

INTRODUCTION TO

MICROSOFT

POWERAPPS FOR

ACCESS WEB APPS

DEVELOPERS

ABSTRACT
The one constant in software technology is that it’s

constantly changing. You might ask: “What alternative

is there to create a mobile or online solution for

Microsoft Access?” Microsoft believes that Microsoft

PowerApps is the answer. Although PowerApps is a

relatively new product, Microsoft is making a

significant investment in PowerApps to make it a

premiere tool for business solutions and is adding new

features on a regular basis.

The purpose of this white paper is to demonstrate

that PowerApps is a successor tool worthy of

consideration for an Access web apps power user and

developer. What follows is an in-depth comparison of

PowerApps and Access Web apps that examines the

pros, cons, and similarities of each tool, their key

features, and the way data is managed. Hopefully,

you’ll take the time to try out PowerApps and add it

to your business solutions toolkit.

Ben Clothier, Andy Tabisz
March, 2017

Page 1 of 33

What is Microsoft PowerApps? .. 3

What makes PowerApps different from Access web apps? ... 3

Mobile-first ... 3

Multiple data sources ... 3

No-Code interface ... 3

Client-side vs server-side functionality ... 3

Other important differences ... 4

Development environment ... 4

Understanding the distribution of native iOS and Android applications .. 4

The Common Data Service .. 4

Security ... 5

Replicating the functionality of Access web apps in PowerApps ... 5

Menus and navigation .. 5

Form and layout .. 7

List views ... 7

Datasheet views .. 9

Related data .. 13

Approach one: using lookups .. 13

Approach two: using the SharePoint lookup field .. 14

Searching and filtering .. 16

Layout perspective .. 17

Search controls.. 19

Data macros .. 23

What you can do in Access web apps but not in PowerApps ... 26

Inviting anonymous users ... 26

Datasheet views .. 26

Summary views ... 26

Transaction data tracking and troubleshooting.. 26

What you can do in PowerApps but not in Access web apps ... 26

PDF viewer .. 26

Multimedia support .. 27

Variety of controls... 28

Toggle .. 28

Page 2 of 33

Slider ... 29

Rating .. 29

Other controls ... 29

Pen input ... 29

Variety of layouts and galleries ... 30

Rich user interface building capabilities ... 30

SharePoint is not the only data source ... 32

Extensibility ... 33

About the authors ... 33

Page 3 of 33

What is Microsoft PowerApps?
In a nutshell, PowerApps is a software platform for creating and sharing corporate, line-of-business apps

quickly and without writing code. It’s designed to work natively on iPhone, Windows 10 Mobile, and

Android phones, and works on the web as well. PowerApps allows you to connect to multiple data

sources at once, allowing you to interact with this combined information as needed. This white paper

assumes that you have basic knowledge of PowerApps. For more information, see Microsoft PowerApps

Guided Learning.

PowerApps is designed for a corporate environment in which you share apps with employees. You sign

in by using your work or school account. You can’t use personal email addresses with domains, such as

hotmail.com, gmail.com, or aol.com, because those are not associated with a corporate environment.

For details, see Azure Active Directory authentication, which is used by Office 365.

What makes PowerApps different from Access web apps?
PowerApps and Access web apps are both geared towards mobility, but each platform has its own

strengths and weaknesses. PowerApps can do many of the features of Access web apps, but it can’t be

viewed as a direct replacement for Access web apps.

Mobile-first
By far, the best feature of PowerApps is that it is designed with a mobile-first strategy, meaning that it is

ideal for phone devices. Access web apps is a browser-based application which does not work well on

smart phones.

Multiple data sources
PowerApps can connect to many data sources including SharePoint, Office 365, Dropbox, Salesforce,

MailChimp, and dozens of other data connections. Just like Power BI, each app you create can utilize

data from multiple sources. By contrast, Access web apps are housed completely inside of SharePoint,

whether in the cloud or on-premises, although you can interact with SharePoint data from an Access

web app, and that data can be shared across Access web apps. You cannot connect one Access web app

data to another Access web app. This document discusses how to replace an Access web app with a

PowerApps app using SharePoint lists as the data source.

No-Code interface
Both are no-code solutions and neither uses VBA. Designing PowerApps screens is a lot like the Access

web apps design experience except that instead of macros, you use extensive formulas and control

properties which are much more like Microsoft Excel. This requires a different approach to writing logic

compared to macros in Access web apps, which is addressed later. For more information on formulas,

see Getting started with formulas and Formula reference for PowerApps.

Client-side vs server-side functionality
PowerApps functionality is mostly executed on the client-side. PowerApps may support some level of

delegation where a bulk update is applied directly on the server. However, at the time of this writing,

delegation is not supported for SharePoint lists. This means that when you work with more than one

record, be careful not to write logic that could update only a subset of the list. Remember that

PowerApps has a limit of 500 records downloaded to the local cache, and that’s even before a filter is

applied. The other consequence to consider is that if you edit a large amount of records, it requires

https://powerapps.microsoft.com/en-us/guided-learning/
https://powerapps.microsoft.com/en-us/guided-learning/
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-authentication-scenarios#basics-of-authentication-in-azure-ad
https://products.office.com/en-us/business
https://powerapps.microsoft.com/en-us/tutorials/connections-list/
https://powerapps.microsoft.com/en-us/tutorials/working-with-formulas/
https://powerapps.microsoft.com/en-us/tutorials/formula-reference/

Page 4 of 33

more time for PowerApps to apply the changes back to the database; PowerApps currently can’t invoke

a procedure directly in the database. For more information on delegation, see Understand delegation.

By contrast, Access web apps does all query processing on the server, using a very powerful SQL server

query engine. Access web apps have client-side, user interface (UI) macros, and server-side data macros

that you can call. These data macros are essentially SQL triggers that perform backend operations, such

as looping through all records in a dataset and performing a bulk update.

Although not covered in this white paper, PowerApps can easily work with Microsoft Flow, which allows

you to create automation triggers, such as emailing to you when a single record is added but only if you

were not the user that added the record.

Other important differences
Other differences are worth noting and factor into your decision-making as a developer.

Development environment
Access web apps require you to own Microsoft Access to do the development. With PowerApps, you

have several development environments: PowerApps Mobile, which is available from the Apple App

store, Google Play, and Windows store, the PowerApps Studio download (Windows 8.1 or higher), or the

web interface. These are free and available at https://powerapps.microsoft.com. To author in

PowerApps Studio requires a Windows 8.1 or higher device.

Understanding the distribution of native iOS and Android applications
To allow users to install iPhone/iPad and Android apps in most development software, each app must be

submitted for approval to the app store. This is not necessary with PowerApps, because the PowerApps

framework is already approved, and you’re just running different apps under it. Think of it like this:

when you use Excel, Excel doesn’t care what kind of spreadsheet you are viewing, whether it’s a budget

spreadsheet, a customer service log, or employee overtime form. In the same manner, the PowerApps

app is already certified and you can run any of the apps you create without going through an app store

approval process.

The Common Data Service
When reading about PowerApps, you’ll undoubtedly see references to the Microsoft Common Data

Service (CDS). CDS is the Microsoft Azure–based business application model and storage mechanism for

the Microsoft business application platform. Together with gateways and connectors, it forms the basis

of business solutions that are created by using Microsoft Power BI, Microsoft PowerApps, and Microsoft

Flow. CDS provides common business entities and integration capabilities for importing data from

multiple sources, with the goal of bridging the data gap between software as a service (SaaS) workloads

and business suites. By using CDS, you can create analytics that span these separate workloads and

suites. CDS provides a rich and productive development platform.

The CDS business entities are analogous to the nouns presented as starting point tables in Access web

apps. And just like the nouns in Access web apps, These CDS business entities have built-in

interrelationships that you can add and “hook up” at any time. These entities can be extended, and

completely custom new entities can be created. PowerApps can automatically create simple multi-

screen applications from data entities stored in the Common Data Service. For more information, see

Common Data Service and Common Data Model overview.

https://powerapps.microsoft.com/en-us/tutorials/delegation-overview/
https://flow.microsoft.com/
https://powerapps.microsoft.com/
https://powerapps.microsoft.com/en-us/blog/announcing-powerapps-common-data-model/
https://powerapps.microsoft.com/en-us/blog/announcing-powerapps-common-data-model/
https://docs.microsoft.com/en-us/common-data-service/entity-reference/introduction

Page 5 of 33

Security
With Access web apps, you provide security to your app through SharePoint. You can also invite users

outside your domain to use the app. With PowerApps, security resides with the data source you are

connected to, whether you are using Dropbox, SharePoint Lists, or SQL Azure, and the requirement to

sign in with your work or school account. Our examples use SharePoint Lists to connect to a data source.

So, any user that you share your PowerApps with must sign in with a work or school account with

sufficient permissions to the lists used by the PowerApps. Note that the precise security requirement for

other data sources might be different. Consult the documentation on data sources for PowerApps if you

plan to use different data sources.

Replicating the functionality of Access web apps in PowerApps
As mentioned previously, PowerApps is not a direct replacement for Access web apps. But there is a lot

of functionality that you can either replicate or replace.

Menus and navigation
With Access web apps, there is built-in Navigation, but you can also use traditional menu choices. Here

is an example based on a factory application for cylinders.

In this case, you can easily replicate the menu using a PowerApps screen. The biggest downside to a

menu is planning for the mobile phone environment. You wouldn’t use all the text, but you can certainly

add a button which describes each section.

Adding several buttons in PowerApps is a little different. Whenever you add a button, PowerApps

anticipates that you will immediately change the function for it as the following two illustrations show:

Page 6 of 33

1. Select the Insert tab.

2. Select Button.

1. PowerApps adds the button.

2. PowerApps automatically changes the tab to Content.

Secondly, if you create multiple buttons, they overlap. In mobile apps, this should never happen. And

Access web apps doesn’t allow it to happen.

Here are the buttons in design mode:

Page 7 of 33

Here are the buttons in preview mode:

Other than that, it’s easy to add the buttons, and resize and align them any way you need. This is like

PowerPoint.

Form and layout
Access web apps have Blank views, List views and Datasheet views. Both Access web apps and

PowerApps have blank views.

List views
With Access web apps, The List view includes a search bar as well as the record selected and often has a

related items control. When you edit a record, you are not taken to a different view. It just becomes

editable.

Page 8 of 33

1. An Access web app main form.

2. An Access web app related items control.

With PowerApps, your List view is separated from the single record and it is replaced with a browse

screen for which you have many layout options that are not included in Access Web apps.

Page 9 of 33

To replicate an Access web app form with a related item control in PowerApps, use the App from Data
feature which provides basic integration between galleries and forms. For more information, see
Generate an app to manage data in a SharePoint list. Then, you can customize the results. For more
information, see Customize a layout in PowerApps and Customize forms in PowerApps.

Datasheet views
Access web apps have datasheet views, whereas PowerApps do not. But, there is a way that you can

create a similar user experience. The following is a sample datasheet in Access web apps:

https://powerapps.microsoft.com/en-us/tutorials/app-from-sharepoint/
https://powerapps.microsoft.com/en-us/tutorials/customize-layout-sharepoint/
https://powerapps.microsoft.com/en-us/tutorials/customize-forms-sharepoint/

Page 10 of 33

In PowerApps, there is a feature called Galleries which can be used in place of Access web apps

datasheets:

You can also place controls horizontally on a vertical gallery, as shown here:

This provides you with something like the layout of datasheet. However, unlike Access web apps

datasheets, you cannot extend beyond the width of the screen. Also, you cannot use a horizontal layout

because this would make the rows turn into columns. If you need additional space, you should use

additional screens to provide the necessary real estate for extra data.

Page 11 of 33

A gallery is often used for text-based lists, but also to show your pictures in a strip, so you can easily

swipe through them. Here's an example of a cost estimating app where the salesperson selects from

samples of flooring.

There is a choice under Gallery that allows you to select just a Text Gallery, either vertically or

horizontally:

Page 12 of 33

The following example shows only text and includes a scrollbar for you to slide through the records:

Why are there forms and galleries? Forms are intended to fit within a screen, whereas

galleries have scrollbars that allow you to scroll through more records, either vertically or

horizontally. When you create browse screens, you can use galleries to make it easy to load

more records than can be shown in a single screen, and forms to edit a single record.

Page 13 of 33

Related data
When you create a PowerApps app using the wizard, it is linked to only one data source. By contrast,

Access web apps could have more than one table and often have relationships between tables. When

you migrate the data from an Access web app, you most likely want to preserve the relationships.

However, at the time this white paper was published, PowerApps makes no explicit assumptions about

the relationships. Here are two different approaches for enabling related data.

Approach one: using lookups
Suppose that on a form for tracking cylinders, you want to enable users to select from a list of cylinders.

The list contains CylinderID, but the user expects to see Cylinder Number instead. In this case, you could

use a dropdown control.

Add the dropdown control, set the Data source property to Cylinder, and then set the Display value

property to CylinderNumber as the following example shows:

As you can see, this is similar to how it works in Access web apps and so is straightforward. However,

when you create a display-only form and want to display the lookup value instead of CylinderID, you

need to use a formula. In this case, on a display form, add a textbox and for the Default property of the

data card, use the following formula:

LookUp(Cylinder, ID = ThisItem.CylinderID).CylinderNumber

Page 14 of 33

Approach two: using the SharePoint lookup field
This solution assumes you are using SharePoint which can include additional fields from lookup fields.

The advantage with this approach is that it decreases the requirement for creating formulas within

PowerApps. But the disadvantage is the expense of the additional work required to modify the list

structure. When you create the list, it does not have a Lookup field, and SharePoint does not permit you

to convert an existing field into a Lookup field. In this situation, you might find it preferable to create a

blank SharePoint list with the schema you want. For instance, you can use SharePoint Designer to

quickly design a blank list as the following example shows:

Page 15 of 33

You can use Access to load the data from the original Access web apps table to the modified SharePoint

list, populating only the actual ID of the lookup field. Once it’s populated, you can modify the list to

include additional columns from the lookup field, as shown below:

Page 16 of 33

In PowerApps, you can then use this formula for the value:

Tracking.CylinderNumber

Note that up to now, the examples have considered only the phone layout. If you opt to use tablet

layout, you might want to place multiple forms on the screen, and use the Selected property to achieve

the relationship between master and detail forms or to conveniently search for data, which is discussed

in the next section.

Searching and filtering
Many apps in an organizational environment require some search or filter features. Two important

considerations are the app layout and the search controls configuration.

Page 17 of 33

Layout perspective
When using a phone layout, it is usually preferable that there is only one form per screen. So, if you had

an Access web apps list form where you had a sidebar for listing and searching with a detail area, that

sidebar won’t replicate well to PowerApps in the phone layout.

In this case, you can create two screens, one to represent the list box for listing and searching (as the

following example shows), and another to provide the details (not shown):

Page 18 of 33

Alternatively, in a tablet layout, you can retain the same layout as an Access web apps list form, by

placing two forms on a single screen.

Page 19 of 33

PowerApps gives you more control over how you can lay out forms in a screen. In this layout, you have

one form on the left for listing and searching, and another form on the right to give more detail. But you

don’t have to have just two forms. You could further split into three forms or more. Although you might

find a bit more work is required to get the functionality of the Access web apps list form, you will

appreciate the extra freedom PowerApps gives you in customizing the forms.

Unlike Access web apps, there is no built-in linking between a form and related items control; in fact,

there is no related items control at all in PowerApps. However, this is not a big loss and a great example

of why PowerApps formulas are so flexible. Whether you do this with a phone or tablet layout, the

formula remains the same in either layout. On the form for details, you could set the Item property to

the selected value of the form for searching and listing. That does not require you to know the details of

the data source’s primary key as the Access web apps related items control linking usually does.

Search controls
Note This section was written before the Search function was added to PowerApps. The Search

formula is much easier to implement than a nested Filter formula. For more information, see Filter,

Search, and LookUp functions in PowerApps.

Configuring a control for searching, however, is not as simple. Let’s start small and expand. On an Access

web apps List form, you can type in anything and it matches any content of any field in the form’s record

source. This provides a search experience like popular web search engines where you only have one

place to search, as opposed to a more traditional approach of creating different controls for each

column to search on.

https://powerapps.microsoft.com/en-us/tutorials/function-filter-lookup/
https://powerapps.microsoft.com/en-us/tutorials/function-filter-lookup/

Page 20 of 33

To replicate this functionality in PowerApps, you can use nested expressions. Coming from a background

of using an Access desktop database or Access web apps, it might be intuitive to start writing the logic

on the search button as an event, such as the AfterUpdate event on a search text box. But in

PowerApps, you don’t do that at all.

That’s because with PowerApps, you do not use event-driven programming, but rather use formulas

which are in effect always “on”. For example, as a user types in a new search term, all formulas

dependent on that value are automatically recalculated. This behavior is similar the automatic

Page 21 of 33

recalculation of an Excel workbook. In Excel, you don’t need to write change event code to update other

cells. You just define the dependency between the cells with formulas and Excel takes care of the rest.

This automatic recalculation means you set up the form’s Items property with a formula. The major

challenge here is that the formula must contain nested expressions which can cause it to be somewhat

difficult to read. Note that the following Filter formula example uses the in clause which is not currently

supported in a SharePoint list. To create these formulas, start with logic for only one column, without

any sorting functionality.

Filter(Tracking, Or(IsBlank(TextSearchBoxTracking.Text), TextSearchBoxTracking.Text in

Text(TrackingDate)))

You can use the Filter function and apply it to the data source “Tracking”. However, you don’t want to

filter anything if the search text box is blank. It is necessary to have an Or function in the formula

parameter of the Filter function. Note that the following syntax is also valid but won’t work:

Filter(Tracking, IsBlank(TextSearchBoxTracking.Text), TextSearchBoxTracking.Text in Text(TrackingDate))

The Filter function permits multiple Formula parameters, but the catch is that by default, they all are

applied with And logic, not Or logic. For that reason, you should be careful to ensure that you nest the

optional path accordingly.

At this point, you should test and verify that the formula works as expected before you add another

formula parameter to the Filter. Since you want to search on multiple columns, you don’t want to

exclude any results using the And logic. Therefore, add the new formula to the Or function, rather than

directly to the Filter function, as the following example shows:

Filter(Tracking, Or(IsBlank(TextSearchBoxTracking.Text), TextSearchBoxTracking.Text in

Text(TrackingDate), CylinderID = LookUp(Cylinder, CylinderNumber = TextSearchBoxTracking.Text).ID))

The LookUp function is necessary because the Tracking data source does not contain the

CylinderNumber, even though you display CylinderNumber using the LookUp function.

So, even though the form has the cylinder numbers, users will want to type cylinder numbers, not the

system ID used by the database. The assumption is that the CylinderNumber is not added as a lookup

field as discussed in the previous section. In that case, you can do an additional lookup of the Cylinder

data source to compare the ID and thus search for the Tracking data source with that ID representing

the CylinderNumber entered by the user. Note that the ID property references the result of the LookUp

function on the Cylinder data source.

In the list, the control was originally called “CylinderID”, and Access web apps displays that

column as “CylinderID”. However, PowerApps does not have user-friendly labels and might

use programmatic names such as “ID” or “Title”. As a rule, when using a custom list, the

programmatic name is the same as the original display name, and never changes. For

example, if you created a new SharePoint list and added a column “My Rating”, the

programmatic name is “My_x0020_Rating”, and remains that way even if you later change

it to “# of Stars given”.

Page 22 of 33

The last example to cover is when you need to depend on another control. As shown in the screenshot,

there is a slider control that indicates whether to filter by current user’s location or show all records.

Here’s the formula:

Filter(Tracking, Or(IsBlank(TextSearchBoxTracking.Text), TextSearchBoxTracking.Text in

Text(TrackingDate), CylinderID = LookUp(Cylinder, CylinderNumber = TextSearchBoxTracking.Text).ID),

Or(ToggleFilterByUserLocation.Value = false, LocationID = LookUp(UserLocation,

UserLocation[@User].Email = User.Email, LocationID).Id))

This formula seems to be getting complicated very quickly. The first thing to note is that this formula is

within a second formula parameter of the Filter function, and there is a second Or argument to

represent that parameter:

In other words, Filter(Tracking, Or(…), Or(…)) is the same thing as If (A Or B) And (C Or D) Then.

Nested within the second Or argument, the logic is like the first column, which skips this part if the slider

control is set to the off position. Otherwise, the formula evaluates whether the location of that cylinder

matches the user’s location. A lookup of the location’s ID is needed to get the location name in the

Tracking data source. The formula fetches this value from the UserLocation data source. However, be

aware of this issue: within the UserLocation data source, there is a column named “User”, but that’s also

a function in PowerApps which returns information about the currently logged in user. That could be

ambiguous to PowerApps. To help PowerApps know which “User” you want, use the disambiguation

operator “@”, “UserLocation[@User]”, which essentially means “User from UserLocation”. Note the use

of User.Email, which calls the PowerApps User function and returns the Email property.

The last touch to put on the formula is to support sorting operations. Wrap the entire Filter function in

the SortByColumns function:

SortByColumns(Filter(Tracking, Or(IsBlank(TextSearchBoxTracking.Text), TextSearchBoxTracking.Text in

Text(TrackingDate), CylinderID = LookUp(Cylinder, CylinderNumber = TextSearchBoxTracking.Text).ID),

Or(ToggleFilterByUserLocation.Value = false, LocationID = LookUp(UserLocation,

UserLocation[@User].Email = User.Email, LocationID).Id)), "TrackingDate", If(SortDescending1,

Descending, Ascending))

In this case, sorting occurs for only one column. You can apply similar ideas from the filtering examples if

you want to sort by multiple columns. However, this includes more function nesting and can make it a

challenge to test. For that reason, it’s a good idea to build up the nested functions from innermost to

outermost nesting instead of constructing all the functions from left to right, which can be more

problematic.

It’s worth reviewing the section, Client-side vs server-side functionality, where the concept of delegation
in PowerApps is discussed. To make it easier to know what is and is not being delegated, the authoring
experience provides blue dot suggestions when a formula contains something that cannot be delegated.
Blue dots are only shown on formulas that operate on delegable data sources. If you don't see a blue
dot and you believe your formula is not being properly delegated, check the type of data source against
the list of delegable data sources.

https://powerapps.microsoft.com/en-us/tutorials/delegation-list/

Page 23 of 33

Data macros
A significant portion of business logic in Access web apps is found in data macros. There are also UI

macros, but the focus of this section is data macros which are used to manipulate data directly. In

Access web apps, a data macro is typically executed directly on the database server. In contrast,

PowerApps does not usually execute any operation directly on the database but instead retrieves the

data, works on the copy of that data, and then merges it back to the database.

The PowerApps team is working on making delegation available for more and more data sources so this

limitation may be rectified. Even with delegation, it’s still beneficial to be conservative with the scope of

bulk updates. For that reason, you might discover not all data macros can be replicated from Access web

apps to PowerApps. It might be more accurate to envision this as re-thinking your strategies because the

approaches used are quite different.

Data macros are procedural, working on single record by record. By contrast, PowerApps formulas are

declarative. To illustrate, consider a simple data macro that might be driven by a button to mark a

record as complete:

Note that a LookupRecord macro is performed before you can edit the record. This works for situations

when the record is not currently loaded into the Access web apps form on which the button is located

and so it can be used independently. Here’s the equivalent user interface in PowerApps:

Page 24 of 33

In this case, the update operation happens only when users select the button, so use the button’s

OnSelect action with the following formula:

Patch(Tracking, LookUp(Tracking, ID = Value(TrackingIDTextInput.Text)), {Complete:true})

Just like data macros, use a LookUp function to retrieve a single record in the second argument. In the

third argument, modify the record by setting the Complete column to be true. Note the use of the Patch

function. There is also a function named Update, but you must enumerate all columns in a record when

assigning values to the Update function’s new argument. The Patch function only changes what you

want to change. For that reason, you’ll likely find yourself using the Patch function more often.

You can also use the Patch function to perform bulk changes to data. Remember, you can only work

with data that is already available locally in PowerApps, which is a subset of what may be in the data

source.

Note that the last argument is wrapped in curly braces, which indicates that it is a record data type. In

this example, only one column is updated. However, you are not limited to just one column; you can add

other columns. For example, the following parameter:

{Complete: true, Cystitis: 1}

Would update two columns in a single Patch function call.

Inserting records requires that you use the Defaults function to create a record with the default values.

You can then modify the record’s columns just like you would with an update that uses the Patch

function to insert it into the data source. For example:

Patch(Tracking, Defaults(Tracking), {Complete: true})

Consider another data macro, a For Each Record block that loops over each record. For example, you

want to mark all records as complete for a specified date at a given location.

Page 25 of 33

Recall that with Access web apps, there is no support for action queries, so to do a bulk update requires

the use of a For Each Record block. In an Access desktop database, you could use an Update query to do

the same thing. In PowerApps, you can do something similar with formulas.

The following formula does the equivalent operation in PowerApps:

Update(Tracking, TrackingDate=TrackingDatePicker.SelectedDate && toLocation =

LocationDropdown.Selected.ID && Complete = false, { Complete: true })

Because you want to update multiple records based on a condition, the UpdateIf function is a better fit

than the Patch function. Note that unlike the formulas used for searching in the previous section, you

can use multiple conditions expressed as a single argument.

Page 26 of 33

Like the Patch function, multiple columns can be updated by adding the other columns in the record

variable of the third argument. In the rare case when you do want to update all records unconditionally,

you can accomplish this by returning true in the second argument.

When you need to delete records, you can use the Remove If function in a similar way to the UpdateIf

function. You can also use the Clear function if you want to delete all records in a data source, or the

Remove function if you have a table variable representing the records you want to remove from the

data source. PowerApps also offers a For All function which is the equivalent of a ForEachRecord data

block in Access web apps.

What you can do in Access web apps but not in PowerApps
Important Keep in mind that PowerApps is a new platform. More likely than not, some of the features

discussed may change. For the latest information, see www.PowerApps.com.

Access web apps has capabilities that PowerApps currently does not have.

Inviting anonymous users
Access web apps allows you to invite users outside of SharePoint. All they need is a free Microsoft

account. With PowerApps, the person you invite must be within your same domain and must have rights

to the data source, such as a SharePoint List, that your app is based on.

Datasheet views
Although there is a potential work-around for datasheet views, this can be quite cumbersome for some

users, especially when viewing many fields and having them sorted and filtered any way they want.

Many users are comfortable with Excel and datasheet views and they need the exact look and feel, or

they won’t accept it.

Summary views
There are ways to filter data, use aggregate formulas, such as SUM() to add up total sales, for example.

But, PowerApps can only filter for that client and shows all records for that client, not what their sales

were per quarter, or other summaries. However, if you are using PowerApps, using Power BI might be a

better fit overall for providing summarized data and some reporting capabilities which are more

powerful than Access web apps summary views.

Transaction data tracking and troubleshooting
A little-known feature in Access web apps, which is very powerful for troubleshooting purposes, is the

ability to set up tracing of data as a user works with the data.

What you can do in PowerApps but not in Access web apps
On the other hand, PowerApps has capabilities that Access web apps does not have.

PDF viewer
PowerApps can view a PDF file from within the app. You can select this from Insert > Controls, and then

scroll to the bottom where you see PDF Viewer.

http://www.powerapps.com/

Page 27 of 33

Multimedia support
PowerApps can include images, video, and audio within your app. To insert the proper control, go to

Insert > Media, and then select the type of media. You also have access to the capabilities of a device,

such as using a camera or microphone to capture images, video, and audio.

Page 28 of 33

Variety of controls
PowerApps has more controls to choose. For example, select Insert > Controls.

Toggle
The Toggle control turns something on or off.

When you place the control, it lets you center it based on your

Text (Label).

This ability is useful when you are focused on providing a

great user experience.

Page 29 of 33

Slider
There is a Slider control,

that is often used to select

data such as cost (for

buying a car), size (for

selecting a waist size), car

size selection (for rental

cars, the different

categories from compact to luxury), and so on.

On mobile devices, sliders are much better than drop-down menus.

Rating
If you’ve ever installed an iPhone or Android app, you’ll be

familiar with the Rating control. This is also useful for

conducting internal surveys.

Other controls
There are also controls for adding a Timer, doing an Import

operation, and doing an Export operation.

Pen input
Pen input is becoming increasingly useful on a mobile

device and helps improve the data entry methods in the

user interface.

Page 30 of 33

Variety of layouts and galleries
PowerApps has many options to arrange content compared to Access web apps. For example:

Layouts Galleries

Rich user interface building capabilities
You can position and align PowerApps controls exactly

where you want them on a screen, just like PowerPoint

controls. You can even overlap controls and arrange a

certain control to be on top. For example, you can easily

align controls to the center:

Page 31 of 33

Or equally space controls in a vertical way:

1. Select all the buttons. 2. Choose Distribute vertical. Result: buttons are evenly spaced.

Page 32 of 33

SharePoint is not the only data source
Although our example apps have used SharePoint lists as the data source, you are not limited to just

SharePoint lists. There are dozens of data sources available, and more are being added.

Page 33 of 33

Extensibility
Lastly, PowerApps has more extensibility than Access web apps. Access web apps do provide a way to

enhance the interface using Microsoft Office Web Apps. But PowerApps can use Microsoft Flow, to

create an InfoPath-like process, and APIs to increase functionality programmatically.

About the authors
As Microsoft MVPs for Access, Ben Clothier (consultant and well-known author of Access books) and

Andy Tabisz (consultant, national speaker, and Access Web Apps User Group president) are providing

this introduction to PowerApps from the perspective of an Access web apps user and developer.

https://mvp.microsoft.com/en-us/PublicProfile/4025507?fullName=Ben%20G%20Clothier
https://mvp.microsoft.com/en-us/PublicProfile/5001211?fullName=Andy%20%20Tabisz

