
Life in the Digital Crosshairs
The dawn of the Microsoft Security Development Lifecycle

David LeBlanc, like all
Microsoft staffers,
occasionally got email
blasts from Bill Gates. But
never before had one
mentioned him by name.
“I remember very clearly coming back to the office after
a morning full of meetings,” says LeBlanc, one of the first
full-time security professionals involved in Microsoft’s
Trustworthy Computing initiative. “People were coming out
of their offices and asking, had I seen Bill’s mail?”

Sure enough, blinking away on LeBlanc’s brand-new
Windows XP office laptop was a message from the company’s
legendarily direct CEO. The security of Microsoft products
was at risk, Gates wrote on Jan. 15, 2002. From that day
forward, whatever software the company made had to be
secure enough to earn a customer’s trust.

“Trustworthy Computing is the highest priority for all the
work we are doing,” Gates wrote, defining a new initiative
for the company. Over the next 1,500 or so words, he made
it clear that the security and overall trustworthiness of
complex software like Windows XP and Microsoft Office was
now the job of every company employee. As he saw it, the
integrity of not only these products, but the millions of lines
of code the enterprise used to pay its staff and manage its
finances, were part of the foundational infrastructure, like
running water and heat, for modern computational life.

LeBlanc was impressed by Gates’ inspirational tone. But what
really made the email pop for him was that — about a third

of the way through the message — Gates recommended
that all the then roughly 50,000 worldwide Microsoft
employees take a look at a certain book: LeBlanc’s book. He
and principal cyber-security architect Michael Howard had
recently finished Writing Secure Code, a Microsoft-
published text, and Howard had slipped Gates a copy at the
end of a recent meeting.

The pair had written the book partly to fill a knowledge gap
about what it took to write software with fewer, less severe
vulnerabilities. The themes they laid out eventually helped
define the Security Development Lifecycle — commonly
called the SDL — that became the benchmark reference for
how large groups can create as secure software as possible.

Writing Secure Code tackled basic principles like matching
the right amount of data needed to fit into chunks
of available memory or designing software without
unnecessarily giving it the privilege to hijack an entire PC. It
also detailed larger security concepts like anticipating risks
before designing software and planning attack responses
ahead of time. The details were complex, but the idea
behind them was almost simplistic.

“I say it over and over: Software developers want to do the
right thing,” says LeBlanc, now a Microsoft principal software
development engineer. “But they need to be shown exactly
what that right thing is.”

The spotlight that follows Bill Gates turned LeBlanc and
Howard from scribes of a how-to manual for software
developers into bestselling authors. Writing Secure Code
became an instant bestseller on Amazon. “That was the
exact moment when it all started, that Bill Gates memo,”
says Howard, now a principal cyber security architect at the
company. “It was that big a deal. Everybody realized how
they were going to do their jobs was going to be different.”

David LeBlanc
Principal Software Development Engineer, Microsoft Windows

“I remember very clearly coming
back to the office after a morning
full of meetings. People were
coming out of their offices and
asking, had I seen Bill’s mail?”

The dawn of Microsoft
Trustworthy Computing

As bright as the limelight
was, LeBlanc and Howard
knew that a darker message
loomed behind Gates’
email: The company was
under attack.
The world’s software bad guys were no longer content
to bash away at Microsoft’s customers by the established
means of breaching firewalls, subverting how data is
transported around a network or gaining unauthorized
access to computer terminals. Rather, this new generation of
global network-savvy computer marauders was exploiting
programming flaws in Microsoft software. In many cases, the
software giant had released patches for these flaws weeks or
months before, but computer users around the world often
found them difficult to install.

On July 19, 2001, just six months before the Gates security email, a
small firm called eEye Digital Security had noticed a nasty
bit of self-replicating code — dubbed a worm. Internet lore
says researchers named the bug “Code Red” for the flavor
of Mountain Dew they were drinking at the time. Either way,
this aggressive new form of digital infantry was quickly in
business in a tiny, hidden crevice deep inside Microsoft Web
servers that store, or buffer, data. Code Red took advantage
of a so-called buffer overflow to store more data in a place
than normal, giving attackers the means to deface a target
website with “HELLO! Welcome to http://www.worm.com!
Hacked By Chinese!” and to gain enough control over that
machine to use it to spread the worm to other Web servers
at will.

Not surprisingly, the story of out-of-control software straight
out of a Tom Clancy novel gained instant media traction.
One of the many news outlets that ran the story, ABC
News, reported that more than 300,000 computers around

the world were infected with Code Red in just two weeks
— including critical computational infrastructure at the
Department of Defense that was shut down to avoid attack.

“I think it’s safe to assume that Code Red is the first of
a new breed,” Marty Lindner, a member of Carnegie
Mellon University’s Computer Emergency Response Team
Coordination Center, told ABC News at the time. “And there
will be more like it.”

Lindner was right. Just six weeks later, Code Red was
surpassed both in damage and in reach by a similar bug
called Nimda. On Sept. 18, this particularly vicious bit of self-
replicating software not only harvested emails en masse, but
spread itself in shared files and as users clicked on infected
public websites. It also took advantage of weaknesses in
Microsoft’s Web software products.

It did not help that Nimda struck just a week after the
attacks of Sept. 11, 2001. Then U.S. Attorney General John
Ashcroft went as far as issuing a statement quashing the
suspicion that there was any connection between the two.
But businesses had clearly had it with feeble Microsoft
security. Chris Walker, a software engineer who managed
early penetration testing efforts for Microsoft products,
has vivid memories of being called into the office of Brian
Valentine, then senior vice president for the Windows Core
Operating System Division.

“I remember clearly him telling a room packed with
Windows folks that the pain had to stop,” says Walker. “He
couldn’t go talk to new customers without spending most
of the time talking about security. And that was simply
unacceptable.”

Microsoft scrambled to issue patches and fix any issues
it found. But security pros inside the company knew that
reacting to attacks would not stop them. Nothing less than
a ground-up security reboot was needed. “We all knew what
the problems were,” recalls Steve Lipner, then a director of
security assurance focused mostly on threat management
and mitigation. “But the real issue was, things were getting
worse and worse. How were we going to get ahead of this?

 “That’s what we really had to go fix.”

Microsoft goes Code Red

Internet lore says researchers
named the bug “Code Red”
for the flavor of Mountain Dew
they were drinking at the time.

Early application security
professionals knew all too
well why product security
was so feeble. In these
early days, not just Microsoft
products, but every bit of
computer software, did not
prioritize security.
Arjuna Shunn came to the company as an in-house
penetration tester, or pen-tester, whose job was to break
into software before a bad guy does. Prior to his years at the
company, he developed and managed a massive, multi-
million-dollar server array — which amounted to working in
a winter coat in a giant, refrigerated computer server facility.
He and his team had just finished automating a complex
management process on this server farm when, while
waiting for tests to finish, they killed time playing a version
of the video game Tetris. Their version — just for fun — was
hacked to run on the tiny 6-inch screen that controlled the
array of hard discs.

“We realized, quite by accident, that when that game
crashed it exposed the ‘root’ control for the entire
computer,” Shunn says. Suddenly, that copy of Tetris was
not so funny anymore. In stunned silence, Shunn and his
colleagues realized that anybody with a free copy of a
simple video game could take down millions of dollars
of equipment and information. “That was an epiphany,
spending the next three weeks fixing the system because of
a mere video game.”

Even worse, there was no way in the late 1990s for a
company like Microsoft to hold a meaningful cross-company
conversation about software security. “We failed to find
an existing taxonomy that could provide a framework for
discussing Trustworthy Computing,” Craig Mundie, then
senior vice president and chief technology officer, wrote
in a white paper on the topic that was circulated as late as
October 2002. “There is no shortage of trust initiatives, but
the focus of each is narrow.”

That made the problem of securing Microsoft software
almost incomprehensible. This was a truly massive company,
with more than 8,500 developers on Windows alone who
touched tens of millions of lines of code. But truly massive
exposure emerged from nearly invisibly small problems.
“Code Red, for example, was the result of an error in a single
line of code,” says Howard, co-author of Writing Secure
Code. “But that’s all it took — one line turned on that should
have been off.

“That was how specific we all needed to start thinking.”

Tetris crashes a mainframe
 “We realized, quite by accident, that

when that game crashed it exposed
the ‘root’ control for the entire
computer.That was an epiphany,
spending the next three weeks
fixing the system because of a
mere video game.” time.

Arjuna Shunn
In-house penetration tester at Microsoft

Getting the AppSec
band together
Microsoft, at least in the
abstract, had committed real
resources to the stoutness
of its software from its
earliest days.
There are solid accounts of security reviews, coding policies for
individual products and even the occasional “Bug Bash,” where
coders would stop developing and focus intensely on fixing any
mistakes they could find. Howard recalls that these early, non-
centralized security efforts pioneered many core principles
of modern secure software development at the company
— including the basic, but critical, notion of finding mistakes
in the code before the bad guys do. By the late 1990s, the
security efforts began organizing themselves into small,
unnamed security teams. These early pick-up bands of
application security “studio musicians” would gig their way
through various product groups at the company to raise
awareness for software security, fix what they could and get
developers in rhythm with the latest risks as they broke.

“As far as I know, that was the earliest effort inside the
company dedicated entirely to application security,” Howard

says. “And I have to admit, it was fun work.” Bashes were
kept light-hearted. There were awards for finding the best
bug, the worst bug and the bug written by the most senior
person. “We made a big deal of having to fix the insecure
code previously written by a vice president,” Howard
says. “You have to have these kinds of things to show that
anybody at any level can make these mistakes.”

Upper management began to see the value in investing in
a full-time security force. Dave Thompson, who was vice
president of Windows Server at the time and who recently
retired after launching Microsoft Office 365, named these
early security groups the Secure Windows Initiative, or
the SWI. Security teams fluent in both the product being
developed and the current state of application risk met in
the morning and set a plan for the day. Then, depending
on the threat level, they spent the rest of their day running
automated tools, reviewing code by hand, re-engineering
any security bugs they found and following up on past risks.

By all accounts, the Secure Windows Initiative made
Microsoft’s products safer. But all close to the effort knew
that these small SWI teams were no match for an enterprise
of Microsoft’s scale. The company — and its products —
were simply too big. “We could meet and code all day and
night,” Howard says, “and still not make progress in making
the entire line of Windows products secure.

“It was tens of millions of lines of code we had to deal with.”

 “We made a big deal of having to
fix the insecure code previously
written by a vice president. You
have to have these kinds of things
to show that anybody at any level
can make these mistakes.”

Michael Howard
Principal Consultant Cybersecurity with Microsoft

Standing up by
standing down
For all its limits, the
Secure Windows Initiative
remained the best security
effort the company had
for roughly the next 18
months. But even as early
as 2001, it was clear these
efforts were not the future
of application security at
Microsoft.

By mid-year, Howard and LeBlanc felt growing pressure to
finish their book and formalize the process of how large
groups could consistently write more secure software.
“We joked about this, but it really was true. We had to
get Writing Secure Code done to keep from going to the
same meetings to answer the same questions,” LeBlanc
says. “There was not really a whole lot of knowledge in the
industry about creating secure source code. We were laying
down the rules as much for us as for our potential readers.”

Toward the end of 2001, as the two were polishing off their
final draft, a critical new approach for how massive armies
of developers would make software more secure appeared
in Howard’s email inbox. It was a message from Loren
Kohnfelder, a security lead on the then-radical new .NET
Framework. The major idea behind .NET was to offer those
who wrote software a set of consistent tools that could
speed the application development process. But it would
also attempt to centralize who was who on a network, no
matter how big or complex that network was. .NET was a
major focus of then-chief technology officer Mundie. And
it was developed from the ground up as a showcase for

how application security could be a major cornerstone of
new Microsoft products. Kohnfelder was given the role of
managing the security of .NET for a good reason: He was
a serious security pro as Microsoft. His MIT thesis in the
late 1970s had been to define the multi-headed system
for managing trust on complex computer networks, called
public-key infrastructure, or PKI. That system remains the
backbone of Web security to this day.

Kohnfelder reached out to Howard with a serious problem.
In spite of a project-wide commitment to secure software
development in .NET, Kohnfelder and his team were seeing
disturbing security flaws. “The issues they found were very
specific to .NET,” says Howard. “It took me several times
through with Kohnfelder to even understand what was
happening, but essentially it turned out they had to be very
careful about how .NET code used a security feature called
LinkDemand. If attackers knew what they were doing, they
could exploit systems with something called a ‘luring attack’
to cause significant damage.”

Considering the profile of .NET both inside and outside
the company, Kohnfelder looked to Howard for ideas on
how to be absolutely certain all the security issues — not
just LinkDemand — were mitigated. Howard’s answer was
simple: a more in-depth Secure Windows Initiative-style Bug
Bash. “But rather than lasting only one day, it would be done

when it was done,” he recalls, “With ‘done’ meaning the rate
of incoming security bugs approached zero.”

But since humans cannot bash bugs and write code at the
same time, this non-stop, bug-blasting rave meant that all
new development on .NET would halt — even though the
framework was set to ship in just a few months. “There was
a chance we could put the ship date in jeopardy,” recalls
Howard. For the first time in Microsoft’s history, an entire
product team was out of the software-writing business —
and in the software security business.

“We all got the message: If you are going to take developers
off code and put them on security, that affects schedule.
And that affects your business,” says LeBlanc, Howard’s co-
author. “It showed us there was real executive buy-in to the
importance of security.”

The Bug Bash that ends when its ends was even awarded its
own Microsoftian jargon and swag. It was dubbed “The .NET
Security Standdown” and t-shirts were made with the date it
was set to begin. “The big joke, of course, was when we were
supposed to start, there was a massive snow storm,” Howard
recalls.

“So nobody could get to work. It actually started a few days
later.”

“We all got the message: If you are going to take
developers off code and put them on security,
that affects schedule. And that affects your
business. It showed us there was real executive
buy-in to the importance of security.”

David LeBlanc
Principal Software Development Engineer, Microsoft Windows

Opening the window to
Windows secure code
As 2001 wound down, so
did the .NET Standdown.
And the company tasted
the first fruits of giving
security its due.
The Secure Windows Initiative and the security push in
Kohnfelder’s group began formalizing several foundational
principles that would later become the core for the Security
Development Lifecycle. Among them was reducing the
so-called “attack surface” by reducing the amount of code
exposed to attackers, turning off unneeded features and
making sure applications lack the privilege to take over an
entire computer.

.NET was progress, but it was obvious that application
security was still in its infancy at Microsoft. The focus
quickly shifted from .NET to the efforts of security director
Steve Lipner, who had spent much of his career developing
theoretically secure computer software for the U.S. Air Force
and Digital Equipment Corporation. After being recruited
to manage Microsoft’s Security Response Center, which had
responded to security holes as they are discovered, Lipner
began to pull together security-minded employees and
resources from across the company.

 “I really think he was the quiet power behind security at the
company at the time,” says Walker, who has since retired
from the company. “He had the credibility to get the right
people in meetings. He did not back them into a corner. And
they listened.”

Lipner, who these days is partner director of program
management in Trustworthy Computing, began to
organize the various security efforts in Microsoft’s Windows
development into a three-tiered system: a developer-
focused security arm manned by Howard, a program
manager-aimed group led by program manager Jason
Garms and a testers group led by Walker.

“It was clear that the Bug Bash model was not going cut
it,” Lipner says. “We were stuck in the mode of reacting to
whatever hit us.”

By November, the company-wide pace of development
for application security began to quicken. Lipner and his
team figured it was a good time to use a smart Microsoft
management technique: Take a moment to stop and think.
It was widely known that every six months, Gates got in
touch with his own, inner smart self by spending so-called
“Think Weeks” at his Wyoming wilderness lodge. Similarly,
company executives routinely had offsite meetings to plan
in peace and quiet. Lipner, Walker, Howard, a lead program
manager named Glenn Pittaway and a then security
response lead Scott Culp, planned an all-day meeting at
Robinswood House, a popular wedding and bar/bat mitzvah
venue in Bellevue, Washington.

“It was a nice, wooded spot,” says Pittaway. “And there we
were, in this rural, wood-paneled room, and we could really
get away for a few hours and just make sure we were doing
the right thing. At some point somebody said — and as far
as I know nobody remembers who — that if the standdown
had worked for .NET, could we do it for all of Windows?
Which, of course, was ridiculous because .NET was, at
most, a few hundred developers and Windows was this
9,000-person supertanker.”

Lipner realized quickly that in order to get the buy-in needed
for such a product-wide security reboot, the growing security
effort would have to find support from the highest levels of
Microsoft’s corporate command. Lipner began his internal
due diligence with a direct meeting with Doug Bayer, who
was then director of Windows Security and responsible for
specific security features in Windows products, like how
authentication is managed. That led to a meeting of Lipner
and Bayer with Windows Server vice president Thompson.
And that, in turn, led to larger meetings with Windows
senior VP Valentine, and finally to a meeting with Jim
Allchin, who ran the larger Platform Group.

Lipner had learned in his previous application security lives
that absolute security was futile for large software packages
like Microsoft Windows. What the company sought, rather,
was, within the practicalities of shipping real products to real

customers, to build a much more secure line of Microsoft
offerings. To achieve this reasonable level of security,
standing down nearly 9,000 Windows developers for at
least a month was probably the company’s only option. The
higher Lipner went, the more the notion of a Windows-wide
standdown took hold.

“There was no dramatic meeting that I can recall,” says Lipner.
“At some point the tenor of conversation went from talking
about standing down to actually planning to stand down.”

All this application security movement among the rank and
file caught the attention of Microsoft’s top management.
During the second week of December 2001, Howard and
Bayer got on the calendar of the most important Microsoft
executive of them all. Bill Gates invited the two to his
surprisingly modest office for a hands-on breakdown of
modern security flaws. The executive was so fascinated by the
details of how exploits took down contemporary Microsoft
products that they chatted for more than two hours.

“I had a deck of about 30 slides,” Howard remembers. “But
we spent so much time talking, I don’t think we covered
more than 25 percent of them.”

As the meeting came to an end, a surprising bit of old-
fashioned paper and ink took over the discussion. Howard
had brought along a copy of his and LeBlanc’s newly

finished book, Writing Secure Code, on the off chance the
topic might come up. At the end of the meeting, he handed
Gates a copy.

“I thought it would be a nice gesture,” he says.

Gates digested what he had discussed with Howard and
Bayer, and what he was hearing from executives like
chief technology officer Mundie and vice president for
the Platforms Group, Jim Allchin. Meanwhile, Lipner was
huddling with his team. Their task was working essentially
around the clock creating and prioritizing the security
training materials and tools the software groups would need.

“Considering the work involved, the informal name of
what we were doing was a ‘security push,’ and it stuck,” says
Lipner. “That is pretty much what it was. And to this day, that
was what this period in the company is called: the Security
Push Era.”

By January 2002, Gates’ watershed company-wide security
email rolled out. Howard and LeBlanc’s book jumped to the
top of Amazon’s bestseller list and, seemingly overnight,
the secure application software development era officially
began at Microsoft.

“At some point somebody said — and
as far as I know nobody remembers
who — that if the standdown had
worked for .NET, could we do it for all
of Windows? Which, of course, was
ridiculous because .NET was, at most, a
few hundred developers and Windows
was this 9,000-person supertanker.”

Glenn Pittaway
Senior Director of Software Security at Microsoft

Fitting 8,500 developers
into a 950-seat box

Steve Lipner
Partner Director of Program Management at Microsoft

“Our approach to security was
chaotic then. We were learning as
we went.... It was a grind. We knew
we needed a better way.” Despite widespread

agreement that a Windows
standdown was needed,
the practical logistics of
making it happen were
daunting.
For starters, 8,500 developers, testers and program
managers had to attend a four-hour software security
training lecture on the security push process and building
secure software — in a room that only sat 950 people.

“We had to do the presentations 10 times,” Lipner says. “We
all got pretty tired by the last two or three.”

Then there was the problem of deciding what was a bug and
how to fix it. To streamline the process, the team used the
“War Room” on the third floor of the Windows development
facility. There, developers would bring lines of potentially
vulnerable code for review and debate. Was the code a bug
at all? And if so, did it merit repair? While most issues were
found and fixed by common consent, “There were times
we would go to those meetings and lose,” says penetration
tester Walker. “And we were not above going over that
group’s head to find a vice president to approve the fix if we
felt it should be there. There were fights.”

In those early days, the tools and texts Lipner and his team
asked developers to use were still in development. There
was Howard and LeBlanc’s book, and the company had
some analysis tools like PREfix and PREfast. By all accounts,

they were helpful. But many systems were in development.
“People would throw some of the tools we gave them back
at us because they really didn’t work,” says Lipner. “I knew
how they felt; our approach to security was chaotic then. We
were learning as we went.”

All these practical issues took time. The initial Windows
standdown was budgeted for one month. It took two.
Windows development picked back up by mid-2002, but
the security battle was fought again and again over the
next 24 months as a series of security pushes was rammed
through the different units at the company, including SQL
Server, Exchange Server and Office. And all the time, the
budget meter was running: The cost in human resources was
enormous. The oft-repeated internal figure was that in 2002,
the company spent $200 million on the Windows Security
Push alone.

But most of all, the security troops were getting threadbare.
Though all involved say this was a three- to four-month
period of remarkable focus and energy at the company, the
level of work would often come in unsustainable chunks. All-
nighters, back-to-back training sessions and endless email
reviews were all in a day’s work during the most intense
periods of some security pushes.

“We would have a morning meeting of the War Team
that would update us on the bugs we fixed and then the
progress of fixing other components,” Lipner says. “Then the
day would consist of meetings to review the issues in various
parts of the Windows development group. That would all
end at 6:30 or 7 and I would go home, see my wife and have
dinner — and then go to my study and try to catch up on
300 emails.

“It was a grind. We knew we needed a better way.”

through the company to gain formal buy-in for baking the
Security Development Lifecycle into how Microsoft created
all its software. By March of 2004, Lipner found himself
in CEO Steve Ballmer’s executive office meeting room at
Microsoft headquarters.

Lipner recalls being in the room when the leadership team
formally decided to authorize the creation of a procedure
that would mandate how code would be securely created
from then on. “I remember Ballmer turning to me and making
clear to the entire leadership team that we weren’t going to
talk about this again,” Lipner says. “It was now policy.”

Sometime around July 2004, the formal Security
Development Lifecycle, or SDL, went into active distribution.
All the combined software security wisdom of the past half-
decade was in place: The initial “find the bugs and kill ‘em”
ethic of the early Bug Bashes. The smart design concepts
first tested in the .NET Standdown, which created design
requirements for secure software. And the initial training
and tools developed during the Security Push Era. It works
now as it worked then. Once the SDL is running, various
groups adapt its specific components for their needs.
Important new features are injected into the knowledge
base every six months to a year, such as when major new
concepts like fuzz testing and improvements in threat
modeling must be included.

“You realize that you are
never going to get it
perfectly secure,” says
Lipner. “You make things
better, you make vulner-
abilities harder to exploit
and apply a strategy of
continuous improve-
ment. And if you stick to
that, things really do im-
prove.”

Getting to writing
something down
The Security Push Era wound down essentially under its
own weight. At some point, managers ran out of major
product lines to run pushes through. And those at the
center of the company’s emerging security culture realized
Microsoft could only go so far to meet its security challenge
when efforts were aimed only at specific products. What
was needed was a day-to-day process for creating secure
software. By late 2003, then-a-CTO Craig Mundie mandated
exactly that. He called a meeting in a green room in the
Microsoft Conference Center with, among others, Lipner
and Mike Nash, then a company vice president.

“This security problem isn’t going to go away,” those who
attended the meeting recall Mundie saying. “You need
to step up and put something on the books that’ll be
permanent and formal.”

For once, luck was on secure development’s side at the
company. Almost by accident, the formal documentation
Mundie wanted was already coming together. Besides
the presentation materials from various security pushes,
there were droves of notes teams had collected detailing
what worked and what didn’t. For example, a globalization
team essentially unrelated to the core Windows security
process had updated the materials products needed for

international markets. “We taught them how to do security,
and they matched that learning to their expertise,” Howard
says. “Without any help, they created a unique product in
the industry at the time. It was really awesome.”

In early 2004, Howard and Eric Bidstrup, another program
manager, began using a basic, 20-page document that
had been created earlier to organize a secure application
development liturgy. Progress, by all accounts, was
swift. “This really was the early prescriptive phase of
the application security culture,” says former pen-tester
Shunn, now a principal program manager for Trustworthy
Computing. “So getting that down into a manual everyone
could use turned out to be not that complex, compared to
other challenges that were faced.”

By mid-2004 it was clear to Lipner and his group that
the existing written material could be organized into
a legitimate security curriculum. The name Security
Development Lifecycle was chosen as a riff on the generic
title for creating code — the software development lifecycle.
And in a strange bit of Microsoft jargon, this early version
was called SDL Version 2 — since Version 1 was the then-
unnamed Security Push Era of the previous two years. Once
again, security director Lipner began walking the process

7 Phases of SDL
1
Training
The basic concepts for building
trusted software starts with
education of developers.

2
Requirements
Defining a broad set of
security & privacy standards
from the start helps a team
apply important guard rails
throughout a project.

3
Design
To reduce the number of costly
patches post-launch, security
measures specific to the
product are integrated into the
software’s overall structure.

4
Implementation
Thorough testing and analysis
of the software product teams
at this stage significantly reduce
time-consuming fixes later.

5
Verification
Now in beta, the software
undergoes rigorous checks on
many levels, including security
reviews more strict than the
implementation phase.

6
Release
A few months before its public
release and essentially written in
full, the software goes through
an independent final security
review that checks all previous
and current security issues.

7
Response
After the product is shipped
the focus shifts to responding
to any reports of vulnerabilities
that emerge. Teams track and
respond to any incidents to
help protect customers, and
any findings are fed back into
the SDL to help improve future
products.

+

The SDL Battleship
sails a new course
Once Microsoft started
using the Security
Development Lifecycle,
there was no stopping it.
The approach gave teams a formal start and end point for
creating secure code. And even when previously unknown
security issues were discovered, the approach still gave
teams a well-proven process for solving these emerging
problems.

“Obviously, there is a procedure for getting new ideas
plugged into the SDL,” says LeBlanc, who co-authored with
Howard the book that ultimately became part of what
evolved into Microsoft’s development cycle. “But really,
what happens is very human.” LeBlanc explains, for example,
that his pet peeve is programmers who use potentially risky
application programming interfaces — or APIs, as they are
known in the software trade — without fully understanding
the risks they hold. LeBlanc takes it upon himself to track
lists of such banned interfaces. As that list grows, he reaches
out to those in Trustworthy Computing to talk through
issues, including modifications of interfaces to be banned by
the Security Development Lifecycle.

“There has to be a business review, of course,” says LeBlanc.
“But essentially, developers are making the argument for
security in their specific areas as they go.”

Over the years, these incremental shifts have been collected
into roughly a dozen upgrades. Privacy features were added
in 2005. Automated support for tracking the SDL process
itself was injected a few years later. And 2010 saw a new
version of the SDL that supported “agile development”
styles popular among Web developers.

The process is not — and never will be — foolproof. As
long as customers demand complex software products,
the creators of those products will struggle to make them
perfectly secure. Security breaches will happen. So will

malware attacks. In fact, much of Writing Secure Code is as
germane today as it was at the dawn of the millennium.

But even so, those who purchase from, collaborate with or
track Microsoft’s software security progress agree that the
company has fresh security street cred.

First of all, Microsoft’s in-house Exploitability Index, which
tracks the ease with which vulnerabilities in its products can
be compromised, saw that between July 2012 and June
2013, the most easily exploitable vulnerabilities declined by
40 percent.

Even those who were once the most critical of Microsoft
products have been vocal about the company’s improved
security posture. Marc Maiffret, chief technology officer
for BeyondTrust, the Phoenix, Ariz.-based software and IT
security firm — who, in part, made his reputation detecting
the original Code Red exploit that decimated Microsoft
products years before — wrote in a New York Times op-ed
piece that Microsoft had “changed its software development
process to make security a core part of the program.”

And it is clear that, despite all the pain and massive
investment, Microsoft made a clever business bet on
security, says Jeff Williams, founder of Aspect Security, the
Columbia, Md.-based security firm, and one of the early
writers of the Open Web Application Security Project Top
Ten list of Web software vulnerabilities. “Bill Gates is a super-
smart man. And he realized that security was an area where
the company could win,” Williams says.

Without a doubt, the SDL has been positive for companies
that adopt similar approaches. There are well-documented
success stories at Cisco Systems; Des Moines, Iowa-based
utility Mid-American Energy; Liberty Lake, Wash.-based
smart-meter maker Itron; and even the Government of India.
Executives at America’s foremost technology companies
have also been public backers of the principles of the SDL.

“Our Secure Product Lifecycle is analogous to Microsoft’s
Security Development Lifecycle,” says Brad Arkin, chief
security officer at Adobe. “We value this process and the
information it helps to protect.”

There is palpable evidence that the SDL is adding value to
even the newly minted corners of the security ecosystem.
New York, N.Y.-based Canary, which is rolling out a
crowdfunded consumer electronics home security device,
gives credit to programs like the SDL for raising security
awareness among a new generation of smart consumer
electronics.

“Some of these are fundamental problems that could have
been avoided with proper programmatic disciplines, which
is why SDL and similar processes are invaluable building
blocks,” says Ken Garland, Canary’s senior development
operations engineer.

But for those inside Microsoft’s security culture, the best
success stories seem to run on a smaller, more personal
scale. Lipner, for example, participates in the Chief Security
Officer Council, a Microsoft event at which major customers
come to give feedback and seek advice. About three or four
years ago, Lipner gave a talk about new developments in the
SDL and, afterwards, an attendee came up to ask a question.

“Here was someone from a company I knew of — a fairly
major software vendor — but neither I nor anyone in my
team that works with companies adopting the SDL had ever
been in touch with them,” Lipner says. “It just blew me away:
Here was a moderate-sized business that I have never dealt
with directly that had just picked up the SDL guidance from
the Web, ordered a couple of copies the book — and then
just gone off and done it.

“That just blew me away.”

“That is when I realized that if anyone is going to remember
my work, it is not my time doing theoretical security
projects,” he says. “It was what I did with the SDL, where we
finally figured out how to take concrete steps to make real
software more secure.”

“Is the SDL perfect? Of course it’s not,” he says. “But it’s
simply a bigger contribution to real-world security.

“It just is.”

“That is when I realized that if anyone is going to
remember my work, it is not my time doing theoreti-
cal security projects. It was what I did with the SDL,
where we finally figured out how to take concrete
steps to make real software more secure.”

Steve Lipner
Partner Director of Program Management at Microsoft

1.000.000Since its inception in 2004, and the external release of SDL tools and resources in 2008, Microsoft’s SDL guidance

has been downloaded more than 1 million times and reached more than 150 countries. From small developer shops

to large enterprises, many are seeing benefits from a “baking security in” approach.

This document is for informational purposes only. MICROSOFT MAKES
NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE IN-

FORMATION IN THIS DOCUMENT.

This document is provided “as-is.” Information and views expressed in
this document, including URL and other Internet Web site references,

may change without notice. You bear the risk of using it.

Copyright © 2014 Microsoft Corporation. All rights reserved.

The names of actual companies and products mentioned herein may be
the trademarks of their respective owners.

