWS

TECHNOLOGIES AND SCENARIOS

DAVID CHAPPELL

FEBRUARY 2011

SPONSORED BY MICROSOFT CORPORATION

2

CONTENTS

Understanding Claims-Based Identity ... 3

The Problem: Working with Identity in Applications ... 3

The Solution: Claims-Based Identity .. 4

Claims, Tokens, and STSs ... 4

Identity Providers and Identity Libraries ... 5

Using Multiple Identity Providers .. 7

Federation Providers ... 8

Implementing Claims-Based Identity: Microsoft Technologies .. 10

Windows Live ID .. 11

Active Directory Federation Services 2.0 ... 11

Windows Azure AppFabric Access Control .. 12

Windows Identity Foundation ... 13

Using Claims-Based Identity: Scenarios ... 13

On-Premises Scenarios .. 14

Accessing an Enterprise Application ... 14

Accessing an Enterprise Application via the Internet .. 15

Providing Single Sign-On to an Enterprise Application in Another Organization 16

Cloud Scenarios ... 19

Providing Single Sign-On to an Enterprise Application in the Cloud .. 19

Providing Single Sign-On to a SaaS Application .. 20

Allowing Logins with Facebook, Google, and Other Cloud Identity Providers 22

Conclusion ... 24

About the Author .. 24

3

UNDERSTANDING CLAIMS-BASED IDENTITY

For people who create applications, working with identity traditionally ƘŀǎƴΩǘ ōŜŜƴ much fun. First, a

developer needs to decide which identity technology is right for a particular application. If the application

will be accessed in different ways, such as within an organization, across different organizations, and via

the public Internet, one identity technology might not be enoughτthe application might need to support

multiple options. The developer also needs to figure out how to find and keep track of identity

information for each ƻŦ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ users. The application will get some of what it needs directly

from those users, but it might also need to look up other information in a directory service or someplace

else. IT administrators must also be involved to configure this software correctly. Add the cloud to the

mix, and things get even more complicated.

This is all more complex than it needs to be. Why not create a single interoperable approach to identity

that works in pretty much every situation, both on-premises and in the cloud? And rather than making

applications hunt for identity information, why not make sure that this single approach lets users supply

each application with the identity information it requires?

Claims-based identity achieves these goals. It provides a common way for applications to acquire the

identity information they need about users inside their organization, in other organizations, and on the

Internet. It also provides a consistent approach for applications running on-premises or in the cloud.

Taking advantage of claims-based identity requires developers to understand how and why to create

claims-based applications. It also requires infrastructure software that applications can rely on. This

overview describes the basics of claims-based identity, then looks at how a group of Microsoft

technologies help make this world a reality. Those technologies are Active Directory Federation Services

(AD FS) 2.0, the Windows Azure AppFabric Access Control service (ACS), and Windows Identity Foundation

(WIF).

THE PROBLEM: WORKING WITH IDENTITY IN APPLICATIONS

Sometimes, working with identity is simple. Think of a Windows application ǘƘŀǘ ŘƻŜǎƴΩǘ ƴŜŜŘ ǘƻ ƪƴƻǿ

much about its users, for example, and that will be accessed only by people within a single organization.

This application can just rely on Windows Integrated Authentication (WIA), which uses Kerberos under the

covers. Kerberos is implemented as part of Active Directory Domain Services (AD DS, originally known as

Ƨǳǎǘ ά!ŎǘƛǾŜ 5ƛǊŜŎǘƻǊȅέύ, and it provides a way to authenticate users and convey basic information about

ǘƘŜƳΦ hǊ ǎǳǇǇƻǎŜ ȅƻǳΩǊŜ ŎǊŜŀǘƛƴƎ ŀƴ application that will be accessed solely by Internet users. Again, the

common approach to handling identity is straightforward: just require each user to supply a username

and password.

Yet the requirements for modern applications are rarely this simple. What if you need more information

about each user than is provided by either Kerberos or a simple username and password? Your

application will now need to acquire this information from some other source, such as AD DS, or keep

track of the information itself. Or suppose the application must be accessed both by employees inside the

organization and by customers via the Internetτwhat now? Should the application support both Kerberos

and username/password-based logins? !ƴŘ ǿƘŀǘ ŀōƻǳǘ ǘƘŜ ŎŀǎŜ ǿƘŜǊŜ ȅƻǳΩŘ ƭƛƪŜ to let users from a

business partner access this application without requiring a separate login? This kind of access ŎŀƴΩǘ ōŜ

accomplished very well with either Kerberos or username/password loginsτmore is required.

4

The right solution is to have one approach to identity that works in all of these scenarios. To be effective,

this single approach must be based on widely recognized industry standards that interoperate across both

platform and organizational boundaries. .ǳǘ ǎǘŀƴŘŀǊŘǎ ŀƭƻƴŜ ŀǊŜƴΩǘ ŜƴƻǳƎƘΦ ¢ƘŜ solution also needs to be

widely implemented in products from multiple vendors and be simple for developers to use. This unified,

broadly supported approach is exactly what claims-based identity is meant to provide.

THE SOLUTION: CLAIMS-BASED IDENTITY

Claims-based identity is a straightforward idea, founded on a small number of concepts: claims, tokens,

identity providers, and a few more. This section describes the basics of this technology, starting with a

look at these fundamental notions.

Before launchiƴƎ ƛƴǘƻ ǘƘƛǎ ŘŜǎŎǊƛǇǘƛƻƴΣ ƘƻǿŜǾŜǊΣ ǘƘŜǊŜΩǎ ŀƴ ƛƳǇƻǊǘŀƴǘ Ǉƻƛƴǘ ǘƻ ƳŀƪŜΦ ²ƘƛƭŜ ǘƘƛǎ ǇŀǇŜǊ

focuses on the mechanics, using the technology described here can require more, such as business

agreements between different organizations. Addressing the technical challenges is essential, but ǘƘŜȅΩǊŜ

not always the whole story.

Claims, Tokens, and STSs

What is an identity? In the real world, the question is hard to answerτthe discussion quickly veers into

the metaphysical. In the digital world, however, the answer is simple: A digital identity is a set of

information about somebody or something. While all kinds of entities can have digital identities, including

ŎƻƳǇǳǘŜǊǎ ŀƴŘ ŀǇǇƭƛŎŀǘƛƻƴǎΣ ǿŜΩǊŜ Ƴƻǎǘ ƻŦǘŜƴ ŎƻƴŎŜǊƴŜŘ ǿƛǘƘ ƛŘŜƴǘƛŦȅƛƴƎ ǇŜƻǇƭŜΦ !ŎŎƻǊŘƛƴƎƭȅΣ ǘƘƛǎ

overview will always refer to things ǿƛǘƘ ƛŘŜƴǘƛǘƛŜǎ ŀǎ άǳǎŜǊǎέΦ

When a digital identity is transferred acǊƻǎǎ ŀ ƴŜǘǿƻǊƪΣ ƛǘΩǎ Ƨust a bunch of bytesΦ LǘΩǎ ŎƻƳƳƻƴ ǘƻ ǊŜŦŜǊ ǘƻ ŀ

set of bytes containing identity information as a security token or just a token. In a claims-based world, a

token contains one or more claims, each of which carries some piece of information about the user it

identifies. Figure 1 shows how this looks.

Figure 1: A token contains claims about a user along with a digital signature that can be used to verify

its issuer.

Claims can represent pretty much anything about a user. In this example, for instance, the first three

claims in the ǘƻƪŜƴ Ŏƻƴǘŀƛƴ ǘƘŜ ǳǎŜǊΩǎ ƴŀƳŜΣ an identifier for a role she belongs to, and her age. Other

ǘƻƪŜƴǎ Ŏŀƴ Ŏƻƴǘŀƛƴ ƻǘƘŜǊ ŎƭŀƛƳǎΣ ŘŜǇŜƴŘƛƴƎ ƻƴ ǿƘŀǘΩǎ ǊŜǉǳƛǊŜŘΦ ! ŎƭŀƛƳ ƳƛƎƘǘ ŀƭǎƻ ƛƴŘƛŎŀǘŜ ǘƘŜ ǳǎŜǊΩǎ

right to do something, such as access a file, or ǊŜǎǘǊƛŎǘ ǎƻƳŜ ǊƛƎƘǘΣ ǎǳŎƘ ŀǎ ǎŜǘǘƛƴƎ ŀƴ ŜƳǇƭƻȅŜŜΩǎ

5

ǇǳǊŎƘŀǎƛƴƎ ƭƛƳƛǘΦ !ƴŘ ǿƘƛƭŜ ƛǘΩs common today to use tokens defined with the XML-based Security

!ǎǎŜǊǘƛƻƴ aŀǊƪǳǇ [ŀƴƎǳŀƎŜ ό{!a[ύΣ ǘƘƛǎ ƛǎƴΩǘ ǊŜǉǳƛǊŜŘΦ Web applications might use a simpler approach

called Simple Web Token (SWT), for example.

To verify its source and to guard against unauthorized changes, ŀ ǘƻƪŜƴΩǎ ƛǎǎǳŜǊ ŘƛƎƛǘŀƭƭȅ ǎƛƎƴǎ each token

ǿƘŜƴ ƛǘΩs created. As Figure 1 shows, the resulting digital signature is carried as part of the token.

But who issues tokens? In a claims-based world, tokens are created by software known as a security token

service (STS). Figure 2 illustrates the process.

Figure 2: A user acquires a token containing some set of claims from an STS.

In a typical scenario, an application working on behalf of a user, such as a Web browser or some other

client, asks an STS for a token containing claims for this user (step 1). Various protocols can be used to

make this request, but hƻǿŜǾŜǊ ƛǘΩǎ done, the STS authenticates the user in some way, such as by

validating her Kerberos ticket or checking her password (step 2). This lets the STS be certain that the user

is who she claims to be.

The request sent to an STS typically contains a URI identifying the application this user wishes to access.

The STS then looks up information about both the user and the application in a database (step 3). As the

figure shows, this database maintains account information and other attributes about users and

applications. Once the STS has found what it needs, it generates the token and returns it to the requester

(step 4).

Identity Providers and Identity Libraries

Claims, tokens, and STSs are the foundation of claims-based identity. ¢ƘŜȅΩǊŜ ŀƭƭ Ƨǳǎǘ ƳŜŀƴǎ ǘƻ ŀƴ ŜƴŘΣ

however. The real goal is to help a user present her digital identity to an application, then let the

application use this information to make decisions. Figure 3 shows a simple picture of how this happens.

6

Figure 3: A browser or other client can acquire a token from an STS, then present this token and the

claims it contains to an application.

As the figure shows, a Web browser or other client acting on behalf of a user gets a token for a particular

application from an STS (step 1). Once it has this token, the browser or client sends it to the application

(step 2), which is configured with a list of one or more trusted STSs. To process the token, the application

depends on an identity library, a reusable set of code for working with tokens and the protocols that

convey themΦ ¢Ƙƛǎ ƭƛōǊŀǊȅ ǾŜǊƛŦƛŜǎ ǘƘŜ ǘƻƪŜƴΩǎ signature, which lets the application know which STS issued

the token, then checks whether this STS is on the trusted list (step 3). If the application does trust the STS

that issued this token, it accepts the ǘƻƪŜƴΩǎ claims as correct and uses them to decide what the user is

allowed to do or in other ways (step 4).

If ǘƘŜ ǘƻƪŜƴ Ŏƻƴǘŀƛƴǎ ǘƘŜ ǳǎŜǊΩǎ role, for example, the application can assume that the user really has the

rights and permissions associated with that role. Since the user was required to authenticate herself to

ƎŜǘ ǘƘƛǎ ǘƻƪŜƴΣ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ŘƻŜǎƴΩǘ ƴŜŜŘ ǘƻ ŀǳǘƘŜƴǘƛŎŀǘŜ ƘŜǊ ŀƎŀƛƴΦ (In fact, because it relies on the

claims in the token, an application is sometimes referred to as a relying party.)

Notice an important difference between wƘŀǘΩǎ ƘŀǇǇŜƴƛƴƎ ƘŜǊŜ ŀƴŘ ǘƘŜ ǿŀȅ ǘƘŀǘ ŀǇǇƭƛŎŀǘƛƻƴǎ frequently

handle identity: Rather than requiring the application itself to authenticate the user, claims-based identity

relies on the STS to do this. This gets developers out of the business of authenticating users, something

that definitely counts as progress. All an application needs to do is determine that the token a user

presents was created by an STS this application trusts. How the user proved its identity to this STSτwith a

password, a digital signature, or something elseτƛǎƴΩǘ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǇǊƻōƭŜƳΦ ¢Ƙƛǎ ƭŜǘǎ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ

be deployed unchanged in different contexts, a significant improvement over the usual situation today.

!ƭǘƘƻǳƎƘ ƛǘΩǎ ƴƻǘ ǎƘƻǿƴ ƛƴ ǘƘŜ ŦƛƎǳǊŜΣ ǘƘŜǊŜΩǎ ŀƴ ŜǎǎŜƴǘƛŀƭ ŦƛǊǎǘ ǎǘep before any of this can happen: An

administrator must configure the STS to issue the right claims for this user and this application. Without

this, the STS ƭƛƪŜƭȅ ŎŀƴΩǘ create a token containing the claims that the application needs. While doing this

might seem like a burden, the reality is that this information must also be configured in the non-claims-

7

based world. The big difference is that now the claims are all in one place, accessible through the STS,

rather than spread across different systems.

Figure 3 also illustrates another important concept, which is that an STS can be owned by some identity

provider (IdP). Sometimes called an issuer, the identity provider is what stands behind the truth of the

claims in the tokens this STS creates. In fact, ǘƘƛǎ ƛǎ ǿƘȅ ǘƘŜ ŎƻƴǘŜƴǘǎ ƻŦ ŀ ǘƻƪŜƴ ŀǊŜ ŎŀƭƭŜŘ άŎƭŀƛƳǎέΥ

¢ƘŜȅΩǊŜ statements that this identity provider claims are true. An application that receives this token can

decide whether it trusts this identity provider and the claims it makes about this user.

IŘŜƴǘƛǘȅ ǇǊƻǾƛŘŜǊǎ ŎƻƳŜ ƛƴ Ƴŀƴȅ ŦƻǊƳǎΦ LŦ ȅƻǳ ǳǎŜ ŀ ǘƻƪŜƴ ƛǎǎǳŜŘ ōȅ ŀƴ {¢{ ƻƴ ȅƻǳǊ ŎƻƳǇŀƴȅΩǎ ƴŜǘǿƻǊƪΣ

for example, the identity provider is your company. If you use a token issued by the STS provided by a

service on the Internet, such as Windows Live ID, Facebook, or Google, this service is acting as the identity

provider. But whoever the identity provider is, being able to acquire and use a token containing claims is

useful.

To see why, think about the pre-claims world we (mostly) live in today. In this environment, an application

typically gets only simple identity information from a user, such as her login name. All of the other

information it needs about that user must be acquired from somewhere else. The application might need

to access a local directory service, for instance, or maintain its own application-specific database. With

claims-based identity, however, an application can specify exactly what claims it needs and which identity

providers it trusts, then expect each user to present those claims in a token issued by one of those

providers. A claims-aware application is still free to create its own user database, of course, but the need

to do this shrinks. Instead, each request can potentially contain everything the application needs to know

about this user.

Using Multiple Identity Providers

In many cases, a user has only one identity providerτand thus one STSτto choose. When you access an

application inside your organization, for example, the application might only accept tokens issued by your

compaƴȅΩǎ {¢{Φ Lƴ ǎƻƳŜ ǎƛǘǳŀǘƛƻƴǎΣ ǘƘƻǳƎƘΣ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ƳƛƎƘǘ ŀŎŎŜǇǘ ǘƻƪŜƴǎ ƛǎǎǳŜŘ ōȅ ƳǳƭǘƛǇƭŜ ƛŘŜƴǘƛǘȅ

providersτit might trust several different STSs.

For example, think about an application on the public Internet that wishes to let its users log in using a

Facebook identity, a Google identity, or a Windows Live ID identity. Since hundreds of millions of people

have accounts with these services, why not accept them? Or suppose the application wishes to accept

identities directly from multiple instances of Active Directoryτwhat then? Both of these situations

require the application to trust multiple STSs at multiple identity providers, then to let the user choose

which one he wants to use. Figure 4 shows how this looks.

8

Figure 4: If an application accepts identities from multiple identity providers, the user can select which

one to use.

In this situation, the user accesses the application and learns which STSs it trusts (step 1). For example,

the application might provide a login screen that lets the user choose to use his Facebook identity, his

Google identity, or his Windows Live ID identity. The user then chooses one, and his browser or other

ŎƭƛŜƴǘ ǎƻŦǘǿŀǊŜ ŎƻƴǘŀŎǘǎ ǘƘŀǘ ƛŘŜƴǘƛǘȅ ǇǊƻǾƛŘŜǊΦ ¢Ƙƛǎ ǇǊƻǾƛŘŜǊΩǎ {¢{ ŀǳǘƘŜƴǘƛŎŀǘŜǎ ǘƘŜ ǳǎŜǊ, perhaps by

requiring him to enter a username and password, then returns a token for this identity (step 3). As before,

this token is then sent to the application (step 4), which validates it as usual and uses the claims it

contains (step 4).

For some applications, accepting tokens from multiple identity providers, especially public providers,

makes no sense. Letting employees use their Facebook identity to log into a critical business application

ƛƴǎƛŘŜ ȅƻǳǊ ŎƻƳǇŀƴȅ ǇǊƻōŀōƭȅ ƛǎƴΩǘ ŀ ƎƻƻŘ ƛŘŜŀΦ But there are plenty of situations where this can be

useful. Think of an enterprise application that must be accessible to employees, partners, and customers,

for example, or a consumer application on the public Internet that wishes to make login as painless as

possible. Addressing this requirement is an important part of modern identity technology.

Federation Providers

In a claims-based world, a user always initially gets her identity from an STS owned by some identity

provider. But suppose the application she wants ǘƻ ŀŎŎŜǎǎ ŘƻŜǎƴΩǘ ǘǊǳǎǘ ǘƘƛǎ {¢{τwhat then? One

Ǉƻǎǎƛōƛƭƛǘȅ ƛǎ ǘƘŀǘ ǘƘŜǊŜΩǎ Ƨǳǎǘ ƴƻ ǿŀȅ ŦƻǊ ƘŜǊ ǘƻ ŀŎŎŜǎǎ ǘƘƛǎ ŀǇǇƭƛŎŀǘƛƻƴΦ TƘŜǊŜΩǎ ŀƭǎƻ ŀƴƻǘƘŜǊ ƻǇǘƛƻƴ,

however: even though the application ǎƘŜ ǿŀƴǘǎ ǘƻ ŀŎŎŜǎǎ ŘƻŜǎƴΩǘ ǘǊǳǎǘ ƘŜǊ STS, it might trust another

STS that in turn trusts her STS. This approach, called identity federation, is both common and useful. With

federation, an identity provider offers an STS as usual, but another STS is also offered by a federation

provider (FP). The federation provider STS is then configured by an administrator to trust the identity

9

provider STS. Figure 5 shows how a user can provide identity information to an application when

federation is used.

Figure 5: An STS can act as a federation provider, accepting one token and producing another.

As always, the process begins when the user accesses an application from a browser or another client,

learning which STSs that application trusts (step 1). Here, the application trusts only the federation

provider STS. ¢ƘŜ ǳǎŜǊΩǎ ōǊƻǿǎŜǊ ƻǊ ŎƭƛŜƴǘ ǎƻŦǘǿŀǊŜ then contacts that federation provider, learning which

STSs it trusts (step 2). In this example, the federation provider STS is configured to trust the identity

ǇǊƻǾƛŘŜǊΩǎ {¢{Σ ŀƴŘ ǎƻ ǘƘŜ ǳǎŜǊΩǎ ōǊƻǿǎŜǊ ƻǊ ŎƭƛŜƴǘ software contacts this STS. As usual, the user is

authenticated in some way, then gets back an IdP token created by this STS (step 3).

¢Ƙƛǎ ǘƻƪŜƴ ŎŀƴΩǘ ōŜ ǳǎŜŘ ǘƻ ŀŎŎŜǎǎ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΣ ƘƻǿŜǾŜǊΣ ǎƛƴŎŜ ǘƘŀǘ ŀǇǇƭƛŎŀǘƛƻƴ ŘƻŜǎƴΩǘ ǘǊǳǎǘ ǘƘŜ {¢{

that issued it. Fortunately, this token can be used to acquire a token that the application will accept. To do

this, the browser or client software sends the IdP token to the federation provider (step 4). The federation

provider validates this token, ensuring that it came from an STS it trusts. Once it determines this, it

ŎǊŜŀǘŜǎ ŀ ƴŜǿ ǘƻƪŜƴ ŦƻǊ ǘƘƛǎ ǳǎŜǊ όǎǘŜǇ рύΣ ǘƘŜƴ ǊŜǘǳǊƴǎ ǘƘƛǎ Ct ǘƻƪŜƴ όǎǘŜǇ сύΦ ¢ƘŜ ǳǎŜǊΩǎ ǎƻŦǘǿŀǊŜ ǎǳōƳƛǘǎ

this token to the application (step 7), which verifies that the FP token was issued by an STS that it trusts.

The application then uses the claims in the token as usual (step 8).

CǊƻƳ ǘƘŜ ǳǎŜǊΩǎ Ǉƻƛƴǘ ƻŦ ǾƛŜǿΣ ŀƭƭ ƻŦ ǘƘŜǎŜ ŜȄŎƘŀƴƎŜǎ ŀǊŜ ƛƴǾƛǎƛōƭŜΦ {ƘŜ ŀŎŎŜǎǎŜǎ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ǿƛǘƘƻǳǘ

ŜȄǇƭƛŎƛǘƭȅ ƭƻƎƎƛƴƎ ƛƴǘƻ ƛǘΣ ǘƘŀǘ ƛǎΣ ǎƘŜ ƎŜǘǎ ǿƘŀǘΩǎ ƪƴƻǿƴ ŀǎ single sign-on. The mechanics are a little more

complex, but the core idea underlying identity federation is straightforward. It is that not only

applications can trust STSs; one STS can trust another STS as well.

Step 5 in the figure is worth examining in more detail. As just described, the federation provider receives a

token issued by another STS, then generates a new token for the user. But exactly what claims does this

10

new token contain? ¢ƘŜ ŀƴǎǿŜǊ ŘŜǇŜƴŘǎ ƻƴ ǿƘŀǘ ǘƘŜ ŦŜŘŜǊŀǘƛƻƴ ǇǊƻǾƛŘŜǊΩǎ {¢{ ƛǎ ŎƻƴŦƛgured to do. In the

simplest case, it might copy every claim from the IdP token directly into the FP token unchanged. In a

more realistic scenario, the federation provider STS performs claims transformation, emitting a token that

ŘƻŜǎƴΩǘ Ŏƻƴǘŀƛƴ ǘƘŜ ŜȄŀŎǘ set of claims that it received from the identity provider.

For example, suppose the IdP token contains a claim indicating that this user is a member of the role

άAdministratorέΣ ŜȄǇǊŜǎǎƛƴƎ ǘƘŀǘ ŎƭŀƛƳ ŀǎ ŀ ŎƘŀǊŀŎǘŜǊ ǎǘǊƛƴƎ ŎƻƴǘŀƛƴƛƴƎ ǘƘƛǎ 9ƴƎƭƛǎƘ ǿƻǊŘΦ LǘΩs possible that

the application understands the administrator role, but expects the claim to be expressed as a numeric

code or in Chinese or in some other way. The federation provider can perform this translation, inserting a

claim in the correct format in the FP token it generates.

Claims transformation can do other things as well. When it creates the FP token, for example, the

ŦŜŘŜǊŀǘƛƻƴ ǇǊƻǾƛŘŜǊ ƳƛƎƘǘ ƻƳƛǘ ŎƭŀƛƳǎ ŦǊƻƳ ǘƘŜ LŘt ǘƻƪŜƴ ǘƘŀǘ ŀǊŜƴΩǘ ƳŜŀƴƛƴƎŦǳƭ ǘƻ ǘƘƛǎ ŀǇǇƭƛŎŀǘƛƻƴΦ hǊ ƛǘ

might add claims to thŜ Ct ǘƻƪŜƴ ǘƘŀǘ ŀǊŜƴΩǘ ǇǊŜǎŜƴǘ ƛƴ ǘƘŜ LŘt ǘƻƪŜƴΣ ǎǳŎƘ ŀǎ ŀƴ ƛƴŘƛŎŀǘƛƻƴ ƻŦ ǘƘŜ LŘt ǘƘŀǘ

issued the original token. Claims transformation is a powerful idea, and it can be used in a variety of ways.

IMPLEMENTING CLAIMS-BASED IDENTITY: MICROSOFT TECHNOLOGIES

Implementing claims-based identity requires several things. Identity provider STSs must be available to

issue tokens to users. Because identity federation is common, federation provider STSs are also essential.

And finally, developers will need to build claims-aware applications that know how to receive tokens and

use the claims they contain. Rather than having every developer write this code from scratch, it makes

sense to provide a standard identity library that any application can use.

The rise of cloud computing adds another requirement. All three of these thingsτan identity provider

STS, a federation provider STS, and an identity libraryτshould be available both on premises (e.g.,

ǊǳƴƴƛƴƎ ƛƴ ŀƴ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ Řŀǘŀ ŎŜƴǘŜǊύ ŀƴŘ ƛƴ ǘƘŜ Ŏƭoud. Without this, some important scenarios are

hard to address.

The Microsoft platform for claims-based identity targets all of these options. Figure 6 summarizes the

technologies it includes today.

Figure 6: Microsoft provides cloud and on-premises technologies for an identity provider STS, a

federation provider STS, and an identity library.

11

In the cloud, Microsoft provides Windows Live ID as an identity provider STS, while Windows Azure

AppFabric Access Control provides a federation provider STS. For an identity library, applications can use

²ƛƴŘƻǿǎ LŘŜƴǘƛǘȅ CƻǳƴŘŀǘƛƻƴ ό²LCΣ ŎƻƳƳƻƴƭȅ ǇǊƻƴƻǳƴŎŜŘ ά5ǳō-I-CέύΦ

For on-premises use, Microsoft makes available Active Directory Federation Services (AD FS) 2.0. As Figure

6 shows, this technology can be used as both an identity provider STS and a federation provider STS. And

for an identity library, applications once again can use Windows Identity Foundation.

LǘΩǎ ƛƳǇƻǊǘŀƴǘ ǘƻ ƴƻǘŜ ǘƘŀǘ ǿƘƛƭŜ ǘƘƛǎ ƻǾŜǊǾƛŜǿ ŦƻŎǳǎŜǎ ƻƴ aƛŎǊƻǎƻŦǘ ǘŜŎƘƴƻƭƻƎƛŜǎ, claims-based identity is

a multi-vendor effort. Given this, there are alternative technologies from other vendors for all of the

boxes in this figure. And because interactions among the parties are based on industry standards, the

offerings from Microsoft and other vendors can be combined in various ways. For example, using the

aƛŎǊƻǎƻŦǘ ƛŘŜƴǘƛǘȅ ǇƭŀǘŦƻǊƳ ŘƻŜǎƴΩǘ ǊŜǉǳƛǊŜ ǊŜƭȅƛƴƎ ƻƴ ²ƛƴŘƻǿǎ [ƛǾŜ L5 ŦƻǊ ŀ ŎƭƻǳŘ ƛŘŜƴǘƛǘȅ ǇǊƻǾƛŘŜǊ {¢{τ

other providers, such as ǘƘƻǎŜ ŦǊƻƳ DƻƻƎƭŜ ŀƴŘ CŀŎŜōƻƻƪΣ Ŏŀƴ ŀƭǎƻ ōŜ ǳǎŜŘΦ {ƛƳƛƭŀǊƭȅΣ !5 C{ нΦл ƛǎƴΩǘ ǘƘŜ

only option for on-premises STSs; WIF can work with tokens created by products from IBM and other

vendors.

The focus here is on the Microsoft technologies, however, and the best way to understand how they fit

together is to walk through scenarios ǎƘƻǿƛƴƎ Ƙƻǿ ǘƘŜȅΩǊŜ ǳǎŜŘ. Before doing this, we first need to look

at the basics of each one.

WINDOWS LIVE ID

Windows Live ID implements an identity provider STS in the cloud. Today, the most popular applications

that accept tokens issued by this STS are Microsoft offerings such as Hotmail. Any application can choose

to accept these tokens, howeverτƛǘΩǎ ƴƻǘ ǳǎŀōƭŜ ƻƴƭȅ ōȅ aƛŎǊƻǎƻŦǘ itself.

The token provided by Windows Live ID contains a very simple set of claims, primarily just a globally

unique identifier. The structure of this identifier is opaque, which means that ŀƴ ŀǇǇƭƛŎŀǘƛƻƴ ŎŀƴΩǘ ŘŜǊƛǾŜ

ŀƴȅ ƳŜŀƴƛƴƎ ŦǊƻƳ ǘƘŜ ƛŘŜƴǘƛŦƛŜǊΩǎ ŎƻƴǘŜƴǘ ƻǊ ǎǘǊǳŎǘǳǊŜΦ !ƴ ŀǇǇƭƛŎŀǘƛƻƴ Ŏŀƴ ǳǎŜ ǘƘƛǎ ǾŀƭǳŜ to recognize

individual users, however. For example, a Web site that accepts Windows Live ID logins might ask each

user for information such as his name and shipping ŀŘŘǊŜǎǎΣ ǘƘŜƴ ǎǘƻǊŜ ǘƘƛǎ Řŀǘŀ ŀƭƻƴƎ ǿƛǘƘ ǘƘŜ ǳǎŜǊΩǎ

Windows Live ID identifier. The next time the user logs in, the application can use this identifier to look up

his information.

ACTIVE DIRECTORY FEDERATION SERVICES 2.0

Having an identity provider STS in the cloud is useful. But for enterprises, having one on-premises is much

more important. BusƛƴŜǎǎ ŀǇǇƭƛŎŀǘƛƻƴǎ ƛƴǎƛŘŜ ȅƻǳǊ ƻǊƎŀƴƛȊŀǘƛƻƴ ǇǊƻōŀōƭȅ ŘƻƴΩǘ ƭŜǘ employees log in with a

Windows Live ID, a Facebook identity, or any other token issued by an identity provider STS in the cloud.

Instead, they require a token issued by an STS that they control.

Active Directory Federation Services 2.0 can fill this role. As its name suggests, AD FS 2.0 is the follow-on

to the original Active Directory Federation Services technology. 5ƻƴΩǘ ōŜ ƳƛǎƭŜŘ ōȅ ǘƘŜ ǿƻǊŘ άŦŜŘŜǊŀǘƛƻƴέ

in the ǘŜŎƘƴƻƭƻƎȅΩǎ name, however. In fact, AD FS 2.0 can act as either an identity provider STS or a

federation provider STS. The same AD FS 2.0 instance can even act in both roles simultaneously. And since

ƛǘΩǎ ǇŀǊǘ ƻŦ !ŎǘƛǾŜ 5ƛǊŜŎǘƻǊȅΣ AD FS 2.0 is available to current users at no extra cost. This makes claims-

12

based identity immediately accessible to the large number of organizations that use Active Directory

today.

AD FS 2.0 contains several advances over its predecessor. It supports both browsers and other clients, for

example, such as those built using Windows Communication Foundation (WCF)
1
. Also unlike the first AD

FS release, AD FS 2.0 supports the SAML 2.0 protocol as well as WS-Federation and WS-Trust, letting it

work in a broader range of environments.

The AD FS 2.0 STS can be used entirely inside an organization, exposed on the Internet, or both. The

claims it supplies can come from Active Directory Domain ServicesΣ ƻŦ ŎƻǳǊǎŜΣ ōǳǘ ǘƘƛǎ ƛǎƴΩǘ ǘƘŜ ƻƴƭȅ

choice. AD FS 2.0 also supports using SQL Server as an attribute store, that is, a source for claims, and

ŘŜǾŜƭƻǇŜǊǎ ŀǊŜ ŦǊŜŜ ǘƻ ŎǊŜŀǘŜ ŎǳǎǘƻƳ ŀǘǘǊƛōǳǘŜ ǎǘƻǊŜǎ ŀǎ ǿŜƭƭΦ ¢ƻ ƘŜƭǇ ƳŀƴŀƎŜ ŀƴ ƻǊƎŀƴƛȊŀǘƛƻƴΩǎ ŀǘǘǊƛōǳǘŜ

stores, including Active Directory and others, Microsoft provides Forefront Identity Manager (FIM). This

technology offers a way to synchronize information across different attribute stores, along with an

identity management portal with pre-defined workflows for password resets, group management, and

more.

Yet iǘΩs worth reiterating that claims-based identity ŘƻŜǎƴΩǘ ǊŜǉǳƛǊŜ ǳǎƛƴƎ AD FS 2.0. Any STS from any

vendor (or even a custom-built STS) that supports standard protocols and token formats can be used. Still,

oƴŜ ƻŦ aƛŎǊƻǎƻŦǘΩǎ ǇǊƛƳŀry goals in providing AD FS 2.0 is to make widely available a fully-featured STS

built on Active Directory. Ubiquitous STSs are fundamental to making the benefits of claims-based identity

real.

WINDOWS AZURE APPFABRIC ACCESS CONTROL

Identity federation is useful in many situations. For applications running on premises, such as a business

ŀǇǇƭƛŎŀǘƛƻƴ ǿƛǘƘƛƴ ŀƴ ŜƴǘŜǊǇǊƛǎŜΣ ǳǎƛƴƎ ŀ ŦŜŘŜǊŀǘƛƻƴ ǇǊƻǾƛŘŜǊ {¢{ ǘƘŀǘΩǎ ŀƭǎƻ ƻƴ ǇǊŜƳƛǎŜǎ ƛǎ ƻŦǘŜƴ ǘƘŜ right

choice. But for an application running in the cloud, using a federation provider STS that runs in the cloud is

likely to be better. The Windows Azure AppFabric Access Control service fills that role.

ACS is most commonly applied today in two scenarios:

 Letting an application running in the cloud accept tokens issued by multiple on-premises identity

provider STSs, such as AD FS 2.0. This can give on-premises users in various organizations single sign-

on to the cloud application. This is especially useful for independent software vendors (ISVs) who

wish to allow easy access to a Software as a Service (SaaS) application by customers in many different

enterprises.

 Letting an application running in the cloud accept identities issued by multiple cloud identity provider

STSs. ACS has built-in support for handling the protocols and token formats used by Windows Live ID,

Google, Facebook, Yahoo, and OpenID. An application that trusts the ACS federation provider STS can

choose to accept identities from any of these identity providers while still being shielded from the

idiosyncratic details of each one.

1 In the jargon of identity, AD FS 2.0 supports both active and passive clients, while the first release of AD FS supported only passive clients.

13

ACS also provides another important function: built-in support for claims transformation. As described

earlier, a federation provider STS commonly emits a token whose claims differ from the IdP token it

received. To help do this more intelligently, ACS includes a rules engine for defining these

transformations.

ACS lets clients request tokens using various protocols, including WS-Federation, WS-Trust, OpenID 2.0,

and OAuth 2.0. It can accept and issue tokens in various formats as well, including SAML 1.1, SAML 2.0,

and Simple Web Token (SWT). The technology also allows delegated authorization using OAuth 2.0, which

provides a controlled way for an application to act on behalf of a user.

WINDOWS IDENTITY FOUNDATION

²ƘŜǘƘŜǊ ƛǘΩǎ offered by an identity provider or a federation provider, an STS creates tokens containing

claims. Yet those tokens are useless unless applications are able to accept and use them. The goal of WIF

is to make this easier by helping developers create claims-aware Windows applications.

WIF is a set of .NET Framework classes that implement essential identity functions, such as receiving a

token, verifying its signature, and accessing the claims it contains. It supports tokens created using either

the SAML 1.1 or SAML 2.0 formats, so it can accept tokens issued by AD FS 2.0, ACS, or STSs from other

vendors. WIF supports various standard protocols as well, including WS-Federation and WS-¢ǊǳǎǘΣ ŀƴŘ ƛǘΩǎ

extensible, allowing other technologies to be added. For example, Microsoft provides a sample WIF

extension that implements the OAuth 2.0 protocol with SWT tokens.

Each claim is extracted into an instance of a WIF-defined Claim class, providing a consistent way for

ŘŜǾŜƭƻǇŜǊǎ ǘƻ ǿƻǊƪ ǿƛǘƘ ŀ ǘƻƪŜƴΩǎ ƛƴŦƻǊƳŀǘƛƻƴΦ ¢Ƙƛǎ ŎƭŀǎǎΩǎ ǇǊƻǇŜǊǘƛŜǎ ƛƴŎƭǳŘŜ ǘƘƛƴƎǎ ǎǳŎƘ ŀǎΥ

 ClaimType, indicating wƘŀǘ ƪƛƴŘ ƻŦ ŎƭŀƛƳ ǘƘƛǎ ƛǎΦ 5ƻŜǎ ǘƘŜ ŎƭŀƛƳ Ŏƻƴǘŀƛƴ ŀ ǳǎŜǊΩǎ ƴŀƳŜΣ ŦƻǊ ŜȄŀƳǇƭŜΣ ƻǊ

a role, or something else? Claim types are identified by strings, which are just URIs.

 ±ŀƭǳŜΣ ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ ŀŎǘǳŀƭ ŎƻƴǘŜƴǘ ƻŦ ǘƘŜ ŎƭŀƛƳΣ ǎǳŎƘ ŀǎ ǘƘŜ ǳǎŜǊΩǎ ƴŀƳŜΦ

 Issuer, which specifies the identity provider STS this claim came from. In other words, this is the

entity asserting that this claim is true.

Microsoft itself is using WIF to add support for claims-based identity to its own products, including

SharePoint 2010 and others.

Along with helping developers create claims-aware applications, WIF also provides support for creating a

custom STS. Even though a primary goal of AD FS 2.0 is to reduce the need to hand roll your own STS,

there are situations where building an STS can make sense. One important example of using WIF in this

way already exists: AD FS 2.0 itself is built on WIF.

USING CLAIMS-BASED IDENTITY: SCENARIOS

Getting your mind around claims-based identity requires understanding the basics of this technology. Still,

the best way to get a feel for the approach is to ǿŀƭƪ ǘƘǊƻǳƎƘ ŜȄŀƳǇƭŜǎ ƻŦ Ƙƻǿ ƛǘΩǎ applied. Accordingly,

this section looks at a number of different ways that claims can be used both on premises and in the

cloud, each illustrated using the Microsoft technologies just described.

14

ON-PREMISES SCENARIOS

Claims-based identity was first used to address problems within and between enterprises. This is still

where the technology is most widely used today, and so it makes sense to look at on-premises scenarios

first. This section walks through three examples:

 Accessing an enterprise application, where the application, the identity provider STS, and all of the

users are within the same organization.

 Accessing an enterprise application via the Internet, which extends the first scenario to include

remote Internet access by users outside the organization.

 Using identity federation between enterprises, where a user in one organization accesses an

application in another organization.

Accessing an Enterprise Application

Most enterprises act as an identity provider today, and nearly every enterprise application must deal with

identity. AD FS 2.0 and WIF can provide the foundation for using claims-based identity with on-premises

applications, those running inside an organization. Figure 7 shows how this looks.

Figure 7: An enterprise can use AD FS 2.0 and WIF to support claims-based identity for its internal

applications.

In this example, a user logs in using AD DS, getting an initial Kerberos ticket (step 1). The user then

accesses a claims-aware application built using WIF, learning which STSs it trusts (step 2). This application

only trusts the STS within its own enterprise, and so tƘŜ ǳǎŜǊΩǎ ōǊƻǿǎŜǊ ƻǊ ŎƭƛŜƴǘ requests a token from

15

that STS, supplying a Kerberos ticket to authenticate the user (step 3). AD FS 2.0, acting as an identity

provider STS, verifies the ticket, then looks in AD DS for the information it needs to create the requested

token (step 4). Exactly what claims appear in this token depends on both the user requesting it and the

application that user is accessingτeach application can indicate which claims it needs. Once the token

has been created, the AD FS 2.0 STS sends ƛǘ ōŀŎƪ ǘƻ ǘƘŜ ǳǎŜǊΩs browser or client (step 5), which sends it

on to the application (step 6). The application then uses WIF to verify ǘƘŜ ǘƻƪŜƴΩǎ ǎƛƎƴŀǘǳǊŜ ŀƴŘ make its

claims available for use (step 7).

One big plus of a claims-based approach is worth re-emphasizing here: Rather than having to go look for

the information it needs about a user, the application can instead get everything handed to it in the

ǘƻƪŜƴΦ LŦ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ƴŜŜŘǎΣ ǎŀȅΣ ǘƘŜ ǳǎŜǊΩǎ Ƨƻō ǘƛǘƭŜΣ ƛǘ Ŏŀƴ ǎǇŜŎƛŦȅ ǘƘƛǎ ƛƴ its list of required claims.

When the STS creates a token for the application, it finds ǘƘŜ ǳǎŜǊΩǎ Ƨƻō ǘƛǘƭŜ in AD DS and inserts it as a

claim that the application can use. Without this, the application developer must write his own code to dig

this information out of AD DS. Claims-based identity ƳŀƪŜǎ ǘƘŜ ŘŜǾŜƭƻǇŜǊΩǎ ƭife significantly easier.

Accessing an Enterprise Application via the Internet

Suppose this organization wishes to make this on-premises application accessible to remote employees

via the Internet. Rather than modifying the application to accept username/password logins, a traditional

solution, the same claims-based approach can be usedτthe application remains unchanged. Figure 8

shows how this looks.

Figure 8: An enterprise can use the AD FS 2.0 STS to create tokens for users on the Internet.

