PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399
Copyright © 2010 by Microsoft Corporation
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission of the publisher.
Library of Congress Control Number: 2010939982
ISBN: 978-0-7356-4335-2
Printed and bound in the United States of America.
Microsoft Press books are available through booksellers and distributors worldwide. For further information about international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at fax (425) 936-7329. Tell us what you think of this book at http://www.microsoft.com/learning/booksurvey.
Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademark/EMUS.aspx are trademarks of the Microsoft group of companies. All other marks are the property of their respective owners.
The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.
This book expresses the author’s views and opinions. The information contained in this book is provided without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.
Developmental and Project Editor: Devon Musgrave
Editorial Production: Ashley Schneider, S4Carlisle Publishing Services
Technical Reviewer: Per Blomqvist; Technical Review Services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design
Body Part No. X17-12906
4 Bitmaps, Also Known as Textures
6 Issues in Application Architecture
22 From Gestures to Transforms
A First Silverlight Phone Program
The Standard Silverlight Files
Silverlight and Dynamic Layout
Simple Clocks (Very Simple Clocks)
Low-Level Touch Handling in XNA
Low-Level Touch Events in Silverlight
4 Bitmaps, Also Known as Textures
Loading Local Bitmaps from Code
6 Issues in Application Architecture
Retaining Data across Instances
Content and Content Properties
Animating at the Speed of Video
TextBlock Properties and Inlines
Text Concatenation with StackPanel
The Dependency Property Difference
Becoming a Photo Extras Application
Animating Attached Properties (or Not)
Animating Perspective Transforms
Animations and Property Precedence
ContentControl and DataTemplate
Sharing and Reusing Styles and Templates
Items Controls and Visual Trees
Databases and Business Objects
The XNA Music Classes: MediaLibrary
The XNA Music Classes: MediaPlayer
Working with Parametric Equations
Fiddling with the Transfer Function
Preserving Render Target Contents
22 From Gestures to Transforms
Affine and Non-Affine Transforms
A Little Tour Through SpinPaint
This book is a gift from the Windows Phone 7 team at Microsoft to the programming community, and I am proud to have been a part of it. Within the pages that follow, I show you the basics of writing applications for Windows Phone 7 using the C# programming language with the Silverlight and XNA 2D frameworks.
Yes, Programming Windows Phone 7 is truly a free download, but for those readers who still love paper—as I certainly do—this book will also be available (for sale) divided into two fully-indexed print editions: Microsoft Silverlight Programming for Windows Phone 7 and Microsoft XNA Framework Programming for Windows Phone 7.
With the money you’ve saved downloading this book, please buy other books. Despite the plethora of information available online, books are still the best way to learn about programming within a coherent and cohesive tutorial narrative. Every book sale brings a tear of joy to an author’s eye, so please help make them weep overflowing rivers.
In particular, you might want to buy other books to supplement the material in this book. For example, I barely mention Web services in this book, and that’s a serious deficiency because Web services are likely to become increasingly important in Windows Phone 7 applications. My coverage of XNA is limited to 2D graphics and while I hope to add several 3D chapters in the next edition of this book, I don’t really get into the whole Xbox LIVE community aspect of game development. Nor do I discuss any programming tools beyond Visual Studio—not even Expression Blend.
My publisher Microsoft Press has a couple additional Windows Phone 7 books coming soon: Windows Phone 7 Silverlight Development Step by Step by Andy Wigley & Peter Foot offers a more tools-oriented approach. Although Michael Stroh’s Windows Phone 7 Plain & Simple is a guide to using the phone rather than developing for it, I suspect it will give developers some insights and ideas.
Moreover, I also hear that my old friend Doug Boling is working hard on a Windows Phone 7 enterprise-programming book that is likely to be considered his masterpiece. Be sure to check out that one.
This book is divided into three parts. The first part discusses basic concepts of Windows Phone 7 programming using example programs that target both Silverlight and the XNA framework. It is likely that many Windows Phone 7 developers will choose either one platform or the other, but I think it’s important for all developers who have at least a little knowledge of the alternative to their chosen path.
The second part of this book focuses entirely on Silverlight, and the third part on XNA 2D. For your convenience, the chapters in each part build upon previous knowledge in a progressive tutorial narrative, and hence are intended to be read sequentially.
I assume that you know the basic principles of .NET programming and you have a working familiarity with the C# programming language. If not, you might benefit from reading my free online book .NET Book Zero: What the C or C++ Programmer Needs to Know about C# and the .NET Framework, available from my website at www.charlespetzold.com/dotnet.
To use this book properly you’ll need to download and install the Windows Phone Developer Tools, which includes Visual Studio 2010 Express for Windows Phone, XNA Game Studio 4.0, and an on-screen Windows Phone Emulator to test your programs in the absence of an actual device. Get the latest information and downloads at http://developer.windowsphone.com.
You can install these tools on top of Visual Studio 2010, in effect enhancing Visual Studio 2010 for phone development. That’s the configuration I used.
Although you can do quite a bit with the phone emulator, at some point you’ll want to deploy your programs to an actual Windows Phone 7 device. You can register as a phone developer at http://developer.windowsphone.com and then have the ability to unlock your phone so you can deploy your programs from Visual Studio.
Since late July 2010, I’ve had an LG GW910 phone to test the programs in this book. For the record, the final build I installed was 7.0.7003.0.
Windows Phone 7 supports multi-touch, and working with multi-touch is an important part of developing programs for the phone. When using the Windows Phone Emulator, mouse clicks and mouse movement on the PC can mimic touch on the emulator, but for only one finger. You can test out multi-touch for real on the phone emulator if you have a multi-touch monitor running under Windows 7.
In the absence of a multi-touch monitor, you might want to explore simulating multi-touch with multiple mouse devices. The site http://multitouchvista.codeplex.com has the download you’ll need and includes a link to http://michaelsync.net/2010/04/06/step-by-step-tutorial-installing-multi-touch-simulator-for-silverlight-phone-7 that provides instructions.
Windows Phone 7 devices also have a built-in accelerometer, which can be very difficult to simulate in an emulator. Per Blomqvist, the Technical Reviewer for this book, found an application at http://accelkit.codeplex.com that utilizes the webcam and ARToolkit to emulate the accelerometer sensor and feed that data into the Windows Phone 7 emulator through a TCP/HTTP Server, and although neither of us have tried it out, it sounds quite intriguing.
To illustrate Silverlight and XNA programming concepts, this book describes about 190 complete programs. Many of them are small and simple, but others are larger and more interesting.
Some people like to learn new programming environments by re-creating the projects in Visual Studio and typing in the source code themselves from the pages of the book. Others prefer to study the code and run the pre-existing programs to see what the code does. If you fall into the latter category, you can download all the source code in a ZIP file. The location of this ZIP file is available from my website at www.charlespetzold.com/phone and from the Microsoft Press blog at http://blogs.msdn.com/b/microsoft_press/.
If you find something in the code that is useful in your own software project, feel free to use the code without restriction—either straight up or modified in whatever way you want. That’s what it’s there for.
As I was nearing the completion this book, the first version of the Silverlight for Windows Phone Toolkit was released with some additional elements and controls, and is available for downloading at http://silverlight.codeplex.com. Historically, these Silverlight toolkits very often contain previews of elements and controls that are incorporated into later Silverlight releases. I regret that I could not include a discussion of the toolkit contents in the appropriate chapters of this book.
With XNA programs, sometimes Visual Studio complains that it can’t build or deploy the program. If you encounter that problem, in the Solution Platforms drop-down list on the standard toolbar, select “Windows Phone” rather than “Any CPU”. Or, invoke the Configuration Manager from the Build menu, and in the Active Solution Platform drop-down select “Windows Phone” rather than “Any CPU”.
The www.charlespetzold.com/phone page on my website will contain information about this book and perhaps even some information about a future edition. I also hope to blog about Windows Phone 7 programming as much as possible.
This book owes its existence to Dave Edson—an old friend from the early 1990s era of Microsoft Systems Journal—who had the brilliant idea that I would be the perfect person to write a tutorial on Windows Phone 7. Dave arranged for me to attend a technical deep dive on the phone at Microsoft in December 2009, and I was hooked. Todd Brix gave the thumbs up on the book, and Anand Iyer coordinated the project with Microsoft Press.
At Microsoft Press, Ben Ryan launched the project and Devon Musgrave had the unenviable job of trying to make my code and prose resemble an actual book. (We all go way back: You’ll see Ben and Devon’s names on the bottom of the copyright page of Programming Windows, fifth edition, published in 1998.)
My Technical Reviewer was the diligent Per Blomqvist, who apparently tested all the code in both the sample files and as the listings appear in the book, and who in the process caught several errors on my part that were truly, well, shocking.
Dave Edson also reviewed some chapters and served as conduit to the Windows Phone team to deal with my technical problems and questions. Early on, Aaron Stebner provided essential guidance; Michael Klucher reviewed chapters, and Kirti Deshpande, Charlie Kindel, Casey McGee, and Shawn Oster also had important things to tell me. Thanks to Bonnie Lehenbauer for reviewing a chapter.
I am also indebted to Shawn Hargreaves for his XNA expertise, and Yochay Kiriaty and Richard Bailey for the lowdown on tombstoning.
My wife Deirdre Sinnott has been a marvel of patience and tolerance over the past months as she dealt with an author given to sudden mood swings, insane yelling at the computer screen, and the conviction that the difficulty of writing a book relieves one of the responsibility of performing basic household chores.
Alas, I can’t blame any of them for bugs or other problems that remain in this book. Those are all mine.
Charles Petzold
New York City and Roscoe, New York
October 22, 2010
We’ve made every effort to ensure the accuracy of this book and its companion content. If you do find an error, e-mail Microsoft Press Book Support at mspinput@microsoft.com. (Please note that product support for Microsoft software is not offered through this address.)
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset. Please tell us what you think of this book at:
http://www.microsoft.com/learning/booksurvey
The survey is short, and we read every one of your comments and ideas. Thanks in advance for your input.
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress
Sometimes it becomes apparent that previous approaches to a problem haven’t quite worked the way you anticipated. Perhaps you just need to clear away the smoky residue of the past, take a deep breath, and try again with a new attitude and fresh ideas. In golf, it’s known as a “mulligan”; in schoolyard sports, it’s called a “do-over”; and in the computer industry, we say it’s a “reboot.”
A reboot is what Microsoft has initiated with its new approach to the mobile phone market. With its clean look, striking fonts, and new organizational paradigms, Microsoft Windows Phone 7 not only represents a break with the Windows Mobile past but also differentiates itself from other smartphones currently in the market. Windows Phone 7 devices will be made by several manufacturers and available with a variety of cell providers.
For programmers, Windows Phone 7 is also exciting, for it supports two popular and modern programming platforms: Silverlight and XNA.
Silverlight—a spinoff of the client-based Windows Presentation Foundation (WPF)—has already given Web programmers unprecedented power to develop sophisticated user interfaces with a mix of traditional controls, high-quality text, vector graphics, media, animation, and data binding that run on multiple platforms and browsers. Windows Phone 7 extends Silverlight to mobile devices.
XNA—the three letters stand for something like “XNA is Not an Acronym”—is Microsoft’s game platform supporting both 2D sprite-based and 3D graphics with a traditional game-loop architecture. Although XNA is mostly associated with writing games for the Xbox 360 console, developers can also use XNA to target the PC itself, as well as Microsoft’s classy audio player, the Zune HD.
Either Silverlight or XNA would make good sense as the sole application platform for the Windows Phone 7, but programmers have a choice. And this we call “an embarrassment of riches.”
All programs for Windows Phone 7 are written in .NET managed code. Although the sample programs in this book are written in the C# programming language, it is also possible to write Windows Phone 7 applications in Visual Basic .NET. The free downloadable Microsoft Visual Studio 2010 Express for Windows Phone includes XNA Game Studio 4.0 and an on-screen phone emulator, and also integrates with Visual Studio 2010. You can develop visuals and animations for Silverlight applications using Microsoft Expression Blend.
The Silverlight and XNA platforms for Windows Phone 7 share some libraries, and you can use some XNA libraries in a Silverlight program and vice versa. But you can’t create a program that mixes visuals from both platforms. Maybe that will be possible in the future, but not now. Before you create a Visual Studio project, you must decide whether your million-dollar idea is a Silverlight program or an XNA program.
Generally you’ll choose Silverlight for writing programs you might classify as applications or utilities. These programs are built from a combination of markup and code. The markup is the Extensible Application Markup Language, or XAML and pronounced “zammel.” The XAML mostly defines a layout of user-interface controls and panels. Code-behind files can also perform some initialization and logic, but are generally relegated to handling events from the controls. Silverlight is great for bringing to the Windows Phone the style of Rich Internet Applications (RIA), including media and the Web. Silverlight for Windows Phone is a version of Silverlight 3 excluding some features not appropriate for the phone, but compensating with some enhancements.
XNA is primarily for writing high-performance games. For 2D games, you define sprites and backgrounds based around bitmaps; for 3D games you define models in 3D space. The action of the game, which includes moving graphical objects around the screen and polling for user input, is synchronized by the built-in XNA game loop.
The differentiation between Silverlight-based applications and XNA-based games is convenient but not restrictive. You can certainly use Silverlight for writing games and you can even write traditional applications using XNA, although doing so might sometimes be challenging.
In particular, Silverlight might be ideal for games that are less graphically oriented, or use vector graphics rather than bitmap graphics, or are paced by user-time rather than clock-time. A Tetris-type program might work quite well in Silverlight. You’ll probably find XNA to be a bit harder to stretch into Silverlight territory, however. Implementing a list box in XNA might be considered “fun” by some programmers but a torture by many others.
The first several chapters in this book describe Silverlight and XNA together, and then the book splits into different parts for the two platforms. I suspect that some developers will stick with either Silverlight or XNA exclusively and won’t even bother learning the other environment. I hope that’s not a common attitude. The good news is that Silverlight and XNA are so dissimilar that you can probably bounce back and forth between them without confusion!
Microsoft has been positioning Silverlight as the front end or “face” of the cloud, so cloud services and Windows Azure form an important part of Windows Phone 7 development. The Windows Phone is “cloud-ready.” Programs are location-aware and have access to maps and other data through Bing and Windows Live. One of the available cloud services is Xbox Live, which allows XNA-based programs to participate in online multiplayer games, and can also be accessed by Silverlight applications.
Programs you write for the Windows Phone 7 will be sold and deployed through the Windows Phone Marketplace, which provides registration services and certifies that programs meet minimum standards of reliability, efficiency, and good behavior.
I’ve characterized Windows Phone 7 as representing a severe break with the past. If you compare it with past versions of Windows Mobile, that is certainly true. But the support of Silverlight, XNA, and C# are not breaks with the past, but a balance of continuity and innovation. As young as they are, Silverlight and XNA have already proven themselves as powerful and popular platforms. Many skilled programmers are already working with either one framework or the other—probably not so many with both just yet—and they have expressed their enthusiasm with a wealth of online information and communities. C# has become the favorite language of many programmers (myself included), and developers can use C# to share libraries between their Silverlight and XNA programs as well as programs for other .NET environments.
Developers with experience targeting Windows Mobile devices of the past will find significant changes in Microsoft’s strategy for the Windows Phone 7. Microsoft has been extremely proactive in defining the hardware specification, often referred to as a “chassis.”
Initial releases of Windows Phone 7 devices will have one consistent screen size. (A second screen size is expected in the future.) Many other hardware features are guaranteed to exist on each device.
The front of the phone consists of a multi-touch display and three hardware buttons generally positioned in a row below the display. From left to right, these buttons are called Back, Start, and Search:
The initial releases of Windows Phone 7 devices have a display size of 480 × 800 pixels. In the future, screens of 320 × 480 pixels are also expected. There are no other screen options for Windows Phone 7, so obviously these two screen sizes play a very important role in phone development.
In theory, it’s usually considered best to write programs that adapt themselves to any screen size, but that’s not always possible, particularly with game development. You will probably find yourself specifically targeting these two screen sizes, even to the extent of having conditional code paths and different XAML files for layout that is size-dependent.
I will generally refer to these two sizes as the “large” screen and the “small” screen. The greatest common denominator of the horizontal and vertical dimensions of both screens is 160, so you can visualize the two screens as multiples of 160-pixel squares:
I’m showing these screens in portrait mode because that’s usually the way smartphones are designed. The screen of the original Zune is 240 × 320 pixels; the Zune HD is 272 × 480.
Of course, phones can be rotated to put the screen into landscape mode. Some programs might require the phone to be held in a certain orientation; others might be more adaptable.
You have complete control over the extent to which you support orientation. By default, Silverlight applications appear in portrait mode, but you’ll probably want to write your Silverlight applications so they adjust themselves to orientation changes. New events are available specifically for the purpose of detecting orientation change, and some orientation shifts are handled automatically. In contrast, game programmers can usually impose a particular orientation on the user. XNA programs use landscape mode by default, but it’s easy to override that.
In portrait mode, the small screen is half of an old VGA screen (that is, 640 × 480). In landscape mode, the large screen has a dimension sometimes called WVGA (“wide VGA”). In landscape mode, the small screen has an aspect ratio of 3:2 or 1.5; the large screen has an aspect ratio of 5:3 or 1.66.... Neither of these matches the aspect ratio of television, which for standard definition is 4:3 or 1.33... and for high-definition is 16:9 or 1.77.... The Zune HD screen has an aspect ratio of 16:9.
Like many recent phones and the Zune HD, the Windows Phone 7 displays will likely use OLED (“organic light emitting diode”) technology, although this isn’t a hardware requirement. OLEDs are different from flat displays of the past in that power consumption is proportional to the light emitted from the display. For example, an OLED display consumes less than half the power of an LCD display of the same size, but only when the screen is mostly black. For an all-white screen, an OLED consumes more than three times the power of an LCD.
Because battery life is extremely important on mobile devices, this characteristic of OLED displays implies an aesthetic of mostly black backgrounds with sparse graphics and light-stroked fonts. Regardless, Windows Phone 7 users can choose between two major color themes: light text on a dark background, or dark text on a light background.
Most user input to a Windows Phone 7 program will come through multi-touch. The screens incorporate capacitance-touch technology, which means that they respond to a human fingertip but not to a stylus or other forms of pressure. Windows Phone 7 screens are required to respond to at least four simultaneous touch-points.
A hardware keyboard is optional. Keep in mind that phones can be designed in different ways, so when the keyboard is in use, the screen might be in either portrait mode or landscape mode. A Silverlight program that uses keyboard input must respond to orientation changes so that the user can both view the screen and use the keyboard without wondering what idiot designed the program sideways. An on-screen keyboard is also provided, known in Windows circles as the Soft Input Panel or SIP. XNA programs also have access to the hardware keyboard and SIP.
A Windows Phone 7 device is required to contain several other hardware features—sometimes called sensors—and provide some software services, perhaps through the assistance of hardware. These are the ones that affect developers the most:
I’ll assume that you have Visual Studio 2010 Express for Windows Phone installed, either by itself or supplementing a regular version of Visual Studio 2010. For convenience, I’m going to refer to this development environment simply as “Visual Studio.”
The traditional “hello, world” program that displays just a little bit of text might seem silly to nonprogrammers, but programmers have discovered that such a program serves at least two useful purposes: First, the program provides a way to examine how easy (or ridiculously complex) it is to display a simple text string. Second, it gives the programmer an opportunity to experience the process of creating, compiling, and running a program without a lot of distractions. When developing programs that run on a mobile device, this process is a little more complex than customary because you’ll be creating and compiling programs on the PC but you’ll be deploying and running them on an actual phone or at least an emulator.
This chapter presents programs for both Microsoft Silverlight and Microsoft XNA that display the text “Hello, Windows Phone 7!”
Just to make these programs a little more interesting, I want to display the text in the center of the display. The Silverlight program will use the background and foreground colors selected by the user in the Themes section of the phone’s Settings screen. In the XNA program, the text will be white on a dark background to use less power on OLED.
If you’re playing along, it’s time to bring up Visual Studio and from the File menu select New and then Project.
In the New Project dialog box, on the left under Installed Templates, choose Visual C# and then Silverlight for Windows Phone. In the middle area, choose Windows Phone Application. Select a location for the project, and enter the project name: SilverlightHelloPhone.
As the project is created you’ll see an image of a large-screen phone in portrait mode with a screen area 480 × 800 pixels in size. This is the design view. Although you can interactively pull controls from a toolbox to design the application, I’m going to focus instead on showing you how to write your own code and markup.
Several files have been created for this SilverlightHelloPhone project and are listed under the project name in the Solution Explorer over at the right. In the Properties folder are three files that you can usually ignore when you’re just creating little sample Silverlight programs for the phone. Only when you’re actually in the process of making a real application do these files become important.
However, you might want to open the WMAppManifest.xml file. In the App tag near the top, you’ll see the attribute:
Title="SilverlightHelloPhone"
That’s just the project name you selected. Insert some spaces to make it a little friendlier:
Title="Silverlight Hello Phone"
This is the name used by the phone and the phone emulator to display the program in the list of installed applications presented to the user. If you’re really ambitious, you can also edit the ApplicationIcon.png and Background.png files that the phone uses to visually symbolize the program. The SplashScreenImage.jpg file is what the program displays as it’s initializing.
In the standard Visual Studio toolbar under the program’s menu, you’ll see a drop-down list probably displaying “Windows Phone 7 Emulator.” The other choice is “Windows Phone 7 Device.” This is how you deploy your program to either the emulator or an actual phone connected to your computer via USB.
Just to see that everything’s working OK, select Windows Phone 7 Emulator and press F5 (or select Start Debugging from the Debug menu). Your program will quickly build and in the status bar you’ll see the text “Connecting to Windows Phone 7 Emulator...” The first time you use the emulator during a session, it might take a little time to start up. If you leave the emulator running between edit/build/run cycles, Visual Studio doesn’t need to establish this connection again.
Soon the phone emulator will appear on the desktop and you’ll see the opening screen, followed soon by this little do-nothing Silverlight program as it is deployed and run on the emulator. On the phone you’ll see pretty much the same image you saw in the design view.
The phone emulator has a little floating menu at the upper right that comes into view when you move the mouse to that location. You can change orientation through this menu, or change the emulator size. By default, the emulator is displayed at 50% actual size, about the same size as the image on this page. When you display the emulator at 100%, it becomes enormous, and you might wonder “How will I ever fit a phone this big into my pocket?”
The difference involves pixel density. Your computer screen probably has about 100 pixels per inch. (By default, Windows assumes that screens are 96 DPI.) The screen on an actual Windows Phone 7 device is more than 2½ times that. When you display the emulator at 100%, you’re seeing all the pixels of the phone’s screen, but at about 250% their actual size.
You can terminate execution of this program and return to editing the program either though Visual Studio (using Shift-F5 or by selecting Stop Debugging from the Debug menu) or by clicking the Back button on the emulator.
Don’t exit the emulator itself by clicking the X at the top of the floating menu! Keeping the emulator running will make subsequent deployments go much faster.
While the emulator is still running, it retains all programs deployed to it. If you click the arrow at the upper-right of the Start screen, you’ll get a list that will include this program identified by the text “Silverlight Hello Phone” and you can run the program again. The program will disappear from this list when you exit the emulator.
If you have a Windows Phone 7 device, you’ll need to register for the marketplace at the Windows Phone 7 portal, http://developer.windowsphone.com. After you’re approved, you’ll to connect the phone to your PC and run the Zune desktop software. You can unlock the phone for development by running the Windows Phone Developer Registration program and entering your Windows Live ID. You can then deploy programs to the phone from Visual Studio.
With the project loaded in Visual Studio, take a look at the Solution Explorer for the project. You’ll see two pairs of skeleton files: App.xaml and App.xaml.cs, and MainPage.xaml and MainPage.xaml.cs. The App.xaml and MainPage.xaml files are Extensible Application Markup Language (XAML) files, while App.xaml.cs and MainPage.xaml.cs are C# code files. This peculiar naming scheme is meant to imply that the two C# code files are “code-behind” files associated with the two XAML files. They provide code in support of the markup. This is a basic Silverlight concept.
I want to give you a little tour of these four files. If you look at the App.xaml.cs file, you’ll see a namespace definition that is the same as the project name and a class named App that derives from the Silverlight class Application. Here’s an excerpt showing the general structure:
Silverlight Project: SilverlightHelloPhone File: App.xaml.cs (excerpt)
All Silverlight programs contain an App class that derives from Application; this class performs application-wide initialization, startup, and shutdown chores. You’ll notice this class is defined as a partial class, meaning that the project should probably include another C# file that contains additional members of the App class. But where is it?
The project also contains an App.xaml file, which has an overall structure like this:
Silverlight Project: SilverlightHelloPhone File: App.xaml (excerpt)
You’ll recognize this file as XML, but more precisely it is a XAML file, which is an important part of Silverlight programming. In particular, developers often use the App.xaml file for storing resources that are used throughout the application. These resources might include color schemes, gradient brushes, styles, and so forth.
The root element is Application, which is the Silverlight class that the App class derives from. The root element contains four XML namespace declarations. Two are common in all Silverlight applications; two are unique to the phone.
The first XML namespace declaration (“xmlns”) is the standard namespace for Silverlight, and it helps the compiler locate and identify Silverlight classes such as Application itself. As with most XML namespace declarations, this URI doesn’t actually point to anything; it’s just a URI that Microsoft owns and which it has defined for this purpose.
The second XML namespace declaration is associated with XAML itself, and it allows the file to reference some elements and attributes that are part of XAML rather than specifically Silverlight. By convention, this namespace is associated with a prefix of “x” (meaning “XAML”).
Among the several attributes supported by XAML and referenced with this “x” prefix is Class, which is often pronounced “x class.” In this particular XAML file x:Class is assigned the name SilverlightHelloPhone.App. This means that a class named App in the .NET
SilverlightHelloPhone namespace derives from the Silverlight Application class, the root element. It’s the same class definition you saw in the App.xaml.cs file but with very different syntax.
The App.xaml.cs and App.xaml files really define two halves of the same App class. During compilation, Visual Studio parses App.xaml and generates another code file named App.g.cs. The “g” stands for “generated.” If you want to look at this file, you can find it in the \obj\Debug subdirectory of the project. The App.g.cs file contains another partial definition of the App class, and it contains a method named InitializeComponent that is called from the constructor in the App.xaml.cs file.
You’re free to edit the App.xaml and App.xaml.cs files, but don’t mess around with App.g.cs. That file is recreated when you build the project.
When a program is run, the App class creates an object of type PhoneApplicationFrame and sets that object to its own RootVisual property. This frame is 480 pixels wide and 800 pixels tall and occupies the entire display surface of the phone. The PhoneApplicationFrame object then behaves somewhat like a web browser by navigating to an object called MainPage.
MainPage is the second major class in every Silverlight program and is defined in the second pair of files, MainPage.xaml and MainPage.xaml.cs. In smaller Silverlight programs, it is in these two files that you’ll be spending most of your time.
Aside from a long list of using directives, the MainPage.xaml.cs file is very simple:
Silverlight Project: SilverlightHelloPhone File: MainPage.xaml.cs (excerpt)
The using directives for namespaces that begin with the words System.Windows are for the Silverlight classes; sometimes you’ll need to supplement these with some other using directives as well. The Microsoft.Phone.Controls namespace contains extensions to Silverlight for the phone, including the PhoneApplicationPage class.
Again, we see another partial class definition. This one defines a class named MainPage that derives from the Silverlight class PhoneApplicationPage. This is the class that defines the visuals you’ll actually see on the screen when you run the SilverlightHelloPhone program.
The other half of this MainPage class is defined in the MainPage.xaml file. Here’s the nearly complete file, reformatted a bit to fit the printed page, and excluding a section that’s commented out at the end, but still a rather frightening chunk of markup:
Silverlight Project: SilverlightHelloPhone File: MainPage.xaml (almost complete)
The first four XML namespace declarations are the same as in App.xaml. As in the App.xaml file, an x:Class attribute also appears in the root element. Here it indicates that the MainPage class in the SilverlightHelloPhone namespace derives from the Silverlight PhoneApplicationPage class. This PhoneApplicationPage class requires its own XML namespace declaration because it is not a part of standard Silverlight.
The “d” (for “designer”) and “mc” (for “markup compatibility”) namespace declarations are for the benefit of XAML design programs, such as Expression Blend and the designer in Visual Studio itself. The DesignerWidth and DesignerHeight attributes are ignored during compilation.
The compilation of the program generates a file name MainPage.g.cs that contains another partial class definition for MainPage (you can look at it in the \obj\Debug subdirectory) with the InitializeComponent method called from the constructor in MainPage.xaml.cs.
In theory, the App.g.cs and MainPage.g.cs files generated during the build process are solely for internal use by the compiler and can be ignored by the programmer. However, sometimes when a buggy program raises an exception, one of these files comes popping up into view. It might help your understanding of the problem to have seen these files before they mysteriously appear in front of your face. However, don’t try to edit these files to fix the problem! The real problem is probably somewhere in the corresponding XAML file.
In the root element of MainPage.xaml you’ll see settings for FontFamily, FontSize, and Foreground that apply to the whole page. I’ll describe StaticResource and this syntax in Chapter 7.
The body of the MainPage.xaml file contains several nested elements named Grid, StackPanel, and TextBlock in a parent-child hierarchy.
Notice the word I used: element. In Silverlight programming, this word has two related meanings. It’s an XML term used to indicate items delimited by start tags and end tags. But it’s also a word used in Silverlight to refer to visual objects, and in fact, the word element shows up in the names of two actual Silverlight classes.
Many of the classes you use in Silverlight are part of this important class hierarchy:
Besides UIElement, many other Silverlight classes derive from DependencyObject. But UIElement has the distinction of being the class that has the power to appear as a visual object on the screen and to receive user input. (In Silverlight, all visual objects can receive user input.) Traditionally, this user input comes from the keyboard and mouse; on the phone, most user input comes from touch.
The only class that derives from UIElement is FrameworkElement. The distinction between these two classes is a historical artifact of the Windows Presentation Foundation. In WPF, it is possible for developers to create their own unique frameworks by deriving from UIElement. In Silverlight this is not possible, so the distinction is fairly meaningless.
One of the classes that derives from FrameworkElement is Control, a word more common than element in traditional graphical user-interface programming. Some objects commonly referred to as controls in other programming environments are more correctly referred to as elements in Silverlight. Control derivatives include buttons and sliders that I’ll discuss in Chapter 10.
Another class that derives from FrameworkElement is Panel, which is the parent class to the Grid and StackPanel elements you see in MainPage.xaml. Panels are elements that can host multiple children and arrange them in particular ways on the screen. I’ll discuss panels in more depth in Chapter 9.
Another class that derives from FrameworkElement is TextBlock, the element you’ll use most often in displaying blocks of text up to about a paragraph in length. The two TextBlock elements in MainPage.xaml display the two chunks of title text in a new Silverlight program.
PhoneApplicationPage, Grid, StackPanel, and TextBlock are all Silverlight classes. In Markup these become XML elements. Properties of these classes become XML attributes.
The nesting of elements in MainPage.xaml is said to define a visual tree. In a Silverlight program for Windows Phone 7, the visual tree always begins with an object of type PhoneApplicationFrame, which occupies the entire visual surface of the phone. A Silverlight program for Windows Phone 7 always has one and only one instance of PhoneApplicationFrame, referred to informally as the frame.
In contrast, a program can have multiple instances of PhoneApplicationPage, referred to informally as a page. At any one time, the frame hosts one page, but lets you navigate to the other pages. By default, the page does not occupy the full display surface of the frame because it makes room for the system tray (also known as the status bar) at the top of the phone.
Our simple application has only one page, appropriately called MainPage. This MainPage contains a Grid, which contains a StackPanel with a couple TextBlock elements, and another Grid, all in a hierarchical tree. The visual tree of a Silverlight program creates by Visual Studio is:
Our original goal was to create a Silverlight program that displays some text in the center of the display, but given the presence of a couple titles, let’s amend that goal to displaying the text in the center of the page apart from the titles. The area of the page for program content is the Grid towards the bottom of the file preceded by the comment “ContentPanel - place additional content here.” This Grid has a name of “ContentPanel” and I’m going to refer to it informally as the “content panel” or “content grid”. The area of the screen corresponding to this Grid apart from the titles I’ll often refer to as the “content area”.
In the content grid, you can insert a new TextBlock:
Silverlight Project: SilverlightHelloPhone File: MainPage.xaml (excerpt)
Text, HorizontalAlignment, and VerticalAlignment are all properties of the TextBlock class. The Text property is of type string. The HorizontalAlignment and VerticalAlignment properties are of numeration types HorizontalAlignment and VerticalAlignment, respectively. When you reference an enumeration type in XAML, you only need the member name.
While you’re editing MainPage.xaml you might also want to fix the other TextBlock elements so that they aren’t so generic. Change
<TextBlock ... Text="MY APPLICATION" ... />
to
<TextBlock ... Text="SILVERLIGHT HELLO PHONE" ... />
and
<TextBlock ... Text="page title" ... />
to:
<TextBlock ... Text="main page" ... />
It doesn’t make much sense to have a page title in a Silverlight application with only a single page, and you can delete that second TextBlock if you’d like. The changes you make to this XAML file will be reflected in the design view. You can now compile and run this program:
This screen shot—and most of the remaining screen shots in this book—are shown on the pages of this book with a size that approximates the size of the actual phone, surrounded by some simple “chrome” that symbolizes either the actual phone or the phone emulator.
As simple as it is, this program demonstrates some essential concepts of Silverlight programming, including dynamic layout. The XAML file defines a layout of elements in a visual tree. These elements are capable of arranging themselves dynamically. The HorizontalAlignment and VerticalAlignment properties can put an element in the center of another element, or (as you might suppose) along one of the edges or in one of the corners. TextBlock is one of a number of possible elements you can use in a Silverlight program; others include bitmap images, movies, and familiar controls like buttons, sliders, and list boxes.
From the Start screen of the phone or phone emulator, click or touch the right arrow at the upper right and navigate to the Settings page and then select Theme. A Windows Phone 7 theme consists of a Background and an Accent color. For the Background you can select either Dark (light text on a dark background, which you’ve been seeing) or Light (the opposite). Select the Light theme, run SilverlightHelloPhone again, and express some satisfaction that the theme colors are automatically applied:
Although these colors are applied automatically, you’re not stuck with them in your application. If you’d like the text to be displayed in a different color, you can try setting the Foreground attribute in the TextBlock tag, for example:
Foreground="Red"
You can put it anywhere in the tag as long as you leave spaces on either side. As you type this attribute, you’ll see a list of colors pop up. Silverlight supports the 140 color names supported by many browsers, as well as a bonus 141st color, Transparent.
In a real-world program, you’ll want to test out any custom colors with the available themes so text doesn’t mysteriously disappear or becomes hard to read.
Another property of the TextBlock that you can easily change is FontSize:
FontSize="36"
But what exactly does this mean?
All dimensions in Silverlight are in units of pixels, and the FontSize is no exception. When you specify 36, you get a font that from the top of its ascenders to the bottom of its descenders measures approximately 36 pixels.
But fonts are never this simple. The resultant TextBlock will actually have a height more like 48 pixels—about 33% higher than the FontSize would imply. This additional space (called leading) prevents successive lines of text from jamming against each other.
Traditionally, font sizes are expressed in units of points. In classical typography, a point is very close to 1/72nd inch but in digital typography the point is often assumed to be exactly 1/72nd inch. A font with a size of 72 points measures approximately an inch from the top of its characters to the bottom. (I say “approximately” because the point size indicates a typographic design height, and it’s really the creator of the font who determines exactly how large the characters of a 72-point font should be.)
How do you convert between pixels and points? Obviously you can’t except for a particular output device. On a 600 dots-per-inch (DPI) printer, for example, the 72-point font will be 600 pixels tall.
Desktop video displays in common use today usually have a resolution somewhere in the region of 100 DPI. For example, consider a 21” monitor that displays 1600 pixels horizontally and 1200 pixels vertically. That’s 2000 pixels diagonally, which divided by 21” is about 95 DPI.
By default, Microsoft Windows assumes that video displays have a resolution of 96 DPI. Under that assumption, font sizes and pixels are related by the following formulas:
points = ¾ × pixels
pixels = 4/3 × points
Although this relationship applies only to common video displays, people so much enjoy having these conversion formulas, they show up in Windows Phone 7 programming as well.
So, when you set a FontSize property such as
FontSize="36"
you can also claim to be setting a 27-point font.
For a particular point size, increase by 33% to get a pixel size. This is what you set to the FontSize property of TextBlock. The resultant TextBlock will then be another 33% taller than the FontSize setting.
The issue of font size becomes more complex when dealing with high-resolution screens found on devices such as Windows Phone 7. The 480 × 800 pixel display has a diagonal of 933 pixels. The phone I used for this book has a screen with about 3½” for a pixel density closer to 264 DPI. (Screen resolution is usually expressed as a multiple of 24.) Roughly that’s 2½ times the resolution of conventional video displays.
This doesn’t necessarily mean that all the font sizes used on a conventional screen need to be increased by 2½ times on the phone. The higher resolution of the phone—and the closer viewing distance common with phones—allows smaller font sizes to be more readable.
When running in a Web browser, the default Silverlight FontSize is 11 pixels, corresponding to a font size of 8.25 points, which is fine for a desktop video display but a little too small for the phone. For that reason, Silverlight for Windows Phone defines a collection of common font sizes that you can use. (I’ll describe how these work in Chapter 7.) The standard MainPage.xaml file includes the following attribute in the root element:
FontSize="{StaticResource PhoneFontSizeNormal}"
This FontSize is inherited through the visual tree and applies to all TextBlock elements that don’t set their own FontSize properties. It has a value of 20 pixels—almost double the default Silverlight FontSize on the desktop. Using the standard formulas, this 20-pixel FontSize corresponds to 15 points, but as actually displayed on the phone, it’s about 2/5 the size that a 15-point font would appear in printed text.
The actual height of the TextBlock displaying text with this font is about 33% more than the FontSize, in this case about 27 pixels.
If you navigate to the \bin\Debug directory of the Visual Studio project for SilverlightHelloPhone, you’ll find a file named SilverlightHelloPhone.xap. This is commonly referred to as a XAP file, pronounced “zap.” This is the file that is deployed to the phone or phone emulator.
The XAP file is a package of other files, in the very popular compression format known as ZIP. (Shouting “The XAP is a ZIP” in a crowded room will quickly attract other Silverlight programmers.) If you rename SilverlightHelloPhone.xap to SilverlightHelloPhone.zip, you can look inside. You’ll see several bitmap files that are part of the project, an XML file, a XAML file, and a SilverlightHelloPhone.dll file, which is the compiled binary of your program.
Any assets that your program needs can be made part of the Visual Studio project and added to this XAP file. Your program can access these files at runtime. I’ll discuss some of the concepts in Chapter 4.
Next up on the agenda is an XNA program that displays a little greeting in the center of the screen. While text is often prevalent in Silverlight applications, it is less common in graphical games. In games, text is usually relegated to describing how the game works or displaying the score, so the very concept of a “hello, world” program doesn’t quite fit in with the whole XNA programming paradigm.
In fact, XNA doesn’t even have any built-in fonts. You might think that an XNA program running on the phone can make use of the same native fonts as Silverlight programs, but this is not so. Silverlight uses vector-based TrueType fonts and XNA doesn’t know anything about such exotic concepts. To XNA, everything is a bitmap, including fonts.
If you wish to use a particular font in your XNA program, that font must be embedded into the executable as a collection of bitmaps for each character. XNA Game Studio (which is integrated into Visual Studio) makes the actual process of font embedding very easy, but it raises some thorny legal issues. You can’t legally distribute an XNA program unless you can also legally distribute the embedded font, and with most of the fonts distributed with Windows itself or Windows applications, this is not the case.
To help you out of this legal quandary, Microsoft licensed some fonts from Ascender Corporation specifically for the purpose of allowing you to embed them in your XNA programs. Here they are:
Notice that the Pericles font uses small capitals for lower-case letters, so it’s probably suitable only for headings.
From the File menu of Visual Studio select New and Project. On the left of the dialog box, select Visual C# and XNA Game Studio 4.0. In the middle, select Windows Phone Game (4.0). Select a location and enter a project name of XnaHelloPhone.
Visual Studio creates two projects, one for the program and the other for the program’s content. XNA programs usually contain lots of content, mostly bitmaps and 3D models, but fonts as well. To add a font to this program, right-click the Content project (labeled “XnaHelloPhoneContent (Content)” and from the pop-up menu choose Add and New Item. Choose Sprite Font, leave the filename as SpriteFont1.spritefont, and click Add.
The word “sprite” is common in game programming and usually refers to a small bitmap that can be moved very quickly, much like the sprites you might encounter in an enchanted forest. In XNA, even fonts are sprites.
You’ll see SpriteFont1.spritefont show up in the file list of the Content directory, and you can edit an extensively commented XML file describing the font.
XNA Project: XnaHelloPhone File: SpriteFont1.spritefont (complete w/o comments)
Within the FontName tags you’ll see Segoe UI Mono, but you can change that to one of the other fonts I listed earlier. If you want Pericles Light, put the whole name in there, but if you want Miramonte Bold or Pescadero Bold or Segoe UI Mono Bold, use just Miramonte or Pescadero or Segoe UI Mono, and enter the word Bold between the Style tags. You can use Bold for the other fonts as well, but for the other fonts, bold will be synthesized, while for Miramonte or Pescadero or Segoe UI Mono, you’ll get the font actually designed for bold.
The Size tags indicate the point size of the font. In XNA as in Silverlight, you deal almost exclusively with pixel coordinates and dimensions, but the conversion between points and pixels used within XNA is based on 96 DPI displays. The point size of 14 becomes a pixel size of 18-2/3 within your XNA program. This is very close to the 15-point and 20-pixel “normal” FontSize in Silverlight for Windows Phone.
The CharacterRegions section of the file indicates the ranges of hexadecimal Unicode character encodings you need. The default setting from 0x32 through 0x126 includes all the non-control characters of the ASCII character set.
The filename of SpriteFont1.spritefont is not very descriptive. I like to rename it to something that describes the actual font; if you’re sticking with the default font settings, you can rename it to Segoe14.spritefont. If you look at the properties for this file—right-click the filename and select Properties—you’ll see an Asset Name that is also the filename without the extension: Segoe14. This Asset Name is what you use to refer to the font in your program to load the font. If you want to confuse yourself, you can change the Asset Name independently of the filename.
In its initial state, the XNAHelloPhone project contains two C# code files: Program.cs and Game1.cs. The first is very simple and turns out to be irrelevant for Windows Phone 7 games! A preprocessor directive enables the Program class only if a symbol of WINDOWS or XBOX is defined. When compiling Windows Phone programs, the symbol WINDOWS_PHONE is defined instead.
For most small games, you’ll be spending all your time in the Game1.cs file. The Game1 class derives from Game and in its pristine state it defines two fields: graphics and spriteBatch. To those two fields I want to add three more:
XNA Project: XnaHelloPhone File: Game1.cs (excerpt showing fields)
These three new fields simply indicate the text that the program will display, the font it will use to display it, and the position of the text on the screen. That position is specified in pixel coordinates relative to the upper-left corner of the display. The Vector2 structure has two fields named X and Y of type float. For performance purposes, all floating-point values in XNA are single-precision. (Silverlight is all double-precision.) The Vector2 structure is often used for two-dimensional points, sizes, and even vectors.
When the game is run on the phone, the Game1 class is instantiated and the Game1 constructor is executed. This standard code is provided for you:
XNA Project: XnaHelloPhone File: Game1.cs (excerpt)
The first statement initializes the graphics field. In the second statement, Content is a property of Game of type ContentManager, and RootDirectory is a property of that class. Setting this property to “Content” is consistent with the Content directory that is currently storing the 14-point Segoe font. The third statement sets a time for the program’s game loop, which governs the pace at which the program updates the video display. The Windows Phone 7 screen is refreshed at 30 frames per second.
After Game1 is instantiated, a Run method is called on the Game1 instance, and the base Game class initiates the process of starting up the game. One of the first steps is a call to the Initialize method, which a Game derivative can override. XNA Game Studio generates a skeleton method to which I won’t add anything:
XNA Project: XnaHelloPhone File: Game1.cs (excerpt)
The Initialize method is not the place to load the font or other content. That comes a little later when the base class calls the LoadContent method.
XNA Project: XnaHelloPhone File: Game1.cs (excerpt)
The first statement in this method is provided for you. You’ll see shortly how this spriteBatch object is used to shoot sprites out to the display.
The other statements are ones I’ve added, and you’ll notice I tend to preface property names like Content and GraphicsDevice with the keyword this to remind myself that they’re properties and not a static class. As I mentioned, the Content property is of type ContentManager. The generic Load method allows loading content into the program, in this case content of type SpriteFont. The name in quotation marks is the Asset Name as indicated in the content’s properties. This statement stores the loaded font in the segoe14 field of type SpriteFont.
In XNA, sprites (including text strings) are usually displayed by specifying the pixel coordinates relative to the upper-left corner or the sprite relative to the upper-left corner of the display. To calculate these coordinates, it’s helpful to know both the screen size and the size of the text when displayed with a particular font.
The SpriteFont class has a very handy method named MeasureString that returns a Vector2 object with the size of a particular text string in pixels. (For the 14-point Segoe UI Mono font, which has an equivalent height of 18-2/3 pixels, the MeasureString call returns a height of 28 pixels.)
An XNA program generally uses the Viewport property of the GraphicsDevice class to obtain the size of the screen. This is accessible through the GraphicsDevice property of Game and provides Width and Height properties.
It is then straightforward to calculate textPosition—the point relative to the upper-left corner of the viewport where the upper-left corner of the text string is to be displayed.
The initialization phase of the program has now concluded, and the real action begins. The program enters the game loop. In synchronization with the 30 frame-per-second refresh rate of the video display, two methods in your program are called: Update followed by Draw. Back and forth: Update, Draw, Update, Draw, Update, Draw.... (It’s actually somewhat more complicated than this if the Update method requires more than 1/30th of a second to complete, but I’ll discuss these timing issues in more detail in a later chapter.)
In the Draw method you want to draw on the display. But that’s all you want to do. If you need to perform some calculations in preparation for drawing, you should do those in the Update method. The Update method prepares the program for the Draw method. Very often an XNA program will be moving sprites around the display based on user input. For the phone, this user input mostly involves fingers touching the screen. All handling of user input should also occur during the Update method. You’ll see an example in Chapter 3.
You should write your Update and Draw methods so that they execute as quickly as possible. That’s rather obvious, I guess, but here’s something very important that might not be so obvious:
You should avoid code in Update and Draw that routinely allocates memory from the program’s local heap. Eventually the .NET garbage collector will want to reclaim some of this memory, and while the garbage collector is doing its job, your game might stutter a bit. Throughout the chapters on XNA programming, you’ll see techniques to avoid allocating memory from the heap.
Your Draw methods probably won’t contain any questionable code; it’s usually in the Update method where trouble lurks. Avoid any new expressions involving classes. These always cause memory allocation. Instantiating a structure is fine, however, because structure instances are stored on the stack and not in the heap. (XNA uses structures rather than classes for many types of objects you’ll often need to create in Update.) But heap allocations can also occur without explicit new expressions. For example, concatenating two strings creates another string on the heap. If you need to perform string manipulation in Update, you should use StringBuilder. Conveniently, XNA provides methods to display text using StringBuilder objects.
In XnaHelloPhone, however, the Update method is trivial. The text displayed by the program is anchored in one spot. All the necessary calculations have already been performed in the LoadContent method. For that reason, the Update method will be left simply as XNA Game Studio originally created it:
XNA Project: XnaHelloPhone File: Game1.cs (excerpt)
The default code uses the static GamePad class to check if the phone’s hardware Back button has been pressed and uses that to exit the game.
Finally, there is the Draw method. The version created for you simply colors the background with a light blue:
XNA Project: XnaHelloPhone File: Game1.cs (excerpt)
The color known as CornflowerBlue has achieved iconic status in the XNA programming community. When you’re developing an XNA program, the appearance of the light blue screen is very comforting because it means the program has at least gotten as far as Draw. But if you want to conserve power on OLED displays, you want to go with darker backgrounds. In my revised version, I’ve compromised by setting the background to a darker blue. As in Silverlight, XNA supports the 140 colors that have come to be regarded as standard. The text is colored white:
XNA Project: XnaHelloPhone File: Game1.cs (excerpt)
Sprites get out on the display by being bundled into a SpriteBatch object, which was created during the call to LoadContent. Between calls to Begin and End there can be multiple calls to DrawString to draw text and Draw to draw bitmaps. Those are the only options. This particular DrawString call references the font, the text to display, the position of the upper-left corner of the text relative to the upper-left corner of the screen, and the color. And here it is:
Oh, that’s interesting! By default, Silverlight programs come up in portrait mode, but XNA programs come up in landscape mode. Let’s turn the phone or emulator sideways:
Much better!
But this raises a question: Do Silverlight programs always run in portrait mode and XNA programs always run in landscape mode?
Is program biology destiny?
By default, Silverlight programs for Windows Phone 7 run in portrait mode, and XNA programs run in landscape mode. This chapter discusses how to transcend those defaults and explores other issues involving screen sizes, element sizes, and events.
If you run the SilverlightHelloPhone program from the last chapter, and you turn the phone or emulator sideways, you’ll discover that the display doesn’t change to accommodate the new orientation. That’s easy to fix. In the root PhoneApplicationPage tag, of MainPage.xaml change the attribute
SupportedOrientations="Portrait"
to:
SupportedOrientations="PortraitOrLandscape"
SupportedOrientations is a property of PhoneApplicationPage. It’s set to a member of the SupportedPageOrientation enumeration, either Portrait, Landscape, or PortraitOrLandscape.
Recompile. Now when you turn the phone or emulator sideways, the contents of the page shift around accordingly:
The SupportedOrientations property also allows you to restrict your program to Landscape if you need to.
This response to orientation really shows off dynamic layout in Silverlight. Everything has moved around and some elements have changed size. Silverlight originated in WPF and the desktop, so historically it was designed to react to changes in window sizes and aspect ratios. This facility carries well into the phone.
Two of the most important properties in working with dynamic layout are HorizontalAlignment and VerticalAlignment. In the last chapter, using these properties to center text in a Silverlight program was certainly easier than performing calculations based on screen size and text size that XNA required.
On the other hand, if you now needed to stack a bunch of text strings, you would probably find it straightforward in XNA, but not so obvious in Silverlight.
Rest assured that there are ways to organize elements in Silverlight. A whole category of elements called panels exist solely for that purpose. You can even position elements based on pixel coordinates, if that’s your preference. But a full coverage of panels won’t come until Chapter 9.
In the meantime, you can try putting multiple elements into the content grid. Normally a Grid organizes its content into cells identified by row and column, but this program puts nine TextBlock elements in a single-cell Grid to demonstrate the use of HorizontalAlignment and VerticalAlignment in nine different combinations:
Silverlight Project: SilverlightCornersAndEdges File: MainPage.xaml
As with many of the simpler Silverlight programs in this book, I’ve set the SupportedOrientations property of MainPage to PortraitOrLandscape. And here it is turned sideways:
Although this screen appears to show all the combinations, the program does not actually show the default settings of the HorizontalAlignment and VerticalAlignment properties. The default settings are enumeration members named Stretch. If you try them out, you’ll see that the TextBlock sits in the upper-left corner, just as with values of Top and Left. But what won’t be so obvious is that the TextBlock occupies the entire interior of the Grid. The TextBlock has a transparent background (and you can’t set an alternative) so it’s a little difficult to tell the difference. But I’ll demonstrate the effect in the next chapter.
Obviously the HorizontalAlignment and VerticalAlignment properties are very important in the layout system in Silverlight. So is Margin. Try adding a Margin setting to the first TextBlock in this program:
Now there’s a 100-pixel breathing room between the TextBlock and the left and top edges of the client area. The Margin property is of type Thickness, a structure that has four properties named Left, Top, Right, and Bottom. If you specify only one number in XAML, that’s used for all four sides. You can also specify two numbers like this:
Margin="100 200"
The first applies to the left and right; the second to the top and bottom. With four numbers
Margin="100 200 50 300"
they’re in the order left, top, right, and bottom. Watch out: If the margins are too large, the text or parts of the text will disappear. Silverlight preserves the margins even at the expense of truncating the element.
If you set both HorizontalAlignment and VerticalAlignment to Center, and set Margin to four different numbers, you’ll notice that the text is no longer visually centered in the content area. Silverlight bases the centering on the size of the element including the margins.
TextBlock also has a Padding property:
Padding is also of type Thickness, and when used with the TextBlock, Padding is visually indistinguishable from Margin. But they are definitely different: Margin is space on the outside of the TextBlock; Padding is space inside the TextBlock not occupied by the text itself. If you were using TextBlock for touch events (as I’ll demonstrate in the next chapter), it would respond to touch in the Padding area but not the Margin area.
The Margin property is defined by FrameworkElement; in real-life Silverlight programming, almost everything gets a non-zero Margin property to prevent the elements from being jammed up against each other. The Padding property is rarer; it’s defined only by TextBlock, Border, and Control.
It’s possible to use Margin to position multiple elements within a single-cell Grid. It’s not common—and there are better ways to do the job—but it is possible. I’ll have an example in Chapter 5.
What’s crucial to realize is what we’re not doing. We’re not explicitly setting the Width and Height of the TextBlock like in some antique programming environment:
You’re second guessing the size of the TextBlock without knowing as much about the element as the TextBlock itself. In some cases, setting Width and Height is appropriate, but not here.
The Width and Height properties are of type double, and the default values are those special floating-point values called Not a Number or NaN. If you need to get the actual width and height of an element as it’s rendered on the screen, access the properties named ActualWidth and ActualHeight instead. (But watch out: These values will have non-zero values only when the element has been rendered on the screen.)
Some useful events are also available for obtaining information involving element sizes. The Loaded event is fired when visuals are first arranged on the screen; SizeChanged is supported by elements to indicate when they’ve changed size; LayoutUpdated is useful when you want notification that a layout cycle has occurred, such as occurs when orientation changes.
The SilverlightWhatSize project demonstrates the use of the SizeChanged method by displaying the sizes of several elements in the standard page. It’s not often that you need these precise sizes, but they might be of interest occasionally.
You can associate a particular event with an event handler right in XAML, but the actual event handler must be implemented in code. When you type an event name in XAML (such as SizeChanged) Visual Studio will offer to create an event handler for you. That’s what I did with the SizeChanged event for the content grid:
SilverlightProject: SilverlightWhatSize File: MainPage.xaml (excerpt)
I also assigned the TextBlock property Name to “txtblk.” The Name property plays a very special role in Silverlight. If you compile the program at this point and look inside MainPage.g.cs—the code file that the compiler generates based on the MainPage.xaml file—you’ll see a bunch of fields in the MainPage class, among them a field named txtblk of type TextBlock:
internal System.Windows.Controls.TextBlock txtblk;
You’ll also notice that this field is assigned from code in the InitializeComponent method:
this.txtblk = ((System.Windows.Controls.TextBlock)(this.FindName("txtblk")));
This means that anytime after the constructor in MainPage.xaml.cs calls InitializeComponent, any code in the MainPage class can reference that TextBlock element in the XAML file using the txtblk variable stored as a field in the class.
You’ll notice that several of the elements in the MainPage.xaml file are assigned names with x:Name rather than Name. As used in XAML, these two attributes are basically equivalent. Name only works with elements (that is, instances of classes that derive from FrameworkElement because that’s where the Name property is defined) but x:Name works with everything.
This means that code in the MainPage class in MainPage.xaml.cs has a field available named ContentPanel to reference the standard Grid that appears in MainPage.xaml, and similarly for the other elements in MainPage.xaml.
Assigning names to elements is one of two primary ways in which code and XAML interact. The second way is for the element defined in XAML to fire an event that is handled in code. Here’s the handler for the SizeChanged event of the content grid as Visual Studio created it:
SilverlightProject: SilverlightWhatSize File: MainPage.xaml.cs (excerpt)
I usually don’t like the way Visual Studio creates these handlers. Normally I remove the keyword private, I rename the event handlers to start them with the word On, and I eliminate underscores. This one I’d call OnContentPanelSizeChanged. I also tend to change the event arguments from e to args.
But for this program I’ll leave it as is. On entry to the method, the sender argument is the element that fired the event, in this case the Grid named ContentPanel. The second argument contains information specific to the event.
I added a body to this method that just sets the Text property of txtblk to a longish multi-line string:
SilverlightProject: SilverlightWhatSize File: MainPage.xaml.cs (excerpt)
The five items are of type Size, a structure with Width and Height properties. The size of the ContentPanel itself is available from the NewSize property of the event arguments. For the next three, I used the ActualWidth and ActualHeight properties.
Notice the last item. The static property Application.Current returns the Application object associated with the current process. This is the App object created by the program. It has a property named RootVisual that references the frame, but the property is defined to be of type UIElement. The ActualWidth and ActualHeight properties are defined by FrameworkElement, the class that derives from UIElement. Rather than casting, I chose to use a property of type Size that UIElement defines.
The first SizeChanged event occurs when the page is created and laid out, that is, when the content grid changes size from 0 to a finite value:
The 32-pixel difference between the MainPage size and the frame size accommodates the system tray at the top. You can prevent that tray from appearing while your application is running (and in effect, get access to the entire screen) by changing an attribute in the root element of MainPage.xaml from:
shell:SystemTray.IsVisible="True"
to
shell:SystemTray.IsVisible="False"
The syntax of this attribute might seem a little peculiar. SystemTray is a class in the Microsoft.Phone.Shell namespace and IsVisible is a property of that class, and both the class and property appear together because it’s a special kind of property called an attached property. I’ll have much more to say about attached properties in Chapter 9.
The topmost Grid named LayoutRoot is the same size as MainPage. The vertical size of the TitlePanel (containing the two titles) and the vertical size of ContentPanel don’t add up to the vertical size of LayoutRoot because of the 45-pixel vertical margin (17 pixels on the top and 28 pixels on the bottom) of the TitlePanel.
Subsequent SizeChanged events occur when something in the visual tree causes a size change, or when the phone changes orientation:
Notice that the frame doesn’t change orientation. In the landscape view, the system tray takes away 72 pixels of width from MainPage.
In many of the simpler Silverlight programs in this book, I’ll set SupportedOrientations to PortraitOrLandscape, and try to write orientation-independent applications. For Silverlight programs that get text input, it’s crucial for the program to be aligned with the hardware keyboard (if one exists) and the location of that keyboard can’t be anticipated.
Obviously there is more to handling orientation changes than just setting the SupportedOrientations property! In some cases, you might want to manipulate your layout from code in the page class. If you need to perform any special handling, both PhoneApplicationFrame and PhoneApplicationPage include OrientationChanged events. PhoneApplicationPage supplements that event with a convenient and equivalent protected overridable method called OnOrientationChanged.
The MainPage class in the SilverlightOrientationDisplay project shows how to override OnOrientationChanged, but what it does with this information is merely to display the current orientation. The content grid in this project contains a simple TextBlock:
SilverlightProject: SilverlightOrientationDisplay File: MainPage.xaml (excerpt)
Here’s the complete code-behind file. The constructor initializes the TextBlock text with the current value of the Orientation property, which is a member of the PageOrientation enumeration:
SilverlightProject: SilverlightOrientationDisplay File: MainPage.xaml.cs
The OnOrientationChanged method obtains the new value from the event arguments.
By default, XNA for Windows Phone is set up for a landscape orientation, perhaps to be compatible with other screens on which games are played. Both landscape orientations are supported, and the display will automatically flip around when you turn the phone from one landscape orientation to the other. If you prefer designing your game for a portrait display, it’s easy to do that. In the constructor of the Game1 class of XnaHelloPhone, try inserting the following statements:
graphics.PreferredBackBufferWidth = 320;
graphics.PreferredBackBufferHeight = 480;
The back buffer is the surface area on which XNA constructs the graphics you display in the Draw method. You can control both the size and the aspect ratio of this buffer. Because the buffer width I’ve specified here is smaller than the buffer height, XNA assumes that I want a portrait display:
Look at that! The back buffer I specified is not the same aspect ratio as the Windows Phone 7 display, so the drawing surface is letter-boxed! The text is larger because it’s the same pixel size but now the display resolution has been reduced.
Although you may not be a big fan of the retro graininess of this particular display, you should seriously consider specifying a smaller back buffer if your game doesn’t need the high resolution provided by the phone. Performance will improve and battery consumption will decrease. You can set the back buffer to anything from 240 × 240 up to 480 × 800 (for portrait mode) or 800 × 480 (for landscape). XNA uses the aspect ratio to determine whether you want portrait or landscape.
Setting a desired back buffer is also an excellent way to target a specific display dimension in code but allow for devices of other sizes that may come in the future.
By default the back buffer is 800 × 480, but it’s actually not displayed at that size. It’s scaled down a bit to accommodate the system tray. To get rid of the system tray (and possibly annoy your users who like to always know what time it is) you can set
graphics.IsFullScreen = true;
in the Game1 constructor.
It’s also possible to have your XNA games respond to orientation changes, but they’ll definitely have to be restructured a bit. The simplest type of restructuring to accommodate orientation changes is demonstrated in the XnaOrientableHelloPhone project. The fields now include a textSize variable:
XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt showing fields)
The Game1 constructor includes a statement that sets the SupportedOrientations property of the graphics field:
XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)
You can also use SupportedOrientation to restrict the phone to just one of the two landscape orientations. The statement to support both portrait and landscape looks simple, but there are repercussions. When the orientation changes, the graphics device is effectively reset (which generates some events) and the back buffer dimensions are swapped. You can subscribe to the OrientationChanged event of the GameWindow class (accessible through the Window property) or you can check the CurrentOrientation property of the GameWindow object.
I chose a little different approach. Here’s the new LoadContent method, which you’ll notice obtains the text size and stores it as a field, but does not get the viewport.
XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)
Instead, the viewport is obtained during the Update method because the dimensions of the viewport reflect the orientation of the display.
XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)
Whatever the orientation currently is, the Update method calculates a location for the text. The Draw method is the same as several you’ve seen before.
XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)
Now the phone or emulator can be turned between portrait and landscape, and the display will switch as well.
If you need to obtain the size of the phone’s display independent of any back buffers or orientation (but taking account of the system tray), that’s available from the ClientBounds property of the GameWindow class, which you can access from the Window property of the Game class:
Rectangle clientBounds = this.Window.ClientBounds;
So far in this chapter I’ve described two Silverlight events—SizeChanged and OrientationChanged—but used them in different ways. For SizeChanged, I associated the event with the event handler in XAML, but for OrientationChanged, I overrode the equivalent OnOrientationChanged method.
Of course, you can attach handlers to events entirely in code as well. One handy class for Silverlight programs is DispatcherTimer, which periodically nudges the program with a Tick event and lets the program do some work. A timer is essential for a clock program, for example.
The content grid of the SilverlightSimpleClock project contains just a centered TextBlock:
Silverlight Project: SilverlightSimpleClock File: MainPage.xaml (excerpt)
Here’s the entire code-behind file. Notice the using directive for the System.Windows.Threading namespace, which isn’t included by default. That’s the namespace where DispatcherTimer resides:
Silverlight Project: SilverlightSimpleClock File: MainPage.xaml.cs
The constructor initializes the DispatcherTimer, instructing it to call OnTimerTick once every second. The event handler simply converts the current time to a string to set it to the TextBlock.
Although DispatcherTimer is defined in the System.Windows.Threading namespace, the OnTimerTick method is called in the same thread as the rest of the program. If that was not the case, the program wouldn’t be able to access the TextBlock directly. Silverlight elements and related objects are not thread safe, and they will prohibit access from threads that did not create them. I’ll discuss the procedure for accessing Silverlight elements from secondary threads in Chapter 5.
The clock is yet another Silverlight program in this chapter that changes the Text property of a TextBlock dynamically during runtime. The new value shows up rather magically without any additional work. This is a very different from older graphical environments like Windows API programming or MFC programming, where a program draws “on demand,” that is, when an area of a window becomes invalid and needs to be repainted, or when a program deliberately invalidates an area to force painting.
A Silverlight program often doesn’t seem to draw at all! Deep inside of Silverlight is a visual composition layer that operates in a retained graphics mode and organizes all the visual elements into a composite whole. Elements such as TextBlock exist as actual entities inside this composition layer. At some point, TextBlock is rendering itself—and re-rendering itself when one of its properties such as Text changes—but what it renders is retained along with the rendered output of all the other elements in the visual tree.
In contrast, an XNA program is actively drawing during every frame of the video display. This is conceptually different from older Windows programming environments as well as Silverlight. It is very powerful, but I’m sure you know quite well what must also come with great power.
Sometimes an XNA program’s display is static; the program might not need to update the display every frame. To conserve power, it is possible for the Update method to call the SuppressDraw method defined by the Game class to inhibit a corresponding call to Draw. The Update method will still be called 30 times per second because it needs to check for user input, but if the code in Update calls SuppressDraw, Draw won’t be called during that cycle of the game loop. If the code in Update doesn’t call SuppressDraw, Draw will be called.
An XNA clock program doesn’t need a timer because a timer is effectively built into the normal game loop. However, the clock I want to code here won’t display milliseconds so the display only needs to be updated every second. For that reason it uses the SuppressDraw method to inhibit superfluous Draw calls.
Here are the XnaSimpleClock fields:
XNA Project: XnaSimpleClock File: Game1.cs (excerpt showing fields)
Notice that instead of defining a field of type string named text, I’ve defined a StringBuilder instead. If you’re creating new strings in your Update method for display during Draw (as this program will do), you should use StringBuilder to avoid the heap allocations associated with the normal string type. This program will only be creating a new string every second, so I really didn’t need to use StringBuilder here, but it doesn’t hurt to get accustomed to it. StringBuilder requires a using directive for the System.Text namespace.
Notice also the lastDateTime field. This is used in the Update method to determine if the displayed time needs to be updated.
The LoadContent method gets the font and the viewport of the display:
XNA Project: XnaSimpleClock File: Game1.cs (excerpt)
The logic to compare two DateTime values to see if the time has changed is just a little tricky because DateTime objects obtained during two consecutive Update calls will always be different because they have will have different Millisecond fields. For this reason, a new DateTime is calculated based on the current time obtained from DateTime.Now, but subtracting the milliseconds:
XNA Project: XnaSimpleClock File: Game1.cs (excerpt)
At that point it’s easy. If the time has changed, new values of text, textSize, and textPosition are calculated. Because text is a StringBuilder rather than a string, the old contents are removed and the new contents are appended. The MeasureString method of SpriteFont has an overload for StringBuilder, so that call looks exactly the same.
If the time has not changed, SuppressDraw is called. The result: Draw is called only once per second.
DrawString also has an overload for StringBuilder:
XNA Project: XnaSimpleClock File: Game1.cs (excerpt)
And here’s the result:
SuppressDraw can be a little difficult to use—I’ve found it particularly tricky during the time that the program is first starting up—but it’s one of the primary techniques used in XNA to reduce the power requirements of the program.
Even for experienced Silverlight and XNA programmers, Windows Phone 7 comes with a feature that is likely to be new and unusual. The screen on the phone is sensitive to touch. And not like old touch screens that basically mimic a mouse, or the tablet screens that recognize handwriting.
The multi-touch screen on a Windows Phone 7 device can detect at least four simultaneous fingers. It is the interaction of these fingers that makes multi-touch so challenging for programmers. For this chapter, however, I have much a less ambitious goal. I want only to introduce the touch interfaces in the context of sample programs that respond to simple taps.
For testing critical multi-touch code, an actual Windows Phone 7 device is essential. In the interim, the phone emulator will respond to mouse activity and convert it to touch input. If you run the emulator under Windows 7 with a multi-touch display and a Windows 7 driver, you can also use touch directly on the emulator.
The programs in this chapter look much like the “Hello, Windows Phone 7!” programs in the first chapter, except that when you tap the text with your finger, it changes to a random color, and when you tap outside the area of the text, it goes back to white (or whatever color the text was when the program started up).
In a Silverlight program, touch input is obtained through events. In an XNA program, touch input comes through a static class polled during the Update method. One of the primary purposes of the XNA Update method is to check the state of touch input and make changes that affect what goes out to the screen during the Draw method.
The multi-touch input device is referred to in XNA as a touch panel. You use methods in the static TouchPanel class to obtain this input. Although you can obtain gestures, let’s begin with the lower-level touch information.
It is possible (although not necessary) to obtain information about the multi-touch device itself by calling the static TouchPanel.GetCapabilities method. The TouchPanelCapabilities object returned from this method has two properties:
For most purposes, you just need to use one of the other two static methods in TouchPanel. To obtain low-level touch input, you’ll probably be calling this method during every call to Update after program initialization:
TouchCollection touchLocations = TouchPanel.GetState();
The TouchCollection is a collection of zero or more TouchLocation objects. TouchLocation has three properties:
If no fingers are touching the screen, the TouchCollection will be empty. When a finger first touches the screen, TouchCollection contains a single TouchLocation object with State equal to Pressed. On subsequent calls to TouchPanel.GetState, the TouchLocation object will have State equal to Moved even if the finger has not physically moved. When the finger is lifted from the screen, the State property of the TouchLocation object will equal Released. On subsequent calls to TouchPanel.GetState, the TouchCollection will be empty.
One exception: If the finger is tapped and released on the screen very quickly—that is, within a 1/30th of a second—it’s possible that the TouchLocation object with State equal to Pressed will be followed with State equal to Released with no Moved states in between.
That’s just one finger touching the screen and lifting. In the general case, multiple fingers will be touching, moving, and lifting from the screen independently of each other. You can track particular fingers using the Id property. For any particular finger, that Id will be the same from Pressed, through all the Moved values, to Released.
Very often when dealing with low-level touch input, you’ll use a Dictionary object with keys based on the Id property to retain information for a particular finger.
TouchLocation also has a very handy method called TryGetPreviousLocation, which you call like this:
TouchLocation previousTouchLocation;
bool success = touchLocation.TryGetPreviousLocation(out previousTouchLocation);
Almost always, you will call this method when touchLocation.State is Moved because you can then obtain the previous location and calculate a difference. If touchLocation.State equals Pressed, then TryGetPreviousLocation will return false and previousTouchLocation.State will equal the enumeration member TouchLocationState.Invalid. You’ll also get these results if you use the method on a TouchLocation that itself was returned from TryGetPreviousLocation.
The program I’ve proposed changes the text color when the user touches the text string, so the processing of TouchPanel.GetStates will be relatively simple. The program will examine only TouchLocation objects with State values of Pressed.
This project is called XnaTouchHello. Like the other XNA projects you’ve seen so far, it needs a font, which I’ve made a little larger so it provides a more substantial touch target. A few more fields are required:
XNA Project: XnaTouchHello File: Game1.cs (excerpt showing fields)
The LoadContent method is similar to earlier versions except that textSize is saved as a field because it needs to be accessed in later calculations:
XNA Project: XnaTouchHello File: Game1.cs (excerpt)
As is typical with XNA programs, much of the “action” occurs in the Update method. The method calls TouchPanel.GetStates and then loops through the collection of TouchLocation objects to find only those with State equal to Pressed.
XNA Project: XnaTouchHello File: Game1.cs (excerpt)
If the Position is inside the rectangle occupied by the text string, the textColor field is set to a random RGB color value using one of the constructors of the Color structure. Otherwise, textColor is set to Color.White.
The Draw method looks very similar to the versions you’ve seen before, except that the text color is a variable:
XNA Project: XnaTouchHello File: Game1.cs (excerpt)
One problem you might notice is that touch is not quite as deterministic as you might like. Even when you touch the screen with a single finger, the finger might make contact with the screen in more than one place. In some cases, the same foreach loop in Update might set textColor more than once!
The TouchPanel class also includes gesture recognition, which is demonstrated by the XnaTapHello project. The fields of this project are the same as those in XnaTouchHello, but the LoadContent method is a little different:
XNA Project: XnaTapHello File: Game1.cs (excerpt)
Notice the final statement. GestureType is an enumeration with members Tap, DoubleTap, Flick, Hold, Pinch, PinchComplete, FreeDrag, HorizontalDrag, VerticalDrag, and DragComplete, defined as bit flags so you can combine the ones you want with the C# bitwise OR operator.
The Update method is very different.
XNA Project: XnaTapHello File: Game1.cs (excerpt)
Although this program is interested in only one type of gesture, the code is rather generalized. If a gesture is available, it is returned from the TouchPanel.ReadGesture method as an object of type GestureSample. Besides the GestureType and Position used here, a Delta property provides movement information in the form of a Vector2 object. For some gestures (such as Pinch), the GestureSample also reports the status of a second touch point with Position2 and Delta2 properties.
The Draw method is the same as the previous program, but you’ll find that the program behaves a little differently from the first one: In the first program, the text changes color when the finger touches the screen; in the second, the color change occurs when the finger lifts from the screen. The gesture recognizer needs to wait until that time to determine what type of gesture it is.
Like XNA, Silverlight also supports two different programming interfaces for working with multi-touch, which can be most easily categorized as low-level and high-level. The low-level interface is based around the static Touch.FrameReported event, which is very similar to the XNA TouchPanel except that it’s an event and it doesn’t include gestures.
The high-level interface consists of three events defined by the UIElement class: ManipulationStarted, ManipulationDelta, and ManipulationCompleted. The Manipulation events, as they’re collectively called, consolidate the interaction of multiple fingers into movement and scaling factors.
The core of the low-level touch interface in Silverlight is a class called TouchPoint, an instance of which represents a particular finger touching the screen. TouchPoint has four get-only properties:
The TouchDevice object has two get-only properties:
As you can see, the Silverlight TouchPoint and TouchDevice objects give you mostly the same information as the XNA TouchLocation object, but the DirectlyOver property of TouchDevice is often very useful for determining what element the user is touching.
To use the low-level touch interface, you install a handler for the static Touch.FrameReported event:
Touch.FrameReported += OnTouchFrameReported;
The OnTouchFrameReported method looks like this:
void OnTouchFrameReported(object sender, TouchFrameEventArgs args)
{
...
}
The event handler gets all touch events throughout your application. The TouchFrameEventArgs object has a TimeStamp property of type int, plus three methods:
In the general case, you call GetTouchPoints, passing to it a reference element. The TouchPoint objects in the returned collection have Position properties relative to that element. You can pass null to GetTouchPoints to get Position properties relative to the upper-left corner of the application.
The reference element and the DirectlyOver element have no relationship to each other. The event always gets all touch activity for the entire program. Calling GetTouchPoints or GetPrimaryTouchPoints with a particular element does not limit the events to only those events involving that element. All that it does is cause the Position property to be calculated relative to that element. (For that reason, Position coordinates can easily be negative if the finger is to the left of or above the reference element.) The DirectlyOver element indicates the element under the finger.
A discussion of the second and third methods requires some background: The Touch.FrameReported event originated on Silverlight for the desktop, where it is convenient for the mouse logic of existing controls to automatically use touch. For this reason, touch events are “promoted” to mouse events.
But this promotion only involves the “primary” touch point, which is the activity of the first finger that touches the screen when no other fingers are touching the screen. If you don’t want the activity of this finger to be promoted to mouse events, the event handler usually begins like this:
The SuspendMousePromotionUntilTouchUp method can only be called when a finger first touches the screen when no other fingers are touching the screen.
On Windows Phone 7, such logic presents something of a quandary. As written, it basically wipes out all mouse promotion throughout the application. If your phone application incorporates Silverlight controls that were originally written for mouse input but haven’t been upgraded to touch, you’re basically disabling those controls.
Of course, you can also check the DirectlyOver property to suspend mouse promotion selectively. But on the phone, no elements should be processing mouse input except for those controls that don’t process touch input! So it might make more sense to never suspend mouse promotion.
I’ll leave that matter for your consideration and your older mouse-handling controls. Meanwhile, the program I want to write is only interested in the primary touch point when it has a TouchAction of Down, so I can use that same logic.
The SilverlightTouchHello project has a TextBlock in the XAML file:
Silverlight Project: SilverlightTouchHello File: MainPage.xaml (excerpt)
Notice the Padding value. I know that the font displayed here has a FontSize property of 20 pixels, which actually translates into a TextBlock that is about 27 pixels tall. I also know that it’s recommended that touch targets not be smaller than 9 millimeters. If the resolution of the phone display is 264 DPI, then 9 millimeters is 94 pixels. (The calculation is 9 millimeters divided by 25.4 millimeters to the inch, times 264 pixels per inch.) The TextBlock is short by 67 pixels. So I set a Padding value that puts 34 more pixels on both the top and bottom (but not the sides).
I used Padding rather than Margin because Padding is space inside the TextBlock. The TextBlock actually becomes larger than the text size would imply. Margin is space outside the TextBlock. It’s not part of the TextBlock itself and is excluded for purposes of hit-testing.
Here’s the complete code-behind file. The constructor of MainPage installs the Touch.FrameReported event handler.
Silverlight Project: SilverlightTouchHello File: MainPage.xaml.cs
The event handler is only interested in primary touch points with an Action of Down. If the DirectlyOver property is the element named txtblk, a random color is created. Unlike the Color structure in XNA, the Silverlight Color structure doesn’t have a constructor to set a color from red, green, and blue values, but it does have a static FromArgb method that creates a Color object based on alpha, red, green, and blue values, where alpha is opacity. Set the alpha channel to 255 to get an opaque color. Although it’s not obvious at all in the XAML files, the Foreground property is actually of type Brush, an abstract class from which SolidColorBrush descends.
If DirectlyOver is not txtblk, then the program doesn’t change the color to white, because that wouldn’t work if the user chose a color theme of black text on a white background. Instead, it sets the Foreground property to the brush originally set on the TextBlock. This is obtained in the constructor.
The high-level touch interface in Silverlight involves three events: ManipulationStarted, ManipulationDelta, and ManipulationCompleted. These events don’t bother with reporting the activity of individual fingers. Instead, they consolidate the activity of multiple fingers into translation and scaling operations. The events also accumulate velocity information, so while they don’t support inertia directly, they can be used to implement inertia.
The Manipulation events will receive more coverage in the chapters ahead. In this chapter I’m going to stick with ManipulationStarted just to detect contact of a finger on the screen, and I won’t bother with what the finger does after that.
While Touch.FrameReported delivered touch information for the entire application, the Manipulation events are based on individual elements, so in SilverlightTapHello1, a ManipulationStarted event handler can be set on the TextBlock:
Silverlight Project: SilverlightTapHello1 File: MainPage.xaml (excerpt)
The MainPage.xaml.cs contains this event handler:
Silverlight Project: SilverlightTapHello1 File: MainPage.xaml.cs (excerpt)
The event handler is able to get the element generating the message from the sender argument. That will always be the TextBlock. The TextBlock is also available from the args.OriginalSource property and the args.ManipulationContainer property.
Notice the call to the Complete method of the event arguments at the end. This is not required but effectively tells the system that further Manipulation events involving this finger won’t be necessary.
This program is flawed: If you try it out, you’ll see that it works only partially. Touching the TextBlock changes the text to a random color. But if you touch outside the TextBlock, the text does not go back to white. Because this event was set on the TextBlock, the event handler is called only when the user touches the TextBlock. No other Manipulation events are processed by the program.
A program that functions correctly according to my original specification needs to get touch events occurring anywhere on the page. A handler for the ManipulationStarted event needs to be installed on MainPage rather than just on the TextBlock.
Although that’s certainly possible, there’s actually an easier way. The UIElement class defines all the Manipulation events. But the Control class (from which MainPage derives) supplements those events with protected virtual methods. You don’t need to install a handler for the ManipulationStarted event on MainPage; instead you can override the OnManipulationStarted virtual method.
This approach is implemented in the SilverlightTapHello2 project. The XAML file doesn’t refer to any events but gives the TextBlock a name so that it can be referred to in code:
Silverlight Project: SilverlightTapHello2 File: MainPage.xaml (excerpt)
The MainPage class overrides the OnManipulationStarted method:
Silverlight Project: SilverlightTapHello2 File: MainPage.xaml.cs (excerpt)
In the ManipulationStartedEventArgs a property named OriginalSource indicates where this event began—in other words, the topmost element that the user tapped. If this equals the txtblk object, the method creates a random color for the Foreground property. If not, then the Foreground property is set to the original brush.
In this OnManiulationStarted method we’re handling events for MainPage, but that OriginalSource property tells us the event actually originated lower in the visual tree. This is part of the benefit of the Silverlight feature known as routed event handling.
In Microsoft Windows programming, keyboard and mouse input always go to particular controls. Keyboard input always goes to the control with the input focus. Mouse input always goes to the topmost enabled control under the mouse pointer. Stylus and touch input is handled similarly to the mouse. But sometimes this is inconvenient. Sometimes the control underneath needs the user-input more than the control on top.
To be a bit more flexible, Silverlight implements a system called routed event handling. Most user input events—including the three Manipulation events—do indeed originate using the same paradigm as Windows. The Manipulation events originate at the topmost enabled element touched by the user. However, if that element is not interested in the event, the event then goes to that element’s parent, and so forth up the visual tree ending at the
PhoneApplicationFrame element. Any element along the way can grab the input and do something with it, and also inhibit further progress of the event up the tree.
This is why you can override the OnManipulationStarted method in MainPage and also get manipulation events for the TextBlock. By default the TextBlock isn’t interested in those events.
The event argument for the ManipulationStarted event is ManipulationStartedEventArgs, which derives from RoutedEventArgs. It is RoutedEventArgs that defines the OriginalSource property that indicates the element on which the event began.
But this suggests another approach that combines the two techniques shown in SilverlightTapHello1 and SilverlightTapHello2. Here’s the XAML file of SilverlightTapHello3:
Silverlight Project: SilverlightTapHello3 File: MainPage.xaml (excerpt)
The TextBlock has a Name as in the first program. A handler for the ManipulationStarted event is set on the TextBlock as in the first program. Both the event handler and an override of OnManipulationStarted appear in the code-behind file:
Silverlight Project: SilverlightTapHello3 File: MainPage.xaml.cs (excerpt)
The logic has been split between the two methods, making the whole thing rather more elegant, I think. The OnTextBlockManipulationStarted method only gets events when the TextBlock is touched. The OnManipulationStarted event gets all events for MainPage.
At first there might seem to be a bug here. After OnTextBlockManipulationStarted is called, the event continues to travel up the visual tree and OnManipulationStarted sets the color back to white. But that’s not what happens: The crucial statement that makes this work right is this one at the end of the OnTextBlockManipulationStarted handler for the TextBlock:
args.Handled = true;
That statement says that the event has now been handled and it should not travel further up the visual tree. Remove that statement and the TextBlock never changes from its initial color—at least not long enough to see.
Now try this. In many of the Silverlight programs I’ve shown so far, I’ve centered the TextBlock within the content grid by setting the following two attributes:
HorizontalAlignment="Center"
VerticalAlignment="Center"
Delete them from SilverlightTapHello3, and recompile and run the program. The text appears at the upper-left corner of the Grid. But now if you touch anywhere within the large area below the TextBlock, the text will change to a random color, and only by touching the title area above the text can you change it back to white.
By default the HorizontalAlignment and VerticalAlignment properties are set to enumeration values called Stretch. The TextBlock is actually filling the Grid. You can’t see it, of course, but the fingers don’t lie.
With other elements—those that display bitmaps, for example—this stretching effect is much less subtle.
Aside from text, one of the most common objects to appear in both Silverlight and XNA applications is the bitmap, formally defined as a two-dimensional array of bits corresponding to the pixels of a graphics display device.
In Silverlight, a bitmap is sometimes referred to as an image, but that’s mostly a remnant of the Windows Presentation Foundation, where the word image refers to both bitmaps and vector-based drawings. In both WPF and Silverlight, the Image element displays bitmaps but the Image element is not the bitmap itself.
In XNA, a bitmap has a data type of Texture2D and hence is often referred to as a texture, but that term is mostly related to 3D programming where bitmaps are used to cover surfaces of 3D solids. In XNA 2D programming, bitmaps are often used as sprites.
Bitmaps are also used to symbolize your application on the phone. A new XNA or Silverlight project in Visual Studio results in the creation of three bitmaps for various purposes.
The native Windows bitmap format has an extension of BMP but it’s become less popular in recent years as compressed formats have become widespread. At this time, the three most popular bitmap formats are probably:
XNA supports all three (and more). Silverlight supports only JPEG and PNG. (And if you’re like most Silverlight programmers, you’ll not always remember this simple fact and someday wonder why your Silverlight program simply refuses to display a GIF or a BMP.)
The compression algorithms implemented by PNG and GIF do not result in the loss of any data. The original bitmap can be reconstituted exactly. For that reason, these are often referred to as “lossless” compression algorithms.
JPEG implements a “lossy” algorithm by discarding visual information that is less perceptible by human observers. This type of compression works well for real-world images such as photographs, but is less suitable for bitmaps that derive from text or vector-based images, such as architectural drawings or cartoons.
Both Silverlight and XNA allow manipulating bitmaps at the pixel level for generating bitmaps—or altering existing bitmaps—interactively or algorithmically. That topic is relegated to Chapter 14 (for Silverlight) and 21 (for XNA). This chapter will focus more on the techniques of obtaining bitmaps from various sources, including the program itself, the Web, the phone’s built-in camera, and the phone’s photo library.
Because XNA 2D programming is almost entirely a process of moving sprites around the screen, you might expect that loading and drawing bitmaps in an XNA program is fairly easy, and you would be correct.
The first project is called XnaLocalBitmap, so named because this bitmap will be stored as part of the program’s content. To add a new bitmap to the program’s content project, right-click the XnaLocalBitmapContent project name, select Add and then New Item, and then Bitmap File. You can create the bitmap right in Visual Studio.
Or, you can create the bitmap in an external program, as I did. Windows Paint is often convenient, so for this exercise I created the following bitmap with a dimension of 320 pixels wide and 160 pixels high:
I saved it under the name Hello.png.
To add this file as part of the program’s content, right-click the XnaLocalBitmapContent project in Visual Studio, select Add and Existing Item, and then navigate to the file. Once the file shows up, you can right-click it to display Properties, and you’ll see that it has an Asset Name of “Hello.”
The goal is to display this bitmap centered on the screen. Define a field in the Game1.cs file to store the Texture2D and another field for the position:
XNA Project: XnaLocalBitmap File: Game1.cs (excerpt showing fields)
Both fields are set during the LoadContent method. Use the same generic method to load the Texture2D as you use to load a SpriteFont. The Texture2D class has properties named Width and Height that provide the dimensions of the bitmap in pixels. As with the programs that centered text in the Chapter 1, the position field indicates the pixel location on the display that corresponds to the upper-left corner of the bitmap:
XNA Project: XnaLocalBitmap File: Game1.cs (excerpt)
The SpriteBatch class has seven Draw methods to render bitmaps. This one is certainly the simplest:
XNA Project: XnaLocalBitmap File: Game1.cs (excerpt)
The final argument to Draw is a color that can be used to attenuate the existing colors in the bitmap. Use Color.White if you want the bitmap’s colors to display without any alteration.
And here it is:
The equivalent program in Silverlight is even simpler. Let’s create a project named SilverlightLocalBitmap. First create a directory in the project to store the bitmap. This isn’t strictly required but it makes for a tidier project. Programmers usually name this directory Images or Media or Assets depending on the types of files that might be stored there. Right-click the project name and choose Add and then New Folder. Let’s name it Images. Then right-click the folder name and choose Add and Existing Item. Navigate to the Hello.png file. (If you’ve created a different bitmap on your own, keep in mind that Silverlight supports only JPEG and PNG files.)
From the Add button choose either Add or Add as Link. If you choose Add, a copy will be made and the file will be physically copied into a subdirectory of the project. If you choose Add as Link, only a file reference will be retained with the project but the file will still be copied into the executable.
The final step: Right-click the bitmap filename and display Properties. Note that the Build Action is Resource. It’s possible to change that Build Action to Content, but let’s leave it for now and I’ll discuss the difference shortly.
In Silverlight, you use the Image element to display bitmaps just as you use the TextBlock element to display text. Set the Source property of Image to the folder and filename of the bitmap within the project:
Silverlight Project: SilverlightLocalBitmap File: MainPage.xaml (excerpt)
The display looks a little different than the XNA program, and it’s not just the titles. By default, the Image element expands or contracts the bitmap as much as possible to fill its container (the content grid) while retaining the correct aspect ratio. This is most noticeable if you set the SupportedOrientations attribute of the PhoneApplicationPage start tag to PortraitOrLandscape and turn the phone sideways:
If you want to display the bitmap in its native pixel size, you can set the Stretch property of Image to None:
<Image Source="Images/Hello.png"
Stretch="None" />
I’ll discuss more options in Chapter 8.
One feature that’s really nice about the Image element is that you can set the Source property to a URL, such as in this Silverlight project:
Silverlight Project: SilverlightWebBitmap File: MainPage.xaml (excerpt)
Here it is:
This is certainly easy enough, and pulling images off the Web rather than binding them into the application certainly keeps the size of the executable down. But an application running on Windows Phone 7 is not guaranteed to have an Internet connection, and you’re undoubtedly associated with other problems associated with downloading. The Image element has two events named ImageOpened and ImageFailed that you can use to determine if the download was successful or not.
For Windows Phone 7 programs that display a lot of bitmaps, you need to do some hard thinking. You can embed the bitmaps into the executable and have their access guaranteed, or you can save space and download them when necessary.
In XNA, downloading a bitmap from the Web is not quite as easy, but a .NET class named WebClient makes the job relatively painless. It’s somewhat easier to use than the common alternative (HttpWebRequest and HttpWebResponse) and is often the preferred choice for downloading individual items.
You can use WebClient to download either strings (commonly XML files) or binary objects. The actual transfer occurs asynchronously and then WebClient calls a method in your program to indicate completion or failure. This method call is in your program’s thread, so you get the benefit of an asynchronous data transfer without explicitly dealing with secondary threads.
To use WebClient in an XNA program, you’ll need to add a reference to the System.Net library: In the Solution Explorer, under the project name, right click References and select Add Reference. In the .NET table, select System.Net. (Silverlight programs get a reference to System.Net automatically.)
The Game1.cs file of the XnaWebBitmap project also requires a using directive for the System.Net namespace. The program defines the same fields as the earlier program:
XNA Project: XnaWebBitmap File: Game1.cs (excerpt showing fields)
The LoadContent method creates an instance of WebClient, sets the callback method, and then initiates the transfer:
XNA Project: XnaWebBitmap File: Game1.cs (excerpt)
The OnWebClientOpenReadCompleted method is called when the entire file has been downloaded. You’ll want to check if the download hasn’t been cancelled and that no error has been reported. If everything is OK, the Result property of the event arguments is of type Stream. You can use that Stream with the static Texture2D.FromStream method to create a Texture2D object:
XNA Project: XnaWebBitmap File: Game1.cs (excerpt)
The Texture2D.FromStream method supports JPEG, PNG, and GIF.
By default, the AllowReadStreamBuffering property of WebClient is true, which means that the entire file will have been downloaded when the OpenReadCompleted event is raised. The Stream object available in the Result property is actually a memory stream, except that it’s an instance of a class internal to the .NET libraries rather than MemoryStream itself.
If you set AllowReadStreamBuffering to false, then the Result property will be a network stream. The Texture2D class will not allow you to read from that stream on the main program thread.
Normally the LoadContent method of a Game derivative is called before the first call to the Update or Draw method, but it is essential to remember that a gap of time will separate LoadContent from the OnWebClientOpenReadCompleted method. During that time an asynchronous read is occurring, but the Game1 class is proceeding as normal with calls to Update and Draw. For that reason, you should only attempt to access the Texture2D object when you know that it’s valid:
XNA Project: XnaWebBitmap File: Game1.cs (excerpt)
In a real program, you’d also want to provide some kind of notification to the user if the bitmap could not be downloaded.
Although you can certainly use WebClient in a Silverlight application, it’s not generally necessary with bitmaps because the bitmap-related classes already implement asynchronous downloading.
However, once you begin investigating the Image element, it may seem a little confusing. The Image element is not the bitmap; the Image element merely displays the bitmap. In the uses you’ve seen so far, the Source property of Image has been set to a relative file path or a URL:
<Image Source="Images/Hello.png" />
<Image Source="http://www.charlespetzold.com/Media/HelloWP7.jpg" />
You might have assumed that this Source property was of type string. Sorry, not even close! You’re actually seeing XAML syntax that hides some extensive activity behind the scenes. The Source property is really of type ImageSource, an abstract class from which derives BitmapSource, another abstract class but one that defines a method named SetSource that allows loading the bitmap from a Stream object.
From BitmapSource derives BitmapImage, which supports a constructor that accepts a Uri object and also includes a UriSource property of type Uri. The SilverlightTapToDownload1 project mimics a program that needs to download a bitmap whose URL is known only at runtime. The XAML contains an Image element with no bitmap to display:
Silverlight Project: SilverlightTapToDownload1 File: MainPage.xaml (excerpt)
BitmapImage requires a using directive for the System.Windows.Media.Imaging namespace. When MainPage gets a tap, it creates a BitmapImage from the Uri object and sets that to the Source property of the Image:
Silverlight Project: SilverlightTapToDownload1 File: MainPage.xaml.cs (excerpt)
Remember to tap the screen to initiate the download!
The BitmapImage class defines ImageOpened and ImageFailed events (which the Image element also duplicates) and also includes a DownloadProgess event.
If you want to explicitly use WebClient in a Silverlight program, you can do that as well, as the next project demonstrates. The SilverlightTapToDownload2.xaml file is the same as SilverlightTapToDownload1.xaml. The code-behind file uses WebClient much like the earlier XNA program:
Silverlight Project: SilverlightTapToDownload2 File: MainPage.xaml.cs (excerpt)
Notice the use of SetSource to create the bitmap from the Stream object.
In a Silverlight program, you’ve seen that a bitmap added to the project as a resource is bound into the executable. It’s so customary to reference that local bitmap directly from XAML that very few experienced Silverlight programmers could tell you offhand how to do it in code. The SilverlightTapToLoad project shows you how.
Like the other Silverlight programs in this chapter, the SilverlightTapToLoad project contains an Image element in its content grid. The Hello.png bitmap is stored in the Images directory and has a Build Action of Resource.
The MainPage.xaml.cs file requires a using directive for the System.Windows.Media.Imaging namespace for the BitmapImage class. Another using directive for System.Windows.Resources is required for the StreamResourceInfo class.
When the screen is tapped, the event handler accesses the resource using the static GetResourceStream method defined by the Application class:
Silverlight Project: SilverlightTapToLoad File: MainPage.xaml.cs
Notice how complicated that URL is! It begins with the name of the program followed by a semicolon, followed by the word “component” and then the folder and filename of the file. If you change the Build Action of the Hello.png file to Content rather than Resource, you can simplify the syntax considerably:
Uri uri = new Uri("Images/Hello.png", UriKind.Relative);
What’s the difference?
Navigate to the Bin/Debug subdirectory of the Visual Studio project and find the SilverlightTapToLoad.xap file that contains your program. If you rename it the file to a ZIP extension you can look inside. The bulk of the file will be SilverlightTapToLoad.dll, the compiled binary.
In both cases, the bitmap is obviously stored somewhere within the XAP file. The difference is this:
Which is better?
In a document entitled “Creating High Performance Silverlight Applications for Windows Phone,” Microsoft has recommending using a Build Action of Content rather than Resource for assets included in your application to minimize the size of the binary and startup time. However, if these assets are in a Silverlight library that the program references, then it is better for them to be embedded in the binary with a Build Action of Resource.
If you have a number of images in your program, and you don’t want to include them all in the XAP file, but you’re nervous about downloading the images, why not do a little of both? Include low resolution (or highly compressed) images in the XAP file, but download better versions asynchronously while the application is running.
Besides embedding bitmaps in your application or accessing them from the web, Windows Phone 7 also allows you to acquire images from the built-in camera.
Your application has no control over the camera itself. For reasons of security, your program cannot arbitrarily snap a picture, or “see” what’s coming through the camera lens. Your application basically invokes a standard camera utility, the user points and shoots, and the picture is returned back to your program.
The classes you use for this job are in the Microsoft.Phone.Tasks namespace, which contains several classes referred to as choosers and launchers. Conceptually, these are rather similar, except that choosers return data to your program but launchers do not.
The CameraCaptureTask is derived from the generic ChooserBase class which defines a Completed event and a Show method. Your program attaches a handler for the Completed event and calls Show. When the Completed event handler is called, the PhotoResult event argument contains a Stream object to the photo. From there, you already know what to do.
Like the earlier programs in this chapter, the SilverlightTapToShoot program contains an Image element in the content grid of its MainPage.xaml file. Here’s the entire code-behind file:
Silverlight Project: SilverlightTapToShoot File: MainPage.xaml.cs
You can run this program on the phone emulator. When you tap the emulator screen, the call to Show causes the camera task to start up and you’ll navigate to a page that resembles the actual camera. You can “shoot” a photo by tapping an icon in the upper-right corner of the screen. The simulated “photo” just looks like a large white square with a small black square inside one of the edges. Then you need to click the Accept button.
You can also run this program on the phone itself, of course, but not when the phone is tethered to the PC and the Zune software is running. After deploying the application to the phone using Visual Studio, you’ll need to close the Zune software before testing the program.
If you need to use Visual Studio to debug an application that uses the camera while the application is running on the phone, you can use a little command-line program called WPDTPTConnect32.exe or WPDTPTConnect64.exe (depending on whether your development machine is 32-bit or 64-bit). These program is an alternative to the Zune software for allowing the Visual Studio debugger to control your program as it’s running on the phone. The Zune software must be closed before you use these programs.
In either case, when you press the Accept button, the camera goes away and the program’s OnCameraCaptureTaskCompleted method takes over. It creates a BitmapImage object, sets the input stream from args.ChoosenPhoto, and then sets the BitmapImage object to the Image element, displaying the photo on the screen.
The whole process seems fairly straightforward. Conceptually it seems as if the program is spawning the camera process, and then resuming control when that camera process terminates.
However, the Windows Phone 7 documentation that I’m consulting warns that this is not the case. There’s something else going on that is not so evident at first and which you will probably find somewhat unnerving.
When the SilverlightTapToShoot program calls the Show method on the CameraCaptureTask object, the SilverlightTapToShoot program is terminated. (Not immediately, though. The OnManipulationStarted method is allowed to return back to the program, and a couple other events are fired, but then the program is definitely terminated.)
The camera utility then runs. When the camera utility has done its job, the SilverlightTapToShoot program is re-executed. It’s a new instance of the program. The program starts up from the beginning, the MainPage constructor is eventually called which sets the Completed event of the CameraCaptureTask to OnCameraCaptureTaskCompleted, and then that method is called.
For these reasons, the documentation advises that when you use a chooser or launcher such as CameraCaptureTask, the object must be defined as a field, and the handler for the Completed event must be attached in the program’s constructor, and as late in the constructor as possible because once the handler is attached when the program starts up again, it will be called.
This termination and re-execution of your program is a characteristic of Windows Phone 7 programming call tombstoning. When the program is terminated as the camera task begins, sufficient information is retained by the phone operating system to start the program up again when the camera finishes. However, not enough information is retained to restore the program entirely to its pre-tombstone state. That’s your responsibility.
Running a launcher or chooser is one way tombstoning can occur. But it also occurs when the user leaves your program by pressing the Start button on the phone. Eventually the user could return to your program by pressing the Back button, and your program needs to be re-executed from its tombstoned state. Tombstoning also takes place when a lack of activity on the phone causes it to go into a lock state.
Tombstoning does not occur when your program is running and the user presses the Back button. The Back button simply terminates the program normally.
When tombstoning occurs, obviously you’ll want to save some of the state of your program so you can restore that state when the program starts up again, and obviously Windows Phone 7 has facilities to help you out. That’s in Chapter 6.
With all that said, in later versions of the Windows Phone 7 operating system, including the one I’m using as I’m finishing the chapters for this book, I am not seeing tombstoning occur when using CameraCaptureTask. But it doesn’t hurt to prepare for it.
As you take pictures with the phone and synchronize your phone with the PC, the phone accumulates a photo library. A program running on the phone can access this library in one of two ways:
I’m going to show you these two approaches with two programs. Just for variety (and to demonstrate how to use XNA classes in a Silverlight program), I’ll use XNA for the first approach and Silverlight for the second.
You can run these two programs on the phone emulator. The emulator includes a small collection of photos specifically for testing programs such as these. When testing the programs on the actual phone, however, the phone must be untethered from the PC or the Zune software must be closed, because the Zune software won’t allow simultaneous access to the phone’s photo library. After you close Zune, you can run WPDTPTConnect32.exe or WPDTPTConnect64.exe program to allow Visual Studio to debug the program running on the phone.
The XnaTapToBrowse program requires a using directive for Microsoft.Phone.Tasks. It creates a PhotoChooserTask object along with the other fields:
Silverlight Project: XnaTapToBrowse File: Game1.cs (excerpt showing fields)
In compliance with the recommendations of the documentation, the class attaches a handler for the Completed event in the constructor:
Silverlight Project: XnaTapToBrowse File: Game1.cs (excerpt)
As usual, the Update method checks for user input. If a tap has occurred, the method calls the Show event of the PhotoChooserTask object:
Silverlight Project: XnaTapToBrowse File: Game1.cs (excerpt)
The handler for the Completed event then creates a Texture2D from the stream available from the ChosenPhoto property. The Draw override doesn’t attempt to render this object until it’s available:
Silverlight Project: XnaTapToBrowse File: Game1.cs (excerpt)
I’m using a slight variation of the Draw method of SpriteBatch here. Rather than provide a position for the Texture2D in the second argument, I’m providing a whole rectangle equal to the size of the viewport. This causes the photo to expand (or, more likely, shrink) in size, very possibly distorting the image by not taking account of the original aspect ratio. More sophisticated code can handle those problems, of course.
The SilverlightAccessLibrary program requires a reference to the Microsoft.Xna.Framework DLL, and you’ll probably get a warning about including an XNA library in your Silverlight program. It’s OK! The content area in the MainPage.xaml file contains both a bitmap-less Image and a text-less TextBlock in the Grid:
Silverlight Project: SilverlightAccessLibrary File: MainPage.xaml (excerpt)
Rather than present the entire photo library to the user (a task that would be a little difficult with only the rudimentary Silverlight layout elements I’ve described so far), the program picks one at random, and picks another when the user taps the screen:
Silverlight Project: SilverlightAccessLibrary File: MainPage.xaml.cs (excerpt)
The XNA MediaLibrary class is instantiated as a field. In the GetRandomPicture method, the program obtains a PictureCollection object from the MediaLibrary class and picks one at random. The Picture object has a GetImage method that returns a stream, and a Name, Album, and Data information that the program displays in the overlaying TextBlock.
A Windows Phone 7 program can also save a bitmap back into the library. All such bitmaps go into a special album called Saved Pictures. I’ll show you how to do that in Chapters 14 and 22.
This chapter covers two of the facilities in Windows Phone 7 that provide information about the outside world. With the user’s permission, the location service lets your application obtain the phone’s location on the earth in the traditional geographic coordinates of longitude and latitude, whereas the accelerometer tells your program which way is down.
The accelerometer and location service are related in that neither of them will work very well in outer space.
Although the accelerometer and the location service are ostensibly rather easy, this chapter also explores issues involved with working with secondary threads of execution, handling asynchronous operations, and accessing web services.
Windows Phones contain an accelerometer—a small hardware device that essentially measures force, which elementary physics tells us is proportional to acceleration. When the phone is held still, the accelerometer responds to the force of gravity, so the accelerometer can tell your application the direction of the Earth relative to the phone.
A simulation of a bubble level is an archetypal application that makes use of an accelerometer, but the accelerometer can also provide a basis for interactive animations. For example, you might pilot a messenger bike through the streets of Manhattan by tilting the phone left or right to indicate steering.
The accelerometer also responds to sudden movements such as shakes or jerks, useful for simulations of dice or some other type of randomizing activity. Coming up with creative uses of the accelerometer is one of the many challenges of phone development.
It is convenient to represent the accelerometer output as a vector in three-dimensional space. Vectors are commonly written in boldface, so the acceleration vector can be symbolized as (x, y, z). XNA defines a three-dimensional vector type; Silverlight does not.
While a three-dimensional point (x, y, z) indicates a particular location in space, the vector (x, y, z) encapsulates instead a direction and a magnitude. Obviously the point and the vector are related: The direction of the vector (x, y, z) is the direction from the point (0, 0, 0) to the point(x, y, z). But the vector (x, y, z) is definitely not the line from (0, 0, 0) to (x, y, z). It’s only the direction of that line.
The magnitude of the vector (x, y, z) is calculable from the three-dimensional form of the Pythagorean Theorem:
For working with the accelerometer, you can imagine the phone as defining a three-dimensional coordinate system. No matter how the phone is oriented, the positive Y axis points from the bottom of the phone (with the buttons) to the top, the positive X axis points from left to right,
This is a traditional three-dimensional coordinate system, the same coordinate system used in XNA 3D programming. It’s termed a right-hand coordinate system: Point the index finger of your right hand to increasing X, the middle finger to increase Y, and your thumb points to increasing Z. Or, curve the fingers of your right hand from the positive X axis to the positive Y axis. Your thumb again points to increasing Z.
This coordinate system remains fixed relative to the phone regardless how you hold the phone, and regardless of the orientation of any programs running on the phone. In fact, as you might expect, the accelerometer is the basis for performing orientation changes of Windows Phone 7 applications.
When the phone is still, the accelerometer vector points towards the Earth. The magnitude is 1, meaning 1 g, which is the force of gravity on the earth’s surface. When holding your phone in the upright position, the acceleration vector is (0, −1, 0), that is, straight down.
Turn the phone 90° counter-clockwise (called landscape left) and the acceleration vector becomes (−1, 0, 0), upside down it’s (0, 1, 0), and another 90° counter-clockwise turn brings you to the landscape right orientation and an accelerometer value of (1, 0, 0). Sit the phone down on the desk with the display facing up, and the acceleration vector is (0, 0, –1). (That final value is what the Windows Phone 7 emulator always reports.)
Of course, the acceleration vector will rarely be those exact values, and even the magnitude won’t be exact. For a still phone, the magnitude may vary by a few percentage points with different orientations. When you visit the Moon with your Windows Phone 7, you can expect acceleration vector magnitudes in the region of 0.17 but limited cell phone reception.
I’ve been describing values of the acceleration vector when the device is still. The acceleration vector can point in other directions (and the magnitude can become larger or smaller) when the phone is accelerating, that is, gaining or losing velocity. For example, if you jerk the phone to the left, the acceleration vector points to the right but only when the device is gaining velocity. As the velocity stabilizes, the acceleration vector again registers only gravity. When you decelerate this jerk to the left, the acceleration vector goes to the left briefly as the device comes to a stop.
If the phone is in free fall, the magnitude of the accelerometer vector should theoretically go down to zero.
To use the accelerometer, you’ll need a reference to the Microsoft.Devices.Sensors library, and a using directive for the Microsoft.Devices.Sensors namespace. In WMAppManifest.xml, you need
<Capability Name="ID_CAP_SENSORS" />
This is set by default.
In your program you create an instance of the Accelerometer class, set an event handler for the ReadingChanging event, and call Start.
And then it gets a little tricky. Let’s take a look at a project named SilverlightAccelerometer. that simply displays the current reading in its content grid. A centered TextBlock is defined in the XAML file:
Silverlight Project: SilverlightAccelerometer File: MainPage.xaml (excerpt)
This is a program that will display the accelerometer vector throughout its lifetime, so it creates the Accelerometer class in its constructor and calls Start:
Silverlight Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)
The documentation warns that calling Start might raise an exception, so the program protects itself against that eventuality. The Accelerometer also supports Stop and Dispose methods, but this program doesn’t make use of them. A State property is also available if you need to know if the accelerometer is available and what it’s currently doing.
A ReadingChanged event is accompanied by the AccelerometerReadingEventArgs event arguments. The object has properties named X, Y, and Z of type double and TimeStamp of type DateTimeOffset. In the SilverlightAccelerometer program, the job of the event handler is to format this information into a string and set it to the Text property of the TextBlock.
The catch here is that the event handler (in this case OnAccelerometerReadingChanged) is called on a different thread of execution, and this means it must be handled in a special way.
A little background: All the user-interface elements and objects in a Silverlight application are created and accessed in a main thread of execution often called the user interface thread or the Ul thread. These user-interface objects are not thread safe; they are not built to be accessed simultaneously from multiple threads. For this reason, Silverlight will not allow you to access a user-interface object from a non-UI thread.
This means that the OnAccelerometerReadingChanged method cannot directly access the TextBlock element to set a new value to its Text property.
Fortunately, there’s a solution involving a class named Dispatcher defined in the System.Windows.Threading namespace. Through the Dispatcher class, you can post jobs from a non-UI thread on a queue where they are later executed by the UI thread. This process sounds complex, but from the programmer’s perspective it’s fairly easy because these jobs take the form of simple method calls.
An instance of this Dispatcher is readily available. The DependencyObject class defines a property named Dispatcher of type Dispatcher, and many Silverlight classes derive from DependencyObject. Instances of all of these classes can be accessed from non-UI threads because they all have Dispatcher properties. You can use any Dispatcher object from any DependencyObject derivative created in your UI thread. They are all the same.
The Dispatcher class defines a method named CheckAccess that returns true if you can access a particular user interface object from the current thread. (The CheckAccess method is also duplicated by DependencyObject itself.) If an object can’t be accessed from the current thread, then Dispatcher provides two versions of a method named Invoke that you use to post the job to the UI thread.
The SilverlightAccelerometer project implements a syntactically elaborate version of the code, but then I’ll show you how to chop it down in size.
The verbose version requires a delegate and a method defined in accordance with that delegate. The delegate (and method) should have no return value, but as many arguments as you need to do the job, in this case the job of setting a string to the Text property of a TextBlock:
Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)
The OnAccelerometerReadingChanged is responsible for calling SetTextBlockText. It first makes use of CheckAccess to see if it can just call the SetTextBlockText method directly. If not, then the handler calls the BeginInvoke method. The first argument is an instantiation of the delegate with the SetTextBlockText method; this is followed by all the arguments that SetTextBlockText requires:
Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)
This is not too bad, but the need for the code to jump across threads has necessitated an additional method and a delegate. Is there a way to do the whole job right in the event handler?
Yes! The BeginInvoke method has an overload that accepts an Action delegate, which defines a method that has no return value and no arguments. You can create an anonymous method right in the BeginInvoke call. The complete code following the creation of the string object looks like this:
The anonymous method begins with the keyword delegate and concludes with the curly brace following the method body. The empty parentheses following the delegate keyword are not required.
The anonymous method can also be defined using a lambda expression:
The duplicated code that sets the Text property of TextBlock to str looks a little ugly here (and would be undesirable if it involved more than just one statement), but you don’t really need to call CheckAccess. You can just call BeginInvoke and nothing bad will happen even if you are calling it from the UI thead.
The Windows Phone 7 emulator doesn’t contain any actual accelerometer, so it always reports a value of (0, 0, –1), which indicates the phone is lying on a flat surface. The program only makes sense when running on an actual phone:
The values here indicate the phone is roughly upright but tilted back a bit, which is a very natural orientation in actual use.
One handy tool found in any workshop is a bubble level, also called a spirit level. A little bubble always floats to the top of a liquid, so it visually indicates whether something is parallel or orthogonal to the earth, or tilted in some way.
The XnaAccelerometer project includes a 48-by-48 pixel bitmap named Bubble.bmp that consists of a red circle:
The magenta on the corners makes those areas of the bitmap transparent when XNA renders it.
As with the Silverlight program, you’ll need a reference to the Microsoft.Devices.Sensors library and a using directive for the Microsoft.Devices.Sensors namespace.
The fields in the Game1 class mostly involve variables necessary to position that bitmap on the screen:
XNA Project: XnaAccelerometer File: Game1.cs (excerpt showing fields)
Towards the bottom you’ll see a field named acclerometerVector of type Vector3. The OnAccelerometerReadingChanged event handler will store a new value in that field, and the Update method will utilize the value in calculating a position for a bitmap.
OnAccelerometerReadingChanged and Update run in separate threads. One is setting the field; the other is accessing the field. This is no problem if the field is set or accessed in a single machine code instruction. That would be the case if Vector3 were a class, which is a reference type and basically referenced with something akin to a pointer. But Vector3 is a structure (a value type) consisting of three properties of type float, each of which occupies four bytes, for a total of 12 bytes or 96 bits. Setting or accessing this Vector3 field requires this many bits to be transferred.
A Windows Phone 7 device contains at least a 32-bit ARM processor, and a brief glance at the ARM instruction set does not reveal any machine code that would perform a 12-byte memory transfer in one instruction. This means that the accelerometer thread storing a new Vector3 value could be interrupted midway in the process by the Update method in the program’s main thread when it retrieves that value. The resultant value might have x, Y, and Z values mixed up from two readings.
While that could hardly be classified as a catastrophe in this program, let’s play it entirely safe and use the C# lock statement to make sure the Vector3 value is stored and retrieved by the two threads without interruption. That’s the purpose of the accelerometerVectorLock variable among the fields.
I chose to create the Accelerometer object and set the event handler in the Initialize method:
XNA Project: XnaAccelerometer File: Game1.cs (excerpt)
Notice that the event handler uses the lock statement to set the accelerometerVector field. That prevents code in the Update method from accessing the field during this short duration.
The LoadContent method loads the bitmap used for the bubble and initializes several variables used for positioning the bitmap:
XNA Project: XnaAccelerometer File: Game1.cs (excerpt)
When the X and Y properties of accelerometer are zero, the bubble is displayed in the center of the screen. That’s the reason for both screenCenter and bubbleCenter. The screenRadius value is the distance from the center when the magnitude of the X and Y components is 1.
The Update method safely access the accelerometerVector field and calculates bubblePosition based on the X and Y components. It might seem like I’ve mixed up the X and Y components in the calculation, but that’s because the default screen orientation is portrait in XNA, so it’s opposite the coordinates of the acceleration vector. Because both landscape modes are supported by default, it’s also necessary to multiply the acceleration vector values by -1 when the phone has been tilted into the LandscapeRight mode:
XNA Project: XnaAccelerometer File: Game1.cs (excerpt)
In addition, a bubbleScale factor is calculated based on the Z component of the vector. The idea is that the bubble is largest when the screen is facing up and smallest when the screen is facing down, as if the screen is really one side of a rectangular pool of liquid that extends below the phone, and the size of the bubble indicates how far it is from the surface.
The Draw override uses a long version of the Draw method of SpriteBatch.
XNA Project: XnaAccelerometer File: Game1.cs (excerpt)
Notice the bubbleScale argument, which scales the bitmap to a particular size. The center of scaling is provided by the previous argument to the method, bubbleCenter. That point is also aligned with the bubblePosition value relative to the screen.
The program doesn’t look like much, and is even more boring running on the emulator. Here’s an indication that the phone is roughly upright and tilted back a bit:
You’ll discover that the accelerometer is very jittery and cries out for some data smoothing. I’ll discuss this and other accelerometer-related issues in Chapter 24.
With the user’s permission, a Windows Phone 7 program can obtain the geographic location of the phone using a technique called Assisted-GPS or A-GPS.
The most accurate method of determining location is accessing signals from Global Positioning System (GPS) satellites. However, GPS can be slow. It doesn’t work well in cities or indoors, and it’s considered expensive in terms of battery use. To work more cheaply and quickly, an A-GPS system can attempt to determine location from cell-phone towers or the network. These methods are faster and more reliable, but less accurate.
The core class involved in location detection is GeoCoordinateWatcher. You’ll need a reference to the System.Device assembly and a using direction for the System.Device.Location namespace. The WMAppManifest.xml file requires the tag:
<Capability Name="ID_CAP_LOCATION" />
This is included by default.
The GeoCoordinateWatcher constructor optionally takes a member of the GeoPositionAccuracy enumeration:
After creating a GeoCoordinateWatcher object, you’ll want to install a handler for the PositionChanged event and call Start. The PositionChanged event delivers a GeoCoordinate object that has eight properties:
If the application does not have permission to get the location, then Latitude and Longitude will be Double.NaN, and IsUnknown will be true.
In addition, GeoCoordinate has a GetDistanceTo method that calculates the distance between two GeoCoordinate objects.
I’m going to focus on the first two properties, which together are referred to as geographic coordinates to indicate a point on the surface of the Earth. Latitude is the angular distance from the equator. In common usage, latitude is an angle between 0 and 90 degrees and followed with either N or S meaning north or south. For example, the latitude of New York City is approximately 40°N. In the GeoCoordinate object, latitudes north of the equator are positive values and south of the equator are negative values, so that 90° is the North Pole and –90° is the South Pole.
All locations with the same latitude define a line of latitude. Along a particular line of latitude, longitude is the angular distance from the Prime Meridian, which passes through the Royal Observatory at Greenwich England. In common use, longitudes are either east or west. New York City is 74°W because it’s west of the Prime Meridian. In a GeoCoordinate object, positive longitude values denote east and negative values are west. Longitude values of 180 and –180 meet up at the International Date Line.
Although the System.Device.Location namespace includes classes that use the geographic coordinates to determine civic address (streets and cities), these are not implemented in the initial release of Windows Phone 7.
The XnaLocation project simply displays numeric values.
XNA Project: XnaLocation File: Game1.cs (excerpt showing fields)
As with the accelerometer, I chose to create and initialize the GeoCoordinateWatcher in the Initialize override. The event handler is called in the same thread, so nothing special needs to be done to format the results in a string:
XNA Project: XnaLocation File: Game1.cs (excerpt)
The LoadContent method simply obtains the font and saves the Viewport for later text positioning:
XNA Project: XnaLocation File: Game1.cs (excerpt)
The size of the displayed string could be different depending on different values. That’s why the position of the string is calculated from its size and the Viewport values in the Update method:
XNA Project: XnaLocation File: Game1.cs (excerpt)
The Draw method is trivial:
XNA Project: XnaLocation File: Game1.cs (excerpt)
Because the GeoCoordinateWatcher is left running for the duration of the program, it should update the location as the phone is moved. Here’s where I live:
With the phone emulator, however, the GeoCoordinateWatcher program might not work. With some beta software releases of Windows Phone 7 development tools, the Accelerometer always returned the coordinates of a spot in Princeton, New Jersey, perhaps as a subtle reference to the college where Alan Turing earned his PhD.
Of course, most people curious about their location prefer to see a map rather than numeric coordinates. The Silverlight demonstration of the location service displays a map that comes to the program in the form of bitmaps.
In a real phone application, you’d probably be using Bing Maps, particularly considering the existence of a Bing Maps Silverlight Control tailored for the phone. Unfortunately, making use of Bing Maps in a program involves opening a developer account, and getting a maps key and a credential token. This is all free and straightforward but it doesn’t work well for a program that will be shared among all the readers of a book.
For that reason, I’ll be using an alternative that doesn’t require keys or tokens. This alternative is Microsoft Research Maps, which you can learn all about at msrmaps.com. The aerial images are provided by the United States Geological Survey (USGS). Microsoft Research Maps makes these images available through a web service called MSR Maps Service, but still sometimes referred to by its old name of TerraService.
The downside is that the images are not quite state-of-the-art and the service doesn’t always seem entirely reliable.
MSR Maps Service is a SOAP (Simple Object Access Protocol) service with the transactions described in a WSDL (Web Services Description Language) file. Behind the scenes, all the transactions between your program and the web service are in the form of XML files.
However, to avoid programmer anguish, generally the WSDL file is used to generate a proxy, which is a collection of classes and structures that allow your program to communicate with the web service with method calls and events.
You can generate this proxy right in Visual Studio. Here’s how I did it: I first created an Windows Phone 7 project in Visual Studio called SilverlightLocationMapper. In the Solution Explorer, I right-clicked the project name and selected Add Service Reference. In the Address field I entered the URL of the MSR Maps Service WSDL file: http://MSRMaps.com/TerraService2.asmx.
(You might wonder if the URL should be http://msrmaps.com/TerraService2.asmx?WSDL because that’s how WSDL files are often referenced. That address will actually seem to work at first, but you’ll get files containing obsolete URLs.)
After you’ve entered the URL in the Address field, press Go. Visual Studio will access the site and report back what it finds. There will be one service, called by the old name of TerraService.
Next you’ll want to enter a name in the Namespace field to replace the generic ServiceReference1. I used MsrMapsService and pressed OK.
You’ll then see MsrMapsService show up under the project in the Solution Explorer. If you click the little Show All Files icon at the top of the Solution Explorer, you can view the generated files. In particular, nested under MsrMapsService and Reference.svcmap, you’ll see Reference.cs, a big file (over 4000 lines) with a namespace of XnaLocationMapper.MsrMapsService, which combines the original project name and the name you selected for the web service.
This Reference.cs file contains all the classes and structures you need to access the web service, and which are documented on the msrmaps.com web site. To access these classes in your program, add a using direction:
using SilverlightLocationMapper.MsrMapsService;
You also need a reference to the System.Device assembly and using directives for the System.Device.Location, System.IO, and System.Windows.Media.Imaging namespacess.
In the MainPage.xaml file, I left the SupportedOrientations property at its default setting of Portrait, I removed the page title to free up more space, and I moved the title panel below the content grid just in case there was a danger of something spilling out of the content grid and obscuring the title. Moving the title panel below the content grid in the XAML file ensures that it will be visually on top.
Here’s the content grid:
Silverlight Project: SilverlightLocationMapper File: MainPage.xaml (excerpt)
The TextBlock is used to display status and (possibly) errors; the Image displays a logo of the United States Geological Survey.
The map bitmaps will be inserted between the TextBlock and Image so they obscure the TextBlock but the Image remains on top.
The code-behind file has just two fields, one for the GeoCoordinateWatcher that supplies the location information, and the other for the proxy class created when the web service was added:
Silverlight Project: SilverlightLocationMapper File: MainPage.xaml.cs (excerpt)
You use the proxy by calling its methods, which make network requests. All these methods are asynchronous. For each method you call, you must also supply a handler for a completion event that is fired when the information you requested has been transferred to your application.
The completion event is accompanied by event arguments: a Cancelled property of type bool, an Error property that is null if there is no error, and a Result property that depends on the request.
I wanted the process to begin after the program was loaded and displayed, so I set a handler for the Loaded event. That Loaded handler sets the handlers for the two completion events I’ll require of the proxy, and also starts up the GeoCoordinateWatcher:
Silverlight Project: SilverlightLocationMapper File: MainPage.xaml.cs (excerpt)
When coordinates are obtained, the following OnGeoWatcherPositionChanged method is called. This method begins by turning off the GeoCoordinateWatcher. The program is not equipped to continuously update the display, so it can’t do anything with any additional location information. It appends the longitude and latitude to the TextBlock called ApplicationTitle displayed at the top of the screen.
Silverlight Project: SilverlightLocationMapper File: MainPage.xaml.cs (excerpt)
The method concludes by making its first call to the proxy. The GetAreaFromPtAsync call requires a longitude and latitude as a center point, but some other information as well. The second argument is 1 to get an aerial view and 2 for a map (as you’ll see at the end of this chapter). The third argument is the desired scale, a member of the Scale enumeration. The member I’ve chosen means that each pixel of the returned bitmaps is equivalent to 16 meters.
Watch out: Some scaling factors—in particular, Scale2m, Scale8m, and Scale32m—result in GIF files being returned. Remember, remember, remember that Silverlight doesn’t do GIF! For the other scaling factors, JPEGS are returned.
The final arguments to GetAreaFromPtAsync are the width and height of the area you wish to cover with the map.
All the bitmaps you get back from the MSR Maps Service are 200 pixels square. Almost always, you’ll need multiple bitmaps to tile a complete area. For example, if the last two arguments to GetAreaFromPtAsync are 400 and 600, you’ll need 6 bitmaps to tile the area.
Well, actually not: An area of 400 pixels by 600 pixels will require 12 bitmaps, 3 horizontally and 4 vertically.
Here’s the catch: These bitmaps aren’t specially created when a program requests them. They already exist on the server in all the various scales. The geographic coordinates where these bitmaps begin and end are fixed. So if you want to cover a particular area of your display with a tiled map, and you want the center of this area to be precisely the coordinate you specify, the existing tiles aren’t going to fit exactly. You want sufficient tiles to cover your area, but the tiles around the boundary are going to hang over the edges.
What you get back from the GetAreaFromPtAsync call (in the following OnProxyGetAreaFromPtCompleted method) is an object of type AreaBoundingBox. This is a rather complex structure that nonetheless has all the information required to request the individual tiles you need and then assemble them together in a grid.
Silverlight Project: SilverlightLocationMapper File: MainPage.xaml.cs (excerpt)
I won’t discuss the intricacies of AreaBoundingBox because it’s more or less documented on the msrmaps.com web site, and I was greatly assisted by some similar logic on the site written for Windows Forms (which I suppose dates it a bit).
Notice that the loop creates each Image object to display each tile. Each of these Image objects has the same Stretch, HorizontalAlignment, and VerticalAlignment properties, but a different Margin. This Margin is how the individual tiles are positioned within the content grid. The XOffset and YOffset values cause the tiles to hang off the top and left edges of the content grid. The content grid doesn’t clip its contents, so these tiles possibly extend to the top of the program’s page.
Notice also that each Image object is passed as a second argument to the proxy’s GetTileAsync method. This is called the UserState argument. The proxy doesn’t do anything with this argument except return it as the UserState property of the completion arguments, as shown here:
Silverlight Project: SilverlightLocationManager File: MainPage.xaml.cs (excerpt)
That’s how the method links up the particular bitmap tile with the particular Image element already in place in the content grid.
It is my experience that in most cases, the program doesn’t get all the tiles it requests. If you’re very lucky—and you happen to be running the program somewhere in my neighborhood—your display might look like this:
If you change the second argument of the proxy.GetAreaFromPtAsync call from a 1 to a 2, you get back images of an actual map rather than an aerial view:
It has a certain retro charm—and I love the watercolor look—but I’m afraid that modern users are accustomed to something just a little more 21st century.
A Silverlight application for Windows Phone 7 consists of several standard classes:
This chapter is partially about the “or more” of that last item. The programs you’ve seen so far have consisted of a single class named MainPage that derives from PhoneApplicationPage. In more complex applications, you might want to have multiple pages and allow the user to navigate among them, much like navigating among Web pages.
Page navigation would seem to be an advanced Silverlight programming topic, and a topic that applies only to Silverlight programming rather than XNA programming. However, there are issues involved with navigation that are related to the very important topic of tombstoning, which is what happens to your Windows Phone 7 application when the user navigates to another application through the phone’s Start screen. Tombstoning is very much an issue that also affects XNA programmers.
The SilverlightSimpleNavigation project begins as usual with a MainPage class, and as usual I set the two TextBlock elements for the titles:
Silverlight Project: SilverlightSimpleNavigation File: MainPage.xaml (excerpt)
The content area of MainPage.xaml contains only a TextBlock that sets a handler for its ManipulationStarted event:
Silverlight Project: SilverlightSimpleNavigation File: MainPage.xaml (excerpt)
Notice the Text property on the TextBlock: “Navigate to 2nd page.” The code-behind file contains the handler for ManipulationStarted but also overrides the OnManipulationStarted method for the whole page:
Silverlight Project: SilverlightSimpleNavigation File: MainPage.xaml.cs (excerpt)
If you touch anywhere on the page outside of the TextBlock, the background of the ContentPanel is set to a random color. Touch the TextBlock, and the handler accesses the NavigationService property of the page. This is an object of type NavigationService that contains properties, methods, and events related to navigation, including the crucial Navigate method:
this.NavigationService.Navigate(new Uri("/SecondPage.xaml", UriKind.Relative));
The argument is an object of type Uri. Notice the slash in front of SecondPage.xaml, and notice the use of UriKind.Relative to indicate a URI relative to MainPage.xaml.
I created a second page in the SilverlightSimpleNavigation project by right-clicking the project name in the Visual Studio solution explorer, and selecting Add and New Item. From the Add New Item dialog box, I picked Windows Phone Portrait Page and gave it a name of SecondPage.xaml.
This process creates not only SecondPage.xaml but also the code-behind file SecondPage.cs. The two SecondPage files are virtually identical to the two MainPage files that Visual Studio customarily creates. Like MainPage, SecondPage derives from PhoneApplicationPage.
I gave the titles In SecondPage.xaml the same application name as FirstPage.xaml but a page title of “second page”:
Silverlight Project: SilverlightSimpleNavigation File: SecondPage.xaml (excerpt)
The content area of SecondPage.xaml is very much like MainPage.xaml but the TextBlock reads “Go Back to 1st Page”:
Silverlight Project: SilverlightSimpleNavigation File: SecondPage.xaml (excerpt)
The code-behind file of the SecondPage class is also very much like the FirstPage class:
Silverlight Project: SilverlightSimpleNavigation File: SecondPage.xaml.cs (excerpt)
Once again, when you touch anywhere on the page except the TextBlock, the background changes to a random color. When you touch the TextBlock, the handler calls another method of NavigationService:
this.NavigationService.GoBack();
This call causes the program to go back to the page that navigated to SecondPage.xaml, in this case, MainPage.xaml. Take a look at the Navigate call in MainPage.cs again:
this.NavigationService.Navigate(new Uri("/SecondPage.xaml", UriKind.Relative));
Navigation in a Silverlight program is based around XAML files in much the same way that navigation in a traditional Web environment is based around HTML files. The actual instance of the SecondPage class is created behind the scenes. The PhoneApplicationFrame instance in the application handles many of the actual mechanics of navigation, but the public interface of PhoneApplicationFrame also involves Uri objects and XAML files rather than instances of PhoneApplicationPage derivatives.
Let’s run the program. The program begins with the main page, and you can touch the screen to change the color:
Now touch the TextBlock that says “Navigate to 2nd Page” and the second page comes into view:
You can touch that screen to change to a different color:
Now touch the TextBlock that says “Go Back to 1st Page”. (Alternatively, you can press the phone’s hardware Back button.) You’ll be whisked back to the main page with the color just as you left it:
Now touch the TextBlock again to navigate to the second page:
The background is black. The second page does not display the color you set when you last visited the second page. This is very obviously a brand new instance of the SecondPage class.
The navigation system in Silverlight for Windows Phone is based around the metaphor of the last-in-first-out data structure called the stack. I’ll sometimes refer to the page calling Navigate as the source page and the page being navigated to as the destination page. When the source page calls Navigate, the source page is put on the stack and a new instance of the destination page is created and displayed. When a page calls GoBack—or when the user presses the phone’s hardware Back button—that page is abandoned, and the page at the top of the stack is popped off and displayed.
Within a Silverlight application, the phone’s Back button performs the same function as a call to GoBack except if you’re at the initial page of the program, in which case the hardware Back button terminates the application.
Try this: Replace the GoBack call in SecondPage.xaml.cs with the following:
this.NavigationService.Navigate(new Uri("/MainPage.xaml", UriKind.Relative));
This is not the same as the GoBack call. You won’t go back to the original instance of MainPage. This call causes SecondPage to navigate to a new instance of MainPage, and if you keep pressing the TextBlock on each on the pages, you’ll build up a whole stack of alternating MainPage and SecondPage instances, each of which can have its own unique color. You’ll need to use the hardware Back button on the phone to back up through all these pages and finally terminate the application.
Navigate and GoBack are the two basic methods of NavigationService, and it’s unlikely you’ll need to use anything beyond these for your applications. Keep in mind that you’re coding for a phone, and it doesn’t make a lot of sense to have very complex navigation schemes within your program without also some way of reminding the user how the current page was arrived at and how to unwind the process.
Perhaps the most important use of secondary pages in a Silverlight application for the phone is to serve as dialog boxes. When a program needs some information from the user, it navigates to a new page to collection that information. The user enters the information, and then goes back to the main page. I’ll have a demonstration of this technique in Chapter 10.
The possible use of pages as dialog boxes provokes two questions:
Interestingly, a facility is provided specifically for the first item but not for the second. I’ll show you this facility and then look at more generalized solutions to the second problem.
The following project is called SilverlightPassData. It is very much like the first project in this chapter except that when MainPage navigates to SecondPage, it provides SecondPage with its current background color, and SecondPage initializes itself with that color.
Here’s the content area of MainPage.xaml, the same as in the previous program:
Silverlight Project: SilverlightPassData File: MainPage.xaml (excerpt)
I won’t show you the OnManipulationStarted override because it’s the same as in the previous program, but the ManipulationStarted event handler for the TextBlock is a bit enhanced:
Silverlight Project: SilverlightPassData File: MainPage.xaml.cs (excerpt)
If the Background brush of the ContentPanel is a SolidColorBrush, then the handler gets the Color and formats the red, green, and blue values into a string that is appended to the name of the destination page. The URI now looks something like this:
“/SecondPage.xaml?Red=244&Green=43&Blue=91”
You’ll recognize this as a common format of an HTML query string.
The SilverlightPassData project also contains a SecondPage class that is the same as the one in the first project except that the code-behind file contains an override of the OnNavigatedTo method:
Silverlight Project: SilverlightPassData File: SecondPage.xaml.cs (excerpt)
You’ll need a using directive for the System.Windows.Navigation namespace for the NavigationEventArgs class.
The OnNavigatedTo method is defined by Page, the class from which PhoneApplicationPage derives. The method is called right after the page has been created. When OnNavigatedTo is called, the page’s constructor has already executed, of course, but not much else has happened.
The destination class can access the query strings used to invoke the page through the page’s NavigationContext property. This property is of type NavigationContext, a class that has only one public property named QueryString, which returns a dictionary that I’ve saved in a variable called parameters. The code here assumes that if the “Red” query string is present, the “Blue” and “Green” must exist as well. It passes all the strings to the Byte.Parse method and reconstructs the color.
Now as you navigate from MainPage to SecondPage, the background color remains the same. As you go back, however, that’s not the case. There is no built-in facility like the query string to return data from one page to another.
Keep in mind that all the pages in your program have convenient access to the App class that derives from Application. The static Application.Current property returns the Application object associated with the program, and you can simply cast that to App. This means that you can use the App class for storing data you want to share among multiple pages of the application.
In the SilverlightShareData project, I defined a simple public property in the App class:
Silverlight Project: SilverlightShareData File: App.xaml.cs (excerpt)
I defined this property of type nullable Color rather than just Color for those cases where a SolidColorBrush has not been set on the Background property of ContentPanel. In those cases, the Background property is null and there shouldn’t be a Color stored in this property. If the property were of type Color, then a Color would be stored by default; that Color value would be transparent black, and that’s wrong. Even non-transparent black is wrong if the user has selected the Light color scheme.
Much of the program remains the same, except that when you touch the TextBlock in MainPage, the handler first attempts to save a color in the new App class property before navigating to SecondPage:
Silverlight Project: SilverlightShareData File: MainPage.xaml.cs (excerpt)
The OnNavigatedTo override in SecondPage than accesses that property:
Silverlight Project: SilverlightShareData File: SecondPage.xaml.cs (excerpt)
Similarly, when you press the TextBlock on SecondPage, the handler saves whatever color the background now happens to be back in the App class before calling GoBack:
Silverlight Project: SilverlightShareData File: SecondPage.xaml.cs (excerpt)
The MainPage class also overrides OnNavigatedTo so it too can retrieve the stored color and set it to the background of the grid:
Silverlight Project: SilverlightShareData File: MainPage.xaml.cs (excerpt)
Now as you navigate between the pages they always share the same color.
Using the App class as a repository for shared data among pages is so convenient that you might find yourself using it exclusively. But you should really consider more structured solutions that involve only the pages navigating between each other and not some third-party class like App.
Besides the OnNavigatedTo virtual method, Page also defines an OnNavigatedFrom method, which at first seems much less useful. After all, a page knows that it’s navigating from itself because it’s just called Navigate or GoBack.
However, both OnNavigatedFrom and OnNavigatedTo have event arguments of type NavigationEventArgs, which defines two properties: Uri of type Uri, and Content of type object. These always indicate the page being navigated to.
For example, MainPage calls Navigate with an argument of “/SecondPage.xaml”. The OnNavigatedFrom method in MainPage is called with event arguments with a Uri property indicating “/SecondPage.xaml” and a Content property of type SecondPage. This is the newly created instance of SecondPage that is about to be displayed, and this is the most convenient way to obtain that instance. The OnNavigatedTo method of SecondPage is then called with the same event arguments indicating a Uri of “/SecondPage.xaml” and the SecondPage object.
Similarly, when SecondPage calls GoBack, its OnNavigatedFrom method is called with event arguments that include a Uri property indicating “/MainPage.xaml” and a Content property with the MainPage instance. The OnNavigatedTo method of MainPage is then called with those same event arguments.
This means that during the OnNavigatedFrom method, a class has an opportunity to set a property or call a method in the class of the destination page.
Let’s look at an example called SilverlightInsertData. The project has two pages named MainPage and SecondPage and the XAML files are the same as those you’ve already seen. The MainPage class doesn’t have any logic to randomly change its color. Instead, it uses SecondPage to obtain a color for it. You can think of SecondPage as a dialog box that returns a random color to MainPage.
Here’s most of the code-behind file in MainPage:
Silverlight Project: SilverlightlnsertData File: MainPage.xaml.cs (excerpt)
Notice the ReturnedColor property, of type nullable Color just like the property in the App class in the previous program.
Here’s the SecondPage code-behind file:
Silverlight Project: SilverlightlnsertData File: SecondPage.xaml.cs (excerpt)
As in the previous programs, SecondPage changes its background to a random color when touched, and calls GoBack when the TextBlock is touched. The new code is in the OnNavigatedFrom override, which is called shortly after the class calls GoBack. If there’s a valid SolidColorBrush available, the method checks if it’s navigating to an object of type MainPage. If so, then it saves the Color object in the ReturnedColor property of MainPage.
MainPage can retrieve the value of that property in its OnNavigatedTo override:
Silverlight Project: SilverlightInsertData File: MainPage.xaml.cs (excerpt)
In a sense, MainPage invokes SecondPage to obtain a Color value, just like a real dialog box. But if you navigate to SecondPage subsequent times, it always starts out with a black screen (or white if you’ve selected the Light color theme).
Interestingly, SecondPage can’t initialize itself from any property in MainPage because the OnNavigatedTo call that SecondPage receives doesn’t reference the source page. To work in a symmetrical manner, SecondPage would need to define its own public Color property, and MainPage would need to initialize that property in its own OnNavigatedFrom override.
You might consider a little variation on this program where SecondPage defines the ReturnedColor property. When MainPage navigates to SecondPage the OnNavigatedFrom method in MainPage is called, and the method saves the instance of SecondPage being navigated to in a field in MainPage. When SecondPage is finished, it saves the Color value in its ReturnedColor property and calls GoBack. The OnNavigatedTo method in MainPage is then called. MainPage can use the SecondPage instance saved as a field to access the ReturnedColor property.
This scheme sounds fine, but it won’t always work. The problem is that MainPage can’t be assured that the SecondPage instance it navigates to will be the same SecondPage instance that navigates back to MainPage. You’ll have a better sense of this problem soon.
Every time MainPage navigates to SecondPage, it’s a different instance of SecondPage. That’s why SecondPage always starts out the same. It’s always a new instance.
If we want SecondPage to “remember” the last color it was set to, something outside of SecondPage must be responsible for saving that data. That could be MainPage.
Or, SecondPage could save its state in isolated storage. Isolated storage is much like regular disk storage. To access it, you use classes in the System.IO.IsolatedStorage namespace. Every Windows Phone 7 application has access to isolated storage but only to files that the application itself has created. Isolated storage allows an application to save data between multiple executions, and is ideal for saving application settings.
I’ll present examples of isolated storage later in this chapter.
A third solution is provided by a class named PhoneApplicationService, defined in the Microsoft.Phone.Shell namespace. An instance of PhoneApplicationService is created in the standard App.xaml file:
Following the PhoneApplicationService tag are four events being associated with handlers; you’ll see examples of these events later in this chapter. Don’t create a new PhoneApplicationService. You can obtain this existing PhoneApplicationService with the static PhoneApplicationService.Current property.
PhoneApplicationService contains a property named State, which is a dictionary that lets you save and restore data. This State property is of type IDictionary<string, object>. You store objects in this dictionary using text keys. This data is only retained while the application is running, so it’s not suitable for application settings that must be preserved between multiple executions of a program. Data retained by the applicaton only when it’s running is sometimes known as “transient” data.
Any object you store in this State dictionary must be serializable, that is, it must be possible to convert the object into XML, and recreate the object from XML. It must have a public parameterless constructor, and all its public properties must either be serializable or be of types that have Parse methods to convert the strings back to objects.
It’s not always obvious what objects are serializable and which ones are not. When I first started experimenting, I tried to store SolidColorBrush objects in the State dictionary. The program raised an exception that said “Type ’System.Windows.Media.Transform’ cannot be serialized.” It took awhile to remember that Brush has a property named Transform of type Transform, an abstract class. I had to serialize the Color instead.
Let’s modify the previous program so that SecondPage uses this State property. In the SilverlightRetainData project, everything is the same except for a using directive for the Microsoft.Phone.Shell namespace and two overrides in SecondPage. Here they are:
Silverlight Project: SilverlightRetainData File: SecondPage.xaml.cs (excerpt)
During the OnNavigatedFrom call, if there’s a valid Color object available, then it’s saved in the State dictionary with a key of “Color”:
PhoneApplicationService.Current.State["Color"] = clr;
During the OnNavigatedTo override, if the key exists, then the Color value is loaded from the dictionary and SolidColorBrush is made from the Color. The key will not exist if you’ve just started running the program and you’ve navigated to SecondPage for the first time. But on subsequent navigations to SecondPage, the page is restored to the color you last set.
Every time you exit the program by pressing the Back button on the main page, the State dictionary is discarded with the rest of the PhoneApplicationService. This State dictionary is only suitable for saving transient data that a program needs to retain while it’s running. If you need to save data between multiple executions of a program, use isolated storage.
Now try this: Navigate to SecondPage. Touch the screen to change the color. Now press the phone’s hardware Start button. You’ve left the SilverlightRetainData program. From the phone’s start screen, you can navigate to other programs, but eventually you’ll want to press the phone’s Back button to return to the SilverlightRetainData program and SecondPage. The color is still there.
Now go back to MainPage. The color you set in SecondPage is displayed. From MainPage, press the phone’s hardware Start button, leaving the program. Navigate around a bit if you want but eventually start pressing the Back button to come back to SilverlightRetainData and MainPage.
Lo and behold, the screen has lost its color! What happened?
Over the past few decades, it’s been a common desire that our personal computers be able to do more than one thing at a time. But when user interfaces are involved, multitasking is never quite as seamless as we’d like. The Terminate-and-Stay-Resident (TSR) programs of MS-DOS and the cooperative multitasking of early Windows were only the first meager attempts in an ongoing struggle. In theory, process switching is easy. But sharing resources—including the screen and a handful of various input devices—is very hard.
While the average user might marvel at the ability of modern Windows to juggle many different applications at once, we programmers still wrestle with the difficulties of multitasking—carefully coding our UI threads to converse amicably with our non-UI threads, always on the lookout for the hidden treachery of asynchronous operations.
Every new application programming interface we encounter makes a sort of awkward accommodation with the ideals of multitasking, and as we become familiar with the API we also become accustomed to this awkward accommodation, and eventually we might even consider this awkward accommodation to be a proper solution to the problem.
On Windows Phone 7, that awkward accommodation is known as tombstoning.
We want our phones to be much like our other computers. We want to have a lot of applications available. We want to start up a particular application as soon as we conceive a need for it. While that application is running, we want it to be as fast as possible and have access to unlimited resources. But we want this application to coexist with other running applications because we want to be able to jump among multiple applications running on the machine.
Arbitrarily jumping among multiple running applications is somewhat impractical on the phone. It would require some kind of display showing all the currently running applications, much like the Windows taskbar. Either this taskbar would have to be constantly visible—taking valuable screen space away from the active applications—or a special button or command would need to be assigned to display the taskbar or task list.
Instead, Windows Phone 7 manages multiple active applications by implementing a stack. In a sense, this application stack extends the page stack within a single Silverlight program. You can think of the phone as an old-fashioned web browser with no tab feature and no Forward button. But it does have a Back button and it also has a Start button, which brings you to the Start screen and allows you to launch a new program.
Suppose you choose to launch a program called Analyze. You work a little with Analyze and then decide you’re finished. You press the Back button. The Analyze program is terminated and you’re back at the Start screen. That’s the simple scenario.
Later you decide you need to run Analyze again. While you’re using Analyze, you need to check something on the Web. You press the Start button to get to the Start screen and select Internet Explorer. While you’re browsing, you remember you haven’t played any games recently. You press the Start button, select Backgammon and play a little of that. While playing Backgammon, you wonder about the odds of a particular move, so you press the Start button again and run Calc. Then you feel guilty about not doing any work, so you press the Start button again and run Draft.
Draft is a Silverlight program with multiple pages. From the main page, you navigate to several other pages.
Now start pressing the Back button. You go backwards through all the pages in the page stack of the Draft, then Draft is terminated as you go back to Calc. Calc still displays the remnants of your work, and Calc is terminated as you go back to Backgammon, which shows a game in progress, and Backgammon is terminated as you go back to Internet Explorer, and again you go backwards through any Web pages you may have navigated through, and IE is terminated as you go back to Analyze, and Analyze is terminated as you go back to the Start screen. The stack is now empty.
This type of navigation is a good compromise for small devices, and it’s consistent with users’ experiences in web browsing. The stack is conceptually very simple: The Start button pushes the current application on the stack so a new application can be run; the Back button terminates the current application and pops one off the top of the stack.
However, the limited resources of the phone convinced the Windows Phone 7 developers that applications on the stack should have as minimum a footprint as possible. For this reason, an application put on the stack does not continue plugging away at work. It’s not even put into a suspended state of some sort. Something more severe than that happens. The process is actually terminated. When this terminated program comes off the stack, it is then re-executed from scratch.
This is tombstoning. The application is killed but then allowed to come back to life.
You’ve probably seen enough movies to know that re-animating a corpse can be a very scary proposition. Almost always the hideous thing that arises out of the filthy grave is not the clean and manicured loved one who went in.
The trick here is to persuade the disinterred program to look and feel much the same as when it was last alive and the user interacted with it. This process is a collaboration between you and Windows Phone 7. The phone gives you the tools (events and a place to put some data); your job is to use the tools to restore your program to a presentable state. Ideally the user should have no idea that it’s a completely new process.
For some applications, resurrection doesn’t have to be 100% successful. We all have experience with navigating among Web pages to know what’s acceptable and what’s not. For example, suppose you visit a long Web page, and you scroll down a ways, then you navigate to another page. When you go back to the original page, it’s not too upsetting if it’s lost your place and you’re back at the top of the page.
On the other hand, if you’ve just spent 10 minutes filling out a large form, you definitely do not want to see all your work gone after another page tells you that you’ve made one tiny error.
Let’s nail down some terminology that’s consistent with some events I’ll discuss later:
The SilverlightFlawedTombstoning project is a simple Silverlight program with just one page. The program responds to taps on the screen by changing the background of ContentGrid to a random color, and displaying the total number of taps in its page title. Everything of interest happens in the code-behind file:
Silverlight Project: SilverlightFlawedTombstoning File: MainPage.xaml.cs (excerpt)
The little UpdatePageTitle method is called from both the program’s constructor (where it always results in displaying a value of 0) and from the OnManipulationStarted override.
Build and deploy the program to the phone or phone emulator by pressing F5 (or selecting Start Debugging from the Debug menu). Arrange Visual Studio so you can see the Output window. When the program starts up, tap the screen several times to change the color and bump up the tap count. Now press the phone’s Start button. You can see from Visual Studio that two threads in the program end and the program has terminated, but to the phone the program has actually been deactivated and tombstoned.
Now press the Back button to return to the program. You’ll see a blank screen with the word “Resuming...” and the Output window in Visual Studio shows libraries being loaded. That’s the program coming back to life.
However, when the program comes back into view, you’ll see that the color and the number of taps have been lost. All your hard work! Totally gone! This is not a good way for a program to emerge from tombstoning. It is this state data that we want to preserve when the program is flat-lined.(Now you may see why the approach I described after the SilverlightInsertData program would not always work. That scheme involved saving the instance of SecondPage when MainPage navigated to that page. But if the user goes to the Start screen from SecondPage and then returned, that would be a new instance of SecondPage and not the one that FrontPage saved.)
An excellent opportunity to save and reload state data for a page is through overrides of the OnNavigatedTo and OnNavigatedFrom methods defined by the Page class from which PhoneApplicationPage derives. As you’ve seen, these methods are called when a page is brought into view by being loaded by the frame, and when the page is detached from the frame.
Using these methods is particularly appropriate if your Silverlight application will have multiple pages that the user can navigate among. You’ve already discovered that a new instance of PhoneApplicationPage is created every time a user navigates to a page, so you’ll probably want to save and reload page state data for normal navigation anyway. By overriding OnNavigatedTo and OnNavigatedFrom you’re effectively solving two problems with one solution.
Although Windows Phone 7 leaves much of the responsibility for restoring a tombstoned application to the program itself, it will cause the correct page to be loaded on activation, so it’s possible that a page-oriented Silverlight program that saves and restores page state data using the State property of PhoneApplicationSerivce class during OnNavigatedTo and OnNavigatedFrom will need no special processing for tombstoning. The phone operating system preserves this State property during the time a program is deactivated and tombstoned, but gets rid of it when the program closes and is terminated for real.
The code-behind file for SilverlightBetterTombstoning includes a using directive for Microsoft.Phone.Shell and uses this State dictionary. Here’s the complete class:
Silverlight Project: SilverlightBetterTombstoning File: MainPage.xaml.cs (excerpt)
Notice the appService field set to PhoneApplicationService.Current. That’s just for convenience for accessing the State property. You can use the long PhoneApplicationService.Current.State instead if you prefer.
Storing items in the State dictionary is easier than getting them out. The syntax:
appService.State["numTaps"] = numTaps;
replaces an existing item if the “numTaps” key exists, or adds a new item if the key does not exist. Saving the background color is a little trickier: By default the Background property of ContentPanel is null, so the code checks for a non-null value before attempting to save the Color property.
To get items out of the dictionary, you can’t use similar syntax. You’ll raise an exception if the key does not exist. (And these keys will not exist when the application is launched.) The OnNavigatedTo method shows two different standard ways of accessing the items: The first checks if the dictionary contains the key; the second uses TryGetValue, which returns true if the key exists.
In a real program, you’ll probably want to use string variables for the keys to avoid accidently typing inconsistent values. (If your typing is impeccable, don’t worry about the multiple identical strings taking up storage: Strings are interned, and identical strings are consolidated into one.) You’ll probably also want to write some standard routines that perform these jobs.
Try running this program like you ran the earlier one: Press F5 to deploy it to the phone or phone emulator from Visual Studio. Tap the screen a few times. Press the Start button as if you’re going to start a new program. Visual Studio indicates that the process has terminated. Now press the Back button. When the program resumes the settings have been saved and the corpse looks as good as new!
As you experiment, you’ll discover that the settings are saved when the application is tombstoned (that is, when you navigate away from the application with the Start button and then return) but not when a new instance starts up from the Start list. This is correct behavior. The operating system discards the State dictionary when the program terminates for real. The State dictionary is only for transient data and not for data that affects other instances of the same application.
If you want some similar data shared among all instances of a program, you probably want to implement what’s often called application settings. You can do that as well.
Every program installed on Windows Phone 7 has access to its own area of permanent disk storage referred to as isolated storage, which the program can access using classes in the System.IO.IsolatedStorage namespace. Whole files can be read and written to in isolated storage, and I’ll show you how to do that in the program that concludes this chapter. For the program that following I’m going to focus instead on a special use of isolated storage for storing application settings. The IsolatedStorageSettings class exists specifically for this purpose.
For application settings, you should be thinking in terms of the whole application rather than a particular page. Perhaps some of the application settings apply to multiple pages. Hence, a good place to deal with these application settings is in the program’s App class.
Not coincidently, it is the App.xaml file that creates a PhoneApplicationService object (the same PhoneApplicationService object used for saving transient data) and assigns event handlers for four events:
The Launching event is fired when the program is first executed from the Start screen. The Deactivated event occurs when the program is tombstoned, and the Activated event occurs when the program is resurrected from tombstoning. The Closing event occurs when the program is really terminated, probably by the user pressing the Back button.
So, when a program starts up, it gets either a Launching event or an Activated event (but never both), depending whether it’s being started from the Start screen or coming out of a tombstoned state. When a program ends, it gets either a Deactivated event or a Closing event, depending whether it’s being tombstoned or terminated for real.
A program should load application settings during the Launching event and save them in response to the Closing event. That much is obvious. But a program should also save application settings during the Deactivated event because the program really doesn’t know if it will ever be resurrected. And if it is resurrected, it should load application settings during the Activated event because otherwise it won’t know about those settings.
Conclusion: application settings should be loaded during the Launching and Activated events and saved during the Deactivated and Closing events.
For the SilverlightIsolatedStorage program, I decided that the number of taps should continue to be treated as transient data—part of the state of the page. But the background color should be an application setting and shared among all instances.
In App.xaml.cs I defined the following public property:
Silverlight Project: SilverlightIsolatedStorage File: App.xaml.cs (excerpt)
Conceivably this can be one of many application settings that are accessible throughout the application.
App.xaml.cs already has empty event handlers for all the PhoneApplicationService events. I gave each handler a body consisting of a single method call:
Silverlight Project: SilverlightIsolatedStorage File: App.xaml.cs (excerpt)
Here are the LoadSettings and SaveSettings methods. Both methods obtain an IsolatedStorageSettings object. Like the State property of PhoneApplicationService, the IsolatedStorageSettings object is a dictionary. One method in the program loads (and the other saves) the Color property of the BackgroundBrush property with code that is similar to what you saw before.
Silverlight Project: SilverlightIsolatedStorage File: App.xaml.cs (excerpt)
And finally, here’s the new MainPage.xaml.cs file. This file—and any other class in the program—can get access to the App object using the static Application.Current property and casting it to an App. The constructor of MainPage obtains the BackgroundBrush property from the App class, and the OnManipulationStarted method sets that BackgroundBrush property.
Silverlight Project: SilverlightIsolatedStorage File: MainPage.xaml.cs (excerpt)
Because that background color has been upgraded from transient page data to an application setting, references to it have been removed in the OnNavigatedFrom and OnNavigatedTo overrides.
XNA applications aren’t normally built around pages like Silverlight applications. If you wanted, however, you could certainly implement your own page-like structure within an XNA program. You’ll recall that the state of the phone’s Back button is checked during every call to the standard Update override. You can use this logic for navigational purposes as well as for terminating the program. But that’s something I’ll let you work out on your own.
An XNA program can also make use of the same PhoneApplicationService class used by Silverlight programs for saving transient state information during tombstoning. An XNA program can also use this class to install handlers for the four PhoneApplicationService events: Launching, Activated, Deactivated, and Closing. You’ll need references both to the Microsoft.Phone library (for PhoneApplicationService itself) and System.Windows (for the lApplicationService interface that PhoneApplicationService implements). Within the Game1.cs file you’ll want a using directive for Microsoft.Phone.Shell.
In the constructor of the Game1 class you can obtain the PhoneApplicationService instance associated with the application through the static PhoneApplicationService.Current property.
The Game class also defines a couple handy virtual methods named OnActivated and OnDeactivated that are also useful for handling tombstoning. The OnActivated method is called during launching and re-activation, and OnDeactivated is called during deactivation and program closing, much like the OnNavigatedTo and OnNavigatedFrom virtual methods of a Silverlight page.
In the XnaTombstoning program that concludes this chapter I’ve tried to mimic the functionality and structure of the SilverlightIsolatedStorage program. The program uses the PhoneApplicationService events for saving and restoring application settings (a Color), and overrides of the OnDeactivated and OnActivated events for retaining transient data (the number of taps).
But I went a little further in providing a more generalized solution for application settings. I gave the XnaTombstoning project a dedicated Settings class that uses the more generalized features of isolated storage that involve real files rather than just simple settings. You’ll need a reference to System.Xml.Serialization library for this class as well using directives for the System.IO, System.IO.IsolatedStorage, and System.Xml.Serialization namespaces.
Silverlight Project: XnaTombstoning File: Settings.cs (excerpt)
The idea here is that an instance of this Settings class itself is serialized and saved in isolated storage in the Save method, and then retrieved from isolated storage and deserialized in the Load method. Notice that the Load method is static and returns an instance of the Settings class.
When an instance of this Settings class is serialized, all its public properties are serialized. This class has exactly one public property of type Color named BackgroundColor but it would be very easy to add more properties to this class as the application develops and gets more sophisticated.
In the Save method, the area of isolated storage reserved for this application is obtained from the static IsolatedStorageFile.GetUserStoreForApplication method. This method returns an object of type IsolatedStorageFile but the name is a little misleading. This IsolatedStorageFile object is closer in functionality to a file system than a file. You use the object to maintain directories, and to create and open files. A call to CreateFile returns an IsolatedStorageFileStream which here is used with an XmlSerializer object to serialize and save the file.
The Load method is a bit more complex because it’s possible that the program is being run for the very first time and the settings.xml file does not exist. In that case, the Load method creates a new instance of Settings.
Notice the constructor that initializes the properties to their default values, which in this case only involves the single public property named BackgroundColor. If you add a second public property for another application setting at some point, you’ll want to also specify a default value of that property in the constructor. The first time you run the new version of the program, that new property will be initialized in the constructor, but the Load method will retrieve a file that doesn’t have that property, so the new version smoothly integrates with the previous version.
Here’s another consideration: This scheme only works if the properties representing application settings are serializable. For a more complex program, that might not be the case. For objects that are not serializable but still must be saved to isolated storage, you can still include a property for that object in this file but you’ll want to flag that property definition with the [Xmllgnore] attribute. The property will be ignored for serialization purposes. Instead you’ll need to handle that property with special code in the Save and Load methods.
The remainder of the XnaTombstoning project lets you tap the screen and responds by displaying a new random background color and a count of the number of taps. The background color is treated as an application setting (as is evident by its inclusion in the Settings class) and the number of taps is a transient setting.
Here’s an excerpt of the Game1 class showing the fields, constructor, and PhoneApplicationService events:
Silverlight Project: XnaTombstoning File: Game1.cs (excerpt)
A Settings object named settings is saved as a field. The constructor attaches handlers for the four events of PhoneApplicationService and it is in the handlers for these events that the application settings are saved and loaded.
The LoadContent override contains nothing surprising:
Silverlight Project: XnaTombstoning File: Game1.cs (excerpt)
The Update method reads taps, updates the numTaps field, determines a new random color, and also prepares a StringBuilder object for displaying the number of taps:
Silverlight Project: XnaTombstoning File: Game1.cs (excerpt)
Notice that the new color is saved not as a field, but as the BackgroundColor property of the Settings instance. That property is then referenced in the Draw override:
Silverlight Project: XnaTombstoning File: Game1.cs (excerpt)
The transient value of the numTaps field is saved to and restored from the State dictionary of the PhoneApplicationService in overrides of OnActivated and OnDeactivated:
Silverlight Project: XnaTombstoning File: Game1.cs (excerpt)
It might seem a little arbitrary to save and restore application settings in one set of event handlers, and save and restore transient settings in another set of overrides to virtual methods, and in a practical sense it is arbitrary. The program will get a call to OnActivated about the same time the Launching and Activated events are fired, and a call to OnDeactivated about the same time the Deactivated and Closing events are fired. The differentiation is more conceptual in that OnActivated and OnDeactivated are associated with the Game instance, so they should be used for properties associated with the game rather than overall application settings.
It’s possible that you’ll need to save an unserializable object as a transient setting, but because it’s not serializable, you can’t use the State dictionary of the PhoneApplicationService class. You’ll need to use isolated storage for such an object, but you don’t want to accidently retrieve that object and reuse it when the program is run again. In this case, you’ll use a flag in the State dictionary indicating whether you need to load the transient object from isolated storage.
Programmers at Microsoft who have been writing Windows Phone 7 applications longer than many of us report that dealing with tombstoning can be one of the trickier aspects of phone development. The techniques I’ve shown you in this chapter illustrate a good starting point but all applications will have slightly different requirements. Surely you’ll want to do a lot of testing in your own programs, and it always helps to know exactly what methods of a program are being called and in what order. For this job, the Debug.WriteLine method of the System.Diagnostics namespace can be very helpful.
As you’ve seen, a Silverlight program is generally a mix of code and XAML. Most often, you’ll use XAML for defining the layout of the visuals of your application, and you’ll use code for event handling, including all user-input events and all events generated by controls as a result of processing user-input events.
Much of the object creation and initialization performed in XAML would traditionally be done in the constructor of a page or window class. This might make XAML seem just a tiny part of the application, but it turns out to be much more than that. As the name suggests, XAML is totally compliant XML, so it’s instantly toolable—machine writable and machine readable as well as human writable and human readable.
Although XAML is usually concerned with object creation and initialization, certain features of Silverlight provide much more than object initialization would seem to imply. One of these features is data binding, which involves connections between controls, or between controls and underlying data, so that properties are automatically updated without the need for explicit event handlers. Entire animations can also be defined in XAML.
Although XAML is sometimes referred to as a “declarative language,” it is certainly not a complete programming language. You can’t perform arithmetic in any generalized manner in XAML, and you can’t dynamically create objects in XAML.
Experienced programmers encountering XAML for the first time are sometimes resistant to it. I know I was. Everything that we value in a programming language such as C#—required declarations, strong typing, array-bounds checking, tracing abilities for debugging—largely goes away when everything is reduced to XML text strings. Over the years, however, I’ve gotten very comfortable with XAML, and I find it very liberating in using XAML for the visuals of the application. In particular I like how the parent-child relationship of controls on the surface of a window is mimicked by the parent-child structure inherent in XML. I also like the ability to experiment with XAML—even just in the Visual Studio designer.
Everything you need to do in Silverlight can be allocated among these three categories:
In both code and XAML you can instantiate classes and structures, and set the properties of these objects. A class or structure instantiated in XAML must be defined as public (of course), but it must also have a parameterless constructor. When XAML instantiates the class, it has no way of passing anything to the constructor. In XAML you can associate a particular event with an event handler, but the event handler itself must be implemented in code. You can’t make method calls in XAML because, again, there’s no way to pass arguments to the method.
If you want, you can write almost all of your Silverlight application entirely in code. However, page navigation is based around the existence of XAML files for classes that derive from PhoneApplicationPage, and there also is a very important type of job that must be done in XAML. This is the construction of templates. You use templates in two ways: First, to visually display data using a collection of elements and controls, and secondly, to redefine the visual appearance of a control while maintaining its functionality. You can write alternatives to templates in code, but you can’t write the templates themselves.
After some experience with Silverlight programming, you might decide that you want to use a design program such as Expression Blend to generate XAML for you. But I urge you—speaking programmer to programmer—to learn how to write XAML by hand. At the very least you need to know how to read the XAML that design programs generate for you.
One of the very nice features of XAML is that you can experiment with it in a very interactive manner, and by experimenting with XAML you can learn a lot about Silverlight. Programming tools designed specifically for experimenting with XAML are available. These programs take advantage of a static method named XamlReader.Load that can convert XAML text into an object at runtime. In Chapter 13 you’ll see an application that lets you experiment with XAML right on the phone!
Until then, however, you can experiment with XAML in the Visual Studio designer. Generally the designer responds promptly and accurately to changes you make in the XAML. Only when things get a bit complex will you actually need to build and deploy the application to see what it’s doing.
Before we get immersed in experimenting with XAML, however, I must issue another warning: As you get accustomed to using XAML exclusively for certain common chores, it’s important not to forget how to write C#!
You’ll recall the XAML version of the TextBlock in the Grid from Chapter 2:
Elements in XAML such as TextBlock are actually classes. Attributes of these elements (such as Text, HorizontalAlignment, and VerticalAlignment) are properties of the class. Let’s see how easy it is to write a TextBlock in code, and to also use code to insert the TextBlock into the XAML Grid.
The TapForTextBlock project creates a new TextBlock in code every time you tap the screen. The MainPage.xaml file contains a TextBlock centered with the content grid:
Silverlight Project: TapForTextBlock File: MainPage.xaml (excerpt)
The code-behind file for MainPage creates an additional TextBlock whenever you tap the screen. It uses the dimensions of the existing TextBlock to set a Margin property on the new TextBlock element to randomly position it within the content grid:
Silverlight Project: TapForTextBlock File: MainPage.xaml.cs (excerpt)
You don’t need to perform the steps precisely in this order: You can add the TextBlock to ContentPanel first and then set the TextBlock properties.
But this is the type of thing you simply can’t do in XAML. XAML can’t respond to events, it can’t arbitrarily create new instances of elements, it can’t make calls to the Random class, and it certainly can’t perform calculations.
You can also take advantage of a feature introduced in C# 3.0 to instantiate a class and define its properties in a block:
That makes the code look a little more like the XAML (except for the calculations and method calls to rand.NextDouble), but you can still see that XAML provides several shortcuts. In code the HorizontalAlignment and VerticalAlignment properties must be set to members of the HorizontalAlignment and VerticalAlignment enumerations, respectively. In XAML, you need only specify the member name.
Just looking at the XAML, it is not so obvious that the Grid has a property named Children, and that this property is a collection, and nesting the TextBlock inside the Grid effectively adds the TextBlock to the Children collection. The process of adding the TextBlock to the Grid must be more explicit in code.
To experiment with some XAML, it’s convenient to create a project specifically for that purpose. Let’s call the project XamlExperiment, and put a TextBlock in the content grid:
Silverlight Project: XamlExperiment File: MainPage.xaml (excerpt)
The text shows up in the upper-left corner of the page’s client area. Let’s make the text italic. You can do that by setting the FontStyle property in the TextBlock:
<TextBlock Text="Hello, Windows Phone 7!"
FontStyle="Italic" />
Alternatively, you can put that FontStyle attribute in the PhoneApplicationPage tag:
<phone: PhoneApplicationPage... FontStyle="Italic"...
This FontStyle attribute can go anywhere in the PhoneApplicationPage tag. Notice that setting the property in this tag affects all the TextBlock elements on the page. This is a feature known as property inheritance. Certain properties—not many more than Foreground and the font-related properties FontFamily, FontSize, FontStyle, FontWeight, and FontStretch—propagate through the visual tree. This is how the TextBlock gets the FontFamily, FontSize, and Foreground properties (and now the FontStyle property) set on the PhoneApplicationPage.
You can visualize property inheritance beginning at the PhoneApplicationPage object. The FontStyle is set on that object and then it’s inherited by the outermost Grid, and then the inner Grid objects, and finally by the TextBlock. This is a good theory. The problem with this theory is that Grid doesn’t have a FontStyle property! If you try setting FontStyle in a Grid element, Visual Studio will complain. Property inheritance is somewhat more sophisticated than a simple handing off from parent to child, and it is one of the features of Silverlight that is intimately connected with the role of dependency properties, which you’ll learn about in Chapter 11.
While keeping the FontStyle property setting to Italic in the PhoneApplicationPage tag, add a FontStyle setting to the TextBlock:
<TextBlock Text="Hello, Windows Phone 7!"
FontStyle="Norma1" />
Now the text in this particular TextBlock goes back to normal. Obviously the FontStyle setting on the TextBlock—which is referred to as a local value or a local setting—has precedence over property inheritance. A little reflection will convince you that this behavior is as it should be. Both property inheritance and the local setting have precedence over the default value. We can express this relationship in a simple chart:
Local Settings have precedence over
Property Inheritance, which has precedence over
Default Values
This chart will grow in size as we examine all the ways in which properties can be set.
Let’s remove any FontStyle settings that might stil be around, set the TextBlock attributes to these values:
Because this is XML, we can separate the TextBlock tag into a start tag and end tag with nothing in between:
But you can also do something that will appear quite strange initially. You can remove the FontSize attribute from the start tag and set it like this:
Now the TextBlock has a child element called TextBlock.FontSize, and within the TextBlock.FontSize tags is the value.
This is called property-element syntax, and it’s an extremely important part of XAML. The introduction of property-element syntax also allows nailing down some terminology that unites .NET and XML. This single TextBlock element now contains three types of identifiers:
When I first saw the property-element syntax, I wondered if it was some kind of XML extension. Of course it’s not. The period is a legal character for XML tags, so in terms of nested XML tags, these are perfectly legitimate. That they happen to consist of a class name and a property name is something known only to XAML parsers (machine and human alike).
One restriction, however: It is illegal for anything else to appear in a property-element tag:
Also, you can’t have both a property attribute and a property element for the same property, like this:
This is an error because the FontSize property is set twice.
If you look towards the top of MainPage.xaml, you’ll see another property element:
<Crid.RowDefinitions>
RowDefinitions is a property of Grid. In App.xaml, you’ll see two more:
<Application.Resources>
<Application.Applicationl_ifetimeObjects>
Both Resources and ApplicationLIfeTimeObjects are properties of Application.
Let’s return the TextBlock to its pristine condition:
The text shows up as white (or black, depending on the theme your selected) because the Foreground property is set on the root element in MainPage.xaml. You can override the user’s preferences by setting Background for the Grid and Foreground for the TextBlock:
The Grid has a Background property but no Foreground property. The TextBlock has a Foreground property but no Background property. The Foreground property is inheritable through the visual tree, and it may sometimes seem that the Background property is as well, but it is not. The default value of Background is null, which makes the background transparent. When the background is transparent, the parent background shows through, and that makes it seem as if the property is inherited.
A Background property set to null is visually the same as a Background property set to Transparent, but the two settings affect hit-testing differently, which affects how the element responds to touch. A Grid with its Background set to the default value of null cannot detect touch input! If you want a Grid to have no background color on its own but still respond to touch, set Background to Transparent. You can also do the reverse: You can make an element with a non-null background unresponsive to touch by setting the IsHitTestVisible property to false.
Besides the standard colors, you can write the color as a string of red, green, and blue one-byte hexadecimal values ranging from 00 to FF. For example:
Foreground="#FF0000"
That’s also red. You can alternatively specify four two-digit hexadecimal numbers where the first one is an alpha value indicating transparency: The value 00 is completely transparent, FF is opaque, and values in between are partially transparent. Try this value:
Foreground="#80FF0000"
The text will appear a somewhat faded magenta because the blue background shows through.
If you preface the pound sign with the letters sc you can use values between 0 and 1 for the red, blue, and green components:
Foreground="sc# 1 0 0"
You can also precede the three numbers with an alpha value between 0 and 1.
These two methods of specifying color numerically are not equivalent, as you can verify by putting these two TextBlocks in the same Grid:
Both color specifications seem to suggest medium gray, except that the one on the right is much lighter than the one on the left.
The colors you get with the hexadecimal specification are probably most familiar. The one-byte values of red, green, and blue are directly proportional to the voltages sent to the pixels of the video display. Although the light intensity of video displays is not linear with respect to voltage, the human eye is not linear with respect to light intensity either. These two non-linearities cancel each other out (approximately) so the text on the left appears somewhat medium.
With the scRGB color space, you specify values between 0 and 1 that are proportional to light intensity, so the non-linearity of the human eye makes the color seem off. If you really want a medium gray in scRGB you need values much lower than 0.5, such as:
Foreground="sc# 0.2 0.2 0.2"
Let’s go back to one TextBlock in the Grid:
Just as I did earlier with the FontSize property, break out the Foreground property as a property element:
When you specify a Foreground property in XAML, a SolidColorBrush is created for the element behind the scenes. You can also explicitly create the SolidColorBrush in XAML:
You can also break out the Color property as a property element:
And you can go even further:
Notice that the A property of the Color structure needs to be explicitly set because the default value is 0, which means transparent.
This excessive use of property elements might not make much sense for simple colors and SolidColorBrush, but the technique becomes essential when you need to use XAML to set a property with a value that can’t be expressed as a simple text string—for example, when you want to use a gradient brush rather than a SolidColorBrush.
Let’s begin with a simple solid TextBlock but with the Background property of the Grid broken out as a property element:
Remove that SolidColorBrush and replace it with a LinearGradientBrush:
The LinearGradientBrush has a property of type GradientStops, so let’s add property element tags for the GradientStops property:
The GradientStops property is of type GradientStopCollection, so let’s add tags for that:
Now let’s put a couple GradientStop objects in there. The GradientStop has properties named Offset and Color:
And with the help of property elements, that is how you create a gradient brush in markup. It looks like this:
The Offset values range from 0 to 1 and they are relative to the element being colored with the brush. You can use more than two:
Conceptually the brush knows the size of the area that it’s coloring and adjusts itself accordingly.
By default the gradient starts at the upper-left corner and goes to the lower-right corner, but that’s only because of the default settings of the StartPoint and EndPoint properties of LinearGradientBrush. As the names suggest, these are coordinate points relative to the upper-left corner of the element being colored. For StartPoint the default value is the point (0, 0), meaning the upper-left, and for EndPoint (1, 1), the lower-right. If you change them to (0, 0) and (0, 1), for example, the gradient goes from top to bottom:
Each point is just two numbers separated by space or a comma. There are also properties that determine what happens outside the range of the lowest and highest Offset values if they don’t go from 0 to 1.
LinearGradientBrush derives from GradientBrush. Another class that derives from GradientBrush is RadialGradientBrush. Here’s markup for a larger TextBlock with a RadialGradientBrush set to its Foreground property:
And here’s what the combination looks like:
Everyone knows that XML can be a little “wordy.” However, the markup I’ve shown you with the gradient brushes is a little wordier than it needs to be. Let’s look at the RadialGradientBrush I originally defined for the TextBlock:
First, if you have at least one item in a collection, you can eliminate the tags for the collection itself. This means that the tags for the GradientStopCollection can be removed:
Moreover, many classes that you use in XAML have something called a ContentProperty attribute. This word “attribute” has different meanings in .NET and XML; here I’m talking about the .NET attribute, which refers to some additional information that is associated with a class or a member of that class. If you look at the documentation for the GradientBrush class—the class from which both LinearGradientBrush and RadialGradientBrush derive—you’ll see that the class was defined with an attribute of type ContentPropertyAttribute:
[ContentPropertyAttribute("GradientStops", true)]
public abstract class GradientBrush : Brush
This attribute indicates one property of the class that is assumed to be the content of that class, and for which the property-element tags are not required. For GradientBrush (and its descendents) that one property is GradientStops. This means that the RadialGradientBrush.GradientStops tags can be removed from the markup:
Now it’s not quite as wordy but it’s still comprehensible. The two GradientStop objects are the content of the RadialGradientBrush class.
Earlier in this chapter I created a TextBlock in code and added it to the Children collection of the Grid. In XAML, we see no reference to this Children collection. That’s because the ContentProperty attribute of Panel—the class from which Grid derives—defines the Children property as the content of the Panel:
[ContentPropertyAttribute("Children", true)]
public abstract class Panel : FrameworkElement
If you want to get more explicit in your markup, you can include a property element for the Children property:
Similarly, PhoneApplicationPage derives from UserControl, which also has a ContentProperty attribute:
[ContentPropertyAttribute("Content", true)]
public class UserControl : Control
The ContentProperty attribute of UserControl is the Content property. (That sentence makes more sense when you see it on the page rather than when you read it out load!)
Suppose you want to put two TextBlock elements in a Grid, and you want the Grid to have a LinearGradientBrush for its Background. You can put the Background property element first within the Grid tags followed by the two TextBlock elements:
It’s also legal to put the two TextBlock elements first and the Background property element last:
But putting the Background property element between the two TextBlock elements simply won’t work:
The precise problem with this syntax is revealed when you put in the missing property elements for the Children property of the Grid:
Now it’s obvious that the Children property is being set twice—and that’s clearly illegal.
In one sense, computer programming is all about the avoidance of repetition. (Or at least repetition by us humans. We don’t mind if our machines engage in repetition. We just want it to be efficient repetition.) XAML would seem to be a particularly treacherous area for repetition because it’s just markup and not a real programming language, You can easily imagine situations where a bunch of elements have the same HorizontalAlignment or VerticalAlignment or Margin settings, and it would certainly be convenient if there were a way to avoid a lot of repetitive markup. If you ever needed to change one of these properties, changing it just once is much better than changing it scores or hundreds of times.
Fortunately XAML has been designed by programmers who (like the rest of us) prefer not to type in the same stuff over and over again.
The most generalized solution to repetitive markup is the Silverlight style. But a prerequisite to styles is a more generalized sharing mechanism. This is called the resource, and right away we need to distinguish between the resources I’ll be showing you here, and the resources encountered in Chapter 4 when embedding images into the application. Whenever there’s a chance of confusion, I will refer to the resources in this chapter as XAML resources, even though they can exist in code as well.
XAML resources are always instances of a particular .NET class or structure, either an existing class or structure or a custom class. When a particular class is defined as a XAML resource, only one instance is made, and that one instance is shared among everybody using that resource.
The sharing of resources immediately disqualifies many classes from being defined as XAML resources. For example, a single instance of TextBlock can’t be used more than once because the TextBlock must have a unique parent and a unique location within that parent. And that goes for any other element as well. Anything derived from UIElement is probably not going to show up as a resource because it can’t be shared.
However, it is very common to share brushes. This is a typical way to give a particular application a certain consistent and distinctive visual appearance. Animations are also candidates for sharing. It’s also possible to share text strings and numbers. Think of these as the XAML equivalents of string or numeric constants in a C# program. When you need to change one of them, you can just change the single resource rather than hunting through the XAML to change a bunch of individual occurrences.
To support the storage of resources, FrameworkElement defines a property named Resources of type ResourceDictionary. On any element that derives from FrameworkElement, you can define Resources as a property element. By converntion this appears right under the start tag. Here’s a Resources collection for a page class that derives from PhoneApplicationPage:
The collection of resources within those Resources tags is sometimes called a resource section, and anything in that particular PhoneApplicationPage can then use those resources.
The Application class also defines a Resources property, and the App.xaml file that Visual Studio creates for you in a new Silverlight application already includes an empty resource section:
The resources defined in the Resources collection on a FrameworkElement are available only within that element and nested elements; the resources defined in the Application class are available throughout the application.
Let’s suppose your page contains several TextBlock elements, and you want to apply the same LinearGradientBrush to the Foreground of each of them. This is an ideal use of a resource.
The first step is to define a LinearGradientBrush in a resource section of a XAML file. If you’re defining the resource in a FrameworkElement-derivative, the resource must be defined before it is used, and it can only be accessed by the same element or a nested element.
Notice the x:Key attribute. Every resource must have a key name. There are only four keywords that must be prefaced with “x” and you’ve already seen three of them: Besides x:Key they are x:Class, x:Name and x:Null.
Accessing that resource is possible with a couple kinds of syntax. The rather verbose way is to break out the Foreground property of the TextBlock as a property element and set it to an object of type StaticResource referencing the key name:
There is, however, a shortcut syntax that makes use of what is called a XAML markup extension. A markup extension is always delimited by curly braces. Here’s what the StaticResource markup extension looks like:
<TextBlock Text="Hello, Windows Phone 7!"
Foreground="{StaticResource brush}" />
Notice that within the markup extension the word “brush” is not in quotation marks. Quotation marks within a markup extension are always prohibited.
Suppose you want to share a Margin setting. The Margin is of type Thickness, and in XAML you can specify it with 1, 2, or 4 numbers. Here’s a Thickness resource:
Suppose you want to share a FontSize property. That’s of type double, and you’re going to need a little help. The Double structure, which is the basis for the double C# data type, is defined in the System namespace, but the XML namespace declarations in a typical XAML file only refer to Silverlight classes in Silverlight namespaces. What’s needed is an XML namespace declaration for the System namespace in the root element of the page, and here it is:
xmlns:system="clr-namespace:System;assembly=mscorlib"
This is the standard syntax for associating an XML namespace with a .NET namespace. First, make up an XML namespace name that reminds you of the .NET namespace. The word “system” is good for this one; some programmers use “sys” or just “s.” The hyphenated “clrnamespace” is followed by a colon and the .NET namespace name. If you’re interested in referencing objects that are in the current assembly, you’re done. Otherwise you need a semicolon followed by “assembly=” and the assembly, in this case the standard mscorlib.lib (“Microsoft Common Runtime Library”).
Now you can have a resource of type double:
The ResourceSharing project defines all three of these resources and references them in two TextBlock elements. Here’s the complete resource section:
Silverlight Project: ResourceSharing File: MainPage.xaml (excerpt)
The content grid contains the two TextBlock elements:
Silverlight Project: ResourceSharing File: MainPage.xaml (excerpt)
The screen shot demonstrates that it works:
The Resources property is a dictionary, so within any resource section the key names must be unique. However, you can re-use key names in different resource collections. For example, try inserting the following markup right after the start tag of the content grid:
This resource will override the one defined on MainPage. Resources are searched going up the visual tree for a matching key name, and then the Resources collection in the App class is searched. For this reason, the Resources collection in App.xaml is an excellent place to put resources that are used throughout the application.
If you put that little piece of markup in the Grid named “LayoutRoot” it will also be accessible to the TextBlock elements because this Grid is an ancestor. But if you put the markup in the StackPanel entitled “TitlePanel,” (and changing Grid to StackPanel in the process) it will be ignored. Resources are searched going up the visual tree, and that’s another branch.
This little piece of markup will also be ignored if you put it in the content grid but after the two TextBlock elements. Now it’s not accessible because it’s lexicographically after the reference.
If you need to reference a XAML resource from code, you can simply index the Resources property with the resource name. For example, in the MainPage.xaml.cs code-behind file, this code will retrieve the resource named “brush” stored in the Resources collection of MainPage:
this.Resources["brush"]
You would then probably cast that object to an appropriate type, in this case either Brush or LinearGradientBrush. Because the Resources collection isn’t built until the XAML is processed, you can’t access the resource before the InitializeComponent call in the constructor of the code-behind file.
If you have resources defined in other Resource collections in the same XAML file, you can retrieve those as well. For example, if you’ve defined a resource named “margin” in the Resources collection of the content grid, you can access that resource using:
ContentPanel.Resources["margin"]
If no resource with that name is found in the Resources collection of an element, then the Resources collection of the App class is searched. If the resource is not found there, then the indexer returns null.
Due to a legacy issue involving Silverlight 1.0, you can use x:Name rather than using x:Key to identify a resource:
There is one big advantage to this: The name is stored as a field in the generated code file so you can reference the resource in the code-behind file just like any other field:
txtblk.Foreground = brush;
This is a much better syntax for sharing resources between XAML and code. However, if you use x:Name for a resource, that name must be unique in the XAML file.
One very common item in a Resources collection is a Style, which is basically a collection of property assignments for a particular element type. Besides a key, the Style also requires a TargetType:
Between the start and end tags go one or more Setter definitions. Setter has two properties: One is actually called Property and you set it to a property name. The other is Value. A few examples:
Suppose you also want to include a Setter for the Foreground property but it’s a LinearGradientBrush. There are two ways to do it. If you have a previously defined resource with a key of “brush” (as in the ResourceSharing project) you can reference that:
<Setter Property="Foreground" Value="{StaticResource brush}" />
Or, you can use property-element syntax with the Value property to embed the brush right in the Style definition. That’s how it’s done in the Resources collection of the StyleSharing project:
Silverlight Project: StyleSharing File: MainPage.xaml (excerpt)
To apply this style to an element of type TextBlock, set the Style property (which is defined by FrameworkElement so every kind of element has it):
Silverlight Project: StyleSharing File: MainPage.xaml (excerpt)
The display looks the same as the previous program, which teaches an important lesson. Notice that values of HorizontalAlignment and VerticalAlignment are defined in the Style, yet these are overridden by local settings in the two TextBlock elements. But the Foreground set in the Style overrides the value normally inherited through the visual tree.
That means that the little chart I started earlier in this chapter can now be enhanced slightly.
Local Settings have precedence over
Style Settings, which have precedence over
Property Inheritance, which has precedence over
Default Values
Styles can enhance or modify other styles through the process of inheritance. Set the Style property BasedOn to a previously defined Style. Here’s the Resources collection of the StyleInheritance project:
Silverlight Project: Stylelnheritance File: MainPage.xaml (excerpt)
The two new Style definitions at the end override the HorizontalAlignment and VerticalAlignment properties set in the earlier style. This allows the two TextBlock elements to reference these two different styles:
Silverlight Project: StyleInheritance File: MainPage.xaml (excerpt)
Implicit styles, which were introduced into Silverlight 4, are not supported in Silverlight for Windows Phone.
Windows Phone 7 predefines many resources that you can use throughout your application with the StaticResource markup extension. There are predefined colors, brushes, font names, font sizes, margins, and text styles. Some of them show up in the root element of MainPage.xaml to supply the defaults for the whole page:
FontFamily="{StaticResource PhoneFontFamilyNormal}"
FontSize="{StaticResource PhoneFontSizeNormal}"
Foreground="{StaticResource PhoneForegroundBrush}"
You can find all these predefined themes in the Themes section of the Windows Phone 7 documentation. You should try to use these resources particularly for foreground and background brushes so you comply with the user’s wishes, and you don’t inadvertently cause your text to become invisible. Some of the predefined font sizes may be different when the small-screen phone is released, and these differences might help you port your large-screen programs to the new device.
What happens if the user navigates to the Settings page of the phone and sets a different theme while your program is running? Well, the only way this can happen is if your program is tombstoned at the time, and when your program is reactivated, it starts up from scratch and hence references the new colors automatically.
The color theme that the user selects includes a foreground and background (either white on a black background or black on a white background) but also an accent color: magenta, purple, teal, lime, brown, pink, orange, blue (the default), red, or green. This color is available as the PhoneAccentColor resource, and a brush based on this color is available as PhoneAccentBrush.
You might want to use the user’s preferred accent color in your program, but as a gradient brush. In other words, you want the same hue, but you want to get darker or lighter versions. In code, this is fairly easy by manipulating the red, green, and blue components of the color.
It’s also fairly easy in XAML, as the GradientAccent project demonstrates:
Silverlight Project: GradientAccent File: MainPage.xaml (excerpt)
Here it is:
You can get a more subtle affect by changing the gradient offsets. These can actually be set outside the range of 0 to 1, perhaps like this:
Now the gradient goes from White at an offset of –1 to the accent color at 0.5 to Black at 2. But you’re only seeing the section of the gradient between 0 and 1, so the White and Black extremes are not here:
It’s just another little suggestion that XAML can be more powerful than it might at first seem.
You’ve already seen several examples of TextBlock and Image, which are surely two of the most important elements supported by Silverlight. This chapter explores text and bitmaps in more depth, and also describes other common elements and some important properties you can apply to all these elements, including transforms. This lays the groundwork for the subject of Panel elements that provide the basis of Silverlight’s dynamic layout system (in the next chapter) and then the huge subject of controls (Chapter 10).
The System.Windows.Shapes namespace includes elements for displaying vector graphics—the use of straight lines and curves for drawing and defining filled areas. Although the subject of vector graphics awaits us in Chapter 13, two of the classes in this namespace—Ellipse and Rectangle—are a little different from the others in that you can use them without specifying any coordinate points.
Go back to the XamlExperiment program from the Chapter 7 and insert this Ellipse element into the content grid:
You’ll see a blue ellipse with a red outline fill the Grid:
Now try setting HorizontalAlignment and VerticalAlignment to Center. The Ellipse disappears. What happened?
This Ellipse has no intrinsic minimum size. When allowed to, it will assume the size of its container, but if it’s forced to become small, it will become as small as possible, which is nothing at all. This is one case where explicitly setting Width and Height properties of an element is appropriate and often necessary.
The terms stroke and fill are common in vector graphics. The basis of vector graphics is the use of coordinate points to define straight lines and curves. These are mathematical entities that only become visible by being stroked with a particular color and line thickness. The lines and curves might also defined enclosed areas, in which case this area can be filled. Both the Fill property and the Stroke property of Ellipse are of type Brush, so you can set either or both to gradient brushes.
It is very common to set the Width property of an Ellipse to the Height to create a circle. The Fill can then be set to a RadialGradientBrush that starts at White in the center and then goes to a gradient color at the perimeter. Normally the gradient center is the point (0.5, 0.5) relative to the ball’s dimension, but you can offset that like so:
The offset white spot looks like reflection from a light source, suggesting a three dimensional shape:
The Rectangle has the same properties as Ellipse except that Rectangle also defines RadiusX and RadiusY properties for rounding the corners.
Until the advent of the Windows Presentation Foundation and Silverlight, transforms were mostly the tools of the graphics mavens. Mathematically speaking, transforms apply a simple formula to all the coordinates of a visual object and cause that object to be shifted to a different location, or change size, or be rotated.
In Silverlight, you can apply transforms to any object that descends from UIElement, and that includes text, bitmaps, movies, panels, and all controls. The property defined by UIElement that makes transforms possible is RenderTransform, which you set to an object of type Transform. Transform is an abstract class, but it is the parent class to seven non-abstract classes:
The whole subject of transforms can be quite complex, particularly when transforms are combined, so I’m really only going to show the basics here. Very often, transforms are used in combination with animations. Animating a transform is the most efficient way that an animation can be applied to a visual object.
Suppose you have a TextBlock and you want to make it twice as big. That’s easy: Just double the FontSize. Now suppose you want to make the text twice as wide but three times taller. The FontSize won’t help you there. You need to break out the RenderTransform property as a property element and set a ScaleTransform to it:
Most commonly, you’ll set the RenderTransform property of an object of type TranslateTransform, ScaleTransform, or RotateTransform. If you know what you’re doing, you can combine multiple transforms in a TransformGroup. In two dimensions, transforms are expressed as 3×3 matrices, and combining transforms is equivalent to matrix multiplication. It is well known that matrix multiplication is not commutative, so the order that transforms are multiplied makes a difference in the overall effect.
Although TransformGroup is normally an advanced option, I have nevertheless used TransformGroup in a little project named TransformExperiment that allows you to play with the four standard of transforms. It begins with all the properties set to their default values;
Silverlight Project: TransformExperiment File: MainPage.xaml (excerpt)
You can experiment with this program right in Visual Studio. At first you’ll want to try out each type of transform independently of the others. Although it’s at the bottom of the group, try TranslateTransform first. By setting the X property you can shift the text right or (with negative values) to the left. The Y property makes the text go down or up. Set Y equal to -400 or so and the text goes up into the title area!
TranslateTransform is useful for making drop shadows. and effects where the text seems embossed or engraved. Simply put two TextBlock elements in the same location with the same text, and all the same text properties, but different Foreground properties. Without any transforms, the second TextBlock sits on top of the first TextBlock. On one or the other, apply a small ScaleTransform and the result is magic. The EmbossedText project demonstrates this technique. Here are two TextBlock elements in the same Grid:
Silverlight Project: EmbossedText File: MainPage.xaml (excerpt)
Notice I’ve used theme colors for the two Foreground properties. With the default dark theme, the TextBlock underneath is white, and the one on top is black like the background but shifted a little to let the white one peak through a bit:
Generally this technique is applied to black text on a white background, but it looks pretty good with this color scheme as well.
Back in the TransformExperiment project, set the TranslateTransform properties back to the default values of 0, and experiment a bit with the ScaleX and ScaleY properties of the ScaleTransform. The default values are both 1. Larger values make the text larger in the horizontal and vertical directions; values smaller than 1 shrink the text. You can even use negative values to flip the text around its horizontal or vertical axes.
All scaling is relative to the upper-left corner of the text. In other words, as the text gets larger or smaller, the upper-left corner of the text remains in place. This might be a little hard to see because the upper-left corner that remains in place is actually a little above the horizontal stroke of the first ‘T’ in the text string, in the area reserved for diacritics such as accent marks and heavy-metal umlauts.
Suppose you want to scale the text relative to another point, perhaps the textt’s center. That’s the purpose of the CenterX and CenterY properties of the ScaleTransform. For scaling around the center of the text, you can estimate the size of the text (or obtain it in code using the ActualWidth and ActualHeight properties of the TextBlock), divide the values by 2 and set CenterX and CenterY to the results. For the text string in TransformExperiment, try 96 and 13, respectively. Now the scaling is relative to the center.
But there’s a much easier way: TextBlock itself has a RenderTansformOrigin property that it inherits from UIElement. This property is a point in relative coordinates where (0, 0) is the upper-left corner, (1, 1) is the lower-right corner, and (0.5, 0.5) is the center. Set CenterX and CenterY in the ScaleTransform back to 0, and set RenderTransformOrigin in the TextBlock like so:
RenderTransformOrigin="0.5 0.5"
Leave RenderTransformOrigin at this value when you set the ScaleX and ScaleY properties of ScaleTransform back to the default values of 1, and play around with RotateTransform. As with scaling, rotation is always relative to a point. You can use CenterX and CenterY to set that point in absolute coordinates relative to the object being rotated, or you can use
RenderTransformOrigin to use relative coordinates. The Angle property is in degrees, and positive angles rotate clockwise. Here’s rotation of 45 degrees around the center.
The SkewTransform is hard to describe but easy to demonstrate. Here’s the result when AngleX is set to 30 degrees:
The X coordinates are shifted to the right based on values of Y so as Y becomes larger (at the bottom of the text) values of X also increase. Use a negative angle to simulate oblique (italic-like) text. Setting AngleY causes vertical shifting based on increasing X coordinates. Here’s AngleY set to 30 degrees:
All the transforms that derive from Transform are categorized as affine (“non-infinite”) transforms. A rectangle will never be transformed into anything other than a parallelogram.
It’s easy to convince yourself that the order of the transforms makes a difference. For example, in TransformExperiment on the ScaleTransform set ScaleX and ScaleY to 4, and on the TranslateTransform set X and Y to 100. The text is being scaled by a factor of 4 and then translated 100 pixels. Now cut and paste the markup to move the TranslateTransform above the ScaleTransform. Now the text is first translated by 100 pixels and then scaled, but the scaling applies to the original translation factors as well, so the text is effectively translated by 400 pixels.
It is sometimes tempting to put a Transform in a Style, like so:
You can then manipulate that transform from code, perhaps. But watch out: resources are shared. There will be only one instance of the TranslateTransform that is shared among all elements that use the Style. Hence, changing the transform for one element will also affect the others! If that’s what you want, sharing the transform through the Style is ideal.
If you have a need to combine transforms in the original order that I had them in TransformExperiment—the order scale, skew, rotate, translate—you can use CompositeTransform to set them all in one convenient class.
Let’s make a clock. It won’t be a digital clock, but it won’t be entirely an analog clock either. That’s why I call it HybridClock. The hour, minute, and second hands are actually TextBlock objects that are rotated around the center of the content grid. Here’s the XAML:
Silverlight Project: HybridClock File: MainPage.xaml (excerpt)
Notice the SizeChanged handler on the Grid. The code-behind file will use this to make calculation adjustments based on the size of the Grid, which will depend on the orientation.
Of the four TextBlock elements in the same Grid, the first is transparent and used solely by the code part of the program for measurement. The other three TextBlock elements are colored through property inheritance, and have default CompositeTransform objects attached to their RenderTransform properties. The code-behind file defines a few fields that will be used throughout the program, and the constructor sets up a DispatcherTimer, for which you’ll need a using directive for System.Windows.Threading:
Silverlight Project: HybridClock File: MainPage.xaml.cs (excerpt)
HybridClock uses the SizeChanged handler to determine the center of the ContentPanel, and the size of the TextBlock named referenceText. (The latter item won’t change for the duration of the program.) From these two items the program can calculate a scaling factor that will expand the referenceText so it is exactly as wide as half the smallest dimension of the Grid, and the other TextBlock elements proportionally.
The timer callback obtains the current time and calculates the angles for the second, minute, and hour hands relative to their high-noon positions. Each hand gets a call to SetupHand to do all the remaining work.
The CompositeTransform must perform several chores. The translation part must move the TextBlock elements so the beginning of the text is positioned in the center of the Grid. But I don’t want the upper-left corner of the text to be positioned in the center. I want a point that is offset by that corner by half the height of the text. That explains the TranslateX and TranslateY properties. Recall that in the CompositeTransform the translation is applied last; that’s why I put these properties at the bottom of the method, even though the order that these properties are set is irrelevant.
Both ScaleX and ScaleY are set to the scaling factor calculated earlier. The angle parameter passed to the method is relative to the high-noon position, but the TextBlock elements are positioned at 3:00. That’s why the Rotation angle offsets the angle parameter by –90 degrees. Both scaling and rotation are relative to CenterX and CenterY, which is a point at the left end of the text, but offset from the upper-left corner by half the text height. Here’s the clock in action:
Windows Phone also supports the Projection transform introduced in Silverlight 3, but it’s almost exclusively used in connection with animations, so I’ll hold off on Projection until Chapter 15.
The use of the DispatcherTimer with a one-second interval makes sense for the HybridClock program because the positions of the clock hands need to be updated only once per second. But switching to a sweep second hand immediately raises the question: How often should the clock hands be updated? Considering that the second hand only needs to move a few pixels per second, setting the timer for 250 milliseconds would probably be fine, and 100 milliseconds would be more than sufficient.
It’s helpful to keep in mind that the video display of Windows Phone 7 devices is refreshed about 30 times per second, or once every 33-1/3 milliseconds. Therefore, the use of a timer with a tick rate shorter than 33-1/3 milliseconds makes no sense whatsoever for video animations.
A timer that is synchronous with the video refresh rate is ideal for animations, and Silverlight provides one in the very easy-to-use CompositionTarget.Rendering event. The event handler looks something like this:
Although the event handler must be defined with an EventArgs argument, the argument is actually a RenderingEventArgs object. If you cast the argument to a RenderingEventArgs, you can get a TimeSpan object that indicates the elapsed time since the application began running.
CompositionTarget is a static class with only one public member, which is the Rendering event. Install the event handler like so:
CompositionTarget.Rendering += OnCompositionTargetRendering;
Unless you’re coding a very animation-laden game, you probably don’t want this event handler installed for the duration of your program, so uninstall it when you’re done:
CompositionTarget.Rendering -= OnCompositionTargetRendering;
The RotatingText project contains a TextBlock in the center of its content grid:
Project: RotatingText File: MainPage.xaml (excerpt)
Notice the x:Name attribute on the RotateTransform. You can’t use Name here because that’s defined by FrameworkElement. The code-behind file starts a CompositionTarget.Rendering event going in its constructor:
Project: RotatingText File: MainPage.xaml.cs (except)
The event handler uses the renderingTime to pace the animation so there’s one revolution every two seconds.
For simple repetitive animations like this, the use of Silverlight’s built-in animation facility (which I’ll discuss in Chapter 15) is greatly preferred over CompositionTarget.Rendering.
Transforms are also a good way to handle manipulation events. Here’s a ball sitting in the middle of the content grid:
Silverlight Project: DragAndScale File: Page.xaml
Notice the CompositeTransform. It has no name so the code will have to reference it through the Ellipse element. (This is a good strategy to use if you’re handling more than one element in a single event handler.)
The code-behind file just handles the ManipulationDelta event from the Ellipse:
For handling anything other than taps, the ManipulationDelta event is crucial. This is the event that consolidates one or more fingers on an element into translation and scaling information. The ManipulationDeltaEventArgs has two properties named CumulativeManipulation and DeltaManipulation, both of type ManipulationDelta, which has two properties named Translation and Scale.
Using DeltaManipulation is often easier than CumulativeManipulation. If only one finger is manipulating the element, then only the Translation factors are valid, and these can just be added to the TranslateX and TranslateY properties of the CompositeTransform. If two fingers are touching the screen, then the Scale values are non-zero, although they could be negative and they’re often unequal. To keep the circle a circle, I use the maximum and multiply by the existing scaling factors of the transform. This enables “pinch” and “stretch” manipulations.
The XAML file sets the transform center to the center of the ellipse; in theory it should be based on the position and movement of the two fingers, but this is a rather more difficult thing to determine.
The TextBlock doesn’t include any kind of border that you can draw around the text. Fortunately Silverlight has a Border element that you can use to enclose a TextBlock or any other type of element. The Border has a property named Child of type UIElement, which means you can only put one element in a Border; however, the element you put in the Border can be a panel, and you can then add multiple elements to that panel.
If you load the XamlExperiment program from the last chapter into Visual Studio, you can put a TextBlock in a Border like so:
The Child property is the ContentProperty attribute of Border so the Border.Child tags are not required. Without setting any HorizontalAlignment and VerticalAlignment properties, the Border element occupies the entire area of the Grid, and the TextBlock occupies the entire area of the Border, even though the text itself sits at the upper-left corner. You can center the TextBlock within the Border:
Or, you can center the Border within the Grid:
At this point, the Border contracts in size to become only large enough to fit the TextBlock. You can also set the HorizontalAlignment and VerticalAlignment properties of the TextBlock but they would now have no effect. You can give the TextBlock a little breathing room inside the border by either setting the Margin or Padding property of the TextBlock, or the Padding property of the Border:
And now we have an attractive Border surrounding the TextBlock. The BorderThickness property is of type Thickness, the same structure used for Margin or Padding, so you can potentially have four different thicknesses for the four sides. The CornerRadius property is of type CornerRadius, a structure that also lets you specify four different values for the four corners. The Background and BorderBrush properties are of type Brush, so you can use gradient brushes.
If you want a Border with a “normal” thickness, you can use one of the pre-defined resources:
<Border BorderThickness="{StaticResource PhoneBorderThickness}"
This is 3 pixels in width. The PhoneStrokeThickness resource also provides that same value.
What happens if you set a RenderTransform on the TextBlock? Try this:
Here’s what you get:
The RenderTransform property is called a render transform for a reason: It only affects rendering. It does not affect how the element is perceived in the layout system. (The Windows Presentation Foundation has a second property named LayoutTransform that does affect layout. If you were coding in WPF and set the LayoutTransform in this case, the Border would expand to fit the rotated text, although it wouldn’t be rotated itself. But Silverlight does not yet have a LayoutTransform and, yes, it is sometimes sorely missed.)
Your spirits might perk up, however, when you try moving the RenderTransform (and RenderTransformOrigin) from the TextBlock to the Border, like this:
Transforms affect not only the element to which they are applied, but all child elements as this screen shot makes clear:
This means that you can apply transforms to whole sections of the visual tree, and within that transformed visual tree you can have additional compounding transforms.
Although I’ve been talking about the TextBlock since the early pages of this book, it’s time to look at it in just a little bit more detail. The TextBlock element has five font-related properties: FontFamily, FontSize, FontStretch, FontStyle, and FontWeight.
As you saw earlier, you can set FontStyle to either Normal or Italic. In theory, you can set FontStretch to values such as Condensed and Expanded but I’ve never seen these work in Silverlight. Generally you’ll set FontWeight to Normal or Bold, although there are other options like Black, SemiBold, and Light.
TextBlock also has a TextDecorations property. Although this property seems to be very generalized, in Silverlight there is only one option:
TextDecorations="Underline"
The TextBlock property I’ve used most, of course, is Text itself. The string you set to the Text property can include embedded Unicode characters in the standard XML format, for example:
Text="π is approximately 3.14159"
If the Text property is set to a very long string, you might not be able to see all of it. You can insert the codes for carriage return or line feed characters (
 or
) or you can set
TextWrapping="Wrap"
and TextAlignment to Left, Right, or Center (but not Justify). You can also set the text as a content of the TextBlock element:
However, you might be surprised to learn that the ContentProperty attribute of TextBlock is not the Text property but an entirely different property named Inlines. This Inlines property is of type InlineCollection—a collection of objects of type Inline, namely LineBreak and Run. These make TextBlock much more versatile. The use of LineBreak is simple:
Run is interesting because it too has FontFamily, FontSize, FontStretch, FontStyle, FontWeight, Foreground, and TextDecorations properties, so you can make your text very fancy:
In the Visual Studio design view, you might see the text within the Run tags not properly separated from the text outside the Run tags. This is an error. When you actually run the program in the emulator, it looks fine:
These are vector-based TrueType fonts, and the actual vectors are scaled to the desired font size before the font characters are rasterized, so regardless how big the characters get, they still seem smooth.
Although you might think of a TextBlock as sufficient for a paragraph of text, it doesn’t provide all the features that a proper Paragraph class provides, such as first-line text indenting or a hanging first line where the rest of the paragraph is indented. I don’t know of a way to accomplish the second feat, but the first one is actually fairly easy, as I’ll demonstrate in the next chapter.
The use of the Inlines property allows us to write a program that explores the FontFamily property. In XAML you can set FontFamily to a string. (In code you need to create an instance of the FontFamily class.) The default is called “Portable User Interface”. On the phone emulator, this default font maps seems to map to Segoe WP—a Windows Phone variant of the Segoe font that is a frequently found in Microsoft products and printed material, including this very book.
The FontFamilies program lists all the FontFamily values that Visual Studio’s Intellisense tells us are valid:
Silverlight Project: FontFamilies File: MainPage.xaml
Here’s the result:
If you misspell a name that you assign to FontFamily, nothing bad will happen; you’ll just get the default.
The predefined resources include four keys that return objects of type FontFamily: PhoneFontFamilyNormal, PhoneFontFamilyLight, PhoneFontFamilySemiLight, and PhoneFontFamilySemiBold. These return the corresponding Segoe WP fonts.
As you saw in Chapter 4, a Silverlight program can display bitmaps in the JPEG and PNG formats with the Image element. Let’s explore the Image element a little more.
The ImageExperiment project contains a folder named Images containing a file named BuzzAldrinOnTheMoon.png, which is the famous photograph taken with a Hasselblad camera by Neil Armstrong on July 21st, 1969. The photo is 288 pixels square.
The file is referenced in the MainPage.xaml file like this:
Silverlight Project: ImageExperiment File: MainPage.xaml (excerpt)
I’ve also give the content grid a Background brush of the accent color just to make the photo stand out a little better. Here’s how it appears in landscape mode:
By default, the bitmap expands to the size of its container (the content grid in this case) while maintaining the correct aspect ratio. Depending on the dimensions and aspect ratio of the container, the image is centered either horizontally or vertically. You can move it to one side or the other with the HorizontalAlignment and VerticalAlignment properties.
The stretching behavior is governed by a property defined by the Image element named Stretch, which is set to a member of the Stretch enumeration. The default value is Uniform, which you can set explicitly like this:
<Image Source="Images/BuzzAldrinOnTheMoon.png"
Stretch="Uniform" />
The term “uniform” here means equally in both directions so the image is not distorted.
You can also set Stretch to Fill to make the image fill its container by stretching unequally.
A compromise is UniformToFill:
Now the Image both fills the container and stretches uniformly to preserve the aspect ratio. How can both goals be accomplished? Well, in general the only way that can happen is by cropping the image. You can govern which edge gets cropped with the HorizontalAlignment and VerticalAlignment properties. What setting you use really depends on the particular image.
The fourth option is None for no stretching. Now the image is displayed in its native size of 288 pixels square:
If you want to display the image in a particular size at the correct aspect ratio, you can set either an explicit Width or Height property. If you want to stretch non-uniformly to a particular dimension, specify both Width and Height and set Stretch to Fill.
You can set transforms on the Image element with the same ease that you set them on TextBlock elements:
Here it is:
Almost as easy as displaying bitmaps is playing a movie. However, due to their size, video files are almost never included in an executable and almost always are played from a web connection. You can play a movie from my Web site in ImageExperiment by replacing the Image element with a MediaElement
The default value of the AutoPlay property defined by MediaElement is true, so the movie begins playing as soon as a sufficient amount has been buffered.
In Chapter 10 I’ll show you how to use MediaPlayer with buttons that allow controlling it like a DVD player.
UIElement defines an Opacity property that you can set to a value between 0 and 1 to make an element (and its children) more or less transparent. But a somewhat more interesting property is OpacityMask, which can “fade out” part of an element. You set the OpacityMask to an object of type Brush; most often you’ll use one of the two GradientBrush derivatives. The actual color of the brush is ignored. Only the alpha channel is used to govern the opacity of the element.
For example, you can apply a RadialGradientBrush to the OpacityMask property of an Image element:
Notice that the RadialGradientBrush is opaque in the center, and continues to be opaque until a radius of 0.8, at which point the gradient goes to fully transparent at the edge of the circle. Here’s the result, a very nice effect that looks much fancier than the few lines of XAML would seem to imply:
Here’s a popular technique that uses two identical elements but one of them gets both a ScaleTransform to flip it upside down, and an OpacityMask to make it fade out:
The two Image elements are the same size and aligned at the top and center. Normally the second one would be positioned on top of the other. But the second one has a RenderTransform set to a ScaleTransform that flips the image around the horizontal axis. The RenderTransformOrigin is set at (0.5, 1), which is the bottom of the element. This causes the scaling to flip the image around its bottom edge. Then a LinearGradientBrush is applied to the OpacityMask property to make the reflected image fade out:
Notice that the GradientStop values apply to the unreflected image, so that full transparency (the #00000000 value) seems to be at the top of the picture and then is reflected to the bottom of the composite display.
It is often little touches like these that make a program’s visuals pop out just a little more and endear themselves to the user.But indiscriminate use of OpacityMask—particularly in combination with complex animations—is discouraged because it sometimes tends to cripple performance. The general rule is: Only use OpacityMask if the effect is really, really cool.
You’ve seen examples of SolidColorBrush, LinearGradientBrush, and RadialGradientBrush. This class hierarchy is complete from Brush on down:
However, the only other brush supported under Windows Phone 7 is ImageBrush, and although it derives from TileBrush, you can’t create a tiled pattern with it. (You can in the Windows Presentation Foundation, and perhaps someday in Silverlight.) Basically, ImageBrush lets you set any property of type Brush to a bitmap. Here’s ImageExperiment again but with the Image element replaced with an ImageBrush set to the Background property of the content grid:
Like Image, TileBrush defines a Stretch property, but the default value is Fill, so the image fills the area without regard to aspect ratio.
One of the most important classes in all of Silverlight is Panel—the class that plays a starring role in the Silverlight layout system. You might expect such a crucial class to define many properties and events, but Panel defines only three properties on its own:
The first one is simple, and the third one is get-only and involves its role in ListBox and related classes.
The big one is the Children property. In the previous chapter you saw that the Border class defines a property named Child of type UIElement. This Children property defined by the Panel is of type UIElementCollection. Huge difference!
The Border doesn’t have a whole lot of decision-making regarding its single child. The child element is inside the Border and that’s about it. But a panel can host multiple children, and it can do this in a variety of ways. Perhaps the panel aligns the children in a stack, or a grid, or perhaps it docks the children on its edges, or puts them in a circle, or displays them like a fanned deck of cards, or arranges them in a carousel.
For this reason, the Panel class itself is abstract. This class hierarchy is complete from Panel onwards:
The three standard types of panels provided by Silverlight for Windows Phone are StackPanel (probably the simplest kind of panel), Grid (which is the first choice for most routine layout), and Canvas, which should be ignored for most routine layout jobs, but has some special characteristics that make it handy sometimes.
The Silverlight for Windows Phone Toolkit includes a WrapPanel, which is rather similar to the right side of Windows Explorer.
I’ll show you a sample program using InkPresenter in the next chapter. The VirtualizingPanel option is discussed in Chapter 17 in connection with items controls, and the others (as their names suggest) are for specialized purposes in connection with the Panorama and Map controls.
You’ve already seen the Grid and StackPanel in the standard MainPage.xaml, and you’ve probably deduced that panels can be nested. Panels are the primary architectural elements of the Silverlight page.
You can also write your own panels. I’ll show you the basics in this chapter, and then more sophisticated panels in the chapters ahead.
A Grid is generally arranged in rows and columns, but you’ve seen in previous chapters that you can put multiple children in a single-cell Grid. Here’s a simple example for reference purposes:
Silverlight Project: GridWithFourElements File: MainPage.xaml (excerpt)
All four elements are given the entire content area in which to reside:
With regard to size, the elements here are all a little different. The sizes of the two TextBlock elements are governed by the text being displayed and the size of the font. The Image element displays the bitmap in the maximum size allowed by the dimensions of the Grid but maintaining the proper aspect rate. The Ellipse just sprawls out as much as it can.
The elements overlap in the order in which they appear in the markup, which is the order that they are added to the Children collection of the Grid. I’ve set the SupportedOrientations property on the Page to PortraitOrLandscape so you can turn the phone sideways and the elements shift around:
Here are the same four elements in a StackPanel, which is nested in the content grid:
Silverlight Project: StackPanelWithFourElements File: MainPage.xaml (excerpt)
By default, the StackPanel arranges its children in a stack from top to bottom. The children do not overlap:
The text displayed by the two TextBlock elements now seems a little peculiar: The first TextBlock is at the top of the display because that’s the first one in the Children collection. The HorizontalAlignment property moves it over to the right, but the VerticalAlignment property (which indicates Bottom) is obviously being ignored, and similarly for the other TextBlock. The width of the Image element occupies the full width of the StackPanel. It still has the correct aspect ratio, and now only requires enough vertical space to accommodate its height.
Both the TextBlock and Image elements only occupy the minimum vertical space that they require, and the Ellipse... well, the Ellipse has totally disappeared. You might find that shocking, but reasonable. The Ellipse doesn’t really require any vertical space at all, and that’s exactly what it’s received. (If you set the Height property of Ellipse to a positive number, you’ll bring it back into view.)
Changing the orientation of the phone provides the Image with a greater width that it matches with a height that preserves the aspect ratio of the bitmap, but in doing so pushes most of the bitmap off the screen, together with the second TextBlock:
As you know, the ability of the page to respond to portrait and landscape orientation changes is governed by the SupportedOrientations property of the PhoneApplicationPage class. The property is set to a member of the SupportedPageOrientation enumeration. PhoneApplicationPage defines another property named Orientation which is set to a member of the PageOrientation enumeration to indicate whether the orientation of the phone is currently portrait or landscape.
The StackPanel has its own Orientation property, but it has nothing to do with page orientation. The Orientation property of StackPanel is set to a member of the Orientation enumeration, either Horizontal or Vertical. The default is Vertical, but the StackPanelWithFourElements program toggles the StackPanel orientation when you tap the screen. Here’s the code to do it:
Silverlight Project: StackPanelWithFourElements File: MainPage.xaml.cs (excerpt)
The Orientation enumeration has to be fully qualified or the compiler thinks you’re referring to the Orientation property defined by PhoneApplicationPage.
One tap and the elements are arranged from left to right:
The HorizontalAlignment of the first TextBlock is now ignored, and the VerticalAlignment puts it down at the bottom. The Image gets such a big height that most of it is off screen. We can get a little better view (including the second TextBlock) by turning the phone sideways:
The StackPanel occupies the full interior of the content grid, even if that that’s more than what its children require. You can easily verify this by setting a Background on the StackPanel. The StackPanel fills its parent container because the default values of the HorizontalAlignment and VerticalAlignment properties are the default values of Stretch.
You can set other HorizontalAlignment or VerticalAlignment properties on the StackPanel to force it to use only as much space as necessary, and position it within the content grid. Here’s a Background of Pink and a VerticalAlignment property of Center:
In this particular program, the HorizontalAlignment property of the StackPanel has no effect.
A StackPanel with a horizontal orientation can concatenate text. This is demonstrated in the TextConcatenation project:
Silverlight Project: TextConcatenation File: MainPage.xaml (excerpt)
Here it is:
It might seem rather silly to concatenate text in this way, but it’s actually a very useful technique. Sometimes a program has some fixed text defined in XAML, mixed with some variable text from code or a data binding. The StackPanel does a nice job of piecing it together without any extraneous spacing. (In some cases you can alternatively use a TextBlock with its Inlines property set to multiple Run objects, but you’ll see in Chapter 12 that Run can’t be used with data bindings.)
Suppose you wanted the background color of the concatenated text to extend a little further beyond the boundaries of the text. You can’t do it with a Margin property on the StackPanel because that’s space outside the element. StackPanel doesn’t have a Padding property (alas), so you’d need to set Margin properties or Padding properties on all the individual TextBlock elements, and that doesn’t sound like fun.
An easier solution is to put the StackPanel in a Border element, and move all the alignment and Background settings to that Border:
Now you get a nice comfortable background with rounded corners:
It’s possible to nest one StackPanel in another, which makes most sense if they’re of different orientations. Here’s a program with two verticals in one horizontal:
Silverlight Project: StackPanelTable File: MainPage.xaml (excerpt)
The single Margin setting serves to separate the two columns just a bit:
Notice that each vertical StackPanel is as wide as its widest child, and as tall as the sum of the heights of its children. The horizontal StackPanel is aligned in the center of the display and is as wide as the sum of its two children.
This is not the best way to make a table! It only seems to work reasonably well because the TextBlock elements are all of equal height. If they weren’t, then the rows would not line up as well as they do.
The UIElement class defines a property named Visibility that’s handy for temporariliy hiding elements that you don’t want to be visible all the time. The Visibility property is not a Boolean, however. It’s of type Visibility, an enumeration with two members, Visible and Collapsed.
In the previous program, set the Visibility property on one of the elements:
<TextBlock Text="Left, Top, ZIndex" Visibility="Collapsed" />
The value of Collapsed causes the element to have a zero size, and it effectively no longer participates in layout. In some cases that’s exactly what you want, but in this particular case it results in a table with rows that no longer line up correctly:
If you want to hide an element but you still want it to have a non-zero size in the layout, don’t use the Visibility property. Use Opacity instead:
<TextBlock Text="Left, Top, ZIndex" Opacity="0" />
Now the TextBlock has the correct size but is otherwise invisible:
That’s almost correct. One possible problem is that the TextBlock will still respond to touch input. If you want to completely hide it from both sight and touch, use:
Opacity is not nearly as efficient as Visibility when used for layout purposes, so try to avoid it if you’re doing something that requires frequent layout cycles. (And if you’re wondering why Visibility is not a Boolean, it’s because of the Windows Presentation Foundation. In WPF, the Visibility enumeration has a third member named Invisible, which hides the element visually but retains its size for layout purposes.)
The Visibility and Opacity properties apply to an element and the element’s children, so if you set these properties on a panel, they apply to the panel’s children as well.
If you set a RenderTransform property on a panel, the panel’s children will also be affected by the transform. However, if you set a RenderTransform on a child of a panel, then the parent panel will ignore any effects the RenderTransform has when laying out its children.
If the StackPanel has more elements than can be displayed on the screen (or in whatever container the StackPanel happens to find itself), the elements towards the bottom (or right) won’t be displayed.
If you fear that the phone’s screen is not large enough to fit all the children of your StackPanel, you can put the StackPanel in a ScrollViewer, a control that determines how large its content needs to be, and provides a scrollbar or two.
Actually, on Windows Phone 7, the scrollbars are more virtual than real. You don’t actually scroll the ScrollViewer with the scrollbars. You use your fingers instead. Still, it’s convenient to refer to scrollbars, so I will continue to do so.
By default, the vertical scrollbar is visible and the horizontal scrollbar is hidden, but you can change that with the VerticalScrollBarVisibility and HorizontalScrollBarVisibility properties. The options are members of the ScrollBarVisibility enumeration: Visible, Hidden, Auto (visible only if needed), and Disabled (visible but not responsive).
The next program is an ebook reader. Well, not exactly an ebook reader. It’s more like an eshort reader, and I guess it’s not very versatile: It displays a little humor piece written by Mark Twain in 1880 and believed to be the first description of the experience of listening to a person talk on the telephone without hearing the other side of the conversation. (The woman talking on the telephone is Mark Twain’s wife, Olivia.)
I enhanced the customary application title a little bit to put it in a different color and make it two lines:
Silverlight Project: TelephonicConversation File: MainPage.xaml (excerpt)
The content grid includes its own Resources collection with a Style defined. The Grid contains a ScrollViewer, which contains a StackPanel, which contains all the TextBlock elements of the story, one for each paragraph. Notice the strict division of labor: The TextBlock elements display the text; the StackPanel provides the stacking; the ScrollViewer provides the scrolling:
Silverlight Project: TelephonicConversation File: MainPage.xaml (excerpt)
This is not the whole file, of course. The bulk of the story has been replaced by an ellipsis (...).
ScrollViewer is given a Padding value of 5 pixels so the StackPanel doesn’t go quite to the edges; in addition, each TextBlock gets a Margin property of 5 pixels through the Style. The result of padding and margin contributes to a composite space on both the left and right sides of 10 pixels, and 10 pixels also separate each TextBlock, making them look more like distinct paragraphs and aiding readability
I also put a Unicode character   at the beginning of each paragraph. This is the Unicode em-space and effectively indents the first line by about a character width.
By default, ScrollViewer provides vertical scrolling. The control responds to touch, so you can easily scroll through and read the whole story.
The PublicClasses program coming up next also has a ScrollViewer containing a vertical StackPanel, but it fills up that StackPanel entirely in code. Using reflection, the code-behind file obtains all the public classes exposed by the System.Windows, Microsoft.Phone, Microsoft.Phone.Controls, and Microsoft.Phone.Controls.Maps assemblies, and lists them in a class hierarchy.
In preparation for this job, the XAML file contains an empty StackPanel identified by name:
Silverlight Project: PublicClasses File: MainPage.xaml (excerpt)
By default, the VerticalScrollBarVisibility is Visible, but I’ve given the HorizontalScrollBarVisibility property a value of Auto. If any line of text in the StackPanel is too long to be displayed on the screen, horizontal scrolling will be allowed to bring it into view.
This horizontal scrolling represents a significant difference between this program and the previous one. You don’t want horizontal scrolling when text is wrapped into paragraphs as it is in the TelephonicConversation project. But in this program, non-wrapped lines are displayed that might be wider than the width of the display, so horizontal scrollbar is desirable.
The code-behind file makes use of a separate little class named ClassAndChildren to store the tree-structured classes:
Silverlight Project: PublicClasses File: ClassAndChildren.cs
The program creates a ClassAndChildren object for each class that is displayed in the tree, and each ClassAndChildren object contains a List object with all the classes that derive from that class.
Here’s the complete code portion of the MainPage class. It needs a using directive for System.Reflection.
Silverlight Project: PublicClasses File: MainPage.xaml.cs (excerpt)
The constructor starts out storing all the public classes from the major Silverlight assemblies in a big collection. These are then sorted by name, and apportioned into ClassAndChildren objects in a recursive method. A second recursive method adds TextBlock elements to the StackPanel. Notice that each TextBlock element has an Inlines collection with two Run objects. An earlier version of the program wasn’t very easy to read, so I decided the namespace name should be in a different color, and for convenience I used the accent color chosen by the user.
Here’s the portion of the class hierarchy showing Panel and its derivatives:
I want you to perform a little experiment. Go into the XAML file of the TelephonicConversation project and insert the following setting into the ScrollViewer tag:
HorizontalScrollBarVisibility="Visible"
Almost immediately you’ll see a startling change. All the TextBlock elements become long single lines of text with no wrapping. What happened? How does setting a property on the ScrollViewer have such a profound effect on the individual TextBlock elements?
In a sense, this behavior shouldn’t be surprising: If the ScrollViewer has a horizontal scrollbar, it must exist for some purpose, and it has no purpose if the words of each TextBlock wrap into paragraphs. If the horizontal scrollbar is to have some function, then the paragraphs should consist of single lines.
But it would be nice to have a better grasp on this actual mechanism, and not only to understand this particular peculiarity. Getting a good feel for the layout system is one of the most important Silverlight programming skills you can acquire. The layout system is very powerful, but for the uninitiated, it can also seem quite strange.
Layout in Silverlight is a two-pass process starting at the top of the visual tree and working down through all the elements’ children. In a Silverlight phone application, it begins with the PhoneApplicationFrame, then the PhoneApplicationPage, then most likely a Grid and then (usually) a StackPanel and a second Grid. In Telephonic Conversation, the process continues into the ScrollViewer, which probably contains its own Border, and then eventually the StackPanel, and finally the TextBlock elements. These TextBlock elements have no children so that’s the end of the line.
During the first pass, every element in the tree is responsible for querying its children to obtain their desired size. In the second pass, elements are responsible for arranging their children relative to their surface. The arrangement can be trivial or complex. For example, a Border has only one child and need only take account of its own BorderThickness to determine where to position that child relative to itself. But Panel derivatives must arrange their children in unique ways.
When a parent queries the size of its children, it effectively says “Here’s an available size for you. How big do you want to be?” and each child calculates its desired size. All sizes are in the form of a Size structure with Width and Height properties. If that child itself has children, then the child must determine its own size by querying its children’s sizes, until the process gets down to elements like TextBlock that have no children.
Elements determine their own size in various ways depending on the nature of the element. A TextBlock, for example, might be displaying a long piece of text and might have its TextWrapping property set to Wrap. In that case, the TextBlock looks at the Width property of the available size and determines where lines should break. It then knows how many lines it needs to display and how much vertical space is required for all those lines. This is how the TextBlock calculates its desired size.
But there’s also an odd complication: A parent presents its children with an available size using the Size structure, which has two properties named Width and Height of type double. Sometimes the parent could set the Width or Height (or both) to that special floating-point value Double.PositiveInfinity. The parent is basically saying: “Child, I am offering you an infinite width [or an infinite height, or both] to play around in. How much of that do you need?”
The child cannot respond “I want it all!” as children sometimes tend to do. That’s not allowed. The child must claim a desired size that is finite and non-negative.
This is how the StackPanel queries the size of its children. A vertical StackPanel offers to each of its child an available size with a width that is equal to its own width, but a height of infinity.
But there’s a paradox here: Some elements, such as the TextBlock and Image, have some kind of intrinsic size, which is the size of the formatted text or the size of the unscaled bitmap. Others, like the Ellipse, do not have an intrinsic size. When an Ellipse is given a specific size, it will display itself at that size. But when the Ellipse is offered an infinite size, it has no choice but to shrink itself into nothingness.
To understand the precise mechanism at work here, it will be extremely useful to actually create some simple panels.
Panels are written entirely in code. There is no XAML involved. When you write a Panel derivative, you’ll probably be defining a couple properties to make the panel more flexible. Because these properties are almost always dependency properties, I’ll wait until Chapter 11 to show you how to write panels with their own properties.
Apart from defining those custom properties, a panel always overrides two methods: MeasureOverride and ArrangeOverride, which correspond to the two passes of layout. The first pass is for each parent to determine the size of its children; the second pass is for the parent to arrange its children relative to itself.
For both these jobs, the panel accesses the Children property that your panel inherits from Panel. (The Children property is of type UIElementCollection, but you can’t instantiate a UIElementCollection yourself, and the object performs some special jobs under the covers that you don’t know about, so you really can’t create your own Panel-like class without deriving from Panel. If you need an element that can host multiple children in a flexible manner, derive from Panel.)
The big mystery regarding panels is: Who would ever make up names like MeasureOverride and ArrangeOverride for protected virtual methods? Why is the C# keyword override in the method name?
I don’t know. The names originated in the Windows Presentation Foundation and involve the difference between the UIElement class and the FrameworkElement class. UIElement implements a comparatively simple layout system, and to support that layout system, it has two methods named Measure and Arrange. These methods are still vitally important in layout (as you’ll see) but FrameworkElement needed to add some more complicated concepts to layout, namely HorizontalAlignment, VerticalAlignment, and Margin. These concepts make the layout system rather messier, so FrameworkElement added two new methods called MeasureOverride and ArrangeOverride to supersede the Measure and Arrange methods in UIElement.
MeasureOverride and ArrangeOverride are protected virtual methods. Measure and Arrange are public sealed methods. Your panel overrides MeasureOverride and ArrangeOverride. In MeasureOverride, the panel calls Measure on all its children; within ArrangeOverride the panel calls Arrange on all its children. These Measure and Arrange methods in each child then internally call the MeasureOverride and ArrangeOverride methods in the child, which continues the process down the tree.
A panel does not need to worry about the following properties that might be set on itself or its children:
These properties are all handled automatically in various ways.
Perhaps the simplest panel of all is the Grid that contains no rows or columns, commonly referred to as a “single-cell Grid.” I’ve been using the Grid named ContentPanel as a single-cell Grid; as you’ve seen, the Grid can host multiple children, but they overlap within the same area.
Let’s duplicate the functionality of a single-cell Grid with a class named SingleCellGrid.
In a new project named SingleCellGridDemo, I right-clicked the project name, selected Add and New Item from the menu, and picked Class from the dialog box, naming it SingleCellGrid.cs. In the file, I made sure the class was public and derived from Panel.
Silverlight Project: SingleCellGridDemo File: SingleCellGrid.cs (excerpt)
Like all panels, this class overrides the two methods MeasureOverride and ArrangeOverride. Here’s the first:
Silverlight Project: SingleCellGridDemo File: SingleCellGrid.cs (excerpt)
The argument to MeasureOverride is called availableSize of type Size, a structure that has two properties named Width and Height of type double. This is the size that the panel is getting from its parent. One or both of these dimensions might be infinite.
The MeasureOverride method has two fundamental jobs:
The first job is to call Measure on all its children. This is essential; otherwise, the children will have no size and will not appear on the screen. MeasureOverride almost always performs this job by enumerating through the Children collection with a foreach loop.
The second job of the MeasureOverride method is to return a size that the panel wants to be. In this MeasureOverride method, that size is the variable called compositeSize. This size must have finite non-negative dimensions. The MeasureOverride method cannot simply return the availableSize argument under the assumption that it wants all the space it’s being offered because the availableSize argument might have infinite dimensions.
By the time the MeasureOverride method is called, this availableSize argument has been adjusted in some ways. If the panel has a Margin set on it, this availableSize excludes that Margin. If any of the Width, MinWidth, MaxWidth, Height, MinHeight, or MaxHeight properties are set on the panel, then the availableSize is constrained by those values.
The two jobs of MeasureOverride are usually performed in concert: When the panel calls Measure on each of its children, it offers to each child an available size. This size might have infinite dimensions. The Size argument passed to the Measure method depends on the paradigm of the particular panel. In this particular case, the SingleCellGrid offers to each of its children its own availableSize:
child.Measure(availableSize);
The panel is allowing each child to exist in the same area as itself. It’s no problem if this availableSize argument has infinite dimensions.
When Measure returns, the child’s DesiredSize property has been set and has a valid value. This is how the parent determines the size the child wants to be. This DesiredSize property was calculated by the child’s Measure method after calling its own MeasureOverride method, which possibly interrogated its own children’s sizes. The MeasureOverride method doesn’t need to bother itself with Margin settings, or explicit Width or Height settings. The Measure method does that, and adjusts DesiredSize appropriately. If the child has a Margin setting, for example, the DesiredSize includes that additional amount.
Some examples: The MeasureOverride method of a TextBlock returns the size of the text displayed in a particular font. The MeasureOverride method of an Image element returns the native pixel dimensions of the bitmap. The MeasureOverride method of an Ellipse returns a size of zero.
The DesiredSize property is always finite. The MeasureOverride method in SingleCellGrid uses each child’s DesiredSize property to determine a maximum size that it stores in the local variable compositeSize:
compositeSize.Width = Math.Max(compositeSize.Width, child.DesiredSize.Width);
compositeSize.Height = Math.Max(compositeSize.Height, child.DesiredSize.Height);
This size reflects the largest width of all the children and the largest height.
The other method required in a Panel derivative is ArrangeOverride. Here’s the one in the SingleCellGrid class:
Silverlight Project: SingleCellGridDemo File: SingleCellGrid.cs (excerpt)
The ArrangeOverride method receives an argument called finalSize. This is the area that the panel has been given by its parent. It always has finite dimensions.
The job of the ArrangeOverride method is to arrange its children on its surface. This is accomplished by enumerating through all its children and calling Arrange on them. The Arrange method requires an argument of type Rect—a rectangle defined by a Point indicating an upper-left corner and a Size indicating a width and height. This is normally the only appearance of a Rect in the layout process. The Rect specifies both the location of the child relative to the upper-left corner of the parent, and the size of the child.
In this particular case, all children are positioned at the upper-left corner of the panel and given a size of finalSize, the same size as the panel itself
You might think that the size passed to Arrange should be the DesiredSize of the child, but that’s not correct (at least for this particular panel). Very often this finalSize will be larger than the DesiredSize of the child. (In an extreme case, consider an Ellipse with a DesiredSize of zero.) This is how adjustments are made in the child’s Arrange method for HorizontalAlignment and VerticalAlignment. In SingleCellGrid, the child’s Arrange method is called with a size of finalSize:
child.Arrange(new Rect(new Point(), finalSize));
The Arrange method compares that size with the child’s own DesiredSize, and then calls the child’s ArrangeOverride method with an altered size and position based on the HorizontalAlignment and VerticalAlignment settings. That’s how the Ellipse gets a non-zero size when its DesiredSize is zero.
The ArrangeOverride method almost always returns the finalSize argument, which is the value returned from the method in the base Panel class.
Now to test it out. The MainPage.xaml file in the SingleCellGridDemo project needs to reference this custom class. In the root element, an XML namespace declaration associates the name “local” with the .NET namespace used by the project:
xmlns:local="clr-namespace:SingleCellGridDemo"
The MainPage.xaml file nests the SingleCellGrid in the content grid, and then fills it with the same four elements from the first two programs in this chapter:
Silverlight Project: SingleCellGridDemo File: MainPage.xaml (excerpt)
You’ll discover that this program displays the elements the same way as the earlier GridWithFourElements program.
The next Panel derivative I’ll show you is the StackPanel, and you’ll see how it differs from the single-cell Grid. To keep the code simple, and to avoid defining properties, I’m going to call this custom class VerticalStackPanel. Here’s the MeasureOverride method:
Silverlight Project: VerticalStackPanelDemo File: VerticalStackPanel.cs (exerpt)
As usual, the MeasureOverride method loops through all its children and calls Measure on each of them. But notice that the Size offered to each child here consists of the width of the VerticalStackPanel itself and a height of infinity.
The children are essentially being asked how tall they need to be. For TextBlock, this is easy: It’s the height of the text. The Ellipse is easy as well: It’s zero. The Image element, however, calculates a height based on maintaining the correct aspect ratio with the specified width, which might be a different size than in the single-cell Grid.
As in the SingleCellGrid version of MeasureOverride, the Width property of the local compositeSize variable is based on the maximum child width. But in this panel the Height property of compositeSize is accumulated. The VerticalStackPanel needs to be as tall as the sum of the heights of all its children.
If VerticalStackPanel is itself in a StackPanel with a Horizontal orientation, then the Width property of availableSize will be infinite, and Measure will be called on each child with a size that is infinite in both directions. This is fine, and it’s not something that needs to be handled as a special case.
In SingleCellGrid, the ArrangeOverride method positioned each of its children in the same location. The VerticalStackPanel needs to stack its children. For that reason, it defines local variables named x and y:
Silverlight Project: VerticalStackPanelDemo File: VerticalStackPanel.cs (exerpt)
The x variable remains 0 throughout but the y variable is incremented based on the Height property of each child’s DesiredSize. The Arrange measure is called with x and y indicating the location of the child relative to the panel’s upper-left corner. The Width property of this Rect is the Width property of finalSize, but the Height property is the Height of the child’s DesiredSize. This is how much vertical space was previously allocated for each child in the MeasureOverride method. Giving the child its own desired height in the Arrange method essentially voids any VerticalAlignment property set on the child—an effect we discovered empirically in earlier explorations of the vertical StackPanel.
In general, for either the horizontal or vertical dimension or both, if you offer a child an infinite dimension in MeasureOverride, you’ll be sizing that dimension of the child based on DesiredSize in ArrangeOverride.
The MainPage.xaml file in the VerticalStackPanelDemo project is the same as the one I showed at the outset of this chapter but using VerticalStackPanel:
Silverlight Project: VerticalStackPanelDemo File: MainPage.xaml (exerpt)
The display is the same as the earlier program.
When this VerticalStackPanel is inside the content grid, its MeasureOverride method gets the same dimensions as the content grid itself (less any Margin that might be set on the VerticalStackPanel). This is a finite dimension that you actually saw in the SilverlightWhatSize program in Chapter 2.
But put the VerticalStackPanel (or a vertical StackPanel) in a ScrollViewer and something quite different happens. By default, the ScrollViewer displays a vertical scrollbar, so the ScrollViewer (or rather, one of its children) calls Measure on the StackPanel with a finite width but an infinite height. The DesiredHeight of the vertical StackPanel then gives ScrollViewer the information it needs for the vertical scrollbar parameters.
When you set the HorizontalScrollBarVisibility property of ScrollViewer to Visible or Auto, the ScrollViewer calls Measure on the StackPanel with an infinite width to determine the desired width of the panel. The ScrollViewer uses this information to set its horizontal scrollbar parameters. The StackPanel then passes this infinite width to the MeasureOverride calls to its own children. This has the potential of affecting children of the StackPanel in perhaps unanticipated ways.
For example, when a TextBlock has its TextWrapping property set to Wrap, it uses the availableSize.Width value in its own MeasureOverride call to determine how many lines will result from text wrapping. But if availableSize.Width is infinite—as it will be if the TextBlock is somewhere inside a ScrollViewer that has an enabled horizontal scrollbar—then TextBlock has no choice but to return a size with the text not wrapped at all.
This is why, in the TelephonicConversation program, it’s not a good idea to enable the horizontal scrollbar on the ScrollViewer.
The Canvas is certainly the most old-fashioned sort of panel. To position elements within the Canvas you supply horizontal and vertical coordinates relative to the top-left corner.
The Canvas has two unusual characteristics:
The first item means that children of a Canvas are always displayed in their smallest possible sizes, which is nothing at all for an Ellipse and Rectangle, and the native pixel size of a bitmap for an Image. Any Horizontal Alignment of VerticalAlignment properties set on children of a Canvas have no effect.
The second item implies that Canvas has no footprint of its own in the Silverlight layout system. (You can override that with explicit Width or Height settings on the Canvas.) This is actually very useful in some circumstances where you want an element to exist somewhere “outside” of the layout system and not affect the positioning of other elements.
Here’s a program that uses a Canvas to display seven Ellipse elements in a type of overlapping chain in the shape of a catenary. A Style object (defined in the Resources collection of the Canvas itself) gives each Ellipse a finite Width and Height; otherwise they would not show up at all.
Silverlight Project: EllipseChain File: MainPage.xaml (excerpt)
Notice I’ve removed the Margin on the content panel so the math comes out to 480. Here’s what it look like:
The Canvas is ideal for the arbitrary positioning of elements, which of course is much more associated with vector graphics programming than with control layout.
But get a load of that odd-looking syntax, rather different from anything in XAML I’ve yet described:
<Ellipse Style="{StaticResource ellipseStyle}"
Canvas.Left="190" Canvas.Top="107" />
Those Left and Top properties position the upper-right corner of the element relative to the upper-right corner of the Canvas. The properties appear to be defined by the Canvas class, and yet they are set on the Ellipse element! When I first saw this syntax many years ago, I was baffled. Why does the Canvas class need to define Left and Top properties? Shouldn’t FrameworkElement define these properties?
Of course, in graphical programming environments of days gone by, everybody has Left and Top properties because that’s how the system works.
But it doesn’t quite make sense for Silverlight. Canvas needs for its children to have Left and Top properties set, but other panels do not. In fact, other panels—including custom panels that you have yet to write or even conceive—might need quite different properties set on their children.
For this reason, Silverlight supports the concept of attached properties. The Left and Top properties are indeed defined by the Canvas class (and you’ll see exactly how in Chapter 11) but you set these properties on the children on the Canvas. (You can set them on elements that are not actually children of a Canvas, but they will be ignored.)
It’s instructive to look at a program that sets these attached properties in code. The EllipseMesh program creates a bunch of overlapping ellipses in the content grid. The XAML file has an empty Canvas with a SizeChanged event handler assigned:
Silverlight Project: EllipseMesh File: MainPage.xaml (excerpt)
Although Canvas has no footprint in the layout system, it still has a size and a SizeChanged event. With every SizeChanged call, the event handler empties out the Canvas (just for convenience) and fills it up again with new Ellipse objects:
Silverlight Project: EllipseMesh File: MainPage.xaml.cs (excerpt)
Here’s what it looks like:
These two statements set the Left and Top attached properties:
Canvas.SetLeft(ellipse, x);
Canvas.SetTop(ellipse, y);
These are two static methods defined by the Canvas class. You can call these methods either before or after you add the child to the Children collection of the Canvas. Because these methods are static, you can even call them when a Canvas object does not yet exist.
Even more revealing is knowing how these two static methods are defined in the Canvas class. Right in the EllipseMesh program you can replace the two static method calls with the following statements:
ellipse.SetValue(Canvas.LeftProperty, x);
ellipse.SetValue(Canvas.TopProperty, y);
These equivalent calls make it clear that something is actually being set on the Ellipse objects. The SetValue method is defined by DependencyObject—a very basic class in the Silverlight class hierarchy—and LeftProperty and RightProperty are (despite their names) actually static fields of type DependencyProperty defined by Canvas.
My guess is that SetValue accesses an internal dictionary created and maintained by DependencyObject where the first argument to SetValue is the dictionary key and the second is the value. When Canvas is laying out its children in its ArrangeOverride method, it can access these values for a particular child element using either:
double x = GetLeft(child);
double y = GetTop(child);
or the equivalent:
double x = (double)child.GetValue(LeftProperty);
double y = (double)child.GetValue(TopProperty);
The GetValue method accesses the internal dictionary in the child and returns an object of type object that needs to be cast here to a double.
I’ll show you a Canvas clone in Chapter 11 and you’ll see how to define your own attached properties.
Watch out: I described how to replace the Canvas.SetLeft and Canvas.SetTop calls in EllipseMesh with equivalent calls to SetValue. But this call:
Canvas.SetLeft(ellipse, 57);
is not equivalent to this call:
ellipse.SetValue(Canvas.LeftProperty, 57);
The second argument of Canvas.SetLeft is defined to be of type double but the second argument of the general-purpose SetValue method is defined to be of type object. When the C# compiler parses that SetValue call it will assume the number is an int. Only at runtime will the error be caught. You can avoid the problem by making it explicitly a double:
ellipse.SetValue(Canvas.LeftProperty, 57.0);
Although we speak of the Left and Top attached properties of Canvas, nothing defined by Canvas is actually named Left or Top! Canvas defines static fields named LeftProperty and TopProperty, and static methods named SetLeft, SetTop, GetLeft and GetTop, but nothing named Left or Top. The XAML syntax shown here
<Ellipse Style="{StaticResource ellipseStyle}"
Canvas.Left="190" Canvas.Top="107" />
is actually rendered by making calls to Canvas.SetLeft and Canvas.SetTop.
You’ll see other attached properties around. The standard MainPage.xaml file has an attached property set on its root element:
shell:SystemTray.IsVisible="True"
In fact, the entire SystemTray class exists for the sole purpose of defining this attached property so you can set it on the PhoneApplicationPage derivative. It’s probably the PageApplicationFrame that hunts for this property on each page to determine whether the system tray should be visible.
The Canvas has a third attached property named ZIndex that you can use to override the default layering of elements.
As you’ve seen, elements in a panel are layered by the order in which they appear in the Children collection. The earlier elements in the collection are covered by the later elements.
You can alter this behavior by setting the Canvas.ZIndex attached property on one or more children. The name refers to the imaginary Z axis that extends out from the screen. Elements with higher Z indices appear on top of (and might even completely obscure) siblings with lower Z indices. If two siblings have the same Canvas.ZIndex attached property—and by default no element has a Canvas.ZIndex value and hence is assumed to have a value of zero—then the ordering in the Children collection is used instead.
Although this Canvas.ZIndex attached property is defined by the Canvas class, it actually works with any type of panel. If you’re writing a custom panel class, handling Z indices is not something you have to worry about. It’s taken care of automatically by the layout system.
In Chapter 8 I showed you how to move elements around the screen in response to touch by altering transform objects set to the RenderTransform property. You can also move elements around a Canvas by setting the Left and Top attached properties in code.
Here’s a simple program called TouchCanvas. A Canvas hosts three Ellipse elements colored red, green, and blue:
Silverlight Project: TouchCanvas File: MainPage.xaml (excerpt)
The code file overrides the OnManipulationStarted and OnManipulationDelta methods in MainPage. Setting the ManipulationContainer property to the Canvas in the first override isn’t strictly required.
Silverlight Project: TouchCanvas File: MainPage.xaml.cs (excerpt)
The OnManipulationDelta override moves one of the ellipses by obtaining its Left and Top settings, adding the delta translation factors, and then setting them back, all in fairly short and clean statements.
The Grid should be your default choice of panel. It is both flexible and powerful, both simple and versatile. I’m only going to show you one sample program using the Grid in this chapter, but that’s only because the rest of the book has plenty more.
The Grid is somewhat reminiscent of an HTML table, but with several differences: Unlike the HTML table, the Grid doesn’t do formatting. It’s strictly for layout. There’s no concept of headers, for example, or built-in cell dividers. Also, unlike the HTML table, the use of the Grid is actually encouraged.
A Grid has a certain number of rows and columns; rows can be different heights; columns can be different widths. A child of the Grid normally occupies a particular row and column but it can also span multiple rows and multiple columns. This sounds versatile (and it is), but it comes with something of a price. Although you can arbitrarily add children to a StackPanel or a Canvas, with a Grid you really need to know how many rows and columns you need to accommodate all the children. You can add rows and columns from code at runtime, but if you’re defining the Grid entirely in XAML you need to know beforehand.
Nesting Grid panels is common, but don’t get carried away, particularly if something is going on in your program that frequently generates layout cycles. Overly complex nesting can bog down layout.
The Grid defines two properties named RowDefinitions and ColumnDefinitions. These are, respectively, collections of RowDefinition and ColumnDefinition objects. These objects define the height of each row and the width of each column, and you have three choices:
The first and the last are most common. The first indicates that the cell is sized to fit the element in the cell. (The Grid interrogates the size of that element in its MeasureOverride method using infinite dimensions.) Rows and columns marked with asterisks are used to divide remaining space proportionally.
As you’ve seen, it’s common that StackPanel elements contain more children than can be displayed on the screen; the Grid is usually defined so that doesn’t happen.
You indicate the particular row and column of an element with the attached properties Grid.Row and Grid.Column. Row and column numbers begin with zero at the upper-left. You can specify that a particular element occupies additional rows or additional columns with attached properties Grid.RowSpan and Grid.ColumnSpan.
Here’s an example:
Silverlight Project: SimpleGrid File: MainPage.xaml (excerpt)
I just added the row and column definitions to the existing content grid. Each element in the Grid has explicit Grid.Row and Grid.Column settings, but you can omit them for values of zero. Both the TextBlock at the top and TextBlock at the bottom span the two columns to be centered in the whole grid.
The two columns were apportioned so the first column is twice as wide as the second. The width of that first column determines the size of the Image, which is then centered vertically in the cell:
The rows and columns change size when the phone is tilted, but the overall layout remains the same:
Try setting HorizontalAlignment and VerticalAlignment properties on this Grid. You’ll discover that the size of the grid is constrained by the native pixel dimensions of the bitmap.
The Grid named ContentPanel itself has a setting of the Grid.Row attached property, but this refers to the second row of its parent Grid—the one named LayoutRoot. The first row of that Grid is occupied by the StackPanel with the two titles.
And now, finally, we have reached the point in the accumulation of knowledge of Silverlight and XAML where nothing in MainPage.xaml should be a mystery.
You won’t be surprised to learn that Silverlight for Windows Phone supports several standard controls, including a ScrollBar and Slider for selecting from a continuous range of values, a TextBox for entering and editing text, and the common array of buttons, including CheckBox (for on/off options), RadioButton (for a group of mutually-exclusive options), and the basic Button for initiating commands.
At this point, you’re probably more than ready to dive into Silverlight controls, particularly since a couple of the programs in this chapter are actually useful and might even be classified as “real” Windows Phone 7 applications.
But before I discuss the standard controls, I want to explore an alternative to these controls. When programming for Windows Phone 7, basic program commands and options might best be implemented in a mechanism developed specifically for the phone and which is intended to provide a consistent user experience for phone users.
This is known as the ApplicationBar and commonly referred to as the app bar.
The ApplicationBar serves the same role as a menu or toolbar that you might find in a conventional Windows program. It also shares some visual and functional similarities with those older structures. If you only need a couple buttons in your program for some common commands, and perhaps a little menu, the ApplicationBar is what you should use. There is no conventional menu or toolbar defined in Silverlight at all (although you can certainly make one yourself).
The ApplicationBar and related classes (ApplicationBarIconButton and ApplicationBarMenuItem) are defined in the Microsoft.Phone.Shell namespace. These classes derive from Object and exist entirely apart from the whole DependencyObject, UIElement, and FrameworkElement class hierarchy of conventional Silverlight programming. Strictly speaking, the ApplicationBar is not part of the visual tree of your page.
An ApplicationBar object is always set to the ApplicationBar property of a PhoneApplicationPage. When the phone is held upright, the ApplicationBar always appears at the bottom of the page, and stays in the same location when the phone is turned sideways or upside down. The ApplicationBar is not at all customizable.
An ApplicationBar can contain up to four buttons. These are sometimes referred to as icons and they always display images. These images are generally PNG files; the bitmaps themselves should be 48 pixels square and mostly transparent. The actual image should be white and occupy a 26-pixels square area in the middle of the bitmap. A collection of suitable bitmaps can be downloaded from http://www.microsoft.com/downloads/details.aspx?FamilyID=369b20f7-9d30-4cff-8a1bf80901b2da93. You should study these images before designing your own.
I’ll assume you’ve downloaded the bitmaps. They are stored in two folders named light (black images on white backgrounds) and dark (white images on transparent background). Although the bitmaps in the light folder are easier to see in Windows Explorer, in your programs you should always use the corresponding files from the dark folder.
The MoviePlayer project contains a MediaElement to play a movie, and the ApplicationBar contains icons for Play, Pause, rewind to the beginning, and go to the end.
When creating a project in Visual Studio that uses the ApplicationBar, you’ll want a folder in the project for the icons. Right click the project name and choose Add and New Folder. (Or pick Add New Folder from the Project menu.) Name the folder Images or something like that. Right click that folder name, choose Add and Existing Item, and navigate to the dark folder of the bitmaps you’ve downloaded. For MoviePlayer I selected:
These are the four standard images associated with a videotape “transport” device metaphor.
This is crucial: Click each of these files as listed under the Images directory to display its Properties page. (You might have to right-click the file and select Properties.) Set the Build Action field to Content. The ApplicationBar is not smart enough to find the images if the Build Action is Resource.
The ApplicationBar is not part of standard Silverlight, so an XML namespace declaration needs to associate the XML “shell” namespace with the .NET namespace Microsoft.Phone.Shell. The standard MainPage.xaml file provides this for you already:
xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
MainPage.xaml will also have a sample ApplicationBar at the bottom of the file. You can uncomment and alter that one, or add your own right before the phone:PhoneApplicationPage end tag:
ApplicationBar has a property named Buttons which is the content property for the class. The Buttons collection can contain no more than four ApplicationBarIconButton objects. The IconUri and Text fields are required! The text description should be short; it is converted to lower-case for display purposes.
Build and deploy the program as it exists at this point. Here’s what it looks like. (I’ve also removed the page title.)
As you press each icon, it flashes and wiggles a bit for feedback. If you press the ellipsis, the buttons rise up to display the explanatory Text property:
When you turn the phone sideways, the ApplicationBar stays in the same place relative to the phone, but if you’ve set the SupportedOrientations property to PortraitOrLandscape, the images themselves turn sideways:
Watch out for this feature: Don’t use icons that will cause user disorientation when the phone is oriented sideways. If you have one icon with a horizontal bar, and another with a vertical bar, you’re going to confuse your users and, quite possibly, yourself.
If you’d like to define an ApplicationBar in XAML but you don’t want it to be initially displayed, you can set the IsVisible property to false:
<shell:ApplicationBar IsVisible="False">
You can later set that property to true in code. But don’t bother setting the x:Name attribute on the ApplicationBar to access it from code. Inexplicably, you can’t reference an ApplicationBar object in code by name. Instead, get at it through the ApplicationBar property of MainPage:
this.ApplicationBar.IsVisible = true;
ApplicationBar also defines ForegroundColor and BackgroundColor properties that you should probably ignore. By default the ApplicationBar colors will be properly swapped if you change the color theme of the phone.
ApplicationBar also defines an Opacity property, whose familiar name disguises an unconventional effect. The Opacity property involves the background of the ApplicationBar rather than the foreground; it never affects the icon images themselves.
The Opacity property is 1 by default, which means that the background of the ApplicationBar is opaque. The background is colored using the resource referenced as PhoneChromeBrush—a very darkish gray for the dark theme, and a very lightish gray for the light theme.
With an Opacity property of 1, the ApplicationBar takes space away from the rest of the content of the page. For any other Opacity values, other content on the page shares the space with the ApplicationBar. The ApplicationBar is always on top, and when Opacity goes down to 0, the ApplicationBar has an entirely transparent background and the icons are displayed on top of whatever happens to be in that area of the content grid. Documentation recommends you stick to Opacity values of 1, 0.5, or 0.
If a particular icon is not valid at a particular time, you can set the IsEnabled property of ApplicationBarIconButton to false. For example, the Play and Pause buttons shouldn’t both be enabled at the same time. Here’s how to disable the Pause button at startup:
Now it looks like this:
You’ll probably want to enable that button in code later on, but once again, you can’t use x:Name. Because this is the third button (and hence has an index in the Buttons collection of 2) you can set the IsEnabled property in code like this:
(this.ApplicationBar.Buttons[2] as ApplicationBarIconButton).IsEnabled = true;
You’ll probably be disabling the Play button at the same time:
(this.ApplicationBar.Buttons[1] as ApplicationBarIconButton).IsEnabled = false;
Actually, if the movie is accessed over the Internet, you’ll probably want to disable all the buttons until you’ve actually opened the media and know you’re going to be able to play the movie!
The program also needs to know when a user has clicked an enabled button. Set the Click event to a handler:
In the code-behind file, the handler is based on the EventHandler delegate:
The final MoviePlayer project has an ApplicationBar defined like this:
Silverlight Project: MoviePlayer File: MainPage.xaml (excerpt)
Yes, I have assigned x:Name attributes to all the buttons, but you’ll see shortly that I’ve also reassigned them in code.
The content grid contains the MediaElement to play the movie and two TextBlock elements for some status and error messages:
Silverlight Project: MoviePlayer File: MainPage.xaml (excerpt)
Notice that the AutoPlay property on the MediaElement is set to false so the movie doesn’t start playing when it’s loaded. That’s all handled in the code-behind file.
The constructor of the MainPage assigns x:Name attributes to the appropriate ApplicationBarIconButton so they can be conveniently referenced in the rest of the class:
Silverlight Project: MoviePlayer File: MainPage.xaml.cs (excerpt)
The four handlers for the ApplicationBar buttons have just one line of code each:
Silverlight Project: MoviePlayer File: MainPage.xaml.cs (excerpt)
The messy part of a movie-playing program involves the enabling and disabling of the buttons. Because the primary purpose of this program is to demonstrate the use of the ApplicationBar, I’ve taken a very simple approach here: The Rewind and End buttons are enabled when the media is opened, and the Play and Pause buttons are enabled based on the CurrentState property of the MediaElement:
Silverlight Project: MoviePlayer File: MainPage.xaml.cs (excerpt)
The Jot program I’ll be discussing next is one of three programs in this chapter that you might find useful on the phone in daily life. The idea for it arose out of the QuickNotes program described later in this chapter. QuickNotes is basically a big TextBox control but it retains the contents of this TextBox in isolated storage. Every time you open the program, you get the same text you left in there the last time you used the program. You can add text and delete text. It’s good for taking quick notes (as the program name suggests) because you don’t have to load or save any files. That’s all done automatically.
But I’ll discuss QuickNotes in more detail at the end of this chapter. For now, the Jot program is similar and rather easier to use because it doesn’t require a virtual or actual keyboard. You just use your finger for writing or drawing.
As you’ll see, QuickNotes makes do with just one text document because you can easily scroll through and insert text wherever you want. But Jot is more canvas-oriented, and the fixed size of this canvas seemed to imply that the program should support multiple pages for multiple canvases.
Jot displays finger input using a class named InkPresenter, which originated with tablet interfaces. InkPresenter derives from the Canvas panel, which means you could use the Children property of InkPresenter to design a background image (a yellow legal pad, for example). Or you can ignore the Canvas part of InkPresenter.
InkPresenter exists primarily for displaying “ink,” which is represented as multiple series of connected short lines—polylines in graphics speak but called strokes in this context.
A particular point on the display surface is a StylusPoint, a structure defined in the System.Windows.Input namespace with X and Y properties as well as a PressureFactor for devices that support pressure. (Windows Phone 7 does not support touch pressure.)
When you draw on a screen with a finger (on touch screens) or stylus (on tablets), you might create a bunch of crazy curves, but regardless how complex the curves are, they are always represented by a collection of StylusPoint objects that together mimic the complex curve. This collection of StylusPoint objects representing a continuous line is encapsulated in a Stroke, a class defined in the System.Windows.Ink namespace. The Stroke object encapsulates not only the points of this line, but also its color and width with these two properties:
A Stroke is a continuous line created when the user touches the screen, moves the finger, and lifts. Touching the screen again begins another Stroke. Multiple Stroke objects are stored in a StrokeCollection. And that’s what the InkPresenter stores: InkPresenter defines a Strokes property of type StrokeCollection and renders those strokes, each of which forms a continuous line.
My Jot program supports multiple pages, so it will need yet another collection to store a StrokeCollection for each page.
You need to know all this up front because I’m going to begin my discussion of the Jot program with the application settings. The whole idea of the program is that it always brings you back to where you last left off. Jot doesn’t need any transient data for tombstoning because it treats tombstoning the same way as normal program launching and closing. Jot needs to use isolated storage to save the same data when it’s deactivated (tombstoned) as when it’s closed, and it needs to load this data when it’s both launched and activated (that is, revived after tombstoning).
The application settings for Jot are encapsulated in a class specifically for that purpose called JotAppSettings. An instance of JotAppSettings is serialized and saved in isolated storage. The class also contains methods to save and load the settings. The project needs a reference to the System.Xml.Serialization library, and JotAppSettings needs several non-standard using directives for System.Collection.Generic, System.IO, System.IO.IsolatedStorage, and System.Xml.Serialization.
Here are the public properties of JotAppSettings that constitute application settings:
Silverlight Project: Jot File: JotAppSettings.cs (excerpt)
There is one StrokeCollection for each page that Jot displays; hence the program needs to save a collection of StrokeCollection objects. The program initially displays a particular page indicated by PageNumber.
The first time Jot is run, it picks up the Foreground and Background colors from the system theme. However, the program implements an option to swap those colors for drawing purposes, under the assumption that you might prefer a white-on-black theme for most of the phone, but black-on-white drawing for Jot. For that reason, it saves and loads explicit colors. The StokeWidth property starts out as 3 (the default with InkPresenter) but can be set by the user to 1 or 5 instead.
I tried using the IsolatedStorageSettings class to save these items, but I couldn’t get it to work, so I switched to the regular isolated storage facility. Here’s the Save method:
Silverlight Project: Jot File: JotAppSettings.cs (excerpt)
The Save method creates (or re-creates) a file in the program’s isolated storage named settings.xml, obtains a StreamWriter associated with that file, and then uses the XmlSerializer class to serialize this particular instance of the JotAppSettings class.
The Load method is static because it must create an instance of JotAppSettings by deserializing the file in isolated storage. If that file doesn’t exist—which means the program is being run for the first time—then it simply creates a new instance.
Silverlight Project: Jot File: JotAppSettings.cs (excerpt)
The constructor of the class sets some (but not all) of the properties to default values:
Silverlight Project: Jot File: JotAppSettings.cs (excerpt)
This constructor is called both when the Load method explicitly creates a new instance when the program is run for the first time, and when the file in isolated storage is deserialized. In the latter case, the default values in the constructor are all replaced. However, it’s a good idea to keep these settings in the constructor in case you later add a new application setting to the program. That setting will not be in the existing file in isolated storage, but will be set to a default value in this constructor.
Originally I also put the initialization of the StrokeCollection collection in the constructor:
settings.StrokeCollections = new List<StrokeCollection>();
settings.StrokeCollections.Add(new StrokeCollection());
However, I discovered that the Deserialize method of XmlSerializer would then avoid creating a new List object and simply add to the one created in the constructor, leaving me with one new empty StrokeCollection in the List every time I ran the program! That’s why I moved this code to the Load method.
The Save and Load methods of JotAppSettings are called only from App.xaml.cs while handling the four PhoneApplicationService events that I discussed in Chapter 6. These events signal when the program is being launched, deactivated, activated, and closed. App.xaml.cs also exposes the application settings as a public property:
Silverlight Project: Jot File: App.xaml.cs (excerpt)
Within MainPage, all references to the properties that comprise application settings are through that AppSettings property of the App class.
The content area of Jot is tiny but significant:
Silverlight Project: Jot File: MainPage.xaml (excerpt)
As the name suggests, the InkPresenter renders virtual ink that comes from stylus or touch input. The InkPresenter doesn’t collect that ink on its own. That’s your responsibility. (And Silverlight has no built-in handwriting recognition, although there’s nothing to prevent you from adding your own.)
The code-behind file requires a using directive for the System.Windows.Ink namespace and defines just two private fields:
Silverlight Project: Jot File: MainPage.xaml.cs (excerpt)
The first field provides convenient access to the application settings exposed by the App class. The second is for maintaining multi-touch data. The constructor initializes both the Strokes and Background property of the InkPresenter from application data, and concludes by setting a handler for the low-level Touch.FrameReported event. (I’ll discuss the TitleAndAppbarUpdate method a little later.)
I chose to use low-level touch input because the program isn’t manipulating anything. It’s only interested in getting points corresponding to finger movement. With Touch.FrameReported, the program can get input from multiple fingers at once, but of course, it’s a little tricky in actual practice.
You’ll recall that with Touch.FrameReported event, each finger is identified with an integer ID from the moment it touches the screen to the time it lifts off. In this program, the activity of that finger generates a new Stroke for the Strokes property of InkPresenter. Keeping a finger’s ID associated with its Stroke is the purpose of that Dictionary named activeStrokes:
Dictionary<int, Stroke> activeStrokes = new Dictionary<int, Stroke>();
Here’s the OnTouchFrameReported handler:
Silverlight Project: Jot File: MainPage.xaml.cs (excerpt)
When the finger first touches the screen (signaled by an Action property of TouchAction.Down), the method creates a new Stroke object. This is added to the Strokes collection of the InkPresenter, and it is re-rendered by InkPresenter with each new point added to it. That Stroke object is also stored in the activeStrokes dictionary along with the ID. That allows the Stroke to be built up with each TouchAction.Move event. The entry is removed from the dictionary when the finger leaves the screen.
The ApplicatonBar in Jot defines four buttons: for adding a new page, going to the previous page, going to the next page, and deleting the current page. (If the current page is the only page, then only the strokes are deleted from the page.) Each button has its own Click handler:
Silverlight Project: Jot File: MainPage.xaml (excerpt)
A menu is also included with a collection of ApplicationBarMenuItem objects in the MenuItems property element. The menu items are displayed when you press the ellipsis on the ApplicationBar. They consist solely of short text strings in lower-case. (You should keep menu items to five or fewer, and keep the text to a maximum of 20 characters or so.) The first menu item (to swap the colors) has its own Click handler; the other three share a Click handler.
Here are the Click handlers for the four buttons:
Silverlight Project: Jot File: MainPage.xaml.cs (excerpt)
The only one just a little complex is the deletion of a page, but notice that it begins by asking for a confirmation from the user with a call to MessageBox.Show! A message box seems very archaic in this context, but the most important characteristic of MessageBox.Show on the phone is that it works with a minimum of hassle. If you just need to inform the user of something with an OK button, or if you need to ask a question with OK and Cancel, nothing beats it.
The message box is displayed at the top of the screen and disables the rest of the application until you make it go away:
I’ll show you a more sophisticated dialog later in this chapter and others in Chapter 14.
The four menu items are handled here:
Silverlight Project: Jot File: MainPage.xaml.cs (excerpt)
When swapping colors, the new colors must be saved in application settings, but the existing colors of all the Stroke objects on every page must also be changed. Fortunately, it’s just a couple nested foreach loops.
The OnAppbarSetStrokeWidthClick method accommodates three related menu items. Notice that the sender object is the particular ApplicationBarMenuItem that’s been clicked. The logic here is simple, but it depends on the Text properties of the three items. You might prefer using a technique that is independent of that text, such as three separate handlers.
You’ve already seen several references to TitleAndAppbarUpdate, the final method in the MainPage code-behind file. Here it is:
Silverlight Project: Jot File: MainPage.xaml.cs (excerpt)
The last three statements disable various buttons on the ApplicationBar if they aren’t valid. (The handlers for the buttons rely on the fact that they won’t be called if the option is invalid.) These statements are able to reference the names assigned to the three buttons in the XAML file because I reassigned those names in the MainPage constructor:
Silverlight Project: Jot File: MainPage.xaml.cs (excerpt)
The first statement in TitleAndAppbarUpdate references a TextBlock that I added to the application title in the XAML file:
Silverlight Project: Jot File: MainPage.xaml (excerpt)
Jot is one program that is not enabled for landscape mode. Once you’ve jotted something on an InkPresenter of a particular size and aspect ratio, you don’t want it flipped around so that some of what you’ve done is now off-screen. But Jot is also a program you can use sideways without the program itself being aware of the orientation change:
ApplicationBar exists entirely outside of the normal Silverlight class hierarchy in a very lonely corner of Silverlight for Windows Phone. The remainder of this chapter returns to a more familiar realm of classes.
Most of the visual objects that I’ve discussed so far in this book are often referred to as elements, primarily because they derive from FrameworkElement in this class hierarchy:
These derivatives of FrameworkElement include TextBlock, Image, Border, MediaElement, Shape (which is the parent class to Rectangle and Ellipse), and Panel, which is the parent class to Grid, StackPanel, and Canvas.
For the remainder of this chapter I’m going to focus on some classes that derive from Control:
Most Control derivatives are found in the System.Windows.Controls namespace, but others hide out in System.Windows.Controls.Primitives.
To programmers with experience in graphical environments the word control is much more familiar and element. And this raises a question: If visual objects that might normally be called controls are more properly referred to as elements in Silverlight, then what’s the difference between elements and the visual objects that really are Silverlight controls?
One convenient distinction is that elements are usually relegated to presentation while controls are for interaction. In Silverlight, Control is the ancestor to classes such as Button, Slider, and TextBox, so this distinction certainly seems plausible. You might also notice that Control implements an IsEnabled property, as well as three properties involved in keyboard navigation using the tab key: IsTabStop, TabIndex, and TabNavigation.
On the other hand, user-input events for the keyboard, mouse, stylus, and touch are actually defined by UIElement, so elements such as TextBlock and Image can receive user input and—with the proper support from markup or code—respond to that input.
Perhaps a more significant difference is that controls are built from elements. You can think of elements as visual primitives. Controls are assemblages of these elements and other controls. A Button, for example, is not much more than a Border with some content inside, usually (but not limited to) a TextBlock. A Slider is not much more than a couple of Rectangle elements and some special RepeatButton controls.
The visuals of a Control are always defined by a visual tree of FrameworkElement derivatives. This visual tree can also contain objects that also derive from Control, but these objects are then defined by a visual tree of other FrameworkElement and Control derivatives.
Although the visuals of a Control are always a tree of FrameworkElement derivatives, this tree is not fixed. You can replace this tree to entirely redefine the visuals of the control. The Control class defines a property named Template of type ControlTemplate, and you’ll see how to replace the template in Chapter 16.
Redefining the visuals of a control with a template is a powerful tool for control customization. But it’s hard to see how one would redefine the visuals of a FrameworkElement derivative. Surely a TextBlock has a different appearance depending on the Text, FontFamily FontSize and Foreground properties, but there’s no sensible way to make a TextBlock visually different independent of these properties. In contrast, think how the basic Button has changed its visual appearance in many different versions of Windows over the years.
You can’t derive from FrameworkElement in Silverlight. (Well, you actually can, but you can’t do anything useful in the derived class.) And except for Panel, most FrameworkElement derivatives are sealed. Shape isn’t sealed, but you can’t derive from it, and all the derived classes of Shape are sealed.
But you can derive from Control and you can derive from many Control derivatives. One Control derivative named UserControl exists solely for the purpose of creating custom classes. So not only can you customize the visuals of an existing control using templates, you can create your own controls. But no matter how you do it, the visuals of the control will always be defined as a tree of elements and other controls.
If you look at the documentation for Control, you’ll see that the class adds a number of convenient properties to FrameworkElement. These include several text-related properties usually associated with TextBlock: FontSize, FontFamily, FontStyle, FontWeight, and FontStretch. Control also adds a few properties found in the Border class: BorderBrush, BorderThickness, Background, and Padding, and two other properties associated with control content: HorizontalContentAlignment and VerticalContentAlignment. The Control class itself doesn’t use these properties. The properties are defined solely for the convenience of classes that descend from Control.
Similarly, Control defines a bunch of protected virtual methods corresponding to user input events defined by UIElement. For Windows Phone 7 programmers, certainly the most important of these methods are those for multi-touch: OnManipulationStarted, OnManipulationDelta, and OnManipulationCompleted.
You’ve probably already grasped that scrollbars and sliders are not required as much on multi-touch screens as they are in mouse-based environments. The ScrollViewer in the last chapter responds directly to touch rather than any manipulation of its scrollbars, which barely even exist except as concepts.
Still, scrollbars and sliders are sometimes useful for jobs that allow the user to select from a continuous range of values. These controls are found in this little corner of the class hierarchy:
The RangeBase class defines Minimum, Maximum, SmallChange, and LargeChange properties to define the parameters of scrolling, plus a Value property for the user’s selection and a ValueChanged event that signals when Value has changed. (Notice that ProgressBar also derives from RangeBase, but the Value property is always controlled programmatically rather than being set by the user.)
I’m going to focus on the Slider here because the version in Windows Phone 7 seems a little more tailored to the phone than the ScrollBar. The goal is to use three Slider controls to create a program called ColorScroll that looks like this:
You scroll the red, green, and blue Slider controls to define a composite color. To make it more interesting, when the phone is turned sideways, I want the visuals to re-orient themselves slightly so it looks like this:
The easiest way to architect such a display is with nested grids. One grid has three rows and three columns containing the three Slider controls and six TextBlock elements. That Grid is in another Grid with just two cells. The other cell holds a Rectangle element whose Fill property is set to a SolidColorBrush based on the color selected from the sliders.
That larger Grid with the two cells is the familiar Grid named ContentPanel. Whether those two cells are two rows or two columns is determined by the code-behind file based on the current Orientation property.
The XAML file contains a Resources collection with Style definitions for both TextBlock and Slider:
Silverlight Project: ColorScroll File: MainPage.xaml (excerpt)
A Style with just one Setter seems a bit ostentatious, but it’s nice to have if you ever want to add another Setter for the Margin or FontSize. The default range of a Slider is 0 to 10; I’ve changed that to make the range appropriate for a one-byte value.
ScrollBar and Slider have their own Orientation properties, entirely unrelated to the Orientation property of PhoneApplicationPage but somewhat related to the Orientation property of StackPanel because they both share the same Orientation enumeration with values of Horizontal and Vertical.
The default Orientation of a Slider is Horizontal. (For a ScrollBar it’s Vertical, a difference I’ve never quite understood.)
By default, the top of a vertical Slider is associated with the Maximum value. That’s OK for this program but you can change it by setting the IsDirectionReversed property to true.
Here’s the whole content panel:
Silverlight Project: ColorScroll File: MainPage.xaml (excerpt)
All the Slider controls have their ValueChanged events set to the same handler. This handler really takes an easy way out by not bothering to determine which Slider actually raised the event:
Silverlight Project: ColorScroll File: MainPage.xaml.cs (excerpt)
You may have noticed that the XAML file doesn’t initialize the Value property of any Slider. Here’s why:
As the page is being constructed, various elements and controls are created, event handlers are linked to events, and properties are set. When a new Value property is set to a Slider in the construction of this page, the Slider fires the ValueChanged event. It is extremely likely that the OnSliderValueChanged method in MainPage will be called before the page has been entirely constructed. But OnSliderValueChanged references other elements in the visual tree. If those element do not yet exist, a runtime exception will result.
Want to see it happen? Try setting
<Setter Property="Value" Value="128" />
in the Style definition for the Slider.
Causing an event to be fired while the visual tree is being constructed is a common pitfall. You can either bullet-proof your event handlers by checking for null elements and controls, or you can do what I do in ColorScroll: Properties that trigger events in the page are safely set in the class’s constructor after the call to InitializeComponent when the visual tree has been entirely built:
Silverlight Project: ColorScroll File: MainPage.xaml.cs (excerpt)
To handle orientation changes in the phone, MainPage overrides its OnOrientationChanged method. The event arguments include a property named Orientation of type PageOrientation.
It helps to know that the PageOrientation enumeration values are bit flags with the following values:
You can check for portrait or landscape by performing a bitwise OR operation between the Orientation property and the Portrait or Landscape members, and then checking for a nonzero result. It makes the code just a little simpler:
Silverlight Project: ColorScroll File: MainPage.xaml.cs (excerpt)
The ContentPanel object needs to be switched between two rows for portrait mode and two columns for landscape mode, so it creates the GridDefinition and ColumnDefinition objects for the new orientation. (Alternatively, it could create these collections ahead of time and just switch back and forth. Or it could create a 2-cell by 2-cell Grid in the XAML file and set the unused row or column to a zero height or width.)
The Rectangle element is always in the cell with Grid.Row and Grid.Column settings of zero. But the Grid named controlGrid must have its Grid.Row and Grid.Column attached properties set using the syntax I discussed in the previous chapter.
In the next chapter, I’ll show you how to derive from UserControl to modularize this program and turn it into a control.
The standard Silverlight Button is much more flexible than the ApplicationBar buttons, as well as being easier to use. You can put a Button in the content Grid as simply as this:
By default, the Button fills the Grid:
It has a simple white border and displays the text string assigned to its Content property. If you put the Button in a horizontal StackPanel, it will be only as wide as it needs to be to fit the content; the opposite effect happens when you switch the StackPanel orientation to Vertical. Or you can set the HorizontalAlignment and VerticalAlignment properties to anything other than Stretch:
Obviously the basic Button has been redesigned a bit for the phone. It has a little more space around its border to provide a larger touch target.
The border in the Button is an actual Border and the content of the Button (in this example) is an actual TextBlock. Earlier I mentioned that the Control class defines a bunch of properties normally associated with the Border and the TextBlock. You can set some of those properties like so:
As you might hope (or perhaps fear), these property settings are reflected in the button’s appearance:
The Control class also defines HorizontalContentAlignment and VerticalContentAlignment and Padding properties that you can set like so:
Now the content is positioned at the lower-right corner but 50 pixels from the right and 100 pixels from the bottom:
The Control class defines an IsEnabled property; when set to false, the Button is grayed and does not respond to touch.
Almost always you’ll want to set a handler for the Click property of the Button to know when it’s been pressed. The Click event is generated only when the user presses the Button and then releases the finger without moving away. Setting the ClickMode property to Press causes the Button to fire the Click event when the finger first meets the screen.
Button derives from Control but it also derives from ContentControl, which is the class that provides the button’s Content property. You can pull out the Content property as a property element:
But oddly enough you can’t put text in there:
There’s nothing ostensibly wrong with that syntax but Silverlight doesn’t allow it. If you really want to do something like this you’ll need an XML namespace declaration for the System namespace:
xmlns:system="clr-namespace:System;assembly=mscorlib"
You can then put the string between tags that explicitly tell the XAML parser than the string is truly a String:
As with any ContentControl derivative, you can omit the explicit property-element tags for the Content property:
The Content property is of type object, and you really can set the Content property to pretty much anything:
You’ll realize it’s being interpreted as a number when it displays inside the Button as 10000. Or try this:
That will display as 10/1/2010 9:30:00 PM. The text is parsed by the Parse method of Double or DateTime to be inserted into the Button, and then the object’s ToString method is used to get a text rendition of that Double or DateTime object.
You can put a Color in the Button:
But what you’ll see in the button is the textual hexadecimal representation of that color: “#FF00FFFF.” You can also try a SolidColorBrush in the Button:
But that’s even worse. Now you’ll get the text “System.Windows.Media.SolidColorBrush”. SolidColorBrush doesn’t define a ToString so the fully qualified class name is displayed instead. A brush is fine for the Foreground, Background, or BorderBrush properties of Button but usually not Content.
Yet, there is a reason why the Content property is of type object and you’ll discover in Chapter 16 how you can create a DataTemplate to display objects such as SolidColorBrush in more interesting ways. But for now, if you want the Button to display something other than just plain text, you’ll need to set the Content property to anything that derives from FrameworkElement. For example, you can set the Content property to an explicit TextBlock if you’d like to do a little internal formatting:
Or you can put an Image element in there:
Here’s what you get:
The Content property is of type object, so you can’t set the Content property to multiple objects, but you can set the Content property to a Panel of some sort:
And that’s how you get a picture and some text in the same button:
And yes, you can put a Button inside another Button or a Slider in a Button if you think your users are ready for it.
You’ve seen ContentControl derivatives before Button: The ScrollViewer that you met in the last chapter is derived from ContentControl. The Content property of a ScrollViewer is very often set to a StackPanel but you can also set Content to an Image element with a larger bitmap The PhoneApplicationFrame also derives from ContentControl by way of Frame, but it’s generally used a little differently from most ContentControl derivatives because it needs to manage page navigation.
ContentControl is not the only class that defines a property named Content. UserControl—the class from which PhoneApplicationPage derives by way of Page—also defines a Content property. It’s natural to assume that ContentControl and UserControl are related in some way, but it’s actually a sibling relationship as this partial class hierarchy shows:
The Content property defined by ContentControl is of type object; the Content property defined by UserControl is of type UIElement and hence is just a bit less versatile.
It is very common to derive from UserControl (as the name might suggest) and I’ll show you how to do it in the next chapter.
Here’s an interesting little experiment. Put a simple TextBlock in the content grid with a very large FontSize set:
As you know, you can move that FontSize setting from the TextBlock to the PhoneApplicationPage tag (replacing the existing FontSize setting) and you’ll get the same effect:
That’s property inheritance at work. Now put the TextBlock in a Button. You can make the text very large by setting the FontSize on the TextBlock:
Or, you can achieve the same effect by setting the FontSize on the Button itself:
But what doesn’t work is setting the FontSize on the PhoneApplicationPage. It seems as if property inheritance should cause the value to trickle down to the TextBlock:
But it doesn’t work. Something is blocking the TextBlock from inheriting that FontSize value.
Button is defined in the System.Windows library, and that library also contains a default style and template for the Button. This is known as a theme style, and for the Button it includes a style setting for the FontSize property. In regular Silverlight, that’s not the case, but the developers of Windows Phone 7 apparently decided that text in a Button needed to be a little larger by default to provide a more substantial touch target. So they gave this default theme style a FontSize property, and that setting has precedence over property inheritance.
You might recall the table of property precedence in Chapter 7. That table can now be enpanded:
Local Settings have precedence over
Style Settings, which have precedence over the
Theme Style, which has precedence over
Property Inheritance, which has precedence over
Default Values
This class hierarchy is complete beginning with the ButtonBase class:
It’s actually ButtonBase that defines the Click event and the ClickMode property.
The ButtonCornucopia project creates instances of all these buttons with nearly as few superfluous properties as possible:
Silverlight Project: ButtonCornucopia File: MainPage.xaml
The buttons may seem a bit large with too much space around them, but keep in mind that they need to provide adequate touch targets:
The HyperlinkButton is used in connection with Silverlight page navigation, and includes a NavigateUri property for that purpose. RepeatButton generates multiple Click events when the button is held down; its primary purpose is in the ScrollBar and Slider, and it’s rarely used elsewhere.
There is no functional difference between the ToggleButton and CheckBox. The difference is only visual, and that’s something that can be changed with a template (as I’ll demonstrate in Chapter 16). The Silverlight for Windows Phone Toolkit adds a ToggleButton derivative named ToggleSwitchButton that you’ve probably seen in the Settings section of a Windows Phone.
When checked, the RadioButton causes all its siblings to become unchecked. There is no special container for the RadioButton. Just put two or more in a panel (almost always a StackPanel) and they will turn off by themselves. RadioButton defines a GroupName property that allows you to differentiate multiple groups of mutually exclusive buttons that might be children of the same panel.
Normally the ToggleButton and CheckBox are physical manifestations of a Boolean. They turn on and off with successive clicks. But ToggleButton defines an IsThreeState property that optionally provides a third “indeterminate” state. Generally this is used only in connection with the CheckBox; the ToggleButton doesn’t even have a unique visual appearance for the indeterminate state.
Consequently, the IsChecked property defined by ToggleButton is not of type bool. It’s of type Nullable<bool> (also written as bool?) with three possible values: true, false, and null. If you need to set the IsChecked property to a null value in XAML you can use a special markup extension:
IsChecked="{x:Null}"
For conventional two-state toggling purposes, IsChecked usually needs to be cast to bool.
ToggleButton defines three events: Checked is fired when the button becomes checked, Unchecked when it becomes unchecked, and Indeterminate when it’s going into the third state. In most cases, a program using a ToggleButton or CheckBox needs to handle both the Checked and Unchecked events, but you can use the same handler for both events.
One handy application on a phone is a stopwatch—an ideal use for a ToggleButton as well as the Stopwatch class defined in the System.Diagnostics namespace.
I deliberately spelled the name of the StopWatch project in camel case to avoid confusion with the .NET Stopwatch class. To make the program a little more interesting, I decided that the elapsed time should be displayable in three different formats, corresponding to the members of this enumeration:
Silverlight Project: StopWatch File: ElapsedTimeFormat.cs
This elapsed time format is an application setting in StopWatch, so it is exposed as a public property in the App class. As usual with application settings, it is saved to isolated storage when the program is deactivated or closed, and retrieved when the program is launched or activated:
Silverlight Project: StopWatch File: App.xaml.cs (excerpt)
The content area in the XAML file is a bit more extensive than you might expect because it includes a type of “dialog box” that’s used by the user to select the elapsed time format. So as not to overwhelm you, only the portion of the content area devoted to the operation of the stopwatch is shown here. It consists of just a ToggleButton to turn the stopwatch on and off, and a TextBlock to display the elapsed time.
Silverlight Project: StopWatch File: MainPage.xaml (excerpt)
The code-behind file defines just three fields; using directives are required for System.Diagnostics and System.Globaliztion.
Silverlight Project: StopWatch File: MainPage.xaml.cs (excerpt)
The most important field is an instance of the Stopwatch. Programmers customarily use this class to determine how long a program spends in a particular method. It’s not often used as an actual stopwatch!
You’ll see shortly how the suspensionAdjustment field is used in connection with tombstoning.
The .NET Stopwatch object provides an elapsed time in the form of a TimeSpan object. I couldn’t quite persuade the TimeSpan object to display the elapsed time in precisely the format I wanted, so I ended up doing my own formatting. The decimalSeparator field represents a tiny nod to internationalization.
The DisplayTime method is devoted to setting the Text property of the TextBlock. It accesses the Elapsed property of the Stopwatch and adds the suspensionAdjustment. This is formatted in one of three ways depending on the ElapsedTimeFormat property of the App class.
When pressed, the ToggleButton fires Checked and Unchecked events, which are both handled by the OnToggleButtonChecked method. This method uses the IsChecked property of the ToggleButton to start or stop the Stopwatch object and also to change the text displayed by the button. To keep the display promptly updated, a CompositionTarget.Rendering event simply calls DisplayTime:
Silverlight Project: StopWatch File: MainPage.xaml.cs (excerpt)
Here it is in action:
As you can see, the program also contains an ApplicationBar. The two buttons are labeled “format” and “reset.” Here’s the definition of the ApplicationBar in the XAML file:
Silverlight Project: StopWatch File: MainPage.xaml (excerpt)
The simpler of the two Click methods is the one for resetting the stopwatch. Resetting the .NET Stopwatch object also causes it to stop, so the ToggleButton is explicitly unchecked and suspensionAdjustment is set to zero:
Silverlight Project: StopWatch File: MainPage.xaml.cs (excerpt)
Selecting the elapsed time format is a little more complex. I chose to handle this not with menu items on the ApplicationBar but with something resembling a little dialog box. This dialog box is defined right in the XAML file in the same Grid cell as the main display:
Silverlight Project: StopWatch File: MainPage.xaml.cs (excerpt)
Notice that both the Rectangle and the Border have Visibility settings of Collapsed so they are normally absent from the display. The Rectangle covers the entire content area and is used solely to “gray out” the background. The Border is structured much like a traditional dialog box, with three RadioButton controls and two Button controls labeled “ok” and “cancel.”
Notice that the RadioButton controls do not have handlers set for their Checked events, but they do have text strings set to their Tag properties. The Tag property is defined by FrameworkElement and is available to attach arbitrary data on elements and controls. It’s no coincidence that the text strings I’ve set to these Tag properties are exactly the members of the ElapsedTimeFormat enumeration.
When the user presses the ApplicationBar button labeled “format,” the OnAppbarFormatClick method takes over, making the disableRect and formatDialog elements visible:
Silverlight Project: StopWatch File: MainPage.xaml.cs (excerpt)
The logic sets the IsChecked property of a particular RadioButton if its Tag property (when converted into an ElapsedTimeFormat enumeration member) equals the ElapsedTimeFormat stored as an application setting. (Easier logic would have been possible if the Tag properties were simply set to 0, 1, and 2 for the integer values of the enumeration members.)
Here’s the displayed dialog box:
No event handlers are attached to the RadioButton controls. After the dialog is display, the next event the program will receive signals whether the user has press the “ok” or “cancel” button:
Silverlight Project: StopWatch File: MainPage.xaml.cs (excerpt)
The routine for the “ok” button checks which RadioButton is now clicked and then sets the application setting with that value. It also calls the “cancel” handler, which “dismisses” the “dialog box” by setting the Visibility properties of disableRect and formatDialog back to Collapsed.
A program such as this presents a bit of a challenge with respect to tombstoning. I decided to ignore issues involving the dialog box. If someone navigates away from the program with the dialog box displayed, it’s no big deal if it’s no longer there when the user returns.
But ideally, you want an active stopwatch to continue running if the user navigates to another application. Of course, it can’t really keep running because in reality the program is terminated.
What the program can do, however, is save the current elapsed time and the clock time as it is being tombstoned. When the program returns, it can use that information to adjust the time shown on the stopwatch. This occurs in the OnNavigatedFrom and OnNavigatedTo methods:
Silverlight Project: StopWatch File: MainPage.xaml.cs (excerpt)
Whenever the program starts up again, the .NET Stopwatch object always begins at an elapsed time of zero. That Stopwatch object can’t be adjusted directly. Instead, the suspensionAdjustment field represents the time that elapsed when the program was tombstoned plus the elapsed time of the Stopwatch when tombstoning began. A user could navigate away several times while the stopwatch is running, so this field could be the accumulation of several periods of tombstoning.
For OnNavigatedTo, the simplest case is when the stopwatch is not actively running. All that’s necessary is to set the suspensionAdjustment from the saved value. But if the stopwatch has conceptually been running all this time, then the suspensionAdjustment must be increased by the period of time that elapsed based on the value returned by DateTime.Now.
In actual use, the StopWatch program will appear to be running and keeping track of elapsed time even when it’s not, and it’s that illusion that make the program much more useful than it would be otherwise.
The Style property is defined by FrameworkElement so of course it’s inherited by Control and ButtonBase and Button. Here’s a program that defines a Style for Button in the Resources section of the page:
Project: ButtonStyles File: MainPage.xaml (excerpt)
As usual, the Style has an x:Key attribute and a TargetType. Three Button controls are arranged in a StackPanel. Each has a reference to the Style resource:
Project: ButtonStyles File: MainPage.xaml (excerpt)
Here’s what it looks like:
Now change one of those three Button objects to a ToggleButton:
<ToggleButton Content="Button No. 2"
Style="{StaticResource btnStyle}" />
This causes a runtime error because you’re attempting to set a ToggleButton from a Style whose TargetType is Button.
But if you look at the class hierarchy, you’ll see that both Button and ToggleButton derive from ButtonBase. Try setting that as the TargetType in the Style:
Now it works again. You can even change the TargetType to Control, but that’s about as far back as you can go with the particular example. If you change the TargetType to FrameworkElement you’ll get a runtime error because FrameworkElement doesn’t have Foreground or FontSize properties.
As a general rule, it makes sense to set TargetType to be the most general class that has all the properties you’re defining in the Style. You can inherit from styles based on derived classes. For example, you can begin with a Style with a TargetType of ButtonBase and then have two derived styles for a TargetType of Button and a TargetType of ToggleButton.
The two types of text-entry controls available in Silverlight for Windows Phone are TextBox, which allows typing and editing single-line or multiline plain unformatted text, and PasswordBox, which briefly displays each letter you type but then replaces it with another character, by default an asterisk.
These are the only two ways your program can get input from the hardware keyboard of the phone (if it exists) or invoke the Software Input Panel (SIP), the virtual on-screen keyboard.
Let’s just jump right into a program. The OneTimeText program is designed to let you send an SMS (Short Message Service) text message to a particular phone number. The program requires you to type in that phone number but doesn’t save it anywhere. That’s why I called the program “one time” text.
Here’s the content area:
Silverlight Project: OneTimeText File: MainPage.xaml (excerpt)
The first TextBox control is for the phone number so it only needs a single line. The second TextBox is for the body of the message. It takes up the remainder of the Grid not used by any of the other siblings; the TextWrapping property set to Wrap turns on the multi-line feature, which is generally used in conjunction with vertical scrolling.
The Button labeled “send” is initially disabled because nothing is typed into either TextBox yet. That’s one reason why the TextChanged event is set on both.
The first TextBox has its InputScope property set to TelephoneNumber. When you press on that TextBox, a numeric keypad pops up:
The second doesn’t have its InputScope property set so a standard general-purpose keyboard comes up:
The MaxLength property is set on this second TextBox so you can’t enter more than 160 characters—the maximum for SMS.
The various names you can use with InputScope are documented in the InputScopeNameValue enumeration defined in the System.Windows.Input namespace. If you prefer to invoke Intellisense in Visual Studio for helping you out, you need to break out the InputScope as a property element and set it like this:
Once you type the equal sign after NameValue, you’ll get a list of the possible choices.
The XAML doesn’t show the most important property of the TextBox, which is the property named Text of type string. At any time, you can programmatically access the Text property to see what’s in there, or you can set the Text property to initialize the contents. It’s also possible to insert something into the existing contents of the TextBox, or delete something: Get the current Text property, use normal methods of the String class to create a new string containing the new text, and then set that string back to the Text property.
Here’s a good chunk of the MainPage code-behind file:
Silverlight Project: OneTimeText File: MainPage.xaml.cs (excerpt)
The single TextChanged handler can differentiate between the two TextBox controls by comparing the sender argument with the names defined in the XAML file. For the second TextBox, a display is updated showing how many characters are typed. The “send” Button remains disabled if either TextBox is empty of text.
When that Button is pressed, the program invokes SmsComposeTask, which is the standard texting program on the phone. At this point, the user has a somewhat friendlier interface to send this text, to edit it, or to send other texts.
At some point the user might return to the OneTimeText program. The SmsComposeTask object doesn’t return anything to the program that invoked it—it’s a launcher rather than a chooser—but it would still be nice for the user to see the text previously entered. For this reason, the program overrides the OnNavigationFrom and OnNavigationTo methods to save and restore that program state:
Silverlight Project: OneTimeText File: MainPage.xaml.cs (excerpt)
The last sample program in this chapter is called QuickNotes. It is intended to provide a quick way to type some notes and be assured that they’ll be retained without any explicit saving or loading. It’s basically a Windows Phone 7 version of Notepad but only capable of working with a single file.
The program also allows changing the font size, so the QuickNotesSettings class for the program’s application settings has two public properties named Text and FontSize, plus methods to save and load those properties in isolated storage:
Silverlight Project: QuickNotes File: QuickNotesSettings.cs
As with the Jot program, these setting are saved, loaded, and exposed in the App class:
Silverlight Project: QuickNotes File: App.xaml.cs
The XAML file creates a multiline TextBox the size of the content area. Besides setting TextWrapping for multiline editing, the markup also sets AcceptsReturn to true so that the Enter key will go to a new line, which I thought was appropriate for this program. (In the context of a dialog box, you usually want the Enter key to instead invoke the OK button, even if a TextBox is currently getting input from the user.)
Silverlight Project: QuickNotes File: MainPage.xaml
The XAML file also contains an ApplicationBar with two buttons I designed myself for increasing and decreasing the size of the font:
Silverlight Project: QuickNotes File: MainPage.xaml
With all this preparation, the actual code file for MainPage is rather short and straightforward:
Silverlight Project: QuickNotes File: MainPage.xaml.cs
Whenever the text in the TextBox changes, the OnTextBoxChanged method saves the new version in application settings. The two methods to increase and decrease the font size similarly save the new setting but also use it to set the FontSize property of the TextBox. Here’s the program in action:
What the program does not do is save the text insertion point (visually indicated by the TextBox caret), so whenever the program starts up, you need to tap on the screen to indicate where you want to continue typing. It’s possible that you left off at the end of the file, but QuickNotes will always bring you back to the top.
I toyed around with fixing this problem. The insertion point is available as the SelectionStart, property, and as the name suggests, it’s used in conjunction with text selection. There’s also a SelectionLength property, which has a value of 0 if no text is selected. (You can also access or set the selected text using the SelectedText property.)
TextBox also has a SelectionChanged event, so it’s certainly possible for QuickNotes to save the new value of SelectionStart in application settings every time it changes. Then it would be a simple matter to set the SelectionStart property along with Text and FontSize in the constructor of MainPage.
But that doesn’t quite work. When you launch QuickNotes or return to it after navigating away, the TextBox doesn’t have input focus. You need to tap on the screen to give the TextBox focus and start typing something in. But by tapping on the screen, you’re also setting a new insertion point!
The solution to that little problem is to give input focus to the TextBox programmatically. It doesn’t work in the constructor to MainPage, but if you install a handler for the Loaded event, you can do it there:
txtbox.Focus();
But doing that creates quite a dramatic entrance to the program! As soon as the program starts up, the virtual keyboard pops up! I struggled with the propriety of doing that, and at last I decided it was just too intrusive.
But who knows? Maybe I’ll put that feature back in at a later time. That’s why they call it software.
This chapter is about creating custom control classes in Silverlight, optionally making them available in dynamic link libraries, and referencing them in code and markup.
Deriving one class from another is such a basic aspect of object-oriented programming that devoting a whole chapter to the topic hardly seems necessary. And in one sense, you don’t need to do anything special to derive a custom class from an existing Silverlight class. You can reference that class in XAML just by providing an XML namespace declaration to associate an XML prefix with your .NET namespace. I demonstrated as much in Chapter 9 in the two projects that showed how to create custom panels.
On the other hand, if you’re creating a custom control class, and that class defines new properties, and if you want those properties to be set through styles, or you want those properties to be set through data bindings, or you want those properties to be the target of animations, then you need to do something very special with those properties.
You need to make them dependency properties,
To illustrate the difference that dependency properties make, let’s first look at a custom control class perhaps coded by a naïve programmer
Suppose you want to use a bunch of buttons whose foregrounds are colored with various linear gradient brushes, and you figure it would be convenient for you to specify the two colors as properties of the buttons, perhaps properties named Color1 and Color2. So you open a project named NaiveGradientButtonDemo and add a new class named NaiveGradientButton. Here’s that class:
Silverlight Project: NaiveGradientButtonDemo File: NaiveGradientButton.cs (excerpt)
As expected, NaiveGradientButton derives from Button and has two new properties of type Color named Color1 and Color2. The constructor creates a LinearGradientBrush, sets the StartPoint and EndPoint properties, creates two GradientStop objects that are stored as fields, adds those to the LinearGradientBrush, and then sets the brush to the button’s Foreground property.
This class will not prevent the Foreground property of the GradientBrush from being re-set in code or XAML after the object has been created, but because the code that sets the Foreground here is considered to be a local setting, it will prevent inheritance of the Foreground property, and won’t be affected by a Style that targets the Foreground property.
As you can see, the set and get accessors of the Color1 and Color2 properties are implemented simply to access the Color property in the corresponding GradientStop.
The MainPage.xaml file in the NaiveGradientButtonDemo project references this class. The root element includes an XML namespace declaration that associates the namespace prefix “local” with the CLR namespace of NaiveGradientButton:
xmlns:local="clr-namespace:NaiveGradientButtonDemo"
The Resources collection in MainPage.xaml defines a Style for NaiveGradientButton:
Silverlight Project: NaiveGradientButtonDemo File: MainPage.xaml (excerpt)
Notice the style TargetType referencing the custom class by prefacing the class name with the XML namespace.
You’ll also notice that I’ve commented out Setter tags that target the Color1 and Color2 properties. (Perhaps I’m not as naïve as I sometimes pretend to be.)
The content area of the XAML file has four instances of NaiveGradientButton with their Color1 and Color2 properties set in a variety of different ways:
Silverlight Project: NaiveGradientButtonDemo File: MainPage.xaml (excerpt)
The first button uses the default values of Color1 and Color2; the second uses explicit colors; the third references theme colors, and the fourth references the Style defined in the Resources collection.
When you run the program, you’ll discover that the second and third buttons are fine, but the first and fourth seem to have no content:
There are no default values for Color1 and Color2. If they’re not explicitly set, the colors in the gradient will have all the A, R, G, and B properties set to 0, a color known as transparent black.
Try uncommenting the two Setter tags in the Style. The Visual Studio error window will tell you “Object reference not set to an instance of an object” (certainly one of my favorite error messages) and if you try to run the program under the debugger, a XamlParseException will be raised with the message “Invalid attribute value Color1 for property Property.” That’s a little better: It’s telling you that in the Setter tag, you can’t set Property to Color1.
What the error message should really say is: “Don’t be so naïve. Use dependency properties.”
In Silverlight, properties can be set in several ways. We have empirically discovered that a strict precedence is established when the same property is set from property inheritance, or from a theme, or a style, or a local setting. A little chart created in Chapter 7 reads:
Local Settings have precedence over
Style Settings, which have precedence over the
Theme Style, which has precedence over
Property Inheritance, which has precedence over
Default Values
In chapters ahead you’ll see that properties can be set from animations and templates, and these also fit into the precedence chart.
This strict precedence is required to avoid a lot of fighting and squabbles among styles and animations and everything else. It would be chaos otherwise, and that violates our fundamental desire that code be completely deterministic.
What Silverlight providesis an infrastructure to manage all the different ways properties can be set and to impose some kind of order. Dependency properties are a major part of this infrastructure. They’re called dependency properties because the properties depend on a bunch of different external forces, which are then mediated.
Dependency properties are built on top of existing .NET properties, and there’s some grunt work involved, and some extra typing, but you’ll be coding dependency properties automatically before you know it.
Among other things, dependency properties provide the property-setting precedence. It occurs way under the covers and it’s not something you can mess with. Dependency properties also provide a very structured way to give properties a default value, and to provide callback methods that are invoked when the value of the property changes.
Almost all the properties of the Silverlight classes encountered so far have actually been dependency properties. It’s easier listing the exceptions to this rule! Two that come to mind are the Children property of Panel and the Text property of Run.
Any class that implements dependency properties must derive from DependencyObject, which is a very basic class in the Silverlight class hierarchy. Many classes in Silverlight derive from DependencyObject, including the big one: UIElement. That means Button derives from DependencyObject, which of course means that any class that derives from Button can implement dependency properties.
A BetterGradientButton class with dependency properties starts off normally:
public class BetterGradientButton : Button
{
}
As with NaiveGradientButton, BetterGradientButton defines two properties named Color1 and Color2. A dependency property begins with a public field of type DependencyProperty that has the same name as the property but with the word Property appended. So in the BetterGradientButton class, the first step to defining a Color1 property is to define a public field of type DependencyProperty named Color1Property.
Not only is it a field, but it’s a public static field, and it’s customarily defined as readonly as well, which means it can’t be changed after it’s defined. Once a DependencyProperty is created for a particular class, it doesn’t change, and it’s shared among all instances of that class.
Generally you create an object of type DependencyProperty by calling the static DependencyProperty.Register method. (The only exception is for attached properties.) The first argument is a text string of the property name; the second argument is the type of the property, in this case Color; the third argument is the class defining the property, in this case BetterGradientButton.
The final argument is an object of type PropertyMetadata, and there are only two possible pieces of information you supply in the PropertyMetadata constructor. One is the default value of the property—the value of the property if it’s not otherwise assigned. If you don’t supply this default value for a reference type, it will be assumed to be null. For a value type, it’s the type’s default.
I’ve decided that the Color1 property should have a default value of Colors.Black.
The second part of the PropertyMetadata constructor is the name of a handler that is called when the property changes. This handler is only called if the property really changes. For example, if the property has a default value of Colors.Black, and the property is then set to a value of Colors.Black, the property changed handler will not be called.
I know it seems weird for something called a dependency property with a type of DependencyProperty and a name of Color1Property to be defined as a field, but there it is.
It’s easy to confuse the two classes DependencyObject and DependencyProperty. Any class that has dependency properties must descend from DependencyObject, just as normal classes descend from Object. The class then creates objects of type DependencyProperty just as a normal class might define regular properties.
It’s not necessary to define the entire DependencyProperty in the static field. Some programmers prefer instead to initialize the DependencyProperty field in the static constructor:
There’s really no difference between these two techniques.
Besides the static field of type DependencyProperty you need a regular .NET property definition for the Color1 property:
This definition of the Color1 property is standard. The set accessor calls SetValue referencing the Color1Property dependency property, and the get accessor calls GetValue also referencing Color1Property.
Where did these two methods SetValue and GetValue come from? SetValue and GetValue are two public methods defined by DependencyObject and inherited by all derived classes. Notice that the second argument to SetValue is the value to which the property is being set. The return value of GetValue is of type object so it must be explicitly cast to a Color.
In connection with dependency properties, the Color1 property definition is said to be the definition of the CLR property—the .NET Common Language Runtime property—to distinguish it from the DependencyProperty object defined as a public static field. It is sometimes said that the CLR property named Color1 is “backed by” the dependency property named Color1Property. That terminology is convenient when you want to distinguish the property definition from the definition of the public static field. But just as often, both pieces—the public static field and the property definition—are collectively referred to as “the dependency property” or (if you’re really cool) “the DP.”
It is very important that your CLR property does nothing more than call SetValue and GetValue. This is not the place for any kind of validity checking or property-changed processing. The reason is that you never really know how a dependency property is being set. You might think the property is always set like this:
btn.Color1 = Colors.Red;
However, the SetValue and GetValue methods defined by DependencyObject are public, so some code could just as easily set the property like this:
btn.SetValue(GradientButton2.Color1Property, Colors.Red);
Or, the property could be set in a way that is known only to the Silverlight internals.
On the other hand, don’t mistakenly omit the CLR property. Sometimes if you just define the DependencyProperty field and forget the CLR property, some things will work but others will not.
Here’s the class with a DependencyProperty and CLR property for Color2 as well:
In the DependencyProperty definition for Color2, I set the default value to Colors.White.
Both DependencyProperty fields refer to a property-changed handler named OnColorChanged. Because this method is referred to in the definition of a static field, the method itself must be static and here’s what it look like:
This is a static method so it’s the same method for all instances of BetterGradientButton, and that’s a little problem. Normally in a static method you can’t access any non-static properties or methods, so at first you might assume that this method can’t refer to anything involving a particular instance of BetterGradientButton.
But notice that the first argument to this property-changed handler is of type DependencyObject. This argument is actually the particular instance of BetterGradientButton whose property is being changed. This means that you can safely cast this first argument to an object of type BetterGradientButton:
You can then use that btn variable to access all the instance properties and instance methods in the class.
The second argument to the handler gives you specific information on the particular property that’s being changed, and the old and new values of that property.
Here’s the complete BetterGradientButton class:
SilverlightProject: BetterGradientButtonDemo File: BetterGradientButton.cs (excerpt)
Like the earlier NaiveGradientButton class, the class has two private instance fields of type gradientStop1 and gradientStop2. The constructor is also quite similar to the earlier version, but this one has a significant difference: The Color property of each GradientStop object is initialized from the Color1 and Color2 properties:
gradientStop1.Color = Color1;
gradientStop2.Color = Color2;
Accessing those Color1 and Color2 properties causes calls to GetValue with the Color1Property and Color2Property arguments. GetValue returns the default values defined in the DependencyProperty field: Colors.Black and Colors.White. That’s how the LinearGradientBrush is created with the default colors.
There are numerous ways to code the property-changed handler down at the bottom of the class. In the BetterGradientButton class, I’ve made use of two properties in DependencyPropertyChangedEventArgs: The property named Property of type DependencyProperty indicates the particular dependency property being changed. This is very handy if you’re sharing a property-changed handler among multiple properties as I am here.
DependencyPropertyChangedEventArgs also defines OldValue and NewValue properties. These two values will always be different. The property-changed handler isn’t called unless the property is actually changing.
By the time the property-changed handler has been called, the property has already been changed, so the handler can be implemented by accessing those properties directly. Here’s a simple alternative:
This version doesn’t check which property is changing, so for any particular call to OnColorChanged, one of those two statements is superfluous. You’ll be comforted to know that GradientStop derives from DependencyObject, and the Color property is a dependency property, so the property-changed handler in GradientStop doesn’t get called if one of the properties is not actually changing.
Here’s something I do quite often, and I’m a much happier programmer as a result:
Rather than warp my brain by using a reference to a particular instance of a class within a static method, I use the static method for the sole purpose of calling an instance method with the same name. Here’s how my technique would look in BetterGradientBrush:
This instance method can do everything the static method can do but without the hassle of carrying around a reference to a particular instance of the class.
Let’s see this new class in action. It would be a shame if all this hard work didn’t improve things. As in the earlier program, the Resources collection in MainPage.xaml has a Style element targeting the custom button. But now the Setter tags for Color1 and Color2 have been optimistically uncommented:
SilverlightProject: BetterGradientButtonDemo File: MainPage.xaml (excerpt)
The content area is basically the same:
SilverlightProject: BetterGradientButtonDemo File: MainPage.xaml (excerpt)
The really great news is in the screen shot:
The first button shows the effect of the defaults, a concept built into dependency properties, and the last button shows that the Style works.
A few miscellaneous notes:
Notice that you don’t have direct access to the actual values of the dependency properties. They are obviously stored somewhere private that is accessible only through SetValue and GetValue. Presumably DependencyObject maintains a dictionary to store a collection of dependency properties and their values. It must be a dictionary because it’s possible to use SetValue to store certain types of dependency properties—specifically, attached properties—in any DependencyObject.
Watch out for the first argument to the PropertyMetadata constructor. It is defined as type object. Suppose you’re creating a DependencyProperty for a property of type double and you want to set a default value of 10:
The C# compiler will interpret that value of 10 as an int, and generate code to pass an integer value of 10 to the PropertyMetadata constructor, which will try to store an integer value for a dependency property of type double. That’s a runtime error. Make the data type explicit:
You might have cause to create a read-only dependency property. (For example, the ActualWidth and ActualHeight properties defined by FrameworkElement have get accessors only.) At first, it seems easy:
Now only the class itself can set the property.
But wait! As I mentioned earlier, the SetValue method is public, so any class can call SetValue to set the value of this property. To protect a read-only dependency property from unauthorized access you’ll need to raise an exception if the property is being set from code external to the class. The easiest logic probably entails setting a private flag when you set the property from within the class and then checking for that private flag in the property-changed handler.
You can easily tell from the documentation if a particular property of an existing class is backed by a dependency property. Just look in the Fields section for a static field of type DependencyProperty with the same name as the property but with the word Property attached.
The existence of the static DependencyProperty field allows code or markup to refer to a particular property defined by a class independent of any instance of that class, even if an instance of that class has not yet been created. Some methods—for example, the SetBinding method defined by FrameworkElement—have arguments that allow you to refer to a particular property, and the dependency property is ideal for this.
Finally, don’t feel obligated to make every property in your classes a dependency property. If a particular property will never be the target of a style, or a data binding, or an animation, there’s no problem if you just make it a regular property.
For example, if you plan to use multiple RadioButton controls to let the user select an object of type Color, you could derive from RadioButton and define a property for associating a Color object with each RadioButton:
You could then set that property in XAML and reference it later in code for easily determining what Color each RadioButton represents. You don’t need a dependency property for a simple application like this.
As you’ve seen, it’s possible to derive from a class that derives from Control to add some additional properties. It’s also possible to derive directly from Control to create entirely new controls (or to derive from ContentControl if the control needs to have a Content property). However, deriving from Control or ContentControl in a proper and cordial manner involves creating a default template in XAML that describes the control’s visual appearance, and allowing that template to be replaced to redefine the visuals of the control.
This is not inherently difficult, but often requires giving deep thought to how the control will be customized. You’ll see some of the issues involved in Chapter 16.
If you’re in the control-writing business, the custom controls that you develop and market should derive from Control or ContentControl or ItemsControl (Chapter 17). A replaceable template is an essential feature for commercial-grade controls.
But some custom controls don’t require additional visual customization: For controls specific to a particular project, or used only by one programmer or a programming team within a company, or controls that have an inherent visual appearance, it’s usually not necessary to allow the control’s template to be replaced.
For such controls, deriving from UserControl is often an ideal solution. (The User in UserControl is you—the programmer.) Moreover, you already have experience deriving from UserControl The PhoneApplicationPage class derives from Page, which derives from UserControl.
UserControl has a property named Content of type UIElement. When deriving from UserControl you generally define new properties in code (and often methods and events as well), but you define your visuals in XAML by assigning a visual tree to that Content property. This makes the Content property unusable for other purposes. If your UserControl derivative requires a Content property, you should define a new property named Child or something similar to serve the same purpose.
Making liberal use of UserControl is an ideal way to modularize the visuals of your program.
For example, the ColorScroll program in the previous chapter had a lot of repetition in the XAML file. The three rows contained a Slider and two TextBlock elements each. If you wanted to adapt the concept of ColorScroll to a reusable control, you might begin by deriving a class named ColorColumn from UserControl, and then putting three ColorColumn controls together in a UserControl derivative named RgbColorScroller.
ColorColumn and RgbColorScroller can both be found in a dynamic link library (DLL) project called Petzold.Phone.Silverlight. Creating a DLL in Visual Studio for your Windows Phone programs is easy: In the New Project dialog, select Silverlight for Windows Phone at the left and Windows Phone Class Library in the middle area. (To facilitate testing, you’ll probably want a second application project in the same solution as the library; or you might want to develop custom classes in an application project and then move them to the library when you know they’re working right.)
Within the Petzold.Phone.Silverlight project (or any other library project), you can add a new item by right-clicking the project name in the Solution Explorer and selecting Add and New Item.
To make a new UserControl in either an application project or a library project. From the Add New Item dialog box, select Windows Phone User Control and give it a name.You’ll get two files: a XAML file and a code-behind file.
The XAML file is rather simpler than the one created for a PhoneApplicationPage class. The root element is UserControl. It contains an x:Class attribute indicating the derived class, and the only nested element is a Grid named LayoutRoot. You don’t need to retain that Grid but it’s usually convenient.
The root element contains attributes to set these properties:
You’ll almost certainly want to delete those attributes. These three properties are inherited through the visual tree, so the UserControl will normally get the settings of these properties from MainPage. By setting these properties here, you’re disabling any markup (or code) that sets these properties on the control that you’re creating. Keep these properties in the UserControl only if your control relies on them.
I also deleted the designer-related attributes, so here’s the complete ColorColumn.xaml file. Notice I’ve also changed the Background property on the Grid from a StaticResource referencing PhoneChromeBrush to Transparent:
Silverlight Project: Petzold.Phone.Silverlight File: ColorColumn.xaml
The Grid has three rows with a TextBlock at the top with a name of colorLabel, a Slider with a range of 0 to 255, and another TextBlock with a name of colorValue. The Slider has an event handler set on its OnSliderValueChanged event.
In the ColorScroll program from the previous chapter, the Slider controls and TextBlock elements were all colored red, green, and blue through the Foreground property. Because the Foreground property is inherited through the visual tree, it should be sufficient to set it once on any instance of ColumnColumn and let it trickle down through the tree.
The text displayed by the TextBlock named colorLabel will indicate that color, but I decided I wanted to handle that text a little differently, with a property specifically for that purpose.
This means the ColorColumn class defines two properties—a Label property for the text above the Slider as well as the more expected Value property corresponding to the Slider position.
Like the Slider itself, the ColorColumn class also defines an event named ValueChanged to indicate when the Slider value has changed.
Generally a UserControl derivative will define its own properties and events, and very often these properties and events will parallel properties and events of elements in its visual tree. It’s typical for a class like ColorColumn to have a Label property corresponding to the Text property of a TextBlock, and a Value property corresponding to the Value property of the Slider, and a ValueChanged event corresponding to the ValueChanged event of the Slider.
Here’s the portion of the ColorColumn code-behind file devoted to the Label property for the text above the Slider:
Silverlight Project: Petzold.Phone.Silverlight File: ColorColumn.xaml.cs (excerpt)
The property-changed handler for Label simply sets the value to the Text property of the TextBlock in the visual tree named colorLabel. This is one way that a property defined on the custom control is transferred to a property on an element in the visual tree. I’ll demonstrate a simpler approach using data bindings in the next chapter.
The Value property in ColorColumn is a little more complex because it needs to fire a ValueChanged event. This Value property is eventually used in the calculation of a Color, so I thought it should be of type byte rather than double. Here’s the code in the class pertaining to the Value property and ValueChanged event:
Silverlight Project: Petzold.Phone.Silverlight File: ColorColumn.xaml.cs (excerpt)
To define the ValueChanged event I chose to use the generic RoutedPropertyChangedEventHandler and the corresponding RoutedPropertyChangedEventArgs.) This is a good choice for signaling when dependency properties change because it accommodates old and new values.
The static OnValueChanged method calls a protected virtual instance method also named OnValueChanged but with arguments indicating the old and new property values. (My design was inspired by the OnValueChanged method in RangeBase.) This instance method sets the Slider and the TextBlock indicating the current value and fires the ValueChanged event.
The only code of ColorColumn not yet discussed encompass the constructor and the handler for the ValueChanged event of the Slider. This event handler simply casts the Value property of the Slider to a byte and sets it to the Value property of the ColorColumn class.
Silverlight Project: Petzold.Phone.Silverlight File: ColorColumn.xaml.cs (excerpt)
And now you may detect an infinite loop: The user manipulates the Slider. The Slider fires a ValueChanged event. The OnSliderValueChanged method sets the Value property of ColorColumn. The static property-changed handler OnValueChanged is called. The static method calls the instance OnValueChanged method, which sets the Value property of the Slider, which fires another ValueChanged event, and so forth.
In reality, this doesn’t happen because at some point one of these Value properties—either the Value property of the Slider or the Value property of ColorColumn—will be set to its existing value, and no property-changed event will be fired. The infinite loop grinds to a halt.
The RgbColorScoller class also derives from UserControl and consists of three ColorColumn controls. Here’s the complete XAML file:
Silverlight Project: Petzold.Phone.Silverlight File: RgbColorScroller.xaml
Each of the three ColorColumn controls has its Foreground property set to one of the three colors, and its Label property to the same value but a string rather than a Color.
Notice each ColorColumn is identified with x:Name rather than Name. I normally use Name but Name is not allowed for referencing a class from the same assembly, and both ColorColumn and RgbColorScroller are in the Petzold.Phone.Silverlight assembly.
The RgbColorScroller class defines one property named Color (of type Color, of course) and an event named ColorChanged. Here’s the whole class in one shot:
Silverlight Project: Petzold.Phone.Silverlight File: RgbColorScroller.xaml.cs (excerpt)
The two OnColorChanged methods are called when the Color property changes. These are responsible for breaking down the Color property into bytes, setting the Value properties of the individual ColorColumn objects, and firing the ColorChanged event.
The OnColorColumnValueChanged handler is called when any of the three ColorColumn controls fires a ValueChanged event. This handler is responsible for assembling the individual bytes from the three ColorColumn controls into a single Color.
Again, it looks like an infinite loop might result but in reality it doesn’t happen.
To use this RgbColorScroller class from the Petzold.Phone.Silverlight library, create a new application project. Let’s call it SelectTwoColors. Right-click the References header under the project name in the Solution Explorer, and select Add Reference. In the Add Reference dialog box, select the Browse tag. Navigate to the DLL file (in this case Petzold.Phone.Silverlight.dll) and select it.
In the MainPage.xaml file you’ll need a XML namespace declaration for the library. Because the library is a separate assembly, this namespace declaration requires an assembly section to refer to the DLL file:
xmlns:petzold="clr-namespace:Petzold.Phone.Silverlight;assembly=Petzold.Phone.Silverlight"
The SelectTwoColors XAML file has two RgbColorScroller controls, each inside a Border with a Rectangle element between them. Each RgbColorScroll has its ColorChanged event attached to the same handler:
Silverlight Project: SelectTwoColors File: MainPage.xaml (excerpt)
The constructor of the code-behind file initializes the two RgbColorScroller controls with two colors, which causes the first ColorChanged events to fire, which are then processed by the event handler to set colors on the Rectangle:
Silverlight Project: SelectTwoColors File: MainPage.xaml.cs (excerpt)
And here it is in landscape mode:
Notice that the labels have picked up the Foreground property set to each ColorColumn control through property inheritance, but not the Slider. I suspect the Foreground property is set in the theme style for the Slider and that’s blocking property inheritance. If getting that color was really important, I’d probably define a new Color property on ColorColumn and use that to programmatically set the Foreground property on the Slider.
I deliberately designed the layout of SelectTwoColors so it wouldn’t work quite well in portrait mode:
As you can see, the text runs together. But all is not lost. All that’s necessary is to set a smaller FontSize property directly on the two RgbColorScroller controls:
FontSize="12"
That one property setting affects all six TextBlock elements in each control. The text becomes very small, of course, but it’s no longer overlapping:
You’ve probably noticed a new style of toggle button in some Windows Phone 7 screens. Here they are on the page that lets you set date and time, blown up to almost double size:
If you experiment with these controls a bit, you’ll find that you can toggle the switch just by tapping it, but you can also move the larger block back and forth with your finger, although it will tend to snap into position either at the left or right.
I’m not going to try to duplicate that more complex movement. My version will respond only to taps. For that reason I call it TapSlideToggle. The button is a UserControl derivative in the Petzold.Phone.Silverlight library. (I should note that something similar could be implemented entirely in a template applied to the existing ToggleButton, and the Silverlight for Windows Phone Toolkit implements this control under the name ToggleSwitchButton .) Here’s the complete XAML file of my version:
Silverlight Project: Petzold.Phone.Silverlight File: TapSlideToggle.xaml
The button is given a specific size in the Grid. If you want a control to have a specific size, here’s the place to do it rather than with the Height and Width properties of the control itself. I also changed the designer-related attributes and left them in so I could get a little sense of what the controls looks like in the design view.
I must confess that I’m not entirely happy with the approach I took here: To keep it simple, I restricted myself to two Border elements each containing a Rectangle, but to mimic the gap between the larger sliding block and the wide background, I gave the second Border a BorderBrush colored with the background color. The button will not look right if it’s on a surface that is not colored with the PhoneBackgroundBrush resource.
To somewhat mimic the normal ToggleButton (but without the three-state option) the code-behind file defines an IsChecked dependency property of type bool and two events named Checked and Unchecked. One or the other of these events is fired when the IsChecked property changes value:
Silverlight Project: Petzold.Phone.Silverlight File: TapSlideToggle.xaml.cs (excerpt)
The static property-changed handler calls an instance handler of the same name, which alters the visuals in the XAML just a little bit and then fires one of the two events. The only methods missing from the code above are the overrides of two Manipulation events. Here they are:
Silverlight Project: Petzold.Phone.Silverlight File: TapSlideToggle.xaml.cs (excerpt)
I decided to toggle the button only if the user presses the button and then releases the finger while it’s still over the button, which is the common approach. The OnManipulationStarted override sets Handled to true to prevent the event from travelling further up the visual tree and in effect, to signal that the button is commandeering this particular manipulation. The OnManipulationCompleted override then checks if the ManipulationOrigin property is within the bounds of the control. If so, IsChecked is toggled:
IsChecked ^= true;
The TapSlideToggleDemo program tests it out. The content area defines two instances of TapSlideToggle and two TextBlock element to display their current state:
Silverlight Project: TapSlideToggleDemo File: MainPage.xaml (excerpt)
Each of the two TapSlideToggle instances has both its Checked and Unchecked events set to the same handler, but different handlers are used for the two instances. This allows each handler to determine the state of the button by obtaining the IsChecked property and accessing the corresponding TextBlock:
Silverlight Project: TapSlideToggleDemo File: MainPage.xaml.cs (excerpt)
And here’s the result:
This button does not implement a unique visual appearance if the button is disabled. When IsEnabled is set to false, a control no longer gets user input automatically, but visually conveying this state is the responsibility of the control itself. Commonly, a semi-transparent black Rectangle overlays the entire control with a Visibility property set to Collapsed. When IsEnabled is true, the Visibility property of this Rectangle is set to Visible, in effect, “graying out” the visuals of the control.
I demonstrated how to write a custom panel in Chapter 9 but the panels were rather wimpy because they had no properties. Most panels have custom properties and some also define attached properties. Let’s see how it works.
The Windows Presentation Foundation has a panel I often find useful called UniformGrid. As the name suggests, the UniformGrid divides its area into cells, each of which has the same dimensions.
By default, UniformGrid automatically determines a number of rows and columns by taking the ceiling of the square root of the number of children. For example, if there are 20 children, UniformGrid calculates 5 rows and columns (even though it might make more sense to have 5 rows and 4 columns, or 4 rows and 5 columns). You can override this calculation by explicitly setting the Rows or Columns property of UniformGrid to a non-zero number.
Almost always, I find myself setting either Rows or Columns to 1, in effect making a single column or row of equally sized cells. This is not like a StackPanel that continues off the screen if it has too many children, but more like a single-column or single-row Grid where every RowDefinition or ColumnDefinition has a GridLength set to Star, and hence allocates the same space.
My version of UniformGrid is called UniformStack. It doesn’t have a Rows or Columns property but it does have an Orientation property—the same property defined by StackPanel—to indicate whether the children of the panel will be arranged vertically or horizontally.
Here’s the portion of the UniformStack class that defines the single dependency property and the property-changed handler:
Silverlight Project: Petzold.Phone.Silverlight File: UniformStack.cs (excerpt)
The definitions of the dependency property and CLR property are straightforward. The property-changed handler casts the first argument to the class type, as usual, and then simply calls InvalidateMeasure. This is a method defined by UIElement, and it’s basically telling the layout system: “Whatever you think you know about how big I am, forget it. I’m a whole different size.” This call initiates the measure pass of layout from the root of the visual tree because the size of thid panel could affect parent classes. The measure pass is followed automatically by an arrange pass. (Layout passes are also initiated whenever the size of the panel changes, or when elements are added to or removed from the Children collection, or when an existing child changes size.)
There is also an InvalidateArrange method, which initiates just the second half of the layout process, but this is much rarer. Perhaps if you have a panel that dynamically moves its elements around without itself changing size you would have occasion to call InvalidateArrange.
The InvalidateMeasure method eventually causes a call to be made to MeasureOverride, and let’s think for a moment what needs to be done.
Consider a UniformStack with a horizontal orientation. Suppose the panel has five children, and the availableSize offered to the panel has a Width of 400 and a Height of 200. Each child should be offered a size with a Width of 80 (1/5th the total available width) and a Height of 200. That’s the panel’s paradigm.
But what if the Width property of availableSize is infinite? What should happen in that case?
Well, it’s not entirely clear. Certainly the panel has no choice but to offer to each child a Width of infinity. After that, one reasonable solution is to return a size from MeasureOverride with a Width that is five times the Width of the widest child.
That’s what I do here:
Silverlight Project: Petzold.Phone.Silverlight File: UniformStack.cs (excerpt)
The method begins by diving out if the panel has no children; this avoids division by zero later on.
An availableChildSize is calculated based on the Orientation property by ignoring the presence of infinity in the availableSize for the panel. (Infinity divided by the number of children will still be infinity, and that’s what’s required in that case.) The enumeration of the children calls Measure on each child with that availableChildSize. The logic involving the DesiredSize of the child also ignores infinite dimensions but instead accumulates a maxChildSize. This actually represents the width of the widest child and the height of the tallest child; it’s possible that no single child has the same dimensions as maxChildSize.
The final calculation of compositeSize takes into account both Orientation and the possibility of an infinite dimension. Notice that compositeSize is sometimes based on one of the availableSize dimensions; this is normally not proper but the method does it only when it knows that dimension is not infinite.
The ArrangeOverride method calls Arrange on each child with the same size (called finalChildSize in the method) but with different x and y positions relative to the panel depending on orientation:
Silverlight Project: Petzold.Phone.Silverlight File: UniformStack.cs (excerpt)
Let’s use the UniformStack to make a bar chart!
The QuickBarChart program actually uses three UniformStack panels:
Silverlight Project: QuickBarChart File: MainPage.xaml (excerpt)
The first UniformStack with a Vertical orientation simply divides the content area into two equal areas. (See how much easier it is to use than a regular Grid?) The top half contains another UniformStack with nothing in it (yet). The bottom one contains a UniformStack with a Horizontal orientation for a Button and a TextBlock.
Clicking the Button causes the code-behind file to add 10 more Rectangle elements to the UniformStack named barChartPanel:
Silverlight Project: QuickBarChart File: MainPage.xaml.cs (excerpt)
Notice that each Rectangle has a little half-pixel Margin on the right so there’s at least some spacing between the bars. Still, I think you’ll be surprised how many you can put in there before the display logic gives up:
Attached properties are at first very mysterious. As you know from Chapter 9, here’s how you might see them in XAML:
That’s straight out of the EllipseChain program.
Canvas.Left and Canvas.Top are attached properties. They are properties defined by Canvas that you set on children of the Canvas.
As I discussed in Chapter 9, there is actually nothing in Canvas named Left or Top. When setting these attached properties in code, you use two static methods defined by the Canvas class:
Canvas.SetLeft(ellipse, 116);
Canvas.SetTop(ellipse, 92);
Or you can use the SetValue method defined by DependencyObject and inherited by the Ellipse class to reference the static dependency properties defined by Canvas:
ellipse.SetValue(Canvas.LeftProperty, 116.0);
ellipse.SetValue(Canvas.TopProperty, 92.0);
This is the same SetValue methods that a class calls in a CLR property to set a dependency property.
You now know almost everything you need to define your own attached properties. The project named CanvasCloneDemo contains a class named CanvasClone. The class defines two DependencyProperty fields named LeftProperty and TopProperty:
Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)
But notice the difference: Previously in this chapter, DependencyProperty objects were created with the static DependencyProperty.Register method. The DependencyObject fields in CanvasClone are created with the only other option, DependencyProperty.RegisterAttached. That makes them attached properties and allows them to be set on classes that did not define them.
Notice that the first argument to the PropertyMetadata constructor is explicitly a double so there won’t be a runtime error because the C# compiler assumes the value is an int.
After defining the DependencyProperty fields, you need static methods to access the attached properties. These method names begin with Set and Get followed by the attached property names, in this case, Left and Top,
Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)
These methods get called either explicitly from code or implicitly from the XAML parser. The first argument will be the object on which the attached property is being set—in other words, the first argument will probably be a child of CanvasClone. The body of the method uses that argument to call SetValue and GetValue on the child. These are the same methods defined by DependencyObject to set and get dependency properties.
When these properties change, there will be a call to the property-changed handler defined in the PropertyMetadata constructor. The signature of this method is the same as a normal property-changed handler for regular dependency properties:.
Once again, the method is static. However, the first argument is not an object of type CanvasClone. It is a child of the CanvasClone. Or rather, it is probably a child of the CanvasClone. It’s possible to call CanvasClone.SetLeft for an element that isn’t actually a child of the panel, and it’s even possible for CanvasClone.SetLeft and the OnLeftOrTopPropertyChanged method to be called without any instance of CanvasClone in existence!
For this reason, the body of the method needs to use a little bit of caution. It calls the handy static VisualTreeHelper.GetParent method to obtain the parent of the DependencyObject argument and cast it to a CanvasClone:
Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)
If the parent of the object that has called CanvasClone.SetLeft or CanvasClone.SetTop is truly a CanvasClone, then the method calls InvalidateArrange on the parent, which is the CanvasClone.
In the general case, when a panel handles a change in one of its attached properties, it will probably call InvalidateMeasure on the panel to initiate a complete recalculation of layout. However, as you can see in the following MeasureOverride method, the total size of CanvasClone doesn’t change with the location of its children:
Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)
It is part of the paradigm of a Canvas that it always returns zero from MeasureOverride regardless of its children, so CanvasClone does the same. MeasureOverride still needs to call Measure on all its children, or the children will have no size, but it calls Measure with infinite dimensions, forcing the child to assume as small a size as possible.
When the panel calls InvalidateArrange on itself, layout jumps right into the arrange pass with a call to ArrangeOverride: This method requires the panel to arrange the children on its surface. Essentially it gives each child a size and a location.
Project: CanvasCloneDemo File: CanvasClone.cs (excerpt)
ArrangeOverride calls its own static GetLeft and GetTop methods on each child to determine where the child should be positioned relative to itself. The size of each child is simply the DesiredSize the child originally calculated in the measure pass.
The XAML file in CanvasCloneDemo is the same as the one in the EllipseChain except that Canvas has been replaced with CanvasClone:
Project: CanvasCloneDemo File: MainPage.xaml (excerpt)
With much elation, we discover that the display looks the same as the earlier program:
Suppose you want to let the user interact with a Slider but you also want a TextBlock to display its current value, such as in the ColorScroll program. No big deal. Just install a handler for the ValueChanged event of the Slider, and whenever the handler is called, get the Value property of the Slider, convert it to a string, and set the string to the Text property of the TextBlock.
Tasks such as this are so common that Silverlight provides a streamlined mechanism to perform them. This is called a data binding, or just binding. A data binding is a link between two properties of two objects, so that when one property changes, the other is updated with that change. The binding is optionally bidirectional, in which case a change in either property causes a change in the other.
Under the covers, a data binding works as you might expect: An event handler is installed so that one property is updated from another with a possible data conversion. Often you’ll define this data binding entirely in XAML, which means you don’t have to provide any code at all. Syntactically, it appears as if the transfer of data is occurring with no moving parts.
Data bindings are most easily demonstrated using two visual elements such as a Slider and a TextBlock, and that’s where I’ll begin. However, data bindings reveal much more power when providing links between visual elements and underlying data sources.
The goal in this chapter is to avoid explicit event handlers in the code-behind files, and only at the end of the chapter am I forced to use a couple. Of course, some other code is often required to support the data bindings in XAML, but much of this code can more properly be classified as business objects rather than user-interface elements.
In a typical data binding, a property of one object is updated automatically from a property of another object. The object providing the data—a Slider, for example—is considered to be the source of the data binding; the object receiving the data (such as the TextBlock) is the binding target.
The source of a data binding is usually given a name:
<S1ider Name="slider" ... />
You can break out the target property as a property element and assign to it an object of type Binding:
Use the ElementName property to indicate the name of the source element; use the Path property for the name of the source property, which is the Value property of the Slider. This type of binding is sometimes known as an element-name binding, because the binding source is a visual element that is referenced by name.
To make the syntax a little friendlier, Silverlight provides a markup extension for Binding where the whole thing is defined within a set of curly braces. (This is one of several markup extensions in Silverlight for Windows Phone. You encountered StaticResource in Chapter 7 and you’ll see TemplateBinding in Chapter 16.) Here’s the shorter syntax:
<TextBlock ... Text="{Binding ElementName=slider, Path=Value}" ... />
Notice that the ElementName and Path settings are separated by a comma, and that the slider and Value names are no longer in quotation marks. Quotation marks never appear within the curly braces of a markup extension.
The SliderBindings program includes this binding and lets you experiment with some variations. Everything is in the XAML file:
Silverlight Project: SliderBindings File: MainPage.xaml (excerpt)
The page contains a Slider with a range from 0 to 180, a TextBlock with its Text property bound to the Value property of the Slider, and a Rectangle with its Width property bound to that same Value property. The Rectangle also has a RotateTransform that rotates the element by a constant 90°.
As you manipulate the Slider, the TextBlock displays the current value and the Rectangle height decreases and increases. (The Binding targets the Width property of the Rectangle but the Rectangle is rotated 90°.)
The order of the properties in the Binding markup extension doesn’t matter. You can put the Path property first:
<TextBlock ... Text="{Binding Path=Value, ElementName=slider}"
In fact, if Path appears first, you can eliminate the “Path=” part and just use the property name:
<TextBlock ... Text="{Binding Value, ElementName=slider}"
Later in this chapter and in subsequent chapters, I will use this shortened syntax, but for element-name bindings I don’t like it because it violates my sense of how the binding works. The Binding class first needs to find an element in the visual tree with the name of slider, and then it needs to use reflection to find the Value property in that element. I prefer the syntax where the order of the properties mimics the internal operation of the process:
<TextBlock ... Text="{Binding ElementName=slider, Path=Value}"
Why is this property of Binding called Path and not Property? After all, Style has a property named Property. Why not Binding?
The simple answer is that the Path can be a composite of multiple property names. For example, suppose the Slider did not have a name. You can indirectly refer to the Slider by knowing that it is the first item in the Children collection of the element named ContentPanel:
Text="{Binding ElementName=ContentPanel, Path=Children[0].Value}"
Or, going up higher in the visual tree,
Text="{Binding ElementName=LayoutRoot, Path=Children[1].Children[0].Value}"
The components of the path must be properties or indexers connected by periods.
Bindings have a source and a target. The binding target is considered to be the property on which the binding is set. This property must always be backed by a dependency property. Always, always, always. This restriction is very obvious when you create a binding in code.
To try this out in SliderBindings, delete the binding on the Text property of the TextBlock. In the MainPage.xaml.cs file, you’ll need a using directive for the System.Windows.Data namespace which contains the Binding class. In the constructor after the InitializeComponent call, create an object of type Binding and set its properties:
The ElementName and Path properties reference the binding source. But look at the code to target the Text property of the TextBlock:
txtblk.SetBinding(TextBlock.TextProperty, binding);
The SetBinding method is defined by FrameworkElement, and the first argument is a dependency property. That’s the target property. The target is the element on which you call SetBinding. You can alternatively set a binding on a target using the static BindingOperations.SetBinding method:
BindingOperations.SetBinding(txtblk, TextBlock.TextProperty, binding);
But you still need the dependency property. So this is yet another reason why the properties of visual objects should be depending properties. Not only can you style those properties, and target them with animations, but they need to be dependency properties to be targets of data bindings.
In terms of dependency property precedence, bindings are considered the same as local settings.
The BindingOperations.SetBinding method implies that you can set a binding on any dependency property. With Silverlight for Windows Phone, this is not the case. A binding target must always be a property of a FrameworkElement.
For example, you’ll notice that the Rectangle element in MainPage.xaml has a RotateTransform set to its RenderTransform property. Try targeting the Angle property with the same binding that’s set on the Text property of the TextBlock and the Width property of the Rectangle:
<RotateTransform x:Name="rotate"
Angle="{Binding ElementName=slider, Path=Value}" />
It looks fine, but it won’t work. You’ll get a XamlParseException at runtime. Angle is backed by a dependency property, all right, but RotateTransform does not derive from FrameworkElement so it can’t be a binding target. (A Binding set on the Angle property of RotateTransform works under Silverlight 4, but Silverlight for Windows Phone is mostly Silverlight 3.)
If you’re playing along, you’ll want to remove that binding on the Angle property of RotateTransform, and any code that might have been added to MainPage.xaml.cs. The Slider has its Value property initialized to 90:
<Slider Name="slider"
Value="90" ... />
The target of the binding is the Text property of the TextBlock:
<TextBlock Name="txtblk"
Text="{Binding ElementName=slider, Path=Value}" ... />
Let’s switch these around. Let’s initialize the Text property of the TextBlock to 90:
<TextBlock Name="txtblk"
Text="90" ... />
And let’s make the binding target the Value property of the Slider:
<Slider Name="slider"
Value="{Binding ElementName=txtblk, Path=Text}" ... />
At first this seems to work. The Slider thumb is initialized to its center to indicate the value of 90 it obtained from the TextBlock, and the Rectangle size is still bound to the Slider. However, when you manipulate the Slider, the Rectangle changes height but the TextBlock doesn’t change at all. The Binding object on the Slider is looking for changes in the Text property of the TextBlock, and that’s remaining fixed.
Now add a Mode setting to the binding on the Slider to indicate a two-way binding;
<Slider Name="slider"
Value="{Binding ElementName=txtblk, Path=Text, Mode=TwoWay}" ... />
It works! The binding target is still considered to be the Value property of the Slider. Any changes to the Text property of the TextBlock will be reflected in changes to the Value property of the Slider, but any changes to the Slider will now also be reflected in the TextBlock.
You set the Mode property to a member of the BindingMode enumeration. The default Mode property is BindingMode.OneWay. Besides BindingMode.TwoWay, the only other option is BindingMode.OneTime, which only transfers data from the source to the target once.
Using this same technique, it’s possible to establish a binding with the Angle property of the RotateTransform. Let’s first restore the TextBlock to its original binding:
<TextBlock Name="txtblk"
Text="{Binding ElementName=slider, Path=Value}" ... />
Now put a two-way binding on the Slider that references the Angle property of the RotateTransform:
<Slider Name="slider"
Value="{Binding ElementName=rotate, Path=Angle, Mode=TwoWay}" ... />
And that works! The Rectangle element rotates as the Slider is manipulated:
Perhaps as you were playing around with the SliderBindings program (or as you gaped in amazement at that screenshot), you were started to see that the TextBlock displays the Slider value sometimes as an integer, sometimes with one or two decimal points, but mostly in the full 15-digit glory of double-precision floating point.
Is there a way to fix that?
Yes there is. One of the properties of the Binding class is Converter, and the purpose of this property is to reference a class that converts data on its way from the source to the target and (if necessary) back the other way. Obviously, some implicit data conversion is being performed regardless as numbers are converted to strings and strings converted to numbers. But we can provide a little more explicit assistance to this conversion.
The Converter property of the Binding class is of type IValueConverter, an interface that requires only two methods named Convert and ConvertBack. Convert handles the data conversion from the source to the target, and ConvertBack handles the conversion going in the other direction for a TwoWay binding.
If you never intend to use the conversion class with two-way bindings, you can simply return null from ConvertBack.
To add a simple converter to SliderBindings, add a new class to the project and call it TruncationConverter. Actually the class is already in the project, and here it is:
Silverlight Project: SliderBindings File: TruncationConverter.cs
The value argument to the Convert method is the object passing from the source to the target. This method just checks if it’s a double. If so, it explicitly casts it to a double for the Math.Round method.
You’ll need to reference this class in MainPage.xaml, which means you’ll need an XML namespace declaration:
xmlns:local="clr-namespace:SliderBindings"
The TruncationConverter class is then made a resource:
You’ll find these additions already in the MainPage.xaml file of the SliderBindings project.
The Binding markup extension then references this resource:
I’ve split the markup extension into three lines so the components are clearly visible. Notice that the StaticResource is another markup extension embedded in the first markup extension so the entire expression concludes with a pair of curly braces.
And now the number displayed by the TextBlock is truncated:
Be sure to reference the converter as a StaticResource. It is often very tempting to just set the Converter property of Binding to the key name:
I still do that myself very often, and tracking down the problem can be difficult.
Defining the converter as a resource is certainly the most common approach to reference converters, but it’s not the only way. If you use the element syntax of Binding, you can embed the TrunctionConverter class directly into the markup:
However, if you have multiple references in the XAML file to this same converter, defining it as a resource is preferable because it allows the single instance to be shared.
TrucationConverter is actually a terrible data converter. Sure it does what it’s supposed to do but it doesn’t do it in a very versatile manner. If you’re going to be calling Math.Round in a converter class, wouldn’t it be better to have the option of rounding to a certain number of decimal places? Come to think of it, wouldn’t it make more sense to allow all different kinds of formatting—not just of numbers but of other data types as well?
That magic is provided by a class in the Petzold.Phone.Silverlight library called StringFormatConverter:
Silverlight Project: Petzold.Phone.Silverlight File: StringFormatConverter.cs
Besides a Converter property, the Binding class also has a ConverterParameter property. The value of that property enters the Convert call as the parameter argument. The Convert method here assumes that parameter argument as a standard .NET formatting string that can be used in the String.Format call.
To use this converter in the SliderBindings program, you’ll need a reference to the Petzold.Phone.Silverlight library. (That’s already been done.) Already added to the file as well is an XML namespace declaration:
xmlns:petzold="clr-namespace:Petzold.Phone.Silverlight;assembly=Petzold.Phone.Silverlight"
Instantiate the StringFormatConverter in the Resources collection of the page:
You can now reference that converter in the Binding markup expression. Set the ConverterParameter to a .NET formatting string with one placeholder:
And as you start to type a .NET formatting string, you realize there’s a problem. The standard .NET formatting strings involve the use of curly braces, and you’re pretty sure that when the XAML parser attempts to decode a Binding markup expression, it’s not going to appreciate unauthorized embedded curly braces.
The simple solution is to enclose the value of the ConverterParameter in single quotes:
The XAML parser and visual designer in Visual Studio doesn’t care for this particular syntax either, but it’s not a problem at runtime. If you want the designer to accept this, insert a space (or another character) after the first single quotation mark.
Because you know that the ConverterParameter becomes the first argument to a String.Format call, you can spruce it up a bit:
And here’s the result:
Silverlight for Windows Phone supports three basic types of bindings categorized based on the source of the data. So far in this chapter you’ve seen ElementName bindings where the binding references a named element. Much of the remainder of this chapter uses the property Source rather than ElementName to reference a data source.
The third type of binding is called RelativeSource. In the Windows Presentation Foundation, RelativeSource is much more flexible than the version in Silverlight, so you may not be very impressed with this option. One of the purposes of RelativeSource is in connection with templates, as you’ll see in Chapter 16. The only other option allows you to define a binding that references a property of the same element, known as Self. The following program shows the syntax:
Silverlight Project: BindToSelf File: MainPage.xaml (excerpt)
The property RelativeSource is set to another markup extension containing RelativeSource and Self. The Path then refers to another property of the same element. Thus, the TextBlock elements display the FontFamily and FontSize of the TextBlock.
Perhaps you have an application where you need to display many short text strings with borders around them. You decide you want to derive from UserControl to create a control named BorderedText that you can use like so:
As you can see from the XML namespace prefix, this class is already in the Petzold.Phone.Silverlight library.
BorderedText derives from UserControl, and UserControl derives from Control, so we know that BorderedText will already have some of these properties through class inheritance. The properties that BorderedText needs to define on its own are Text, TextDecorations, CornerRadius, and perhaps a couple more to make it more flexible.
It seems likely that the BorderedText.xaml file will have a visual tree consisting of a TextBlock in a Border. Various properties of the TextBlock and this Border must be set from the BorderedText properties.
In the previous chapter, you saw one way to do this: The ColorColumn class defined properties named Label and Value and it used property-changed handlers in code to set the new values of these properties on elements in the visual tree. A rather simpler way is through data bindings.
The BorderedText code-behind file simply defines all the properties not available by virtue of descending from Control:
Silverlight Project: Petzold.Phone.Silverlight File: BorderedText.xaml.cs
It’s long but it’s simple because it’s only property definitions. There are no property-changed handlers. Here’s the XAML file with the Border and the TextBlock:
Silverlight Project: Petzold.Phone.Silverlight File: BorderedText.xaml
Notice that the root element is given a name:
Name="this"
You can give this root element any name you want, but it’s traditional to use the C# keyword this, because within the context of the XAML file, this now refers to the current instance of the BorderedText class, so it’s a familiar concept. The presence of this name means you can establish bindings from the properties of BorderedText to the properties of the elements of that make up its visual tree.
The file doesn’t require bindings for the Foreground property or the various font-related properties because these are inherited through the visual tree. The one TextBlock property I was sad about losing in this control is Inlines, but TextBlock defines that property as get-only so you can’t define a binding on it.
The BorderedTextDemo program tests the new control:
Silverlight Project: BorderedTextDemo File: MainPage.xaml (excerpt)
For data bindings to work, the binding source must implement some kind of notification mechanism. This notification mechanism signals when the property value has changed so the new value can be retrieved from the source and transferred to the target. When you bind the Value property of a Slider to the Text property of a TextBlock, you’re dealing with two dependency properties. Although you can’t see it in the public programming interfaces, dependency properties provide this notification mechanism.
Connecting two visual elements with a data binding is certainly convenient, but the most powerful data bindings involve a target that is a visual element but a source that is not, and which instead is probably something commonly referred to as a business object.
And now a warning is required:
Sometimes when programmers learn a new and important feature of an operating system—such as the dependency properties I discussed in the previous chapter—they feel a need to use that feature everywhere, perhaps just to try it out and give it some exercise. With dependency properties, this is not such a good idea. Certainly you should use dependency properties when you’re deriving from classes that already derive from DependencyObject, but you probably shouldn’t derive from DependencyObject for the sole purpose of using dependency properties.
In other words: Don’t start rewriting your business objects to use dependency properties!
Targets of data bindings must be dependency properties, but that is not a requirement for binding sources. Binding sources can be just regular old properties on regular old classes. However, if the source is changing, and you want the target updated with the current value of the source, the source must implement some kind of notification mechanism.
Almost always, business objects that serve as binding sources should implement the notification mechanism known as the INotifyPropertyChanged interface. INotifyPropertyChanged is defined in the System.ComponentModel namespace—a clear indication that it transcends Silverlight and plays a very important role in .NET. This is how business objects provide notification that data has changed in some way.
INotifyPropertyChanged is also extremely simple, being defined like this:
A class can implement INotifyPropertyChanged simply by having a public event named PropertyChanged. In theory, the class needn’t actually do anything with this event, but proper decorum mandates that the class fires this event whenever one of its properties changes.
The PropertyChangedEventHandler delegate is associated with a PropertyChangedEventArgs class that has a single public get-only property named PropertyName of type string. You pass the name of the property that’s changed to the PropertyChangedEventArgs constructor.
Sometimes a class that implements INotifyPropertyChanged will have a protected virtual method named OnPropertyChanged with an argument of type PropertyChangedEventArgs. This isn’t required but it’s convenient for derivative classes. I do this in my examples because the method is a convenient place to fire the event.
Because business objects that implement INotifyPropertyChanged do not derive from FrameworkElement, they do not form part of the visual tree in a XAML file; usually they’ll be instantiated as XAML resources or in the code-behind file.
I sometimes think of business objects that are intended to be referenced in XAML files through bindings as binding servers. They expose public properties and fire PropertyChanged events when these properties change.
For example, suppose you want to display the current time in a Windows Phone 7 application, and you want to be fairly flexible about what you display. Perhaps sometimes you only want to display seconds, and you want to do this entirely in XAML. For example, you might want a bit of XAML that says “The current seconds are ... ” followed by a number that changes every second. The technique I’ll show you here can be extended to many other types of applications beyond clocks, of course.
Although you’ll want to implement the visuals entirely in XAML, you’re going to need some code—perhaps a class named simply Clock that has properties named Year, Month, Day, DayOfWeek, Hour, Minute, and Second. We’ll instantiate this Clock class in a XAML file and access the properties through data bindings.
As you know, there already is a structure in .NET that has properties with the names Year, Month, Day, and so forth. It’s called DateTime. Although DateTime is essential for writing the Clock class, it’s not quite satisfactory for our purposes because the properties in DateTime don’t dynamically change. Each DateTime object represents a particular immutable date and time. In contrast, the Clock class I’ll show you has properties that change to reflect the current moment, and it will notify the external world about these changes through the PropertyChanged event
This Clock class is in the Petzold.Phone.Silverlight library. Here it is:
Silverlight Project: Petzold.Phone.Silverlight File: Clock.cs
The Clock class implements INotifyPropertyChanged and therefore includes a public event named PropertyChanged. Near the bottom, a protected OnPropertyChanged method is also included and is responsible for firing the actual event. The constructor of the class installs a handler for the Tick event of the DispatcherTimer initialized to an interval of 1/10th second. The OnTimerTick handler (at the very bottom of the class) sets new values of the class’s Hour, Minute, Second, and Date properties, all of which are structured very similarly.
For example, look at the Hour property:
The set accessor is protected. The value is only set internally and we don’t want external classes messing with it. The set accessor checks if the value being set to the property equals the value stored as a field; if not, it sets the hour field to the new value and calls OnPropertyChanged to fire the event.
Some programmers don’t include the if statement to check that the property is actually changing, with the result that the PropertyChanged event is fired whenever the property is set, even if it’s not changing. That’s not a good idea—particularly for a class like this. We really don’t want a PropertyChanged event reporting that the Hour property is changing every 1/10th second if it’s really changing only every hour.
To use the Clock class in a XAML file, you’ll need a reference to the Petzold.Phone.Silverlight library and an XML namespace declaration:
xmlns:petzold="clr-namespace:Petzold.Phone.Silverlight;assembly=Petzold.Phone.Silverlight"
When a binding source is not derived from DependencyObject, you don’t use ElementName In the Binding. Instead, you use Source. The bindings we want to create set Source to the Clock object in the Petzold.Phone.Silverlight library.
You can insert a reference to the Clock class directly in the element form of Binding:
The Source property of Binding is broken out as a property element and set to an instance of the Clock class. The Path property indicates the Second property of Clock.
Or, more conventionally, you define the Clock as a XAML resource:
Then the Binding markup extension can reference that resource:
TextBlock Text="{Binding Source={StaticResource clock}, Path=Second}" />
Notice the embedded markup expression for StaticResource.
This approach is demonstrated in the TimeDisplay project, which uses a horizontal StackPanel to concatenate text:
Silverlight Project: TimeDisplay File: MainPage.xaml
And here it is:
To re-emphasize: The binding target (the Text property of the TextBlock) must be a dependency property. That is required. To keep the target updated with changing values from the binding source (the Second property of Clock), the source should implement some kind of notification mechanism, which it does.
Of course, I don’t need the StackPanel with the multiple TextBlock elements. Using the StringFormatConverter (which I’ve included as a resource in TimeDisplay with a key of “stringFormat” so you can experiment with it) I can simply include the whole text like so:
Now the Binding markup expression has two embedded markup expressions.
If you want to display several properties of the Clock class, you’ll need to go back to using multiple TextBlock elements. For example, this will format the time with colons between the hours, minutes, and seconds and leading zeros for the minutes and seconds:
As you can see, the three bindings all include the same Source setting. Is there some way that allows us to avoid the repetition? Yes there is, and the technique also illustrates an extremely important concept.
FrameworkElement defines a property named DataContext that you can set to pretty much any object (in code) or generally a binding (in XAML). The DataContext is one of those properties that propagates down through the visual tree, at which point it can be combined with more local bindings. At the very least, the DataContext gives you a way to simplify individual bindings by eliminating repetition. In the broader view, DataContext is how you associate data with visual trees.
In this particular example, you can set the DataContext property on any element that is an ancestor to the TextBlock elements. Let’s set it on the most immediate ancestor, which is the StackPanel:
Now the StackPanel has its DataContext set to a Binding element that references just the source of the binding—the Clock resource. All the children of that StackPanel don’t need to reference that Source. It’s merged in with the bindings on the individual TextBlock elements.
You can set the DataContext to a Binding object as I’ve done:
DataContext="{Binding Source={StaticResource clock}}"
Or in this case you can set the DataContext directly to the source:
DataContext="{StaticResource clock}"
Either is acceptable and you’ll see both in my examples.
Once the Source property is removed from the individual Binding extensions, what begins to look more natural to me is for the “Path=” part of the individual bindings to be removed:
Remember that the “Path=” part of the Binding markup extension can be removed only if the Path is the first item. Each of the bindings now seems to reference a particular property of the DataContext:
<TextBlock Text="{Binding Hour}" />
Here’s the resultant display:
The DataContext is extremely useful when a page or a control is devoted to displaying the properties of a particular class. The DataContext can be set by code to switch between various instances of that class.
Although certainly not as common, you can also use DataContext with ElementName bindings. Here’s the visual tree from the BorderText.xaml file you saw earlier:
You can instead set the DataContext on the Border to a Binding with the ElementName, and then the remaining bindings are simplified considerably:
Back to Clock: You may have noticed that I got a little lazy when coding the class and didn’t define properties for the various components of the date, such as Month and Year. Instead, I simply defined a property named Date of type DateTime. The OnTimerTick handler assigns to that property the static property DateTime.Today, which is a DateTime object with the time set to midnight. That means that this Date property is not firing off PropertyChanged events every tenth second. It’s only firing one at startup and then at the stroke of every midnight.
You can reference the individual properties of the Date property like this:
Or, you can set a DataContext on the StackPanel as before and eliminate the “Path=” part of the bindings:
Either version displays two lines of text:
Date is a property of Clock of type DateTime, and Day, Month, Year, and DayOfWeek are all properties of DateTime. There is no formatting here beyond that provided by default calls to ToString. The Day, Month, and Year properties are displayed as numbers. The DayOfWeek property is of a member of the DayOfWeek enumeration, so you’ll see actual text, such as Wednesday, but the text won’t be localized. The DayOfWeek member names are in English so that’s what’s displayed.
You can also set a DataContext that references both the Source and the Date property, so the individual bindings just reference properties of DateTime:
Of course, there are lots of formatting options for dates documented with the DateTimeFormatInfo class in the System.Globalization namespace, so you can also make use of StringFormatConverter.
Suppose you want to include the name of the current month deep within a paragraph displayed using TextBlock. To use TextBlock to display a paragraph of text, you’ll want to set the TextWrapping property to Wrap. But now you can’t use StackPanel to concatenate multiple TextBlock elements. You need to include all the text in that single TextBlock, including the name of the month. How do you do it?
You will consider yourself a genius when you remember the Run class. You’ll recall from the end of Chapter 8 how the Run class derives from Inline and allows you to specify formatting for a piece of text within an entire TextBlock. The Run class has a Text property, so it seems like an ideal way to embed the month name (or some other binding) in a longer paragraph:
This is exactly what you want, and the only problem is that it won’t work! It won’t work because the Text property of Run is not backed by a dependency property, and targets of data bindings must always be dependency properties.
It seems unfair that Run has this little problem, but frameworks are much like life, and life is not always fair.
Currently, you cannot do this little task entirely in XAML. You’ll need to give the Run a name and assign the Text property from code.
XAML is not a real programming language. It doesn’t include anything like if statements. XAML isn’t capable of making decisions.
But that doesn’t mean we can’t try.
As you may have noticed, the Clock class used the straight Hour property from DateTime, which is a 24-hour clock value. You might instead want a 12-hour clock and display the text “AM” or “PM” to indicate the morning or afternoon.
Normally you can do that by formatting the time (if the Clock class actually provided a DateTime object indicating the time) but suppose you want to be very flexible about how you display the AM and PM information—perhaps you’d prefer to display the text “in the morning” or “in the afternoon”—and you want to do it in XAML.
Here’s a new class named TwelveHourClock that derives from Clock.
Silverlight Project: Petzold.Phone.Silverlight File: TwelveHourClock.cs
The TwelveHourClock class defines three new properties, all triggering PropertyChanged events. These are Hour12 and two Boolean properties, IsAm and IsPm. The override of OnPropertyChanged checks if the property being changed is Hour and, if so, calculates new values for these three properties, which themselves cause calls to OnPropertyChanged.
Because isAm is simply the logical negation of isPM, you may wonder why both properties are required. Because XAML itself can’t perform a logical negation, having both properties available becomes extremely convenient.
Let’s instantiate the TwelveHourClock class in a Resources collection and give it a key of “clock12”:
If you’d like XAML to display some text along the lines of “It’s after 9 in the morning,” you might begin like this:
This XAML has separate text strings for morning and afternoon, but at any time only one of them should be displayed depending on whether IsAm or IsPm is true. How is such a thing even possible?
Another converter is required, and this is also a converter that you’ll use quite often. It’s called a BooleanToVisibilityConverter and it assumes that the source value is a Boolean and the target is a property of type Visibility:
Silverlight Project: Petzold.Phone.Silverlight File: BooleanToVisibilityConverter.cs
Add that class to the Resources collection:
Now bind the Visibility properties of the final two TextBlock elements to the IsAm and IsPm properties using the BooleanToVisibilityConverter. Here’s the markup from the project AmOrPm:
Silverlight Project: AmOrPm File: MainPage.xaml (excerpt)
And it works:
It’s not unreasonable to create a data-binding converter that is so specialized or so weird that it’s only good for one particular application. For example, here’s a class called DecimalBitToBrushConverter. This converter includes two public properties named ZeroBitBrush and OneBitBrush.
Silverlight Project: BinaryClock File: DecimalBitToBrushConverter.cs
The Convert method expects a value argument of type int, and a valid parameter argument. When you set the ConverterParameter property in XAML to a string, it will come into the Convert method as an object of type string, at which point you must convert it manually into the desired type. (To override that behavior, you’d need to use property-element syntax for the ConverterParameter and specify the type using element tags.) This Convert method expects this string to represent another int, so it passes the string the Int32.Parse.
The value argument is a number, for example 127. The parameter argument, when converted to an int, is a bit position, for example, 6. The method essentially breaks the incoming number into decimal digits, in this example 1, 2 and 7, and then finds the digit in the specified bit position. The 7 of 127 corresponds to bit positions of 0 through 3; the 2 of 127 is bit positions 4 through 7; the 1 of 127 is bit positions 8 through 11.
If the bit in that bit position is 1, Convert returns OneBitBrush; if it’s 0, Convert returns ZeroBitBrush.
I use this converter in a project called BinaryClock. The converter is referenced in a UserControl derivative called BinaryNumberRow. Notice how the two public properties of DecimalBitToBrushConverter are set right in the Resources collection, which also includes a Style for the Ellipse.
Silverlight Project: BinaryClock File: BinaryNumberRow.xaml
The body of the BinaryNumberRow visual tree is a horizontal UniformStack containing seven Ellipse elements. Each has a Binding that assigns only the Converter property to the DecimalBitToBrushConverter and a ConverterParameter that ranges from 0 for the Ellipse on the right to 6 for the Ellipse on the left. None of the bindings include Source or Path settings! These are obviously set elsewhere in the DataContext for the BinaryNumberRow instance.
The MainPage.xaml file of the BinaryClock project instantiates the TwelveHourClock object in its Resources section:
Silverlight Project: BinaryClock File: MainPage.xaml
The content area contains a vertically centered StackPanel with three instances of BinaryNumberRow:
Silverlight Project: BinaryClock File: MainPage.xaml
Notice the DataContext settings: The StackPanel has its DataContext set to the TwelveHourClock itself. Each of the BinaryNumberRow controls has a DataContext set to one of the properties of TwelveHourClock. This is why the Binding definitions in BinaryNumberRow only need to contain a Converter and ConverterParameter.
The result, of course, is a binary clock:
The time is, ummm, 12:58:06.
You might wonder if some of the Binding markup might be reduced even further. Considering that all the individual Ellipse elements have the same Converter setting, might that be moved to the first DataContext setting on the StackPanel? No it can’t. The Converter and ConverterParameter settings must appear together in the same Binding definition.
The two binding services you’ve seen so far simply provide information. You can also create bindings in XAML that deliver data to the binding service and get back a result. As a very simple demonstration, let’s look at a binding service that performs the momentous feat of adding two numbers together. I call it Adder.
Silverlight Project: Petzold.Phone.Silverlight File: Adder.cs
When you add two numbers together, they can be called the Augend and the Addend, and that’s what the two properties are named. Both properties are of type double and both are entirely public, and when either is set to a new value, it fires a PropertyChanged event and also calls a method named CalculateNewSum.
CalculateNewSum adds the Augend and Addend properties and sets the result to the Sum property. Sum is a little different because the set accessor is protected, so nobody external to this class can mess with the Sum, and that is how it should be.
The SliderSum project shows one way to use this binding service in a program. The Resources collection references two files from the Petzold.Phone.Silverlight library:
Silverlight Project: SliderSum File: MainPage.xaml (excerpt)
In the content area, two Slider elements are positioned at the top and bottom, and a TextBlock occupies the larger interior:
Silverlight Project: SliderSum File: MainPage.xaml (excerpt)
Notice the DataContext on the Grid. Although the two Slider controls are providing values for the Augend and Addend properties, these Augend and Addend properties cannot be binding targets because they are not backed by dependency properties. The Adder must be the binding source and the Slider controls must be the binding targets, and that’s why the two bindings have a Mode of TwoWay. The Slider bindings are set initially to their center positions from the default values defined by Adder, but thereafter, the Slider values are transferred to the Augend and Addend properties. The TextBlock is bound to the Sum property with some string formatting.
Suppose you want to display negative values in red. (You are probably an accountant.) By this time you probably know that a binding converter is involved. The converter can be generalized somewhat by testing whether the value going into the converter is greater than, equal to, or less than a certain criterion value. Each of the three possibilities can result in a different brush being returned from the converter. As in the converter in the BinaryClock project, this information can be provided through public properties on the converter class, like this:
Silverlight Project: Petzold.Phone.Silverlight File: ValueToBrushConverter.cs
Originally I wrote this converter to just cast the value argument to a double, but I later found a need to use the converter with other numeric data types, so I went for a more versatile conversion with an IConvertible method.
The SliderSumWithColor project adds this converter to the ever-growing Resources collection:
Silverlight Project: SliderSumWithColor File: MainPage.xaml (excerpt)
The property settings on the ValueToBrushConverter indicate that values less than zero will be displayed in red; otherwise values are displayed in the PhoneForegroundBrush color.
Everything else is the same as in the previous program except that the TextBlock now has a Binding set on its Foreground property with the ValueToBrushConverter:
Silverlight Project: SliderSumWithColor File: MainPage.xaml (excerpt)
It’s actually quite exciting to see the color of the TextBlock become red knowing that there’s no explicit event handler in the program making this change:
The Text property of a TextBox can be a target of a data binding, but some potential problems are introduced. Once you allow the user to type anything into a TextBox, you need to deal with faulty input.
Suppose you want to write a program that solves quadratic equations, that is, solutions of the equation
Ax2 + Bx + C = 0
To make the program most versatile, you’d probably supply three TextBox controls to allow the user to type in values of A, B, and C. You could then include a Button labeled “calculate” that obtains the two solutions from the standard equation:
You’d then display the solutions in a TextBlock.
With what you know about data bindings (and considering the example of the Adder binding server), a somewhat different approach comes to mind. This approach retains the three TextBox controls and uses a TextBlock to display results. These controls are all bound to properties of the binding server.
So where does the Button go? Well, perhaps the Button isn’t really needed.
To get started, here’s a class from Petzold.Phone.Silverlight named QuadraticEquationSolver. It implements the INotifyPropertyChanged interface, has three properties named A, B, and C, and get-only properties named Solution1 and Solution2. Two additional read-only properties are of type bool and named HasTwoSolutions and HasOneSolution.
Solution: Petzold.Phone.Silverlight File: QuadaticEquationSolver.cs
The Solution1 and Solution2 properties are of type Complex, a structure that is also included in the Petzold.Phone.Silverlight project but which doesn’t implement any operations. The structure exists solely to provide ToString methods. (Silverlight 4 includes a Complex class in its System.Numerics namespace but this is not available in Silverlight for Windows Phone 7.)
Silverlight Project: Petzold.Phone.Silverlight File: Complex.cs
Complex implements the IFormattable interface, which means it has an additional ToString method that includes a formatting string. This is necessary if you’re going to use numeric formatting specifications in String.Format to format these complex numbers, as StringFormatConverter does.
The QuadraticEquations1 project is a first attempt at providing a user interface for this class. The Resources collection of MainPage contains references to the QuadraticEquationSolver class and two converters that you’ve seen before:
Silverlight Project: QuadraticEquations1 File: MainPage.xaml (excerpt)
The content area has two nested StackPanel elements. The horizontal StackPanel contains three TextBox controls of fixed width with two-way bindings for typing in values of A, B, and C. Notice that the InputScope is set to Number for a specifically numeric keyboard.
Silverlight Project: QuadraticEquations1 File: MainPage.xaml (excerpt)
The two TextBlock elements at the end display the two solutions; the second TextBlock has its Visibility property bound to the HasTwoSolutions property of QuadraticEquationSolver so it’s not visible if the equation has only one solution.
Probably the first thing you’ll notice is that typing a number into a TextBox has no effect on the solutions! At first it seems like the program is not working at all. Only when the TextBox you’ve been typing into loses input focus does the value get transferred to the A, B, or C property of the QuadraticEquationSolver class.
This behavior is by design. In the general case, controls could be bound to business objects over a network, and you probably don’t want an object bound to a TextBox being updated with every little keystroke. Users make a lot of mistakes and perform a lot of backspacing and in some cases waiting until the user has finished is really the proper time to “submit” the final value.
In this particular program, that behavior is probably not what you want. To change it, you’ll want to set the UpdateSourceTrigger property of the Binding in each of the TextBox controls to Explicit:
The UpdateSourceTrigger property governs how the source (in this case, the A, B, or C property in QuadraticEquationSolver) is updated from the target (the TextBox) in a two-way binding. The property is set to a member of the UpdateSourceTrigger enumeration. In the WPF version of UpdateSourceTrigger, members named LostFocus and PropertyChanged are available, but in Silverlight the only two options are Default and Explicit.
Default means “the default behavior for the target control” which for a TextBox target means that the source is updated when the TextBox loses focus. When you specify Explicit, you need to provide some code that triggers the transfer of data from the target to the source. This could be the role of a Button labeled “calculate.”
If you’d rather avoid that Button, you can trigger the transfer when the text changes in the TextBox, so in addition to setting the UpdateSourceTrigger property of Binding, you need to provide a handler for the TextChanged event of the TextBox:
In the TextChanged event handler, you need to “manually” update the source by calling the UpdateSource method defined by BindingExpression.
Earlier in this chapter, I showed you how to call the SetBinding method defined by FrameworkElement or the static BindingOperations.SetBinding method to set a binding on a property in code. (The SetBinding method defined by FrameworkElement is just a shortcut for BindingOperations.SetBinding.) Both methods return an object of type BindingExpression.
If you haven’t called these methods in code, you’ll be pleased to learn that FrameworkElement stores the BindingExpression object so it can be retrieved with the public GetBindingExpression method. This method requires the particular property that is the target of the data binding, which is always, of course, a dependency property.
Here’s the code for updating the source when the TextBox text changes:
Another problem with the TextBox is that the user can enter a character string that cannot be resolved to a number. Although you can’t see it, a converter is at work converting the string object from the TextBox to a double to set to the A, B, or C property of QuadraticEquationSolver. This hidden converter probably uses the Double.Parse or Double.TryParse method.
If you’d like to catch exceptions raised by this converter, you can. You’ll probably want to set two more properties of the Binding class to true, as shown here:
This causes a BindingValidationError event to be fired. This is a routed event, so it can be handled anywhere in the visual tree above the TextBox. Most conveniently in a small program, a handler for the event can be set right in the MainPage constructor:
Notice that the normal Foreground brush of the TextBox is saved as a field. Here’s a simple event handler that colors the text in the TextBox red if it’s invalid:
Of course, as soon the TextBox text changes again, you’ll want to restore that color, which you can do in the OnTextBoxTextChanged method:
These two techniques—updating with each keystroke and giving a visual indication of invalid input—are combined in the QuadraticEquations2 project. Here’s the XAML file:
Silverlight Project: QuadraticEquations2 File: MainPage.xaml (excerpt)
You might also notice that I completely revamped the display of the solutions. Rather than two TextBlock elements to display two solutions, I use four TextBlock elements to display a single solution that might contain a ± sign (Unicode 0x00B1).
The code-behind file implements the updating and error handling:
Silverlight Project: QuadraticEquationSolver2 File: MainPage.xaml.cs
Here’s a TextBox indicating that an entry is incorrect:
If you had written a quadratic equation solver for Windows Phone 7 prior to this chapter, the screen might looked pretty much the same, but I suspect the program would have been structured quite differently. I know that’s the case if you wrote such a program for a code-only environment such as Windows Forms.
Notice how converting the program to a mostly XAML solution causes us to rethink the whole architecture of the program. It’s always an interesting process to me how our tools seems to govern how we solve problems. But in some ways this is a good thing, and if you find yourself writing code specifically to use in XAML (such as binding services and data converters), I think you’re on the right track.
The world of two-dimensional computer graphics is generally divided between vector graphics and raster graphics—a graphics of lines and a graphics of pixels—a graphics of draw programs and a graphics of paint programs—a graphics of cartoons and a graphics of photographs.
Vector graphics is the visual realization of analytic geometry. Two-dimensional coordinate points in the form (x, y) define straight lines and curves. In Silverlight, these curves can be arcs on the circumference of an ellipse or Bezier curves, either in the customary cubic form or in a simplified quadratic form. You can “stroke” these lines with a pen of a desired brush, width, and style. A series of connected lines and curves can also define an enclosed area that can be filled with a brush.
Raster graphics (which I’ll discuss in the next chapter) involves bitmaps. In Silverlight it is very easy to display a PNG or JPEG file using an Image element as I demonstrated as early as Chapter 4. But as I’ll show you in the next chapter, it’s also possible to generate bitmaps algorithmically in code using the WriteableBitmap class. The worlds of raster graphics and vector graphics intersect when an ImageBrush is used to fill an area, or when vector graphics are used to generate an image on a WriteableBitmap.
A Silverlight program that needs to draw vector graphics uses classes defined in the System.Windows.Shapes namespace, commonly referred to as the Shapes library. This namespace consists of an abstract class named Shape and six sealed classes that derive from Shape:
The Shape class derives from FrameworkElement, which means that these objects get touch input, participate in layout, and can have transforms. In Silverlight there is insufficient information to allow you to derive a class from Shape itself.
You’ve already seen Rectangle and Ellipse, but these are really two oddball classes in the realm of vector graphics because they don’t contain any coordinate points. You can just stick an Ellipse in a UserControl and it fills the whole control. You can size the element, but positioning it at an arbitrary point requires a Margin or Padding property, or a RenderTransform, or putting it on a Canvas and using the Left and Top attached properties.
The other four classes of Shape are different; these allow you to position the elements with actual coordinate points. Although I’ll discuss the Path class last, it is so versatile that it is pretty much the only class you need for all your vector graphics jobs. If you need to draw an arc or a Bezier spline, you’ll be using the Path class.
Shape defines 11 settable properties that are inherited by all its descendants:
You’ve already seen the first three properties in connection with Rectangle and Ellipse. The Fill property specifies the Brush used to fill the interior of the figure; the Stroke property is the Brush used to color the outline of the figure, and StrokeThickness is the width of that outline.
All the other properties can be used with Rectangle and Ellipse as well. Although the two enumerations (PenLineCap and PenLineJoin) allude to a Pen, there is no Pen class in Silverlight. Conceptually, the properties beginning with the word Stroke together comprise an object traditionally regarded as a pen.
The Line class defines four properties of type double named X1, Y1, X2, and Y2. The line is drawn from the point (X1, Y1) to the point (X2, Y2) relative to its parent:
Many of the examples in this program will be shown as a snippet of XAML and the corresponding image in a 480-square pixel area. At the end of the chapter I’ll describe the program that created these images. For the printed page I’ve made the resolution of these images about 240 dots per inch so they are approximately the same size as what you would see on the actual phone.
The line begins at the coordinate point (50, 100) and ends at the point (200, 150). All coordinates are relative to an upper-left origin; increasing values of X go from left to right; increasing values of Y go from top to bottom.
The X1, Y1, X2, and Y2 properties are all backed by dependency properties so they can be the targets of styles, data bindings, and animations.
Although the Canvas panel seems like a natural for vector graphics, you’ll get the same image if you use a single-cell Grid:
Normally when you use a Canvas you use the Canvas.Left and Canvas.Top attached properties to position elements within the Canvas. Those properties are not required with the Line because it has its own coordinates. You could use the attached properties with the Line but the values are compounded with the coordinates:
Usually when you’re working with elements that indicate actual coordinate positions, you’ll use the Canvas.Left and Canvas.Top attached properties only for special purposes, such as moving an object relative to the Canvas.
Moreover, you’ll recall that a Canvas always reports to the layout system that it has a size of zero. If you subject the Canvas to anything other than Stretch alignment, it will shrink into nothingness regardless of its contents.
For these reasons, I tend to put my vector graphics in a single-cell Grid rather than a Canvas.
If a Grid contains one or more Line elements (or any other coordinate-based elements), it will report a size that comprises the maximum non-negative X coordinate and the maximum non-negative Y coordinate of all its children. This can sometimes seem a little weird. If a Grid contains a Line from (200, 300) to (210, 310), the Line will report an ActualWidth of 210 and an ActualHeight of 310, and the Grid will be 210 pixels wide and 310 pixels tall, even though the rendered Line needs only a tiny corner of that space. (Actually, the Line and the Grid will be at least an extra pixel larger to accommodate the StrokeThickness of the rendered Line.)
Coordinates can be negative, but the Grid does not take account of negative coordinates. A negative coordinate will actually be displayed to the left of or above the Grid. I have spent much time thinking about this behavior, and I am convinced it is correct.
Here are two lines:
The second one overlaps the first one. You can see that more clearly if you go beyond the default 1-pixel thickness of the line using StrokeThickness:
If you would prefer that the blue line be on top of the red line, there are two ways you can do it. You could simply swap the order of the two lines in the Grid:
Or, you could set the Canvas.ZIndex property. Although this property is defined by Canvas it works with any type of panel:
The Line element looks simple but the markup is a little bloated. You can actually reduce the markup for drawing a single line by switching from the Line to the Polyline:
The Points property of the Polyline class is of type PointCollection, a collection of Point objects. In XAML you indicate multiple points by just alternating the X and Y coordinates. You can string out the numbers with spaces between them as I’ve done, or you can clarify the markup a little with commas. Some people prefer commas between the X and Y coordinates:
<Polyline Points="100,300 200,50" ...
Others (including me) prefer to separate the individual points with commas:
<Polyline Points="100 300, 200 50"
The advantage of Polyline is that you can have as many points as you want:
Each additional point increases the total polyline by another line segment.
The Polyline does have one significant disadvantage that Line doesn’t have: Because you’re now dealing with a collection of Point objects, the individual points can’t be targets of a style, or a data binding, or an animation. This is not to say that you can’t change the PointCollection at runtime and have that change reflected in the rendered Polyline. You surely can, as I’ll demonstrate in the GrowingPolygons program later in this chapter.
Although the Polyline can draw some simple connected lines, it tends to feel underutilized if it’s not fulfilling its true destiny of drawing complex curves, usually generated algorithmically in code. The Polyline is always a collection of straight lines, but if you make those lines short enough and numerous enough, the result will be indistinguishable from a curve.
For example, let’s suppose you want to use Polyline to draw a circle. Commonly, a circle centered at the point (0, 0) with a radius R is defined as all points (x, y) that satisfy the equation:
x2 + y2 = R2
This is also, of course, the Pythagorean Formula.
But when generating points to draw a graphical circle, this formula tends to be a little clumsy: You need to pick values of x between -R and R, and then solve for y (keeping in mind that most values of x correspond to two values of y) and even if you do this in a systematic manner, you’re going to get a higher density of points in the region where x is close to 0 than the region where y is close to 0.
A much better approach for computer graphics involves parametric equations, where both x and y are functions of a third variable, sometimes called t to suggest time. In this case that third variable is simply an angle ranging from 0 to 360°.
Suppose the circle is centered on the point (0, 0) and has a radius of R. The circle will be enclosed within a box where values of x go from –R on the left to +R on the right. In keeping with the Silverlight convention that increasing values of y go down, values of y range from –R on the top to +R on the bottom.
Let’s begin with an angle of 0° at the rightmost edge of the circle, which is the point (R, 0), and let’s go clockwise around the circle. As the angle goes from 0° to 90°, x goes from R to 0, and then x goes to –R at 180° and then goes back down to zero at 270° and back to R at 360°. This is a familiar pattern:
x = R · cos(α)
At the same time, the values of y go from 0 to R to 0 to –R and back to 0, or
y = R · sin(α)
Depending where the circle begins, and in what direction you go, you could have slightly different formulas where the sine and cosine functions are switched, or one or both or negative.
If you use different values of R for the two formulas, you’ll draw an ellipse. If you want the circle centered at the point (Cx, Cy), you can add these values to the previous results:
x = Cx + R · cos(α)
y = Cy + R · sin(α)
In a program, you put those two formulas in a for loop that increments an angle value ranging from 0 to 360 to generate a collection of points.
How much granularity is required to make the resultant circle look smooth? In this particular example, it depends on the radius. The circumference of a circle is 2πR, so if the radius is 240 pixels (for example), the circumference is approximately 1,500 pixels. Divide by 360° and you get about 4, which means that if you increment the angle in the for loop by 0.25°, the resultant points will be about a pixel apart. (You’ll see later in this chapter that you can get by with a lot fewer points.)
Let’s create a new projecvt. Bring up the MainPage.cs file and install a handler for the Loaded event to allow accessing the dimensions of the ContentPanel grid. Here are calculations for center and radius for a circle to occupy the center of a content panel and reach to its edges:
Notice the pixel subtracted from the calculation of the radius. This is to prevent the circle from being geometrically the same as the content area size. The stroke thickness straddles the geometric line so it would otherwise get cropped off at the edges.
Now create a Polyline and set the Stroke and StrokeThickness properties:
Calculate the Point objects in a for loop based on the formulas I’ve just showed you and add them to the Points collection of the polyline:
Now add the Polyline to the Grid:
ContentPanel.Children.Add(polyline);
And here’s the result:
So big deal. We created a circle a hard way rather than an easy way. And it’s not even a complete circle: Because the angle in the for loop didn’t go all the way to 360, there’s actually a little gap at the right side.
But instead of fixing that problem, let’s do something a little different. Let’s make the angle go all the way to 3600:
for (double angle = 0; angle < 3600; angle += 0.25)
Now the loop will go around the circle 10 times. Let’s use that angle and the original radius value to calculate a scaledRadius:
double scaledRadius = radius * angle / 3600;
And use that scaledRadius value for multiplying by the sine and cosine values. Now the result is an Archimedian spiral:
Here’s the complete class:
Silverlight Project: Spiral File: MainPage.xaml.cs (excerpt)
It’s not necessary to create the Polyline object in code: You could define it in XAML and then just access it to put the points in the Points collection. In Chapter 15 I’ll show you how to apply a rotation animation to the spiral so that you can hypnotize yourself.
When you’re displaying thick lines, you might want a little different appearance on the ends of the lines. These are known as line caps—“caps” like a hat. The available caps are members of the PenLineCap enumeration: Flat (the default), Square, Round, and Triangle. Set the StrokeStartLineCap property to one of these values for the cap at the beginning of the line, and set StrokeEndLineCap for the cap at the end. Here are Round and Triangle capping off a 30-pixel line:
The difference between Flat and Square might not be obvious at first. To better clarify the difference, the following markup displays a thinner line over the thick line with the same coordinates to indicate the geometric start and end of the line:
The Flat cap (at the upper left) cuts off the line at the geometric point. The Square extends the line for half the line thickness. My favorite caps are the rounded ones:
As you can see, they also extend the rendered size of the line by half the stroke thickness.
You can also specify what happens at the corners. Set the StrokeLineJoin property to a member of the PenLineJoin enumeration. Here’s Round:
Or Bevel:
Or Miter, which is the default:
The Miter join has a little built-in problem. If the lines meet at a very sharp angle, the miter can be very long. For example, a 10-pixel wide line that makes an angle of 1° will have a miter point over 500 pixels long! To avoid this type of weirdness a StrokeMiterLimit property kicks in for extreme cases:
The default value is 10 (relative to half the StrokeThickness) but you can make it longer if you want:
Here are two lines, one thick, one thin overlaying the thick line, with the same geometric points, going from the upper-left to the lower-left:
You can make the line dashed by setting the StrokeDashArray, which is generally just two numbers, for example 1 and 1:
What this means is that a dash will be drawn for one-line thickness (30 pixels in this case), followed by a one-line thickness gap, and repeated until the end. As you can see, the caps are really handled a little differently; they are drawn or not drawn depending on whether they occur when a dash or a gap is in progress.
You can make the dashes longer by increasing the first number,
However, you’ll probably also want to give the dashes their own caps. Set StrokeDashCap to a member of the PenLineCap enumeration, either Flat (the default), Triangle, Square, or Round, which is my preference:
A little problem has arisen. Each of the dashes has acquired a rounded cap, so they’ve each increased in length on both ends by half the line thickness, and now the dashes actually touch. You need to fix that by increasing the gap:
If you want to draw a dotted line with actual round dots, obviously you want to use the Round dash cap, and you want each dot to be separated by its neighbor by the dot width. The StrokeDashArray required for this job is somewhat non-intuitive. It’s a dash length of 0 and a gap length of 2:
You can have more than two numbers. Here’s a dot and dash configuration:
You don’t even need an even number of numbers:
The other dash-related property is StrokeDashOffset, and it is also relative to the thickness of the line. This property lets you start the dashes in the middle of a dash, which makes the first dash (at the upper-left corner) smaller than the rest:
Or you can start with a gap:
You can use a dotted line around an ellipse if you want:
It’s an unusual look, but you really have to experiment or do some calculations so you don’t get half a dot in there.
The Polyline that I’ve been using to demonstrate dotted lines is only three sides of a square:
But if you set the Fill brush, the interior is filled as if the polyline describes a closed area:
If you want the figure to be really closed, you can add another point to the Points collection that is the same as the first point, or you can use a Polygon rather than a Polyline:
Both elements have the same Points collection, but the Polygon is closed automatically if necessary.
Once you start filling enclosed area with Polygon, a question comes up about how the interior should be handled when boundary lines overlap. The Polygon class defines a property named FillRule that gives you a choice. The classic example is the five-pointed star. Here’s the default FillRule, called EvenOdd:
The EvenOdd algorithm determines if an enclosed area should be filled or not by conceptually taking a point in that area, for example, somewhere in the center, and drawing an imaginary line out to infinity. That imaginary line will cross some boundary lines. If it crosses an odd number of boundary lines, such as happens in the five points, then the area is filled. For an even number, like the center, the area is not filled.
The alternative is a FillRule called NonZero:
The NonZero fill rule is a bit more complex because it takes account of the directions that boundary lines are drawn. If the boundary lines drawn in one direction balance out the boundary lines drawn in the opposite direction, then the area is not filled. In any interior area of this star, however, all the boundary lines go in the same direction.
Neither of these two FillRule options guarantees that all interior areas get filled. Here’s a rather artificial figure that has an enclosed but unfilled area even with NonZero:
The only settable property defined by Shape that I haven’t discussed yet is Stretch. This is similar to the same property in the Image element; you set it to a member of the Stretch enumeration, either None (the default), Fill, Uniform, or UniformToFill. Here’s an innocent little Polygon:
Now here’s the same Polygon with its Stretch property set to Fill.
Regardless of the coordinates, it stretches to fill the container with a change in aspect ratio as well. To retain the aspect ratio, use Uniform or UniformToFill just as with the Image element.
You can probably see why the Stretch property of Shape isn’t used very often in connection with vector graphics, but if you need a particular vector image to fill an area of arbitrary size, it’s a welcome option.
As you’ve seen, when a property backed by a dependency property is changed at runtime, the element with that property changes to reflect that change. This is a result of the support for a property-changed handler built into dependency properties.
Certain collections will also respond to changes. Collection classes that derive from PresentationFrameworkCollection respond to changes when an object is added to or removed from a collection. A notification is funneled up to the element containing the collection. In some cases, changes to dependency properties in the members of the collection also trigger notifications. (Unfortunately, the exact nature of this notification process is hidden from the application programmer.) The UIElementCollection that the Panel classes uses for its Children property derives from this class, as does the PointCollection in Polyline and Polygon.
At runtime, you can dynamically add Point objects to the PointCollection, or remove them from the PointCollection, and a Polyline or Polygon will change.
The GrowingPolygons project has a MainPage.xaml file that instantiates a Polygon element and gives it a couple properties:
Silverlight Project: GrowingPolygons File: MainPage.xaml (excerpt)
The code-behind file waits until the Loaded event is fired before determining the size of the content panel (just as in the Spiral program) and it begins by obtaining similar information. But the OnLoaded handler just adds two points to the Points collection of the Polygon to define a vertical line; everything else happens during Tick events of a DispatcherTimer (which of course requires a using directive for System.Windows.Threading):
Silverlight Project: GrowingPolygons File: MainPage.xaml.cs (excerpt)
Every second, the program replaces all but one of the Point objects in the Points collection of the Polygon. The first Point in the collection—which is the Point at the top center of the content area—is the only one that remains the same. In addition, the Tick handler adds a new Point object at the end of the collection. The result is a polygon that gains one new side every second:
You can see for yourself how many points are needed before this polygon visually turns into a circle!
Notice that the program entirely replaces the Point object in the collection rather than attempting to modify the X and Y properties of the existing object in the collection. Point is a structure, and it implements no notification mechanism. There is no way for the PointCollection to know if a property of a particular Point in the collection has been changed. Only when the entire Point object is replaced does the PointCollection know about it.
If you’re doing something like this is in a real application, you might want to detach the PointCollection from the Polygon when you’re making a lot of changes to it. This prevents a long series of notifications firing that inform the Polygon that the PointCollection has changed. The code would look something like this:
The PointCollection is detached by saving a reference to it and setting the Points property to null. When all changes have been made, the PointCollection is reattached to the Polygon, and the Polygon responds to the new collection of points.
Although Line, Polyline, and Polygon are all convenient and easy to use, their functionality is pretty much subsumed in the last of the Shape descendents, Path.
The Path class defines just one property of its own named Data of type Geometry, but geometries are a very important concept in Silverlight vector graphics. In general, a geometry is a collection of straight lines and curves, some of which might be connected to each other (or not) and might define enclosed areas (or not). In other graphics programming environments, the geometry might be called a graphics path. In Silverlight, Path is an element that uses a Geometry object for its Data property.
It’s important to recognize that a Geometry object is nothing but naked coordinate points. There is no concept of brushes or line thickness or styles with a geometry. That’s why you need to combine a Geometry with a Path element to actually render something on the screen. The Geometry defines the coordinate points; the Path defines the stroke brush and fill brush.
Geometry fits into the Silverlight class hierarchy like so:
Just as the Path element is pretty much the only Shape derivative you really need, the PathGeometry class is the only Geometry derivative you really need. But of course I’m going to discuss the others as well because they’re often quite convenient. You can’t derive from Geometry yourself.
Geometry defines four public properties:
The most useful are the last two. The Bounds property provides the smallest rectangle that encompasses the geometry and Transform allows you to apply a transform to the geometry (as I will demonstrate).
LineGeometry defines two properties of type Point named StartPoint and EndPoint:
Notice how the duties are separated between Geometry and Path: The Geometry provides the coordinates; the Path provides all other rendering information.
LineGeometry may seem superfluous after the Line and Polyline elements, but unlike Line and Polyline, LineGeometry has two dependency properties of type Point, and these might be very useful as animation targets in some scenarios.
RectangleGeometry defines a property named Rect of type Rect, a structure that defines a rectangle with four numbers: two numbers indicate the coordinate point of the upper-left corner and two more numbers for the rectangle’s size. In XAML you specify these four numbers sequentially: the x and y coordinates of the upper-left corner, followed by the width and then the height:
In this example, the bottom-right coordinate of the rectangle is (400, 250). In code, the Rect structure has three constructors that let you specify a Point and a Size, two Point objects, or a string of four numbers as in XAML: (x, y, width, height).
The Bounds property of Geometry is also of type Rect. For the RectangleGeometry above, Bounds would return the same values: (100, 50, 300, 200). For the LineGeometry in the previous example, Bounds would return (100, 50, 200, 100).
RectangleGeometry also defines RadiusX and RadiusY properties for rounding the corners:
The EllipseGeometry also defines RadiusX and RadiusY properties, but these are for defining the lengths of the two axes. The center of the EllipseGeometry is provided by a property named Center of type Point:
Specifying the center of a circle or ellipse to indicate its location is often a more convenient approach than specifying its upper-left corner (as with the Ellipse element)—particularly considering that ellipses don’t have corners!
Here’s a little exercise in interactive drawing called TouchAndDrawCircles. When you touch the screen, the program creates a new circle from a Path and an EllipseGeometry. As you move your finger, the circle gets larger. When you’re finished, the circle is filled with a random color. If you then touch an existing circle, you can drag it around the screen.
In the MainPage.xaml file, the content grid is initially empty. The only change I’ve made is to give it a non-null Background so it can generate manipulation events:
Silverlight Project: TouchAndDrawCircles File: MainPage.xaml (excerpt)
The code-behind file has just a few fields to keep track of what’s going on:
Silverlight Project: TouchAndDrawCircles File: MainPage.xaml.cs (excerpt)
The two Boolean fields indicate a current activity in progress. The Path field is only valid while drawing a new circle; the EllipseGeometry field is valid when drawing a new circle or moving an existing circle.
The override of the OnManipulationStarted method initiates a drawing or dragging operation but doesn’t let more than one to be going on at any time. The OriginalSource property of the event arguments is either a Path element—which means that the user touched one of the existing circles and wants to move it—or the ContentPanel, which initiates a new drawing operation:
Silverlight Project: TouchAndDrawCircles File: MainPage.xaml.cs (excerpt)
In the XAML file I set the Background of the ContentPanel to Transparent so it would generate Manipulation events. When the OriginalSource property is this Grid, so is the ManipulationContainer, and ManipulationOrigin is relative to the Grid. That’s the point I need for defining the Center of this new EllipseGeometry.
For the dragging operation, the OnManipulationDelta override uses the DeltaManipulation property of the event arguments to modify the Center property of the EllipseGeometry:
Silverlight Project: TouchAndDrawCircles File: MainPage.xaml.cs (excerpt)
In contrast, for the drawing operation, the method modifies the RadiusX and RadiusY property of the EllipseGeometry. For this it uses the CumulativeManipulation property, which reports the entire manipulation since the ManipulationStarted event. The reason for the different property is simple: If the user initiates a drawing operation, and then moves a finger to the left or up, the translation factors will be negative. But these negative numbers must become a positive radius of the circle. It turns out to be easier taking the absolute value of the total translation factors rather than to modify existing dimensions.
When the finger lifts from the screen, the OnManipulationCompleted event is called for cleanup:
Silverlight Project: TouchAndDrawCircles File: MainPage.xaml.cs (excerpt)
For the dragging operation, cleanup is simple. But the drawing operation needs to conclude by giving the Path element a random Fill brush.
In actual use, you’ll notice a little delay between the time your finger begins drawing or dragging a circle, and the screen reacts. This is a characteristic of the Manipulation events.
If you’re using EllipseGeometry and you don’t want the axes of the ellipse to be aligned on the horizontal and vertical, you can apply a RotateTransform to it. And you have a choice. Because Path derives from UIElement, you can set this RotateTransform to the RenderTransform property of the Path:
Notice that the CenterX and CenterY properties of RotateTransform are set to the same values as the Center point of the EllipseGeometry itself so that the ellipse is rotated around its center. When working with Path and Geometry objects, it’s usually easier to specify actual transform centers rather than to use RenderTransformOrigin. Normally you set RenderTransformOrigin to relative coordinates, for example (0.5, 0.5) to specify the center, but look what happens when you try that in this case:
The problem here is that the Path element is large enough to accommodate an EllipseGeometry with a center at (250, 150) and a RadiusX of 150 and a RadiusY of 100, so the Path element must be at least about 400 pixels wide and 250 pixels tall. (It’s actually a little larger due to the non-zero StrokeThickness.) The center of this Path is approximately the point (200, 125). In addition,, like other elements, the Path has default HorizontalAlignment and VerticalAlignment properties of Stretch, so it’s really filling its container, in this case 480 pixels square, so the rotation is actually around the point (240, 240).
It’s also possible to apply a transform to the Geometry object itself:
This appears to be exactly the same as the earlier example with the explicit CenterX and CenterY settings on the RotateTransform, but transforms can have rather different results depending whether they’re applied to the RenderTransform property of the Path element or to the Geometry object.
The RenderTransform property has no effect on how the element is perceived in the layout system, but the Transform property of the Geometry affects the perceived dimensions. To see this difference, enclose a Path with an EllipseGeometry in a centered Border:
I deliberately set the Center of the EllipseGeometry to the same two values as RadiusX and RadiusY so the Path doesn’t occupy any more space than that necessary to render the ellipse.
Now set the RenderTransform of the Path for rotation:
As was very clear early on in Chapter 8, the RenderTransform does not affect how an element is perceived in the layout system. The Border is still sizing itself based on the unrotated Path. Applying the transform to the EllipseGeometry produces quite a different result:
Well, that doesn’t look right, either! What happened?
The EllipseGeometry defines an ellipse with a bounding box with an upper-left corner at the point (0, 0) and the lower-right corner at (300, 100). That’s being rotated 90° around the point (150, 50). The bounding box of the rotated ellipse has an upper-left corner of (100, -100) and a lower-right corner of (200, 200). The Border is 200 pixels square to accommodate that lower-right corner, but the negative part sticks out of the top of the Border.
To make it work “correctly,” the center of rotation needs to be set to the point (50, 50):
Another difference between the RenderTransform property of Path and the Transform property of Geometry is revealed when you use ScaleTransform. Let’s begin with a little rectangle aligned at the left edge:
I’ve actually positioned the RectangleGeometry at the point (2, 220) so the StrokeThickness of the Path doesn’t cause part of the rendered object to appear outside its confines.
Now apply a ScaleTransform to the RectangleGeometry to increase the width by a factor of 10:
The entire figure is 10 times wider, and the RectangleGeometry is now aligned at the point (20, 220). But something quite different happens when you apply the transform to the Path element:
Now the thickness of the stroke at the left and right has also increased by a factor of 10!
One of the descendent classes of Geometry is GeometryGroup. This allows you to combine one or more Geometry objects in a composite.
Notice how the FillRule applies to this combination. Here’s another:
LineGeometry, RectangleGeometry, EllipseGeometry, GeometryGroup—those are all convenient special cases of PathGeometry, certainly the most versatile of the Geometry derivatives. With Path and PathGeometry you can perform any vector graphics job that Silverlight allows.
PathGeometry defines just two properties of its own: the familiar FillRule and a property named Figures of type PathFigureCollection, a collection of PathFigure objects.
Conceptually, a PathFigure is a series of connected lines and curves. The key word here is connected. The PathFigure starts at a particular point, indicated by the StartPoint property, and then the PathFigure continues in a series of connected segments.
For these connected segments, PathFigure defines a property named Segments of type PathSegmentCollection, a collection of PathSegment objects. PathSegment is an abstract class, as shown here:
The PathFigure indicates a StartPoint. The first PathSegment object in the Segments collection continues from that point. The next PathSegment continues from where the first PathSegment left off, and so forth.
The last point of the last PathSegment in the Segments collection might be the same as the StartPoint of the PathFigure or it might not. To ensure that a PathFigure is closed, you can set the IsClosed property. If necessary, this will cause a straight line to be drawn from the last point of the last PathSegment to the StartPoint of the PathFigure.
PathFigure also defines an IsFilled property that is true by default. This property is independent of any Fill brush you might set on the Path itself. It’s used instead for clipping and hit-testing. In some cases, Silverlight might perceive that an area is filled for purposes of clipping and hit-testing when that is not your intention. In that case, set IsFilled to false.
In summary, a PathGeometry is a collection of PathFigure objects. Each PathFigure object is a series of connected lines or curves indicated by a collection of PathSegment objects.
Let’s look at the PathSegment derivatives in more detail.
LineSegment defines just one property on its own, Point of type Point. It just needs one Point object because it draws a line from the StartPoint property of PathFigure (if the LineSegment is the first segment in the collection) or from the end of the previous segment.
PolyLineSegment defines a Points property of type PointCollection to draw a series of connected straight lines.
Here’s a PathGeometry with three PathFigure objects containing 3, 2, and 1 PathSegment objects, respectively:
The second and third figures are explicitly closed with the IsClosed property, but all three PathFigure collections are filled.
Things start getting tricky with ArcSegment. An arc is just a partial circumference of an ellipse, but because the ArcSegment must fit in with the paradigm of start points and end points, the arc must be specified with two points on the circumference of some ellipse. But if you define an ellipse with a particular center and radii, how do you specify a point on that ellipse circumference exactly without doing some trigonometry?
The solution is to define only the size of this ellipse and not where the ellipse is positioned. The actual location of the ellipse is defined by the two points.
I think we need an example. Here’s a little line that begins at the point (120, 240) and ends at the point (360, 240).
This line is just for reference. I want to draw an arc between these same two points. Now obviously there are an infinite number of arcs you can draw between these two points, but for any particular ellipse size, there are only four.
Let me demonstrate:
Suppose I want the two points to be connected by an arc on the circumference of a circle that has a radius of 144 pixels. Here’s how you specify an ArcSegment of that size that goes between the points (120, 240) and (360, 240):
By default, arcs are drawn from the start point to the end point in a counter-clockwise direction. You can override that behavior by setting the SweepDirection property to Clockwise:
In both those cases, the arc drawn between the two points is the shorter of two possibilities. Here’s the result with the default SweepDirection of CounterClockwise but the IsLargeArc property set to true:
Finally, you can set both IsLargeArc to true and SweepDirection to Clockwise:
When you see them all together, you can get a better sense of how this works (at least on a conceptual level). Think of a circle of a particular size positioned so it meets the two points. You can fit the circle against those two points in one of two ways, and then go around the circle in one of two ways:
This also works with an ellipse. The following markup is the same as the previous example except the Size property of the ArcSegment has been changed from (144, 144) to (200, 100):
If you want to use an arc based on the circumference of an ellipse that does not have its axes parallel to the horizontal and vertical, you can set the final property of ArcSegment, which is RotationAngle.
In code, you can determine algorithmically the points on a circle where you want the arc to begin and end. That’s the idea behind the SunnyDay program, which combines LineSegment and ArcSegment objects into a composite image. The MainPage.xaml file instantiates the Path element: and assigns all the properties except the actual segments:
Silverlight Project: SunnyDay File: MainPage.xaml (excerpt)
The Loaded event handler is then responsible for obtaining the size of the content area and calculating all the coordinates for the various path segments:
Silverlight Project: SunnyDay File: MainPage.xaml.cs (excerpt)
The result is a rather cartoonish sun:
Pierre Etienne Bézier (1910–1999) was an engineer at the French automobile company Renault from 1933 to 1975. During the 1960s the company started switching over from designing car bodies with clay to using computer-assisted design. The system required mathematical descriptions of curves that engineers could manipulate without knowing the underlying mathematics. From this work came the curve that now bears Pierre Bézier’s name.
The Bézier curve is a spline, which is a type of curve used to approximate discrete data with a smooth continuous function. Silverlight supports the standard two-dimensional form of the cubic Bézier curve but also a quadratic Bézier curve that is somewhat simpler and faster, so I’ll discuss that one first.
The quadratic Bézier curve is defined by three points, commonly denoted as p0, p1, and p2. The curve starts at p0 and ends at p2. The point p1 is known as a control point. The curve usually does not pass through p1. Instead, p1 functions like a magnet pulling the curve towards it. At p0, the curve is tangent to (and in the same direction as) the line from p0 to p1, and at p3 the curve is tangent to (and in the same direction as) the line from p2 to p3.
Perhaps the best way to become familiar with Bézier curves is to experiment with them. The QuadraticBezier program draws a single Bézier curve but lets you manipulate the three points to see what happens.
The XAML file assembles four Path elements and a Polyline in the single-cell Grid. The first Path is the quadratic Bézier itself. Notice that p0 is provided by the StartPoint property of PathFigure, while p1, and p2 correspond to the Point1 and Point2 properties of QuadraticBezierSegment:
Silverlight Project: QuadraticBezier File: MainPage.xaml (excerpt)
The Polyline element draws a dotted line from the two end points to the control point. The remaining three Path elements are “draggers,” that is, they let you drag any of the three points. The initial screen looks like this:
The code-behind file provides all the dragging logic. Because Silverlight for Windows Phone does not support bindings for properties not defined by FrameworkElement derivatives, I wasn’t able to hook all the corresponding points together in the XAML file. Instead, they have to be set individually in the Manipulation overrides:
Silverlight Project: QuadraticBezier File: MainPage.xaml.cs (excerpt)
Being a quadratic, this version of the Bézier curve makes only a single turn, and it is extremely well behaved:
If you ever need them, the parametric formulas used to construct the quadratic Bézier are:
for t = 0 to 1, where p0 = (x0, y0) and so forth.
The cubic Bézier spline is more standard, and has two control points rather than just one. The curve is defined by four points commonly labeled p0, p1, p2, and p3. The curve begins at p0 and ends at p3. At p0 the curve is tangent to (and in the same direction as) a line from p0 to p1, and at p3 the curve is tangent to the line from p3 to p2. The parametric equations describing the curve are:
x(t) = (1 – t)3x0 + 3t(1 – t)2x1 + 3t2(1 – t)x2 + t3x3
y(t) = (1 – t)3y0 + 3t(1 – t)2y1 + 3t2(1 – t)y2 + t3y3
For the CubicBezier program I took a little different approach. In an attempt to simplify it just a bit, I defined a UserControl derivative named PointDragger. The PointDragger.xaml file defines a visual tree consisting of just a Grid containing a Path with an Opacity of 0.5 and an EllipseGeometry with no Center point:
Silverlight Project: CubicBezier File: PointDragger.xaml
The code-behind file defines a dependency property named Point of type Point, and fires a PointChanged event when the value changes. The property-changed handler is also responsible for setting the value on the EllipseGeometry defined in the XAML file:
Silverlight Project: CubicBezier File: PointDragger.xaml.cs (excerpt)
The PointDragger class also handles its own Manipulation events, which (compared with the ones in QuadraticBezier) become very simple:
Silverlight Project: CubicBezier File: PointDragger.xaml.cs (excerpt)
The MainPage.xaml file defines a Path with a BezierSegment, two dotted Polyline elements for the tangent lines, and four instances of PointDragger. The BezierSegment class defines properties named Point1, Point2, and Point3 for the two control points and the endpoint:
Silverlight Project: CubicBezier File: MainPage.xaml (excerpt)
The initial screen looks like this:
Notice the PointChanged event handlers on the PointDragger controls. Implementing that handler is pretty much the only thing left for MainPage.xaml.cs to do:
Silverlight Project: CubicBezier File: MainPage.xaml.cs (excerpt)
As you play around with the program, you might notice that the curve always stays confined within a four-side polygon defined by the two end points and the two control points. (It’s called a “convex hull” in Bézier circles.). This version of the Bézier curve is a cubic, so the curve can make two turns:
Besides QuadraticBezierSegment and BezierSegment to define single Bézier curves, you can also use PolyQuadraticBezierSegment and PolyBezierSegment for defining a series of Bézier curves. Each curve begins at the point the previous one ends. Each of these classes contains a property named Points of type PointCollection.
For PolyQuadraticBezierSegment, the number of Point objects in the Points collection must be a multiple of 2. The first, third, fifth, and so forth members of the collection are control points. For PolyBezierSegment, the number of points is a multiple of 3.
When connecting multiple Bézier curves, the end point of one curve becomes the begin point of the next curve. The composite curve is smooth at this point only if that point and the two control points on either side are collinear, that is, lie on the same line.
Silverlight supports a type of “mini-language” that allows you to encode an entire PathGeometry in a string. The language consists of letters (such as M for Move, L for Line, A for Arc, and C for Cubic Bézier) that take the place of PathFigure and PathSegment objects. Each new PathFigure begins with a Move command. The syntax is described in the Graphics section of the online Silverlight documentation.
Here’s an example:
The Arc is probably the most complex syntax. It begins with the size of the ellipse, followed by a rotation angle, and then two flags, 1 for IsLargeArc and 1 for Clockwise, and concluding with the point. When drawing complete circles, you’ll want to separate the circle into two halves and use two Arc commands (or two ArcSegment objects).
Besides using geometries for drawing you can use geometries for clipping. Here’s the famous KeyholeOnTheMoon image:
This program makes use of the Clip property of type Geometry. Clip is defined by FrameworkElement so you can use the property to make any element or control visually non-rectangular in shape, and the Path Markup Syntax makes it look trivial:
Silverlight Project: KeyholeOnTheMoon File: MainPage.xaml (excerpt)
I’ve also used Path Markup Syntax in the Analog Clock program. Here’s what it looks like:
The visuals consist of five Path elements. The curves on the hour and minute hand are Bézier splines. The tick marks are dotted arc segments.
The XAML file defines a Style that’s used for all five Path elements:
Silverlight Project: AnalogClock File: MainPage.xaml (excerpt)
In an attempt to keep the graphics simple, I devised an arbitrary coordinate system. The clock graphics are drawn as if the width and height of the clock were 200 pixels, and the center were the point (0, 0). The clock graphics are thus bounded by X coordinates of -100 on the left and 100 on the right, and Y coordinates of -100 on the top and 100 on the bottom.
These arbitrary coordinates of the clock are in part defined by the explicit Width and Height settings of this nested Grid:
Silverlight Project: AnalogClock File: MainPage.xaml (excerpt)
The TranslateTransform shifts the whole Grid to the right and down. The upper-left coordinate of (–100, –100), for example, becomes (0, 0), and a coordinate of (100, 100) becomes (200, 200).
Notice the SizeChanged event handler set on the normal content grid. The code portion uses the actual size of the content area to set the ScaleTransform applied to the nested Grid. That scales the 200-pixel dimension to the actual size:
Silverlight Project: AnalogClock File: MainPage.xaml.cs (excerpt)
Here are the five paths:
Silverlight Project: AnalogClock File: MainPage.xaml (excerpt)
The StrokeDashArray settings on the first two Path elements were carefully calculated to produce the pattern of 1-second and 5-second tick marks around the face of the clock. The other three Path elements have RotateTransform objects set to their RenderTransform properties. These RotateTransforms are reset every second from the code-behind file:
Silverlight Project: AnalogClock File: MainPage.xaml.cs (excerpt)
The little snippets of XAML and the pictures that accompany them began life with a concept that originated in the early days of the Windows Presentation Foundation. Although XAML was mostly designed to be compiled along with the rest of your source code, it was also reasonable to assume that programmers might want to convert XAML into objects (and objects into XAML) at runtime. For this purpose, the System.Windows.Markup namespace has a static method named XamlReader.Load for converting XAML into objects, and XamlWriter.Save for going the other way.
Only the first of those two static methods made it into Silverlight and Silverlight for Windows Phone. But that’s the really useful one. Give XamlReader.Load a string containing some legal XAML—including the proper namespace declarations but excluding events assignments—and the method returns an object corresponding to the root element with all the other objects in the visual tree created as well.
One application of XamlReader.Load in WPF was an interactive programming tool that contained a TextBox to let you edit and enter XAML, and then displayed the resultant object. Of course, most of the time, as the user is editing a piece of XAML, it won’t be legal, so the tool has to trap those errors and respond appropriately.
Several variations of this programming tool were written. The WPF Software Development Kit contained a version called XamlPad, and for my book Applications = Code + Markup (Microsoft Press, 2006), I created a version called XamlCruncher.
Later on, I enhanced XamlCruncher so it could present a type of slide show of little XAML files and their resultant objects. I used this for presentations about WPF programming, and I later rewrote the program for Silverlight.
The Petzold.Phone.Silverlight library contains the “guts” of the Windows Phone 7 version of XamlCruncher in a class derived from TextBox:
Silverlight Project: Petzold.Phone.Silverlight File: XamlCruncherTextBox.cs (excerpt)
The TextChanged handler assumes that the TextBox contains a chunk of XAML that is appropriate as content for a UserControl. It wraps that text in UserControl tags with a bunch of namespace declarations—including the standard (and semi-standard) phone, shell, system, and petzold—and passes it to XamlReader.Load, which raises an exception of the XAML is not valid.
Whatever happens, the class fires a XamlResult event providing either the resultant UserControl or an error message in the following event arguments:
Silverlight Project: Petzold.Phone.Silverlight File: XamlCruncherEventArgs.cs
I wrote two programs using the XamlCruncherTextBox class. The first is called simply XamlCruncher, and if you have an extreme amount of patience and diligence, you can actually type XAML into the program on your phone and see the results.
The patience and diligence involves the keyboard. Whether you’re using a virtual keyboard or your phone’s hardware keyboard, there’s a lot of swapping between keyboard layouts for letters, numbers, and symbols. In particular, the hardware keyboard on the phone that I used for writing this book doesn’t have angle brackets or an equal sign, which are absolutely necessary for XML, or curly braces, which is useful for XAML. These are accessible by pressing a Sym key, which invokes a special supplementary software keyboard that contains these symbols.
The XamlCruncher content area is divided in half with a UniformStack. Half the area contains the XamlCruncherTextBox with a TextBlock for error messages, and the other half is a ScrollViewer with a Border for hosting the resultant content:
Silverlight Project: XamlCruncher File: MainPage.xaml (excerpt)
The code file has several tasks. Every time the text changes, it stores the new text in isolated storage. This allows you to work on a particular piece of XAML over several days or weeks as you become frequently frustrated and discouraged.
Silverlight Project: XamlCruncher File: MainPage.xaml.cs (excerpt)
The OnOrientationChanged method changes the orientation of the UniformStack when the orientation of the screen changes. Because XamlCruncher is (marginally) easier to use with the hardware keyboard, it is usable in both portrait and landscape modes.
The program also attempts to handle unhandled exceptions. Particularly when animations are involved, it is possible for a piece of XAML to pass XamlReader.Load but then raise an exception later on.
You’ll want to run this program without the Visual Studio debugger; otherwise, Visual Studio breaks when any exception occurs.
Here’s a little sample:
The VectorGraphicsDemos program (which is included with the source code for this chapter but not interesting enough to devote actual pages) incorporates the XamlCruncherTextBox control and includes a file containing all the little XAML snippets shown through this chapter. You can page through those files, see the resultant images, and edit them if you wish.
In Chapter 4 I demonstrated how a Windows Phone 7 program can obtain bitmaps. These bitmaps can originate with the application itself, they can be downloaded from the Web, or they can come from the camera or from the phone’s picture library. In this chapter I’ll go beyond the task of loading bitmaps into the realm of saving bitmaps. You can save a bitmap in isolated storage, or in a special album of the picture library identified as “Saved Pictures.”
If your program needs to save a bitmap, there’s probably a good reason for it! Your application is probably creating a bitmap from scratch or modifying an existing bitmap in some way. These jobs involve the use of the exciting and powerful WriteableBitmap class.
As you’ll recall, you can display a bitmap in one of two ways: using the Image element or creating an ImageBrush. The Source property of the Image element and the ImageSource property of the ImageBrush are both of type ImageSource, a class occupying a very fundamental place in the region of the Silverlight class hierarchy devoted to bitmaps:
ImageSource has only one descendent class and defines nothing public on its own, so it might seem a little superfluous. That’s true in Silverlight but not in the Windows Presentation Foundation, where ImageSource is a parent to classes that define images derived from vector graphics as well as those involving raster graphics.
The remaining three classes are all defined in the System.Windows.Media.Imaging namespace.
BitmapSource defines two public get-only properties and one method:
That Stream argument can be a file stream, a network stream, or a memory stream of some sort. But the Stream must provide bitmap data in either the JPEG or PNG file format. Once a bitmap has been created, it has a fixed size that cannot be changed.
The BitmapImage class expands on the functionality of BitmapSource by letting you reference a bitmap with a URI. BitmapImage defines the following:
The CreateOptions property is of type CreateOptions, an enumeration with three members: None, DelayCreation, and IgnoreImageCache. The default is DelayCreation, which doesn’t start loading an image until it’s actually needed for rendering. The IgnoreImageCache is useful when a program knows that a previously loaded image has become invalid. You can combine DelayCreation and IgnoreImageCache with the C# bitwise OR operator.
By combining the features of BitmapSource and BitmapImage, the BitmapImage class lets you load a bitmap in JPEG or PNG format using either a Stream object or a Uri object. There is no facility to save bitmaps.
The WriteableBitmap class itself continues this trend. Taken by itself, WriteableBitmap does not including any facility to save bitmaps. However, the WriteableBitmap class does give you access to all the pixels that define the bitmap. Only one pixel format is supported, where each pixel is a 32-bit value. You can obtain the pixel bits from an existing bitmap, or set new pixel bits on a WriteableBitmap to define the image. Access to these pixel bits allows you a great deal of flexibility in how you save or load bitmaps. You can provide your own bitmap “encoder” to save pixel bits in a particular bitmap format, or your own “decoder” to access a file of a particular format and convert to the uncompressed pixel bits.
WriteableBitmap also provides a facility to “draw” images on the bitmap based on Silverlight elements. Although you can indeed draw Button elements and Slider elements on a bitmap, it’s most common to use elements that derive from Shape. In other words, WriteableBitmap allows you to convert a vector drawing into a raster image.
Here are the constructors, methods, and property defined by WriteableBitmap:
Keep in mind that WriteableBitmap derives from BitmapSource rather than BitmapImage, so there is no facility in WriteableBitmap to load a bitmap from a URI. However, you can load a BitmapImage object from a URI and then create a WriteableBitmap from that using the third constructor I’ve listed.
WriteableBitmap lets you put images on the bitmap using two techniques:
You can combine these techniques in whatever manner you want.
In addition, Windows Phone 7 provides several subsidiary methods that provide you with alternative ways to load JPEG files and to save them:
WriteableBitmap has two ways to get the visuals of a UIElement onto a bitmap. The first uses one of the constructors:
WriteableBitmap WriteableBitmap = new WriteableBitmap(element, transform);
The element argument is of type UIElement and the transform argument is of type Transform. This constructor creates a bitmap based on the size of the UIElement argument as possibly modified by the Transform argument (which you can set to null).
The element and all its visual children are rendered on the bitmap. However, any RenderTransform applied to that element is ignored. Optionally taking account of that transform is the rationale behind the second argument. The resultant bitmap is based on the maximum horizontal and vertical coordinates of the transformed element. Any part of the element that is transformed into a negative coordinate space (to the left or above the original element) is cropped.
Here’s a simple sample program. The content grid is given a background based on the current accent color. It contains a TextBlock and an Image element:
Silverlight Project: RecursivePageCaptures File: MainPage.xaml (excerpt)
The Image element has no bitmap to display but when it does, it will ignore the bitmap’s aspect ratio to fill the content grid and obscure the TextBlock.
When the screen is tapped, the code-behind file simply sets the Image element source to a new WriteableBitmap based on the page itself:
Silverlight Project: RecursivePageCaptures File:MainPage.xaml.cs (excerpt)
When you first run the program, the screen looks like this:
Tap once, and the whole page becomes the bitmap displayed by the Image element:
Keep in mind that the PhoneApplicationPage object being captured has its Background property set to the default value of null, so that’s why you see the original background of the content panel behind the captured titles. You can continue tapping the screen to recapture the page content, now including the previous Image element:
There is no sense in which these elements are “retained” by the bitmap in any way other than becoming part of the bitmap image.
The WriteableBitmap class also has a Render method with the same two arguments as the constructor I just demonstrated:
writeableBitmap.Render(element, transform);
You’ll need to follow the Render call with a call to Invalidate to get the actual bitmap to reflect the visuals of the element argument:
writeableBitmap.Invalidate();
Obviously the WriteableBitmap must obviously already have been created at the time of these calls, so it already has a fixed size. Based on the size of the element and the transform, some (or all) of the element might be cropped.
If you try calling Render with a newly created Button element (for example) you’ll probably discover that it doesn’t work. A newly created Button element has a size of zero. You’ll need to call Measure and Arrange on the element to give it a non-zero size. However, I have generally been unsuccessful in giving some elements a non-zero size even after calling Measure and Arrange. The process seems to work a lot better if the element is already part of a visual tree. It works much better with Image elements and Shape derivatives.
Here’s a program that obtains a square bitmap from the phone’s picture library, and then chops it up into four quadrants, each of which is half the width and half the height of the original bitmap.
The content area of the SubdivideBitmap program contains a TextBlock and a Grid with two rows and two columns of equal size. Each of the four cells of this Grid contains an Image element with names that indicate the location in the grid: For example, imgUL is upper-left and imgLR is lower-right.
Silverlight Project: SubdivideBitmap File: MainPage.xaml (excerpt)
The code-behind file for the MainPage class is set up for a PhotoChooserTask: As required, the PhotoChooserTask object is defined as a field and the Completed event handler is attached at the end of the constructor:
Silverlight Project: SubdivideBitmap File: MainPage.xaml.cs (excerpt)
The OnManipulationStarted override then calls the Show method of the PhotoChooserTask requesting a square bitmap using dimensions based on the size of the content panel. Eight pixels are subtracted from this dimension to account for the Margin property set on each Image element in the XAML file.
When the Completed event is fired by the PhotoChooserTask, the handler begins by creating a BitmapImage object based on the stream referencing the chosen bitmap. It then creates an Image element (named imgBase) to display the bitmap. Notice that this Image element is not part of a visual tree. It exists solely as a source for Render calls.
Silverlight Project: SubdivideBitmap File: MainPage.xaml.cs (excerpt)
The remainder of the Completed event handler creates four WriteableBitmap objects, each ½ the width and ½ the height of the original. (This calculation is based on the dimensions of the BitmapImage and not the dimensions of the Image, which at this time will report a zero size.)
Except for the first of the four Render calls, a TranslateTransform is also defined that shifts to the left or up (or both) by half the bitmap dimension. Each call to Render is followed by an Invalidate call. Each WriteableBitmap is then assigned to the Source property of the appropriate Image element in the XAML file. The Margin property of those Image elements separates them sufficiently to make it clear that we’re now dealing with four separate Image elements:
Notice that the code uses a single TranslateTransform object. Normally you wouldn’t want to share a transform among multiple elements unless you wanted the same transform to be applied to all elements. But here the TranslateTransform is only being used temporarily for rendering purposes.
Later in this chapter I’ll show another approach to dividing a bitmap into pieces that has an application in a little game.
The Pixels property of WritableBitmap is an array of int, which means that each pixel is 32 bits wide. The Pixels property itself is get-only so you can’t replace the actual array, but you can set and get elements of that array.
A bitmap is a two dimensional array of pixels; the Pixels property of WriteableBitmap is a one-dimensional array of int values. The Pixels array stores the pixels of the bitmap starting with the top row and working down, and within each row from left to right. The number of elements in the array is equal to the product of the bitmap’s pixel width and pixel height.
If bm is a WriteableBitmap object, then the number of elements in the Pixels property is bm.PixelWidth * bm.PixelHeight. Suppose you want to access the pixel in column x (where x ranges from 0 through bm.PixelWidth − 1) and row y, where y ranges from 0 to bm.PixelHeight − 1. You index the Pixels property like so:
bm.Pixels[y * bm.PixelWidth + x]
Silverlight for Windows Phone supports only one pixel format, sometimes denoted as PARGB32. Let me decode this format code working backwards:
The “32” at the end means 32 bits, or 4 bytes. That’s the size of each pixel. The ARGB part indicates that the Alpha byte (opacity) occupies the high 8 bits of the 32-bit integer, followed by the Red byte, Green byte, and Blue byte, which occupies the bottom 8 bits of the integer.
If A, R, G, and B are all of type byte, you can create a 32-bit integer pixel value like so:
int pixel = A << 24 | R << 16 | G << 8 | B
The shifted values—implicitly converted to type int—are combined with the C# bitwise OR operator. You can obtain the components of an existing pixel value like so:
When the Alpha channel byte is 255, the pixel is opaque. A value of 0 means completely transparent, and values in between indicate various levels of transparency.
In the PARGB32 pixel format, the P stands for “premultiplied,” which means that if the Alpha value is anything other than 255, then the Red, Green, and Blue values have been already adjusted for the transparency indicated by that Alpha value.
To better understand this concept, let’s look at an example involving a single pixel. Suppose you want the pixel to have the following color:
Color.FromArgb(128, 0, 0, 255)
That’s blue with 50% transparency. When that pixel is rendered on a particular background surface, the color of the pixel must be combined with the existing colors of the surface. Drawn against a black background, the resultant RGB color is (0, 0, 128), which is the average of the blue pixel and the black background. Drawn against a white background, the resultant color is (127, 127, 255). Each of the three components is an average of the pixel and the surface.
With a transparency of anything other than 50%, the resultant color is a weighted average of the pixel source and the surface: The subscripts in the following formulas indicate the “result” of rendering a partially transparent “source” pixel on an existing “surface”:
When a bitmap is rendered on an arbitrary surface, these calculations must be performed for each pixel.
Very often a single bitmap is rendered on different surfaces multiple times. The calculations shown above can be speeded up somewhat if the Red, Green, and Blue components of the pixels in the bitmap have already been multiplied by the Alpha channel. These pre-multiplied components are calculated like so:
and similarly for Green and Blue. The resultant formulas for rendering the bitmap have half the number of multiplications:
Whenever you’re working with the Pixels property of WriteableBitmap, you’re dealing with pre-multiplied alphas. For example, suppose you want a pixel in the bitmap to have an RGB color value of (40, 60, 255) but with an Alpha value of 192. The ARGB value in the bitmap would be (192, 30, 45, 192). Each of the R, G, and B values have been multiplied by 192/255 or about 0.75.
In any pre-multiplied color value, the R, G, or B values should all be less than or equal to the A value. Nothing will “blow up” if any R, G, or B value is greater than A, but you won’t get the level of transparency you want.
When working with ARGB color values without pre-multiplied alphas, there is a distinction between “transparent black,” the ARGB color (0, 0, 0, 0), and “transparent white,” the ARGB color (0, 255, 255, 255). With pre-multiplied alphas, the distinction disappears because transparent white is also (0, 0, 0, 0).
When you first create a WriteableBitmap, all the pixels are zero, which you can think of as “transparent black” or “transparent white” or “transparent chartreuse.”
By directly writing into the Pixels array of a WriteableBitmap you can create any type of image you can conceive.
Comparatively simple algorithms let you create styles of brushes that are not supported by the standard Brush derivatives. The content area of the CircularGradient project consists solely of an Image element waiting for a bitmap:
Silverlight Project: CircularGradient File: MainPage.xaml (excerpt)
The code-behind file for MainPage defines a rather arbitrary radius value and makes a square WriteableBitmap twice that value. The two for loops for x and y touch every pixel in that bitmap:
Silverlight Project: CircularGradient File: MainPage.xaml.cs (excerpt)
The center of the WriteableBitmap is the point (200, 200). The code within the nested for loops begins by skipping every pixel that is more than 200 pixels in length from that center. Within the square bitmap, only a circle will have non-transparent pixels.
If you connect that center point with any pixel in the bitmap, the line makes an angle with the horizontal axis. The angle of that line is obtained from the Math.Atan2 method. The method then assigns values to the R and B variables based on this angle, creates a color value, and stores it in the Pixels array. A call to Invalidate then makes the actual bitmap image match these pixels, and the bitmap is set to the Source property of the Image element:
You can combine the two approaches of drawing on a WriteableBitmap. The next sample displays a Path on a WriteableBitmap against a gradient that uses transparency so that you can see how the premultiplied alphas work.
I’m sure you remember the Path element from the end of the previous chapter that displayed a cat from a string in the Silverlight Path Markup Syntax. The goal of the VectorToRaster program is to make a bitmap of precisely the right size for that cat, and then put that cat in the bitmap.
The Path Markup Syntax for the cat is defined in a Path element in the Resources section of the MainPage.xaml file:
Silverlight Project: VectorToRaster File: MainPage.xaml (excerpt)
This is not exactly the way I wanted to define the PathGeometry in the XAML Resources collection. I would have preferred defining the PathGeometry directly without a Path. But no matter how I tried it—setting the Path Markup Syntax string to the Figures property of a PathGeometry or putting the string between a PathGeometry start tag and end tag—I could not get it to work.
I’m using this Path element solely to force the XAML parser to acknowledge this string as Path Markup Syntax; the Path element won’t be used for any other purpose in the program.
The content area consists of just an Image element awaiting a bitmap:
Silverlight Project: VectorToRaster File: MainPage.xaml (excerpt)
Everything else happens in the constructor of the MainPage class. It’s a little lengthy but well commented and I’ll also walk you through the logic:
Silverlight Project: VectorToRaster File: MainPage.xaml.cs (excerpt)
The code begins by obtaining the PathGeometry from the Resources collection. Because it’s attached to a Path element, it normally wouldn’t be usable for other purposes. That’s why the Data property of that Path element is assigned null. The Path element is now abandoned and has no more role in this program.
The Bounds property defined by Geometry returns the Rect object indicating the coordinate of the upper-left corner of the PathGeometry—in this case the point (40,50)—and its width and height, in this case, 400 and 250, respectively. Notice that these values are strictly geometric and do not take account of any non-zero stroke widths that may be present when rendering the geometry.
The code then creates a Path element for this geometry. Unlike the Path element in the Resources collection of the XAML file, this Path has an actual Stroke brush and a StrokeThickness value of 5.
How large will the rendered geometry actually be? We know it will be at least 400 pixels wide and 250 pixels tall. Beyond that, an exact calculation is difficult, but a reasonable calculation is easy: If all the lines in the geometry are stroked with a thickness of 5, then the rendered geometry will be 2.5 pixels more on the left, top, right, and bottom, or 5 pixels more than the width and height of the geometry. This is the calculation used to create a WriteableBitmap of the correct size. (This is not sufficient to account for miter joins, and might be a little more than is needed for other line caps and joins, but the calculation is easy and usually adequate.)
Before rendering the Path on the WriteableBitmap, I want to give the bitmap a gradient brush that is transparent in the center but the current accent color at the edges:
Color baseColor = (Color)this.Resources["PhoneAccentColor"];
The gradient actually might be more attractive the other way around (that is, transparent at the edges) but I want you to see how close the bitmap comes to matching the size of the rendered geometry.
At this point, two nested for loops take x and y though all the pixels of the bitmap. For each pixel, an opacity value is calculated ranging from 0 (transparent) to 1 (opaque):
double opacity = Math.Min(1, pointToCenter / ellipseToCenter);
This opacity value is used not only to calculate the Alpha byte but also as a pre-multiplication factor for the Red, Green, and Blue values:
Then it’s just a matter of shifting all the color components into place and indexing the Pixels array:
int color = A << 24 | R << 16 | G << 8 | B;
writeableBitmap.Pixels[y * writeableBitmap.PixelWidth + x] = color;
At this point, the program is done referencing the Pixels array, so the actual image must be updated:
writeableBitmap.Invalidate();
Now the Path element named newPath must be rendered on the bitmap. This Path element has a PathGeometry with an upper-left corner at the point (40, 50) but the WriteableBitmap was sized only to account for the width and height of the geometry with non-zero stroke thickness. When rendering the Path on the WriteableBitmap, a TranslateTransform must shift left and up by the X and Y values of the rectangle obtained from the Bounds property of the PathGeometry. But then the Path also needs to be shifted a little right and down to accommodate the stroke thickness:
Now the Path can be rendered on the WriteableBitmap:
writeableBitmap.Render(newPath, translate);
writeableBitmap.Invalidate();
Here’s the result:
The bitmap matches the geometry exactly at the bottom, but it’s a little larger on the left and right. (Give those whiskers rounded ends and they’ll come precisely to the edge.) The top of the bitmap is insufficient to accomodate the miter join of the ears. Make that a round join, and you’ll see a better match. Try adding the following three assignments to the definition of newPath:
StrokeStartLineCap = PenLineCap.Round,
StrokeEndLineCap = PenLineCap.Round,
StrokeLineJoin = PenLineJoin.Round,
Now the bitmap is precisely right:
In the 1890s, American puzzle-make Sam Loyd popularized a puzzle that was invented a couple decades earlier and has since come to be known as the 15 Puzzle, or the 14-15 Puzzle, or (in France) Jeu de Taquin, the “teasing game.” In its classic form, the puzzle consists of 15 tiles labeled 1 through 15 arranged randomly in a 4×4 grid, leaving one blank tile. The goal is to shift the tiles around so the numbers are sequential.
In computer form, this puzzle was one of the first game programs created for the Apple Macintosh, where it was called PUZZLE. A Windows version appeared in early versions of the Microsoft Windows Software Development Kit (SDK) under the name MUZZLE, where it was the only sample program in the SDK coded in Microsoft Pascal rather than C.
The version I’m going to show you does not use numbered tiles. Instead it lets you access a photo from the phone’s picture library and chops that up into tiles. (The game becomes rather more difficult as a result.) As a bonus, the program shows you how to save images when an application is tombstoned.
The program’s content area consists of a Grid named playGrid (used for holding the tiles) and two buttons:
Silverlight Project: JeuDeTaquin File: MainPage.xaml (excerpt)
Seemingly redundantly, the XAML file also includes two buttons in the ApplicationBar also labeled “load” and “scramble”:
Silverlight Project: JeuDeTaquin File: MainPage.xaml (excerpt)
I couldn’t get the randomizing feature to work when it was initiated from the ApplicationBar, but I left in the markup (and the code) and set IsVisible to false. Maybe someday the ApplicationBar will behave better.
The MainPage class in the code-behind file begins with some constants. The program is set up for 4 tiles horizontally and vertically but you can change those. (Obviously in Portrait mode, the program works best if VERT_TILES is greater than HORZ_TILES.) Other fields involve storing state information in the PhoneApplicationService object for tombstoning, and using the PhotoChooserTask for picking a photo.
The tileImages array is extremely important. This array stores all the Image elements for the tiles. At any time, one of the members of this array will be null, representing the empty space. That empty space is also indicated by the emptyRow and emptyCol indices.
Silverlight Project: JeuDeTaquin File: MainPage.xaml.cs (excerpt)
In the constructor, the program initializes the ColumnDefinition and RowDefinition collections of the Grid that holds the tiles, and (as usual) sets a handler for the Completed event of the PhotoChooserTask.
When the user clicks the button labeled “load”, the program determines how large each tile should be based on the width and height of the content area, the number of tiles, and the margin. This value is set to the PixelWidth and PixelHeight properties of the PhotoChooserTask:
Silverlight Project: JeuDeTaquin File: MainPage.xaml.cs (excerpt)
On return from the PhotoChooserTask, the event handler divides the bitmap into small square tiles and creates an Image element for each square. The SubdivideBitmap program earlier in this chapter showed how to chop up a bitmap into squares using the Render method of WriteableBitmap. This program instead does it by creating WriteableBitmap objects of the tile size, and then copying pixels into their individual Pixels arrays from the full-size returned bitmap:
Silverlight Project: JeuDeTaquin File: MainPage.xaml.cs (excerpt)
Actually creating the Image elements and adding them to the Grid is the responsibility of the GenerateImageTile, which also stores the Image elements in the tileImages array.
At this point, the tiles are not in a random order, but it’s still possible to move them around. As you begin thinking about how tiles move, you’ll discover that it’s algorithmically much simpler than you might have initially guessed. Think about it in terms of the empty square. What tiles can be moved into that square? Only the tiles on the left, top, right, and bottom of that square, and those tiles can move in only one direction. This means that the user interface need only take account of taps and not bother with any type of tile sliding.
If you think about the game further, you’ll see that you can move multiple tiles at once by tapping any tile in the same row or the same column as the empty square. There’s absolutely no ambiguity.
Here’s the entire manipulation logic:
Silverlight Project: JeuDeTaquin File: MainPage.xaml.cs (excerpt)
The MoveTile method first determines the row and column of the tile that the user touched. For anything to happen, this row must be the row or the column with the empty square. (It can’t be both.) Rather generalized for loops move multiple tiles up, down, left, or right.
The randomizing logic piggy-backs on this manipulation logic. When the “scramble” button is clicked, the program attaches a handler for the CompositionTarget.Rendering event:
Silverlight Project: JeuDeTaquin File: MainPage.xaml.cs (excerpt)
The event handler calls MoveTile twice, once to move a tile from the same row as the empty square, and secondly to move a tile from the same column as the empty square.
This program also handles tombstoning, which means that it saves the entire game state when the user navigates away from the page, and restores that game state when the game is re-activated.
I managed to restrict game state to just a few fields: The haveValidTileImages field is true if the tileImages array contains valid Image elements; otherwise there’s really nothing going on. The emptyRow and emptyCol fields are also crucial. Most important, of course, are the actual bitmaps that make up the tiles. Rather than save the entire Pixels array of each WriteableBitmap, I decided to save space by saving these images in a compressed JPEG format:
Silverlight Project: JeuDeTaquin File: MainPage.xaml.cs (excerpt)
For each Image element in the tileImages array, the program obtains the corresponding WriteableBitmap and creates a new MemoryStream. The extension method SaveJpeg allows saving the WriteableBitmap in JPEG format into the stream. The GetBuffer method of MemoryStream obtains a byte array that is simply saved with the other state information.
When the program returns from its tombstoned state, the process goes in reverse:
Silverlight Project: JeuDeTaquin File: MainPage.xaml.cs (excerpt)
The method reads the byte buffer and converts into a MemoryStream, from which a BitmapImage and then a WriteableBitmap is created. The method then uses the earlier GenerateTileImage method to create each Image element and add it to the Grid.
It’s important to keep in mind that this byte array used to save and restore the bitmap is very different from the int array available from the Pixels property of WriteableBitmap. The Pixels array has a value for every pixel in the bitmap, but the byte array is the compressed bitmap in JPEG format, with all the JPEG file information and headers and such.
The remaining two programs in this chapter create images that you might want to save for posterity (if not prosperity). For example, a program might want to save a bitmap in isolated storage so the user can work on a particular image from session to session.
However, it is most valuable to the user to save a bitmap into the picture library on the phone. There is a special folder (or “album” as it’s termed) called “Saved Pictures” specifically for this purpose. From the picture library, the user can view the resultant bitmap, or email it, or send it with a text message. The bitmap is also moved to the user’s PC during normal synchronization, at which point it might be printed.
Access to the picture library is provided with the XNA libraries, but you can use those libraries from a Silverlight program. You’ll need a reference to the Microsoft.Xna.Framework library, and a using directive for the Microsoft.Xna.Framework.Media namespace.
In your program, you create an instance of the MediaLibrary class. The SavedPictures property returns a PictureCollection with a Picture object for each item currently in the Saved Pictures album. These can be presented to the user with names.
The MediaLibrary class also contains a method named SavePicture that requires two arguments: a filename and a Stream referencing a bitmap in JPEG format. This Stream object is commonly a MemoryStream whose contents have been created by a call to the SaveJpeg extension method of WriteableBitmap.
The Monochromize program lets the user select a picture from the picture library. As soon as the program obtains the photo in the form of a WriteableBitmap, it accesses the Pixels property and converts it to monochrome. A Save button navigates to a screen that lets the user enter a filename and press OK; on navigation back to the program, the monochrome bitmap is saved to the picture library under that name.
The page in Monochromize that lets the user enter a filename is the Windows Phone 7 equivalent of a traditional save-file dialog box, and so I called it SaveFileDialog. It derives from PhoneApplicationPage and resides in the Petzold.Phone.Silverlight library.
I took a little different strategy to return filename information to the particular program that makes use of the SaveFileDialog page: When the user presses the “save” or “cancel” button, SaveFileDialog calls the GoBack method of the NavigationService object as usual, but during the subsequent OnNavigagedFrom override, it attempts to call a method in the program’s main page called SaveFileDialogCompleted. For this reason, any page that navigates to SaveFileDialog should also implement the following interface:
Silverlight Project: Petzold.Phone.Silverlight File: ISaveFileDialogCompleted.cs
The content area of SaveFileDialog has the traditional TextBox with two buttons labeled “save” and “cancel”:
Silverlight Project: Petzold.Phone.Silverlight File: SaveFileDialog.xaml (excerpt)
The code-behind file also defines a public method named SetTitle. A program that makes use of SaveFileDialog can call that method to set the title of the page with the application name:
Silverlight Project: Petzold.Phone.Silverlight File: SaveFileDialog.xaml.cs (excerpt)
Notice also that the “save” button is disabled unless the TextBox contains at least a one-character filename.
The navigation overrides need to handle a couple jobs. The OnNavigatedTo method checks if the query string contains an initial filename. (The Monochromize program does not make use of this feature, but the following program in this chapter does.) The methods also handle tombstoning by saving the application title and any filename the user might have entered:
Silverlight Project: Petzold.Phone.Silverlight File: SaveFileDialog.xaml.cs (excerpt)
The most important part of OnNavigagedFrom is at the bottom of the method, where it checks if the page it’s navigating to implements the ISaveFileDialogCompleted interface and if so, calls the SaveFileDialogCompleted method in that page.
In the Monochromize program itself, the content area in the XAML file contains only an Image element with no bitmap:
Silverlight Project: Monochromize File: MainPage.xaml (excerpt)
The ApplicationBar has two buttons for load and save:
Silverlight Project: Monochromize File: MainPage.xaml (excerpt)
In the code-behind file, the fields are few, and the only one that’s really necessary is the PhotoChooserTask. (The PhoneApplicationService field is only a convenience, and after the program creates WriteableBitmap object, it is also stored as the Source property of the Image element.)
Silverlight Project: Monochromize File: MainPage.xaml.cs (excerpt)
Notice that the class implements the ISaveFileDialogCompleted interface.
Clicking the “load” button causes the PhotoChooserTask to be invoked; on return the Completed handler creates a WriteableBitmap and then changes every member of the Pixels array by applying standard weights to the Red, Green, and Blue values.
Silverlight Project: Monochromize File: MainPage.xaml.cs (excerpt)
The “monochromized” WriteableBitmap is set to the Source property of the Image element and the save button is enabled.
Pressing the save button navigates to the SaveFileDialog.xaml page in the Petzold.Phone.Silverlight library. As you’ve just seen, the SaveFileDialog class handles its OnNavigatedFrom override by calling the SaveFileDialogCompleted method in the class that it’s navigating to:
Silverlight Project: Monochromize File: MainPage.xaml.cs (excerpt)
The SaveFileDialogCompleted method uses the filename entered by the user to write the bitmap to the pictures library. This happens in two steps: First the SaveJpeg method writes the WriteableBitmap to a MemoryStream in JPEG format. The Position on the MemoryStream is then reset, and the stream is saved to the pictures library.
The Monochromize program also handles tombstoning. The OnNavigatedFrom method uses the SaveJpeg extension method to write to a MemoryStream and then saves the byte array. This method is also responsible for calling SetTitle on the SaveFileDialog if navigating to that page:
Silverlight Project: Monochromize File: MainPage.xaml.cs (excerpt)
The OnNavigatedTo method is responsible for re-activating after tombstoning. The byte array is converted by to a WriteableBitmap, and the save button is enabled:
Silverlight Project: Monochromize File: MainPage.xaml.cs (excerpt)
Architecturally and functionally, the Posterizer program that concludes this chapter is similar to the Monochromize program. It lets the user select a photo from the picture library and to save it back in the Saved Pictures album. But the Posterizer program allows the user to reduce the bit resolution of each color independently (creating a poster-like effect) and for this it needs to display a row of RadioButton elements. The program must also retain the original unadulterated pixels array so it can restore the image to full color resolution.
In addition, Posterizer registers itself as a “photos extra” application, which means that it can be invoked by the user from the picture library itself.
For maximum convenience, I decided to implement the controls to select the bit resolution as an overlay:
The middle ApplicationBar button toggles the visibility of that overlay. The accent color is used to indicate the selected value in each column.
This overlay is a UserControl derivative called BitSelectDialog, and I’ll discuss that control first. The visual tree just defines a Grid with three columns and nine rows:
Silverlight Project: Posterizer File: BitSelectDialog.xaml (excerpt)
Each cell is a TextBlock and the code-behind file handles the manipulation logic to make them behave like radio buttons. The public interface to the class includes an event and a public property that stores the three current settings:
Silverlight Project: Posterizer File: BitSelectDialog.xaml.cs (excerpt)
You may see a little flaw in this already. Although the set accessor for the ColorBits array is protected and the array cannot be replaced by an external class, the individual members of the array can be set, and there is no way for the class to know about it, let alone to fire the ColorBitsChanged event. But I allowed the flaw to exist rather than make the class more complex.
The class creates all the TextBlock elements in the constructor. Notice that the ColorBits array is initialized to contain three values of 2.
Silverlight Project: Posterizer File: BitSelectDialog.xaml.cs (excerpt)
Each TextBlock has a two-character string set to its Tag property to indicate the color and the number of bits associated with that element.
I also defined a public method that allows a program to initialize the three ColorBits values, changing the TextBlock colors in the process but not raising the ColorBitsChanged event. This was useful during re-activating from a tombstoned condition.
Silverlight Project: Posterizer File: BitSelectDialog.xaml.cs (excerpt)
The OnManipulationStarted override decodes the Tag property from the touched TextBlock to determine the user’s selection:
Silverlight Project: Posterizer File: BitSelectDialog.xaml.cs (excerpt)
Based on the information decoded from the Tag property of the touched TextBlock, the method can recolor that TextBlock (and the one becoming unselected), store a new value in the ColorBits array, and raise the ColorBitsChanged event.
In the MainPage class of the program itself, the content area includes a (by now familiar) Image element with no bitmap and this BitSelectDialog control:
Silverlight Project: Posterizer File: MainPage.xaml (excerpt)
Notice that the BitSelectDialog control has its Visibility property set to Collapsed.
The XAML file also contains three buttons in its ApplicationBar:
Silverlight Project: Posterizer File: MainPage.xaml (excerpt)
In the code-behind file, the fields of the MainPage class include three variables that represent bitmaps: of type WriteableBitmap, byte array, and int array.
Silverlight Project: Posterizer File: MainPage.xaml.cs (excerpt)
The WriteableBitmap field is the bitmap that is set to the Image element and displayed to the user. This is the bitmap that has its pixels adjusted for lower color resolution. The jpegBits array is the original file that the user loads from the picture library. Retaining the jpegBits array is very convenient for tombstoning, and ensures that the photo reconstituted after tombstoning is the same one that was originally loaded. The pixels array stores the unaltered pixels of the loaded bitmap, but this is not saved during tombstoning. Saving jpegBits rather than pixels requires much less storage.
When the user presses the “load” button, the PhotoChooserTask is invoked. During the Completed event, the program sets jpegBits from the ChosenPhoto stream, and then calls LoadBitmap.
Silverlight Project: Posterizer File: MainPage.xaml.cs (excerpt)
The LoadBitmap method then turns that byte array back into a MemoryStream for creating the BitmapImage and WriteableBitmap. This may seem like a roundabout way to create the bitmap, but it makes much more sense in conjunction with tombstoning.
The LoadBitmap method then makes a copy of the Pixels array of the WriteableBitmap as the pixels field. This pixels field will remain unaltered as the Pixels array of the WriteableBitmap is changed based on the user selection of bit resolution. The objective is to do nothing irrevocable. The user should always be able to select a greater color resolution after choosing a lower one.
The ApplyBitSettingsToBitmap called at the end of the LoadBitmap method is also called whenever the ColorBitsChanged event is fired by the BitSelectDialog. The visibility of that dialog is toggled on and off by the middle button in the ApplicationBar:
Silverlight Project: Posterizer File: MainPage.xaml.cs (excerpt)
The mask variable is built from the three bit-resolution values, and then applied to all the values in the pixels field to set all the values in the Pixels array of the WriteableBitmap.
The Posterizer program also does something a little special when the user presses the button to save the file to the picture library. The program wants to suggest to the user a filename of Posterizer followed by a three digit number higher than anything currently in the picture library. It obtains the saved pictures album through the SavedPictures property of the MediaLibrary and searches for matching filenames:
Silverlight Project: Posterizer File: MainPage.xaml.cs (excerpt)
A program that modifies a photo from the picture library has the option of becoming a “photos extra” program. If so, the user can press a photo in the library, which brings up a menu including the item “extras.” Pressing this item includes all the programs that have registered themselves as “photos extra” applications. Pressing one of these programs invokes the program with the photo already loaded.
Among the files in the program’s project, the following is required:
Silverlight Project: Posterizer File: Extras.xml
The Properties for this file must indicate a Build Action of Content, and a Copy to Output Directory option of Copy Always.
The program must also be prepared to handle a special OnNavigatedTo call that indicates the selected photo.
Here are both navigation overrides. The OnNavigatedFrom method indicates either that the program is being tombstoned or that it’s navigating to the SaveFileDialog object. If being tombstoned, the program must save both the current state of the color bit selection and (if it exists) the bitmap itself. If navigating to the SaveFileDialog, the method sets the title on the page.
Silverlight Project: Posterizer File: MainPage.xaml.cs (excerpt)
The OnNavigatedTo method could indicate that the program was just invoked from the picture library. If so, then the QueryString dictionary of the NavigationContext will contain the special key string “token”. The item corresponding to that string is then passed to the special GetPictureFromToken method of MediaLibrary to obtain a memory stream from which the JPEG file can be accessed.
I mentioned earlier that the LoadBitmap method was convenient when being re-activated from a tombstoned condition, and the logic near the bottom of the method proves it.
Anima is a Latin word that translates vaguely as vital force, rather equivalent to the Greek word psyche. Introducing animation into our programs is therefore the process of giving dead (or inanimate) objects a little life and vigor.
In previous chapters you’ve seen how to change the location of elements on the screen through touch, or based on periodic Tick events from DispatcherTimer. You’ve also seen the CompositionTarget.Rendering event that lets your program perform animations by altering visuals in synchronization with the refresh rate of the video display.
Both the DispatcherTimer and CompositionTarget.Rendering can be very useful. But for most animation needs, it is easier and better to use Silverlight’s built-in animation support. This support consists of over 50 classes, structures, and enumerations in the System.Windows.Media.Animation namespace.
Silverlight’s animation library is easier than the alternatives in part because you can define animations in XAML. But these animations are also preferred to CompositionTarget.Rendering because several key types of animations exploit the Graphics Processing Unit (GPU) on the phone. These animations don’t run in the user-interface thread; they run in a separate thread called the compositor or render thread.
Animations play a big role in control templates used to redefine the visuals of controls. Controls have states, such as the Pressed state associated with a Button, and all state transitions are based on animations. I’ll discuss control templates in the next chapter.
Eventually, many programmers gravitate towards Expression Blend for defining animations and control templates. That’s fine, but in this chapter I’m going to show you how to write animations by hand, and I’ll also show you that valuable (but often neglected) technique of defining animations in code rather than XAML.
Suppose you want to write a little program that rotates some text using the CompositionTarget.Rendering event. You can pace this animation either by the rate that video hardware refreshes the display, or by clock time. Because each refresh of the video display is called a frame, these two methods of pacing animation are referred to as frame-based and time-based.
Here’s a little program that shows the difference. The content area of the XAML file has two TextBlock elements with RotateTransform objects set to their RenderTransform properties, and a Button:
Silverlight Project: FrameBasedVsTimeBased File: MainPage.xaml (excerpt)
The code-behind file saves the current time in a field and then attaches a handler for the CompositionTarget.Rendering event. This event handler is then called in synchronization with the video frame rate.
Silverlight Project: FrameBasedVsTimeBased File: MainPage.xaml.cs (excerpt)
The rotation angle for the first TextBlock is increased by 0.2° every frame. I calculated this by knowing that the phone display is refreshed at 30 frames per second. Multiply 30 frames per second by 60 seconds per minute by 0.2° and you get 360°.
The rotation angle for the second TextBlock is calculated based on the elapsed time. The TimeSpan structure has a convenient TotalMinutes property and this is multiplied by 360 for the total number of degrees to rotate the text.
Both work, and they work approximately the same:
But if your phone is anything like my phone, you’ll see that the frame-based animation lags a little behind the time-based animation, and the lag progressively gets larger and larger. Why?
The calculation for the frame-based animation assumes that the CompositionTarget.Rendering handler is called at the rate of 30 times per second. However, the phone I’m using for this book has a video refresh rate closer to 27 frames per second—about 27.35, to be more precise.
That’s one problem with frame-based animation: It’s dependent on the actual hardware. Your mileage may vary.
Here’s another difference: Suppose the program suddenly needs to perform some job that hogs the processor. The FrameBasedVsTimeBased program simulates such a job with a Button that hangs the thread for 5 seconds. Both animations grind to a halt during this time because the calls to the CompositionTarget.Rendering handler are not asynchronous. When the revolutions start up again, the frame-based animation continues from where it left off; the time-based animation jumps ahead to where it would have been had the delay never occurred.
Whether you prefer one approach to the other ultimately depends on the application. Sometimes you really do need a frame-based animation. But if you ever need to use an animation to pace the hands of a clock or something similar, a time-based animation is essential; frame-based animations are just too unpredictable for the job.
The Silverlight animation library is all time-based. You specify what change you want over a particular period of time, and the Silverlight animation classes handle the rest.
Animations in Silverlight work by changing a particular property of a particular object, for example the Opacity property of an Image. Changing that Opacity property over time makes the Image element fade in, or fade out, or fade in and out, depending on what you want.
The target of an animation must be a dependency property! Obviously that dependency property must be defined by a class that derives from DependencyObject.
The animation classes are distinguished by the type of the property that they animate. Silverlight animations can target properties of type double, Color, Point, and Object. (The inclusion of Object in this short list might seem to encompass all the others but you’ll see shortly that the Object animations are quite restricted in functionality.)
Properties of type double are very common in Silverlight. They include Opacity, Canvas.Left and Canvas.Top, Height and Width, but also all the properties of the transform classes: X and Y of TranslateTransform, ScaleX and ScaleY of ScaleTransform and Angle of RotateTransform. Animating transforms is extremely common and one of the most efficient way to use animations.
Also in this chapter I’ll show you how to use the Projection property defined by UIElement for creating 3D-like perspective effects.
But use your imagination: Whenever you come across a dependency property of type double, Color, or Point, think about how you might animate that property to create an interesting visual effect. For example, you can animate the Offset property in GradientStop objects to change gradient brushes over time, or you can animate the StrokeDashOffset property defined by Shape to make dots and dashes travel along lines. (Remind me to show you an example of that one!)
Animating properties of type Color is pretty much restricted to brushes: SolidColorBrush, LinearGradientBrush, and RadialGradientBrush.
Properties of type Point are fairly rare in Silverlight except among Geometry objects, and I’ll show you a couple examples later in this chapter.
You’ll use the classes DoubleAnimation, ColorAnimation, and PointAnimation to animate properties of type double, Color, or Point continuously from one value to another, and perhaps back again, either once or multiple times. (Even after many years of programming WPF and Silverlight, the name DoubleAnimation still suggests to me two animations. No! It’s an animation that targets double-precision floating point properties.)
The DoubleAnimation, ColorAnimation, and PointAnimation classes have a property named Easing that you can set to an instance of one of a variety of classes that change the velocity of the animation either at the beginning or the end (or both) to make it more natural, and even to briefly “overshoot” the target value of an animation.
You can put together more complex animations using the classes DoubleAnimationUsingKeyFrames, ColorAnimationUsingKeyFrames, and PointAnimationUsingKeyFrames. These classes have a property named KeyFrames that is a collection of individual key frame objects that indicate what the value of the target property should be at a particular elapsed time.
For example, a DoubleAnimationUsingKeyFrames object can contain individual key frames of type DiscreteDoubleKeyFrame (to jump to a particular value at a particular time), LinearDoubleKeyFrame (to move with constant velocity so the property reaches a particular value at a particular time), SplineDoubleKeyFrame (which lets you define an animation that speeds up or slows down in accordance with a Bézier spline), and EasingDoubleKeyFrame, which lets you apply one of the Easing functions.Similar classes exist for ColorAnimationUsingKeyFrames and PointAnimationUsingKeyFrames.
In theory you can animate properties of type Object, but the only classes you have available are ObjectAnimationUsingKeyFrames and DiscreteObjectKeyFrame, which means that you’re limited to jumping among discrete values. This is almost always used to animate properties of an enumeration type, such as Visibility.
Suppose you want to enhance a button to give some extra visual feedback to the user. You decide you actually want a lot of visual feedback to wake up a drowsy user, and therefore you choose to spin the button around in a circle every time it’s clicked.
Here are a few buttons in a XAML file:
Silverlight Project: ClickAndSpin File: MainPage.xaml (excerpt)
Each of the buttons has its RenderTransform property set to a RotateTransform, and its RenderTransformOrigin set for the element center.
The Click event handler is responsible for defining and initiating the animation that spins the clicked button. (Of course, in a real application, the Click handler would also perform something important to the program!) The handler begins by obtaining the Button that the user touched, and the RotateTransform associated with that particular Button:
Silverlight Project: ClickAndSpin File: MainPage.xaml.cs (excerpt)
Getting the animation going requires three steps:
This DoubleAnimation will animate a property of type double from a value of 0 to a value of 360 in ½ second. The Duration property of DoubleAnimation is of type Duration, and in code it is very common to set it from a TimeSpan object. But the Duration property is not itself of type TimeSpan primarily due to legacy issues. You can alternatively set the Duration property to the static Duration.Automatic value, which is the same as not setting Duration at all (or setting it to null), and which creates an animation with a duration of 1 second.
Storyboard.SetTarget(anima, rotateTransform);
Storyboard.SetTargetProperty(anima, new PropertyPath(RotateTransform.AngleProperty));
The attached properties are Target and TargetProperty. As you’ll recall, when you set attached properties in code, you use static methods that begin with the word Set.
In both cases, the first argument is the DoubleAnimation just created. The SetTarget call indicates the object being animated (in this case RotateTransform), and the SetTargetProperty call indicates a property of that object. The second argument of the SetTargetProperty method is of type PropertyPath, and you’ll note that I’ve specified the fully-qualified dependency property for the Angle property of RotateTransform.
At this point, everything seems to be ready. But there’s still another step. In Silverlight, animations are always enclosed in Storyboard objects. A particular Storyboard can have multiple children, so it is very useful for synchronizing multiple animations. But even if you have just one animation running by itself, you still need a Storyboard:
Storyboard storyboard = new Storyboard();
storyboard.Children.Add(anima);
storyboard.Begin();
As soon as you call Begin on the Storyboard object, the clicked button spins around in half a second, giving the user perhaps a little too much visual feedback.
I set the target property of the animation using the fully-qualified dependency property name:
Storyboard.SetTargetProperty(anima, new PropertyPath(RotateTransform.AngleProperty));
The alternative is using a string:
Storyboard.SetTargetProperty(anima, new PropertyPath("Angle"));
You might prefer that syntax because it’s shorter, but it doesn’t guarantee that you haven’t misspelled the property name.
The advantage of using strings for property names is that you can stack property names in a pile. This allows you to animate a property of an object without referencing that object itself. For example, in the Click event handler above you can set the target of the animation to be the Button instead of the RotateTransform:
Storyboard.SetTarget(anima, btn);
The RotateTransform still needs to exist, and you still need to indicate that you’re targeting the Angle property of that object, but look at how you do it:
Storyboard.SetTargetProperty(anima,
new PropertyPath("(Button.RenderTransform).(RotateTransform.Angle)"));
This syntax—admittedly more common in XAML than in code—indicates that RenderTransform is a property of Button, and Angle is a property of RotateTransform, and the RotateTransform is set on the RenderTransform property. If the RenderTransform property is not set to a RotateTransform object, this will fail.
You can simplify the syntax a bit by removing the qualification of the Angle property:
Storyboard.SetTargetProperty(anima,
new PropertyPath("(Button.RenderTransform).Angle"));
But this might be a little confusing. It looks like Angle is a property of RenderTransform, and it’s really not. Angle is a property of a RotateTransform that’s set on the RenderTransform property.
Regardless how you specify it, the animated property must be a dependency property.
The Storyboard class and the DoubleAnimation class are actually siblings, as the following class hierarchy shows:
Storyboard defines a Children property of type TimelineCollection, meaning that a Storyboard can contain not only animation objects but also other Storyboard objects to control a complex collection of animations. Storyboard also defines the attached properties that you use to associate an animation with a particular object and dependency property.
The Timeline class defines the Duration property that the program set to 0.5 seconds:
anima.Duration = new Duration(TimeSpan.FromSeconds(0.5));
You can also set the duration on the storyboard to something less than that:
storyboard.Duration = new Duration(TimeSpan.FromSeconds(0.25));
This will cause the animation to be truncated at 0.25 seconds. By default, the duration of a storyboard is the longest duration of its child timelines (in this case 0.5 seconds), and in most cases you don’t want to override that.
Timeline also defines a BeginTime property that you can set on either the Storyboard or DoubleAnimation:
anima.BeginTime = TimeSpan.FromSeconds(1);
Now the animation doesn’t start for a second.
The AutoReverse property is a Boolean with a default value of false. Try setting it to true:
anima.AutoReverse = true;
Now the button spins around 360° clockwise and then spins 360° counterclockwise. The total animation lasts for a second.
The RepeatBehavior property indicates how many times you want the animation to repeat itself:
anima.RepeatBehavior = new RepeatBehavior(3);
Now the button spins around three times for a total duration of 1.5 seconds. You can combine RepeatBehavior with AutoReverse:
anima.RepeatBehavior = new RepeatBehavior(3);
anima.AutoReverse = true;
Now the button spins around once, and then back, and then forward again, and then back, forward for the third time, and then back. Total duration: 3 seconds.
But perhaps that’s not what you want. Perhaps you want the button to spin forward three times and then back three times. Easy enough. Just set RepeatBehavior on the animation:
anima.RepeatBehavior = new RepeatBehavior(3);
And set AutoReverse on the Storyboard:
storyboard.AutoReverse = true;
It’s also possible to set RepeatBehavior in terms of time rather than a number:
anima.RepeatBehavior = new RepeatBehavior(TimeSpan.FromSeconds(0.75));
Now the button animation keeps repeating for the duration of the RepeatBehavior time. In this case, it will make 1½ revolutions and be left upside-down (unless AutoReverse is also set to true to bring it back to normal).
The RepeatBehavior property can also be set to the static RepeatBehavior.Forever value, but you probably don’t want to use that in this particular example!
For the next several experiments, remove all the changes you might have made to the original program but change the duration of the animation to 5 seconds to see more clearly what’s going on:
anima.Duration = new Duration(TimeSpan.FromSeconds(5));
You can sequentially click the three buttons and all the animations run independently. That’s expected because all the animations are separate objects. But what happens when you click a button that’s already in the middle of an animation? You’ll discover that it starts over again from zero. You’re basically applying a new animation that replaces the old animation, and the new animation always begins at 0° and proceeds to 360°. That’s how the properties are defined:
anima.From = 0;
anima.To = 360;
Dependency properties such as the Angle property of RotateTransform have a base value, which is the value of the property when an animation is not active. There’s actually a method defined by DependencyObject that lets you obtain this value: GetAnimationBaseValue can be called on any DependencyObject derivative with an argument set to a DependencyProperty, such as RotateTransform.AngleProperty.
If you call GetAnimationBaseValue for that Angle property, you’ll get the value zero. Try commenting out the From property setting, leaving only the To:
// anima.From = 0;
anima.To = 360;
And it works. The animation animates the Angle property from its base value of zero to 360. But if you click the Button multiple times as the button is slowly spinning, something odd happens: It won’t start over from 0 because there is no From property setting. But the velocity of the button slows down because each new animation starts from the current position of the button, so it has less distance to travel to reach 360 but the same amount of time to do it in.
But does it really work? After the animation has concluded, try clicking the button again. Nothing happens! The animation has left the Angle property at a value of 360, so there’s nothing for subsequent animations to do!
Now try this:
anima.From = -360;
anima.To = null;
The To property setting might look a little strange since you probably assumed that From and To are of type double. They’re actually nullable double values, and the default values are null. Setting the value to null is the same as not setting it at all. These settings work much like the original settings. Whenever you click the button, it jumps to the value of -360° and then is animated to its base value, which is 0.
Let’s look at this one again:
// anima.From = 0;
anima.To = 360;
After the animation ends, the Angle property is left at the value of 360. That behavior is the result of the FillBehavior property defined by Timeline. By default, this property is set to the enumeration value FillBehavior.HoldEnd, which causes a property to be left at the animated value after the animation ends. Try this alternative:
// anima.From = 0;
anima.To = 360;
anima.FillBehavior = FillBehavior.Stop;
This setting causes the effect of the animation to be removed from the property. After the animation concludes, the Angle property reverts to its pre-animated value of 0. We can’t actually see that property snap back, because 0° is the same as 360°, but it does. You can see the effect more clearly if you set the To value to 180.
An alternative to the To and From properties is By. Try this:
// anima.From = 0;
// anima.To = 360;
anima.By = 90;
anima.FillBehavior = FillBehavior.HoldEnd;
This setting of FillBehavior is the default value of HoldEnd. Each time you click the button, it advances by 90°. However, if you click it while it’s moving, it will be animated 90° from that position, so it ends up in some odd angle. The By value is useful in some cases to progressively increment a property by a certain amount with each successive application of an animation.
Defining storyboards and animations in XAML is ostensibly easier than defining them in code, and for that reason you’ll find the vast majority of Silverlight storyboards and animations in XAML. But there are some issues involving the sharing of resources.
Let’s try to rewrite the ClickAndSpin program to use XAML for the storyboards and animations. The XamlClickAndSpin program has the following content area:
Silverlight Project: XamlClickAndSpin File: MainPage.xaml (excerpt)
This is basically the same as the previous version except that all the Button elements and all the RotateTransform objects have been given names for easy reference.
The storyboards and animations are defined in the Resources collection of the page:
Silverlight Project: XamlClickAndSpin File: MainPage.xaml (excerpt)
Three buttons; three storyboards. Notice the attached properties:
To set the attached properties in code, you make calls to the static methods Storyboard.SetTarget and Storyboard.SetTargetProperty. In XAML you set the attached properties Storyboard.TargetName and Storyboard.TargetProperty. Notice the difference: The markup needs to reference a target object by name whereas code has access to the actual object itself.
Alternatively, the Angle property could be referenced through the Button object:
Or:
With this syntax, the RotateTransform objects do not require names.
Notice how the duration is defined. At least three numbers are required: hours, minutes, and seconds separated by colons. The seconds can have a fractional part. You can also preface hours with a number of days and a period.
I used x:Name rather than x:Key with the Storyboard resources to make them easier to reference in code. The handler for the button’s Click event simply calls Begin on the appropriate object:
Silverlight Project: XamlClickAndSpin File: MainPage.xaml.cs (excerpt)
Simple enough. But I’m probably not alone in desiring a way to define just one storyboard and animation in XAML rather than three. It seems like it should be possible to leave out the Storyboard.TargetName assignment in the XAML and call the Storyboard.SetTarget method in code once you know what button is involved. But you can’t get around the fact that resources are shared, and if a particular Storyboard and DoubleAnimation are associated with one Button, they can’t also be used with another Button. With one Storyboard and DoubleAnimation resource you couldn’t have two buttons spinning at the same time.
Even if you could assure yourself that one Button would be stopped before another Button would begin, you still have to make sure that the storyboard is stopped as well, which means you need to call Stop on the Storyboard object. (Besides Begin and Stop methods, the Storyboard class also defines Pause and Resume, but they’re not often used.)
In previous chapters I’ve showed you how to use CompositionTarget.Rendering for moving and changing visual objects in synchronization with the refresh rate of the video display. While certainly convenient for some scenarios, this feature of Silverlight should be used with discretion. If you’re really interested in using CompositionTarget.Rendering for a full-fledged game loop, for example, perhaps it’s time to start thinking about XNA.
The big problem is that sometimes CompositionTarget.Rendering does not work as well as you might anticipate. For example, you might remember the Spiral program from Chapter 13. Here is a program that attempts to use CompositionTarget.Rendering to rotate that spiral.
Silverlight Project: RotatedSpiral File: MainPage.xaml.cs (excerpt)
Most of this code is the same as the Spiral program, but notice the RotateTransform field. At the end of the Loaded handler, this RotateTransform is set to the RenderTransform property of the Polyline defining the spiral, and a handler is attached to the CompositionTarget.Rendering event. That event handler changes the Angle property of the RotateTransform to rotate the spiral once every 3 seconds.
There’s nothing really wrong with this code, but if your phone is similar to my phone, the performance will be terrible. The screen will be updated only once or twice a second, and the resultant animation will seem very jumpy.
I’m going to tell you three ways to fix the problem and improve the performance. Fortunately, all three ways to fix the problem are general enough to be usable beyond this particular application.
Solution 1: Simplify the graphics. This spiral is a Polyline with 14,400 points. That is way more than sufficient. If you change the increment in the for loop from 0.25 to 5, the animation will be much smoother and the spiral itself will still seem round. The lesson: Fewer visual objects often result in better performance. Simplify your graphics and simplify your visual trees.
Solution 2: Cache the visuals. Silverlight is attempting to rotate a Polyline with very many individual points. It would find this job a lot easier if the spiral were a simple bitmap rather than a complex Polyline. You could make a WriteableBitmap of this graphic yourself and rotate that. Or you could let Silverlight do the equivalent optimization by simply setting the following property on Polyline:
polyline.CacheMode = new BitmapCache();
This instructs Silverlight to create a bitmap of the element and to use that bitmap for rendering. You shouldn’t use this option for vector graphics that dynamically change. But complex graphics that are static within themselves, and which might be subjected to animations, are excellent candidates for bitmap caching. In XAML it looks like this:
CacheMode="BitmapCache"
Solution 3: Use Silverlight animations instead of CompositionTarget.Rendering.
Let’s rewrite the RotatedSpiral program with the same number of points in the Polyline and without explicit bitmap caching but replacing CompositionTarget.Rendering with a DoubleAnimation:
Silverlight Project: AnimatedSpiral File: MainPage.xaml.cs (excerpt)
And it runs much smoother than the previous version.
Why the big difference? Surely on some level the Silverlight animations are making use of something equivalent to CompositionTarget.Rendering, right?
Actually, that’s not true. It’s pretty much true for the desktop version of Silverlight, but Silverlight for Windows Phone has been enhanced to make greater use of the phone’s graphics processing unit (GPU). Although GPUs are customarily associated with hardware accelerations of complex texture processing and other algorithms associated with 3D graphics, Silverlight puts the GPU to work performing simple 2D animations.
Much of a Silverlight application runs in a single thread called the UI thread. The UI thread handles touch input, layout, and the CompositionTarget.Rendering event. Some worker threads are also used for jobs such as rasterization, media decoding, sensors, and asynchronous web access.
Silverlight for Windows Phone also supports a compositor or render thread that involves the GPU. This render thread is used for several types of animations of properties of type double, specifically:
Animations that target properties of type Color or Point continue to be performed in the UI thread. Non-rectangular clipping or use of OpacityMask are also performed in the UI thread and can result in poor performance.
As a little demonstration, the UIThreadVsRenderThread project rotates some text in two different ways:
Silverlight Project: UIThreadVsRenderThread File: MainPage.xaml (excerpt)
The first TextBlock is rotated in code using CompositionTarget.Rendering. The second TextBlock is animated by the following Storyboard defined in the page’s Resources collection:
Silverlight Project: UIThreadVsRenderThread File: MainPage.xaml (excerpt)
The MainPage constructor starts the animation going and attaches a handler for the CompositionTarget.Rendering event.
Silverlight Project: UIThreadVsRenderThread File: MainPage.xaml.cs (excerpt)
I’m using the time-based logic for CompositionTarget.Rendering so the two animations move at the same rate. But press that button and you’ll see something amazing: The TextBlock rotated by CompositionTarget.Rendering stops dead for five seconds, but the one powered by DoubleAnimation keeps right on going! That’s the render thread working for you even though the UI thread is blocked.
If you’re applying rotation and scaling to text, there’s another setting you might want to know about. This is the attached property you set in XAML like this:
TextOptions.TextHintingMode="Animated"
The alternative is Fixed, which is the default. When you indicate that text is to be animated, certain optimizations for readability won’t be performed.
Silverlight has three built-in features that can help you visualize performance issues. Although you can use these on the phone emulator, the emulator tends to run faster than the actual phone, so you’re not getting a true view of performance anyway.
For more details about performance issues, you’ll want to study the document “Creating High Performance Silverlight Applications for Windows Phone” available online The Settings class in the System.Windows.Interop namespace has three Boolean properties that can help you visualize performance. You access these three properties through the SilverlightHost object available as the Host property of the current Application object. These properties are considered so important that you’ll find them set—and all but one commented out—in the constructor of the App class in the standard App.xaml.cs file.
Here’s the first:
Application.Current.Host.Settings.EnableFrameRateCounter = true;
This flag enables a little display at the side of the phone showing several items:
The first two items are the most important. When your program is running on the phone these two numbers should both be in the region of 30 frames per second. It is probably best to use these numbers (and the others) in comparative ways: Get accustomed to what the numbers are like in relatively simple programs, and then observe the changes as the program gets more complex.
The second diagnostics flag is:
Application.Current.Host.Settings.EnableRedrawRegions = true;
This flag is rather fun. Whenever the UI thread needs to rasterize graphics for a particular region of the video display, that region is highlighted with a different color. (These are sometimes called “dirty regions” because they need to be refreshed with new visuals.) If you see a lot of flickering over wide areas of the video display, the UI thread is working overtime to update the display. Optimally, you should be seeing very little color flashing, which is the case when the render thread is performing animations rather than the UI thread.
Here’s the third flag:
Application.Current.Host.Settings.EnableCacheVisualization = true;
This flag uses a color overlay to highlight areas of the display that are cached to bitmaps. You might want to try this flag with the RotatedSpiral program (the version that uses CompositionTarget.Rendering). When you run the program as it’s shown above, the whole display is tinted, meaning that the whole display needs to rasterized every time the Polyline changes position. That takes some times, and that’s why the performance is so poor. Now set:
polyline.CacheMode = new BitmapCache();
Now you’ll see the spiral in a tinted box, and the box itself is rotated. That’s the cached bitmap.
If you like the idea of giving the user some visual feedback from a button, but the 360° spin is just a bit too ostentatious, perhaps jiggling the button a little might be more polite. So you open a new project named JiggleButtonTryout and begin experimenting.
Let’s start with just one Button with a TranslateTransform set to the RenderTransform property:
Silverlight Project: JiggleButtonTryout File: MainPage.xaml (excerpt)
In the Resources collection you’ll want to define a Storyboard:
The code-behind file starts the animation when the button is clicked:
Silverlight Project: JiggleButtonTryout File: MainPage.xaml.cs (excerpt)
Perhaps the first thing you try is a DoubleAnimation that animates the X property of the TranslateTransform:
The result looks vaguely OK, but it’s not quite right, because the animation initially jumps the button to the left 10 pixels, and then the animation goes from left to right and back again three times. (Notice the XAML syntax for repeating the animation three times or “3x”.) Then it stops with the button still 10 units to the left. You can see the problem more clearly if you change the offsets to −100 and 100, and the duration to ½ second.
One way to fix part of the problem is to set the FillBehavior to Stop, which releases the animation at the end, causing the button to jump back to its original position. But that creates another discontinuous jump at the end of the animation besides the one at the beginning.
To make this correct, we really need a couple different animations. We first want to animate from 0 to –10, then from –10 to 10 and back again a few times, and then finally back to zero. Fortunately, Silverlight has a facility to string animations like this in a sequence. It’s called a key-frame animation, and the first step is to replace DoubleAnimation with DoubleAnimationUsingKeyFrames. Everything except the TargetName and TargetProperty doesn’t apply in new approach:
When you’re animating properties of type double, DoubleAnimationUsingKeyFrames is the only alternative to DoubleAnimation, but it gives you a lot more flexibility. The DoubleAnimationUsingKeyFrames class has children of type DoubleKeyFrame, and you have four choices:
For now, I want to use DiscreteDoubleKeyFrame and LinearDoubleKeyFrame. Each keyframe object requires two properties to be set: a KeyTime and a Value. The KeyTime is an elapsed time from the beginning of the animation; the Value property is the desired value of the target property at that time.
To get a better view of what’s happening, let’s swing the button very wide, and let’s do it slowly. At time zero, we want the value to be zero:
<DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />
This isn’t actually required, because 0 is the value of the target property at the beginning of the animationanyway, but it doesn’t hurt.
At the end of 1 second, let’s set the value to be –100:
<LinearDoubleKeyFrame KeyTime="0:0:01" Value="-100" />
The use of LinearDoubleKeyFrame here means that in the duration from time zero to 1 second, the X property of TranslateTransform will change linearly from 0 to –100. The velocity is 100 units a second, so to keep the same velocity for the swing to 100, the next key time should be three seconds:
<LinearDoubleKeyFrame KeyTime="0:0:03" Value="100" />
This means that from an elapsed time of 1 second to an elapsed time of 3 seconds, the value changes from –100 to 100. Finally, another elapsed second brings it back to the starting position:
<LinearDoubleKeyFrame KeyTime="0:0:04" Value="0" />
If you try this out, you can see that the button moves left, then all the way right, then back to the center without any jumps in a total of 4 seconds. The total duration of a key-frame animation is the maximum KeyTime on all the key-frame objects.
Now let’s perform that entire maneuver three times:
The total show lasts for 12 seconds but without any discontinuities.
Now that the button has the desired behavior, the offsets can be reduced from 100 to 10:
To bring the time values down to something reasonable, I want to show you a little trick. Often when you’re developing animations you want to do run them very slowly to get them working correctly, and then you want to speed them up for the final version. Of course, you could go through and adjust all the KeyTime values, or you could simply specify a SpeedRatio on the animation, as in the version of the animation in the JiggleButtonTryout project:
Silverlight Project: JiggleButtonTryout File: MainPage.xaml (excerpt)
Each cycle of the key frames requires 4 seconds; this is repeated 3 times for a total of 12 seconds, but the SpeedRatio value of 40 effectively speeds up the animation by a factor of 40 so it’s only 0.3 seconds total.
If you want to immortalize this effect in a custom control called JiggleButton for easy reusability, you have a few choices, none of which are entirely satisfactory.
You could derive from UserControl and incorporate the Button and the transform in that control. But to do this right would require reproducing all the Button properties and events as UserControl properties and events. Another approach involves a template. Perhaps the easiest option is to derive from Button, but in doing so you’d have to appropriate the RenderTransform property for this specific purpose, and the RenderTransform property would be unusable for other purposes.
The Windows Presentation Foundation has somewhat more flexibility than Silverlight in defining and using animations. WPF includes objects called triggers, which respond to event firings or to changes in properties and which can start animations going entirely in XAML, eliminating the need for the code-behind file to start the Storyboard. Triggers are largely gone from Silverlight—mostly replaced by the Visual State Manager that I’ll discuss in the next chapter.
However, one trigger remains in Silverlight. This is a trigger that responds to the Loaded event. This allows you to define an animation entirely in XAML that automatically starts up when the page (or another element) is loaded.
The FadelnOnLoaded project contains the following XAML near the bottom of the page, right above the PhoneApplicationPage end tag. This is the traditional spot for event triggers:
Silverlight Project: FadeInOnLoaded File: MainPage.xaml (excerpt)
The markup begins with a property-element tag for the Triggers property defined by FrameworkElement. The Triggers property is of type TriggerCollection, which sounds quite extensive and versatile, but in Silverlight the only thing you can put in there is an EventTrigger tag that is always associated with the Loaded event. This next tag is BeginStoryboard. This is the only place you’ll see a BeginStoryboard tag in Silverlight. And now we get to something familiar: A Storyboard with one or more animations that can target any dependency object of any object on the page.
This one targets the Opacity property of the TitlePanel, which is the StackPanel containing the two titles at the top of the page. I made the animation 10 seconds long so you don’t miss it. As the page is loaded, the titles fade into view:
The Silverlight documentation discourages the use of animations triggered in this way. Certainly the technique has limited use in real life. But it remains very popular for XAML-based demonstration programs with animations that run “forever.” You can make an animation run forever (or to the limits of your toleration) with:
RepeatBehavior="Forever"
Although I’ve read that you can’t put the markup with the Triggers property element on anything other than the root element of the page, in reality it’s possible to define it on something a little closer to the actual objects being animated. I’ll do that in the next several programs in this chapter so the visual tree in the content area and the animation are all together in one happy family.
All the visuals in the following program are in a centered Grid with a fixed 400-pixel square size. The Grid contains five concentric circles, all of which are Path elements whose Data properties are set to EllipseGeometry objects. Each EllipseGeometry has RadiusX and a RadiusY properties set to values that are 25 pixels longer than the next smallest object.
Silverlight Project: ExpandingCircles File: MainPage.xaml (excerpt)
That centered Path is also the element on which the EventTrigger is attached, and the Storyboard contains 12 DoubleAnimation objects, all of which run in parallel for 5 seconds. (The last one is actually 4.9 seconds, but I made that change to avoid a sporadic visual glitch.) The entire Storyboard is then repeated forever. All but two of these DoubleAnimation objects target the RadiusX and RadiusY properties of the five EllipseGeometry objects, making them 25 pixels larger—that is, as large as the base value of the next larger circle.
At the same time, the Opacity property of the outermost circle is animated to fade out, and the innermost circle has it StrokeThickness property animated to make it seem as if it grows from nothing. The overall visual effect is that circles seem to be generated from the center, and then disappear once they reach the outside:
The next program is called DashOffsetAnimation, and it uses a Path to draw an infinity sign in landscape mode. The infinity sign includes two semicircles (at the far left and far right), each of which is drawn using two Bézier splines based on a well-known approximation.
A single Bézier curve approximates a quarter circle very well. For a circle centered at the point (0, 0) with a radius of 100, the lower-right quarter-circle arc begins at the point (100, 0) and goes clockwise to end at the point (0, 100). You can approximate that arc with a Bézier curve that begins at the point (100, 0) and ends at the point (0, 100) with the two control points (100, 55) and (55, 100). Continue that same pattern—I think of it as the “Bezier 55” rule—to construct an entire circle from four connected Bézier curves. The approximation is so good that some graphics systems actually implement circles using this technique.
The Data definition used below is Path Markup Syntax that starts with an M (“move”) and then a C (“cubic Bézier”) with two control points and an end point. But then it switches to S (“smooth Bézier”), which requires only the second control point and the end point. The S automatically uses the previous Bézier to determine a first control point that is collinear with the start point and previous control point.
The StrokeDashArray is set with the two points 0 and 1.5 indicating a dash length of 0 and a gap of 1.5. However, the StrokeDashCap is set to Round, so the dots are round and are separated by half the thickness of the line.
Silverlight Project: DashOffsetAnimation File: MainPage.xaml (excerpt)
This DoubleAnimation targets the StrokeDashOffset property of the Path, which is normally zero. This is the property that indicates the location in the sequence of dots, dashes, and gaps that is aligned with the beginning of the line. The result is that the dots seem to travel continuously around the figure.
To avoid discontinuities when animating StrokeDashOffset in a closed path, the crucial number is the StrokeThickness. You want the total length of the line to be an integral multiple of the StrokeDashArray times the StrokeThickness. If StrokeThickness isn’t anywhere close to the correct value, you’ll see a kind of bubbling effect as partial dots are drawn; if it’s very close to the correct value but not exact, you may see flickering.
Animatedlnfinity is another landscape program that uses that same Path Markup Syntax but colors the infinity sign with a LinearGradientBrush with the traditional colors of the rainbow:
Silverlight Project: AnimatedInfinity File: MainPage.xaml (excerpt)
The Brush defines a Transform property (although it’s not often used), and this program sets it to a TranslateTransform and then animates it, making the colors continuously sweep across the figure:
You can also animate properties of type Color, which means you can animate brush colors. Here’s a program that animates the Color properties in two GradientStop objects of a LinearGradientBrush:
Silverlight Project: GradientAnimation File: MainPage.xaml (excerpt)
The two animations are given prime-number periods of 11 seconds and 13 seconds so the overall cycle, including AutoReverse, lasts almost 5 minutes before it repeats.
You can use Silverlight animations in a couple different ways to move an element around the screen. One way is to target a TranslateTransform set to the element’s RenderTransform property. But programmers who are more comfortable with Canvas might want to animate the Canvas.Left and Canvas.Top attached properties. A special syntax is required to animate attached properties, but it’s fairly simple.
This program defines a Canvas that is 450 pixels square, centers it in the content area, instantiates an Ellipse that is 50 pixels in size, and then moves that Ellipse around the perimeter of the Canvas in four seconds, repeated forever.
Silverlight Project: MoveOnCanvas File: MainPage.xaml (excerpt)
Notice that the Storyboard.TargetName is set to reference the Ellipse element, and the Storyboard.TargetProperty attributes are set to the strings “(Canvas.Left)” and “(Canvas.Top)”. When targeting attached properties in an animation, put the fully-qualified property names in parentheses. Simple.
What isn’t so simple—and you’ll find the same problem with targeting TranslateTransform—is the complexity of moving an object in more than one dimension. You need to handle the X and Y coordinates separately, and this is often confusing. The approach I’ve used involves key frames. Both start with an unnecessary DiscreteDoubleKeyFrame that sets the property to zero, but the DiscreteDoubleKeyFrame objects and LinearDoubleKeyFrame objects alternate as the Ellipse makes it way around the edges of the Canvas.
It’s usually much easier handling both X and Y coordinates in unison with PointAnimation or PointAnimationUsingKeyFrames. Of course, there are very few classes in Silverlight that define dependency properties of type Point, but those that do—in particular, the Geometry derivatives—are central to vector graphics.
Let’s rewrite this program with a DoubleAnimationUsingKeyFrames to target the Center property of an EllipseGeometry:
Silverlight Project: MoveInGrid File: MainPage.xaml (excerpt)
The coordinates have to be adjusted a bit because now we’re positioning the center of the ball rather than its upper-left corner, but the progression of the animation is much clearer, and it’s been reduced to one animation rather than two.
And now, the downside: Animations that target properties of type Point are not handled in the GPU on the render thread. If that’s a concern, stick to animating properties of type double.
If you value fun more than performance, you can construct a PathGeometry using explicit PathFigure, LineSegment, ArcSegment, BezierSegment, and QuadraticBezierSegment objects, and every property of type Point can be an animation target.
Here’s a program that stretches that concept to an extreme. It creates a circle from four Bézier splines, and then animates the various Point properties, turning the circle into a square and solving a geometric problem that’s been bedeviling mathematicians since the days of Euclid:
Silverlight Project: SquaringTheCircle File: MainPage.xaml (excerpt)
Here’s halfway between a square and a circle:
Three of the key-frame classes begin with the word Spline: SplineDoubleKeyFrame, SplinePointKeyFrame, and SplineColorKeyFrame. These classes have KeyTime and Value properties like the Discrete and Linear keyframes, but they also define a property named KeySpline. This property allows you to create a key frame that speeds up or slows down (or both) during its course but still ending at the correct value by the time KeyTime comes around. The change in velocity is governed by a Bézier spline.
KeySpline is a structure with two properties named ControlPoint1 and ControlPoint2 of type Point. The X and Y coordinates of each of these points must be between 0 and 1. A single KeySpline object effectively describes a Bézier curve that begins at the point (0, 0) and ends at the point (1, 1) with these two control points. It is not possible to create an arbitrary Bézier curve under these constraints—for example, the curve can’t make a loop—but you’ll see you have a considerable amount of flexibility.
Conceptually, during the course of the key frame, the X coordinate of this spline represents normalized time, which changes linearly from 0 to 1. The Y coordinate is the normalized value of the animation, also changing from 0 to 1 but in a non-linear fashion.
Certainly the best way to get a feel for spline-based key frames is to experiment with them, and I have just the program. It’s even called SplineKeyFrameExperiment:
You can move the control points of the spline using the blue semi-translucent circles. The ApplicationBar has only one button labeled “animate”:
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml (excerpt)
When you press it, the white ball on the bottom of the grid moves linearly from left to right, representing the linear increase in time. The white ball at the right of the grid moves non-linearly from top to bottom based on the shape of the spline.
For purposes of simplicity, the layout of the screen is based on a grid with a fixed width and height of 400 pixels, so the program will need to be modified a bit for a smaller screen.
The content area begins with a gray 400-pixel square with horizontal and vertical grid lines every 40 pixels. Each grid line represents 0.1 units for displaying the spline.
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml (excerpt)
The TextBlock at the bottom is used to display the values of the two control points.
The markup below is for the Bézier curve that always begins at the upper-left of the grid, which represents the point (0, 0), and which ends at the bottom-right of the grid, representing the point (1, 1). The two control points (Point1 and Point2 of the BezierSegment object) are user-selectable.
This snippet of XAML also includes the two tangent lines from the end points to the control points. I would much prefer to bind the various properties of these elements to each other using data bindings, but in Silverlight 3 data binding targets must always be properties of elements, and these are properties of PathSegment derivatives.
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml (excerpt)
Here are the two little white balls that appear on the bottom and right, one representing time and the other representing the animated object:
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml (excerpt)
You can’t see it when the program is inactive, but two lines—one horizontal and one vertical—connect the small balls with the spline curve. These lines track the spline curve when the small balls are moving:
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml (excerpt)
Finally, two semi-transparent circles respond to touch input and are used to drag the control points within the grid:
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml (excerpt)
The centers of these two EllipseGeometry objects provide the two control points of the KeySpline object. In the code-behind file, the constructor initializes the TextBlock at the bottom with the values, normalized to the range of 0 to 1:
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml.cs (excerpt)
With the absence of data bindings in the XAML, the OnManipulationDelta override must modify two additional properties of type Point (plus the TextBlock) every time one of the semi-transparent circles is dragged:
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml.cs (excerpt)
When the button in the ApplicationBar is pressed, the program needs to set four different animations with identical KeySpline objects and then start the Storyboard going:
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml.cs (excerpt)
That storyboard is defined in the Resources collection of the page:
Silverlight Project: SplineKeyFrameExperiment File: MainPage.xaml (excerpt)
Try it out: If you set both control points to (1, 0) you get an animation that starts off slow and then gets very fast. Setting both control points to (0, 1) has the opposite effect. Set the first control point to (1, 0) and the second to (0, 1) and you get an animation that starts off slow, then gets fast, and ends up slow. Switch them and get the opposite effect.
Of course, you don’t have to use the extremes. You’ll probably want to find values that have a more subtle effect. You can simulate free fall with values of (0.25, 0) and (0.6, 0.2), for example. For an object moving up and decelerating from the effects of gravity, subtract each of those coordinates from 1.
Yes, I have an example.
Here’s some XAML designed for a large-screen phone that moves a ball up and down:
There are two Path elements here. The first one is the red ball; the second is a “floor” on which the ball is supposed to bounce.
The ball has a TranslateTransform applied to it: the X property is fixed to keep the ball horizontally centered; the Y property is animated between 50 and 600 and back again. But it really doesn’t look like it’s bouncing because it has the same velocity throughout its movement. It doesn’t obey the laws of physics. In the real world, obeying the laws of physics is pretty much mandatory, but in computer graphics, often more work is involved.
Getting a better bouncing effect is possible with a DoubleAnimationUsingKeyFrames object with a SplineDoubleKeyFrame that speeds up the ball as it’s falling and slows it down as it’s rising. These use the spline control points that approximate free fall:
This is much better. But it’s still not quite right, and the problem involves what happens when the ball hits the ground. The ball is at maximum velocity when it hits the ground, and then immediately it’s at maximum velocity going in the opposite direction.
In reality, this is not the way it works. When the ball hits the ground, it decelerates and compresses somewhat, and then the decompression of the ball causes it to accelerate again. Can that be simulated? Why not?
Pausing the ball momentarily as it hits the ground is an additional key frame. I decided the ball will be compressed and uncompressed over the course of a tenth second (which is probably a bit exaggerated), so I adjusted the times somewhat:
The TranslateTransform starts at time zero with a value of 50. Over the next second it goes to 600 while speeding up. Over the next 10th second, it remains at 600, and then goes back up to 50 during the next second. The new animation now lasts 2.1 seconds rather than 2 seconds.
Of course, by itself, this looks even worse. But let’s add a ScaleTransform to the Path defining the ball:
The untransformed center of the ball is the point (0, 0), and the two radii are 25 pixels, so the middle bottom of the ball is the point (0, 25). That’s the point that touches the floor, and the point that should stay in the same spot during the ScaleTransform, which is the reason for setting CenterY to 25. CenterX is 0 by default.
Here are the two additional animations for momentarily flattening out the ball:
Between 1 second and 1.05 seconds, the ball’s width grows by 50% and its height decreases by a third. That’s reversed over the next 0.05 seconds, at which point the ball is normal and it begins its upward path.
The final version of the BouncingBall program also applies a RadialGradientBrush to the ball:
Silverlight Project: BouncingBall File: MainPage.xaml (excerpt)
Here it is in action:
Defining key frames with splines is easy in one sense—there are only four numbers involved—but also hard: You need to approximate a certain desired effect with a Bézier spline, and that’s not always obvious.
You might prefer something more “canned” that gives you an overall impression of adherence to physical law without requiring a lot of thought. This is the purpose of the animation easing functions. These are classes that derive from EasingFunctionBase with common types of transitions that you can add to the beginning or end (or both beginning and end) of your animations. DoubleAnimation, PointAnimation, and ColorAnimation all have properties named EasingFunction of type EasingFunctionBase. There are also EasingDoubleKeyFrame, EasingColorKeyFrame, and EasingPointKeyFrame classes.
EasingFunctionBase defines just one property: EasingMode of the enumeration type EasingMode, either EaseOut (the default, which uses the transition only at the end of the animation), EaseIn, or EaseInOut. Eleven classes derive from EasingFunctionBase and you can derive your own if you want to have even more control and power.
The project named TheEasingLife lets you choose among the eleven EasingFunctionBase derivatives to see their effect on a simple PointAnimation involving a ball-like object. The content area is populated with two Polyline elements and a Path but no coordinates are supplied; that’s done in code.
Silverlight Project: TheEasingLife File: MainPage.xaml (excerpt)
The Resources collection contains a Storyboard with a PointAnimation targeting the Center property of the EllipseGeometry. The PointAnimation is given a Duration property but nothing else:
Silverlight Project: TheEasingLife File: MainPage.xaml (excerpt)
Notice that a handler is set for the Completed event of the Storyboard. This Completed event is defined by Timeline and is often convenient for letting a program know when an animation has completed.
The ApplicationBar has two buttons for “animate” and “settings”:
Silverlight Project: TheEasingLife File: MainPage.xaml (excerpt)
The coordinates for the two Polyline elements and EllipseGeometry are set during the Loaded event handler based on the size of the content panel. The ball is intended to be animated between a Polyline at the top and a Polyline at the bottom; the actual points are stored in the ballPoints array. The direction (going down or going up) is governed by the isForward field.
Silverlight Project: TheEasingLife File: MainPage.xaml.cs (excerpt)
Notice also the public property named EasingFunction. When you press the “animate” button, the Click handler fills in the missing pieces of the PointAnimation (including the EasingFunction property) and starts it going:
Silverlight Project: TheEasingLife File: MainPage.xaml.cs (excerpt)
The Completed handler toggles the isForward value in preparation for the next animation.
When you press the “settings” button, the program navigates to the EasingFunctionDialog page that lets you choose which easing function you want:
Silverlight Project: TheEasingLife File: MainPage.xaml.cs (excerpt)
When the OnNavigatedFrom override determines that a transition from MainPage to EasingFunctionDialog page is in progress, it transfers the contents of its EasingFunction property to EasingFunctionDialog, which also has a public EasingFunction property.
The content area of the EasingFunctionDialog.xaml file just has a StackPanel in a ScrollViewer:
Silverlight Project: TheEasingLife File: EasingFunctionDialog.xaml (excerpt)
In its OnNavigatedTo override, the dialog uses reflection to fill up the StackPanel with RadioButton elements. By the time OnNavigatedTo is called, the EasingFunction property already has a valid value set by the OnNavigatedFrom override in MainPage:
Silverlight Project: TheEasingLife File: EasingFunctionDialog.xaml.cs (excerpt)
Notice how the Tag property of each RadioButton is a Type object indicating the EasingFunctionBase derivative associated with that button. When the user presses one of the RadioButton elements, that Tag property is used to make a new object of that type:
Silverlight Project: TheEasingLife File: EasingFunctionDialog.xaml.cs (excerpt)
Finally, when you’re finished choosing the easing function you want, you press the Back button and the dialog’s OnNavigatedFrom override is called. This responds by storing the current selection back in MainPage:
Silverlight Project: TheEasingLife File: EasingFunctionDialog.xaml.cs (excerpt)
Keep in mind that these EasingFunctionBase derivatives have all default property settings, including the EasingMode property that restricts the effect only to the end of the animation. You’ll find that a couple of these effects—specifically BackEase and ElasticEase—actually overshoot the destination. While this doesn’t matter in many cases, for some properties it might result in illegal values. You don’t want to set Opacity to values outside the range of 0 and 1, for example.
The types of transforms you set with RenderTransform are all examples of two-dimensional affine transforms. Affine transforms are very well behaved and just a little dull: Straight lines are always transformed to straight lines, ellipses are always transformed to ellipses, and squares are always transformed to parallelograms. Two lines that are parallel before the transform are still parallel after the transform.
Silverlight 3 introduced a new UIElement property named Projection that allows setting non-affine transforms on graphical objects, text, controls, and media. Non-affine transforms do not preserve parallelism.
The type of non-affine transform allowed in Silverlight 3 is still represented by a matrix multiplication, and it still has restrictions on what it can do. Straight lines are always transformed to straight lines, and a square is always transformed into a simple convex quadrilateral. By “quadrilateral” I mean a four-sided figure (also called a tetragon or quadrangle); by “simple” I mean that the sides don’t intersect except at their vertices; by “convex” I mean that the internal angles at each vertex are less than 180 degrees.
This type of non-affine transform is very useful for creating taper transforms, where opposite sides of a square or rectangle taper somewhat in one direction. Objects appear to be somewhat three dimensional because part of the object seems further away from our eyes—an effect called a perspective projection.
In a sense, the Projection property gives Silverlight a little bit of “pseudo 3D.” It’s not a real 3D system because there’s no way to define objects in 3D space, no concept of cameras, lights, or shading, and—perhaps most crucially—no clipping of objects based on their arrangement in 3D space.
Still, working with the Projection transform requires the programmer to begin thinking about three dimensions and especially about 3D rotation. Fortunately, the developers of Silverlight have made common and simple use of the Projection property fairly easy.
You can set this Projection property to one of two objects: You can be mathematical and flexible by using Matrix3DProjection, or you can do as I’ll do here and take the easy way out with PlaneProjection. Although PlaneProjection defines twelve settable properties, you can pretty much limit yourself to six of them.
The three crucial properties of PlaneProjection are RotationX, RotationY, and RotationX, which you can set to angle values to cause rotation around the X axis (which extends in a positive direction from left to right), the Y axis (which extends from top to bottom), and the Z axis (which comes out of the screen towards the viewer).
You can anticipate the direction of rotation using the right-hand rule: Point your thumb in the direction of the positive axis. (For X, that’s to the right, for Y it’s down, for Z, it’s toward you.) The curve that your other fingers make indicates the direction of rotation for positive rotation angles. Negative angles rotate in the opposite direction.
A composite rotation depends on the order in which the individual rotations are applied. When you use PlaneProjection, you are sacrificing some flexibility in these rotations. PlaneProjection always applies RotationX first, then RotationY, and finally RotationZ, but in many cases you only need set one of these properties. As with RenderTransform, Projection doesn’t affect layout. The layout system always sees an untransformed and unprojected element.
RotationX, RotationY, and RotationZ are all backed by dependency properties, so they can all be animation targets, as demonstrated by the PerspectiveRotation program. The content area contains a TextBlock with a PlaneProjection object set to its Projection property, and three buttons:
Silverlight Project: PerspectiveRotation File: MainPage.xaml (excerpt)
Three storyboards defined in the Resources collection are defined to animate the RotationX, RotationY, and RotationZ properties of the PlaneProjection object:
Silverlight Project: PerspectiveRotation File: MainPage.xaml (excerpt)
The buttons simply start the corresponding storyboards:
Silverlight Project: PerspectiveRotation File: MainPage.xaml.cs (excerpt)
Here’s rotation around the Y axis:
The animations are slow enough that you can click multiple buttons and see the interactions. It almost looks as if the text is tumbling through the weightlessness of space.
In 2D space, rotation is relative to a point; in 3D space, rotation is relative to a line, commonly referred to as an “axis of rotation.” But the PlaneProjection class prefers to treat this center of rotation using three numbers—the properties CenterOfRotationX, CenterOfRotationY, and CenterOfRotationZ. In effect, these three numbers define a 3D point that remains unchanged during rotation. CenterOfRotationX does not affect rotation around the X axis, and similarly for the other two properties.
The CenterOfRotationX and CenterOfRotationY properties are relative coordinates based on the size of the element being rotated, where (0, 0) is the upper-left corner. The default values are 0.5, indicating the center of the element.
If you set CenterOfRotationX to 0, the RotationY property causes the element to rotate around its left side. If CenterOfRotationY is set to 1, then the RotationX property causes the element to be rotated around its bottom.
The CenterOfRotationZ property is in absolute coordinates—pixels, in other words—where 0 is the plane of the screen and positive coordinates come out of the screen toward the user. For purposes of its internal calculations, the viewer (you) is assumed to be 1000 pixels in front of the screen. In PerspectiveRotation, try setting the CenterOfRotationZ property of PlaneProjection to 200:
Now try the “Rotate X” and “RotateY” buttons: You’ll see the text sweep around as if it’s leaving the screen (where the Z coordinate is 0) and circling around a Z value of 200, curving in front of the viewer at a Z value of 400. A CenterOfRotationZ value greater than 500 will cause projections to stop working right. The projected object will get a Z value of 1000 and strike the viewer right on the nose.
The other properties of PlaneProjection cause translation in the X, Y, and Z directions: Conceptually, the LocalOffsetX, LocalOffsetY, and LocalOffsetZ properties are applied first, then the element is rotated, then GlobalOffsetX, GlobalOffsetY, and GlobalOffsetZ properties are applied.
Try setting LocalOffsetX or GlobalOffsetX to 200. In either case, the unrotated text is moved to the right by 200 pixels. But GlobalOffsetX is more like the whole screen shifting right. Try setting LocalOffsetX and rotate the text around the Y axis. The actual offset will begin at the right, and shift to the left, and then back to the right.
You can use animated projection transforms for small effects or for big effects. An example of a big effect is to change the way a new page in your program comes into view. The SweepIntoView program has a MainPage.xaml file containing just a little text:
Silverlight Project: SweepIntoView File: MainPage.xaml (excerpt)
The code-behind file uses touch to navigate to Page2.xaml:
Silverlight Project: SweepIntoView File: MainPage.xaml.cs (excerpt)
For some variety (and to see more clearly what’s happening) Page2.xaml colors its content area with an accented background:
Silverlight Project: SweepIntoView File: Page2.xaml (excerpt)
The code-behind file also has an OnManipulationStarted override:
Silverlight Project: SweepIntoView File: Page2.xaml.cs (excerpt)
But what makes this program different is some additional markup in the Page2.xaml file. This ensures that the page just doesn’t come on the stage in a sudden pop, but dramatically sweeps into view:
Silverlight Project: SweepIntoView File: Page2.xaml (excerpt)
The PlaneProjection is set to the Projection property of the whole PhoneApplicationPage element, and the animation is triggered when the page is first loaded. The animation makes the RotationY property go from -90 degrees to zero, with a CenterOfRotationX equal to zero. This causes the page to sweep in almost like a door:
The sample code for this chapter includes a little program called ButtonSetAndAnimate that doesn’t do anything particularly useful except to illustrate how animation fits into dependency property precedence.
The XAML file contains a Slider with a range of 0 to 100, a TextBlock showing the Slider value, and four buttons:
Silverlight Project: ButtonSetAndAnimate File: MainPage.xaml (excerpt)
Also in the XAML file is an animation that targets the Value property of the Slider.
Silverlight Project: ButtonSetAndAnimate File: MainPage.xaml (excerpt)
Handlers for the four buttons are in the code-behind file:
Silverlight Project: ButtonSetAndAnimate File: MainPage.xaml.cs (excerpt)
Here’s the program:
You can manipulate the Slider with your finger and you can also use the topmost two buttons to set the Slider value to its minimum or maximum. So far, so good. Now click the “Animate to 50” button.
As the Slider is animated and moving to the center position, try overriding that movement with your finger or by pressing the “Set to 0” or “Set to 100” buttons. You can’t do it. The animation has precedence over local settings, which means that the chart of dependency property precedence (last encountered in Chapter 11) must be supplemented by putting animations at the very top:
Animations have precedence over
Local Settings which have precedence over
Style Settings, which have precedence over the
Theme Style, which has precedence over
Property Inheritance, which has precedence over
Default Values
This is as it should be. Animations must have precedence over local settings or they wouldn’t work on properties that are simply initialized to some value.
After the animation has concluded, you’ll discover that you can now manipulate the Slider both manually and with the first two buttons. This behavior is not correct and not in accordance with documentation. With the default FillBehavior setting of HoldEnd, the Slider should actually be frozen after the animation has concluded. The Slider should continue to reflect the final value of the animation.
Is there something more powerful than animations? Yes there is, but it’s probably not something you’d immediately consider, and you probably won’t find any examples outside the realm of Slider and ScrollBar.
Set the Slider to its maximum value, and press the “Animate to 50” button again. As the Slider is approaching 50, click the “Set Maximum to 25” button. That sets the Maximum property of the Slider to 25 and immediately halts the animation. And once again, it seems logical. No matter what an animation does, it makes no sense whatsoever for a Slider to have a Value that is outside the range of Minimum and Maximum. This is an example of property coercion:
Property Coercion has precedence over
Animations which have precedence over
Local Settings which have precedence over
Style Settings, which have precedence over the
Theme Style, which has precedence over
Property Inheritance, which has precedence over
Default Values
In theory, values of templated properties also fit into this chart between local settings and style settings, but these are hard to differentiate, so this is the final version of this chart in this book.
Silverlight templates are visual trees of elements and controls defined in XAML. What makes these visual trees special is that they function as patterns or molds to create identical visual trees. Templates are almost always defined as resources, so they are shared, and they almost always contain bindings, so they can be associated with different objects and assume different appearances.
You’ll use one type of template (the DataTemplate) to render objects that otherwise have no visual representation. Use another type (the ControlTemplate) to customize the visual appearance of controls. There’s actually a third type (ItemsPanelTemplate) but this one is very simple and has a special use that I’ll discuss in the next chapter.
The template is easily one of the most powerful features in Silverlight, and perhaps one of the most difficult. For that reason, many developers swear by Expression Blend to generate their templates. This chapter will demonstrate how to write templates by hand so you’ll be in a better position to understand Expression Blend output if you later decide to go that route.
In Chapter 10 I demonstrated how you can assign the Content property of a ContentControl derivative (such as a Button) to almost any object. If that object derives from FrameworkElement (such as TextBlock or Image), then the element is displayed inside the ContentControl. But you can also set the Content property to an object that does not derive from FrameworkElement. Here’s the Content of a Button set to a RadialGradientBrush:
Normally you’d set the Foreground property of a Button to a brush, or the Background property, or perhaps the BorderBrush property. But setting the Content property to a brush? What does that even mean?
If the object set to the Content property of a ControlControl does not derive from FrameworkElement, it is rendered with its ToString method, and if the class has no ToString override, the fully-qualified class name is displayed, so this particular Button looks like this:
This is not exactly something you want to use to show off your programming skills to your friends.
Here’s the Clock class from Chapter 12 inside a Button:
And this Button doesn’t display much of value either:
Yet, there is a way to display this object intelligently. The solution is an object of type DataTemplate set to the ContentTemplate property of the Button. Here’s the syntax with an empty DataTemplate:
ContentTemplate is one of two properties defined by ContentControl and inherited by Button; the other property is Content itself.
And now all you need to do is supply a visual tree within the DataTemplate tags that contains bindings to properties in the Clock class:
The Button uses this visual tree to display the Content object. The bindings in this visual tree are often rather simple. The data bindings don’t need a Source property because the DataContext associated with this visual tree is the object set to the Content property. The bindings shown here require only Path properties, and the “Path=” part of the Binding markup extension can be omitted.
The displayed time is dynamically updated. Of course, the bindings for the Minute and Second properties should really reference a string-formatting converter to always be displayed with two digits.
The existence of the DataTemplate means that you really can set the content of a Button to a RadialGradientBrush just as long as you define a visual tree that makes use of that brush in the DataTemplate:
Notice the Fill property setting of the Ellipse. It’s just a Binding markup extension with no Path settings set. The Fill property doesn’t want a particular property of the RadialGradientBrush. It wants the whole thing. Here’s the Button:
You can use this technique with any ContentControl derivative, or even ContentControl itself.
Let’s define that DataTemplate in the Resources collection of a MainPage.xaml files:
Silverlight Project: ContentControlWithDataTemplates File: MainPage.xaml (excerpt)
Let’s give the content panel of this page three Button instances, each with its ContentTemplate property set to that resource, but with three different types of Brush objects set to the Content property:
Silverlight Project: ContentControlWithDataTemplates File: MainPage.xaml (excerpt)
Here’s the result:
The DataTemplate is defined as a resource so it is shared among all Button controls. However, a separate visual tree based on that template is built for each Button. Somewhere within the visual tree for each Button is an Ellipse with a binding to the SolidColorBrush set to the Content property.
Sharing the DataTemplate among a few Button controls is convenient, but it doesn’t really show off the sheer power of this technique. Imagine that you can define a DataTemplate for displaying the items in a ListBox or ComboBox. I’ll show you how to do that in the next chapter.
I’ve been mentioning visual trees. Let’s look at a few.
The ButtonTree program lets you dump the visual tree for a rather conventional Button (one with its Content just set to text), a Button with its Content property set to an Image element, and two others with their Content properties set to the RadialGradientBrush and Clock (as shown in the examples above) together with a ContentTemplate. The program’s content Grid displays each Button in a cell:
Silverlight Project: ButtonTree File: MainPage.xaml (excerpt)
Way down at the bottom is a StackPanel inside a ScrollViewer for displaying the visual tree. The code-behind file uses the static VisualTreeHelper class for enumerating an element’s children in a recursive method, and then displays their names in a hierarchical list:
Silverlight Project: ButtonTree File: MainPage.xaml.cs (excerpt)
Click the button in the upper-left corner that has its Content set to text and the program displays the visual tree of the Button:
The Border element is no surprise; it’s clearly visible in the actual Button as is the TextBlock used to display the text. The first Grid hosting the Border is obviously a single-cell Grid; later in this chapter you’ll see the purpose of that Grid. The purpose of the Grid hosting the TextBlock is not so obvious. If you set the Content of the Button to an explicit TextBlock, that second Grid disappears, and the tree looks more like the one for the Button with its Content property set to an Image element:
The portion of the visual tree up to an including the ContentPresenter defines the appearance of the standard Button. (Soon you’ll see how that’s the part that can be replaced by setting the control’s Template property to an object of type ControlTemplate.) Everything after the ContentPresenter is used to display the content of the Button. Here’s the tree when the Content property is set to a RadialGradientBrush but the ContentTemplate is set to an Ellipse referencing that brush:
If you’re familiar with control templates from the Windows Presentation Foundation or the web version of Silverlight, you undoubtedly expect to see the ContentPresenter. That’s a FrameworkElement derivative used specifically for hosting content. It is the ContentPresenter that formats some objects as text in the absence of a DataTemplate, or actually applies a DataTemplate. But you may be a little puzzled about the ContentControl. I was puzzled as well for awhile. A Button derives from ContentControl, but that doesn’t necessarily mean that the visual tree of a Button should contain another ContentControl! I’ll have a little more to say about the peculiar appearance of ContentControl later in this chapter.
Finally, here’s the visual tree resulting from the more extensive DataTemplate for displaying the Clock object:
For any control that derives from ContentControl, you now know how to define the portion of the visual tree following the ContentPresenter. Now let’s see how you can redefine the top part of this visual tree.
A DataTemplate allows you to customize the display of content in a ContentControl. The ControlTemplate—which you can set to the Template property of any Control—allows you to customize the appearance of the control itself—what’s commonly referred to as the control “chrome.” These two different purposes are summarized in the following table:
Keep in mind that the ContentTemplate property is defined by ContentControl and is only something you’ll find only in classes that derive from ContentControl. But the Template property is defined by Control, and it’s presence is perhaps the primary distinction between controls and FrameworkElement derivatives like TextBlock and Image.
Whenever you think you need a custom control, you should ask yourself if it is truly a new control you need, or if it’s merely a new look for an existing control. For example, suppose you need a control that has a particular appearance, and when you tap it, it changes appearance, and then you tap it again, it goes back to the original appearance. This is a ToggleButton with just different visuals—a different ControlTemplate.
As with styles, very often templates are defined as resources. Also as with Style, ControlTemplate requires a TargetType:
Notice that property-element syntax is used for the Setter that sets the Template property to an object of type ControlTemplate. Defining a template as part of a style is a very common approach because generally you want to set some properties of the control to make them more conducive with the template you’re building. These Setter tags effectively redefine the default property values for the styled and templated control, but they can still be overridden with local settings on the actual control.
Let’s create a custom Button. This new Button will retain the full functionality of the familiar Button except that you (the programmer) will have total control over its appearance. Of course, to keep it simple, the new Button won’t look all that different from the normal Button! But it will show you the concepts involved.
Here’s a standard Button with text content and alignment set so it takes up only as much space as it needs to display that content:
To experiment with the ControlTemplate with greatest ease, let’s not define the ControlTemplate as a resource but break out the Template property as a property-element of the Button and set that to a ControlTemplate:
As soon as you set the Template property to an empty ControlTemplate, the button itself disappears. A visual tree defining the appearance of the control no longer exists. That visual tree is what you’ll be putting in the ControlTemplate. Just to make sure that we haven’t done anything serious damaging, let’s stick a TextBlock in the ControlTemplate:
Now the Button consists solely of the word “temporary.” It doesn’t have any visual feedback when you touch it, but otherwise it’s a fully functional button. It’s seriously flawed, of course, because the Button should really be displaying “Click me!” but that will be fixed soon.
You can put a Border around the TextBlock:
Here’s what it looks like:
But it’s really not a good idea to hard-code property values like this in the template, particularly if you’re going to be sharing that template in multiple controls. It particularly doesn’t make sense to hard-code BorderBrush and BorderThickness in the template because the Control class itself defines BorderBrush and BorderThickness properties, and if we really want a border around the button, we should set those properties in the Button rather than the template because we might want to share this template among multiple buttons and set different border brushes and border thickness.
So, let’s move those properties from the template to the button itself:
Unfortunately, now we’ve lost the properties in the visual tree of the template, so the border has now disappeared and it doesn’t seem like much of an improvement. The border in the template in not automatically inheriting the properties of BorderBrush and BorderThickness set on the button. Those are not inheritable properties.
What we need is a binding so the properties of the Border in the template get set from properties in the Button. It’s a special type of binding that has its own markup extension. It’s called a TemplateBinding:
What the TemplateBinding means is that the properties of this particular element in the visual tree of the template—specifically, the BorderBrush and BorderThickness properties of the Border element—are bound to values set on properties in the control itself. The Button now has a border colored with the accent brush:
The TemplateBinding is syntactically very simple. It always targets a dependency property in the visual tree of the template. It always references a property of the control on which the template is applied. There is nothing else that can go in the TemplateBinding markup extension. TemplateBinding is only found in visual trees defined within a ControlTemplate.
On the other hand, there is nothing all that special about TemplateBinding. It is actually a shortcut, and when you see the longer version, you’ll be glad it exists. The attribute setting
BorderBrush="{TemplateBinding BorderBrush}"
is a short-cut for
This binding is on a Border, and the RelativeSource syntax refers to another element in the tree relative to this Border. The TemplatedParent is the Button on which the template is applied, so the binding is referencing the BorderBrush of that Button. (Makes sense, no?) You’ll want to use this alternative to TemplateBinding if you need to establish a two-way binding on a property in the template because TemplateBinding is one-way only and doesn’t allow a Mode setting.
Back to the template at hand: Now that we’ve established a TemplateBinding on the BorderBrush and BorderThickness, another issue has arisen. Perhaps we’ve decided that we want this Button to have a border that is 6 pixels wide colored with the accent brush, but you’ll only get those values if the Button contains explicit settings of the BorderBrush and BorderThickness properties. It would be nice if these properties did not need to be set on the Button. In other words, we want the Button to have default values of these properties that might be overridden by local settings.
This can be done by setting the desired default properties in a Style. For convenience, I’ve defined such a Style directly on the Button:
Now the template picks up some default values from the Style but those settings can be overridden by setting them locally on the button. (If you don’t want the properties to be overridden by local settings—if you want the properties to always have specific values—then by all means hard-code them directly in the template.)
It is very common to define the Template property as part of a Style, like so:
Now the Style sets default values for properties also used by the template. Let’s add a Background property to the Border and give it a default value as well:
On the other hand, perhaps we want our newly designed button to have rounded corners on the Border. We know that the Button does not define a CornerRadius property, so it can be set to an explicit value right in the template:
Here’s what we’re up to so far:
The button still displays the text “temporary” and it should really be displaying the text “Click me!” You might be tempted to put a TextBlock in there and set its Text property to a TemplateBinding of the Content property of the Button:
<TextBlock Text="{TemplateBinding Content}" />
This actually works in this example, but it’s very, very wrong. The problem is that the Content property of the Button is of type object. We can set it to anything—an Image, a Panel, a Shape, a RadialGradientBrush, and then the TextBlock would have a little problem.
Fortunately, there is a class in Silverlight that exists specifically to display content in a ContentControl derivative. That class is called ContentPresenter. It has a property named Content of type object, and ContentPresenter displays that object regardless whether it’s a text string or any other element:
Notice how the Content property of the ContentPresenter is bound to the Content property of the Button. The ContentPresenter has the distinct advantage of working for any kind of object. The ContentPresenter might create its own visual tree; for example, if the Content is of type string, then the ContentPresenter creates a TextBlock to display that string. The ContentPresenter is also entrusted with the job of building a visual tree to display content based on a DataTemplate set to the Control. For this purpose, the ContentPresenter has its own ContentTemplate property that you can bind to the Content!emplate of the control:
These two TemplateBinding settings on ContentPresenter are so standard that they are not required to be explicitly set! They will be set for you. I feel more comfortable seeing them explicitly set, however.
You may recall that the Control class defines a property named Padding that is intended to provide a little breathing room around the control’s content. Try setting the Padding property of the Button:
Nothing happens. The visual tree in the template needs to accommodate this Padding property. It needs to leave some space between the Border and the ContentPresenter. How can this be done? One solution is to use a TemplateBinding on the Padding property of the Border. But if there’s some other stuff in the Border besides the ContentPresenter that’s not going to work right. The standard approach is to set a TemplateBinding on the Margin property of the ContentPresenter:
You don’t need to set a Padding value on the Button for this to have an effect. The theme Style for the Button defines a Padding value that seems to work well with this Button, even with the rounded Border corners.
Now try setting the HorizontalAlignment and VerticalAlignment properties of the Button to Stretch. These work fine, so that’s something you don’t have to worry about in the template. Similarly, you can set the Margin property of the Button and that’s still recognized by the layout system.
But when you set the HorizontalAlignment and VerticalAlignment properties of the Button to Stretch, you’ll discover that the content of the Button is at the upper-left corner:
Control defines two properties named HorizontalContentAlignment and VerticalContentAlignment that are supposed to govern how the content is aligned within the ContentControl. If you set these properties on the button, you’ll discover that they don’t work.
This tells us that we need to add something to the template to handle these properties. We have to align the ContentPresenter within the Border based on the HorizontalContentAlignment and VerticalContentAlignment properties. This is accomplished by providing TemplateBinding markup targeting the HorizontalAlignment and VerticalAlignment properties of the ContentPresenter:
Again, this is very standard markup for a ContentPresenter. It’s copy-and-paste stuff.
If you set the font-related properties or the Foreground property on the Button, you’ll find that the text changes accordingly. These properties are inherited through the visual tree of the template and you don’t need to do anything in the template to accommodate them. (However the theme Style for the Button explicitly sets the Foreground, FontFamily, and FontSize properties, so the Button itself cannot inherit these properties through the visual tree, and there is apparently nothing you can do in a custom Style to change this behavior.)
All this time that the Button has been redesigned with a template, it has otherwise remained a fully-functional button and it’s been generating Click events every time it’s been tapped. The big problem is that the Button does not deliver visual feedback to the user. It has a customized visual appearance, but that appearance does not change.
There are really just two features that need to be added to this template to make it functionally and visually complete:
These two features are related because they both involve changing the visuals of the control under certain circumstances. And the two features are also related because the solution involves a Silverlight feature called the Visual State Manager.
The Visual State Manager helps the developer deal with visual states, which are changes in control visuals that result from changes in properties (or other states) of the control. For the Button on Windows Phone 7, the relevant visual states correspond to the properties IsPressed and IsEnabled.
You can determine the visual states supported by a particular control by looking at the documentation for that control. In the first page of the Button documentation, you’ll see the class defined with six attributes of type TemplateVisualStateAttribute:
These are the six visual states of the Button. Each of these states has a name, but notice also that each of them has a group name, either CommonStates or FocusStates.
Within any group, the visual states are mutually exclusive. One and only one visual state in each group currently applies to the Button. In the CommonStates group, either a button is Normal, or Disabled, or the mouse is hovering, or the button is pressed. You don’t need to worry about combinations of these states. You don’t have to come up with a special state for mouse hovering on a disabled button because those two states will never occur at the same time.
The code in the Button class is responsible for the button going into a particular state. It does this through calls to the static VisualStateManager.GoToState method. The template is responsible for responding to visual changes based on these states.
As Windows Phone 7 programmers, we have a somewhat easier job than template authors targeting Silverlight on the web. We don’t have to worry about the two states in the FocusStates group, or the MouseOver state. That leaves Normal, Disabled, and Pressed.
Very often, additional elements are inserted into the template specifically for these visual states. When a control is disabled, the contents usually get grayer in some way regardless of the nature of the content—be it text, a bitmap, or something else. This suggests that a disabled state can be handled by putting a semi-opaque Rectangle on top of the entire control.
So let’s put the entire visual tree of the template inside a single-cell Grid and add a Rectangle on top:
Fortunately the new Rectangle has its Opacity set to 0 or it would block out the entire control! But if you set the Opacity to 0.6 (for example) it provides a proper dimming effect, regardless of control content.
Notice the color of the Rectangle is set as the PhoneBackgroundBrush resource. The Button has rounded corners so you don’t want the Rectangle changing the color of whatever’s behind the Button and visible through those corners. It’s also possible to give the Rectangle the same corner rounding as the Border and you’ll have a little more flexibility with the color.
Now that we have the Rectangle in there, all we need to do is find some way to change the Opacity from 0 to 0.6 when the visual state becomes Disabled.
The markup for the Visual State Manager always appears after the start tag of the top level element of the template, in this case the Grid. It begins with a VisualStateManager.VisualStateGroups tag within which can be multiple VisualStateGroups sections. I’ll be ignoring the FocusStates group:
The VisualStateGroup tags enclose a series of VisualState tags for each of the visual states in that group:
The VisualState tag for the Normal state is empty because the template that’s already been designed is for the normal button. But don’t leave out the tag; otherwise the control won’t return to its Normal state after being in another state. The MouseOver state won’t be used; it too will remain empty.
Within the VisualState tags you indicate what you want to happen for that state. How do you do that? You might imagine doing it with a Setting tag as in a Style, and that would work well. But to allow you to be very much more flexible, the Visual State Manager lets you use animations instead, and because the animation syntax isn’t very much more complex than the Setting syntax, the Visual State Manager actually requires you to use animations. Within the VisualState tags you’ll put a Storyboard containing one or more animations targeting properties of named elements within the template. In many cases, these animations will have a Duration setting of 0 so that the visual state changes immediately. But you can have smoother state animations if you want. Here’s an animation for the Opacity property of the Rectangle named disableRect
The animations in the Visual State Manager don’t usually have From values so they just take off from the existing value. The empty VisualState tag for the Normal state effectively restores the Opacity value back to its pre-animation value when the state goes back to Normal.
The Pressed state presents some challenges. Usually a Pressed state is often rendered as a form of reverse video. In the web version of Silverlight, the Button template hard-codes a LinearGradientBrush for the background and changes properties of that brush for the Pressed state. Because the template is controlling the brush for the Normal state, it can easily change that brush for the Pressed state.
In the Button template being created here, the default Foreground color is set in the theme style for the Button, and a default Background color is set in the Style that the template is part of. If these properties aren’t changed, the colors will be either white on black (with the “dark” theme) or black on white. But the properties can be changed with local property settings on the Button.
It would be great to have some kind of graphic effect to reverse the colors, but that’s not available. We need to define animations to set new foreground and background colors for the Pressed state that will seem to reverse colors in the normal case, that is, when the foreground is set to the PhoneForegroundBrush resource and the background is PhoneBackgroundBrush, which means that the Pressed state can set Foreground to PhoneBackgroundBrush and Background to PhoneForegroundBrush.
Can we use a ColorAnimation for this job? We could if we knew that the Foreground and Background brushes were actually SolidColorBrush objects. But we don’t know that. That means we need to use ObjectAnimationUsingKeyFrames objects to target the Foreground and Background properties themselves. The ObjectAnimationUsingKeyFrames can have children of only one type: DiscreteObjectKeyFrame.
Let’s do the Background property first by giving the Border a name:
That name allows the animation to target the Background property of Border:
For the Pressed state, the animation changes the Background property of the Border element to the brush referenced as the PhoneForegroundBrush resource. Excellent!
Now let’s add a similar animation to target the Foreground property of ... of what? There is no element in this template visual tree that has a Foreground property!
It would be ideal if ContentPresenter had a Foreground property but it does not.
But wait a minute. What about ContentControl? ContentControl is basically just a ContentPresenter but ContentControl has a Foreground property. So let’s replace ContentPresenter with a ControlControl and give it a name:
Now it’s possible to define the second animation for the Pressed state:
And here’s the pressed Button:
I will now declare this template to be completed! (And now you’ll understand why the default template for the Button contains a ContentControl.)
Let’s look at this entire Style and ControlTemplate in the context of a page. In the CustomButtonTemplate program, the Style is defined in the page’s Resources collection. Mostly to reduce keep the lines lengths shorter than the width of the page, the ControlTemplate is defined as a separate resource and then referenced by the Style. Here’s the ControlTemplate first followed by the Style referencing that template:
Silverlight Project: CustomButtonTemplate File: MainPage.xaml (excerpt)
The content area contains a Button that references this Style, of course, but I wanted to test the enabling and disabling of the Button in a very interactive manner, so I added a ToggleButton to the page and set a binding targeting the IsEnabled property on the styled and templated Button from the IsChecked property of the ToggleButton.
But it didn’t look quite right for the ToggleButton to be toggled on (that is, highlighted) when the regular Button was in its normal (that is, enabled) state. It occurred to me that what I really wanted was for the ToggleButton to actually say “Button Enabled” when the ToggleButton was toggled on and the Button was enabled, and for it to say “Button Disabled” when the ToggleButton was toggled off and the Button was disabled.
This is the beauty of templates. You can do something like this right in XAML without a whole lot of fuss and without any extra tools like Expression Blend.
Silverlight Project: CustomButtonTemplate File: MainPage.xaml (excerpt)
This ToggleButton here has what I think of as a single-purpose special-use ad hoc ControlTemplate, so it doesn’t have a lot of extra frills. The visual tree consists entirely of a Border and a TextBlock. It ignores the Content property, and the Text property of the TextBlock is initialized with “Button Disabled”. Everything else is done with visual states. In addition to the regular Button visual states, the ToggleButton also defines a CheckStates group with states Checked and Unchecked. These are the only states this template handles, and the animation for the Checked state sets the Text property of the TextBlock to “Button Enabled.” Here it is in action with the Button disabled:
I didn’t define a Disabled state for the ToggleButton because this is a template I intend to use only for this program, and I know that this ToggleButton will never be disabled.
As you know, it’s possible to derive one Style from another, in the process inheriting all the Setter objects. The new Style can add to those Setter objects or override them.
However, it is not possible to derive from a ControlTemplate. There’s no way to reference an existing ControlTemplate and specify an additional piece of the visual tree, or a replacement for part of the visual tree. (It’s hard enough imaging the mechanics or syntax of such a process.)
Generally if you want to apply some changes to an existing ControlTemplate, you obtain a copy of that entire template and begin editing it. These default templates are generally included with Silverlight documentation. (However, as I write this chapter, the Silverlight documentation contains only the templates for the web-based version of Silverlight and not those for Silverlight for Windows Phone.) Expression Blend also has access to the standard default templates.
If you need to share a Style or a ControlTemplate (or a Style containing a ControlTemplate) among multiple controls on a page, you simply put it in the Resources collection of the page. If you need to share the Style or ControlTemplate among multiple pages, put it in the Resources collection of App.xaml.
It is also possible to share resources among multiple applications. To share these resources you define them in a XAML file with a root element of ResourceDictionary. Here’s such a file with the name SharedResources.xaml:
The file probably has a lot more resources than just the SolidColorBrush. Each resource has an x:Key attribute, of course. You could create this file as part of a project, or you can add this existing file to a project. In either case, the Build Action in the properties window should indicate Page.
Now you can reference that file in the Resources collection in App.xaml:
Notice the ResourceDictionary.MergedDictionary property element used for referencing external ResourceDictionary objects.
Here’s a different approach: You might want to define a custom style and template for an existing control, and then refer to that control with a new name rather than to explicitly reference the style. That too is possible.
Here’s a program called FlipToggleDemo that includes a custom class named FlipToggleButton that derives from ToggleButton. But FlipToggleButton doesn’t add any code to ToggleButton—just a Style and ControlTemplate.
In the FlipToggleDemo project, I added a new item of type Windows Phone User Control and I gave it a name of FlipToggleButton.xaml. This process creates a FlipToggleButton.xaml file and a FlipToggleButton.xaml.cs file for a class that derives from UserControl. But then I went into both files and changed UserControl to ToggleButton so FlipToggleButton derives from ToggleButton.
To keep things simple, I decided not to implement any state transitions for a disabled button, but to flip the button upside down for the Unchecked state. Here’s the complete XAML file for the custom button, with indentation reduced to 2 spaces to avoid lines wider than the pages of this book:
Silverlight Project: FlipToggleDemo File: FlipToggleButton.xaml
Usually when you’re looking at XAML file, the bulk of the file is set to the Content property of the root element. Here the bulk of the file is set to the Style property of the root element. Notice that the Style object and the ControlTemplate object both have TargetType set to ToggleButton rather than FlipToggleButton. This is fine because neither references any properties specifically defined by FlipToggleButton because FlipToggleButton does not define any new properties.
The template itself is very plain vanilla, consisting of just a Border and a ContentPresenter with all the standard template bindings. But the Border also has its RenderTransformOrigin property defined and its RenderTransform property set to a RotateTransform object.
The two animations that flip the button upside down (for the Checked state) and back (for the Unchecked state) have non-zero times. The DoubleAnimation for the Checked state has no From value; it uses the base value of the property, which is zero. The DoubleAnimation for the Unchecked state has neither a To or From value! The animation starts at whatever value the Angle property of the RotateTransform happens to be—probably 180 but perhaps something lower if the animation to flip the button hasn’t quite completed when the button is unchecked—and it ends at the base value, which is zero.
Here’s the complete code-behind file for the custom control:
Silverlight Project: FlipToggleDemo File: FlipToggleButton.xaml.cs
The MainPage.xaml file of the project instantiates the custom button to test it out:
Silverlight Project: FlipToggleDemo File: MainPage.xaml (excerpt)
Generally when you create a custom control, you define some new properties for the control as well as a default Style and ControlTemplate, and you put that new control in a DLL for sharing among multiple applications. You can couple the code and Style as shown in the FlipToggleButton example, but a more standard approach for Silverlight libraries involves defining the Style in a special file named generic.xaml located in a directory named Themes. This generic.xaml file has a root element of ResourceDictionary.
Let’s look at an example.
Suppose you conceive of a ToggleButton template something like the one in the CustomButtonTemplate project but much more generalized. Rather than just switch between two hard-coded text strings, you want to switch between two objects of any type. And not just switch—you want an object associated with the Checked state and an object associated with the Unchecked state to fade from one to the other. Your name for this new button is called FadableToggleButton.
As you think about it, you realize that the control needs to define a new property named CheckedContent, similar to the normal Content property. The Content property is the object displayed for the button’s Unchecked state, and CheckedContent is displayed for the Checked state.
I defined this class in the Petzold.Phone.Silverlight library. The complete code for FadableToggleButton is here:
Silverlight Project: Petzold.Phone.Silverlight File: FadableToggleButton.cs
This is the only C# code required to implement this control! There’s not even a property-changed handler for this new CheckedContent property. It’s just a DependencyProperty definition and a CLR property definition. Everything else is XAML.
But notice the constructor. If this code file were a partial class definition partnered with a XAML file, you’d see a call to InitializeComponent in the constructor. Instead, there’s the following:
this.DefaultStyleKey = typeof(FadableToggleButton);
This statement indicates that this class has a default Style definition, and the TargetType of this Style definition is FadableToggleButton. To apply a default Style to instances of this class, Silverlight needs to find that Style definition. Where does it search?
Silverlight looks in a very special XAML file in the library. This XAML file is always named generic.xaml and it is always located in a directory named Themes of the DLL project. This is how a control gets a default theme style and template.
This generic.xaml file has a root element of ResourceDictionary. However the file is special in another way: The contents are regarded as resources but the Style elements don’t require x:Key or x:Name attributes because they are referenced via the TargetType.
Here’s the portion of the generic.xaml file in the Themes directory of Petzold.Phone.Silverlight that contains the default Style definition of the FadableToggleButton class:
Silverlight Project: Petzold.Phone.Silverlight File: Themes/generic.xaml (excerpt)
The TargetType for the Style is FadableToggleButton, and that’s enough to allow Silverlight to find this Style definition that becomes the default theme for the FadableToggleButton. Within the Border is a single-cell Grid with two ContentPresenter elements, one with a TemplateBinding referencing the normal Content property, the other referencing the CheckedContent property. The ContentPresenter referencing the CheckedContent property has an initial Opacity of zero. The animations for the Checked and Unchecked states target the Opacity property of the ContentPresenter so that one fades out as the other fades in.
Although the Content properties of the two ContentPresenter elements are bound to two different properties of the FadableToggleButton, the ContentTemplate properties of both are bound to the same ContentTemplate property originally defined by ContentControl. If you set a DataTemplate to the ContentTemplate property of FadableToggleButton, then that same DataTemplate must apply to both the Content property and the CheckedContent property. In other words, this template implicitly assumes that the Content property and CheckedContent property are of the same types.
To test out this new control, I created a FadableToggleDemo program. The project contains a reference to the Petzold.Phone.Silverlight library and an XML namespace declaration for the library in MainPage.xaml. I added two bitmaps of the same size to an Images directory in the project. These bitmaps are referenced by Image elements set to the Content and CheckedContent properties of the button:
Silverlight Project: FadableToggleDemo File: MainPage.xaml (excerpt)
The Content property is set to an image from Edvard Munch’s painting The Scream:
The CheckedContent property uses Botticelli’s Birth of Venus:
As you might expect, the Slider has one of the more complex templates in all of standard Silverlight, and for that reason, it’s important to get familiar with it—particularly if you’re not a big fan of the default Slider template implemented in Windows Phone 7.
At first, a Slider does not seem to fit into the scheme of templates, primarily because it contains moving parts. How does this work exactly?
If you look at the documentation of Slider, you’ll see the customary TemplateVisualStateAttribute tags, but also a collection of TemplatePartAttribute tags (rearranged somewhat here form their order in the documentation):
What this means is that the Slider expects its template to contain eight elements with the names of “HorizontalTemplate” and so forth. These are referred to as “parts” of the template. The “HorizontalTemplate” and “VerticalTemplate” parts need only be of type FrameworkElement (or derived from FrameworkElement) but other parts are required to be of type RepeatButton or Thumb.
The RepeatButton and Thumb are a couple of controls that I haven’t yet had much occasion to use in this book. (They are both found in the System.Windows.Controls.Primitives namespace, a subtle suggestion that the controls are intended to be used in building other controls.) The RepeatButton is similar to a regular Button except that when you hold your finger on it, it fires repeated Click events. It’s perfect for a ScrollBar or Slider and was probably invented specifically for that purpose.
The Thumb is a rather special control that reports how the user is trying to drag it. But if you can’t quite figure out where the Thumb is located in the standard Slider on Windows Phone 7, that’s because it’s been pretty well hidden in the theme template. One of my goals here is to restore the Thumb to the Slider.
A control with parts (such as the Slider) overrides the ApplyTemplate method to be notified when a template has been set to its Template property. It then uses GetTemplateChild to find the elements with these particular names. It can attach event handlers to these elements, and otherwise manipulate these elements when the control is in use. (You’ll see this process from the code perspective towards the end of this chapter.)
The standard Slider supports horizontal and vertical orientations, and the template actually contains two separate (and fairly independent) templates for these orientations. These two separate templates are enclosed in elements with the “HorizontalTemplate” and “VerticalTemplate” names. If the Orientation property of Slider is Horizontal, then the Slider sets the Visibility property of the “HorizontalTemplate” element to Visible and the Visibility property of “VerticalTemplate” element to Collapsed, and oppositely for the Vertical orientation.
When designing a new template for the Slider, the most straightfoward approach is to use a single-cell Grid to enclose the two templates. A nested Grid named “HorizontalTemplate” contains three columns with the two RepeatButton controls and a Thumb. Another nested Grid named “VerticalTemplate” has three rows.
Here’s is what I think of as a “bare bones” template for Slider defined as a resource:
Silverlight Project: BareBonesSlider File: MainPage.xaml (excerpt)
The Slider template does not exactly require the two RepeatButton controls and the Thumb to be in a three-row or three-column Grid, but it’s certainly the easiest solution. Notice that I rather whimsically assigned the Content properties of the RepeatButton controls to minus signs and plus signs depending on their role.
Let’s focus on the Horizontal orientation: The RepeatButton to decrease values is in the first Grid cell with a width of Auto, and the Thumb is in the second Grid cell, also with a Width of Auto. The Thumb itself has a fixed width, but the Slider logic directly changes the width of the decreasing RepeatButton to reflect the Value property of the Slider. When Value is set to Minimum, this RepeatButton gets a width of zero. When Value is set to Maximum, the RepeatButton gets a width based on the entire control width minus the Thumb width.
The Slider changes the Value property (and consequently the relative size of the two RepeatButton controls) when the user presses a RepeatButton or physically moves the Thumb. (I’ll discuss the Thumb control in more detail soon.)
The BareBonesSlider project continues by instantiating two Slider controls in its content area and applying the template:
Silverlight Project: BareBonesSlider File: MainPage.xaml (excerpt)
Here’s what they look like after they’ve been moved a bit from their initial positions:
The RepeatButton looks just like Button and Thumb is a square surrounded by a transparent area.
Now that we know how to create a custom template for Slider, can we pretty this up a bit? Yes, and the key involves realizing that RepeatButton and Thumb derive from Control, which means they both have Template properties, and within the Slider template you can define new templates for RepeatButton and Thumb specifically for use in the Slider template.
Here’s a fancier Slider that also incorporates template bindings for the Background and Foreground properties. Those properties are given default values in a Style that also incorporates the ControlTemplate. Shown here is only the outer Grid of the ControlTemplate object, which has its own Resources section for defining a very simple ControlTemplate for the RepeatButton and rather extensive templates for the horizontal and vertical Thumb:
Silverlight Project: AlternativeSlider File: MainPage.xaml (excerpt)
The RepeatButton template is just a transparent Rectangle. (You want the Rectangle to have a transparent Fill rather than a null Fill so it can receive touch input.) For the Thumb styles, however, I needed to redefine Width and Height properties. In the theme style, they’re set at 48, which seemed a little low to me. I provided a Border with a transparent background for a touch target of the larger size, but the visual part is a little smaller to look more like a traditional Slider thumb.
The two Grid elements for the horizontal and vertical orientations each begins with a Rectangle that provides a kind of visual track. Each RepeatButton and Thumb references the Style for that control defined earlier:
Silverlight Project: AlternativeSlider File: MainPage.xaml (excerpt)
The content area of the program looks pretty much like the previous program except that the Slider controls reference this new style:
Silverlight Project: AlternativeSlider File: MainPage.xaml (excerpt)
And here they are:
I decided to move this Style and ControlTemplate to Petzold.Phone.Silverlight as the default Style for a class named AltSlider. The class has no additional properties so the code file needs only identify the class that AltSlider derives from and what class should be used for locating the default Style:
Silverlight Project: Petzold.Phone.Silverlight File: AltSlider.cs
This default Style (including the ControlTemplate) is in generic.xaml. I won’t show the whole thing here because it mostly repeats the Style definition from the AlternativeSlider project:
Silverlight Project: Petzold.Phone.Silverlight File: Themes/generic.xaml (excerpt)
Of course, it’s now necessary to test it. The AltSliderDemo project has a reference to the Petzold.Phone.Silverlight project, and an XML namespace declaration for it. The content area is similar to the past two programs:
Silverlight Project: AltSliderDemo File: MainPage.xaml (excerpt)
You’ll notice these AltSlider controls have their Style properties set. What is that? That is a reference to a Style defined in the Resources collection of the page:
Silverlight Project: AltSliderDemo File: MainPage.xaml (excerpt)
The only purpose of this Style is to demonstrate that defining a default Style for the AltSlider class does not negate the ability to set another Style later on, even one that overrides one of the properties in the original Style. Here’s the program running:
Where would the human race be without thumbs?
Several times in this book I’ve wanted to use the Thumb control. The most recent occasion was the SplineKeyFrameExperiment project in the previous chapter. Two chapters earlier, I even created a PointDragger control in the CubicBezier program to compensate for the lack of the Thumb control.
Thumb is not only a component of the Slider template: It can also be used as a general-purpose manipulable control for dragging with your finger around the screen. The problem is this: With its default template, the Thumb is ugly enough to be considered “unusable.” It really needs a custom template.
Thumb derives from Control, defines an IsDragging method, and three events: DragStarted, DragDelta, and DragCompleted. A CancelDrag method lets you abort the process midway through.
The most important event is DragDelta, which comes with event arguments named HorizontalChange and VerticalChange, so you can think of the Thumb as a high-level interface to the Manipulation events—or at least when you’re working solely with translation.
Here’s the content area of the ThumbBezier program, which is similar to the CubicBezier program in Chapter 13 except that it positions four Thumb controls at the four points using TranslateTransform.
Silverlight Project: ThumbBezier File: MainPage.xaml (excerpt)
All four Thumb controls share the same DragDelta event handler, which is pretty much the only responsibility of the code-behind file. You’ll need a using directive for the System.Windows.Control.Primitives namespace for the Thumb and its event arguments.
Silverlight Project: ThumbBezier File: MainPage.xaml.cs (excerpt)
In a Style and ControlTemplate defined in the Resources collection, the Thumb is given an appearance much like the translucent round elements I used in the earlier program. The only visual element of the ControlTemplate is a Path with an EllipseGeometry:
Silverlight Project: ThumbBezier File: MainPage.xaml (excerpt)
The Thumb has a Pressed visual state, so this suggests that a feature can be added not present in the earlier programs: The Thumb can indicate that it’s pressed and being dragged by growing a bit and by changing color. A few animations are all that’s necessary to add this feature to the template.
As you know, if you’re creating controls that need only be used for special purposes in your own applications, the easiest approach is UserControl. Simply define a visual tree for the control in the XAML file.
You can also take a similar approach with ContentControl, except that the XAML file would contain a Style and ControlTemplate definition. The advantage of this approach is that you retain use of the Content property for the control’s own purposes.
You can also derive from Control. This approach makes sense if the derived class is in a library, and you want the control to have a replaceable template. The default theme Style and ControlTemplate are in the library’s generic.xaml file.
The Petzold.Phone.Silverlight library has an example of such a control named XYSlider. This control is intended to let the user move a Thumb around a two-dimensional surface; the control reports a location in a property name Value of type Point, but the two coordinates are normalized between 0 and 1 relative to the upper-left corner. This normalization relieves the control of defining Minimum and Maximum values like a regular Slider.
Besides a Value property, the XYSlider class also defines a PlaneBackground property of type Brush. This is the surface on which the Thumb moves, and you’ll see shortly why it must be distinguished from the regular Background property of Control.
As the class attributes indicate, the class expects the template to have two elements: a Canvas named “PlanePart” and a Thumb named “ThumbPart”:
Silverlight Project: Petzold.Phone.Silverlight File: XYSlider.cs (excerpt)
A Control derivative is informed that its template has been built by a call to OnApplyTemplate. This is an appropriate time for the class to call GetTemplateChild with the names indicated in the attributes. It is considered proper behavior for the class to quietly accept the possibility that some parts might be missing, even if those parts are essential for the proper functioning of the control:
Silverlight Project: Petzold.Phone.Silverlight File: XYSlider.cs (excerpt)
If the Canvas and Thumb are present, a handler is installed for the SizeChanged event of the Canvas and the DragStarted and DragDelta events of the Thumb.
The SizeChanged handler updates the location of the Thumb relative to the Canvas; the DragDelta handler updates the Value property of XYSlider:
Silverlight Project: Petzold.Phone.Silverlight File: XYSlider.cs (excerpt)
The property-changed handler for Value also updates the location of the Thumb and fires the ValueChanged event:
Silverlight Project: Petzold.Phone.Silverlight File: XYSlider.cs (excerpt)
The default Style and ControlTemplate are in the generic.xaml file:
Silverlight Project: Petzold.Phone.Sivlerlight File: Themes/generic.xaml (excerpt)
A Border surrounds the whole control, and the Canvas named “PlanePart” is given a Margin that just so happens to be half the size of the Thumb. This allows the center of the Thumb to indicate a point on the plane while still remaining entirely within the control. Within the ControlTemplate for the Control is another ControlTemplate for the Thumb that forms a kind of bull’s eye pattern.
The program is tested in a project named WorldMap. The content area contains an XYSlider with the PlaneBackground property set to an ImageBrush based on a map of the world:
Silverlight Project: WorldMap File: MainPage.xaml (excerpt)
The code-behind file is devoted to handling the ValueChanged event from the XYSlider and converting the normalized Point to longitude and latitude:
Silverlight Project: WorldMap File: MainPage.xaml.cs (excerpt)
And here it is:
As you move the Thumb with your finger, the longitude and latitude values displayed at the bottom are updated. It’s easy to imagine the WorldMap program being enhanced to obtain the phone’s location and using that to initialize the position of the Thumb.
There is still one major category of controls that I haven’t discussed yet, and these are the derivatives of Control that begin with ItemsControl. This class hierarchy is complete beginning with that class:
ItemsControl and its derivatives display collections of items. In addition, Selector and its derivatives implement properties and logic that allow the user to select one or more items from the collection. (I’ll discuss the classes that derive from TemplatedItemsControl in the next chapter.)
Perhaps the most famous of these controls is ListBox, which has been in Windows-based environments for 25 years. The archetypal ListBox is a scrollable vertical list of items that you can navigate with the keyboard and mouse. (On Windows Phone 7 you use your fingers.) One (or optionally, more than one item) can be selected, visually indicated by highlighting and made available by the control. The ComboBox came a little later than the ListBox, so named because it combined a text-editing field and a drop-down ListBox.
What might not be as familiar to veteran Windows programmers is ItemsControl. ItemsControl often looks a lot like a ListBox, but it does not implement any selection logic. (It doesn’t even implement its own scrolling, but that’s easy to add.) The ItemsControl is simply for presentation purposes. Although ItemsControl is not ListBox, it still has an enormous value in Silverlight programming, and it is also useful if you’d prefer to implement your own selection logic.
I’ll generally refer to ItemsControl and its derivatives as items controls—two words just like the name of this chapter. I have delayed discussing this family of controls until now because, in a very real sense, ItemsControl and DataTemplate were made for each other. You’ll almost always define a DataTemplate for rendering the items in these controls.
There are three basic ways to get items into an items control: code, XAML, and a data binding.
The code method is demonstrated by the ItemsControlsFromCode project. The program is intended to be displayed in a landscape orientation. It instantiates an ItemsControl, a ListBox, and a ComboBox in three columns of the content Grid:
Silverlight Project: ItemsControlsFromCode File: MainPage.xaml (excerpt)
I’ve added a couple property settings to the ComboBox. Aligning the control at the top of the cell works better with the drop-down feature. I also discovered that the default template for ComboBox has not been tweaked for the phone, so setting the Foreground property was necessary for the items to be displayed.
The code-behind file fills each of these controls with FontFamily objects:
Silverlight Project: ItemsControlsFromCode File: MainPage.xaml.cs (excerpt)
The Items property defined by ItemsControl is of type ItemCollection and you can put pretty much anything in there that you want. If an object you put in the collection derives from FrameworkElement (such as a Button) then the element displays itself. Otherwise, the item’s ToString method is used. Very conveniently, FontFamily has a ToString method that displays the FontFamily name:
Perhaps the first thing you’ll notice about this program is that the ItemsControl doesn’t scroll. If you want to scroll an ItemsControl, put it in a ScrollViewer.
The ListBox incorporates its own ScrollViewer. You use your fingers to both scroll and select an item, which is highlighted with the accent color, as Tahoma is highlighted here.
The ComboBox doesn’t open until you touch anywhere in the control, and then the list appears:
You see now why I set the Foreground property to Black. At first I set it to the PhoneBackgroundBrush resource but then I discovered that the ComboBox uses these same colors even with the Light theme.
Because ComboBox badly needs a ControlTemplate to fit in with the Windows Phone 7 aesthetics, I won’t be describing the control in this book.
Much of this chapter involves defining templates for items controls, so it will be helpful to look at the visual trees of these three controls to get a sense of their internal architecture.
The ItemsControlsVisualTrees project is very similar to the ItemsControlsFromCode project except that it replaces the ComboBox with another ItemsControl (but this one in a ScrollViewer) and also includes a couple buttons. The program uses that second ItemsControl to display the visual trees associated with the first ItemsControl and the ListBox.
Here’s the content area in the XAML file. To provide enough horizontal space to the ItemsControl used for displaying the visual trees, I’ve reduced the width of the first two columns:
Silverlight Project: ItemsControlsVisualTrees File: MainPage.xaml (excerpt)
The code-behind file fills the first two controls with FontFamily objects again just as in the first program:
Silverlight Project: ItemsControlsVisualTrees File: MainPage.xaml.cs (excerpt)
The class also includes handlers for the Click events for the two buttons and responds by dumping the visual tree of the corresponding items control:
Silverlight Project: ItemsControlsVisualTrees File: MainPage.xaml.cs (excerpt)
Here’s the program displaying the visual tree for the ItemsControl:
The entire visual tree for an items control potentially incorporates several templates. This can be somewhat confusing, so perhaps a little review will help:
In some controls, such as Slider, the ControlTemplate defines the appearance of the entire control. The theme style for Slider defines a default ControlTemplate and you can define your own. That ControlTemplate might include other ControlTemplate definitions for the ToggleButton and Thumb that make up the Slider.
In ContentControl derivatives like Button, potentially two templates are present: a ControlTemplate defining the control’s chrome, and a DataTemplate describing how the object set to the Content property is rendered in the control.
In ItemsControl derivatives, three types of templates are involved: A ControlTemplate for the control’s chrome, an ItemsPanelTemplate for the panel it uses to host the items, and a DataTemplate that is applied to each item.
The visual tree for ItemsControl begins with the ControlTemplate for the control, and the default ControlTemplate for ItemsControl is simply an ItemsPresenter. This is a rather mysterious class that defines no public properties on its own. The ItemsPresenter is sometimes treated as a “placeholder” in a custom ControlTemplate for an items control.
The ItemsPresenter always uses a Panel derivative to display the items in the items control. In the default ItemsControl this is a StackPanel with a vertical orientation. This panel is replaceable by setting the ItemsPanel property defined by ItemsControl with an ItemsPanelTemplate. You’ll see how to do this later in this chapter.
Following that are identical snippets of visual tree for each item in the collection beginning with a familiar element named ContentPresenter. As you’ll recall from the last chapter, the ContentPresenter is the core of a ContentControl. This is the element responsible for hosting a FrameworkElement derivative, or converting a non-FrameworkElement derivative to text using its TextString method, or hosting an object using a visual tree based on a DataTemplate set to its ContentTemplate property. The ContentPresenter has the same role here but for each item individually.
In the ItemsControl being analyzed in this program, each item is displayed with a TextBlock within a single-cell Grid.
The visual tree for the ListBox is much more elaborate:
The visual tree begins with the default ControlTemplate for the ListBox. This tree begins with a ScrollViewer, which itself is a control so it has its own default ControlTemplate and its own visual tree starting with a Border and ending with the ScrollContentPresenter, which functions as the ScrollViewer engine. ScrollViewer is derived from ContentControl and within the ControlTemplate for ListBox, the Content of ScrollViewer is set to an ItemsPresenter, the same class that forms the entire default ControlTemplate of ItemsControl.
In the ItemsControl visual tree, the ItemsPresenter hosted a StackPanel; in the ListBox the ItemsPresenter hosts a VirtualizingStackPanel. Let me come back to that.
In the ItemsControl visual tree, each item is a ContentPresenter, a class familiar from the previous chapter. Here, each item is a ListBoxItem, which itself derives from ContentControl, and which has its own template, and its own ContentPresenter.
Why the difference? Why does ListBox need a special class named ListBoxItem to host each item but ItemsControl does not?
The answer is simple: Selection. Somebody has to handle the special display of a selected item in the ListBox and the ComboBox, and so there are classes for this purpose named ListBoxItem and ComboBoxItem (which derives from ListBoxItem). ListBoxItem derives from ContentControl—as you can see from the visual tree, it includes a ContentControl in its template, just like Button—but also defines an IsSelected property. The ListBox knows that its items are hosted by ListBoxItem controls so it is able to set that IsSelected property on the selected item, which the ListBoxItem template uses to highlight the item.
In the lingo of items controls, ListBoxItem is known as the container for items in the ListBox. These ListBoxItem containers are automatically created when the program adds items to the ListBox. The public interface to create and manage these containers is defined by ItemsControl, such as the ItemContainerGenerator property and several overridable methods for defining an alternative container class. But the subject of containers is beyond the scope of this book.
However, you may want to define a different ControlTemplate for ListBoxItem, perhaps to change the way that selected items are highlighted, but you might feel a little stymied because the ListBoxItem instances are created and maintained within this container logic. Fortunately, providing a custom ControlTemplate for ListBoxItem is easier than you might think: ListBox and ComboBox both define a property named ItemContainerStyle that you can set to a Style object that the ListBox applies to each ListBoxItem instance. Of course, this Style might include a Setter for the Template property. This is the easy approach. If you want ListBox to use a custom container class that you derive from ListBoxItem, then you need to get involved with the container-generator logic.
As you start looking at these visual trees—and keep in mind that in the general case each item will get its own visual tree defined by a DataTemplate—you may start worrying about the performance. Don’t let the DataTemplate get too complex. One class that also helps performance is VirtualizingStackPanel, which only builds a visual tree for an object when that object needs to be displayed. You can derive your own virtualizing panels from VirtualizingPanel, but I’m afraid that topic is also beyond the scope of this book.
The second of the three approacesh to filling an items control requires explicitly defining the contents in XAML. The ItemsControlsFromXaml project uses this approach to fill an ItemsControl and two ListBox controls. The Items property defined by ItemsControl is the content property of the control, so in XAML all you need to do is put a bunch of objects between the begin and end tags of the particular items control.
In anticipation of formatting some strings in data bindings, a StringFormatConverter is included in the Resources collection of the program’s MainPage.xaml file:
Silverlight Project: ItemsControlsFromXaml File: MainPage.xaml (excerpt)
The content area contains a three-column Grid:
Silverlight Project: ItemsControlsFromXaml File: MainPage.xaml (excerpt)
The first Grid cell contains a ScrollViewer hosting an ItemsControl which contains Color objects for all the colors defined in Silverlight:
Silverlight Project: ItemsControlsFromXaml File: MainPage.xaml (excerpt)
Based on your experience of seeing what happens when you put a Color object in a Button, you can probably guess the result: a list of 141 hexadecimal color values. But at least it will be scrollable.
For a little variety, the second column of the Grid contains a ListBox with 141 SolidColorBrush objects:
Silverlight Project: ItemsControlsFromXaml File: MainPage.xaml (excerpt)
Again, from your experience with putting a SolidColorBrush object in a Button, you know that this will be even worse: All you’ll get will be 141 instances of a text string with the fully-qualified class name “System.Windows.Media.SolidColorBrush”.
But wait: Look at that property setting on the ListBox:
DisplayMemberPath="Color"
This property is defined by ItemsControl, and it allows you to specify one property of the items in the items control that you want used for display purposes. (Of course, it helps if all the items are of the same type, which is not otherwise a requirement.) With this property setting, ListBox will not display the SolidColorBrush object but will instead display the Color property of each SolidColorBrush, and the same hexadecimal values as the ItemsControl.
The third column is a ListBox done right. It has the same 141 SolidColorBrush items as the first ListBox but it also has a DataTemplate set to its ItemTemplate property that allows it to format the display of the items:
Silverlight Project: ItemsControlsFromXaml File: MainPage.xaml (excerpt)
In this DataTemplate, a Rectangle has its Fill property set to an empty Binding:
Fill="{Binding}"
This means that Fill is set to the particular item in the ListBox, which is of type SolidColorBrush. The three TextBlock elements have bindings that reference the R, G, and B properties of the Color property of the brush. Although this ListBox still displays hexadecimal numbers, it at least displays them with a modicum of class:
Defining a list of items for an items control entirely in XAML is fine for a small number of fixed items; the only reason I used this technique with the 141 Color values is because you can’t generate them in Silverlight code by performing reflection on the Colors class. (The Colors class in Silverlight only defines 15 of these colors, so I wrote a WPF program instead that generated the markup that I then pasted into the Silverlight XAML file.)
If the items you want to put into an ItemsControl or ListBox in XAML are just text strings, you need to force the XAML parser to differentiate them. Perhaps the easiest solution is to define an XML namespace declaration for the System namespace:
xmlns:system="clr-namespace:System;assembly=mscorlib"
You can then explicitly delimit the items with String tags:
In a similar way, you can explicitly fill an ItemsControl with numbers using system:Double tags. If you’re using a ListBox rather than ItemsControl, you can separate string items with ListBoxItem tags:
Earlier I said that ListBox automatically generates ListBoxItem objects as containers. Won’t this markup cause ListBox to wrap these ListBoxItem objects in additional ListBoxItem objects? Actually, no. Specifically to prevent this problem, ItemsControl defines a virtual method named IsItemItsOwnContainerOverride.
In the previous chapter I showed you a little chart that I hoped helped differentiate the two types of templates you can apply to a ContentControl derivative:
For an items control, there are three types of templates you can use, and another is indirectly available for ListBox and ComboBox. These are listed as you might encounter them from the top of the visual tree to the bottom
Selector (the class from which ListBox and ComboBox derives) defines a SelectedIndex property that indicates the index of the selected item, or the value is −1 if no item is currently selected. Selector also defines a SelectedItem property, which is the item itself, or null if there’s no selected item. If SelectedIndex is not equal to –1, SelectedItem is the same as the object returned from the Items property when indexed by SelectedIndex.
A SelectionChanged event is fired when the selection changes. This event implies that SelectedItem is a good choice for a binding source. SelectedItem is backed by a dependency property, so it can also serve as a binding target.
If a ListBox does not have its SelectedIndex or SelectedItem properties explicitly set, and the user has not yet touched the ListBox, SelectedIndex will be –1 and SelectedItem will be null. It’s helpful to prepare for these eventualities.
The ListBoxSelection program allows a user to pick a Color and a FontFamily from two ListBox controls and displays some text using those selections. The Resources collection contains a standard binding converter and a Style for the ListBox:
Silverlight Project: ListBoxSelection File: MainPage.xaml (excerpt)
All three elements are in a three-row Grid:
Silverlight Project: ListBoxSelection File: MainPage.xaml (excerpt)
The first ListBox contains a list of SolidColorBrush objects with the same DataTemplate used in the previous program to format the items:
Silverlight Project: ListBoxSelection File: MainPage.xaml (excerpt)
Notice that SelectedIndex is explicitly set to 0 so that the ListBox will have a valid SelectedItem at startup.
The second ListBox displays font families. I would have preferred using actual FontFamily objects but they cannot be created in XAML because FontFamily does not have a parameterless constructor. Instead, I stored the names as strings. SelectedIndex is initialized at 5, a number I chose pretty much at random.
When you see a ListBox displaying font families, do you expect the names to be displayed in the actual fonts? That’s easy to implement with DataTemplate. Just bind both the Text and the FontFamily properties of a TextBlock to the items in the ListBox:
Silverlight Project: ListBoxSelection File: MainPage.xaml (excerpt)
Because the items in the ListBox are strings rather than FontFamily objects, I wasn’t sure the binding to FontFamily in the template would work, but it did.
The XAML file concludes with a TextBlock not in any template at all. Two of its properties are binding targets referencing the two ListBox controls:
Silverlight Project: ListBoxSelection File: MainPage.xaml (excerpt)
When I was first developing this program, it seemed like the FontFamily binding in the DataTemplate was working fine but the FontFamily binding on the bottom TextBlock was causing a nasty runtime exception. I wrote a StringToFontFamilyConverter (which is still in the Petzold.Phone.Silverlight library) but the problem really seemed to be related to a SelectedItem value of null from the ListBox. Once I fixed that problem by explicitly initializing SelectedIndex, the binding problem disappeared.
As you play with this program you’ll see that the TextBlock changes height somewhat as the FontFamily changes. This has a ripple effect by causing changes to the two ListBox heights. A ListBox can also be susceptible to changes in width. If HorizontalAlignment is not Stretch, a ListBox will be only as wide as it needs to be, but because a ListBox uses a VirtualizingStackPanel by default, visual trees for items are created only as they are needed to be displayed. The ListBox might not know the width of its widest item at all times. It can be very disconcerting to see a ListBox change width as you scroll through the items!
For these reasons, a ListBox is often given an explicit width and height, or a specific width and height is imposed through a Grid.
You’ve seen how to fill an items control through code or with a list in XAML. You can also set the items using the ItemsSource property defined by ItemsControl. The ItemsSource property is of type IEnumerable so you can pretty much use any collection type, including a simple array. However, if you’re dealing with a collection where items can be added or removed dynamically, then it is very common to use the ObservableCollection class, which implements the INotifyCollectionChanged interface. The items control installs a handler for this event to be notified when the collection changes and then updates itself accordingly.
When working with data it is often necessary to provide a software layer between the actual objects you want to display and the user interface elements that display them. A plunge into the murky depths of model-view architectures is rather beyond the focus of this book. Instead I’ll take a more relaxed approach and discuss simple intermediary classes sometimes referred to as presenters.
Let’s create a ColorPresenter class that can fill up a ListBox with the 140 standard colors (excluding Transparent) by a single binding to ItemsSource and at the same time provide properties that allows displaying these colors in a more user-friendly manner.
It remains a mystery why the Colors class in Silverlight defines only 15 static properties of type Color instead of 141. That makes the ColorPresenter class rather awkward. I already had a WPF program that used reflection on the WPF Colors class, so I adapted that to generate the color names and values that I pulled into this class. Here they are in two static arrays in the ColorPresenter class in the Petzold.Phone.Silverlight library:
Silverlight Project: Petzold.Phone.Silverlight File: ColorPresenter.cs
Towards the bottom you’ll see the public instance properties that ColorPresenter exposes: Color of type Color, Brush of type Brush, but also Name of type string, and DisplayName. The DisplayName property converts the single-word camel-cased standard names to multiple words. For example “AliceBlue” becomes “Alice Blue”.
ColorPresenter also exposes a public static property named Colors. This is an array of all 140 ColorPresenter objects. This array and all its contents are created in the class’s static constructor.
If you were using ColorPresenter solely in code, you wouldn’t need to create any additional instances of the class. You could simply access the static ColorPresenter.Colors property to get all 140 ColorPresenter objects.
However, Silverlight doesn’t provide a way to access a static property in XAML without instantiating the class containing that property, so the ColorPresenterDemo project includes the ColorPresenter class in its Resources collection:
Silverlight Project: ColorPresenterDemo File: MainPage.xaml (excerpt)
The instance of ColorPresenter created in the XAML file will not have any useful instance properties, but the program only needs the static Colors property.
The content Grid has just two rows: one for the ListBox and one for a TextBlock with bindings to the ListBox. Notice the ItemsSource property of the ListBox bound to the Colors property of the ColorPresenter resource. With this binding, the ListBox is filled with 140 objects of type ColorPresenter so the DataTemplate can have bindings to the DisplayName and Color properties of that class:
Silverlight Project: ColorPresenterDemo File: MainPage.xaml (excerpt)
The SelectedItem property is also of type ColorPresenter, so the TextBlock can reference properties of ColorPresenter for the bindings to Text and Foreground:
Putting these color names in your color-selection user interface is something you might consider. Familiarity with these names goes beyond programmers to anyone who’s worked with colors in HTML, so the more sophisticated users of your application might have a very positive response to seeing these actual names on the screen.
Using a ListBox to display Color objects or FontFamily objects is fine for some special applications, but what are you going to put in your items control?
In general, you’ll be filling an ItemsControl or ListBox with those vague but ubiquitous entities known as business objects.
For example, if you’re creating an application that lets a user pick a hotel, it’s likely you’ll have a class named Hotel, and objects of Hotel will go into your ListBox. As a business object, Hotel is not going to derive from FrameworkElement. But it is very likely that Hotel will implement INotifyPropertyChanged so it can dynamically indicate a room rate that’s just been reduced. Another business object will maintain a collection of Hotel objects, probably using ObservableCollection and implementing INotifyCollectionChanged to dynamically indicate changes when a new hotel opens its doors.
To get at least a little closer to a real-life example, I’m going to spend the remainder of the chapter focusing on programs that use a database of high school students. In these examples, the database is downloaded from a directory on my web site, but because I want to focus solely on the presentation of this data in this chapter, changes to properties of the Student class will be simulated locally.
The http://www.charlespetzold.com/Students directory of my Web site contains a file named students.xml that contains data on 69 students. The directory also contains lovely black-and-white photographs of all these students. These photographs are from high school yearbooks from El Paso, Texas for the years 1912 through 1914. The yearbooks are in the public domain and were graciously digitized by the El Paso Public Library and available on their Web site at http://www.elpasotexas.gov/library/ourlibraries/mainlibrary/yearbooks/yearbooks.asp.
Among the source code for Chapter 17 is a library project named ElPasoHighSchool that contains several classes to read the XML file from my Web site and deserialize it into .NET objects.
Here’s the Student class. It implements INotifyPropertyChanged and has several properties pertaining to the student, including name, sex, a filename referencing the photograph, and a grade point average:
Silverlight Project: EIPasoHighSchool File: Student.cs
There will be one instance of the Student class for each student. Changes to any of these properties cause a PropertyChanged event to fire. Thus, this class is suitable as a source for data bindings.
The StudentBody class also implements INotifyPropertyChanged:
Silverlight Project: EIPasoHighSchool File: StudentBody.cs
This class contains a property indicating the name of the school and an ObservableCollection of type Student to store all the Student objects. ObservableCollection is a very popular collection class in Silverlight because it implements the INotifyCollectionChanged interface, which means that it fires a CollectionChanged event whenever an item is added to or removed from the collection.
Before continuing, let’s take a look at an excerpt of the student.xml file, which resides on my Web site:
File: http://www.charlespetzold.com/Students/students.xml (excerpt)
As you can see, the element tags correspond to properties in the Student and StudentBody classes. I created this file using XML serialization with the XmlSerializer class, and XML deserialization can convert it back into Student and StudentBody objects. That is the function of the StudentBodyPresenter class, which again implements INotifyPropertyChanged:
Silverlight Project: EIPasoHighSchool File: StudentBodyPresenter.cs
The constructor of the StudentBodyPresenter class uses WebClient to access the students.xml file. As you’ll recall, WebClient performs asynchronous web accesses, so it needs a callback to signal the program when it’s completed. The Deserialize method of the XmlSerializer class then converts the XML text file into an actual StudentBody object, which is available as a public property to this class. When the OnDownloadStringCompleted callback sets that StudentBody property, the class fires its first and only PropertyChanged event.
The OnDownloadStringCompleted callback also starts up a DispatcherTimer that simulates changes to the data. Ten times a second, the GradePointAverage property of one of the students changes, causing the particular Student class to fire a PropertyChanged event. We hope very much to witness those dynamic changes on screen.
You can begin experimenting with this database by opening up a new Silverlight project, making a reference to the ElPasoHighSchool.dll library, and putting an XML namespace declaration in the MainPage.xaml file:
xmlns:elpaso="clr-namespace:ElPasoHighSchool;assembly=ElPasoHighSchool"
You then instantiate this the StudentBodyPresenter class in the Resources collection:
You can then put a TextBlock in the content area with a binding to that resource:
The screen indicates that the program is successfully downloading and deserializing the students.xml file:
Changing the binding path from StudentBody.School to StudentBody.Students indicates an ObservableCollection:
It’s possible to access the Count property of the ObservableCollection:
And the Students collection can be indexed:
This shows us that the Students collection contains objects of type Student:
To avoid making this binding even longer, let’s split it up by setting a DataContext on the content Grid. The DataContext is inherited through the visual tree and simplifies the binding on the TextBlock:
That binding references a particular student’s name:
The binding can be simplified even more by eliminating the “Path=” part:
Now let’s replace the TextBlock with an Image element referencing the PhotoFilename property of the Student class:
And we get the photo successfully downloaded and displayed:
Now it’s time to stop fooling around and put an actual ListBox in there:
The Students property is of type ObservableCollection, which of course implements IEnumerable, which is all that ListBox really requires for its ItemsSource. But ListBox also determines if the object bound to ItemsSource can do a little more, for example, if it implements INotifyCollectionChanged, which ObservableCollection does. So if somehow a new Student were added to the collection, or other students were removed from the collection as they graduated, the ListBox would know about that and change the items it was displaying.
At the moment, the ListBox doesn’t seem to be overjoyed with this data:
Whenever you see a ListBox or ItemsControl with a bunch of identical class names listed, don’t despair. You should instead rejoice! Such a display shows that the ListBox has been successfully filled with items of the same type, and all it needs to display something meaningful is a DataTemplate or (if we’re lazy) a DisplayMemberPath setting;
Here it is:
Let’s leave the ListBox like that for now, and instead focus on displaying the selected item from the ListBox.
By adding another row to the Grid, we can put a TextBlock down at the bottom of the display:
Notice the binding on the TextBlock. The SelectedItem property of the ListBox is of type Student, so the binding path can reference a property of Student, such as FullName. Now when an item is selected from the ListBox, the TextBlock displays the item’s FullName property:
Or, replace the TextBlock with an Image element:
You can now go through the ListBox and select an item to view that student’s picture:
To view multiple properties of the selected item, you might want to put another DataContext definition on a Border:
Within this Border can go a panel and elements with bindings that reference properties of the Student class. This is what I’ve done in the StudentBodyListBox program. The XAML file contains an XML namespace declaration for the ElPasoHighSchool library:
xmlns:elpaso="clr-namespace:EIPasoHighSchool;assembly=ElPasoHighSchool"
The Resources collection instantiates the StudentBodyPresenter class:
Silverlight Project: StudentBodyListBox File: MainPage.xaml (excerpt)
Here’s the content area:
Silverlight Project: StudentBodyListBox File: MainPage.xaml (excerpt)
Within the Border is a Grid with three rows, containing a TextBlock with a binding to the FullName property, an Image element, and a StackPanel to display the grade point average. Notice I’ve given the Image element a specific size based on my knowledge of the size of the images. This avoids a change in size of the Image element after it’s able to download the photo.
You can now scroll through the ListBox and look at each student in detail
Wait a little while and you should be able to see a change in the grade point average. That’s the beauty of INotifyPropertyChanged and dependency properties at work.
For the remainder of this chapter, I want to switch from the ListBox to the ItemsControl to focus solely on presentation and navigation rather than selection. To play along, you can create a new project, set a reference to the ElPasoHighSchool library, and in the XAML file add an XML namespace declaration for that library and instantiate the StudentBodyPresenter class in the Resources collection as in the previous program. Here’s an ItemsControl in a ScrollViewer that fills up the whole content Grid:
The ScrollViewer allows the contents to be scroll:
Replace the DisplayMemberPath with a DataTemplate to provide more extensive information, nicely formatted:
In this template, the height of the individual items is governed by the explicit Height setting on the Image element. To prevent the text from moving to the right as the photos are being loaded, an explicit Width setting is also provided. Here’s the result:
In earlier displays of these students, I used the property of Student called FullName to display the student’s name. You may have noticed that the students.xml file was actually sorted by this property, and that’s the order in which the students appeared on the screen. Popular email programs display your contacts sorted by first name, so I figured it wasn’t entirely a bad thing.
But in the most recent DataTemplate, I switched to using the LastName, FirstName, and MiddleName properties, and the unsorted display now looks very strange and just plain wrong.
How can this be fixed?
One approach is through code. It’s possible for the StudentBodyPresenter class to re-sort the data after it’s been downloaded. But you might prefer a more flexible approach. Perhaps your application needs to display data using different sort criteria at different times.
You can do that—and you can do it entirely in XAML—using a class called CollectionViewSource defined in the System.Windows.Data namespace. You’ll use this class in conjunction with a SortDescription class defined in the System.ComponentModel namespace. Besides the reference and XML namespace declaration for the ElPasoHighSchool library, you’ll need an XML namespace declaration for System.ComponentModel:
xmlns:componentmodel="clr-namespace:System.ComponentModel;assembly=System.Windows"
The whole CollectionViewSource can go in the Resources collection:
Notice how the Source property of the CollectionViewSource now references the Students property of the StudentBody property of the StudentBodyPresenter. This Students property is of type ObservableCollection<Student>. The Source of CollectionViewSource must be a collection.
The SortDescription object indicates that we want to sort by the LastName property in an ascending order. Since this LastName property is of type string, no additional code need be provided to support sorting.
The Binding can now be removed from the DataContext of the Grid, and the Source property of ItemsControl can now reference the CollectionViewSource resource:
And now the display looks more alphabetically comforting:
You can have multiple SortDescription objects in CollectionViewSource. Try this:
Now all the women are first, followed by the men.
Or alternatively, perhaps you want to display the names of the male students in PowderBlue and the female students in Pink. It’s a rather antiquated convention, to be sure, but we are dealing with students who attended high school nearly 100 years ago! Regardless of the propriety of pink and blue, how would you do it?
Fortunately, the Student class has a property named Sex, which is set to a text string, either “Male” or “Female.” Since we’re dealing with data bindings in the DataTemplate, the obvious solution is a data converter, and fortunately the Petzold.Phone.Silverlight library has one that seems ideal:
Silverlight Project: Petzold.Phone.Silverlight File: SexToBrushConverter.cs
Like all data converters, it derives from IValueConverter and has two methods named Convert and ConvertBack. This converter also defines two properties named MaleBrush and FemaleBrush. These properties let us avoid hard-coding brushes in the code. The Convert method is the only one that’s implemented: If the value coming in is “Male” it returns MaleBrush and if “Female” it returns FemaleBrush.
Let’s put everything into one project. The StudentBodyItemsControl project has a reference to the Petzold.Phone.Silverlight library as well as ElPasoHighSchool. The Resources section instantiates the StudentBodyPresenter, the CollectionViewSource for sorting, and the SexToBrushConverter:
Silverlight Project: StudentBodyItemsControl File: MainPage.xaml (excerpt)
In the markup below I use five TextBlock elements to display the student’s name—LastName, FirstName, and MiddleName with a comma and a space—and at least four of them need bindings targeting the Foreground property from the Sex property of the Student object, using this SexToBrushConverter. This same binding needs to be repeated four times.
Or, perhaps we can simplify the markup just a bit by enclosing all five TextBlock elements in a ContentControl. If the Foreground property on the ContentControl is set with a single binding, then the same property will be applied to each TextBlock based on property inheritance. That’s what’s done in the following DataTemplate, which is otherwise the same as the one you just saw:
Silverlight Project: StudentBodyItemsControl File: MainPage.xaml (excerpt)
Adding the color is worth the effort, I think:
Internally, an ItemsControl uses an ItemsPresenter to display all the items, as you saw earlier in this chapter when looking at visual trees. One of the essential elements used to display the items is a panel of some sort. By default, this is a StackPanel (or, with ListBox, a VirtualizingStackPanel) with a vertical orientation. A vertical StackPanel is such a natural choice for this job that you may not think about replacing it.
But you can replace it. It’s another template—but usually an extremely simple template—that you set to the ItemsPanel property defined by ItemsControl.
The HorizontalItemsControl project is much like the previous project. It has references and namespace declarations for Petzold.Silverlight.Phone and ElPasoHighSchool, and an identical Resources collection. The big difference is the use of a StackPanel with a horizontal orientation in the ItemsControl. The program also defines a rather different DataTemplate for each student and relies on a landscape orientation of the phone.
Because the ItemsControl is now displaying its items horizontally rather than vertically, the default behavior of ScrollViewer is all wrong. The ScrollViewer must be enabled for horizontal scrolling:
Silverlight Project: HorizontalItemsControl File: MainPage.xaml (excerpt)
Towards the bottom of the ItemsControl markup you’ll see the ItemsPanel property set to an object of type ItemsPanelTemplate, which then encloses the Panel derivative you want to use.
Not every type of panel is suitable for an items control. Generally you’ll want to use a panel that organizes its children based on their order in its Children collection and not based on attached properties.
It is very common for programmers to create custom panels specifically for a ListBox or ItemsControl. Sometimes these panels take the form of circular organizations of children, or carousels. Toward the end of this chapter I’ll show you an example of a custom panel to display these students.
With a combination of a DataTemplate and an ItemsPanelTemplate, you can make a ListBox or ItemsControl look like no other ListBox or ItemsControl you’ve ever seen.
Let’s create a new project, and include references and XML namespace declarations for both the Petzold.Phone.Silverlight and ElPasoHighSchool libraries. Set properties in the root tag of MainPage.xaml for landscape. Put the StudentBodyPresenter in the Resources collection.
Here’s an ItemsControl with no ScrollViewer. The ItemsSource is the Students property of the StudentBodyPresenter instance. The ItemsPanelTemplate is set to a UniformStack with a Horizontal orientation:
With no DataTemplate the ItemsControl displays the fully-qualified class name as a string: “ElPasoHighSchool.Student.” But with a UniformStack panel, every item gets the same amount of space so only the first “E” is visible:
This doesn’t seem very promising, but let’s set the DataTemplate to a Rectangle whose Height property is bound to the GradePointAverage property:
Notice how the ItemsControl itself is aligned at the bottom of the display, and each Rectangle is aligned at the bottom of the ItemsControl. The result is a bar chart:
Of course, the values of the GradePointAverage property only range between 0 and 5, so the bars are rather tiny. How can that problem be solved?
You might think about applying a ScaleTransform to the Rectangle with a constant vertical scaling factor of, say, 50. That was my first choice as well, but the results were unsatisfactory. It seemed as if the heights of the rectangles were being rounded to the nearest pixel before being scaled. So I abandoned that approach and wrote a new data converter:
Silverlight Project: Petzold.Phone.Silverlight File: MultiplyConverter.cs
This converter multiplies the binding source by a factor provided as the converter parameter. Define one of these in the Resources collection:
Now reference the converter in the binding to multiply each value by 50:
And now it looks like a real bar chart:
What’s more, as the GradePointAverage values dynamically change, the bars on the bar chart bounce up and down.
Do you remember the ValueToBrushConverter in the Petzold.Phone.Silverlight library? That converter allows us to color-code the bars so we’re alerted to any student whose grade point average dips below 1 (for example). Here’s the converter as it would appear in the Resources collection:
Here’s the new DataTemplate:
As the teacher of these students, you’ll be glad you implemented this feature because very soon you’ll see that a few students are in danger of failing:
Is there a way to determine which students these are?
The GpaBarChart project shows one approach. It has the StudentBodyPresenter and two converters I mentioned defined as resources:
Silverlight Project: GpiBarChart File: MainPage.xaml (excerpt)
Most of the content area you’ve already seen but I also added a Border with the name “studentDisplay” floating near the top. This Border includes a couple TextBlock elements with their Text properties bound to the properties FullName and GradePointAverage under the assumption that the DataContext of this Border is an object of type Student. That’s not normally the case, so the Border has its Visibility property initialized to Collapsed:
Silverlight Project: GpiBarChart File: MainPage.xaml (excerpt)
The code-behind file fills in the missing logic. The page processes the Touch.FrameReported event. When the element directly behind the primary touch point is a Rectangle, the event handler obtains the DataContext of that Rectangle. That is an object of type Student. That object is then set to the DataContext of the Border. The TouchAction property is used to turn the Visibility on and off:
Silverlight Project: GpiBarChart File: MainPage.xaml.cs (excerpt)
As you run your fingers across the bars, you can see the student that each bar represents:
With the previous GpiBarChart program, in a sense we’ve managed to fit all the students onto a single screen, but the information is limited. Is there a way to get more information on the screen? One popular metaphor for displaying data is the card file. Normally only part of each card is visible but such a program also includes a facility for viewing an entire card.
In preparation for this job, I created a new panel in the Petzold.Phone.Silverlight library. In some ways this panel is similar to the UniformStack panel that I described in Chapter 9. Like UniformStack, this new panel gives all of its children an equal amount of space. But unlike UniformStack, this new panel actually overlaps its children if necessary to fit them all in the available space. For that reason, it’s called OverlapPanel.
OverlapPanel defines an Orientation property and arranges its children either horizontally or vertically. If OverlapPanel is arranging its children horizontally, each child is positioned slightly to the right of the child before it, leaving the left-most sliver of the previous child visible. For a vertical orientation, the top of each child is visible.
If there are very many children, then that visible sliver will become very small. To make OverlapPanel more useful, it should be possible to specify that the sliver be at least a minimum height or width, even if that causes the contents of the panel to overrun the available space. In possibly going beyond the space available for it, the OverlapPanel behaves much like a regular StackPanel. A ScrollViewer will be necessary to view all the items.
OverlapPanel defines two properties, Orientation and MinimumOverlap:
Silverlight Project: Petzold.Phone.Silverlight File: OverlapPanel.cs (excerpt)
Changes to either of these two properties causes a call to InvalidateMeasure, which initiates a new layout pass.
The MeasureOverride method first enumerates through all its children to obtain the maximum child size. Of course, when you use OverlapPanel with an ItemsControl or ListBox, all the children will probably have the same size.
Silverlight Project: Petzold.Phone.Silverlight File: OverlapPanel.cs (excerpt)
The method then splits into two different sections depending on the Orientation property. For example, for the vertical orientation (which I’ll be using in the example below), the method calculates a maxTotalHeight, when all the children are side-by-side without overlap, and a minTotalHeight, when the children are overlapped to the maximum extent. If the available height is not infinite (a possibility handled separately), then the available height is either greater than maxTotalHeight or between minTotalHeight and maxTotalHeight, or less than minTotalHeight. If all the children can fit side-by-side in the available space, then that’s the space requested. But the method never requests less height than it needs to display all the children.
The ArrangeOverride method is somewhat simpler. The increment value is the width or height of the sliver of each child that will always be visible:
Silverlight Project: Petzold.Phone.Silverlight File: OverlapPanel.cs (excerpt)
The StudentCardFile project has references to the Petzold.Phone.Silverlight and ElPasoHighSchool libraries. The MainPage.xaml file includes the StudentBodyPresenter in the Resources collection:
Silverlight Project: StudentCardFile File: MainPage.xaml (excerpt)
The content area is rather simple, containing only a ScrollViewer and an ItemsControl. The ItemsPanel property of the ItemsControl references the OverlapPanel with two properties set:
Silverlight Project: StudentCardFile File: MainPage.xaml (excerpt)
The simplicity of the markup here is mostly a result of the DataTemplate property of the ItemsControl being set to another control named StudentCard.
StudentCard derives from UserControl. Deriving from UserControl is a common technique for creating a control to serve as a DataTemplate. If you ignore the ellipses (...) below, this is a very straightforward assemblage of a TextBlock and Image elements, with a collapsed Rectangle used as a dividing line:
Silverlight Project: StudentCardFile File: StudentCard.xaml (excerpt)
The cards are listed down the left side of the display but only the top of each card is visible. Conveniently, the top of each card is a TextBlock displaying the student’s name:
I set MinimumOverlap to a value sufficient to display this TextBlock. As you scroll down to the bottom, you’ll see that the bottom card is entirely visible:
That’s great if you want to look at the very last card, but rather deficient otherwise. What we need is a way to selectively bring a particular card into view. One approach might be to change the Canvas.ZIndex attached property of a particular card. Or, the whole deck of cards might be re-ordered to move a particular card to the topmost position.
I decided I wanted a selected card to slide out of the deck when it’s touched, and then slide back when the card is touched again, or when another card is touched.
As you start integrating other code with ScrollViewer, you’ll discover that ScrollViewer tends to hog the Manipulation events. Obviously ScrollViewer needs these Manipulation events for its own scrolling logic. But that makes it difficult for visual descendents of the ScrollViewer (such as these StudentCard elements) to process Manipulation events of their own for sliding in and out of the deck
For that reason, I decided that StudentCard would install a handler for the low-level Touch.FrameReported event, and to use that to toggle a dependency property named IsOpen. Here’s that property in the StudentCard code-behind file:
Silverlight Project: StudentCardFile File: StudentCard.xaml.cs (excerpt)
I’ll show you the property-changed handler for IsOpen shortly.
When you touch one instance of StudentCard, it is supposed to slide out of the deck, but if another card is currently exposed, that card should slide back into the deck. If the Cardfile class is to handle this logic on its own, each instance of CardFile needs access to all the other instances. For that reason, I defined a static field of type List to maintain these instances:
Silverlight Project: StudentCardFile File: StudentCard.xaml.cs (excerpt)
Each new instance simply adds itself to the collection.
It also became apparent to me that each individual StudentCard instance does not need its own handler for the Touch.FrameReported event. All instances could share the same static handler installed in the static constructor and referencing static fields:
Silverlight Project: StudentCardFile File: StudentCard.xaml.cs (excerpt)
With a little experimentation, I determined that I wanted a tap to qualify as a touch and release with ¼ second where the touch point moves less than 12 pixels. That seemed to be about right and still allow flicks to be recognized by the ScrollViewer.
At the bottom of this method a foreach loop enumerates through all the StudentCard objects and sets the IsOpen property on each one. IsOpen is always set to false if the StudentCard is not the touched element, and IsOpen is also set to false if IsOpen is currently true. Otherwise, if the StudentCard object is the touched element, and IsOpen is currently false, then it’s set to true. Of course, as a dependency property, IsOpen property-changed handlers will only be called if the property is truly changing.
I have not yet shown you the property-changed handler for the IsOpen property. As usual, the static version calls the instance version:
Silverlight Project: StudentCardFile File: StudentCard.xaml.cs (excerpt)
The instance version calls VisualStateManager.GoToState. Although the Visual State Manger is most frequently used in connection with controls and controls template, you can also use it with UserControl derivatives such as StudentCard. Calling GoToState is how you trigger a state change from code.
In the XAML file, the Visual State Manager markup must appear right after the topmost element in the visual tree. In the case of StudentCard.xaml, that’s the Border element. Here’s the rest of StudentCard.xaml (with some repetition from the previous excerpt) showing the Visual State Manager markup targeting a TranslateTransform set on the control itself:
Silverlight Project: StudentCardFile File: StudentCard.xaml (excerpt)
When you tap one of the items, it slides out to reveal the full card:
Throughout this chapter I’ve tried to do several different types of jobs entirely in XAML. That’s not always possible; very often code is required, particularly for handling touch input.
But much of the required code doesn’t replace the XAML: the code helps support the markup. These classes take the form of binding converters and custom panels that are referenced within the XAML file. In general, you should try to code for XAML and not instead of XAML, and you’ll be a happier and better Silverlight and Windows Phone 7 programmer.
Silverlight applications that need to present large amounts of information to the user have traditionally used a page-oriented navigation structure. On the phone, however, a division of your program into pages might not be the best approach. The phone’s portrait form factor, the ease of multi-touch, and a recent emphasis on “fluid user interfaces” all suggest other types of layout. Two such alternatives are available in Windows Phone 7 in new controls named Pivot and Panorama.
Both Pivot and Panorama are in the Microsoft.Phone.Controls library and any program that uses these controls will need a reference to that DLL. The controls are defined in the Microsoft.Phone.Controls namespace with subsidiary components in Microsoft.Phone.Controls.Primitives, but it’s unlikely you’ll need those other classes unless you’re customizing the controls.
Conceptually, Pivot and Panorama are very similar. Both controls provide a way to organize discrete components of your application horizontally in a virtual space that can be several times wider than the actual width of the phone. You move horizontally through the control simply by sweeping your finger across the screen. Although the Pivot and Panorama controls seem to be designed primarily for portrait mode, they can be used in landscape mode as well.
Both Pivot and Panorama derive from ItemsControl by way of a class with a generic parameter:
public class TemplatedItemsControl<T> : ItemsControl where T : new(), FrameworkElement
This indicates an ItemsControl that is intended to be filled with objects of type T. Both Pivot and Panorama derive from TemplatedItemsControl with a type parameter set to PivotItem or PanoramaItem, respectively:
public class Pivot : TemplatedItemsControl<PivotItem>
public class Panorama : TemplatedItemsControl<PanoramaItem>
The Pivot control expects to contain items of type PivotItem while the Panorama control expects to contain items of type PanoramaItem. Both PivotItem and PanoramaItem derive from ContentControl. If you’re filling the Items collection of a Pivot or Panorama object explicitly in XAML and code, you’ll want to fill it with PivotItem or PanoramaItem items, because there’s a crucial Header property you need to set on these controls. If you instead use a binding on the ItemsSource property defined by ItemsControl, these PivotItem and PanoramaItem objects are created for you behind the scenes, and you set the Header property through a template. (Don’t worry: I’ll have examples.)
To instantiate these controls in a XAML file you’ll need an XML namespace declaration for the Microsoft.Phone.Controls library and namespace:
xmlns:controls="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"
Perhaps the best way to explore these classes is to experiment with an actual example. The New Project dialog in Visual Studio allows you to create an project of type Windows Phone Pivot Application or Windows Phone Panorama Application, and you can surely experiment with those. For the demonstration programs in this chapter I took a different approach.
Here’s a MainPage.xaml file from a project named PivotDemonstration. I created this project normally, that is, by selecting Windows Phone Application from the New Project dialog box. But then I deleted most of the contents of MainPage.xaml except the PhoneApplicationPage tags. I added the XML namespace declaration for “controls” (it’s the widest one) and I replaced the contents of the page with a Pivot and four nested PivotItem children:
Silverlight Project: PivotDemonstration File: MainPage.xaml (excerpt)
The Pivot control’s Title property is set to “PIVOT DEMONSTRATION.” By default, this title will appear in the same location and be the same size as the text displayed at the top of the normal Windows Phone page. (That’s the text normally displayed by the TextBlock with the name ApplicationTitle.) Each of the four PivotItem controls has a Header property set; this text appears in the same location and is the same size as the customary TextBlock named PageTitle.
The PivotItem control derives from ContentControl, so you can put pretty much anything in those controls. I gave the first PivotItem a ListBox containing all the fonts available to Windows Phone 7 programs, including a simple DataTemplate:
Silverlight Project: PivotDemonstration File: MainPage.xaml (excerpt)
The PivotItem gives the ListBox an amount of space equal to the size of the page less the Title text and the Header text:
The ListBox is vertically scrollable, of course. Notice the Header text of the second PivotItem in a dimmed state next to the first one. That second PivotItem just displays an Ellipse:
Silverlight Project: PivotDemonstration File: MainPage.xaml (excerpt)
This clearly shows exactly how large an area the PivotItem is offering to its content:
The third PivotItem contains a ScrollViewer with a large TextBlock containing the opening paragraph from a well-known novel:
Silverlight Project: PivotDemonstration File: MainPage.xaml (excerpt)
Once again, there’s no issue with scrolling:
The final PivotItem contains a TextBlock with several animations applied:
Silverlight Project: PivotDemonstration File: MainPage.xaml (excerpt)
The animations make the TextBlock move and spin around:
Notice the header of the first PivotItem to the right of the active one. The animations are tailored for the approximate size of the content area of the PivotItem for the large screen in portrait mode. If you turn the phone or emulator sideways, the TextBlock will drift off the screen temporarily.
The PanoramaDemonstration program is extremely similar to PivotDemonstration. For the most part, every place in the MainPage.xaml file of PivotDemonstration where the word “Pivot” occurs is replaced with the word “Panorama.” Beyond that, the only other difference was the change in the Title property to lowercase:
Silverlight Project: PanoramaDemostration File: MainPage.xaml (excerpt)
Although Pivot and Panorama are conceptually very similar, they have rather different aesthetics. The next several screen shots show the two controls side-by-side with Pivot on the left and Panorama on the right. Notice how the Title is handled in the Panorama: It’s much larger and suggests that it stretches to encompass all the other items:
Although I haven’t done so here, generally you’ll set the Background property of the Panorama control to an ImageBrush with a wide bitmap that spreads out behind the back. (On the phone, look at the Games, Marketplace, and Pictures applications to get some ideas.)
As a result of the large Title, the Panorama offers less vertical space for the content of each PanoramaItem. Slightly less horizontal space is available as well because the next item to the right is peaking through at the right edge.
You can navigate forwards or backwards through the Pivot and Panorama just by sweeping your finger to the right or left. With Panorama, sweeping your finger along the Title text feels very natural. With the Pivot (but not the Panorama) you can navigate to one of the other items by tapping its Header text:
Notice how the Title of the Panorama has also shifted to visually indicate where you are in terms of the virtual width of all the content.
As you experiment with sweeping your finger across the screen, you’ll discover that the Pivot and Panorama actually behave in very different ways: In both cases the Header texts are somewhat visually uncoupled from the actual items. With the Pivot, one item moves completely off the screen before the next item slides in; with the Panorama, you can see two items simultaneously. Here’s a view in progress between two items:
The Panorama gives a much better sense of a wide virtual screen through which a viewport is visible, particularly when used with a wide background bitmap. The Pivot seems more like it’s occupying just the screen area and works by sliding individual items in and out of view.
The Pivot control defines several events that the Panorama control does not: LoadingPivotItem, LoadedPivotItem, UnloadingPivotItem, UnloadedPivotItem. These events signal when one item slips out of view and another item slips in. These events don’t quite apply to the more fluid nature of the Panorama.
Both Pivot and Panorama define SelectionChanged events, as well as SelectedIndex and SelectedItem. The selection is considered to be the PivotItem or PanoramaItem in full view, and the event isn’t fired until the item finishes sliding fully into place.
Both Pivot and Panorama define TitleTemplate and HeaderTemplate properties of type DataTemplate so if you use bindings to set the content of the control you can define a visual tree to indicate how the Title property and Header properties use the data.
The HeaderTemplate property is particularly important if you bind the ItemsSource property of Pivot or Panorama to a collection, in which case you aren’t creating the PivotItem or PanoramaItem objects explicitly. You’ll need this HeaderTemplate for a binding to set the Header text, but the template can consist solely of a TextBlock. You’ll see an example later in this chapter.
If you’re feeling particularly adventurous, you can also define a whole new ControlTemplate for Pivot or Panorama. The Pivot template requires a PivotHeadersControl (which is a TemplateItemsControl of type PivotHeaderItem) and the Panorama template requires three PanningLayer objects. PanningLayer derives from ContentControl, and the Microsoft.Phone.Controls.Primitives namespace includes PanningBackgroundLayer and PanningTitleLayer classes that derive from PanningLayer.
In the final view, we’ve circle back to the beginning. But in the Panorama control you can simultaneously see three PanoramaItem children: The ListBox is in full view, there’s a little sliver of the Ellipse at the right, but look at that snippet of rotated text intersecting the “Comic Sans MS” item: That’s the animation to the left.
Once I started thinking about it, I realized that the Pivot control was the perfect choice for realizing a program I had long been contemplating. This program corrects what I perceive to be a major deficiency of portable music players such as the Zune and Windows Phone 7, so a little explanation is necessary:
As you may know, the landscape of music in the United States and Europe can be roughly divided into performer-centric music and composer-centric music. The performer-centric tradition has close ties with the rise and evolution of recording technologies and encompasses performers from (say) Robert Johnson (1911–1938) through Lady Gaga (b. 1986). Performer-centric music consists predominantly of a musical form known as the song, generally several minutes in length, with a vocalist and instrumental accompaniment.
The composer-centric tradition is much older, stretching from (say) Claudio Monteverdi (1567–1643) through Jennifer Higdon (b. 1962), and encompasses very many different forms (for example, string quartet, piano concerto, symphony, and opera as well as songs) of widely varying lengths, styles, and instrumentation.
People who listen to composer-centric music generally prefer to organize their music by composer, and then within composer by composition, and within composition by performer. (As with the performer-centric tradition, the word artist is satisfactory for referring to the person or people playing the music.) The Zune desktop software allows you to enter composer information when downloading music and ripping CDs, but that information is not transferred with the files to portable devices such as the phone. Even if composer information was included in the music files transferred to the phone, it is not available through the public properties of the classes used to access the music.
To compensate for this deficiency, people who listen to composer-centric music often incorporate the composer’s name in the album title followed by a colon, such as:
Mahler: Symphony No. 2
Many CDs of music in the composer-centric tradition rip with album titles in this format. For albums that have music of more than one composer, I’ve also adopted the convention of separating the composers’ names with commas:
Adès, Schubert: Piano Quintets
Over the years I’ve ripped about 600 of my CDs to the PC, and most of them are identified in this way. When the music player lists the albums alphabetically by album title, the music is also listed alphabetically by composer, so that’s a big help.
But I wanted more. I wanted a hierarchical structure based around the composer. I wanted to see the composers’ names up front so I begin by selecting Schubert or Debussy or Messiaen.
So I decided to write a Windows Phone 7 program called MusicByComposer that takes this extra step. The program accesses the music library on the phone and—under the assumption that the album titles begin with one or more composer names followed by a colon—extracts the composers’ names from the album titles.. It then arranges the music by composer, where each composer becomes a PivotItem. The content of that PivotItem is a ListBox that lists all the albums containing music by that composer.
The MusicByComposer program begins with a screen that looks something like this:
You should recognize this as a standard Pivot control where each PivotItem is a composer. On my phone the first PivotItem displays albums by American composer John Adams (b. 1947). The other PivotItem headers you can see here are for British composer Thomas Adès (b. 1971) and German composer Johann Sebastian Bach (1685–1750).
If none of your music has a colon in the album title, all your albums will be listed under a single PivotItem with the header “Other”.
The PivotItem for each composer contains a ListBox where each item includes the thumbnail album art, the album title (without the composer name) using the phone’s current accent color, and the artist associated with the album in the foreground color.
Tapping any album brings you to a page for that album:
This is a standard PhoneApplicationPage with the standard two TextBlock items for the application title and the page title, but as you can see, the titles are the same size and in the same position as the Pivot control on the opening page. The larger album art is shown with the full album name and artist. Underneath is a ScrollViewer with an ItemsControl with all the tracks from the album. This screen has no touch interface except for scrolling: You control everything with the ApplicationBar buttons: go to the previous track, play and pause, and go to the next track. The currently playing track is indicated with the accent color and time progress.
After an application starts playing an album, it’s normal in Windows Phone 7 for the album to play all the way through, even if the application ends or the phone’s display shuts off. The MusicByComposer program allows you to navigate to other albums, but it will only shut off an existing album and play a new one if you press the middle button to pause the existing album and press again to play the album on the page.
As you’ll recall from Chapter 4 and Chapter 14, a Silverlight program can get access to the phone’s photo library for retrieving photos and saving them, but it needs to use an XNA class named MediaLibrary in the Microsoft.Xna.Framework.Media namespace. You need that same class—and other classes in that namespace—for accessing and playing music
Any program that uses MediaLibrary needs a reference to the Microsoft.Xna.Framework DLL; The MusicByComposer program also needs a reference to Microsoft.Phone.Controls for the Pivot control.
When you use XNA services to play music from a Silverlight application, some issues are involved. As described in the topic in the XNA documentation entitled “Enable XNA Framework Events in Windows Phone Applications,” you need a class that calls the XNA static method FrameworkDispatcher.Update at the same rate as the video refresh rate, thirty times per second. The following class in the MusicByComposer project is basically the class shown in that documentation topic:
Silverlight Project: MusicByComposer File: XnaFrameworkDispatcherService.cs
You’ll need to instantiate that class in the ApplicationLifetimeObjects section of the App.xaml file. Notice the XML namespace declaration for “local”:
Silverlight Project: MusicByComposer File: App.xaml
For testing purposes, the phone emulator has a music library that consists of a single album with three short songs, which is great for establishing basic album retrieval and playing logic, but it hardly gives the program a real workout.
For debugging a program running on the actual phone from Visual Studio, you’ll need to exit the desktop Zune program (because it wants exclusive access to the music library) and instead run the Connect tool, WPDTPTConnect32 on 32-bit Windows or WPDTPTConnect64 on 64-bit Windows.
I also discovered another problem. When the program was deployed to the phone and running apart from Visual Studio, the program would report that the music library on the phone had no music.... except if I first ran an XNA program. I am told this is a bug in the initial release of Windows Phone 7, and I decided to work around this bug by making the program accessible from the Games hub on the phone. To do this I set the following attribute in the App tag of the WMAppManifest.xml file:
Genre="apps.games"
I also gave the program Background.png and ApplicationIcon.png images containing a portrait of perhaps the most famous individual in the composer-centric tradition.
An application that wants to play music under Windows Phone 7 uses classes from the Microsoft.Xna.Framework.Media namespace. You’ll first need to access the music from the library, and for that you’ll need a new instance of MediaLibrary, the same class you use to access the photo library.
The MediaLibrary class defines several get-only properties that let you access the music library in several standard ways. These properties include:
Each of these collections contains all the music in your library but arranged in different ways. (The presence of a property called Composer of type ComposerCollection would have simplified my program considerably.)
For my purposes I found the Albums property of MediaLibrary the most useful. The AlbumCollection class is a collection of items of type Album, and Album has the following get-only properties (among others):
If HasArt is true, you can call two methods, GetAlbumArt and GetThumbnail, both of which return Stream objects to access a bitmap with an image of the album cover. GetAlbumArt returns a bitmap of about 200-pixels square and GetThumbnail returns a bitmap of about 100-pixels square.
The SongCollection in an Album instance contains all the tracks on the album. (In the composer-centric tradition, the use of the word song to describe these album tracks doesn’t make much sense if, for example, a track is actually a movement of a symphony, but the performer-centric prejudice of the XNA classes is something we’re forced to live with.) The Song object has several get-only properties, among them:
For organizing the music library by composer and for data binding purposes, I realized that I’d need a couple new classes. My AlbumInfo class is basically a wrapper around the XNA Album class:
Silverlight Project: MusicByComposer File: AlbumInfo.cs
This AlbumInfo class has a property of type Album and adds three more properties: The ShortAlbumName property is the name of the album with the composer or composers at the beginning stripped off. (For example, “Mahler: Symphony No. 2” becomes “Symphony No. 2”.) This property is used in the CompareTo method at the bottom for sorting purposes. In the first of the two screen shots of MusicByComposer, you’ll notice that the album names are sorted.
The GetAlbumArt and GetThumbnail methods of Album return Stream objects. For binding purposes, I expose two public properties of type BitmapImage but the class only creates these objects when the properties are first accessed, and then caches them for subsequent accesses.
The next class is ComposerInfo, which consists of the composer’s name and a list of all the AlbumInfo objects containing music by that composer:
Silverlight Project: MusicByComposer File: ComposerInfo.cs
Notice that the List of AlbumInfo objects is sorted in the constructor.
The MusicPresenter class is responsible for accessing the phone’s music library, obtaining all the albums, analyzing the album titles for the presence of composer names, and creating objects of type ComposerInfo and AlbumInfo. It does the main work in its instance constructor by storing the information in a dictionary with composer names used as keys that reference items of the type List<AlbumInfo>:
Silverlight Project: MusicByComposer File: MusicPresenter.cs
Only one instance of this class is required by the program. The music library will not change while the program is running, so there’s no reason for this instance constructor to run again. For that reason, when the instance constructor is finished, it sets the static Current property equal to the instance of MusicPresenter being created. This first instance will actually be created from the static constructor at the very top of the class, and result in setting the Composers property (down at the bottom), which consists of a list of ComposerInfo objects. If the constructor is called again, it merely transfers the existing Composers property to the new instance.
Why not make MusicPresenter a static class and simplify it somewhat? Because MusicPresenter is used in data bindings in XAML files and an actual instance of a class is required for those bindings. However, code also needs to access the class and for that the static MusicPresenter.Current property is helpful.
This static constructor executes when the program first accesses the class, of course, but also when the program accesses the class again after it is revived from tombstoning. In this case, re-creating the data from the MediaLibrary is certainly easier than saving it all in isolated storage.
When the program starts up, MainPage is displayed. The XAML file contains XML namespace declarations for “controls” (to access the Pivot control) and “local” (for MusicPresenter). The Resources collection instantiates MusicPresenter:
Silverlight Project: MusicByComposer File: MainPage.xaml (excerpt)
In the design view, Visual Studio will complain that it can’t create an instance of MusicPresenter, and of course it can’t because it would need access to the phone’s (or the phone emulator’s) music library.
Almost the entire visual tree of the page is a Pivot control:
Silverlight Project: MusicByComposer File: MainPage.xaml (excerpt)
This XAML file really shows off the power of templates and data binding. Remember that Pivot derives from ItemsTemplate, so it has an ItemsSource property that you can bind to a collection:
ItemsSource="{Binding Source={StaticResource musicPresenter},
Path=Composers}"
This means that the Pivot is filled with a collection of objects of type ComposerInfo. Internally, Pivot will generate objects of type PivotInfo, one for each ComposerInfo item. The Header property of each PivotItem needs to be bound to the Composer property of the corresponding ComposerInfo object. But the actual PivotItem object is being created behind the scenes! It is for this reason that Pivot defines a HeaderTemplate property:
Don’t worry about the formatting of the TextBlock object in this template: It magically gets the proper formatting, probably through property inheritance.
The Pivot class also defines an ItemTemplate. This is a DataTemplate that is used to generate the content of each PivotItem:
This DataTemplate consists of a ListBox that lists all the albums associated with the composer represented by the PivotItem. The ItemsSource property of the ListBox is bound to the Albums property of the ComposerInfo object. This means that the ListBox is filled with a collection of objects of type AlbumInfo, which means the DataTemplate of the ListBox defines how each of those items is displayed:
This DataTemplate references the ThumbnailArt, ShortAlbumName, and Album properties of AlbumInfo.
The first of the two screen shots of MusicByComposer shown earlier is entirely the result of the MainPage.xaml file and the data objects functioning as binding sources. The code-behind file for MainPage is left with little to do except process the SelectionChanged event from the ListBox to navigate to AlbumPage.xaml:
Silverlight Project: MusicByComposer File: MainPage.xaml.cs (excerpt)
The query string consists of two indices: an index into the Composers collection of MusicPresenter to indicate the current ComposerInfo object, and an index into the Albums property of the ComposerInfo object to reference the selected AlbumInfo.
The code obtains the current ComposerInfo object being displayed through the SelectedItem property of the Pivot control. It was my original intention to save the SelectedIndex of the Pivot control during tombstoning so I could restore the MainPage display on reactivation. However, I experienced problems setting SelectedIndex on a newly created Pivot control, so I decided to abandon that amenity for now. This means that if the program is tombstoned, the MainPage always goes back to displaying the albums of John Adams.
The Navigate call instantiates an AlbumPage instance, which displays an album. AlbumPage is a normal PhoneApplicationPage derivative, with the normal two titles. (The page title is set to the composer’s name from code.) The content area of the XAML file assumes that the DataContext of AlbumPage is set to an instance of AlbumInfo. (This is also set in code.) The first row of the content grid is the album art, album name, and artist. The second row is a ScrollViewer with an ItemsControl to display the songs:
Silverlight Project: MusicByComposer File: AlbumPage.xaml (excerpt)
Notice that the ItemsControl that displays the songs has its ItemsSource property set to the Songs collection of the Album property of AlbumInfo. This Songs property is of type SongCollection and contains objects of the XNA class Song. Each Song object in that collection is the source of a binding to the SongTitleControl class that I’ll show you soon.
AlbumPage.xaml also has an ApplicationBar for controlling the music player:
Silverlight Project: MusicByComposer File: AlbumPage.xaml (excerpt)
To display music from the music library you use the XNA MediaLibrary and related classes. To actually play that music you use the static XNA MediaPlayer class.
The MediaPlayer class plays either a Song object, or all the songs in a SongCollection, or all the songs in a SongCollection beginning at a particular index. Those are the three variations of the static MediaPlayer.Play method.
You cannot create a SongCollection object yourself. You must always obtain an immutable SongCollection from one of the other classes (such as Album). This means that it’s not a simple matter to let the user select a particular subset of an album, or to rearrange the tracks in some way. That would require the program to maintain its own list of Song objects, and to play them sequentially. I chose not to implement anything like that for this relatively simple demonstration program.
Besides Play, MediaPlayer also defines Pause, Resume, and Stop methods, as well as MovePrevious and MoveNext to move to the previous or next item in a SongCollection.
The crucial properties of MediaPlayer are all get-only:
From the ActiveSong property, you can obtain the Album object and other information associated with that song.
MediaPlayer also defines two events:
The code-behind file for AlbumPage is responsible for actually playing the album. But first take a look at the parts of the class that perform what might be considered the “housekeeping” chores:
Silverlight Project: MusicByComposer File: AlbumPage.xaml.cs (excerpt)
When being tombstoned, the OnNavigatedFrom method saves the two fields named composerInfoIndex and albumInfoIndex. These are the same two values that MainPage passes to AlbumPage in the navigation query string. The OnNavigatedTo method obtains those values either from the query string or the State property of the PhoneApplicationService to set the text of the PageTitle element (to display the name of the composer) and the DataContext of the page (so the bindings in AlbumPage.xaml work).
The OnNavigatedTo method also sets a handler for the MediaPlayer.MediaStateChanged event to maintain the correct icon image for the button that combines the functions of Play and Pause.
The event handler for that button turned out to be one of the trickier aspects of this class:
Silverlight Project: MusicByComposer File: AlbumPage.xaml.cs (excerpt)
Once a program calls MediaPlayer.Play on a Song or SongCollection object, the music keeps going even if the user exits that program or the phone shuts off the screen and locks the display. This is how it should be. The user wants to listen to the music regardless—even to the point where the battery completely runs down.
For that reason, a program should be very cautious about calling MediaPlayer.Stop, because calling that method will stop the music without allowing it to be resumed. I found no reason to call MediaPlayer.Stop at all in my program.
The user can also exit a program such as MusicByComposer and then return to it, and the user should also be allowed to navigate to different album pages without interfering with the playing music. Yet, the user should also have the option of switching from the music currently playing to the album currently in view. It seemed to me that these choices implied four different cases when the user presses the play/pause button:
In actual use, that logic seems to work well.
The only class you haven’t seen yet is SongTitleControl, an instance of which is used to display each individual song on the album. SongTitleControl is also responsible for highlighting the currently playing song and displaying the elapsed time and total duration of that song.
SongTitleControl just derives from UserControl and has a simple visual tree:
Silverlight Project: MusicByComposer File: SongTitleControl.xaml (excerpt)
In AlbumPage.xaml, the SongTitleControl contains a binding on its Song property, which means that SongTitleControl must define a dependency property named Song of the XNA type Song. Here’s the definition of the Song property and the property-changed handlers:
Silverlight Project: MusicByComposer File: SongTitleControl.xaml.cs (excerpt)
If Song is set to a non-null value, then an event handler is set for the MediaPlayer.ActiveSongChanged event. That event is handled here:
Silverlight Project: MusicByComposer File: SongTitleControl.xaml.cs (excerpt)
The Text property of txtblkTitle is handled with a binding in the XAML file. If the active song is the Song associated with this instance of SongTitleControl, then this TextBlock is highlighted with the accent color, the other TextBlock with the time information is made visible, and a DispatcherTimer is started:
Silverlight Project: MusicByComposer File: SongTitleControl.xaml.cs (excerpt)
That Tick handler simply formats the duration of the song and the current position for display purposes.
I thought about shifting some of this code to XAML, which would require defining a property for the elapsed time, as well as using the Visual State Manager for ActiveSong and NotActiveSong states, and then bringing in the StringFormatterConverter for formatting the two TimeSpan objects. But for this particular application the code file seemed the simpler of the two approaches.
Although you’ve seen many ways in which XAML is very powerful, sometimes code is really the right solution.
Much of the core of an XNA program is dedicated to moving sprites around the screen. Sometimes these sprites move under user control; at other times they move on their own volition as if animated by some internal vital force. Instead of moving real sprites, you can instead move some text, and text is what I’ll be sticking with for this entire chapter. The concepts and strategies involved in moving text around the screen are the same as those in moving sprites.
A particular text string seems to move around the screen when it’s given a different position in the DrawString method during subsequent calls of the Draw method in Game. In Chapter 1, you’ll recall, the textPosition variable was simply assigned a fixed value during the LoadContent method. This code puts the text in the center of the screen:
Most of the programs in this chapter recalculate textPosition during every call to Update so the text is drawn in a different location during the Draw method. Usually nothing fancy will be happening; the text will simply be moved from the top of the screen down to the bottom, and then back up to the top, and down again. Lather, rinse, repeat.
I’m going to begin with a rather “naïve” approach to moving text, and then refine it. If you’re not accustomed to thinking in terms of vectors or parametric equations, my refinements will at first seem to make the program more complex, but you’ll see that the program actually becomes simpler and more flexible.
For this first attempt at text movement, I want to try something simple. I’m just going to move the text up and down vertically so the movement is entirely in one dimension. All we have to worry about is increasing and decreasing the Y coordinate of textPosition.
If you want to play along, you can create a Visual Studio project named NaiveTextMovement and add the 14-point Segoe UI Mono font to the Content directory. The fields in the Game1 class are defined like so:
XNA Project: NaiveTextMovement File: Game1.cs (excerpt showing fields)
Nothing should be too startling here. I’ve defined both the SPEED and TEXT as constants. The SPEED is set at 240 pixels per second. The Boolean isGoingUp indicates whether the text is currently moving down the screen or up the screen.
The LoadContent method is very familiar from the program in Chapter 1 except that the viewport is saved as a field:
XNA Project: NaiveTextMovement File: Game1.cs (excerpt)
Notice that this textPosition centers the text horizontally but positions it at the top of the screen. As is usual with most XNA programs, all the real calculational work occurs during the Update method:
XNA Project: NaiveTextMovement File: Game1.cs (excerpt)
The GameTime argument to Update has two crucial properties of type TimeSpan: TotalGameTime and ElapsedGameTime. This “game time” might not exactly keep pace with real time. There are some approximations involved so that animations are smoothly paced. But it’s close. TotalGameTime reflects the length of time since the game was started; ElapsedGameTime is the time since the previous Update call. In general, ElapsedGameTime will always equal the same value—33-1/3 milliseconds reflecting the 30 Hz refresh rate of the phone’s video display.
You can use either TotalGameTime or ElapsedGameTime to pace movement. In this example, on the first call to Update, the textPosition has been calculated so the text is positioned on the upper edge of the screen and isGoingUp is false. The code increments textPosition.Y based on the product of SPEED (which is in units of pixels per second) and the total seconds that have elapsed since the last Update call, which will actually be 1/30th second.
It could be that performing this calculation moves the text too far—for example, partially beyond the bottom of the screen. This can be detected if the vertical text position plus the height of the text is greater than the Bottom property of the viewport heigh. In that case I calculate something I call excess. This is the distance that the vertical text position has exceeded the boundary of the display. I compensate with two times that—as if the text has bounced off the bottom and is now excess pixels above the bottom of the screen. At that point, isGoingUp is set to true.
The logic for moving up is (as I like to say) the same but completely opposite. The actual Draw override is simple:
XNA Project: NaiveTextMovement File: Game1.cs (excerpt)
The big problem with this naïve approach is that it doesn’t incorporate any mathematical tools that would allow us to do something a little more complex—for example, move the text diagonally rather than just in one dimension.
What’s missing from the NaiveTextMovement program is any concept of direction that would allow escaping from horizontal or vertical movement. What we need are vectors.
A vector is a mathematical entity that encapsulates both a direction and a magnitude. Very often a vector is symbolized by a line with an arrow. These three vectors have the same direction but different magnitudes:
These three vectors have the same magnitude but different directions:
These three vectors have the same magnitude and the same direction, and hence are considered to be identical:
A vector has no location, so even if these three vectors seem to be in different locations and, perhaps for that reason, somewhat distinct, they really aren’t in any location at all.
A point has no magnitude and no dimension. A point is just location. In two-dimensional space, a point is represented by a number pair (x, y) to represent a horizontal distance and a vertical distance from an origin (0, 0):
The figure shows increasing values of Y going down for consistency with the two-dimensional coordinate system in XNA. (XNA 3D is different.)
A vector has magnitude and dimension but no location., but like the point a vector is represented by the number pair (x, y) except that it’s usually written in boldface like (x, y) to indicate a vector rather than a point.
How can it be that two-dimensional points and two-dimensional vectors are both represented in the same way? Consider two points (x1, y1) and (x2, y2), and a line from the first point to the second:
That line has the same length and is in the same direction as a line from the origin to (x2 − x1, y2 − y1):
That magnitude and direction define the vector (x2 − x1, y2 − y1).
For that reason, XNA uses the same Vector2 structure to store two-dimensional coordinate points and two-dimensional vectors. (There is also a Point structure in XNA but the X and Y fields are integers.)
For the vector (x, y), the magnitude is the length of the line from the point (0, 0) to the point (x, y). You can determine the length of the line and the vector using the Pythagorean Theorem, which has the honor of being the most useful tool in computer graphics programming:
The Vector2 structure defines a Distance method that will perform this calculation for you. Vector2 also includes a DistanceSquared method, which despite the longer name, is actually a simpler calculation. It is very likely that the Vector2 structure implements DistanceSquared like this:
The Distance method is then based on DistanceSquared:
If you only need to compare magnitudes between two vectors, use DistanceSquared because it’s faster. In the context of working with Vector2 objects, the terms “length” and “distance” and “magnitude” can be used interchangeably.
Because you can represent points, vectors, and sizes with the same Vector2 structure, the structure provides plenty of flexibility for performing arithmetic calculations. It’s up to you to perform these calculations with some degree of intelligence. For example, suppose point1 and point2 are both objects of type Vector2 but you’re using them to represent points. It makes no sense to add those two points together, although Vector2 will allow you to do so. But it makes lot of sense to subtract one point from another to obtain a vector:
Vector2 vector = point2 − point1;
The operation just subtracts the X values and the Y values; the vector is in the direction from point1 to point2 and its magnitude is the distance between those points. It is also common to add a vector to a point:
Vector2 point2 = point1 + vector;
This operation obtains a point that is a certain distance and in a certain direction from another point. You can multiply a vector by a single number. If vector is an object of type Vector2, then
vector *= 5;
is equivalent to:
vector.X *= 5;
vector.Y *= 5;
The operation effectively increases the magnitude of the vector by a factor of 5. Similarly you can divide a vector by a number. If you divide a vector by the vector’s length, then the resultant length becomes 1. This is known as a normalized vector, and Vector2 has a Normalize method specifically for that purpose. The statement:
vector.Normalize();
is equivalent to
vector /= vector.Distance();
Often more conveniently, the static Vector.Normalize method creates a normalized vector from another vector:
Vector normalizedVector = Vector.Normalize(vector)
A normalized vector represents just a direction without magnitude, but it can be multiplied by a number to give it that length.
If vector has a certain length and direction, then –vector has the same length but the opposite direction. I’ll make use of this operation in the next program coming up.
The direction of a vector (x, y) is the direction from the point (0, 0) to the point (x, y). You can convert that direction to an angle with the second most useful tool in computer graphics programming, the Math.Atan2 method:
float angle = (float)Math.Atan2(vector.Y, vector.X);
Notice that the Y component is specified first. The angle is in radians—remember that there are 2π radians to 360 degrees—measured clockwise from the positive X axis.
If you have an angle in radians, you can obtain a normalized vector from it like so:
Vector2 vector = new Vector2((float)Math.Cos(angle),
(float)Math.Sin(angle));
The Vector2 structure has four static properties: Vector2.Zero returns a Vector2 object with both X and Y set to zero. That’s actually an invalid vector because it has no direction, but it’s useful for representing a point at the origin. Vector2.UnitX is the normalized vector (1, 0), i.e., pointing right in the direction of the positive X axis, and Vector2.UnitY is the vector (0, 1) pointing up Vector2.One is the point (1, 1) or the vector (1, 1), which is useful if you’re using the Vector2 for horizontal and vertical scaling factors (as I do later in this chapter.)
That little refresher course should provide enough knowledge to revamp the text-moving program to use vectors. This Visual Studio project is called VectorTextMovement. Here are the fields:
XNA Project: VectorTextMovement File: Game1.cs (excerpt showing fields)
The text will be moved between two points (called position1 and position2 in the LoadContent method), and the midPoint field will store the point midway between those two points. The pathVector field is the vector from position1 to position2, and pathDirection is pathVector normalized.
The LoadContent method calculates and initializes all these fields:
XNA Project: VectorTextMovement File: Game1.cs (excerpt)
The starting point is position1, which puts the text in the upper-right corner. The position2 point is the lower-left corner. The calculation of midPoint makes use of the static Vector2.Lerp method, which stands for Linear intERPolation. If the third argument is 0, Vector2.Lerp returns its first argument; if the third argument is 1, Vector2.Lerp returns its second argument, and for values in between, the method performs a linear interpolation. Lerp is probably overkill for calculating a midpoint: All that’s really necessary is to average the two X values and the two Y values.
Note that pathVector is the entire vector from position1 to position2 while pathDirection is the same vector normalized. The method concludes by initializing textPosition to position1. The use of these fields should become apparent in the Update method:
XNA Project: VectorTextMovement File: Game1.cs (excerpt)
The first time Update is called, textPosition equals position1 and pathDirection is a normalized vector from position1 to position2. This is the crucial calculation:
textPosition += pixelChange * pathDirection;
Multiplying the normalized pathDirection by pixelChange results in a vector that is in the same direction as pathDirection but with a length of pixelChange. The textPosition point is increased by this amount.
After a few seconds of textPosition increases, textPosition will go beyond position2. That can be detected when the length of the vector from midPoint to textPosition is greater than the length of half the pathVector. The direction must be reversed: pathDirection is set to the negative of itself, and textPosition is adjusted for the bounce.
Notice there’s no longer a need to determine if the text is moving up or down. The calculation involving textPosition and midPoint works for both cases. Also notice that the if statement performs a comparison based on LengthSquared but the calculation of excess requires the actual Length method. Because the if clause is calculated for every Update call, it’s good to try to keep the code efficient. The length of half the pathVector never changes, so I could have been even more efficient by storing Length or LengthSquared (or both) as fields.
The Draw method is the same as before:
XNA Project: VectorTextMovement File: Game1.cs (excerpt)
It is well known that when the math or physics professor says “Now let’s introduce a new variable to simplify this mess,” no one really believes that the discussion is heading towards a simpler place. But it’s very often true, and it’s the whole rationale behind parametric equations. Into a seemingly difficult system of formulas a new variable is introduced that is often simply called t, as if to suggest time. The value of t usually ranges from 0 to 1 (although that’s just a convention) and other variables are calculated based on t. Amazingly enough, simplicity often results.
Let’s think about the problem of moving text around the screen in terms of a “lap.” One lap consists of the text moving from the upper-right corner (position1) to the lower-left corner (position2) and back up to position1.
How long does that lap take? We can easily calculate the lap time based on the regular speed in pixels-per-second and the length of the lap, which is twice the magnitude of the vector called pathVector in the previous program, and which was calculated as position2 – position1.
Once we know the speed in laps per second, it should be easy to calculate a tLap variable ranging from 0 to 1, where 0 is the beginning of the lap and 1 is the end, at which point tLap starts over again at 0. From tLap we can get pLap, which is a relative position on the lap ranging from 0 (the top or position1) to 1 (the bottom or position2). From pLap, calculating textPosition should also be easy. The following table shows the relationship between these three variables:
Probably right away we can see that
textPosition = position1 + pLap * pathVector;
where pathVector (as in the previous program) equals position2 minus position1. The only really tricky part is the calculation of pLap based on tLap.
The ParametricTextMovement project contains the following fields:
XNA Project: ParametricTextMovement File: Game1.cs (excerpt showing fields)
The only new variables here are lapSpeed and tLap. As is now customary, most of the variables are set during the LoadContent method:
XNA Project: ParametricTextMovement File: Game1.cs (excerpt)
In the calculation of lapSpeed, the numerator is in units of pixels-per-second. The denominator is the length of the entire lap, which is two times the length of pathVector; therefore the denominator is in units of pixels-per-lap. Dividing pixels-per-second by pixels-per-lap give you a speed in units of laps-per-second.
One of the big advantages of this parametric technique is the sheer elegance of the Update method:
XNA Project: ParametricTextMovement File: Game1.cs (excerpt)
The tLap field is incremented by the lapSpeed times the elapsed time in seconds. The second calculation removes any integer part, so if tLap is incremented to 1.1 (for example), it gets bumped back down to 0.1.
I will agree the calculation of pLap from tLap—which is a transfer function of sorts—looks like an indecipherable mess at first. But if you break it down, it’s not too bad: If tLap is less than 0.5, then pLap is twice tLap, so for tLap from 0 to 0.5, pLap goes from 0 to 1. If tLap is greater than or equal to 0.5, tLap is doubled and subtracted from 2, so for tLap from 0.5 to 1, pLap goes from 1 back down to 0.
The Draw method remains the same:
XNA Project: ParametricTextMovement File: Game1.cs (excerpt)
There are some equivalent ways of performing these calculations. Instead of saving pathVector as a field you could save position2. Then during the Update method you would calculate textPosition using the Vector2.Lerp method:
textPosition = Vector2.Lerp(position1, position2, pLap);
In Update, instead of calculating an increment to tLap, you can calculate tLap directly from the TotalGameState of the GameTime argument and keep the variable local:
float tLap = (lapSpeed * (float)gameTime.TotalGameTime.TotalSeconds) % 1;
I want to change one statement in the ParametricTextMovement program and improve the program enormously by making the movement of the text more natural and fluid. Can it be done? Of course!
Earlier I showed you the following table:
In the ParametricTextMovement project I assumed that the transfer function from tLap to pLap would be linear, like so:
float pLap = tLap < 0.5f ? 2 * tLap : 2 - 2 * tLap;
But it doesn’t have to be linear. The VariableTextMovement project is the same as ParametricTextMovent except for the calculation of pLap, which is now:
float pLap = (1 - (float)Math.Cos(tLap * MathHelper.TwoPi)) / 2;
When tLap is 0, the cosine is 1 and pLap is 0. When tLap is 0.5, the argument to the cosine function is π radians (180 degrees). The cosine is –1, it’s subtracted from 1 and the result is divided by 2, so the result is 1. And so forth. But the difference is dramatic: The text now slows down as it approaches the corners and then speeds up as it moves away.
You can also try a couple others. This one slows down only when it reaches the bottom:
float pLap = (float)Math.Sin(tLap * Math.PI);
At the top of the screen it’s at full velocity and seems to ricochet off the edge of the screen. This one’s just the opposite and seems more like a bouncing ball slowed down by gravity at the top:
float pLap = 1 - Math.Abs((float)Math.Cos(tLap * Math.PI));
So you see that it’s true: Using parametric equations not only simplifies the code but makes it much more amenable to enhancements.
If you’ve glanced at the documentation of the SpriteBatch class, you’ve seen five other versions of the DrawString method. Until now I’ve been using this one:
DrawString(spriteFont, text, position, color);
There are also these two:
DrawString(spriteFont, text, position, color, rotation, origin, uniformScale, effects,
layerDepth);
DrawString(spriteFont, text, position, color, rotation, origin, vectorScale, effects,
layerDepth);
The other three versions of DrawString are the same except the second argument is a StringBuilder rather than a string. If you’re displaying text that frequently changes, you might want to switch to StringBuilder to avoid lots of memory allocations from the local heap.
The additional arguments to these longer versions of DrawString are primarily for rotating, scaling, and flipping the text. The exception is the last argument, which is a float value that indicates how multiple sprites should be arranged from front (0) to back (1). I won’t be using that argument in connection with DrawString.
The penultimate argument is a member of the SpriteEffects enumeration: The default is None. The FlipHorizontally and FlipVertically members both create mirror images but don’t change the location of the text:
The alternatives are really the same just flipped 180° from each other.
The argument labeled origin is a point with a default value of (0, 0). This argument is used for three related purposes:
If you use one of the longer versions of DrawString and aren’t interested in scaling, do not set that argument to zero! Text or a sprite scaled to a zero dimension will not show up on the screen and you’ll spend many hours trying to figure out what went wrong. (I speak from experience.) If you don’t want any scaling, set the argument to 1 or the static property Vector2.One.
The very first XNA program in this book calculated textPosition based on the dimensions of the screen and the dimensions of the text:
textPosition = new Vector2((viewport.Width - textSize.X) / 2,
(viewport.Height - textSize.Y) / 2);
The textPosition is the point on the screen where the upper-left corner of the text is to be aligned. With the longer versions of DrawString, some alternatives become possible. For example:
textPosition = new Vector2(viewport.Width / 2, viewport.Height / 2);
origin = new Vector2(textSize.X / 2, textSize.Y / 2);
Now the textPosition is set to the center of the screen and origin is set to the center of the text. This DrawString call uses those two variables to put the text in the center of the screen:
spriteBatch.DrawString(segoel4, TEXT, textPosition, Color.White,
0, origin, 1, SpriteEffects.None, 0);
The textPosition could be set to the lower-right corner of the screen, and origin could be set to the lower-right corner of the text:
textPosition = new Vector2(viedwport.Width, viewport.Height);
origin = new Vector2(textSize.X, textSize.Y);
Now the text will be positioned in the lower-right corner of the screen.
Rotation and scaling are always relative to a point. This is most obvious with rotation, as anyone who’s ever explored the technology of propeller beanies will confirm. But scaling is also relative to a point. As an object grows or shrinks in size, one point remains anchored; that’s the point indicated by the origin argument to DrawString. (The point could actually be outside the area of the scaled object.)
The ScaleTextToViewport project displays a text string in its center and expands it out to fill the viewport. As with the other programs, it includes a font. Here are the fields:
XNA Project: ScaleTextToViewport File: Game1.cs (excerpt showing fields)
The “lap” in this program is a complete cycle of scaling the text up and then back down to normal. During this lap, the scale field will vary between Vector2.One and maxScale.
The LoadContent method sets the textPosition field to the center of the screen, the origin field to the center of the text, and maxScale to the maximum scaling factor necessary to fill the screen with the text. All alignment, rotation, and scaling are based on both the center of the text and the center of the screen.
XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)
As in the previous couple programs, tLap repetitively cycles from 0 through 1. During this single lap, the pLap variable goes from 0 to 1 and back to 0, where 0 means unscaled and 1 means maximally scaled. The Vector2.Lerp method calculates scale based on pLap.
XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)
The Draw method uses one of the long versions of DrawString with the textPosition, angle, and origin calculated during LoadContent, and the scale calculated during Update:
XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)
As you run this program, you’ll notice that the vertical scaling doesn’t make the top and bottom of the text come anywhere close to the edges of the screen. The reason is that MeasureString returns a vertical dimension based on the maximum text height for the font, which includes space for descenders, possible diacritical marks, and a little breathing room as well.
It should also be obvious that you’re dealing with a bitmap font here:
The display engine tries to smooth out the jaggies but it’s debatable whether the fuzziness is an improvement. If you need to scale text and maintain smooth vector outlines, that’s a job for Silverlight. Or, you can start with a large font size and always scale down.
Let’s conclude this chapter with two programs that rotate text.
It would be fairly simple to write a program that just rotates text around its center, but let’s try something just a little more challenging. Let’s gradually speed up the rotation and then stop it when a finger touches the screen. After the finger is released, the rotation should start up slowly again and then get faster. As the speed in revolutions per second approaches the refresh rate of the video display (or some integral fraction thereof), the rotating text should seem to slow down, stop, and reverse. That will be fun to see as well.
A little background about working with acceleration: One of the most common forms of acceleration we experience in day-to-day life involves objects in free-fall. In a vacuum on the surface of the Earth, the effect of gravity produces an acceleration of a constant 32 feet per second per second, or, as it’s often called, 32 feet per second squared:
The seemingly odd units of “feet per second per second” really means that every second, the velocity increases by 32 feet per second. At any time t in seconds, the velocity is given by the simple formula:
v(t) = at
where a is 32 feet per second squared. When the acceleration in units of feet per second squared is multiplied by a time, the result has units of feet per second, which is a velocity. At 0 seconds, the velocity is 0. At 1 second the velocity is 32 feet per second. At 2 seconds the velocity is 64 feet per second, and so forth.
The distance an object in free fall travels is given by the formula:
x(t) = ½at2
Rudimentary calculus makes this family of formulas comprehensible: The velocity is the derivative of the distance, and the acceleration is the derivative of the velocity. In this formula, the acceleration is multiplied by a time squared, so the units reduce to feet. At the end of one second the velocity of an object in free fall is up to 32 feet per second but because the free-fall started at a zero velocity, the object has only traveled a distance of 16 feet. By the end of two seconds, it’s gone 64 feet.
In the TouchToStopRotation project, velocity is in units of revolutions per second and acceleration in units of revolutions per second squared. The program requires an additional using directive for System.Text.
XNA Project: TouchToStopRevolution File: Game1.cs (excerpt showing fields)
The MAXSPEED constant is set at 30 revolutions per second, which is the same as the frame rate. As the spinning text reaches that speed, it should appear to stop. The ACCELERATION is 1 revolution per second squared, which means that every second, the velocity increases by 1 revolution per second. At the end of the first second, the speed is 1 revolution per second. At the end of the second second, the speed is 2 revolutions per second. Velocity gets to MAXSPEED at the end of 30 seconds.
The fields include a speed variable and a StringBuilder, which I’ll use for displaying the current velocity on the screen at statusPosition. The LoadContent method prepares most of these fields:
XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)
The Update method increases speed based on the acceleration, and then increases angle based on the new speed value.
XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)
If TouchPanel.GetState() returns a collection containing anything—that is, if anything is touching the screen—then speed is set back to zero. Moreover, the next time Update is called and something is still touching the screen, then SuppressDraw is called. So by touching the screen you’re not only inhibiting the rotation of the text, but you’re saving power as well.
Also notice the use of StringBuilder to update the status field. The Draw method is similar to those in previous programs but with two calls to DrawString:
XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)
For the final program in this chapter, I went back to a default origin of the upper-left corner of the text. But I wanted that upper-left corner of the text string to crawl around the inside perimeter of the display, and I also wanted the text to be fully visible at all times. That implies that the text rotates 90 degrees as it makes it way past each corner. Here’s the text maneuvering around the lower-right corner of the display:
The program is called TextCrawl, and the fields should look mostly familiar at this point:
XNA Project: TextCrawl File: Game1.cs (excerpt showing fields)
The tLap variable goes from 0 to 1 as the text makes its way counter-clockwise around the perimeter. To help figure out what side it’s currently on, I also define tCorner. If tLap is less than tCorner, the text is on the left edge of the display; if tLap is greater than tCorner but less than 0.5, it’s on the bottom of the display, and so forth. The LoadContent method is nothing special:
XNA Project: TextCrawl File: Game1.cs (excerpt)
The Update method is the real monster, I’m afraid. The objective here is to calculate a textPosition and angle for the eventual call to DrawString.
XNA Project: TextCrawl File: Game1.cs (excerpt)
As I was developing this code, I found it convenient to concentrate on getting the first three statements in each if and else block working correctly. These statements simply move the upper-left corner of the text string counter-clockwise around the inside perimeter of the display. The initial calculation of angle ensures that the top of the text is flush against the edge. Only when I got all that working was I ready to attack the code that alters angle for the movement around the corners. A couple simple drawings convinced me that the inverse cosine was the right tool for the job. After all that work in Update, the Draw method is trivial:
XNA Project: TextCrawl File: Game1.cs (excerpt)
In the next chapter you’ll see how to make sprites travel along curves.
I promised that learning how to use XNA to move text around the screen would provide a leg up in the art of moving regular bitmap sprites. This relationship becomes very obvious when you begin examining the Draw methods supported by the SpriteBatch. The Draw methods have almost the same arguments as DrawString but work with bitmaps rather than text. In this chapter I’ll examine techniques for moving and turning sprites, particularly along curves.
Both the Game class and the SpriteBatch class have methods named Draw. Despite the identical names, the two methods are not genealogically related through a class hierarchy. In a class derived from Game you override the Draw method so that you can call the Draw method of SpriteBatch. This latter Draw method comes in seven different versions. The simplest one is:
Draw(Texture2D texture, Vector2 position, Color color)
The first argument is a Texture2D, which is basically a bitmap. A Texture2D is potentially a little more complex than an ordinary bitmap because it could have multiple “mipmap” levels. (These represent the same image but at different resolutions to allow the image to be displayed at a variety of sizes.) The Texture2D objects that I’ll be discussing there are plain old bitmaps. Professional game developers often use specialized tools to create these bitmaps, but I’m going to use Paint because it’s readily available. After you create these bitmaps, you add them to the content of the XNA project, and then load them into your program the same way you load a font.
The second argument to Draw indicates where the bitmap is to appear on the display. By default, the position argument indicates the point on the display where the upper-left corner of the texture is to appear.
The Color argument is used a little differently than with DrawString because the texture itself can contain color information. The argument is referred to in the documentation as a “color channel modulation,” and it serves as a filter through which to view the bitmap.
Conceptually, every pixel in the bitmap has a one-byte red value, a one-byte green value, and a one-byte blue value (ignoring alpha for the moment). When the bitmap is displayed by Draw, these red, green, and blue colors values are effectively multiplied by the one-byte red, green, and blue values of the Color argument to Draw, and the results are divided by 255 to bring them back in the range of 0 to 255. That’s what’s used to color that pixel.
For example, suppose your texture has lots of color information and you wish all those colors to be preserved on the display. Use a value of Color.White in the Draw method.
Now suppose you want to draw that same texture but darker. Perhaps the sun is setting in your game world. Use some gray color value in the Draw method. The darker the gray, the darker the texture will appear. If you use Color.Black, the texture will appear as a silhouette with no color.
Suppose your texture is all white and you wish to display it as blue. Use Color.Blue in the Draw method. You can display the same all-white texture in a variety of colors. (I’ll do precisely that in the first sample program in this chapter.)
If your texture is yellow (a combination of red and green) and you use Color.Green in the Draw method, it will be displayed as green. If you use Color.Red in the Draw method it will be displayed as red. If you use Color.Blue in the Draw method, it will turn black. The argument to Draw can only attenuate or suppress color. You cannot get colors that aren’t in the texture to begin with.
The second version of the Draw method is:
Draw(Texture2D texture, Rectangle destination, Color color)
Instead of a Vector2 to indicate the position of the texture, you use a Rectangle, which is the combination of a point (the upper-left corner), a width, and a height. If the width and height of the Rectangle don’t match the width and height of the texture, the texture will be scaled to the size of the Rectangle. The original aspect ratio is ignored.
If you only want to display a rectangular subset of the texture, you can use one of the two slightly expanded versions of the Draw method:
Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color)
Draw(Texture2D texture, Rectangle destination, Rectangle? source, Color color)
The third arguments are nullable Rectangle objects. If you set this argument to null, the result is the same as using one of the first two versions of Draw. Otherwise you can specify a pixel subset of the image.
The next two versions of Draw have five additional arguments that you’ll recognize from the DrawString methods:
As with DrawString, the rotation angle is in radians, measured clockwise. The origin is a point in the texture that is to be aligned with the position argument. You can scale uniformly with a single float or differently in the horizontal and vertical directions with a Vector2. The SpriteEffects enumeration lets you flip an image horizontally or vertically to get its mirror image. The last argument allows overriding the defaults for layering multiple textures on the screen.
Finally, there’s also a slightly shorter longer version where the second argument is a destination rectangle:
spriteBatch.Draw(Texture2D texture, Rectangle destination, Rectangle? source, Color color,
float rotation, Vector2 origin, SpriteEffects effects, float depth)
Notice there’s no separate scaling argument because scaling in this one is handled through the destination argument.
Within the Draw method of your Game class, you use the SpriteBatch object like so:
spriteBatch.Begin();
spriteBatch.Draw ...
spriteBatch.End();
Within the Begin and End calls, you can have any number of calls to Draw and DrawString. The Draw calls can reference the same texture. You can also have multiple calls to Begin followed by End with Draw and DrawString in between.
If you’re tired of “hello, world” programs by now, I’ve got some bad news. But this time I’ll compose a very blocky rendition of the word “HELLO” using two different bitmaps—a vertical bar and a horizontal bar. The letter “H” will be two vertical bars and one horizontal bar. The “O” at the end will look like a rectangle.
And then, when you tap the screen, all 15 bars will fly apart in random directions and then come back together. Sound like fun?
If you were creating the FlyAwayHello program in scratch, the first step would be to add content to the Content directory—not a font this time but two bitmaps called HorzBar.png and VertBar.png. You can create these right in Visual Studio or in Paint. By default, Paint creates an all-white bitmap for you. That’s ideal! All I want you to do is change the size. Click the Paint Button menu (upper-left below the title bar) and select Properties. Change the size to 45 pixels wide and 5 pixels high. (The exact dimensions really don’t matter; the program is coded to be a little flexible.) It’s most convenient to save the file right in the Content directory of the project under the name HorzBar.png. Now change the size to 5 pixels wide and 75 pixels high. Save under the name VertBar.png.
Although the bitmaps are now in the proper directory, the XNA project doesn’t know of their existence. In Visual Studio, right click the Content directory and choose Add Existing Item. You can select both PNG files and add them to the project.
I’m going to use a little class called SpriteInfo to keep track of the 15 textures required for forming the text. If you’re creating the project from scratch, right-click the project name, and select Add and then New Item (or select Add New Item from the main Project menu). From the dialog box select Class and give it the name SpriteInfo.cs.
XNA Project: FlyAwayHello File: SpriteInfo.cs (complete)
The required constructor stores a Texture2D along with positioning information. This is how each sprite is initially positioned to spell out the word “HELLO.” Later in the “fly away” animation, the program sets the PositionOffset and MaximumRotation properties. The Position and Rotation properties perform calculations based on the static InterpolationFactor, which can range from 0 to 1.
Here are the fields of the Game1 class:
XNA Project: FlyAwayHello File: Game1.cs (excerpt showing fields)
This program initiates an animation only when the user taps the screen, so I’m handling the timing just a little differently than in earlier programs, as I’ll demonstrate in the Update method.
The LoadContent method loads the two Texture2D objects using the same generic Load method that previous programs used to load a SpriteFont. Enough information is now available to create and initialize all SpriteInfo objects:
XNA Project: FlyAwayHello File: Game1.cs (excerpt)
The Update method is responsible for keeping the animation going. If the isAnimationGoing field is false, it checks for a new finger pressed on the screen.
XNA Project: FlyAwayHello File: Game1.cs (excerpt)
When the animation begins, the animationStartTime is set from the TotalGameTime property of GameTime. During subsequent calls, Update compares that value with the new TotalGameTime and calculates an interpolation factor. The InterpolationFactor property of SpriteInfo is static so it need be set only once to affect all the SpriteInfo instances. The Draw method loops through the SpriteInfo objects to access the Position and Rotation properties:
XNA Project: FlyAwayHello File: Game1.cs (excerpt)
The Draw call also uses SpriteInfo.InterpolationFactor to interpolate between blue and red for coloring the bars. Notice that the Color structure also has a Lerp method. The text is normally blue but changes to red as the pieces fly apart.
That call to Draw could actually be part of SpriteInfo. SpriteInfo could define its own Draw method with an argument of type SpriteBatch, and then pass its own Texture2D, Position, and Rotation properties to the Draw method of the SpriteBatch:
The loop in the Draw override of the Game1 glass then looks like this:
This is a common technique and allows SpriteInfo to have fewer public properties.
For the remainder of this chapter I want to focus on techniques to maneuver a sprite around some kind of path. To make it more “realistic,” I commissioned my wife Deirdre to make a little race-car in Paint:
The car is 48 pixels tall and 29 pixels in width. Notice the magenta background: If you want part of an image to be transparent in an XNA scene, you can use a 32-bit bitmap format that supports transparency, such as PNG. Each pixel in this format has 8-bit red, green, and blue components but also an 8-bit alpha channel for transparency. (I’ll explore this format in the next chapter.) The Paint program in Windows does not support bitmap transparency, alas, but you can use magenta instead. In Paint, create magenta by setting the red and blue values to 255 and green to 0.
In each of the projects in this chapter, this image is stored as the file car.png as part of the project’s content. The first project is called CarOnRectangularCourse and demonstrates a rather clunky approach to driving a car around the perimeter of the screen. Here are the fields:
XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt showing fields)
The turnPoints array stores the four points near the corners of the display where the car makes a sharp turn. Calculating these points is one of the primary activities of the LoadContent method, which also loads the Texture2D and initializes other fields:
XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)
I use the carCenter field as the origin argument to the Draw method, so that’s the point on the car that aligns with a point on the course defined by the four members of the turnPoints array. The margin value makes this course one car width from the edge of the display; hence the car is really separated from the edge of the display by half its width.
I described this program as “clunky” and the Update method proves it:
XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)
This is the type of code that screams out “There’s got to be a better way!” Elegant it is not, and not very versatile either. But before I take a stab at a more flexible approach, here’s the entirely predictable Draw method that incorporates the updated position and rotation values calculated during Update:
XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)
The code in the previous program will work for any rectangle whose corners are stored in the turnPoints array, but it won’t work for any arbitrary collection of four points, or more than four points. In computer graphics, a collection of points that describe a series of straight lines is often called a polyline, and it would be nice to write some code that makes the car travel along any arbitrary polyline.
The next project, called CarOnPolylineCourse, includes a class named PolylineInterpolator that does precisely that. Let me show you the Game1 class first, and then I’ll describe the PolylineInterpolator class that makes it all possible. Here are the fields:
XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt showing fields)
You’ll notice a speed in terms of laps, and the instantiation of the mysterious PolylineInterpolator class. The LoadContent method is very much like that in the previous project except instead of adding points to an array called turnPoints, it adds them to a Vertices property of the PolylineInterpolator class:
XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)
Also notice that the method adds the beginning point in again at the end, and that these points don’t exactly describe the same course as the previous project. The previous project caused the car to travel from the upper-left to the upper-right down to lower-right and across to the lower-left and back up to upper-left. The order here goes from upper-left to upper-right but then diagonally down to lower-left and across to lower-right before another diagonal trip up to the beginning. This is precisely the kind of versatility the previous program lacked.
As with the programs in the last chapter that used parametric equations, the Update method is now so simple it makes you want to weep:
XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)
As usual, t is calculated to range from 0 to 1, where 0 indicates the beginning of the course in the upper-left corner of the screen, and t approaches 1 as it’s heading towards that initial position again. This t is passed directly to the GetValue method of PolylineInterpolator, which returns a Vector2 value somewhere along the polyline.
As an extra bonus, the last argument of GetValue allows obtaining an angle value that is the tangent of the polyline at that point. This angle is measured clockwise relative to the positive X axis. For example, when the car is travelling from the upper-left corner to the upper-right, angle is 0. When the car is travelling from the upper-right corner to the lower-left, the angle is somewhere between π/2 and π, depending on the aspect ratio of the screen. The car in the bitmap is facing up so it needs to be rotated an additional π/2 radians.
The Draw method is the same as before:
XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)
Here’s the car heading towards the lower-left corner:
For demonstration purposes, the PolylineInterpolator class sacrifices efficiency for simplicity. Here’s the entire class:
XNA Project: CarOnPolylineCourse File: PolylineInterpolator.cs (complete)
The single Vertices property allows you to define a collection of Vector2 objects that define the polyline. If you want the polyline to end up where it started, you need to explicitly duplicate that point. All the work occurs during the GetValue method. At that time, the method determines the total length of the polyline. It then loops through the vertices and accumulates their lengths, finding the pair of vertices whose accumulated length straddles the t value. These are passed to the private GetValue method to perform the linear interpolation using Vector2.Lerp, and to calculate the tangent angle with the graphics programmer’s second BFF, Math.Atan2.
But wait: There’s also a Boolean argument to GetValue that causes the method to use Vector2.SmoothStep rather than Vector2.Lerp. You can try out this alternative by replacing this call in the Update method of Game1:
position = polylineInterpolator.GetValue(t, false, out angle);
with this one:
position = polylineInterpolator.GetValue(t, true, out angle);
The “smooth step” interpolation is based on a cubic, and causes the car to slow down as it approaches one of the vertices, and speed up afterwards. It still makes an abrupt and unrealistic turn but the speed change is quite nice.
What I don’t like about the PolylineInterpolator class is its inefficiency. GetValue needs to make several calls to the Length method of Vector2, which of course involves a square-root calculation. It would be nice for the class to retain the total length and the accumulated length at each vertex so it could simply re-use that information on successive GetValue calls. As written, the class can’t do that because it has no knowledge when Vector2 values are added to or removed from the Vertices collection. One possibility is to make that collection private, and to only allow a collection of points to be submitted in the class’s constructor. Another approach is to replace the List with an ObservableCollection, which provides an event notification when objects are added and removed.
The most unrealistic behavior of the previous program involves the turns. Real cars slow down to turn around corners, but they actually travel along a curved path to change direction. To make the previous program more realistic, the corners would have to be replaced by curves. These curves could be approximated with polylines, but the increasing number of polylines would then require PolylineInterpolator to be restructured for better performance.
Instead, I’m going to go off on a somewhat different tangent and drive the car around a traditional oval course, or to express it more mathematically, an elliptical course.
Let’s look at some math. A circle centered on the point (0, 0) with a radius of R consists of all points (x, y) where
x2 + y2 = R2
An ellipse has two radii. If these are parallel to the horizontal and vertical axes, they are sometimes called Rx and Ry, and the ellipse formula is:
For our purposes, it is more convenient to represent the ellipse in the parametric form. In these two equations, x and y are functions of the angle α, which ranges from 0 to 2π:
When the ellipse is centered around the point (Cx, Cy), the formulas become:
If we also want to introduce a variable t, where t goes from 0 to 1, the formulas are:
x(t) = Cx + Rx cos(2πt)
y(t) = Cy + Ry sin(2πt)
And these will be ideal for our purpose. As t goes from 0 to 1, the car goes around the lap once. But how do we rotate the car so it appears to be travelling in a tangent to this ellipse? For that job, the differential calculus comes to the rescue. First, take the derivatives of the parametric equations:
x′(t) = –Rx sin(2πt)
y′(t) = Ry cos(2πt)
In physical terms, these equations represent the instantaneous change in direction in the X direction and Y direction, respectively. To turn that into a tangent angle, simply apply the ever useful Math.Atan2.
And now we’re ready to code. Here are the fields:
XNA Project: CarOnOvalCourse File: Game1.cs (excerpt showing fields)
The fields include the three items required for the parametric equations for the ellipse: the center and the two radii. These are determined during the LoadContent method based on the dimensions of the available area of the screen:
XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)
Notice that the Update method below calculates two angles. The first, called ellipseAngle, is based on t and determines where on the ellipse the car is located. This is the angle passed to the parametric equations for the ellipse, to obtain the position as a combination of x and y:
XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)
The second angle that Update calculates is called rotation. This is the angle that governs the orientation of the car. The dxdt and dydt variables are the derivatives of the parametric equations that I showed earlier. The Math.Atan2 method provides the rotation angle relative to the positive X axis, and this must be rotated another 90 degrees for the original orientation of the bitmap.
By this time, you can probably recite Draw by heart:
XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)
For movement along curves that are not quite convenient to express in parametric equations, XNA itself provides a generalized solution based around the Curve and CurveKey classes defined in the Microsoft.Xna.Framework namespace.
The Curve class contains a property named Keys of type CurveKeyCollection, a collection of CurveKey objects. Each CurveKey object allows you to specify a number pair of the form (Position, Value). Both the Position and Value properties are of type float. Then you pass a position to the Curve method Evaluate, and it returns an interpolated value.
But it’s all rather confusing because—as the documentation indicates—the Position property of CurveKey is almost always a time, and the Value property is very often a position, or more accurately, one coordinate of a position. If you want to use Curve to interpolate between points in two-dimensional space, you need two instances of Curve—one for the X coordinate and the other for Y. These Curve instances are treated very much like parametric equations.
Suppose you want the car to go around a path that looks like an infinity sign, and let’s assume that we’re going to approximate the infinity sign with two adjacent circles. (The technique I’m going to show you will allow you to move those two circles apart at a later time if you’d like.)
Draw dots every 45 degrees on these two circles:
If the radius of each circle is 1 unit, the entire figure is 4 units wide and 2 units tall. The X coordinates of these dots (going from left to right) are the values 0, 0.293, 1, 0.707, 2, 2.293, 3, 3.707, and 4, and the Y coordinates (going from top to bottom) are the values 0, 0.293, 1, 1.707, and 2. The value 0.707 is simply the sine and cosine of 45 degrees, and 0.293 is one minus that value.
Let’s begin at the point on the far left, and let’s travel clockwise around the first circle. At the center of the figure, let’s switch to going counter-clockwise around the second circle to form an infinity sign and finish with the same dot we started with. The X values are:
0, 0.293, 1, 1.707, 2, 2.293, 3, 3.707, 4, 3.707, 3, 2.293, 2, 1.707, 1, 0.293, 0
If we’re using values of t ranging from 0 to 1 to drive around the infinity sign, then the first value corresponds to a t of 0, and the last (which is the same) to a t of 1. For each value, t is incremented by 1/16 or 0.0625. The Y values are:
1, 0.293, 0, 0.293, 1, 1.707, 2, 1.707, 1, 0.293, 0, 0.293, 1, 1.707, 2, 1.707, 1
We are now ready for some coding. Here are the fields for the CarOnInfinityCourse project:
XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt showing fields)
Notice the two Curve objects, one for X coordinates and the other for Y. Because the initialization of these objects use precisely the coordinates I described above and don’t require accessing any resources or program content, I decided to use the Initialize override for this work.
XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)
The xValues and yValues arrays only have 16 values; they don’t include the last point that duplicates the first. Rather oddly (you may think), the for loop goes from −1 through 17 but the modulo 16 operation ensures that the arrays are indexed from 0 through 15. The end result is that the Keys collections of xCurve and yCurve get coordinates associated with t values of –0.0625, 0, 0.0625, 0.0125, ..., 0.875, 0.9375, 1, and 1.0625, which are apparently two more points than is necessary to make this thing work right.
These extra points are necessary for the ComputeTangents calls following the for loop. The Curve class performs a type of interpolation called a cubic Hermite spline, also called a cspline. Consider two points pt1 and pt2. The cspline interpolates between these two points based not only on pt1 and pt2 but also on assumed tangents of the curve at pt1 and pt2. You can specify these tangents to the Curve object yourself as part of the CurveKeys objects, or you can have the Curve object calculate tangents for you based on adjoining points. That is the approach I’ve taken by the two calls to ComputeTangents. With an argument of CurveTangent.Smooth, the ComputeTangents method uses not only the two adjacent points, but the points on either side. It’s really just a simple weighted average but it’s better than the alternatives.
The Curve and CurveKey classes have several other options, but the approach I’ve taken seemed to offer the best results with the least amount of work. (And isn’t that what programming is all about?)
The LoadContent method needs to load the car and get its center point:
XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)
Now it’s time for Update. The method calculates t based on TotalGameTime. The Curve class defines a method named Evaluate that can accept this t value directly; this is how the program obtains interpolated X and Y coordinates. However, all the data in the two Curve objects are based on a maximum X coordinate of 4 and a Y coordinate of 2. For this reason, Update calls a little method I’ve supplied named GetValue that scales the values based on the size of the display.
XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)
After calculating the position field, we have a little bit of a problem because the Curve class is missing an essential method: the method that provides the tangent of the spline. Tangents are required by the Curve class to calculate the spline, but after the spline is calculated, the class doesn’t provide access to the tangents of the spline itself!
That’s the purpose of the other four calls to GetValue. Small values are added to and subtracted from t to approximate the derivative and allow Math.Atan2 to calculate the rotation angle.
Once again, Draw is trivial:
XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)
If you want the Curve class to calculate the tangents used for calculating the spline (as I did in this program) it is essential to give the class sufficient points, not only beyond the range of points you wish to interpolate between, but enough so that these calculated tangents are more or less accurate. I originally tried defining the infinity course with points on the two circles every 90 degrees, and it didn’t work well at all.
The most common way for an XNA program to obtain a Texture2D object is by loading it as program content. In Chapter 4 you also saw how a program can create a Texture2D from a Stream object using the static Texture2D.FromSteam method. This Stream object can reference a bitmap downloaded over the internet, or a picture stored in the user’s photo library, or a photo just snapped by the phone’s camera.
It is also possible to create a Texture2D object entirely in code using this constructor:
Texture2D texture = new Texture2D(this.GraphicsDevice, width, height);
The width and height arguments are integers that indicate the desired size of the Texture2D in pixels; this size cannot be changed after the Texture2D is created. The total number of pixels in the bitmap is easily calculated as width * height. The result is a bitmap filled with zeros. So now the big question is: How do you get actual stuff onto the surface of this bitmap?
You have two ways:
You can use these two techniques separately, or in combination with each other. You can also begin with an existing image, and modify it using these techniques.
Strictly speaking, you actually can’t use the first of the two techniques with a Texture2D object. You need to create an instance of a class that derives from Texture2D called RenderTarget2D:
RenderTarget2D renderTarget = new RenderTarget2D(this.GraphicsDevice, width, height);
As with any code that references the GraphicsDevice property of the Game class, you’ll want to wait until the LoadContent method to create any Texture2D or RenderTarget2D objects your program needs. You’ll usually be storing the objects in fields so you can display them later on in the Draw override.
The idea behind the RenderTarget2D is fairly simple but understanding it requires some background:
As you know, normally during the Draw override of the Game class, your program draws to the video display. You can set the entire video display to a particular color by calling the Clear method of the GraphicsDevice object associated with your game:
this.GraphicsDevice.Clear(Color.CornflowerBlue);
You can draw Texture2D objects and text strings on the display using a SpriteBatch object:
spriteBatch.Begin();
spriteBatch.Draw(...);
spriteBatch.DrawString(...);
spriteBatch.End();
This SpriteBatch object is routinely created in the LoadContent override. It is associated with the GraphicsDevice object because a GraphicsDevice object is required in its constructor:
spriteBatch = new SpriteBatch(this.GraphicsDevice);
The calls to the Clear method of the GraphicsDevice and the Draw and DrawString methods of SpriteBatch actually draw on a bitmap called the back buffer, the contents of which are then transferred to the video display. You can discover some information about the back buffer through the PresentationParameters property of GraphicsDevice. If your program is running on a large-screen phone and you haven’t indicated that you want a non-default size for the back buffer, you’ll discover that the BackBufferWidth and BackBufferHeight properties of PresentationParameters indicate 800 and 480, respectively.
PresentationParameters also defines BackBufferFormat property set to set to a member of the SurfaceFormat enumeration. The format indicates both the number of bits in each pixel and how these bits represent color. For Windows Phone 7 devices, you’ll discover that this BackBufferFormat property equals SurfaceFormat.Bgr565. This means that each pixel is 16 bits wide with 5 bits used for red and blue, and 6 bits for green in the following bit configuration:
RRRRRGGGGGGBBBBB
Green gets an extra bit because green is in the center of the spectrum of electromagnetic radiation that is visible to the human eye—the primary to which humans are most sensitive.
If you’ve ever seen any color gradients displayed on a Windows Phone 7 device—and if not, there’s one coming up in this chapter—you’ve probably noticed that they aren’t as smooth as gradients on common desktop displays. Video display adapters in common use on the desktop use 8 bits for each primary. The 5 or 6 bits for each primary in the Windows Phone 7 video display is insufficient to represent the color gradations that most humans can perceive. It is very likely that Windows Phone devices of the future will move beyond 16-bit color.
It is possible for an XNA program to temporarily replace the normal back buffer in the GraphicsDevice object with an object of type RenderTarget2D:
this.GraphicsDevice.SetRenderTarget(renderTarget);
You can then draw on this RenderTarget2D in the same way you draw on the back buffer. After you’re finished drawing, you disassociate the RenderTarget2D from the GraphicsDevice with another call to SetRenderTarget with a null argument:
this.GraphicsDevice.SetRenderTarget(null);
Now the GraphicsDevice is back to normal.
If you’re creating a RenderTarget2D that remains the same for the duration of the program, you’ll generally perform this entire operation during the LoadContent override. If the RenderTarget2D needs to change, you can also draw on the bitmap during the Update override. Because RenderTarget2D derives from Texture2D you can display the RenderTarget2D on the screen during your Draw override just as you display any other Texture2D image.
Of course, you’re not limited to one RenderTarget2D object. If you have a complex series of images that form some kind of animation, you can create a series of RenderTarget2D objects that you then display in sequence as a kind of movie.
Suppose you want to display something that looks like this:
That’s a bunch of text strings all saying “Windows Phone 7” rotated around a center point with colors that vary between cyan and yellow. Of course, you can have a loop in the Draw override that makes 32 calls to the DrawString method of SpriteBatch, but if you assemble those text strings on a single bitmap, you can reduce the Draw override to just a single call to the Draw method of SpriteBatch. Moreover, it becomes easier to treat this assemblage of text strings as a single entity, and then perhaps rotate it like a pinwheel.
That’s the idea behind the PinwheelText program. The program’s content includes the 14-point Segoe UI Mono SpriteFont, but a SpriteFont object is not included among the program’s fields, nor is the text itself:
XNA Project: PinwheelText File: Game1.cs (excerpt showing fields)
The LoadContent method is the most involved part of the program, but it only results in setting the screenCenter, renderTarget, and textureCenter fields. The segoe14 and textSize variables set early on in the method are normally saved as fields but here they’re only required locally:
XNA Project: PinwheelText File: Game1.cs (excerpt)
The RenderTarget2D is created with a width and height that is twice the width of the text string. The RenderTarget2D is set into the GraphicsDevice with a call to SetRenderTarget and then cleared to a transparent color with the Clear method. At this point a sequence of calls on the SpriteBatch object renders the text 32 times on the RenderTarget2D. The LoadContent call concludes by restoring the GraphicsDevice to the normal back buffer.
The Update method calculates a rotation angle for the resultant bitmap so it rotates 360° every eight seconds:
XNA Project: PinwheelText File: Game1.cs (excerpt)
As promised, the Draw override can then treat that RenderTarget2D as a normal Texture2D in a single Draw call on the SpriteBatch. All 32 text strings seem to rotate in unison:
XNA Project: PinwheelText File: Game1.cs (excerpt)
The FlyAwayHello program in the previous chapter loaded two white bitmaps as program content. That wasn’t really necessary. The program could have created those two bitmaps as RenderTarget2D objects and then just colored them white with a few simple statements. In FlyAwayHello you can replace these two statements in LoadContent:
Texture2D horzBar = Content.Load<Texture2D>("HorzBar");
Texture2D vertBar = Content.Load<Texture2D>("VertBar");
with these:
Yes, I know there’s more code involved, but you no longer need the two bitmap files as program content, and if you ever wanted to change the sizes of the bitmaps, doing it in code is trivial.
The DragAndDraw program coming up lets you draw multiple solid-color rectangles by dragging your finger on the screen. Every time you touch and drag along the screen a new rectangle is drawn with a random color. Yet the entire program uses only one RenderTarget2D object containing just one white pixel!
That single RenderTarget2D object is stored as a field, along with a collection of RectangleInfo objects that will describe each drawn rectangle:
XNA Project: DragAndDraw File: Game1.cs (excerpt showing fields)
Notice also that the bottom of the Game1 constructor enables two touch gestures, FreeDrag and DragComplete. These are gestures that correspond to touching the screen, dragging the finger (whatever which way), and lifting.
The LoadContent method creates the tiny RenderTarget2D object and colors it white:
XNA Project: DragAndDraw File: Game1.cs (excerpt)
The Update method handles the drag gestures. As you might recall from Chapter 3, the static TouchPanel class supports both low-level touch input and high-level gesture recognition. I’m using the gesture support in this program.
If gestures are enabled, then gestures are available when TouchPanel.IsGestureAvailable is true. You can then call TouchPanel.ReadGesture to return an object of type GestureSample. TouchPanel.IsGestureAvailable returns false when no more gestures are available during this particular Update call.
For this program, the GestureType property of GestureSample will be one of the two enumeration members, GestureType.FreeDrag or GestureType.DragComplete. The FreeDrag type indicates that the finger has touched the screen or is moving around the screen. DragComplete indicates that the finger has lifted.
For the FreeDrag gesture, two other properties of GestureSample are valid: Position is a Vector2 object that indicates the current position of the finger relative to the screen; Delta is also a Vector2 object that indicates the difference between the current position of the finger and the position of the finger in the last FreeDrag sample. (I don’t use the Delta property in this program.) These properties are not valid with the DragComplete gesture.
The program maintains an isDragging field to help it discern when a finger first touches the screen and when a finger is moving around the screen, both of which are FreeDrag gestures:
XNA Project: DragAndDraw File: Game1.cs (excerpt)
If isDragging is false, then a finger is first touching the screen and the program creates a new RectangleInfo object and adds it to the collection. At this time, the point1 and point2 fields of RectangleInfo are both set to the point where the finger touched the screen, and color is a random Color value.
With subsequent FreeDrag gestures, the point2 field of the most recent RectangleInfo in the collection is re-set to indicate the current position of the finger. With DragComplete, nothing more needs to be done and the isDragging field is set to false.
In the Draw override (shown below), the program calls the Draw method of SpriteBatch once for each RectangleInfo object in the collection, in each case using the version of Draw that expands the Texture2D to the size of a Rectangle destination:
Draw(Texture2D texture, Rectangle destination, Color color)
The first argument is always the 1×1 white RenderTarget2D called tinyTexture, and the last argument is the random color stored in the RectangleInfo object.
The Rectangle argument to Draw requires some massaging, however. Each RectangleInfo object contains two points named point1 and point2 that are opposite corners of the rectangle drawn by the user. But depending how the finger dragged across the screen, point1 might be the upper-right corner and point2 the lower-left corner, or point1 the lower-right corner and point2 the upper-left corner, or two other possibilities.
The Rectangle object passed to Draw requires a point indicating the upper-left corner with non-negative width and heights values. (Actually, Rectangle also accepts a point indicating the lower-right corner with width and height values that are both negative, but that little fact doesn’t help simplify the logic.) That’s the purpose of the calls to Math.Min and Math.Abs:
XNA Project: DragAndDraw File: Game1.cs (excerpt)
Here it is after I’ve drawn a couple rectangles:
I mentioned earlier that the pixels in the Windows Phone 7 back buffer—and the video display itself—were only 16 bits wide. What is the color format of the bitmap created with RenderTarget2D?
By default, the RenderTarget2D is created with 32 bits per pixel—8 bits each for red, green, blue, and alpha—corresponding to the enumeration member SurfaceFormat.Color. I’ll have more to say about this format before the end of this chapter, but this 32-bit color format is now commonly regarded as fairly standard. It is the only color format supported in Silverlight bitmaps, for example.
To maximize performance, you might want to create a RenderTarget2D or a Texture2D object that has the same pixel format as the back buffer and the display surface. Both classes support constructors that include arguments of type SurfaceFormat to indicate a color format.
For the PinwheelText program, creating a RenderTarget2D object with SurfaceFormat.Bgr565 wouldn’t work well. There’s no alpha channel in this format so the background of the RenderTarget2D can’t be transparent. The background would have to be specifically colored to match the background of the back buffer.
The following program creates a RenderTarget2D object that is not only the size of the back buffer but also the same color format. The program, however, is rather retro, and you might wonder what the point is.
Back in the early days of Microsoft Windows, particularly at trade shows where lots of computers were running, it was common to see programs that simply displayed a continuous series of randomly sized and colored rectangles. But the strategy of writing such a program using XNA is not immediately obvious. It makes sense to add a new rectangle to the mix during the Update method but you don’t want to do it like the DragAndDraw program. The rectangle collection would increase by 30 rectangles every second, and by the end of an hour the Draw override would be trying to render over a hundred thousand rectangles every 33 milliseconds!
Instead, you probably want to build up the random rectangles on a RenderTarget2D that’s the size of the back buffer. The rectangles you successively plaster on this RenderTarget2D can be based on the same 1×1 white bitmap used in DragAndDraw.
These two bitmaps are stored as fields of the RandomRectangles program together with a Random object:
XNA Project: RandomRectangles File: Game1.cs (excerpt showing fields)
The LoadContent method creates the two RenderTarget2D objects. The big one requires an extensive constructor, some arguments of which refer to features beyond the scope of this book:
XNA Project: RandomRectangles File: Game1.cs (excerpt)
You can see the reference to the BackBufferFormat in the constructor, but also notice the last argument: the enumeration member RenderTargetUsage.PreserveContents. This is not the default option. Normally when a RenderTarget2D is set in a GraphicsDevice, the existing contents of the bitmap are ignored and essentially discarded. The PreserveContents option retains the existing render target data and allows each new rectangle to be displayed on top of all the previous rectangles.
The Update method determines some random coordinates and color values, sets the large RenderTarget2D object in the GraphicsDevice, and draws the tiny texture over the existing content with random Rectangle and Color values:
XNA Project: RandomRectangles File: Game1.cs (excerpt)
The Draw override simply displays that entire large RenderTarget2D on the display:
XNA Project: RandomRectangles File: Game1.cs (excerpt)
After almost no time at all, the display looks something like this:
The colors used for the rectangles include a random alpha channel, so in general (as you can see) the rectangles are partially transparent. Interestingly enough, you can still get this transparency even if the rectangle being rendered has no alpha channel. Change the creation of tinyTexture to this:
tinyTexture = new RenderTarget2D(this.GraphicsDevice, 1, 1, false,
SurfaceFormat.Bgr565, DepthFormat.None);
Now tinyTexture itself is not capable of transparency, but it can still be rendered on the larger texture with a partially transparent color in the Draw call of SpriteBatch.
For developers coming from more mainstream graphical programming environments, it is startling to realize that XNA has no way of rendering simple lines and curves in 2D. In this chapter I’m going to show you two ways that limitation can be overcome.
Suppose you want to draw a red line between the points (x1, y1) and (x2, y2), and you want this line to have a 3-pixel thickness. First, create a RenderTarget2D that is 3 pixels high with a width equal to:
That’s the length of the line between the two points. Now set the RenderTarget2D to the GraphicsDevice, clear it with Color.Red, and reset the GraphicsDevice back to normal.
During the Draw override, draw this bitmap to the screen using a position of (x1, y1) with an origin of (0, 1). That origin is the point within the RenderTarget2D that is aligned with the position argument. This line is supposed to have a 3-pixel thickness so the vertical center of the bitmap should be aligned with (x1, y1). In this Draw call you’ll also need to apply a rotation equal to the angle from (x1, y1) to (x2, y2), which can be calculated with Math.Atan2.
Actually, you don’t need a bitmap the size of the line. You can use a much smaller bitmap and apply a scaling factor. Probably the easiest bitmap size for this purpose is 2 pixels wide and 3 pixels high. That allows you to set an origin of (0, 1) in the Draw call, which means the point (0, 1) in the bitmap remains fixed. A horizontal scaling factor then enlarges the bitmap for the line length, and a vertical scaling factor handles the line thickness.
I have such a class in a XNA library project called Petzold.Phone.Xna. I created this project in Visual Studio by selecting a project type of Windows Phone Game Library (4.0). Here’s the complete class I call LineRenderer:
XNA Project: Petzold.Phone.Xna File: LineRenderer.cs
The constructor creates the small white RenderTarget2D. The DrawLine method requires an argument of type SpriteBatch and calls the Draw method on that object. Notice the scaling factor, which is the 7th argument to that Draw call. The width of the RenderTarget2D is 2 pixels, so horizontal scaling is half the length of the line. The height of the bitmap is 3 pixels, so the vertical scaling factor is the line thickness divided by 3. I chose a height of 3 so the line always straddles the geometric point regardless how thick it is.
To use this class in one of your programs, you’ll first need to build the library project. Then, in any regular XNA project, you can right-click the References section in the Solution Explorer and select Add Reference. In the Add Reference dialog select the Browse label. Navigate to the directory with Petzold.Phone.Xna.dll and select it.
In the code file you’ll need a using directive:
using Petzold.Phone.Xna;
You’ll probably create a LineRenderer object in the LoadContent override and then call DrawLine in the Draw override, passing to it the SpriteBatch object you’re using to draw other 2D graphics.
All of this is demonstrated in the TapForPolygon project. The program begins by drawing a triangle including lines from the center to each vertex. Tap the screen and it becomes a square, than again for a pentagon, and so forth:
The Game1 class has fields for the LineRenderer as well as a couple helpful variables.
XNA Project: TapForPolygon File: Game1.cs (excerpt showing fields)
Notice that the Tap gesture is enabled in the constructor. That LineRenderer is created in the LoadContent override:
XNA Project: TapForPolygon File: Game1.cs (excerpt)
The Update override is responsible for determining if a tap has occurred; if so, the vertexCount is incremented, going from (say) a hexadecagon to a heptadecagon as shown above.
XNA Project: TapForPolygon File: Game1.cs (excerpt)
The lines—which are really just a single RenderTarget2D object stretched into long line-line shapes—are rendered in the Draw override. The for loop is based on the vertexCount; it draws two lines with every iteration: one from the center to the vertex and another from the previous vertex to the current vertex:
XNA Project: TapForPolygon File: Game1.cs (excerpt)
You don’t have to use LineRenderer to draw lines on the video display. You can draw them on another RenderTarget2D objects. One possible application of the LineRenderer class used in this way is a “finger paint” program, where you draw free-form lines and curves with your finger. The next project is a very simple first stab at such a program. The lines you draw with your fingers are always red with a 25-pixel line thickness. Here are the fields and constructor (and please don’t be too dismayed by the project name):
XNA Project: FlawedFingerPaint File: Game1.cs (excerpt showing fields)
Notice that only the FreeDrag gesture is enabled. Each gesture will result in another short line being drawn that is connected to the previous line.
The RenderTarget2D object named renderTarget is used as a type of “canvas” on which you can paint with your fingers. It is created in the LoadContent method to be as large as the back buffer, and with the same color format, and preserving content:
XNA Project: FlawedFingerPaint File: Game1.cs (excerpt)
The LoadContent override also creates the LineRenderer object.
You’ll recall that the FreeDrag gesture type is accompanied by a Position property that indicates the current location of the finger, and a Delta property, which is the difference between the current location of the finger and the previous location of the finger. That previous location can be calculated by subtracting Delta from Position, and those two points are used to draw a short line on the RenderTarget2D canvas:
XNA Project: FlawedFingerPaint File: Game1.cs (excerpt)
The Draw override then merely needs to draw the canvas on the display:
XNA Project: FlawedFingerPaint File: Game1.cs (excerpt)
When you try this out, you’ll find that it works really well in that you can quickly move your finger around the screen and you can draw a squiggly line:
The only problem seems to be cracks in the figure, which become more severe as your finger makes fast sharp curves, and which justify the name of this project.
If you think about what’s actually being rendered here, those cracks will make sense. You’re really drawing rectangles between pairs of points, and if those rectangles are at angles to one another, then a sliver is missing:
This is much less noticeable for thin lines, but becomes intolerable for thicker ones.
What can be done? Well, if the method displaying these rectangular textures knows that it’s drawing a series of lines (called a polyline in graphics circles) it can increase the scaling factor of the bitmap a little more in the horizontal direction so they meet up at the outer corner rather than the center:
Getting this right requires calculations involving the angle between the two lines. And the technique has to be modified a bit for a finger painting program because you don’t know what the next line will be at the time each line is rendered.
In environments that support line-drawing functions (such as Silverlight), problems such as these also exist with default line-drawing properties. However, in Silverlight it’s possible to set rounded “caps” on the lines so they join very smoothly.
In XNA, putting rounded caps on the lines is probably best handled by manipulating the actual pixel bits.
Early in this chapter I showed you how to create a blank Texture2D object using one of its constructors:
Texture2D texture = new Texture2D(this.GraphicsDevice, width, height);
As with the back buffer and the RenderTarget2D, how the bits of each pixel correspond to a particular color is indicated by a member of the SurfaceFormat enumeration. A Texture2D created with this simple constructor will have a Format property of SurfaceFormat.Color, which means that every pixel consists of 4 bytes (or 32 bits) of data, one byte each for the red, green, and blue values and another byte for the alpha channel, which is the opacity of that pixel.
It is also possible (and very convenient) to treat each pixel as a 32-bit unsigned integer, which in C# is a uint. The colors appear in the 8-digit hexadecimal value of this uint like so:
AABBGGRR
Each letter represents four bits. If you have a Texture2D that you either loaded as content or created as shown above, and it has a Format property of SurfaceFormat.Color, you can obtain all the pixel bits of the bitmap by first creating an array of type uint large enough to encompass all the pixels:
uint[] pixels = new uint[texture.width * texture.height];
You then transfer all the pixels of the Texture2D into the array like so:
texture.GetData<uint>(pixels);
GetData is a generic method and you simply need to indicate the data type of the array. Overloads of GetData allow you to get pixels corresponding to a rectangular subset of the bitmap, or starting at an offset into the pixels array.
Because RenderTarget2D derives from Texture2D you can use this technique with RenderTarget2D objects as well.
You can also go the other way to transfer the data in the pixels array back into the bitmap:
texture.SetData<uint>(pixels);
The pixels in the pixels array are arranged by row beginning with the topmost row. The pixels in each row are arranged left by right. For a particular row y and column x in the bitmap, you can index the pixels array using a simple formula:
pixels[y * texture.width + x]
One exceptionally convenient property of the Color structure is PackedValue. This converts a Color object into a uint of the precise format required for this array, for example:
pixels[y * texture.width + x] = Color.Fuchsia.PackedValue;
In fact, Color and uint are so closely related that you can alternatively create a pixels array of type Color:
Color[] pixels = new Color[texture.Width * texture.Height];
You can then use this array with GetData
texture.GetData<Color>(pixels);
and SetData
texture.SetData<Color>(pixels);
and set individual pixels directly with Color values:
pixels[y * texture.width + x] = Color.AliceBlue;
All that’s required is consistency.
You can create Texture2D objects in other color formats but the pixel array must have members of the correct size, for example ushort with SurfaceFormat.Bgr565. Consequently, none of the other formats are quite as easy to use as SurfaceFormat.Color, so that’s what I’ll be sticking with in this chapter.
Let’s look at a simple example. Suppose you want a background to your game that consists of a gradient from blue at the left to red at the right. The GradientBackground project demonstrates how to create it. Here are the fields:
XNA Project: GradientBackground File: Game1.cs (excerpt showing fields)
All the real work is done in the LoadContent override. The method creates a bitmap based on the Viewport size (but here using the Bounds property which has convenient integer dimensions), and fills it with data. The interpolation for the gradient is accomplished by the Color.Lerp method based on the x value:
XNA Project: GradientBackground File: Game1.cs (excerpt)
Don’t forget to call SetData after filling the pixels array with data! It’s pleasant to assume that there’s some kind of behind-the-scenes binding between the Texture2D and the array, but there’s really no such thing.
The Draw method simply draws the Texture2D like normal:
XNA Project: GradientBackground File: Game1.cs (excerpt)
Here’s the gradient:
Although the code seems to imply hundreds of gradations between pure blue and pure red, the 16-bit color resolution of the Windows Phone 7 video display clearly shows 32 bands.
For this particular example, where the Texture2D is the same from top to bottom, it’s not necessary to have quite so many rows. In fact, you can create the background object with just one row:
background = new Texture2D(this.GraphicsDevice, viewportBounds.Width, 1);
Because the other code in LoadContent is based on the background.Width and background.Height properties, nothing else needs to be changed (although the loops could certainly be simplified). In the Draw method, the bitmap is then stretched to fill the Rectangle:
spriteBatch.Draw(background, viewportBounds, Color.White);
Earlier in this chapter I created a 1×1 white RenderTarget2D using this code:
You can do it with a Texture2D with only two lines of code that includes an in-line array:
tinyTexture = new Texture2D(this.GraphicsDevice, 1, 1);
tinyTexture.SetData<Color>(new Color[] { Color.White });
To draw lines on a Texture2D, it would be convenient to directly set the pixels in the bitmap to render the line. For purposes of analysis and illustration, let’s suppose you want to draw a line between pt1 and pt2:
This geometric line has zero thickness, but a rendered line has a non-zero thickness, which we’ll assume is 2R pixels. (R stands for radius, and you’ll understand why I’m thinking of it in those terms shortly.) You really want to draw a rectangle, where pt1 and pt2 are extended on each side by R pixels:
How are these corner points calculated? Well, it’s really rather easy using vectors. Let’s calculate the normalized vector from pt1 to pt2 and normalize it:
Vector2 vector = Vector2.Normalize(pt2 - pt1);
This vector must be rotated in increments of 90 degrees, and that’s a snap. To rotate vector by 90 degrees clockwise, switch the X and Y coordinates while negating the Y coordinate:
Vector2 vect90 = new Vector2(-vector.Y, vector.X)
A vector rotated −90 degrees from vector is the negation of vect90.
If vector points from pt1 to pt2, then the vector from pt1 to pt1a (for example) is that vector rotated –90 degrees with a length of R. Then add that vector to pt1 to get pt1a.
Vector2 pt1a = pt1 - R * vect90;
In a similar manner, you can also calculate pt1b, pt2a, and pt2b.
But as you saw before, the rectangle is not sufficient for thick lines that join at angles. To avoid those slivers seen earlier, you really need to draw rounded caps on these rectangles:
These are semi-circles of radius R centered on pt1 and pt2.
At this point, we have derived an overall outline of the shape to draw for two successive points: A line from pt1a to pt2a, a semi-circle from pt2a to pt2b, another line from pt2b to pt1b, and another semi-circle from pt1b to pt1a. The goal is to find all pixels (x, y) in the interior of this outline.
When drawing vector outlines, parametric equations are ideal. When filling areas, it’s best to go back to the standard equations that we learned in high school. You probably remember the equations for a line in slope-intercept form:
y = mx + b
where m is the slope of the line (“rise over run”) and b is the value of y where the line intercepts the Y axis.
In computer graphics, however, areas are traditionally filled based on horizontal scan lines, also known as raster lines. (The terms come from television displays.) This straight line equation represents x as a function of y:
x = ay + b
For a line from pt1 to pt2,
For any y, there is a point on the line that connects pt1 and pt2 if y is between pt1.Y and pt2.Y. The x value can then be calculated from the equations of the line.
Look at the previous diagram and imagine a horizontal scan line that crosses these two lines from pt1a to pt2a, and from pt1b to pt2b. For any y, we can calculate xa on the line from pt1a to pt2a, and xb on the line from pt1b to pt2b. For that scan line, the pixels that must be colored are those between (xa, y) and (xb, y). This can be repeated for all y.
This process gets a little messier for the rounded caps but not much messier. A circle of radius R centered on the origin consists of all points (x, y) that satisfy the equation:
x2 + y2 = R2
For a circle centered on (xc, yc), the equation is:
(x – xc)2 + (y – yc)2 = R2
Or for any y:
If the expression in the square root is negative, then y is outside the circle entirely. Otherwise, there are (in general) two values of x for each y. The only exception is when the square root is zero, that is, when y is exactly R units from yc, which are the top and bottom points of the circle.
We’re dealing with a semicircle so it’s a little more complex, but not much. Consider the semicircle at the top of the diagram. The center is pt1, and the semicircle goes from pt1b to pt1a. The line from pt1 to pt1b forms an angle anglel that can be calculated with Math.Atan2. Similarly for the line from pt1 to pt1a there is an angle2. If the point (x, y) is on the circle as calculated above, it too forms an angle from the center pt1. If that angle is between anglel and angle2, then the point is on the semicircle. (This determination of “between” gets just a little messier because angles returned from Math.Atan2 wrap around from π to –π.)
Now for any y we can examine both the two lines and the two semicircles and determine all points (x, y) that are on these four figures. At most, there will be only two such points—one where the scan line enters the figure and the other where it exits. For that scan line, all pixels between those two points can be filled.
The Petzold.Phone.Xna project contains several structures that help draw lines in a Texture2D. (I made them structures rather than classes because they will probably be frequently instantiated during Update calls.) All these structures implement this little interface:
XNA Project: Petzold.Phone.Xna File: IGeometrySegment.cs
For any y value the GetAIIX method adds items to a collection of x values. In actual practice, with the structures in the library, often this collection will be returned empty. Sometimes it will contain one value, and sometimes two.
Here’s the LineSegment structure:
XNA Project: Petzold.Phone.Xna File: LineSegment.cs
Notice that the if statement in GetAIIX checks that y is between Point1.Y and Point2.Y; it allows y values that equal Point1.Y but not those that equal Point2.Y. In other words, it defines the line to be all points from Point1 (inclusive) up to but not including Point2. This caution about what points are included and excluded comes into play when multiple lines and arcs are connected; it helps avoid the possibility of having duplicate x values in the collection.
Also notice that no special consideration is given to horizontal lines, that is, lines where Point1.Y equals Point2.Y and where a equals infinity. If that is the case, then the if statement in the method is never satisfied. A scan line never crosses a horizontal boundary line.
The next structure is similar but for a generalized arc on the circumference of a circle:
XNA Project: Petzold.Phone.Xna File: ArcSegment.cs
The rather complex (but symmetrical) if clause in TryY accounts for the wrapping of angle values from π to –π. Notice also that the comparison of angle with angle1 and angle2 allows cases where angle equals angle1 but not when angle equals angle2. It’s allowing all angles from angle1 (inclusive) up to but not including angle2.
For now, the final structure involved with line drawing represents a line with rounded caps:
XNA Project: Petzold.Phone.Xna File: RoundCappedLines.cs
This structure includes two LineSegment objects and two ArcSegment objects and defines them all based on the arguments to its own constructor. Implementing GetAllX is just a matter of calling the same method on the four components. It is the responsibility of the code calling GetAIIX to ensure that the collection has previously been cleared. For RoundCappedLines, this method will return a collection with either one x value—a case that can be ignored for filling purposes—or two x values, in which case the pixels between those two x values can be filled.
Using these structures in an actual program is not as easy as using the LineRenderer class. The technique is demonstrated in the BetterFingerPaint project. The fields include a Texture2D on which to draw, the pixel array for that texture, and a reusable collection of float objects for passing to the line-drawing structures.
XNA Project: BetterFingerPaint File: Game1.cs (excerpt showing fields)
The Game1 constructor enables the FreeDrag gesture, and as usual, those gestures are handled in the Update override shown below.
The LoadContent override creates this Texture2D to be the size of the screen and then initializes it with Color.Navy pixels:
XNA Project: BetterFingerPaint File: Game1.cs (excerpt)
The key call in the Update override is to the RoundCappedLine constructor with the two points and the radius, which is half the line thickness. Following that, the routine can loop through all the Y values of the canvas, call the GetAIIX method of the RoundCappedLine object, and then fill the area between the X values in the collection. However, the routine attempts to restrict looping and method calls to only X and Y values that could possibly be affected by the particular gesture.
XNA Project: BetterFingerPaint File: Game1.cs (excerpt)
When all the gestures have been handled—and there may be more than one FreeDrag gesture during a single Update call—then the method has yMinUpdate and yMaxUpdate values indicating the rows that were affected by these particular gestures. These are used to construct a Rectangle object so that the Texture2D canvas is updated from the pixels array only where pixels have changed.
The simplest way to call SetData is like this:
texture.SetData<Color>(pixels);
This is an alternative:
texture.SetData<Color>(pixels, startIndex, count);
This call fills up the entire Texture2D from the pixels array but it begins at startIndex to index the array. The count argument must still be equal to the product of the pixel width and height of the Texture2D, and the array must have count values starting at startIndex. This variation might be useful if you’re using the same pixels array for several small Texture2D objects.
The third variation is this:
texture.SetData<Color>(0, rectangle, pixels, startIndex, count);
The rectangle argument of type Rectangle restricts updating to a particular rectangle within the Texture2D. The startIndex still refers to an index of the pixels array but count must be equal to the product of the rectangle width and height. The method assumes that the count pixels beginning at startIndex are for that rectangular area.
If you’re working with a single pixels array that corresponds to the entire Texture2D, and you want to restrict updating to a particular rectangular area, you don’t have the flexibility to specify any rectangle you want because the rows of pixels in the pixels array are still based on the full width of the Texture2D. This means that the width of the rectangle must be the same as the width of the Texture2D. In short, you can only restrict the SetData call to one or more entire rows. That’s why the code only retains yMinUpdate and yMaxUpdate and not the equivalent values for X.
In the Update method shown above you’ll also see this call prior to calling SetData:
this.GraphicsDevice.Textures[0] = null;
This is sometimes necessary when calling SetData from the Update override if the particular Texture2D was the last thing displayed in the Draw method and it is still set in the GraphicsDevice object.
The Draw override is trivial:
XNA Project: BetterFingerPaint File: Game1.cs (excerpt)
The really good news involves the display:
The strokes are solid with no cracks, and check out those nice rounded ends.
The BetterFingerPaint program will not let you draw with two fingers at once. To enhance the program for that feature while still using gestures would be somewhat messy. A single finger generates FreeDrag gestures while two fingers generate Pinch gestures, which include valid Position2 and Delta2 properties, but then the program would fail for three or simultaneous fingers.
To handle multiple fingers, it’s necessary to go back to the low-level touch interface as shown in the following MultiFingerPaint project. Most of MultiFingerPaint is identical to BetterFingerPaint, but the constructor does not enable gestures:
XNA Project: MultiFingerPaint File: Game1.cs (excerpt)
I’ll only show you part of the Update overrride because the rest is the same as before. The method essentially enumerates through the TouchCollection obtained from the TouchPanel.GetState call. This collection contains TouchLocation objects for multiple fingers touching the screen, moving, and lifting, but the program is only interested in moves. It doesn’t even have to keep track of multiple fingers. All it needs to do is get a particular touch point, and the previous touch point for that finger from TryGetPreviousLocation, and draw a line between those points:
XNA Project: MultiFingerPaint File: Game1.cs (excerpt)
And here it is with four fingers simultaneously:
You can modify an existing image by calling GetData on a “source” Texture2D, then algorithmically modifying the pixels and transferring them to a “destination” Texture2D with SetData. This is demonstrated in the RippleEffect project. The source Texture2D is a bitmap that I copied from my web site. The program modifies the pixels so the picture has waves that move horizontally across the image:
The fields of the program store the source (“src”) and destination (“dst”) Texture2D objects as well as the corresponding pixel arrays:
XNA Project: RippleEffect File: Game1.cs (excerpt showing fields)
The constant indicates that pixels in the source bitmap will be moved up and down by 10 pixels. This is used both in the algorithm that calculates destination pixels from source pixels, and also to determine how much larger than the source image the destination image must be.
LoadContent loads the srcTexture from program content, and copies the pixels into the srcPixels array. The dstTexture is 20 pixels taller than the srcTexture; an array is allocated for the destination pixels but nothing is done with it yet:
XNA Project: RippleEffect File: Game1.cs (excerpt)
The goal during the Update method is to transfer pixels from srcPixels to dstPixels based on an algorithm that incorporates animation. The dstPixels array is then copied into dstTexture with SetData.
To transfer pixels from a source to a destination, two different approaches can be used:
In the general case, the second approach is usually a bit harder than the first but that doesn’t matter because it’s the only one that guarantees that every pixel in the destination bitmap is set. That’s why the for loops in the following method are based on xDst and yDst, the column and row of the destination bitmap. From these, xSrc and xDst are calculated. (In this particular algorithm, xSrc always equals xDst.)
The two pixel arrays can then be indexed with dstIndex and srcIndex. Although dstIndex will always be valid because it’s based on valid xDst and yDst values, for some values srcIndex might not be valid. In those cases, I set the pixel referenced by dstIndex to a transparent value.
XNA Project: RippleEffect File: Game1.cs (excerpt)
In this Update override, the srcTexture is used solely to determine if yDst is beyond the bottom row of the bitmap; obviously I could have saved that number of rows and discarded the actual srcTexture image.
The Update override concludes with dstTexture being updated from the pixels in the dstPixels array and the Draw override simply displays that image:
XNA Project: RippleEffect File: Game1.cs (excerpt)
Although this program only modifies coordinates, similar programs could modify the actual color values of the pixels. It’s also possible to base destination pixels on multiple source pixels for filtering effects.
But watch out for performance problems if you’re calculating pixels and transferring data during every Update call. Both per-pixel processing and the SetData call require non-trivial time. The first version of this program ran fine on the phone emulator but bogged down to about two updates per second on the phone itself. I reduced the bitmap to 50% its original size (and ¼ the number of pixels) and that improved performance considerably.
In the next chapter, I’ll show you how to calculate pixels algorithmically in a second thread of execution.
The primary means of user input to a Windows Phone 7 application is touch. A Windows Phone 7 device has a screen that supports at least four touch points, and applications must be written to accommodate touch in a way that feels natural and intuitive to the user.
As you’ve seen, XNA programmers have two basic approaches to obtaining touch input. With the low-level TouchPanel.GetState method a program can track individual fingers—each identified by an ID number—as they first touch the screen, move, and lift off. The TouchPanel.ReadGesture method provides a somewhat higher-level interface that allows rudimentary handling of inertia and two-finger manipulation in the form of “pinch” and “stretch” gestures.
The various gestures supported by the TouchPanel class correspond to members of the GestureType enumeration:
To receive information for particular gestures, the gestures must be enabled by setting the TouchPanel.EnabledGestures property. The program then obtains gestures during the Update override of the Game class in the form of GestureSample structures that include a GestureType property to identify the gesture.
GestureSample also defines four properties of type Vector2. None of these properties are valid for the DragComplete and PinchComplete types. Otherwise:
The Position property indicates the current position of the finger relative to the screen. The Delta property indicates the movement of the finger since the last position. For an object of type GestureSample named gestureSample,
Vector2 previousPosition = gestureSample.Position - gestureSample.Delta;
The Delta vector equals zero when the finger first touches the screen or when the finger is still.
Suppose you’re only interested in dragging operations, and you enable the FreeDrag and DragComplete gestures. If you need to keep track of the complete distance a finger travels from the time it touches the screen to time it lifts, you can use one of two strategies: Either save the Position value from the first occurrence of FreeDrag after a DragComplete and compare that with the later Position values, or accumulate the Delta values in a running total.
Let’s look at a simple program that lets the user drag a little bitmap around the screen. In the OneFingerDrag project the Game1 class has fields to store a Texture2D and maintain its position:
XNA Project: OneFingerDrag File: Game1.cs (excerpt showing fields)
Notice the FreeDrag gesture enabled at the bottom of the constructor.
The LoadContent override loads the same Texture2D used in the RippleEffect project in the previous chapter:
XNA Project: OneFingerDrag File: Game1.cs (excerpt)
The Update override handles the FreeDrag gesture simply by adjusting the texturePosition vector by the Delta property of the GestureSample:
XNA Project: OneFingerDrag File: Game1.cs (excerpt)
Although texturePosition is a point and the Delta property of GestureSample is a vector, they are both Vector2 values so they can be added.
The while loop might seem a little pointless in this program because we’re only interested in a single gesture type. Couldn’t it simply be an if statement? Actually, no. It is my experience that multiple gestures of the same type can be available during a single Update call.
The Draw override simply draws the Texture2D at the updated position:
XNA Project: OneFingerDrag File: Game1.cs (excerpt)
Initially the Texture2D is parked at the upper-left corner of the screen but by dragging your finger across the screen you can move it around:
You can actually drag your finger anywhere on the screen and the texture moves in response! The program doesn’t check if the finger is actually sitting on the Texture2D but that’s a fairly easy enhancement:
You may not care for the way this logic works either. If you drag your finger across the screen in an area outside from the texture, the texture won’t move, but if your finger then slides over the texture, it will start up. You’ll probably want to drag the texture only if the first FreeDrag in a sequence is over the texture. If not, you’ll want to ignore all FreeDrag gesture samples until a DragComplete occurs.
Let’s continue examining dragging gestures involving a simple figure, but using those gestures to implement scaling and rotation rather than movement. For the next three programs I’ll position the Texture2D in the center of the screen, and it will remain in the center except that you can scale it or rotate it with a single finger.
The OneFingerScale project has a couple more fields than the previous program:
XNA Project: OneFingerScale File: Game1.cs (excerpt showing fields)
The program needs the center of the Texture2D because it uses a long version of the Draw call to SpriteBatch to include an origin argument. As you’ll recall, the origin argument to Draw is the point in the Texture2D that is aligned with the position argument, and which also serves as the center of scaling and rotation.
Notice that the textureScale field is set to the vector (1, 1), which means to multiply the width and height by 1. It’s a common mistake to set scaling to zero, which tends to make graphical objects disappear from the screen.
All the uninitialized fields are set in the LoadContent override:
XNA Project: OneFingerScale File: Game1.cs (excerpt)
The handling of the FreeDrag gesture in the following Update override doesn’t attempt to determine if the finger is over the bitmap. Because the bitmap is positioned in the center of the screen and it will be scaled to various degrees, that calculation is a little more difficult (although certainly not impossible.)
Instead, the Update override shows how to use the Delta property to determine the previous position of the finger, which is then used to calculate how far the finger has moved from the center of the texture (which is also the center of the screen) during this particular part of the entire gesture:
XNA Project: OneFingerScale File: Game1.cs (excerpt)
For example, the center of the screen is probably the point (400, 240). Suppose during this particular part of the gesture, the Position property is (600, 200) and the Delta property is (20, 10). That means the previous position was (580, 190). In the horizontal direction, the distance of the finger from the center of the texture increased from 180 pixels (580 minus 400) to 200 pixels (600 minus 400) for a scaling factor of 200 divided by 180 or 1.11. In the vertical direction, the distance from the center decreased from 50 pixels (240 minus 190) to 40 pixels (240 minus 200) for a scaling factor of 40 divided by 80 or 0.80. The image increases in size by 11% in the horizontal direction and decreases by 20% in the vertical.
Therefore, multiply the X component of the scaling vector by 1.11 and the Y component by 0.80. As expected, that scaling factor shows up in the Draw override:
XNA Project: OneFingerScale File: Game1.cs (excerpt)
Probably the most rewarding way to play with this program is to “grab” the image at one of the corners and move that corner roughly towards or away from the center:
As you can see, there’s nothing to prevent the image from losing its proper aspect ratio, as the calculations above imply. You can even—by sweeping your finger across the vertical center or horizontal center of the screen—cause the image to scale down to nothing!
In a real-life application, you probably want to put a lower limit on the scaling factor, perhaps 0.1 or 0.25, just to leave enough so the user can size it back up.
It’s also likely that in some applications, you’ll want to preserve the aspect ratio of the image. You’ll want to derive just one scaling factor that applies to both horizontal and vertical scaling. It might seem reasonable to calculate separate scaling factors as shown in the OneFingerScale program and then just average them. But this is clearly wrong. If the user knows that a program preserves aspect ratio, the user will expect the image to scale appropriately with just a horizontal drag or a vertical drag.
You might consider calculating both scaling factors and taking the maximum. But that’s not quite right either. You’ll notice in OneFingerScale that when your finger is close to the center of the image, just a little movement is magnified into a large amount of scaling. If the finger is close to the center horizontally but far from the center vertically, then the scaling factors are different for equal horizontal and vertical finger movement.
Perhaps the best strategy is to examine the Delta property and determine whether the X or Y component has the greatest magnitude (apart from sign) and then use that for the scaling calculation. This is shown in the OneFingerUniformScale project.
The fields are the same as the previous program except that a Vector2 scaling factor has been replaced with a float.
XNA Project: OneFingerUniformScale File: Game1.cs (excerpt showing fields)
The LoadContent override is exactly the same as the previous version, but the gesture handling in the Update override has become more extensive. The method checks whether the absolute value of the horizontal or vertical component of the Delta vector is largest, and also skips the calculation if they’re both zero, which in the case when the user first touches a finger to the screen.
XNA Project: OneFingerUniformScale File: Game1.cs (excerpt)
Another precaution implemented here is checking if the calculated value is infinite or not a number. This could be the case if the user touches the exact center of the screen resulting in division by zero. I’ve also clamped the overall scaling factor between 0.25 and 10, which are rather arbitrary values but still an important concept.
The Draw override is the same as in the previous program except that textureScale is a float rather than a Vector2:
XNA Project: OneFingerUniformScale File: Game1.cs (excerpt)
I set a maximum on textureScale after experimenting with an earlier version of the program. I touched the image very close to the center of the screen and a small movement expanded the image by a scaling factor of several hundred, where only two pixels of the image were visible on the screen! It’s safe to say that’s too much scaling.
It’s possible for a program to ignore certain gestures that occur too close to a reference point. I do this in the next project.
Although single-finger scaling is somewhat unusual, single-finger rotation is very powerful and quite common—both on the computer screen and in real life. If your phone is sitting on the desk next to you, put your finger on a corner and pull it towards you. The phone probably rotates a bit relative to its center before being dragged.
Very often single-finger rotation is combined with regular dragging. Let’s see how this works. The OneFingerRotation fields are somewhat similar to the previous programs:
XNA Project: OneFingerRotation File: Game1.cs (excerpt showing fields)
The LoadContent override is similar as well The texturePosition field is initialized to be the center of the screen but this will change as the texture is dragged around the screen:
XNA Project: OneFingerRotation File: Game1.cs (excerpt)
The idea behind the Update method is to first examine the previous finger position and the new finger position relative to the center of the Texture2D at texturePosition. In Update I represent these two positions as vectors from that center called oldVector and newVector, and by “old” and “new” I mean “previous” and “current.” If these two vectors are at different angles, then the textureRotation angle is altered by the difference in those angles.
Now we want to remove rotation from these finger positions. Anything left over should be applied to dragging the texture. The oldVector is recalculated so it has its original magnitude but now points in the same direction as newVector. A new delta value is recalculated from newVector and oldVector and this is used for dragging:
XNA Project: OneFingerRotation File: Game1.cs (excerpt)
The Draw override references that rotation angle but has a scaling factor equal to 1:
XNA Project: OneFingerRotation File: Game1.cs (excerpt)
As you experiment with this, you’ll find that the movement is very natural. You can grab the image at any point and drag it, and it’s as if the image trails behind your finger just like when you use your finger to move the phone on your desk.
Of course, the most common form of scaling implemented in multi-touch applications involves two fingers in a pinching or stretching gesture, and in a sense, that isn’t much more difficult than what you’ve already seen. I’ve been stretching and rotating relative to a reference point, and with two fingers it’s similar except that the reference point is always the other finger.
For example, put two fingers on an on-screen object. If you keep one finger steady and move the other finger, you should expect all scaling and rotation to occur relative to the first finger. If that first finger is also moving, then whatever scaling and rotation it defines is relative to the second finger. If the two fingers move in the same direction, then normal dragging results.
The math is likely to get messy; fortunately XNA provides some very powerful tools to help out.
Traditionally, two-dimensional graphical systems have supported operations called transforms. These are basically mathematical formulas that are applied to coordinates (x, y) to make new coordinates (x′, y′). Although completely generalized transforms can potentially be very complex, two-dimensional graphics programming environments often restrict transforms to a subset called affine (“non-infinite”) transforms, which are a slight superset of linear transforms.
Linear transforms of x and y look like this:
x′ = axx + bxy
y′ = ayx + byy
where the subscripted a and b are constants that define a particular transform. As you can see, x′ and y′ are both functions of x and y, but they are very simple functions. It’s just multiplication by constants and adding the results; x and y aren’t multiplied by each other, for example.
An affine translation adds in another constant that’s not multiplied by anything:
x′ = axx + bxy + cx
y′ = ayx + byy + cy
Very often some of these constants are zero. If ax and by are both 1, and bx and ay are both zero, then the formulas represent a type of transform known as translation:
x′ = x + cx
y′ = y + cy
This transform just causes a shift to another location—not unlike the OneFingerDrag program that started off this chapter.
If bx and ay are zero, and cx and cy are also zero, then the formulas represent scaling:
x′ = axx
y′ = byy
Coordinates are multiplied by factors to make objects larger or smaller.
The four multiplicative constants can be set to sines and cosines of a particular angle like so:
x′ - cos(α)x + sin(α)y
y′ - sin(α)x + cos(α)y
The formulas rotate the point around the origin by α degrees. Setting these four constants to other values not related by trigonometric functions cause a type of transform known as skew, which transforms a square into a parallelogram. But that’s as strange as affine transforms get: Affine transforms never cause straight lines to become curves, or parallel lines to become non-parallel. As the name suggests, affine transforms don’t cause coordinates to become infinite.
Translation, scaling, and rotation are the most common types of transforms, and they can be combined. To keep the math easy (well, easier) transforms are often represented as 3×3 matrices:
A particular transform is applied to a point (x, y) by representing the point as a 1×3 matrix with a 1 in the third position and performing a matrix multiplication:
The identity matrix contains a diagonal of all 1’s and results in no transform:
Representing transforms with matrices is of great advantage when transforms are combined. Combining transforms is equivalent to multiplying matrices, and that’s an operation that is well known. It is also well known that matrix multiplication is not commutative. The order of the multiplication makes a difference in the result.
For example, you might apply a scale transform to a graphical object to make it larger, and then apply a translate transform to move it. If you switch those two operations—perform the translation first and then the scaling—the result is different because you’re effectively scaling the original translation factors as well.
Transforms in 2D space require a 3×3 matrix, and transforms in 3D space require a 4×4 matrix. There is a good reason why the matrix needs one more dimension that the coordinate space. It’s all about translation. Translation is very basic and very desirable but it can’t be represented with a linear transform that only applies factors to x and y. To represent translation as a linear transform, another dimension must be added. Translation in two dimensions in actually skew in three dimensions, and that’s why the two-dimensional point is converted to a three-dimensional point with a Z value of 1 for multiplying by the matrix.
The third column of a two-dimensional affine transform matrix is always two zeroes and a 1 in the bottom right corner. That’s what makes it an affine transform. (I’ll discuss non-affine two-dimensional transforms towards the end of this chapter.)
After my big build-up, you’ll probably be surprised to learn that XNA is unlike virtually all other graphical programming environments in that it does not support a structure that encapsulates a 3×3 transform matrix. In XNA matrices are used much more for 3D programming, so the XNA Matrix structure actually encapsulates a 4×4 matrix suitable for 3D graphics but a bit over-abundant for 2D graphics.
Although you can use the Matrix structure with 2D graphics—and it’s very convenient for performing compound transforms—there is not much support for transforms in 2D drawing except a rather more extensive version of the Begin call of SpriteBatch:
spriteBatch.Begin(SpriteSortMode.Deferred, null, null, null, null, null, matrix);
If you use this form of the Begin call, then that Matrix object will affect all the Draw and DrawString calls until End. This can be very useful for applying a transform to a whole group of graphical objects.
You can also apply transforms to Vector2 objects “manually” with several versions of the static Vector2.Transform method.
The Matrix structure supports very many static methods for creating Matrix objects that represent various types of transforms. These are all designed for 3D, but here’s how you can use the most basic ones for 2D:
The last argument on the first two methods is normally set to the translation or scaling factor for the three-dimensional Z axis. Notice I’ve set the third argument in the second call to 1 rather than 0. A 0 will work for most purposes, but if you ever need to invert the matrix, a zero scaling factor is a real deal killer. Also notice that the third method name makes reference to the Z axis. The method needs to calculate rotation around the Z axis for rotation in the two-dimensional XY plane.
The Matrix structure supports arithmetical operators, so you can easily multiply matrices for compounding transforms. One of the most common reasons to multiply matrices is to represent scaling or rotation around a particular point.
Suppose you have a point stored as a Vector2 object called center. You want to calculate a matrix that represents rotation by angle degrees but centered on that point. You begin with translation to move that center point to the origin, then you apply the rotation (or scaling) and then another translation to move the center back to where it was:
Notice the multiplication operators.
The Matrix structure in XNA has 16 public fields of type float representing all 16 cells of the 4×4 matrix. These have names that indicate their row and column position within the matrix:
Rather than using the static methods of Matrix to create Matrix objects, you can set these fields individually (or set them all in a 16-argument constructor.) The subscripted constants that I used earlier correspond to these cells:
The M11 field is the horizontal scaling factor and M22 is vertical scaling; M41 is horizontal translation and M42 is vertical translation. Or, you can rewrite the 2D affine transform formulas using the Matrix structure field names:
x′ = M11.x + M21 .y + M41
y′ = M12.x + M22 .y + M42
Knowing the relationship between these fields and transforms can aid in extracting information from the Matrix structure or implementing short cuts that don’t involve creating new Matrix objects and multiplying them. I’ll demonstrate some of these techniques in the pages ahead.
With the Pinch gesture, four Vector2 properties of the GestureSample are valid: Position, Delta, Position2, and Delta2. The first two reflect the position and movement of one finger; the second two represent the second finger. This is ideal for scaling, although the actual mathematics are probably not immediately obvious.
Generally you’ll want to support both FreeDrag and Pinch so the user can use one or two fingers. Then you need to decide whether to restrict scaling to uniform or non-uniform scaling, and whether rotation should be supported.
The DragAndPinch program handles both FreeDrag and Pinch gestures with non-uniform scaling and without rotation. As usual, these gestures are enabled in the constructor. The new field you’ll see here is Matrix object initialized to the no-transform identity state with the static Matrix.Identity property:
XNA Project: DragAndPinch File: Game1.cs (excerpt showing fields)
The statement
Matrix matrix = Matrix.ldentity;
is not the same as:
Matrix matrix = new Matrix();
Matrix is a structure, and like all structures its fields are initialized to zero values. A Matrix object with all zeroes is not good for anything since it completely obliterates anything it’s applied to. A default do-nothing Matrix object should have all its diagonal cells set to 1, and that’s what’s provided by the Matrix.Identity property.
All dragging and pinching operations will be applied to the matrix field, which is then used in the Draw override.
The LoadContent method merely loads the Texture2D:
XNA Project: DragAndPinch File: Game1.cs (excerpt)
The Update override handles both FreeDrag and Pinch:
XNA Project: DragAndPinch File: Game1.cs (excerpt)
Notice that for FreeDrag, the method creates a new Matrix from the static Matrix.CreateTranslation method and multiplies it by the existing matrix field. You can replace that statement with the following:
matrix.M41 += gesture.Delta.X;
matrix.M42 += gesture.Delta.Y;
For the Pinch gesture, Update breaks down the data into “old” points and “new” points. When two fingers are both moving relative to each other, you can determine a composite scaling factor by treating the two fingers separately. Assume the first finger is fixed in position and the other is moving relative to it, and then the second finger is fixed in position and the first finger is moving relative to it. Each represents a separate scaling operation that you then multiply. In each case, you have a reference point (the fixed finger) and an old point and a new point (the moving finger).
To do this properly, for the first scaling operation the reference point should reflect the old position of the fixed finger, but for the second scaling factor you should use a reference point based on the new position of the fixed finger. That’s the reason for the slightly asymmetrical calls to the ComputeScaleMatrix method shown above. Here’s the method itself:
XNA Project: DragAndPinch File: Game1.cs (excerpt)
That reference point plays two roles here: It is used to measure the increase or decrease in the position of the moving finger, and it is used to bracket the Matrix.CreateScale calls at the end to reflect scaling around a center point. You can replace those three calls at the end with the following:
The accumulated composite matrix is simply passed to the last argument of the Begin call of spriteBatch in the Draw override:
XNA Project: DragAndPinch File: Game1.cs (excerpt)
If you’d prefer to use the simpler form of the Begin call, you can extract the scaling and position information from the Matrix object and use them in the Draw call:
The Matrix structure also supports a Decompose method, which extracts scaling, rotation, and translation components. The rotation component is the form of a Quaternion, which is a very common tool for 3D rotation but never (to my knowledge) used in 2D graphics. Replace those scale and position calculations with the following:
Let’s add both one and two-finger rotation support to the DragAndPinch program and call it DragPinchRotate. Everything is the same except for the Update override.
XNA Project: DragPinchRotate File: Game1.cs (excerpt)
In the earlier program that demonstrated one-finger rotation, the Texture2D was always positioned at a point corresponding to its center, so the rotation reference point was always readily available. This Texture2D is positioned by the Draw call of SpriteBatch at the upper-left corner of the display, but its actual location is somewhere else based on the Matrix object.
For that reason, the FreeDrag logic expresses the center of the Texture2D relative to its upper-left corner as a Vector2 value and then applies the current matrix transform to obtain a refPoint relative to the screen.
The ComputeRotateAndTranslateMatrix method that Update calls for the FreeDrag gesture is very similar to the previous one-finger rotation logic except that transforms are obtained and multiplied:
XNA Project: DragPinchRotate File: Game1.cs (excerpt)
Notice that the Matrix.CreateRotationZ call is sandwiched between two Matrix.CreateTranslation calls to perform the rotation relative to the reference point, which is the transformed center of the Texture2D. At the end, another Matrix.CreateTranslation call handles the translation part of the gesture after rotation has been extracted.
Some of that same logic was merged into the ComputeScaleMatrix method from the previous project for this new ComputeScaleAndRotateMatrix method that’s called twice for any Pinch gesture:
XNA Project: DragPinchRotate File: Game1.cs (excerpt)
To scale uniformly, the method examines whether movement is dominant in the horizontal direction or vertical direction relative to the reference point, and that involves a comparison between the absolute values of the differences between newVector and oldVector (with the rotation component already extracted). Notice also how Matrix.CreateScale is sandwiched between two Matrix.CreateTranslation calls based on the reference points.
And now you can perform one-finger translation and rotation, and two-finger uniform scaling and rotation:
Although not explicitly included, a pair of fingers can also translate the image if the fingers move in the same direction.
In the movie Minority Report (2002), Tom Cruise demonstrated how to flick an object off to one side of the computer screen, and the whole world said “Way cool!”
For the most part, implementing inertia in the touch interfaces of a program is your responsibility. XNA helps out just a little with the Flick gesture, which is generated when the user quickly sweeps a finger on the screen. The Delta property of the GestureSample object indicates the velocity of the finger in pixels per second. (That’s what it’s supposed to be, anyway. It actually seems to be closer to half the actual velocity.) The velocity is represented as a Vector2, so it indicates direction as well as magnitude.
There’s no position information with the Flick gesture. It’s basically the same no matter where you flick the screen. If you need to implement inertia based on finger position as well as velocity, you’ll probably find yourself calculating velocity from Drag gestures by dividing the Delta values by the ElapsedGameTime property of the GameTime argument to Update.
To implement inertia, you need to continue moving an object based on an initial velocity and a deceleration value. If the velocity is in units pixels per second, the deceleration is probably in units of pixels per second squared. Every second, the velocity decreases by the deceleration value until the magnitude gets down to zero. For Update calls occurring every fraction of a second, the velocity decreases proportionally.
The FlickInertia project demonstrates a very simple implementation of inertia. The fields include position, velocity, and a deceleration constant:
XNA Project: FlickInertia File: Game1.cs (excerpt showing fields)
The constructor enables only Flick gestures. The LoadContent override loads both the Texture2D and a font for displaying status information (position and velocity) on the screen:
XNA Project: FlickInertia File: Game1.cs (excerpt)
The Update override has several responsibilities. The first is to read the gesture and accumulate any additional velocity in the velocity field. If there’s velocity in effect, the velocity vector is multiplied by the elapsed time in seconds to obtain a change in position. This is added to the position vector. The magnitude of the velocity vector must then be decreased by an amount based on the DECELERATION constant also multiplied by the elapsed time in seconds. Finally, a StringBuilder is formatted to display the two vectors:
XNA Project: FlickInertia File: Game1.cs (excerpt)
The Draw override draws both the Texture2D and the StringBuilder:
XNA Project: FlickInertia File: Game1.cs (excerpt)
Yes, you can flick the image right off the screen. However, because the program responds to flicks anywhere on the screen, you can flick the screen again to bring it back into view.
In 1980, Benoît Mandelbrot (1924–2010), a Polish-born French and American mathematician working for IBM, saw for the first time a graphic visualization of a recursive equation involving complex numbers that had been investigated earlier in the century. It looked something like this:
Since that time, the Mandelbrot Set (as it is called) has become a favorite plaything of computer programmers.
The Mandelbrot Set is graphed on the complex plane, where the horizontal axis represents real numbers (negative at the left and positive at the right) and the vertical axis represents imaginary numbers (negative at the bottom and positive at the top). Take any point in the plane and call it c, and set z equal to 0:
Z = 0
Now perform the following recursive operation:
Z ← Z2 + C
If the magnitude of z does not diverge to infinity, then c is said to belong to the Mandelbrot Set and is colored black in the above screen shot.
For some complex numbers (for example, the real number 0) it’s very clear that the number belongs to the Mandelbrot Set. For others (for example, the real number 1) it’s very clear that it does not. For many others, you just have to start cranking out the values. Fortunately, if the absolute value of z ever becomes greater than 2 after a finite number of iterations, you know that c does not belong to the Mandelbrot Set.
Each number c that does not belong to the Mandelbrot Set has an associated “iteration” factor, which is the number of iterations calculating z that occur before the absolute value becomes greater than 2. Many people who compute visualizations of the Mandelbrot Set use that iteration factor to select a color for that point so that areas not in the Mandelbrot Set become rather more interesting:
The text at the upper-left corner indicates the complex coordinate associated with that corner, and similarly for the lower-right corner. The number in the upper-right corner is a global iteration count.
One of the interesting characteristics of the Mandelbrot Set is that no matter how much you zoom in, the complexity of the image does not decrease:
That qualifies the Mandelbrot Set as a fractal, a branch of mathematics that Benoît Mandelbrot pioneered. Considering the simplicity of the algorithm that produces this image, the results are truly astonishing.
Can you think of a better program to demonstrate multi-touch dragging and zooming as well as algorithmically generating pixels in a Texture2D?
Very often when programmers write Mandelbrot Set programs, they decide on a particular maximum iteration factor, for example, 100 or 1000. Then for each pixel, z is calculated up to that maximum number, and if it hasn’t diverged by then, the pixel is set to black. In pseudocode, it’s something like this:
The problem with this approach is that it tends to be inadequate when you zoom in a great deal. Generally the more you zoom in on a particular area of the Mandelbrot Set, the more iterations are needed to determine whether a pixel is not part of the set and how it should be colored.
That problem implied to me a different approach: My MandelbrotSet program initially sets all the pixels to black and then performs the following in a second thread of execution:
This approach creates a screen that progressively gets more interesting the longer you wait. The downside is that about 17 megabytes of memory is required to support the data structure necessary for this job. That’s too large to be saved during tombstoning. The overall performance also seems to be slower than more traditional approaches.
Here is the Pixellnfo structure used to store information for each pixel. The program retains an array of these structures that parallels the normal pixels array used for writing data to the Texture2D:
XNA Project: MandelbrotSet File: Pixellnfo.cs
Skip down to the instance fields. I originally wrote a structure called Complex for encapsulating complex numbers and performing the operations on those numbers, but I discovered that working directly with the real and imaginary parts improved performance significantly. This PixelInfo structure retains the c and z values I described above, the current iteration, and a Boolean finished that’s set to true when it’s known that the magnitude of z diverges to infinity. At this point the iteration value can be used to determine a color value.
The constructor calculates cReal and cImag from a pixelIndex that ranges from 0 up to (but not including) the product of the pixel width and height of the display. The static pixelWidth and pixelHeight fields are based on the screen dimensions and fixed throughout the duration of the program.
The calculation of cReal and cImag is also based on three other static fields. The xPixelCoordAtComplexOrigin and yPixelCoordAtComplexOrigin fields indicate the horizontal and vertical pixel coordinates that correspond to the origin of the complex plane. Obviously the use of double for these fields indicates that they are capable of representing fractional pixels. These two fields change with translation operations. The unitsPerPixel field indicates the range of real numbers or imaginary numbers currently associated with a single pixel. This value changes with scaling operations.
This PixelInfo structure contains more double values than in all the other XNA programs in this book combined. I originally made these values all float, of course (and pixelCoordAtComplexOrigin was a Vector2) but I made the leap to double the first time I zoomed in beyond the precision of float. Interestingly, moving from float to double had very little impact on performance.
The second argument to the constructor is optional. If it’s present, the constructor will copy the corresponding color from the pixels array into its own packedColor field. You’ll see how this works shortly.
The other three static fields are used for inter-thread communication. Basically, the thread that performs the calculations sets these fields when a color value changes; the fields are reset when the array of PixelInfo structures is used to update the pixels array and the Texture2D.
Finally, the Iterate method performs the basic iterative calculation using multiplication rather than Math.Pow calls for performance reasons. Iterate returns true if z is known to diverge to infinity.
With those static fields of PixelInfo, I managed to keep the fields of the Game derivative down to a reasonable number. You’ll see the normal pixels array here as well as the PixelInfo array. The pixelInfosLock object is used for thread synchronization.
XNA Project: MandelbrotSet File: Game1.cs (excerpt showing fields)
The fields also include a Matrix object that handles translation and scaling but only as the gesture operations are in process. Once the user’s fingers lift from the screen—and you’ll notice that the DragComplete and PinchComplete gestures are also enabled so the program can determine when that happens—the entire pixels and Pixellnfo arrays are rearranged and the Matrix object is set back to its default value. This turns out to be one of the more complex parts of the program.
The LoadContent override is surprisingly sparse:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
But that’s only because much of the other initialization is performed in conjunction with tombstoning. Of course, I wanted to save the whole array of PixelInfo objects, but considering that each of them is 44 bytes in size, and the full array approaches 17 megabytes, you can understand why the Windows Phone 7 operating system seemed so reluctant to comply with my desires.
Instead, the program tombstones four items necessary to restart the program reasonably: The static xPixelCoordAtComplexOrigin, yPixelCoordAtComplexOrigin and unitsPerPixel fields in PixelInfo allow the program to re-create the PixelInfo array. In addition, the program saves the entire screen image as a PNG file and restores that. When the program returns from tombstoning, it looks the same as when it left, but that’s somewhat deceptive because it needs to start the calculations over with each pixel. Consequently, the screen may sit there for awhile before anything gets updated.
The code to save and restore Texture2D objects during tombstoning is standard and fairly simple, but I decided to make a couple methods to encapsulate the job. The static Texture2DExtensions class in the Petzold.Phone.Xna library contains the following two methods. The first is an extension method, so you can call it directly on a Texture2D object:
XNA Project: Petzold.Phone.Xna File: Texture2DExtensions.cs (excerpt)
The method creates a MemoryStream object and just passes that to the SaveAsPng method of the Texture2D. The MemoryStream itself can’t be serialized but a GetBuffer method on the MemoryStream returns an array of bytes and that can be serialized.
The companion load method is not an extension method because it results in the creation of a new Texture2D object. A byte array is retrieved from storage and passed to a MemoryStream constructor, which is then used with the static Texture2D.FromStream method:
XNA Project: Petzold.Phone.Xna File: Texture2DExtensions.cs (excerpt)
Here are the OnActivated and OnDeactivated overrides in MandelbrotSet that makes use of those two methods, and a method named InitializePixellnfo:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
As OnActivated completes, everything is initialized and ready, and so it starts up a second thread based on the PixelSetterThread method. This method spends the rest of eternity looping through all the members of the Pixellnfo array indexed by pixelIndex and calling the Iterate method. If Iterate returns true, then a color is assigned to the pixel:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
Although it’s important for this thread to perform the calculations as quickly as possible, it also tries to relieve some work that must be performed in the Update override (coming up). By setting static fields in the PixelInfo structure, the thread indicates the minimum and maximum pixel indices that have been changed.
I mentioned earlier that most simple Mandelbrot programs I’ve seen set a maximum for the number of iterations. (A pseudocode algorithm in the Wikipedia entry on the Mandelbrot Set sets max_iteration to 1000.) The only place in my implementation where I had to use an iteration maximum is right in here. As you’ll see shortly, when you use a pair of fingers to zoom in on the viewing area, the program needs to entirely start from scratch with a new array of PixelInfo structures. But for visualization purposes it expands the Texture2D to approximate the eventual image. This expansion often results in some pixels in the Mandelbrot Set being colored, and the algorithm I’m using here would never restore those pixels to black. So, if the iteration count on a particular pixel reaches 500, and if the pixel is not black, it’s set to black. That pixel could very well later be set to some other color, but that’s not known at this point.
Here’s the first section of the Update override that transfers color information from the PixelInfo array calculated in the second thread into the pixels array, and then updates the Texture2D from that array:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
The remainder of the Update override is devoted to dealing with touch input. The idea here is simple: As you’re touching the screen, moving it around, perhaps zooming in or zooming out, nothing irrevocable happens. The screen seems to be moving and zooming because a Matrix object named drawMatrix is being modified, and that’s used in the Begin call of the SpriteBatch.
However, once your finger or fingers lift from the screen, then the program changes both the Pixellnfo array and the pixels array for the new position and zoom level of the screen. There is no attempt to retain anything that is now off the screen.
Here’s the handling of the FreeDrag and DragComplete gestures for translation operations:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
As the user is moving one finger around the screen, only the drawMatrix is affected, but when the finger lifts off the screen the DragComplete gesture processing makes a call to the TranslatePixellnfo method to move elements in the array of Pixellnfo structures in accordance with the final selected position. Fortunately, pixels moved from one part of the screen to another can be preserved; new pixel locations start out as black. Update then transfers the pixel colors from the Pixellnfo array to the pixels array and updates the Texture2D from that. When that’s done, the drawMatrix can be set back to the identity matrix.
The TranslatePixellnfo method uses the final drawMatrix translation factors to set new values of the Pixellnfo.xPixelCoordAtComplexOrigin and the Pixellnfo.yPixelCoordAtComplexOrigin fields and shifts the Pixellnfo members around:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
With zooming, the opposite approach is taken. It is the very nature of the Mandelbrot Set that each point is unique and can’t be approximated from its neighbors. For this reason, any zooming operation must result in the entire PixelInfo array being recreated and all calculations starting over from the beginning.
However, the visuals can be retained as a temporary approximation. For this reason, Update handles the PinchComplete gesture by applying the transform to the pixels array, and then using that to set colors in the PixelInfo array. When you zoom in you’ll see something that might first look like this:
But wait a little while and it becomes this:
The Pinch code should look familiar except that it determines whether the horizontal or vertical delta dominates. This information is passed to the ComputeScaleMatrix method:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
The ComputeScaleMatrix method is very similar to the one in DragAndPinch except that it scales uniformly based on the Boolean argument to the method:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
The ZoomPixels method called for the PinchComplete gesture obtains the inverse of the Matrix for use in calculating source pixel coordinates from destination pixel coordinates. Fortunately, inverting the matrix is simply a matter of calling the static Matrix.Invert method. An earlier version of the program called Matrix.CreateScale (above) with zero as the third argument. This created an uninvertible matrix, and calling Invert created a matrix with NaN (“not a number”) values in all the fields. That’s no good.
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
All the exciting work is now finished. But it is considered essential in Mandelbrot programs to have some kind of display indicating where you are in the complex plane. The UpdateCoordinateText method is responsible for calculating the upper-left and lower-right coordinates, formatting them in StringBuilder objects, and determining where they should be displayed:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
After all that, the Draw method is very straightforward. Notice there are two calls to the Begin and End methods of SpriteBatch. The first requires the Matrix object that moves and scales the Texture2D while it’s being manipulated and the second is for the text items:
XNA Project: MandelbrotSet File: Game1.cs (excerpt)
To conclude this chapter, I have two programs that display that same old Texture2D I used earlier in this chapter, except that you’ll be able to define a transform on this image interactively by dragging the texture’s corners.
To give your fingers a target to touch and drag, the programs display translucent disks at the Texture2D corners. It would be nice to code these draggable translucent disks so they’re usable by multiple programs. In a traditional graphics programming environment, we might think of something like this as a control but in XNA it’s called a game component.
Components help modularize your XNA programs. Components can derive from the GameComponent class but often they derive from DrawableGameComponent so they can display something on the screen in addition to (and on top of) what goes out in the Draw method of your Game class.
To add a new component class to your project, right-click the project name, select Add and then New Item, and then pick Game Component from the list. You’ll need to change the base class to DrawableGameComponent and override the Draw method if you want the component to participate in drawing.
A game generally instantiates the components that it needs either in the game’s constructor or during the Initialize method. The components officially become part of the game when they are added to the Components collection defined by the Game class.
As with Game, a DrawableGameComponent derivative generally overrides the Initialize, LoadContent, Update, and Draw methods. When the Initialize override of the Game derivative calls the Initialize method in the base class, the Initialize methods in all the components are called. Likewise, when the LoadComponent, Update, and Draw overrides in the Game derivative call the method in the base class, the LoadComponent, Update, and Draw methods in all the components are called.
As you know, the Update override normally handles touch input. In my experience that attempting to access touch input in a game component is somewhat problematic. It seems as if the game itself and the components end up competing for input.
To fix this, I decided that my Game derivative would be solely responsible for calling TouchPanel.GetState, but the game would then give the components the opportunity to process this touch input. To accommodate this concept, I created this interface for GameComponent and DrawableGameComponent derivatives:
XNA Project: Petzold.Phone.Xna File: IProcessTouch.cs
When a game component implements this interface, the game calls the game component’s ProcessTouch method for every TouchLocation object. If the game component needs to use that TouchLocation, it returns true from ProcessTouch, and the game then probably ignores that TouchLocation.
The first component I’ll show you is called Dragger, and it is part of the Petzold.Phone.Xna library. Dragger derives from DrawableGameComponent and implements the IProcessTouch interface:
XNA Project: Petzold.Phone.Xna File: Dragger.cs (excerpt showing fields)
The constructor of a GameComponent derivative must be passed the parent Game so the component can share some properties with the Game (such as the GraphicsDevice object). A DrawableGameComponent derivative will usually create a SpriteBatch for its own use just as a Game derivative does.
Dragger also defines a touchld field for help in processing touch input, a public event named PositionChanged, and three public properties: Texture of type Texture2D, Vector2 called Origin (which is commonly set to the center of the Texture2D) and another Vector2 for the Position.
A program making use of Dragger could define a custom Texture2D for the component and set it through this public Texture property, at which time it would probably also set the Origin property. However, Dragger defines a default Texture property for itself during its LoadContent method:
XNA Project: Petzold.Phone.Xna File: Dragger.cs (excerpt)
The Dragger class implements the IProcessTouch interface so it has a ProcessTouch method that is called from the Game derivative for each TouchLocation object. The ProcessTouch method is interested in finger presses that occur over the component itself. If that is the case, it retains the ID and basically owns that finger until it lifts from the screen. For every movement of that finger, Dragger fires a PositionChanged event.
XNA Project: Petzold.Phone.Xna File: Dragger.cs (excerpt)
The Draw override just draws the Texture2D at the new position:
XNA Project: Petzold.Phone.Xna File: Dragger.cs (excerpt)
Now let’s put this Dragger component to use in exploring rather more advanced transform math.
Sometimes it’s convenient to derive a transform that maps a particular set of points to a particular destination. For example, here’s a program that incorporates three instances of the Dragger component I just described, and lets you drag three corners of the Texture2D to arbitrary locations on the screen:
This program uses an affine transform, which means that rectangles are always mapped to parallelograms. The fourth corner isn’t draggable because it’s always determined by the other three:
You can’t choose just any three points. Everything goes kaflooey if you attempt to make an interior angle greater than 180°.
To nail down the mathematics, it will be easier to first assume that the original image we’re trying to transform is 1 pixel wide and 1 pixel tall. We want a transform that produces the following mappings from the three corners of the image to three arbitrary points:
(0,0) → (x0, y0)
(1,0) → (x1, y1)
(0,1) → (x2, y2)
These are, respectively, the upper-left, upper-right, and lower-left corners. Using the fields of the Matrix object defined in XNA, the transform formulas are:
x′ = M11 . x | M21 . y + M41
y′ = M12 . x + M22 . y + M42
It’s easy to apply the transform to the points (0, 0), (1, 0), and (0, 1) and solve for the elements of the matrix:
M11 = x1 – x0
M12 = y1 – y0
M21 = x2 – x0
M22 = y2 – x0
M41 = x0
M42 = y0
A static class named MatrixHelper in the Petzold.Phone.Xna library has a method named ComputeAffineTransform that creates a Matrix object based on these formulas:
XNA Project: Petzold.Phone.Xna File: MatrixHelper.cs (excerpt)
This method isn’t public because it’s not very useful by itself. It’s not very useful because the formulas are based on transforming an image that is one-pixel wide and one-pixel tall. Notice, however, that the code sets M33 and M44 to 1. This doesn’t happen automatically and it is essential for the matrix to work right.
To compute a Matrix for an affine transform that applies to an object of a particular size, this public method is much more useful:
XNA Project: Petzold.Phone.Xna File: MatrixHelper.cs (excerpt)
The first transform scales the object down to a 1×1 size before applying the computed affine transform.
The AffineTransform project is responsible for the two screen shots shown above. It creates three instances of the Dragger component in its Initialize override, sets a handler for the PositionChanged event, and adds the component to the Components collection:
XNA Project: AffineTransform File: Game1.cs (excerpt)
Don’t forget to add the components to the Components collection of the Game class!
The LoadContent override is responsible for loading the image that will be transformed and initializing the Position properties of the three Dragger components at the three corners of the image:
XNA Project: AffineTransform File: Game1.cs (excerpt)
Dragger only fires its PositionChanged event when the component is actually dragged by the user, so the LoadContent method concludes by simulating a PositionChanged event, which calculates an initial Matrix based on the size of the Texture2D and the initial positions of the Dragger components:
XNA Project: AffineTransform File: Game1.cs (excerpt)
The program doesn’t need to handle any touch input of its own, but Dragger implements the IProcessTouch interface, so the program funnels touch input to the Dragger components. These Dragger components respond by possibly moving themselves and setting new Position properties, which will cause PositionChanged events to be fired.
XNA Project: AffineTransform File: Game1.cs (excerpt)
It is possible for the program to dispense with setting handlers for the PositionChanged event of the Dragger components and instead poll the Position properties during each Update call and recalculate a Matrix from those values. However, recalculating a Matrix only when one of the Position properties actually changes is much more efficient.
The Draw override uses that Matrix to display the texture:
XNA Project: AffineTransform File: Game1.cs (excerpt)
As you experiment with AffineTransform, you’ll want to avoid making the interior angles at any corner greater than 180°. (In other words, keep it convex.) Affine transforms can express familiar operations like translation, scaling, rotation, and skew, but they never transform a square into anything more exotic than a parallelogram.
Non-affine transforms are much more common in 3D than 2D. In 3D, non-affine transforms are necessary to implement perspective effects. A long straight desert highway in a 3D world must seem to get narrower as it recedes into the distance, just like in the real world. Although we know that the sides of the road remains parallel, visually they seem to converge at infinity. This tapering effect is characteristic of non-affine transforms.
The complete matrix transform for a three-dimensional coordinate point looks like this:
Because x, y, and z are already the last three letters of the alphabet, the fourth dimension is represented with the letter w. The three-dimensional coordinate point is first expressed as a four-dimensional point for multiplying by the 4×4 matrix. The following formulas result from the matrix multiplication:
x′ - M11 . x + M21 . y + M31 . z + M41
y′ = M12 . x + M22 . y + M32 . z + M42
z′ = M13 . x + M23 . y + M33 . z + M43
w′ = M14 . x + M24 . y + M34 . z + M44
For an affine transform, M14, M24, and M34 are all zero, and M44 is 1, so w′ is 1, and the entire transform occurs on a plane in 4D space. For non-affine transforms, w′ is not 1, and to project 4D space back into 3D space, the three-dimensaional point must be constructed from the four-dimensional point (x′, y′, z′, w′) like so:
It’s the division here that causes tapering. If M14 is a positive number, for example, then w” will increase for increasing x, and the graphical object will get progressively smaller as x gets larger.
What happens if w′ becomes zero? That’s the non-affine part of this process: Coordinates can become infinite. Generally you’ll want to keep infinite objects out of sight because they tend to hog the screen.
Although non-affine transforms are essential for 3D graphics programming, I wasn’t even sure if SpriteBatch supported two-dimensional non-affine transforms until I tried them, and I was pleased to discover that XNA says “No problem!” What this means is that you can use non-affine transforms in 2D programming to simulate perspective effects.
A non-affine transform in 2D can transform a square into a simple convex quadrilateral—a four-sided figure where the sides meet only at the corners, and interior angles at any corner are less than 180°. Here’s one example:
This one makes me look really smart:
This program is called NonAffineTransform and it’s just like AffineTransform except it has a fourth Dragger component and it calls a somewhat more sophisticated method in the MatrixHelper class in Petzold.Phone.Xna. You can move the little disks around with a fair amount of freedom; as long as you’re not trying to form a concave quadrilateral, you’ll get an image stretched to fit.
Again, let’s nail down the mathematics by assuming that the original image we’re trying to transform is 1 pixel wide and 1 pixel tall. Now we want a transform that produces mappings from the four corners of a square to four arbitrary points:
(0,0) → (x0,y0)
(1,0) → (x1,y0)
(0,1) → (x2,y2)
(1,1) → (x3,y3)
The transform we desire will be much easier to derive if we break it down into two transforms:
(0,0) → (0,0) → (x0,y0)
(1,0) → (1,0) → (x1,y1)
(0,1) → (0,1) → (x2,y2)
(1,1) → (a,b) → (x3,y3)
The first transform is a non-affine transform that I’ll call B. The second is something that I’ll force to be an affine transform called A (for “affine”). The composite transform is B×A. The task here is to derive the two transforms plus the point (a, b).
I’ve already defined the affine transform. But I want this affine transform to map a point (a, b) to the point (x3, y3). What is the point (a, b)? If we apply the affine transform to (a, b) and solve for a and b, we get:
Now let’s focus on the non-affine transform, which needs to produce the following mappings:
(0,0) → (0,0)
(1,0) → (1,0)
(0,1) → (0,1)
(1,1) → (a,b)
The generalized non-affine 2D transform formulas (using field names from the Matrix structure and incorporating the division by w′) are:
The point (0, 0) is mapped to (0, 0), which tells us that M41 and M42 are zero, and M44 is non-zero. Let’s go out on a limb and say M44 is 1.
The point (1, 0) is mapped to (1, 0), which tells us that M12 is zero and M14 = M11 – 1.
The point (0, 1) is mapped to (0, 1), which tells us that M21 is zero and M24 = M22 – 1.
The point (1, 1) is mapped to (a, b), which requires a bit of algebra to derive:
And a and b have already been calculated in connection with the affine transform.
This math has been incorporated into a second static MatrixHelper.ComputeMatrix method in the Petzold.Phone.Xna library:
XNA Project: Petzold.Phone.Xna File: MatrixHelper.cs
I won’t show you the NonAffineTransform program here because it’s pretty much the same as the AffineTransform program but with a fourth Dragger component whose Position property is passed to the second ComputeMatrix method.
The big difference with the new program is that non-affine transforms are much more fun!
Often when learning a new programming environment, a collection of techniques are acquired that don’t necessary add up to the skills required to create a complete program. This chapter is intended to compensate for that problem by presenting two rather archetypal programs for the phone called PhingerPaint and PhreeCell. The first is a simple drawing program; the second is a version of the classic solitaire game. A third program called SpinPaint shares some code with PhingerPaint but provides a much different experience.
All these programs use components, process touch input in various degrees of sophistication, and dynamically manipulate Texture2D objects. While these programs are certainly not of commercial quality, I think they provide at least a little better sense of what a “real program” looks like.
When first exploring the subject of dynamic Texture2D objects in Chapter 21, I described some simple finger-painting programs. PhingerPaint is slightly more sophisticated than those, as this screen shot suggests:
PhingerPaint has a total of 14 instances of two classes named ColorBlock and Button that derive from DrawableGameComponent. To select a drawing color, you touch one of the colored squares at top. You can also use the buttons on the bottom to clear the entire canvas or save the artwork to the phone’s photo library in a special album reserved for applications called Saved Pictures. From there you can email the picture, or you can move it to your PC during the next time you synchronize your phone. (What you can’t do is continue working on the picture during another session. Perhaps someday I’ll add that feature.)
Button behaves very much like a traditional graphical button. It normally displays white text with a white border, but when you put your finger on the surface, the colors invert to display black text on a white background. If you slide your finger off, the colors flip back to normal, but the button is still keeping track of that finger. Slide your finger back and the colors reverse themselves again. Lifting your finger from the button causes it to fire a Click event.
Because I’ll be using Button in more than one program, it’s part of the Petzold.Phone.Xna library. Here’s the beginning of the class with the private fields, the public event, the constructor, and public properties:
XNA Project: Petzold.Phone.Xna File: Button.cs (excerpt)
Normally the game component constructor has an argument of type Game, which is the parent of the component, and from which the GameComponent base class extracts the GraphicsDevice. I added a constructor argument of type string for the button text, but that text can also be set later through the public Text property.
I decided that the parent Game derivative should be responsible for setting the font for the Button and the all-important Destination property, which is the location and size of the Button relative to the screen.
The LoadContent override in the game component performs a similar function as in the game class. The Button class creates a tiny 1×1 pixel white Texture2D for displaying the button border and the reverse-video background.
XNA Project: Petzold.Phone.Xna File: Button.cs (excerpt)
The public SpriteFont and Destination properties of Button might be set at any time after the Button class is created. For this reason it’s the Update method that accesses this information to determine the text size and the position of the text:
XNA Project: Petzold.Phone.Xna File: Button.cs (excerpt)
The Button class implements the IProcessTouch interface that I discussed in the previous chapter, which means it has a ProcessTouch method that is called from the Game1 class with each TouchLocation object. For an initial finger press, ProcessTouch checks if the position of the touch point is within the Destination rectangle. If so, then it saves the touch ID and essentially owns that ID until the finger is released.
XNA Project: Petzold.Phone.Xna File: Button.cs (excerpt)
If the finger is released when it is inside the Destination rectangle, then Button fires a Click event.
The Draw override draws the button, which is basically a border consisting of a white rectangle with a somewhat smaller black rectangle on top, with the text string:
XNA Project: Petzold.Phone.Xna File: Button.cs (excerpt)
ColorBlock, on the other hand, is part of the PhingerPaint program, and it does not implement the IProcessTouch interface. Here it is in its entirety:
XNA Project: PhingerPaint File: ColorBlock.cs (complete)
ColorBlock relies on three public properties—Color, Destination, and IsSelected—to govern its appearance. Notice during the LoadContent method that it too creates a Texture2D that is exactly one pixel in size. This block object is drawn twice in the Draw method. First it’s drawn to the entire dimensions of the Destination rectangle as either dark gray or white, depending on the value of IsSelected. Then it’s contracted in size by six pixels on all sides and drawn again based on the Color property.
The components created by PhingerPaint are stored as fields along with some of the other expected information:
XNA Project: PhingerPaint File: Game1.cs (excerpt showing fields)
The List stores the 12 ColorBlock components and drawingColor is the currently selected color. The main canvas is, of course, the Texture2D object called canvas and the pixels array stores the texture’s pixels. The xCollection object is repeatedly reused in calls to the RoundCappedLine class that I discussed in Chapter 21.
The constructor sets the back buffer for portrait mode, but it sets the height to 768 rather than 800. This leaves enough space for the status bar so the back buffer is allowed to display in its full size:
XNA Project: PhingerPaint File: Game1.cs (excerpt)
The Initialize override is responsible for creating the Button and ColorBlack components, partially initializing them, and adding them to the Components collection of the Game class. This ensures that they get their own calls to Initialize, LoadContent, Update, and Draw.
XNA Project: PhingerPaint File: Game1.cs (excerpt)
The remainder of the initialization of the components occurs during the LoadContent override when the font can be loaded for the Button components. It seems a little odd to set a back buffer to an explicit size in the constructor, and yet calculate dimensions more abstractly in the LoadContent method, but it’s usually best to keep code as generalized and as flexible as possible.
XNA Project: PhingerPaint File: Game1.cs (excerpt)
The LoadContent method concludes by calculating a location and size for the Texture2D used as a canvas. But LoadContent doesn’t take the final step in actually creating that Texture2D because the LoadContent method might soon be followed by a call to the OnActivated override which signals either that the program is starting up, or it’s returning from a tombstoned state.
It is important for PhingerPaint to implement tombstoning because users tend to become enraged when their creative efforts disappear from the screen. For that reason the OnDeactivated override saves the image to the PhoneApplicationService in PNG format, and the OnActivated override gets it back out. I chose PNG for this process because it’s a lossless compression format, and I felt that the image should be restored exactly to its original state.
To slightly ease the process of saving and loading Texture2D object, I used the methods in the Texture2DExtensions class in the Petzold.Phone.Xna library that I described in the previous chapter. The OnActivated method calls LoadFromPhoneService to obtain a saved Texture2D, and if that’s not available, only then does it create a new one and clear it.
The use of the PhoneApplicationService class requires references to the System.Windows and Microsoft.Phone assemblies, and a using directive for Microosft.Phone.Shell.
XNA Project: PhingerPaint File: Game1.cs (excerpt)
The OnDeactivated override stores the Texture2D using the SaveToPhoneServiceState extension method:
XNA Project: PhingerPaint File: Game1.cs (excerpt)
If the program is starting up, OnActivated calls a method named ClearPixelArray:
XNA Project: PhingerPaint File: Game1.cs (excerpt)
You’ll also notice the Click event handler for the “clear” Button also calls this method. As you’ll recall, the Button class fires the Click event based on touch input, and Button gets touch input when the parent Game class calls the ProcessTouch method from its own Update override. This means that this OnClearButtonClick method is actually called during a call to the Update override of this class.
When the user presses the Button labeled “save” the program must display some kind of dialog box to let the user type in a filename. An XNA program can get keyboard input in one of two ways: a low-level approach involving Keyboard and a high-level approach by calling the Guide.BeginShowKeyboardInput method in the Microsoft.Xna.Framework.GamerServices namespace. I chose the high-level option. Guide.BeginShowKeyboardInput wants some initialization information and a callback function, so the method fabricates a unique filename from the current date and time:
XNA Project: PhingerPaint File: Game1.cs (excerpt)
The Guide.BeginShowKeyboardInput call causes the program to receive a call to OnDeactivated, after which the following screen is displayed:
The only parts of this screen you can customize are the text strings in the headings and the initial text in the text-entry box. The screen looks much better in portrait mode than in landscape mode. In landscape mode, all the text headings, the text-entry box, and the onscreen keyboard are re-oriented but the two buttons are not, and the combination looks very peculiar. One look at it and you might never call Guide.BeginShowKeyboardInput from a landscape-mode program!
When either the “OK” or “Cancel” button is clicked, the program is re-activated and the callback function in PhingerPaint is called:
XNA Project: PhingerPaint File: Game1.cs (excerpt)
Your program should assume that this callback function is being called asynchronously (as the argument implies) so you shouldn’t do a whole lot here except call Guide.EndShowKeyboardInput and save the return value in a field. If the user pressed the “OK” button, then the return value is the final text entered into the text-entry field. If the user pressed “Cancel” or the Back button, then Guide.EndShowKeyboardInput returns null.
A good place to do something with that return value is during the next call to the program’s Update override:
XNA Project: PhingerPaint File: Game1.cs (excerpt)
Notice that the logic checks if the filename field is non-null and non-empty but at the end it sets the filename field back to null to ensure that it’s saved only once.
SaveToPhotoLibrary is not a real method of the Texture2D class! It’s another extension method in the Texture2DExtensions class in the Petzold.Phone.Xna library.
XNA Project: Petzold.Phone.Xna File: Texture2DExtensions.cs (excerpt)
This is the standard code for saving a Texture2D to the Saved Pictures album of the phone’s photo library. Although PhingerPaint uses the PNG format when saving the image during tombstoning, pictures saved to the photo library must be JPEG. The SaveAsJpeg method saves the whole image to a MemoryStream, and then the MemoryStream position is reset and it’s passed to the SavePicture method of MediaLibrary with a filename.
If you’re deploying to an actual phone, and you’re running the desktop Zune software so Visual Studio can communicate with the phone, this code will raise an exception. When Zune is running it wants exclusive access to the phone’s media library. You’ll need to terminate the Zune program and instead run the WPDTPTConnect tool, either WPDTPTConnect32.exe or WPDTPTConnect64.exe depending on whether you run 32-bit or 64-bit Windows.
Of course, most of the Update override is devoted to handling touch input. I chose to use the low-level touch input so you can draw with multiple fingers on the canvas. The Button basically handles its own touch input based on the IProcessTouch interface but ColorBlock is handled differently. The Update method in the game class itself handles the ColorBlock components as well as the Texture2D canvas.
The ColorBlock components are treated more simply than the Button. Just a touch on a ColorBlock selects that item and switches the program to that color. The touch ID is retained and not allowed to be used for anything else.
XNA Project: PhingerPaint File: Game1.cs (excerpt)
The remainder of the touch processing is for actual drawing, and it’s only interested in State values of TouchLocationState.Moved. That state allows a call to the TryGetPreviousLocation method, and the two points can then be passed to the constructor of the RoundCappedLine class in Petzold.Phone.Xna. That provides ranges of pixels to color for each little piece of a total brushstroke:
XNA Project: PhingerPaint File: Game1.cs (excerpt)
It’s always very satisfying when everything has prepared the Draw override for a very simple job. The ColorBlock and Button components draw themselves, so the Draw method here need only render the canvas:
XNA Project: PhingerPaint File: Game1.cs (excerpt)
SpinPaint has an unusual genesis. I wrote the first version one morning while attending a two-day class on programming for Microsoft Surface—those coffee-table computers designed for public places. That version was written for the Windows Presentation Foundation and could be used by several people sitting around the machine.
I originally wanted to have a Silverlight version of SpinPaint in Chapter 14 of this book to demonstrate WriteableBitmap, but the performance was just terrible. I wrote the first XNA version for the Zune HD before I had an actual Windows Phone, and then I ported that version to the one I’ll show you here.
SpinPaint comes up with a white disk that rotates 12 times per minute. You’ll also notice that the title of the program cycles through a series of colors every 10 seconds:
When you touch the disk, it paints with that title color as if your finger is a brush and the disk is moving below it, but the painted line is also flipped around the horizontal and vertical axes:
As you continue to paint, you can get some fancy designs:
Obviously you’ll want to press the “save” button to save the result to the phone’s photo library, and later email it to your friends.
As with the PhingerPaint program, you can use up to four fingers for simultaneous drawing, and that’s why both programs use the low-level touch input rather than the gesture interface.
SpinPaint needs to handle touch in a very special way. Not only can fingers move on the screen, but the disk rotates underneath the fingers, so even if a finger isn’t moving it’s still going to be drawing. Unlike PhingerPaint, this program needs to keep track of each finger. For that reason, it defines a Dictionary with an integer key (which is the touch ID) that maintains objects of type TouchInfo, a small class internal to Game1 that stores two touch positions:
XNA Project: SpinPaint File: Game1.cs (excerpt showing fields)
The constructor sets the back buffer for portrait mode, but like PhingerPaint it sets the height to 768 rather than 800 to make room for the status bar:
XNA Project: SpinPaint File: Game1.cs (excerpt)
Making room for the status bar means that you’re seeing the full back buffer dimensions on the screen.
The two Button components are created during the Initialize method. They have their Text properties assigned and Click event handlers attached but nothing else quite yet:
XNA Project: SpinPaint File: Game1.cs (excerpt)
Notice the all-important step of adding the components to the Components collection of the Game class. If you forget to do that, they won’t show up at all and you’ll probably find yourself very baffled. (I speak from experience.)
The program can’t position the buttons until it knows how large they should be, and that information isn’t available until fonts are loaded, and that doesn’t happen until the LoadContent override. Here is where the buttons are assigned both a font and a destination:
XNA Project: SpinPaint File: Game1.cs (excerpt)
The LoadContent method doesn’t create the Texture2D used for painting because that job needs to be incorporated into the tombstoning logic.
As in PhingerPaint, the OnDeactivated override saves the image in PNG format, and the OnActivated override gets it back out. Both methods call methods in the TextureExtensions class in the Petzold.Phone.Xna library. If there’s nothing to retrieve, then the program is starting up fresh and a new Texture2D needs to be created.
XNA Project: SpinPaint File: Game1.cs (excerpt)
If a new Texture2D is created, then it is initialized with a pixels array that contains a circular area set to white except for a couple light gray lines that help suggest to the user that the disk is really spinning.
XNA Project: SpinPaint File: Game1.cs (excerpt)
The ClearPixelArray is also called when the user presses the “clear” button.
The logic for the “save” button is virtually identical to that in PhingerPaint:
XNA Project: SpinPaint File: Game1.cs (excerpt)
Also as in PhingerPaint, the file is saved to the photo library during the Update override:
XNA Project: SpinPaint File: Game1.cs (excerpt)
The remainder of the Update override does the really hard stuff: drawing on the disk based on touch input and the disk’s revolution.
Update processing begins with the calculation of a current angle of the spinning disk and a current color to paint it:
XNA Project: SpinPaint File: Game1.cs (excerpt)
While any finger is currently touching the screen, the program maintains a TouchInfo object with CurrentPosition and PreviousPosition. These positions are always relative to the Texture2D canvas not taking account of spinning. For that reason, this section of the Update override concludes with the CurrentPosition field being set from the PreviousPosition field under the assumption that no fingers have moved.
At this point, Update is now ready to look at touch input, first calling the ProcessTouch method in each button and then finding new positions of existing fingers or new touches. Translating touch input relative to the screen to touch input relative to the Texture2D is the responsibility of the little TranslateToTexture method that follows Update here.
XNA Project: SpinPaint File: Game1.cs (excerpt)
To take account of the spinning of the disk, the fields include previousAngle and currentAngle. Update now calculates two matrices called previousRotation and currentRotation based on these two fields. Notice that these matrices are obtained from calls to Matrix.CreateRotationZ but they are bracketed with multiplications by translation transforms that adjust the rotation so it is relative to the center of the Texture2D:
XNA Project: SpinPaint File: Game1.cs (excerpt)
Once those transforms are determined, then they can be applied to the PreviousPosition and CurrentPosition fields of the TouchInfo object using the state Vector2.Transform method, and then passed to RoundCappedLine to obtain the information necessary to draw a line on the Texture2D:
XNA Project: SpinPaint File: Game1.cs (excerpt)
The actual Draw override is amazingly tiny. All it renders is the rotating diskTexture and the application name with its changing color that appears at the top of the screen:
XNA Project: SpinPaint File: Game1.cs (excerpt)
I originally thought that my PhreeCell solitaire game would have no features beyond what was strictly necessary to play the game. My wife—who has played FreeCell under Windows and who only rarely can’t complete a deal—made it clear that PhreeCell would need two features that I hadn’t planned on implementing: First and most importantly, there had to be some kind of positive feedback from the program acknowledging that the player has won. I implemented this as a DrawableGameComponent derivative called CongratulationsComponent.
The second essential feature was something I called “auto move.” If a card can be legally moved to the suit piles at the upper right of the board, and there was no reason to do otherwise, then the card is automatically moved. Other than that, PhreeCell has no amenities. There is no animated “deal” at the beginning of play, you cannot simply “click” to indicate a destination spot, and there is no way to move multiple cards in one shot. There is no undo and no hints.
My coding for PhreeCell began not with an XNA program but with a Windows Presentation Foundation program to generate a single 1040 × 448 bitmap containing all 52 playing cards, each of which is 96 pixels wide and 112 pixels tall. This program uses mostly TextBlock objects to adorn a Canvas with numbers, letters, and suit symbols. It then passes the Canvas to a RenderTargetBitmap and saves the result out to a file named cards.png. In the XNA PhreeCell project, I added this file to the program’s content.
Within the PhreeCell project, each card is an object of type CardInfo:
XNA Project: PhreeCell File: CardInfo.cs
At first, this class simply had Suit and Rank properties. I added the static string arrays and ToString for display purposes while debugging, and I added the three AutoMove fields when I implemented that feature. CardInfo itself has no information about where the card is actually located during play. That’s retained elsewhere.
Here’s the opening PhreeCell screen:
I’ll assume you’re familiar with the rules. All 52 cards are dealt face up in 8 columns that I refer to in the program as “piles.” At the upper left are four spots for holding individual cards. I refer to these four areas as “holds.” At the upper-right are four spots for stacking ascending cards of the same suit; these are called “finals.” The red dot in the middle is the replay button.
For convenience, I split the Game1 class into two files. The first is the normal Game1.cs file; the second is named Game1.Helpers.cs. The Game1.cs file contains only those methods typically found in a small game that also implements tombstoning logic. Game1.Helpers.cs has everything else. I created the file by adding a new class to the project. In both files, the Game1 class derives from Game, and in both files the partial keyword indicates that the class is split between multiple files. The Helpers file has no instance fields—just const and static readonly. The Game1.cs file has one static field and all the instance fields:
XNA Project: PhreeCell File: Game1.cs (excerpt showing fields)
The program uses only two Texture2D objects: The cards object is the bitmap containing all 52 cards; individual cards are displayed by defining rectangular subsets of this bitmap. The surface is the dark blue area you see in the screen shot that also includes the white rectangles and the red button. The coordinates of those 16 white rectangles—there are eight more under the top card in each pile—are stored in the cardSpots array.
The displayMatrix field is normally the identity matrix. However, if you’re a Free Cell player you know that sometimes the piles of cards can grow long. In this case, the displayMatrix performs vertical scaling to compress the entire playing area. The inverseMatrix is the inverse of that matrix and is necessary to convert screen-relative touch input to points on the compressed bitmap.
The next block of fields are the basic data structures used by the program. The deck array contains all 52 CardInfo objects created early in the program and re-used until the program is terminated. During play, copies of those cards are also in piles, holds, and finals. I originally thought finals would be an array like holds because only the top card need be displayed, but I discovered that the auto-move feature potentially required more cards to be visible.
The other fields are connected with touching and moving cards with the fingers. The touchedCardPosition field is the current position of the moving card. The touchedCardOrigin field stores the object where the moving card came from and is either the holds or piles array, while touchedCardOriginIndex is the array index. These are used to return the card to its original spot if the user tries to move the card illegally.
The Game1 constructor indicates that the game wants a playing area of 800 pixels wide and 480 pixels high without the status bar. Three types of gestures are also enabled:
XNA Project: PhreeCell File: Game1.cs (excerpt)
The Initialize method creates the CardInfo objects for the decks array, and initializes the piles and finals arrays with List objects. It also creates the CongratulationsComponent and adds it to the Components collection:
XNA Project: PhreeCell File: Game1.cs (excerpt)
The LoadContent method loads the bitmap containing the card images, and also calls two methods in the portion of the Game1 class implemented in Game1.Helpers.cs:
XNA Project: PhreeCell File: Game1.cs (excerpt)
In a commercial program, I would definitely design a second set of cards specifically for the small display; these would certainly be more attractive than cards that are scaled to 60% of their designed size.
The Game1.Helpers.cs file begins with a bunch of constant fields that define all the pixel dimensions of the playing field:
XNA Project: PhreeCell File: Game1.Helper.cs (excerpt showing fields)
Notice that wSurface—the width of the playing field—is defined to be 800 pixels because that’s the width of the large phone display. However, the vertical dimension might need to be greater than 480. It is possible for there to be 20 overlapping cards in the piles area. To accommodate that possibility, hSurface is calculated as a maximum possible height based on these 20 overlapping cards.
The CreateCardSpots method uses those constants to calculate 16 Rectangle objects indicating where the cards are positioned on the playing fields. The top row has the holds and finals, and the bottom row is for the piles:
XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)
The CreateSurface method creates the bitmap used for the playing field. The size of the bitmap is based on hSurface (set as a constant 800) and wSurface, which is much more than 480. To draw the white rectangles and red replay button, it directly manipulates pixels and sets those to the bitmap:
XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)
The other static methods in the Game1 class are fairly self-explanatory.
XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)
GetCardTextureSource is used in conjunction with the large cards bitmap. It simply returns a Rectangle object corresponding to a particular card. TopCard returns the last item in a List<CardInfo> collection, which is useful for obtaining the topmost card in one of the piles or finals collections.
At the conclusion of the LoadContent override, the game is almost ready to call the Replay method, which shuffles the deck and “deals” cards into the piles collections. However, there is tombstoning to deal with. This program was originally built around the piles, holds, and finals arrays and collections before tombstoning was implemented. I was pleased when I realized that these three items were the only part of the program that needed to be saved and retrieved during tombstoning. However, it bothered me that these three objects contained references to the 52 instances of CardInfo stored in deck, and I wanted to maintain that relationship, so I ended up saving and retrieving not instances of CardInfo, but an integer index 0 through 52. This required a bit of rather boring code:
XNA Project: PhreeCell File: Game1.cs (excerpt)
The great news is that at the very end of the OnActivated override, the Replay method is called to actually start the game.
Replay is in the Game1.Helper.cs class:
XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)
The method clears out the holds array, and the finals and piles collections, randomizes the deck of cards, and apportions them into the eight collections in piles. The method is concluded with a call to CalculateDisplayMatrix. This is not the only time this method is called. It’s also called from OnActivated when the program is recovering from tombstoning. Thereafter, any time a card is moved from, or added to, one of the piles collections, the display matrix is re-calculated just in case.
This matrix is responsible for the height of the playing area if more space is required for viewing all the cards in the piles area. The program doesn’t handle this issue very elegantly. It simply makes the entire playing field a little shorter, including all the cards and even the replay button:
I’m not entirely happy with this solution, but here’s the CalculateDisplayMatrix method that does it:
XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)
The displayMatrix is used in the Begin call of SpriteBatch so it’s applied to everything in one grand swoop. Although just a little bit out of my customary sequence, you are now ready to look at the Draw method in the Game1 class.
XNA Project: PhreeCell File: Game1.cs (excerpt)
After calling Begin on the SpriteBatch object and displaying the surface bitmap for the playing field, the method is ready for drawing cards. It begins with the easy one—the four possible cards in the holds array. The little GetCardTextureSource method returns a Rectangle for the position of the card within the cards bitmap, and the cardSpot array provides the point where each card is to appear.
The next section is a little more complicated. When displaying the cards in the piles area, the cardSpot location must be offset to accommodate the overlapping cards. The really problematic area is the finals, and it’s problematic because of the auto-move feature. As you’ll see, when a card is eligible for auto-move, it is removed from its previous holds array or piles collection and put into a finals collection. However, the location of the card must be animated from its previous position to its new position. This is the purpose of the AutoMoveOffset and AutoMoveInterpolation properties that are part of CardInfo.
However, the Draw method wants to display each of the four finals collections sequentially from left to right, and then within each collection from the beginning (which is always an ace) to the end, which is the topmost card. I discovered this didn’t always work, and an animated card sometimes seemed briefly to slide under a card in one of the other finals stacks. That’s why the loop to display the finals collections has two passes—one for the non-animated cards and another for any animated auto-move cards. (Although the program only animates one card at a time, an earlier version animated multiple cards.)
Draw finishes with the card that the user might be currently dragging.
The Update method is concerned almost exclusively with implementing the animation for the auto-move feature and processing touch. The larger section with the nested foreach loops moves cards that have already been tagged for auto-move and hence have already been moved into the finals collections.
XNA Project: PhreeCell File: Game1.cs (excerpt)
Cards are actually tagged for auto-move in the final section of that code with a call to the AnalyzeforAutoMove method in the Game1.Helpers.cs file. (AnalyzeForAutoMove is also called later in the Update override after a card has been moved manually.) This method loops through the holds and the piles and calls CheckForAutoMove for each topmost card. If CheckForAutoMove returns true, then that method has already transferred the card to the appropriate finals collection and it must be removed from where it was. Three properties of CardInfo are then initialized for the actual movement shown above in Update:
XNA Project: PhreeCell File: Game1.Helpers.cs (excerpt)
The logic to determine what cards (if any) should be auto-moved turned out to be one of the lengthier parts of the program. The complication is that no card should be moved to the finals collection if it can still be used strategically. For example, a 4 of hearts shouldn’t be moved to a finals collection if a 3 of spades or 3 of clubs is still somewhere in the piles or holds collections.
XNA Project: PhreeCell File: Game1.Helpers.cs (excerpt)
Back in the Update override, following the animation for auto-move cards, Update checks if the user is trying to “pick up” a card by touching it. Picking up that particular card might be legal or not. If a card is already being moved and the user is trying to “set down” the card, then that too might be illegal. The legality is established by calls to TryPickUpCard and TryPutDownCard. Notice that the finger position is adjusted by inverseMatrix so it agrees with the actual locations of the cards.
XNA Project: PhreeCell File: Game1.cs (excerpt)
Those two methods TryPickUpCard and TryPutDownCard are both implemented in the Game1.Helpers.cs file and really establish the rules of the game.
TryPickUpCard is the simpler of the two methods. It only gets passed a touch position somewhere on the screen and must determine which card is being touched. Only a card in one of the holds collections or on top of one of the piles collection is eligible to be picked up, but otherwise the method doesn’t bother with determining if the user can actually do something useful with that card:
XNA Project: PhreeCell File: Game1.Helpers.cs (excerpt)
Once a card has been picked up, TryPickUpCard has already set the fields involving the touched card that are then used in the Update method for subsequently dragging that card around the screen.
The TryPutDownCard allows cards to be deposited in a piles collection or the holds array or a finals collection but must enforce the rules. If the drop is not legal, then the card is simply restored to its original spot directly without any animation:
XNA Project: PhreeCell File: Game1.Helpers.cs (excerpt)
But all that work is justified by a return value of true from the following method that simply determines if the top card in each of the finals collections is a king:
XNA Project: PhreeCell File: Game1.Helpers.cs (excerpt)
The Update method uses that to enable the CongratulationsComponent, shown here in its entirety:
XNA Project: PhreeCell File: CongratulationsComponent.c s
It’s not much: It just expands some spinning text and then deposits it in the center of the screen:
At this point, you can press the red button to play again. Good luck!
If the primary means of user interface in a Windows Phone 7 is touch, then what is the second most important? It depends on the application, of course, but in many Silverlight applications, I suspect the keyboard will still play a big role. In many XNA programs, however, the second most important means of user-interface is probably the accelerometer—particularly in arcade-type games where moving the phone itself can take the place of traditional hand controllers. For example, a game that drives a car around a race track or through a town can respond to left and right tilts of the phone by turning the car, and perhaps front to back tilts can control the gas pedal.
As you saw in Chapter 5, the data from the phone’s accelerometer is essentially a 3D vector (x, y, z) in a coordinate system that is fixed relative to the phone. The accelerometer coordinate system remains fixed regardless whether you hold the phone in portrait mode:
Or left landscape:
Or right landscape:
Notice that Y coordinates increase going up the phone, just like a real Cartesian coordinate system and the XNA 3D coordinate system, but not like XNA 2D coordinates where values of Y increase going down.
If the phone is held still, the acceleration vector points to the part of the phone that is closest to the earth. For example, if the acceleration vector is approximately (0.7,–0.7, 0) then the phone is being held like this:
The value of 0.7 in the example is, of course, the approximate square root of ½. If you calculate the magnitude of the acceleration vector using the Pythagorean Theorem
the result should be about 1 if the phone is held still. A phone lying on a level surface has an acceleration vector of approximately (0, 0, –1), which is the same value displayed by the phone emulator.
I say “approximately” because the phone’s accelerometer is not a very precise piece of hardware. The magnitude of the vector is supposed to be in units of the gravity on the surface of the earth, traditionally denoted as g, and approximately 32 feet per second squared. However, you’ll often see as much as a 5% error in the figure.
You’ll also notice that the X, Y, and Z components of the accelerometer reading for a phone lying on a level surface might also be several percentage points in error. If you’re writing a program that uses the accelerometer for a carpenter’s level, you’ll want to include an option to “calibrate” the accelerometer, which really means to adjust all future readings based on the reading when the user presses the “calibrate” button.
The data from the accelerometer is also often very jittery, as you undoubtedly discovered when running the two accelerometer programs shown in Chapter 5. Data smoothing is also a big part of accelerometer usage.
In this chapter I’ll be using a very simple low-pass filtering technique for smoothing the data and I won’t get into calibration issues. A library that can help you out with both of these issues can be found in Dave Edson’s blog entry “Using the Accelerometer on Windows Phone 7” at http://windowsteamblog.com/windows_phone/b/wpdev/archive/2010/09/08/using-the-accelerometer-on-windows-phone-7.aspx.
All the programs in this chapter require references to the Microsoft.Devices.Sensors assembly and using directives for the Microsoft.Devices.Sensors namespace.
The AccelerometerVisualization program is a modest step up from the XnaAccelerometer program in Chapter 5. That earlier program just showed a floating “bubble” without any kind of scale or numeric values. This one adds a scale (consisting of concentric circles) and some textual information:
AccelerometerVisualization also implements perhaps the most basic type of smoothing: a low-pass filter that averages the current value with a previously smoothed value. The raw accelerometer reading is indicated by the label “Raw” while the smoothed value is “Avg” (“average”). Minimum and maximum values are also displayed. These are calculated using the static Vector3.Min and Vector3.Max methods that find the minimum and maximum values of the X, Y, and Z components separately. The red ball is scaled to the magnitude of the vector and turns green when the accelerometer vector Z component is positive.
Here are the program’s fields:
XNA Project: AccelerometerVisualization File: Game1.cs (excerpt showing fields)
Although the program displays something akin to a “bubble” that moves in the opposite direction as gravity and the acceleration vector, it’s referred to in this program as a “ball”. The field named oldAcceleration is used for smoothing the values; whenever the display is updated, oldAcceleration is the previously smoothed (“Avg”) value.
By default, XNA programs adjust themselves to both left-landscape and right-landscape orientations. This default behavior is something that application programs almost never need to worry about—except when dealing with the accelerometer. In left-landscape mode, the accelerometer X axis increases going up the screen, and the accelerometer Y axis increases going left across the screen. In right-landscape mode, the accelerometer X axis increases going down the screen, and the accelerometer Y axis increases going right across the screen.
If you want to limit the confusion, the constructor of the Game1 class is the place to set the SupportedOrientations property of the GraphicsDeviceManager object (referenced by the graphics field) to DisplayOrientation.LandscapeLeft. My program doesn’t do that, and the display accomodates LandscapeRight orientations. However, it does use the constructor to set the back buffer size to allow room for the phone status bar:
XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)
The Initialize override creates the Accelerometer object, sets an event handler, and starts it up:
XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)
The ReadingChanged handler is called asynchronously, so the proper behavior is simply to save the value in code protected by a lock block:
XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)
If you perform some experiments with this ReadingChanged handler, you’ll discover that it’s called close to 50 times per second, rather more frequently than the video refresh rate, so you might want to implement smoothing right in this handler. (I do just that in some later programs in this chapter.)
The LoadContent override in this program is primarily responsible for preparing the two textures—the large backgroundTexture field that covers the entire surface with the concentric circles, and the ballTexture that floats around. The code that draws lines and circles on backgroundTexture is rather ad hoc, involving simple loops and a couple methods to set pixel colors.
XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)
It was this logic that prompted me to explicitly set the back buffer width to 728. When set at the default 800 pixels, the actual display is compressed by about 10% to make room for the status bar. Because the lines and circles I’m drawing are only one-pixel wide and obviously don’t implement anti-aliasing, they lost a bit of sharpness when the display was compressed.
Several interesting things happen in the Update override. The method is basically responsible for grabbing the accelerometer vector and displaying it in both graphical and visual forms. In this method, the raw value is named newAcceleration, while the smoothed value is avgAcceleration:
XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)
The accelerometerVector field is saved by the ReadingChanged handler in a second thread using a lock block so accessing it from the program’s main thread requires another lock block using the same object:
The smoothed value is then calculated from this raw value and oldAcceleration:
Vector3 avgAcceleration = 0.5f * oldAcceleration + 0.5f * newAcceleration;
After Update uses this avgAcceleration for display purposes, it replaces the oldAcceleration field:
oldAcceleration = avgAcceleration;
This is a type of smoothing known as a low-pass filter. High-frequency jitter is eliminated by averaging the value with earlier values. If v0 is the current raw vector reading (newAcceleration), and v–1 is the previous raw reading, and v–2 is the raw reading before that, then the smoothed value is:
But all these old values don’t need to be saved because they’ve already contributed to the calculation of oldAcceleration.
The influence of each reading is iteratively halved as it recedes further into the past. In theory, no reading ever stops affecting the smoothed value, but one second after a particular reading (or 30 calls to the Update override) the denominator on that reading is approximately one million, so the influence is very small.
You can adjust the weights between the old and the new but they must sum to 1. For example, this provides less smoothing by placing less weight on the earlier values:
Vector3 avgAcceleration = 0.25f * oldAcceleration + 0.75f * newAcceleration;
This one provides more smoothing:
Vector3 avgAcceleration = 0.75f * oldAcceleration + 0.25f * newAcceleration;
In the blog entry I mentioned earlier, Dave Edson expresses the low-pass filter slightly differently. Using my variable names, his formula is
Vector3 avgAcceleration = oldAcceleration + alpha * (newAcceleration – oldAcceleration);
where alpha ranges from 0 (smoothed to oblivion) to 1 (no smoothing at all). That blog entry also discusses alternatives to low-pass filtering when a program might be interested in sudden changes or jerks.
The other interesting activity of Update involves compensating for the two different landscape orientations, which of course are ultimately based on the accelerometer vector. Suppose the phone is in LandscapeLeft mode:
Increasing Y values of the accelerometer correspond with decreasing X values of the graphical display, and increasing X values of the accelerometer correspond with decreasing Y values of the graphical display. However, the intent here is to show a bubble that rises against gravity, so
Increase in accelerometer Y → increase in graphical X
Increase in accelerometer X → increase in graphical Y
Now turn the phone over so it goes into LandscapeRight mode:
Now,
Increase in accelerometer Y → decrease in graphical X
Increase in accelerometer X → decrease in graphical Y
In the Update override a sign value is first calculated that is 1 for LandscapeLeft mode and –1 for LandscapeRight:
int sign = this.Window.CurrentOrientation == DisplayOrientation.LandscapeLeft ? 1 : -1;
If the X and Y components of the smoothed acceleration vector are both zero the ball should be positioned at the point (screenCenter.X, screenCenter.Y). Easy enough. The offsets from that center should be based on the sign value and the distance from the center to the outside radius:
I was dissatisfied with this calculation, however. Because of the slight inaccuracies of the accelerometer values, sometimes the ball went completely outside the outer circle and off the screen. I decided to compensate for that by dividing by the length of the smoothed vector. This was already being used for scaling the ball:
ballScale = avgAcceleration.Length();
So I incorporated that into the position calculation:
The Draw override draws the background, the ball, and the four lines of text:
XNA Project: AccelerometerVisualization File: Game1.cs (excerpt)
If you shake the phone, it’s hard to see how the ball moves but you can see the influence in the minimum and maximum values. If your phone hardware is like my phone hardware, you’ll never get the X, Y, and Z components of the raw acceleration vector outside the range of –2 and 2, with a total magnitude of 3.46. This seems to be a hardware limitation.
The programs in this chapter use smoothed accelerometer readings for moving and orienting objects. It’s also possible to use sudden changes in the accelerometer readings, for example, to “throw” a pair of dice. The first step is to understand how the accelerometer readings change when you make sudden movements to the phone, and for that a historical graph might be helpful.
This is provided in the AccelerometerGraph program. Here’s a typical display:
Because the intention of this program is to show you what’s really coming through, it doesn’t perform any smoothing. Red is X, green is Y, and blue is Z. (The mnemonic is RGB == XYZ.) From the perspective in portrait mode, the graph moves up the screen and new values are added at the bottom. Vertically, each pixel represents a video display refresh “tick”—1/30th second. The heavier horizontal lines represent seconds. The lighter horizontal lines are fifths of a second (six pixels). The vertical line in the center represents an acceleration component value of 0. The two other heavier vertical lines represent values of 1 (at the right) and –1 at the left. The left edge is –2 and the right edge is 2. From what you saw in the previous program, this should be adequate for displaying the complete range of possible values.
As you let the program run, the old data seems to crawl up the screen, and perhaps one’s immediate instinct is to code it like that: Create a Texture2D the size of the screen and during every Update call just shift all the pixels by the width of the Texture2D so the top row disappears and the new row can be added at the end. But that’s a lot of pixel shifting 30 times a second.
It makes more sense to insert the new data at a variable row number that is incremented with every Update call. (Let’s call this the insert row.) In the Draw method, you can then draw the Texture2D twice divided into two parts. The first part is displayed at the top of the screen and begins with the row following the insert row and goes to the end of the Texture2D. The second part is drawn underneath the first part, and begins at the top of the Texture2D and ends with the insert row.
Because old data must be erased at the insert row to make way for new data, it makes sense to handle the fixed lines of the graph separately. That portion repeats itself vertically every 30 pixels so it can be a smaller bitmap that is displayed a bunch of times. In the fields of AccelerometerGraph, backgroundTexture has a height of 30 and graphTexture (which shows the red, green, and blue lines) has a height the size of the screen.
XNA Project: AccelerometerGraph File: Game1.cs (excerpt showing fields)
The constructor ends by setting the orientation to portrait and defining a back-buffer height that allows the status bar to be displayed.
As usual, the Initialize method starts up the accelerometer:
XNA Project: AccelerometerGraph File: Game1.cs (excerpt)
The LoadContent method is mostly dedicated to creating and initializing the backgroundTexture that contains the horizontal and vertical lines. Although the code here is fairly generalized, the height of backgroundTexture will be calculated as 30 pixels and horizontal lines are drawn every 6 pixels.
XNA Project: AccelerometerGraph File: Game1.cs (excerpt)
At the end, LoadContent creates the large graphTexture the size of the screen and re-creates the pixels array field specifically for this bitmap.
LoadContent concludes by setting oldlnsertRow to the penultimate row of the Texture2D. As you’ll see, the first calculation of insertRow performed in Update will set insertRow to the last row of the bitmap.
Each call to Update results in three straight lines being drawn on graphTexture, one red, one green, and one blue. If you think of each line being drawn from coordinates (x1, y1) to (x2, y2), then unless something happens that causes Update to lose ticks, y2 should equal y1 + 1. The X values of each colored line are based on the X, Y, and Z components of the old and new acceleration vectors.
The problem is that y1 might be at the bottom of the Texture2D and y2 might be at the top. In the following code, I found it easier to work with three Y values: oldlnsertRow is what I refer to above as y1, but both newlnsertRow and insertRow represent y2. The difference is that insertRow is always within the range of the Texture2D (that is, it’s less than the height of the bitmap) but newlnsertRow could be outside the range. The advantage of newlnsertRow is that it’s always guaranteed to be greater than oldlnsertRow, and this makes the line-drawing algorithms a little easier rather than dealing with a line that begins at the bottom of the bitmap and ends at the top.
The primary objective of Update is the call to DrawLines with oldlnsertRow, newlnsertRow, and the old and new acceleration vectors:
XNA Project: AccelerometerGraph File: Game1.cs (excerpt)
Towards the end of the Update override, the graphTexture is updated from the pixels array. If newlnsertRow is not outside the range of the bitmap, then only two rows (or so) need to be updated; otherwise, the simpler brute-force form of the SetData call is used.
The actual line-drawing consists of a couple methods. The DrawLines method simply breaks the acceleration vectors into three components and makes three calls to a DrawLine method that calculates X values from the acceleration vector components:
XNA Project: AccelerometerGraph File: Game1.cs (excerpt)
The other DrawLine method implements a simple line-drawing algorithm by looping through the pixels based on the greater of the X differential or the Y differential. I experimented with implementing anti-aliasing here, but I never got it to look quite right.
XNA Project: AccelerometerGraph File: Game1.cs (excerpt)
The SetPixel method makes the adjustment for Y coordinates that might be beyond the actual rows of the bitmap. Also notice the use of the OR operation. If a blue line and a red line partially overlap, for example, then the overlapping part of the line will be rendered as magenta.
Finally, the Draw method draws both Texture2D objects using similar logic that repeatedly draws the texture until the screen is full:
XNA Project: AccelerometerGraph File: Game1.cs (excerpt)
The final four programs in this chapter treat the surface of the phone as a plane on which a ball is free to roll.
The creation of the ball itself is performed in a static method in the Petzold.Phone.Xna library called Texture2DExtensions.CreateBall:
XNA Project: Petzold.Phone.Xna File: Texture2DExtensions.cs (excerpt)
But that’s the easy part. The harder part is nailing down the physics of a ball rolling on an inclined plane. It will help first to examine the relationship between the accelerometer vector and the angles that describe how the phone is tilted.
Suppose your phone is sitting flat on a level surface such as a desk. Here’s a view of the bottom of the phone:
Now pick up the left side of the phone:
The phone makes an angle α with the level surface. Can the value of α be calculated from the accelerometer vector?
When the phone is lying flat on the table, the acceleration vector is (0, 0, –1). When you tip the phone as shown, perhaps the acceleration vector becomes (0.34, 0, –0.94). (Just offhand, it hardly seems likely that the squares of those numbers add up to 1, but they do.)
The accelerometer vector always points towards the earth, that is, at right angles to the level surface:
You can construct a right triangle where the accelerometer vector is the hypotenuse and the two other sides are parallel to the X and Z axes of the phone:
Those two sides have lengths that are equal to the X and Z components of the acceleration vector:
It can also be shown through the use of similar triangles that the angle opposite the shorter leg of this triangle is the same angle π that the phone makes with the level surface:
This means that the sine of α is 0.34 and the cosine of α is 0.94, and α is 20°.
In summary, the left-right tilt of the phone is equal to the inverse sine of the X component of the acceleration vector; similarly, the top-bottom tilt is equal to the inverse sine of the Y component.
Now let’s roll a ball down that phone. A ball rolling down an inclined plane obviously experiences less acceleration than a ball in free fall:
Galileo used balls rolling down long inclined planes to slow down the process of acceleration and study it in more detail.
The calculation of the acceleration of the rolling ball is a bit messy (see, for example, A. P. French, Newtonian Mechanics, W. W. Norton, 1971, pages 652-653) but in the absence of friction it turns out to be simply:
where g is the normal acceleration of 32 feet per second squared due to gravity. But even this is an excessive amount of detail for implementing a rolling ball in a simple Windows Phone 7 application. All that is really necessary to know is that the acceleration is proportional to the sine of α. And that is extremely fortuitous because it means that acceleration of a rolling ball across the width of the phone (in portrait mode) is proportional to the X component of the accelerometer vector! For a ball that rolls along a plane, then the acceleration is a two-dimensional vector that can be calculated directly from the X and Y components of the accelerometer vector.
The TiltAndRoll program seems to roll a ball around the surface of the screen based on the tilting of the screen. When the ball strikes one of the edges, it does not bounce but instead loses all its velocity in the direction perpendicular to the edge. The ball continues to roll along the edge if the tilt of the phone justifies it.
The TiltAndRoll program calculates a two-dimensional acceleration vector from the three-dimensional accelerometer vector and multiplies it by a constant named GRAVITY that is in units of pixels per second squared. You can determine what GRAVITY should theoretically equal by multiplying 32 feet per second squared by 12 inches per foot and then by 264 pixels per inch and 2/3 and you’ll get something like 68,000, but in practical use that causes the ball to accelerate much too quickly. I’ve chosen something quite a bit lower, so as to make the effect almost as if the ball is moving through a thick liquid:
XNA Project: TiltAndRoll File: Game1.cs (excerpt showing fields)
Of coure, you can increase the value of GRAVITY if you’d like.
To simplify the calculations, the constructor fixes a portrait orientation. The X and Y components of the accelerometer vector will match the coordinates of the display except that the accelerometer Y and the display Y increase in opposite directions.
The Initialize method starts up the accelerometer, and the ReadingChanged event handler itself handles the smoothing of the values:
XNA Project: TiltAndRoll File: Game1.cs (excerpt)
You’ll notice the constants above define both a BALL_RADIUS and a BALL_SCALE. Because the Texture2DExtensions.CreateBall method does not attempt to implement anti-aliasing, a smoother image results if the ball is made larger than the displayed size and XNA performs some smoothing when rendering it. Although the ball is created with a total radius of the product of BALL_RADIUS and BALL_SCALE, it is later displayed with a scaling factor of 1/BALL_SCALE.
XNA Project: TiltAndRoll File: Game1.cs (excerpt)
The ballPosition initialized in LoadContent is a point stored as a Vector2 object. Velocity is also stored as a Vector2 object but this is a real vector in units of pixels per second. The velocity will tend to remain constant through the effect of inertia unless the ball hits one of the edges or the phone is tilted. All these calculations occur in the Update override:
XNA Project: TiltAndRoll File: Game1.cs (excerpt)
The two crucial calculations are these:
ballVelocity += GRAVITY * acceleration2D * elapsedSeconds;
ballPosition += ballVelocity * elapsedSeconds;
The acceleration2D vector is simply the accelerometer vector with the Z coordinate ignored and the Y coordinate negated. The velocity vector is adjusted by the acceleration vector times the elapsed time in seconds. The ball position is then adjusted by the resultant ball velocity vector, also times the elapsed time in seconds.
It is the beauty of vectors that we really don’t have to know whether the phone is tilted in the same direction as the velocity (and hence will tend to increase that velocity) or tilted in the opposite direction (in which case it tends to dampen the velocity), or tilted at some other angle that has no relation to the velocity vector.
The if statements that conclude Update processing check if the ball has gone beyond one of the edges, in which case it is brought back into view and that component of the velocity is set to zero. These are not if and else statements because the ball might simultaneously go outside the bounds of two edges and this case needs to be handled; if so, the ball will then come to rest in the corner.
The Draw method just draws the ball with the scaling factor:
XNA Project: TiltAndRoll File: Game1.cs (excerpt)
The TiltAndBounce program is very much like TiltAndRoll except that the ball bounces off the edges, which means that when a ball hits one of the edges of the screen, one of the components of its velocity is negated. In a simple scheme, if the velocity is (x, y) when the ball hits the right or left edge of the screen (for example) then the velocity becomes (–x, y) as it bounces off. But that’s unrealistic. You probably want the ball to lose some of its velocity in the bounce. For that reason, the fields in the TiltAndBounce program include a bounce attenuation factor of 2/3:
XNA Project: TiltAndBounce File: Game1.cs (excerpt showing fields)
A ball with velocity (x, y) bouncing off the right or left edge of the screen has a post-bounce velocity of (–BOUNCE·x, y).
The constructor is the same as TiltAndRoll as is the Initialize override, the ReadingChanged method, LoadContent, and Draw. The only difference is the Update method where the logic for hitting the edge now implements bouncing:
XNA Project: TiltAndBounce File: Game1.cs (excerpt)
In the previous program, it was possible for the ball to go beyond two edges simultaneously, but those could be handled with a series of if statements. However, the bounce logic actually changes the position of the ball, which could cause the ball to go beyond another edge. For this reason, this logic needs to test the position of the ball repeatedly until there are no more adjustments to be made.
It’s even possible to extend this bouncing logic into a simple game. The EdgeSlam program is very similar to TiltAndBounce except that one of the four sides is highlighted with a white bar. The objective is to maneuver the ball against that side. As soon as the ball strikes that side, another side is randomly highlighted. You get 1 point for every correct side you hit, and 5 points penalty for hitting a wrong side. The score is displayed in the center of the screen.
It turns out that the game is fairly easy to play until you make a mistake, at which point compensating for that mistake usually makes things worse. (It’s much like life in that respect.)
The fields include the same constants you saw earlier with two more for the scoring:
XNA Project: EdgeSlam File: Game1.cs (excerpt showing fields)
The SpriteFont is used to display the score in big numbers in the center of the screen. The tinyTexture is used to highlight a random side, indicated by the value of highlightedSide.
The Initialize override and accelerometer ReadingChanged methods are the same as the ones you’ve seen already. LoadContent creates tinyTexture and loads a font as well as creating the ball:
XNA Project: EdgeSlam File: Game1.cs (excerpt)
The Update method starts off just like the one in TiltAndBounce but the big do loop is a little more complex. When the ball strikes one of the edges the score needs to be adjusted depending on whether the particular side was highlighted or not:
XNA Project: EdgeSlam File: Game1.cs (excerpt)
If in the course of the bounce processing the needAnotherSide variable is set to true, then the Update override concludes by updating the StringBuilder named scoreText for the score and choosing another random side to highlight. The score Text field is not set until the first score; I originally had logic to initialize it to zero, but the game starts off with the ball in the center of the screen, and the ball inside the circle of the zero looked very odd!
The Draw override determines where to position the tinyTexture based on highlightedSide and is also responsible for displaying the score:
XNA Project: EdgeSlam File: Game1.cs (excerpt)
One natural for a rolling ball is a maze game, and of course this involves several problems, including creating a random maze and writing logic that keeps the ball within the confines of the maze.
After researching maze-generation algorithms a bit, I settled on perhaps the simplest, called “recursive division,” which creates a maze that tends to look something like this:
As you can see, this is not a very interesting maze, but its most advantageous feature is that any area within the maze is accessible from any other area.
Conceptually, the area is divided into a grid of cells. In this example, there are five cells horizontally and eight cells vertically, for a total of 40. Each of these cells can have a “wall” on up to three of its four sides. Here’s the simple public structure in the Petzold.Phone.Xna library that encapsulates the cell:
Project: Petzold.Phone.Xna File: MazeCell.cs
All the cells along the top edge have their HasTop properties set to true, all the cells along the left edge have their HasLeft properties set to true and similarly for the right and bottom
The array of MazeCell objects that comprise a maze is created and maintained by MazeGrid, which has a single constructor that accepts a width and height in number of cells (for example, 5 and 8 in the above example). Here’s the MazeGrid constructor, three public properties, as well as the Random object:
Project: Petzold.Phone.Xna File: MazeGrid.cs (excerpt)
The constructor concludes by creating an object of type MazeChamber the same size as itself and calling DivideChamber, which is a recursive method I’ll show you shortly. In this maze-generation algorithm, a chamber is a rectangular grid of cells with an interior that is devoid of walls. Each chamber is then divided in two with a wall placed randomly within the chamber (but generally going across the shortest dimension) with a single randomly selected gap. This process creates two chambers accessible to each other through that gap, and the sub-division continues until the chambers become the size of the cell.
MazeChamber is internal to the Petzold.Phone.Xna library. Here’s the entire class with its own Random field:
Project: Petzold.Phone.Xna File: MazeChamber.cs
The Divide method performs the actual separation of one chamber into two based on a randomly selected row or column and creates the two new MazeChamber objects. The recursive DivideChamber method in MazeGrid is responsible for calling that Divide method and defining the walls of the resultant cells except for the single gap:
Project: Petzold.Phone.Xna File: MazeGrid.cs (excerpt)
I also realized that I needed to generalize the bouncing logic, and for that I needed a good way to represent a geometric line segment that would allow calculating intersections and performing other useful operations. This is a structure I called Line2D. The line segment is defined with two points that also define a Vector property and a Normal property, which is perpendicular to the Vector, so that conceptually the line has a direction and can also have an “inside” and an “outside.”
Project: Petzold.Phone.Xna File: Line2D.cs
Because the line is internally defined with parametric formulas, it is fairly easy to find intersections by equating the implicit t values associated with a point on the line.
All these preliminaries are in preparation for the TiltMaze project. Here are the fields that include a tinyTexture used to display the walls of the grid. The List collection of Line2D objects named borders is an extremely important part of this program. The Line2D objects in the borders collection define the outlines of the walls that separate cells. Each wall has a width defined by the WALL_WIDTH constant:
XNA Project: TiltMaze File: Game1.cs (excerpt showing fields)
As usual, the Initialize override defines the Accelerometer object and the ReadingChanged handler saves the smoothed value.
XNA Project: TiltMaze File: Game1.cs (excerpt)
Much of the LoadContent method is devoted to building the borders collection, and I am exceptionally unhappy about this code. (It’s very high on my list of revisions as soon as I find the time.) The code looks at each cell separately and then each side of that cell separately. If a particular side of a cell has a wall, then the border interior to that cell is defined by three Line2D objects:
XNA Project: TiltMaze File: Game1.cs (excerpt)
The problem is that too many Line2D objects enter the borders collection. When walls combine from the same cell or adjoining cell, many of these Line2D objects become superfluous because they are actually inside a composite wall.
That’s not a really big problem in itself, but these superfluous Line2D objects seem to affect the functionality of the program. This is evident when a ball rolls down a long wall. At various points it seems to snag a bit as if it’s encountering one of these phantom borders and bouncing off.
The problem evidently also involves some of the logic in the Update method. As I indicated earlier, I needed to find a method to bounce off walls that was more generalized, and this represents one approach. But again, I’m not happy about it. It relies upon the borders collection and introduces its own little errors:
XNA Project: TiltMaze File: Game1.cs (excerpt)
For each Line2D object in the borders collection, the code calls a ShiftOut method in the structure that creates another line on the outside of the wall that is BALL_RADIUS from the border line and extends BALL_RADIUS on either side. I use this new Line2D object as a boundary line through which the center of the ball cannot pass and which provides a surface from which the center of the ball can bounce.
There are actually two problems with this approach: First, it doesn’t work for the corners. If I really want to prevent the center of the ball from passing a boundary, that boundary should be a quarter arc at the corners of the walls. Secondly, for Line2D objects embedded in the walls, this new Line2D sticks out from the wall and causes the snagging effect I mentioned earlier.
The Draw override doesn’t use the borders collection at all but performs a similar type of logic that draws sometimes overlapping rectangular textures:
XNA Project: TiltMaze File: Game1.cs (excerpt)
Of course, I know what I need to do: I need to go more global in constructing these walls. I need to know at every intersection how many walls meet at that point and define only the true outlines of these walls.
Just as many programming projects are never definitively finished, I suspect this book is not yet finished either.
Charles Petzold has been writing about programming for Windows-based operating systems for 24 years. His books include Programming Windows (5th edition, Microsoft Press, 1998) and six books about .NET programming, including 3D Programming for Windows: Three-Dimensional Graphics Programming for the Windows Presentation Foundation (Microsoft Press, 2007). He is also the author of two unique books that explore the intersection of computing technology, mathematics, and history: Code: The Hidden Language of Computer Hardware and Software (Microsoft Press, 1999) and The Annotated Turing: A Guided Tour though Alan Turing’s Historic Paper on Computability and the Turing Machine (Wiley, 2008). Petzold lives in New York City. His website is www.charlespetzold.com.