
BizTalk Server 2000BizTalk Server 2000

Copyright© 2017 Microsoft Corporation

The content in this document is retired and is no longer updated or supported. Some links might not work. Retired content represents the
latest updated version of this content.

 BizTalk Server 2000

Microsoft BizTalk Server 2000 is a Microsoft .NET Enterprise Server product that unites, in a single product, e
nterprise application integration (EAI) and business-to-business (B2B) integration. BizTalk Server 2000 enabl
es developers, IT professionals, and business analysts to build dynamic business processes that span applicat
ions, platforms, and businesses over the Internet.

BizTalk Server 2000 features include the ability to design and use XLANG schedules; integrate existing applic
ations; define document specifications and specification transformations; and monitor and log run-time activ
ity. BizTalk 2000 features include:

Administration
Document Tracking
Orchestration Design
Messaging
XML Tools

Check out the BizTalk Server Developer Center

The BizTalk Server Developer Center provides developers information and insights for using BizTalk Server to automate, integrate,
and facilitate business information processing.

In This Library Section Essentials
Product Documentation
BizTalk Server 2000 Tutorial
Technical Articles
Code Samples

BizTalk Server 2000 Service Pack 1a (English)
BizTalk Server 2000 Service Pack 2
BizTalk Server 2000 Pre-requisite QFEs
BizTalk Server 2000 Security Release: MS03-016
Windows Management Instrumentation in BizTalk Server 2000 Help File
White Papers
Training and Events
Support
Newsgroups
Community

http://msdn.microsoft.com/biztalk/default.aspx
https://msdn.microsoft.com/en-us/library/ms942245(v=msdn.10).aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/biztalks/htm/lat_tutorial_b2b_voit.asp
https://msdn.microsoft.com/en-us/library/ms942779(v=msdn.10).aspx
http://msdn.microsoft.com/library/default.asp?url=/code/list/biztalk.asp
http://www.microsoft.com/downloads/details.aspx?FamilyID=b30babb1-2bfc-415e-88e3-0734d43d1187&DisplayLang=en
http://www.microsoft.com/biztalk/downloads/updates/2000/sp2.asp
http://www.microsoft.com/downloads/details.aspx?displaylang=en&familyid=b72e4c9c-5269-4e06-a4cd-b54971a6f679
http://www.microsoft.com/downloads/details.aspx?displaylang=en&familyid=001e93e4-0e6e-4289-aefe-9161d2e5af97
http://www.microsoft.com/downloads/details.aspx?FamilyID=bb128c02-665e-4e90-856c-66b047ddb6ea&DisplayLang=en
http://www.microsoft.com/biztalk/techinfo/whitepapers/2000/default.asp
http://www.microsoft.com/biztalk/techinfo/training/previous.asp
http://support.microsoft.com/ph/1442
http://www.microsoft.com/biztalk/Community/newsgroups/default.mspx
http://www.microsoft.com/biztalk/Community/default.mspx

BizTalk 2000 - Getting Started with Microsoft BizTalk Server
2000

Getting Started with Microsoft BizTalk Server 2000
A member of the Microsoft .NET Enterprise Server family of products, Microsoft BizTalk Server 2000 unites, in a single product,
enterprise application integration (EAI) and business-to-business (B2B) integration. BizTalk Server 2000 enables developers, IT
professionals, and business analysts to easily build dynamic business processes that span applications, platforms, and businesses
over the Internet.

In addition to BizTalk Server 2000, Microsoft, with industry partners, has led innovation on enabling technologies that are
necessary for Internet-based business solutions, including BizTalk Framework 2.0, which is a platform-independent, Extensible
Markup Language (XML) framework for application integration and electronic commerce. BizTalk Framework 2.0 is not a
standard, but it builds upon existing standards, such as the Simple Object Access Protocol (SOAP). SOAP is also a key technology
in other members of the .NET product line, such as Microsoft Visual Studio .NET. BizTalk Framework 2.0 provides the basis for
interoperable reliable messaging for BizTalk Server 2000.

For more information about BizTalk Framework 2.0, as well as information about BizTalk Server 2000 product resources such as
community services, a large library of schemas, and white papers, go to the Microsoft BizTalk Server 2000 Web site
(http://www.microsoft.com/biztalk).

This section introduces the features, services, application model, and administration model of BizTalk Server 2000. You can also
find topics about using online Help and Microsoft Accessibility options. Additionally, the BizTalk Server 2000 Glossary is included.
The following topics are covered in this section:

Introducing Microsoft BizTalk Server 2000

BizTalk Server Glossary

Differentiating BizTalk Server 2000 Standard and Enterprise Edition Features

How to Use Help

Accessibility for People with Disabilities

Contacting Microsoft Product Support Services

http://www.microsoft.com/biztalk

Introducing Microsoft BizTalk Server 2000
Microsoft BizTalk Server 2000 provides a powerful Web-based development and execution environment that integrates loosely
coupled, long-running business processes, both within and between businesses. BizTalk Server can handle transactions that run
as long as weeks or months, not just minutes or hours.

BizTalk Server 2000 features include the ability to design and use XLANG schedules; integrate existing applications; define
document specifications and specification transformations; and monitor and log run-time activity.

The server provides a standard gateway for sending and receiving documents across the Internet, as well as providing a range of
services that ensure data integrity, delivery, security, and support for the BizTalk Framework and other key document formats.

The following topics are covered in this section:

BizTalk Server Features

BizTalk Services

BizTalk Server Application Model

BizTalk Server Administration Model

BizTalk Server Glossary

BizTalk Server Features
The following table provides information about BizTalk Server features and how to use them.

Feature Function
Administration

Server Administration

Programmatic Administration

Create and manage servers and server groups.

Configure global server group properties, such as the lo
cation for the Shared Queue database and the
Tracking database.

Configure server settings.

Configure and manage receive functions.

View and manage document queues.

Programmatically access the XLANG Scheduler System
Manager, group managers, XLANG schedule instances,
and XLANG ports.

Document Tracking

Tracking Documents

Track the progress of documents processed by Microsof
t BizTalk Server 2000.

Search for, display, view, and save complete copies of a
ny interchange or document processed by BizTalk Serve
r 2000.

Create queries to extract essential information from the
Tracking database in an easy-to-view format.

Extract, store, and analyze important user-defined data f
rom within documents.

Orchestration Design

Designing BizTalk Orchestrations

Create drawings that describe business processes, and
programmatically implement these drawings within an i
ntegrated design environment.

Compile XLANG schedule drawings into
XLANG schedules.

Define the flow of data between messages within busin
ess processes.

Messaging

Using BizTalk Messaging Manager

Accessing the BizTalk Messaging Configuration Object Model

Manage the exchange of data locally or remotely using
BizTalk Messaging Manager.

Manage the exchange of data programmatically using t
he BizTalk Messaging Configuration object model.

Create and manage channels, messaging ports,
document definitions, envelopes, organizations, and
distribution lists.

XML Tools

Creating Specifications

Mapping Data

Create and manage specifications.

Create records and fields, and set their properties.

Map records and fields from a source specification to re
cords and fields of a destination specification.

Use functoids to implement powerful data-transformati
on functionality.

BizTalk Services
Microsoft BizTalk Server 2000 provides a complete set of messaging and orchestration services that you can use to automate
your business and data-exchange processes.

BizTalk Messaging Services
BizTalk Messaging Services include receiving incoming documents, parsing the documents to determine their specific format,
extracting key identifiers and identifying specific processing rules, delivering documents to their respective destinations, and
tracking documents. Also included are services for data mapping, receipt generation and correlation, and services to ensure data
integrity and security.

Receive functions

BizTalk Server 2000 provides receive functions that enable the server to monitor documents posted at specified locations. BizTalk
Server 2000 supports the following receive functions, which are configured by using BizTalk Server Administration:

File

Message Queuing

BizTalk Server 2000 also supports the following protocols, which are configured by using ASP pages or a Microsoft Exchange
script:

HTTP (by using an .asp page)

HTTPS (by using an .asp page)

SMTP (by using a Microsoft Exchange script)

Transport services

BizTalk Server 2000 provides transport services that enable the transmission of documents to their destinations. BizTalk
Server 2000 supports the following transport services:

HTTP

HTTPS

SMTP

File

Message Queuing

Application integration components

Loopback

Data parsers

BizTalk Server 2000 supports data parsers for a variety of industry document standards, such as ANSI X12, UN/EDIFACT, and
valid, well-formed Extensible Markup Language (XML). BizTalk Server 2000 also supports BizTalk Framework 2.0. For more
information about BizTalk Framework 2.0, go to the Microsoft BizTalk Server 2000 Web site (www.microsoft.com/biztalk/). Parser
support for flat files is also available. You can also register and use your own custom parser components.

Data validation

BizTalk Server 2000 provides data validation by verifying each instance of a document against a specification. If the document
does not adhere to the specification rules, the document is placed into a suspended queue for further analysis.

http://www.microsoft.com/biztalk/

Reliable document delivery

BizTalk Server 2000 provides reliable document delivery by using configurable BizTalk Messaging Services properties. These
properties include setting service windows for sending documents, sending or receiving receipts, setting the number of retries,
and setting the time between retries. BizTalk Server 2000 supports the use of BizTalk Framework-compliant envelopes, which
provide reliable messaging features. For more information about BizTalk Framework 2.0, go to the Microsoft BizTalk Server 2000
Web site (www.microsoft.com/biztalk/). BizTalk Server 2000 also queues documents to a central location. In the event of a server
failure, rollover mechanisms enable new servers to take control of documents and process them.

Security

BizTalk Server 2000 supports encryption and digital signatures. Public-key encryption technology is supported for all documents
that are transmitted by using BizTalk Server 2000 transport services. BizTalk Server 2000 also supports decryption and signature
verification for the documents that it receives.

BizTalk Orchestration Services
BizTalk Orchestration Services include the integration of long-running business processes with the applications that run those
business processes. This integration is provided by an executable business-process file called an XLANG schedule. Additional
services provide control for running XLANG schedule instances.

A key feature of BizTalk Orchestration Services is the ability to handle complex transactions that run as long as weeks or months,
not just minutes or hours. Another important feature is the ability to implement concurrent actions within a single XLANG
schedule.

XLANG schedules

An XLANG schedule is a business process implemented by connecting each step in the process to a technology component or
service that executes the step. An XLANG schedule is then run by a service called the XLANG Scheduler Engine. The engine
controls the instantiation, execution, dehydration, and rehydration of an XLANG schedule, or multiple instances of one or more
schedules.

Implementation Technologies

Implementation technologies that are supported by BizTalk Orchestration Services include BizTalk Messaging Services, COM
components, Message Queuing Services, and Windows Script Components.

XLANG language

XLANG is a language that describes the logical sequencing of business processes, as well as the implementation of the business
process by using various technology components or services. The XLANG language is expressed in Extensible Markup Language
(XML).

http://www.microsoft.com/biztalk/

BizTalk Server Application Model
Microsoft BizTalk Server 2000 provides tools and services that enable you to create executable applications for controlling your
business processes and the exchange of data between trading partners and applications within your business. For a list of the
services provided by BizTalk Server 2000, see BizTalk Services.

Integrating BizTalk Orchestration Services and BizTalk Messaging Services enables you to control the exchange of documents and
messages between your trading partners and internal applications by using multiple transport services. It also provides:

Control over complex, long-running transactions and business processes.

Reliable delivery of documents and messages.

Data validation by verifying each document instance against a specification.

Data mapping by using maps to transform document structure and format.

Data security and integrity by using encryption and digital signature certificates.

Receipt generation and correlation support.

For more information about configuring BizTalk Server 2000 to send or receive receipts, see Understanding Receipts.

For more detailed information about how you can integrate BizTalk Orchestration Services and BizTalk Messaging Services,
see Integrating BizTalk Services.

BizTalk Server Administration Model
The following table describes the four main areas of administration in Microsoft BizTalk Server 2000 and relevant administrative
functions of each area.

Area of administration Administrative function overview
Server administration Configure and manage server groups and servers.

Configure and manage receive functions.

Manage queues.

Application administration Configure and manage the COM+ applications that host XLANG schedules.

Configure and manage the default XLANG Scheduler application.

Programmatic administrat
ion

Configure XLANG system managers, XLANG group managers, XLANG schedule instances, and X
LANG ports.

Database administration Configure, manage, and maintain the following databases:
BizTalk Messaging Management

Orchestration Persistence

Tracking

Shared Queue

Server administration
In BizTalk Server 2000, server administration includes tasks such as managing and configuring server groups, adding, deleting
and configuring servers, adding and configuring receive functions, managing the Shared Queue for each server group, and so on.
The following table describes the general server administrative tasks, their description, and where to find more information.

Administrative task Description Where to find more information
Configure servers and s
erver groups

Configure the connections for the Tracking an
d Shared Queue databases.

Configure transport services and parser order.

Configure server settings.

Add, Delete, and Configure a Server Group

Add, Delete, and Configure Servers in a Group

Manage queues Delete and resubmit interchanges and docum
ents.

View data and error messages.

Manage Queues

Manage receive functio
ns

Configure receive functions. Manage Receive Functions for a Server Group

Troubleshooting Troubleshoot server and document processin
g problems.

Manage Event Viewer

Troubleshooting BizTalk Server Administration

Application administration
Application administration includes configuring and managing the COM+ applications that host XLANG schedules, the default

XLANG Scheduler application, and the Orchestration Persistence database that is created when you install BizTalk Server 2000.
The following table describes the general application administrative tasks, their description, and where to find more information.

Administrative task Description Where to find more information
Manage the default XL
ANG scheduler applica
tion

Change the default settings f
or the XLANG Scheduler appl
ication.

Manage the Default XLANG Scheduler Application and Database

Manage COM+ applica
tions

Create COM+ applications to
run specific XLANG schedule
s.

Manage Other COM+ Applications That Host XLANG Schedules

Programmatic administration
The management and administration of servers and applications can be done programmatically. The following table describes the
general programmatic administrative tasks, their description, and where to find more information.

Administrative task Description Where to find more information
Manage Queues View interchange and

document data.

Change the BizTalk Me
ssaging Management
database.

Read from the Shared
Queue database.

For more information about using Windows Management I
nstrumentation (WMI) and WMI Application programming,
go to the MSDN Online Library
(msdn.microsoft.com/library/default.asp) and search for "W
MI Application Programming".

WMI Overview

Accessing the Suspended queue

Configure and manage the XLAN
G Scheduler System Manager, gr
oup managers, XLANG schedule i
nstances, and XLANG ports

Start, stop, and retrieve
information about the
XLANG Scheduler Syst
em Manager and grou
p managers.

Stop, suspend, resume,
and retrieve informatio
n about all the schedul
es associated with a gr
oup.

Administering XLANG Schedules

Database management
In addition to regular database maintenance and administration, such as compressing data files and backing up the database and
transaction file logs, you must perform other database-related tasks, such as maintaining connectivity between BizTalk Server and
Microsoft SQL Server, adding, deleting, and restoring databases, configuring new databases, and so on. The following table
describes general database administrative tasks, their description, and where to find more information.

Administrati
ve task

Description Where to find more information

http://msdn.microsoft.com/library/default.asp

Manage data
bases

Configure and/or change the Bi
zTalk Messaging Management d
atabase.

Create and configure new persis
tence databases.

Restore and/or manually remov
e the Tracking and Shared Queu
e databases.

Configure the BizTalk Messaging Management database

Change the BizTalk Messaging Management database for a server

Change the settings for the default Orchestration Persistence database

Manage Databases for a Server Group

Monitor traffi
c to the datab
ases

Configure server settings. Understanding server properties

Optimizing Server Properties

abort
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A

To cancel a transaction that is in progress, and to run an alternate business process instead.

action

To send or receive a message. Send or receive actions can be synchronous or asynchronous, depending upon which application
services are implemented in an XLANG schedule.

ANSI X12

EDI standards set by Accredited Standards Committee X12, whose work is approved by the American National Standards Institute.

asynchronous communication

A single message that is either sent or received within the context of a single communication action.

See also: synchronous communication

B

binding

A process by which the technology used to implement a port is specified.

See also: port

BizTalk Document Tracking

A Web-based user interface (UI) that is used to access all BizTalk Messaging Services tracking information. It can also track XLANG
schedule status for BizTalk Orchestration Services.

BizTalk Editor

A tool with which you can create, edit, and manage specifications. With BizTalk Editor you can create a specification based on a
specification template, an existing schema, certain types of document instances, or a blank specification.

BizTalk Framework

A platform-neutral e-commerce framework that is based on Extensible Markup Language (XML) schemas and industry standards.
The framework enables integration across industries and between business systems, regardless of platform, operating system, or
underlying technology. Specifically, it is composed of three things: schema, products, and services. For more information about
the BizTalk Framework, go to the BizTalk Web site (www.microsoft/biztalk/).

BizTalk Mapper

A tool with which you can create maps that define the correspondence between the records and fields in one specification and the
records and fields in another specification. A map contains an Extensible Stylesheet Language (XSL) style sheet that is used by
BizTalk Server to perform the transformation described in the map.

BizTalk Messaging Management database

A Microsoft SQL Server database that stores the information related to all server configurations, including group and server
settings, receive functions, and all messaging configuration information for the objects that are created by using BizTalk
Messaging Manager, or by accessing the BizTalk Messaging Configuration object model.

BizTalk Messaging Manager

A graphical user interface (UI) that can be used to configure BizTalk Messaging Services to exchange documents between trading
partners and applications of the home organization.

See also: BizTalk Messaging Services

BizTalk Messaging Services

Services that include sending, receiving, parsing, and tracking documents; receipt generation and correlation; and data mapping,
integrity, and security.

See also: BizTalk Messaging Manager

BizTalk Orchestration Designer

A design tool used to create drawings that describe long-running, loosely coupled, executable business processes. The XLANG
schedule drawing is compiled into an XLANG schedule that is used to execute the automated business process.

BizTalk Orchestration Services

Services that include designing, compiling, and running XLANG schedules. Additional services include the ability to create custom
COM+ applications to host dedicated XLANG schedule instances, and the persistence of XLANG schedules.

BizTalk Server 2000

A new Microsoft product for business-process automation and application-integration both within and between businesses.
BizTalk Server 2000 provides a powerful Web-based development and execution environment that integrates loosely coupled,
long-running business processes, both within and between companies.

BizTalk Server 2000 features include the composition of new and existing XLANG schedules; integration among existing
applications; the definition of document specifications and specification transformations; and the monitoring and logging of run-
time activity.

The server provides a standard gateway for sending and receiving documents across the Internet, as well as providing a range of
services that ensure data integrity, delivery, security, and support for the BizTalk Framework and other key document formats.

BizTalk Server Administration

A Microsoft Management Console (MMC) interface that is used to administer the BizTalk Server 2000 group of servers and their
properties, to monitor receive functions, and to monitor work items in the Microsoft SQL Server queues that are used by the
server group.

C

channel

A set of properties that designates the source of documents and defines specific processing steps that are performed by BizTalk
Messaging Services before a document is delivered to the destination designated by the messaging port or distribution list with
which the channel is associated.

See also: open channel, open messaging port, receipt channel, source application, trading partner, pass-through submission,
source organization

channel filtering

To compare the value of fields within a document instance to values in expressions designated within a channel. This comparison
filters the selection of which channel or channels the server invokes to process a document.

checkpoint

A storage location in the Shared Queue database in which the current state of a work item is stored. In case of a server failure,
documents that were queued to the failed server can be retrieved from the Shared Queue database and redistributed to other
servers within the server group, based on the information provided by the checkpoint.

code list

A list of code values used as abbreviations for a variety of textual information. For example, ST is the code list value for Ship To
and is most commonly used to qualify an address.

commit

To implement all changes requested by a pending transaction. This action occurs when all actions within a transaction are

successfully completed.

Communication shapes

Shapes that are used to identify the exact content of a message and type of application service that is implemented within an
XLANG schedule drawing. This category of shapes includes Constants, Message, Port, and Port References.

See also: Flowchart shapes, Implementation shapes, XLANG schedule drawing

compensation

A process by which reparation is made for a completed transaction. For example, if payment has been made for an order that then
cannot be fulfilled, the payment is returned to the purchaser.

compile

In BizTalk Mapper, to create an Extensible Stylesheet Language Transformations (XSLT) version of a map that can be used by
BizTalk Server. The map is stored in the WebDAV repository and used by BizTalk Server to translate one document format into
another document format.

See also: data mapping, data translation, Extensible Markup Language (XML), map

concurrency

Two or more actions that are carried out at the same time.

D

data mapping

In BizTalk Mapper, to create a correspondence between the records and fields of a source specification and the records and fields
of a destination specification.

See also: compile, data translation

data translation

A process that converts data from one format to another format. Data translation occurs within BizTalk Server at run time. The
rules that are specified in a map are used to convert data from a source specification format to a destination specification format,
as well as to perform any operations or calculations that are required on the data.

See also: compile, data mapping, Extensible Markup Language (XML), map

decision

A process that evaluates one or more rules sequentially. In BizTalk Orchestration Designer, a decision is represented by the
Decision shape. Rules are Microsoft Visual Basic Scripting Edition (VBScript) expressions that are used by Decision and While
shapes.

dehydrate

To store all state information for an XLANG schedule instance in a SQL Server database while the XLANG Scheduler Engine is
waiting to receive a message before executing the next action in the business process.

See also: XLANG Scheduler Engine

dehydrated schedule

A schedule that is stored in a database temporarily while waiting for receipt of a message before continuing to the next action in
the sequence. All state information about the schedule is stored in the database until the message is received. Dehydrating
schedules reduces the load on the computer that is hosting the schedule.

delimited flat file

A file that contains one or more records that are represented as a group of fields separated by a delimiter character. The records
themselves are also separated by delimiter characters.

destination application

A home-organization application that has been designated in a messaging port as the destination for documents.

See also: home organization

destination organization

A trading partner organization that has been designated in a messaging port as the destination for documents.

See also: openness, source organization, organization

destination specification

The specification in a map that represents the outgoing document. BizTalk Mapper maps from a source specification to a
destination specification.

See also: source specification

dictionary

A collection of properties associated with each item of work processed by BizTalk Server. These properties are exposed in BizTalk
Editor so that users can tell BizTalk Server how to find values within document instances for properties that are used to locate a
messaging port.

distribution list

A group of messaging ports that can be used to send the same document to several different trading partner organizations or
applications of the home organization. In the BizTalk Messaging Configuration object model, this is referred to as a port group.

See also: home organization, messaging port, trading partner

document definition

A set of properties that represents a specific document. Document definition properties include a pointer to a document
specification and can include global tracking fields and selection criteria.

See also: global tracking fields, selection criteria

document instance

A representation of the actual data that is sent to BizTalk Server. A document instance differs from a specification in that the
specification defines the structure of the data, while a document instance is a representation of the specific data contained in a
structure.

See also: global tracking fields, pass-through submission

document standard

The structure that defines a transaction set, such as an X12 850 standard. An implementation guideline can be created from a
document standard.

document type

A designation for the type of document on which a specification is based. For example, if a specification is based on
850Schema.xml from the X12 standard, when that specification is opened in BizTalk Editor, 850 appears in the document type
field on the Reference tab for the root node.

document type definition (DTD)

A standard definition that specifies which elements and attributes might be present in other elements and attributes and that
specifies any constraints on their ordering, frequency, and content.

dynamic port

A port that requires that specific location information be provided for an XLANG schedule at run time. The location for a dynamic

port is provided by a message that passes the location information to the reference for the port at run time.

See also: port, static port

dynamic queue

A queue that has an unknown address. Ports that use a Message Queuing implementation can use a dynamic queue when the
location of the queue is not known. The address of this queue must be provided by a message that passes the queue address to
the reference for the port at run time.

See also: static queue, per-instance queue

E

electronic data interchange (EDI)

A set of standards used to control the transfer of documents, such as purchase orders and invoices, between computers.

See also: selection criteria

envelope

1. A set of properties that defines an envelope. Envelope properties include an envelope format and can include a pointer to an
envelope specification.

2. Header and footer information, or header information only, that encapsulates or precedes document data for transport.

envelope format

The format of documents that an envelope can contain; for example, XML or X12.

Extensible Markup Language (XML)

A specification developed by the World Wide Web Consortium (W3C) that enables designers to create customized tags beyond
the capabilities of standard HTML. While HTML uses only predefined tags to describe elements within the page, XML enables tags
to be defined by the developer of the page. Tags for virtually any data item, such as a product or an amount due, can be used for
specific applications. This enables Web pages to function as database records.

See also: compile, map, data translation, XML-Data Reduced (XDR), XPath

Extensible Stylesheet Language (XSL)

A style sheet format for Extensible Markup Language (XML) documents. XSL is used to define the display of XML in the same way
that cascading style sheets (CSS) are used to define the display of Hypertext Markup Language (HTML). BizTalk Server uses XSL as
the translation language between two specifications.

F

Flowchart shapes

Shapes that represent the routing logic in an XLANG schedule drawing. This category of shapes includes Abort, Action, Begin,
Decision, End, Fork, Join, Transaction, and While.

See also: Communication shapes, Implementation shapes, Flowchart stencil, XLANG schedule drawing

Flowchart stencil

A drawing stencil provided by BizTalk Orchestration Designer. The Flowchart stencil provides all the shapes that can be used to
design the process flow of a business process that can be executed by a running XLANG schedule.

See also: Flowchart shapes, Implementation stencil

functoid

Built-in reusable function that enables complex structural manipulation operations between source specification elements,
destination specification elements, and other functoids.

See also: link

Functoid Palette

A toolbox that contains all functoids that can be used to create relationships between source specification elements and
destination specification elements.

G

global tracking fields

Document specification fields, designated in a document definition, that are logged to a tracking database for each instance of an
actual document processed by BizTalk Messaging Services.

See also: document instance, document definition

H

home organization

An object that represents your business in BizTalk Messaging Manager. The home organization is created for you when BizTalk
Server 2000 is installed. Only the home organization can have applications.

See also: destination application, distribution list, organization, source application, trading partner

I

Implementation shapes

Shapes that represent the technologies that the XLANG Scheduler Engine supports. This category of shapes includes BizTalk
Messaging, COM Component, Message Queuing, and Script Component.

See also: Communication shapes, Flowchart shapes, Implementation stencil

Implementation stencil

A drawing stencil provided by BizTalk Orchestration Designer. The Implementation stencil provides all the shapes that can be
used to bind a port to an implementation technology.

See also: Flowchart stencil, Implementation shapes

implementation technologies

Technologies used to implement a port in an XLANG schedule. The technologies supported by the XLANG Scheduler Engine
include COM components, Windows Script Components, Message Queuing Services, and BizTalk Messaging Services.

industry standard

A defined standard that is used for the exchange of information. Standards are extensible, and they follow a well-defined set of
rules, or syntax.

inner transaction

A transaction that is contained within the process flow of another transaction.

See also: long-running transaction, nested transaction, transaction, outer transaction

interchange

A collection of one or more document instances that comprises a single transmission and is exchanged from application to
application within an organization or from one trading partner to another.

L

line-of-business (LOB) application

An organization's primary business application. BizTalk Server 2000 supports numerous communication protocols that enable

line-of-business applications to reliably send and receive information.

link

In Microsoft BizTalk Mapper, a simple value-copy (or name-copy) operation from a field in the source specification to a field in the
destination specification, or to a functoid.

See also: functoid

long-running transaction

A collection of actions that send and receive messages over an indefinite period of time. Typically, long-running transactions
contain several nested short-lived transactions.

See also: short-lived transaction, inner transaction, nested transaction, outer transaction, transaction

Loopback

A specific type of transport service that enables the return of current state data to the application from which the state data
originated. Loopback uses the SubmitSync method call to restore the state data to the original application.

See also: transport services

M

map

An XML file that defines the correspondence between the records and fields in one specification and the records and fields in
another specification. A map contains an Extensible Stylesheet Language (XSL) style sheet that is used by BizTalk Server to
perform the transformation described in the map. Maps are created in BizTalk Mapper.

See also: compile, Extensible Markup Language (XML), data translation

mapping

The process of specifying the way in which data in one structure is transformed into another structure.

message

1. A packet of data that is sent or received by an XLANG schedule.

2. In BizTalk Orchestration Designer, a shape on the Data page that corresponds to the messages in an XLANG schedule.
Message shapes are composed of uniquely named fields, each containing a single data item of a specified data type.

messaging port

A set of properties that directs how documents are enveloped, secured, and transported to a designated destination organization
or application.

See also: distribution list

moniker

A name that represents an object and may include the complete path or address that identifies the location of the object.

See also: port

N

nested transaction

One or more transactions that are contained within the process flow of a larger transaction.

See also: inner transaction, long-running transaction, transaction, outer transaction

node path

An expression used to obtain XML element and attribute information, select data that matches specific criteria, and perform

comparisons on the data retrieved. More formally known as XPath.

See also: XPath

non-self-routing document

A document that is missing one or more of the following pieces of routing information: source organization identifier, destination
organization identifier, or document definition.

O

open channel

A channel that is explicitly declared as open to any source organization. The source data for an open channel is passed to BizTalk
Messaging Services either within the document or in a parameter submitted with the document.

See also: channel, openness, source organization

open messaging port

A messaging port that is explicitly declared as open to any destination organization. The destination data for an open messaging
port is passed to BizTalk Messaging Services either within the document or in a parameter submitted with the document.

See also: channel, openness, source organization

openness

A lack of explicit information about a source in a channel or destination in a messaging port. Channels contain information that
identifies the source. Messaging ports contain information that identifies the destination. If a channel is designated as an open
source, the source information is not explicitly declared in the channel and is provided by other means. Usually this information is
contained in the instance of the document that is sent, or it is set as parameters in a Submit method call. Similarly, if a messaging
port is designated as an open destination, the destination information is not explicitly declared in the messaging port and is
instead provided in the document instance or in the parameters of a Submit method call.

See also: destination organization, open channel, open messaging port, source organization

organization

A trading partner or a business unit within a trading partner, or, in the case of the home organization, your own business.

See also: source organization, destination organization, home organization, organization identifier, trading partner

organization identifier

A set of properties that uniquely identifies an organization. An organization can have multiple organization identifiers.
Organization identifiers consist of the following properties: a name, a qualifier, and a value.

See also: organization

outer transaction

A transaction that contains one or more transactions within its process flow.

See also: inner transaction, long-running transaction, nested transaction, transaction

P

parser

A component of BizTalk Server that translates non-XML files (for example, X12, EDIFACT, and flat file) into XML files.

pass-through submission

A submission that bypasses the parsing, decoding, decryption, transformation, and signature verification stages of processing. The
document instance is passed directly to the channel that is specified in the submission parameters. This type of submission can be
used to transmit binary files without data corruption, or to use only the server transport and global tracking features.

See also: channel, document instance

per-instance queue

A queue that is created for use with each new instance of an XLANG schedule.

See also: dynamic queue, static queue

persistence database

A database that is used to store XLANG schedule state when an XLANG schedule is dehydrated. A default database called the
Orchestration Persistence database is provided during installation when you install BizTalk Server 2000.

pipeline component

A component created to integrate applications with BizTalk Server 2000. Developers can use either the IPipelineComponent or
the IPipelineComponentAdmin interface, or the lighter-weight IBTSAppIntegration interface, to develop these components.

port

A named location that uses a specific implementation. In BizTalk Orchestration Designer, a port is defined by the location to which
messages are sent or from which messages are received, and the technology that is used to implement the communication action.
The location is uniquely identified by the name of the port.

See also: dynamic port, moniker, port location, port reference, port implementation, port name, binding, static port

port group

A group of messaging ports that can be used to send the same document to several different trading partner organizations or
applications. In BizTalk Messaging Manager, this is referred to as a distribution list.

port implementation

A specific technology used by a port to implement a communication action.

See also: port, port location, port reference, port name

port location

The location associated with a specific port. The location is also dependent on the port implementation that is used. Each
implementation provides a different type of location for the port.

See also: port, port implementation, port name, port reference

port name

A unique identification for a port. This identification is used to correlate the port location with a specific port.

See also: port, port implementation, port location, port reference

port reference

A unique message that contains the port location for every port in an XLANG schedule. The Port References shape is located on
the Data page. Any data flow into or out of this message contains the port location for a port.

See also: port location, port, port implementation, port name

positional flat file

A file that contains fields that are the same fixed length, and contains records that have a common end-of-record terminator.

Q

quiescent state

A state that represents processing activity that is inactive or at rest, or when a process is in standby mode.

R

receipt channel

A channel that contains the information necessary to process a receipt that can be returned to the sender of a document.

See also: channel

receive functions

Functionality that enables any BizTalk server(s) to monitor directories and submit documents to BizTalk Server for processing.
BizTalk Server 2000 supports File and Message Queuing receive functions.

rehydrate

To retrieve all state information for an XLANG schedule instance from a SQL Server database after a message is received by the
XLANG Scheduler Engine.

See also: XLANG Scheduler Engine

reliable messaging

A feature of BizTalk Framework 2.0 protocol that supports guaranteed, once-only delivery of documents in heterogeneous
environments across the Internet.

resubmit

A procedure that submits interchanges or documents to BizTalk Server from the Suspended queue. The document is processed
from the point of failure.

Retry queue

A table within the Shared Queue database in Microsoft SQL Server. The Retry queue is associated with a server group that
contains items of work scheduled for transmission after an initial transmission has been attempted.

See also: Shared Queue database, transport services, Scheduled queue, Suspended queue, Work queue

routing logic

The set of rules that determines the sequence of execution within an XLANG schedule. Routing logic is implemented by the
Decision shape in BizTalk Application Designer.

S

Scheduled queue

A table within the Shared Queue database in Microsoft SQL Server. The Scheduled queue is associated with a server group that
contains interchanges that have been received but not yet processed by BizTalk Server.

See also: Retry queue, Shared Queue database, Suspended queue, Work queue

schema

The definition of the structure of an XML file. A schema contains property information as it pertains to the records and fields
within the structure.

selection criteria

A name-value pair designated in a document definition. The name-value pairs are used to uniquely identify a document definition
for inbound EDI interchanges, based on values found in the functional group header, and to insert values in the functional group
header for outbound EDI interchanges.

See also: document definition, electronic data interchange (EDI)

self-routing document

A document that contains all the necessary routing information, such as source and destination organization identifiers and a
document definition, in the routing tags or within the document.

serializer

A component of BizTalk Server that translates XML files into non-XML files (for example, X12, EDIFACT, and flat files).

server group

A collection of individual servers that is centrally managed, configured, and monitored.

Shared Queue database

A Microsoft SQL Server database that is shared by all servers within a server group. The Shared Queue database stores all
checkpoint information related to documents processed by BizTalk Server. If a server fails, other computers that use the same
Shared Queue database can continue to retrieve messages from and post messages to the Work queue. This provides redundancy
and process load balancing. The Shared Queue database is graphically presented in BizTalk Server Administration as a series of
distinct queues.

See also: Retry queue, Scheduled queue, Suspended queue, Work queue

short-lived transaction

A collection of grouped actions that are performed as a single logical unit of work.

See also: long-running transaction, transaction

source application

A home-organization application that has been designated in a channel as the source of documents.

See also: channel, home organization

source organization

A trading partner organization that has been designated in a channel as the source of documents.

See also: channel, destination organization, open channel, open messaging port, organization, trading partner, openness

source specification

The specification in a map that represents the incoming document. BizTalk Mapper maps from a source specification to a
destination specification.

See also: destination specification

specification

A BizTalk Server-specific XML schema. Specifications are created in BizTalk Editor and can be based on industry standards (such as
EDIFACT, X12, and XML) or on flat files (delimited, positional, or delimited and positional). BizTalk Mapper uses specifications,
opened as source specifications and destination specifications, to create maps.

state

The condition at a particular time of any of numerous elements of computing.

See also: XLANG schedule state

static port

A port that requires that all necessary information be provided for an XLANG schedule at design time. The designer who creates
the XLANG schedule must know the location to which messages are sent or from which messages are received, as well as the
technology chosen to implement the communication action.

See also: dynamic port, port

static queue

A queue that has a well-known address. Ports that use a Message Queuing implementation can use a static queue when the
location of the queue is known and does not change.

See also: dynamic queue, per-instance queue

Suspended queue

A table within the Shared Queue database in Microsoft SQL Server. The Suspended queue is associated with a server group. The
queue contains work items for which any error or failure was encountered during processing. The queue stores the documents
until they can be corrected and reprocessed, or simply deleted.

See also: Retry queue, Scheduled queue, Shared Queue database, Work queue

synchronous communication

Messages that are sent or received in pairs and that occur within the context of a single communication action.

See also: asynchronous communication

T

Tracking database

A Microsoft SQL Server database associated with a server group that enables the tracking of documents that are processed by the
server either individually or in batches. You can also track XLANG schedule status.

trading partner

An external organization with which your home organization exchanges electronic data. The messaging ports, distribution lists,
channels, and XLANG schedules that you create govern the exchange of documents among trading partners.

See also: channel, source organization, distribution list, home organization, organization

transaction

A discrete activity within a computer system, such as an entry of a customer order or an update of an inventory item. Transactions
are usually associated with database management, order-entry, and other online systems. In BizTalk Orchestration Designer,
transactions are represented as a collection of actions that are grouped within a Transaction shape.

See also: inner transaction, long-running transaction, nested transaction, outer transaction, short-lived transaction

transaction set

A collection of segments in an EDI schema that has a specific order and a particular meaning for a particular business transaction.

transport services

A set of services that includes network protocols and application integration components (AICs). BizTalk Server 2000 supports a
core set of transport services. This enables the server to send documents to organizations or applications whether or not the
applications are capable of communicating directly with the server by using a COM interface. BizTalk Server 2000 supports the
File, HTTP, HTTPS, and SMTP network protocols and Message Queuing. Transport services are also referred to as transport
components.

See also: Retry queue, Loopback

U

UN/EDIFACT

The international EDI standard as developed through the United Nations. This standard is commonly used in Europe, as well as
Japan and other Asian countries and regions. Also known as United Nations/Electronic Data Interchange For Administration,
Commerce, and Transport.

V

version

In BizTalk Server 2000, either a specific release number for a specification or the industry-standard version number from which a
specification is created.

W

Web Distributed Authoring and Versioning (WebDAV)

An extension to the HTTP 1.1 standard that exposes a hierarchical file storage media, such as a file system, over an HTTP
connection. WebDAV locks documents to prevent users from accidentally overwriting each other's changes. It also enables users
to share and work with server-based documents, regardless of their authoring tools, platforms, or the type of Web servers on
which the files are stored.

well-formed XML

A standard that dictates that an XML document that has a single root and elements must nest completely or not at all.

Work queue

A table within the Shared Queue database in Microsoft SQL Server. The Work queue is associated with a server group. It contains
interchanges that are currently being processed by BizTalk Server 2000.

See also: Retry queue, Scheduled queue, Shared Queue database, Suspended queue

X

XLANG identity

A globally unique ID that is used to distinguish version instances of an XLANG schedule drawing. This property is read-only and
cannot be changed. Every time an XLANG schedule drawing is updated, this identity is also updated. The XLANG identity can be
used to correlate an XLANG schedule with the specific version of an XLANG schedule drawing from which the schedule was
compiled.

XLANG language

A language that describes the logical sequencing of business processes, as well as the implementation of the business process by
using various application services. The XLANG language is expressed in XML.

XLANG schedule

Specific business processes expressed in the XLANG language. An XLANG schedule is saved with the file extension .skx.

See also: XLANG schedule drawing, XLANG schedule instance, XLANG Scheduler Engine

XLANG schedule drawing

A drawing that represents a business process. In BizTalk Orchestration Designer, once a drawing is complete, it can be compiled
and run as an XLANG schedule. An XLANG schedule drawing is saved with the file extension .skv.

See also: Communication shapes, Flowchart shapes, XLANG schedule, XLANG Scheduler Engine

XLANG schedule instance

An evocation of a schedule. An XLANG schedule represents only the business process and implementation services. A single
instance, or multiple instances, of an XLANG schedule can be run by the XLANG Scheduler Engine. Different instances of the same
XLANG schedule contain different messages, but all instances follow the same business-process rules.

See also: XLANG schedule, XLANG Scheduler Engine

XLANG schedule state

The information contained in an XLANG schedule instance. This information includes messages that have been sent or received by
that instance, any COM objects used by that instance, and the progress of that instance toward the completion of the business
process.

See also: state

XLANG Scheduler

The default COM+ application that is installed when you install BizTalk Server 2000. This application is used to host running

instances of XLANG schedules.

XLANG Scheduler Engine

A service that runs XLANG schedule instances and controls the activation, execution, dehydration, and rehydration of an XLANG
schedule.

See also: dehydrate, rehydrate, XLANG schedule drawing, XLANG schedule instance, XLANG schedule

XML-Data Reduced (XDR)

An XML Schema dialect proposed by Microsoft and submitted to the World Wide Web Consortium (W3C) in 1998. Like XML-Data,
XDR is a syntax for Extensible Markup Language (XML) schemas that define the characteristics of an XML document. XDR is a
subset of XML-Data.

See also: Extensible Markup Language (XML)

XPath

A comprehensive language used for navigating through the hierarchy of an XML document. XPath expressions can obtain XML
element and attribute information, select data that matches specific criteria, and perform comparisons on the data retrieved. Also
called a node path.

See also: Extensible Markup Language (XML), node path

Differentiating BizTalk Server 2000 Standard and Enterprise
Edition Features
There are several differences between the standard and enterprise editions of Microsoft BizTalk Server 2000. The information that
follows explains these differences and the benefits that you can expect if your organization decides to upgrade to the enterprise
edition.

In BizTalk Server 2000 Standard Edition documentation, all BizTalk Server features except for the following enterprise edition
extensibility features are documented:

Creating custom parsers

Creating custom serializers

Creating custom correlators

Creating custom functoids

Creating custom import modules

Creating application integration components (AICs)

Also, BizTalk Server 2000 Standard Edition does not contain any samples that relate to the features in the previous list.

The following topics provide more detailed information about the differences between the standard and enterprise editions, as
well as a list of Help topics that apply only to the enterprise edition:

BizTalk Server Scalability

BizTalk Server Group Support

BizTalk Orchestration Services Support

BizTalk Messaging Services Support

Extensibility Support

BizTalk Server Scalability
BizTalk Server 2000 Enterprise Edition fully utilizes all the processors on any computer on which the server runs. Using all
processors enables the server to achieve high scalability and performance by using the complete hardware configuration of the
computer.

BizTalk Server 2000 Standard Edition uses only a single processor, irrespective of the hardware on which the server is run. The
processor that is used is always the processor that is referenced by a processor affinity mask of 1.

Most aspects of BizTalk Server scaling are unavailable in the standard edition. The documentation on BizTalk Server performance
and scalability applies primarily to the enterprise edition. You can use the information in this documentation to learn about the
benefits of upgrading to the enterprise edition.

For more information about BizTalk Server performance and scalability, see Enhancing Performance and Scalability.

BizTalk Server Group Support
BizTalk Server 2000 Enterprise Edition supports groups that enable the server to scale out to handle heavier loads. You can add
one or more servers within a single group that share the same BizTalk Server configuration information, or you can create
multiple groups.

BizTalk Server 2000 Standard Edition is designed to handle smaller loads than the enterprise edition. If you configure BizTalk
Server for more than one server or group, the BizTalk Messaging Service does not start and does not process documents; you will
receive an error message. You must change the BizTalk Server configuration to work with only one server and one group before
the BizTalk Messaging Service will start.

The topics listed in the following table are the primary Help topics that apply only to the enterprise edition of BizTalk Server 2000.
This list is not intended to be an exhaustive list. You can use the information in these topics to learn about the benefits of
upgrading to the enterprise edition.

Description Topic title
Moving servers among different BizTalk Messaging
Management databases

Moving servers between BizTalk Messaging Management databases

Moving remote servers among different BizTalk Mes
saging Management databases

Moving remote servers between BizTalk Messaging Management databases

Changing the BizTalk Messaging Management datab
ase that is used

Changing the BizTalk Messaging Management database

Removing multiple servers from the BizTalk Messagi
ng Management database

Removing servers from the BizTalk Messaging Management database

BizTalk Orchestration Services Support
BizTalk Server 2000 Enterprise Edition supports COM+ applications that host groups of XLANG schedules. All XLANG schedules in
a group share the same configuration settings for various factors such as transaction support, synchronization, and security.
These settings are specified in the COM+ application that hosts the group of XLANG schedules. In the enterprise edition, this
design enables different groups of schedules to use configurations that address different application needs. This design facilitates
scaling up to a large number of organizations and applications while at the same time separating processes that might require
specific configuration settings such as security. To configure a COM+ application to host groups of XLANG schedules, an XLANG
tab with configuration options is provided for all newly created COM+ applications.

BizTalk Server 2000 Standard Edition does not support the ability to create multiple COM+ applications that can be dedicated to
hosting groups of XLANG schedules. A single COM+ application, the default XLANG Scheduler application, is created during
installation, and this application is used to host all XLANG schedules, regardless of any special configuration needs. In the
standard edition, the XLANG tab used to configure COM+ applications to host XLANG schedules is not available on any COM+
application except the default XLANG Scheduler application.

The topics listed in the following table are the primary Help topics that apply only to the enterprise edition of BizTalk Server 2000.
This list is not intended to be an exhaustive list. You can use the information in these topics to learn about the benefits of
upgrading to the enterprise edition.

Description Topic title
Creating and configuring XLANG schedule host applications Create and Configure an XLANG Schedule Host Application
Creating a COM+ application to host an XLANG schedule Create a COM+ application to host XLANG schedules
Configuring a COM+ application that hosts XLANG schedules Configure a COM+ application to host XLANG schedules
Managing COM+ applications that host XLANG schedules Manage Other COM+ Applications That Host XLANG Schedules
Changing application identities for COM+ applications Change the application identity for a COM+ application
Changing the DSN settings for COM+ applications Change the DSN settings for a COM+ application
Shutting down COM+ applications that host XLANG schedules Shut down a COM+ application that hosts XLANG schedules

BizTalk Messaging Services Support
BizTalk Server 2000 Enterprise Edition is a complete business-to-business and enterprise-application integration solution that
scales up to a large number of trading partners and internal applications that interact with BizTalk Server.

BizTalk Server 2000 Standard Edition is optimized for a small business that interacts with a limited number of external trading
partners and applications. The standard edition supports the creation of five new organizations and five applications within an
organization.

In the standard edition, all BizTalk Server 2000 Help topics are relevant for creating and maintaining organizations and
applications. The only limitation is the number of organizations and applications that you can create.

Extensibility Support
BizTalk Server 2000 Enterprise Edition supports product extensibility that enables more complex document processing. The
extensions available in BizTalk Server Enterprise Edition are as follows:

Custom parsers. To enable parsing of formats that are not supported in the native parsers provided by BizTalk Server
2000, the enterprise edition enables you to create custom parser components that conform to a well-defined parser
interface. You can configure these components in BizTalk Server to parse documents for the format(s) that they support.

Custom serializers. To enable serializing of documents into proprietary or other formats that are not supported by
serializers provided by BizTalk Server 2000, the enterprise edition enables you to create custom serializer components that
conform to a well-defined serializer interface. You can configure these components in BizTalk Server to serialize documents
into the format(s) that they support.

Custom receipt correlators. To enable the processing or generation of custom receipts when you exchange documents
with a trading partner, the enterprise edition enables you to create custom receipt correlator components by using and
implementing interfaces provided with BizTalk Server 2000. A custom parser is required to process a custom receipt and a
custom serializer is required to generate a custom receipt.

Custom functoids. BizTalk Mapper provides functionality that enables you to specify transformations by using objects
called functoids. BizTalk Server 2000 provides a variety of functoids that perform many common operations such as string
manipulation, mathematical operations, logical operations, and so on. You might have other transformation-functionality
requirements that require custom functoids. The enterprise edition enables you to create your own custom functoids.

Custom import modules. BizTalk Editor provides functionality that enables you to import files with an XML, DTD, or XDR
format. You might want to import other file formats. The enterprise edition enables you to create your own custom import
modules.

Custom pipeline components. The enterprise edition enables you to create custom components that extend BizTalk
Server functionality when performing operations such as encryption, encoding, and signing.

BizTalk Server 2000 Standard Edition is designed for minimal configuration and customization needs. The standard edition does
not support the extensibility features listed previously for the enterprise edition. BizTalk Server 2000 Help for BizTalk Server 2000
Standard Edition does not contain any advanced Help topics related to custom components, and no samples that describe the use
of these components are provided.

For a complete list of BizTalk Messaging Services samples that are available in the standard edition,
see BizTalk Messaging Services Code Samples.

How to Use Help
This section includes information about the Microsoft BizTalk Server 2000 Help system. The following topics are covered:

Help Overview

Finding a Help Topic

Bookmarking a Help Topic

Copying a Help Topic

Printing a Help Topic

Changing the Font Size

Using Language Filtering

Help Viewer Shortcut Keys

Help Overview
The Microsoft BizTalk Server 2000 Help system uses HTML to format and display information. The Help Viewer provides an
integrated table of contents, an index, and a full-text search feature so that you can find information easily. Book icons open to
reveal sub-books and topics. To expand the table of contents and view topics within a book, click the expand indicator (+) next to a
book title. When you click the collapse indicator (-), the topics are hidden. The Help Viewer has the added benefit of enabling you
to see the table of contents, index, or search results at the same time you are viewing a Help topic.

The Help Viewer also includes the Favorites tab, which you can use to bookmark topics. This enables you to quickly display topics
that you refer to often.

To learn more about BizTalk Server 2000, you can use the table of contents to browse through the documentation. When you click
a topic in the table of contents, information is displayed in the content pane of the Help window.

The table of contents is organized in books according to the major features and functions that BizTalk Server 2000 provides.
Within each book, you can find chapters that contain the following information:

How To

Concepts

Troubleshooting

Resources

For procedural and task-based information, start with the How To chapters. For more general information about BizTalk Server
2000, its features, and other information, start with the Concepts and Resources chapters.

For programming information in the BizTalk Server 2000 Interface Reference, you can use a language-filtering tool to view
information specific to Microsoft Visual Basic, Visual C++, or both.

Related Topics

Bookmarking a Help Topic

Copying a Help Topic

Changing the Font Size

Finding a Help Topic

Help Viewer Shortcut Keys

Printing a Help Topic

Using Language Filtering

Finding a Help Topic
In the Help Viewer, the following browse and search options are available:

Contents tab

1. To browse through the table of contents, click the Contents tab. Double-click the book icons to reveal topic entries
and sub-books.

2. Click a table-of-contents entry to display the corresponding topic.

Index tab

1. To see a list of index entries, click the Index tab and then either type a word or scroll through the list. Topics are often
indexed under more than one entry.

2. Double-click an index entry to display the corresponding topic.

Search tab

1. To locate every occurrence of a word or phrase, click the Search tab, type the word or phrase for which you want to
search, and then click List Topics.

To improve the search results, combine multiple words or phrases with AND, OR, NEAR, or NOT.

2. Double-click a search results entry to display the corresponding topic.

Favorites tab

1. To bookmark a topic, use the Contents, Index, or Search tab to locate and then display a topic.

2. Click the Favorites tab and click Add to save the topic title to the Topics list.

3. Double-click a bookmark in the Topics list to quickly display the topic.

Related Topic

Help Viewer Shortcut Keys

Bookmarking a Help Topic
1. Use the Contents, Index, or Search tab to locate and then display the topic you want to bookmark.

2. Click the Favorites tab and click Add.

The Help Viewer adds the topic title to the Topics list. Later, you can return to this list and double-click the bookmark to quickly
display the topic.

 Notes

You can create a list of favorite/frequently visited Help topics.

To remove a bookmark from the Topics list, click the bookmark and click Remove.

Related Topics

Finding a Help Topic

Help Viewer Shortcut Keys

Copying a Help Topic
1. In the topic pane of the Help Viewer, right-click inside the topic you want to copy and click Select All.

2. Inside the topic, right-click again and click Copy.

This copies the topic to the Clipboard.

3. Open the document to which you want to copy the topic.

4. Click the place in your document where you want the information to appear.

5. On the Edit menu, click Paste.

 Notes

If you want to copy only part of a topic, select the part you want to copy, right-click the selection, and then click Copy.

Step numbers are not copied to the Clipboard.

Related Topics

Finding a Help Topic

Printing a Help Topic

Printing a Help Topic
Right-click the topic you want to print and click Print.

 Important

To print a single topic, on the Contents tab, select a topic. On the Help toolbar, click Print, and then click Print the
selected topic. It is recommended that the page orientation be set to Landscape; however, printing code samples, large
illustrations, and significant text might result in incomplete printing.

To print all topics within a book, on the Contents tab, select a book. On the Help toolbar, click Print, and then click Print
the selected heading and all subtopics. It is recommended that the page orientation be set to Landscape; however,
printing code samples, large illustrations, and significant text might result in incomplete printing.

Related Topics

Finding a Help Topic

Help Viewer Shortcut Keys

Changing the Font Size
You can increase the font size of text for easier viewing, or you can decrease the font size to see a representation of the layout of a
page.

On the toolbar, click the Font () button to increase or decrease the text size.

Using Language Filtering
To provide only the information that is relevant to your programming environment, BizTalk Server 2000 Help implements a
language-filtering tool. On the title bar of topics in BizTalk Server 2000 Interface Reference, you will find a filter () button that
provides a language menu. This menu gives you the choice of viewing documentation tailored either to Visual C++ or to Visual
Basic. If you choose Show All, you will see information for both languages. Regardless of your language selection, you will always
see information (such as general concepts) that is relevant to both languages.

To view the language-filtering options, click the filter () button on the title bar and click one of the following options:
C++

Visual Basic

Show All

 Note

When you select a language-filtering option, that selection remains in effect for all other pages that you view until you
change the option again.

Help Viewer Shortcut Keys
You can use shortcut keys to accomplish tasks in the BizTalk Server 2000 Help Viewer. The following table is a quick reference to
the shortcut keys available in Help Viewer.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server Help, see "Using the keyboard to move the
mouse pointer". In Windows 2000 Professional Help, see "To move the mouse pointer by using MouseKeys".

Help Viewer shortcut keys

Press To
ALT+SPACEBAR Display the system menu.
SHIFT+F10 Display the Help Viewer shortcut menu.

 Note

Use this shortcut when the focus is in the topic pane.

ALT+TAB Switch between the Help Viewer and other open windows.
ALT+O Display the Options menu.
ALT+O, and then press T Hide or show the navigation pane.
CTRL+TAB Switch to the next tab in the navigation pane.
CTRL+SHIFT+TAB Switch to the previous tab in the navigation pane.
UP ARROW Move up one topic in the table of contents, index, or search results list.
DOWN ARROW Move down one topic in the table of contents, index, or search results list.
PAGE UP Move up one page in the table of contents, index, or search results list.
PAGE DOWN Move down one page in the table of contents, index, or search results list.
F6 Switch focus between the navigation pane and the topic pane.
ALT+O, and then press R Refresh the topic that appears in the topic pane.
UP ARROW or DOWN ARROW Scroll through a topic.
CTRL+HOME Move to the beginning of a topic.
CTRL+END Move to the end of a topic.
CTRL+A Highlight all text in the topic pane.
ALT+O, and then press P Print a topic.
ALT+O, and then press B Move back to the previously viewed topic.
ALT+O, and then press F Move forward to the next (previously viewed) topic.
TAB Move between related topics.

 Note

Use this shortcut when the focus is in the topic pane.

ALT+F4 Close the Help Viewer.

Contents tab shortcut keys

Press To
ALT+C Display the Contents tab.
RIGHT ARROW Open a book.
LEFT ARROW Close a book.
BACKSPACE Return to the previous open book.
UP ARROW or DOWN ARROW Select a topic.
ENTER Display the selected topic.

Index tab shortcut keys

Press To
ALT+N Display the Index tab.
UP ARROW or DOWN ARROW Select a keyword in the list.
ALT+D or ENTER Display the associated topic.

Search tab shortcut keys

Press To
ALT+S Display the Search tab.
ALT+L Start a search.
ALT+D or ENTER Display the selected topic.

Favorites tab shortcut keys

Press To
ALT+I Display the Favorites tab.
ALT+A Add a topic to the Topics list.
ALT+P Select a topic in the Topics list.

 Note

Use this shortcut when the focus is in the topic pane and you want to move to the Topics list.

ALT+R Remove a topic from the Topics list.
ALT+D Display a topic from the Topics list.

Related Topic

Help Overview

Accessibility for People with Disabilities
Microsoft is committed to making its products easier for everyone to use. For information about features that make Microsoft
BizTalk Server 2000 more accessible, see the following:

Help Viewer Shortcut Keys

BizTalk Server Administration Shortcut Keys

BizTalk Document Tracking Shortcut Keys

BizTalk Orchestration Designer Shortcut Keys

BizTalk Messaging Manager Shortcut Keys

BizTalk Editor Shortcut Keys

BizTalk Mapper Shortcut Keys

 Note

For further information about accessibility options, in Windows 2000 Server Help, in the Getting Started with Windows
2000 book, see Accessibility for People with Disabilities. In Windows 2000 Professional Help, see the chapter Accessibility
for Special Needs.

Contacting Microsoft Product Support Services
Product name: Microsoft BizTalk Server 2000

Support options: To get the latest information on your support options, go to the Microsoft Product Support Services Web site
(support.microsoft.com/directory/productsupportoption.asp) and select BizTalk Server 2000 from the product list.

Worldwide: Support options, hours, and cost in your country/region may differ from the United States; check with your local
office for details.

Conditions: Microsoft product support services are subject to then-current prices, terms, and conditions, which are subject to
change without notice.

http://support.microsoft.com/directory/productsupportoption.asp

BizTalk Server 2000 Tutorial
Business-to-Business Automated Procurement
In this tutorial you will learn how to configure Microsoft BizTalk Server 2000 to establish and run a business-to-business
automated procurement process.

You will also learn how BizTalk Server components and services work together to integrate loosely coupled, long-running
business processes, both within and between businesses.

 Note

The BizTalk Server 2000 Tutorial is also provided in Microsoft Word format. To print the Tutorial, you must use this version. If you
do not have Word installed, you can view the file using Microsoft WordPad or Microsoft Word 97/2000 Viewer. The Tutorial.doc
file is located in \Program Files\Microsoft BizTalk Server\Documentation on the BizTalk Server installation drive.

Requirements
To successfully complete this tutorial, you must install BizTalk Server 2000 and all its dependencies. For a complete list of the
hardware and software requirements for BizTalk Server 2000, see Installing BizTalk Server 2000.

Scenario
This scenario provides a comprehensive overview of the key elements of BizTalk Server 2000. ProElectron, Inc. (the buyer
organization) uses BizTalk Server 2000 to implement a business-to-business automated procurement process with Bits, Bytes, &
Chips, Inc. (the seller organization).

ProElectron uses an XLANG schedule to control the flow of messages through the system. If a purchase order request is equal to
or less than $1000, a purchase order is generated and sent to Bits, Bytes, & Chips. Otherwise, the process terminates.

The buyer’s system uses BizTalk Messaging Services, which receives, routes, and transforms the purchase order to match the Bits,
Bytes, & Chips format, and then extracts the data.

Both systems also use a number of auxiliary components that work in conjunction with BizTalk Server 2000 to perform key data-
processing tasks.

The following illustration is an interaction diagram for the business-to-business automated procurement system implemented by
ProElectron and Bits, Bytes, & Chips. Arrows denote the flow of data among roles and entities.

Internet
Order
Application
Invoice
Payment
Bits, Bytes,
& Chips, Inc
Purchase
order
PO request
approval

PO approval
ProElectron, Inc
Purchase request
User
PO
Approver
Finance
Supplier

 Important

For the purposes of this scenario, both the buyer and seller systems are configured on a single installation of BizTalk
Server 2000.

The following illustration shows the movement of the documents through the buyer and seller systems. It also shows the
interaction between the XLANG schedule, BizTalk Messaging Services, and the auxiliary components. This illustration is a useful
reference that you might want to print and have available as you work through the modules in this tutorial.

Send
Payment
Receive Invoice
Decision
PO Req
>$1000
End
Receive
PO Req
XLANG Schedule

File receive function
Buyer file directory
WSC Component
ASP File
Message queue
Yes (Deny)
No
(Approve)
Script Component
Messaging Port
Messaging Port
Channel for Invoice
Channel for PO
Channel
Port to ProElectron
via HTTP
Port to Bits, Bytes,
& Chips via AIC
Port to Bits, Bytes, & Chips via Local File
POtoINVAIC
SubmitProElectronPO
Port to Bits, Bytes,
& Chips via HTTP
Channel for
Invoice to Payment
Channel for
POReq to PO
Channel
BizTalk Messaging
Message Queuing
Action
Port
Data
Data
ExecuteTutorial
PO Request Receive Function at ProElectron
DropInvoicetoMSMQ
ReceiveInvoice
PORequestApproval
ReceivePOReq
Message Queuing
Message queue
Application
PO Req
PO Req
Start
Buyer System
BizTalk Messaging Services
Stop
AIC
PO to Invoice
Seller file
directory
Payment
Seller
Buyer
Payment
Invoice
Note: Directional arrows denote flow of data.
Invoice
Invoice
Map

Map
PO
PO
PO
PO
ASP File
Seller System
BizTalk Orchestration

Contents
Module 1: Modeling Business Processes

In this module, you learn how to:

Use BizTalk Orchestration Designer to create an XLANG schedule drawing that models the procurement processes for
ProElectron. For more information, see Designing BizTalk Orchestrations.

Compile the XLANG schedule drawing into an XLANG schedule. For more information,
see Compile an XLANG schedule drawing into an XLANG schedule.

Run the XLANG schedule to see how a message moves through the buyer system.

Module 2: Creating Specifications and Maps

In this module, you learn how to:

Use BizTalk Editor to create document specifications. For more information, see Create and Validate Specifications.

Use BizTalk Mapper to create maps. For more information, see Create new maps.

Module 3: Configuring BizTalk Messaging Services

In this module, you learn how to:

Use BizTalk Messaging Manager to configure BizTalk Messaging Services for Bits, Bytes, and Chips. For more information,
see Using BizTalk Messaging Manager.

Use BizTalk Server Administration to create a File receive function for Bits, Bytes, and Chips. For more information,
see Add a File receive function.

Module 4: Completing the XLANG Schedule

In this module, you learn how to:

Implement a port in the XLANG schedule drawing that you started in Module 2 by using a BizTalk Messaging
implementation. For information about the differences between ports and messaging ports,
see Understanding Port Implementations and Understanding Messaging Ports.

Complete the XLANG schedule drawing and compile it into an XLANG schedule.

Run the schedule to understand the complete movement of messages between the buyer and seller systems.

 Shortcuts

Shortcuts enable you to save time and effort by using an existing XLANG schedule, document specification, a map, or a
configuration script. By using shortcuts, you can advance to subsequent sections of the tutorial.

To use shortcuts, the components must be installed on drive C.

Continue to Preliminary Setup.

Preliminary Setup
Before you begin the tutorial, you must create the following:

One folder containing four subfolders.

Two local Web site folders containing ASP files.

Two message queues for the buyer system.

Continue to Create folders.

Create folders
In this procedure, you create one folder that contains four subfolders. You use two of the subfolders as locations for messages as
they move into and out of the buyer and seller systems, and two as content folders for the buyer and seller Web sites.

To create the folders:

1. In Windows Explorer, browse to the root directory of your C:\ drive.

 Caution

You must create the following folders on your C:\ drive.

2. Create a new folder on the root of the C:\ drive; name the folder TutorialFiles.

3. Click the new folder called TutorialFiles and create four subfolders with the following names:

Buyer

Seller

SubmitPO

InvoiceToQueue

Continue to Copy files.

Copy files
In this procedure, you copy files needed to complete the tutorial.

1. On the BizTalk Server installation drive, browse to \Program Files\Microsoft BizTalk
Server\Tutorial\DocSpecsandMaps and copy POReqtoPO.xml.

2. Paste the file to \Program Files\Microsoft BizTalk Server\BizTalkServerRepository\Maps\Microsoft.

3. Use the following table to copy and paste additional files to the TutorialFiles subfolders.
Copy from: Paste to:
\Program Files\Microsoft BizTalk Server\Tutorial\Components\SubmitPO\Solution\SubmitProEl
ectronPO.asp

C:\TutorialFiles\SubmitPO

\Program Files\Microsoft BizTalk Server\Tutorial\Components\InvoicetoQueue\Solution\DropIn
voicetoMSMQ.asp

C:\TutorialFiles\InvoiceTo
Queue

\Program Files\Microsoft BizTalk Server\Tutorial\Components\InvoicetoQueue\Solution\Global.
asa

C:\TutorialFiles\InvoiceTo
Queue

Continue to Create local Web site folders.

Create local Web site folders
In this procedure, you create two virtual directories. The first directory simulates the buyer Web site that receives invoices. The
second directory simulates the seller Web site that receives purchase orders.

1. On the Start menu, point to Settings and click Control Panel.

2. Double-click Administrative Tools.

3. Double-click Computer Management.

The Computer Management console appears.

4. In the Computer Management console tree, expand Services and Applications, expand Internet Information Services,
and then click Default Web Site.

5. On the Action menu, point to New and click Virtual Directory.

The Virtual Directory Creation Wizard opens.

6. On the Welcome to the Virtual Directory Creation Wizard page, click Next.

7. On the Virtual Directory Alias page, in the Alias box, type SubmitPO and click Next.

8. On the Web Site Content Directory page, click Browse.

9. Browse to C:\TutorialFiles\SubmitPO, click OK, and then click Next.

10. On the Access Permissions page, click Next.

11. Click Finish to close the Virtual Directory Creation Wizard.

12. In the Computer Management console tree, click Default Web Site.

13. To create the folder that simulates the buyer Web site, repeat steps 5 through 11, with the following variations:

In step 7, in the Alias box, type InvoiceToQueue.

In step 9, browse to C:\TutorialFiles\InvoiceToQueue.

Your Computer Management console should appear similar to the following illustration.

Click the illustration to enlarge or reduce.

1. Close the Computer Management console.

Continue to Create message queues.

Create message queues
In this procedure, you create two message queues to enable the buyer system to send and receive messages.

 Note

To complete this procedure, Message Queuing must be installed. For instructions about installing Message Queuing,
see Install Message Queuing

To create the message queues:

1. On the Start menu, point to Settings and click Control Panel.

2. Double-click Administrative Tools.

3. Double-click Computer Management.

The Computer Management console appears.

4. In the Computer Management console, expand Services and Applications, expand Message Queuing, and then click
Private Queues.

5. On the Action menu, point to New and click Private Queue.

The Queue Name dialog box appears.

6. In the Name box, type ReceivePOReq.

7. Select the Transactional check box and click OK.

8. To create the second message queue, repeat steps 5 through 7, with the following variation:

In step 6, in the Name box, type ReceiveInvoice.

Your Computer Management console should appear similar to the following illustration.

Click the illustration to enlarge or reduce.

1. Close the Computer Management console.

Continue to Install the auxiliary components.

Install the auxiliary components
In this procedure, you install the following auxiliary components:

A Windows Script Component (WSC) on the buyer system that you use to implement a port to an XLANG schedule, and
which accepts the approval or denial status for a purchase order request from the XLANG schedule.

An application integration component (AIC) on the seller system that you use to generate an invoice that is based on the
data in the purchase order from the buyer.

 Caution

If these components have been installed previously on your computer, you must first uninstall them. To uninstall the
components, go to Uninstall the auxiliary components.

To install the auxiliary components:

1. On the BizTalk Server installation drive, browse to \Program Files\Microsoft BizTalk Server\Tutorial\Setup.

2. Double-click Install_POtoInvoice.vbs.

A message box appears, indicating that the component was successfully installed.

3. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POReqApproval\Solution and click
PORequestApproval.wsc.

4. On the File menu, click Register.

A message box appears, indicating that the component was successfully registered.

Continue to Module 1: Modeling Business Processes.

Uninstall the auxiliary components
 Caution

Do not use this procedure unless you are removing a previous installation of the components.

1. For the POtoInvoice component, browse to \Program Files\Microsoft BizTalk Server\Tutorial\Setup on the BizTalk
Server installation drive.

2. Double-click Remove_POtoInvoice.vbs.

A message box appears, indicating that the component was successfully uninstalled.

3. For the Windows Script Component, browse to \Program Files\Microsoft BizTalk
Server\Tutorial\Components\POReqApproval\Solution and click PORequestApproval.wsc.

4. On the File menu, click Unregister.

A message box appears, indicating that the component was successfully unregistered.

To reinstall the components, go to Install the auxiliary components.

Module 1: Modeling Business Processes
In this module, you use BizTalk Orchestration Designer to create an XLANG schedule drawing that describes an automated
procurement process. You then compile the XLANG schedule drawing into an executable XLANG schedule, which controls the
flow of messages for the buyer system.

Objectives

Create an XLANG schedule drawing that describes the automated procurement process. For more information,
see Creating XLANG Schedule Drawings.

Connect the actions in a logical sequence that describes the business processes. For more information, see Connect Shapes.

Implement the business processes by connecting actions to ports. For more information,
see Establish the communication flow between an action and a port.

Add a rule to the business processes by writing a script expression. For more information, see Designing Rules.

Define the data flow for messages. For more information, see Communication Shapes.

Save the XLANG schedule drawing and compile the drawing into an XLANG schedule. For more information,
see Compiling XLANG Schedules.

Run the XLANG schedule to process the message through BizTalk Server. For more information,
see Running XLANG Schedules.

Continue to Creating the XLANG Schedule for the Buyer.

Related Topic

Designing BizTalk Orchestrations

Creating the XLANG Schedule for the Buyer
In this procedure, you model the business processes for the buyer and create an XLANG schedule.

To create the XLANG schedule, continue to Create the buyer actions.

 Shortcut

To use the existing XLANG schedule, continue directly to Run the XLANG schedule.

Create the buyer actions
1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Orchestration

Designer.

2. On the Business Process page, drag the Action shape from the Flowchart stencil to the left of the Separator bar. Position
the shape directly below the Begin shape.

3. Right-click the Action shape and click Properties.

The Action Properties dialog box appears.

4. In the Name box, type Receive PO Request and click OK.

 Caution

For this scenario to run correctly, you must type all names exactly as indicated. The tutorial components use these
names.

5. On the Business Process page, drag the Decision shape from the Flowchart stencil to the left side of the Separator bar.
Position this shape below the Receive PO Request action.

6. Right-click the Decision shape and click Add Rule.

The Rule Properties dialog box appears.

7. In the Rule name box, type Denied and click OK.

Later in this module, you add a script expression that implements the decision rule, after you bind the Decision shape to
the Script Component, which provides the message and field names.

8. Repeat steps 2 through 4, to create the following three actions:

Position a second Action shape to the right of the Decision shape. Name this action Send Denial.

Position a third Action shape below the Decision shape. Name this action Send Approval.

Position a fourth Action shape below the Send Approval action. Name this action Write PO Request to File.

9. On the Business Process page, drag the End shape from the Flowchart stencil to the left side of the Separator bar.
Position the shape below the Send Denial action.

If the purchase order request is not approved, the XLANG schedule displays a denial message and ends.

10. On the Business Process page, drag the End shape from the Flowchart stencil to the left side of the Separator bar.
Position the shape below the Write PO Request to File action.

If the purchase order request is approved, the XLANG schedule writes the purchase order request to a file directory, displays
an approval message, and then ends.

Continue to Connect the buyer actions in a sequence.

Connect the buyer actions in a sequence
1. Click the Begin shape to highlight the control handles.

Drag the bottom control handle to the top connection point of the Receive PO Request action.

The Receive PO Request action represents the start of the business process. When a purchase order request is received,
the XLANG schedule starts running.

 Notes

A green box on a highlighted shape indicates a control handle. You can drag control handles to connect to an action.

A blue X on a shape indicates a connection point.

Connection points on the side of an Action shape are used only to connect to ports, not to other Action shapes.

2. Repeat step 1 to create a connection for the following action:

Connect the Receive PO Request action to the Decision shape.

3. Select the Denied rule in the Decision shape and drag the right control handle of the Denied rule to the top connection
point of the Send Denial action.

4. Select the Else rule in the Decision shape and drag the left control handle of the Else rule to the top connection point of the
Send Approval action.

 Note

You can connect the rules in the Decision shape to the Send Approval and Send Denial actions from either the
right or left control handle.

5. Connect the Send Approval action to the Write PO Request to File action.

6. Connect the Write PO Request to File action to the End shape positioned below it.

7. Connect the Send Denial action to the End shape positioned below it.

8. On the File menu, click Save As.

The Save XLANG Schedule Drawing As dialog box appears.

9. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Lab on the BizTalk Server installation drive.

10. In the File name box, type Buyer1 and click Save.

The XLANG schedule drawing that you created and saved should appear similar to the following illustration.

Click the illustration to enlarge or reduce.

Continue to Implement a port by using Message Queuing to receive a purchase order request.

Implement a port by using Message Queuing to receive a
purchase order request
The service is configured to monitor a message queue for a purchase order request. When this occurs, the XLANG schedule
begins processing. For information about the usage of ports and messaging ports in this tutorial, see Integrating BizTalk Services.

To implement the port:

1. On the Business Process page, drag the Message Queuing shape from the Implementation stencil to the right side of
the Separator bar. Position the Message Queuing shape so that it is horizontally aligned with the Receive PO Request
action.

The Message Queuing Binding Wizard opens.

2. On the Welcome to the Message Queuing Binding Wizard page, verify that Create a new port is selected.

3. In the Create a new port box, type ReceivePORequest and click Next.

4. On the Static or Dynamic Queue Information page, verify that Static queue is selected and click Next.

5. On the Queue Information page, click Use a known queue for all instances.

6. In the Enter the queue name box, type .\private$\ReceivePOReq and click Next.

7. On the Advanced Port Properties page, click Finish.

On the Business Process page, the ReceivePORequest port and the associated Message Queuing implementation appear.

Continue to Create the communication flow for the Receive PO Request action.

Create the communication flow for the Receive PO Request
action

1. Select the Receive PO Request action and drag the control handle on the right of the Receive PO Request action to the
left connection point of the ReceivePORequest port.

The XML Communication Wizard opens.

2. On the Welcome to the XML Communication Wizard page, click Receive and click Next.

3. On the Message Information page, verify that Create a new message is selected.

4. In the Message name box, type POReq and click Next.

5. On the XML Translation Information page, verify that Receive XML messages from the queue is selected and click
Next.

6. On the Message Type Information page, in the Message type box, type POReq and click Next.

7. On the Message Specification Information page, click Browse.

The Browse for Specification dialog box appears.

8. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\DocSpecsandMaps on the BizTalk Server installation
drive.

9. Click PoReq.xml and click Open.

10. Click Add.

The Field Selection dialog box appears.

11. In the Select node area, expand Total, click POTtl, and then click OK.

In the Message fields area, POTtl should appear in the list of message fields.

12. Click Finish.

After you implement the port and create the communication flow, the XLANG schedule drawing should appear similar to the
following illustration.

Click the illustration to enlarge or reduce.

Continue to Implement a port by using a script component.

Implement a port by using a script component
The XLANG schedule passes the value in the total field of the purchase order request to the Decision shape. The scripting
expression in the decision rule forks the path of the schedule and sends the appropriate message to the port implementation that
uses a Windows Script Component, based on the total of the purchase order request.

To implement the port:

1. On the Implementation stencil, drag the Script Component shape to the right of the Separator bar that divides the two
sides of the drawing. Position the shape so that it is horizontally aligned with the Decision shape.

The Script Component Binding Wizard opens.

2. On the Welcome to the Script Component Binding Wizard page, in the Create a new port box, type
ApprovalComponent and click Next.

3. On the Static or Dynamic Communication page, verify that Static is selected and click Next.

4. On the Specify the Script File page, click Browse.

5. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POReqApproval\Solution on the BizTalk
Server installation drive.

6. Click PORequestApproval.wsc, click Open, and then click Next.

7. On the Component Instantiation Information page, verify that Use the Prog ID "BTSTutorial.PORequestApproval" is
selected and click Next.

8. On the Method Information page, click Check All and click Next.

9. On the Advanced Port Properties page, click Finish.

Continue to Define message properties for the script component.

Define message properties for the script component
1. Select the Send Denial action and drag the control handle on the right to the ApprovalComponent Windows Script

Component port.

The Method Communication Wizard opens.

2. On the Welcome to the Method Communication Wizard page, verify that Initiate a synchronous method call is
selected and click Next.

3. On the Message Information page, verify that Create a new message is selected and click Next.

4. On the Message Specification Information page, in the Methods list, click SendDenial and click Finish.

5. Select the Send Approval action and drag the control handle on the right of the Send Approval action to the
ApprovalComponent port.

The Method Communication Wizard opens.

6. On the Welcome to the Method Communication Wizard page, verify that Initiate a synchronous method call is
selected and click Next.

7. On the Message Information page, verify that Create a new message is selected and click Next.

8. On the Message Specification Information page, in the Methods list, click SendApproval and click Finish.

9. Select the Write PO Request to File action and drag the control handle on the right of the Write PO Request to File
action to the ApprovalComponent port.

The Method Communication Wizard opens.

10. On the Welcome to the Method Communication Wizard page, verify that Initiate a synchronous method call is
selected and click Next.

11. On the Message Information page, verify that Create a new message is selected and click Next.

12. On the Message Specification Information page, in the Methods list, verify that WriteToFile is selected and click Finish.

Continue to Write the script expression for the decision rule.

Write the script expression for the decision rule
The denial decision rule contains properties that define the shape's behavior. The scripting expression refers to data contained in
messages, and evaluates to either TRUE or FALSE. The scripting expression also defines the logic and variable names that are used
by the Decision shape.

If the total of the purchase order request exceeds $1000:

The Decision shape sends a denial message to the port.

A message box notifies the user of the denial.

The XLANG schedule ends.

If the total of the purchase order request is $1000 or less:

The Decision shape sends an approval message to the script component.

The script component displays a message box that notifies the user of the approval.

The script component writes the purchase order request message to a local file directory.

The XLANG schedule ends.

To write the script expression:

1. Click the Data tab at the bottom of the page.

The Data page appears.

2. View the POReq message to find the field name.

To write the script expression, both the message name and the field name are required. In this case, the message name is
POReq and the field name is POTtl.

3. Click the Business Process tab at the bottom of the page.

The Business Process page appears.

4. Right-click the Decision shape and click Properties.

The Decision Properties dialog box appears.

5. Verify that Denied is selected and click Edit.

The Rule Properties dialog box appears.

6. In the Script expression box, type POReq.POTtl > 1000.

This indicates that if the total field in the purchase order request is greater than $1000, the request is denied.

7. Click OK to close the Rule Properties dialog box, and click OK to close the Decision Properties dialog box.

The XLANG schedule drawing should appear similar to the following illustration.

Click the illustration to enlarge or reduce.

Continue to Define the data flow.

Define the data flow
To define data flow within the business process, you create connections between fields in Message shapes on the Data page.

To define the data flow:

1. Click the Data tab at the bottom of the page.

The Data page appears.

2. In the POReq message, click the Document field and drag the control handle on the right to a connection point on the
Document field in the SendDenial_in message.

3. Repeat step 2 by clicking the Document field and dragging the highlighted control handle on the right from the POReq
box to a connection point on following fields:

The Document field in the SendApproval_in box.

The Document field in the WriteToFile_in box.

 Note

Click the Document field of the POReq message before trying to drag the control handle to the other fields.

The completed Data page should appear similar to the following illustration.

Click the illustration to enlarge or reduce.

Continue to Save the XLANG schedule drawing.

Save the XLANG schedule drawing
On the File menu, click Save Buyer1.skv.

Continue to Compile the XLANG schedule.

Compile the XLANG schedule
1. On the File menu, click Make XLANG Buyer1.skx.

The Save XLANG Schedule to dialog box appears.

2. Verify that the XLANG schedule will be saved to the \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Lab
folder on the BizTalk Server installation drive and click Save.

3. On the File menu, click Exit to close BizTalk Orchestration Designer.

Continue to Run the XLANG schedule.

Run the XLANG schedule
In this procedure, you run the XLANG schedule twice to view the approval and denial of purchase order requests.

To run the XLANG schedule:

1. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Solution on the BizTalk Server installation
drive.

2. Double-click ExecuteTutorial.exe. This application is used to activate the XLANG schedule by means of a moniker.

The ExecuteTutorial application opens.

3. Click Browse for Schedule.

 Shortcut

If you are using the existing XLANG schedule, browse to \Program Files\Microsoft BizTalk
Server\Tutorial\Schedule\Solution and continue to step 5.

1. If you created the Buyer1 XLANG schedule, browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Lab
on the BizTalk Server installation drive.

2. Click the Buyer1.skx XLANG schedule file, and click Open.

3. Click Browse for Data File and browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\SampleData
on the BizTalk Server installation drive.

4. Click POReqAccept.xml and click Open.

5. Click Start XLANG Schedule.

Because its total is less than $1000, the purchase order request is approved. A message box appears notifying you that the
application passed data to the XLANG Scheduler Engine. At this point, the application is finished. A second message box
notifies you that the purchase order request has been approved. Click OK to close the dialog boxes.

6. Click End to close the ExecuteTutorial application.

 Important

If you see an automation error when running this application, check to make sure that you have properly configured
the private queue and that its name is correct.

7. Browse to C:\TutorialFiles\Buyer.

The file name is POReqXXXXX.xml, where XXXXX represents a unique set of numbers. Double-click the file to open it in
Microsoft Internet Explorer. This is a copy of the purchase order request file that the application posted to the message
queue. After viewing this file, delete it.

8. Repeat steps 1 through 5 to run the ExecuteTutorial application again.

9. Click Browse for Data File and browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\SampleData
on the BizTalk Server installation drive.

10. Click POReqDeny.xml and click Open.

11. Click Start XLANG Schedule.

Because its total exceeds $1000, the purchase order request is denied. A message box appears notifying you that the
application is finished. A second message box notifies you that the document denial has been received. Click OK to close the
dialog boxes.

12. Click End to close the ExecuteTutorial application.

The following diagram illustrates the flow of data when you run the XLANG schedule.

Send
Payment
Receive Invoice
Decision
PO Req
>$1000
End
Receive
PO Req
XLANG Schedule
File receive function
Buyer file directory
WSC Component
ASP File
Message queue
Yes (Deny)
No
(Approve)
Script Component
Messaging Port
Messaging Port
Channel for Invoice
Channel for PO
Channel
Port to ProElectron
via HTTP
Port to Bits, Bytes,

& Chips via AIC
Port to Bits, Bytes, & Chips via Local File
POtoINVAIC
SubmitProElectronPO
Port to Bits, Bytes,
& Chips via HTTP
Channel for
Invoice to Payment
Channel for
POReq to PO
Channel
BizTalk Messaging
Message Queuing
Action
Port
Data
Data
ExecuteTutorial
PO Request Receive Function at ProElectron
DropInvoicetoMSMQ
ReceiveInvoice
PORequestApproval
ReceivePOReq
Message Queuing
Message queue
Application
PO Req
PO Req
Start
Buyer System
BizTalk Messaging Services
Stop
AIC
PO to Invoice
Seller file
directory
Payment
Seller
Buyer
Payment
Invoice
Note: Directional arrows denote flow of data.
Invoice
Invoice
Map
Map
PO
PO
PO
PO
ASP File
Seller System
BizTalk Orchestration

Continue to Module 1 Summary.

Module 1 Summary
In this module, you accomplished the following:

Created the XLANG schedule drawing that described the automated procurement process. For more information,
see Creating XLANG Schedule Drawings.

Connected the actions in a logical sequence that described the business process. For more information, see Connect Shapes.

Implemented the business process by connecting actions to ports. For more information,
see Establish the communication flow between an action and a port.

Added a rule to the business process by writing a script expression. For more information, see Designing Rules.

Defined the data flow for messages. For more information, see Communication Shapes.

Saved the XLANG schedule drawing and compiled the drawing into the XLANG schedule. For more information,
see Compiling XLANG Schedules.

Ran the XLANG schedule twice to process the purchase order request through BizTalk Server, observing the approval and
denial. For more information, see Running XLANG Schedules.

The highlighted areas of the following diagram illustrate the steps you completed in this module.

Send
Payment
Receive Invoice

Decision
PO Req
>$1000
End
Receive
PO Req
XLANG Schedule
File receive function
Buyer file directory
WSC Component
ASP File
Message queue
Yes (Deny)
No
(Approve)
Script Component
Messaging Port
Messaging Port
Channel for Invoice
Channel for PO
Channel
Port to ProElectron
via HTTP
Port to Bits, Bytes,
& Chips via AIC
Port to Bits, Bytes, & Chips via Local File
POtoINVAIC
SubmitProElectronPO
Port to Bits, Bytes,
& Chips via HTTP
Channel for
Invoice to Payment
Channel for
POReq to PO
Channel
BizTalk Messaging
Message Queuing
Action
Port
Data
Data
ExecuteTutorial
PO Request Receive Function at ProElectron
DropInvoicetoMSMQ
ReceiveInvoice
PORequestApproval
ReceivePOReq
Message Queuing
Message queue
Application
PO Req
PO Req
Start
Buyer System
BizTalk Messaging Services
Stop
AIC
PO to Invoice
Seller file
directory
Payment
Seller

Buyer
Payment
Invoice
Note: Directional arrows denote flow of data.
Invoice
Invoice
Map
Map
PO
PO
PO
PO
ASP File
Seller System
BizTalk Orchestration

Continue to Module 2: Creating Specifications and Maps.

Related Topic

Designing BizTalk Orchestrations

Module 2: Creating Specifications and Maps
In this module, you use BizTalk Editor to create specifications and BizTalk Mapper to create maps.

Objectives

Create a specification. For more information, see Creating Specifications.

Add new records and fields to a specification. For more information, see Add new fields to records.

Create a map. For more information, see Mapping Data.

Create links between fields in a map. For more information, see Creating Links.

Use functoids to mathematically manipulate values in a map. For more information, see Understanding Functoids.

Save specifications and maps to the WebDAV repository. For more information, see Store specifications and Store maps.

Continue to Using BizTalk Editor.

Related Topic

Creating Specifications and Mapping Data

Using BizTalk Editor
You can use BizTalk Editor to create, edit, and manage specifications.

To use BizTalk Editor to create the payment specification, continue to Create the payment specification.

 Shortcut

To use the existing payment specification, continue directly to Use the existing payment specification.

Use the existing payment specification
1. Copy PaymentSpec.xml from \Program Files\Microsoft BizTalk Server\Tutorial\DocSpecsandMaps on the BizTalk

Server installation drive.

2. Paste the file to \Program Files\Microsoft BizTalk Server\BizTalkServerRepository\DocSpecs\Microsoft.

To use BizTalk Editor to create the purchase order request specification, continue
to Create the purchase order request specification.

 Shortcut

To use the existing purchase order request specification, continue to Use the existing purchase order request specification.

Create the payment specification
1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Editor.

2. On the File menu, click New.

The New Document Specification dialog box appears.

3. Click the Blank Specification icon and click OK.

4. In the root node, click BlankSpecification.

5. On the Declaration tab, double-click the Value field in the Name row, type Payment, and then press ENTER.

6. Double-click the Value field in the Model row, click Open, and then press ENTER.

Continue to Add new records to the Payment root node of the payment specification.

Add new records to the Payment root node of the payment
specification

1. Right-click the Payment root node and click New Record.

2. Name this record PaymentHeader and press ENTER.

3. Follow steps 1 and 2 to create and name four additional records under the Payment root node. These records are all child
records of the Payment root node. Name the records as follows:

Seller

Buyer

Item

PaymentSummary

Continue to Add new records to existing records in the payment specification.

Add new records to existing records in the payment
specification

1. Right-click the Seller record and click New Record.

2. Name the record Address and press ENTER.

3. Follow steps 1 and 2 to create child records for the parent records listed in the following table.
Parent record Child record names
Seller ContactInfo
Buyer Address
Buyer ContactInfo

Continue to Add new fields to existing records in the payment specification.

Add new fields to existing records in the payment specification
1. Right-click the PaymentHeader record and click New Field.

2. Name this field PONumber and press ENTER.

3. On the Declaration tab, double-click the Value field in the Data Type row and click String, and then press ENTER.

4. On the Declaration tab, double-click the Value field in the Minimum Length row, type 1, and then press ENTER.

5. On the Declaration tab, double-click the Value field in the Maximum Length row, type 22, and then press ENTER.

6. Follow steps 1 through 5 to create fields for the records or child records listed in the following table. Each record contains
multiple fields.

You do not have to create the fields for the buyer because parallel record names exist for the buyer and seller. All records
with the same name contain the same record and field information. When you add fields to the Seller/Address or
Seller/ContactInfo record, the Buyer/Address or Buyer/ContactInfo record is automatically updated with the same fields.

Parent record Field name Data type Minimum length Maximum length
PaymentHeader Date Date Not applicable Not applicable
Seller/Address Name String 1 60
 Address1 String 1 55
 Address2 String 1 55
 City String 2 30
 State String 2 2
 Zip String 3 15
 Country String 2 3
Seller/ContactInfo Name String 1 60
 Number String 1 60
Item Quantity Real(r4) Not applicable Not applicable
 Price Real(r4) Not applicable Not applicable
 Description String 1 80
 ExtendedPrice Real(r4) Not applicable Not applicable
PaymentSummary Total Real(r4) Not applicable Not applicable

Continue to Store the payment specification to WebDAV.

Store the payment specification to WebDAV
1. On the File menu, click Store to WebDAV.

The Store to WebDAV dialog box appears.

2. Double-click the Microsoft folder.

3. In the File name box, type PaymentSpec and click Save.

4. On the Tools menu, click Validate Instance.

The Validate Document Instance dialog box appears.

5. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Solution on the BizTalk Server installation
drive.

6. Click payment_valid.xml and click Open.

Warnings or errors, if any, appear on the Warnings tab.

The payment specification should appear similar to the following illustration.

Click the illustration to enlarge or reduce.

To use BizTalk Editor to create the purchase order request specification, continue
to Create the purchase order request specification.

 Shortcut

To use the existing purchase order request specification, continue to Use the existing purchase order request specification.

Use the existing purchase order request specification
1. Copy POReq.xml from \Program Files\Microsoft BizTalk Server\Tutorial\DocSpecsandMaps on the BizTalk Server

installation drive.

2. Paste the file to \Program Files\Microsoft BizTalk Server\BizTalkServerRepository\DocSpecs\Microsoft.

Continue to Using BizTalk Mapper.

Create the purchase order request specification
In this procedure, you create the root node of the purchase order request specification.

To create the root node:

1. On the File menu, click New.

The New Document Specification dialog box appears.

2. Click the Blank Specification icon and click OK.

3. In the root node, click BlankSpecification.

4. On the Declaration tab, double-click the Value field in the Name row, type POReq and press ENTER.

5. Double-click the Value field in the Model row, click Open, and then press ENTER.

Continue to Add new records to the root node in the purchase order request specification.

Add new records to the root node in the purchase order
request specification

1. Right-click the POReq root node and click New Record.

2. Name this record Header and press ENTER.

3. Follow steps 1 and 2 to create and name five additional records under the POReq root node. These records are all child
records of the POReq root node. Name the records as follows:

EmployeeInfo

BillTo

ShipTo

Item

Total

Continue to Add new records to existing records in the purchase order request specification.

Add new records to existing records in the purchase order
request specification

1. Right-click the BillTo record and click New Record.

2. Name the record Address and press ENTER.

3. Follow steps 1 and 2 to create and name a child record Address for the parent record called ShipTo.

Continue to Add new fields to existing records in the purchase order request specification.

Add new fields to existing records in the purchase order
request specification

1. Right-click the Header record and click New Field.

2. Name this field Date and press ENTER.

3. On the Declaration tab, double-click the Value field in the Data Type row, click Date, and then press ENTER.

4. Right-click the EmployeeInfo record and click New Field.

5. Name this field EmpID and press ENTER.

6. On the Declaration tab, double-click the Value field in the Data Type row, click String, and then press ENTER.

7. On the Declaration tab, double-click the Value field in the Minimum Length row, type 1, and then press ENTER.

8. On the Declaration tab, double-click the Value field in the Maximum Length row, type 60, and then press ENTER.

9. Follow steps 4 through 8 to create fields for the records or child records listed in the following table. Each record contains
multiple fields.

You do not have to create the fields for ShipTo because parallel record names exist for BillTo and ShipTo. All records with
the same name contain the same record and field information. When you add fields to the BillTo/Address record, the
ShipTo/Address record is automatically updated with the same fields.

Parent record Field name Data type Minimum length Maximum length
EmployeeInfo LastName String 1 30
 FirstName String 1 30
BillTo/Address Name String 1 60
 Address1 String 1 55
 Address2 String 1 55
 City String 2 30
 State String 2 2
 Zip String 3 15
 Country String 2 3
Item Quantity Real(r4) Not applicable Not applicable
 Price Real(r4) Not applicable Not applicable
 Description String 1 80
 UnitofMeasure String 2 2
 ExtendedPrice Real(r4) Not applicable Not applicable
Total LineItemTtl Real(r4) Not applicable Not applicable
 QtyTtl Real(r4) Not applicable Not applicable
 POTtl Real(r4) Not applicable Not applicable

Continue to Save the purchase order request specification.

Save the purchase order request specification
1. On the File menu, click Store to WebDAV.

The Store to WebDAV dialog box appears.

2. Verify that the Microsoft folder is open.

3. In the File name box, type POReq and click Save.

4. On the Tools menu, click Validate Instance.

The Validate Document Instance dialog box appears.

5. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\SampleData on the BizTalk Server installation
drive.

6. Click POReqAccept.xml and click Open.

Warnings or errors, if any, appear on the Warnings tab.

The purchase order request specification should appear similar to the following.

Click the illustration to enlarge or reduce.

1. On the File menu, click Exit to close the BizTalk Editor console.

Continue to Using BizTalk Mapper.

Using BizTalk Mapper
In this procedure, you use BizTalk Mapper to create a map that transforms the data from a message that conforms to the
CommonInvoice specification into data in a message that conforms to the PaymentSpec specification.

BizTalk Messaging Services uses a map within a channel to specify how data in a document of one format is transformed into a
document of a different format.

To use BizTalk Mapper to create the map, continue to Create the InvoiceToPayment map.

 Shortcut

To use the existing map, continue directly to Use existing InvoiceToPayment map.

Use existing InvoiceToPayment map
1. Copy InvoiceToPayment.xml from \Program Files\Microsoft BizTalk Server\Tutorial\DocSpecsandMaps on the

BizTalk Server installation drive.

2. Paste the file to \Program Files\Microsoft BizTalk Server\BizTalkServerRepository\Maps\Microsoft.

Continue to Module 3: Configuring BizTalk Messaging Services.

Create the InvoiceToPayment map
1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Mapper.

2. On the File menu, click New.

The Select Source Specification Type dialog box appears.

3. Click the WebDAV Files icon and click OK.

The Retrieve Source Specification dialog box appears.

4. Double-click the Microsoft folder.

5. Click CommonInvoice.xml and click Open.

The Select Destination Specification Type dialog box appears.

6. Click the WebDAV Files icon and click OK.

7. Click PaymentSpec.xml and click Open.

Continue to Create links between fields.

Create links between fields
In the following procedure, you link fields from the source specification to fields in the destination specification.

To create links between fields:

1. In the Source Specification tree, expand the InvoiceHeader record to display the associated fields.

For more information, see Expand tree items.

2. In the Destination Specification tree, expand the PaymentHeader record to display the associated fields.

3. Drag the InvoiceHeader/Date field from the Source Specification tree to the PaymentHeader/Date field in the
Destination Specification tree. Follow steps 1 through 3 to create links between the fields listed in the following tables.
Source record/field Destination record/field
InvoiceHeader/Number PaymentHeader/PONumber

Seller/Address/Name Seller/Address/Name
Seller/Address/Address1 Seller/Address/Address1
Seller/Address/Address2 Seller/Address/Address2
Seller/Address/City Seller/Address/City
Seller/Address/State Seller/Address/State
Seller/Address/PostalCode Seller/Address/Zip
Seller/Address/Country Seller/Address/Country

Seller/ContactInfo/ContactName Seller/ContactInfo/Name
Seller/ContactInfo/ContactNumber Seller/ContactInfo/Number

Buyer/Address/Name Buyer/Address/Name
Buyer/Address/Address1 Buyer/Address/Address1
Buyer/Address/Address2 Buyer/Address/Address2
Buyer/Address/City Buyer/Address/City
Buyer/Address/State Buyer/Address/State
Buyer/Address/PostalCode Buyer/Address/Zip
Buyer/Address/Country Buyer/Address/Country

Buyer/ContactInfo/ContactName Buyer/ContactInfo/Name
Buyer/ContactInfo/ContactNumber Buyer/ContactInfo/Number

Item/ItemHeader/Quantity Item/Quantity
Item/ItemHeader/Price Item/Price
Item/ItemDescription/Description Item/Description

InvoiceSummary/InvoiceTotal/Amount PaymentSummary/Total

Continue to Use functoids to create links.

Use functoids to create links
In this procedure, you use a functoid to multiply the Quantity field by the Price field in the source specification, and place this
value in the ExtendedPrice field in the destination specification.

To use functoids to create links:

1. On the View menu, click Functoid Palette.

The Functiod Palette appears.

2. Click the Mathematical tab, drag the Multiplication functoid to the mapping grid, and then close the Functoid
Palette.

3. In the Source Specification tree, drag the Item/ItemHeader/Quantity field to the functoid.

4. In the Source Specification tree, drag the Item/ItemHeader/Price field to the functoid.

5. Drag the Multiplication functoid to the Item/ExtendedPrice field in the Destination Specification tree.

Continue to Compile the map.

Compile the map
1. On the Tools menu, click Compile Map.

2. In the lower pane, click the Output tab.

The information on the Output tab indicates that an XSL map has been created. Warnings or errors, if any, appear on the
Warnings tab.

Continue to Store the map to WebDAV.

Store the map to WebDAV
1. On the File menu, click Store to WebDAV.

The Store to WebDAV dialog box appears.

2. Double-click the Microsoft folder.

3. In the File name box, type InvoiceToPayment and click Save.

The map you create should appear similar to the following illustration.

Click the illustration to enlarge or reduce.

1. On the File menu, click Exit to close the BizTalk Mapper console.

Continue to Module 2 Summary.

Module 2 Summary
In this module, you accomplished the following:

Created a specification. For more information, see Understanding Specifications.

Added new records and fields to a specification. For more information, see Add new fields to records.

Created a map. For more information, see Mapping Data.

Created links between fields in a map. For more information, see Creating Links.

Used functoids to mathematically manipulate values in a map. For more information, see Understanding Functoids.

Saved specifications and maps to the WebDAV repository. For more information, see Store specifications and Store maps.

The highlighted areas of the following diagram illustrate the steps you completed in this module.

Send
Payment
Receive Invoice
Decision
PO Req
>$1000
End
Receive
PO Req

XLANG Schedule
File receive function
Buyer file directory
WSC Component
ASP File
Message queue
Yes (Deny)
No
(Approve)
Script Component
Messaging Port
Messaging Port
Channel for Invoice
Channel for PO
Channel
Port to ProElectron
via HTTP
Port to Bits, Bytes,
& Chips via AIC
Port to Bits, Bytes, & Chips via Local File
POtoINVAIC
SubmitProElectronPO
Port to Bits, Bytes,
& Chips via HTTP
Channel for
Invoice to Payment
Channel for
POReq to PO
Channel
BizTalk Messaging
Message Queuing
Action
Port
Data
Data
ExecuteTutorial
PO Request Receive Function at ProElectron
DropInvoicetoMSMQ
ReceiveInvoice
PORequestApproval
ReceivePOReq
Message Queuing
Message queue
Application
PO Req
PO Req
Start
Buyer System
BizTalk Messaging Services
Stop
AIC
PO to Invoice
Seller file
directory
Payment
Seller
Buyer
Payment
Invoice
Note: Directional arrows denote flow of data.
Invoice
Invoice

Map
Map
PO
PO
PO
PO
ASP File
Seller System
BizTalk Orchestration

Continue to Module 3: Configuring BizTalk Messaging Services.

Related Topic

Creating Specifications and Mapping Data

Module 3: Configuring BizTalk Messaging Services
In this module, you learn how to use BizTalk Messaging Manager to configure organizations, channels, and messaging ports for
the seller and buyer systems. You also learn how to use BizTalk Server Administration to configure a File receive function.

Objectives

Create document definitions. For more information, see Create and Manage Document Definitions.

Create organizations. For more information, see Create and Manage Organizations.

Create messaging ports. For more information, see Create and Manage Messaging Ports and Integrating BizTalk Services.

Create channels. For more information, see Create and Manage Channels.

Use a map in a channel to transform a document. For more information, see Mapping Data.

Create receive function. For more information, see Receive Functions.

Continue to Configuring the Buyer System.

Related Topic

Using BizTalk Messaging Manager

Configuring the Buyer System
You use BizTalk Messaging Manager to create organizations that represent your trading partners.

To use BizTalk Messaging Manager to configure the buyer system, continue to Create the organizations for the buyer system.

 Shortcut

To use a script to configure the buyer system, continue directly to Configure the buyer system using a configuration script.

Configure the buyer system using a configuration script
This script configures the following:

A source organization named ProElectron on Buyer on the buyer system.

A destination organization named Bits,Bytes,Chips on Buyer on the buyer system.

Four document definitions that reference specifications for CommonPO, CommonInvoice, PaymentSpec, and POReq.

A messaging port and channel that define the movement of a purchase order request from the buyer system to the seller
system by using an HTTP transport service to an ASP file on the seller system.

A messaging port and channel that define the movement of an invoice that has been delivered to the buyer and transform it
into a payment document on the seller system.

 Caution

If you used BizTalk Messaging Manager and BizTalk Server Administration to configure the buyer system, do not run the
configuration script.

To run the script that configures BizTalk Messaging Services for the buyer system:

1. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Setup\MessagingConfigurationScript on the BizTalk
Server installation drive.

2. Double-click ConfigureBuyer.VBS.

A message box appears indicating success.

Continue to Configuring the Seller System.

Create the organizations for the buyer system
 Caution

If you used the configuration script, do not use BizTalk Messaging Manager and BizTalk Server Administration to configure
the buyer system. Continue to Configuring the Seller System.

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Messaging
Manager.

2. If the BizTalk Messaging Manager dialog box appears, click Cancel.

3. On the File menu, point to New and click Organization.

The New Organization dialog box appears.

4. In the Organization name box, type Bits,Bytes,Chips on Buyer and click OK.

5. Repeat steps 3 and 4, naming the new organization ProElectron on Buyer.

Continue to Create the document definitions for the buyer and seller systems.

Create the document definitions for the buyer and seller
systems
In this procedure, you create four document definitions that reference the document specifications, CommonInvoice, CommonPO,
PaymentSpec, and POReq. These document definitions are shared by the buyer and seller systems.

To create the document definitions:

1. On the File menu, point to New and click Document Definition.

The New Document Definition dialog box appears.

2. In the Document definition name box, type Purchase Order.

3. Select the Document specification check box and click the Browse button.

The Select a Document Specification from the WebDAV Repository dialog box appears.

4. Double-click the Microsoft folder.

5. Click CommonPO.xml and click Open.

6. Click OK to close the New Document Definition dialog box.

7. Repeat steps 1 through 6 to create a new document definition with the following variations:

Name the new document definition Invoice.

Click the CommonInvoice.xml specification from WebDAV.

8. Repeat steps 1 through 6 to create a new document definition with the following variations:

Name the new document definition Purchase Order Request.

Click the POReq.xml specification from WebDAV.

9. Repeat steps 1 through 6 to create a new document definition with the following variations:

Name the new document definition Payment.

Click the PaymentSpec.xml specification from WebDAV.

Continue to Create a messaging port to Bits, Bytes, & Chips for the buyer system.

Create a messaging port to Bits, Bytes, & Chips for the buyer
system
In this procedure, you create a messaging port for the buyer system. A messaging port defines the destination for a document.

The messaging port that you create has as its destination organization "Bits,Bytes,Chips on Buyer." This port uses the HTTP
transport service to deliver documents to Bits, Bytes, & Chips.

To create the messaging port:

1. On the File menu, point to New, point to Messaging Port, and then click To an Organization.

The New Messaging Port Wizard opens.

2. In the Name box, type Port to Bits,Bytes,Chips via HTTP and click Next.

3. On the Destination Organization page, in the Organization area, click Browse.

The Select an Organization dialog box appears.

4. Click Bits,Bytes,Chips on Buyer and click OK.

5. In the Primary transport area, click Browse.

The Primary Transport dialog box appears.

6. In the Transport type list, click HTTP.

7. In the Address box, after the http:// prefix, type the name of your computer, followed by
/SubmitPO/SubmitProElectronPO.asp, click OK, and then click Next.

For example, http://Computer1/SubmitPO/SubmitProElectronPO.asp.

To find the name of your computer, complete the following steps:

a. On the Start menu, point to Settings and click Control Panel.

b. Double-click Administrative Tools.

c. Double-click Computer Management.

The Computer Management console appears.

d. On the Action menu, click Properties.

The Computer Management (Local) Properties dialog box appears.

e. Click the Network Identification tab.

The name of your computer appears in the Computer name field.

8. On the Envelope Information page, click Next.

9. On the Security Information page, verify that the Create a channel for this messaging port check box is selected.

10. In the Channel type list, click From an organization and click Finish.

The New Channel Wizard opens.

Continue to Create a channel from ProElectron for the buyer system.

Create a channel from ProElectron for the buyer system
In this procedure, you create a channel for the messaging port.

To create the channel:

1. On the General Information page, in the Name box, type Channel for POReq to PO and click Next.

2. On the Source Organization page, click Browse.

The Select an Organization dialog box appears.

3. Click ProElectron on Buyer, click OK, and then click Next.

4. On the Inbound Document page, to the right of the Inbound document definition name box, click Browse.

The Select a Document Definition dialog box appears.

5. Click Purchase Order Request, click OK, and then click Next.

6. On the Outbound Document page, to the right of the Outbound document definition name box, click Browse.

The Select a Document Definition dialog box appears.

7. Click Purchase Order and click OK.

8. Verify that the Map inbound document to outbound document check box is selected.

9. To the right of the Map reference box, click Browse.

The Select a Map from the WebDAV Repository dialog box appears.

10. Double-click the Microsoft folder.

11. Click POReqtoPO.xml, click Open, and then click Next.

12. On the Document Logging page, click Next.

13. On the Advanced Configuration page, click Finish.

Continue to Create a messaging port to Bits, Bytes & Chips within the buyer system.

Create a messaging port to Bits, Bytes, & Chips within the
buyer system
In this procedure, the messaging port sends documents within the buyer system by using the File transport service. The
documents are sent internally to the folder specified in the destination address.

To create the messaging port:

1. On the File menu, point to New, point to Messaging Port, and then click To an Organization.

The New Messaging Port Wizard opens.

2. In the Name box, type Port to Bits,Bytes,Chips via Local File and click Next.

3. On the Destination Organization page, in the Organization area, click Browse.

The Select an Organization dialog box appears.

4. Click ProElectron on Buyer and click OK.

5. In the Primary transport area, click Browse.

The Primary Transport dialog box appears.

6. In the Transport type list, click File.

7. In the Address box, after file://, type C:\TutorialFiles\Seller\payment%tracking_id%.xml. For example,
file://c:\TutorialFiles\Seller\payment%tracking_id%.xml.

 Note

For the File transport service, the default transport-component setting is to append new files to an existing file in the
specified directory. To create a new file with a unique name for each document instance, you must use the following
file path format:

file://C:\dir\file%tracking_id%.xml

8. Click OK to close the Primary Transport dialog box and click Next.

9. On the Envelope Information page, click Next.

10. On the Security Information page, verify that the Create a channel for this messaging port check box is selected.

11. In the Channel type list, click From an organization and click Finish.

The New Channel Wizard opens.

Continue to Create a channel from Bits, Bytes, & Chips for the buyer system.

Create a channel from Bits, Bytes, & Chips for the buyer system
The channel that you create in this procedure processes invoices that are received from Bits, Bytes, & Chips and uses a map to
transform the invoice into a payment.

To create the channel:

1. On the General Information page, in the Name box, type Channel for Invoice To Payment and click Next.

2. On the Source Organization page, in the Organization area, click Browse.

The Select an Organization dialog box appears.

3. Click Bits,Bytes,Chips on Buyer, click OK, and then click Next.

4. On the Inbound Document page, to the right of the Inbound document definition name box, click Browse.

The Select a Document Definition dialog box appears.

5. Click Invoice, click OK, and then click Next.

6. On the Outbound Document page, to the right of the Outbound document definition name box, click Browse.

The Select a Document Definition dialog box appears.

7. Click Payment and click OK.

8. Verify that the Map inbound document to outbound document check box is selected.

9. To the right of the Map reference box, click Browse.

The Select a Map from the WebDAV Repository dialog box appears.

10. Double-click the Microsoft folder.

11. Click InvoicetoPayment.xml, click Open, and then click Next.

12. On the Document Logging page, click Next.

13. On the Advanced Configuration page, click Finish.

14. On the File menu, click Exit to close BizTalk Messaging Manager.

Continue to Create a File receive function for the buyer system.

Create a File receive function for the buyer system
In this procedure, you create a File receive function that retrieves the buyer’s purchase order request from a local file directory
and submits it to BizTalk Messaging Services.

The following illustration shows the relationship between the sending business application, the file system, and the receive
function.

Sending business
application
File system
BizTalk Server File receive function
BizTalk
Server
Submit

To create the File receive function:

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Server
Administration.

2. Expand Microsoft BizTalk Server 2000, expand BizTalk Server Group, and then click Receive Functions.

3. On the Action menu, point to New and click File Receive Function.

The Add a File Receive Function dialog box appears.

4. In the Name box, type PORequest Receive Function at ProElectron.

5. In the Server on which the receive function will run box, click the name of a server in the BizTalk server group.

6. In the File types to poll for box, type *.xml.

7. In the Polling location box, type C:\TutorialFiles\Buyer.

8. Click the Advanced button.

The Advanced Receive Function Options dialog box appears.

9. In the Channel name list, click Channel for POReq to PO and click OK.

10. Click OK to close the Add a File Receive Function dialog box.

11. Close BizTalk Server Administration.

Continue to Configuring the Seller System.

Configuring the Seller System
You use BizTalk Messaging Manager to create organizations that represent your trading partners.

Continue to Create the organizations for the seller system.

Create the organizations for the seller system
1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Messaging

Manager.

2. If the BizTalk Messaging Manager dialog box appears, click Cancel.

3. On the File menu, point to New and click Organization.

The New Organization dialog box appears.

4. On the General tab, in the Organization name box, type Bits,Bytes,Chips on Seller and click OK.

5. Repeat steps 3 and 4, naming the new organization ProElectron on Seller and click OK.

Continue to Create a messaging port to Bits, Bytes, & Chips for the seller system.

Create a messaging port to Bits, Bytes, & Chips for the seller
system
In this procedure, you create a messaging port that defines the destination for a document. This messaging port sends documents
internally within the seller system using an application integration component (AIC) as the transport service.

An AIC typically serves as an integration point between BizTalk Server 2000 and a back-end application. In this scenario, the AIC
functions both as the integration point and as a hypothetical back-end application. The messaging port passes the purchase order
to the AIC. The AIC transforms the purchase order into an invoice and submits it to a channel in BizTalk Messaging Services on the
seller system.

The purchase order could also be transformed into an invoice by using a map in the channel, but for simplicity the AIC performs
this function in this scenario.

To create the messaging port:

1. On the File menu, point to New, point to Messaging Port, and then click To an Organization.

The New Messaging Port Wizard opens.

2. In the Name box, type Port to Bits,Bytes,Chips via AIC and click Next.

3. On the Destination Organization page, in the Organization area, click Browse.

The Select an Organization dialog box appears.

4. Click Bits,Bytes,Chips on Seller and click OK.

5. In the Primary transport area, click Browse.

The Primary Transport dialog box appears.

6. In the Transport type list, verify that Application Integration Component is selected and click Browse.

The Select a Component dialog box appears.

7. Click POToINVAIC ConvertPOToInvoice and click OK.

8. Click OK to close the Primary Transport dialog box and click Next.

9. On the Envelope Information page, click Next.

10. On the Security Information page, verify that the Create a channel for this messaging port check box is selected.

11. In the Channel type list, click From an organization and click Finish.

The New Channel Wizard opens.

Continue to Create a channel from ProElectron for the seller system.

Create a channel from ProElectron for the seller system
In this procedure, you create a channel for the messaging port.

The channel that you create has as its source organization "ProElectron on Seller," which represents the buyer on the seller
system. This channel processes purchase orders that are received from ProElectron. Because both the inbound and the outbound
document definitions are identical, no map reference is required for this channel and no document transformation occurs.

To create the channel:

1. On the General Information page, in the Name box, type Channel for PO and click Next.

2. On the Source Organization page, in the Organization area, click Browse.

The Select an Organization dialog box appears.

3. Click ProElectron on Seller, click OK, and then click Next.

4. On the Inbound Document page, to the right of the Inbound document definition name box, click Browse.

The Select a Document Definition dialog box appears.

5. Click Purchase Order, click OK, and then click Next.

6. On the Outbound Document page, to the right of the Outbound document definition name box, click Browse.

The Select a Document Definition dialog box appears.

7. Click Purchase Order, click OK, and then click Next.

8. On the Document Logging page, click Next.

9. On the Advanced Configuration page, click Finish.

Continue to Create a messaging port to ProElectron for the seller system.

Create a messaging port to ProElectron for the seller system
The destination organization that you create for the messaging port is named "ProElectron on Seller," which represents the buyer
on the seller system. This messaging port sends documents from the seller system to the buyer system. This port uses the HTTP
transport service to deliver documents to the specified buyer address.

When this port is used, an invoice message is sent to an ASP page on the buyer system that then posts the invoice to a message
queue on the buyer system.

To create the messaging port:

1. On the File menu, point to New, point to Messaging Port, and then click To an Organization.

The New Messaging Port Wizard opens.

2. On the General Information page, in the Name box, type Port to ProElectron via HTTP and click Next.

3. On the Destination Organization page, in the Organization area, click Browse.

The Select an Organization dialog box appears.

4. Click ProElectron on Seller and click OK.

5. In the Primary transport area, click Browse.

The Primary Transport dialog box appears.

6. In the Transport type list, click HTTP.

7. In the Address box, after the http:// prefix, type the name of your computer, followed by
/InvoiceToQueue/DropInvoicetoMSMQ.asp, click OK, and then click Next.

For example, http://Computer1/InvoiceToQueue/DropInvoicetoMSMQ.asp.

To find the name of your computer, complete the following steps:

a. On the Start menu, point to Settings and click Control Panel.

b. Double-click Administrative Tools.

c. Double-click Computer Management.

The Computer Management console appears.

d. On the Action menu, click Properties.

The Computer Management (Local) Properties dialog box appears.

e. Click the Network Identification tab.

The name of your computer appears in the Computer name field.

8. On the Envelope Information page, click Next.

9. On the Security Information page, verify that the Create a channel for this messaging port check box is selected.

10. In the Channel type list, click From an organization and click Finish.

The New Channel Wizard opens.

Continue to Create a channel from Bits, Bytes, & Chips for the seller system.

Create a channel from Bits, Bytes, & Chips for the seller system
The channel that you create in this procedure has as its source organization "Bits,Bytes,Chips on Seller." This channel processes
invoices that are sent to ProElectron on the seller system according to the rules of the messaging port, Port to ProElectron via
HTTP.

To create the channel:

1. On the General Information page, in the Name box, type Channel for Invoice and click Next.

2. On the Source Organization page, in the Organization area, click Browse.

The Select an Organization dialog box appears.

3. Click Bits,Bytes,Chips on Seller, click OK, and then click Next.

4. On the Inbound Document page, to the right of the Inbound document definition name box, click Browse.

The Select a Document Definition dialog box appears.

5. Click Invoice, click OK, and then click Next.

6. On the Outbound Document page, click Browse.

The Select a Document Definition dialog box appears.

7. Click Invoice, click OK, and then click Next.

8. On the Document Logging page, click Next.

9. On the Advanced Configuration page, click Finish.

10. On the File menu, click Exit to close BizTalk Messaging Manager.

Continue to Module 3 Summary.

Module 3 Summary
In this module, you accomplished the following:

Created document definitions. For more information, see Create and Manage Document Definitions.

Created organizations. For more information, see Create and Manage Organizations.

Created messaging ports. For more information, see Create and Manage Messaging Ports.

Created channels. For more information, see Create and Manage Channels.

Used a map in a channel to transform a document. For more information, see Mapping Data.

Created a File receive function. For more information, see Receive Functions.

To view the document definitions, organizations, messaging ports, channels, and map that you created in this module, use the
Search Now button in the BizTalk Messaging Manager.

The highlighted areas of the following diagram illustrate the steps you completed in this module.

Send
Payment
Receive Invoice
Decision
PO Req
>$1000
End

Receive
PO Req
XLANG Schedule
File receive function
Buyer file directory
WSC Component
ASP File
Message queue
Yes (Deny)
No
(Approve)
Script Component
Messaging Port
Messaging Port
Channel for Invoice
Channel for PO
Channel
Port to ProElectron
via HTTP
Port to Bits, Bytes,
& Chips via AIC
Port to Bits, Bytes, & Chips via Local File
POtoINVAIC
SubmitProElectronPO
Port to Bits, Bytes,
& Chips via HTTP
Channel for
Invoice to Payment
Channel for
POReq to PO
Channel
BizTalk Messaging
Message Queuing
Action
Port
Data
Data
ExecuteTutorial
PO Request Receive Function at ProElectron
DropInvoicetoMSMQ
ReceiveInvoice
PORequestApproval
ReceivePOReq
Message Queuing
Message queue
Application
PO Req
PO Req
Start
Buyer System
BizTalk Messaging Services
Stop
AIC
PO to Invoice
Seller file
directory
Payment
Seller
Buyer
Payment
Invoice
Note: Directional arrows denote flow of data.

Invoice
Invoice
Map
Map
PO
PO
PO
PO
ASP File
Seller System
BizTalk Orchestration

Continue to Module 4: Completing the XLANG Schedule.

Related Topic

Using BizTalk Messaging Manager

Module 4: Completing the XLANG Schedule
In this module, you use BizTalk Orchestration Designer to implement a port by using BizTalk Messaging Services. You then
compile and run the completed XLANG schedule.

Objectives

Add invoice and payment actions. For more information, see Add Shapes.

Implement a port using BizTalk Messaging Services. For more information, see Using the BizTalk Messaging Shape.

Compile and run the completed XLANG schedule. For more information, see Compiling XLANG Schedules
and Running XLANG Schedules.

To complete the XLANG schedule, continue to Add invoice and payment actions.

 Shortcut

To use the existing XLANG schedule, continue directly to Run the completed XLANG schedule.

Related Topic

Designing BizTalk Orchestrations

Add invoice and payment actions
In this procedure, you add an action that receives the invoice from the buyer and another action that sends the payment message
to the seller.

To create the actions:

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Orchestration
Designer.

2. On the File menu, click Open.

The Open XLANG Schedule Drawing dialog box appears.

3. If you are using the existing Buyer1.skv file, in the Open XLANG Schedule Drawing dialog box, browse to \Program
Files\Microsoft BizTalk Server\Tutorial\Schedule\Solution on the BizTalk Server installation drive, click Buyer1.skv,
and then click Open.

If you created the Buyer1.skv file in Module 1, browse to \Program Files\Microsoft BizTalk
Server\Tutorial\Schedule\Lab on the BizTalk Server installation drive, click Buyer1.skv, and then click Open.

 Note

There will be a blank drawing, in BizTalk Orchestration Designer, which you can close.

4. Highlight the connection between the Write PO Request to File action and the End action and press DELETE.

5. Move the End action down to allow room for two new action shapes.

6. On the Business Process page, drag the Action shape from the Flowchart stencil to the left side of the Separator bar.
Position the shape directly below the Write PO Request to File action.

7. Right-click the Action shape and click Properties.

The Action Properties dialog box appears.

8. In the Name box, type Receive Invoice and click OK.

9. On the Business Process page, drag the Action shape from the Flowchart stencil to the left side of the Separator bar.
Position the shape directly below the Receive Invoice action.

10. Right-click the Action shape and click Properties.

The Action Properties dialog box appears.

11. In the Name box, type Send Payment and click OK.

12. Connect the Write PO Request to File action to the Receive Invoice action.

13. Connect the Receive Invoice action to the Send Payment action.

14. Connect the Send Payment action to the End shape.

Continue to Bind the Message Queuing service to receive an invoice.

Bind the Message Queuing service to receive an invoice
The Receive Invoice action is bound to a message queuing service. When an invoice is dropped to the invoice message queue
that is defined by the service, it activates the Receive Invoice action.

To bind the message queuing service:

1. On the Business Process page, drag the Message Queuing shape from the Implementation stencil to the right side of
the Separator bar that divides the two sides of the drawing. Position the Message Queuing shape so that it is horizontally
aligned with the Receive Invoice action.

The Message Queuing Binding Wizard opens.

2. On the Welcome to the Message Queuing Binding Wizard page, verify that Create a new port is selected.

3. In the Create a new port box, type ReceiveInvoice and click Next.

4. On the Static or Dynamic Queue Information page, verify that Static queue is selected and click Next.

5. On the Queue Information page, click Use a known queue for all instances.

6. In the Enter the queue name box, type .\private$\ReceiveInvoice and click Next.

7. On the Advanced Port Properties page, click Finish.

Continue to Define message properties for the Receive Invoice service.

Define message properties for the Receive Invoice service
1. Select the Receive Invoice action and drag the control handle on the right of the Receive Invoice action to the

ReceiveInvoice port.

The XML Communication Wizard opens.

2. On the Welcome to the XML Communication Wizard page, click Receive and click Next.

3. On the Message Information page, verify that Create a new message is selected.

4. In the Message name box, type CommonInvoice and click Next.

5. On the XML Translation Information page, verify that Receive XML messages from the queue is selected and click
Next.

6. On the Message Type Information page, in the Message type box, type CommonInvoice and click Next.

7. On the Message Specification Information page, click Finish.

Continue to Bind the BizTalk Messaging Services.

Bind the BizTalk Messaging Services
In this procedure, you bind a BizTalk Messaging Service to the XLANG schedule drawing and name the channel that is being used.

To bind the BizTalk Messaging Services:

1. On the Business Process page, drag the BizTalk Messaging shape from the Implementation stencil to the right side of
the Separator bar that divides the two sides of the drawing. Position the BizTalk Messaging shape so that it is horizontally
aligned with the Send Payment action.

The BizTalk Messaging Binding Wizard opens.

2. On the Welcome to the BizTalk Messaging Binding Wizard page, verify that Create a new port is selected.

3. In the Create a new port box, type SendPayment and click Next.

4. On the Communication Direction page, verify that Send is selected and click Next.

5. On the Static or Dynamic Channel Information page, verify that Static channel is selected.

6. In the Enter the name of a known, pre-existing channel box, type Channel for Invoice To Payment and click Finish.

Note that Channel for Invoice To Payment was created in Module 3.

Continue to Define message properties for the BizTalk Messaging Services.

Define message properties for the BizTalk Messaging Services
1. Drag the control handle on the right of the Send Payment action to the SendPayment port.

The XML Communication Wizard opens.

2. On the Welcome to the XML Communication Wizard page, click Next.

3. On the Message Information page, click Add a reference to an existing message, click CommonInvoice, and then
click Next.

4. On the XML Translation Information page, verify that Send XML messages to the queue is selected and click Next.

5. On the Message Type Information page, click Next.

6. On the Message Specification Information page, click Finish.

Continue to Save the completed XLANG schedule drawing.

Save the completed XLANG schedule drawing
1. On the File menu, click Save As.

The Save XLANG Schedule Drawing As dialog box appears.

2. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Lab.

3. In the File name box, type Buyer2 and click Save.

Continue to Compile the completed XLANG schedule.

Compile the completed XLANG schedule
1. On the File menu, click Make XLANG Buyer2.skx.

The Save XLANG Schedule to dialog box appears.

2. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Lab on the BizTalk Server installation drive.

3. In the File name box, type Buyer2 and click Save.

Your completed XLANG schedule drawing should appear similar to the following illustration.

Click the illustration to enlarge or reduce.

1. On the File menu, click Exit.

Continue to Run the completed XLANG schedule.

Run the completed XLANG schedule
You have completed the configuration of a business-to-business automated procurement solution. You can now run the
application that activates the XLANG schedule.

In this procedure, you use an application that activates the XLANG schedule and delivers a purchase order request to the message
queue that the schedule is monitoring.

To run the XLANG schedule:

1. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Solution on the BizTalk Server installation
drive.

2. Double-click ExecuteTutorial.exe. This application is used to activate the XLANG schedule by means of a moniker.

The ExecuteTutorial application opens.

3. Click Browse for Schedule.

 Shortcut

If you are using the existing XLANG schedule, browse to \Program Files\Microsoft BizTalk
Server\Tutorial\Schedule\Solution and continue to step 5.

1. If you created the Buyer2 XLANG schedule, browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Lab
on the BizTalk Server installation drive.

2. Click the Buyer2.skx XLANG schedule and click Open.

3. Click Browse for Data File and browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\SampleData
on the BizTalk Server installation drive.

4. Click POReqAccept.xml and click Open.

5. Click Start XLANG Schedule.

Because its total is less than $1000, the purchase order request is approved. A message box appears, notifying you that the
application passed data to the XLANG Scheduler Engine. At this point, the application is finished. A second message box
notifies you that the purchase order request has been approved. Click OK to close the dialog boxes.

6. Click End to close the ExecuteTutorial application.

7. Browse to C:\TutorialFiles\Seller.

You see the payment file. The file name is PaymentXXXX.xml, where XXXX is representative of a unique set of numbers.
Double-click the file to open it in Microsoft Internet Explorer.

You have submitted a purchase order request. The purchase order request was approved and ended in a payment message being
posted to the seller system.

Continue to Module 4 Summary.

Module 4 Summary
In this module, you accomplished the following:

Added invoice and payment actions. For more information, see Connect Shapes.

Implemented a messaging port using BizTalk Messaging Services. For more information about implementing a messaging
port using BizTalk Messaging Services, see Using the BizTalk Messaging Shape.

Compiled and ran the completed XLANG schedule. For more information, see Compiling XLANG Schedules
and Running XLANG Schedules.

The highlighted areas of the following diagram illustrate the steps you completed in this module.

Send
Payment
Receive Invoice
Decision
PO Req
>$1000
End
Receive
PO Req
XLANG Schedule
File receive function
Buyer file directory
WSC Component
ASP File

Message queue
Yes (Deny)
No
(Approve)
Script Component
Messaging Port
Messaging Port
Channel for Invoice
Channel for PO
Channel
Port to ProElectron
via HTTP
Port to Bits, Bytes,
& Chips via AIC
Port to Bits, Bytes, & Chips via Local File
POtoINVAIC
SubmitProElectronPO
Port to Bits, Bytes,
& Chips via HTTP
Channel for
Invoice to Payment
Channel for
POReq to PO
Channel
BizTalk Messaging
Message Queuing
Action
Port
Data
Data
ExecuteTutorial
PO Request Receive Function at ProElectron
DropInvoicetoMSMQ
ReceiveInvoice
PORequestApproval
ReceivePOReq
Message Queuing
Message queue
Application
PO Req
PO Req
Start
Buyer System
BizTalk Messaging Services
Stop
AIC
PO to Invoice
Seller file
directory
Payment
Seller
Buyer
Payment
Invoice
Note: Directional arrows denote flow of data.
Invoice
Invoice
Map
Map
PO
PO
PO

PO
ASP File
Seller System
BizTalk Orchestration

Continue to Tutorial Summary.

Related Topic

Designing BizTalk Orchestrations

Tutorial Summary
In this tutorial you configured Microsoft BizTalk Server 2000 to establish and run a business-to-business automated procurement
process.

The following illustration shows the flow of data through BizTalk Server while running the Buyer2 XLANG schedule at the end of
Module 4.

Send
Payment
Receive Invoice
Decision
PO Req
>$1000
End
Receive
PO Req
XLANG Schedule
File receive function
Buyer file directory
WSC Component
ASP File
Message queue
Yes (Deny)
No
(Approve)
Script Component
Messaging Port
Messaging Port

Channel for Invoice
Channel for PO
Channel
Port to ProElectron
via HTTP
Port to Bits, Bytes,
& Chips via AIC
Port to Bits, Bytes, & Chips via Local File
POtoINVAIC
SubmitProElectronPO
Port to Bits, Bytes,
& Chips via HTTP
Channel for
Invoice to Payment
Channel for
POReq to PO
Channel
BizTalk Messaging
Message Queuing
Action
Port
Data
Data
ExecuteTutorial
PO Request Receive Function at ProElectron
DropInvoicetoMSMQ
ReceiveInvoice
PORequestApproval
ReceivePOReq
Message Queuing
Message queue
Application
PO Req
PO Req
Start
Buyer System
BizTalk Messaging Services
Stop
AIC
PO to Invoice
Seller file
directory
Payment
Seller
Buyer
Payment
Invoice
Note: Directional arrows denote flow of data.
Invoice
Invoice
Map
Map
PO
PO
PO
PO
ASP File
Seller System
BizTalk Orchestration

You learned how BizTalk Server components and services work together to integrate loosely coupled, long-running business
processes, both within and between businesses.

You also learned how to:

Use BizTalk Orchestration Designer to model business processes by creating an XLANG schedule drawing.

Use BizTalk Messaging Manager to create organizations, channels, messaging ports, and document definitions.

Use BizTalk Editor to create specifications.

Use BizTalk Mapper to create maps.

Compile and run an XLANG schedule.

You have successfully completed the tutorial. For detailed information about creating the auxiliary components used in this
tutorial, go to Appendix: Creating Auxiliary Components.

Appendix: Creating Auxiliary Components
In this appendix, you learn how to create auxiliary components that work in conjunction with Microsoft BizTalk Server 2000 to
process data. Each component and its role and relationship in the process are described in detail.

Specifically, you create:

An application on the buyer system that activates an XLANG schedule and sends a purchase order request to a message
queue that is bound to the XLANG schedule that controls the flow of messages through the buyer system.

A Windows Script Component (WSC) on the buyer system that accepts the approval or denial status for a purchase order
request from the XLANG schedule. If approved, the WSC displays an approval message and writes the purchase order
request to a local file directory, where the BizTalk Messaging Services for the buyer system retrieves it. If denied, the WSC
displays a denial message and the schedule ends.

An application integration component (AIC) on the seller system that generates an invoice based on the data in the purchase
order from the buyer.

An ASP file on the buyer system that submits a purchase order to BizTalk Server.

An ASP file on the seller system that delivers an invoice to a message queue.

Continue to Creating the Application.

Creating the Application
In this topic, you will create an application that activates an XLANG schedule and then drops a PO request to a queue. You use this
application to test the implementation of the XLANG schedule and the configuration of BizTalk Messaging Manager.

To complete the lab, modify the code in the sample project. You will focus on the code that is specific to activating the XLANG
schedule and to dropping a message into a queue. Ancillary code is provided for you.

Each step corresponds to a segment of code. Look for comment blocks similar to the following example:

''
'To Do: Step A
''

Following this code are lines that have question marks (?) indicating placeholders where you must make a change. Replace the
question marks with the proper code to complete the lab. For example:

Private g_MSMTxDisp As ?

should be changed to:

Private g_MSMTxDisp As MSMQ.MSMQTransactionDispenser

 Note

These lines of code have been commented out. Be sure to remove the comment mark at the beginning of the lines to which
you make changes. The steps are not necessarily in order in the code window.

Continue to Open the application.

Open the application
Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Lab on the BizTalk Server installation directory.

Double-click ExecuteTutorial.vbp.

Continue to Add the required references to the application.

Add the required references to the application
In this procedure, you enable the application to implement a number of dynamic link libraries (DLLs) required to use Message
Queuing, XML, and the scripting run time.

1. On the Project menu, click References.

2. Select Microsoft Message Queue 2.0 Object Library.

The full path for this type library is \WINNT\System32\msxml2.dll.

3. Select Microsoft Scripting Runtime.

The full path for this DLL is \WINNT\System32\Scrun.dll.

4. Select Microsoft XML, v 3.0.

The full path for this DLL is \WINNT\System32\msxml3.dll.

5. Click OK.

Continue to Define and initialize the Message Queue objects.

Define and initialize the Message Queue objects
In this procedure, you add the code to use the chosen type libraries. The lettered steps in the following list correspond to the
lettered steps in the code provided.

1. In the Project window, expand Forms, and then click Form1 (ExecuteTutorial.frm).

2. On the View menu, click Code.

3. In the General Declarations section at step A in the code, create the Message Queue objects as shown in the following
example:

Private g_MSMTxDisp As MSMQ.MSMQTransactionDispenser
Private g_MSMQQueue As MSMQ.MSMQQueue
Private g_MSMQInfo As MSMQ.MSMQQueueInfo

4. In the Form_Load event section at Step B in the code, initialize the Message Queue objects as shown in the following
example.

Set g_MSMQInfo = CreateObject("MSMQ.MSMQQueueInfo")
Set g_MSMTxDisp = CreateObject("MSMQ.MSMQTransactionDispenser")

Continue to Add code to place data on a queue.

Add code to place data on a queue
In this procedure, you add a new subroutine called ExecuteMSMQ. This routine is called by the cmdRunSked_Click event. You
add the code to call this subroutine in the following procedure.

Place the following code at the end of the code window in your project at step C:

Public Sub ExecuteMSMQ(ByVal strQueuePath As String, DataToQueue As String)
 Dim QueueMsg As New MSMQMessage

 Dim strData As String
 Dim fSend As Boolean
 Dim txt As TextStream
 Dim mybyte() As Byte

 g_MSMQInfo.FormatName = strQueuePath
 Set g_MSMQQueue = g_MSMQInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
 mybyte = StrConv(DataToQueue, vbFromUnicode)
 QueueMsg.Body = DataToQueue

 Set MSMQTx = g_MSMTxDisp.BeginTransaction
 QueueMsg.send g_MSMQQueue, MSMQTx
 MSMQTx.Commit

 Set QueueMsg = Nothing
 Set MSMQTx = Nothing

End Sub

Continue to Add code to activate the XLANG schedule and call ExecuteMSMQ.

Add code to activate the XLANG schedule and call
ExecuteMSMQ
In this procedure, you will add code to the cmdRunSked_Click event that activates the XLANG schedule and calls code that sends
a message to a queue.

1. In the cmdRunSked_Click event section at step D of the code, call ExecuteMSMQ, as shown in the following code:

ExecuteMSMQ "DIRECT=OS:.\private$\ReceivePoReq", objfs.OpenTextFile(txtData.Text, ForReading).ReadAll

2. In the cmdRunSked_Click event section at step E of the code, call GetObject to instantiate the XLANG schedule by
moniker, as shown in the following code:

Set SendPAQ = GetObject(txtSked.Text)

Continue to Save and compile the application.

Save and compile the application
In this procedure, you save and compile the application.

1. On the File menu, click Save Project.

2. On the File menu, click Make ExecuteTutorial.exe.

3. In the Make Project dialog box, browse to the folder \Program Files\Microsoft BizTalk Server\Tutorial\Schedule\Lab
on the BizTalk Server installation directory and click OK.

You can now run the application to execute the buyer schedule in Modules 1 and 4.

Continue to Creating the Windows Script Component.

Creating the Windows Script Component
In this topic, you create a Windows Script Component (WSC) that is bound to the XLANG schedule. The purpose of the WSC is to
display a message box with approval or denial status of the purchase order request, and to optionally write the purchase order
request to a local file if it is approved.

Continue to Add script to register the component.

Add script to register the component
In this procedure, you add script that allows the component to be registered to the file.

1. On the Start menu, point to Programs, point to Accessories, and then click Notepad.

2. Add the following script:

<?xml version="1.0"?>
<component>
<?component error="true" debug="true"?>
<registration
 description="PORequestApproval"
 progid="BTSTutorial.PORequestApproval"
 version="1.00"
 classid="{2938621b-40fc-48e2-827c-bed74e21a538}"
>
</registration>

Because you are using the same class ID as the preconfigured component, the old component is overwritten in the registry.

Continue to Add script to implement the methods.

Add script to implement the methods
This component exposes three methods. The first method sends an approval status in the form of a message box that is displayed
to the user. The second method sends a denial status, also in the form of a message box that is displayed to the user. The decision
as to which method is called is dictated by the decision rule in the XLANG schedule drawing. The last method writes the purchase
order to a local file if the purchase order request has been approved.

1. Add the three method signatures to the end of the file:

<public>
 <method name="SendApproval">
 <PARAMETER name="Document"/>
 </method>
 <method name="SendDenial">
 <PARAMETER name="Document"/>
 </method>
 <method name="WriteToFile">
 <PARAMETER name="Document"/>
 <PARAMETER name="FileName"/>
 </method>
</public>

2. Add the script that implements the methods to the end of the file:

<implements type="Behavior" id="Behavior"/>

<script language="VBScript">
<![CDATA[

function SendApproval(Document)
 MsgBox "Scheduler Engine Accepted document :" + vbcrlf + + vbcrlf + Document, 0, "Document Approval Re
ceived"
end function

function SendDenial(Document)
 MsgBox "Scheduler Engine Denied document :" + vbcrlf + + vbcrlf + Document, 0, "Document Denied"
end function

function WriteToFile(Document, FileName)
 dim objFileSys, strTimeNow

 if FileName = "" then
 FileName = "c:\TutorialFiles\Buyer\POReq*.xml"
 end if

'Generate a Unique Number used to generate unique files using a mask
 strTimeNow = left(Replace(CStr(FormatDateTime(Now(), 3)),":",""), 6)

'Create File System Object
 Set objFileSys = CreateObject("Scripting.FileSystemObject")

'Create the Specified file, write the document data and close
 Set filestream = objFileSys.CreateTextFile(Replace(FileName, "*", strTimeNow), False)
 filestream.writeline Document
 filestream.close
end function

]]>
</script>

</component>

3. On the File menu, click Save As.

The Save As dialog box appears.

4. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POReqApproval\Lab on the BizTalk
Server installation drive.

5. In the File name box, type PoRequestApproval.wsc.

6. In the Save as type box, click All Files and click Save.

7. Close Notepad.

8. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POReqApproval\Lab on the BizTalk
Server installation drive.

9. Right-click PoRequestApproval.wsc and click Register.

This component can be substituted for the preconfigured WSC used in Module 1. To use this component, you must remove the
existing WSC binding from the schedule and then create a new WSC binding that points to your component.

Continue to Delete the WSC component.

Delete the WSC component
In this procedure, you delete the WSC component from the Buyer2 XLANG schedule drawing. You can rebind the component you
have created.

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Orchestration
Designer.

2. To use the drawing created in Module 4, open the Buyer2.skv file located at \Program Files\Microsoft BizTalk
Server\Tutorial\Schedule\Lab on the BizTalk Server installation drive.

To use the existing Buyer2 drawing, open the Buyer2.skv file located at \Program Files\Microsoft BizTalk
Server\Tutorial\Schedule\Solution on the BizTalk Server installation drive.

3. Click the Script Component shape and press DELETE.

4. Click the Data tab.

5. Delete the SendApproval, SendDenial, and WritetoFile messages.

You are now ready to use your WSC component in the schedule. Do the following:

1. Implement a port to Buyer2.skv by using your WSC component. For an example of how to do this,
see Implement a port by using a script component. However, use your component instead of the component in the
procedure.

2. Define the method communication for the port implementation. For an example of how to do this,
see Define message properties for the script component.

3. Define the data flow for the port. For an example of how to do this, see Define the data flow.

4. Save the XLANG file. For an example of how to do this, see Save the XLANG schedule drawing.

5. To test your component, run the ExecuteTutorial application located at \Program Files\Microsoft BizTalk
Server\Tutorial\Schedule\Solution on the BizTalk Server installation drive.

Continue to Creating the Application Integration Component (AIC).

Creating the Application Integration Component (AIC)
In this topic, you create a new application integration component called POtoINVAIC that converts a purchase order document
into an invoice document using the MSXML DOM.

Continue to Create an ActiveX DLL project for the AIC.

Create an ActiveX DLL project for the AIC
1. Start Microsoft Visual Basic 6.0.

2. In the New Project dialog box, click the New tab, click ActiveX DLL, and then click Open.

This creates a new project for your component, called Project 1.

3. To rename both the project and the control to something more meaningful, in the project tree window, click Project1. In the
properties window, change the (Name) property to POtoInvAIC.

4. In the project tree window, click Class1(Class1). In the properties window, change the (Name) property to
ConvertPOtoInvoice.

Continue to Add the required references for the AIC.

Add the required references for the AIC
In this procedure you enable the component to implement a number of interfaces required by BizTalk Server 2000.

1. On the Project menu, click References.

2. Click Microsoft BizTalk Server Application Interface Components 1.0 Type Library.

The full path for this type library is \Program Files\Microsoft BizTalk Server\btscomplib.tlb.

3. Select Microsoft BizTalk Server Interchange 1.0 Type Library.

The full path for this type library is \Program Files\Microsoft BizTalk Server\cisapi.tlb.

4. Select Microsoft Scripting Runtime.

The full path for this DLL is \WINNT\System32\Scrun.dll. Use this library to create a file system object and open a text
stream that is used to write a purchase order to disk.

5. Select Microsoft XML, v 3.0.

The full path for this DLL is \WINNT\System32\msxml3.dll.

6. Click OK.

Continue to Implement the required interface.

Implement the required interface
For BizTalk Server to recognize a component as an AIC, it must implement one of two interfaces. For the purposes of this tutorial,
you implement the IBTSAppIntegration interface.

1. In the Project window, click the ConvertPOtoInvoice class module.

2. On the View menu, click Code.

3. Add the following line of code at the top of the code window to ensure that all variables are explicitly declared to minimize
simple errors:

Option Explicit

4. Implement the required interface by adding the following line of code after the Option Explicit statement:

Implements IBTSAppIntegration

Continue to Define and initialize the class objects.

Define and initialize the class objects
In this procedure, you add code to define the MSXML class objects to create the XML files using the DOM. You will create a string
variable that points to the project style sheet that converts a purchase order into an invoice.

1. Place the following code beneath the Implements IBTSAppIntegration statement:

'Class Object Defines
Private m_DOMCommonPO As MSXML2.DOMDocument
Private m_DOMStylesheet As MSXML2.DOMDocument
Private m_objSubmit As BTSInterchangeLib.Interchange

'Embedded Project Stylesheet to Convert CommonPO to CommonInvoice
Private m_strStylesheet As String

2. Add the following code, to initialize the XML DOM objects that will convert the purchase order to an invoice, as well as the
Interchange object that submits the final invoice document to BizTalk Server:

Private Sub Class_Initialize()
'Create DOM/Interchange Objects
 Set m_DOMCommonPO = New MSXML2.DOMDocument
 Set m_DOMStylesheet = New MSXML2.DOMDocument
 Set m_objSubmit = New BTSInterchangeLib.Interchange

'Configure DOM Objects to be Synchronous
 m_DOMCommonPO.async = False
 m_DOMStylesheet.async = False

'Fill Stylesheet Embedded String
 m_strStylesheet = m_strStylesheet + ""

End Sub

Continue to Implement the interface method.

Implement the interface method
The ProcessMessage method of the IBTSAppIntegration interface takes an incoming XML common purchase order document
transmitted from BizTalk Server and performs a translation on the data to convert it into an XML common invoice document. The
common invoice document is then submitted back to BizTalk Server. The intent is to simulate a back end system that receives
purchase orders and eventually returns an invoice for those purchase orders.

1. Add the function definition and dimension variables, as in the following code:

Private Function IBTSAppIntegration_ProcessMessage(_
 ByVal bstrDocument As String) As String
 Dim bstrInvoiceDocument As String
 Dim objScripting As New Scripting.FileSystemObject
'Initialize ProcessMessage to null
 IBTSAppIntegration_ProcessMessage = ""

2. Add the code to load the received data into a DOM object and validate that it is in the proper format by adding the following
code beneath the IBTSAppIntegration_ProcessMessage statement:

 m_DOMCommonPO.loadXML bstrDocument

 If m_DOMCommonPO.parseError.errorCode <> 0 Then 'The data was not valid XML
'Raised errors are not caught in the component, and will be sent back to 'BizTalk Server
 Err.Raise m_DOMCommonPO.parseError.errorCode, "AICSample.ConvertPOToInvoice Component", _
 "The provided document was not valid XML and could not be processed because:" + _
 vbCrLf + vbCrLf + m_DOMCommonPO.parseError.reason + vbCrLf + " on line: " + _
 CStr(m_DOMCommonPO.parseError.Line) + vbCrLf + "at position: " + _
 CStr(m_DOMCommonPO.parseError.linepos)
 End If

3. Add code to use the resource file that contains XSL code that converts a purchase order to an invoice by adding the
following code beneath the End If statement:

 If m_strStylesheet = "" Then
 m_strStylesheet = StrConv(LoadResData(101, "CUSTOM"), vbUnicode)

 End If
 m_DOMStylesheet.loadXML m_strStylesheet
 bstrInvoiceDocument = m_DOMCommonPO.transformNode(m_DOMStylesheet)

 If bstrInvoiceDocument = "" Then ' Mapping Failed Raise an Error
 Err.Raise vbObjectError + 100, "AICSample.ConvertPOToInvoice Component", _
 "The provided CommonPO document could not be translated into a Common Invoice " + _
 "as the map produced blank output."
 End If

4. Add code to submit the invoice document to BizTalk Messaging Services by adding the following code beneath the End If
statement:

IBTSAppIntegration_ProcessMessage = m_objSubmit.Submit(BIZTALK_OPENNESS_TYPE_NOTOPEN, bstrInvoiceDocument,
, , "Bits,Bytes,Chips on Seller", , "ProElectron on Seller")

End Function

The submit call returns the submission ID, which in this case is not used.

Continue to Terminate the class objects.

Terminate the class objects
To ensure that all objects are released from memory when the class terminates, add this code to the end of your project:

Private Sub Class_Terminate()
 Set m_DOMCommonPO = Nothing
 Set m_DOMStylesheet = Nothing
 Set m_objSubmit = Nothing
End Sub

Continue to Create the resource file.

Create the resource file
In this procedure, you add the resource file that contains the XSL for transforming a purchase order into an invoice.

1. On the Add-Ins menu, click Add-In Manager.

The Add-In Manager dialog box appears.

2. Click VB 6 Resource Editor.

3. In the Load Behavoir area, click Loaded/Unloaded to load the resource editor, click Load on Startup, and then click OK.

4. On the Tools menu, click Resource Editor.

5. Click the Add Custom Resource icon on the tool bar.

The Open a Custom Resource dialog box appears.

6. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POtoInvoice\Lab, click POtoINVAIC.txt,
and then click Open.

 Caution

Make sure that the ID of your resource is 101. By default, the first resource you create will has an ID of 101, but this number
increments by one if you change the resource. To change the resource ID to 101, right-click the resource ID and click
Properties. In the ID box, type 101.

1. Click the Save icon.

The Save Resource File As dialog box appears.

2. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POtoInvoice\Lab.

3. In the File name box, type POtoInvAICLab.RES and click Save.

4. Close the Resource Editor.

Continue to Build the component and set binary compatibility.

Build the component and set binary compatibility
Since you are creating a new component, you must build the component at this point, and then set the project properties for
binary compatibility with the newly created DLL. Binary compatibility ensures that each time you compile the DLL you do not
generate a new globally unique identifier (GUID) for the object.

1. On the File menu, click Save Project As.

The Save File As dialog box appears.

2. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POToInvoice\Lab on the BizTalk Server
installation directory.

3. In the File name box, type ConvertPOtoInvoice.cls and click Save.

The Save Project As dialog box appears.

4. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POToInvoice\Lab on the BizTalk Server
installation directory.

5. In the File name box, type POToInvAICLab and click Save.

6. On the File menu, click Make POToInvAICLab.dll.

The Make Project dialog box appears.

7. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POtoInvoice\Lab on the BizTalk Server
installation directory and click OK.

8. On the Project menu, click POToInvAICLab Properties.

9. Click the Component tab.

10. Click Binary Compatibility.

11. Click Browse ([...]) and browse to \Program Files\Microsoft BizTalk Server\Tutorial\POtoInvoice\Lab on the BizTalk
Server installation drive.

12. Click POToInvAICLab.dll and click Open.

13. Click OK.

Continue to Register the AIC.

Register the AIC
In this procedure, you register the AIC so that it can be recognized by BizTalk Server. BizTalk Server looks at the list of registered
COM components and then queries those components to determine which of these implement either the IBTSAppIntegration
interface or the IPipelineComponent interface. All components that meet this criteria are displayed in a list of components in
BizTalk Messaging Manager.

1. On the Start menu, point to Settings and click Control Panel.

2. Double-click Administrative Tools.

3. Double-click Component Services.

The Component Services console appears.

4. In the console tree, expand Component Services, Computers, My Computer, and then click COM+ Applications.

5. Right-click COM+ Applications, point to New, and then click Application.

The COM Application Install Wizard opens.

6. On the Welcome to the COM Application Install Wizard page, click Next.

7. On the Install or Create a New Application page, click Create an empty application.

8. In the Enter a name for the new application box, type POToInvAICLab.

9. In the Activation type area, click Server application and click Next.

10. In the Account area, click Interactive User-the current logged on user and click Next.

 Note

The current logged on user must be a member of the BizTalk Server Administrators group and must remain logged on
while running this scenario.

11. Click Finish.

12. In the console tree, expand COM+ Applications and expand the new package you created, called POToInvAICLab.

13. Click Components.

14. Browse to \Program Files\Microsoft BizTalk Server\Tutorial\Components\POtoInvoice\Lab on the BizTalk Server
installation drive.

15. Drag the POToInvAICLab.dll to the Components folder in Component Services.

16. Close Component Services.

You can now reconfigure the port to use the new AIC, using the following steps:

1. Open BizTalk Messaging Manager.

2. In the Search area, click Messaging ports and click Search now.

3. In the Messaging port name list, double-click Port to Bits,Bytes,Chips via AIC.

4. On the General Information page, click Next.

5. On the Destination Organization page, in the Primary transport area, click Browse.

The Primary Transport dialog box appears.

6. Click Browse.

7. In the Available Components list, click POToInvAICLab ConvertPOtoInvoice and click OK.

8. Click OK to close the Primary Transport dialog box, and then click Finish.

9. Test your component by running the ExecuteTutorial application located at \Program Files\Microsoft BizTalk
Server\Tutorial\Schedule\Solution on the BizTalk Server installation drive.

BizTalk Server 2000 Administration
BizTalk Server 2000 administration is divided into the following parts:

Installing BizTalk Server 2000
This section provides information about installing Microsoft BizTalk Server 2000. The information includes guidelines for
hardware and software requirements, and instructions for complete, tools, and custom installations. For more information about
installing Microsoft BizTalk Server 2000, see Installing BizTalk Server 2000.

Understanding Security
This section covers how businesses can securely exchange data with trading partners when they use BizTalk Server 2000. BizTalk
Server takes advantage of the security features included in Microsoft Windows 2000 and Microsoft SQL Server. For more
information about security and BizTalk Server 2000, see Understanding Security.

Enhancing Performance and Scalability
The section provides information about enhancing performance of BizTalk Server and creating scalable solutions. Issues and
guidelines covered in this section include identifying potential bottlenecks, addressing latency, and managing databases. For more
information about creating a scalable, high-performance solution, see Enhancing Performance and Scalability.

Administering Servers and Applications
This section covers how to administer servers and XLANG-related applications. Topics covered in this section include how to
centrally configure and manage servers in multiple groups, configuring and managing receive functions, managing the Shared
Queue, and managing the COM+ applications that host XLANG schedules. For more information about administering servers and
applications, see Administering Servers and Applications.

Tracking Documents
This section provides information about how to track interchanges and documents processed by BizTalk Server 2000. Topics
covered in this section include how to create queries and advanced queries, how to save interchange, document, and custom-
search data, and understanding interchange record, document record, and receipt results. For more information about tracking
documents, see Tracking Documents.

 Note

The file path to open various Microsoft Windows 2000 services and tools, such as Component Services or Administrative
Tools, is different depending on whether you are using a computer that is operating on Windows 2000 Server or
Windows 2000 Professional. For more information, see Open Component Services.

In Microsoft BizTalk Server 2000 Help, the paths to these services and tools have been documented based on a
Windows 2000 Server installation. If you are using Windows 2000 Professional, refer to Windows 2000 Professional Help
for more information about how to open the service or tool that you are interested in using.

Related Topic

BizTalk Server Administration Model

Installing BizTalk Server 2000
Welcome to the Microsoft® BizTalk™ Server 2000 installation guide. It provides guidelines for hardware and software
requirements, and complete instructions for the following installation options:

Complete Installation. Enables you to perform a complete installation of BizTalk Server 2000 that includes all BizTalk
services and tools.

Tools Installation. Enables you to perform a complete installation of the BizTalk Server 2000 tools, including BizTalk
Orchestration Designer, BizTalk Document Tracking, BizTalk Editor, and BizTalk Mapper. The BizTalk Server 2000 parser,
serializer, correlation, and run-time binaries are not installed.

Custom Installation. Enables you to perform a custom installation that includes any combination of BizTalk Server 2000
tools and services.

This guide includes the following topics:

Hardware and Software Requirements

Installation Instructions

Hardware and Software Requirements
This section includes information about minimum hardware requirements and configuration options to install Microsoft BizTalk
Server 2000. It also includes installation instructions for the prerequisite software needed for BizTalk Server 2000.

The following topics are covered in this section:

Minimum Hardware Requirements

Recommended Configuration to Optimize Performance for Document Messaging

Software Requirements

Windows 2000 Prerequisites

Installing SQL Server 7.0 or SQL Server 2000

Installing Visio 2000 SR-1A

Minimum Hardware Requirements
The minimum hardware requirements for a basic installation of Microsoft BizTalk Server 2000 include:

An Intel® Pentium 300 processor.

128 megabytes (MB) of RAM.

A 6-gigabyte (GB) hard disk.

A CD-ROM drive.

A network adapter card.

A VGA or Super VGA monitor.

A Microsoft Mouse or compatible pointing device.

Recommended Configuration to Optimize Performance for
Document Messaging
The following are guidelines to help you achieve optimal performance with BizTalk Server 2000:

Build a three-computer configuration. In a three-computer configuration, install BizTalk Server 2000 on one computer,
install the Tracking database on a second computer, and install the BizTalk Messaging Management and Shared Queue
databases on a third computer.

For a configuration in which a single server is performing all processing and receiving functions, configure two BizTalk
Server 2000 servers, one dedicated to processing and the other dedicated to receiving.

Install the Tracking database on a computer with multiple physical hard disks. The optimal configuration includes four SCSI
II hard disks and a SCSI II controller. The first hard disk is dedicated to document-tracking storage. The second hard disk is
dedicated to the Microsoft Windows® 2000 system page file. The third hard disk is dedicated to the Tracking transaction
log. The fourth hard disk is dedicated to the Distributed Transaction Coordinator (DTC) log.

Create multiple instances of receive functions to monitor multiple receive locations for documents that are to be processed.
To balance the load of documents across several computers, locate the receive functions on separate computers. Each
monitoring location must be unique and must have a separate receive function. To avoid overloading any individual receive
function, the business application that sends documents must evenly distribute the documents to all the monitoring
locations.

 Important

For more information about performance enhancements to BizTalk Server, see Enhancing Performance and Scalability.

Software Requirements
The following table lists the software that must be installed to run Microsoft BizTalk Server 2000.

Complete installation Tools installation Custom installation
Microsoft Windows 2000 Server, Microsof
t Windows 2000 Advanced Server, or Micr
osoft Windows 2000 Professional with the
NTFS file system and Service Pack 1

Microsoft Windows 2000 Server, Microsof
t Windows 2000 Advanced Server, or Micr
osoft Windows 2000 Professional with the
NTFS file system and Service Pack 1

Microsoft Windows 2000 Server, Microsof
t Windows 2000 Advanced Server, or Micr
osoft Windows 2000 Professional with the
NTFS file system and Service Pack 1

Microsoft Internet Explorer 5 or later Microsoft Internet Explorer 5 or later Microsoft Internet Explorer 5 or later
Microsoft Visio® 2000 SR-1A or later (req
uired to use BizTalk Orchestration Designe
r)

Microsoft Visio 2000 SR-1A or later (requi
red to use BizTalk Orchestration Designer)

Microsoft Visio 2000 SR-1A or later (requi
red to use BizTalk Orchestration Designer)

Microsoft SQL Server™ 7.0 and SQL Serve
r Service Pack 2 (SP2) or SQL Server 2000

 Microsoft SQL Server 7.0 and SQL Server
Service Pack 2 (SP2)* or SQL Server 2000

 Note

BizTalk Messaging Manager will not
run unless the World Wide Web Pub
lishing Service is running.

 Note

BizTalk Messaging Manager will not
run unless the World Wide Web Pub
lishing Service is running.

 Note

BizTalk Messaging Manager will not
run unless the World Wide Web Publ
ishing Service is running.

*Microsoft SQL Server is required for a custom installation only if you install the core BizTalk Services. It is not required for a tools
installation.

Windows 2000 Prerequisites
Microsoft Windows 2000 Server, Microsoft Windows 2000 Advanced Server, and Microsoft Windows 2000 Professional with
Service Pack 1 are the recommended platforms for all Microsoft BizTalk Server 2000 installations. Because BizTalk Server 2000
has been thoroughly tested on Windows 2000 with Service Pack 1, this installation guide includes detailed information regarding
the necessary configuration of Windows 2000 Server, Windows 2000 Advanced Server, and Windows 2000 Professional in
combination with BizTalk Server. After installing Windows 2000 Server, Advanced Server, or Professional with Service Pack 1, you
must add a Windows 2000 user account to the Administrators group before you install any software. For more information,
see Add a user account to the Administrators group. You must also install Message Queuing. For more information,
see Install Message Queuing. If your installation does not include Service Pack 1, you must install it. For more information,
see Install Windows 2000 Service Pack 1.

The following topics are covered in this section:

Install Windows 2000 Server, Advanced Server, or Professional with Service Pack 1

Install Windows 2000 Service Pack 1

Install Message Queuing

Install Internet Information Services (IIS)

Configure IIS settings for BizTalk Server 2000

Setting Up User Accounts

Install Windows 2000 Server, Advanced Server, or Professional
with Service Pack 1
If Windows 2000 Server, Advanced Server, or Professional is installed on your computer, be sure that you meet the requirements
listed in step 2 below.

1. Insert the Windows 2000 Server, Advanced Server, or Professional with Service Pack 1 compact disc into the appropriate
drive.

If you do not have a version of Windows 2000 that includes Service Pack 1, first install Windows 2000 and then install
Service Pack 1 separately.

2. Run the Windows 2000 Server, Advanced Server, or Professional with Service Pack 1 Setup program and follow the online
instructions.

Observe the following requirements:

Use only alphanumeric characters in the computer name because Microsoft SQL Server supports a limited character
set in server computer names.

Format the partition with the Windows NT File System (NTFS).

On the Windows 2000 Components page, in the Components list, click Message Queuing Services. If you are
installing Windows 2000 Professional, click Internet Information Services (IIS) and click Next. On the Message
Queuing Type page, click Next.

On the Network Settings page, click Typical settings.

 Notes

After installing Windows 2000 Server, Advanced Server, or Professional with Service Pack 1, you must add a Windows 2000
user account to the Administrators group before you install any software. For more information,
see Add a user account to the Administrators group.

If you did not select Message Queuing Services on the Windows 2000 Components page during setup, you must install
it. For more information, see Install Message Queuing.

If you did not select Internet Information Services (IIS) on the Windows 2000 Components page during setup of
Windows 2000 Professional, you must install it. For more information, see Install Internet Information Services (IIS).

If your installation did not include Service Pack 1, you must install it. For more information,
see Install Windows 2000 Service Pack 1.

The Windows 2000 Server, Advanced Server, or Professional partition must be converted to the most recent version of
NTFS. Setup automatically performs this update if the existing file system is the old version of NTFS. If the existing partition
is FAT or FAT32, you are given the option to convert to NTFS. When prompted, choose NTFS.

Install Windows 2000 Service Pack 1
1. Insert the Windows 2000 Service Pack 1 compact disc into the appropriate drive.

You can also go to the downloads area of the Microsoft Windows 2000 Web site (www.microsoft.com/windows2000/) to
download Windows 2000 Service Pack 1 or to order the compact disc.

2. Run the Windows 2000 Service Pack 1 Setup program and follow the online instructions.

http://www.microsoft.com/windows2000/

Install Message Queuing
1. On the Start menu, point to Settings and click Control Panel.

2. Double-click Add/Remove Programs.

The Add/Remove Programs dialog box appears.

3. Click Add/Remove Windows Components.

The Windows Components Wizard opens.

4. In the Components list, select the Message Queuing Services check box and click Next.

5. On the Message Queuing Type page, click Next.

6. Click Finish to close the wizard.

 Note

Accept the default settings when installing the Message Queuing Services component.

Install Internet Information Services (IIS)
1. On the Start menu, point to Settings and click Control Panel.

2. Double-click Add/Remove Programs.

The Add/Remove Programs dialog box appears.

3. Click Add/Remove Windows Components.

The Windows Components Wizard opens.

4. In the Components list, select the Internet Information Services (IIS) check box and click Next.

5. Click Finish to close the wizard.

Configure IIS settings for BizTalk Server 2000
To avoid problems accessing and saving specifications to the BizTalk Server 2000 repository, you must turn off the Enable
authoring option in Internet Information Services (IIS).

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Internet Services Manager.

2. Click the expand indicator (+) for the local IIS server.

3. Right-click Default Web Site and click Properties.

The Default Web Site Properties dialog box appears.

4. Click the Server Extensions tab and clear the Enable authoring check box.

Setting Up User Accounts
If you are installing BizTalk Server 2000 for development purposes only, you can create a standard user account. For more
information, see Add a user account to the Administrators group. If you are installing BizTalk Server 2000 for production
purposes, you should create a service account. For more information, see Create a service account. If you do not create a service
account, which is a regular user account with specific properties, BizTalk Server 2000 is automatically configured for the
interactive user (the user who is currently logged on during the setup process). If BizTalk Server 2000 is set up with an interactive
user, it fails if the specified user logs off from the server.

The following topics are covered in this section:

Add a user account to the Administrators group

Create a service account

Add a user account to the Administrators group
1. Log on as Administrator.

On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Computer Management.

2. In the console tree, click the expand indicator (+) for Local Users and Groups.

3. Click Groups and, in the details pane, double-click Administrators.

The Administrators Properties dialog box appears.

4. Click Add.

5. In the Look in box, click your computer name.

6. In the text box that contains the text <<Type names separated by semicolons or choose from list>>, delete the text and type
your domain and user name in the following format:

Domain\user name

7. Click OK.

8. If necessary, on the Enter Network Password page, complete the following:

In the Connect as box, type your domain and user name in the following format:

Domain\user name

In the Password box, type the password associated with your user name and click OK.

Click OK to close the Administrators Properties dialog box.

9. If necessary, restart the computer and log on using your domain user account.

Create a service account
1. Log on as Administrator.

2. On the Start menu, point to Settings, lick Control Panel, double-click Administrative Tools, and then double-click
Computer Management.

The Computer Management dialog box appears.

3. In the console tree, click the expand indicator (+) for System Tools and click Local Users and Groups.

4. Click Users, right-click anywhere in the details pane, and then click New User.

The New User dialog box appears.

5. In the User name box, type a name for the service account; in the Password box, type a password; and then type the same
password in the Confirm password box.

6. Clear the User must change password at next logon check box, click Create, and then click Close.

7. Close the Computer Management window.

8. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click Local
Security Policy.

The Local Security Settings dialog box appears.

9. In the console tree, click the expand indicator (+) for Local Policies and click User Rights Assignment.

10. In the details pane, double-click Act as part of the operating system, click Add, click the account name you just created
from the list box, click Add, and then click OK twice.

11. Repeat steps 8-10 for the Log on as a service policy.

If BizTalk Server 2000 is already installed and using the interactive user account, complete the following steps after you have
created a service account.

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Services.

2. In the details pane, double-click BizTalk Messaging Service.

The BizTalk Messaging Service Properties (Local Computer) dialog box appears.

3. Click the Log On tab and click This account.

4. Click Browse, locate the user account name you created, and double-click it.

5. In the Password box, type the same password you previously associated with the user account name; in the Confirm
Password box, type the password again and then click OK.

6. A message box appears; click OK.

7. Restart the computer.

Installing SQL Server 7.0 or SQL Server 2000
Prior to installing Microsoft BizTalk Server 2000, you must install Microsoft SQL Server 7.0 and SQL Server Service Pack 2 (SP2)
or Microsoft SQL Server 2000. When you install BizTalk Server 2000, the installation procedure creates four BizTalk Server 2000
databases (the BizTalk Messaging Management database, the Shared Queue database, the Tracking database, and the
Orchestration Persistence database) within SQL Server.

 Important

If you plan to install BizTalk Server 2000 on a computer that has Microsoft Windows 2000 Professional with Service Pack 1,
you must install SQL Server 7.0 and SQL Server Service Pack 2 (SP2) or SQL Server 2000 on another computer.
Windows 2000 Professional does not support SQL Server 7.0 or SQL Server 2000 installations. When you install the
databases for BizTalk Server 2000, you need to specify the name of the computer where you installed SQL Server 7.0 or
SQL Server 2000.

Before you install SQL Server, verify that your logon account is a member of the Windows 2000 Administrators group on the
computer on which you want to install SQL Server. For more information about adding your logon account,
see Add a user account to the Administrators group.

If you install SQL Server 2000, you must specify mixed authentication. By default, when you install SQL Server 2000, the
authentication mode is set to Windows 2000 only. BizTalk Server 2000 uses SQL Authentication to access the BizTalk Messaging
Management, Shared Queue, and Tracking databases and does not work with this setting. Verify that you have the authentication
mode set to mixed before installing BizTalk Server 2000. For more information,
see Set SQL authentication mode for SQL Server 2000.

If you install SQL Server on a cluster and you plan to install BizTalk Server 2000 on another computer, you must install SQL
Server client tools on the computer where BizTalk Server 2000 is installed. A cluster is a collection of servers that act as a single
server. For more information, see Install SQL Server client tools. When complete, you must use the Client Network Utility to
change the default network library from named pipes to TCP/IP. For more information,
see Change the default network library to TCP/IP.

When you install SQL Server 7.0 or SQL Server 2000, it is important to use the correct collation settings. Collation refers to a set
of rules that determines how data is sorted and compared. Character data is sorted using rules that define the correct character
sequence, with options for specifying case sensitivity, accent marks, kana character types, and character width. For instance, to
store Japanese characters, select case-sensitive sort order to distinguish Japanese-Hiragana from Japanese-Katakana when
setting up SQL Server. For more information about collation settings, on the Start menu, point to Programs, point to Microsoft
SQL Server, and then click Books Online. The topics, Using SQL Collation and Windows Collation Sorting Styles, provide
additional information.

The following topics are covered in this section:

Install SQL Server 7.0 or 2000

Check for SQL Server 7.0 Service Pack 2

Install SQL Service Pack 2 for SQL Server 7.0

Install SQL Server client tools

Change the default network library to TCP/IP

Set SQL authentication mode for SQL Server 2000

Verify that SQL Server is running

Avoid unnecessary disk space allocation

SQL Server and BizTalk Server 2000 Database Interactions

Install SQL Server 7.0 or 2000
1. Insert the Microsoft SQL Server compact disc into the appropriate drive.

2. Run the SQL Server Setup program and follow the online instructions.

The setup wizard walks you through the steps necessary to install SQL Server, but you must observe the following
requirements:

On the Setup Type page, click Typical.

On the Services Accounts page, use a domain user account (if connected to a network).

When installing SQL Server 2000, specify mixed authentication.

 Important

If you install SQL Server 7.0, you must install SQL Service Pack 2 (SP2). You can check to see whether you have SP2 installed
by using the Query Analyzer. For more information, see Check for SQL Server 7.0 Service Pack 2. For more information
about installing SQL SP2, see Install SQL Service Pack 2 for SQL Server 7.0.

Check for SQL Server 7.0 Service Pack 2
1. On the Start menu, point to Programs, point to Microsoft SQL Server 7.0, and then click Query Analyzer.

The Connect to SQL Server dialog box appears.

2. Click OK.

If your server name does not appear in the SQL Server list, select it from the list or type it in, and then click OK.

3. In the Query box, type SELECT @@VERSION.

4. On the Query menu, click Execute.

The first line of the query return indicates the version of SQL Server that is running. If you have SP2 installed, you should
see 7.00.842.

Install SQL Service Pack 2 for SQL Server 7.0
1. Insert the SQL Service Pack 2 compact disc into the appropriate drive.

2. Run the SQL Service Pack 2 Setup program and follow the online instructions.

Install SQL Server client tools
1. Insert the Microsoft SQL Server compact disc into the appropriate drive.

2. Run the SQL Server Setup program and follow the online instructions.

The setup wizard walks you through the steps necessary to install SQL Server, but you must observe the following
requirements:

On the Installation Selection page, click Create a new instance of SQL Server, or install Client Tools.

On the Installation Definition page, click Client Tools Only.

Change the default network library to TCP/IP
1. On the Start menu, point to Programs, point to Microsoft SQL Server 7.0 or Microsoft SQL Server, and then click Client

Network Utility.

The SQL Server Client Network Utility dialog box appears.

2. If you have installed Microsoft SQL Server 7.0, on the General tab, in the Default network library list, click TCP/IP.

-Or-

If you have installed Microsoft SQL Server 2000, on the Network Libraries tab, in the Network Library list, click TCP/IP.

3. Click OK.

Set SQL authentication mode for SQL Server 2000
1. Click Start, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

2. Click the expand indicator (+) for Microsoft SQL Servers and for SQL Server Group.

3. Right-click the name of your server and click Properties.

The SQL Server Properties dialog box appears.

4. Click the Security tab, click SQL Server and Windows, and then click OK.

Verify that SQL Server is running
Before installing BizTalk Server 2000, verify that SQL Server is running on your server. This is necessary because BizTalk
Server 2000 must create four SQL databases during installation.

1. On the Start menu, point to Programs, point to Microsoft SQL Server (if you installed SQL Server 2000) or Microsoft
SQL Server 7.0 (if you installed SQL Server 7.0), and then click Service Manager.

The SQL Server Service Manager dialog box appears.

2. In the Server list, verify that the name of the server is the name of your computer.

If it is not, click the drop-down arrow to view a list of available servers and scroll to locate your server.

3. In the Services list, click MSSQLServer (for SQL Server 7.0) or SQL Server (for SQL Server 2000).

4. Verify that the MSSQLServer or SQL Server service is running.

The service is running if the Start/Continue button in the dialog box is unavailable. Also, at the bottom of the dialog box is
a message that states that the service is running. For example, \\<servername>—MSSQLServer—Running.

5. If the service is not running, the Start/Continue button is available; click it to start the service.

Avoid unnecessary disk space allocation
1. Click Start, point to Programs, point to Microsoft SQL Server 7.0 or Microsoft SQL Server, and then click Enterprise

Manager.

2. Click the expand indicator (+) for Microsoft SQL Servers, SQL Server Group, <server name>, and Databases.

3. Right-click the BizTalk Messaging Management database and click Properties.

The BizTalk Messaging Management database properties dialog box appears.

4. Click the Options tab.

5. In the Settings area, select the Truncate log on checkpoint and the Auto shrink check boxes and click OK.

 Note

If you have Microsoft SQL Server 2000 installed, you can only select the Auto shrink check box.

6. Repeat steps 3 through 5 for the Tracking and Shared Queue databases.

 Important

You can complete this procedure only if you have BizTalk Server 2000 installed. For more information about installing
BizTalk Server 2000, see Installation Instructions.

 Note

During setup, the BizTalk Messaging Management database object name defaults to InterchangeBTM; the Tracking
database object name defaults to InterchangeDTA; and the Shared Queue database object name defaults to
InterchangeSQ. You may have renamed these default database object names during setup.

SQL Server and BizTalk Server 2000 Database Interactions
To avoid unnecessary disk space allocation, use the Truncate log on checkpoint and Auto shrink features of Microsoft SQL
Server. Otherwise, the SQL Server logs can consume large amounts of disk space.

Related Topic

Avoid unnecessary disk space allocation

Installing Visio 2000 SR-1A
Because BizTalk Orchestration Designer is a Microsoft Visio 2000-based user interface, you must have Visio 2000 Service Release
1A installed on your computer prior to using BizTalk Orchestration Designer. BizTalk Orchestration Designer has been tested with
Visio 2000 Standard Edition SR-1A, and might work with later versions of Visio.

The following topic is covered in this section:

Install Visio 2000 Standard Edition SR-1A

Install Visio 2000 Standard Edition SR-1A
1. Insert the Visio 2000 Standard Edition SR-1A compact disc (or a later version of Visio 2000 Standard Edition) into the

appropriate drive.

2. Run the Visio 2000 Standard Edition SR-1A Setup program and follow the online instructions.

 Note

For more information, see the Microsoft Visio 2000 Standard Edition SR-1A documentation.

Installation Instructions
You can install Microsoft BizTalk Server 2000 using the Installation Wizard (Microsoft BizTalk Server.msi) or using Microsoft
Windows Installer (Msiexec.exe). The Installation Wizard is a step-by-step process in which you select options that correspond to
specific property values. The Microsoft Windows Installer allows you to specify property values from the command line. You can
use this method to install BizTalk Server 2000 silently (without constant interaction or prompts). A silent installation of BizTalk
Server 2000 is ideal for test scenarios or as part of a large-scale enterprise deployment. Regardless of which installation you
perform, it is recommended that you maintain a record of the following information for later use:

BizTalk Server group names

SQL Server names

User names

Passwords

The BizTalk Messaging Management database name

The Tracking database name

The Shared Queue database name

The WebDAV repository URL

 Important

BizTalk Server 2000 requires Microsoft XML Parser version 3.0. This release of BizTalk Server 2000 automatically installs
Microsoft XML (MSXML) Parser version 3.0. If you install other versions of the MSXML parser, it might cause unexpected
results with BizTalk Server 2000.

 Note

During BizTalk Server 2000 installation, the installation program determines the hard-disk space availability of your
computer. A complete installation will require approximately 52 megabytes (MB), not including the requirements of the
BizTalk Messaging Management database, the Tracking database, the Shared Queue database, and the Orchestration
Persistence database. A tools installation will require approximately 30 MB of hard disk space. A custom installation will
require approximately 2 to 52 MB of hard disk space, not including database requirements, depending on the services and
tools that you install.

Before you run Setup, verify that your logon account is a member of the Windows 2000 Administrators group for the computer
on which you are installing BizTalk Server 2000. For more information about joining the Administrators group,
see Add a user account to the Administrators group.

 Note

If BizTalk Server was installed using an interactive user, it will not start if a user is not logged on to BizTalk Server 2000. All
COM+ packages run under an interactive user account, not the local system account. This means that the service starts only
if a user is logged on to BizTalk Server 2000. For example, if a user is not logged on to BizTalk Server 2000 when a client
application submits documents to BizTalk Server 2000 remotely, the service does not start. To avoid this situation, create a
service account or have the user who starts the service lock the computer and keep the services running in the background.
For more information about creating a service account, see Create a service account.

The following topics are covered in this section:

Complete Installation

Tools Installation

Custom Installation

Silent Installation

Removing BizTalk Server 2000

Complete Installation
You can use the following section to perform a complete installation of BizTalk Server 2000 that includes all BizTalk services, tools,
and samples.

The following topics are covered in this section:

Perform a complete installation of BizTalk Server 2000

Start the World Wide Web Publishing Service

Install BizTalk Document Tracking Remotely

Perform a complete installation of BizTalk Server 2000
1. Insert the Microsoft BizTalk Server 2000 Setup compact disc into the appropriate drive.

2. Run the Microsoft BizTalk Server 2000 Setup program and follow the online instructions.

 Important

The setup wizard guides you through the steps necessary to install BizTalk Server 2000. You must observe the
requirements listed in the following steps.

BizTalk Server 2000 requires Microsoft XML Parser version 3.0. This release of BizTalk Server 2000 automatically
installs Microsoft XML (MSXML) Parser version 3.0. If you install other versions of the MSXML parser, it might cause
unexpected results with BizTalk Server 2000.

3. On the License Agreement page, read the license agreement, click I accept this license agreement, and then click Next.

 Note

If you do not accept the license agreement, you cannot continue with the installation.

4. On the Customer Information page, type your name in the User name box, type the name of your company in the
Organization box, click either Anyone who uses this computer (all users) or Only for me if you want to limit access to
BizTalk Server 2000, and then click Next.

5. On the Destination Folder page, click Next to install BizTalk Server 2000 to the folder shown on the page, or click Change
to select another location.

6. On the Setup Type page, click Complete and click Next.

7. On the Configure BizTalk Server Administrative Access page, in the Group name box, type the group name that you
want to use (or accept the default, BizTalk Server Administrators).

 Notes

To create a group name, adhere to the following group naming restrictions:

The group name must be different from any other group or user name on this computer.

The group name cannot contain the following characters: ` ! @ # $ % ^ & * () + = [] { } | \\ ;\" '< > , . ?

The group name cannot consist solely of periods (.) or spaces.

Do not rename this group without also modifying the value of "AdminGroupName" in the Windows registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\BizTalk Server\1.0\NTGroups. BizTalk Server 2000 relies on this
registry key to find the group.

8. In the Group description box, type a new description for the group name or accept the default and click Next.

9. On the Microsoft BizTalk Server Service Log On Properties page, click the default setting, Local system account, or
click This account to limit BizTalk Server 2000 access to a specific user.

If you select This account, type a new user name or accept the default name in the User name box, type a valid password
in the Password box.

If you do not want BizTalk Services to automatically start when setup completes, clear the Start service after setup
completes checkbox. BizTalk Services will not automatically start, but Orchestration Services will.

 Notes

BizTalk Server setup will grant Log on as a service and Act as part of the operating system rights to the account
specified on the Microsoft BizTalk Server Service Log On Properties page.

If you select This account, specify an account that is in the Windows 2000 Administrators group. To configure
certificates for the S/MIME components by using BizTalk Messaging Manager, you must belong to a user account in
the Windows 2000 Administrators group, and BizTalk Messaging Services must be running as a local system account
or as a user account in the Windows 2000 Administrators group.

10. Click Next.

11. On the Ready to Install the Program page click Install.

The BizTalk Server 2000 installation procedure might take several minutes.

12. When the Welcome to the Microsoft BizTalk Server 2000 Messaging Database Setup Wizard page appears, click
Next.

During BizTalk Server 2000 database setup, you are prompted for logon information (server, database, user name, and
password) to configure the BizTalk Messaging Management, Tracking, and Shared Queue databases.

 Caution

Do not change the code, such as stored procedures or triggers, in the BizTalk Messaging Management, Tracking, and
Shared Queue databases. Do not access the database directly. Do not directly call the stored procedures. Make all
changes to the database by using the methods and properties of the BizTalk Messaging Configuration object model.
Making changes to the database directly bypasses many constraints enforced by the BizTalk Messaging Configuration
object model and either causes the server to function incorrectly or corrupts the database.

13. On the Configure a BizTalk Messaging Management Database page, click either Create a new BizTalk Messaging
Management database or Select an existing database and type a server name and user information in the following
text boxes:

Server name

User name

Password

Database

You can choose unique server and database names and type new information or accept the defaults.

 Important

If you are installing BizTalk Server 2000 on a computer that has Microsoft Windows 2000 Professional with Service
Pack 1, the Server name you must specify is the name of the computer where you installed Microsoft SQL Server 7.0
or Microsoft SQL Server 2000.

If you select Create a new BizTalk Messaging Management database and choose an existing database, you
should manually delete the contents of the database. For more information about deleting database content, on the
Start menu, point to Programs, point to Microsoft SQL Server, and then click Books Online. To create a new
database with the same name as an existing database on the same server, it is recommended that you manually delete
the database content. BizTalk Server setup only verifies if a stored procedure required by the database exists, rather
than verifying if all the variables required by the database exist. If a stored procedure exists, BizTalk Server setup does
not modify the database. If the stored procedure does not exist, BizTalk Server setup deletes the database. Then it
reinitializes the BizTalk Messaging Management database tables. The above-mentioned information is true for the
Shared Queue and Tracking databases.

If you are set up more than one BizTalk Server installation and want to centrally manage the BizTalk Messaging
Management database, it is highly recommended that you review information about BizTalk Server database
interactions. For more information about configuring the database,
see Changing the BizTalk Messaging Management database.

14. Click Next.

15. On the Configure a BizTalk Server Group page, type the name that you want to use as your BizTalk Server group in the
Group name box or accept the default (BizTalk Server Group), and then click Next.

You can also click Select an existing BizTalk Server group and select a name from the Group Name list.

 Notes

The group name cannot contain the following characters: ` ! @ # $ % ^ & * () + = [] { } | \\ ;\" '< > , . ?

16. On the Configure a Tracking Database page, repeat the procedure in step 13 and click Next.

 Important

If you change the default User name on the Configure a Tracking Database page, the account that you specify
must have SA-level permissions. This account is used to create a SQL Server user login. After installing BizTalk Server,
change the account user name and password to remove SA-level access to the Tracking database by the BizTalk
Server service. For more information, see Configure connection properties for a server group. Or you can change the
SA-level permission for the account used during setup. For more information about changing SQL Server account
permissions, on the Start menu, point to Programs, point to Microsoft SQL Server, and then click Books Online.

17. On the Configure a Shared Queue Database page, repeat the procedure in step 13 and click Next.

18. On the Verify BizTalk Server Group page, verify that the information in the BizTalk Server group properties box is
correct and click Next.

19. On the final page of the Microsoft BizTalk Server 2000 Messaging Database Setup Wizard, click Finish to complete the
configuration of the BizTalk Messaging Management, Tracking, and Shared Queue databases.

20. On the Welcome to the Microsoft BizTalk Server 2000 Orchestration Persistence Database Setup Wizard page, click
Next to install the Orchestration Persistence database.

 Note

If you click Cancel, BizTalk Server 2000 is installed, but the Orchestration Persistence database and the Data Source
Name (DSN) are not installed. You can install the database and the DSN later. For more information,
see Create a new persistence database, Configure the default XLANG Scheduler application,
and Configure a COM+ application to host XLANG schedules.

21. On the Configure a default Orchestration Persistence Database page, click either Create a new default
Orchestration Persistence database or Select an existing database and then choose a server name and type database
information in the appropriate text boxes or, accept the defaults.

 Important

If you select Create a new default Orchestration Persistence database and choose a database with the same
name, on the same server, as an existing database, BizTalk Server setup deletes everything in the database. BizTalk
Server setup then reinitializes the Orchestration Persistence database tables.

If you are installing BizTalk Server 2000 on a computer that has Windows 2000 Professional with Service Pack 1, the
Server name you specify is the name of the computer where you installed SQL Server 7.0 or SQL Server 2000.

 Notes

The Orchestration Persistence database is created based on the current user log-on identity.

To use SQL Server remotely, you must have the appropriate permissions set for the Orchestration Persistence
database. If you have not reconfigured the identity for the XLANG Scheduler Engine, permissions will be granted to
the interactive user (the user who was logged on during installation of BizTalk Server 2000). If you have reconfigured
the identity for the XLANG Scheduler Engine to match a service account you created or another unique user account,
you must set permissions to match the reconfigured identity.

22. Click Finish.

23. On the final page of the Microsoft BizTalk Server 2000 Setup Wizard, click View Readme to read important, late-breaking

information about BizTalk Server 2000, and then click Finish.

 Caution

Do not change the impersonation level for any COM+ application. By default, it is set to Impersonate. Changing this security
property to Anonymous, Identify, or Delegate may cause problems during installation.

 Important

To dramatically increase the performance of BizTalk Orchestration Services, in Windows Explorer, browse to Program
Files\Common Files\System\ado, and then double-click adofre15.reg. In the confirmation dialog box, click Yes, and then
click OK. This procedure changes the ADO threading model from "Apartment threaded" to "Both" and may affect other
applications that use ADO. Any provider that is not thread safe cannot be used.

 Note

BizTalk Messaging Manager will not run unless the World Wide Web Publishing Service is running. For more information
about the World Wide Web Publishing Service, see Start the World Wide Web Publishing Service.

Start the World Wide Web Publishing Service
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. In the console tree, click Services (Local).

3. In the details pane, right-click World Wide Web Publishing Service and click Start.

Install BizTalk Document Tracking Remotely
When BizTalk Document Tracking is installed from the BizTalk Server 2000 compact disc, a shortcut is created in the program
group for BizTalk Server 2000 to access the BizTalk Document Tracking Web application. However, when BizTalk Document
Tracking is installed over the Internet, you must manually create a shortcut or a favorite for later access to the Web application.
Additionally, to prevent the display of security warning dialog boxes, you must manually configure your browser's settings to
trust the Web application.

The following topic is covered in this section:

Configure Internet Explorer security settings

Configure Internet Explorer security settings
1. Click Start, point to Programs, and then click Internet Explorer.

2. On the Tools menu, click Internet Options.

The Internet Options dialog box appears.

3. On the Security tab, click Trusted Sites and click the Sites button.

The Trusted Sites dialog box appears.

4. In the Add this Web site to the zone box, type the location of the BizTalk Document Tracking server.

To find the location of the BizTalk Document Tracking server, on the Start menu, point to Programs, point to Microsoft
BizTalk Server 2000, and then click BizTalk Document Tracking. The location of the BizTalk Document Tracking server
appears in the Address list.

5. Clear the Require server verification (https:) for all sites in this zone check box.

6. Click Add and click OK twice to close the dialog boxes.

Tools Installation
A Microsoft BizTalk Server 2000 tools installation enables you to install only BizTalk Orchestration Designer, BizTalk Document
Tracking, BizTalk Editor, BizTalk Mapper, and the BizTalk Server 2000 Help.

The following topic is covered in this section:

Perform a tools installation of BizTalk Server 2000

Perform a tools installation of BizTalk Server 2000
1. Insert the Microsoft BizTalk Server 2000 Setup compact disc into the appropriate drive and follow the on-screen

instructions.

 Important

The setup wizard guides you through the steps necessary to install BizTalk Server 2000. Observe the requirements
listed in the following steps.

2. On the License Agreement page, read the license agreement, click I accept this license agreement, and then click Next.

 Note

If you do not accept the license agreement, you cannot continue with the installation.

3. On the Customer Information page, type your name in the User name box, type the name of your company in the
Organization box, click Anyone who uses this computer (all users) or Only for me if you want to limit access to BizTalk
Server 2000, and then click Next.

4. On the Destination Folder page, click Next.

5. On the Setup Type page, click Tools and click Next.

6. On the Ready to Install the Program page of the Microsoft BizTalk Server 2000 Setup Wizard, click Install.

7. On the final page of the Microsoft BizTalk Server 2000 Setup Wizard, click View Readme to read important, late-breaking
information about this release of BizTalk Server 2000.

8. Click Finish to complete the installation process.

 Important

To dramatically increase the performance of BizTalk Orchestration Services, in Windows Explorer, browse to Program
Files\Common Files\System\ado, and then double-click adofre15.reg. In the confirmation dialog box, click Yes, and then
click OK. This procedure changes the ADO threading model from "Apartment threaded" to "Both" and may affect other
applications that use ADO.

 Note

To install the BizTalk Server 2000 interchange component on a remote computer, use the Windows 2000 COM Application
Export Wizard.

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

2. In the console tree, expand Component Services, Computers, My Computer, and COM+ Applications.

3. Right-click BizTalk Server Interchange Application and click Export.

Follow the on-screen instructions to create an .msi file that you can run on a client computer.

Custom Installation
A custom Microsoft BizTalk Server 2000 installation enables you to install all the features of BizTalk Server 2000 or only those
features that you want.

 Note

If you want to install the server components of BizTalk Server 2000, you must first install Microsoft SQL Server. For more
information, see Install SQL Server 7.0 or 2000.

The following topic is covered in this section:

Perform a custom installation of BizTalk Server 2000

Perform a custom installation of BizTalk Server 2000
1. Insert the Microsoft BizTalk Server 2000 Setup compact disc into the appropriate drive and follow the on-screen

instructions.

 Important

The setup wizard guides you through the steps necessary to install BizTalk Server 2000. You must observe the
requirements listed in the following steps.

2. On the License Agreement page, read the license agreement, click I accept this license agreement, and then click Next.

 Note

If you do not accept the license agreement, you cannot continue with the installation.

3. On the Customer Information page, type your name in the User name box, type the name of your company in the
Organization box, click Anyone who uses this computer (all users) or Only for me if you want to limit access to BizTalk
Server 2000, and then click Next.

4. On the Destination Folder page, click Next.

5. On the Setup Type page, click Custom and click Next.

6. On the Custom Setup page, follow the on-screen instructions to select the BizTalk Server 2000 components that you want
to install.

To perform a different type of installation, click Back. Otherwise, click Next. Additional pages appear on which you provide
additional information, depending on the installation components that you have selected.

7. On the Ready to Install the Program page, click Install.

The BizTalk Server 2000 custom installation procedure might take a few minutes.

8. On the final page of the Microsoft BizTalk Server 2000 Setup Wizard, click View Readme to read important, late-breaking
information about this release of Microsoft BizTalk Server 2000.

9. Click Finish to complete the installation process.

 Important

BizTalk Messaging Manager will not run unless the World Wide Web Publishing Service is running. To start the World Wide
Web Publishing Service:

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

2. In the console tree, click Services (Local).

3. In the details pane, right-click World Wide Web Publishing Service and click Start.

To dramatically increase the performance of BizTalk Orchestration Services, in Windows Explorer, browse to Program
Files\Common Files\System\ado, and then double-click adofre15.reg. In the confirmation dialog box, click Yes, and then
click OK. This procedure changes the ADO threading model from "Apartment threaded" to "Both" and may affect other
applications that use ADO.

Silent Installation
The Microsoft Windows Installer allows you to specify property values from the command line. This method gives you the ability
to install Microsoft BizTalk Server 2000 silently (without constant interaction or prompts). A silent installation of BizTalk
Server 2000 is ideal for test scenarios or as part of a large-scale enterprise deployment.

The following topic is covered in this section:

Perform a silent installation of BizTalk Server 2000

Perform a silent installation of BizTalk Server 2000
1. Click Start and click Run.

2. In the Open box, type cmd and click OK.

3. Type the following to install BizTalk Server 2000 silently:

msiexec /I "\\server\folder\Microsoft BizTalk Server.msi"
/qb /Lv*"C:\Temp\install.log" INSTALLLEVEL=200
ALLUSERS=1
PIDKEY="your 25-character product key (without dashes)"
DSNCONFIG="C:\Temp\BizTalkInstall.ini"

 Important

You must add the ALLUSERS=1 parameter to complete the installation for all users. This parameter also ensures that the
services are able to see the registry settings.

 Notes

In the preceding code:
/I is the command line to install or configure a product.

/qb is the command line to present a basic user interface (progress bar only).

/Lv* produces a log file.

INSTALLLEVEL=200 installs the server. If you do not specify the INSTALLLEVEL, the value defaults to 100, which is
the Tools installation of BizTalk Server 2000.

PIDKEY="your 25-character product key (without dashes)" is the product key. For example,
PIDKEY=AB6CDEFGH7IJK8LMN45LLTT34.

DSNCONFIG="C:\Temp\BizTalkInstall.ini" provides installation information to the setup wizard.

You can specify various options at the command line to set properties for a BizTalk Server 2000 installation. Unspecified
properties take on the default values. The properties unique to BizTalk Server 2000 are listed in the following table.

Public property Value Description
USERNAME

(built-in installer p
roperty)

<name>

Default: {LogonUser}

The name of the user performing the installation. Customer Informati
on dialog box; User name edit box.

COMPANYNAME

(built-in installer p
roperty)

<organization>

Default: {LogonCompany}

The organization name for the user performing the installation. Custom
er Information dialog box; Organization edit box.

PIDKEY <product-id>

Default: ""

The CD-key of the form ###-####### for the product. Customer Infor
mation dialog box; Serial number masked edit box.

INSTALLLEVEL

(built-in installer p
roperty)

<install level>

Default: 100

The feature installation level. For BizTalk Server 2000 setup, 100=Client
and 200=Server setup type.

INSTALLDIR

(built-in installer p
roperty)

<install path>

Default: "{ProgramFiles} \Microsoft Bi
zTalk Server"

The destination folder for the installation.

BTS_GROUP_NAM
E

(Complete installat
ion only)

<Group Name>

Default: "BTSAdmin"

The name of the BizTalk Server 2000 Windows NT group. ConfigAdmi
nGroup dialog box; Group name edit box.

BTS_GROUP_DESC
RIPTION

(Complete installat
ion only)

<Group Description>

Default: "Members can fully administ
er Microsoft BizTalk Server"

The description of the BizTalk Server 2000 NT group. ConfigAdminGro
up dialog box; Group description edit box.

BTS_USERNAME

(Complete installat
ion only)

<username>

Default: ""

The logon DOMAIN\name for the BizTalk Server 2000 service. ConfigS
erviceLogon dialog box; User name edit box.

BTS_PASSWORD

(Complete installat
ion only)

<password>

Default: ""

The logon password for the BizTalk Server 2000 service. ConfigService
Logon dialog box; Password edit box.

BTS_SERVER

(Complete and To
ols installation)

<servername>

Default: "localhost"

The name of the BizTalk server to remotely administer. ConfigMgmtD
esk dialog box; Server name edit box.

BTS_SDK_SERVER

(Complete and To
ols installation)

<servername>

Default: ""localhost""

The name of the BizTalk server to use for DCOM. ConfigSDK dialog box
; Server name edit box.

DSNCONFIG

(initialization file)

<pathname>

Default: ""

The path of the initialization file for the BTSsetupDB.exe and XLANGsetu
pDB.exe database setup wizard to use.

 Notes

The DSNCONFIG property is required to complete a silent installation of BizTalk Server 2000. The initialization path file
listed on the command line is passed to the BTSsetupDB.exe and XLANGsetupDB.exe database setup wizards. Use one of the
following command-line values:

DSNCONFIG="Full path to .ini file for BTSsetupDB.exe and XLANGsetupDB.exe"

-Or-

BTSSETUPDB.INI="Full path to .ini file for BTSsetupDB.exe" and XLANGSETUPDB.INI="Full path to .ini file for
XLANGsetupDB.exe"

The database setup wizard processes the contents of the initialization file using these rules:
All [sections] and keys= are optional; if a key is absent, the default value as shown in the sample initialization file is
used.

If the GroupName exists in the specified BizTalk Messaging Management database, the [InterchangeDTA] and the
[InterchangeSQ] sections are ignored since the group defines the values.

Specified databases are created if they do not already exist on the specified server.
The BizTalk Messaging Management database setup and the Orchestration Persistence database setup are mutually
independent.

Depending on the features you install, setup configures either, neither, or both of the following:
BizTalk Messaging Management database - only configured if BizTalk Messaging Services and its associated
components are installed.

Orchestration Persistence database - only configured if Orchestration Service is installed.

The following properties are used on the command line:
DSNCONFIG - specifies location of .ini file to be used by BTSsetupDB.exe and XLANGsetupDB.exe

-Or-

BTSSETUPDB.INI - specifies location of .ini file to be used by BTSsetupDB.exe

XLANGSETUPDB.INI - specifies location of .ini file to be used by XLANGsetupDB.exe

Sample initialization file with all [sections], keys=, and default values shown
The following is an example of the format of an .ini file needed to silently install BizTalk Server 2000. These command-line
properties are required to perform a first-time installation of BizTalk Server 2000 using the Windows Installer.

Example SetupDB.ini
;--
; SQL Server connection parameters for BizTalk Messaging Management database
; Required section used by BTSsetupDB.exe only.
; Specify new or existing database.
;
[InterchangeBTM]
Server=localhost
Username=sa
Password=
Database=InterchangeBTM

;--
; Name for BizTalk Server Group
; Required section used by BTSsetupDB.exe only.
; Specify new or existing server group.
;
[Group]
GroupName=BizTalkGroup

;--
; SQL Server connection parameters for BizTalk Tracking database
; Required section used by BTSsetupDB.exe only.
; Optional if existing server group specified.
;
[InterchangeDTA]
Server=localhost
Username=sa
Password=
Database=InterchangeDTA

;--

;
[InterchangeSQ]
Server=localhost
Username=sa
Password=
Database=InterchangeSQ

;--
; SQL Server connection parameters for Orchestration database
; Required section used by XLANGsetupDB.exe only.
; Specify new or existing Orchestration database.
;
[Orchestration]
Server=localhost
Database=XLANG

The following table describes the properties and values of the sample BizTalkDB.ini initialization file.

Property Value Description
[InterchangeBT
M]

Server=BIZTALK Log on to this first SQL Server with default user name and password.

Database=BizTalkBTM

Create this BizTalk Messaging Management database if it does not already exist on
the server.

[Group] GroupName=BizTalkServerG
roup

The rest of the values are ignored if this group already exists.

[InterchangeDT
A]

Server=DTA-SERVER Log on to this second SQL Server with default user name and password.

Database=BizTalkDTA

Create this Tracking database if it does not already exist on the server.

[InterchangeSQ
]

Server=SQ-SERVER Log on to this third SQL Server with default user name and password.

Database=BizTalkSQ

Create this Shared Queue database if it does not already exist on the server.

[Orchestration] Server=localhost Log on to this fourth SQL Server with default user name and password.

Database=Orchestration

Create this XLANG database if it does not already exist on the server.

Command-line options of Microsoft Windows Installer
Microsoft Windows Installer (Msiexec.exe) is the program that interprets packages and installs products. It also sets an error level
on return that corresponds to the Microsoft Win32® error codes. The following table describes command-line options for this
program that you can use in addition to the properties and values listed previously.

O
pt
io
n

Parameters Meaning

/I Package|Produc
tCode

Installs or configures a product.

/f [p|o|e|d|c|a|u|m|
s|v] Package|Pr
oductCode

Repairs a product. This option ignores any property values entered on the command line. The default argume
nt list for this option is pecms. This option shares the same argument list as the REINSTALLMODE property.

p - Reinstall only if file is missing.

o - Reinstall if file is missing or if an older version is installed.

e - Reinstall if file is missing or an equal or older version is installed.

d - Reinstall if file is missing or a different version is installed.

c - Reinstall if file is missing or the stored checksum does not match the calculated value. Repairs only files th
at have msidbFileAttributesChecksum in the Attributes column of the File table.

a - Force all files to be reinstalled.

u - Rewrite all required user-specific registry entries.

m - Rewrite all required computer-specific registry entries.

s - Overwrite all existing shortcuts.

v - Run from source and recache the local package.

/a Package Administrative installation option. Installs a product on the network.
/x Package|Produc

tCode
Uninstalls a product.

/j [u|m]Package

or

[u|m]Package /t
Transform List

or

[u|m]Package /
g LanguageID

Advertises a product. This option ignores any property values entered on the command line.

u - Advertise to the current user.

m - Advertise to all users of the computer.

t - Apply transform to advertised package.

g - Language ID.

/L [i|w|e|a|r|u|c|m|
o|p|v|+|!]Logfile

Specifies the path to a log file; the flags indicate which information to log.

i - Status messages

w - Nonfatal warnings

e - All error messages

a - Startup of actions

r - Action-specific records

u - User requests

c - Initial UI parameters

m - Out-of-memory or fatal exit information

o - Out-of-disk-space messages

p - Terminal properties

v - Verbose output

+ - Append to existing file

! - Flush each line to the log

"*" - Wildcard; log all information except the v option. To include the v option, specify "/l*v".

/
m

filename Generates a Systems Management Server (SMS) status .mif file. Must be used with the install (-i), remove (-x),
administrative installation (-a), or reinstall (-f) option. The Ismif32.dll is installed as part of SMS and must be o
n the path.

The fields of the status .mif file are filled with the following information:

Manufacturer - Author

Product - Revision number

Version - Subject

Locale - Template

Serial Number - Not set

Installation - Set by Ismif32.dll to "DateTime"

InstallStatus - "Success" or "Failed"

Description - Error messages in the following order: 1) Error messages generated by installer; 2) Resource fro
m Msi.dll if installation could not commence or user exits; 3) System error message file; 4) Formatted messag
e: "Installer error %i", where %i is the error returned from Msi.dll

/p PatchPackage Applies a patch. To apply a patch to an installed administrative image, you must combine options as follows:

/p <PatchPackage> /a <Package>

/q n|b|r|f Sets the user interface level.

q , qn - No UI.

qb - Basic UI.

qr - Reduced UI with a modal dialog box displayed at the end of the installation.

qf - Full UI with a modal dialog box displayed at the end.

qn+ - No UI except for a modal dialog box displayed at the end.

qb+ - Basic UI with a modal dialog box displayed at the end. The modal dialog box is not displayed if the user
cancels the installation.

qb- - Basic UI with no modal dialog boxes. /qb+- is not a supported UI level.

/?

or

/h

 Displays copyright information for the Windows Installer.

/y module Calls the system API DllRegisterServer to self-register modules passed in on the command line. For example,
msiexec /y my_file.dll.

This option is used only for registry information that cannot be added using the registry tables of the .msi file.

/z module Calls the system API DllUnRegisterServer to unregister modules passed in on the command line. For example,
msiexec /z my_file.dll.

This option is used only for registry information that cannot be removed using the registry tables of the .msi fi
le.

 Notes

In the preceding table:
The options /i, /x, /f[p|o|e|d|c|a|u|m|s|v], /j[u|m], /a, /p, /y, and /z should not be used together. The one exception to
this rule is that patching an administrative installation requires using both /p and /a.

The options /t and /g should be used only with /j.

The options /l and /q can be used with /i, /x, /f[p|o|e|d|c|a|u|m|s|v], /j[u|m], /a, and /p.

Syntax rules for properties and values
Only public properties can be modified using the command line. All property names on the command line are interpreted as
uppercase, but the value retains case sensitivity. If you type MyProperty at a command line, the installer overrides the value of
MYPROPERTY and not the value of MyProperty in the Property table. To install a product with PROPERTY set to VALUE, use the
following syntax on the command line. You can put the property anywhere except between an option and its argument.

Correct syntax:

msiexec /i A:\Example.msi PROPERTY=VALUE

Incorrect syntax:

msiexec /i PROPERTY=VALUE A:\Example.msi

Property values that are literal strings must be enclosed in quotation marks. Include any white spaces in the string between these
marks.

msiexec /i A:\Example.msi PROPERTY="Embedded White Space"

To clear a public property using the command line, set its value to an empty string.

msiexec /i A:\Example.msi PROPERTY=""

For sections of text set apart by literal quotation marks, enclose the section with a second pair of quotation marks.

msiexec /i A:\Example.msi PROPERTY="Embedded ""Quotes"" White Space"

The following is an example of a complicated command line.

msiexec /i testdb.msi INSTALLLEVEL=3 /l* msi.log COMPANYNAME="Acme ""Widgets"" and ""Gizmos."""

The following example illustrates advertisement options. Switches are not case sensitive.

msiexec /JM msisample.msi /T transform.mst /G langid /LIME logfile.txt

For more information about Microsoft Windows Installer, go to the MSDN™ Downloads Web site
(msdn.microsoft.com/downloads/).

http://msdn.microsoft.com/downloads

Removing BizTalk Server 2000
Use the Microsoft Windows 2000 Add/Remove Programs utility to remove Microsoft BizTalk Server 2000.

The following topic is covered in this section:

Remove BizTalk Server 2000

Remove BizTalk Server 2000
1. On the Start menu, point to Settings and click Control Panel.

2. Click Add/Remove Programs.

3. Click Microsoft BizTalk Server 2000 and click Remove.

The Add/Remove Programs dialog box appears.

4. Follow the on-screen instructions and click Yes when prompted to remove BizTalk Server 2000.

Understanding Security
Microsoft BizTalk Server 2000 enables businesses to securely exchange data with trading partners. BizTalk Server takes advantage
of the security features offered through Microsoft Windows 2000 and Microsoft SQL Server security.

Windows 2000 security features include the following:

Public-key infrastructure

Microsoft Component Services

Microsoft Cryptography API

Smart Cards

Kerberos Protocol

Public-key certificate management includes requesting certificates, processing certificates in a certificate-request response, and
exchanging certificates with trading partners. These certificates are available for both digital signature and encryption. Exchanging
certificates provides a method of securing data with trading partners. However, as a business grows, the process of managing
certificates can be time consuming.

Because BizTalk Server takes advantage of Windows 2000 security features, such as Secure Sockets Layer (SSL), Web pages can
be created and used by trading partners to securely exchange data using the Internet. SSL, which is implemented in Internet
Information Services (IIS), is a protocol designed to provide privacy between a Web client and a Web server. The protocol begins
with a handshake phase that negotiates an encryption algorithm, checks the keys (public and private), and authenticates the
server to the client. Once the handshake is complete and application data transmission begins, all data is encrypted using the
session keys negotiated during the handshake. Support for open PKI (public-key infrastructure) standards and secure protocols,
such as IPSec, L2TP, SSL/TLS, and S/MIME, enables a network to be extended to suppliers and partners quickly, while protecting
against impostors, data theft, or malicious hackers.

Component Services, one of Windows 2000's Administrative Tools, offers comprehensive component functionality, such as
automatic transaction support for data-integrity protection and simple, but powerful, role-based security.

The following topics are covered in this section:

BizTalk Server 2000 Setup and Configuration

Transport Services

Security for Applications That Host XLANG Schedule Instances

Certificates Overview

Crypto API

Collaborative Data Objects

Related Topic

Administrative Privileges

BizTalk Server 2000 Setup and Configuration
Trading partner transactions must be secure. Microsoft BizTalk Server 2000 addresses security by providing several
authentication and encryption components that leverage Microsoft Windows 2000 security services. In addition to Windows 2000
security, BizTalk Server also takes advantage of Microsoft SQL Server security. To keep data secure in the
BizTalk Messaging Management database, BizTalk Server relies primarily on SQL Server login security. However, the default
BizTalk Orchestration persistence database relies on Windows 2000 authentication. When creating a COM+ component that hosts
schedule instances and its persistence database, you can choose whether to use SQL Server authentication or Windows 2000
authentication. In addition, the administration console uses the Windows Management Interface (WMI) available in
Windows 2000 security.

The following topics are covered in this section:

Logon Properties

Local Policies

Using a Service Account

Submitting Work Items

Logon Properties
Logon properties are the initial layer of security for BizTalk Server 2000. These properties control a user's ability to log on to a
specific computer. Logon properties require a user to provide a user name and password prior to accessing resources, such as a
file share or message queue. Messages received through HTTP and SMTP also use logon properties to ensure security. For
example, an ASP page accessed through HTTP would require a user to enter a user name and password prior to displaying the
contents of the Web page.

BizTalk Server uses Internet Information Services (IIS) and ASP pages for its receive functions. ASP pages (actually the code
behind the pages) provide a layer of security for BizTalk Server by verifying signatures from Secure Sockets Layer (SSL) and
maximizing additional security, such as certificates, through IIS. For more information about IIS security, see Internet Information
Services in Windows 2000 Help.

Related Topic

Administrative Privileges

Local Policies
Local Policies, which is part of the Local Security Settings console, determine the security options for a user or service account.
Local policies are based on the computer a user is logged into, and the rights the user has on that particular computer. To set local
policies, on the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, double-click Local
Security Policy, and then expand the Local Policies folder.

Local policies define the privileges and rights for BizTalk Server 2000 users. Local Policies can be used to configure:

Audit policy. Determines which security events are logged into the Security log on the computer (successful attempts,
failed attempts or both). (The Security log is part of Event Viewer.)

User rights assignment. Determines which users or groups have logon or task privileges on the computer.

Security options. Enables or disables security settings for the computer, such as digital signing of data, Administrator and
Guest account names, floppy drive and CD ROM access, driver installation, and logon prompts.

Other policies in the Local Security Settings console can be configured to maintain the integrity of your data. For example,
Account Policies can be used to configure:

Password policy. For local user accounts, determines settings for passwords such as enforcement, and lifetimes.

Account lockout policy. For local user accounts, determines when and for whom an account will be locked out of the
system.

 Important

Local policies, by definition, are local to a computer. When these settings are imported to a Group Policy object in Active
Directory, they will affect the local security settings of any computer accounts to which that Group Policy object is applied.
Therefore, it is important to note the order of precedence for security policies. Security policies associated with Group Policy
(Organizational Units) override policies established at the local level. Policies from the domain override locally defined
policies. In either case, user account rights may no longer apply if there is a local policy setting that overrides those
privileges. This is important because the behavior of Microsoft Windows 2000 can be quite different from the behavior in
Microsoft Windows NT. For example, when password policies are configured for the Domain group policy (as they are by
default), they affect every computer in that domain. This means that the local account databases (on individual workstations)
in the domain have the same password policy as the domain itself.

 Note

Do not set Local Policies for public keys. Public keys provide security protection for BizTalk Server. Public keys are a
component of certificates that are used to encrypt and decrypt data. By adding additional policies to a public key, BizTalk
Server will not be able to use the associated certificate.

Related Topic

Administrative Privileges

Using a Service Account
A service account is similar to an interactive user account because they both enable a user to access computer and/or network
resources. A service account is a regular user account with specific properties that allow it to act as part of the operating system.
Whereas, an interactive user account refers to the user currently logged on during the BizTalk Server 2000 setup process.

If the identity is set to interactive user, the application runs only when a user is logged on. Therefore, if BizTalk Server is set up
with an interactive user account, it fails if the specified user logs off from the server. Choosing interactive user identity, though,
carries security risks, because the application runs under the identity of the logged-on user without that user's knowledge or
consent. For instance, if the application is running on a computer while an administrator is logged on, the application runs under
the administrator's identity, potentially making calls as such on behalf of clients.

If the identity is set to a service account, it can act as part of the operating system and allow users to access applications on a
server even when the user is not logged on to the computer.

For more information about service accounts, see Create a service account.

Related Topic

Create a service account

Submitting Work Items
Controlling a user's ability to send work items to BizTalk Server 2000 can be accomplished using the BizTalk Server Interchange
Application COM+ component. The BizTalk Server Interchange Application COM+ component uses the following security
configuration properties:

Authentication level

Impersonation level

Access permissions

Launch permissions

Configuration permissions

To control a user's ability to send work items, a role must first be added to the BizTalk Server Interchange Application, which is
one of the COM+ applications, and then associate the role with the Submit and SubmitSync methods.

The following topics are covered in this section:

Add a role to the BizTalk Server Interchange Application

Associate a new role with the Submit and SubmitSync methods

Related Topic

Administrative Privileges

Add a role to the BizTalk Server Interchange Application
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

The Component Services console appears.

2. Expand Component Services, Computers, My Computer, and COM+ Applications.

3. Right-click BizTalk Server Interchange Application and click Properties.

The BizTalk Server Interchange Application Properties dialog box appears.

4. Click the Advanced tab and, in the Permission area, clear the Disable changes check box, click OK, and then in the
message dialog box, click Yes.

5. Repeat step 3.

6. Click the Security tab and, in the Authorization area, select the Enforce access checks for this application check box.

7. In the Security level area, click Perform access checks at the process and component level. Security property will
be included on the object context. The COM+ security call is available.

8. Click OK.

9. In the message dialog box, click Yes.

10. Expand BizTalk Server Interchange Application.

11. Double-click the Roles folder, right-click the folder, point to New, and then click Role.

The Role dialog box appears.

12. Type a name for the role and click OK.

13. In the message dialog box, click Yes.

14. Expand the role you just created, double-click the Users folder, right-click Users, point to New, and then click User.

15. In the Select Users or Groups box, type the full name of the user you want to add.

16. When you have finished adding user accounts to the role, click OK.

 Note

For each user account or group assigned to the role, an icon appears in the Users folder. The new role membership will be
activated when the application is started.

Related Topic

Shut down the BizTalk Server Interchange Application

Associate a new role with the Submit and SubmitSync methods
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

The Component Services console appears.

2. Expand Component Services, Computers, My Computer, COM+ Applications, BizTalk Server Interchange
Application, Components, BizTalk.Interchange.1, Interfaces, IInterchange, and Methods.

3. Right-click Submit and click Properties.

The Submit Properties dialog box appears.

4. Click the Security tab.

5. In the Roles explicitly set for selected item(s) area, select the check box for the role you just created in
the Add a role to the BizTalk Server Interchange Application procedure and click OK.

6. Right-click SubmitSync and click Properties.

The SubmitSync Properties dialog box appears.

7. Click the Security tab.

8. In the Roles explicitly set for selected item(s) area, select the check box for the role you just created in
the Add a role to the BizTalk Server Interchange Application procedure and click OK.

 Note

A new role for the BizTalk Server Interchange Application must first be created before the Submit and SubmitSync
methods can be associated with it.

Related Topic

Shut down the BizTalk Server Interchange Application

Transport Services
Microsoft BizTalk Server 2000 supports a core set of transport services. These transport services enable the server to send
documents to organizations or applications whether or not the applications are capable of communicating directly with the server
by using a COM interface. BizTalk Server supports the HTTP, HTTPS, and SMTP network protocols and Message Queuing.

The following topics are covered in this section:

HTTP and HTTPS

SMTP

Message Queuing 2.0

File

Related Topics

Select a transport type

Set Transport Properties

HTTP and HTTPS
HTTPS is used to provide strong authentication when using HTTP to gain access to content on the Web. The most common use of
HTTPS is to provide an encrypted connection to an authenticated Web server. When clients attempt to establish an HTTPS
connection, typically triggered by browsing to a URL beginning with https://, the client and server jointly negotiate a security
protocol to use and then exchange authenticating information.

Microsoft Internet Explorer 5 or later supports common secure communication protocols for HTTP transactions, including the
following:

Transport Layer Security (TLS version 1.0)

Secure Sockets Layer (SSL versions 2 and 3)

Private Communications Technology (PCT version 1.0).

Each protocol provides both encryption services (for confidentiality of exchanged data) and authentication services (for mutual
identification between clients and servers). SSL support, which is provided through the built-in HTTPS transport service, adds
server-to-server authentication and transport layer encryption to an interchange.

BizTalk Server and HTTPS can be used to securely exchange data within an organization or with a trading partner by means of
HTTP. The following provides specific details regarding how BizTalk Server 2000 uses HTTP and HTTPS to send and receive data.

Send
The HTTP and HTTPS transport services can be used to secure data that is sent to an application or trading partner. Security for
these transport services relies on certificates.

For example, prior to sending data over HTTP, a BizTalk Server administrator sends a copy of the client certificate to a trading
partner. The trading partner retains a copy of the certificate in the BizTalk store. In the future, the certificate is used to authenticate
the trading partner sending data. A unique certificate manager must be created to send or export a certificate to a trading partner.

Receive
To secure data over HTTP, BizTalk Server uses Microsoft Internet Information Services (IIS) and ASP pages. When using HTTPS to
connect to IIS, the client and browser negotiate a common protocol to secure the channel. In cases where the server and client
have multiple protocols in common, IIS secures the channel with a supported protocol, such as SSL. To secure data that is received
by BizTalk Server over HTTP, the process is identical. The ASP page serves as the gateway for sending data to BizTalk Server. If the
data is secure, BizTalk Server receives the data provided the ASP code uses the Submit method or the SubmitSync method to
make a call.

Related Topics

Select a transport type

Set Transport Properties

SMTP
SMTP (Simple Mail Transfer Protocol) is a protocol for sending e-mail messages between servers. SMTP is a common protocol for
sending mail over the Internet. An e-mail message can be retrieved with an e-mail client using either POP or IMAP. In addition,
SMTP is used to send messages from a mail client to a mail server. When configuring an e-mail application, both the POP or IMAP
server and the SMTP server must be specified.

SMTP can be used to securely exchange data within an organization or with a trading partner. BizTalk Server 2000 uses SMTP to
send and receive data using the following methods:

Send
BizTalk Server implements a transport protocol to send data over SMTP. At a minimum, SMTP requires that data be MIME-
encoded. This process enables BizTalk Server to identify where a set of data ends and the next set of data begins. However, MIME-
encoding does not provide security. S/MIME is the secure MIME version. Documents encoded using built-in S/MIME encoding
components ensure document integrity, authentication of the sending party, and payload encryption. BizTalk Server creates an
S/MIME document with the encrypted message as the body of the document. To add this security layer, a certificate must be
associated with the MIME-encoded message. MIME encoding can be specified when messaging ports are created in
BizTalk Messaging Manager. This is also where certificates are specified.

Receive
To implement security on the receive side of SMTP using Microsoft Exchange Server, an administrator must create a receive
account for BizTalk Server. Once the account is set up, trading partners send their public keys to Exchange Server, which
authenticates the sender (trading partner). The public key is added to the Exchange Server certificate store.

When Exchange Server receives a message, the Submit method sends the data to BizTalk Server. BizTalk Server verifies the
certificate against the public key; if they match, BizTalk Server decrypts the data and processes the document.

Related Topics

Messaging Port Elements

Select a transport type

Select an encryption certificate

Set Transport Properties

Message Queuing 2.0
Message Queuing 2.0 supports privacy and security using the following:

Access control

Auditing

Encryption

Authentication

Message Queuing also takes advantage of the Kerberos V5 security protocol available with Microsoft Windows 2000. In addition,
Message Queuing supports 128-bit encryption as well as 40-bit encryption. Message Queuing can also be used to integrate
applications, implement a push-style business-event delivery environment between applications, and build reliable applications
that work over unreliable but cost-effective networks.

Message Queuing can be used to securely exchange data within an organization and with a trading partner. BizTalk Server 2000
uses Message Queuing to send and receive data using the following methods:

Send
The first layer of security for Message Queuing is a user name and password, which is required by anyone to store data or
retrieve data from Message Queuing. In addition, Message Queuing can store data that has a certificate. Users are able to specify
a certificate for data stored on a message queue using BizTalk Messaging Manager.

Receive
If an administrator creates logon properties for a message queue, a user name and password must be used to retrieve the data.
Creating logon properties forms a fundamental layer of security. If a trading partner has added a certificate to the data, a copy of
its private key must be received to decrypt the data before BizTalk Server can process the package.

Related Topics

Add a Message Queuing receive function

Configure advanced properties for File or Message Queuing receive functions

Configure a Message Queuing receive function: General tab

Configure a Message Queuing receive function: Services tab

Select a transport type

Set Transport Properties

File
Microsoft Windows 2000 ensures data and system protection by defining discretionary file access control. The Windows NTFS file
system, required for BizTalk Server 2000, can prevent users from damaging key system or application files. NTFS also provides
robust security for the supporting files in an application.

File storage can be used to securely exchange data within an organization and with a trading partner. File storage can also be
used to send and receive data using the following:

Send
The first layer of security for file storage is a user name and password. A user name and password is required by anyone storing
or retrieving data from a folder. In addition, folders can store data that has a certificate associated with it. To use this added layer
of security, use BizTalk Messaging Manager to create a certificate for the data to be stored in a folder.

Receive
If logon properties for a folder have been applied, a user name and password must be used to retrieve the data. An administrator
can also designate access levels (read, delete, and so on) to the file directory for specific users. If a trading partner has added a
certificate to the data, a copy of its private key must be received to decrypt the data before BizTalk Server can process the package.
Inbound documents can also be digitally signed to ensure that the sending source cannot deny that it sent the document.

Related Topics

Add a File receive function

Configure advanced properties for File or Message Queuing receive functions

Configure a File receive function: General tab

Configure a File receive function: Services tab

Select a transport type

Set Transport Properties

Security for Applications That Host XLANG Schedule Instances
After installing BizTalk Orchestration Services, security levels can be set for the following:

Creating new XLANG schedule instances

Interacting with existing XLANG schedule instances

Administrative functions relating to XLANG schedule instances

Applications hosting XLANG schedule instances.

Applications that host XLANG schedule instances rely on role-based security, which is an automatic service provided by COM+.
Role-based security enables users to construct and enforce an access control policy for COM+ applications. With a flexible and
extensible security configuration model, role-based security offers considerable benefits over enforcing all security within
components. There are two default COM+ applications, the XLANG Scheduler and the XLANG Scheduler Persistence Helper,
which are automatically created when BizTalk Orchestration Services are installed. The XLANG Scheduler COM+ application has
four roles that can be used to ensure the security of schedule instances regardless of the COM+ application in which they execute.
The four roles are:

XLANG Schedule Creator. This role allows specified users to create XLANG schedule instances. For instance, if an
administrator wants a user to be able to create an XLANG schedule instance, the administrator must add the user to the
membership list for this role. Any user who is not listed as a member of this role and attempts to create an XLANG schedule
instance will see an error message indicating that access has been denied. In addition, an entry is generated in the event log
indicating that access has been denied.

XLANG Schedule User. This role allows specified users to interact with XLANG schedule instances. For instance, if an
administrator wants a user to be able to interact with an schedule instance, the administrator must add the user to the
membership list for this role. Any user who is not listed as a member of this role and attempts to interact with a schedule
instance will see an error message indicating that access has been denied. In addition, an entry is generated in the event log
indicating that access has been denied.

XLANG Scheduler Administrator. This role can be used to indicate who has administrative rights to the following tasks:
Determining whether a COM+ application is able to act as a host for XLANG schedule instances.

Setting the DSN type for a COM+ application that is hosting XLANG schedule instances and setting the state
management value for the level of persistence the COM+ application needs to support.

Shutting down all XLANG schedule instances.

Suspending, resuming, or terminating an XLANG schedule instance.
XLANG Scheduler Application. This role is used by the XLANG Scheduler to interact with any COM+ application that a
user creates. Therefore, the role must include the same identity that the COM+ application is using to run.

The following topics are covered in this section:

Best Practices for Securing COM+ Applications

Securing the Orchestration Persistence Database

Confirming the Sender's Identity

Related Topic

XLANG Schedules

Best Practices for Securing COM+ Applications
Using roles, an administrator can administratively construct an authorization policy for an application, choosing (down to the
method level, if necessary) which users can access which resources. Because all XLANG schedules are hosted in COM+ server
applications, access to the installed COM objects can be limited by configuring security properties for various roles.

 Important

If security properties are added at the component level, individual components, interfaces, and methods based on the role
settings at these levels are also limited. For more information about COM+ security, go to the MSDN Online Library Web
site (msdn.microsoft.com/library/default.asp), and browse to the Security in COM+ page.

Recommendations for securing COM+ applications
The following recommendations apply primarily to securing deployed applications:

Do not configure a COM+ application as an interactive user. COM+ applications that use the interactive user identity
can be used only if a user is logged on to the computer where the application resides. If no one is logged on, the COM+
application cannot run. In addition, if a user creates a COM+ application using interactive user, it will be more difficult to
configure access to its persistence database and other resources. For more information about service accounts,
see Using a Service Account.

Reconfigure the identity for XLANG Scheduler. During setup, the XLANG Scheduler identity is automatically configured
as Interactive User. This configuration is suitable for most developers. On production systems, you should change the
identity property for the XLANG Scheduler so that the application runs under a unique user account. The identity is used by
all messages sent by the XLANG Scheduler.

 Note

When using the client for Microsoft Windows 2000 Terminal Services to initiate an XLANG schedule, the COM+
application hosting the XLANG Scheduler Engine must have its identity set to a valid Windows 2000 user or group
name. The identity of the COM+ application is set on the Identity page of the properties dialog box for that
application. The identity cannot be set to interactive when using the XLANG Scheduler Engine through a session
hosted by Terminal Services.

Create a new COM+ application with a unique identity for every application that is hosting XLANG schedule
instances. Create a new COM+ application with a unique identity for each business process, such as purchasing, with
unique security requirements. This enables individual security levels to be specified for each application. In addition, it
safeguards from excessive damage that can be done by unstable application code and makes it easier to audit the
operations of individual applications.

Install application-specific components into their associated business processes. This protects data and keeps out
applications that do not have access to these components, provided the server application is adequately protected.

 Note

Each COM+ application must contain at least one component. If an application-specific component is not installed, a
placeholder component in the application must be created and installed, or the COM+ application will not be
available.

Change the membership list of the XLANG Scheduler roles from their defaults to provide added security. When
BizTalk Server is installed, the XLANG Scheduler is created and configured with the following roles, shown with their default
settings:

XLANG Schedule Creator. Membership role defaults to Everyone.

XLANG Schedule User. Membership role defaults to Everyone.

XLANG Scheduler Administrator. Membership role defaults to Administrators.

XLANG Scheduler Application. Membership role defaults to Everyone.

Related Topics

http://msdn.microsoft.com/library/

Change the application identity for the default XLANG Scheduler application

Create a COM+ application to host XLANG schedules

XLANG Schedules

Securing the Orchestration Persistence Database
When a COM+ application that hosts XLANG schedule instances is created, a persistence database must be associated with the
COM+ application. Therefore, first create a persistence database in Microsoft SQL Server. When creating a database, a user must
choose whether to use SQL Server authentication or Microsoft Windows 2000 authentication for security. After creating the
database, a user needs to give permission rights to the COM+ application that will be created later to host XLANG schedule
instances. Make sure that the COM+ application has permissions to both create tables and create procedures to the persistence
database associated with it. The interaction between the BizTalk Orchestration Services and the default BizTalk Server
Orchestration Persistence database is based on the Windows 2000 security model rather than on SQL Server.

Related Topic

Manage the Default XLANG Scheduler Application and Database

Confirming the Sender's Identity
During schedule design, various shapes can be used to describe implementation technologies used to implement a port in a
business process. The COM Component shape represents a technology that can be used to implement a port by using a method
call for each message that is sent or received. The Script Component shape represents a technology that can be used to
implement a port by using a method call for each message that is sent or received. The Message Queuing shape represents a
technology that is used to implement a port. Message Queuing transport services are used to send or receive messages. When
adding one of the three technologies, a user can require that the sender's identity be confirmed prior to receiving messages.

For more information about COM components, Windows Script components, or Message Queuing security for XLANG schedules,
see Implement a port by using a COM component, Implement a port by using a Windows Script Component,
and Implement a port by using Message Queuing.

Related Topics

Using the COM Component Shape

Using the Message Queuing Shape

Using the Script Component Shape

Certificates Overview
Digital certificates bind a cryptographic key with one or more attributes of a user. Issued by certification authorities, the
certificates protect the Internet by assuring the authenticity of network messages. This technology and its underlying digital
signatures are now helping to increase the widespread deployment of electronic commerce on the Internet.

The following topics are covered in this section:

Understanding Certificates

Certificates Needed by BizTalk Server

Certificate Name Restrictions

Understanding Certificates
Microsoft BizTalk Server 2000 relies heavily on the security provided by certificates. Through the use of public keys, which encrypt
the data, and private keys, which enable the data to be decrypted, BizTalk Server can send data that can be trusted and can ensure
that the data it processes is secure. Public Key Policies, which are part of the Microsoft Management Console, enable a user to
configure encrypted data recovery agents for Encrypting File System (EFS), domain-wide root certificate authorities, trusted
certificate authorities, and so on. Certificates also contain digital signatures, which can be applied to documents and verified on
inbound documents using the BizTalk Server native support for digital signatures.

Certificates are used to authenticate and secure exchanges of information on non-secured networks, such as the Internet.
Certificates can be managed for a user, a computer, or a service. The X.509-based Public Key Certificate Server built into Windows
2000 Server lets organizations issue public-key certificates for authentication to their users, without depending on commercial
Certification Authority (CA) services.

BizTalk Server supports certificates through BizTalk Messaging Manager. Certificates make it easy to encrypt, decrypt, and digitally
sign data. Public-key encryption technology is supported for all documents that are transmitted using BizTalk Server
transport services. BizTalk Server also supports decryption and signature verification for the documents that it receives.

MachineKeys versus UserKeys
When obtaining certificates, it is best to use MachineKeys, which are associated with the computer, rather than UserKeys, which
are associated with the current, logged on user. If a user, currently logged onto a server, obtains a certificate with UserKeys only
that user can access the certificate because the certificate UserKey contains the user's logon information. Therefore, if users need
to access certificates with UserKeys in BizTalk Server, BizTalk Server must be run in the context of that user. To enable any user to
log onto BizTalk Server and access keys, certificates must have MachineKeys.

For BizTalk Server to access the Certificates (Local Computer), BizTalk Server must run as LocalSystem or Administrator.
Additionally, if UserKeys are used, BizTalk Server must run in the context of that user, who also must be an administrator.

Certificates Needed by BizTalk Server
A certificate server stores certificates for a user and for a computer. Every user has a certificate store, and every computer has its
own certificate stores. If a user creates a certificate, Windows 2000 assumes the certificate is for the user. An organization needs
to store its certificates in the Personal store located under the Certificates (Local Computer) of the Certificates console. However,
to provide the proper security, BizTalk Server 2000 needs all trading partner certificates to be stored in the BizTalk store located
under the Certificates (Local Computer) of the Certificates console.

During design time, when messaging ports and channels are created, a user needs to have all trading partner certificates
associated with the BizTalk store, under Certificate (Local Computer) of the Certificates console, rather than with the user. When
specifying security, such as encryption or signature verification, for trading partners through the BizTalk Messaging Manager, the
certificates displayed are the trading partner certificates located in the BizTalk store. BizTalk Messaging Manager displays the
certificates located in the Personal store under Certificate (Local Computer) of the Certificates console when specifying security,
such as verified decryption and signing, for SSL clients. Where certificates are located is important because at run time, when a
user attempt to process documents through BizTalk Server, the computer is acting as the background service, and it is this service
that needs to access the certificates.

There are two ways to resolve issues about where certificates are stored:

If a user has already created certificates, Windows 2000 has stored them in the user store. The certificates must be moved
from the user store to the corresponding store under Certificates (Local Computer). This process is done through the
certificate manager.

If a user has created a service account, all the certificates are associated with the computer, rather than with the user.

Certificate management through Windows 2000

BizTalk Server provides certificate management through Microsoft Windows 2000. Tightly integrated within the Windows 2000
security model is IIS 5.0, which includes a certificate server. This lets organizations issue and manage Internet-standard X.509
digital certificates. In addition to key management services in IIS 5.0, the Microsoft certificate server in IIS 5.0 provides
customizable services for issuing and managing digital certificates. A certificate server performs a central role in the management
of software security systems to enable secure communications across the Internet, corporate intranets, and other non-secure
networks.

The following topic is covered in this section:

Create a certificate manager

Related Topics

Select a certificate for outbound signature

Select a certificate to verify inbound document decryption

Select a certificate to verify inbound document signature

Select an encryption certificate

Create a certificate manager
1. On the Start menu, click Run and type mmc.

The Console1 dialog box appears.

2. On the Console menu, click Add/Remove Snap-in.

The Add/Remove Snap-in dialog box appears.

3. Click Add.

The Add Standalone Snap-in dialog box appears.

4. Click Certificates and click Add.

The Certificates snap-in dialog box appears.

5. Click Computer account, click Next, and then click Finish.

6. In the Add Standalone Snap-in dialog box, click Certificates and click Add.

The Certificates snap-in dialog box appears.

7. Click Computer account, click Next, click Finish, click Close, and then click OK to close the dialog boxes.

Related Topic

Certificates Overview

Certificate Name Restrictions
Microsoft BizTalk Server 2000 does not allow identical names for certificates. If identical names for certificates exist, only one of
the certificates can be selected in BizTalk Messaging Manager. For example, if an organization uses two certificates that have the
same name and reference, it is impossible for the organization to use both certificates. If the organization uses one of the
certificates, the other certificate disappears from the list of available certificates in the Channel dialog box.

Crypto API
Microsoft BizTalk Server 2000 uses Crypto API to secure data it processes. Recent developments in cryptography have added
additional uses, including mechanisms for authenticating users on a network, ensuring the integrity of transmitted information,
and preventing users from denying ownership of their transmitted messages.

Any application, message, data, and so on that uses encryption and uses Microsoft-specific encryption, such as Microsoft
Windows 2000 for generating certificates, uses Crypto API. BizTalk Server uses Crypto API for receive functions that a user
specifies when using a custom-made COM+ component such as preprocessing component, which enables BizTalk Server to
handle unique encryption components.

Collaborative Data Objects
Microsoft BizTalk Server 2000 requires MIME encoding for all its data, whether sending the data or receiving it. Through the use
of Collaborative Data Objects (CDOs), which are part of the Windows 2000 environment, data can be encoded and processed by
BizTalk Server. For example, before BizTalk Server can send a catalog that contains text and graphics, it first needs the data
(graphics) to be changed from binary to string. CDOs encode the text and graphics into a string format so that BizTalk Server can
process it.

Enhancing Performance and Scalability
Understanding the various components of BizTalk Server 2000 enables you to create scalable, high performance solutions. There
are several methods, such as identifying potential bottlenecks, addressing latency, and managing databases, which you can use to
increase the performance of BizTalk Server. However, the extent to which you can achieve an optimal solution depends on the
complexity of your organization's system architecture and your budget requirements.

Optimizing the BizTalk Messaging Management database, the Shared Queue database, the Tracking database, and the
Orchestration Persistence database is critical to achieving optimal performance with BizTalk Server. For more information about
optimizing the databases, see Scale Up the Databases and Scale Out the Databases.

The following topics are covered in this section:

Scaling BizTalk Server

Performance Optimization

Scaling BizTalk Server
To optimize performance, it is highly recommended that you distribute key components across multiple servers. The key
components of BizTalk Server 2000 include:

BizTalk Services. These services include BizTalk Messaging Services and BizTalk Orchestration Services. For more
information, see BizTalk Services.

Databases. These databases include the BizTalk Messaging Management, Tracking, Shared Queue, and
Orchestration Persistence databases.

Transport services. The transport services include HTTP, File, SMTP, and Message Queuing. Each component has unique
scaling requirements.

The following topics are covered in this section:

Scaling BizTalk Server Vertically

Scaling BizTalk Server Horizontally

Related Topics

Managing BizTalk Server Databases

Managing the BizTalk Messaging Management Database

Persistence

Set Transport Properties

Shared Queue Database

Tracking Database

Scaling BizTalk Server Vertically
By using multiple processors and significant memory, you can vertically scale (scale up) BizTalk Server 2000. Scaling BizTalk
Server vertically requires fewer servers and simplifies site management, but is more costly than scaling a system horizontally or
improving software architecture. In addition, once capacity on existing hardware is maximized, you must begin to scale the system
horizontally.

The following topics are covered in this section:

Scale Up BizTalk Server

Scale Up the Databases

Scale Up the Transport Services

Scale Up BizTalk Server
To scale BizTalk Server 2000 vertically, the following are recommended:

Increase the processor size (such as the Pentium III and its Xeon derivatives with large level II caches).

Use symmetric multiple processing (SMP) servers that accommodate up to eight CPUs.

Decrease file I/O and network bottlenecks.

Run Microsoft Windows 2000 Server on four-way SMP servers.

 Note

When running Microsoft Windows 2000 Server on one CPU, adding three additional CPUs improves performance,
but does not increase the processing speed of one CPU by a multiple of four.

Recommended solutions for scaling BizTalk Server vertically
To achieve optimal performance with BizTalk Server, the following is recommended:

A multi-processor PIII Xeon MHz processor system (the highest MHz possible for maximum performance), capable of being
upgraded to eight CPUs.

A 1- to 2-MB L2 Processor Cache (increases parsing performance).

512 MB of RAM (more if an organization is processing multiple megabyte documents).

Multiple 100 Mbps (megabits per second), or greater, network cards connected to 100 MB/s switch ports to increase
network I/O throughput.

Provide multiple disks and controllers for Message Queuing and Distributed Transaction Coordinator (DTC) file and log
operations. Write DTC log operations to a central remote server to offload file I/O contention on the local BizTalk Server.

Use dual honed network interface cards (NICs) in the BizTalk Servers to separate HTTP processes from the Shared Queue
and BizTalk Messaging Management databases dedicated SQL Server processes.

These recommendations assume that BizTalk Server is running on a dedicated server. If the BizTalk Services are sharing the
server with other application services, additional hardware is recommended.

Scale Up the Databases
To vertically scale the databases, you must determine the disk configuration. To determine the disk configuration, you must
consider throughput, fail-over, and cost.

The following table identifies the options available and compares each option relative to each other.

RAID level Cost Effective disk utilization percentage Spe
ed

Fault tolerance

0 (Striping) Low 100 Fast Low
1 (Mirroring) High 50 Medi

um
High

5 (Striping wit
h parity)

Mode
rate

Effective disk space is the total space of all disks in the arra
y combined minus 1 (for parity)

Slow Moderate (only because performance degr
ades with a failed disk)

To achieve optimal performance, it is recommended that you install an efficient caching Redundant Array of Independent Disks
(RAID) controller with a fast CPU and a high amount of RAM that is nonvolatile. You can also combine multiple RAID levels to
achieve desired performance. For example, RAID 0 provides the best performance, but does not provide fault tolerance. RAID 1
provides the best fault tolerance, but does not provide the best performance (due to writing data to one disk, as opposed to
multiple disks, concurrently). To achieve optimal performance, you can combine RAID 1 and RAID 0 by mirroring a set of striped
disks.

 Notes

RAID 5 does not meet or exceed the speed or cost of any other RAID level. RAID 5 provides key advantages, but is slower
when writing data to disk than RAID 0 or RAID 1.

For any strategy, the number of available disk controllers is critical. You can significantly improve overall performance by
using one disk per controller. When configuring disks, effectively using disk channels is equally important. Disk channels are
disks that share the same controller. These disks may be configured as stand-alone disks, or configured to run as part of an
array. For example, if there are 10 disks in a server, 5 disks each in two arrays, and each array is connected to its own
controller, there would be 2 disk channels.

Ideally, the BizTalk Messaging Management, Shared Queue, Tracking, and Orchestration Persistence databases should be on
separate disk channels. However, if your organization's system environment requires that the databases reside on individual
servers, it is important to understand the use of each database when planning for this deployment scenario:

The BizTalk Messaging Management database contains all the configuration information, such as organizations,
server groups, servers, channels, and messaging ports, for BizTalk Server. This information is read and cached in Microsoft
SQL Server memory. This database receives the least activity of the four databases and can reside on the same disk channel
as one of the other three databases if necessary.

The Shared Queue database manages the data for all the queues. Every document that uses asynchronous communication
is sent to and stored in the Shared Queue database. When BizTalk Server is ready to handle the document, it is removed
from the Shared Queue database for processing. Because this database manages all transactions, data is written to and read
from the Shared Queue database frequently.

The Tracking database tracks documents that pass through the server, either individually or in batches. This database stores
both the data and its logging information. Therefore, data is often written to the Tracking database, but data is rarely read
from the database.

The Orchestration Persistence database stores the structure of the XLANG schedules, progress of activated
XLANG schedule instances, and messages that are sent or received when an XLANG schedule instance begins or completes
a transaction, the system is shut down, or when the XLANG schedule instance is dehydrated.

Optimization recommendations to vertically scale the databases
Consider the following for optimal performance of BizTalk Server databases:

A multi-processor PIII Xeon MHz processor system (the highest MHz possible for maximum performance), capable of being
upgraded to eight CPUs.

512 MB of RAM (more if an organization is processing multiple megabyte documents).

Optimize the underlying Microsoft SQL Server databases and logs based on standard database best practices. For more
information about SQL Server, on the Start menu, point to Programs, point to Microsoft SQL Server, and then click Books
Online.

If you initially plan to complete only a few transactions, you can install the databases on the same disk I/O channel. As more
transactions are being processed, add disks and/or controllers to a server and move the databases to these new disk I/O
channels. Additionally, an individual database can be moved to a new server. For more information about scaling the
databases horizontally, see Scale Out the Databases.

To optimize the BizTalk Messaging Management database:

Install the database on the same disk I/O channel as the Shared Queue database or the Tracking database. The contents of
the BizTalk Messaging Management database are read and cached in Microsoft SQL Server memory.

If an organization processes a high volume of data, consider placing this database on its own disk I/O channel so as not to
hinder the performance of the Shared Queue or the Tracking databases.

To optimize the Shared Queue database:

If the CPU exceeds 80 percent, add additional CPUs.

If disk queue length averages more than 1 or, if disk I/O utilization is greater than 100 percent, add additional physical disks.

Install the database on its own dedicated disk I/O channel.

Purchase disks with the fastest access times, and controllers with the highest throughput.

Consider RAID 0 and mirror it to obtain fault tolerance.

To optimize the Tracking database:

Add more physical disks and additional disk space than currently exists on the Shared Queue database.

Estimate the average document size for a single transaction. Multiply the document size by the number of times the
document will be logged to the Tracking database. This estimate suggests the amount of document storage space required
per document in the Tracking database. Multiply the document storage space value by the throughput requirement to
determine the amount of space needed before the Tracking database becomes full. Ensure that the Tracking database has
adequate space to accommodate logging an average document size.

Install this database on its own disk I/O channel due to the high volume of data that is written to it. A separate disk I/O
channel is particularly important in heavy transaction environments.

 Note

There is size limit for tracking interchanges and documents, which if exceeded, greatly affects the performance of
BizTalk Server. For more information about the size limit, see Interchange and document size limit.

To optimize the Orchestration Persistence database:

Because data is written to and read from this database frequently, the database should have a dedicated disk I/O channel. It
is best to purchase disks with the fastest access times, and controllers with the highest throughput, if possible. Consider
RAID 0 and mirror it to achieve fault tolerance.

If the CPU capacity exceeds 80 percent, add more CPUs.

If the disk queue length averages more than 1, or if disk I/O utilization is greater than 100 percent, add more physical disks.

Related Topic

Scaling BizTalk Server

Scale Up the Transport Services
BizTalk Server 2000 supports four transport services. Each of these transport services can be scaled vertically:

HTTP

File

SMTP

Message Queuing

The following topics are covered in this section:

HTTP/HTTPS (Scale Up)

File (Scale Up)

SMTP (Scale Up)

Message Queuing (Scale Up)

HTTP/HTTPS (Scale Up)
Receive
The HTTP/HTTPS receive function sends documents to BizTalk Server 2000 by calling the BizTalk Server Interchange object.
BizTalk Server does not have a unique HTTP/HTTPS receive function. The HTTP receive function calls a local object. Therefore, no
network latency exists to affect performance. However, because the HTTP receive function and BizTalk Server both reside on the
same server, the HTTP receive function must perform two functions: transport data and process data.

In high-volume environments, running the HTTP receive function and BizTalk Services on the same server degrades the
performance of both. Additionally, if secure sockets layer (SSL, also referred to as HTTPS) is used to receive documents,
performance is degraded further due to decryption processing. Depending on the security needs of an organization, data may
need to be encrypted using HTTPS. This added level of security may affect the performance of BizTalk Server.

Send
BizTalk Server is a native HTTP/HTTPS client. If a channel is configured to use HTTP/HTTPS as its outbound transport service,
BizTalk Server uses HTTP/HTTPS to send data to a trading partner's HTTP/HTTPS server. You cannot move the HTTP/HTTPS
outbound transport service to a separate server from the server on which BizTalk Messaging Services resides. If a server is
configured to participate in work-item processing and it processes a document that uses an HTTP/HTTPS transport service, this
same server sends the document. For more information about work-item processing, see Scale Up BizTalk Server.

BizTalk Server functions as an HTTP client, which affects the document-serializing power of the server. If the port is using HTTPS,
the performance of the HTTP transport service is greatly affected. SSL accelerator cards cannot be used when acting as an HTTPS
client because these cards only enhance HTTPS server performance.

Recommended optimization for HTTP/HTTPS
To optimize performance for the HTTP/HTTPS, which enhances the performance of BizTalk Server:

Configure the inbound HTTP/HTTPS receive service on a separate server than BizTalk Server. If the inbound HTTP/HTTPS
receive service cannot be installed on a separate server than BizTalk Server, use a faster CPU or, add more CPUs.

Increase the CPU MHz that is required for BizTalk Server (to accommodate the additional need for sending documents) and
add additional CPUs until the desired performance level is achieved.

Apply best practices when using ASP pages with the receive or send HTTP/HTTPS service. For more information about
optimizing ASP pages and Internet Information Services, go to the Internet Information Services Help Web site
(localhost/iisHelp) and click Active Server Pages Guide.

http://localhost/iisHelp/iis/misc/default.asp

File (Scale Up)
Receive
Although performance is high when using a File receive function for business-to-business transactions, a File receive function is
not secure for Internet-based transactions, and therefore is not widely used. However, for application-to-application transactions
within a corporation, a File receive function can provide optimal performance without jeopardizing security. In addition, a File
receive function can be used securely with external trading partners provided it is combined with another receive function, such
as SMTP or HTTP. The SMTP or HTTP receive function can accept a document from a trading partner (using HTTPS or S/MIME for
security) and write the file to an internal file system directory. Then BizTalk Server can use a File receive function to receive the
document. This combination of transports may not increase performance, but will provide greater flexibility and security.

 Note

Using S/MIME significantly degrades the performance of BizTalk Server.

Send
The security and performance issues detailed for a File receive function are also applicable for sending documents using a File
transport service.

Recommended optimization for File receive function and File transport service
To optimize performance for the File receive function and File transport service, which enhances the performance of BizTalk
Server:

Use a local file directory rather than a remote file directory to reduce network latency.

Use disk arrays to achieve high throughput. For more information about disk array speed and redundancy tradeoffs,
see Scale Up the Databases.

SMTP (Scale Up)
Receive
The SMTP receive function is similar to the HTTP receive function for inbound transactions in that there is no native SMTP receive
function built into BizTalk Server. An SMTP receive function can receive a document through an event-based mechanism and send
the document to BizTalk Server. If an SMTP receive function exists, BizTalk Server accepts the MIME/SMIME-encoded document
and prepares it for processing.

Send
The same security and performance issues listed in the inbound S/MIME and outbound HTTP/HTTPS sections apply here. If a
channel uses SMTP as a transport service in a messaging port or port, the processing server processes the document and sends it
to the receiving application.

 Note

BizTalk Server performance is significantly degraded if a digital certificate is needed to S/MIME-encode the outbound
document.

Recommended optimization for SMTP
To optimize performance for SMTP, which enhances the performance of BizTalk Server:

The performance level achieved depends greatly on the SMTP service that is used for receiving documents. An organization
may have an SMTP server that is used to perform this function. However, if an SMTP server does is not available and an
organization chooses to use Microsoft Exchange Server or another third-party messaging system, the server may need a
significant amount of additional hardware to maintain an adequate performance level for BizTalk Server. The SMTP server
must be able to invoke an event-based mechanism, which is capable of sending documents to BizTalk Server.

If an organization chooses to run BizTalk Server on a SMTP server, CPU performance will be impacted. To minimize the
impact to performance, use a faster CPU.

If an organization uses S/MIME, BizTalk Server performance is significantly degraded. To reduce the overall performance
impact of S/MIME to BizTalk Server, use faster CPUs.

Message Queuing (Scale Up)
Receive
Message Queuing generally uses a high volume of disk I/O to receive and send messages. Message Queuing is transactional,
which is highly recommended to improve fault-tolerance. However, it is only transactional on a local server. If Message Queuing
is used to improve fault-tolerance, an adequate number of disks must be installed on each BizTalk Server to handle the increased
disk I/O.

Send
Sending documents by using Message Queuing creates the same security and performance issues as receiving documents by
using Message Queuing.

Recommended optimization for Message Queuing
To optimize performance for Message Queuing, which enhances the performance of BizTalk Server:

Use transactional queues (local queues on BizTalk Server, rather than remote queues, must be used for transactional queues
to receive) and a fast disk I/O channel. Local queues do not need to query Microsoft Active Directory; however, a public
message queue must query Active Directory. Therefore, reading data from and writing data to local message queues results
in better performance. Non-transactional local queues can be used to achieve better performance. However, non-
transactional local queues do not provide the same reliability offered by transactional queues. Additional memory is also
required.

 Note

For more information about how to define hardware requirements for Message Queuing, see "Selecting Message
Queuing server hardware" in Windows 2000 Server Help.

The maximum limit for Message Queuing messages is 4 MB. If documents exceed 4 MB, the Message Queuing
transport service cannot be used. The Orchestration Persistence database has a 2-MB document size limit.

Message Queuing is database-intensive if journaling is used. Ensure that the standard rules for optimizing databases are
applied when setting up Message Queuing transport services.

To maximize throughput, separate data and logs and use multiple disks and controllers.

Scaling BizTalk Server Horizontally
A successful BizTalk Server 2000 implementation uses both a vertical and horizontal (scale out) strategy. Scaling vertically
minimizes the number of servers required. Scaling horizontally provides the following benefits:

Heightened performance. Performance exceeds what could cost-effectively be accomplished on a single server.

Server fault-tolerance.

Separation and optimization of the different components. Performance of BizTalk Services, the databases, and the
transport services can be increased.

Scaling hardware horizontally minimizes costs. However, as site management complexity increases, your organization must begin
scaling vertically.

The following topics are covered in this section:

Scale Out BizTalk Messaging Services

Scale Out the Databases

Scale Out the Transport Services

Related Topic

Scaling BizTalk Server

Scale Out BizTalk Messaging Services
BizTalk Messaging Services can be scaled horizontally by using server groups. Server groups are collections of individual servers
that are centrally managed, configured, and monitored. For more information about adding and configuring server groups,
see Groups and Servers.

Servers that are members of the same server group share the following:

A Shared Queue database that monitors activity in the BizTalk Server state engine.

A Tracking database that logs document activity and generates reports.

A BizTalk Messaging Management database that stores configuration information.

Receive functions.

All components that the server requires at run time, such as transport components and application integration components
(AICs), as well as data translation, data encryption, and signing.

A BizTalk Server group does not provide a load-balancing mechanism for either receiving inbound documents or for facilitating
document submission by using Distributed Component Object Model (DCOM). It does provide multiple-server work processing.
Once a document is sent to the Shared Queue database, any server in the group can process, serialize, and send it out. This
functionality allows for one server in a group to send a document that another server processes.

An organization can have multiple server groups for the following reasons:

Group similar transport services (HTTP or File)

Enhanced security

Trading partner categorization

You can also use server groups to avoid duplicating organization, channel, and messaging port configurations. Server groups
share databases. Configuration information for the organization, group, channel, and messaging port is stored in the BizTalk
Messaging Management database. Therefore, two or more BizTalk Server groups can share the same BizTalk Messaging
Management database.

 Note

If two or more BizTalk Server groups share the same BizTalk Messaging Management database, each group must have its
own Shared Queue, Tracking, and Orchestration Persistence databases, which are shared by all members of the group.

Recommended solutions for scaling BizTalk Server horizontally
To optimize BizTalk Server performance:

Separate transport services and receive functions

By separating transport services and receive functions for BizTalk Server groups, you can achieve higher performance. The level of
performance you can achieve depends on the number of documents being processed and the complexity of the data translation.
BizTalk Server provides separate thread pools for receiving and processing data. Separating transport services and receive
functions reduces context switching by eliminating the need for the server to alternate between send and receive operations.

All servers process work-items by default, which involves picking up work from the Shared Queue database, processing it, and
then sending it out using the transport service the channel is configured to use (process outbound work). This process degrades
the overall performance of the CPU because context switching must occur. Provided you use two or more servers, you can
eliminate this degradation by enabling at least one server to function as a receive service. To configure a server to act as a receive
service, you can use BizTalk Server Administration to disable the Participate in work-item processing functionality and create a
new receive function for the server. For more information about disabling the Participate in work-item processing
functionality, see Configure a server in a group. For more information about setting up a File receive function,
see Add a File receive function. For more information about setting up a Message Queuing receive function,
see Add a Message Queuing receive function.

 Note

For Message Queuing, only transacted reads can be done from local queues, so only one server can read from that queue.

BizTalk Server receives documents if one of the following conditions exist:

A receive function has been configured on the same server as BizTalk Server.

SMTP or HTTP process has been configured to call the Submit method on the server where BizTalk Server has been
installed.

Prioritize parsers

By prioritizing parsers, you can optimize the performance of BizTalk Server. BizTalk Server provides four data parsers:

XML

EDIFACT

X12

Flat file

When BizTalk Server receives a document, it attempts to parse the document in the order in the previous list. By moving the most
commonly used parsers to the top of the list, you can improve the performance of BizTalk Server. For more information about
configuring the parser order, see Configure the parse order for a server group.

Because the parser-order functionality is a server group setting, it is recommended that you create a separate group for each data
type (XML, EDIFACT, X12, flat file) that is processed. Then, specify the appropriate parser priorities set for each group.

The following topic is covered in this section:

Component Load Balancing

Component Load Balancing
Component load balancing (CLB) is a feature of Microsoft Application Center 2000. To use CLB, Application Center 2000 must be
installed on the same server as Microsoft BizTalk Server 2000. CLB enables organizations to load-balance the
BizTalk.Interchange.1 component in the COM+ Services manager. CLB is a load-balancing mechanism for COM components. In
a BizTalk Server environment, CLB provides the ability for an HTTP transport to use the Submit method to call a cluster of BizTalk
Servers instead of to a single server (to the sending application, using the Submit method to call the cluster still appears as a
submission to a node). A cluster is a collection of servers that act as a single server. For example, if you use a cluster of HTTP
servers, a single submission can go to any of the three servers. Without CLB, the HTTP transport services must be configured to
send to one of the three servers. In the latter scenario, if the server that an HTTP service was configured to send to failed, the HTTP
transport service would need to be reconfigured to send to a different server in the BizTalk Server group.

 Important

Do not replicate the default XLANG Scheduler application or any COM+ applications that host XLANG schedules. If
component load balancing is used, these COM+ applications must be installed on each server. You can replicate COM
components that are bound to XLANG schedules.

Scale Out the Databases
To horizontally scale the databases, install each database on its own server. In high-volume transaction environments, installing a
database on a unique server enables the server's CPU, disk I/O, and memory resources to be allocated to the appropriate
database.

Recommended optimization for horizontally scaling the databases
To optimize database performance of BizTalk Server:

Install each database on a separate server with 933 MHz, or greater, CPU. Do not install any of the databases on the same
server as BizTalk Server 2000.

Install any COM+ application that hosts XLANG schedules on its own server with 933 MHz, or greater, CPU.

Multiple 100 Mbps (megabits per second), or greater, network cards connected to 100 mb/s switch ports to increase
network I/O throughput.

For an organization that is processing a small number of documents, use a database that can be upgraded easily. If
processing needs increase, move the Shared Queue database, Tracking database, and Orchestration Persistence database to
their own servers. However, moving the BizTalk Messaging Management database is more difficult. It is highly
recommended that the server on which the BizTalk Messaging Management database is stored contain suitable disk space
and memory available to cache the configuration as document processing needs increase.

For the Tracking database, install fast network hardware to compensate for the high volume of uncompressed data that is
exchanged between BizTalk Server and the database.

 Note

There is a size limit for tracking interchanges and documents, which if exceeded greatly affects the performance of
BizTalk Server. For more information about the size limit, see Interchange and document size limit.

Related Topic

Scaling BizTalk Server

Scale Out the Transport Services
BizTalk Server supports four transport services. Each of these transport service can be scaled horizontally:

HTTP

File

SMTP

Message Queuing

The following topics are covered in this section:

HTTP/HTTPS (Scale Out)

File (Scale Out)

SMTP (Scale Out)

Message Queuing (Scale Out)

HTTP/HTTPS (Scale Out)
Receive
The HTTP/HTTPS receive function can be horizontally scaled by using a Web cluster. For example, a trading partner can send a
document to one address, but the submission can be routed to any server in the cluster. Web clusters are a feature of the network
load-balancing (NLB) service included with Microsoft Windows 2000 Advanced Server. For more information about configuring
NLB, see Windows 2000 Advanced Server Help. To improve the performance of BizTalk Server, you can configure a Web cluster to
place received documents into a file directory or a message queue, or you can configure it to send documents directly to BizTalk
Server through one of the following two methods:

By statically configuring each server to send documents to a BizTalk Server.

By configuring each server to send documents to a Web cluster of BizTalk Servers (servers that are members of the same
group) by using the Microsoft Application Center 2000 component load balancing (CLB) functionality.

 Important

Do not replicate the default XLANG Scheduler application or any COM+ applications that host XLANG schedules. If
component load balancing is used, these COM+ applications must be installed on each server. You can replicate
COM components that are bound to XLANG schedules.

Send
Horizontally scaling the send HTTP/HTTPS transport service is an inherent feature of using multiple servers in a group that are
configured to participate in work-item processing. The HTTP/HTTPS send functionality cannot be separated from the BizTalk
Server that processes documents because sending functionality is used on every server in the group that is configured to
participate in work-item processing.

Recommended optimization for HTTP/HTTPS
To optimize the HTTP/HTTPS transport service, which enhances the performance of BizTalk Server:

Dedicate the receive HTTP/HTTPS transport to a separate server from the BizTalk Services (in high-volume transaction
environments). In addition, have the HTTP/HTTPS server send documents to a File or Message Queue receive function, or
call the Submit method on the BizTalk Server Interchange object using DCOM. Dedicating the receive HTTP/HTTPS
transport or having the HTTP/HTTPS server send documents to a receive function introduces network latency; however,
configuring the HTTP/HTTPS transport server and the BizTalk Server separately enables you to accommodate their unique
architectures and optimize each. In addition, by separating these servers, you can maintain optimal performance on the
BizTalk Server because it is not affected by the cost of using SSL for encryption/decryption.

Create a load-balanced cluster of HTTP/HTTPS transport servers. This will further enhance the performance of the receive
HTTP/HTTPS transport because it provides horizontal scaling redundancy. For more information about using the network
load-balancing service to create a Web cluster, see Windows 2000 Advanced Server Help.

Forecast how many documents need to be processed by servers in a group configured to participate in work-item
processing. Then determine how many channels use messaging ports that require the send HTTP/HTTPS transport.
Combine the channels that use the send HTTP/HTTPS transport into a single group. This will allow all servers in the group
configured to participate in work-item processing to serialize documents that use any transport.

Apply best practices when using ASP pages with the receive or send HTTP/HTTPS service. For more information about
optimizing ASP pages and Internet Information Services, go to the Internet Information Services Help Web site
(localhost/iisHelp). Then, click Active Server Pages Guide.

Use Message Queuing or a File transport services on a local system with a receive function, rather than calling the Submit
method to poll documents into BizTalk Server.

http://localhost/iisHelp

File (Scale Out)
Receive
The File receive function can be separated from the servers or can reside on the server. Although separating the File receive
function to a separate server can minimize performance impact to the disk I/O, network latency will impact performance when
attempting to retrieve the file.

Send
Scaling horizontally is accomplished with multiple servers in the group processing documents and then sending them to File
transport service. Performance will depend on whether or not BizTalk Server is used as the receive function, or whether or not
BizTalk Server is configure as a separate server as the receive function.

Recommended optimization for a File receive function or File transport service
To optimize a File receive function or File transport service, which will enhance the performance of BizTalk Server:

Store the File receive function on a separate server from BizTalk Server. This solution; however, does not address the
performance impact resulting from network latency, which occurs when attempting to retrieve the file. Store the File receive
function on a separate server from BizTalk Server will also reduce the disk I/O impact on the performance of BizTalk Server.
Additionally, this separation of servers will keep unknown applications from placing files on BizTalk Server, or making
requests, which can maximize server resources and cause poor performance.

Configure a receive function to run on every server in the group polling the same File receive function to ensure that all
servers in the group are retrieving documents for processing. File receive services are configured by default to run on a
server within a group. Therefore, if you have five servers in a group and you configure a File receive function to run on one
server in the group, when a File receive function is polled at \\receiveserver\receivelocation, only the one server of the five
retrieves files for processing. This limits the number of document-processing servers to one for the entire group. The
remaining four servers are not capable of retrieving files from the receive function to parse.

Configure a File receive function on a separate server from BizTalk Server. This will keep unknown applications from
retrieving files from BizTalk Server. Because sending files and receiving files are different processes, all servers in the group
that are configured to participate in work-item processing send out files. Horizontal scalability is based only on the number
of servers in the group that are configured to participate in work-item processing.

SMTP (Scale Out)
Receive
SMTP can receive documents from BizTalk Server, but it cannot send documents to BizTalk Server. To send a document to BizTalk
Server, SMTP must be able to invoke an event-based mechanism to poll the received message and send it to a file share or a
message queue, or send the document using the BizTalk Server Interchange object. The SMTP servers, which are capable of
providing these event-based mechanisms (Microsoft Exchange Server or a third-party messaging server), typically use a high
volume of hardware resources. Therefore, adding this functionality to a server will degrade its ability to process documents.

Send
Lightweight SMTP transport services that do not have event-based mechanisms can be used for sending documents using SMTP.
The SMTP transport server sending the document simply acts as a relay agent. The outbound SMTP server is configured at the
group level, not at the server level. Therefore, if the SMTP transport exists on one server in a group, the server containing the
SMTP transport service would use it to send outbound documents. All other servers in the group would use the same server for
SMTP outbound.

Recommended optimization for SMTP
To optimize the SMTP, which will enhance the performance of BizTalk Server:

Configure the SMTP transport to execute on a separate server from the BizTalk Services (for send and receive functionality).
In most cases, an organization will have an SMTP server on its network that can be used for send and receive functionality.

Message Queuing (Scale Out)
Receive
You must decide whether to have the Message Queuing receive function on the same server as BizTalk Server, or to install it on a
separate server. If you are using a transacted queue, the Message Queuing receive function must reside on the same server.
However, if you are not using a transacted queue, the Message Queuing receive function can reside on a separate server. You
must decide whether to incur the affects on performance by having the disk I/O on the local BizTalk Server or the network latency
of the multiple server communication. In the latter example, the need for disk I/O would still exist, but it would exist only on the
remote server instead of the local server. For more information about how to define hardware requirements for the Message
Queuing service, see "Selecting Message Queuing server hardware" in Windows 2000 Server Help.

Send
Sending documents by using Message Queuing creates the same security and performance issues as receiving documents by
using Message Queuing.

Recommended optimization for Message Queuing
To optimize performance for Message Queuing, which will enhance the performance of BizTalk Server:

Message Queuing is database-intensive if journaling is used. Ensure that the standard rules for optimizing databases are
applied when setting up Message Queuing transport services. For example, separate data and logs and use multiple disks
and controllers to maximize throughput.

Performance Optimization
To meet your transaction requirements and enhance performance, you must optimize BizTalk Server 2000. In addition to BizTalk
Server, you can optimize Microsoft Windows 2000 and database interactions to enhance performance. After configuring your
system, test it, and then evaluate the results to determine if your initial configuration can meet your transaction requirements. It is
likely that you will need to reconfigure your architecture to achieve optimal performance. After each reconfiguration, test it again
and evaluate the results. Once you have achieved your desired results, initiate a maintenance plan, because server performance
changes over time, and the quantity and type of transactions that your organization handles may change.

The following topics are covered in this section:

General Performance Recommendations

Architecture Design, Review and Testing

Maintaining Performance

General Performance Recommendations
This section provides general recommendations for optimizing system settings, and includes topics for optimizing
BizTalk Server 2000 settings, to obtain increased performance. For example:

Optimize Microsoft Windows 2000 settings. Apply best practices, such as not running unnecessary services or protocols, to
improve Microsoft Windows 2000 performance. Many techniques used to optimize Windows 2000 also can be used to
optimize BizTalk Server. For more information about optimizing Microsoft Windows 2000 settings, see Best Practices in
Windows 2000 Help.

Maintain fast, reliable network connectivity between transport services, BizTalk Services (BizTalk Orchestration Services and
BizTalk Messaging Services), and the databases (100 megabits per second or higher Ethernet). To optimize network
throughput, use multiple adapters in each server, with a unique switch port for each, with inbound and outbound
transactions separated between the network interface cards (NICs). When used in conjunction with Microsoft Windows
2000 NLB or Microsoft Application Center 2000 component load balancing (CLB) (IInterchange or IPipelineComponent),
performance is significantly increased.

 Important

Do not replicate the default XLANG Scheduler application or any COM+ applications that host XLANG schedules. If
CLB is used, these COM+ applications must be installed on each server. You can replicate COM components that are
bound to XLANG schedules.

The following topics are covered in this section:

Optimizing BizTalk Orchestration Services

Optimizing BizTalk Messaging Services

Related Topic

Scaling BizTalk Server

Optimizing BizTalk Orchestration Services
Using BizTalk Orchestration Services, you can optimize XLANG schedules and the contents contained within schedules. By
understanding how schedules use memory and how the structure of a business-process flow affects performance, you can design
schedules that improve the performance of BizTalk Orchestration Services. Implementation technologies that are supported by
BizTalk Orchestration Services include BizTalk Messaging Services, COM components, Message Queuing Services, and Windows
Script Components. By optimizing these components and services, you can further enhance the performance of BizTalk
Orchestration Services.

The following topics are covered in this section:

Optimizing XLANG Schedules

Optimizing the Contents of XLANG Schedules

Optimizing XLANG Schedules
An XLANG schedule can contain a large number of internal business processes. The business processes may include
short-lived transactions or long-running transactions. While BizTalk Server does not control the contents of these processes, it
does manage the flow of information through these processes within an XLANG schedule. When designing an XLANG schedule,
whether it consists of several short-lived transactions or long-running transactions, consider the following:

An XLANG schedule instance runs in memory each time it is invoked.

Multiple XLANG schedules may run on the same server.

Several different XLANG schedules may be running concurrently, with multiple XLANG schedule instances.

The Orchestration Persistence database provides a mechanism, called dehydration, to control the memory that is used by running
XLANG schedules. Dehydration occurs if an XLANG schedule instance is waiting for a message, and no other activity is occurring
within the XLANG schedule. At this point, the XLANG Scheduler Engine dehydrates the XLANG schedule instance to maximize
performance. Dehydrating an XLANG schedule instance consists of persisting all instance-specific states to a database and
removing the instance from memory. Only a small portion of the XLANG schedule instance remains in memory within the XLANG
Scheduler Engine. When a message arrives at a port for the XLANG schedule instance, the instance is rehydrated. Rehydrating an
XLANG schedule instance consists of restoring the instance from the database to memory.

An XLANG schedule instance remains dehydrated until it is either rehydrated or explicitly terminated by an administrator. This
enables a business process to run reliably for an extended time period. For more information about configuring hydration
settings, see Dehydration and Rehydration. While dehydration and rehydration saves memory, it does affect performance.
Because dehydration and rehydration requires that data be read and written to the Orchestration Persistence database, network
latency is incurred.

 Important

To dramatically increase the performance of BizTalk Orchestration Services, in Windows Explorer, browse to Program
Files\Common Files\System\ado, and then double-click adofre15.reg. In the confirmation dialog box, click Yes, and then
click OK. This procedure changes the ADO threading model from "Apartment threaded" to "Both" and may affect other
applications that use ADO.

Optimizing the Contents of XLANG Schedules
An XLANG schedule describes the business process and the binding of that process to implementation technologies. The
performance of an XLANG schedule often mirrors the performance level of the actions contained within it. There are a number of
relevant issues for optimizing the contents of an XLANG schedule. Some of these are things specific to an XLANG schedule, while
others are applicable to authoring any distributed application:

Reset the dehydration value to conserve memory for XLANG schedules. The default wait time is 0 seconds. You can
change this time. Any time less than or equal to 180 seconds causes the XLANG schedule to never dehydrate. Any time
greater than 180 seconds causes the XLANG schedule to dehydrate immediately. For more information about wait times
and XLANG schedule dehydration, see Dehydration and Rehydration and Synchronous and Asynchronous Communication.

Use persistent components. Persistent components, such as IPersistStream or IpersistStreamInit, enable the
XLANG Scheduler Engine to dehydrate XLANG schedules flexibly.

Run the COM objects on the same server as the Orchestration Persistence database. This ensures that the XLANG
schedule does not incur the network latency.

Run COM+ packages in-process to achieve optimal performance. Although running a COM+ package in-process can
affect the stability of the COM+ application (For example, if one component within the application fails, the entire
application can fail.), it is significantly faster than running the application out-of-process. To avoid this potential instability,
be sure to heavily test the components within the application for stability prior to deploying the application to a production
environment.

Batch work into a single transaction. Persisting the state of an XLANG schedule instance at the beginning and end of a
transaction greatly impacts the computer's resources. However, batching work items in a single transaction greatly reduces
this impact to performance. In addition, an XLANG schedule cannot dehydrate in the middle of a Microsoft Distributed
Transaction Coordinator (MSDTC) transaction. MSDTC transactions are quick, but they degrade performance. Group
multiple actions within a single MSDTC transaction, provided the actions can be completed quickly.

Long-running transactions should be accomplished asynchronously and XLANG schedules should be designed
to complete COM calls quickly. Results from asynchronous work can be communicated back to the XLANG schedule
instance through message queues, or through COM calls. With COM, the name of a "response" port can be passed in the
form of a moniker that will be valid even with computer restarts.

Related Topic

Moniker Syntax

Optimizing BizTalk Messaging Services
To optimize BizTalk Messaging Services:

Send documents to a server group. BizTalk Server groups are used to distribute work across multiple servers. To send data
to BizTalk Server, use the following methods:

Configure a receive function (such as Message Queuing or File).

Call the Submit method on the BizTalk Server Interchange object.

Using receive functions provides better performance than using the Submit method to call the Interchange object because
the receive functions run within BizTalk Services and can cache the internal state of objects. Whereas, the Submit method
runs out-of-process and has to rebuild its internal state for each call.

Calling the Interchange object for submission rather than using a receive function uses more resources because the
Interchange object needs to be created outside the BizTalk Server process. However, if the Interchange object is used,
there are two methods available for sending data to the servers in a group:

Statically configure portions of the total submissions to specific servers within the group. Although this does not
provide much fault tolerance if the server, which has a transport service, is statically mapped to a BizTalk Server that
has failed.

Use the Microsoft Application Center 2000 component load-balancing (CLB) functionality to improve performance.
BizTalk Server groups do not provide load balancing for the submission of documents. In addition to load balancing,
CLB provides fault tolerance. For more information about CLB, see Component Load Balancing.

 Important

Do not replicate the default XLANG Scheduler application or any COM+ applications that host XLANG schedules. If
component load balancing is used, these COM+ applications must be installed on each server. You can replicate
COM components that are bound to XLANG schedules.

The following topics are covered in this section:

Creating and Optimizing Specifications

Creating and Optimizing Maps

Optimizing BizTalk Server Group Properties

Optimizing Server Properties

Optimizing Registry Settings

Optimizing Encryption

Optimizing Communication

Configuring Firewalls

Creating and Optimizing Specifications
If the default global tracking settings are used, BizTalk Server 2000 can support a 20-MB XML Unicode format document. For
other file types, such as an ANSI flat-file, BizTalk Server does not support a 20-MB file size because any file that is not XML has to
be converted to XML. The conversion process adds XML tags to the data, thus increasing the size of the document that BizTalk
Server needs to process. Other file types must be less than 20 MB to maintain optimal performance by BizTalk Server. The
amount of memory required to process a document that has been converted to XML depends on the original structure of the
document. If global tracking settings are enabled, XML Unicode format documents that are larger than 20-MB can be processed
without greatly impacting BizTalk Server performance.

 Note

Exceeding the size limit for tracking interchanges will impact the performance of BizTalk Server. For more information about
the size limit, see Interchange and document size limit. Performance is also affected by document logging. For more
information about document logging, see Set document logging properties.

When designing specifications, you can configure validation rules within a specification. For example, you can specify that a field
contain a particular data type (such as a string) or more complex rules, (such as requiring a field to be validated against a list of 80
values). The latter requires that the data be checked against 80 values and, if it does not conform to one of them, the specification
fails validation. Specification validation in BizTalk Server is enabled by default; it affects performance but ensures the validity of
the data being sent or received. You can disable validation, which increases performance and might not adversely affect the
validity of data because BizTalk Server has several other mechanisms for validating data. For example, if a you have a map that
requires certain data types and values and specification validation is disabled, the data successfully passes the parsing phase but
fails during the serializing phase when the map is applied. If other mechanisms (such as maps that rely on valid data) are
available, specification validation can be disabled to avoid the potential performance degradation caused by the validation
process. Alternatively, you might choose to do so because you have agreed to data standards with business partners and have
validated these transactions. You might also choose to do so because you have complete control of how the data is sent (such as
application-to-application transactions).

The following registry setting can be used to disable validation:

NoValidation. If specification validation is not required (documents are not validated against a specification for settings
such as minimum/maximum values, data types, and/or required values), set this to a non-zero value and the data will not be
validated. This might help with performance, but may result in non-valid data being sent. Changing the specification
validation to a non-zero value may be the right option for servers that are receiving documents for which the organization
has control over the structure.

The registry setting is accomplished at the individual server level. When specification validation is on, every document processed
by the server is validated against its specification. This performs more slowly than if no specification validation were used.

Recommended solutions for optimizing document size and specifications
To optimize performance of BizTalk Server:

Do not include more fields and/or attributes in specifications than necessary. Increased fields and attributes equate to
increased memory requirements for BizTalk Server. A larger specification requires a proportional increase in memory. For
example, the EDI specifications included with BizTalk Server are compliant with EDI standards. Typically, most organizations
that use EDI specifications only require approximately ten percent of the entire specification. So, if an organization and its
trading partner use only ten percent of the entire specification, the unnecessary records and fields can be deleted and the
modified specification can be used for transactions.

If specification validation is enabled, do not specify validation rules in specifications for fields that will contain valid data. For
example, if a field contains a number but will be processed only as a string (a phone number, for example), do not specify
that it must be numeric. In this situation it is not necessary to specify a data type because the default data type is string.
Therefore the data type field could be left blank. Specifying acceptable values for a field takes longer to validate than a
simple data type validation.

Creating and Optimizing Maps
Translating data, as part of a transaction, may reduce the performance of BizTalk Server 2000. Mapping specifications can be
CPU-intensive, which can reduce BizTalk Server's ability to process the overall transaction. The level to which BizTalk Server is
affected depends largely on the complexity of the map being used for translation. For example, mapping a field called productID
in the source specification to a field called itemID in the destination specification is not as intensive as performing a complex
mathematical operation on the data being translated.

Recommended solutions for designing maps

Use functoids only when needed. Functoids use script, which causes BizTalk Server to load a scripting engine. This may
degrade performance as opposed to native XML transformations.

Use the Database Lookup functoid only when needed. BizTalk Server must establish a database connection, query for data,
populate a recordset, and close the connection each time this functoid is used. This may degrade performance of BizTalk
Server.

Avoid invoking COM objects within functoid scripts and using custom functoids. Both of these techniques cause BizTalk
Server to instantiate an instance of a COM object. This affects the performance of the overall operation. In addition, the
performance of instantiating COM objects is affected by the answers to the following questions:

Is it in-process or out-of-process?

Is the object local or remote?

How well is the object written?

Is it transactional?
Analyze each map to determine how to achieve optimal performance. For example, two different techniques can be used to
concatenate two source fields together and have the resultant value placed in two different destination fields. The first
concatenation technique would be to use one concatenation functoid and map its output to two places. The second
concatenation technique would be to use two functoids each with a single output link to a destination source field. The first
technique is slightly more efficient due to the fact that the script, which runs as part of the functoid, is only called once.
Through testing, you can determine which techniques result in the best performance.

Optimizing BizTalk Server Group Properties
In BizTalk Server Administration, you can specify the following properties in the BizTalk Server Group Properties dialog box:

Messaging Management object cache refresh interval (seconds). This field can be set to a maximum of 300 seconds.
BizTalk Server 2000 caches configurations (such as channels, messaging ports, envelopes, and document definitions) in
memory to avoid calling the database each time. If these objects are not regularly changed, set this value to 300 to reduce
the number of times data is written to and read from the database. Because BizTalk Server refreshes management objects
every five minutes, the service must be restarted for the change to take effect immediately.

Disable document tracking. The Tracking tab can be used to enable or disable document tracking. If tracking is not used,
disable this field to minimize the number of read/writes to the database for a single transaction. If this field is enabled,
BizTalk Server connects to the database and logs data. Do not disable this field unless tracking is not needed. However, it is
highly recommended that document tracking remain enabled. For more information about setting tracking properties,
see Configure tracking properties for a server group.

 Note

A size limit exists for tracking interchanges. If the size limit is exceeded, the performance of BizTalk Server will be
affected. For more information about the size limit, see Interchange and document size limit. Performance is also
affected by document logging. For more information about document logging,
see Set document logging properties.

Arrange the server call sequence. BizTalk Server parsers can be prioritized if a group is predominately receiving a
particular document type. BizTalk Server has four parsers that it uses to parse data: XML, EDIFACT, X12, and Flat File. When
BizTalk Server receives a document, it tries to parse it using these parsers in the order in which they are listed. If an
organization primarily receives a particular document type, the order of the parsers should be changed so that the first one
matches the type of documents being received.

Related Topic

Scale Out BizTalk Messaging Services

Optimizing Server Properties
In BizTalk Server Administration, you can set the following properties in the <Server> Properties dialog box:

Create multiple instances of receive functions. This will enable BizTalk Server to poll multiple receive functions for
documents that are processed. To balance the load of documents across several computers, locate the receive functions on
separate computers. Each polling location must be unique and must have a separate receive function. To avoid overloading
any individual receive function, the business application that sends documents must evenly distribute the documents to all
the polling locations.

Maximum number of receive function threads allowed. You can specify how many receive function worker threads
per processor you want for a receive function. Setting this too low can cause a slow down in BizTalk Server because it uses
I/O completion ports. Setting this too high should not have serious effects, but it might cause performance degradation. You
can adjust this number to find the optimal value for their setup. The recommended value for the Maximum number of
receive function threads allowed, is 4.

Maximum number of worker threads allowed. You can specify the number of worker threads per processor for the
processing side. By appropriately adjusting the number of worker threads, you can improve performance. In BizTalk
Server Administration, right-click a server in the console tree and click Properties. Change the default value in the
Maximum number of worker threads per processor allowed box. The default value is 4. The recommended value is
from 10 to 16, depending on the deployment.

Optimizing Registry Settings
You can optimize the registry settings to improve BizTalk Server performance. All keys should be added as DWORD values to
HKLM\System\Current Control Set\Services\BTSSVC. To improve performance, you can implement the following registry setting
adjustments:

NoValidation. Use this registry key to disable specification validation. If specification validation is not required (documents
are not validated against a specification for minimum/maximum values, data types, or required values, for example), set this
to a non-zero value and the data will not be validated. While this may improve performance, it may result in non-valid data
being sent. This setting would be appropriate for servers that are receiving documents for which the organization controls
the structure.

ParserRefreshInterval. By default this is set to 60,000 (60 seconds). This value indicates how often BizTalk Server should
check the database to see if a new parser has been added (this is the only group-level property that is refreshed while the
server is running). If no new parsers will be added, set this value to 0 and BizTalk Server will not check the database. This
value is also used to verify if new parsers have been added to the Tracking database group settings or, if the settings have
been altered.

CacheSize. Use this registry key to indicate how large the BizTalk Server management object cache is allowed to grow. The
default value for this is 20. Therefore, as soon as the BizTalk Server object cache exceeds 20 channels, messaging ports,
envelopes, or document definitions, BizTalk Server must delete some items from memory. If a server has a high volume of
memory, this value can be set higher (above 20) and BizTalk Server will keep more in memory. This does not affect the
refresh interval. BizTalk Server deletes the cached objects and reloads them when they have expired.

BatchSize. Use this value only with the Message Queue receive function. By default the BatchSize is set to 20. To improve
performance, BizTalk Server reads up to 20 items at a time from the queue and sends all 20 within one transaction.
Reducing the number of times data is written to a database will greatly improve performance. If a deadlock occurs, and
BizTalk Server ends the transaction, it must resubmit the items. BizTalk Server does not lose the documents. Values that
exceed 20 have not been tested. Do not set this value to 0.

The following topic is covered in this section:

Improve processing performance

Improve processing performance
1. Click Start, click Run, type regedit and then type OK.

2. In the Registry Editor dialog box, click the expand indicator (+) for the HKEY_LOCAL_MACHINE node; expand SYSTEM,
CurrentControlSet, and Services, and then click BTSSvc.

3. Right-click in the details pane, point to New, and then click DWORD Value.

4. Type NoValidation and press ENTER twice.

The Edit DWORD Value dialog box appears.

5. In the Value data box, type any nonzero value, such as 1, and then click OK. The default value is 0 (validation).

6. Right-click in the details pane, point to New, and then click DWORD Value.

7. Type ParserRefreshInterval and press ENTER.

8. Right-click in the details pane, point to New, and then click DWORD Value.

9. Type CacheSize and press ENTER twice.

The Edit DWORD Value dialog box appears.

10. In the Value data box, type the number of channels, messaging ports, envelopes, and document definitions that you expect
to or do have in memory.

11. Right-click in the details pane, point to New, and then click DWORD Value.

12. Type BatchSize and press ENTER twice.

The Edit DWORD Value dialog box appears.

13. In the Value data box, type a value for the number of items you want to process as a batch.

Optimizing Encryption
Using encryption or other security mechanisms may decrease the performance of BizTalk Server. When using encryption, the
following is recommended:

Increase CPU clock rating (MHz). Increasing the number of processors will increase performance.

Increase the number of servers.

Use a faster CPU.

Separate BizTalk Server functionality. For example, send and receive functions can be placed on separate servers. The
HTTPS transport service can also be placed on a separate server.

Use an existing virtual private network (VPN) if File or Message Queuing is used. If a VPN is available, data transfer
is secure. It is not required to secure BizTalk Server transactions if all data transfer conducted with trading partners is
secured through a VPN.

Purchase encryption hardware accelerator cards. Accelerator cards provide dedicated processors that may eliminate
the performance impact of encryption and decryption on a server's CPU. Accelerator cards are less expensive than adding
multiple CPUs.

Optimizing Communication
BizTalk Server provides both synchronous communication and asynchronous communication integration mechanisms.
BizTalk Server 2000 can accept documents through COM integration or through server receive functions (File or Message
Queuing).

Typically, when a document is sent to BizTalk Server, it is placed in the Shared Queue database. BizTalk Server polls the database
and then processes the document. This process is an asynchronous communication mechanism. It uses the Microsoft SQL Server
database as a queue for check-pointing documents that are waiting to be processed. This extra layer of abstraction allows the
transport service to send documents to BizTalk Server independent of the transport mechanism used to deliver the documents.

A synchronous communication interchange bypasses all queues and processes all the components required by the
messaging port on the calling thread. For synchronous communication protocols, an optional response document is returned, if
available. This method is valid only for a single channel match and only for a single messaging port (not distribution lists). If the
parameters that are set cause multiple channels to match, a synchronous communication submission returns an error which
indicates that multiple channel matches are not allowed for a synchronous communication submission. This method can be used
only for single document interchanges. If the submission contains multiple documents, an error is returned for synchronous
submissions, which indicates that multiple document submissions are not allowed. This method does not support groups.
Synchronous communication is not scalable. Synchronous communication uses a single thread to process a transaction and
cannot be load-balanced with other BizTalk Servers in the group because the entire process must run on the server that sends
documents.

The synchronous communication mechanism sends documents directly to BizTalk Server for immediate processing. BizTalk
Server blocks the return to the caller of the IInterchange::SubmitSync interface until processing is completed, whereby a
response document is delivered to the caller. This mechanism is available only to the COM-based integration method.

Recommended solutions for optimizing synchronous and asynchronous communication
To optimize performance of BizTalk Server:

To achieve optimal performance and scalability, asynchronous communication is highly recommended. Asynchronous
communication is highly scalable and provides a high-level of throughput. Synchronous communication calls provide a
near-immediate response to the caller under a high volume of transactions because each SubmitSync call runs under a
separate thread. However, if there are many calls at once, this leads to many threads running on a single server thereby
degrading the overall performance of BizTalk Server. Microsoft Windows 2000 is designed to context switch between all the
threads, thus degrading the overall performance of BizTalk Server. Additionally, the following criteria cause a synchronous
communication submission to fail but do not cause an asynchronous communication submission to fail:

If the transaction criteria matches more than one channel.

If the interchange contains multiple documents.
Self-routing documents may degrade the performance of BizTalk Server.

Configuring Firewalls
Firewalls help secure internal networks, but introduce latency and may potentially create a single point of failure. Even if a load-
balancing mechanism is used to alleviate the single point of failure, a firewall can reduce a network's performance.

When configuring a BizTalk Server 2000 environment with a firewall, two primary configurations are recommended:

Configuration 1. Install servers on an internal corporate network and some, which communicate to trading partners, on a
corporate demilitarized zone (DMZ). A company that wants to host its own Internet services without sacrificing
unauthorized access to its private network uses a DMZ. The DMZ is the boundary between the Internet and an internal
network's line of defense, usually a combination of firewalls and bastion hosts, which are gateways between inside
networks and outside networks. The servers in the DMZ should use local transport services, such as HTTP, Message Queue,
or SMTP. In this environment, all inbound and/or outbound transactions will pass through a firewall. The servers in the DMZ
send documents through another firewall to Microsoft SQL Server. This configuration will allow servers, such as BizTalk
Server and HTTP in the DMZ, to communicate with Microsoft SQL Server through an internal firewall.

Configuration 2. Install the servers on a corporate network. Trading partners exchanging documents through the Internet
send their data using SMTP/HTTP servers in the DMZ (first firewall of protection). These servers then send the data to the
servers residing on the corporate network through a second firewall.

Configuration 1 and 2 will impact performance. To avoid a noticeable degradation in performance, you can construct the firewall
to accommodate a typical number of transactions between an organization and its trading partners.

Architecture Design, Review and Testing
The key components of BizTalk Server 2000 include the BizTalk Services, the BizTalk Server databases, and the transport services.
Poor configuration of any component can degrade the performance of the entire system.

This section provides comprehensive detail about defining, testing, and refining the architecture of BizTalk Server to optimize
performance.

The following topics are covered in this section:

Architectural Design

Architecture Testing and Analysis

Related Topic

Scaling BizTalk Server

Architectural Design
To accurately determine the number of the documents that can be processed by BizTalk Server 2000, you must first consider if
the following are in use:

Specification validation

Application Integration Components

Transport services

Encryption

BizTalk Orchestration Services

Firewalls

Maps

You must also consider the size of the documents being processed, as well as the current server configuration.

Performance testing is successful when accomplished with controlled processes. It is important to start with a few variables and
then slowly add additional variables. When performance begins to degrade, you can easily identify the cause of degradation.

The following topics are covered in this section:

Develop Transaction Components

Identify Transports

Initial Architecture

Related Topics

Administering Servers and Applications

BizTalk Orchestration Services

Creating Application Integration Components

Creating Specifications

Mapping Data

Run XLANG Schedules

Use BizTalk Orchestration Designer

Develop Transaction Components
To develop transaction components, you must design transactions and set transaction properties for business processes. For
more information about designing transactions and setting transaction properties, see:

Designing Business Processes

Designing Transactions

Transaction Properties for an XLANG Schedule Drawing

For information about techniques that can help you to determine the most efficient transaction configuration,
see Evaluating the Performance of a Configuration.

To develop transaction components, you must first determine the transaction types that the components process. In an
application-to-application and/or business-to-business environment, you must determine transaction needs and transaction
profiles. For example, you might have a scenario in which a single transaction receives a custom XML purchase order and maps it
to a standard EDI purchase order, which is later processed by a custom internal application.

This scenario requires that you create a specification for the XML purchase order and a specification for the EDI purchase order. To
create these specifications, use BizTalk Editor, which includes XML and EDI templates. Because the templates include all potential
records and fields, you can remove unnecessary records and fields, and then save the templates as the final specifications. During
design time, any fields in a specification that require validation decrease the performance of BizTalk Server 2000. For more
information about optimizing specifications, see Creating and Optimizing Specifications.

In addition to creating a specification, you must map data. Because there are a number of ways to translate data in map files (by
using XSLT translations, functoids, or a custom script), all of which affect performance, it is important to test different translation
methods. Testing one method of data translation over another helps to reduce performance impacts to BizTalk Server as a result
of mapping. For more information, see Creating and Optimizing Maps.

Related Topics

Designing Business Processes

Designing Transactions

Identify Transports

Transaction Properties for an XLANG Schedule Drawing

Identify Transports
To determine how to send and receive data, consider if the following are in use:

Business-to-business transactions

Application-to-application transactions

Transport services (send and receive)

Encryption

HTTPS or S/MIME

Consider whether different transports are needed based on the type of transactions you are processing. Determine whether
unique transports are required for business-to-business and application-to-application transactions or if the same transports can
be used for these two types of transactions.

Initial Architecture
To successfully plan an initial architecture, consider the following:

One server with Microsoft SQL Server and BizTalk Server can be used to process a low volume of transactions.

Installing BizTalk Server and SQL Server on separate machines can be used for moderate volume of transactions.

An existing SMTP transport service can be used to send and receive data. Placing this server on a separate server is
recommended for this transport type.

HTTP, Message Queuing, or File transport services can be used to write data to disk drives on other servers than the local
BizTalk Server, which can improve BizTalk Server performance.

An initial architecture should contain as many separate servers as possible. For example, within a company, one person may
administer SMTP servers and Message Queuing, whereas another person may handle security policies. The goal of the initial
architecture is to determine how many servers are needed and the hardware required by those servers to process the anticipated
work. After you determine the required number of servers, test the initial architecture.

Related Topic

Architecture Testing and Analysis

Architecture Testing and Analysis
Prior to testing the architecture, define the architectural components, determine the transaction needs and profiles, determine
what transaction components need to be developed, and determine the necessary transports. Begin this process by creating a
baseline, which will require the following:

Configure BizTalk Messaging Services, organizations, document definitions, channels, and messaging ports needed to
process transactions.

Configure BizTalk Orchestration Services.

Install and/or configure any COM+ applications, BizTalk Server channels, databases, or message queues required for
XLANG schedules.

Once a baseline has been established, process transactions using BizTalk Server. This test helps to identify factors affecting
performance.

The following topic is covered in this section:

Evaluating the Performance of a Configuration

Improving the Architecture

Related Topics

Architectural Design

Scaling BizTalk Server

Evaluating the Performance of a Configuration
You can use the Microsoft Windows 2000 Performance tool to test the performance of BizTalk Messaging Services.

To use the Performance tool, on the Start menu, point to Programs, point to Administrative Tools, and then click
Performance. The System Monitor, which is part of the Performance tool, graphically displays counter readings as they change
over time. There are, however, different counters that should be monitored depending on the system component being
monitored. Numerous white papers are available describing how to monitor performance for Windows 2000, IIS, SQL Server, and
the Message Queue; however, the following tables lists only some of the primary objects and counters to monitor. In addition, the
table contains specific information regarding the objects and counters to monitor to determine BizTalk Messaging Services
performance.

Obje
ct

Counter Observation Component affected

Acti
ve S
erve
r Pa
ges

Requests queue
d

There should not be a significant queue except at peak periods. HTTP transport services th
at use .asp pages

 Requests/sec Indicates the volume of ASP requests the HTTP transport services are receiving
(if using ASP). If files are posted to an HTTP page, this counter does not provide
any pertinent information.

HTTP transport services th
at use .asp pages

 Request wait ti
me

Close to zero. HTTP transport services th
at use .asp pages

Net
wor
k Se
gme
nt

Bytes received
per second/Byt
es sent per seco
nd

If this number is close to the capacity of the connection, and processor and me
mory use are moderate, the connection may affect performance.

All

Proc
ess, I
neti
nfo i
nsta
nce

Private bytes Monitor this for memory leaks or size approaching maximum available RAM. HTTP transport service

Me
mor
y

Available bytes Available byes should not stay below 10 MB consistently. If so, a memory spike
would cause paging to disk to start.

All

 Page Faults/sec,
Memory: Pages
Input/sec, and
Memory: Page
Reads/sec

If these numbers are low, the server should be responding to requests quickly. I
f they are high, an increase the amount of RAM on your server may be needed.

All

Phys
ical
Disk

Disk read/write
s/sec

Combined, these two counters should be significantly under the maximum cap
acity for the disk device. To enable this counter, on the Start menu, point to Pro
grams, point to Accessories, and then click Command Prompt. At the Comma
nd Prompt, type diskperf –y. Then, restart the computer.

SQL Server, Message Queu
e, and File transport servic
es

 % Disk time This counter should be well below 100 percent. If it is above this value (and it ca
n go into the 1000 percent range), add more physical disks or move one of the
databases to another server.

SQL Server, Message Queu
e, and File transport servic
es

 Current Disk Q
ueue Length

This counter is the number of requests outstanding on the disk at the time the
performance data is collected. This counter should average less than 2 for good
performance.

BizTalk Server

SQL Server

SQL
Serv
er

I/O transactions
/sec

Indicates how much activity the SQL server actually performs. SQL Server

BizT
alk S
erve
r

Documents Pro
cessed/sec

Indicates how quickly BizTalk Server 2000 is polling documents from its
Work queue and sending them.

BizTalk Messaging Services

BizT
alk S
erve
r

Documents Rec
eived/sec

Indicates how quickly BizTalk Server is sending documents to the Work queue.
This number reflects only the number of documents BizTalk Server has receive
d (this includes documents that fail parsing), not the number of documents BizT
alk Server checkpoints to its Work queue. The number of documents that are ch
eckpointed to the Work queue is essentially equal to the Documents Processed/
sec counter.

BizTalk Messaging Services

BizT
alk S
erve
r

Synchronous S
ubmissions/sec,
Asynchronous
Submissions/se
c

Indicates how quickly the Submit method and/or the SubmitSync method call
s occur. Because each interchange can contain any number of documents, this c
ounter is not useful for determining documents processed. If pass-through (pro
cessing interchanges without parsing them) is being used exclusively, this is the
counter you need to monitor to determine inbound performance.

BizTalk Messaging Services

Mes
sage
Que
ue

Messages in qu
eue

This number should not get extremely large (over 50K) because it will cause exc
essive memory use on the Message Queue server and degrade the performanc
e of the entire system.

Message Queue transport
service

Syst
em

Processor Queu
e Length

This counter displays the number of threads waiting to be executed in the queu
e that is shared by all processors on the system. If this counter has a sustained
value of two or more threads, the processor is degrading the performance of th
e entire system.

All

 Context switche
s/sec

If this is a high number on BizTalk Server, it could be because send and
receive functions are running on the same server. If this is the case, consider se
parating the send and receive functions to separate servers.

All

Proc
esso
r

%Processor Ti
me

If this counter's value is high, while the network adapter card and disk I/O rema
in well below capacity, the processor is affecting performance. On a multiproce
ssor computer, examine this counter to identify any imbalance. Additionally, wh
ile peak utilization can be 100 percent, sustained utilization should be below thi
s value. All server elements can be scaled horizontally.

All

Web
Serv
ice

Get or post req
uests/sec

Indicates the volume of files being received through the HTTP get/post metho
ds.

HTTP transport service

There are no counters specific to the SMTP transport service listed because there are a variety of SMTP transport service products
available. Regardless of the SMTP transport service being used, monitor the volume of messages sent to and from BizTalk Server.
Monitoring the counters listed in the table enables you to identify performance degradation. Because all the components work
together to determine the health of a system, do not make drastic changes to your system configuration based on the poor
performance of one.

Data obtained from performance monitoring is also useful for identifying symptoms that can contribute to problems. For
example, a high amount of disk activity may indicate that SQL Server is writing a large amount of data to disk, but it may also
indicate that the system is often paging to disk. Excessive disk paging typically indicates that memory is too low. In this case, the
disk activity is the indicator of a problem, but not the problem.

Related Topic

Scaling BizTalk Server

Improving the Architecture
By identifying areas that affect performance, you can refine the system architecture to achieve optimal results. For example,
hardware may need to be upgraded, or different components of BizTalk Server may need to be moved to separate servers.
Additionally, you might need to adjust BizTalk Server settings. For more information about adjusting settings,
see Optimizing Server Properties.

Ensure that changes are made methodically. After implementing a change, such as adding CPUs, changing a setting, or separating
functionality to separate servers, document the change, and then test the new configuration to determine if performance has
improved. If the new configuration enhances performance, then you can continue to modify the configuration. However, if the
new configuration is degrading performance, re-configure the system to its previous state, and analyze the data to determine
what may be contributing to the problem.

Related Topic

Evaluating the Performance of a Configuration

Maintaining Performance
To maintain performance, create an ongoing maintenance plan to ensure the health and future performance of BizTalk Server.
BizTalk Server will most likely process increased numbers of documents over time. Although the initial BizTalk Server architecture
may have performed well, if the number of transactions has increased over time, it may not be capable of sustaining the same
level of performance unless the system architecture or configuration is modified. Hardware failures, or out of memory conditions,
also can affect the performance of a system.

The following topics are covered in this section:

Creating a Performance Maintenance Plan

Using Application Center 2000

Creating a Performance Maintenance Plan
A successful monitoring plan includes:

A detailed plan of which counters to monitor. For example, there are several Windows 2000 System Monitor counters,
thresholds to monitor, and possible interpretations of the problems that might be indicated by the thresholds. Additionally,
you can also monitor application-level problems such as whether SQL Server queries should return valid data or return
hardware problem conditions.

Identifying processes for resolving performance issues. For example, a Windows 2000 event-log message might
written, e-mail notification might enabled, or a custom program might start a series of events.

Defining which performance thresholds generate a notification. For example, a monitoring tool might be configured
to write an event to the Windows 2000 event log if the CPU reaches 90-percent use capacity. However, if the CPU stayed at
90-percent use capacity for more than 5 minutes, an e-mail message might be sent. Defining different actions for different
problem-severity levels depends on the monitoring tool that you use.

Defining the course of action in response to events published in Windows 2000 event logs. Windows 2000,
BizTalk Server 2000, SQL Server, and native Microsoft transport services such as Message Queuing and HTTP write events
to the Windows 2000 event log. This event log contains valuable information that may indicate impending problems on one
of the servers in a BizTalk Server system. If addressed early, you can avoid a system failure that would degrade the
performance of the overall system. A plan should include the frequency at which the logs are monitored and archived, and
include the party responsible for the tasks. A third-party tool can be used to accumulate the logs from multiple servers and
write them to a database for consolidated analysis. These tools can also be used to purge the logs from the servers.

Determining the required tools for performance monitoring. The built-in Windows 2000 System Monitor tool
examines performance counters and can take action when a predefined condition occurs. For more information about
configuring System Monitor alerts, see "Setting up a monitoring configuration" in Windows 2000 Help. Additionally,
Microsoft Application Center 2000, as well as a number of other third-party tools, perform this functionality with additional
features such as logging to a database and performing application-level tests.

Using Application Center 2000
Microsoft Application Center 2000 contains a tool called Health Monitor. Health Monitor supercedes the functionality of the
Windows 2000 event log and system monitor tools. It allows administrators to set up monitors. These monitors include checking
TCP/IP, performance monitor counter thresholds, event log errors, and WMI events. Conditions can be configured for these
monitors so that when certain criteria are met, for example, when a threshold of 90 percent on a CPU is met or exceeded, an
action occurs such as a taking a server offline or sending an e-mail message to an administrator. These tools can be used to
proactively monitor and maintain the performance of BizTalk Server 2000.

 Important

Do not replicate the default XLANG Scheduler application or any COM+ applications that host XLANG schedules. If
component load balancing is used, these COM+ applications must be installed on each server. You can replicate COM
components that are bound to XLANG schedules.

Administering Servers and Applications
The administration features provided by Microsoft BizTalk Server 2000 help you to efficiently and effectively administer all
installations of BizTalk Server 2000. There are 4 areas of administration in BizTalk Server 2000:

Server administration

Application administration

Programmatic administration

Database administration

This section covers server administration and programmatic administration. For more information about application and
database administration, see BizTalk Server Administration Model. Server administration includes configuring and managing
server groups, servers, receive functions, and the Shared Queue for each server group. Application administration includes
configuring and managing the COM+ applications that host XLANG schedules, the default XLANG Scheduler application and the
Orchestration Persistence database.

The following topics are covered in this section:

Server Administration

Programmatic Administration

Related Topic

BizTalk Server Administration Model

Server Administration
BizTalk Server Administration provides a central user interface (UI) from which you can:

Add and manage servers installed with Microsoft BizTalk Server 2000 in server groups.

Configure server group properties, such as the location for the Shared Queue and Tracking databases.

Configure and manage receive functions.

View and manage queues.

For help with specific tasks, see How To.

For general background information, see Concepts.

For problem-solving instructions, see Troubleshooting BizTalk Server Administration.

Related Topic

BizTalk Server Administration Environment

How To...
This section provides task-specific information about using BizTalk Server Administration. It is highly recommended that you
review the Concepts section to fully understand all the features and capabilities of BizTalk Server Administration.

The following topics are covered in this section:

Open BizTalk Server Administration

Open Component Services

Add users to the BizTalk Server Administrators group

Configure the BizTalk Messaging Management database

Refresh the administration console

Start the BizTalk Messaging Service

Add, Delete, and Configure a Server Group

Add, Delete, and Configure Servers in a Group

Run Servers in a Group

Manage Queues

Manage Databases for a Server Group

Manage Receive Functions for a Server Group

Manage Event Viewer

Manage XLANG Applications and Databases

Open BizTalk Server Administration
On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Server
Administration.

Open Component Services
On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

Add users to the BizTalk Server Administrators group
To add users to the BizTalk Server Administrators group, you must be a member of the Windows 2000 Administrators group. For
more information about adding users to the Windows 2000 Administrators group,
see Add a user account to the Administrators group.

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Computer Management.

2. Expand System Tools, expand Local Users and Groups, and then click the Groups folder.

The folder contents appear in the details pane.

3. In the details pane, click BizTalk Server Administrators.

4. On the Action menu, point to All Tasks and click Add to Group.

The BizTalk Server Administrators Properties dialog box appears.

5. Click Add.

6. In the Look in list, click your domain or computer name.

7. In the list that contains the users and computers associated with the domain or computer you selected in step 6, click the
user account to add, click Add, and then click OK.

8. Click OK to close the BizTalk Server Administrators Properties dialog box.

 Notes

This procedure is based on the assumption that the BizTalk Server Administration group name is BizTalk Server
Administrators.

If necessary, log off and log in using your user account.

Related Topic

Administration Privileges

Configure the BizTalk Messaging Management database
1. In BizTalk Server Administration, click Microsoft BizTalk Server 2000.

2. On the Action menu, click Properties.

The Microsoft BizTalk Server 2000 Properties dialog box appears.

3. On the General tab, you can change the following properties:

SQL database name. Type the name of the BizTalk Messaging Management database that you want all server groups
to use.

SQL Server name. Type the name of the server that stores the Microsoft SQL Server database on which the BizTalk
Messaging Management database is stored.

User name. You can change the SQL Server logon user name that is used to connect to the server on which the
BizTalk Messaging Management database is stored.

Password. You can change the SQL Server logon password that is used to connect to the server on which the BizTalk
Messaging Management database is stored.

4. Click OK.

 Caution

Use this procedure if you need to bring the BizTalk Messaging Management database offline for maintenance. However, you
must point to a replicated database, not a different BizTalk Messaging Management database that has other server groups
associated with it. For more information about changing the database,
see Changing the BizTalk Messaging Management database.

 Notes

When you change either the BizTalk Messaging Management database or point the server groups to a different Microsoft
SQL Server, you must complete the following steps:

1. Stop all servers in the Microsoft BizTalk Server 2000 node. For more information about how to stop servers,
see Stop a server in a group.

2. Shut down the BizTalk Server Interchange Application. For more information about how to shut down the BizTalk
Server Interchange Application, see Shut down the BizTalk Server Interchange Application.

3. Restart all servers in the Microsoft BizTalk Server 2000 node. For more information about how to restart servers,
see Start a server in a group.

When you change the BizTalk Messaging Management database or point the server groups to a different Microsoft SQL
Server, all BizTalk servers in the central BizTalk Messaging Management database are updated with the new information.

If you change the BizTalk Messaging Management database of your existing server and then add your existing server to a
new group, you might encounter problems when you submit a document to your existing server. To avoid potential
problems, stop all servers in the Microsoft BizTalk Server 2000 node, shut down the BizTalk Server Interchange Application,
and then restart all the servers in the Microsoft BizTalk Server 2000 node. For more information about how to stop a server,
see Stop a server in a group. For more information about shutting down the BizTalk Server Interchange Application,
see Shut down the BizTalk Server Interchange Application. For more information about how to restart servers,
see Start a server in a group.

Related Topics

Changing the BizTalk Messaging Management database

Shut down the BizTalk Server Interchange Application

Start a server in a group

Stop a server in a group

Refresh the administration console
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and expand the items in the console tree until

you locate the item that you want to refresh. You might need to expand server groups, Queues, Receive Functions, and
Servers to find the item you want to refresh.

2. Click the item you want to want to refresh.

3. On the Action menu, click Refresh.

 Notes

In BizTalk Server Administration, you can refresh the status of the following items:
The Microsoft BizTalk Server 2000 node

Server groups

Servers

Queues

Receive functions
You can perform this procedure on any item in the console tree. When you refresh the administration console at the root, all
items in the administration console are refreshed. When you refresh a server group, only the items in that group are
refreshed.

There is no automatic refresh cycle for the administration console. Perform this procedure to view the current status of
server groups, servers, receive functions, the number of items in a queue, and so on.

Related Topics

Groups and Servers

Receive Functions

Using Queues

Start the BizTalk Messaging Service
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. Verify that Services (Local) is selected.

3. In the details pane, click BizTalk Messaging Service.

4. On the Action menu, click Start.

Add, Delete, and Configure a Server Group
You can perform the following procedures to add, delete, and configure a server group:

Add a server group

Configure general properties for a server group

Configure connection properties for a server group

Configure tracking properties for a server group

Configure the parser order for a server group

Delete a server group

Add a server group
1. In BizTalk Server Administration, click Microsoft BizTalk Server 2000.

2. On the Action menu, point to New and click Group.

The New Group dialog box appears.

3. In the Group name box, type the name of the new server group.

4. In the Tracking database area:

In the Tracking database name box, type the name of the Tracking database for this server group.

In the Tracking SQL Server name box, type the name of the server on which the Tracking database for this server
group is stored.

In the User name and Password boxes, type the Microsoft SQL Server logon user name and password that are used
to connect to the server on which the Tracking database is stored.

User name is a required field. Password is an optional field. Leave this field blank if a password is not required to
connect to the server.

5. In the Shared Queue database area:

In the Shared Queue database name box, type the name of the Shared Queue database for this server group.

In the Shared Queue SQL Server name box, type the name of the server on which the Shared Queue database for
this server group is stored.

In the User name and Password boxes, type the SQL Server logon user name and password that are used to connect
to the server on which the Shared Queue database is stored.

User name is a required field. Password is an optional field. Leave this field blank if a password is not required to
connect to the server.

6. Click OK.

 Important

Do not use any of the following characters in the name of the server group: ` ! @ # $ % ^ & * () + = [] { } | \\ ;\" '< > , . ?. For
more information about invalid characters, see WMI Overview.

 Note

This procedure creates a server group. To configure the server group with additional settings,
see Configure general properties for a server group.

Related Topics

Add, Delete, and Configure Servers in a Group

Configure general properties for a server group

Groups and Servers

Managing the BizTalk Messaging Management Database

Shared Queue Database

Tracking Database

WMI Overview

Configure general properties for a server group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and then click the server group you want to

configure.

2. On the Action menu, click Properties.

The BizTalk Server Group Properties dialog box appears.

3. In the SMTP host box, type the Simple Mail Transfer Protocol (SMTP) host name that this server group uses.

This field is optional. Use this configuration if you use BizTalk Server to send documents to a trading partner or to an
internal application by using SMTP .

4. In the Reliable messaging reply-to URL box, type the URL this server group uses to receive reliable messaging delivery
receipts by using one of the following supported protocols: File, Message Queuing, HTTP, HTTP/S, or SMTP.
For the following transport Use this prefix
File file://
Message Queuing queue://Direct=OS:<servername>\<queuename>
Hyper Text Transport Protocol (http) http://
Hyper Text Transport Protocol Secure (https) https://
SMTP mailto:

If you specify Message Queuing, you must use a format name. In addition, "queue://" must precede the format name. For
more information about format names, see Available Receive Functions.

5. In the Messaging Management object cache refresh interval (seconds) list, click the number of seconds between
cache updates for the server group.

By default, the server updates this cache every 50 seconds.

6. In the Proxy server area, select the Use a proxy server check box if you want to configure BizTalk Server to connect to the
Internet through a proxy server.

Enter the address and port of the proxy server that you want to use.

7. Click OK.

8. Perform the following steps only if you made any changes in the Proxy server area.

Stop each server in the group for which you configured the general properties. For more information about stopping
a server, see Stop a server in a group.

Start each server in the group for which you configured the general properties. For more information about starting a
server, see Start a server in a group.

 Important

The SMTP host field is optional. However, you must configure this field if you plan to use SMTP as a transport service in
BizTalk Messaging Manager. For example, you cannot choose SMTP as primary or backup transport in BizTalk Messaging
Manager unless you have the SMTP host configured here.

 Notes

Reliable messaging in BizTalk Server is BizTalk Framework 2.0 compliant. For more information about reliable messaging
and BizTalk Framework 2.0, go to the Microsoft Web site (microsoft.com/biztalk/) and search for "BizTalk Framework 2.0".

When you configure the Reliable messaging reply-to URL, use an active server page (ASP) or message queue with a
receive function monitoring it. If you do not want to configure your own ASP page initially, use the ReceiveStandard.asp file
shipped with BizTalk Server. You can find this sample ASP page in \Program Files\Microsoft BizTalk Server\SDK\Messaging
Samples\Receive Scripts. This page is designed to take posts and submit them to BizTalk Server. For more information
about implementing a secure site, go to the MSDN Online Library Web site (www.msdn.microsoft.com/library/default.asp)

http://microsoft.com/biztalk/
http://www.msdn.microsoft.com/library/default.asp

and search for the article "Implementing a Secure Site with ASP".

If you specify the URL to include localhost in the Reliable messaging reply-to URL box, the receive function will not work
properly. Do not specify localhost in this field.

The response to an HTTP post is expected to be text. If the response requires binary data, encode the binary data using MIME
or UUEncode.

Related Topics

Administration Cache

Available Receive Functions

Start a server in a group

Stop a server in a group

Configure connection properties for a server group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and then click the server group that you want to

configure.

2. On the Action menu, click Properties.

The BizTalk Server Group Properties dialog box appears.

3. Click the Connection tab.

4. In the Tracking database area:

In the Tracking database name box, type the name of the Tracking database that you want this server group to use.

In the Tracking SQL Server name box, type the name of the Microsoft SQL Server that stores the Tracking database
that you want this server group to use.

In the User name and Password boxes, type the Microsoft SQL Server logon user name and password that are used
to connect to the server on which the Tracking database is stored.

5. In the Shared Queue database area:

In the Shared Queue database name box, type the name of the Shared Queue database that you want this server
group to use.

In the Shared Queue SQL Server name box, type the name of the Microsoft SQL Server that stores the Shared
Queue database that you want this server group to use.

In the User name and Password boxes, type the SQL Server logon user name and password that are used to connect
to the server on which the Shared Queue database is stored.

6. Click OK.

 Note

If you change information in the Tracking database or Shared Queue database areas, you must complete the following
steps:

1. Stop all servers in the Microsoft BizTalk Server 2000 node. For more information about how to stop servers,
see Stop a server in a group.

2. Shut down the BizTalk Server Interchange Application. For more information about how to shut down the BizTalk
Server Interchange Application, see Shut down the BizTalk Server Interchange Application.

3. Restart all servers in the Microsoft BizTalk Server 2000 node. For more information about how to restart servers,
see Start a server in a group.

If you change any values in the Tracking database area, you must update the connection string in the Connection.vb file
with the new Tracking database information. You can find Connection.vb in the \Program Files\Microsoft BizTalk
Server\BizTalkTracking\VBScripts folder. The Initial Catalog property in the connection string contains the name of the
Tracking database. Update this property to update the Tracking database name. The connection string in the Connection.vb
file is:

Const g_ConnectionString = "Provider=SQLOLEDB.1;
Persist Security Info=False;User ID=dta_ui_login;
Password=;Initial Catalog=<databasename>;
Data Source=<servername>;Connect Timeout=15"

Related Topics

Available Receive Functions

Groups and Servers

Shut down the BizTalk Server Interchange Application

Start a server in a group

Stop a server in a group

Configure tracking properties for a server group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and then click the server group that you want to

configure.

2. On the Action menu, click Properties.

The BizTalk Server Group Properties dialog box appears.

3. Click the Tracking tab.

4. Select the Enable document tracking check box and any of the following options that you want to use:

Select the Log incoming interchange check box to log incoming interchanges.

Select the Log outgoing interchange check box to log outgoing interchanges.

Select the Log the original MIME-encoded message check box to log MIME-encoded messages.

5. Click OK.

 Caution

You can disable tracking by clearing the Enable document tracking check box. However, you will lose important BizTalk
Server 2000 functionality if you disable document tracking. For more information about tracking,
see Understanding Tracking Settings For a Server Group.

 Note

If the Enable document tracking check box is not selected, the Log incoming interchange, Log outgoing
interchange, and Log the original MIME-encoded message check boxes are unavailable.

Related Topics

Groups and Servers

Understanding Tracking Settings for a Server Group

Configure the parser order for a server group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and then click the server group for which you

want to configure the parser order.

2. On the Action menu, click Properties.

The BizTalk Server Group Properties dialog box appears.

3. Click the Parsers tab.

The parsers are listed in the Arrange the server call sequence box in the following order:

BizTalk.ParserXML.1

BizTalk.ParserEdifact.1

BizTalk.ParserX12.1

BizTalk.ParserFFile.1

You can improve BizTalk Server performance by moving the most commonly used parsers closer to the top of the list.

1. In the Arrange the server call sequence box, click the parser that you want to move and click either the up or down arrow
to move the selected parser higher or lower in the server call sequence.

2. When the parsers are arranged in the order you want, click OK.

 Note

The Refresh button picks up new parsers registered in the local registry. If you want a new parser to appear in the Arrange
the server call sequence box, you must click the Refresh button on the server on which the parser is registered.

Related Topic

Using the IBizTalkParserComponent Interface

Delete a server group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and then expand the server group that you want

to delete.

2. Click a server in the server group that you want to delete.

3. On the Action menu, click Stop.

Repeat steps 2-3 for each server in the group until you have stopped all servers in the group.

4. Click the server group.

5. On the Action menu, click Delete.

The User Action Confirmation dialog box appears.

6. Click Yes.

 Notes

You cannot delete a server group that contains one or more running servers. To stop the servers and delete the server
group, you must have Windows 2000 Administrator privileges for all the servers in the group.

The Tracking and Shared Queue databases associated with the server group remain in Microsoft SQL Server even after you
delete the group. To remove the Tracking and Shared Queue databases, you must manually delete them. For more
information about how to delete these databases, see Remove the Tracking and Shared Queue databases.

Related Topics

Groups and Servers

Remove the Tracking and Shared Queue databases

Stop a server in a group

Add, Delete, and Configure Servers in a Group
The following procedures are used to add, delete, and configure servers in a group:

Add a server to a group

Delete a server from a group

Configure a server in a group

Change the BizTalk Messaging Management database for a server

Add a server to a group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and then click the server group to which you

want to add a server.

2. On the Action menu, point to New, and then click Server.

The Add a BizTalk Server dialog box appears.

3. In the BizTalk Server name box, type the name of an existing server on which you have a complete installation of BizTalk
Server 2000.

4. Click OK.

 Note

To view the global properties for the server group to which you added the server by right-click the group, and click
Properties.

Related Topics

Groups and Servers

Run Servers in a Group

Understanding server properties

Delete a server from a group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group that contains the server

that you want to delete, and then click the server.

2. On the Action menu, click Stop.

The server finishes processing all current interchanges and documents.

3. On the Action menu, click Delete.

The User Action Confirmation dialog box appears.

4. Click Yes.

 Note

You cannot delete a server from a server group if a receive function(s) points to it to process documents. You can edit the
receive function(s) to point to other servers, or you can delete the receive function(s) if it no longer can be used.

Related Topics

Free interchanges from a server

Groups and Servers

Manage Receive Functions for a Server Group

Run Servers in a Group

Configure a server in a group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group that contains the server

you want to configure, and then click the server.

2. On the Action menu, click Stop.

You cannot change server configuration settings while the server is running.

3. On the Action menu, click Properties.

The <Computername> Properties dialog box appears.

4. In the Maximum number of receive function threads allowed box, type a number in the range from 1 through 128.

The default value is 4. For more information about how to configure this option, see Understanding server properties.

5. If you want the server to process items in the Work queue, select the Participate in work-item processing check box.

When this check box is selected, the server processes documents in the Work queue. Clear this check box if you do not want
the server to process documents in the Work queue. For more information about how to configure this option,
see Understanding server properties.

6. In the Maximum number of worker threads per processor allowed box, type a number in the range from 1 through
128.

The default value is 4. For more information about how to configure this option, see Understanding server properties.

7. In the Time between BizTalk Server Scheduler calls (milliseconds) box, type a number in the range from 1 through
4,294,967,295.

The default value is 200. For more information about how to configure this option, see Understanding server properties.

8. Click OK.

9. Right-click the server you configured and click Start.

 Note

If the Participate in work-item processing check box is not selected, the Maximum number of worker threads per
processor allowed and Time between BizTalk Server Scheduler calls (milliseconds) check boxes are unavailable.

Related Topics

Groups and Servers

Run Servers in a Group

Understanding server properties

Change the BizTalk Messaging Management database for a
server

1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group that contains the server
for which you want to change the BizTalk Messaging Management database, and then click the server.

2. On the Action menu, click Stop.

3. On the Action menu, click Delete.

The User Action Confirmation dialog box appears.

4. Click Yes.

5. Close BizTalk Server Administration.

6. On the Start menu, point to Programs, point to Accessories, and then click Windows Explorer.

7. Browse to \Program Files\Microsoft BizTalk Server\Setup.

8. Click BTSsetupDB.exe.

9. On the File menu, click Open.

The Microsoft BizTalk Server 2000 Database Setup Wizard opens.

10. On the Welcome to the Microsoft BizTalk Server 2000 Database Setup Wizard page, click Next.

11. On the Configure a BizTalk Messaging Management Database page, click Create a new BizTalk Messaging
Management database.

—Or—

Click Select an existing database.

12. In the Server name box, click the name of the server where the new or existing BizTalk Messaging Management database is
located.

13. In the User name and Password boxes, type a valid user name and password to access the SQL server, if required.

14. In the Database box, type the name of the new or existing BizTalk Messaging Management database.

15. Click Next.

16. On the Configure a BizTalk Server Group page, click Create a new BizTalk Server group. In the Group name box, type
the name of the new group, and then click Next.

—Or—

Click Select an existing BizTalk Server group. In the Group name list, click the name of the existing group, and then click
Next.

You can only select an existing BizTalk Server group if you selected an existing database in step 11.

17. If necessary, click Create a new Tracking database and click Next.

—Or—

Click Select an existing database. In the Server name list, click a server. In the User name and Password boxes, type a
valid Microsoft SQL Server user name and password, if required. In the Database box, type the name of the database. Click
Next.

18. If necessary, click Create a new Shared Queue database, and then click Next.

—Or—

Click Select an existing database. In the Server name list, click a server. In the User name and Password boxes, type a
valid SQL Server user name and password, if required. In the Database box, type the name of the database. Click Next.

19. On the Verify BizTalk Server Group page, verify the information you entered, and then click Next.

20. On the Completing the Microsoft BizTalk Server 2000 Database Setup Wizard page, click Finish.

21. Open BizTalk Server Administration.

22. Expand Microsoft BizTalk Server 2000, expand the server group that contains the server for which you just changed the
BizTalk Messaging Management database, and then click the server.

23. On the Action menu, click Start.

 Important

Use this procedure to associate a server with a different BizTalk Messaging Management database. For more information
about moving servers between BizTalk Messaging Management databases,
see Moving servers between BizTalk Messaging Management databases. For more information about changing the BizTalk
Messaging Management database for server groups, see Changing the BizTalk Messaging Management database.

Related Topics

Changing the BizTalk Messaging Management database

Managing BizTalk Server Databases

Moving servers between BizTalk Messaging Management databases

Run Servers in a Group
The following procedures are used to run servers in a group:

Start a server in a group

Stop a server in a group

Free interchanges from a server

Start a server in a group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group that contains the server

that you want to start, and then click the server.

2. On the Action menu, click Start.

 Notes

Starting a server in a server group means starting the BizTalk Messaging Service on the server. After the BizTalk Messaging
Service is running, the server can receive, transmit, process, and track documents that are queued to the Microsoft SQL
Server databases.

The Start option is available only if the server is stopped. If the server is running, the command is unavailable.

Related Topics

Add, Delete, and Configure Servers in a Group

Administration Cache

Groups and Servers

Stop a server in a group

Stop a server in a group
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group that contains the server

that you want to stop, and then click the server.

2. On the Action menu, click Stop.

 Notes

Stopping a server in a server group means stopping the BizTalk Messaging Service on the server. After the BizTalk
Messaging Service is stopped, the server cannot receive, transmit, process, or track documents that are queued to the
Microsoft SQL Server databases.

If you want to redistribute interchanges associated with a server that you have stopped, see Free interchanges from a server.

Related Topics

Add, Delete, and Configure Servers in a Group

Administration Cache

Free interchanges from a server

Groups and Servers

Free interchanges from a server
This procedure is used to free interchanges from a server so that the interchanges can be redistributed to other servers in the
group if the original server is stopped or taken offline.

1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group that contains the server
on which you want to free interchanges, and then click the server.

2. On the Action menu, click Stop.

3. On the Action menu, point to All Tasks, and then click Free Interchanges.

Related Topics

Add, Delete, and Configure Servers in a Group

Groups and Servers

Stop a server in a group

Manage Queues
The following procedures are covered in this topic:

Move documents to the Suspended queue

View error descriptions

View interchanges

View documents

Resubmit documents

Delete documents

Move documents to the Suspended queue
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the group that contains the document

that you want to move, and then expand Queues.

2. Expand the queue that contains the document that you want to move, and then click the document.

3. On the Action menu, point to All Tasks, and then click Move to Suspended Queue.

Related Topics

Suspended queue

Using Queues

View error descriptions
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the group that contains the document

that you want to view, expand Queues, and then click Suspended Queue.

2. In the details pane, click the document that you want to view.

3. On the Action menu, click View Error Description.

Related Topics

Suspended queue

Using Queues

View documents

View interchanges

View interchanges
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the group that contains the interchange

that you want to view, expand Queues, and then click Suspended Queue.

2. In the details pane, click the interchange that you want to view.

3. On the Action menu, click View Interchange.

The Document Content dialog box appears.

 Notes

If you try to view a large interchange, the data might be truncated. You can view up to 4 MB of data in the Document
Content dialog box.

If BizTalk Server could not parse the interchange, you might see binary data in the Document Content dialog box. For
more information about parser errors, see Parsing errors.

View Interchange is an available menu option for the following Suspended queue states:
Custom Component

Parsing

Encoding

Signing

Encrypting

Transmitting
View Interchange and View Document never appear on the Action menu at the same time.

Related Topics

An interchange or document appears as binary data in the Suspended queue

Suspended queue

Using Queues

View documents

View error descriptions

View documents
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the group that contains the document

that you want to view, expand Queues, and then click Suspended Queue.

2. In the details pane, click the document that you want to view.

3. On the Action menu, click View Document.

The Document Content dialog box appears.

 Notes

If you try to view a large document, the data might be truncated. You can view up to 4 MB of data in the Document
Content dialog box.

View Document is an available menu option for the following Suspended queue states:
Document Validation

Channel Selection

Mapping

Correlating

Serializing
View Interchange and View Document never appear on the Action menu at the same time.

Related Topics

An interchange or document appears as binary data in the Suspended queue

Suspended queue

Using Queues

View error descriptions

View interchanges

Resubmit documents
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the group that contains the document

that you want to resubmit, expand Queues, and then click Suspended Queue.

2. In the details pane, click the document that you want to resubmit.

3. On the Action menu, point to All Tasks, and then click Resubmit.

 Notes

This procedure, Resubmit documents, can also be used to retransmit documents.

Not all documents in the Suspended queue can be resubmitted. In some situations, you must delete the document and
submit it again from the original application or organization. For more information about documents in the Suspended
queue, see Suspended queue.

Related Topics

Suspended queue

Using Queues

Delete documents
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the group that contains the document

that you want to delete, expand Queues, and then click Suspended Queue.

2. In the details pane, click the document that you want to delete.

3. On the Action menu, click Delete.

The User Action Confirmation dialog box appears.

4. Click Yes.

Related Topics

Suspended queue

Using Queues

Manage Databases for a Server Group
The following procedures are used to manage databases for a server group:

Shut down the BizTalk Server Interchange Application

Remove the Tracking and Shared Queue databases

Manually restore the Tracking database

Manually restore the Shared Queue database

Shut down the BizTalk Server Interchange Application
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. Expand Component Services, expand Computers, expand My Computer, and then expand COM+ Applications.

3. Click BizTalk Server Interchange Application.

4. On the Action menu, click Shut down.

 Note

You can shut down the BizTalk Server Interchange Application from a remote server. If you do this, expand the
<remotecomputername> instead of My Computer in step 1.

Related Topics

Administration Cache

Configure connection properties for a server group

Configure tracking properties for a server group

Groups and Servers

Open Component Services

Tracking Database

Remove the Tracking and Shared Queue databases
1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

2. Expand Microsoft SQL Servers, expand SQL Server Group, and then expand the individual server that contains the
databases that you want to delete.

3. Expand the Databases folder, and then click the database that you want to delete.

4. On the Action menu, click Delete.

The Delete Database dialog box appears.

5. Click Yes.

 Note

The default name for the Tracking database is InterchangeDTA. The default name for the Shared Queue database is
InterchangeSQ.

Related Topics

Groups and Servers

Shared Queue Database

Stop a server in a group

Tracking Database

Manually restore the Tracking database
1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

2. Expand Microsoft SQL Servers, expand SQL Server Group, and then expand the server on which you want to restore the
database.

3. Click Databases.

4. On the Action menu, click New Database.

The Database Properties dialog box appears.

5. On the General tab, in the Name box, type a name for the Tracking database, and then click OK.

6. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Query Analyzer.

The Connect to SQL Server dialog box appears.

7. Click OK.

8. If you have Microsoft SQL Server 7.0 installed, in the Query window, in the DB list, click the name of the new Tracking
database.

—Or—

If you have Microsoft SQL Server 2000 installed, on the Objects tab, click the name of the new Tracking database.

9. Click the Load SQL Script button.

10. Browse to \Program Files\Microsoft BizTalk Server\Setup.

11. Click BTS_Tracking_Schema.sql, and then click Open.

12. Click the Execute Query button.

13. Click the Load SQL Script button.

14. Verify that you are in the folder \Program Files\Microsoft BizTalk Server\Setup.

15. Click BTS_Reporting.sql, and then click Open.

16. Click the Execute Query button.

17. Click the Load SQL Script button.

18. Verify that you are in the folder \Program Files\Microsoft BizTalk Server\Setup.

19. Click BTS_Tracking_Logic.sql, and then click Open.

20. Click the Execute Query button.

21. Click the Load SQL Script button.

22. Verify that you are in the folder \Program Files\Microsoft BizTalk Server\Setup.

23. Click BTS_WorkflowEvents.sql, and then click Open.

24. Click the Execute Query button.

25. Click the Load SQL Script button.

26. Verify that you are in the folder \Program Files\Microsoft BizTalk Server\Setup.

27. Click BTS_WorkflowSchema.sql, and then click Open.

28. Click the Execute Query button.

29. Close SQL Query Analyzer and SQL Server Enterprise Manager.

 Caution

When you manually restore the Tracking database, you lose all data. If you need to keep this data, back up the data before
you restore the Tracking database.

 Note

Use this procedure if the Tracking database becomes corrupted or damaged.

Related Topic

Manually restore the Shared Queue database

Manually restore the Shared Queue database
1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

2. Expand Microsoft SQL Servers, expand SQL Server Group, and then expand the server on which you want to restore the
database.

3. Click Databases.

4. On the Action menu, click New Database.

The Database Properties dialog box appears.

5. On the General tab, in the Name box, type a name for the Shared Queue database and then click OK.

6. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Query Analyzer.

The Connect to SQL Server dialog box appears.

7. Click OK.

8. If you have Microsoft SQL Server 7.0 installed, in the Query window, in the DB list, click the name of the new Shared Queue
database.

—Or—

If you have Microsoft SQL Server 2000 installed, on the Objects tab, click the name of the new Shared Queue database.

9. Click the Load SQL Script button.

10. Browse to \Program Files\Microsoft BizTalk Server\Setup.

11. Click BTS_Core_Schema.sql, and then click Open.

12. Click the Execute Query button.

13. Click the Load SQL Script button.

14. Verify that you are in the folder \Program Files\Microsoft BizTalk Server\Setup.

15. Click BTS_Core_Logic.sql, and then click Open.

16. Click the Execute Query button.

17. Close SQL Query Analyzer and SQL Server Enterprise Manager.

 Caution

When you manually restore the Shared Queue database, you lose all data. If you need to keep this data, back up the data
before you restore the Shared Queue database.

 Note

Use this procedure if the Shared Queue database becomes corrupted or damaged.

Related Topic

Manually restore the Tracking database

Manage Receive Functions for a Server Group
The following procedures are used to manage receive functions for a server group:

Add a File receive function

Configure a File receive function: General tab

Configure a File receive function: Services tab

Add a Message Queuing receive function

Configure a Message Queuing receive function: General tab

Configure a Message Queuing receive function: Services tab

Configure advanced properties for File or Message Queuing receive functions

Delete a receive function

Add a File receive function
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000 and expand the server group to which you want

to add the File receive function.

2. Click Receive Functions.

3. On the Action menu, point to New, and then click File Receive Function.

The Add a File Receive Function dialog box appears.

4. In the Name box, type the name of the File receive function.

5. In the Comment box, add a brief description (optional).

6. In the Server on which the receive function will run list, click the name of a server in the group.

7. In the File types to poll for box, type the extension of the files that BizTalk Server receives.

The file type extension must be written in the following syntax:

*.ext

For example: *.xml

8. In the Polling location box, type either the logical path or the universal naming convention (UNC) path to the directory this
receive function uses as the file receiving location.

9. In the Preprocessor list, click the name of the custom preprocessor.

Leave this blank if you are not using a custom preprocessor.

10. In the User name and Password boxes, type a valid user name and password to connect to the file receive location
(optional).

This is required only when the receive location is protected and a valid user name and password are required to connect to
the server.

11. To customize the receive function for non-self-routing documents, or to specify openness or pass-through options, click
Advanced.

For more information about advanced options,
see Configure advanced properties for File and Message Queuing receive functions.

 Notes

This procedure creates a File receive function with the default settings. To configure the File receive function with additional
settings, see Configure a File receive function: General tab.

If you want to poll for more than one file type, use any standard wildcard format.

For example: *.* or *.x?l

If you configure one or more File receive functions to monitor the same directory, use three-letter file extensions. If you use
file extensions of more than three letters, verify that the first three letters are unique.

For example: *.xml, *.1xml, *.12xml

File receive functions cannot process read only files.

Verify that each receive function that you create has a unique name. You cannot assign identical names to receive functions.

Related Topics

Available Receive Functions

Configure advanced properties for File and Message Queuing receive functions

Configure a File receive function: General tab

Configure a File receive function: Services tab

Custom Preprocessors

Receive Functions

Configure a File receive function: General tab
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group for which you want to

configure a File receive function, and then expand Receive Functions.

2. Click the File receive function you want to configure.

3. On the Action menu, click Properties.

The Properties dialog box appears.

4. In the Comment box, add a brief description (optional).

5. In the Security area, in the User name and Password boxes, type a valid user name and password to connect to this
receive function.

This is required only when the receive location is protected and a valid user name and password are required to connect to
the server.

6. If you want to temporarily shut down the functionality of this receive function, select the Disable receive function check
box, and then click Yes to confirm your choice.

 Note

File receive functions cannot process read only files.

Related Topics

Configure advanced properties for File and Message Queuing receive functions

Configure a File receive function: Services tab

Configure a File receive function: Services tab
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group for which you want to

configure a File receive function, and then expand Receive Functions.

2. Click the File receive function that you want to configure.

3. On the Action menu, click Properties.

The Properties dialog box appears.

4. Click the Services tab.

5. In the Server on which the receive function will run list, click the server name.

6. In the Polling location box, type either the logical path or the universal naming convention (UNC) path to the directory this
receive function uses as the file receive location.

7. In the File types to poll for box, type the extension of the files that BizTalk Server receives.

The file type extension must be written in the following syntax:

*.ext

For example: *.doc

8. In the Preprocessor list, click the name of the custom preprocessor.

Leave this blank if you are not using a custom preprocessor.

9. Click OK.

 Note

If you want to receive multiple file types, use any standard wildcard format.

For example: *.*

If you configure one or more File receive functions to monitor the same directory, use three-letter file extensions. If you use
file extensions of more than three letters, verify that the first three letters are unique.

For example: *.xml, *.1xml, *.12xml

File receive functions cannot process read only files.

Related Topics

Available Receive Functions

Configure advanced properties for File and Message Queuing receive functions

Custom Preprocessors

Add a Message Queuing receive function
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000 and expand the server group for which you want

to add a Message Queuing receive function.

2. Click Receive Functions.

3. On the Action menu, point to New, and then click Message Queuing Receive Function.

The Add a Message Queuing Receive Function dialog box appears.

4. In the Name box, type the name of the Message Queuing receive function.

5. In the Comment box, add a brief description (optional).

6. In the Server on which the receive function will run list, click the name of a server in the group.

7. In the Polling location box, type the server and Message Queuing names that this receive function uses as the receive
location.

For example:

Direct=OS:<servername>\<queuename>

Select the processing server on which the queue resides. Transactional messaging is only supported by local queues.

8. In the Preprocessor list, click the custom preprocessor.

Leave this blank if you are not using a custom preprocessor.

9. In the User name and Password boxes, type a valid user name and password to connect to Message Queuing.

This is required only when the receive location is not on the server processing interchanges and documents.

10. To customize the receive function for non-self-routing documents, or to specify openness or pass-through options, click
Advanced.

For more information about advanced options,
see Configure advanced properties for File and Message Queuing receive functions.

 Important

Do not prefix the <servername>\<queuename> with "queue://" in the Polling location box. This is different from the
general properties for a server group for which you use "queue://". For more information about Message Queuing syntax,
see Available Receive Functions. For more information about properties for a server group,
see Configure general properties for a server group.

 Notes

For more information about custom preprocessing, see Custom Preprocessors.

A Message Queuing receive function will not work unless the user name and password supplied to BizTalk Server is running
has read permission on the queue.

To ensure reliability, you must use transactional queues. If you use nontransactional queues, messages might be lost. For
more information about transactional queues, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and search on the keywords "Message Queuing".

Verify that each receive function that you create has a unique name. You cannot assign identical names to receive functions.

Related Topics

Available Receive Functions

http://msdn.microsoft.com/library/default.asp

Configure advanced properties for File and Message Queuing receive functions

Configure a Message Queuing receive function: General tab

Custom Preprocessors

Receive Functions

Configure a Message Queuing receive function: General tab
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group for which you want to

configure a Message Queuing receive function, and then expand Receive Functions.

2. Click the Message Queuing receive function that you want to configure.

3. On the Action menu, click Properties.

The Properties dialog box appears.

4. In the Comment box, add a brief description (optional).

5. In the Security area, in the User name and Password boxes, type a valid user name and password to connect to the
Message Queue.

This is required only when the receive location is not on the processing server.

6. If you want to temporarily shut down the functionality of this receive function, select the Disable receive function check
box, and then click Yes to confirm your choice.

Related Topics

Configure a Message Queuing receive function: Services tab

Receive Functions

Configure a Message Queuing receive function: Services tab
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group for which you want to

configure a Message Queuing receive function, and then expand Receive Functions.

2. Click the Message Queuing receive function that you want to configure.

3. On the Action menu, click Properties.

The Properties dialog box appears.

4. Click the Services tab.

5. In the Server on which the receive function will run list, click the server name.

6. In the Polling location box, type the server and Message Queuing names that this receive function uses as the receive
location.

For example:

Direct=OS:<servername>\<queuename>

7. In the Preprocessor list, click the custom preprocessor.

Leave this option blank if you are not using a custom preprocessor.

8. Click OK.

 Important

Do not prefix the <servername>\<queuename> with "queue://" in the Polling location box. This is different from the
general properties for a server group for which you use "queue://". For more information about Message Queuing syntax,
see Available Receive Functions. For more information about server group properties,
see Configure general properties for a server group.

 Note

For more information about custom preprocessing, see Custom Preprocessors.

Related Topics

Available Receive Functions

Configure general properties for a server group

Custom Preprocessors

Configure advanced properties for File or Message Queuing
receive functions

1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group for which you want to
configure a receive function, expand Receive Functions, and then click the receive function that you want to configure.

2. On the Action menu, click Properties.

The Properties dialog box appears.

3. Click the Advanced tab.

4. In the Openness list, you can select:

Not open. Click this option when the source and destination are both explicitly declared in the receive function or in
the document instance, and BizTalk Server does not have to parse the document for this information.

Open Destination. Click this option when the destination information is not explicitly declared in the messaging port.
The destination is dynamically specified in the document instance or a submission parameter.

Open Source. Click this option when the source information is not explicitly declared in the channel. The source is
dynamically specified in the document instance or a submission parameter.

5. If you want to bypass all processing, such as decoding, decryption, signature verification, parsing and so on, and only
transport an interchange, select the Submit with a pass-through flag check box.

You must select a channel if you select the Submit with a pass-through flag check box.

6. In the Envelope name list, click the name of an envelope definition.

Choose an envelope if you plan to receive flat files. Otherwise, leave this blank.

7. In the Channel name list, click the name of a channel.

8. In the Document definition name list, click the name of a document definition.

9. In the Source and destination area, in the Source selected area, click Browse.

The Select Source dialog box appears.

10. In the Organization qualifier list, click the type of source organization qualifier.

11. In the Organization identifier value list, click the source-organization identifier value and click OK.

12. In the Source and destination area, in the Destination selected area, click Browse.

The Select Destination dialog box appears.

13. In the Organization qualifier list, click the type of destination organization qualifier.

If you send documents to a distribution list, in the Organization qualifier list, you must choose GROUP.

14. In the Organization identifier value list, click the destination-organization identifier value, and then click OK.

15. Click OK.

 Important

Before you can assign any of the objects in the following list as advanced properties of a receive function, you must create
them. These objects are either created in BizTalk Messaging Manager or they are created programmatically and stored in
the BizTalk Messaging Management database.

Envelopes

Channels

Document definitions

Source qualifiers

Source-organization identifier values

Destination qualifiers

Destination-organization identifier values

 Notes

If you click Open Source or Open Destination in the Openness list, the Submit with a pass-through flag check box is
unavailable.

If you want to send a document to a distribution list, you must select GROUP in the Organization qualifier list in the
Select Destination dialog box.

All the advanced receive-function properties are optional and can be left blank. For more information about submitting
documents, see Routing or Understanding Receive Functions and Document Routing.

If the Submit with a pass-through flag check box is enabled, only the Channel list is available.

A pass-through submission bypasses the parsing, decryption, and decoding functions of BizTalk Server 2000. For more
information about submitting documents with the pass-through flag set,
see Understanding Receive Function Advanced Properties. For more information about submitting, see Submitting.

Related Topics

Receive Functions

Routing

Submitting

Understanding Receive Function Advanced Properties

Understanding Receive Functions and Document Routing

Delete a receive function
1. In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, expand the server group in which you want to

delete a receive function, and then expand Receive Functions.

2. Click the receive function that you want to delete.

3. On the Action menu, click Delete.

The User Action Confirmation dialog box appears.

4. Click Yes.

Related Topic

Receive Functions

Manage Event Viewer
You can use the Event Viewer included in BizTalk Server Administration to help you troubleshoot server and document processing
problems. The Event Viewer appears in the console tree of BizTalk Server Administration. All application-related errors for BizTalk
Server 2000 are labeled BizTalk Server errors. All XLANG schedule–related errors are labeled XLANG Scheduler errors.

The following procedures are used to manage the Event Viewer:

Configure Event Viewer for BizTalk Server errors

View application-related errors in Event Viewer

Configure Event Viewer for BizTalk Server errors
1. In BizTalk Server Administration, expand Event Viewer.

2. Click Application.

3. On the Action menu, click Properties.

The Application Properties dialog box appears.

4. Click the Filter tab.

5. In the Event source list, click one of the following:

BizTalk Server. This option filters the event sources for error messages that are related to BizTalk Messaging
Services.

XLANG Scheduler. This option filters the event sources for error messages that are related to BizTalk Orchestration
Services.

6. Click OK to close the Application Properties dialog box.

View application-related errors in Event Viewer
1. In BizTalk Server Administration, expand Event Viewer.

2. Click Application.

Application error messages are listed in the details pane.

3. Click a message in the details pane.

4. On the Action menu, click Properties.

 Note

This procedure assumes you configured the Event Viewer to display only BizTalk Server and XLANG Scheduler errors. For
more information about how to display BizTalk Server and XLANG Scheduler errors,
see Configure Event Viewer for BizTalk Server errors.

Related Topic

Configure Event Viewer for BizTalk Server errors

Manage XLANG Applications and Databases
This section provides information about how to manage COM+ applications that host XLANG schedules. It also includes
information about managing the default XLANG Scheduler application and Orchestration Persistence database that is created
when you install BizTalk Server 2000.

BizTalk Server 2000 provides a COM+ application called the XLANG Persistence Helper, which is used by all COM+ applications
that host XLANG schedule instances. You should not change the configuration of the XLANG Persistence Helper in any way after
setup completes.

The following procedures are covered in this section:

Manage the Default XLANG Scheduler Application and Database

Manage Other COM+ Applications That Host XLANG Schedules

Monitor Running XLANG Schedules

 Notes

For more information about Microsoft SQL Server, on the Start menu, point to Programs, point to Microsoft SQL Server,
and then click Books Online.

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, and then double-click Component Services. In the console tree, right-click Component Services,
and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Running XLANG Schedules

Run XLANG Schedules

http://msdn.microsoft.com/library/default.asp

Manage the Default XLANG Scheduler Application and
Database
The default XLANG Scheduler application and Orchestration Persistence database are created during the installation of BizTalk
Server 2000. On production systems or systems running Microsoft Terminal Server, you need to change the default settings for
this application and database. You can also create new COM+ applications to host XLANG schedule instances and new persistence
databases to store XLANG schedule state information.

For information about creating a new COM+ application to host XLANG schedule instances
see Create a COM+ application to host XLANG schedules.

For more information about security and performance issues related to changing the default settings for the default XLANG
Scheduler application, see Security for Applications that Host XLANG Schedule Instances.

The following procedures are covered in this section:

Configure the default XLANG Scheduler application

Change the application identity for the default XLANG Scheduler application

Change the settings for the default Orchestration Persistence database

Shut down all XLANG applications

Restart all XLANG applications

 Notes

For more information about Microsoft SQL Server, on the Start menu, point to Programs, point to Microsoft SQL Server,
and then click Books Online.

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, and then double-click Component Services. In the console tree, right-click Component Services,
and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Running XLANG Schedules

Run XLANG Schedules

http://msdn.microsoft.com/library/default.asp

Configure the default XLANG Scheduler application
The default XLANG Scheduler application and default Orchestration Persistence database are created during the installation of
BizTalk Server 2000. On production systems or systems running Microsoft Terminal Server, you need to change the default
settings for this application and database. You can also create new COM+ applications to host XLANG schedule instances and new
persistence databases to store XLANG schedule state information.

For information about creating a new COM+ application to host XLANG schedule instances
see Create a COM+ application to host XLANG schedules.

For more information about security and performance issues related to changing the default settings for the default XLANG
Scheduler application, see Security for Applications that Host XLANG Schedule Instances.

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Click XLANG Scheduler. On the Action menu, click Properties.

4. It is highly recommended that you change the application identity of the default XLANG Scheduler application, particularly
on production systems or systems running Microsoft Terminal Server. For more information,
see Change the application identity for the default XLANG Scheduler application.

5. It is highly recommended that you change the default database settings for the Orchestration Persistence database. For
more information, see Change the settings for the default Orchestration Persistence database.

 Notes

The data source name (DSN) and the COM+ application must be the same. For example, if the COM+ application hosting
the XLANG Scheduler Engine is called XLANG Scheduler, the DSN must also be called XLANG Scheduler.

For Component Services Administration Help, on the Start menu, point to Settings, and then click Control Panel, double-
click Administrative Tools, and then double-click Component Services. In the console tree, right-click Component
Services, and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Change the application identity for the default XLANG Scheduler application

Change the DSN settings for a COM+ application

Change the settings for the default Orchestration Persistence database

Create a new persistence database

Creating an Instantiating Application

Restart all XLANG applications

Running XLANG Schedules

Run XLANG Schedules

Shut down all XLANG applications

http://msdn.microsoft.com/library/default.asp

Change the application identity for the default XLANG
Scheduler application
It is recommended that you change the default interactive user account for the default XLANG Scheduler application to a service
account.

For more information about security and performance issues related to changing the default settings for the default XLANG
Scheduler application, see Security for Applications that Host XLANG Schedule Instances.

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Click XLANG Scheduler. On the Action menu, click Properties.

4. On the Advanced tab, in the Permission area, clear the Disable changes check box, and then click OK.

The following message appears: The applications were created by one or more external products. Are you certain the
changes you are about to make are supported by these products?

5. Click Yes.

The XLANG Scheduler Properties dialog box closes.

6. Click XLANG Scheduler. On the Action menu, click Properties.

7. On the Identity tab, in the Account area, click This user.

8. Type the information for the account that you want to use.

9. Click OK.

The following message appears: The applications were created by one or more external products. Are you certain the
changes you are about to make are supported by these products?

10. Click Yes.

 Notes

For Component Services Administration Help, on the Start menu, point to Settings, and then click Control Panel, double-
click Administrative Tools, and then double-click Component Services. In the console tree, right-click Component
Services, and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Change the settings for the default Orchestration Persistence database

Configure the default XLANG Scheduler application

Running XLANG Schedules

Run XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

http://msdn.microsoft.com/library/default.asp

Change the settings for the default Orchestration Persistence
database
When you install BizTalk Server 2000, the Orchestration Persistence database is set up and configured with default settings. You
can change these default settings to a configuration that is suitable for the system you are running.

1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

2. Expand Microsoft SQL Servers, expand SQL Server Group, expand the server that contains the default database, and then
expand Databases.

3. Click the XLANG database. On the Action menu, click Properties.

4. There are six tabs on which you can set various database properties:

General

Data Files

Transaction Log

Filegroups

Options

Permissions

For more information about configuring databases in Microsoft SQL Server, see Microsoft SQL Server Books Online.

 Important

This procedure assumes that you set up the default database with the name XLANG.

 Notes

The primary database and transaction log files are created by using the database name as the prefix. For example,
XLANGdb_Data.mdf and XLANGdb_Log.ldf. The primary file contains the system tables for the database.

The maximum database size is determined by the amount of disk space available and the licensing limits for the version of
Microsoft SQL Server that you are using.

The object name of the Default Orchestration database is XLANG. You can change this name during the installation process.

For more information about SQL Server, on the Start menu, point to Programs, point to Microsoft SQL Server, and then
click Books Online.

Related Topics

Change the application identity for the default XLANG Scheduler application

Configure the default XLANG Scheduler application

Running XLANG Schedules

Run XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Shut down all XLANG applications
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click click

Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Click XLANG Scheduler. On the Action menu, click Properties.

4. On the XLANG tab, in the Controlled shutdown area, click All XLANG Applications.

 Caution

You must follow this procedure to execute a controlled shutdown for all COM+ applications. Doing this saves the state for
all running XLANG schedules to the persistence database. For more information, see Persistence.

Do not right-click a COM+ application and click Shut down. One of the following might occur:

If running XLANG schedules are fully transactional, an uncontrolled shutdown causes any executing transactions to
abort.

If running XLANG schedules are not fully transactional, data that is in process in the schedule is lost.

 Important

You cannot restart dehydrated XLANG schedules if the data source name (DSN) is not available or if it is incorrectly
configured. For more information about configuring a DSN for the default XLANG Scheduler application,
see Configure the default XLANG Scheduler application.

 Notes

For Component Services Administration Help, on the Start menu, point to Settings, and then click Control Panel, double-
click Administrative Tools, and then double-click Component Services. In the console tree, right-click Component
Services, and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Configure the default XLANG Scheduler application

Restart all XLANG applications

Running XLANG Schedules

Run XLANG Schedules

Shut down a COM+ application that hosts XLANG schedules

http://msdn.microsoft.com/library/default.asp

Restart all XLANG applications
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Click XLANG Scheduler. On the Action menu, click Properties.

4. On the XLANG tab, in the Restart dehydrated XLANG applications area, click All XLANG Applications.

 Important

You cannot restart dehydrated XLANG schedules if the data source name (DSN) is not available or if it is incorrectly
configured. For more information about configuring a DSN for the default XLANG Scheduler application,
see Configure the default XLANG Scheduler application.

When you restart dehydrated applications, this process starts the rehydration of the dehydrated schedules asynchronously.
The rehydration process is not immediate. Use XLANG Event Monitor to determine when the rehydration process is
complete. For more information about the XLANG Event Monitor tool, see the Readme.htm file associated with the tool.
Both XLANG Event Monitor (XLANGMon.exe) and the readme installed by the Microsoft BizTalk Server 2000 Setup Wizard
are located in the following installation directory: \Program Files\Microsoft BizTalk Server\SDK\XLANG Tools.

 Notes

For Component Services Administration Help, on the Start menu, point to Settings, and then click Control Panel, double-
click Administrative Tools, and then double-click Component Services. In the console tree, right-click Component
Services, and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Configure the default XLANG Scheduler application

Running XLANG Schedules

Run XLANG Schedules

Shut down a COM+ application that hosts XLANG schedules

Shut down all XLANG applications

http://msdn.microsoft.com/library/default.asp

Manage Other COM+ Applications That Host XLANG Schedules
Most COM+ applications that host XLANG schedules must be created when the XLANG schedule is developed. You must take into
consideration security and performance needs for the applications and the schedules, and you might want to create specific
COM+ applications to run specific schedules. For more information, see Run XLANG Schedules and Running XLANG Schedules.

The following procedures are covered in this section:

Create a new persistence database

Change the application identity for a COM+ application

Change the DSN settings for a COM+ application

Shut down a COM+ application that hosts XLANG schedules

 Notes

For more information about Microsoft SQL Server, on the Start menu, point to Programs, point to Microsoft SQL Server,
and then click Books Online.

For Component Services Administration Help, on the Start menu, point to Settings, and then click Control Panel, double-
click Administrative Tools, and then double-click Component Services. In the console tree, right-click Component
Services, and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Running XLANG Schedules

Run XLANG Schedules

http://msdn.microsoft.com/library/default.asp

Create a new persistence database
1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.

2. Expand Microsoft SQL Servers, expand SQL Server Group, expand the server for which you want to add a new database,
and then expand Database.

3. Click Databases. On the Action menu, click New Database.

4. On the General tab, in the Name box, type a name for the new database, and then click OK.

This action creates a new database with the default values set. You can change the default values. For more information
about configuring databases in Microsoft SQL Server, see Microsoft SQL Server Books Online.

 Notes

The primary database and transaction log files are created by using the database name as the prefix. For example,
XLANGdb_Data.mdf and XLANGdb_Log.ldf. The primary file contains the system tables for the database.

The maximum database size is determined by the amount of disk space available and the licensing limits for the version of
Microsoft SQL Server that you are using.

For more information about SQL Server, on the Start menu, point to Programs, point to Microsoft SQL Server, and then
click Books Online.

Related Topics

Configure the default XLANG Scheduler application

Running XLANG Schedules

Run XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Change the application identity for a COM+ application
1. On the Start menu, point to Settings, click to Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Click the COM+ application for which you want to change the identity, and on the Action menu, click Properties.

4. On the Advanced tab, in the Permission area, verify that the Disable changes check box is cleared, and then click OK.

The properties dialog box closes.

5. Right-click the COM+ application again, and then click Properties.

6. On the Identity tab, in the Account area, click This user.

7. Type the information for the account that you want to use.

8. Click OK.

The following message appears: The applications were created by one or more external products. Are you certain the
changes you are about to make are supported by these products?

9. Click Yes.

 Notes

For more information about security and performance issues the application identity settings for a COM+ application that
hosts XLANG schedules, see Security for Applications that Host XLANG Schedule Instances.

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, double-click Component Services, and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Change the settings for the default Orchestration Persistence database

Configure the default XLANG Scheduler application

Running XLANG Schedules

Run XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

http://msdn.microsoft.com/library/default.asp

Change the DSN settings for a COM+ application
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Click the COM+ application for which you want to change data source name (DSN) settings. On the Action menu, click
Properties.

4. On the XLANG tab, click Configure DSN.

The ODBC Data Source Administrator dialog box appears.

5. Change any settings that you want to change.

 Caution

After you change DSN settings, on the XLANG tab, do not click Initialize Tables. This action will destroy any data already in
the existing database.

 Important

The DSN and the COM+ application must use the same name. For example, if the COM+ application is called XLANG
Scheduler, the DSN must also be called XLANG Scheduler.

For more information about configuring a DSN and using data sources (ODBC), click Help in the ODBC Data Source
Administrator dialog box.

 Notes

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, double-click Component Services, and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Running XLANG Schedules

Run XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

http://msdn.microsoft.com/library/default.asp

Shut down a COM+ application that hosts XLANG schedules
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Click the COM+ application that hosts XLANG schedules that you want to shut down. On the Action menu, click Properties.

4. On the XLANG tab, in the Controlled shutdown area, click This XLANG Application.

 Caution

You must follow this procedure to execute a controlled shutdown for all COM+ applications. Doing this saves the state for
all running XLANG schedules to the persistence database. For more information, see Persistence.

Do not right-click a COM+ application and click Shut down. One of the following might occur:

If running XLANG schedules are fully transactional, an uncontrolled shutdown triggers all On Failure and
Compensation error-handling processes.

If running XLANG schedules are not fully transactional, data that is in process in the schedule is lost.

 Important

You cannot restart dehydrated XLANG schedules if the data source name (DSN) is not available or it is incorrectly
configured. For more information about configuring a DSN for a COM+ application that hosts XLANG schedules,
see Configure a COM+ application to host XLANG schedules.

 Notes

When you create a COM+ application to host XLANG schedules, the Restart dehydrated applications options is not
available. For more information about how to restart dehydrated applications, see Restart all XLANG applications.

For Component Services Administration Help, on the Start menu, point to Settings, and then click Control Panel, double-
click Administrative Tools, and then double-click Component Services. In the console tree, right-click Component
Services, and then click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Configure a COM+ application to host XLANG schedules

Restart all XLANG applications

Running XLANG Schedules

Run XLANG Schedules

Shut down all XLANG applications

http://msdn.microsoft.com/library/default.asp

Monitor Running XLANG Schedules
You can monitor running XLANG schedules by using either XLANG Event Monitor or Windows 2000 Event Viewer.

XLANG Event Monitor. When the XLANG Scheduler Engine executes XLANG schedules, it generates various kinds of
events, showing the progress of the schedule instances. You can use XLANG Event Monitor to monitor XLANG schedule
events, and see the progress of the schedule instances. You can monitor the default XLANG Scheduler application or you
can monitor the custom COM+ applications that you create to host XLANG schedules. XLANG Event Monitor can subscribe
to all events published by the host applications on any number of local or distributed computers. XLANG Event Monitor can
also store these events to a file for later analysis.

For specific information about using XLANG Event Monitor, see the Readme.htm file associated with the tool. Both XLANG
Event Monitor (XLANGMon.exe) and the readme installed by the Microsoft BizTalk Server 2000 Setup Wizard are located in
the following installation directory: \Program Files\Microsoft BizTalk Server\SDK\XLANG Tools.

Windows 2000 Event Viewer. Windows 2000 Event Viewer publishes event messages related to XLANG schedules. For
more information about using Event Viewer to view error messages see the following references:

For information about configuring Event Viewer to filter for XLANG schedule error messages,
see Configure Event Viewer for BizTalk Server errors.

For general information about Event Viewer, in Windows 2000 Server Help, in the Event Viewer chapter, see "Using
Event Viewer".

The following topic is covered in this section:

XLANG Schedule Error Messages

Related Topic

Configure Event Viewer for BizTalk Server errors

XLANG Schedule Error Messages
The error messages in the following list are returned when a running XLANG schedule generates the error. These messages can
be viewed in Windows 2000 Event Viewer.

Message na
me

V
a
l
u
e

Description

ID_CAT_UNK
NOWN

0
x
1

SVC%0

ID_CAT_NA
MESVC

0
x
2

NameSvc%0

ID_CAT_ENG
INE

0
x
3

Engine%0

ID_CAT_SYS
MGR

0
x
4

SystemMgr%0

ID_CAT_GRP
MGR

0
x
5

GroupMgr%0

ID_CAT_WFS
VCMGR

0
x
6

WFSvcMgr%0

ID_CAT_OBJ
ECTMODEL

0
x
7

WFObjectModel%0

ID_CAT_BIN
DING

0
x
8

WFBinding%0

ID_CAT_CO
M_LAST

0
x
9

<>%0

IDS_I_MTST
OCOM_LAU
NCH_FINISH
ED

0
x
1
0
0
0

An unauthorized client attempted to create a new instance of an XLANG schedule. The remainder of the moniker s
tring and the identity of the client are shown in the following message. The client's security identifier (SID) is inclu
ded as binary data: %1%0

ID_W_NOT_
USER

0
x
2
0
0
1

An unauthorized client attempted to gain access to an existing instance of an XLANG schedule. The remainder of t
he moniker string identifying the instance and the identity of the client are shown in the following message. The cl
ient's security identifier (SID) is included as binary data: %1%0

IDS_E_COM
SVCS_INTER
NAL_ERROR

0
x
3
0
0
0

The XLANG Scheduler Engine has detected an inconsistency in its internal state. Please contact Microsoft Product
Support Services to report this error: %1%0

IDS_COMSV
CS_RESOUR
CE_ERROR

0
x
3
0
0
1

The XLANG Scheduler Engine has detected the absence of a critical resource and has caused the process that host
ed it to end: %1%0

IDS_COMSV
CS_INTERN
AL_ERROR_
ASSERT

0
x
3
0
0
2

COM+ internal error. Please contact Microsoft Product Support Services to report this error. Assertion failure: %1
%0

ID_E_USER_
EXCEPTION

0
x
3
0
0
3

The system has called a scheduled component and that component has failed and generated an exception. This in
dicates a problem with the scheduled component. Notify the developer of this component that a failure has occurr
ed and provide the following information: %1%2%0

ID_INITIALIZ
E_FOR_DTC

0
x
3
0
0
4

The XLANG Scheduler Engine was unable to initialize for transactions that are required to support transactional co
mponents. Make sure that MS DTC is running: %1%0

ID_E_CANT_
CREATE_CO
MPONENT

0
x
3
0
0
5

The XLANG Scheduler Engine was unable to create a user component that is required by the running XLANG sche
dule. Detailed information is provided in the following message. %1%0

ID_E_PROGI
D_NOT_FOU
ND

0
x
3
0
0
6

The XLANG Scheduler Engine was unable to convert the Programmatic ID in the following message to a COM clas
s ID: %1%0

ID_E_CANT_
CREATE_INT
ERCEPTOR

0
x
3
0
0
7

The XLANG Scheduler Engine was unable to create an interceptor object for the interface ID shown in the followin
g message. Probable causes for this are 1) the interface isn't registered properly; 2) no type library is provided for
the interface; or 3) the file that contains the interface type information can't be loaded. The port name associated
with this interceptor is: %1%0

ID_E_INTF_N
OT_SUPPOR
TED

0
x
3
0
0
8

The XLANG Scheduler Engine detected an inconsistency between the port implementation and the COM compone
nts to which it refers. A component listed in the port implementation has failed to support the expected interface.
The class ID of the component and the IID that it failed to support are shown in the following message. The port n
ame associated with this component is: %1%0

ID_E_UNKN
OWN_METH
OD

0
x
3
0
0
9

The XLANG Scheduler Engine received a call to a method that was not specified in the port implementation for thi
s XLANG schedule. The IID and method number are shown in the following message. The name of the port on whi
ch the call arrived is: %1%0

ID_E_UNKN
OWN_IDISP
ATCH_METH
OD

0
x
3
0
0
A

The XLANG Scheduler Engine received a call through the IDispatch::Invoke() interface to a method that no longe
r exists. The dispatch ID for the method is shown in the following message. The name of the port on which the call
arrived is: %1%0

ID_E_NAME
D_PARAMS

0
x
3
0
0
B

The XLANG Scheduler Engine received a call through IDispatch::Invoke() interface to a method that contains na
med arguments. Use positional arguments instead. The dispatch ID for the method is shown in the following mess
age. The name of the port on which the call arrived is: %1%0

ID_E_BAD_I
NVOKE_PAR
AMS

0
x
3
0
0
C

The XLANG Scheduler Engine received a call through the IDispatch::Invoke() interface to a method with an incor
rect number of parameters. The IID and the dispatch ID for the method are shown in the following message. The n
ame of the port on which the call arrived is: %1%0

ID_E_BAD_R
ETURN_POI
NTER

0
x
3
0
0
D

The XLANG Scheduler Engine received an incorrect Out parameter through the IDispatch::Invoke() interface fro
m a method. The reference returned was either not valid (NULL or a bad pointer) or does not support the expecte
d interface. The expected dispatch ID is shown in the following message. The name of the message containing the
bad port reference is: %1%0

ID_E_ACCES
S_CHECK_FA
ILURE

0
x
3
0
0
E

The XLANG Scheduler Engine was not able to authorize the client's moniker resolution request. Access is denied.%
0

ID_E_BAD_I
NVOKE

0
x
3
0
0
F

The IDispatch::Invoke() interface call to a method failed. The dispatch ID for the method is shown in the followin
g message. The name of the port on which the call was attempted is: %1%0

ID_E_INVOK
ED_METHO
D

0
x
3
0
1
0

The invoked method, whose dispatch ID is shown in the following message, reported an error. The name of the po
rt on which the call was attempted is: %1%0

ID_E_CANT_
GET_TYPEIN
FO

0
x
3
0
1
1

The component whose port name and COM CLSID are shown in the following message was unable to supply req
uired type information to the XLANG Scheduler Engine.%1%0

ID_E_CANT_I
NVOKE_MET
HOD

0
x
3
0
1
2

The XLANG Scheduler Engine was unable to deliver a method call to the object associated with the port name sho
wn in the following message. The interface and method name that are invoked are also shown.%1%0

ID_E_CANT_
GET_CLASSI
NFO

0
x
3
0
1
3

The component whose port name and COM CLSID are shown in the following message was unable to supply req
uired type information to the XLANG Scheduler Engine through the IProvideClassInfo::GetClassInfo interface.%
1%0

ID_E_SCRIPT
_ERROR

0
x
3
0
1
4

A scripted decision rule in an XLANG schedule instance could not be executed. The error returned by the script en
gine is shown in the following message. The script's source code and information about the schedule instance in
which the error occurred is also provided.%1%0

ID_E_SCRIPT
_ERROR_NO
INFO

0
x
3
0
1
5

A scripted decision rule in an XLANG schedule instance has failed. Detailed information regarding the error could
not be obtained due to an internal error. The error code is shown in the following message.%1%0

ID_E_SCRIPT
_BADCONV

0
x
3
0
1
6

A scripted decision rule in an XLANG schedule instance referred to a message field whose type was incompatible
with the VBScript Engine. The XLANG Scheduler Engine attempted to convert the field to a compatible type but wa
s unable to do so. The information in the following message shows the script rule, message, and field involved; as
well as the original field variant type and the type to which a conversion was attempted. The field's VARIANT data
structure is attached to this log entry as binary data.%1%0

ID_E_SCRIPT
_BADARRAY

0
x
3
0
1
7

A scripted decision rule in an XLANG schedule instance referred to a message field containing an array type that is
incompatible with the VB script engine. Only variant arrays are supported by Visual Basic Scripting. The informati
on in the following message shows the script rule, message, and field involved. The field's VARIANT data structure
is attached to this log entry as binary data.%1%0

ID_E_SCRIPT
_BADEXPR

0
x
3
0
1
8

A scripted decision rule in an XLANG schedule instance contained an expression that did not return a Boolean res
ult. The information in the following message shows the script rule and expression involved. The VARIANT data st
ructure returned by the expression is attached to this log entry as binary data.%1%0

ID_E_SCHED
ULE_NOT_R
UNNING

0
x
3
0
1
9

The XLANG Scheduler Engine received a call to an object associated with a port in a XLANG schedule instance that
is not running. The name of the port on which the call arrived is: %1%0

ID_E_INTER
NAL_EXCEPT
ION

0
x
3
0
1
A

A COM+ internal exception occurred. Contact Microsoft Product Support Services to report this error, and provide
them with the information in the following message.%1%2%0

ID_E_BAD_D
ATAFLOW_
NOMESSAG
E

0
x
3
0
1
B

There is a problem with the data-flow specification. A message that is indicated as a source of data does not curre
ntly exist while this XLANG schedule is running. Detailed information is provided in the following message.%1%0

ID_E_BAD_A
RGUMENTV
ALUE

0
x
3
0
1
C

One of the fields that is used as a parameter for a COM method call has a bad value type in it. This is most likely c
aused by incorrect or missing data flow. Detailed information is provided in the following message.%1%0

ID_E_DEEP_
VARIANT_N
ESTING

0
x
3
0
1
D

One of the fields that is used as a parameter for a COM method call has more than one nesting level of VARIANTS
. The IID and the method's dispatch ID are shown in the following message. The name of the port on which the call
arrived is: %1%0

ID_E_BAD_M
APPORTVAL
UE

0
x
3
0
1
E

A field carrying a mapped port is not valid. Detailed information is provided in the following message.%1%0

ID_E_BAD_C
ALLPARAM
NUMBER

0
x
3
0
1
F

An incorrect number of parameters are being passed into a call. Detailed information is provided in the following
message.%1%0

ID_E_EXECU
TINGCALLE
DSCHEDULE

0
x
3
0
2
0

The XLANG schedule cannot be executed as a top-level schedule. Context parameters must be passed to it. Detaile
d information is provided in the following message.%1%0

ID_E_CANT_
GET_SUPPO
RTERRORIN
FO

0
x
3
0
2
1

The component whose port name and COM CLSID are shown in the following message was unable to return succ
ess from an interface which it claimed to support to the XLANG Scheduler Engine via ISupportErrorInfo::InterfaceS
upportsErrorInfo.%1%0

ID_E_PERSIS
T_FAILURE

0
x
3
0
2
2

The state of the schedule instance could not be saved to the database. Detailed information is provided in the follo
wing message.%1%0

ID_E_TRANS
ACTION_CO
MMIT_FAILU
RE

0
x
3
0
2
3

The system failed to commit a transactional context. Detailed information is provided in the following message.%
1%0

ID_E_TRANS
ACTION_AB
ORTED

0
x
3
0
2
4

The system aborted a transactional context. Detailed information is provided in the following message.%1%0

ID_E_TRANS
ACTION_AB
ORT_FAILUR
E

0
x
3
0
2
5

The system failed to abort a transactional context. The state of this transaction is not known. Detailed information i
s provided in the following message.%1%0

ID_E_PENDI
NGREHYDR
ATIONERRO
R

0
x
3
0
2
6

The rehydration application encountered an error and is shutting down. Some of the rehydration requests will fail
due to this shutdown. Restart the XLANG Scheduler Engine service. Detailed information is provided in the followi
ng message.%1%0

ID_E_REHYD
RATIONONS
TARTUPERR
OR

0
x
3
0
2
7

One or more XLANG schedules could not rehydrated because of a system error. There might be problems reading
the database or problems with the data that was read. Detailed information is provided in the following message.
%1%0

ID_E_REHYD
RATIONERR
OR

0
x
3
0
2
8

An error was encountered while rehydrating an XLANG schedule. There might be a problem reading the database,
or there might be a problem with the information stored. It is probable that the XLANG schedule was not dehydra
ted properly. Detailed information is provided in the following message.%1%0

ID_E_FOUN
DINITIALIZE
DTHREAD

0
x
3
0
2
9

The XLANG Scheduler Engine service encountered a critical thread-management error while processing an XLAN
G schedule. The schedule might fail to continue processing. Contact your technical support.%1%0

ID_E_CALLO
NCOMPLETE
DSCHEDULE

0
x
3
0
2
A

The XLANG Scheduler Engine service received a call on a completed XLANG schedule instance. The schedule insta
nce has already been removed from memory. The IID for the interface is shown in the following message.%1%0

IDS_MSG_TI
MEBOMB_E
XPIRED

0
x
3
0
2
B

Thank you for evaluating Microsoft BizTalk Server 2000. The period for this evaluation version has ended. Please c
ontact Microsoft or your software reseller to obtain a licensed version of Microsoft BizTalk Server 2000.%0

ID_E_FIELDP
ORTPERSIST
ENCEERROR

0
x
3
0
2
C

An error was encountered while attempting to persist an XLANG schedule instance. Detailed information is provid
ed in the following message.%1%0

ID_E_FIELDP
ORTREHYDR
ATIONERRO
R

0
x
3
0
2
D

An error was encountered while attempting to restore a particular sub-component of an XLANG schedule instanc
e from the database. Detailed information is provided in the following message.%1%0

ID_E_SCHED
ULEDONE

0
x
3
0
3
0

The XLANG Scheduler Engine encountered an error while marking the XLANG schedule instance as done. Either th
e database could not be updated or another error was encountered in the final stage. Detailed information is provi
ded in the following message.%1%0

ID_E_COMP
ONENT_INC
OMPATIBLE_
TXN

0
x
3
0
3
1

The XLANG Scheduler Engine encountered an error while attempting to instantiate a component. Either the comp
onent was previously enrolled in a different transaction, or the component was previously not enrolled in a transa
ction and the current instantiation requires a transaction. Detailed information is provided in the following messa
ge.%1%0

ID_E_SUSPE
ND_FAILURE

0
x
3
0
3
2

The XLANG schedule instance could not be suspended. Detailed information is provided in the following message.
%1%0

ID_E_INITNE
W

0
x
3
0
3
3

The XLANG Scheduler Engine received an error when doing IPersistStreamInit::InitNew. The class ID of the com
ponent and the error code are shown in the following message. The port name associated with this component is:
%1%0

ID_E_POSSIB
LEBYOTISSU
E

0
x
3
0
3
4

The component you requested could not be created. One possible reason for this is that you have configured the
BYOT component inside a COM+ application on this machine. This setting is incompatible with the XLANG Sched
uler service. The port name associated with this component is: %1%0

ID_E_FIELDP
ROCESSING
ERROR

0
x
3
0
3
5

The field value provided was not valid. Detailed information is provided in the following message.%1%0

ID_E_NO_OB
JECT

0
x
3
0
3
6

The XLANG schedule could not be instantiated. Detailed information is provided in the following message.%1%0

ID_E_START
UP_FAILED

0
x
3
0
3
7

One or more of the XLANG Group Managers failed to startup with the following error: %1%0

ID_E_NON_S
CRIPT_BADE
XPR

0
x
3
0
3
8

An XLANG schedule instance has a rule comparing fields for data types that are not permitted. Detailed informatio
n is provided in the following message.%1%0

E_BTW_PER
SIST_REACH
EDEOF

0
x
3
0
3
9

The Record set cannot return this row, because the end-of-file (EOF) has been reached.%1%0

ID_E_BAD_D
ATAFLOW_E
MPTYFIELD

0
x
3
0
4
0

There is a problem with the data-flow specification. A field indicated as a source of data is empty. This may be bec
ause it could not be persisted earlier. Detailed information is provided in the following message.%1%0

ID_E_CANT_
OPEN_DEAD
LETTER_QUE
UE

0
x
3
0
4
1

The XLANG Scheduler engine was unable to create or open the XLANG dead-letter queue for its host COM+ appli
cation. The name of the failing COM+ application is: %1%0

ID_E_CANT_
XFER_TO_DE
ADLETTER_
QUEUE

0
x
3
0
4
2

The XLANG Scheduler engine was unable to transfer an invalid message to the XLANG dead-letter queue for its h
ost COM+ application. The name of the failing COM+ application is: %1%0

ID_E_CANT_
LOADMODU
LE

0
x
3
0
4
3

The XLANG Scheduler engine was unable to load a required module. This may have been due to compilation/sem
antic errors with the module. Detailed information is available in the following message: %1%0

ID_E_USER_
DATA_EXCE
PTION

0
x
3
0
4
4

A value that was received from the client has caused an exception to be raised. This can be caused by incorrectly al
locating memory for the data, by a reference counting mismatch, or other data corruption. The most likely source
of the problem is in the client code. Detailed information is available in the following message: %1%2%0

E_BTW_INTE
RNAL_ERRO
R

0
x
4
0
0
1

An internal error has occurred. %1%0

E_EXPORT_F
AILED

0
x
4
0
0
2

The XLANG schedule could not be processed.%0

E_BTW_UNK
NOWN_SHA
PE

0
x
4
0
0
3

The compiler does not understand the shape. This shape is an unknown shape.%0

E_BTW_INC
OMPLETE_F
LOW

0
x
4
0
0
4

The flow is incomplete because a connector is missing.%0

E_BTW_INC
OMPLETE_F
LOW_LEFT

0
x
4
0
0
5

The flow is incomplete. The shape must have a flow connected to the left connector.%0

E_BTW_INC
OMPLETE_F
LOW_RIGHT

0
x
4
0
0
6

The flow is incomplete. The shape must have a flow connected to the right connector.%0

E_BTW_INC
OMPLETE_F
LOW_LATER
AL

0
x
4
0
0
7

The flow is incomplete. Shape not attached to anything on the side.%0

E_BTW_INC
OMPLETE_F
LOW_TOP

0
x
4
0
0
8

The flow is incomplete. The shape must have a flow connected to the top connector.%0

E_BTW_INC
OMPLETE_F
LOW_BOTT
OM

0
x
4
0
0
9

The flow is incomplete. The shape must have a flow connected from the bottom connector.%0

E_BTW_INC
OMPLETE_F
LOW_ANYLI
NE

0
x
4
0
0
A

The flow is incomplete. Not connected to any shape.%0

E_BTW_MIR
RORLIST_IN
CONSISTEN
T

0
x
4
0
0
B

Mirror shapes are not found in the On Failure or Compensation pages. Retry after replacing the shape with a new
one.%0

E_BTW_BEGI
N_INSIDE_T
RANSACTIO
N

0
x
4
0
1
0

The Begin shape must not be enclosed within a transaction.%0

E_BTW_END
MULTIPLE
LOOP

0
x
4
0
2
0

Only one End shape may be used in the loop branch.%0

E_BTW_END
_IN_TRANSA
CTION

0
x
4
0
2
1

The End shape cannot be used in the context.%0

E_BTW_SYN
CACTION_N
O_PAIR

0
x
4
0
3
0

Binding to COM port requires actions to appear in pairs.%0

E_BTW_INC
OMPLETE_F
LOW_BINDI
NG

0
x
4
0
3
1

No binding for this action or port.%0

E_BTW_FIEL
D_TYPE_NO
T_SUPPORT
ED

0
x
4
0
4
0

Type (variant type=%1) is not supported.%0

E_BTW_ROL
E_NOT_SUP
PORTED

0
x
4
0
5
0

Contracts (XLANG Schedules with Roles) cannot be compiled.%0

E_BTW_EMP
TY_TRANSA
CTION

0
x
4
0
6
0

The transaction contains no valid shapes.%0

E_BTW_TRA
NSACTION_
NOT_PERMI
TTED

0
x
4
0
6
1

Transaction shapes are not permitted when the XLANG schedule is treated as a COM+ component. Remove the t
ransaction or edit the properties of the Begin shape to change the transaction model.%0

E_BTW_TRA
NSACTION_
BOUNDARIE
S_CROSSED

0
x
4
0
6
2

You cannot connect a flow from outside a transaction to a shape within a transaction without first connecting the f
low to the transaction. Draw your flow to the top connection point of a transaction to connect it to the transaction.
Then, click the transaction to highlight it. Draw another flow from the transaction connection point to the first sha
pe within the transaction. To draw a flow that leaves the transaction, you must first connect the flow to the connec
tion point at the bottom of the transaction. Then, click the transaction to highlight it. Draw another flow from the b
ottom connection point to the next shape in the business process.%0

E_BTW_TRA
NSACTION_
TERMINATE
D_PREMATU
RELY

0
x
4
0
6
3

At least one path within the transaction should flow out of the transaction.%0

E_BTW_NO_
RULES_FOR
_SWITCH

0
x
4
0
7
0

Decision shapes must contain at least one rule.%0

E_BTW_CAN
NOT_WAIT_
ON_ALL_SW
ITCH_BRAN
CHES

0
x
4
0
A
0

Cannot wait on "all" branches from the decision.%0

E_BTW_NO_
BRANCH_FO
UND

0
x
4
0
A
1

The join cannot find the corresponding fork or decision.%0

E_BTW_JOIN
_MISMATCH

0
x
4
0
A
2

Only a single join may be used with a given fork or decision.%0

E_BTW_JOIN
_SHARED

0
x
4
0
A
3

The same join cannot be used for flows coming from different forks or decisions.%0

E_BTW_CAN
NOT_WAIT_
ON_SOME_
SWITCH_BR
ANCHES

0
x
4
0
A
4

Not all paths from the decision come to the join.%0

E_BTW_CAN
NOT_WAIT_
ANY_ON_FO
RK_BRANCH
ES

0
x
4
0
A
5

Cannot wait "Or". The branches contain process forms that may never finish resulting in hung schedules.%0

E_BTW_DAT
AFLOW_DIS
ALLOWED_
ON_BTM_P
ORT

0
x
4
0
C
0

This port cannot be used in multiple receive actions or within a single receive action in a loop.%0

E_BTW_MES
SAGE_TECH_
NOT_FOUN
D

0
x
4
1
1
0

The message is not bound to any port.%0

E_BTW_MES
SAGE_TYPE_
MISMATCH

0
x
4
1
1
1

Message was used with conflicting types "%1" and "%2".%0

E_BTW_MIS
SING_TECH
NOLOGY

0
x
4
1
2
0

The list of available methods for this communication flow has changed. Re-run the Method Communication Wizar
d to select a different method and update this communication flow.%0

E_BTW_MIS
SING_PORT_
DATAFLOW

0
x
4
1
A
0

The settings for this port indicate that it is created externally to the XLANG Scheduler Engine. You must designate
the source of this port reference by drawing a connection from the appropriate message field.%0

E_BTW_CIRC
ULAR_DATA
FLOW

0
x
4
1
A
1

There appears to be a circular path in the data-flow path for this XLANG schedule.%0

E_BTW_LOO
P_NORULE

0
x
4
1
D
0

A rule has not been defined.%0

E_BTW_LOO
P_BODY_EXI
TS_TRANSA
CTION

0
x
4
1
D
1

The body of the loop cannot exit the enclosing transaction.%0

E_BTW_LOO
P_BODY_EN
D_MISSING

0
x
4
1
D
2

The end of the body of the loop is not found.%0

E_BTW_ABO
RT_NOT_IN_
TXN

0
x
4
1
E
0

Abort shapes must be associated with an enclosing transaction.%0

E_BTW_ABO
RT_CONTEX
T_INVALID_
SCOPE

0
x
4
1
E
1

Abort shapes can refer to current or parent contexts only.%0

E_BTW_END
MULTIPLE
ABORT

0
x
4
1
E
2

Multiple End shapes are not allowed on the On Failure page.%0

E_BTW_CO
MPILER_FAI
LED

0
x
5
0
0
0

Compile failed on "%1".%0

E_BTW_PAR
SE_FAILED

0
x
5
0
0
1

Parse failed.%0

E_BTW_FIXU
P_FAILED

0
x
5
0
0
2

Fixup failed.%0

E_BTW_VALI
DATION_FAI
LED

0
x
5
0
0
3

Validation failed.%0

E_BTW_NOD
E_FAILURE

0
x
5
0
0
4

at node "%1" (%2!d!,%3!d!).%0

E_BTW_STA
CK_TOO_MA
NY_ITEMS

0
x
5
0
0
5

Too many items were found on the stack.%0

E_BTW_STA
CK_UNEXPE
CTED_NODE

0
x
5
0
0
6

An unexpected node was found.%0

E_BTW_XML
QUERY_RET
URNED_ZER
O_NODES

0
x
5
0
0
7

The XML Query returned zero nodes.%0

E_BTW_XML
QUERY_RET
URNED_MU
LTIPLE_NOD
ES

0
x
5
0
0
8

The XML Query returned multiple nodes.%1%0

E_BTW_XML
QUERY_MIS
SING_ATTRI
BUTE

0
x
5
0
0
9

Required attribute "%1" is missing its value.%0

E_BTW_LOA
D_MODULE_
FAILED

0
x
5
0
0
A

Failed to load module "%1".%0

E_BTW_XML
_LOAD_FAIL
ED

0
x
5
0
0
B

The XML-DOM returned an error at "%1!d!, %2!d!".%0

E_BTW_ERR
OR_LOADIN
G_PACKAGE

0
x
5
0
0
C

0x%1!X! error occurred while trying to load the following URL: "%2".%0

E_BTW_NA
MED_LIST_H
AS_DUPLICA
TE_ENTRIES

0
x
5
0
0
D

The list has duplicate entries with the name "%1".%0

E_BTW_REQ
UIRED_ELEM
ENT_MISSIN
G

0
x
5
0
0
E

Required element "%1" is missing.%0

E_BTW_ELE
MENT_MISSI
NG_VALUE

0
x
5
1
0
0

The element value is missing.%0

E_BTW_REFE
RENCE_RES
OLVE_FAILE
D

0
x
5
1
1
0

Unable to resolve "%1" with location value "%2".%0

E_BTW_CON
TEXTREF_IN
VALID_REFE
RENCE

0
x
5
1
2
0

Returning to or "releasing" from an independent (non-enclosing) context is not permitted.%0

E_BTW_CON
TEXTREF_SE
LF_REFEREN
CE

0
x
5
1
2
1

Return or Release referring to a context from within that context is not permitted.%0

E_BTW_ASY
NC_ACTION
_COM_NOT_
ALLOWED

0
x
5
4
0
0

An asynchronous action must refer to a non-COM port.%0

E_BTW_CON
NECTION_P
ORT_HAS_T
ECH_BINDIN
G

0
x
5
4
9
0

The port "%1" used in a connection cannot have technology binding.%0

E_BTW_CON
NECTION_P
ORT_REUSE
D

0
x
5
4
9
1

The port "%1" used in a connection has been used before in the XLANG schedule.%0

E_BTW_TRA
NSACTIONS
_NESTED

0
x
5
4
B
0

When transactions are nested, the outer transaction must be long-running.%0

E_BTW_TRA
NSACTIONS
_NESTED_RE
TRY

0
x
5
4
B
1

When transactions are nested, the outer transaction cannot have retry count.%0

E_BTW_MES
SAGE_HAS_
NO_DECL

0
x
5
5
2
0

Message "%1" has no associated declaration.%0

E_BTW_MES
SAGE_HAS_
UNSATISFIE
D_DATA_DE
PENDENCIE
S

0
x
5
5
2
1

Message "%1" has unsatisfied data dependencies on "%2". The dependencies are either not getting created in the
flow or are potentially expected on a port in which the "No instantiation" option has been selected.%0

E_BTW_POR
T_HAS_NO_
BINDING

0
x
5
5
7
0

Port "%1" has no associated binding.%0

E_BTW_POR
T_HAS_UNS
ATISFIED_D
ATA_DEPEN
DENCIES

0
x
5
5
7
1

Port "%1" has unsatisfied data dependencies on messages "%2". The dependencies are either not being created in
the flow or are potentially expected on a port in which the "No instantiation" option has been selected.%0

E_BTW_RUL
E_HAS_NO_
BINDING

0
x
5
5
B
0

Rule "%1" has no associated binding.%0

E_BTW_SCH
EDULE_SUS
PENDED

0
x
5
5
E
0

The XLANG schedule has been suspended.%0

E_BTW_SCH
EDULE_STO
PPED

0
x
5
5
E
1

The XLANG schedule has been stopped.%0

E_BTW_PER
SIST_FAILED

0
x
5
5
E
2

The state of the XLANG schedule instance could not be saved to the database.%0

E_BTW_SUS
PEND_FAILE
D

0
x
5
5
E
3

The XLANG schedule could not be suspended.%0

E_XLANG_S
HUTTINGDO
WN

0
x
5
5
E
4

The XLANG Application is shutting down.%0

E_BTW_MIS
SING_MESS
AGE_BINDIN
G_ON_PORT

0
x
5
7
3
0

The action uses port "%1" whose binding does not define the binding for message "%2".%0

E_BTW_MIS
SING_INCO
MING_PORT
REF

0
x
5
7
3
1

The message used by this receive action contains a field (%1) that is connected to a port reference (%2) but the da
taflow connections do not indicate that the port reference should be received.%0

E_BTW_SOU
RCE_PORT_
HAS_NOINV
OCATION

0
x
5
7
4
0

The send action refers to port "%1", in which the "No instantiation" option has been selected.%0

E_BTW_MIS
SING_OUTG
OING_PORT
REF

0
x
5
7
4
1

The message used by this source action contains a field (%1) that is connected to a port reference (%2) but the dat
aflow connections do not indicate that the port reference should be sent.%0

E_BTW_TAS
K_LIMIT

0
x
5
7
5
0

The task has "%1!d!" actions. The current limit is "%2!d!".%0

E_BTW_SYN
C_DIFFEREN
T_PORTS

0
x
5
7
6
0

Synchronous action pair refers to different ports: "%1" and "%2".%0

E_BTW_SYN
C_SAME_ME
SSAGE

0
x
5
7
6
1

Synchronous action pair refers to the same message: "%1".%0

E_BTW_SYN
C_ONLY_CO
M_ALLOWE
D

0
x
5
7
6
2

Synchronous action pair must refer to COM port only.%0

E_BTW_SYN
C_SECOND_
MESSAGE_
MUST_BE_O
UT_FOR_FIR
ST_MESSAG
E

0
x
5
7
6
3

In a synchronous action pair the message in the second action must be the out message for the message in the fir
st action.%0

E_BTW_INV
ALID_DELAY
_TIME

0
x
5
7
7
0

The delay time (%1!d!) is not valid. The delay time cannot be a negative number.%0

E_BTW_CAL
L_MESSAGE
_SCHEMA_N
AME_MISM
ATCH

0
x
5
8
0
0

The message specification name "%1" for the message "%2" in the calling XLANG schedule does not match the sp
ecification name "%3" in the called XLANG schedule.%0

E_BTW_CAL
L_MESSAGE
_SCHEMA_R
EPRESENTA
TION_MISM
ATCH

0
x
5
8
0
1

The message specification representation for message "%1" in the calling XLANG schedule does not match the sp
ecification representation in the called XLANG schedule.%0

E_BTW_ASSI
GNMENT_P
ORT_HAS_T
ECH_BINDIN
G

0
x
5
8
3
0

Port "%1" used in an assignment in a cut form cannot have technology binding.%0

E_BTW_PAR
TITION_LIMI
T

0
x
5
8
5
0

The partition has "%1!d!" process(es). The current limit is "%2!d!".%0

E_BTW_MES
SAGE_USED
_IN_PARALL
EL

0
x
5
8
5
1

Parallel actions or processes use the same message "%1".%0

E_BTW_POR
T_USED_IN_
PARALLEL

0
x
5
8
5
2

Parallel actions or processes use the same port "%1".%0

E_BTW_INV
ALID_RETRY
_COUNT

0
x
5
A
3
0

The retry count "%1!d!" is not valid. The retry count cannot be negative.%0

E_BTW_INV
ALID_BACK
OFF_VALUE

0
x
5
A
3
1

The back-off value "%1!d!" is not valid. The back-off value cannot be negative.%0

E_BTW_INV
ALID_TIMEO
UT_VALUE

0
x
5
A
3
2

The timeout value "%1!d!" is not valid. The timeout value cannot be negative.%0

E_BTW_FIEL
D_RESERVE
D_NAME

0
x
5
A
5
0

%1 is a reserved field name.%0

E_BTW_ELE
MENT_TYPE
_NOT_DEFIN
ED

0
x
5
A
5
1

The element type "%1" is not defined.%0

E_BTW_ELE
MENT_TYPE
_INCOMPLE
TE

0
x
5
A
7
0

The element type definition is incomplete. Provide either subelements or dt:type.%0

E_BTW_MUL
TIPLE_PORT
S

0
x
5
A
9
0

Distinct ports "%1" and "%2" are used on the same field.%0

E_XLANG_IN
VALID_COM
PARE_TYPE

0
x
5
A
9
1

Comparison of this data type is not permitted.%0

E_BTW_FIEL
D_NOT_MAT
CHING_SCH
EMA_ELEME
NT

0
x
5
A
9
2

FieldBinding for "%1" does not have a matching element in the schema at position "%2!d!".%0

E_BTW_FIEL
D_HAS_AMB
IGUOUS_DA
TAFLOW

0
x
5
A
9
3

A message field cannot have both a data flow from another message field and a reference to a port. One of the da
ta flows must be removed.%0

E_BTW_POR
T_TARGET_I
NVALID

0
x
5
A
9
4

The type of this field is inappropriate for use as a port reference. Ports bound to a COM component can be comm
unicated as object references or strings. Ports bound to Message Queuing may only be transferred as strings. Inte
rnal ports can be communicated only as object references.%0

E_BTW_FIEL
D_TARGET_I
NVALID

0
x
5
A
9
5

The target field "%1", which is of variant type "%2", cannot get data from source field "%3", which is of variant typ
e "%4".%0

E_BTW_INITI
ALIZED_MES
SAGEFIELD_I
NVALID_OV
ERWRITE

0
x
5
A
9
6

The data in field "%1" of an initialized message "%2" cannot be overwritten with data from other message or port
in the binding specification.%0

E_BTW_DAT
AFLOW_INC
OMPLETE

0
x
5
A
B
1

A source action accepting [in] parameters must have the corresponding fields populated by data flow (that is, "fro
m").%0

E_BTW_DAT
AFLOW_FR
OM_SYSTE
M_FIELD

0
x
5
A
B
2

Port cannot be initialized from a system field.%0

E_BTW_DAT
AFLOW_FR
OM_CONST
ANT_FIELD

0
x
5
A
B
3

Port cannot be initialized from a constant message field.%0

E_BTW_MIS
SING_SCRIP
T_EXPRESSI
ON

0
x
5
A
C
0

No script expression was supplied for the rule.%0

E_BTW_BAD
_SCRIPT_EX
PRESSION

0
x
5
A
C
1

%1 %2 at character position %3!d! in "%4"%0

E_BTW_MAP
_INVALID_BI
NDING

0
x
5
A
E
0

The binding for message "%1" must contain a reference for mapped port "%2".%0

E_BTW_MES
SAGE_BINDI
NG_SCHEM
A_MISMATC
H

0
x
5
A
E
1

There is a mismatch between the binding and schema for the message "%1".%0

E_BTW_MES
SAGEDECL_I
NIT_DATA_U
NAVAILABLE

0
x
5
B
0
0

Unable to obtain initialization data for field "%1".%0

E_BTW_LATE
NCY_INVALI
D_VALUE

0
x
5
B
2
0

The Latency property value must be a non-negative integer that is less than the maximum long integer "%1!d!".%
0

E_BTW_POR
T_LATENCY_
ON_INTERN
AL

0
x
5
B
2
1

Cannot specify latency on an internal port.%0

E_BTW_MES
SAGE_TECH
NOLOGY_MI
SMATCH

0
x
5
B
B
0

There is a mismatch between the port "%1" technology "%2" and the message "%3" technology "%4".%0

E_BTW_FIEL
D_TECHNOL
OGY_MISM
ATCH

0
x
5
B
C
0

There is a mismatch between the message "%1" technology "%2" and the field "%3" technology "%4".%0

E_BTW_CO
M_PORT_N
OT_CREATA
BLE

0
x
5
C
1
0

If a COM port can be invoked, it must have a CLSID, a ProgID, or a moniker.%0

E_BTW_AUT
ORETURN_C
OM_PORT_
MUST_BE_U
SED_INSIDE
_CONTEXT

0
x
5
C
1
1

The port "%1", which is configured to abort a transaction if a method returns a failure HRESULT, can only be used
inside a transaction.%0

E_BTW_CO
M_PORT_GE
NERAL_ACC
ESS_FAILUR
E

0
x
5
C
1
2

A COM port can be invoked. Please refer to the Windows 2000 documentation.%1%0

E_BTW_CO
M_PARAME
TERS_LIMIT

0
x
5
C
2
0

The method has "%1!d!" parameter(s). The current limit is "%2!d!".%0

E_BTW_CO
M_NO_MAT
CHING_RET
URN

0
x
5
C
2
1

The COM method has no matching Return.%0

E_BTW_CO
M_NO_MAT
CHING_MET
HOD

0
x
5
C
2
2

The COM Return has no matching method.%0

E_BTW_INV
ALID_SLOT_
NUMBER

0
x
5
C
2
3

The slot number "%1!d!" is not valid. Slot numbers cannot be less than the following value: SLOT_NONE(-1).%0

E_BTW_INV
ALID_INVOK
E_KIND

0
x
5
C
2
4

The invokeKind value "%1!d!" is not valid. Acceptable values are: 1,2,3,4 and 8.%0

E_BTW_PRO
XY_DISCON
NECTED

0
x
5
C
2
5

The proxy has been disconnected.%0

E_BTW_CO
M_DISPATC
H_SLOT_SPE
CIFIED

0
x
5
C
2
6

A slot number cannot be specified for the dispatch interface.%0

E_BTW_CO
M_SPECIFY_
DISPID_OR_
SLOT

0
x
5
C
2
7

Valid values for dispid or slot must be specified.%0

E_BTW_CO
M_INVALID_
BYREF_FOR_
RETURN_ME
SSAGES

0
x
5
C
3
0

Byref should be "1" since "%1" is a <com:return> message.%0

E_BTW_CO
M_INVALID_
NESTED_VA
RIANTS

0
x
5
C
3
1

More than one level of nesting for variants is not permitted.%0

E_BTW_CO
M_FIELD_IN
DEX_MUST_
BE_NON_NE
GATIVE

0
x
5
C
3
2

The index "%1!d!" for the field is not valid. The index must be a non-negative integer.%0

E_BTW_CO
M_FIELD_IN
DEX_REPEAT
ED

0
x
5
C
3
3

The index "%1!d!" for the field has been used before on another field in the message.%0

E_BTW_CO
M_FIELD_IN
DEX_NOT_C
ONTIGUOU
S

0
x
5
C
3
4

For synchronous action pair messages "%1" and "%2", the index "%3!d!" for a field is not valid. The field indices fo
r these messages must form a contiguous block of non-negative numbers that start with zero.%0

E_BTW_MS
MQ_NO_M
QRT_DLL

0
x
5
D
0
0

The Message Queue DLL, MQRT.DLL, cannot be loaded.%0

E_BTW_MS
MQ_CREATE
CHANNEL

0
x
5
D
0
1

MQBinder: CreateChannel failed for: %1.%0

E_BTW_MS
MQ_NOT_C
ONFIGERED
_PROPERLY

0
x
5
D
0
2

The Message Queuing Service is not configured properly. A queue object could not be opened %1.%0

E_BTW_MS
MQ_NO_CE
RTIFICATE_A
VAILABLE

0
x
5
D
0
3

The Message Queuing Service is not able to obtain a certificate.%1%0

E_BTW_MS
MQ_NO_WE
LLKNOWN_
QUEUE_NA
ME

0
x
5
D
0
4

A message cannot be sent to a known queue because the queue is not named in the XLANG schedule. You must p
rovide a queue name in the XLANG schedule.%1%0

E_BTW_MS
MQ_INVALI
D_FIELD_TY
PE

0
x
5
D
0
5

The field type specified for message "%1" field "%2" is not valid.%0

E_BTW_MS
MQ_PORT_
NOT_BOUN
D

0
x
5
D
0
6

The Message Queuing port is not bound.%1%0

E_BTW_MS
MQ_QUEUE
_NOT_TRAN
SACTIONAL

0
x
5
D
1
0

The queue does not have the correct transactional properties.%1%0

E_BTW_MS
MQ_OPEN_
ACCESSDEN
IED

0
x
5
D
1
1

A Message Queuing access denied error occurred when opening the queue. Compare the accessRole specified for
the queue in the XLANG schedule with the rights associated to the current user.%1%0

E_BTW_MS
MQ_OPEN_
GENERALFAI
LURE

0
x
5
D
1
2

A Message Queuing failure occurred when opening the queue. Refer to the Message Queuing Service documentat
ion in Windows 2000 to look up the error code and diagnose as appropriate.%1%0

E_BTW_MS
MQ_PORT_
NOT_CREAT
ABLE

0
x
5
D
1
3

A port that is implemented by using a message queue must have a queue name.%0

E_BTW_MS
MQ_GENER
AL_QUEUE_
ACCESS_FAI
LURE

0
x
5
D
1
4

A Message Queuing failure occurred when accessing the queue. Refer to the Message Queuing Service document
ation in Windows 2000 to look up the error code and diagnose as appropriate.%1%0

E_BTW_MS
MQ_INVALI
D_MESSAGE
_VT_TYPE

0
x
5
D
2
0

The Message Queuing message is of unknown format.%1%0

E_BTW_MS
MQ_MESSA
GE_UNKNO
WN_MESSA
GETYPE

0
x
5
D
2
1

The Message Queuing message is of unknown message type. The message type could not be obtained from the
message.%1%0

E_BTW_MS
MQ_MESSA
GE_UNAUTH
ENTICATED

0
x
5
D
2
2

The Message Queuing message is not authenticated but the port only accepts authenticated messages.%1%0

E_BTW_MS
MQ_MESSA
GE_INCORR
ECT_AUTHE
NTICATE_LE
VEL

0
x
5
D
2
3

The Message Queuing message is not authenticated at the requested level.%1%0

E_BTW_MS
MQ_MESSA
GE_INVALID
_MESSAGE

0
x
5
D
2
4

The Message Queuing message has a message body that is not valid.%1%0

E_BTW_MS
MQ_MESSA
GE_NOT_SE
ND

0
x
5
D
2
5

The Message Queuing message could not be sent.%1%0

E_BTW_MS
MQ_MESSA
GE_SCHEMA
VALIDATION
_FAILED

0
x
5
D
2
6

The Message Queuing message was not successfully validated against the schema that was provided. Check the s
chema and the schema path.%1%0

E_BTW_MS
MQ_COULD
_NOT_CREA
TE_MQMESS
AGE

0
x
5
D
2
7

The message instance could not be converted to a Message Queuing message %1%0

E_BTW_MS
MQ_NO_TR
USTRELATIO
NSHIP_FOR_
USER

0
x
5
D
2
8

The trust relationship for the provided user could not be established.%1%0

E_BTW_MS
MQ_MESSA
GE_EMPY_M
ESSAGE

0
x
5
D
2
9

The Message Queuing message has an empty message body.%1%0

E_BTW_MS
MQ_MESSA
GE_ONLY_O
NE_EMPTY_
XPATH_ALL
OWED

0
x
5
D
2
A

The Message Queuing message can have only one field with an empty node path (XPath).%0

E_BTW_MS
MQ_MESSA
GE_ONE_EM
PTY_XPATH_
NEEDED

0
x
5
D
2
B

The Message Queuing message must have one field with an empty node path (XPath).%0

E_BTW_MS
MQ_MESSA
GE_INVALID
_MESSAGEB
ODY

0
x
5
D
2
C

The Message Queuing message has a message body that is not valid.%1%0

E_BTW_MS
MQ_MESSA
GE_INVALID
_MESSAGES
TRING

0
x
5
D
2
D

The Message Queuing message has an invalid string for the message body.%1%0

E_BTW_MS
MQ_MESSA
GE_UNKNO
WN_MESSA
GE

0
x
5
D
2
E

The Message Queuing message is an invalid or unknown message and was moved to the dead-letter queue.%1%
0

E_BTW_MS
MQ_MESSA
GE_TYPE_CO
NFLICTING_
SCHEMA

0
x
5
D
2
F

The Message Queuing messages "%1" and "%2", which are of type "%3" on port "%4", have conflicting specificatio
n representations. This could be because the name, type, or XPath query does not match for one of the fields in th
e two representations.%0

E_BTW_MS
MQ_DOCU
MENT_FIELD
_TYPE_NOT_
STRING

0
x
5
D
3
0

A Message Queuing message's field "%1", that has an empty node path (XPath), must be a string data type.%0

E_BTW_MS
MQ_DOCU
MENT_FIELD
_CANNOT_C
ONVERT_TO
_STRING

0
x
5
D
3
1

A Message Queuing message's field could not be converted to a string.%1%0

E_BTW_MS
MQ_DOCU
MENT_FIELD
_CONVERTI
ON_FAILUR
E

0
x
5
D
3
2

The Message Queuing message's field could not be converted.%1%0

E_BTW_CAN
T_DISPOSE_
MESSAGE

0
x
6
0
0
1

The XLANG schedule instance was bound to a queue that received a message that is not valid. The XLANG Schedu
ler Engine was unable to transfer this message to the dead-letter queue, so the schedule instance has been termin
ated.%0

Related Topic

Configure Event Viewer for BizTalk Server errors

Concepts
This section provides detailed conceptual information that is essential to understanding BizTalk Server Administration. It covers
administrative tasks such as creating server groups, defining receive functions, and creating databases to manage, view, and log
document activity in Microsoft BizTalk Server 2000.

The following concepts are covered in this section:

WMI Overview

BizTalk Server Administration Environment

Administration Cache

Managing BizTalk Server Databases

Groups and Servers

Handling Server Errors

Receive Functions

Using Queues

Administration Privileges

WMI Overview
Windows Management Instrumentation (WMI) is a data-management layer that is included in Microsoft Windows 2000.
Microsoft BizTalk Server 2000 uses the WMI layer to encapsulate administrative functions. When you use BizTalk Server
Administration to change group, server, and queue settings, the new values are stored in the BizTalk Messaging Management
database through the BizTalk Server WMI provider. In BizTalk Server 2000, this WMI provider uses a Microsoft SQL Server
database to store administrative objects. WMI supports a uniform scripting application programming interface (API) that gives
applications and scripts access to the WMI provider on a local computer or a remote computer.

 Notes

WMI has a restriction on syntax and valid characters for a WMI object path. The following is a list of invalid characters. ` ! @
$ % ^ & * () + = [] { } | \\ ;\" '< > , . ?

Do not use any of these characters when you create a server group name.

All timestamps are created by using the local time on Microsoft SQL Server. However, the WMI provider refers to all
timestamps in coordinated universal time (UTC). The administration console then converts the timestamps back to local
time for display.

To access the WMI database layer programmatically, you can use the InterchangeProvSchema.mof file found in the
\Program Files\Microsoft BizTalk Server\Setup folder. This file contains the WMI classes corresponding to the
Administration objects. For more information about WMI Application Programming, go to the MSDN Online Library Web
site (msdn.microsoft.com/library/default.asp), and search for "WMI Application Programming".

http://msdn.microsoft.com/library/default.asp

BizTalk Server Administration Environment
The following topics are covered in this section:

BizTalk Server Administration User Interface

BizTalk Server Administration Shortcut Keys

BizTalk Server Administration User Interface
BizTalk Server Administration—also called the administration console—is a Microsoft Management Console (MMC) snap-in that
provides a visual representation of the BizTalk Server components that a system administrator can manage. The left side of the
administration console is called the console tree and consists of folders and subfolders that represent different items, such as
server groups. The right side of the administration console is called the details pane and contains information about the item that
is selected in the console tree.

Graphically, Microsoft BizTalk Server 2000 is displayed as a subitem of the Console Root on the left side of the administration
console. Each server group configured in BizTalk Server is displayed in a separate subfolder and consists of the queues and
receive functions for that group, as well as the names of servers in the group. Expand any item in the console tree to display
additional details about the item in the details pane of the administration console. You can right-click any item to configure it, or
to create new items.

Related Topic

Open BizTalk Server Administration

BizTalk Server Administration Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Server Administration. The following table is a quick reference to the
Microsoft Management Console shortcut keys.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server and Advanced Server Help, see "Using the
keyboard to move the mouse pointer". For more information about MouseKeys in Windows 2000 Professional Help, see
"Move the mouse pointer by using MouseKeys".

Press To
F5 Refresh BizTalk Server Administration.

This shortcut key refreshes the current item highlighted in the console tree.

ALT+F4 Close BizTalk Server Administration.
ALT+MINUS SIGN Display the window menu for the active console window.
SHIFT+F10 Display the Action menu for the selected item.
ALT+A Display the Action menu for the selected item.
ALT+V Display the View menu.
F1 View online Help for the selected item.
ALT+ENTER Display the properties dialog box, if any, for the selected item.

Related Topic

Open BizTalk Server Administration

Administration Cache
When you start BizTalk Server, all items, such as server groups, server group properties, receive functions, connections to the
Shared Queue and Tracking databases, and so on, in BizTalk Server Administration are stored in the administration cache. All
items in the cache are refreshed every 50 seconds except for the server database connections and server properties. This means
that if you change the general properties for a server group, such as the SMTP host or the reliable messaging reply-to URL, the
changes are picked up within 50 seconds. However if you change any server properties, such as the Maximum number of
worker threads per processor allowed, you must stop and restart the server on which you changed the configuration so the
change to be stored in the cache. Or, if you change a connection to the BizTalk Messaging Management, Tracking, or Shared
Queue databases, you must stop and restart the servers in the group and shut down the BizTalk Server Interchange Application.

Related Topics

Configure general properties for a server group

Shut down the BizTalk Server Interchange Application

Start a server in a group

Stop a server in a group

Managing BizTalk Server Databases
The three databases associated with BizTalk Messaging Services are:

BizTalk Messaging Management database

Tracking database

Shared Queue database

The BizTalk Messaging Management database stores information for all server configurations, including group and server
settings, and receive functions. The configuration of these administration objects is handled through BizTalk Server
Administration or programmatically. The BizTalk Messaging Management database also stores all messaging configuration
information for channels, messaging ports, and other messaging objects. Although messaging configuration information is stored
in this database, the configuration of the objects is handled either by using BizTalk Messaging Manager or programmatically by
using the BizTalk Messaging Configuration object model. For more information about configuring channels, messaging ports, and
so on, see Using BizTalk Messaging Manager or Object Model Reference.

The Tracking database keeps a log of all interchanges, documents, and receipts that are processed by BizTalk Server. For more
information about the Tracking database, see Tracking Database. To configure tracking settings,
see Configure tracking properties for a server group. To track specific fields or document-instance data,
see Set Channel Properties.

The Shared Queue database holds documents while they are being processed or waiting to be processed. Documents are later
removed after they have been processed. For more information about the Shared Queue database, see Shared Queue Database.

The following topics are covered in this section:

Managing the BizTalk Messaging Management Database

Managing BizTalk Server Group Databases

Managing the BizTalk Messaging Management Database
For most business implementations, there is one central BizTalk Messaging Management database that is used to configure
multiple server groups, servers, channels, messaging ports, and so on. One exception to this guideline is businesses that are third-
party vendors. Third-party vendors might need a separate BizTalk Messaging Management database for every customer based on
each customer's particular business needs. However, in all other cases, it is strongly recommended that you use a central BizTalk
Messaging Management database for all your BizTalk server groups.

From time to time, it might be necessary to remove servers from the central BizTalk Messaging Management database. For
example, the server on which your BizTalk Messaging Management database resides might need maintenance. In this case, you
must point all server groups to a replicated BizTalk Messaging Management database to keep your BizTalk Server enterprise
running. It also might be necessary to move servers between one or more BizTalk Messaging Management databases. For
example, if you are a third-party vendor with three customers, A, B, and C. The business from Customer A decreased while the
business from Customers B and C increased. You can move the servers that were associated with Customer A's BizTalk Messaging
Management database to the databases associated with Customers B and C.

The following topics are covered in this section:

Changing the BizTalk Messaging Management database

Removing servers from the BizTalk Messaging Management database

Moving servers between BizTalk Messaging Management databases

Moving remote servers between BizTalk Messaging Management databases

Changing the BizTalk Messaging Management database
There are two ways to configure the BizTalk Messaging Management database:

Use the configuration options available during installation.

Use BizTalk Server Administration to change the server in the Microsoft BizTalk Server 2000 node.

If you want to centrally manage all your BizTalk servers from a single server, during installation configure all servers to point to a
central BizTalk Messaging Management database. If you do this, anytime you open BizTalk Server Administration on any one of
those BizTalk servers, the servers listed in the Microsoft BizTalk Server 2000 node point to the same BizTalk Messaging
Management database and can be centrally managed. Once a collection of server groups point to a central BizTalk Messaging
Management database, you typically do not need to change to a different BizTalk Messaging Management database. An exception
to this is when you need to bring that database offline for maintenance. In this situation, use BizTalk Server Administration to
point all server groups in the Microsoft BizTalk Server 2000 node to a replication of the original central database. Do not
temporarily point server groups to a different central BizTalk Messaging Management database that has other server groups
associated with it. If you do, it might be difficult to return to your original BizTalk Messaging Management database configuration.

Related Topics

BizTalk Server Groups

Change the BizTalk Messaging Management database for a server

Configure the BizTalk Messaging Management database

Moving Servers between BizTalk Messaging Management databases

Removing servers from the BizTalk Messaging Management
database
If you remove all BizTalk servers from your central BizTalk Messaging Management database, the contents of the database remain
intact. Likewise, if you have more than one central BizTalk Messaging Management database in your system and you remove all
BizTalk Servers from a central BizTalk Messaging Management database, the contents of the database remain intact. You can add
new BizTalk Servers to the central BizTalk Messaging Management database by running the BizTalk Server 2000 Database Setup
Wizard and selecting an existing database on the Configure a BizTalk Messaging Management database page. For more
information about adding or changing the BizTalk Messaging Management database for a server,
see Change the BizTalk Messaging Management database for a server.

Related Topic

Change the BizTalk Messaging Management database for a server

Moving servers between BizTalk Messaging Management
databases
If you are planning to temporarily move a BizTalk Server from one central BizTalk Messaging Management database to another,
at least one other BizTalk Server must remain in place in one of the server groups within the original central database. This
enables you to easily restore the BizTalk Server to the original central database. Otherwise, to add a new BizTalk Server to the
central database, you must run the BizTalk Server Database Setup Wizard and select an existing database on the Configure a
BizTalk Messaging Management database page. For more information about adding or changing the BizTalk Messaging
Management database for a server, see Change the BizTalk Messaging Management database for a server.

Related Topics

Change the BizTalk Messaging Management database for a server

Groups and Servers

Moving remote servers between BizTalk Messaging
Management databases
If you try to add a remote server to a BizTalk Messaging Management database, and that server was originally in a different
central BizTalk Messaging Management database, the following error message appears in the Windows Event Log:

A new instance of the WMI class "MicrosoftBizTalkServer_Server" cannot be created in the BizTalk Server WMI provider. The
<servername> server may already belong to a different BizTalk Server installation.

This error means that an attempt was made to add a remote server that was originally in a different central database. If this
procedure was performed within BizTalk Server Administration, the administration console tries to determine if the remote server
also belongs to a group in the remote central database. The administration console queries the remote server's Windows
Management Instrumentation (WMI) provider to make this determination. If the server does belong to a server group in the other
central database, an error message from the administration console appears and explains that you cannot add a remote server
that already belongs to a group in a different central database.

Related Topics

Error when moving a remote server to a different BizTalk Messaging Management Database

WMI Overview

Managing BizTalk Server Group Databases
Each server group uses two databases, the Shared Queue database and the Tracking database. The Shared Queue database holds
all documents and interchanges that are submitted to BizTalk Server 2000 for processing and transmission. The Tracking
database tracks and stores incoming and outgoing interchanges for auditing, reconciliation, and dispute-resolution purposes.

To help you organize the logical configuration of your servers and groups, it is important to create unique names for the Shared
Queue and Tracking databases that are associated with each server group. For example, if you have two server groups, one called
Group1 and one called Group2, label the databases for the first group SharedQueue1 and Tracking1, and label the databases for
the second group SharedQueue2 and Tracking2.

 Note

The BizTalk Messaging Management database is a different database than the Shared Queue and Tracking databases. This
database is used to store information about the configuration of multiple groups and servers, as well as to store information
about the configuration of BizTalk Messaging Services. It does not handle document and interchange transmissions or track
document and interchange activities.

The following topics are covered in this section:

Shared Queue Database

Tracking Database

Shared Queue Database
All servers in a server group share a single Shared Queue database. All documents and interchanges that are submitted to
the servers in a group are stored in the Shared Queue database until they are processed by BizTalk Server.

The Shared Queue database is graphically represented in BizTalk Server Administration as a series of queues that provide
information about the progress of an interchange or document in BizTalk Server. Interchanges and documents are in one of
the following queues while they are processed by BizTalk Server.

Work queue. A list of interchanges and documents that are currently being processed by BizTalk Server.

Scheduled queue. A list of interchanges and documents that have been processed by BizTalk Server and are
waiting for transmission according to the service window. For more information about the service window,
see ServiceWindowInfo property.

Retry queue. A list of interchanges and documents that are being resubmitted, as well as reliable messages that are
awaiting receipts.

Suspended queue. A list of interchanges and documents that failed processing for a variety of reasons, including
parsing errors, serialization errors, or transmission errors, or that lack a correct channel configuration.

Related Topics

Configure connection properties for a server group

Groups and Servers

ServiceWindowInfo

Manage Queues

Using Queues

Tracking Database
All servers in a server group share a single Tracking database that stores all information related to interchange and document
activity in BizTalk Server. The Tracking database is used to track the status of an interchange or document as it moves through the
server. For example, if you want to verify whether an order was sent to a trading partner, you can query the Tracking database.
This database can also be used to verify that interchanges and documents are successfully sent or received by BizTalk Server, or it
can provide information for reports such as transmission times or receipt responses.

Defining document tracking and logging parameters for the Tracking database
In BizTalk Server Administration, you can select whether interchanges and documents are tracked. For more information about
how to configure tracking settings for a server group, see Configure tracking properties for a server group. If you enable tracking,
the following options are available:

Log incoming interchange. With this setting, you can specify that documents received by a BizTalk server are stored in
the Tracking database. Incoming documents stored provide an activity record for dispute resolution. This is selected by
default.

Log outgoing interchange. With this setting, you can specify that documents sent by BizTalk Server are stored in the
Tracking database. This is selected by default.

Log the original MIME-encoded message. With this setting, you can specify that MIME-encoded documents are stored
in the Tracking database in their original message format before they are decoded. This is not selected by default.

Related Topics

Configure connection properties for a server group

Configure tracking properties for a server group

Start a server in a group

Stop a server in a group

Using BizTalk Document Tracking

Groups and Servers
In a data-exchange environment that supports the processing of a large number of documents, multiple servers and databases
might be required. Businesses must have a way to centralize and manage document exchange.

Microsoft BizTalk Server 2000 centralizes document exchange by assembling servers into groups and managing and configuring
these server groups by using BizTalk Server Administration.

The following topics are covered in this section:

BizTalk Server Groups

Relationship between Groups and Servers

Group Status States

BizTalk Servers

BizTalk Server Groups
A server group is the key organizing principle in BizTalk Server Administration. Server groups are collections of individual servers
that are centrally managed, configured, and monitored.

Servers in a BizTalk server group have in common:

A Shared Queue database that persists all documents until they are successfully processed.

A Tracking database that is used to log document and interchange activity and to run reports.

Receive functions.

All components that the server requires when processing documents and interchanges, such as transport components,
application integration components (AICs), and so on.

A central BizTalk Messaging Management database manages multiple groups and servers. Thus, they share the same
configuration information. This configuration information specifies the document-processing logic for the servers. Specify the
same BizTalk Messaging Management database for each server installation so that you can remotely administer each server and
group from the administration console. Also, if you are setting up multiple server groups for scalability and improved
performance, use only one central BizTalk Messaging Management database. Otherwise, these servers cannot share the same
BizTalk Messaging Management configuration.

Related Topics

Add, Delete, and Configure a Server Group

BizTalk Servers

Receive Functions

Relationship between Groups and Servers

Using Queues

Relationship between Groups and Servers
Each installation of BizTalk Server 2000 must have at least one server group. The relationship between groups and servers is
defined by the following:

An individual server can belong to only one server group.

All servers in a group use the same Shared Queue and receive functions.

All servers in a group share the same components, such as transport components, application integration components
(AICs), and so on, to process interchanges and documents.

The following illustration shows the relationship between server groups in BizTalk Server 2000. Servers 1-6 are installed with
Microsoft BizTalk Server 2000. Servers A-D are installed with Microsoft SQL Server and are dedicated to database management.
Although servers A-D are dedicated to either the Tracking or Shared Queue databases, the
BizTalk Messaging Management database can reside on one of these servers because it is relatively small and is not processor
intensive. It is strongly recommended that your Shared Queue and Tracking databases reside on two separate servers dedicated
to database management, and that you use a single central BizTalk Messaging Management database for all server groups.

Logical configuration of groups and servers

Group 2
Group 1
Tracking
Database
server C
Tracking
Database
server A
Shared
Queue
database
server D
Shared
Queue
database
server B
BizTalk Server 3
BizTalk Server 2
BizTalk Server 6
BizTalk Server 5

BizTalk Server 4
BizTalk Server 1
BizTalk Messaging Management database server A

Related Topic

Managing BizTalk Server Databases

Group Status States
BizTalk Server Administration enumerates server groups and specifies whether each group can connect to the Tracking and/or the
Shared Queue databases. When you click Microsoft BizTalk Server 2000, the group states appear under the status bar in the
details pane. The group states are:

Connected. Specifies that the group is connected to the Tracking and Shared Queue databases.

Tracking connection failed. Specifies that the group is not connected to the Tracking database.

Shared Queue connection failed. Specifies that the group is not connected to the Shared Queue database.

Tracking and Shared Queue connections failed. Specifies that the group is not connected to the Tracking and Shared
Queue databases.

BizTalk Servers
A server in a server group hosts the appropriate BizTalk Messaging Services functionality—such as data translation, encryption,
digital signing, and document tracking—to manage document exchange between other servers and applications that are external
to the BizTalk server group. Each server enqueues and dequeues incoming and outgoing documents to the
Shared Queue database, calling the appropriate Component Object Model (COM) methods to transform, serialize, sign, encrypt or
decrypt, and transport documents. For applications that do not use the BizTalk Server COM interfaces, BizTalk Server 2000 uses
receive functions to receive data.

Depending on your business needs, you can configure all servers in a group exactly the same. This allows you to add and remove
servers in a group easily. Or you can configure some servers in a group to be dedicated to receiving documents.

The following topics are covered in this section:

Understanding server properties

Server states

Related Topics

BizTalk Server Groups

Relationship between Groups and Servers

Understanding server properties
When you configure a server in a group, you must balance maximizing throughput and server performance. Your business needs,
server capacity, and network bandwidth are some of the factors that influence how you configure server properties. It is highly
recommended that you experiment with different combinations in a test setting that simulates your production environment to
determine what works best for your installation.

Maximum number of receive function threads allowed
The maximum number of receive function threads is set on a per-processor basis. The range for this option is 1 through 128.
Adjust this number to optimize the performance of the receive functions that are running on the server. In most cases, increasing
the number of receive function threads increases the throughput of the receive functions on the server.

Participate in work-item processing
When the Participate in work-item processing check box is selected, the server processes documents in the Work queue.
When this check box is cleared, the server does not process any documents in the Work queue. There are two situations in which
you might want to turn off this option. The first situation is if you receive messages from a message queue. Currently, Message
Queuing supports only local transactional reads. This means that your queues must be on a server installed with Microsoft BizTalk
Server 2000 and that you can configure only one server in a group to read from those queues. To allow the server where the
message queue resides to receive as fast as possible, clear the Participate in work-item processing check box.

The second situation in which you might want to turn off this option is when you want to maximize performance for BizTalk
Server clusters. For example, you might want to dedicate one of the servers in the BizTalk Server group to handle administration
tasks.

Maximum number of worker threads per processor allowed
The maximum number of worker threads is set on a per-processor basis. The range for this option is 1 through 128. A low setting
could cause a bottleneck in BizTalk Server in a high traffic situation. A high setting might not have detrimental effects, but it could
cause performance degradation.

The Maximum number of worker threads per processor allowed and the Time between BizTalk Server Scheduler calls
are two factors that influence how much traffic there is to the Microsoft SQL Server databases. You can limit the traffic to the SQL
databases by setting the number low on the Maximum number of worker threads per processor allowed and higher on the
Time between BizTalk Server Scheduler calls. Likewise, you can increase the traffic to the databases by increasing the number
for the maximum number of worker threads and decreasing the settings for the Time between scheduler calls.

 Note

Clear the Participate in work-item processing check box if you do not want to process any work items on this server. Do
not set the Maximum number of worker threads per processor allowed option to zero.

Time between BizTalk Server Scheduler calls (milliseconds)
The range for Time between BizTalk Server Scheduler calls is 1 through 4,294,967,295. There is a thread that polls for
available items in the Work queue. The Time between BizTalk Server Scheduler calls controls how often the thread polls the
Work queue. If you do not receive a lot of data, keep this number high. If you receive a lot of data, you might want to decrease this
number.

Related Topic

Configure a server in a group

Server states
BizTalk Server Administration enumerates the servers in a server group and returns the list of servers. BizTalk Server
Administration can return the following states for servers under the status bar in the details pane:

Running. Specifies that the server is running.

Access denied. Specifies that you do not have Windows 2000 Administrator privileges on a server.

Error. Specifies if a server registered with a server group has had BizTalk Server 2000 removed.

Stopped. Specifies if an administrator has stopped a server.

Unknown. Specifies if a server registered with a server group is unavailable for an unknown reason. When this occurs, it is
likely that you have lost connectivity with the server.

Related Topic

Administration Privileges

Handling Server Errors
You can configure error handling in BizTalk Server 2000 at the server level through Windows 2000 Event Viewer, which is
included in BizTalk Server Administration. The Windows 2000 Event Viewer appears in the console tree of the administration
console.

Logging events
The Windows 2000 Event Viewer creates a log that contains information about hardware, software, and system problems. From
the administration console, you can customize the Event Viewer to show application and XLANG Scheduler errors that are specific
to BizTalk Server 2000, which makes troubleshooting for BizTalk Server efficient. For more information about customizing Event
View for BizTalk Server and XLANG Scheduler errors, see Manage Event Viewer.

For more information about Event Viewer in Windows 2000 Server Help, in the Event Viewer chapter, see "Using Event Viewer".

 Note

All application errors related to BizTalk Server 2000 are defined as BizTalk Server or XLANG Scheduler errors.

Related Topic

Manage Event Viewer

Receive Functions
If you need to receive documents from a receive location and submit them to BizTalk Server, you can configure submit calls
programmatically. For more information about submit calls, see Submitting or the Submit method. Or you can configure receive
functions to process the data. For example, if you need to receive documents from a business organization or application that
cannot communicate directly to BizTalk Server through a COM interface, you can use a receive function to submit the
interchanges documents to BizTalk Server. Or, if you need to receive from a message queue, you can use a receive function to
submit the document to BizTalk Server. BizTalk Server 2000 supports two types of receive functions: File and Message Queuing.

You can create a generic receive function for BizTalk Server 2000 in the administration console in which you define the receive
function name, document definition, and so on. For more information about configuring receive functions,
see Manage Receive Functions for a Server Group. For more information about advanced properties for receive functions,
see Understanding Receive Function Advanced Properties.

The following illustration shows the relationship between the sending business application, the file system, and a generic BizTalk
Server receive function.

Sending business
application
File system
BizTalk Server File receive function
BizTalk
Server
Submit

The following topics are covered in this section:

Available Receive Functions

Custom Preprocessors

Multiple Instances of Receive Function Types

Understanding Receive Functions and Document Routing

Understanding Receive Function Advanced Properties

Available Receive Functions
Two types of receive functions are available in BizTalk Server: File and Message Queuing. Your business practices determine
which type of receive function you use and when.

File receive function
A File receive function is activated when there is activity in the directory that the receive function monitors. To use a File receive
function, you must be able to modify the directory. The File receive function removes the files from the directory and submits
them to BizTalk Server 2000.

Message Queuing receive function
A Message Queuing receive function is activated based on activity in a message queue. This receive function extracts the
interchange or document from the queue and submits it to BizTalk Server 2000.

When you define the polling location for the message queue, use a format name instead of a path name. BizTalk Server is
designed to work with raw Message Queuing application programming interfaces (APIs), and the API calls work only with the
format name property. Use the following format name when you configure a Message Queuing receive function:

Direct=OS:<servername>\<queuename>

 Note

For more information about Message Queuing and format name, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to the Platform SDK, Getting Started, Contents of the Platform SDK,
Message Queuing Services page.

http://msdn.microsoft.com/library/default.asp

Custom Preprocessors
If you have documents that need to be processed before they are submitted to BizTalk Server, you can create a custom
preprocessor and configure the receive function to call the preprocessor. For example, if you send compressed data and need to
decompress it before submitting it to BizTalk Server for processing, configure the receive function to call the custom preprocessor
to decompress the data.

Related Topics

Class identifier appears in the Preprocessor list

IBTSCustomProcess

Preprocessing Documents in a Receive Function

Multiple Instances of Receive Function Types
There can be multiple instances of a receive function. For example, if multiple business applications use a File receive function to
submit documents and interchanges to BizTalk Server 2000, you can configure either a single instance or multiple instances of the
File receive function.

 Note

Verify that each of the receive functions that you create has a unique name. You cannot assign identical names to receive
functions.

Related Topic

Manage Receive Functions for a Server Group

Understanding Receive Functions and Document Routing
When you configure a receive function, determine whether the documents received by the receive function are self-routing or
non-self-routing. Self-routing documents contain all the necessary routing information; non-self-routing documents lack some or
all routing information.

Self-routing documents
Self-routing documents have all routing information—the source organization identifier, the destination organization identifier,
and the document definition—defined in the routing tags that are defined by the document specification or hard-coded in the
document, as in the case of X12 and EDIFACT. Any document for which you can create a specification in BizTalk Editor can be
configured as a self-routing document. Common types of self-routing documents are XML, X12, and EDIFACT. You do not need to
configure any advanced properties in the receive function if a document is self-routing, unless you want to override the data
provided in the document.

If the source or destination organization qualifiers or the document definition is missing from the document, it is placed in the
Suspended queue. Additionally, if you do not specify a source or destination organization qualifier, BizTalk Server uses the default
value of Organization Name as the organization qualifier and refers to the name of the organization stored in the
BizTalk Messaging Management database.

Non-self-routing documents
Non-self-routing documents are missing all or some of the necessary routing information. When you configure the receive
function, the following information must be defined on the Advanced tab of the receive function Properties dialog box or in the
document to be supplied to the receive function:

Source organization identifier, destination organization identifier, and document definition

—Or—

Channel

When you submit a document, BizTalk Server locates a channel to process the document. This can happen in two ways: either by
supplying a channel name in the receive function or by supplying the source and destination organization identifiers and the
document definition. These three properties help BizTalk Server locate the correct channel. Therefore, if you select a channel, the
document definition and source and destination information options are unavailable because the channel supplies all the
information that is needed to route the document.

Common types of non-self-routing documents are documents that come from multiple sources (open source) or are going to
multiple destinations (open destination).

Configuring a receive function to manage documents from multiple sources
You can configure a single receive function that handles non-self-routing documents to receive a specific type of document from
multiple sources. This is an open source scenario. The location of the source organization, the destination organization, and the
document-definition information must be in the document or in parameters submitted along with the document. For example, if
you plan to receive purchase orders from multiple customers, but want them all sent to the same destination application, set the
document definition and destination organization identifier properties in the receive function. When BizTalk Server parses the
document, it locates the supplier organization identifier, combines this information with the parameters in the receive function,
finds the correct channel, and then processes the document.

Related Topics

Configure advanced properties for File and Message Queuing receive functions

Manage Receive Functions for a Server Group

Set source organization properties

Understanding Receive Function Advanced Properties
You can use advanced properties to configure special types of receive functions based on your business practices.

For example, you can define receive functions to submit:

Documents that have the Open source or Open destination property set.

Documents that have the Pass-through property set.

Documents that specify a channel name.

Other types of non-self-routing documents.

Define the Openness property in a document
The following options define the openness of a document:

Not open. Specifies that the source and destination are both explicitly declared in the receive function or the document
instance.

Open Destination. Specifies that the destination information is not explicitly declared in the messaging port. The
destination is dynamically specified in the document instance or a submission parameter. You must configure the
document definition and the source-organization identifier properties in the receive function or in the document instance in
order for BizTalk Server to locate the correct channel.

Open Source. Specifies that the source information is not explicitly declared in the channel. Instead, the source is
dynamically specified in the document instance. You must configure the document definition and destination-organization
identifier properties in the receive function or in the document instance in order for BizTalk Server to locate the correct
channel.

Configure receive functions with pass-through
A receive function configured with pass-through bypasses the parsing, decryption, signature verification, transformation and
decoding functions of BizTalk Server. Choose this option when you are sending binary large object data or other interchanges that
do not require parsing, decryption, and decoding. If you configure a receive function with the Submit with a pass-through flag
set, you must specify a channel. Otherwise, BizTalk Server cannot process the document.

Envelope name
If you expect to receive an inbound interchange in a flat file, specify the envelope format in the receive function. The envelope
points to a specification that tells BizTalk Server how to open and interpret the interchange. If you plan to receive multiple flat-files
in a single interchange, the individual flat files must be separated with a delimiter that is postfix or prefix. Infix is not supported.
This must be set at the root node of the envelope specification and the document specification when you configure parse
properties. For more information about setting parse properties for a flat file, see Set parse properties and browse to the table
"Standard: Custom, Structure Property: Delimited".

Channel name
Each interchange or document that is submitted to BizTalk Server requires a set of rules for how it is to be processed. The channel
contains all the information that the server needs to process the interchange or document . All interchanges and documents that
are processed by BizTalk Server must go through a channel. A channel is located in one of two ways. First, when an interchange or
document is submitted, BizTalk Server parses the document for the source and destination identifiers and the document
definition. If this information is not in the document instance, BizTalk Server then looks at the receive function. Once the source
and destination identifiers and the document definition are discovered, BizTalk Server determines which channels have the same
document definition, source, and organization identifiers as the received document. When BizTalk Server finds a channel match,
the document instance is processed.

The second way channels are located is when they are specified in the receive function. In this case the channel lookup is
bypassed and the received document is processed faster.

Document definition, source organization, and destination organization identifiers

You can configure the document definition, source organization identifier, and/or the destination organization identifier when you
receive non-self-routing documents. The routing information that is included in the document that you receive determines which
of these properties you define in the receive function. For example, if you receive multiple document types from the same source
organization and you always send those documents to the same destination, you can configure the source and destination
organization identifiers in the receive function and dynamically define the document definition in the document instance.

Related Topics

Create envelopes

Set envelope information properties

Set parse properties

Understanding Channels

Understanding Document Definitions

Understanding Envelopes

Understanding Organizations

Understanding Receive Functions and Document Routing

Using Envelopes for Inbound Processing

Using Queues
Microsoft BizTalk Server 2000 provides shared queue management capabilities in BizTalk Server Administration. BizTalk Server
Administrators can move documents from any other queue to the Suspended queue. From the Suspended queue, documents can
be deleted, resubmitted, or viewed, depending on the processing state of the document. BizTalk Server Administrators can sort
and display error messages for documents in the Suspended queue.

The following queues are used to contain incoming and outgoing documents that are in various stages of routing and processing
in BizTalk Server:

Work queue

Scheduled queue

Retry queue

Suspended queue

 Note

Interchanges and documents appear in BizTalk Server Administration in the order of "first in, first out." That is, the oldest
items in a queue appear first and the newest items appear last. Additionally, up to 15,000 interchanges and/or documents
appear in a queue at a time. If there are more than 15,000 actual items in a queue, you must remove or resubmit current
items in the queue so that newer items can be displayed. The queue count in the console tree—the number next to the
queue in parentheses—represents how many actual items there are in the queue. You can resubmit or delete documents to
remove them from a queue.

Related Topic

Manage Queues

Work queue
The Work queue contains documents that are currently being processed by BizTalk Server. Transactions in the Work queue do not
remain in the queue very long because they are processed upon arrival. BizTalk Server Administrators can select any document in
this queue and move it to the Suspended queue.

Related Topics

Move documents to the Suspended queue

Using Queues

Scheduled queue
The Scheduled queue contains work items that have been processed by BizTalk Server and are waiting for transmission based on
the service window. BizTalk Server Administrators can select any document in this queue and move it to the Suspended queue.
For more information about the service window, see BizTalkServiceWindowInfo Interface object.

Related Topics

Move documents to the Suspended queue

BizTalkServiceWindowInfo Interface

Using Queues

Retry queue
The Retry queue contains documents that are being resubmitted for delivery and documents that are waiting for
reliable messaging receipts. You cannot tell the difference between the two types of transmissions. By default, failed transmissions
are retried every five minutes for a maximum of three tries before they are moved to the Suspended queue. These numbers can
be changed through BizTalk Messaging Manager or programmatically. For more information about changing the number of
retries, see Set advanced configuration properties, or RetryCount property and RetryInterval property.

BizTalk Server Administrators can select any document in this queue and move it to the Suspended queue.

Related Topics

RetryCount

RetryInterval

Move documents to the Suspended queue

Set advanced configuration properties

Using Queues

Suspended queue
The Suspended queue contains work items that have failed processing for a variety of reasons, including parsing errors,
serialization errors, failed transmissions, or the inability to find a channel configuration. BizTalk Administrators can right-click any
document in this queue to choose any of the following options:

View Error Description. Enables BizTalk Administrators to view error descriptions that indicate why the document was
sent to the Suspended queue.

View Interchange. Enables BizTalk Administrators to view the contents of an interchange that has failed processing for a
variety of reasons, including parsing errors or failed transmissions. View Interchange appears for the following states:

Initial

Custom component

Parsing

Encoding

Signing

Encrypting

Transmitting
View Document. Enables BizTalk Administrators to view the contents of a document that has failed processing for a variety
of reasons, including serialization errors or the inability to find a channel. View Document appears for the following states:

Document validation

Channel selection

Field tracking

Mapping

Correlating

Serializing
Delete. Enables BizTalk Administrators to completely remove an entry from the Suspended queue. This action is not
recoverable. After a document has been deleted from the Suspended queue, you cannot retrieve it.

Resubmit. Enables BizTalk Administrators to resubmit interchanges and documents to BizTalk Server for processing.

Suspended queue states
Interchanges and documents are placed in the Suspended queue for a variety of reasons. The following list explains the
Suspended queue states, their associated error messages, and what action you might take in response.

Suspended
queue state
value

Error me
ssage

Error description and possible action

Channel Sel
ection or Tr
ansmitting

Unexpect
ed Error

There was an unexpected internal server failure.

Resubmit the document.

Channel Sel
ection or Tr
ansmitting

Unknown The interchange or document was marked as "in process" by an inactive server. When the server was rest
arted, this item was automatically moved to the Suspended queue. There was probably a failure on the or
iginal server. Contact the System Administrator for more information.

When the problem is corrected, resubmit the document or interchange.

Channel Sel
ection or Tr
ansmitting

Out of M
emory

The computer on which BizTalk Server is running ran out of memory.

Restart the server and resubmit all interchanges and documents in the Suspended queue.

Parsing Failed Par
sing Data

BizTalk Server was unable to parse the data.

View the contents of the interchange to determine why BizTalk Server was unable to parse it. Resubmit t
he interchange using IInterchange or a receive function. For more information,
see An interchange or document appears as binary data in the Suspended queue or Parsing errors.

Parsing Missing
Data

The information extracted from the incoming data did not contain enough information to locate a channe
l.

View the interchange and find which data is missing. Resubmit the interchange using IInterchange or a
receive function. For more information,
see An interchange or document appears as binary data in the Suspended queue or Parsing errors.

Parsing "expiresA
t" Expired

The BizTalk Framework timestamp "expiresAt" expired. This document is no longer valid. For more infor
mation, see An interchange or document appears as binary data in the Suspended queue.

Channel Sel
ection

No Chan
nels Foun
d

BizTalk Server was unable to find any channels that matched this document.

Create a channel for the document, or correct the document and then resubmit it.

Channel Sel
ection

Channel
Erased

The channel associated with this document was deleted after the document reached the Work queue.

Reconfigure the channel, or configure the document for a different channel and resubmit the document.

—Or—

Do not submit the document and delete it from the Suspended queue.

Channel Sel
ection

Channel
Missing

The channel specified by the receive function or submit call could not be found. Configure a channel or re
configure the document and resubmit it.

Channel Sel
ection

Invalid C
hannel

The channel specified by the submit call was an open channel. Open channels are not valid for pass-thro
ugh submit calls.

Change the channel and resubmit the document.

Mapping Failed To
Map

The map referenced by the channel is formatted incorrectly.

Delete the document from the Suspended queue, correct the map, and submit the document as though it
were new.

Serializing Failed To
Serialize

BizTalk Server could not convert the document to its native format. Resubmit the document.

Encoding Failed En
coding

BizTalk Server could not encode this interchange.

Resubmit the interchange.

Signing Failed Sig
ning

BizTalk Server could not sign this interchange.

The certificate might have expired. See the Certificates Microsoft Management Console snap-in for detail
s. For more information about how to view the Certificates snap-in in Windows 2000 Help, in the Manag
e Certificates chapter, see "Add the Certificates snap-in to the MMC console".

Encrypting Failed En
crypting

BizTalk Server could not encrypt this interchange.

The certificate might have expired. See the Certificates Microsoft Management Console snap-in for detail
s. For more information about how to view the Certificates snap-in in Windows 2000 Help, in the Manag
e Certificates chapter, see "Add the Certificates snap-in to the MMC console".

Transmittin
g

Transmis
sion Failu
re

BizTalk Server could not deliver the interchange.

Check the transport address in the channel. Correct the problem and resubmit the interchange.

Transmittin
g

Timeout
Failure

BizTalk Server was unable to complete processing of this interchange before timing out. This could be be
cause the transmission took too long.

If you are using an unreliable transport, check to see if this interchange has been sent before you attempt
to resubmit the interchange.

Transmittin
g

User Mov
e

A BizTalk Server Administrator has moved this document to the Suspended queue.

Resubmit the interchange.

Transmittin
g

Documen
t Expired

The BizTalk Framework timestamp "receiptRequiredBy" expired. This document is no longer valid.

Document
Validation

Documen
t Not Vali
d

The validation of the document against its specification failed.

Look for the error in the Event Log for more information. Correct the schema and resubmit the documen
t.

Field Tracki
ng

No Fields
Tracked

BizTalk Server could not track the requested fields within the document.

View the document to verify that the fields that you want tracked are present, or change the channel conf
iguration for field tracking. Then resubmit the document.

Custom Co
mponent

Custom C
omponen
t Failure

A custom component has failed.

Troubleshoot the custom component or custom preprocessor and submit the interchange.

Correlating Correlati
on Failur
e

There was a failure correlating this receipt.

 Notes

In addition to checking the error messages in the Suspended queue, you can also check the Event Log for more information.
For more information about the Event Log, see Manage Event Viewer.

Not all documents in the Suspended queue can be resubmitted. In some situations, you must delete the document and
submit it again from the original application or organization.

Related Topics

An interchange or document appears as binary data in the Suspended queue

Manage Event Viewer

Manage Queues

Parsing errors

Understanding Receive Functions and Document Routing

Understanding Receive Function Advanced Properties

Using Queues

Administration Privileges
To view BizTalk Server Administration, you must be a member of the BizTalk Server Administrators group. If you are logged on as
a non-BizTalk Server Administrator, you cannot view items inside the Microsoft BizTalk Server 2000 folder. If you are a member of
the BizTalk Server Administrators group, but you are not a member of the Microsoft Windows 2000 Administrators group, you
can perform only the following tasks:

Add and remove server groups

View and modify group properties

Manage all queues and their entries

Add and remove receive functions

View and modify receive function properties

Additionally, if you are administering a server group that contains three servers, for example, Server_1, Server_2, and Server_3,
you must have Windows 2000 Administrator privileges on all three servers. If the Windows 2000 Administrator privileges have
been changed on Server_1, and you no longer have administrator privileges, the administration console returns a list of all three
servers associated with the group and lists the state of each server. The state of Server_1 is returned as Access Denied.

If you are a member of both the BizTalk Server Administrators group and the Windows 2000 Administrators group, you can
perform the following additional tasks:

Add servers to and remove servers from a server group

View and modify server properties

View server status

Free interchanges on a server

During setup, the user who runs the BizTalk Server installation is added to the BizTalk Server Administrators group. You can add
other users to the BizTalk Server Administrators group. For more information,
see Add users to the BizTalk Server Administrators group.

Troubleshooting BizTalk Server Administration
This section provides a centralized location for information related to troubleshooting BizTalk Server Administration. If you
receive error messages, try to find a solution in this section.

Supplemental information related to issues discovered after this documentation release are included in the Readme file located at
the root level of the Microsoft BizTalk Server folder.

The following issues are covered:

Error getting all groups from a database

Interchange and document size limit

Transaction time-out discrepancy between Component Services and BizTalk Server 2000

BizTalk Messaging Service does not start

Slowed performance when deleting a large quantity of documents from the Suspended queue

Output validation failure

Server does not return all documents in a flat-file interchange

Class identifier appears in the Preprocessor list

An interchange or document appears as binary data in the Suspended queue

BizTalk Server stopped processing documents

Receive function does not delete the document

Unable to connect to a SQL server installed on a clustered machine

Receive functions stopped processing documents

Error when moving a remote server to a different BizTalk Messaging Management Database

Parsing errors

 Note

You can also check the error messages in the Suspended queue for more troubleshooting information. For more
information about the Suspended queue, error messages, and possible actions, see Suspended queue.

You can also check the Event Log for detailed information, such as error and warning messages. For more information
about the Event Log, see Manage Event Viewer.

Error getting all groups from a database
Cause: The BizTalk Messaging Management database is offline if you receive the following message:

Instances of Microsoft BizTalkServer_Group cannot be enumerated: The connection to the BizTalk Messaging Management
database could not be opened.

Solution: Find out why the server is offline and retry the connection when it is back online. For example, you could receive this
message if the server that hosts the BizTalk Messaging Management database is offline for maintenance.

Interchange and document size limit
The maximum supported size limit for a document submitted to BizTalk Server is 20 MB. The maximum supported size limit for
an interchange submitted to BizTalk Server is 20 MB.

If you plan to receive interchanges in XML Unicode format that are larger than 20 MB, it is advisable to turn off global tracking
settings. If you plan to receive ANSI flat-file interchanges that are larger than 7-10 MB in size, it is advisable to turn off global
tracking settings. For more information about configuring tracking settings for a server group,
see Configure tracking properties for a server group.

Similarly, if you plan to receive document instances in XML Unicode format that are greater than 20 MB, it is advisable to turn off
document logging settings in BizTalk Messaging Manager. Or, if you plan to receive ANSI flat files that are larger than 7-10 MB, it
is advisable to turn off document logging settings in BizTalk Messaging Manager. For more information about storing copies of
specific document instances, see Set document logging properties.

Related Topics

Configure tracking properties for a server group

Set document logging properties

Transaction time-out discrepancy between Component Services
and BizTalk Server 2000
There is a file time-out discrepancy between Component Services and BizTalk Server 2000. When sending a file that exceeds the
default transaction time-out value of 60 seconds through BizTalk Server 2000, BizTalk Server 2000 records the transaction as
sent, and the receiving server receives the file without errors. Component Services records the transaction as aborted.
Transactions cannot be rolled back.

BizTalk Messaging Service does not start
Cause: The BizTalk Messaging Service does not start if BizTalk Server cannot connect to the SQL server that stores the BizTalk
Messaging Management database. All COM+ packages run under an interactive user account, not the local system account. The
service starts only if a user is logged on to BizTalk Server. For example, if a client application submits documents to BizTalk Server
remotely and no user is logged on to the server running BizTalk Server 2000, the service does not start.

Solution: Verify BizTalk Server's connection to the BizTalk Messaging Management database. Verify that Microsoft SQL Server is
running properly. You might need to create services account under which to run BizTalk Server. For more information about
creating a services account, in Windows 2000 Help, in the Services chapter, see "Select a user account that a service will use to log
on".

Slowed performance when deleting a large quantity of
documents from the Suspended queue
Cause: You might experience slow performance when you delete a large quantity of documents from the Suspended queue.

Solution: If you need to delete all documents from the Suspended queue, you might want to use
PurgeBizTalkSuspendedQueue.vbs, a sample Microsoft Visual Basic script that is provided for this purpose. After BizTalk Server
2000 installation, you can find this script in the \Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\Miscellaneous
folder.

 Caution

Do not use this script unless you want to permanently delete the entire contents of the Suspended queue for the specified
BizTalk Server group.

Output validation failure
Cause One: The data type of a field in the source specification does not match the data type of the field to which it is linked in the
destination specification. This failure is logged to the Event Viewer.

Solution: Correct the data type in either the source or destination specification. For more information about source and
destination specifications, see Create and Validate Specifications.

Cause Two: A functoid is linked to a field in the destination specification, and the field data type property is not a string.

Solution: In the destination specification, change the field data type to String. Submit the document to BizTalk Server for
processing. For more information about data types, see Set declaration properties.

Cause Three: In the destination specification, a field is assigned a constant value that uses a different data type than the data type
already assigned to the field.

Solution: In the destination specification, change the data type associated with the field. Submit the document to BizTalk Server
for processing. For more information about data types, see Set declaration properties.

Cause Four: Release indicators are included in EDIFACT data. The release characters are included in the logical character count
when validating the maximum physical character limit for a field. This failure is logged to the Event Viewer.

Solution: Do not use release indicators in EDIFACT data. BizTalk Server automatically inserts release indicators in outbound data
when needed.

Related Topics

Create and Validate Specifications.

Set declaration properties

Server does not return all documents in a flat-file interchange
Cause: One of the documents in the interchange does not meet the document specification. For example, one of the documents is
missing a required field.

Solution: Locate the document that does not meet the specification, fix it, and resubmit the interchange. Although an error is
returned for the document that does not meet the specification, BizTalk Server cannot process all the documents in the
interchange. The flat-file structure is an open format and is not designed to implement redundancy checking.

Class identifier appears in the Preprocessor list
Cause: The custom preprocessor is no longer registered.

Solution: Check the Event Log to confirm that the custom preprocessor is no longer registered. Then register the custom
preprocessor again or choose another preprocessor from the list.

Related Topics

Configure a File receive function: Services tab

Custom Preprocessors

Preprocessing Documents in a Receive Function

An interchange or document appears as binary data in the
Suspended queue
Cause One: BizTalk Server could not parse the interchange or document.

Solution: Delete the document from the Suspended queue. Verify that the incoming interchange or document is in a format that
BizTalk Server can process (XML, X12, EDIFACT, or flat file). Submit it to BizTalk Server from the original organization or
application again.

If BizTalk Server cannot parse a document, it appears as binary data in the Suspended queue because BizTalk Server does not
have enough information to read and process the document correctly. For more information about parsing errors,
see Parsing errors.

Cause Two: BizTalk Server was able to parse the interchange or document, but the data content was not valid. The timestamp
"expiresAt" expired and the document is no longer valid. This failure occurs in BizTalk Framework documents that use the
"expiredAt" field.

Solution: Delete the document from the Suspended queue. This document is no longer valid. Investigate why the document is no
longer valid.

Cause Three: BizTalk Server could not parse the document because the schema for the document is incorrect. If you receive a flat
file and the code page for the document specification is set to UTF-8, BizTalk Server cannot parse the document because UTF-8 is
not supported.

Solution: If you receive a flat file, check to see if the document specification is correct. If the code page for the document
specification is set to UTF-8, BizTalk Server cannot process the document. Delete the document from the Suspended queue. For
more information see, Set reference properties.

Related Topics

Parsing errors

Set reference properties

Suspended queue

BizTalk Server stopped processing documents
Cause One: BizTalk Server cannot continue processing documents if the connection to any of the three databases
—BizTalk Messaging Management, Tracking, or Shared Queue—is lost or if those databases are otherwise inaccessible. This
might occur if Microsoft SQL Server is shut down or paused from the Enterprise Manager. If Microsoft BizTalk Server 2000
encounters this error, the BizTalk Messaging Service shuts down gracefully to properly preserve the state of processing and
integrity at the moment of failure. An error is logged to the Event Viewer with a full description of the error causing the service to
shutdown.

Solution: System administrators can use this error for notification that BizTalk Server is offline through pager notification or
status delivery through e-mail. Upon such notification the administrator must manually restart the BizTalk Messaging Service
through the Services Microsoft Management Console snap-in, and then check the Event Log again to determine whether the error
is still present. If it is, the administrator must confirm that Microsoft SQL Server services are available to BizTalk Server. For more
information about how to start the BizTalk Messaging Service, see Start the BizTalk Messaging Service.

Cause Two: If you have antivirus software on the server on which BizTalk Server 2000 is installed, the default setting in a
messaging port might be incorrect.

Solution: The default setting for the file transport component is to append files. If you choose the file transport type with its
default settings in a messaging port and use antivirus software on the server on which BizTalk Server 2000 is installed, and you
send multiple files that have exactly the same name to the same file location, at the same time, BizTalk Server 2000 might stop
responding and must be restarted. You can eliminate this problem by changing the default setting for the file transport
component in the BizTalk SendLocalFile Properties dialog box from Append to file to Overwrite file. You also can eliminate
this problem by creating a unique file for each document instance processed by using the file path format in the messaging port:
file://C:\dir\file%tracking_id%.xml. For more information, see Specify a transport address. If you need to restart the server,
see Start a server in a group.

Related Topic

Specify a transport address

Start a server in a group

Start the BizTalk Messaging Service

Receive function does not delete the document
Cause: The retry interval might be set below the processing capability for the number of documents generated.

Solution: Double the retry interval and resubmit the documents to BizTalk Server. For more information about configuring the
retry interval, see Set advanced configuration properties.

Related Topic

Set advanced configuration properties

Unable to connect to a SQL server installed on a clustered
machine
Cause: When Microsoft SQL Server is installed on a cluster, SQL Server can support only clients that connect using TCP/IP.

Solution: Install SQL Server client tools and change the default network library to TCP/IP. For more information about installing
SQL Server client tools, see Install SQL Server client tools. For more information about changing the default network library,
see Change the default network library to TCP/IP.

Related Topics

Change the default network library to TCP/IP

Install SQL Server client tools

Receive functions stopped processing documents
Cause: A single remote server cannot support more than 50 receive functions at the same time.

Solution: For more information about supporting multiple receive functions, go to the Microsoft Product Support Services Web
site search.support.microsoft.com/kb/c.asp, and search the Knowledge Base for the following article:

"Too Many Connections to Remote Share May Cause PRC Failures" (Article number Q221790).

For additional information, see the following Knowledge Base articles:

"Local System Account and Null Sessions in Windows NT" (Article number Q132679).

"Service Running As System Account Fails Accessing Network" (Article number Q124184).

"PRB: Access Denied When Opening a Named Pipe from a Service" (Article number Q126645).

"FindFirstChangeNotification May Not Notify All Processes on File Changes" (Article number Q188321).

http://search.support.microsoft.com/kb/c.asp

Error when moving a remote server to a different BizTalk
Messaging Management Database
Cause: The server might belong to another BizTalk Messaging Management database.

Solution: If you try to add a remote server to a BizTalk Messaging Management database, and that server was originally in a
different central BizTalk Messaging Management database, the following error message appears in the Windows Event Log:

A new instance of the WMI class "MicrosoftBizTalkServer_Server" cannot be created in the BizTalk Server WMI provider. The
<servername> server may already belong to a different BizTalk Server installation.

This error means that an attempt was made to add a remote server that was originally in a different central database. If this
procedure was performed within BizTalk Server Administration, the administration console tries to determine if the remote server
also belongs to a group in the remote central database. The administration console queries the remote server's Windows
Management Instrumentation (WMI) provider to make this determination. If the server does belong to a group in the other
central database, an error message from the administration console appears and explains that you cannot add a remote server
that already belongs to a group in a different central database.

Related Topic

WMI Overview

Parsing errors
Cause One: If you are sending reliable messages, the default settings in a port might be incorrect.

Solution: The default setting for the file transport component is to append files. If you choose the file transport type with its default settings and select an envelope with a reliable envelope format in a
messaging port, and then send multiple files to the same file location, at the same time, you might have unexpected parsing results. You can eliminate this problem by changing the default setting for the file
transport component from Append to file to Overwrite file in the BizTalk SendLocalFile Properties dialog box. For more information about changing the default settings in a port,
see Override messaging port defaults.

Other Causes: BizTalk Server cannot parse a document for a variety of reasons. Some common reasons are:

The interchange or document is in a format that BizTalk Server cannot understand.

The schema for the document is incorrect.

A flat-file interchange has the wrong or invalid schema.

A flat-file interchange contains invalid characters.

A flat-file interchange is missing characters.

A flat-file interchange is missing delimiters.

A BizTalk Framework 2.0 document has an invalid alias listed in the port or channel.

The document container node is missing in a custom XML header.

An attribute is missing in a custom XML document.

An EDI document specification does not match the envelope.

Solution: View the interchange or document data to determine why BizTalk Server could not parse the interchange or document. To view the interchange or document data, you can:

View the first 512 bytes of the interchange or document data. For more information on how to view interchange and document data, see View interchanges or View documents.

View the interchange data in the interchange record in BizTalk Document Tracking. For more information about how to view interchanges in BizTalk Document tracking,
see Search by date for interchange and document information, Search by organization for interchange and document information, Search by document type for interchange and document information,
or Search for interchange and document information by combining query parameters.

Use the Windows Management Instrumentation (WMI) layer to view the interchange data. For more information about WMI Application Programming, go to the MSDN Online Library Web site
msdn.microsoft.com/library/default.asp, and search for "WMI Application Programming".

Once you determine why BizTalk Server could not parse the document, correct the problem and resubmit the interchange or document using IInterchange or a receive function.

Related Topics

An interchange or document appears a binary data in the Suspended queue

Search by date for interchange and document information

Search by document type for interchange and document information

Search by organization for interchange and document information

Search for interchange and document information by combining query parameters

Suspended queue

View documents

View interchanges

http://msdn.microsoft.com/library/default.asp

Programmatic Administration
The interfaces in this section provide access to XLANG Scheduler System Managers, XLANG group managers,
XLANG schedule instances, and XLANG ports.

The XLANG Scheduler System Manager provides moniker resolution and maintains a collection of group managers. A group
manager runs in every COM+ application that has been designated as an XLANG schedule host, and maintains a collection of
XLANG schedule instances. An XLANG schedule instance represents a running XLANG schedule that can be queried for
information, such as the schedule's completion status. For XLANG schedules with a COM-bound port, a proxy object can be used
to obtain a reference to the interface specified in the port binding.

 Note

Only one XLANG Scheduler System Manager can exist on each computer.

The following illustration shows the relationship between these interfaces, and the corresponding monikers.

sked://[host]
System manager
IWFSystemAdmin
sked://[host][!group]
XLANG schedule instance
XLANG schedule instance
XLANG schedule instance
Group manager
Group manager
Group manager
WorkflowInstance
IWFProxy
IWFWorkflowInstance
IWFWorkflowInstance
IWFWorkflowInstance
IWFGroupAdmin
IWFGroupAdmin
IWFGroupAdmin
sked://[host][!group]/file.skx
sked://[host][!group]/file.skx/port
Proxy to COM-bound XLANG port

For more information, see Administering XLANG Schedules.

Related Topic

Moniker Syntax

Tracking Documents
BizTalk Document Tracking is a stand-alone Web application that you can use to view the progress of documents processed by
Microsoft BizTalk Server 2000. You can create queries or advanced queries to extract essential information from the
Tracking database in an easy-to-view format. For example, in BizTalk Document Tracking you can view captured information
about the document source and destination, the document name and document type, and relevant date and time parameters. Or
you can create queries that display standard and custom-search fields so you can analyze your business practices. For example, a
Purchase Order Total field can be stored for every purchase order sent to suppliers. You can then use this data to analyze and
report the monetary volume of purchases to one or several suppliers over a period of time.

In addition, you can configure BizTalk Document Tracking to display interchange and document records individually or in batches.
You can also use BizTalk Document Tracking to display, view, and save complete copies of the incoming and outgoing document
instances for future reference.

For help with specific tasks, see How To.

For general background information, see Concepts.

For problem-solving instructions, see Troubleshooting BizTalk Document Tracking.

 Important

Because BizTalk Document Tracking is accessed as a Web application by using Microsoft Internet Explorer, Microsoft BizTalk
Server 2000 Help is accessed differently and Help functionality is somewhat restricted. The Table of Contents, Index,
Search, and Favorites tabs are not available. You can access all topics through links from the opening page, and through
Related Topics links as well as the browser's Back button.

If you want to search for a specific Help topic, or if you want to access information about other features and services of
BizTalk Server 2000, on the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click
BizTalk Server Documentation. For Help to be available from the Start menu, BizTalk Server 2000 must be installed on
your computer.

Because BizTalk Document Tracking uses Microsoft ActiveX Controls, an ActiveX control download dialog box might appear
during selections or query submissions. If this happens, click Yes to continue.

 Note

A dialog box with the following message might appear during selection or query selection:

This page accesses data on another domain. Do you want to allow this?

To avoid this message in Internet Explorer, you can add a secure Web site to the Trusted site zones on the Security tab of the
Internet Options dialog box.

To manually configure your browser's settings to trust this Web application, add the Web application to the list of trusted
sites in Internet Explorer. For more information about adding the Web application to the list of trusted sites,
see Configure Internet Explorer security settings.

How To...
This section provides task-specific information that explains how to find, view, and save search results for interchange and
document instance records and associated data. It is highly recommended that you review the Concepts section to fully
understand the search capabilities and expected query results.

BizTalk Document Tracking has two levels of searching capability: query and advanced query. You can use queries when you want
to locate documents using standard search criteria, such as source organization. You can use advanced queries when you want to
locate specific data in documents, such as a Purchase Order Total.

The following procedures are covered in this section:

Open BizTalk Document Tracking for the First Time

Open BizTalk Document Tracking

Add Users to BizTalk Server Report Users Group

Use Queries to Search and Sort Interchange and Document Data

Use Advanced Queries

Save Interchange, Document, and Custom Search Data

Open BizTalk Document Tracking for the First Time
If you open BizTalk Document Tracking for the first time and if you do not have Windows Common Controls and the BizTalk
Document Tracking control installed on your computer, you are prompted to install the components. If you have the components
installed on your computer, see Open BizTalk Document Tracking.

1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Document
Tracking.

The Web Page Dialog dialog box appears to prompt you to install the following components:

Windows Common Controls

BizTalk Document Tracking Installation Control

2. Click Continue, to install the Windows Common Controls.

The Security Warning dialog box appears.

3. Click Yes, to install the BizTalk Document Tracking Installation Control.

 Note

A dialog box with the following message might appear during selection or query selection:

This page accesses data on another domain. Do you want to allow this?

To avoid this message in Internet Explorer, you can add a secure Web site to the Trusted site zones on the Security tab of the
Internet Options dialog box.

To manually configure your browser's settings to trust this Web application, add the Web application to the list of trusted
sites in Internet Explorer. For more information about adding the Web application to the list of trusted sites,
see Configure Internet Explorer security settings.

Related Topics

Configure Internet Explorer security settings

Open BizTalk Document Tracking

Open BizTalk Document Tracking
On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Document
Tracking.

—Or—

If you created a favorite in Microsoft Internet Explorer, you can open BizTalk Document Tracking from Internet Explorer.

 Note

A dialog box with the following message might appear during selection or query selection:

This page accesses data on another domain. Do you want to allow this?

To avoid this message in Internet Explorer, you can add a secure Web site to the Trusted site zones on the Security tab of the
Internet Options dialog box.

To manually configure your browser's settings to trust this Web application, add the Web application to the list of trusted
sites in Internet Explorer. For more information about adding the Web application to the list of trusted sites,
see Configure Internet Explorer security settings.

Related Topics

Configure Internet Explorer security settings

Open BizTalk Document Tracking for the First Time

Add Users to BizTalk Server Report Users Group
To view the BizTalk Document Tracking user interface and to save Advanced Query expressions, you must be a member of the
BizTalk Server Report Users group.

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Computer Management.

2. Expand System Tools, expand Local Users and Groups, and then click the Groups folder.

3. In the details pane, click BizTalk Server Report Users.

4. On the Action menu, point to All Tasks, and then click Add to Group.

The BizTalk Server Report Users Properties dialog box appears.

5. Click Add.

6. In the Look in list, click your domain or computer name.

7. In the list that contains the users and computers associated with the domain or computer you selected in step 6, click the
user account to add, click Add, and then click OK.

8. Click OK to close the BizTalk Server Report Users Properties dialog box.

Use Queries to Search and Sort Interchange and Document
Data
You can use queries to locate, view, and save interchange and document instance records and associated data using standard
search criteria, such as document type or source organization.

The following procedures are covered in this section:

Search by date for interchange and document information

Search by organization for interchange and document information

Search by document type for interchange and document information

Search for interchange and document information by combining query parameters

Clear search criteria for organizations and document types

Customize the Query Results page

View search parameters for the Query Results page

 Note

When you select your query parameters, be as specific as possible. This reduces load on the server and the amount of time
it takes to return your query results.

A dialog box with the following message might appear during selection or query selection:

This page accesses data on another domain. Do you want to allow this?

To avoid this message in Internet Explorer, you can add a secure Web site to the Trusted site zones on the Security tab of the
Internet Options dialog box.

To manually configure your browser's settings to trust this Web application, add the Web application to the list of trusted
sites in Internet Explorer. For more information about adding the Web application to the list of trusted sites,
see Configure Internet Explorer security settings.

Search by date for interchange and document information
1. In BizTalk Document Tracking, in the Date Range area, in the Display dates in list, click Local Time or UTC to specify the

time zone of the display dates.

2. In the From date list, type the beginning date for the period that you want to track, or click the arrow to display a calendar
from which you can select a date.

To change the time, type the beginning time in the list next to the From date list, or click the up or down arrow.

3. In the To date list, type the end date for the period that you want to track, or click the arrow to display a calendar from
which you can select a date.

To change the time, type the end time in the list next to the To date list, or click the up or down arrow.

4. Click the Query button.

The Query Results page appears.

5. To view interchange data, locate the interchange record that contains the data you want to view and, in the Data column,
click a Data icon.

The View Interchange Data page appears.

6. To view the XLANG schedule status for an interchange, in the Schedule column, click a Schedule icon.

The View Schedule Summary page appears.

7. To view a document instance record associated with an interchange, click the expand indicator icon (+) next to the
interchange that contains the document instance record you want to view.

8. To view the data associated with a document instance, in the Data field, click the Data icon.

The View Document Instance Data page appears.

9. To view the data in its native format or XML format, click View native format or View XML format.

10. To view the receipt data associated with a document instance, in the Receipt field, click the Receipt icon.

A new Query Results page appears.

11. Click the expand indicator icon (+) next to the interchange and then click the Data icon in the data field.

12. To view the custom-search field data for a document instance, locate the document for which you want to view the custom-
search field data, use the horizontal scroll bar to display the Custom Search field, and then click the Custom Search icon.

The View Custom Search Field page appears.

 Notes

The value you select in the Display dates in list controls the search times and the display results. For example, if you select
UTC in the Display dates in list and you specify 0800 in the time field, you search for all data processed on or after 0800
hours in coordinated universal time (UTC). This is not the same as 0800 Local Time.

The default date setting is seven days prior to the current date.

The display dates are the BizTalk Server–generated timestamps on the metadata for the document instances and
interchanges. They are not dates for the actual document content. To locate documents based on the actual document date,
create an Advanced Query expression. For more information about advanced queries, see Build advanced queries.

If you specify only a date range in a query, BizTalk Document Tracking searches for all source and destination organizations
and all document types. This single search parameter is not recommended. For best results, always create a query with very
specific parameters to limit the number of interchange records returned on the Query Results page.

The XLANG schedule status is the last detected event, processed start time, processed end time, and so on.

Related Topics

Build advanced queries

Search by document type for interchange and document information

Search by organization for interchange and document information

Search for interchange and document information by combining query parameters

Understanding Document-Instance Record Results

Understanding Interchange Record Results

Understanding Queries

Search by organization for interchange and document
information

1. In BizTalk Document Tracking, in the Source Selection list, click the organization(s) for which you want to view
interchanges and documents. To select an application that is associated with a source organization, click the expand
indicator icon (+) next to the organization, and then click the application(s) you want. To select all source organizations, click
Select All.

—Or—

In BizTalk Document Tracking, in the Destination Selection list, click the organization(s) for which you want to view
interchanges and documents. To select an application that is associated with a destination organization, click the expand
indicator icon (+) next to the organization, and then click the desired application(s). To select all destination organizations,
click Select All.

You can choose organizations and applications in the Source Selection and Destination Selection lists for the same
query.

2. Click the Query button.

The Query Results page appears. Any interchanges that match your query criteria are listed here.

3. To view interchange data, locate the interchange record that contains the data you want to view and, in the Data column,
click the Data icon.

The View Interchange Data page appears.

4. To view the XLANG schedule status for an interchange, in the Schedule column, click a Schedule icon.

The View Schedule Summary page appears.

5. To view a document instance record associated with an interchange, click the expand indicator icon (+) next to the
interchange that contains the document instance records you want to view.

6. To view the data associated with a document instance, in the Data field, click the Data icon.

The View Document Instance Data page appears.

7. To view the data in its native format or XML format, click View native format or View XML format.

8. To view the receipt data associated with a document instance, in the Receipt field, click the Receipt icon.

A new Query Results page appears.

9. Click the expand indicator icon (+) next to the interchange, and then click the Data icon in the Data field.

10. To view the custom-search field data for a document instance, locate the document for which you want to view the custom-
search field data, use the horizontal scroll bar to display the Custom Search field, and then click the Custom Search icon.

The View Custom Search Field page appears.

 Notes

If you do not select specific source and destination organizations, the query returns interchange and document records for
all source and destination organizations. The options Clear All and Select All generate the same results on the Query
Results page. For best results, always create a query with very specific parameters to limit the number of interchange
records generated on the Query Results page.

The XLANG schedule status is the last detected event, processed start time, processed end time, and so on.

Related Topics

Search by date for interchange and document information

Search by document type for interchange and document information

Search for interchange and document information by combining query parameters

Understanding Document-Instance Record Results

Understanding Interchange Record Results

Understanding Queries

Search by document type for interchange and document
information

1. In BizTalk Document Tracking, in the Document Type Selection area, click Show Documents.

2. In the Document Type Selection list, click the document type(s) that you want to find. To select all document types, click
Select All.

3. Click the Query button.

The Query Results page appears.

4. To view interchange data, locate the interchange record that contains the data you want to view and, in the Data column,
click a Data icon.

The View Interchange Data page appears.

5. To view the XLANG schedule status for an interchange, in the Schedule column, click a Schedule icon.

The View Schedule Summary page appears.

6. To view a document instance record associated with an interchange, click the expand indicator icon (+) next to the
interchange that contains the document instance records you want to view.

7. To view the data associated with a document instance, in the Data field, click the Data icon.

The View Document Instance Data page appears.

8. To view the data in its native format or XML format, click View native format or View XML format.

9. To view the receipt data associated with a document instance, in the Receipt field, click the Receipt icon.

A new Query Results page appears.

10. Click the expand indicator icon (+) next to the interchange, and then click the Data icon in the data field.

11. To view the custom-search field data for a document instance, locate the document for which you want to view the custom-
search field data, use the horizontal scroll bar to display the Custom Search field, and then click the Custom Search icon.

The View Custom Search Field page appears.

 Notes

If you do not select one or more document types to narrow your search, the query returns all document types in the list. For
best results, always create a query with very specific parameters to limit the number of interchange records generated on
the Query Results page.

The XLANG schedule status is the last detected event, processed start time, processed end time, and so on.

Related Topics

Search by date for interchange and document information

Search by organization for interchange and document information

Search for interchange and document information by combining query parameters

Understanding Document-Instance Record Results

Understanding Interchange Record Results

Understanding Queries

Search for interchange and document information by
combining query parameters

1. In BizTalk Document Tracking, you can combine any of the following query parameters in a single query session to find and
view interchange and document instance records and associated data:

Source selection. For more information about creating queries using the source selection parameter,
see Search by organization for interchange and document information.

Destination selection. For more information about creating queries using the destination selection parameter,
see Search by organization for interchange and document information.

Document type. For more information about creating queries using the document type parameter,
see Search by document type for interchange and document information.

Date and time. For more information about creating queries using date and time parameters,
see Search by date for interchange and document information.

2. Click the Query button.

Clear search criteria for organizations and document types
In BizTalk Document Tracking, click Clear All beneath the Source Selection, the Destination Selection, or the Document
Type Selection list.

 Note

When you click Clear All, BizTalk Document Tracking returns to the default search for all source and destination
organizations and for all document types. For best results, always create a query with very specific parameters to limit the
number of interchange records returned on the Query Results page.

Customize the Query Results page
1. In BizTalk Document Tracking, in the Sort Control area, select the Group related interchanges check box.

This step configures the Query Results page to display incoming interchanges grouped with associated outgoing
interchanges. Clear this check box if you do not want to view incoming interchanges with associated outgoing interchanges.

2. In the Sort Control area, in the Sort order 1 list, click the first sort order option that you want to use. Repeat this step for
each sort order list to configure the sort order of your documents on the Query Results page.

Each Sort order list contains the following options:

Source Organization Name

Source Application Name

Destination Organization Name

Destination Application Name

Document Type

Time Processed

View search parameters for the Query Results page
1. Define parameters for a query, and then click the Query button.

The Query Results page appears.

For more information about how to create queries or advanced queries, see:

Search by date for interchange and document information

Search by organization for interchange and document information

Search by document type for interchange and document information

Build advanced queries

2. On the Search Parameters bar, click the Show icon.

The following search parameters and associated values are listed in the Search Parameters area:

Date Range

Time Zone

Expression Name

Sort Order

Source Selection

Destination Selection

Document Type Selection

Related Topics

Build advanced queries

Search by date for interchange and document information

Search by document type for interchange and document information

Search by organization for interchange and document information

Use Advanced Queries
If you need to locate specific data, such as a document instance with a specific purchase order number, you can use an advanced
query to locate the information.

The following procedures are covered in this section:

Build advanced queries

Locate existing advanced queries

Edit existing advanced queries

Clear existing advanced queries from a query

Delete existing advanced queries

Build advanced queries
1. In BizTalk Document Tracking, in the Advanced Query area, click New.

The Advanced Query Builder page appears.

2. In the Source selection list, click an option to specify your source selection criteria.

This is the name of the captured field for which you are searching.

3. In the Operators list, click an operator.

4. In the Value box, type a value.

5. In the AND/OR list, click either AND or OR to combine or compare this condition with another condition. This step is
optional.

6. Click Done.

7. Repeat steps 2 through 6 until you add all conditions you want.

8. Perform one of the following procedures:

Click OK to limit the use of this expression to the current query session.

Click Save to save the expression for future query sessions. In the BizTalk Document Tracking dialog box, type the
expression name in the Enter the expression name box (limit the expression name to 50 characters), and then click
OK.

 Notes

The collection of one or more conditions in an advanced query is called an expression.

If you have the focus on the Source Selection list and you click a button, you might need to click the button a second time
to activate it.

In BizTalk Messaging Manager, if you configured a channel or document definition to track custom field(s), those fields
appear in the Source Selection list. If you have not configured BizTalk Messaging Manager to track any fields, only "
<Custom Search>" appears in the Source Selection list. For more information about tracking specific fields,
see Set document logging properties and Select specification fields in a channel.

Related Topics

Clear existing advanced queries from a query

Delete existing advanced queries

Edit existing advanced queries

Locate existing advanced queries

Locate existing advanced queries
1. In BizTalk Document Tracking, in the Advanced Query area, click Browse.

The Advanced Queries dialog box appears.

2. Select an existing query, and then click OK.

 Note

If you have the focus on the Source Selection list and you click a button, you might need to click the button a second time
to activate it.

Related Topics

Build advanced queries

Clear existing advanced queries from a query

Delete existing advanced queries

Edit existing advanced queries

Edit existing advanced queries
1. In BizTalk Document Tracking, in the Advanced Query area, click Browse.

The Advanced Queries dialog box appears.

2. Select an existing query to edit and then click Edit.

The Advanced Query Builder dialog box appears.

3. Perform one or more of the following procedures:

Click New to add an additional condition. Specify conditions for each of the four fields, and then click Done.

Click an existing condition, click Edit, modify any of the four fields, and then click Done.

Select an existing condition, and then click Remove.

4. Click Save.

The Advanced Queries dialog box appears.

5. Select the query you just edited, and then click OK.

 Note

If you have the focus on the Source Selection list and you click a button, you might need to click the button a second time
to activate it.

Related Topics

Build advanced queries

Clear existing advanced queries from a query

Delete existing advanced queries

Locate existing advanced queries

Clear existing advanced queries from a query
In BizTalk Document Tracking, in the Advanced Query area, click Clear to remove the current expression from the
Expression name box.

 Note

If you click the Refresh button in Internet Explorer, the advanced query is not cleared from the Expression name box.

Related Topics

Build advanced queries

Delete existing advanced queries

Edit existing advanced queries

Locate existing advanced queries

Delete existing advanced queries
1. In BizTalk Document Tracking, in the Advanced Query area, click Browse.

The Advanced Queries page appears.

2. Select a query, and then click Delete.

3. Close the Advanced Queries dialog box when you are finished.

 Note

If you have the focus on the Source Selection list and you click a button, you might need to click the button a second time
to activate it.

Related Topics

Build advanced queries

Clear existing advanced queries from a query

Edit existing advanced queries

Locate existing advanced queries

Save Interchange, Document, and Custom Search Data
If you configured BizTalk Messaging Manager, the BizTalk Messaging Configuration object model, and/or BizTalk Server
Administration to store incoming and outgoing interchanges and their documents, you can save interchanges, document data,
and custom-field search data so you can view them offline. This helps you to troubleshoot certain situations or analyze your
business practices.

The following procedures are covered in this section:

Save interchange data

Save document instance data

Save custom-field search data

Save interchange data
1. Define parameters for a query, and then click the Query button.

The Query Results page appears.

For more information about how to create queries or advanced queries, see:

Search by date for interchange and document information

Search by organization for interchange and document information

Search by document type for interchange and document information

Build advanced queries

2. Locate the interchange record that contains the interchange data you want to save and, in the Data field, click the Data icon.

The View Interchange Data page appears.

3. Click Save As.

4. In the File name box, type a name for the file, and then click Save.

Related Topics

Build advanced queries

Save custom-field search data

Save document instance data

Search by date for interchange and document information

Search by document type for interchange and document information

Search by organization for interchange and document information

Save document instance data
1. Define parameters for a query and click the Query button.

The Query Results page appears.

For more information about how to create queries or advanced queries, see:

Search by date for interchange and document information

Search by organization for interchange and document information

Search by document type for interchange and document information

Build advanced queries

2. Locate the interchange record that contains the document instance data you want to save and click the expand indicator
icon (+) to the left of the interchange.

3. In the Data field, click the Data icon.

The View Document Data page appears.

4. Click Save As.

5. In the File name box, type a name and an extension (either the .xml file extension or the native file extension of the
document) for the file, and then click Save.

Related Topics

Build advanced queries

Save custom-field search data

Save interchange data

Search by date for interchange and document information

Search by document type for interchange and document information

Search by organization for interchange and document information

Save custom-field search data
1. Define parameters for a query, and then click the Query button.

The Query Results page appears.

For more information about how to create queries or advanced queries, see:

Search by date for interchange and document information

Search by organization for interchange and document information

Search by document type for interchange and document information

Build advanced queries

2. Click the expand indicator icon (+) to the left of the interchange record that contains the document you want to view.

3. Use the horizontal scroll bar to display the Custom Search field for the document you want to view and click the Custom
Search icon.

The View Custom Search Field page appears.

4. Click Save As.

5. In the File name box, type a name for the file, and then click Save.

Related Topics

Build advanced queries

Save document instance data

Save interchange data

Search by date for interchange and document information

Search by document type for interchange and document information

Search by organization for interchange and document information

Concepts
This section provides detailed conceptual information that is essential to understanding tracking documents and monitoring
activities.

The following topics are covered in this section:

BizTalk Document Tracking Environment

Using BizTalk Document Tracking

Understanding the Tracking Database Schema

Understanding How to Find Interchanges and Associated Documents

Understanding Query Results

Understanding Integrated XLANG Schedule Status for an Interchange

 Note

A dialog box with the following message might appear during selection or query selection:

This page accesses data on another domain. Do you want to allow this?

To avoid this message in Internet Explorer, you can add a secure Web site to the Trusted site zones on the Security tab of the
Internet Options dialog box.

To manually configure your browser's settings to trust this Web application, add the Web application to the list of trusted
sites in Internet Explorer. For more information about adding the Web application to the list of trusted sites,
see Configure Internet Explorer security settings.

BizTalk Document Tracking Environment
The following topics are covered in this section:

BizTalk Document Tracking User Interface

BizTalk Document Tracking Shortcut Keys

BizTalk Document Tracking User Interface
BizTalk Document Tracking is a stand-alone Web application that you can use to view interchanges and documents that you
configured to be tracked in Microsoft BizTalk Server. The main page contains six areas:

Date Range

Source Selection

Destination Selection

Advanced Query

Sort Control

Document Type Selection

You can configure query parameters in the Date Range, Source Selection, Destination Selection, and Document Type
Selection areas.

The lower-left side of the page contains the Advanced Query and Sort Control areas. Configure parameters in the Advanced
Query area to find specific information or custom search fields. Configure options in the Sort Control area to specify the sort
order on the Query Results page.

When you click the Query button on the main page, the Query Results page appears. If any records in the Tracking database
match your query parameters, interchange records appear in a list. The following table lists and describes the icons that are
available on the Query Results page.

Click th
is icon

To

Access the interchange or document instance data. If you click the data icon in the interchange record, the interchange d
ata appears. If you click the data icon in the document-instance record, the document data appears.
Expand the interchange record to view the document instance record.
Collapse the interchange record to hide the document instance record.
View the XLANG schedule status related to an interchange.
View a new Query Results page to view the receipt contents. For more information about receipt results,
see Understanding Receipt Results.
View the custom search data.

BizTalk Document Tracking Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Document Tracking. The following table is a quick reference to the
shortcut keys available on the main page.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server Help, see "Using the keyboard to move the
mouse pointer". In Windows 2000 Professional Help, see "To move the mouse pointer by using MouseKeys".

Press To
ALT+N Open the Advanced Query Builder page.
ALT+B Open the Advanced Queries page.
ALT+C Clear the advanced query from the current query session.
ALT+S Select all organizations and applications in the Source Selection list.
ALT+R Clear the Source Selection list.
ALT+E Select all organizations and applications in the Destination Selection list.
ALT+A Clear the Destination Selection list.
ALT+W Show all document types in the Document Type Selection list.
ALT+T Select all document types in the Document Type Selection list.
ALT+L Clear the Document Type Selection list.
ALT+Q Open the Query Results page.
ALT+O Close BizTalk Document Tracking.
ALT+H View online Help.
ALT+Underlined letter or number of a field n
ame

Move the focus to that particular field. For example, ALT+1 moves the focus to Sort
order 1.

The following table lists and describes the shortcut keys available on the Query Results page. To open the Query Results page,
on the main page press ALT+Q.

Pres
s

To

ALT
+C

Close the Query Results page.

ALT
+H

View online Help

SPA
CEB
AR

Open or close an icon. You must use the TAB key to place the focus on the icon that you want to open or close. For example,
if you want to expand an interchange record, press TAB until the focus is on the expand icon for the selected interchange rec
ord. Then press SPACEBAR.

The following table lists and describes the shortcut keys available on the Advanced Query Builder page. To open the Advanced
Query Builder page, on the main page press ALT+N.

Press To
ALT+N Add a condition to the advanced query expression.
ALT+E Edit a condition.
ALT+R Remove a condition from an advanced query expression.
ALT+S Save the expression.
ALT+O Limit the use of the expression to the current query session.
ALT+C Close the Advanced Query Builder page.
ALT+H View online Help.
ALT+Underlined letter of a field nam
e

Move the focus to that particular field. For example, ALT+V moves the focus to the Value fie
ld.

 Note

If you move the focus to the Query area and there is more than one condition in the Query area, use the UP and DOWN
arrow keys to select the desired condition.

The following lists and describes the shortcut keys available on the Advanced Queries page. To open the Advanced Queries
page, on the main page press ALT+B.

Press To
ALT+E Edit an existing expression.
ALT+N Open the Advanced Query Builder page.
ALT+D Delete an expression.
ALT+O Add the expression to the current query.
ALT+C Close the Advanced Queries page without saving your changes.
ALT+H View online Help.

Using BizTalk Document Tracking
You can use BizTalk Document Tracking to do the following:

Track interchanges and associated documents processed by Microsoft BizTalk Server 2000.

Fulfill legal and/or standards requirements to keep copies of all electronic business transactions.

Answer customer questions quickly and easily. For example, if a customer asks "When did we send trading partner A an
invoice?", you can locate the date, time, and whether they returned a receipt.

Aid in troubleshooting.

Help resolve disputes.

Documents can be tracked either in batches or as single transactions. BizTalk Document Tracking automatically stores metadata
associated with an interchange, such as source and destination information, document type, and date and time parameters.
Metadata is stored automatically; however additional fields, such as Purchase Order Date or Purchase Order Total, are captured
only if you configure the BizTalk Messaging Configuration object model or BizTalk Messaging Manager to capture this
information. For more information about configuring selected fields to be tracked, see Set Channel Properties
or Set Tracking for Inbound Document Properties.

All tracking information—either the metadata or the fields that you configured to be tracked—is stored in the Tracking database
that you configured during installation or when you configured a server group. Through the BizTalk Document Tracking user
interface (UI), you can access the data stored in the Tracking database associated with a particular server group. While not all the
information that is stored in the Tracking database is available through the user interface, the metadata and the fields that you
configured to be tracked are readily available. For example, if you need to track when purchasing application C sent a purchase
order to trading partner D and if and when trading partner D responded to the purchase order, this can be accomplished by using
BizTalk Document Tracking.

The following topics are covered in this section:

Understanding Tracking Settings for a Server Group

Understanding Tracking Settings in BizTalk Messaging Manager

 Note

Reliable messaging receipts are not displayed in the BizTalk Document Tracking user interface.

Related Topics

Set Channel Properties

Set Tracking for Inbound Document Properties

Tracking Database

Understanding Tracking Settings for a Server Group
Tracking settings for a server group determines whether tracking of interchanges is enabled or disabled. This global tracking
setting is configured in BizTalk Server Administration. For more information about configuring tracking settings for a server
group, see Configure tracking properties for a server group. If the Enable document tracking option is selected, you can
configure BizTalk Server to log incoming interchanges, log outgoing interchanges, and/or log the original MIME-encoded
messages.

When you install Microsoft BizTalk Server 2000, document tracking is automatically enabled, the log incoming interchange and
log outgoing interchange options are selected, and the metadata for interchanges is tracked, such as:

Source organization information

Destination organization information

Document type

Date and time the interchange was processed by BizTalk Server

Document count

Error information

Control ID

In addition to tracking interchanges, you can also configure BizTalk Server to track specific fields, such as Purchase Order Total or
Invoice Total. For more information about tracking specific fields,
see Understanding Tracking Settings in BizTalk Messaging Manager. If you need to keep a copy of interchanges in their original
format for nonrepudiation and commerce law concerns, use the global tracking settings. If you want to create an audit trail for
internal purposes, or if you want easy access to data on a per-document basis, configure tracking settings in the BizTalk
Messaging Configuration object model or in BizTalk Messaging Manager. You can configure tracking settings in the BizTalk
Messaging Configuration object model or in BizTalk Messaging Manager and BizTalk Server Administration; however, this can
cause your Tracking database to grow quickly in size and you will store duplicate data.

Disabling BizTalk Document Tracking settings
If you have absolutely no need to track documents, you can disable BizTalk Document Tracking. However, if you disable document
tracking, you lose important functionality. For example, if document tracking is disabled, you cannot:

Track interchanges and associated documents as they pass through BizTalk Server 2000.

Fulfill legal and/or standards requirements to keep copies of all electronic business transactions.

Answer customer questions quickly and easily. For example, if a customer asks "When did we send trading partner A an
invoice?", you cannot locate the date, time, and whether they returned a receipt.

Aid in troubleshooting.

Help resolve disputes.

To enable or disable document tracking, or to change global tracking settings, use BizTalk Server Administration. For more
information about configuring tracking settings for a server group, see Configure tracking properties for a server group.

 Notes

To open BizTalk Server Administration, on the Start menu, point to Programs, point to Microsoft BizTalk Server 2000,
and then click BizTalk Server Administration.

There is a size limit for tracking interchanges and documents. For more information about the size limit,
see Interchange and document size limit.

Related Topics

Configure tracking properties for a server group

Interchange and document size limit

Open BizTalk Server Administration

Understanding Tracking Settings in BizTalk Messaging Manager

Understanding Tracking Settings in BizTalk Messaging
Manager
Configure tracking settings in BizTalk Messaging Manager if you need to:

Store complete copies of incoming and outgoing document instances.

Configure specific fields, such as Purchase Order Total or Purchase Order Date, to be captured.

Unlike tracking properties for a server group, tracking specific fields or storing copies of document instances is not automatically
enabled. You must configure these options when you configure the appropriate channel(s) and/or document definition(s) in
BizTalk Messaging Manager.

For more information about storing copies of incoming or outgoing document instances, see Set document logging properties.
For more information about tracking specific fields, see Select specification fields in a channel.

 Notes

To open BizTalk Messaging Manager, on the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and
then click BizTalk Messaging Manager.

There is size limit for tracking and storing documents. For more information about the size limit,
see Interchange and document size limit.

Related Topics

Interchange and document size limit

Select specification fields in a channel

Set document logging properties

Understanding Tracking Settings for a Server Group

Understanding the Tracking Database Schema
All servers in a server group share a single Tracking database that stores all information related to interchange and document
activity in BizTalk Server. The Tracking database is used to track the status of an interchange or document as it moves through the
server. The three main tables in the Tracking database are:

dta_interchange_details

dta_outdoc_details

dta_indoc_details

The supporting tables are:

dta_group_details

dta_interchange_data

dta_document_data

dta_debug_data

dta_routing_details

dta_custom_field_names

dta_MIME_data

The following illustration shows the overall database schema of the Tracking database. For clarity, only the table names are listed
in the following illustration. The lines that connect the tables together demonstrate how the tables are connected through foreign
key fields. These key fields and their relationships to other tables are described in detail in the
topics Metadata Core Table Structure and Structure of Secondary Tables.

Tracking database schema

dta_group_details
dta_indoc_details
(core table)
dta_document_data
dta_routing_details
dta_custom_field_names
dta_outdoc_details
(core table)
dta_interchange_details
(core table)
dta_interchange_data

dta_debugdoc_data

The following topics are covered in this section:

Metadata Core Tables

Secondary Tables

Metadata Core Table Structure

Structure of Secondary Tables

Related Tables

How Interchanges and Documents Are Logged

How Receipts Are Logged

How Routing Information Is Logged

Tracking XLANG Schedule Events in the Tracking Database

Metadata Core Tables
The core tables store the metadata for interchanges processed by BizTalk Server. Metadata includes source and destination
organization information, document type, date and time the interchange was processed, document count, error information,
control identification, and so on.

The following three tables form the metadata core of the Tracking database:

dta_indoc_details

dta_outdoc_details

dta_interchange_details

The following table describes the function of each core table.

Table
name

Description

dta_in
doc_de
tails

Contains one record for each document submitted to BizTalk Server.

dta_ou
tdoc_d
etails

Contains one record for each document generated by BizTalk Server. One document submitted to BizTalk Server could re
sult in one or more documents generated and delivered to a set of respective destinations due to multiple channel matchi
ng and port groups. Separation of in and out documents into two tables allows physical representation of this one-to-ma
ny relationship.

dta_int
erchan
ge_det
ails

Contains one record for each interchange processed by BizTalk Server. A direction flag on this table distinguishes submiss
ions from transmissions.

Related Topic

Metadata Core Table Structure

Secondary Tables
The seven secondary tables that support the metadata core tables are:

dta_document_data

dta_debugDoc_data

dta_interchange_data

dta_routing_details

dta_group_details

dta_custom_field_names

dta_MIME_data

These tables store supporting information, such as document data, routing information, custom search information, and so on.
The following table describes the function of each table.

Table
name

Description

dta_d
ocum
ent_da
ta

Contains one record for every document submitted to or sent by BizTalk Server.

dta_de
bugD
oc_dat
a

Contains one row for every inDoc or outDoc item that is configured (on the messaging channel object) to record its interi
m XML format.

dta_in
tercha
nge_d
ata

Contains one row for every interchange submitted to or sent by BizTalk Server. This table also stores any response docum
ents returned to the IInterchange::SubmitSync calling application.

dta_ro
uting_
details

Functions as a mirror of messaging ports for the purpose of eliminating a cross-database dependency on the
BizTalk Messaging Management database. Specifically, it is necessary to track source and destination information relating
to documents handled. This information, which comes from the BizTalk Messaging Management database, is repeated her
e as new permutations are encountered.

dta_gr
oup_d
etails

Provides extensibility components (parser, serializer, and receipt correlator) for document formats that employ like-kind d
ocument groups (for example, X12 or EDIFACT) within an interchange. This table contains one row for each group parsed
or serialized by these components.

dta_cu
stom_
field_n
ames

Contains a row for each distinct capture-field node name and data type pair encountered by BizTalk Server. This table is a
cross-reference for the dta_outdoc_details table, which uses a foreign key into this table for its capture field names. The dt
a_indoc_details table is connected to this set of field names indirectly by the existence of a foreign key pointed from the dt
a_outdoc_details table to its parent in the dta_indoc_details table.

dta_M
IME_d
ata

Contains one row for every MIME-encoded interchange submitted to BizTalk Server. This table provides a way for tracking
MIME data that contains attachments.

Related Topic

Structure of Secondary Tables

Metadata Core Table Structure
The metadata core tables are linked together as described in this section and store the metadata for all interchanges processed by
BizTalk Server, if tracking settings are configured. For more information about configuring tracking settings for a server group,
see Understanding Tracking Settings for a Server Group.

dta_indoc_details
This table has a one-to-many relationship with the following table:

dta_outdoc_details

This table has a many-to-one relationship with the following tables:

dta_group_details

dta_interchange_details

dta_error_message

dta_validity_values

This table has a one-to-one relationship with the following tables:

dta_debugDoc_data

dta_document_data

dta_error_message

The dta_indoc_details table contains one row per document submitted to BizTalk Server. The following table describes the fields in
the dta_indoc_details table.

Field name Description
nInDocKey Primary key unique record identifier.
nDocumentD
ataKey

Foreign key to dta_document_data.

nDebugDocD
ataKey

Foreign key to dta_debugDoc_data for XML form of the received document, even if the received document is XML.

nGroupKey Foreign key to dta_group_details.
nInterchange
Key

Foreign key to dta_interchange_details.

uidTrackingG
UID

Master tracking key value based on a globally unique identifier (GUID).

dtProcessedTi
meStamp

The time the record was created.

nvcSyntax Code for document syntax (XML,X12,EDIFACT, HL7, and so on). In the case of unrecognized syntax due to parsing f
ailure or pass-through submission, this field has a value of "UNKNOWN".

nvcVersion Version of the syntax.
nvcRelease Release of the version.
nvcDocType Document type or transaction set identifier.
nvcControlID Unique control number for electronic data interchange (EDI) documents and functional groups.
nlsValid Code that indicates validation results. Possible values are 0 (invalid), 1 (valid), or 2 (pass-through).
nError Code that indicates the occurrence of an error. This is the foreign key to dta_error_message, the table that contains

the descriptions of the error messages.

dta_outdoc_details
This table has a many-to-one relationship with the following tables:

dta_indoc_details

dta_interchange_details

dta_group_details

dta_debugDoc_data

dta_routing_details

dta_error_message

dta_ack_status

dta_data_level_values

dta_validity_values

This table has a one-to-one relationship with the following tables:

dta_document_data

dta_error_message

This table has a many-to-many relationship with the following tables:

dta_custom_field_names

dta_ack_status_values

The dta_outdoc_details table contains one row per document sent by BizTalk Server. The following table describes the fields in the
dta_outdoc_details table.

Field na
me

Description

nOutDoc
Key

Primary key unique record identifier.

nInDocKe
y

Foreign key to the dta_indoc_details parent record.

nDocume
ntDataKe
y

Foreign key to the dta_document_data table.

nDebugD
ocDataKe
y

Foreign key to dta_debugDoc_data for XML form of the outgoing document, even if the outgoing document is XML. W
hen an outbound document is sent to a port group, only one copy of the dta_debugDoc_data record is stored, and all re
sulting dta_outdoc_details records point to it.

nGroupK
ey

Foreign key to the dta_group_details table.

nIntercha
ngeKey

Foreign key to the dta_interchange_details table.

uidTracki
ngGUID

Master tracking key value based on a globally unique identifier (GUID).

dtProcess
edTimeSt
amp

The time the record was created.

nvcSynta
x

Code for document syntax (XML, X12, EDIFACT, HL7, and so on). In the case of unrecognized syntax due to parsing failu
re or pass-through submission, this field has a value of "UNKNOWN".

nvcVersi
on

Version of the syntax.

nvcRelea
se

Release of the version.

nvcDocTy
pe

Document type or transaction set identifier.

nvcContr
olID

Unique control number for EDI documents and functional groups.

nlsValid Code that indicates validation results. Possible values are 0 (invalid), 1 (valid), or 2 (pass-through).
nError Code that indicates the occurrence of an error. This is a foreign key to dta_error_message, the table that contains the er

ror message descriptions.
nAckStat
us

Code for the status of the receipt. This is a foreign key to dta_ack_status_values, the table that contains the receipt statu
s descriptions.

nRouting
Key

Foreign key to dta_routing_details.

nReceipt
Flag

A flag that indicates to which table a receipt is associated. Possible values are 1 (Interchange), 2 (Group), 4 (indoc), 8 (o
utdoc). For more information about receipts, see How Receipts Are Logged.

nReceipt
Key

A unique number that identifies the receipt. For more information about receipts, see How Receipts Are Logged.

ntReceipt
DueBy

Receipt deadline timestamp, computed to be the processing timestamp.

nRealNa
me1

Foreign key to dta_custom_field_names.

rlRealVal
ue1

Real capture field 1. This field must be an 8-byte real value.

nRealNa
me2

Foreign key to dta_custom_field_names.

rlRealVal
ue2

Real capture field 2. This field must be an 8-byte real value.

nIntNam
e1

Foreign key to dta_custom_field_names.

nIntValue
1

Integer capture field 1.

nIntNam
e2

Foreign key to dta_custom_field_names.

nIntValue
2

Integer capture field 2.

nDateNa
me1

Foreign key to dta_custom_field_names.

dtDateVa
lue1

Date capture field 1.

nDateNa
me2

Foreign key to dta_custom_field_names.

dtDateVa
lue2

Date capture field 2.

nStrNam
e1

Foreign key to dta_custom_field_names.

nvcStrVal
ue1

String capture field 1.

nStrNam
e2

Foreign key to dta_custom_field_names.

nvcStrVal
ue2

String capture field 2.

nvcCusto
mSearch

Binary large object for concatenated string capture as XML.

dta_interchange_details
This table has a one-to-many relationship with the following tables:

dta_indoc_details

dta_outdoc_details

dta_group_details

dta_interchange_data

This table has a many-to-one relationship with the following tables:

dta_direction_values

dta_error_message

dta_transport_type_values

The dta_interchange_details table contains one row per interchange processed by BizTalk Server. The following table describes the
fields in the dta_interchange_details table.

Field
name

Description

nInter
chang
eKey

Primary key unique record identifier.

nInter
chang
eData
Key

Foreign key to dta_interchange_data.

nResp
onseD
ocDat
aKey

Foreign key to dta_document_data for the response document returned by the recipient of an outbound transport.

uidInt
ercha
ngeG
UID

Globally unique identifier (GUID) for the interchange.

uidSu
bmissi
onGUI
D

Globally unique identifier (GUID) for the parent submission. Note that this holds the correlation identifier (correlationID) p
rovided from or to BizTalk Orchestration Services. This field is empty if the record is for an inbound interchange that does
not come from BizTalk Orchestration Services. For inbound interchanges, this field is populated only if the interchange co
mes from BizTalk Orchestration Services. For outbound interchanges, this field is always populated.

dtProc
essed
TimeS
tamp

The time the record was created.

nvcSy
ntax

Code for document syntax (XML, X12, EDIFACT, HL7, and so on). In the case of unrecognized syntax due to parsing failure
or pass-through submission, this field has a value of "UNKNOWN".

nvcVe
rsion

Version of the syntax.

nvcCo
ntrolI
D

Unique control number for electronic data interchange (EDI) interchanges or an identifier for BizTalk Reliable Messages.

nDirec
tion

Flag indicating whether the interchange is incoming or outgoing. Possible values are 0 (outbound) or 1 (inbound). This is a
foreign key to dta_direction_values, the table that contains the direction values.

dtTim
eSent

Timestamp for a successful transmission.

nError A code that indicates the occurrence of an error. This is a foreign key to dta_error_message, the table that contains the err
or message descriptions.

nTest
Mode

Test or production indicator. This field is reserved and is not used.

nvcSrc
AliasQ
ualifer

Sender qualifier value extracted from the submitted or transmitted interchange.

nvcSrc
AliasId

Sender identifier value extracted from the submitted or transmitted interchange.

nvcSrc
AppN
ame

Interchange level identifier for the source application extracted from the submitted or transmitted interchange.

nvcDe
stAlias
Qualifi
er

Recipient qualifier extracted from the submitted or transmitted interchange.

nvcDe
stAlias
ID

Recipient identifier value extracted from the submitted or transmitted interchange.

nvcDe
stApp
Name

Interchange level identifier for the destination application extracted from the submitted or transmitted interchange.

nAckS
tatus

Code for the status of the receipt. This is a foreign key to dta_ack_status_values, the table that contains the receipt status d
escriptions.

nvcS
MTPM
essag
eID

SMTP transport message identifier (for EDIINT). This field is reserved and is not used.

nDocu
ments
Accept
ed

The number of documents accepted in the interchange.

nDocu
ments
Reject
ed

The number of documents rejected in the interchange.

nTran
sportT
ype

Transmission protocol indicator code. This is a foreign key to dta_transport_type_values.

nvcTra
nsport
Addre
ss

Address of the transport target.

nvcSe
rverN
ame

Server that processed the interchange.

nNum
berOf
Bytes

Size of the interchange, in bytes. This field represents what is tracked in the related dta_interchange_data record and can b
e different than what is actually transmitted. The size can be increased by additional envelope processing and data format
conversion during transmission.

nNum
OfTra
nsmit
Attem
pts

Transmission attempt counter.

Related Topic

Understanding Tracking Settings for a Server Group

Structure of Secondary Tables
The secondary tables store the supporting data for the core tables in the Tracking database. For example, the secondary tables
store information such as:

Custom-field search data

Routing information

Interchange data

Document data

dta_document_data
This table has a one-to-one relationship with the following tables:

dta_indoc_details

dta_outdoc_details

The dta_document_data table is the central repository for document storage. The following table describes the fields in the
dta_document_data table.

Field n
ame

Description

nDocu
mentD
ataKey

Primary key unique record identifier.

nCode
Page

The system code page (for example, 1200-Unicode, 65001-UTF-8, and so on) for the character-encoded stored data. This
field has a value of -1 if BizTalk Server does not have any code page information about the data. In this case, the value of t
he nBLOBType field might provide information about how to interpret the data.

nBLOB
Type

Flag that indicates the type of data stored in the imgDocumentData field. Possible values are 0 (Unknown) or 1 (XMLDOM
Loadable). XMLDOM Loadable indicates that the data can be loaded into and manipulated by the MSXML DOMDocument
object. This field is a foreign key to dta_blobtype_values.

imgDo
cumen
tData

Storage of a document, as a binary large object.

nNum
berOfB
ytes

The size of the document, in bytes.

nNum
berOfR
ecords

Records or segments comprised in the document.

dta_debugDoc_data
This table has a one-to-one relationship with the following table:

dta_indoc_details

This table has a one-to-many relationship with the following table:

dta_outdoc_details

This table is a central repository for debug document storage. The following table describes the fields in the dta_debugDoc_data
table.

Field nam
e

Description

nDebugDo
cDataKey

Primary key unique record identifier.

ntxtDocum
entData

Storage of the document, as a binary large object. This is always in Unicode.

nNumberO
fBytes

Size of the document, in bytes.

dtProcesse
dTimeStam
p

The time that the record was created. This is used by the purge job sample located in \Program Files\Microsoft BizTal
k Server\SDK\Messaging Samples\SQLServerAgentJobs\DTA_SampleJobs.sql in the BizTalk Server installation direct
ory.

dta_interchange_data
This table has a many-to-one relationship with the following table:

dta_interchange_details

The dta_interchange_data table is a central repository for interchange storage and contains one record for each interchange
processed by the system. For interchanges submitted to BizTalk Server only, the nlsFile field indicates whether the stored data
originally came from the file system. If the flag is set, the nvcOriginalFileName field is a universal naming convention (UNC) path
to the file system location where the data originated. The imgInterchangeData field holds the data submitted, regardless of its
origination.

Field
name

Description

nInter
chang
eData
Key

Primary key unique record identifier.

nCode
Page

The system code page (for example, 1200-Unicode, 65001-UTF-8, and so on) for the character-encoded stored data. This h
as a value of -1 if BizTalk Server does not have any code page information about the data, or if the data is tracked as a resu
lt of a pass-through submission. In this case, the value of the nBLOBType field might provide information about how to int
erpret the data.

nlsFile Flag indicating file-based data submission. Possible values are 0 (non-file-based) or 1 (file-based).
nvcOr
iginal
FileNa
me

Universal naming convention (UNC) path to the file, if the nlsFile field has a value of 1.

nBLO
BType

Flag that indicates the type of data stored in the imgDocumentData field. Possible values are 0 (Unknown) or 1 (XMLDOM
Loadable). XMLDOM Loadable indicates that the data can be loaded into and manipulated by the MSXML DOMDocument
object. This field is a foreign key to dta_blobtype_values.

imgInt
ercha
ngeDa
ta

Storage of the interchange, as binary large object.

dta_group_details
This table has a one-to-many relationship with the following tables:

dta_indoc_details

dta_outdoc_details

This table has a many-to-one relationship with the following tables:

dta_interchange_details

dta_direction_values

The dta_groug_details table creates one row per group processed by extensibility components for electronic data interchange

(EDI). The following table describes the fields in the dta_group_details table.

Field name Description
nGroupKey Primary key unique record identifier.
nInterchange
Key

Foreign key to dta_interchange_details.

dtProcessedTi
meStamp

The time the record was created.

nvcSyntax Code for document syntax (XML, X12, EDIFACT, HL7, and so on). In the case of unrecognized syntax due to parsing
failure or pass-through submission, this field has a value of "UNKNOWN".

nvcVersion Version of the standard.
nvcRelease Release of the version.
nvcFunctional
GroupID

Code for type of documents in the group.

nvcControlID Unique control number for electronic data interchange (EDI) documents and functional groups.
nvcSrcAppNa
me

Group level identifier for the source application.

nvcDestAppN
ame

Group level identifier for the destination application.

nAckStatus Code for the status of the receipt. This is a foreign key to dta_ack_status_values, the table that contains the receipt s
tatus descriptions.

nDirection Flag that indicates whether the group was incoming or outgoing. Possible values are 0 (outbound) or 1 (inbound).
This is a foreign key to dta_direction_values.

nDocumentsA
ccepted

Transactions accepted in the group.

nDocumentsR
ejected

Transactions rejected in the group.

nNumberOfB
ytes

Size of the interchange, in bytes.

dta_routing_details
This table has a one-to-many relationship with the following table:

dta_outdoc_details

The dta_routing_details table contains one row per distinct source or destination information set. Two documents might have
identical routing field values at the organization or application level. In this case, these documents are differentiated by document
type or some other lower-level filter. When this happens, the dta_routing_details table contains rows that are identical except for a
difference in their respective parent messaging ports. This link to the parent messaging port is used to facilitate a connection
between the BizTalk Messaging Manager user interface functionality and tracking. The following table describes the fields in the
dta_routing_details table.

Field name Description
nRoutingKey Primary key unique record identifier.
nvcSrcOrgNa
me

Source organization name, as specified on the parent channel object.

nvcSrcAppNa
me

Source application name, as specified on the parent channel object.

nvcDestOrgN
ame

Destination organization name, as specified on the parent messaging port object.

nvcDestAppN
ame

Destination application name, as specified on the parent port object.

nvcDistributio
nName

Distribution list name.

uidChannelG
UID

Unique key for the parent channel based on a globally unique identifier (GUID). This is used as a channel correlatio
n key into the BizTalk Messaging Management database.

uidPortGUID Unique key for the parent port based on a globally unique identifier (GUID). This is a port correlation key into the B
izTalk Messaging Management database.

dta_custom_field_names
This table has a many-to-one relationship with the following table:

dta_outdoc_details

The dta_custom_field_names table contains one row per distinct node name and data type pair captured. The following table
describes the fields in the dta_custom_field_names table.

Field name Description
nNameKey Primary key unique record identifier.
nvcName Text of the node name, for example, /CommonPO/Total/@POTotal.
nDataType Data type contained in the node named.

dta_MIME_data
The dta_MIME_data table stores the incoming MIME data processed by BizTalk Server. This provides a way to track MIME data that
contains attachments. The following table describes the fields in the dta_MIME_data table.

Field name Description
nMIMEDataKey Primary key unique record identifier.
uidSubmission
GUID

Globally unique identifier (GUID) for the parent submission.

nCodePage System code page for character-encoded stored data in the imgMIMEData field. For MIME data, the value is 125
2 (ASCII) or 1200 (Unicode).

imgMIMEData Storage of the document as a binary large object.

Related Tables
There are 13 additional tables in the Tracking database that support the core tables or the supporting tables. These tables store
information such as group and interchange correlation keys, receipt status values, data level values, and so on. The following table
describes each table and its functionality.

Tabl
e na
me

Function

dta_
ack_
stat
us_v
alue
s

Stores the receipt status values. Possible values are None, Pending, Overdue, Accepted, Accepted with errors, and Rejected.

dta_
blob
type
_val
ues

Stores the binary large object types. Possible values are Unknown and XMLDOM Loadable.

dta_
data
_lev
el_v
alue
s

Stores the data level values used in BizTalk Server. Possible values are Interchange, Group, Incoming Document, and Outgoi
ng Document.

dta_
dire
ctio
n_va
lues

Stores the direction of the interchange. Possible values are incoming and outgoing.

dta_
erro
r_m
essa
ge

Stores the error messages used in BizTalk Document Tracking. Possible values are No error, a custom component could not
be called, the interchange could not be parsed, the specified channel does not exist, the interchange could not be serialized, t
he interchange could not be encoded, the interchange could not be signed, the interchange could not be encrypted, the tran
smission attempt failed (a retry is pending), the last transmission attempt failed, the document could not be parsed, the doc
ument could not be validated, a valid channel could not be found, the document could not be parsed, the document could n
ot be validated, a valid channel could not be found, the document could not be mapped, a valid messaging port could not be
found, and the document could not be serialized.

dta_
grou
p_co
rrela
tion
_key
s

Stores the group correlation keys. The values are dynamically generated for identifying possible group candidates during re
ceipt correlation.

dta_i
nter
chan
ge_c
orrel
atio
n_ke
ys

Stores the interchange correlation keys. The values are unique and dynamically generated for identifying possible group can
didates during receipt correlation.

dta_
tran
spor
t_ty
pe_v
alue
s

Stores the transport type values. Possible values are None, HTTP, SMTP, DCOM, App Integration, Message Queuing, File, HTT
PS, Open Destination, Loopback, and Orchestration Activity.

dta_
ui_c
ode
pag
e_ch
arse
t

Stores the system code pages for character encoded data.

dta_
ui_u
ser_
quer
ies

Stores the advanced queries that individual users create and save.

dta_
valid
ity_v
alue
s

Stores the validity values. Possible values are Not valid, Valid, and Pass-through.

A value of Pass-through indicates that the document was not parsed and validity does not apply. For more information abo
ut pass-through, see Understanding Receive Function Advanced Properties.

dta_
wf_E
vent
Data

Contains one record for each property logged in relation to a monitored COM+ event fired by an XLANG schedule. Sets of
multiple rows in this table share a common parent in the dta_wf_WorkFlowEvent table.

dta_
wf_
Wor
kFlo
wEv
ent

Contains one record for each monitored COM+ event fired by an XLANG schedule.

How Interchanges and Documents Are Logged
Different processing scenarios, such as open source, open destination, and pass-through, are logged differently in the Tracking
database. The six common processing scenarios are Not open, Open source, Open destination, Loopback, Pass-through, and
Expect receipt and Generate receipt (Expect receipt and Generate receipt are considered one scenario). The Expect receipt and
Generate receipt processing scenarios are described in How Receipts Are Logged. The remaining processing scenarios are
outlined in the following table.

Proce
ssing
scena
rio

Description

Not o
pen

Occurs when the source and destination are both explicitly declared in the receive function, the document instance, the Su
bmit method, or the SubmitSync method.

Open
sourc
e

Occurs when the source information is not explicitly declared in the channel. The channel must be marked as open source,
and the submit call or the receive function must specify source openness.

Open
destin
ation

Occurs when the destination information is not explicitly declared in the messaging port. The destination is dynamically sp
ecified in the document instance, the Submit method, or the SubmitSync method. The port must be marked as open dest
ination, and the submit call or the receive function must indicate destination openness.

Loopb
ack

Occurs when loopback is the specified transport in a channel. Loopback returns the outbound document of a channel to a
business application, component, or XLANG schedule that submitted the inbound document using the SubmitSync meth
od. This transport type is available only for a messaging port that connects to an application and is available only through
the SubmitSync method.

Pass-t
hroug
h

Occurs when you select the Submit with a pass-through option in the receive function or configure the Pass-through p
roperty in the Submit or the SubmitSync method. BizTalk Server does not process the document. This means that the do
cument is not parsed, signed, decrypted, verified, and so on. The document is transported only by BizTalk Server.

The following table outlines what outgoing records are logged in the Tracking database.

Processing scenario dta_interchange_details (outgoing) dta_outdoc_details Response document
Not open X X X
Open source X X X
Open destination X X X
Loopback X X
Pass-through X X X

 Notes

Response documents are generated only when you use the following transports: HTTP, HTTPS, or AIC. In addition, the
recipient address must post return data.

For the pass-through scenario, the record logged in the dta_outdoc_details table is an empty record. The nlsValid field has a
value of 2 to designate that this record is associated with a pass-through document, and the nSyntax field has a value of
"UNKNOWN". Because BizTalk Server does not process the document, BizTalk Server cannot populate most of the fields in
this table with relevant data.

The following table outlines what incoming records are logged in the Tracking database.

Processing scenario dta_interchange_details (incoming) dta_indoc_details Response document
Not open X X X
Open source X X X
Open destination X X X
Loopback X X
Pass-through X X X

 Notes

Response documents are generated only when you use the following transports: HTTP, HTTPS, or AIC. In addition, the
recipient address must post return data.

For the pass-through scenario, the record logged in the dta_indoc_details table is an empty record. The nlsValid field has a
value of 2 to designate that this record is associated with a pass-through document, and the nSyntax field has a value of
"UNKNOWN". Because BizTalk Server does not process the document, BizTalk Server cannot populate most of the fields in
this table with relevant data.

Related Topic

How Receipts Are Logged

How Receipts Are Logged
The following illustration shows the receipt flow in BizTalk Server.

Generate and send receipt
Receive and correlate receipt
Receive and process interchange
Destination System
Source System
Messaging port to
Destination System
PO
Parser
Messaging
port to
Source
System
Outbound
document
definition
Receipt
Document
specification
Document
specification
Inbound
document
definition
Map
Receipt channel
Canonical receipt
Messaging port
to Application
Channel from
Source System
Document
specification
Receipt document
definition

Channel for PO
Generate and send interchange

In this scenario:

The source system and the destination system use Microsoft BizTalk Server 2000.

The source system is sending a purchase order to the destination system, and the source system expects a receipt from the
destination system for the purchase order.

Both systems are configured to expect and generate receipts.

When the purchase order is processed by the source system and sent to the destination system, a record is logged in the
dta_outdoc_details table. The following table shows what the fields relevant to receipts in that record might look like.

Field name Sample value Description
nOutDocKey 1 Is a unique number that identifies the record.
nAckStatus 1 Indicates that a receipt for the document is pending.
nReceiptFlag Is not populated at this time.
nReceiptKey Is not populated at this time.

When the destination system receives and processes the purchase order, a record is logged in the dta_indoc_details table and two
records are logged in the dta_outdoc_details table. The record in the dta_indoc_details table tracks information relevant to the
purchase order. The first record in the dta_outdoc_details table tracks information relevant to the purchase order and the second
record tracks information relevant to the receipt for the purchase order.

The following table shows what the fields relevant to the purchase order in the record in the dta_indoc_details table might look
like.

Field name Sample value Description
nInDocKey 1 Is a unique number that identifies the record.
nDocType CommonPO Identifies the type of document received.

The first record logged in the dta_outdoc_details table pertains to the purchase order processed by BizTalk Server. The following
table shows what the fields relevant to receipts in that record might look like.

Field name Sample value Description
nOutDocKey 10 Is a unique number that identifies the record.
nInDocKey 1 Links the record to the parent record in the dta_indoc_details table.

The second record logged in the dta_outdoc_details table pertains to the receipt that is generated by the purchase order. The
following table shows what the fields relevant to receipts in that record might look like.

Field name Sample value Description
nOutDocKey 2 Is a unique number that identifies the record.
nInDocKey 1 Links the record to the parent record in the dta_indoc_details table.
nAckStatus 0 Receipt does not expect a receipt in return.
nReceiptFlag 4 Indicates that the receipt is associated with a record in the dta_indoc_details table.
nReceiptKey 1 Is a unique number that identifies the receipt record.

When the source system receives the receipt generated by the destination system and a record is logged in the dta_indoc_details
table, the original record logged in the dta_outdoc_details table is updated. The following table shows what the fields that pertain
to receipts in the record in the dta_indoc_details table might look like.

Field name Sample value Description
nInDocKey 9 Is a unique number that identifies the record.
nDocType 997 Identifies the type of document received.

The following table shows what the fields that pertain to receipts in the updated record in the dta_outdoc_details table might look
like.

Field name Sample value Description
nOutDocKey 1 Is a unique number that identifies the record.
nAckStatus 3 Indicates that a receipt was received.
nReceiptFlag 4 Indicates that the receipt is associated with a record in the dta_indoc_details table.
nReceiptKey 9 Is a unique number that identifies the receipt record.

Related Topic

How Interchanges and Documents Are Logged

How Routing Information Is Logged
The routing information logged in the Tracking database varies depending on whether the document is incoming or outgoing and
how BizTalk Server processed the data. For inbound interchanges, when BizTalk Server receives a document, it views the
document instance for routing information. Then, BizTalk Server checks the receive function or the routing parameters specified in
IInterchange::Submit. If routing information is provided in the receive function or IInterchange::Submit, those parameters are
used to route the document instance. However, the routing information supplied in the document instance is logged in the
dta_routing_details table in the Tracking database.

For outbound interchanges, the source and destination routing information always comes from the channel, and this information
is logged in the dta_routing_details table.

This affects what information is shown in the BizTalk Document Tracking user interface for alias information. It does not affect
how interchanges submitted to and transmitted from BizTalk Server are related as a single data flow instance.

Tracking XLANG Schedule Events in the Tracking Database
Action events related to messages processed by an XLANG schedule that are exchanged between BizTalk Messaging Services and
BizTalk Orchestration Services can be tracked in the appropriate tables in the Tracking database. The action events can be viewed
by using BizTalk Document Tracking. However, tracking and viewing action events related to messages processed by an XLANG
schedule is not automatically enabled when you install BizTalk Server 2000. To enable this feature, you must complete the
following steps:

1. Register the sample dynamic-link library (.DLL) file, WorkFlowAudit.dll.

You can find this sample file in the \Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\WorkFlowAudit\bin
folder.

2. Run the WorkFlowAuditClient.exe application, to activate WorkFlowAudit.dll.

You can find this sample application in the \Program Files\Microsoft BizTalk Server\SDK\XLANG
Samples\WorkFlowAuditClient folder.

For additional information, you can view the documentation (Readme.txt) found in the \Program Files\Microsoft BizTalk
Server\SDK\XLANG Samples\WorkFlowAudit\Docs folder.

3. Click the Start button in the WorkFlowAuditClient application to initiate the logging of action events related to an XLANG
schedule in the Tracking database.

 Important

Records are logged in the dta_wf_EventData and dta_wf_WorkFlowEvent tables only if the WorkFlowAuditClient application
is started. To start the WorkFlowAuditClient application, you must complete the three steps listed in this topic. If the
WorkFlowAuditClient is stopped, no records are logged in the dta_wf_EventData and dta_wf_WorkFlowEvent tables.

After you complete these steps, records are logged in the dta_wf_EventData and dta_wf_WorkFlowEvent tables for messages that
are exchanged between BizTalk Orchestration Services and BizTalk Messaging Services. The value logged in the nvcName field in
the dta_wf_EventData table serves as a link between the dta_wf_EventData and dta_wf_WorkFlowEvent tables and the
dta_interchange_details table, a core table in the Tracking database. For more information about the core tables,
see Metadata Core Table Structure.

Messages sent from BizTalk Orchestration Services to BizTalk Messaging Services
All messages that are sent from BizTalk Orchestration Services to BizTalk Messaging Services by using the BizTalk Messaging
port implementation in BizTalk Orchestration Designer are identified by a globally unique identifier (GUID) called the correlation
identifier (correlationID). When a message is submitted from BizTalk Orchestration Services to BizTalk Messaging Services, the
correlationID is logged in the uidSubmissionGUID field in the dta_interchange_details table. In addition, records are logged in the
dta_wf_EventData and dta_wf_WorkFlowEvent tables. This enables you to use BizTalk Document Tracking view the action events
related to messages processed by an XLANG schedule.

Documents sent from BizTalk Messaging Services to BizTalk Orchestration Services
All documents that are submitted to BizTalk Messaging Services are identified by a globally unique identifier called the
submission handle (SubmissionHandle). For more information about the submission handle, see Submit Method. When the
document is sent from BizTalk Messaging Services to BizTalk Orchestration Services, the submission handle is recorded in the
uidSubmissionGUID field in the dta_interchange_details table. In addition, when a document is sent from BizTalk Messaging
Services to BizTalk Orchestration Services , the following two events occur:

The submission handle is inserted into the correlationID property of the document that is sent to BizTalk Orchestration
Services.

Records are logged in the dta_wf_EventData and dta_wf_WorkFlowEvent tables. Because the document is sent from BizTalk
Messaging Services, the submission handle is logged as the correlationID in the nvcName field in the dta_wf_EventData
table.

Viewing action events
To use BizTalk Document Tracking to view action events related to messages processed by an XLANG schedule, you must create a
query in BizTalk Document Tracking and then click the XLANG schedule icon. For more information about how to create queries
and view XLANG schedule events, see Use Queries to Search and Sort Interchange and Document Data.

The dta_wf_EventData table
The following table contains one record for each property logged in relation to a monitored COM+ event that is generated by an
XLANG schedule. Sets of multiple rows in this table share a common parent in the dta_wf_WorkFlowEvent table.

Field name Description
nEventDataId Integer key field that is incremented automatically.
nWorkFlowEventId Foreign key to the parent event record in dta_wf_EventData.
nvcName Correlation identifier (correlationID).
nvcValue Any value. This is usually based on a globally unique identifier (GUID).

The dta_wf_WorkFlowEvent table
The following table is the parent table to dta_wf_EventData and contains one record for each monitored COM+ event that is
generated by an XLANG schedule.

Field name Description
nWorkFlowEventId Integer key field that is incremented automatically.
nvcEventId Type of event.
nvcEventName Name of the event.
nProcessId Process identifier for the originating event.
nvcApplicationId XLANG schedule identifier.
nvcInstanceId Identifier for the particular instance of the schedule.
nEventTime Coordinated universal time (UTC) of the event as seconds elapsed since midnight, January 1, 1970.
nEventSubTime Microseconds added to the ITime argument for time to a microsecond solution.
nEventTick Value of the high-resolution performance counter when the event originated.
nvcServerName Server on which the event was detected.
dtDateEntered Date of the event.

Related Topics

Integrating BizTalk Services

Metadata Core Table Structure

Submit Method

Understanding Integrated XLANG Schedule Status for an Interchange

Understanding How to Find Interchanges and Associated
Documents
You can use BizTalk Document Tracking to view all interchanges and documents using the query parameters that you specify. To
maximize your search results and to minimize load on the server, it is important to understand queries and how to use them. For
example, if you create a query with very few parameters defined, the query might return thousands of interchange records. This
places a high demand on your time and on the server's processing capabilities. This situation is compounded if more than one
person is querying the database at the same time.

There are two levels of queries in BizTalk Server: queries and advanced queries. Queries include the most common criteria that
are used to narrow query results. Advanced queries allow you to further define query results by using expressions to search for
specific data.

The following topics are covered in this section:

Understanding Queries

Understanding Advanced Queries

Understanding Queries
The three standard query parameters included in BizTalk Document Tracking are date range and time zone, source and
destination identifiers, and document type. You can find interchange and document records by defining one or more of these
criteria in a query. For example, you can search for all document types in a specified date range. Or you can find interchanges and
documents that are a certain document type and that match selected source and destination organizations.

Date range and time zone
The date and time listed in BizTalk Document Tracking is the time that the document was processed by BizTalk Server. If you do
not specify a date range for the query, the default date range is the previous seven business days. Unlike the Source Selection,
Destination Selection, and Document Type Selection lists, you cannot leave the date range blank to search for documents for
any date and time. You must always specify a date and time range in BizTalk Document Tracking.

You can also specify whether you want the date and time to display in local time or in coordinated universal time (UTC). Most
often, you probably want to view interchanges and documents using local time. However, if you are working with someone who
is in a different time zone and you need to create common criteria for defining when a document was sent or received, use
coordinated universal time.

Source and destination organization
You can search for interchanges and documents based on the source organization, the destination organization, or both. In
addition, when you create a query you can filter for documents from one or more organizations or all organizations. You can also
search for interchanges and documents that originate in an application associated with an organization. For example, if source
organization A has a spreadsheet application that sends information to a database application in destination organization B, you
can determine when the information was sent and received.

Document type
You can search for interchanges and documents that have a specific document type, such as a purchase order or an invoice. In a
query, you can combine document type criteria with source and destination qualifiers to find interchanges and documents sent
and received between you and your trading partners. This type of query can help you analyze the business relationship between
you and your trading partners.

Sort control
There are six sort controls that determine in what order the columns on the Query Results page are sorted. The default sort order
of a query is as follows:

Source organization name. The name of the source organization for the document.

Source application name. The name of the application in which the document originated.

Destination organization name. The name of the destination organization for the document.

Destination application name. The name of the application to which the document is being sent.

Document type. The type of the document.

Time processed. The time at which the document was processed by BizTalk Server.

Related Topic

Understanding Advanced Queries

Understanding Advanced Queries
If you find that a query returns too many interchange and document records, you can refine your search by implementing query
expressions. In the Advanced Queries dialog box, you can create a new query expression in the Advanced Query Builder or
browse through a list of query expressions that you previously saved. The expressions are SQL statements formed by the creation
of conditional clauses that you add to the query. You have the following options to help you create an advanced query:

Source selection. A list of the fields on which you want to search. In BizTalk Messaging Manager, if you configured a
channel or document definition to track custom field(s), those fields appear in the Source Selection list. If you have not
configured BizTalk Messaging Manager to track any fields, only "<Custom Search>" appears in the Source Selection list.
For more information about tracking specific fields, see Set document logging properties
and Select specification fields in a channel.

Operators. A list of the available operators (such as >, <, =, contains, or does not contain).

Value. You can type a value in this box to indicate the boundary value for the advanced query.

AND/OR. A list that contains the grouping operators (AND and OR) that are used to combine search conditions.

Query. A list of the queries you created.

Logical grouping. A description of the combined search conditions that you created by using the AND and OR grouping
operators. When you add clauses to a query, information about grouping operators appears in the Logical grouping box.
For example, the Logical grouping box might display the following:

1 AND 2 AND (3 OR 4)

In this example, conditions 1 and 2 apply, and either condition 3 or 4 is combined with conditions 1 and 2.

 Note

You can have more than one query with the same name.

Related Topic

Understanding Queries

Understanding Query Results
Query results are organized on the Query Results page in two levels, interchange records and document records. The highest
level of organization is interchange records. An interchange record represents an interchange submitted to or transmitted from
BizTalk Server 2000. Interchange records are the parent records for document-instance records and thus help to organize the
document-instance records in a meaningful way. For more information about what fields are included in an interchange record,
see Understanding Interchange Record Results. Graphically, interchange records appear as rows of data fields with an expand
indicator icon at the left end of each row.

If you click the expand indicator icon, the document-instance record(s) appears. Graphically, the document-instance record(s) also
appears as a row of data fields. Usually, there is one document-instance record per interchange record. However, if multiple
document types are sent in a single interchange, there is a document record for each document type sent in the interchange. For
more information about what fields are included in a document instance record,
see Understanding Document-Instance Record Results.

The following topics are covered in this section:

Tracking Database Schema Basics

Understanding Interchange Record Results

Understanding Document-Instance Record Results

Understanding Receipt Results

Understanding Results for Failed Transmissions

Tracking Database Schema Basics
To understand what appears on the Query Results page, it is important to have a basic understanding of the Tracking database
schema. There are three core tables in the Tracking database that store the metadata (such as source and destination organization
identifiers, date, time, and document type) for every interchange and document processed by BizTalk Server. The database tables
are:

dta_interchange_details

dta_indoc_details

dta_outdoc_details

dta_interchange_details
The dta_interchange_details table stores all the relevant data for interchanges and is the parent table of the dta_indoc_details table
and the dta_outdoc_details table. One record is stored in the table for each interchange processed by BizTalk Server. The fields in
interchange records on the Query Results page are populated with data from this table. A field in this table designates whether
the interchange is incoming or outgoing. For example, if you receive an interchange, it is represented on the Query Results page
as an incoming interchange record. If you send an interchange, it is represented on the Query Results page as an outgoing
interchange record. For more information about the dta_interchange_details table, see Metadata Core Tables
or Metadata Core Table Structure.

dta_indoc_details

The dta_indoc_details table stores all data for every document submitted to BizTalk Server. This table is linked to the
dta_interchange_details table through a primary key. The fields in document-instance records associated with incoming
interchange records on the Query Results page are populated with data from this table. For example, if you send a document and
you want to view the tracking information for that document on the Query Results page, you must first locate the appropriate
outgoing interchange record. Then, expand the record and the document-instance record appears. That document-instance record
is associated with the dta_indoc_details table and displays the data in the fields you configured to be tracked. For more
information about the dta_indoc_details table, see Metadata Core Tables or Metadata Core Table Structure.

dta_outdoc_details
The dta_outdoc_details table stores all data for every document generated by BizTalk Server. There might be multiple records in
the dta_outdoc_details table for every record in the dta_indoc_details table because multiple documents can be generated from a
single submission. For example, a document submitted to BizTalk Server might be sent to a distribution list of 10 ports. In this
case, a single record is logged in the dta_indoc_details table and 10 records are logged in the dta_outdoc_details table. Thus, one
outgoing interchange record with an associated document-instance record appears on the Query Results page. The fields in the
document-instance record are populated with data from the dta_outdoc_details table. For more information about the
dta_outdoc_details table, see Metadata Core Tables or Metadata Core Table Structure.

Related Topics

How Interchanges and Documents Are Logged

Metadata Core Tables

Metadata Core Table Structure

Understanding Document-Instance Record Results

Understanding Interchange Record Results

Understanding Receipt Results

Understanding Results for Failed Transmissions

Understanding the Tracking Database Schema

Understanding Interchange Record Results
Based on the query parameters that you specify, one or more interchange records are returned, if matches for your query criteria
are found. An interchange record represents an interchange submitted to or transmitted from Microsoft BizTalk Server 2000.

An interchange contains the information shown in the following table.

Interchange
column hea
ding

Description

Data Provides a link to view the interchange data in its native format.
Schedule Provides a link to the XLANG schedule status information for the individual interchange, if it is available. If there is

no XLANG schedule status information associated with the interchange, the following message appears:

There is no schedule information available for this interchange.

Direction Specifies whether the interchange is submitted to BizTalk Server (incoming) or sent from BizTalk Server (outgoing)
.

Error Specifies if there are any errors associated with the document. Possible error messages are:

no error

calling a custom component failed

parsing of the interchange failed

specified channel does not exist

serialization of the interchange failed

encoding of the interchange failed

signing of the interchange failed

encryption of the interchange failed

transmission attempt failed (with retry pending)

the last transmission attempt failed

parsing of the document failed

validation of the document failed

unable to find a valid channel

mapping of the document failed

unable to find a valid port

serialization of the document failed

Source Organ
ization

Specifies the name of the source organization.

Source Applic
ation

Specifies the application from which the document originated.

Destination O
rganization

Specifies the name of the destination organization.

Destination A
pplication

Specifies the destination application for the document.

Document Ty
pe

Specifies the type of the document. If there is more than one document type in an interchange, "<Multiple>" appe
ars in this field.

Document Co
unt

Specifies the number of documents in the interchange.

Control ID Specifies a unique control number for electronic data interchanges (EDI) or an identifier for BizTalk reliable messag
es.

Receipt Status Specifies the receipt status. Possible values for receipt status are: none, pending, overdue, accepted, accepted with
errors, or rejected.

Time Process
ed

Indicates the time at which the interchange was processed. The time is set when the document tracking records are
created. Once the field is set, it is not updated.

Time Sent Specifies the time at which the interchange was sent if the transmission was successful. If the transmission is not s
uccessful, it is null. For inbound transmissions, this field is always null.

Source ID Qu
alifier

Specifies the type of source organization qualifier. This is the qualifier that BizTalk Server uses internally.

Source Identif
ier

Specifies the source organization identifier value. This is the source identifier as denoted in the data and is used to
route the document. This is different from Source ID Qualifier. For more information about routing,
see How Routing Information Is Logged.

Destination ID
Qualifier

Specifies the type of destination organization qualifier.

Destination Id
entifier

Specifies the destination organization identifier value. For more information about routing,
see How Routing Information Is Logged.

Related Topics

Tracking Database Schema Basics

Understanding Document-Instance Record Results

Understanding How to Find Interchanges and Associated Documents

Understanding Document-Instance Record Results
Document instance records in an interchange appear as a row of fields that describe the document information.

The document-instance record results contain the information shown in the following table.

Document c
olumn head
ing

Description

Data Provides a link to view the data that is contained in the document instance in its native and XML format.
Tracking ID Indicates a tracking key based on a globally unique identifier (GUID).
Document ty
pe

Specifies the type of document. If there are multiple documents in an interchange, this field specifies the document
type. There is never more than one document type in this field. Additional document types appear as separate docu
ment-instance records.

Compliance Indicates whether the document is valid. Possible values for compliance are valid or invalid.
Error Specifies whether there are any errors associated with the document. Possible error messages are:

no error

calling a custom component failed

specified channel does not exist

transmission attempt failed (with retry pending)

the last transmission attempt failed

parsing of the document failed

validation of the document failed

unable to find a valid channel

mapping of the document failed

unable to find a valid port

serialization of the document failed.

Receipt Provides a link to the receipt information.

The following fields apply only to outgoing documents.

Receipt Status Specifies the receipt status. Possible values for receipt status are: none, pending, overdue, accepted, accepted wit
h errors, or rejected.

Real 1, Real 2 Specifies data that has been captured from the document content as a real number. There are two fields than can
contain real numbers.

Integer 1, Integ
er 2

Specifies data that has been captured from the document content as an integer value. There are two fields that ca
n contain integers.

Date 1, Date 2 Specifies data that has been captured from the document content as a date value. There are two fields that can co
ntain dates.

String 1, String
2

Specifies data that has been captured from the document content as a string value. There are two fields that can c
ontain strings.

Custom Search Indicates additional data that has been captured as a string value. The limit for this field is 2 GB.

 Notes

To configure what information you want tracked in outgoing documents,

see Select specification fields in a document definition or Select specification fields in a channel.

If you configure fields (such as integers, reals, strings, dates, or custom fields) in the document definition as optional, if you
configure those fields to be tracked, and if these fields are not included in the submitted document instance, the fields do
not appear in the query results. BizTalk Document Tracking does not generate an error or warning message to let you know
that data is missing from optional fields.

In a document instance, a 1 is tracked as a -1 if the following conditions are met:
The data type is set to Boolean when you set declaration properties for a particular field in BizTalk Editor.

The field is selected to be tracked as an integer in the BizTalk Messaging Configuration object model or in BizTalk
Messaging Manager.

Related Topics

Select specification fields in a channel

Select specification fields in a document definition

Tracking Database Schema Basics

Understanding How to Find Interchanges and Associated Documents

Understanding Interchange Record Results

Understanding Receipt Results
The following illustration shows the receipt flow in BizTalk Document Tracking. In the illustration, Document 1 is first processed by
BizTalk Server A and is flagged to expect a receipt (Document 1, Expect receipt flag set). Next, BizTalk Server B picks up the
document through a receive function (Document 1, Generate receipt flag set), processes the document, and generates a receipt
[Receipt for Document 1 (Outgoing)]. BizTalk Server A then receives the receipt [Receipt for Document 1 (Incoming)].

Receipt flow

BizTalk
Server A
Receipt for
Document 1
(Incoming)
Receipt for
Document 1
(Outgoing)
Generate
receipt
flag set
Expect receipt
flag set
Document 1
Document 1
Document 1
BizTalk
Server B
Receive Function

When you view the receipt for Document 1, Expect receipt flag set, you first locate the appropriate interchange record on the
Query Results page that corresponds to Document 1, Expect receipt flag set. Click the Receipt icon in the receipt field. This opens
a new Query Results page that contains the interchange record that BizTalk Server A generated when it processed Document 1,
Expect receipt flag set. Click the Data icon in the Data column. The data displayed is the actual contents of the receipt. In the
illustration above, this last step corresponds to Receipt for Document 1 (incoming).

When you view the receipt for Document 1, Generate receipt flag set, you must first locate the appropriate interchange record on
the Query Results page that corresponds to Document 1, Generate receipt flag set. Click the Receipt icon in the receipt field. This
opens a new Query Results page that contains the interchange record that BizTalk Server B generated when it processed
Document 1, Generate receipt flag set. Expand the interchange record to view the document instance details, and click the Data
icon in the Data field. The data displayed is the actual contents of the receipt. In the previous illustration, this last step corresponds
to Receipt for Document 1 (Outgoing).

 Notes

Sending and receiving receipts works only with parsers that can process receipts. For information about receipts,
see Understanding Receipts.

Reliable messaging receipts are not displayed in the BizTalk Document Tracking user interface.

Related Topics

How Receipts Are Logged

Tracking Database Schema Basics

Understanding Results for Failed Transmissions
When a transmission fails, the failure is logged in the Tracking database. However, not all errors that are logged in the Tracking
database appear in the BizTalk Document Tracking user interface. Errors appear in the user interface only if a record was logged in
the dta_outdoc_details table. For more information about the core tables, see Tracking Database Schema Basics
or Metadata Core Tables.

The following table outlines possible error messages and whether records get logged into the various core tables in the Tracking
database.

Error message Records logged Comments
No error dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

The appropriate fields are logged in the three core tables.

A custom component could
not be called.

This error message appears only if you have a custom preprocessor associated wi
th a receive function. No records are logged in the Tracking database.

The interchange could not
be parsed.

dta_interchange_d
etails (incoming)

The interchange and the data are logged if there is a parsing error.

The specified channel does
not exist.

dta_indoc_details

dta_interchange_d
etails (incoming)

The interchange could not
be serialized.

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

An empty record is logged in the dta_interchange_details (outgoing) table. If the i
nterchange is resubmitted and it succeeds, the record is updated.

The interchange could not
be encoded.

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

The interchange could not
be signed.

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

The interchange could not
be encrypted.

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

The transmission attempt f
ailed (a retry is pending).

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

The last transmission attem
pt failed.

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

The document could not be
parsed.

dta_indoc_details

dta_interchange_d
etails (incoming)

The document could not be
validated.

dta_indoc_details

dta_interchange_d
etails (incoming)

A valid channel could not b
e found.

dta_indoc_details

dta_interchange_d
etails (incoming)

The document could not be
mapped.

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

The record in the dta_outdoc_details table records the logging error, and an empt
y record is logged in the dta_interchange_details (outgoing) table.

A valid messaging port coul
d not be found.

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

The record in the dta_outdoc_details table records a NoPort error, and an empty r
ecord is logged in the dta_interchange_details (outgoing) table.

The document could not be
serialized.

dta_indoc_details

dta_interchange_d
etails (incoming)

dta_interchange_d
etails (outgoing)

dta_outdoc_details

Records in the dta_indoc_details and dta_outdoc_details table contain the serializa
tion error.

Related Topics

Configure tracking settings for a server group

Suspended queue

Tracking Database Schema Basics

Understanding the Tracking Database Schema

Understanding Integrated XLANG Schedule Status for an
Interchange
You can track the status of related XLANG schedules in BizTalk Document Tracking. Actions in schedules on a server can be
monitored and stored in the appropriate tables in the Tracking database with an identifier that correlates them to specific
message instances. Storage schema in the Tracking database and correlation are part of Microsoft BizTalk Server 2000, but event
subscription functionality is not implemented when you install BizTalk Server 2000. However, a sample for performing tracking
integration is provided. After you install BizTalk Server 2000, you can find the source code for this sample in the \Program
Files\Microsoft BizTalk Server\SDK\XLANG Samples\WorkFlowAudit folder. Additionally, the bin subfolder contains the dynamic-
link library (WorkFlowAudit.dll), and the Docs subfolder contains the documentation (Readme.txt) for this sample. There is a
sample client application located in \Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\WorkFlowAuditClient.

Troubleshooting BizTalk Document Tracking
This section provides general information about BizTalk Document Tracking troubleshooting.

Problem displaying BizTalk Document Tracking user interface

Interchanges and documents are not stored

Nothing is displayed in the query results

Tracking fields are not displayed in the query results

Too many search arguments

Problem displaying BizTalk Document Tracking user interface
Cause: Microsoft Office Web Components are not installed.

Solution: Install Microsoft Office Web Components.

1. Click Start, point to Settings, and then click Control Panel.

2. Double-click Add/Remove Programs.

The Add/Remove Programs dialog box appears.

3. Click Microsoft Office 2000 SR-1 Premium.

4. Click Change.

5. Click Add or Remove Features.

6. Click the expand indicator (+) next to Office Tools.

7. Click Office Web Components and click the option appropriate for your installation.

8. Click Update Now.

Interchanges and documents are not stored
Cause: Tracking is turned off in BizTalk Server Administration.

Solution: Turn on tracking in BizTalk Server Administration.

1. Click Start, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Server Administration.

2. Expand Microsoft BizTalk Server 2000 and click the server group for which documents are not being stored.

3. On the Action menu, click Properties.

The BizTalk Server Group Properties dialog box appears.

4. Click the Tracking tab.

5. Select the Enable document tracking check box.

6. Select one or more of the following options:

Log incoming interchange

Log outgoing interchange

Log the original MIME-encoded message

7. Click OK.

Related Topic

Configure tracking properties for a server group

Nothing is displayed in the query results
Cause one: The date and time range is incorrect.

Solution: Check that the date and time range is correct. For example, if you sent a document in the past 5 minutes and the time
range is set to look for documents in the past 10 minutes or greater, your document will not appear in the query results.

Cause two: The data might have been removed from the database.

Solution: Contact your Database Administrator for more information.

Related Topic

Search by date for interchange and document information

Tracking fields are not displayed in the query results
Cause: BizTalk Server could not convert the data or there is an arithmetic overflow error.

Solution: Look for the following error message in the Event Log:

<<path and file name>>: The following tracking field for submission <<globally unique identifier>> could not be logged:

Tracking field: <<name of field>>

Specification field name: <<name of specification field>>/DTADataTypeTest/String/@_String

Actual value: <<actual value of field>>

Check and correct the tracking field settings in the document or channel configuration.

Related Topics

Select specification fields in a channel

Set document logging properties

Too many search arguments
Cause: You specified too many options in the Source and/or Destination Selection lists.

Solution: Make your query as specific as possible. Reduce the number of options selected in the Source and/or Destination
Selection lists and click Query.

Related Topic

Use Queries to Search and Sort Interchange and Document Data

BizTalk Server 2000 Application Development
Microsoft BizTalk Server 2000 provides tools and services that allow you to create executable applications for controlling your
business processes and the exchange of data between trading partners and applications within your business.

The following topics are covered in this section:

Designing BizTalk Orchestrations

Configuring BizTalk Messaging Services

Creating Specifications and Mapping Data

Integrating BizTalk Services

Designing BizTalk Orchestrations
BizTalk Orchestration Designer is a Microsoft Visio 2000–based design tool that enables you to create business process drawings
that can be compiled and run as XLANG schedules. XLANG is an XML-based language. An XLANG schedule describes the business
process and the binding of that process to application services.

You can use BizTalk Orchestration Designer to create drawings that describe long-running, loosely coupled, executable business
processes. Typically, these drawings describe the way interactions and procedures are performed during the completion of a
specified process, such as a purchase order request. Often, these business processes are not constrained by time limits. Also, the
steps within a business process are loosely coupled. The description of the business process is separate from the implementation
logic and sequencing used to perform the process.

For help with specific tasks, see How To.

For general background information, see Concepts.

How To...
This section provides task-specific information about how to use BizTalk Orchestration Designer to create
XLANG schedule drawings and compile them into executable XLANG schedules. This section also provides information about how
to run an XLANG schedule. It is highly recommended that you review the Concepts section to fully understand all the features and
capabilities of BizTalk Orchestration Designer.

The following procedures are covered in this section:

Use BizTalk Orchestration Designer

Run XLANG Schedules

Use BizTalk Orchestration Designer
This section contains procedures that explain how to use BizTalk Orchestration Designer to design XLANG schedule drawings and
how to compile them into XLANG schedules.

The following procedures are covered in this section:

Open and Save XLANG Schedule Drawings

View Pages, Shapes, and Stencils

Add, Delete, and Connect Shapes

Set Conditional Properties

Set Concurrency Properties

Set Transaction Properties

Set Error Handling Properties

Implement Ports

Send or Receive Messages

Draw the Flow of Data between Messages

Open and Save XLANG Schedule Drawings
The following procedures are covered in this section:

Create a new XLANG schedule drawing

Open an existing XLANG schedule drawing

Save an XLANG schedule drawing

Create a new XLANG schedule drawing
In BizTalk Orchestration Designer, on the File menu, click New.

 Notes

This procedure opens a new XLANG schedule drawing within the design window. The Business Process page is the default
beginning design page. The Flowchart and Implementation stencils also open by default when you start a new drawing.

The file extension for an XLANG schedule drawing is .skv.

Related Topics

Open an existing XLANG schedule drawing

Save an XLANG schedule drawing

Open an existing XLANG schedule drawing
1. In BizTalk Orchestration Designer, on the File menu, click Open.

The Open XLANG Schedule Drawing dialog box appears.

2. Browse to the XLANG schedule drawing that you want to open, click the drawing, and then click Open.

 Notes

The file extension for an XLANG schedule drawing is .skv.

The file extension for an XLANG schedule is .skx. You cannot open an .skx file within BizTalk Orchestration Designer. To
change or update an .skx file, open the source .skv file, make your changes, and then recompile the .skv file into an .skx file.

Related Topics

Create a new XLANG schedule drawing

Save an XLANG schedule drawing

Save an XLANG schedule drawing
In BizTalk Orchestration Designer, on the File menu, click Save.

 Notes

When you save an XLANG schedule drawing, the drawing is saved with the default name DrawingX.skv, where X is a
number that is appended to the drawing name. You can change the name of the file when you save the drawing.

You can also click Save As on the File menu. This option opens the Save XLANG Schedule Drawing As dialog box. You
can:

Rename the file to another name.

Save the file in a different location.
The file extension for an XLANG schedule drawing is .skv.

The file extension for an XLANG schedule is .skx. You cannot open an .skx file within BizTalk Orchestration Designer. To
change or update an .skx file, open the source .skv file, make your changes, and then recompile the .skv file into an .skx file.

Related Topics

Create a new XLANG schedule drawing

Open an existing XLANG schedule drawing

View Pages, Shapes, and Stencils
BizTalk Orchestration Designer provides several view options that you can use to maximize your drawing area, or to view specific
shape or data relationships.

The following procedures are covered in this section:

View the Design Pages

View Shapes

View Stencils

Use Multiple Windows

Use Annotations

Preview, Print, or Resize XLANG Schedule Drawings

View the Design Pages
The following procedures are covered in this section:

View the Business Process page

View the Data page

View the Business Process and Data pages

View Compensation for Transaction pages

View On Failure of Transaction pages

View a page

Related Topics

Use Multiple Windows

View Shapes

View Stencils

View the Business Process page
On the View menu, click Business Process Page.

 Note

You can also click the Business Process tab at the bottom of the design pages.

Related Topics

Use Multiple Windows

View a page

View Compensation for Transaction pages

View On Failure of Transaction pages

View Shapes

View Stencils

View the Business Process and Data pages

View the Data page

View the Data page
On the View menu, click Data Page.

 Note

You can also click the Data tab at the bottom of the design pages.

Related Topics

Use Multiple Windows

View a page

View Compensation for Transaction pages

View On Failure of Transaction pages

View Shapes

View Stencils

View the Business Process and Data pages

View the Business Process page

View the Business Process and Data pages
On the View menu, click Business Process and Data Pages.

 Note

This view option opens two windows for the same XLANG schedule: a Business Process window and a Data window. This
functionality is similar to that obtained by using the New Window option. For more information about opening multiple
windows, see Use Multiple Windows.

Related Topics

Use Multiple Windows

View a page

View Compensation for Transaction pages

View On Failure of Transaction pages

View Shapes

View Stencils

View the Business Process page

View the Data page

View Compensation for Transaction pages
At the bottom of the design pages, click the Compensation for Transaction tab for the page that you want to view.

 Notes

The parameter Transaction in the name of the page is replaced with the name of the transaction with which the error-
handling process is associated.

For information about how to add a Compensation for Transaction page to an XLANG schedule drawing,
see Enable Compensation error handling.

Related Topics

Use Multiple Windows

View a page

View On Failure of Transaction pages

View Shapes

View Stencils

View the Business Process and Data pages

View the Business Process page

View the Data page

View On Failure of Transaction pages
At the bottom of the design pages, click the On Failure of Transaction tab for the page that you want to view.

 Note

The parameter Transaction in the name of the page is replaced with the name of the transaction with which the error-
handling process is associated.

For information about how to add an On Failure of Transaction page to an XLANG schedule drawing,
see Enable On Failure error handling.

Related Topics

Use Multiple Windows

View a page

View Compensation for Transaction pages

View Shapes

View Stencils

View the Business Process and Data pages

View the Business Process page

View the Data page

View a page
Click the tab for the page that you want to view.

 Note

Tabs for each page are located at the bottom of the design pages.

Related Topics

Use Multiple Windows

View Compensation for Transaction pages

View On Failure of Transaction pages

View Shapes

View Stencils

View the Business Process and Data pages

View the Business Process page

View the Data page

View Shapes
The following procedures are covered in this section:

View Flowchart shapes

View Flowchart and Communication shapes

View Flowchart, Communication, and Implementation shapes

Related Topics

View Stencils

View the Design Pages

View Flowchart shapes
On the View menu, click Flowchart Shapes.

 Notes

If you use this option, on the design page only Flowchart shapes and the connections between them are displayed. This
option hides all ports, port messages, implementations, and connections between ports and actions or between ports and
implementations.

This view option cannot be used on the Data page.

Related Topics

View Flowchart and Communication shapes

View Flowchart, Communication, and Implementation shapes

View Stencils

View the Design Pages

View Flowchart and Communication shapes
On the View menu, click Flowchart and Communication Shapes.

 Notes

If you use this option, on the design page Flowchart shapes and the connections between them are displayed. Ports, port
messages, and the connections between ports and actions are also displayed. This option hides all implementations, and
connections between ports and implementations.

This view option cannot be used on the Data page.

Related Topics

View Flowchart, Communication, and Implementation shapes

View Flowchart shapes

View Stencils

View the Design Pages

View Flowchart, Communication, and Implementation shapes
On the View menu, click Flowchart, Communication, and Implementation Shapes.

 Notes

All shapes and the connections between them are displayed.

This view option cannot be used on the Data page.

Related Topics

View Flowchart and Communication shapes

View Flowchart shapes

View Stencils

View the Design Pages

View Stencils
The following procedures are covered in this section:

View the Flowchart stencil

View the Implementation stencil

Related Topics

View Shapes

View the Design Pages

View the Flowchart stencil
On the View menu, point to Stencils and click Flowchart to toggle the Flowchart stencil on or off.

Related Topics

View Shapes

View the Design Pages

View the Implementation stencil

View the Implementation stencil
On the View menu, point to Stencils and click Implementation to toggle the Implementation stencil on or off.

Related Topics

View Shapes

View the Design Pages

View the Flowchart stencil

Use Multiple Windows
The following procedures are covered in this section:

Open a new window

Tile windows

Cascade windows

Change the window focus

Related Topic

View the Design Pages

Open a new window
On the Window menu, click New Window.

 Note

Multiple windows provide additional views of the same XLANG schedule. This enables you to:
View different pages of the same XLANG schedule at the same time. For example, you can open views for the
Business Process page, the Data page, and a Compensation for Transaction page.

View different parts of the same page of an XLANG schedule at the same time. For example, in one view you can
zoom in to see a specific set of shapes in the XLANG schedule; in another view you can zoom out to see the whole
schedule.

Related Topics

Cascade windows

Change the window focus

Tile windows

View the Design Pages

Tile windows
On the Window menu, click Tile.

 Notes

Tiling the window views enables you to see several windows at the same time.

Multiple windows provide additional views of the same XLANG schedule. This enables you to:
View different pages of the same XLANG schedule at the same time. For example, you can open views for the
Business Process page, the Data page, and a Compensation for Transaction page.

View different parts of the same page of an XLANG schedule at the same time. For example, in one view you can
zoom in to see a specific set of shapes in the XLANG schedule; in another view you can zoom out to see the whole
schedule.

Related Topics

Cascade windows

Change the window focus

Open a new window

View the Design Pages

Cascade windows
On the Window menu, click Cascade.

 Notes

Cascading the window views enables you to bring one window to the front of the screen. You can click the title bars of the
other windows to bring them to the front of the screen.

Multiple windows provide additional views of the same XLANG schedule. This enables you to:
View different pages of the same XLANG schedule at the same time. For example, you can open views for the
Business Process page, the Data page, and a Compensation for Transaction page.

View different parts of the same page of an XLANG schedule at the same time. For example, in one view you can
zoom in to see a specific set of shapes in the XLANG schedule; in another view you can zoom out to see the whole
schedule.

Related Topics

Change the window focus

Open a new window

Tile windows

View the Design Pages

Change the window focus
On the Window menu, click the name of the window to which you want to switch the focus.

 Notes

The name of a window is the name of the XLANG schedule with the name of a design page appended to it. For example,
Schedule1.skv:Business Process or Schedule1.skv:Data.

Multiple windows provide additional views of the same XLANG schedule. This enables you to:
View different pages of the same XLANG schedule at the same time. For example, you can open views for the
Business Process page, the Data page, and a Compensation for Transaction page.

View different parts of the same page of an XLANG schedule at the same time. For example, in one view you can
zoom in to see a specific set of shapes in the XLANG schedule; in another view you can zoom out to see the whole
schedule.

Related Topics

Cascade windows

Open a new window

Tile windows

View the Design Pages

Use Annotations
The following procedures are covered in this section:

Add annotations

Edit annotations

Format text in annotations

Delete annotations

Add annotations
1. In BizTalk Orchestration Designer, on the toolbar, click the Text Tool () button.

2. Use the mouse pointer to drag over the area where you want to create an annotation.

3. Type the annotation.

 Notes

To turn off the Text Tool, on the toolbar, click the Pointer Tool () button.

Because BizTalk Orchestration Designer uses a custom Microsoft Visio interface, the Text Tool button offers two options.
The functionality of both of these buttons is identical:

The Text Tool () button

The Text Block Tool () button

Related Topics

Delete annotations

Edit annotations

Format text in annotations

Edit annotations
1. In BizTalk Orchestration Designer, on the toolbar, click the Text Tool () button.

2. Click the annotation that you want to edit.

3. Edit the annotation.

 Notes

To turn off the Text Tool, on the toolbar, click the Pointer Tool () button.

Because BizTalk Orchestration Designer uses a custom Microsoft Visio interface, the Text Tool button offers two options.
The functionality of both of these buttons is identical:

The Text Tool () button

The Text Block Tool () button

Related Topics

Add annotations

Delete annotations

Format text in annotations

Format text in annotations
1. In BizTalk Orchestration Designer, on a design page, select one or more annotations that you want to format.

2. On the Format menu, click Text.

The Text dialog box appears. This dialog box offers several options for the size, font, and appearance of text.

3. Select the options that you want to use and click OK.

 Notes

These options are applied to the annotations that you highlight in the XLANG schedule drawing, and to any new annotations
that you create.

You cannot format annotations when the Text Tool is turned on.

To select an annotation, click it. To select more than one annotation, press and hold the SHIFT key, and then click the
annotations that you want to select.

Related Topics

Add annotations

Delete annotations

Edit annotations

Delete annotations
In BizTalk Orchestration Designer, on a design page, click the annotation that you want to delete and press DELETE.

 Note

You must turn off the Text Tool before you can delete an annotation from the XLANG schedule drawing.

Related Topics

Add annotations

Format text in annotations

Preview, Print, or Resize XLANG Schedule Drawings
The following procedures are covered in this section:

Use Print Preview

Print an XLANG schedule drawing

Resize an XLANG schedule drawing

Use Print Preview
On the File menu, click Print Preview.

 Note

If you change the Layout Orientation option from Landscape to Portrait, you will receive the following message:

One or more drawing pages are oriented differently from the printed page setup. Click OK to print your drawing across
multiple pages. To match orientations, change the printed page orientation.

If you click OK and make this change, Print Preview might display the following behavior:

When you click Next Tile to pan pages forward, and then click Previous Tile to pan back to the first page, some
shapes might appear in Print Preview as if they are not on the page. This display is harmless. The actual
XLANG schedule will print correctly across several pages.

Related Topics

Print an XLANG schedule drawing

Resize an XLANG schedule drawing

Print an XLANG schedule drawing
1. On the File menu, click Print.

2. In the Print dialog box, set any options that you want and click Print.

Related Topics

Resize an XLANG schedule drawing

Use Print Preview

Resize an XLANG schedule drawing
1. In BizTalk Orchestration Designer, on the View menu, click Whole Page.

2. Press and hold CTRL, and then move the mouse pointer to the edge of the page.

The pointer changes shape to a double arrow at the edge of the page.

3. Click and drag the edge of the page to resize it.

Related Topics

Print an XLANG schedule drawing

Use Print Preview

Add, Delete, and Connect Shapes
The following procedures are covered in this section:

Add shapes

Name shapes

Delete shapes

Delete unused ports and messages

Connect Shapes

Add shapes
In BizTalk Orchestration Designer, on the Flowchart stencil, click a shape and drag it to the design page.

 Notes

You can add Flowchart shapes to the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. Flowchart shapes are not available on the Data page.

For information about adding Implementation shapes to an XLANG schedule drawing, see Implement Ports.

You cannot add shapes to the Data page. New messages are created automatically on the Data page each time an action is
connected to a port.

Related Topics

Connect Shapes

Delete shapes

Delete unused ports and messages

Name shapes

View the Flowchart stencil

Name shapes
1. In BizTalk Orchestration Designer, on a design page, right-click a shape and click Properties.

2. In the Shape Properties dialog box, in the Name box, type a name.

 Notes

The Name property of each shape contains a default value that is the name of the shape with a number appended to the
name; for example, Action 1. You can replace the default value with a name of your choice.

You cannot name any of the following shapes: Abort, Begin, Decision, End, Fork, Join, and While.

You can name the following shapes: Action, Transaction, Port, Message, and Rule.

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.
Transaction names in single-byte character sets must be less than or equal to 16 characters in length. Transaction names in
double-byte character sets must be less than or equal to 8 characters in length.

Actions are exempt from all naming conventions except the 32-character size limit.

Related Topics

Add shapes

Connect Shapes

Delete shapes

Delete unused ports and messages

http://www.w3.org/

Delete shapes
Click the shape that you want to delete and press DELETE.

 Notes

You can delete a connection between two shapes by clicking the connection and pressing DELETE.

If a shape has connections to other shapes when you delete the shape, all connections are also deleted.

Any shapes that are enclosed within a transaction are deleted when you delete the transaction.

You can delete a BizTalk Messaging or Message Queuing implementation without deleting the ports to which these
implementations are connected.

When you delete a COM component or Windows Script Component implementation, the ports to which they are connected
are also deleted.

You can delete a message by clicking on the message that is contained within a port and pressing DELETE. The associated
message is deleted on the Data page.

You can also delete messages from the Data page. For more information, see Delete a message.

You cannot delete rules by using the delete procedure. For more information about deleting rules, see the following topics:
Delete a rule from a decision

Delete a rule from a while loop

Delete unused rules

Related Topics

Add shapes

Connect Shapes

Delete a message

Delete a rule from a decision

Delete a rule from a while loop

Delete unused ports and messages

Delete unused rules

Name shapes

Delete unused ports and messages
In BizTalk Orchestration Designer, on the Tools menu, click Delete Unused Ports and Messages.

 Note

This procedure deletes all unused ports, and any messages that the ports contain, from the XLANG schedule drawing. The
corresponding messages on the Data page are also removed.

Related Topics

Add shapes

Connect Shapes

Delete shapes

Name shapes

Connect Shapes
The following procedures are covered in this section:

Select a shape

Connect two shapes

Use the Connector Tool

Align shapes vertically or horizontally

Related Topics

Add shapes

Delete shapes

Delete unused ports and messages

Name shapes

Select a shape
In BizTalk Orchestration designer, on a design page, click the shape that you want to select.

The shape that you select is surrounded with a green dashed border. Any control handles () available to that shape are
enabled.

 Notes

Selecting a shape enables you to drag control handles () from that shape to other shapes.

Selecting a shape enables you to edit available shape properties, and to cut, copy, paste, clear, or duplicate the shape. Not all
of these options are available for every shape.

If you copy an Action shape that is connected to a Port shape, the copy of that action also has a connection to the same
port.

Related Topics

Add shapes

Connect two shapes

Delete shapes

Use the Connector Tool

Connect two shapes
1. To connect two shapes, select the first shape.

The shape that you select is surrounded with a green dashed border. Any control handles () available to that shape are
enabled.

2. Drag the appropriate control handle to the connection point () of the second shape.

When the connection point is highlighted with a red box (), release the mouse button to set the connection.

 Notes

Process flows are connected from the top and bottom connection points and control handles on shapes.

Communication flows are connected from the right control handle of an Action shape to the left connection point a Port
shape.

You also can use the Connector Tool to connect shapes. For more information, see Use the Connector Tool.

Related Topics

Add shapes

Delete shapes

Select a shape

Use the Connector Tool

Use the Connector Tool
1. On the toolbar, click the Connector Tool () button.

2. Hover over a control handle () that is on the shape from which you want to create a connection.

The control handle is outlined with a red box to indicate that you can drag it.

3. Press and hold the mouse button to drag the control handle from the shape to a connection point () on the shape to which
you want to create the connection.

When the connection point on the shape is outlined with a red box (), release the mouse button to establish the connection.

 Notes

To turn off the Connector Tool, on the toolbar, click the Pointer Tool () button.

You can add shapes to a page, and perform other operations when the Connector Tool is enabled. However, you might
receive an error message. The error message is not valid, and it is harmless. This false error will be corrected in future
releases of Microsoft Visio. If you receive this error message, click OK and continue. The text of the message is as follows:

Visio internal error: #-1

Action 1246: Drop On Page

First try closing and reopening the file. Next try restarting Visio.

Related Topics

Add shapes

Connect two shapes

Delete shapes

Select a shape

Align shapes along a vertical or horizontal axis
1. In BizTalk Orchestration Designer, on a design page, drag the mouse pointer around the shapes that you want to align along

an axis.

2. On the toolbar, click the Align Shapes () button.

3. In the Align Shapes dialog box, in one of the following areas, click the alignment that you want to use:

In the Up/Down alignment area, click one of the following buttons:

 Horizontal-Top Alignment

 Horizontal-Center Alignment

 Horizontal-Bottom Alignment

In the Left/Right alignment area, click one of the following:

 Vertical-Left Alignment

 Vertical-Center Alignment

 Vertical-Right Alignment

 Notes

You must select shapes on a design page to enable the Align Shapes button.

It is recommended that you align shapes along one axis only. Aligning shapes along both axes simultaneously might result
in shapes being placed on top of each other. Press CTRL+Z to undo any changes that you do not want.

In the Align Shapes dialog box, the Disable Alignment () button clears an alignment selection.

The Create guide and glue shapes to it check box is always unavailable.

You can press and hold the SHIFT key, and then click several shapes to select them.

Set Conditional Properties
The following procedures are covered in this section:

Set Decision Conditions

Set While Loop Conditions

Create Rules

Related Topic

Designing Rules

Set Decision Conditions
The following procedures are covered in this section:

Add a rule to a decision

Edit a rule in a decision

Delete a rule from a decision

Determine the evaluation order of rules

Related Topics

Create Rules

Designing Rules

Add a rule to a decision
1. In BizTalk Orchestration Designer, on a design page, right-click the Decision shape for which you want to add a rule and

click Add Rule.

The Add Rule dialog box appears.

2. In the Add Rule dialog box, click one of the following options:

Create a new rule

Click OK. The Rule Properties dialog box appears.

For information about creating rules, see Create Rules.

Add an existing rule

In the Available rules list, click the rule that you want to add and click OK.

The Add Rule dialog box closes, and the rule is added to the decision.

 Notes

The first time you add a rule to an XLANG schedule drawing, clicking Add Rule opens the Rule Properties dialog box. The
Add Rule dialog box appears only if you have one or more previously created rules that you can add to a decision. For
more information about the Rule Properties dialog box, see Create Rules.

You can also add a rule to a decision by right-clicking a Decision shape, clicking Properties, and then clicking Add.

Related Topics

Create Rules

Delete a rule from a decision

Designing Rules

Determine the evaluation order of rules

Edit a rule in a decision

Edit a rule in a decision
1. In BizTalk Orchestration Designer, on a design page, right-click a Decision shape and click Properties.

2. In the Decision Properties dialog box, click the rule that you want to edit and click Edit.

3. In the Rule Properties dialog box, make the changes that you want and click OK.

For more information about the Rule Properties dialog box, see Create Rules.

4. To edit another rule, click the rule and click Edit.

–Or–

To close the Decision Properties dialog box, click OK.

 Notes

In the Decision Properties dialog box, you can also add a rule by clicking Add.

You can also edit a rule by right-clicking a rule that is contained within a Decision shape, and then clicking Properties. This
action opens the Rule Properties dialog box.

Related Topics

Add a rule to a decision

Create Rules

Delete a rule from a decision

Designing Rules

Determine the evaluation order of rules

Delete a rule from a decision
1. In BizTalk Orchestration Designer, on a design page, right-click the Decision shape for which you want to delete a rule and

click Properties.

2. Click the rule that you want to delete and click Delete.

Related Topics

Add a rule to a decision

Create Rules

Designing Rules

Determine the evaluation order of rules

Edit a rule in a decision

Determine the evaluation order of rules
1. In BizTalk Orchestration Designer, on a design page, right-click the Decision shape and click Properties.

2. In the Decision Properties dialog box, click the rule for which you want to change the evaluation order.

3. In the Order area, click the Up or Down arrow to move the rule to change the order in which it appears in the list.

 Note

It is recommended that you order the rules in order of highest priority first. Rules are executed in sequence until a rule
evaluates to TRUE. The process flow for the first rule that evaluates to TRUE is followed. If no rules evaluate to TRUE, the Else
process flow is followed.

Related Topics

Add a rule to a decision

Create Rules

Delete a rule from a decision

Designing Rules

Edit a rule in a decision

Set While Loop Conditions
The following procedures are covered in this section:

Add a rule to a while loop

Edit a rule in a while loop

Delete a rule from a while loop

Preserve state in a while loop

Related Topics

Create Rules

Designing Rules

Add a rule to a while loop
1. In BizTalk Orchestration Designer, on a design page, right-click the While shape for which you want to add a rule and click

Add Rule.

The Add Rule dialog box appears.

2. In the Add Rule dialog box, click one of the following options:

Create a new rule

Click OK. The Rule Properties dialog box appears.

For information about creating rules, see Create rules.

Add an existing rule

In the Available rules list, click the rule that you want to add and click OK.

The Add Rule dialog box closes and the rule is added to the while loop.

 Notes

The first time you add a rule to an XLANG schedule drawing, clicking Add Rule opens the Rule Properties dialog box. The
Add Rule dialog box appears only if you have one or more previously created rules that you can add to a while loop. For
more information about the Rule Properties dialog box, see Create rules.

You can add only one rule to a while loop.

Related Topics

Create Rules

Delete a rule from a while loop

Designing Rules

Edit a rule in a while loop

Preserve state in a while loop

Edit a rule in a while loop
1. In BizTalk Orchestration Designer, on a design page, right-click the rule that is contained within a While shape and click

Properties.

2. In the Rule Properties dialog box, make the changes that you want and click OK.

For more information about the Rule Properties dialog box, see Create Rules.

Related Topics

Add a rule to a while loop

Create Rules

Delete a rule from a while loop

Designing Rules

Preserve state in a while loop

Delete a rule from a while loop
In BizTalk Orchestration Designer, on a design page, right-click the While shape for which you want to delete a rule and
click Delete Rule.

Related Topics

Add a rule to a while loop

Create Rules

Designing Rules

Edit a rule in a while loop

Preserve state in a while loop

Preserve state in a while loop
1. In BizTalk Orchestration Designer, on a design page, right-click a While shape and click Properties.

2. In the While Properties dialog box, in the State persistence area, click one of the following options:

Yes

The messages used in each loop iteration are saved as XLANG schedule state. If the loop is part of a transaction that
fails, an On Failure of Transaction or Compensation for Transaction page is called for each completed loop
iteration.

No

Only messages used in the latest loop iteration are saved as XLANG schedule state. If the loop is part of a transaction
that fails, an On Failure of Transaction or Compensation for Transaction page is called only once.

Related Topics

Add a rule to a while loop

Create Rules

Delete a rule from a while loop

Designing Rules

Edit a rule in a while loop

Create Rules
The following procedures are covered in this section:

Create a rule

Use the expression assistant

Add constants to a rule

Delete unused rules

Related Topics

Designing Rules

Set Decision Conditions

Set While Loop Conditions

Create a rule
You can create rules to evaluate conditions within your business process. Rules are used within decisions and while loops in an
XLANG schedule. When you add a rule to a Decision or While shape, the Rule Properties dialog box appears.

1. In the Rule Properties dialog box, in the Rule name box, type a name for the rule.

This field is required.

2. In the Rule description box, you can type a detailed description of the rule.

This field is optional.

3. Place the cursor in the Script expression box to enable the expression assistant.

You can type the script expression that you want to use, or you can use the expression assistant. For more information
about using the expression assistant and creating script expressions, see Use the expression assistant.

 Important

Because XML is case sensitive, script expressions must use the same case as messages and their fields.

You must place the cursor in the Script expression box to enable the expression assistant.

 Notes

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.
You cannot name any of the following shapes: Abort, Begin, Decision, End, Fork, Join, and While.

The length of the longest rule name determines the width of the Decision or While shape in which the rule is used.

You can add script expressions at any point in the Script expression box by placing the cursor at the location where you
want to add the expression.

You cannot create script expressions until you have created the port implementations and the message communications
between actions and ports.

Before you compile the XLANG schedule drawing into an XLANG schedule, you must complete script expressions for all
rules in the schedule.

Related Topics

Add constants to a rule

Designing Rules

Set Decision Conditions

Set While Loop Conditions

Use the expression assistant

http://www.w3.org/

Use the expression assistant
1. In the Rule Properties dialog box, in the Expression assistant area, click a message in the Message list.

2. In the Expression Assistant area, click a field in the Field list.

3. Click Insert.

4. In the Script expression box, complete the expression.

The expression assistant adds only the message and field that you select. To evaluate the script expression, you must
provide the condition for the rule. For example:

PORequest.Total < 500

You can also combine expressions for more complex conditions. For example:

PORequest.Total < 500 AND PORequest.Quantity < 20

 Important

Because XML is case sensitive, script expressions must use the same case as messages and their fields.

You must place the cursor in the Script expression box to enable the expression assistant.

The fields that are available in the Field list are based upon the message that you choose in the Message list. Only fields
contained within that message can be used.

 Notes

The Message list contains a list of all messages and constants available on the Data page.

Rules can use the system fields that are provided on the Data page. When used within a rule, a system field is always
surrounded by brackets. For example:

Message1.[__Exists__]

For more information about system fields, see Data Handling.

You can use Microsoft Visual Basic functions such as Date and Time within rules.

You can add script expressions at any point in the Script expression box by placing the cursor at the location where you
want to add the expression.

Before you compile the XLANG schedule drawing into an XLANG schedule, you must complete script expressions for all
rules in the schedule.

Related Topics

Add constants to a rule

Create a rule

Designing Rules

Set Decision Conditions

Set While Loop Conditions

Add constants to a rule
You can add constants to script expressions in a rule. To use constants, you must first make constants available.

1. On the Data page, you must add constants to the Constants list if no constants are already available.

For more information about using constants and adding them to the Constants list, see Use Constants.

2. In the Rule Properties dialog box, in the Message list, click Constants.

3. In the Field list, click the constant that you want to use and click Insert.

 Note

All constants in the Constants list on the Data page are available and can be used in a rule.

Related Topics

Create a rule

Designing Rules

Set Decision Conditions

Set While Loop Conditions

Use the expression assistant

Delete unused rules
On the Tools menu, click Delete Unused Rules.

 Notes

This procedure deletes any rules that are not used in a decision or a while loop in the XLANG schedule drawing.

Only rules not currently used within any While or Decision shapes are removed from the XLANG schedule drawing. Any
rules that are used in a While or Decision shape are not deleted, even if these shapes are not currently connected to any
other shapes.

Related Topics

Add constants to a rule

Create a rule

Use the expression assistant

Set Concurrency Properties
The following procedures are covered in this section:

Create concurrent flows

Set the Join Type property

Join concurrent flows

End a concurrent flow

 Important

For more information about concurrent processes, it is highly recommended that you read Designing Concurrency.

Create concurrent flows
1. In BizTalk Orchestration Designer, on a design page, click a Fork shape.

2. Connect the bottom control handle () of the Fork shape to the top connection point () of a subsequent shape in the flow
of the business process.

3. Repeat steps 1 and 2 to create additional concurrent flows.

 Important

For more information about concurrent processes, it is highly recommended that you read Designing Concurrency.

 Notes

Only one flow can enter a Fork shape from the top connection point.

As many as 64 flows can exit a Fork shape to run concurrent processes.

You must click the Fork shape to select it and activate the control handle each time you want to draw an additional flow.

–Or–

If you want to create several concurrent flows, you can use the Connector Tool to add the flows quickly. For more
information about the Connector Tool, see Use the Connector Tool.

You can add Flowchart shapes to the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. Flowchart shapes are not available on the Data page.

Related Topics

Add, Delete, and Connect Shapes

Connect two shapes

End a concurrent flow

Join concurrent flows

Select a shape

Set the Join Type property

Use the Connector Tool

Set the Join Type property
1. In BizTalk Orchestration Designer, on a design page, right-click a Join shape and click Properties.

2. In the Join type list, click one of the following options:

AND

OR

 Important

For more information about concurrent processes, it is highly recommended that you read Designing Concurrency.

 Note

If you select the OR join option, all flows that enter the join can have only one action associated with the flow.

Related Topics

Create concurrent flows

End a concurrent flow

Join concurrent flows

Join concurrent flows
1. In BizTalk Orchestration Designer, on a design page, click a shape in the business process that is running a concurrent

process.

2. Connect the bottom control handle () of the shape to the top connection point () of the Join shape.

3. Repeat steps 1 and 2 for all concurrent flows that rejoin this particular join.

 Important

For more information about concurrent processes, it is highly recommended that you read Designing Concurrency.

 Notes

If you select the OR join option, all flows that enter the join can have only one action associated with the flow.

As many as 64 flows can enter a Join shape at the top connection point.

Only one flow can leave a Join shape from the bottom connection point.

If you want to join several concurrent flows, you can use the Connector Tool to join the flows quickly. For more information
about the Connector Tool, see Use the Connector Tool.

You can add Flowchart shapes to the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. Flowchart shapes are not available on the Data page.

Related Topics

Add, Delete, and Connect Shapes

Connect two shapes

Create concurrent flows

End a concurrent flow

Select a shape

Set the Join Type property

Use the Connector Tool

End a concurrent flow
1. In BizTalk Orchestration Designer, on a design page, click a shape in the business process that is running a concurrent

process.

2. Connect the bottom control handle () of the shape to the top connection point () of the End shape.

This concurrent process ends. It does not rejoin other flows in the XLANG schedule.

 Important

For more information about concurrent processes, it is highly recommended that you read Designing Concurrency.

 Note

You can add Flowchart shapes to the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. Flowchart shapes are not available on the Data page.

Related Topics

Add, Delete, and Connect Shapes

Connect two shapes

Create concurrent flows

Join concurrent flows

Select a shape

Set the Join Type property

Use the Connector Tool

Set Transaction Properties
The following procedures are covered in this section:

Set Transaction Properties for an XLANG Schedule

Set Individual Transaction Properties

Describe Component and Message Queuing Transaction Support

Related Topic

Designing Transactions

Set Transaction Properties for an XLANG Schedule
The following procedures are covered in this section:

Set the transaction model

Set the transaction activation property

Related Topic

Designing Transactions

Set the transaction model
1. In BizTalk Orchestration Designer, on a design page, right-click the Begin shape and click Properties.

The Begin Properties dialog box appears.

2. In the Transaction model list, click one of the following options:

Include Transactions within the XLANG Schedule

This option enables an XLANG schedule to use transactions.

Treat the XLANG Schedule as a COM+ Component

This option disables transaction support for an XLANG schedule. A COM component can then activate the XLANG
schedule within the context of a COM+ transaction.

 Notes

If you set the Transaction model property to Treat the XLANG Schedule as a COM+ Component, the Transaction
activation list is enabled.

If you set the Transaction model property to Treat the XLANG Schedule as a COM+ Component, do not add
transactions to the XLANG schedule drawing. The XLANG schedule drawing will not compile, and you will receive an error
message.

The XLANG identity property is a unique ID that is used to distinguish version instances of an XLANG schedule drawing.
This property is read-only and cannot be changed. Every time you update an XLANG schedule drawing, this identity is also
updated.

You can use the XLANG identity property to match versions of an XLANG schedule drawing (.skv) with the associated
compiled XLANG schedule (.skx).

The Begin shape is available on the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. The Begin shape is not available on the Data page.

Related Topics

Describe Component and Message Queuing Transaction Support

Designing Transactions

Set the transaction activation property

Set the transaction activation property
1. In BizTalk Orchestration Designer, on a design page, right-click the Begin shape and click Properties.

The Begin Properties dialog box appears.

2. In the Transaction model list, click Treat the XLANG Schedule as a COM+ Component.

When you enable this option, Component Services will treat the XLANG schedule as a COM+ component. This option
disables transaction support for an XLANG schedule. A COM component can then activate the XLANG schedule within the
context of a COM+ transaction.

3. In the Transaction activation list, click one of the following options:

Not Supported

The XLANG schedule ignores the transaction on its creator's COM+ object context, if present. None of the schedule's
actions are performed within the scope of a transaction.

Supported

The XLANG schedule participates in a COM+ transaction if a transaction is present on its creator's COM+ object
context.

Required

The XLANG schedule must run within the scope of a transaction. If a transaction is not present on the schedule
creator's COM+ object context, a transaction is automatically created and used by the XLANG Scheduler Engine.

Requires New

The XLANG schedule must run within the scope of a new transaction. The XLANG Scheduler Engine automatically
creates a new transaction for the schedule that is distinct from any transaction that may have been present on the
creator's COM+ object context.

 Notes

The XLANG identity property is a unique ID that is used to distinguish version instances of an XLANG schedule drawing.
This property is read-only and cannot be changed. Every time you update an XLANG schedule drawing, this identity is also
updated.

You can use the XLANG identity property to match versions of an XLANG schedule drawing (.skv) with the associated
compiled XLANG schedule (.skx).

The Begin shape is available on the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. The Begin shape is not available on the Data page.

Related Topics

Describe Component and Message Queuing Transaction Support

Designing Transactions

Set the transaction model

Set Individual Transaction Properties
The following procedures are covered in this section:

Group actions and flows within a transaction

Design nested transactions

Create flows that enter and leave transactions

Name a transaction

Set the transaction Type property

Set the Timeout property

Set the Retry count property

Set the Backoff time property

Set the Isolation level property

Related Topic

Designing Transactions

Group actions and flows within a transaction
1. In BizTalk Orchestration Designer, on a design page, drag a Transaction shape from the Flowchart stencil to the left side of

the Separator bar.

2. Resize the Transaction shape to surround the shapes you want enclosed within the transaction.

 Notes

Any shape or flow within the boundaries of a transaction is considered part of that transaction.

To select a shape that is within a transaction, click the shape.

If you delete a transaction that contains shapes within its boundaries, all contained shapes are also deleted.

Transaction types are denoted by the following colors:
Blue. This color denotes timed transactions.

Beige. This color denotes long-running transactions.

Gray. This color denotes short-lived, DTC-style transactions.
You can add Flowchart shapes to the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. Flowchart shapes are not available on the Data page.

Related Topics

Add, Delete, and Connect Shapes

Create flows that enter and leave transactions

Designing Transactions

Design nested transactions

Name a transaction

Design nested transactions
1. In BizTalk Orchestration Designer, on a design page, drag a Transaction shape from the Flowchart stencil and place it

within the boundaries of a current transaction.

2. Resize the Transaction shape to surround the shapes you want enclosed within the transaction.

 Important

When you create a nested transaction, certain properties in the outer transaction are disabled:
The Short-lived, DTC-style transaction type is unavailable.

All options in the Transaction options area are unavailable.

The Timeout property is still active, but cannot be changed after you create a nested transaction unless you change
the transaction type to Timed transaction.

 Notes

Any shape or flow within the boundaries of a transaction is considered part of that transaction.

To select a shape that is within a transaction, click the shape.

If you delete a transaction that contains shapes within its boundaries, all contained shapes are also deleted.

Transaction types are denoted by the following colors:
Blue. This color denotes timed transactions.

Beige. This color denotes long-running transactions.

Gray. This color denotes short-lived, DTC-style transactions.
Flowchart shapes that are not fully contained within an inner transaction are considered part of the outer transaction.

Flowchart shapes contained within an outer transaction might be partially hidden from view if an inner transaction partially
overlaps them and they are not fully contained within the inner transaction. Select these shapes and reposition them so that
they do not overlap.

You can add Flowchart shapes to the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. Flowchart shapes are not available on the Data page.

Related Topics

Add, Delete, and Connect Shapes

Create flows that enter and leave transactions

Designing Transactions

Group actions and flows within a transaction

Name a transaction

Create flows that enter and leave transactions
1. In BizTalk Orchestration Designer, on a design page, click a shape that precedes a transaction in the flow of the business

process.

2. Connect the bottom control handle () of the shape to the top connection point () of the Transaction shape.

3. Click the Transaction shape to select it.

4. Connect the top control handle of the Transaction shape to the top connection point of the first shape within the
transaction that represents the beginning of the transactional flow.

5. From that shape connect the flow to the next shape within the transaction.

6. Connect all the flows within the transaction, and connect any actions to the ports for which you want to create a
communication flow.

7. From the bottom control handle of the last shape within the transaction, connect the flow to the bottom connection point of
the Transaction shape.

8. Click the Transaction shape to select it.

9. Connect the bottom control handle of the Transaction shape to the top connection point of the next shape in the flow of
the business process that is outside of the transaction.

 Notes

To select a shape that is within a transaction, click the shape.

You can add Flowchart shapes to the Business Process, Compensation for Transaction, and On Failure of Transaction
pages. Flowchart shapes are not available on the Data page.

Related Topics

Add, Delete, and Connect Shapes

Connect two shapes

Designing Transactions

Design nested transactions

Group actions and flows within a transaction

Use the Connector Tool

Name a transaction
1. In BizTalk Orchestration Designer, on a design page, right-click a Transaction shape and click Properties.

The Transaction Properties dialog box appears.

2. In the Name box, type a name for the transaction.

 Notes

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.
Transaction names in single-byte character sets must be less than or equal to 16 characters in length. Transaction names in
double-byte character sets must be less than or equal to 8 characters in length.

Related Topics

Designing Transactions

Design nested transactions

Group actions and flows within a transaction

Set the Backoff time property

Set the Isolation level property

Set the Retry count property

Set the Timeout property

Set the transaction Type property

http://www.w3.org/

Set the transaction Type property
1. In BizTalk Orchestration Designer, on a design page, right-click a Transaction shape and click Properties.

The Transaction Properties dialog box appears.

2. In the Type area, click one of the following options:

Timed transaction

Short-lived, DTC-style

Long-running

Related Topics

Designing Transactions

Design nested transactions

Group actions and flows within a transaction

Name a transaction

Set the Backoff time property

Set the Isolation level property

Set the Retry count property

Set the Timeout property

Set the Timeout property
1. In BizTalk Orchestration Designer, on a design page, right-click a Transaction shape and click Properties.

The Transaction Properties dialog box appears.

2. In the Transaction options area, in the Timeout box, enter a time in seconds.

Related Topics

Designing Transactions

Design nested transactions

Group actions and flows within a transaction

Name a transaction

Set the Backoff time property

Set the Isolation level property

Set the Retry count property

Set the transaction Type property

Set the Retry count property
1. In BizTalk Orchestration Designer, on a design page, right-click a Transaction shape and click Properties.

The Transaction Properties dialog box appears.

2. In the Transaction options area, in the Retry count box, enter the number of times a transaction can be retried before it is
considered to have failed.

Related Topics

Designing Transactions

Design nested transactions

Group actions and flows within a transaction

Name a transaction

Set the Backoff time property

Set the Isolation level property

Set the Timeout property

Set the transaction Type property

Set the Backoff time property
1. In BizTalk Orchestration Designer, on a design page, right-click a Transaction shape and click Properties.

The Transaction Properties dialog box appears.

2. In the Transaction options area, in the Backoff time box, enter a time in seconds.

 Note

The Backoff time property determines the interval between each attempt to retry the transaction. This option is available
only for short-lived, DTC-style transactions. The backoff time is used with the retry count value to determine how long to
wait before the next transaction retry. The backoff value is exponential. A backoff value of 2 seconds results in intervals of 2,
4, 8, 16 seconds, and so on between each retry. The formula is B**R (B raised to the power of R), where B=backoff time and
R=current retry count.

Related Topics

Designing Transactions

Design nested transactions

Group actions and flows within a transaction

Name a transaction

Set the Isolation level property

Set the Retry count property

Set the Timeout property

Set the transaction Type property

Set the Isolation level property
1. In BizTalk Orchestration Designer, on a design page, right-click a Transaction shape and click Properties.

The Transaction Properties dialog box appears.

2. In the Transaction options area, in the Isolation level list, click one of the following options:

Serializable

Read Uncommitted

Read Committed

Repeatable Read

 Note

This property can be set only for short-lived, DTC-style transactions.

Related Topics

Designing Transactions

Design nested transactions

Group actions and flows within a transaction

Name a transaction

Set the Backoff time property

Set the Retry count property

Set the Timeout property

Set the transaction Type property

Describe Component and Message Queuing Transaction
Support
The following procedures are covered in this section:

Describe the level of transaction support in a COM component

Describe the level of transaction support in a Windows Script Component

Describe the transaction support provided by a message queue

Related Topics

Designing Transactions

Set the transaction activation property

Set the transaction model

Describe the level of transaction support in a COM component
Transaction support for COM components is set within the COM Component Binding Wizard.

1. Open the COM Component Binding Wizard.

For more information about this wizard, see Implement a port by using a COM component.

2. Follow the instructions in the wizard until you reach the Advanced Port Properties page.

3. On the Advanced Port Properties page, in the Transaction support area, click one of the following options:

Disabled

Transaction support for the COM+ component used by this port implementation is disabled.

Not supported

The COM+ component used by this port implementation does not support transactions.

Supported

The COM+ component used by this port implementation inherits an existing transaction.

Required

The COM+ component used by this port implementation can inherit an existing transaction, or use a new transaction.

Requires new

The COM+ component used by this port implementation requires that a new transaction be used.

Related Topics

Add a bound port to an XLANG schedule drawing

Designing Transactions

Implement a port by using a COM component

Modify port implementation properties

Set the transaction activation property

Set the transaction model

Describe the level of transaction support in a Windows Script
Component
Transaction support for Windows Script Components is set within the Script Component Binding Wizard.

1. Open the Script Component Binding Wizard.

For more information about this wizard, see Implement a port by using a Windows Script Component.

2. Follow the instructions in the wizard until you reach the Advanced Port Properties page.

3. On the Advanced Port Properties page, in the Transaction support area, click one of the following options:

Disabled

Transaction support for the COM+ component used by this port implementation is disabled.

Not supported

The COM+ component used by this port implementation does not support transactions.

Supported

The COM+ component used by this port implementation inherits an existing transaction.

Required

The COM+ component used by this port implementation can inherit an existing transaction, or use a new transaction.

Requires new

The COM+ component used by this port implementation requires that a new transaction be used.

Related Topics

Add a bound port to an XLANG schedule drawing

Designing Transactions

Implement a port by using a Windows Script Component

Modify port implementation properties

Set the transaction activation property

Set the transaction model

Describe the transaction support provided by a message queue
Transaction support for message queues is set within the Message Queuing Binding Wizard.

1. Open the Message Queuing Binding Wizard.

For more information about this wizard, see Implement a port by using Message Queuing.

2. Follow the instructions in the wizard until you reach the Advanced Port Properties page.

3. On the Advanced Port Properties page, in the Transaction support area, select or clear the Transactions are required
with this queue check box.

Related Topics

Add a bound port to an XLANG schedule drawing

Designing Transactions

Implement a port by using Message Queuing

Modify port implementation properties

Set the transaction activation property

Set the transaction model

Set Error Handling Properties
The following procedures are covered in this section:

Abort a process flow

Enable Transaction Error Handling

Enable Component Error Handling

Related Topic

Handling Exceptions

Abort a process flow
1. In BizTalk Orchestration Designer, on the Flowchart stencil, click the Abort shape and drag it to the design page.

2. Connect the process flow from a logical branch that exits a Decision shape to the connection point () of the Abort shape.

 Important

Abort shapes are used to abort a business process in a logical branch. They are used along with decisions.

The use of the Abort shape depends upon the needs of your business process. The rules that are contained within a
decision are evaluated until a rule evaluates to TRUE. If a rule evaluates to TRUE, the process flows continues to the next
action. If no rules evaluate to TRUE, you might choose to abort the process flow.

The following illustration shows an example of a decision condition where, if the rule evaluates to TRUE, the process flow
continues to Action 3. If the rule does not evaluate to TRUE, the process flow is aborted.

Click the illustration to enlarge or reduce.

Related Topics

Enable Component Error Handling

Enable Transaction Error Handling

Handling Exceptions

Logical Branching

Enable Transaction Error Handling
The following procedures are covered in this section:

Enable On Failure error handling

Enable Compensation error handling

Related Topics

Abort a process flow

Handling Exceptions

Enable On Failure error handling
1. In BizTalk Orchestration Designer, on a design page, right-click a Transaction shape and click Properties.

The Transaction Properties dialog box appears.

2. In the On failure area, click Add Code.

3. In the On failure area, select the Enabled check box.

 Notes

Clicking Add Code creates the On Failure of Transaction page that is associated with this transaction. The parameter
Transaction in the name of the page is replaced with the name of the transaction with which the error-handling process is
associated.

Selecting the Enabled check box enables the XLANG schedule to run the On Failure code for this transaction. If you do not
select this check box, you can still design On Failure processes, but they do not run when the XLANG schedule is run.

Related Topics

Design nested transactions

Group actions and flows within a transaction

Handling Exceptions

Enable Compensation error handling
1. In BizTalk Orchestration Designer, on a design page, right-click an inner Transaction shape in a nested transaction group

and click Properties.

The Transaction Properties dialog box appears.

2. In the Compensation area, click Add Code.

3. In the Compensation area, select the Enabled check box.

 Notes

Clicking the Add Code buttons creates the On Failure of Transaction or Compensation for Transaction page that is
associated with this transaction.

Selecting the Enabled check boxes enables the XLANG schedule to run the On Failure code or Compensation code for this
transaction. If you do not select these check boxes, you can still design On Failure and Compensation processes, but they do
not run when the XLANG schedule is run.

The parameter Transaction in the name of the page is replaced with the name of the transaction with which the error-
handling process is associated.

Transaction types are denoted by the following colors:
Blue. This color denotes timed transactions.

Beige. This color denotes long-running transactions.

Gray. This color denotes short-lived, DTC-style transactions.

Related Topics

Design nested transactions

Group actions and flows within a transaction

Handling Exceptions

Enable Component Error Handling
The following procedures are covered in this section:

Abort a transaction if a COM component returns a failure

Abort a transaction if a Windows Script Component returns a failure

Related Topics

Abort a process flow

Handling Exceptions

Abort a transaction if a COM component returns a failure
Transaction support for COM components is set within the COM Component Binding Wizard.

1. Open the COM Component Binding Wizard.

For more information about this wizard, see Implement a port by using a COM component.

2. Follow the instructions in the wizard until you reach the Advanced Port Properties page.

3. On the Advanced Port Properties page, in the Error handling area, select the Abort the transaction if the method
returns a failure HRESULT check box.

 Important

This option determines whether transactions in which the component is used should be aborted when method calls to the
component return a failure HRESULT.

This option can only be set if the communication action that uses this port is within the process flow of a transaction.

Related Topics

Abort a transaction if a Windows Script Component returns a failure

Add a bound port to an XLANG schedule drawing

Handling Exceptions

Implement a port by using a COM component

Modify port implementation properties

Set the transaction activation property

Set the transaction model

Abort a transaction if a Windows Script Component returns a
failure
Transaction support for Windows Script Components is set within the Script Component Binding Wizard.

1. Open the Script Component Binding Wizard.

For more information about this wizard, see Implement a port by using a Windows Script Component.

2. Follow the instructions in the wizard until you reach the Advanced Port Properties page.

3. On the Advanced Port Properties page, in the Error handling area, select the Abort the transaction if the method
returns a failure HRESULT check box.

 Important

This option determines whether transactions in which the component is used should be aborted when method calls to the
component return a failure HRESULT.

This option can only be set if the communication action that uses this port is within the process flow of a transaction.

Related Topics

Abort a transaction if a COM component returns a failure

Add a bound port to an XLANG schedule drawing

Handling Exceptions

Implement a port by using a Windows Script Component

Modify port implementation properties

Set the transaction activation property

Set the transaction model

Implement Ports
BizTalk Orchestration Designer provides four Implementation shapes that represent technologies that can be used to
implement port communications. The following table describes these shapes.

Shape
name

Description

COM
Comp
onent

The COM Component shape represents a technology that can be used to implement a port by using a method call for ea
ch message that is sent or received. Drag this shape to the right side of the Separator bar to open the COM Component B
inding Wizard.

Script
Comp
onent

The Script Component shape represents a technology that can be used to implement a port by using a method call for e
ach message that is sent or received. Drag this shape to the right side of the Separator bar to open the Script Component
Binding Wizard.

Messa
ge Qu
euing

The Message Queuing shape represents a technology that can be used to implement a port. Message Queuing Services
are used to send or receive messages. Drag this shape to the right side of the Separator bar to open the Message Queuin
g Binding Wizard.

BizTal
k Mes
sagin
g

The BizTalk Messaging shape represents a technology that can be used to implement a port. BizTalk Messaging Services
are used to send or receive messages. Either a BizTalk Server messaging port or a channel can be used to implement a por
t. Drag this shape to the right side of the Separator bar to open the BizTalk Messaging Binding Wizard.

The following procedures are covered in this section:

Add an unbound port to an XLANG schedule drawing

Add a bound port to an XLANG schedule drawing

Implement a port by using a COM component

Implement a port by using a Windows Script Component

Implement a port by using Message Queuing

Implement a port by using BizTalk Messaging

Modify port implementation properties

Related Topics

Communication Shapes

Flowchart Shapes

Implementation Shapes

Implementing Business Processes

Match a specific message with a specific port

Send or Receive Messages

Understanding Port Implementations

Using the Method Communication Wizard

Using the XML Communication Wizard

Add an unbound port to an XLANG schedule drawing
In BizTalk Orchestration Designer, on a design page, right-click the Separator bar and click Add New Port.

 Notes

You can add a port to the Business Process, Compensation for Transaction, and On Failure of Transaction pages. Ports
are not available on the Data page.

You cannot add shapes to the Data page. A port reference is created automatically on the Data page each time you create a
new port.

An unbound port can be implemented by using either Message Queuing or BizTalk Messaging. When you add one of those
implementations to the page, the implementation wizard provides the option to select any available unbound ports.

Related Topics

Implement a port by using a COM component

Implement a port by using a Windows Script Component

Implement a port by using BizTalk Messaging

Implement a port by using Message Queuing

Match a specific message with a specific port

Modify port implementation properties

Send or Receive Messages

Add a bound port to an XLANG schedule drawing
In BizTalk Orchestration Designer, on a design page, drag an Implementation shape from the Implementation stencil to
the right side of the Separator bar and follow the steps in the wizard for that implementation.

 Notes

You can add a port to the Business Process, Compensation for Transaction, and On Failure of Transaction pages. Ports
are not available on the Data page.

You cannot add shapes to the Data page. A port reference is created automatically on the Data page each time you create a
new port.

Related Topics

Implement a port by using a COM component

Implement a port by using a Windows Script Component

Implement a port by using BizTalk Messaging

Implement a port by using Message Queuing

Match a specific message with a specific port

Modify port implementation properties

Send or Receive Messages

Implement a port by using a COM component
1. In BizTalk Orchestration Designer, on a design page, drag the COM Component shape from the Implementation stencil

to the right side of the Separator bar.

The COM Component Binding Wizard opens.

2. On the Welcome to the COM Component Binding Wizard page, type a name for the port that you want to create.

BizTalk Orchestration Designer provides a default port name with a number appended to it for each new
port implementation that is added. You can change this name.

Click Next.

3. On the Static or Dynamic Communication page, click one of the following options:

Static

The XLANG Scheduler Engine instantiates this component.

If you click the Static option, the component is automatically destroyed when the XLANG schedule instance ends.

Click Next. Continue to step 4 in this procedure.

Dynamic

If you select this option, another application instantiates the component. A moniker or a pointer to the object instance
must be sent back to the XLANG schedule as a field in a message. On the Data page, a connection must be drawn
between that message field and the port reference for the port that uses this implementation. For more information
about sending a message to a specific port, see Match a specific message with a specific port.

Click Next. Continue to step 5 in this procedure.

No instantiation

Select this option only to receive data. This option specifies that data is passed into an XLANG schedule by using a
method; however, none of the code behind the method call is executed. For more information, see Data Handling.

Click Next. Continue to step 5 in this procedure.

For more information about static and dynamic communications, see the following topics:

Static and Dynamic Ports

Instance Management

Using the Script Component Shape

4. On the Class Information page, click one of the following options:

From a registered component

A tree control displays all components registered on your computer. Expand the folder for the class that you want, and
click the class.

Click Next. Continue to step 5 in this procedure.

From a moniker

Type the name of a standard COM moniker to specify the location of the COM component that you want to
instantiate. If you use this option, the COM component cannot be used with communications that take place within a
transaction in the XLANG schedule.

Click Next. Continue to step 5 in this procedure.

5. On the Interface Information page, click the interface that you want to use.

Click Next. Continue to step 6 in this procedure.

 Notes

If the COM component has only one interface, this page is skipped.

If the COM component was created in Microsoft Visual Basic, there is one interface of the same name as each class
contained within the component. Each interface name is prefaced with an underscore (_).

6. On the Method Information page, select the methods that you want to use.

Click Next. Continue to step 7 in this procedure.

 Notes

If the COM component has only one method, this page is skipped.

You must select at least one method.

You can select several methods, or all of them. The Check All and Uncheck All buttons enable you either to select or
deselect all of the methods.

7. On the Advanced Port Properties page, in the Security area, click one of the following options:

Not required

No attempt is made to confirm the identity of the sender.

Optional

The XLANG Scheduler Engine requests the identity of the sender. The XLANG schedule continues to run whether or
not the identity is available.

Required

The XLANG Scheduler Engine requests the identity of the sender. The sender identity is required, and the XLANG
schedule ignores the message if the identity is not available.

 Note

If the XLANG schedule rejects an incoming method call when the identity is required but is unavailable, the error code
E_ACCESSDENIED is returned to the caller.

8. On the Advanced Port Properties page, in the Transaction support area, click one of the following options:

Disabled

Transaction support for the COM+ component used by this port implementation is disabled.

Not supported

The COM+ component used by this port implementation does not support transactions.

Supported

The COM+ component used by this port implementation inherits an existing transaction.

Required

The COM+ component used by this port implementation can inherit an existing transaction, or use a new transaction.

Requires new

The COM+ component used by this port implementation requires that a new transaction be used.

9. On the Advanced Port Properties page, in the State management area, click one of the following options:

Holds no state

The component used by this port implementation holds no state across method calls.

Holds state, but doesn't support persistence

The component used by this port implementation holds state during the lifetime of the component, but the

component cannot be persisted.

Holds state, and does support persistence

The component used by this port implementation holds state that can be saved by using either the IPersistStream or
IPersistStreamInit interface. The use of either IPersistStream or IPersistStreamInit allows the state of the
component to be saved for later instantiations, and the component is recreated using the saved state.

10. On the Advanced Port Properties page, in the Error Handling area, select or clear the Abort the transaction if the
method returns a failure HRESULT check box.

 Important

This option determines whether transactions in which the component is used should be aborted when method calls to
the component return a failure HRESULT.

This option can only be set if the communication action that uses this port is within the process flow of a transaction.

11. Click Finish.

 Notes

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.
You can add port implementations to the Business Process, Compensation for Transaction, and On Failure of
Transaction pages. Port implementations are not available on the Data page.

You cannot add shapes to the Data page. A port reference is created automatically on the Data page each time you create a
new port.

A new port is always created for use with a COM component implementation.

If you are editing an existing port implementation, on the first page of the implementation wizard, the Rename current
port option enables you to rename the port.

Related Topics

Implement a port by using a Windows Script Component

Implement a port by using BizTalk Messaging

Implement a port by using Message Queuing

Implementation Shapes

Implementing Business Processes

Match a specific message with a specific port

Modify port implementation properties

Understanding Port Implementations

Using the COM Component Shape

Using the Method Communication Wizard

http://www.w3.org/

Implement a port by using a Windows Script Component
1. In BizTalk Orchestration Designer, on a design page, drag the Script Component shape from the Implementation stencil

to the right side of the Separator bar.

The Script Component Binding Wizard opens.

2. On the Welcome to the Script Component Binding Wizard page, type a name for the port that you want to create.

BizTalk Orchestration Designer provides a default port name with a number appended to it for each new
port implementation that is added. You can change this name.

Click Next. Continue to step 3 in this procedure.

3. On the Static or Dynamic Communication page, click one of the following options:

Static

The XLANG Scheduler Engine instantiates this component.

If you click the Static option, the component is automatically destroyed when the XLANG schedule instance ends.

Click Next. Continue to step 4 in this procedure.

Dynamic

If you select this option, another application instantiates the component. A moniker or a pointer to the object instance
must be sent back to the XLANG schedule as a field in a message. On the Data page, a connection must be drawn
between that message field and the port reference for the port that uses this implementation. For more information
about sending a message to a specific port, see Match a specific message with a specific port.

Click Next. Continue to step 4 in this procedure.

No instantiation

Select this option only to receive data. This option indicates that data is passed into the XLANG schedule by using a
method; however, none of the code behind the method call is executed.

Click Next. Continue to step 4 in this procedure.

For more information about static and dynamic communications, see the following topics:

Static and Dynamic Ports

Instance Management

Using the Script Component Shape

4. On the Specify the Script File page, click Browse.

5. In the Select Script File dialog box, browse to the location of the .wsc file that you want to use, click the file, and then click
Open.

Click Next, and continue with one of the following options:

If you selected Static in step 3, continue to step 6 in this procedure.

If you selected Dynamic or No instantiation in step 3, continue to step 7 in this procedure.

6. On the Component Instantiation Information page, click one of the following:

Use a moniker of the script file

The path and file name of the script file is automatically provided as the moniker.

Click Next. Continue to step 7 in this procedure.

Use the Prog ID "Prog ID"

The Prog ID is automatically provided, and is extracted from the XML in the Windows Script Component file. This is
recommended because the path to the script file is not hard-coded.

Click Next. Continue to step 7 in this procedure.

7. On the Method Information page, select the methods that you want to use.

Click Next. Continue to step 8 in this procedure.

 Notes

If the Windows Script Component has only one method, this page is skipped.

You must select at least one method.

You can select several methods, or all of them. The Check All and Uncheck All buttons enable you either to select or
deselect all of the methods.

8. On the Advanced Port Properties page, in the Security area, click one of the following options:

Not required

No attempt is made to confirm the identity of the sender.

Optional

The XLANG Scheduler Engine requests the identity of the sender. The XLANG schedule continues to run whether or
not the identity is available.

Required

The XLANG Scheduler Engine requests the identity of the sender. The sender identity is required, and the XLANG
schedule ignores the message if the identity is not available.

 Note

If the XLANG schedule rejects an incoming method call when the identity is required but is unavailable, the error code
E_ACCESSDENIED is returned to the caller.

9. On the Advanced Port Properties page, in the Transaction support area, click one of the following options:

Disabled

Transaction support for the COM+ component used by this port implementation is disabled.

Not supported

The COM+ component used by this port implementation does not support transactions.

Supported

The COM+ component used by this port implementation inherits an existing transaction.

Required

The COM+ component used by this port implementation can inherit an existing transaction, or use a new transaction.

Requires new

The COM+ component used by this port implementation requires that a new transaction be used.

10. On the Advanced Port Properties page, in the Error Handling area, select or clear the Abort the transaction if the
method returns a failure HRESULT check box.

 Important

This option determines whether transactions in which the component is used should be aborted when method calls to
the component return a failure HRESULT.

This option can only be set if the communication action that uses this port is within the process flow of a transaction.

11. Click Finish.

 Important

When you use Windows Script Components, they must adhere to the following rules:
Argument declarations must be by reference, not by value.

Microsoft Visual Basic Scripting subroutines are not supported. Only functions are supported.

Multiple components cannot be used within a single .wsc file.

 Notes

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.
You can add port implementations to the Business Process, Compensation for Transaction, and On Failure of
Transaction pages. Port implementations are not available on the Data page.

You cannot add shapes to the Data page. A port reference is created automatically on the Data page each time you create a
new port.

A new port is always created for use with a Windows Script Component implementation.

If you are editing an existing port implementation, on the first page of the implementation wizard, the Rename current
port option allows you to rename the port.

Windows Script Component files use the file extension .wsc. For more information about Windows Script Components, go
to the Windows Scripting Technologies Web site (msdn.microsoft.com/scripting/default.htm) and browse to the Windows
Script Components page.

Windows Script Components that have been run by the XLANG Scheduler Engine cannot be modified until both the XLANG
Scheduler Engine and the Windows Script Host are shut down.

Related Topics

Implement a port by using a COM component

Implement a port by using BizTalk Messaging

Implement a port by using Message Queuing

Implementation Shapes

Implementing Business Processes

Match a specific message with a specific port

Modify port implementation properties

Understanding Port Implementations

Using the Script Component Shape

http://www.w3.org/
http://msdn.microsoft.com/scripting/default.htm

Using the Method Communication Wizard

Implement a port by using Message Queuing
1. In BizTalk Orchestration Designer, on a design page, drag the Message Queuing shape from the Implementation stencil

to the right side of the Separator bar.

The Message Queuing Binding Wizard opens.

2. On the Welcome to the Message Queuing Binding Wizard page, click one of the following options:

Create a new port

BizTalk Orchestration Designer provides a default port name with a number appended to it for each new
port implementation that is added. You can change this name.

Click Next. Continue to step 3 in this procedure.

Existing unbound port

In the Existing unbound port list, click the port that you want to use.

Only names for unbound ports appear in the Existing unbound port list. An unbound port has no defined
implementation.

Click Next. Continue to step 3 in this procedure.

3. On the Static or Dynamic Queue Information page, click one of the following options:

Static queue

A static queue is a known, preexisting queue. This queue must be known at design time.

Click Next. Continue to step 4 in this procedure.

Dynamic queue

If you select this option, on the Data page you must create a link from a message field to the port reference for this
port.

The name of the message queue must be provided by another message prior to the communication action that occurs
by using this port implementation. For more information about matching a specific message with a specific port,
see Match a specific message with a specific port.

Click Next. Continue to step 5 in this procedure.

For more information about static and dynamic queues, see Static and Dynamic Ports.

4. On the Queue Information page, click one of the following options:

Create a new queue for every instance

You must assign the queue a prefix. For example: ".\Private$\PrivateQueuePrefix" or ".\PublicQueuePrefix". A unique
ID will be appended to the prefix for each new queue that is created.

A default queue prefix is provided for you. You can change this default.

If you want to enable someone to reply to this port, a reference to this port must be sent in a message. To do this,
select Create a new queue for every instance and enter a root queue name. At run time, the
XLANG Scheduler Engine creates a new queue with this root name for every instance, and an instance GUID appended
to the root name for each queue created. This queue is deleted when the instance ends.

If you do not plan to send out a reference to this port, there is no need for a per instance queue. You can create a
queue that will be used for all instances.

Click Next. Continue to step 5 in this procedure.

Use a known queue for all instances

Enter the queue name of a known, preexisting queue. For example: ".\private$\queuename".

Click Next. Continue to step 5 in this procedure.

5. On the Advanced Port Properties page, in the Security area, click one of the following options:

Not required

No attempt is made to confirm the identity of the sender. The XLANG schedule always receives the message with a
blank __Sender__ field, whether or not the message is authenticated.

Optional

The XLANG Scheduler Engine sends a request for confirmation of the identity of the sender. The XLANG schedule
receives the message, whether or not a message is authenticated. If the message is authenticated, the __Sender__ field
contains the Message Queuing message SenderID property.

Required

The XLANG Scheduler Engine sends a request for confirmation of the identity of the sender. Confirmation of the
sender identity is required. If the message is authenticated, the XLANG schedule receives the message, and the
__Sender__ field contains the Message Queuing message SenderID property.

If the message is not authenticated, an application event-log entry is created, and the message is moved to a new
queue that is created and named .\private$\ApplicationName.DeadLetter.

6. On the Advanced Port Properties page, in the Security area, select or clear the Use a Windows Group or User Name to
control the queue check box.

If you select the check box, enter the name of the user or group that is permitted to write messages to the queue. This
option is available only if you are using a static queue.

7. On the Advanced Port Properties page, in the Transaction support area, select or clear the Transactions are required
with this queue check box.

8. Click Finish.

 Notes

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.
You can add port implementations to the Business Process, Compensation for Transaction, and On Failure of
Transaction pages. Port implementations are not available on the Data page.

You cannot add shapes to the Data page. A port reference is created automatically on the Data page each time you create a
new port.

If you are editing an existing port implementation, on the first page of the implementation wizard, the Rename current
port option allows you to rename the port.

Related Topics

Implement a port by using a COM component

Implement a port by using a Windows Script Component

Implement a port by using BizTalk Messaging

http://www.w3.org/

Implementation Shapes

Implementing Business Processes

Match a specific message with a specific port

Modify port implementation properties

Understanding Port Implementations

Using the Message Queuing Shape

Using the XML Communication Wizard

Implement a port by using BizTalk Messaging
1. In BizTalk Orchestration Designer, on a design page, drag the BizTalk Messaging shape from the Implementation stencil

to the right side of the Separator bar.

The BizTalk Messaging Binding Wizard opens.

2. On the Welcome to the BizTalk Messaging Binding Wizard page, click one of the following options:

Create a new port

BizTalk Orchestration Designer provides a default port name with a number appended to it for each new
port implementation that is added. You can change this name.

Click Next. Continue to step 3 in this procedure.

Existing unbound port

In the Existing unbound port list, click the port that you want to use.

Only names for unbound ports appear in the Existing unbound port list. An unbound port has no defined
implementation.

Click Next. Continue to step 3 in this procedure.

3. On the Communication Direction page, click one of the following options:

Send

Click Next. Continue to step 4 in this procedure.

Receive

Click Next. Continue to step 5 in this procedure.

 Note

If you choose Receive, messages can be received by using an HTTP URL destination, or by using
BizTalk Messaging Manager to configure a messaging port to instantiate an XLANG schedule, and send messages to a
specific port in that schedule. For more information about receiving messages by using an HTTP URL,
see Integrating BizTalk Services. For more information about using BizTalk Messaging Manager to configure a
messaging port, see Set destination application properties.

4. On the Static or Dynamic Channel Information page, click one of the following options:

Static channel

Enter the name of a known, preexisting channel. Click Finish.

Dynamic channel

If you select this option, you must configure the port to provide the data that BizTalk Messaging Services needs at run
time to identify the correct channel to process the message.

On the Data page, you must create a link from a message field of a previously received message to the port reference
for this port. The message field must contain a destination address, which BizTalk Messaging Services uses as the
destination address for an open messaging port that is associated with that channel. For more information,
see Integrating BizTalk Services.

When you establish the communication flow from an action to this port, you use the XML Communication Wizard. On
the Message Type Information page, in the Message type box, you must enter the name of the inbound
document definition for the channel. BizTalk Messaging Services uses this data to identify the correct channel to
process the message. For more information, see Identification.

Click Finish.

 Important

There must be at least one channel configured in BizTalk Messaging Services that uses the specified inbound

document definition. When an action communicates with a port bound to BizTalk Messaging and the specified channel
for the binding does not exist, the XLANG schedule instance will failfast with an event log entry.

There should be only one channel configured in BizTalk Messaging Services that uses the specified inbound document
definition and is configured with XLANG schedule as its source. For more information,
see Set source application properties. That channel also must be associated with an open messaging port. When an
action communicates with a port bound to BizTalk Messaging and more than one channel for the binding exists, the
XLANG schedule instance will failfast with an event log entry.

5. On the XLANG Schedule Activation Information page, click one of the following options:

Yes

This port cannot be used in multiple receive actions or within a single receive action within a loop.

Click Finish.

No

Click Next. Continue to step 6 in this procedure.

6. On the Channel Information page, in the Channel name box, type the name of the channel that you want to use. For
more information about channels, see Understanding Channels and Search for channels.

7. On the Channel Information page, in the HTTP URL address where the BizTalk Messaging Service receives
documents box, type the URL address from which BizTalk Server receives documents for this channel.

8. Click Finish.

 Important

If you configure a port to activate a new XLANG schedule when a message arrives, you must observe the following
restrictions:

Only one port in a schedule can be used to activate the schedule when the message arrives.

Only one action can receive through this port.

This one action cannot be in a loop body.

You cannot draw a data flow connection from the port reference for this port to any other message in the schedule.

 Notes

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.
You can add port implementations to the Business Process, Compensation for Transaction, and On Failure of
Transaction pages. Port implementations are not available on the Data page.

You cannot add shapes to the Data page. A port reference is created automatically on the Data page each time you create a
new port.

http://www.w3.org/

If you are editing an existing port implementation, on the first page of the implementation wizard, the Rename current
port option allows you to rename the port.

Related Topics

Implement a port by using a COM component

Implement a port by using a Windows Script Component

Implement a port by using Message Queuing

Implementation Shapes

Implementing Business Processes

Integrating BizTalk Services

Match a specific message with a specific port

Modify port implementation properties

Search for channels

Understanding Channels

Understanding Port Implementations

Using the BizTalk Messaging Shape

Using the XML Communication Wizard

Modify port implementation properties
1. In BizTalk Orchestration Designer, on a design page, right-click an Implementation shape that you want to modify.

2. Click Properties.

The wizard for that Implementation shape opens.

3. Follow the steps in the wizard and change any properties that you want to modify.

 Notes

You can modify port implementation on the Business Process, Compensation for Transaction, and On Failure of
Transaction pages. Port implementations are not available on the Data page.

You cannot add shapes to the Data page. A port reference is created automatically on the Data page each time you create a
new port.

On the first page of the implementation wizard, the Rename current port option allows you to rename the port.

Related Topics

Implement a port by using a COM component

Implement a port by using a Windows Script Component

Implement a port by using BizTalk Messaging

Implement a port by using Message Queuing

Implementation Shapes

Implementing Business Processes

Send or Receive Messages
BizTalk Orchestration Designer provides two forms of communication by which an XLANG schedule can send or receive
messages:

Synchronous communication. Method calls are used to send or receive synchronous message pairs.

Asynchronous communication. XML messages are used to send or receive asynchronous messages.

For more information, see Synchronous and Asynchronous Communication.

The following procedures are covered in this section:

Establish the communication flow between an action and a port

Send or receive synchronous messages

Send or receive asynchronous messages

Modify the communication flow between an action and a port

Related Topics

Synchronous and Asynchronous Communication

Using the Method Communication Wizard

Using the XML Communication Wizard

Establish the communication flow between an action and a port
1. In BizTalk Orchestration Designer, on a design page, click an Action shape to select it.

2. Drag the right control handle () of the Action shape to the connection point () of a Port shape.

A communication wizard opens.

3. Continue to one of the following procedures, depending on which type of communication flow you want to create.

If you want to create a synchronous communication flow to a port that uses a COM Component or Script Component
implementation, you must use the Method Communication Wizard. Continue
to Send or receive synchronous messages.

If you want to create an asynchronous communication flow to a port that uses a Message Queuing or BizTalk
Messaging implementation, or if you want to create an asynchronous communication flow to an unbound port, you
must use the XML Communication Wizard. Continue to Send or receive asynchronous messages.

 Notes

You can also use the Connector Tool to connect shapes. For more information, see Use the Connector Tool.

You can establish a communication flow between an action and a port on the Business Process, Compensation for
Transaction, and On Failure of Transaction pages. Actions and ports are not available on the Data page.

You cannot add shapes to the Data page. New messages are created automatically on the Data page each time an action is
connected to a port.

Send or receive synchronous messages
In BizTalk Orchestration Designer, after you have created a communication flow between an action and a port for a
synchronous communication, the Method Communication Wizard opens. For more information about creating a communication
flow, see Establish the communication flow between an action and a port.

1. On the Welcome to the Method Communication Wizard page, click one of the following options:

Initiate a synchronous method call

The XLANG Scheduler Engine initiates a synchronous method call.

In this case, the XLANG Scheduler Engine sends a method call to a component, waits for a response from the
component, and then receives a response.

Click Next. Continue to step 3 in this procedure.

Wait for a synchronous method call

The XLANG Scheduler Engine waits to receive a method call that is initiated by another application.

In this case, the XLANG Scheduler Engine waits for another application to initiate the method call. This separate
application sends a method call to a component; the XLANG Scheduler Engine waits for a response from the
component and then returns a response to the application. The XLANG schedule intercepts both the method request
and the method response.

Continue to step 2 in this procedure.

2. On the Welcome to the Method Communication Wizard page, to optimize the execution of an XLANG schedule, enter
the amount of time (in seconds) that you expect the XLANG Scheduler Engine to wait before a message arrives.

The default wait time is 0 seconds. You can change this time. Any time less than or equal to 180 seconds causes the XLANG
schedule to never dehydrate. Any time greater than 180 seconds causes the XLANG schedule to dehydrate immediately. For
more information about wait times and XLANG schedule dehydration, see Dehydration and Rehydration
and Using the Method Communication Wizard.

Click Next. Continue to step 3 in this procedure.

3. On the Message Information page, click one of the following options:

Create a new message

The name of this message is automatically determined by the method that you select on the next page of this wizard.
The data flow for a new message must be connected to other messages on the Data page.

Click Next. Continue to step 4 in this procedure.

Add a reference to an existing synchronous message pair

A reference to a previously configured message pair is added to this communication flow. These message pairs can be
reused only within the same port. They cannot be used by another port implementation.

Click Finish.

4. On the Message Specification Information page, in the Methods list, click the method that you want to use. You can
select only one method in the list.

Selecting a method defines the messages for this communication flow. The IN and OUT parameters are automatically
determined by the parameter requirements of the method that you choose. Both parameter lists contain the name and data
type of the parameter.

For more information about defining the messages used in a communication flow, see Synchronous Communication.

5. Click Finish.

 Notes

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.
The wait time property is not enabled unless you click Wait for a synchronous method call.

The only methods available for use in a synchronous communication are those that were selected for the port
implementation. Methods from other port implementations cannot be used, and XML messages from
asynchronous communication flows cannot be used. To change the available methods, rerun the appropriate port
implementation wizard and select different methods.

When you create a synchronous communication, a Message is created on the Data page. The Message corresponds to the
method and parameters that are used in the communication flow. The Message contains all IN parameters for the method,
and all OUT parameters for the method.

It is possible for a method to contain no parameters; however, the Message always contains required system fields. For
more information about defining the messages used in a synchronous communication, see Synchronous Communication.

Related Topics

Dehydration and Rehydration

Establish the communication flow between an action and a port

Implement Ports

Send or receive asynchronous messages

Synchronous Communication

Using the Method Communication Wizard

Using the XML Communication Wizard

http://www.w3.org/

Send or receive asynchronous messages
1. On the Welcome to the XML Communication Wizard page, choose one of the following options:

Send

A message is sent asynchronously.

Click Next. Continue to step 3 in this procedure.

Receive

The XLANG Scheduler Engine waits until it receives a message before continuing the XLANG Schedule.

Continue to step 2 in this procedure.

2. On the Welcome to the XML Communication Wizard page, to optimize the execution of an XLANG schedule, enter the
amount of time (in seconds) that you expect the XLANG Scheduler Engine to wait before a message arrives.

The default wait time is 0 seconds. You can change this time. Any time less than or equal to 180 seconds causes the XLANG
schedule to never dehydrate. Any time greater than 180 seconds causes the XLANG schedule to dehydrate immediately. For
more information about wait times and XLANG schedule dehydration, see Dehydration and Rehydration
and Using the XML Communication Wizard.

Click Next. Continue to step 3 in this procedure.

3. On the Message Information page, click one of the following options:

Create a new message

In the Message name box, type the name of the message. A default message name with a number appended to it is
provided; however, you can change this name.

The data flow for a new message must be connected to other messages on the Data page.

Add a reference to an existing message

A reference to a previously configured message is added to this communication flow.

Click Next, and do one of the following:

If you clicked Send on the Welcome to the XML Communication Wizard page, continue to step 4 in this
procedure.

If you clicked Receive on the Welcome to the XML Communication Wizard page, continue to step 6 in this
procedure.

4. On the XML Translation Information page, click one of the following options:

Send XML messages to the queue

Send messages to the queue as a string

The XLANG Scheduler Engine must remove the standard XML wrapper from the string.

Data flow in the XLANG Scheduler Engine is handled by using XML. The engine natively sends XML messages to message
queues. The engine can also send a message as a string, from which the engine must remove its standard XML wrapper. The
data flow must deliver a message in the correct specification format for this action.

If you choose to send or receive an XML message as a string, the Message shape that is created on the Data page for this
message contains a field named StringData, and you cannot add specification fields to this message.

Click Next. Continue to step 5 in this procedure.

5. On the Message Type Information page, in the Message type box, type a label designation for the message.

The text that you enter is used to label the message as it is sent to the queue.

To continue, do one of the following:

If, on the XML Translation Information page, you clicked Send XML messages to the queue, then click Next.
Continue to step 8 in this procedure.

If, on the XML Translation Information page, you clicked Send messages to the queue as a string, then click
Finish.

6. On the XML Translation Information page, click one of the following options:

Receive XML messages from the queue

Receive string messages from the queue

The XLANG Scheduler Engine must wrap the string in the engine's standard XML wrapper.

Data flow in the XLANG Scheduler Engine is handled by using XML. The engine natively receives XML messages from
message queues. The engine can also receive a message as a string, which the engine then wraps in XML.

Click Next. Continue to step 7 in this procedure.

7. On the Message Type Information page, in the Message type box, type a label designation for the message.

The text that you enter is used to identify the correct messages to receive from the message queue.

First, the XLANG Scheduler Engine tries to match the message type information with the message label in the queue.

Second, if the message is in an XML format on the queue, the XLANG Scheduler Engine tries to match the message type
information with the XML root element of the message on the queue.

To continue, do one of the following:

If, on the XML Translation Information page, you clicked Receive XML messages from the queue, click Next.
Continue to step 8 in this procedure.

If, on the XML Translation Information page, you clicked Receive string messages from the queue, click Finish.

8. On the Message Specification Information page, click Browse.

9. In the Browse for Specification dialog box, browse to the specification that you want to use, click it, and then click Open.

On the Message Specification Information page, in the Message specification box, the file path and file name of the
specification that you selected are entered.

 Notes

If you do not browse for an existing specification, you can click Create. This action opens BizTalk Editor, which enables
you to select a specification and modify it as needed for use with this message, or create a new specification.

If you select a specification by browsing for it, the Create button label changes to Edit. Click Edit to modify the
specification that you have selected.

10. On the Message Specification Information page, if you want to validate the message against the specification, select the
Validate messages against the specification check box.

 Note

This check box is not enabled unless you select a specification for validation.

11. On the Message Specification Information page, if you want to add fields to the Message fields list, click Add.

 Important

If you want to select additional fields for this message specification, you must use a specification that has been created
by using BizTalk Editor. You can adapt any standard or schema by first importing it into BizTalk Editor and then saving
it as a BizTalk specification. For more information, see Create and Validate Specifications.

12. In the Field Selection dialog box, in the Select node tree, expand any nodes that you want, and then click the field that you
want to add. Click OK.

 Notes

When you click a field in the Select node tree, the field name is added automatically to the Field name box.

When you click a field in the Select node tree, the node path to that field is added automatically to the Node path
box. This path can be edited manually. For more information, see Node Path Fields.

You cannot select a record node to add to the Message fields list. You can select only fields. For more information,
see Node Path Fields.

If you want to add several fields to the Message fields list, in the Field Selection dialog box, you must select a field
and then click OK. On the Message Specification Information page, click Add and repeat the process to add
another field.

13. On the Message Specification Information page, if you want to delete fields in the Message fields list, click a field in the
list and click Remove.

 Note

You cannot delete any required fields. Required fields appear in the Message fields list with a yellow background.

14. Click Finish.

 Notes

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.
The wait time property is not enabled unless you click Receive.

The only messages available for use in an asynchronous communication are XML messages. All XML messages are available
for use, and can be specified for more than one port. You cannot use any of the synchronous message pairs that are created
by using the Method Communication Wizard.

If you are connecting this communication flow to a port that is implemented by using BizTalk Messaging, the direction of
the communication (Send or Receive) is determined by the port implementation and cannot be set in the XML
Communication Wizard. The Send or Receive option on the first page of the wizard is selected automatically and is
unavailable. You must click Next and continue to the next page of the wizard to finish the configuration of the
communication flow.

When you create an asynchronous communication, a Message is created on the Data page. The Message corresponds to
information sent or received in the communication flow. The Message contains required system fields and any additional
specification fields that you want. For more information about defining the messages used in an asynchronous messaging
communication, see Asynchronous Communication.

Related Topics

Asynchronous Communication

Create and Validate Specifications

Creating Specifications and Mapping Data

http://www.w3.org/

Dehydration and Rehydration

Establish the communication flow between an action and a port

Node Path Fields

Send or receive synchronous messages

Using the XML Communication Wizard

Modify the communication flow between an action and a port
1. In BizTalk Orchestration Designer, on a design page, right-click the communication flow that is between an action and a

port.

A communication wizard opens.

2. Follow the steps in the wizard to change any properties that you want to modify.

Continue to one of the following procedures, depending on which type of communication flow you want to create.

If you want to create a synchronous communication flow to a port that uses a COM Component or Script Component
implementation, you must use the Method Communication Wizard. Continue
to Send or receive synchronous messages.

If you want to create an asynchronous communication flow to a port that uses a Message Queuing or BizTalk
Messaging implementation, or if you want to create an asynchronous communication flow to an unbound port, you
must use the XML Communication Wizard. Continue to Send or receive asynchronous messages.

 Notes

You can establish a communication flow between an action and a port on the Business Process, Compensation for
Transaction, and On Failure of Transaction pages. Actions and ports are not available on the Data page.

You cannot add shapes to the Data page. New messages are created automatically on the Data page each time an action is
connected to a port.

Related Topics

Establish the communication flow between an action and a port

Send or receive asynchronous messages

Send or receive synchronous messages

Using the Method Communication Wizard

Using the XML Communication Wizard

Draw the Flow of Data Between Messages
The following procedures are covered in this section:

Select a message

Select a field within a message

Draw the flow between messages

Delete a message

Match a specific message with a specific port

Use Constants

Related Topics

Add, Delete, and Connect Shapes

Data Handling

Select a message
In BizTalk Orchestration Designer, on the Data page, click the gray header field for the message that you want to select.

The entire message that you select is surrounded with a green dashed border.

 Notes

You can select the Constants list, the Port References list, or a Message.

When you select an entire message, you can reposition it on the page by dragging it. Repositioning the messages can clarify
the data flows that are drawn between messages.

Related Topics

Add, Delete, and Connect Shapes

Data Handling

Delete a message

Draw the flow between messages

Match a specific message with a specific port

Select a field within a message

Use Constants

Select a field within a message
In BizTalk Orchestration Designer, on the Data page, click a field with a message that you want to select.

The field that you select is surrounded with a green dashed border. Any control handles () available to that field are
enabled.

Related Topics

Add, Delete, and Connect Shapes

Data Handling

Delete a message

Draw the flow between messages

Match a specific message with a specific port

Select a message

Use Constants

Draw the flow between messages
1. In BizTalk Orchestration Designer, on the Data page, click a field within a message to enable its control handles ().

2. Drag the control handle to the connection point () of a field in another message to which you want to connect.

When the connection point is highlighted with a red box (), release the mouse button to set the connection.

 Note

If you want to create several data flows, you can use the Connector Tool to add the flows quickly. For more information
about the Connector Tool, see Use the Connector Tool.

Related Topics

Add, Delete, and Connect Shapes

Data Handling

Delete a message

Match a specific message with a specific port

Select a field within a message

Select a message

Use Constants

Delete a message
In BizTalk Orchestration Designer, on the Data page, click the gray header field for the message that you want to delete and
press DELETE.

 Notes

You cannot delete the Port References list.

You cannot delete the Constants list.

If you select an individual field within a message and press DELETE, the entire message is deleted, not just the field.

Related Topics

Add, Delete, and Connect Shapes

Data Handling

Draw the flow between messages

Select a field within a message

Select a message

Match a specific message with a specific port
1. Click the field within the Port References list that contains the name of the port to which you want to refer.

2. Drag the control handle () from that field to the connection point () of the field in a Message in which you want to pass
the reference to the port.

 Important

For more information about correlating messages and port references, see the Following topics:
Instance Management

Data Handling

Understanding Port Implementations

Related Topics

Data Handling

Delete a message

Draw the flow between messages

Implement Ports

Instance Management

Select a field within a message

Select a message

Understanding Port Implementations

Use Constants

Use Constants
The following procedures are covered in this section:

Add constants

Edit constants

Delete constants

Related Topics

Data Handling

Field Data Types

Summary of Data Types and Data Type Values

Add constants
1. In BizTalk Orchestration Designer, on the Data page, right-click the Constants list and click Properties.

The Constants Message Properties dialog box appears.

2. Click Add.

The Constant Properties dialog box appears.

3. In the Name box, type a name for the constant.

4. In the Data type list, click the data type for the constant.

5. In the Value box, type the value for the constant.

6. Click OK, and then click OK again.

 Notes

A default name with a number appended to it is provided for each constant that you create. You can change this name.

The Data type description area provides read-only information about the data type that you select. It might provide a
format example for the data type, or a valid range for the value for a data type.

Related Topics

Data Handling

Delete constants

Edit constants

Field Data Types

Summary of Data Types and Data Type Values

Edit constants
1. In BizTalk Orchestration Designer, on the Data page, right-click the Constants list and click Properties.

The Constants Message Properties dialog box appears.

2. In the Constants list, click the constant that you want to edit.

3. Click Edit.

The Constant Properties dialog box appears.

4. Edit any constant properties that you want to change and click OK.

 Notes

For more detailed information about the properties available in the Constant Properties dialog box, see Add constants.

A default name with a number appended to it is provided for each constant that you create. You can change this name.

The Data type description area provides read-only information about the data type that you select. It might provide a
format example for the data type, or a valid range for the value for a data type.

Related Topics

Add constants

Data Handling

Delete constants

Field Data Types

Summary of Data Types and Data Type Values

Delete constants
1. In BizTalk Orchestration Designer, on the Data page, right-click the Constants list and click Properties.

The Constants Message Properties dialog box appears.

2. In the Constants list, click the constant that you want to delete.

3. Click Delete.

Related Topics

Add constants

Data Handling

Edit constants

Field Data Types

Summary of Data Types and Data Type Values

Run XLANG Schedules
This section contains procedures that explain how to compile and debug XLANG schedules, as well as how to activate and run an
XLANG schedule. To run XLANG schedules, you might also want to create a COM+ application to host dedicated
schedule instances.

The following procedures are covered in this section:

Compile and Debug XLANG Schedules

Create and Configure an XLANG Schedule Host Application

Related Topics

Creating an Instantiating Application

Manage XLANG Applications and Databases

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Compile and Debug XLANG Schedules
When you create an XLANG schedule you will want to compile, run, test, and debug the schedule. BizTalk Orchestration Designer
provides features that assist in compiling, running, testing and debugging XLANG schedules.

In BizTalk Orchestration Designer, the following options are available:

Compiling

Updating method signatures

Shutting down running instances of XLANG schedules

In addition to these options, there are two tools that you can use to assist in testing and debugging an XLANG schedule:

XLANG Event Monitor. You can use this tool to monitor running XLANG schedule instances. For specific information about
using this tool, see the associated Readme.htm file. Both XLANG Event Monitor (XLANGMon.exe) and the Readme installed
by the Microsoft BizTalk Server 2000 Setup Wizard are located in the following installation directory: ..\Program
Files\Microsoft BizTalk Server\SDK\XLANG Tools.

Windows 2000 Event Viewer. Windows 2000 Event Viewer can be used to view XLANG schedule errors. For more
information, see the following topics:

Manage Event Viewer

Monitor Running XLANG Schedules

For more information about Event Viewer, in Windows 2000 Server Help, in the "Event Viewer" chapter, see "Using
Event Viewer".

The following procedures are covered in this section:

Compile an XLANG schedule drawing into an XLANG schedule

Run an XLANG schedule

Debug compiled Visual Basic components

Refresh method signatures

Shut down all running XLANG schedules

Related Topics

Create and Configure an XLANG Schedule Host Application

Creating an Instantiating Application

Manage XLANG Applications and Databases

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Compile an XLANG schedule drawing into an XLANG schedule
1. In BizTalk Orchestration Designer, on the File menu, click Make XLANG DrawingX.skx.

The Save XLANG Schedule To dialog box appears.

2. In the Save in list, browse to the location where you want to save the XLANG schedule.

3. In the File name list, you can rename the file.

4. Click Save.

 Notes

When you compile an XLANG schedule drawing into an XLANG schedule, you may receive compiling errors. The error
message indicates the possible problem in the drawing, and the affected shape is highlighted with a green, dashed border.

When you compile an XLANG schedule drawing into an XLANG schedule, the drawing is compiled with the default name
DrawingX.skx. Where X is a number that is appended to the schedule name. You can change the name of the file when you
compile the drawing.

The file extension for an XLANG schedule is .skx. An .skx file is an XML file that is written in the XLANG language. You cannot
open an .skx file within BizTalk Orchestration Designer. To change or update an .skx file, open the source .skv file, make your
changes, and then recompile the .skv file into an .skx file.

The file extension for an XLANG schedule drawing is .skv.

Related Topics

Create and Configure an XLANG Schedule Host Application

Creating an Instantiating Application

Debug compiled Visual Basic components

Manage XLANG Applications and Databases

Open and Save XLANG Schedule Drawings

Refresh method signatures

Run an XLANG schedule

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Shut down all running XLANG schedules

Run an XLANG schedule
To run an XLANG schedule, you must create a means to activate the XLANG schedule.

There are two primary ways to do this:

Configure BizTalk Orchestration Services and BizTalk Messaging Services to activate and run XLANG schedules.

For more information, see the following topics:

Integrating BizTalk Services

Set destination application properties
Programmatically activate the XLANG schedule by creating an instantiation application such as an ASP page.

For more information, see the following topics:

Running XLANG Schedules

Creating an Instantiating Application

Moniker Syntax

Related Topics

Compile an XLANG schedule drawing into an XLANG schedule

Create and Configure an XLANG Schedule Host Application

Creating an Instantiating Application

Debug compiled Visual Basic components

Manage XLANG Applications and Databases

Moniker Syntax

Refresh method signatures

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Shut down all running XLANG schedules

Debug compiled Visual Basic components
There might be situations in which you need to debug components built with Microsoft Visual Basic after they have been
compiled.

1. In Visual Basic 6.0, open the Visual Basic project that you want to debug.

2. On the File menu, click Make <YourProject>.dll.

3. In the Make Project dialog box, click Options.

4. In the Project Properties dialog box, on the Compile tab, click Compile to Native Code and No Optimization, and then
select the Create Symbolic Debug Info check box.

5. Click OK, and then click OK again to compile your project.

6. Open the Visual Basic .dll project.

7. Set the breakpoints that you want to use.

8. On the Run menu click Start.

The next time the XLANG schedule calls into your Visual Basic component, the Visual Basic debugger will stop at the breakpoint.

 Important

The Visual Basic .dll must be created with the Create Symbolic Debug Info check box selected.

Ensure that the XLANG Scheduler Engine has not already loaded the .dll. If the .dll has been loaded, you must shut down the
engine and retry.

 Note

For more information about debugging components, or about Component Services, and COM+, go to the MSDN Online
Library Web site (msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

http://msdn.microsoft.com/library/default.asp

Refresh method signatures
In BizTalk Orchestration Designer, on the Tools menu, click Refresh Method Signatures.

 Notes

Use this option if you are creating COM+ components at the same time you are creating the XLANG schedule and you
change any of the method parameters in any of the available method calls. This refreshes the available method parameters
in the XLANG schedule.

When you compile an XLANG schedule, Refresh Method Signatures is run automatically.

Related Topics

Compile an XLANG schedule drawing into an XLANG schedule

Create and Configure an XLANG Schedule Host Application

Creating an Instantiating Application

Debug compiled Visual Basic components

Manage XLANG Applications and Databases

Run an XLANG schedule

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Shut down all running XLANG schedules

Shut down all running XLANG schedules
In BizTalk Orchestration Designer, on the Tools menu, click Shut Down All Running XLANG Schedule Instances.

 Note

When running an XLANG schedule instance, it is not possible to modify COM components used by that XLANG schedule.
This option shuts down all running instances of the schedule, unlocking the file containing the component so you can make
changes.

Related Topics

Compile an XLANG schedule drawing into an XLANG schedule

Create and Configure an XLANG Schedule Host Application

Creating an Instantiating Application

Debug compiled Visual Basic components

Manage XLANG Applications and Databases

Refresh method signatures

Run an XLANG schedule

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Create and Configure an XLANG Schedule Host Application
This section contains procedures that explain how to activate and run an XLANG schedule. Although you can use the default
XLANG Scheduler application to run XLANG schedules, it is often useful to create a new COM+ application to run
schedule instances.

Due to security, deployment, and configuration issues, most COM+ applications that host XLANG schedules must be created
when the XLANG schedule is developed. You must take into consideration security and performance needs for the applications
and the schedules. You might want to create a new COM+ application to host dedicated instances of running schedules, or you
might want to isolate applications that run specific schedule instances from other XLANG schedules that use different
applications.

For more information about security and performance issues related to creating XLANG schedules and a COM+ application to
host the schedules, see Security for Applications that Host XLANG Schedule Instances.

For information about how to manage COM+ applications after they have been created,
see Manage XLANG Applications and Databases.

The following procedures are covered in this section:

Create a COM+ application to host XLANG schedules

Configure a COM+ application to host XLANG schedules

 Important

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, and then double-click Component Services. In the console tree, right-click Component Services
and click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Creating an Instantiating Application

Manage XLANG Applications and Databases

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

http://msdn.microsoft.com/library/default.asp

Create a COM+ application to host XLANG schedules
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then click COM+
Applications to select it.

You must first select COM+ Applications, and then right-click it. If you do not select it first, the New option is not available.

3. Right-click COM+ Applications, point to New, and then click Application.

The COM Application Install Wizard opens.

4. On the Welcome to the COM Application Install Wizard page, click Next.

5. On the Install or Create a New Application page, click Create an empty application.

6. On the Create an Empty Application page, type a name for the application, verify that Server application is selected,
and then click Next.

7. On the Set Application Identity page, set the application identity to the appropriate account.

It is recommended that you create a service account for COM+ applications that host XLANG schedules.

For more information about security and performance issues related to creating an application identity,
see Security for Applications that Host XLANG Schedule Instances.

8. Click Next and click Finish.

9. Right-click the COM+ application that you just created and click Properties.

10. On the XLANG tab, select the This application is a host for XLANG schedule instances check box.

11. To configure the COM+ application, continue to Configure a COM+ application to host XLANG schedules.

 Important

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, and then double-click Component Services. In the console tree, right-click Component Services
and click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

 Notes

When you create a COM+ application to host XLANG schedules, the Restart dehydrated applications options is not
available. For more information about how to restart dehydrated applications, see Restart all XLANG applications.

Related Topics

Configure a COM+ application to host XLANG schedules

Creating an Instantiating Application

Manage XLANG Applications and Databases

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

http://msdn.microsoft.com/library/default.asp

Configure a COM+ application to host XLANG schedules
1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click

Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

3. Right-click the COM+ application that you want to configure and click Properties.

4. It is highly recommended that you create a service account to manage COM+ applications that host XLANG schedules. If
you accepted default settings in the COM Application Install Wizard when you created the COM+ application, you might
want to change these settings. For more information, see Change the application identity for a COM+ application.

5. Configure DSN settings for the COM+ application. For more information,
see Change the DSN settings for a COM+ application.

6. Configure a database for the COM+ application to use. You can:

Point to an existing database. For more information, see Change the DSN settings for a COM+ application.

–Or–

Create and configure a new database. For more information, see Create a new persistence database
and Change the DSN settings for a COM+ application.

 Caution

If you create and configure a new database to use with the COM+ application, you must initialize the database tables after
you configure the DSN settings for the COM+ application.

For more information about configuring a DSN and using data sources (ODBC), click Help in the ODBC Data Source
Administrator dialog box.

To initialize new database tables for the COM+ host application that you configure:

1. Right-click the COM+ application and click Properties.

2. Click the XLANG tab.

3. On the XLANG tab, click Initialize Tables.

Do not click Initialize Tables if you are configuring a COM+ host application and a DSN for an existing database. This
action will destroy any data already in the existing database.

 Notes

For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel, double-click
Administrative Tools, and then double-click Component Services. In the console tree, right-click Component Services
and click Help.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp), and browse to Component Services in the Platform SDK.

Related Topics

Change the application identity for a COM+ application

Change the DSN settings for a COM+ application

Create a COM+ application to host XLANG schedules

Create a new persistence database

http://msdn.microsoft.com/library/default.asp

Creating an Instantiating Application

Manage XLANG Applications and Databases

Running XLANG Schedules

Security for Applications that Host XLANG Schedule Instances

Concepts
This section provides detailed conceptual information that is essential to understanding BizTalk Orchestration Designer. It
provides detailed information about the following topics:

BizTalk Orchestration Services

Creating XLANG Schedule Drawings

Compiling XLANG Schedules

Debugging XLANG Schedules

Running XLANG Schedules

Managing Session State

Updating XLANG Schedules

 Note

It is highly recommended that you review the How to section for task-specific information about using BizTalk Orchestration
Designer.

BizTalk Orchestration Services
BizTalk Orchestration Services extends the capabilities of established information-exchange technologies. It enables users to
create detailed representations of business processes that can be implemented programmatically within an integrated design
environment.

Business-process design and implementation have traditionally been performed in two distinct phases: the visual-design phase
and the coding phase. The visual-design phase typically consisted of the analysis of an existing business process (such as
corporate procurement), and the creation of a workflow diagram or an interaction diagram to describe the process. The coding
phase was usually performed separately. In this paradigm, you would build an abstract visual model of a business process, and
then map the model to an implementation framework.

One of the important features of BizTalk Orchestration is the integration of these previously distinct phases within a unified
design environment. This design environment provides a versatile drawing surface and a comprehensive set of implementation
tools. BizTalk Orchestration enables you to:

Create XLANG schedule drawings that describe business processes.

Implement business processes by connecting specific actions within a drawing to ports that represent locations to which
messages are sent, or from which messages are received. Ports are named locations, and messages represent the data sent
or received between actions and ports.

Define the flow of data between messages within business processes.

Compile XLANG schedule drawings into XLANG schedules. XLANG schedules are executable Extensible Markup Language
(XML) representations of the information contained within the drawings.

In addition to the integration of design and implementation functionality, BizTalk Orchestration provides an important additional
feature: the ability to create robust, long-running, loosely coupled business processes that span organizations, platforms, and
applications. During an asynchronous, loosely coupled, long-running business process, a product that is ordered over the Internet
might have to be built from parts that are in inventory. Some of these parts might even be temporarily out of stock. The entire
business process might take weeks or months to complete. In contrast, a tightly coupled business process involves the
synchronous exchange of messages. For example, when a customer withdraws money from a bank account, the debiting of the
account is immediately followed by the delivery of the money.

BizTalk Orchestration enables you to:

Create a visual representation of long-running business processes.

Facilitate the exchange of messages by connecting the actions in your visual representation to ports that are implemented
by a certain technology.

Compile the completed drawing into an executable XML representation of the drawing.

Reliably execute business processes that may take weeks or months to complete.

The following topics are covered in this section:

Understanding Business Processes

BizTalk Orchestration Designer Environment

XLANG Schedules

Related Topics

Creating XLANG Schedule Drawings

Understanding Business Processes

Understanding Business Processes
Business processes are as important to business management as assembly lines are to manufacturing. Adhering to a well-defined,
formalized set of processes can enable any business to increase productivity and lower costs. A business process defines the
message exchange protocol between all of the distributed participants. To define a business process, you must determine the
logical order of actions and the corresponding flow of messages. A business process does not include definitions of the
distributed participants who perform these actions.

The sequence of steps in a long-running business process is typically asynchronous. Each step is an action that can be performed
by one or more independent, distributed participants. These actions can result in the sending and receiving of messages among
the participants, who may or may not be people performing related tasks. A distributed participant might be an automated
process that responds to input, or the participant might even be an entirely separate business process. To understand business
processes, you must be able to visualize a complex variety of relationships and dependencies. Business process modeling tools,
such as workflow diagrams and interaction diagrams, have been developed to visually describe these relationships.

The following topics are covered in this section:

Workflow Diagrams

Interaction Diagrams

Workflow Diagrams
Workflow is a business-process design technology that automates and improves procedures within organizations. It is a useful
technology for delineating the steps that must be taken, the dependencies that must be enforced, and the approvals that must be
obtained during the completion of projects. You can use a workflow application to assign tasks to participants, define individual
responsibilities, and describe the relationships among the participants. You can also use a workflow application to set time limits
for the completion of projects and the achievement of milestones. However, the workflow technology is typically highly
centralized. Participants are assigned tasks and given deadlines, but the workflow engine is responsible for routing completed
work items from one participant to the next, and enforcing a schedule. In contrast, BizTalk Orchestration is broader in scope.
Participants are autonomous and the responsibility for routing a work item from one participant to another is determined by the
participants, not by a centralized application.

Related Topics

Interaction Diagrams

Understanding Business Processes

Interaction Diagrams
An interaction diagram describes the data flow within a business process and the messages that are exchanged. BizTalk
Orchestration extends the interaction diagram concept by providing definition and control for decisions, concurrent actions,
transactions, and supporting actions that cannot be included in an interaction diagram. Designing a business process by using
BizTalk Orchestration results in a compiled, executable business process (an XLANG schedule). In contrast, interaction diagrams
are static representations of business processes.

The following illustration shows a typical interaction diagram for an automated procurement system.

Internet
Order
Application
Invoice
Payment
Bits, Bytes,
& Chips, Inc
Purchase
order
PO request
approval
PO approval
ProElectron, Inc
Purchase request
User
PO
Approver
Finance
Supplier

Related Topics

Understanding Business Processes

Workflow Diagrams

BizTalk Orchestration Designer Environment
BizTalk Orchestration Designer enables you to create XLANG schedule drawings. An XLANG schedule drawing is a representation
of a business process. The drawing is saved as an .skv file, which is a customized version of the Microsoft Visio 2000 file format.
The XLANG schedule drawing can then be compiled into an XLANG schedule, which is an XML-structured .skx text file that the
XLANG Scheduler Engine understands. BizTalk Orchestration Designer enables you to create XLANG schedule drawings that
include:

A visual description of a business process. This aspect of an XLANG schedule drawing is similar to a workflow diagram
or an interaction diagram.

A visual representation of configurable ports. This is the implementation aspect of an XLANG schedule drawing.

A visual representation of the connections between shapes. Flowchart shapes can be connected to represent process
flow in a business process, and actions can be connected to ports to represent the flow of communication in a business
process.

A visual representation of the flow between specified message fields. This aspect of an XLANG schedule drawing
determines the relationship between a message field on one message and another message field on a different message. By
correlating these relationships, you can enable data-sensitive routing.

An XLANG schedule drawing is a representation of the procedures that are performed during a business process. An XLANG
schedule drawing can define:

The message-exchange protocol that trading partners agree to use.

Actions that are used to send or receive messages that describe the logical sequence in which actions occur.

The implementation of ports and the actions to which they are linked.

The data flow between message fields.

The following topics are covered in this section:

Design Pages

Flowchart Shapes

Implementation Shapes

Communication Shapes

BizTalk Orchestration Designer Shortcut Keys

Design Pages
There are four design pages that are accessible within BizTalk Orchestration Designer. You can use these design pages to create
different aspects of your XLANG schedule drawing.

Business Process page. On this page you can use Flowchart shapes and Implementation shapes to define a business
process. For more information about using these shapes, see Flowchart Shapes and Implementation Shapes.

Data page. On this page you can use Communication shapes to control the flow of data between message fields. BizTalk
Orchestration Designer provides these shapes automatically. For more information about using these shapes,
see Communication Shapes.

On Failure of Transaction page. On this page you can use Flowchart shapes and Implementation shapes to design an
alternate business process for a failed transaction.

Compensation for Transaction page. On this page you can use Flowchart shapes and Implementation shapes to
design an undo process for a committed nested transaction. For more information about transactions,
see Designing Transactions.

Related Topic

Handling Exceptions

Flowchart Shapes
BizTalk Orchestration Designer provides eight Flowchart shapes that are available on the Flowchart stencil. These shapes are
used to describe your business process. The eight shapes on the Flowchart stencil can be used to describe the structure and
meaning of XLANG schedules. XLANG is an XML-based language that describes business-process interactions.

The following table lists and describes the Flowchart shapes.

Shape
name

Description

Begin The Begin shape is not available on the Flowchart stencil, it cannot be deleted, and you cannot create additional Begin s
hapes. The Begin shape represents the start of an XLANG schedule drawing. The Begin shape is created automatically on
each Business Process, Compensation for Transaction, and On Failure of Transaction page. The Begin shape that ap
pears on the Business Process page has configurable properties. The Begin shapes that appear on the Compensation f
or Transaction page and the On Failure of Transaction page do not have configurable properties. You cannot enclose a
Begin shape within a transaction. The business process sequence must flow from the Begin shape to the first Flowchart
shape in your drawing.

Actio
n

The Action shape represents a process that receives a message from a port or sends a message to a port. The send or rec
eive action can be synchronous or asynchronous, depending on the component or implementation to which the port is
bound.

Decisi
on

The Decision shape represents a process that evaluates one or more rules sequentially.

This shape has one inbound flow and one or more outbound flows. Each outbound flow is associated with a rule that eval
uates to TRUE or FALSE. The first rule that evaluates to TRUE determines which outbound flow is followed in the business
process. The sequence of the business process follows the flow from the first rule that evaluates to TRUE. If no rules evalu
ate to TRUE, the Else flow is followed.

The Decision shape must contain at least one rule. Each rule must contain a script expression.

While The While shape contains one rule and represents a process that can be repeated. If the rule evaluates to TRUE, the flow f
rom the rule is followed to completion and then it repeats. If the rule evaluates to FALSE, the Continue flow is followed. W
hen the business process sequence flows from a rule in a While shape, the sequence must conclude in a single End shap
e.

You can also configure the preservation of state for a while loop. By right-clicking a While shape and clicking Properties,
you can display the While Properties dialog box. In the State persistence area, you can choose Yes to save the messag
es used in each loop iteration as XLANG schedule state. If the while loop is part of a transaction that fails, an On Failure o
f Transaction or Compensation for Transaction page will be called for each completed loop iteration. If you choose No
, only messages used in the latest loop iteration will be saved as XLANG schedule state. If the while loop is part of a transa
ction that fails, an On Failure of Transaction or Compensation for Transaction page will only be called once.

When a business process sequence flows to a While shape that is within a nested transaction that fails, the messages and
ports that have been created on the On Failure of Transaction or Compensation for Transaction page for the nested t
ransaction will not be available to the On Failure of Transaction page for the outer transaction. Design the On Failure or
Compensation code to force the collected messages to flow normally out of the nested transaction.

Fork The Fork shape introduces concurrency into a business process. One flow can enter a fork, and as many as 64 flows can le
ave a fork. Each flow that leaves a fork is executed concurrently. All of the business process sequences that flow from a sin
gle Fork shape must connect to a single Join shape or terminate in an End shape.

Join The Join shape synchronizes concurrent flows in a business process. As many as 64 flows can enter a Join shape, but onl
y one flow leaves a Join shape. The logical operators AND and OR are used to determine how to synchronize the flows. Y
ou can set the following Join properties:

OR. Enables the first flow that arrives to continue. The other flows will continue to execute.

AND. Synchronizes all incoming flows before the outbound flow can continue.

Trans
action

The Transaction shape represents a collection of actions that are either all executed, or else none are. There are three typ
es of transactions:

Short-lived transactions

Long-running transactions

Timed transactions that are long-running

Transactions are used to make an application more reliable and to simplify error handling in large applications.

The Transaction shape is limited to a single path in, and a single path out. The Transaction shape cannot contain End sh
apes. Long-running transactions can contain nested transactions; however, short-lived transactions cannot contain nested
transactions. Transaction retry attempts are only permitted for short-lived transactions. If you enclose part of your busine
ss process within a short-lived Transaction shape, you can configure the transaction Retry count property. If the short-li
ved transaction fails, it is retried for the number of times that you have specified.

By defining transaction properties, you can make available either the Compensation for Transaction page (for nested tr
ansactions) or the On Failure of Transaction page. On either page, you can model the error-handling processes that are
specific to the transaction.

 Note

If the borders of an inner Transaction shape overlap with any of the borders of the outer Transaction shape, the
inner transaction will not be nested. Do not allow the borders of an inner transaction to overlap with the borders of
an outer transaction.

End The End shape represents the completion of one process flow. One drawing can use multiple End shapes if the drawing i
ncludes Decision, While, or Fork shapes.

Abort The Abort shape terminates execution within a transaction group. This enables either an On Failure of Transaction or C
ompensation for Transaction error-handling page, or else it retries the transaction.

 Notes

For the Compensation for Transaction and On Failure of Transaction pages, the parameter Transaction is replaced with
the name that you give to the associated transaction on the Business Process page.

Shape names must meet certain naming conventions. The following conventions apply to transaction shapes, port shapes,
messages, rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3c.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.
Transaction names in single-byte character sets must be less than or equal to 16 characters in length. Transaction names in
double-byte character sets must be less than or equal to 8 characters in length.

Actions are exempt from all naming conventions except the 32-character size limit.

You cannot name any of the following shapes: Abort, Begin, Decision, End, Fork, Join, and While.

Related Topics

http://www.w3c.org/

Communication Shapes

Designing Transactions

Implementation Shapes

Implementation Shapes
BizTalk Orchestration Designer provides four Implementation shapes that are available on the Implementation stencil. These
shapes are used to describe the implementation technologies that are used to implement a port in a business process.

The following table lists and describes the Implementation shapes.

Shap
e na
me

Description

COM
Com
pone
nt

The COM Component shape represents a technology that can be used to implement a port by using a method call for eac
h message that is sent or received. Drag this shape to the right side of the Separator bar to open the COM Component Bi
nding Wizard. For more information about the COM component implementation, see Using the COM Component Shape.

Script
Com
pone
nt

The Script Component shape represents a technology that can be used to implement a port by using a method call for ea
ch message that is sent or received. Drag this shape to the right side of the Separator bar to open the Script Component B
inding Wizard. For more information about the Script Component implementation, see Using the Script Component Shape
.

Mess
age Q
ueuin
g

The Message Queuing shape represents a technology that can be used to implement a port. Message Queuing Services a
re used to send or receive messages. Drag this shape to the right side of the Separator bar to open the Message Queuing
Binding Wizard. For more information about the Message Queuing implementation,
see Using the Message Queuing Shape.

BizTa
lk Me
ssagi
ng

The BizTalk Messaging shape represents a technology that can be used to implement a port. BizTalk Messaging Services
are used to send or receive messages. Drag this shape to the right side of the Separator bar to open the BizTalk Messagin
g Binding Wizard. For more information about the BizTalk Messaging implementation,
see Using the BizTalk Messaging Shape.

 Note

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3c.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.

Related Topics

Communication Shapes

Flowchart Shapes

http://www.w3c.org/

Communication Shapes
BizTalk Orchestration Designer provides several Communication shapes that indicate the direction of the flow of data into and
out of messages. BizTalk Orchestration Designer provides the Communication shapes automatically.

The Port References, Constants, and Messages shapes are located on the Data page. The Data page represents the flow of
data between messages used by the XLANG schedule instance while the instance is running. To design the flow of data, you can
create connections between the fields within the shapes on the Data page.

The following table lists and describes the Communication shapes.

Sha
pe n
ame

Description

Port Ports are named locations where messages are sent or received. Right-click the Separator bar and click Add New Port to
add an unbound port. Or, drag an Implementation shape to the right side of the Separator bar to add a bound port.

Each port contains messages that correspond to the Messages that appear on the Data page. A message represents the da
ta that is sent or received by an action. The data within a message is separated into a list of fields on the Data page.

Port
Refe
renc
es

The Port References message contains a list of all ports that are created on the Business Process page. A new reference is
added to this list every time a new port is added on the Business Process page. The Port References message enables yo
u to specify the origin of port locations. The Port References message contains one port field for every port in the business
process.

Con
stan
ts

The Constants message provides a way to initialize your XLANG schedule with data. To add a constant to the Constants m
essage, double-click the Constants message, or double-click a field in the Constants message to open the Constants Mes
sage Properties dialog box.

Mes
sage

Messages contain a list of fields with information about the data that is sent or received in the message.

 Note

Shape names must meet certain naming conventions. The following conventions apply to transactions, ports, messages,
rules, and fields:

The name must be a valid XML token name. For more information about XML tokens, go to the W3C Web site
(www.w3c.org).

The name cannot begin with underscores (__).

The name cannot include colons (:).

The name length must be less than or equal to 32 characters.

Constant names and message names cannot begin with a numeric character.

Each message that is defined on the Data page has additional system fields that the XLANG Scheduler Engine automatically
creates and maintains for each message. These fields can be referenced for descriptive information about the message and can be
used in script expressions for rules. The following table summarizes system fields that are created automatically.

System
field

Description

__Exists_
_

This field can be used to test for the existence of a message. The existence of a message is determined by whether the m
essage has been received or sent by the XLANG Scheduler Engine.

This field is not shown within messages on the Data page. It is only used with Decision and While shapes.

__Sende
r__

This field contains the identity, if known, of the sender of a message.

This field is shown within messages on the Data page.

http://www.w3c.org/

__Status
__

This field contains the status returned from a COM method call on a port that is bound to a COM component. This field i
s shown within the messages on the Data page.

 Notes

This system field is used only with COM component and Script Component implementations.

The status that is returned is always an HRESULT.

Docume
nt

This field contains a string containing the message body that is sent or received. It always refers to an XML message.

 Note

This system field is used only with Message Queuing and BizTalk Messaging implementations.

 Important

Each message that is sent from an XLANG schedule instance must have the source for each field of data defined. To define
the source for a field of data, a connection must point to the field from another field in another message.

 Notes

The compilation engine used to create an XLANG schedule validates whether a message has all of its input-only fields
defined. The schedule will not compile if the input-only fields are partially defined. The arguments to a method can be input,
output, or both. The compilation engine ignores the definition requirement for arguments defined as both input and output.
If no inbound connections are defined for input-output fields, the schedule will compile, even though there is no definition
for the data in the message.

Related Topics

Data Handling

Flowchart Shapes

Implementation Shapes

BizTalk Orchestration Designer Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Orchestration Designer. The following table is a quick reference to these
shortcut keys.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server and Advanced Server Help, see "Using the
keyboard to move the mouse pointer". For more information about MouseKeys in Windows 2000 Professional Help, see
"Move the mouse pointer by using MouseKeys".

Press To
ALT or F10 Activate menu bar.
Alt+F4 Close the active item, or quit the program.
Alt+F7 Cascade windows.
ALT+SPACEBAR Display the system menu for the active item.
ALT+Underlined letter in a menu name Display the corresponding menu.
ARROW keys Move selected shape in arrow direction.
CTRL while dragging an item Copy selected item.
CTRL+A Select all.
CTRL+C Copy selected item on the design page.
CTRL+F4 Close the active drawing.
CTRL+I Return window to actual size.
CTRL+N New drawing.
CTRL+O Open existing drawing.
CTRL+P Open the Print dialog box.
CTRL+Q Quit the program.
CTRL+SHIFT with any of the arrow keys Scroll.
CTRL+SHIFT, then click left mouse key Zoom in.
CTRL+SHIFT, then click right mouse key Zoom out.
CTRL+SHIFT+TAB Toggle tabs of dialog box in back to front order.
CTRL+TAB Toggle tabs of dialog box in front to back order.
CTRL+V Paste selected item on the design page.
CTRL+X Cut selected item on the design page.
CTRL+Y Redo.
CTRL+Z Undo.
DELETE Delete selected item on the design page.
ESC Cancel the current task.
F1 View the online Help.
F11 Launch text properties dialog box.
F8 Align selected shapes.
LEFT ARROW When the focus is on a tab in a dialog box, move the focus to the left.
RIGHT ARROW When the focus is on a tab in a dialog box, move the focus to the right.
SHIFT while dragging an item Drag item only in a straight horizontal or vertical direction.
SHIFT+TAB Move the focus counterclockwise in the lower window from the tab to the window

s or fields below.
SPACEBAR Toggle check boxes.
TAB Move the focus clockwise in the lower window from the tab to the windows or fiel

ds below.
Underlined letter in a command name on an o
pen menu

Carry out the corresponding command.

XLANG Schedules
The compiled version of an XLANG schedule drawing is an XLANG schedule, and the XLANG Scheduler Engine runs this schedule.
The XLANG Scheduler Engine monitors and controls the business process described in the XLANG schedule, based on the actions,
rules, and error-handling processes that are defined for the XLANG schedule.

The following topics are covered in this section:

XLANG Overview

Instance management

Persistence

Dehydration and Rehydration

Data Handling

XLANG Overview
XLANG is an XML-based language that describes business-process interactions. BizTalk Orchestration Designer can compile
XLANG schedule drawings into XML-structured XLANG schedule files. Because XLANG is XML-based, XLANG schedules must
comply with XML rules for well-formed documents and they must conform to a specification or standard schema.

Instance Management
To understand how the XLANG Scheduler Engine performs instance management, you must be aware of the distinction between
an abstract definition of a business process, and multiple running instances of a business process definition. In BizTalk
Orchestration Designer, you design a business process definition and save it as an XLANG schedule drawing (an .skv file). After
you have created an XLANG schedule drawing, you compile it into an XLANG schedule (an .skx file). After you deploy the XLANG
schedule, there are likely to be several instances of the schedule running simultaneously. Each XLANG schedule instance can have
a life span that is independent of the life span of any of the other instances. When you design an application to support multiple
XLANG schedule instances, you should be aware of the following issues:

Activating new instances of XLANG schedules when messages are received. You can design your application to
activate a new XLANG schedule instance by using the COM function GetObject every time a message is received. For
example, if you use an Active Server Page (ASP) to receive a message containing a purchase order or a customer support
request, the ASP must use the COM function GetObject to activate an XLANG schedule.

You can also use the BizTalk Messaging Binding Wizard to create a port binding that can serve as a named location to which
messages are sent. BizTalk Server 2000 provides an automated mechanism to activate an instance of an XLANG schedule when a
port that is bound to BizTalk Messaging receives a message. On the XLANG Schedule Activation Information page of the
BizTalk Messaging Binding Wizard, you are prompted to confirm whether the channel has been configured in
BizTalk Messaging Services to send a message to this port after the activation of a new instance of this XLANG schedule. To
complete this process, you will have to run the New Messaging Port Wizard in BizTalk Messaging Manager. On the Destination
Application page of the New Messaging Port Wizard, specify the name of the port and the name and location of the XLANG
schedule.

Correlating the exchange of messages to XLANG schedule instances. Every instance of an XLANG schedule is
assigned a globally unique identifier (GUID) by the XLANG Scheduler Engine. Therefore, every port on every running
instance of an XLANG schedule can be uniquely addressable. This enables direct communication to specific ports on specific
XLANG schedule instances. By enabling direct communication through uniquely addressable port locations, the difficulty of
using a single location to distribute messages to instances is avoided. The first message sent by a schedule instance will
likely be to a static port (a named location). When the XLANG schedule is activated, this instance will send the locations of its
dynamic ports (per-instance, unique locations) to recipients who will be responsible for communicating back to the ports.
This corresponds to e-mail messages that are sent out with unique reply-to addresses. The following list describes dynamic
binding support in each of the BizTalk Server binding technologies:

On the Static or Dynamic Communication page of either the COM Component or Script Component Binding
Wizard, if you choose Static, the XLANG Scheduler Engine will create the XLANG schedule instance of the
component. If you choose Dynamic, another application must send an interface pointer or moniker (as a field in a
message) prior to the instantiation of the component.

You also have the option of choosing No instantiation. For more information about component instantiation,
see Static and Dynamic Ports.

On the Static or Dynamic Communication page of the Message Queuing Binding Wizard, if you choose Static
queue and click Next, you will invoke the Queue Information page. On the Queue Information page you can
specify the creation of a separate, per-instance queue for every XLANG schedule instance, or you can specify the use
of a single queue for all running instances. To enable correlation, you must specify the creation of a separate, per-
instance queue for every XLANG schedule instance.

On the Static or Dynamic Communication page of the Message Queuing Binding Wizard, if you choose
Dynamic Queue, another application must send the name of the queue (as a field in a message) prior to sending or
receiving messages through the port.

On the Static or Dynamic Channel Information page of the BizTalk Messaging Binding Wizard, you can choose
to provide a specific channel name, or indicate that port configuration information will be used by BizTalk
Messaging Services to identify the correct channel at run time. For more information about message exchange,
see Integrating BizTalk Services.

 Important

You must make sure that a message correlates to the same XLANG schedule instance that participated in an earlier
communication with a trading partner.

Scaling the application. Any XLANG schedule instances that do not need to be in memory should be dehydrated. An

XLANG schedule instance might not need to be in memory when an XLANG schedule instance is waiting for the arrival of a
message.

 Note

All implementation shapes display a shadow to indicate that the location will be bound dynamically and defined at run time.

Related Topics

Data Handling

Dehydration and Rehydration

Managing Session State

Persistence

Persistence
The XLANG Scheduler Engine stores the following information in the persistence database:

The structure of XLANG schedules.

The progress of activated XLANG schedule instances.

Messages that are sent or received while an XLANG schedule instance is running.

The XLANG Scheduler Engine persists information to enable the following scenarios:

To enable the dehydration and rehydration of long-running schedules. The system may fail during a
long-running transaction. When the system is running again, the XLANG Scheduler Engine will have to refer to the
persistence database to determine where to resume the schedule.

To restore the state of a schedule instance when a transaction fails. The system may fail during a transaction, causing
the transaction to abort. The XLANG Scheduler Engine will have to refer to the persistence database to determine where to
resume the schedule.

To support the debugging and monitoring of running schedules. Debugging and monitoring tools can query the
persistence database to provide information about the progress of schedule instances.

Support for persisting the state of an XLANG schedule before the start of a transaction, and after the completion of a transaction,
provides durability, ensuring that all committed modifications are permanently in place in the system. This also enables retries of
a transaction if a failure occurs. The state of a running schedule instance is persisted under the following circumstances:

At the beginning of a transaction. When the business process sequence flows to the start of a transaction, the
transaction retry count must be updated in the persistence database. This will enable the XLANG Scheduler Engine to track
the retry count if the system fails during the transaction.

At the end of a transaction. When the business process sequence flows out of a transaction, the schedule state must be
updated to enable rollback, if necessary. This update occurs in the context of the transaction to ensure that database
persistence is atomic.

Related Topics

Dehydration and Rehydration

Instance Management

Managing Session State

Dehydration and Rehydration
If multiple instances of an XLANG schedule are running simultaneously over a long period of time, it can become impractical to
allow all of them to remain in memory. The XLANG Scheduler Engine provides a dehydration/rehydration infrastructure to
address this problem.

When an XLANG schedule instance is expected to wait for a message for an extended period of time, and no other activity is
occurring within the schedule, the XLANG Scheduler Engine can dehydrate the XLANG schedule instance. Dehydrating an XLANG
schedule instance consists of persisting all of the instance-specific state to the persistence database and removing the instance
from memory. When a message arrives at a port address for the dehydrated XLANG schedule instance, the instance will be
rehydrated. Rehydrating an XLANG schedule instance consists of restoring the instance from the database to memory.

An XLANG schedule instance will remain dehydrated until it is either rehydrated or explicitly terminated by an administrator. This
enables a business process to run reliably for an extended time period.

The XLANG Scheduler Engine can use a latency setting to determine an amount of time that an action can remain inactive before
the XLANG schedule instance is dehydrated to the persistence database. The XLANG Scheduler Engine can use this latency setting
to dehydrate the XLANG schedule instance to the persistence database, and then rehydrate it later when the message arrives.
However, there are several situations during which the latency setting will not cause a schedule to be dehydrated, including:

The schedule instance is not in a quiescent state. This can occur when actions are being performed on one of the
current process flows in the XLANG schedule instance. All of the process flows in the schedule instance must be in the same
state before the XLANG Scheduler Engine will dehydrate the XLANG schedule instance. The latency time for all pending
actions must exceed a certain threshold before dehydration is performed.

There are pending DTC-style transactions. The XLANG Scheduler Engine will not dehydrate the schedule when it is
running a DTC-style transaction, because DTC-style transactions are typically short-lived.

There are live ports in the instance that cannot be persisted. A live port is a port object or a port that has been
implemented and that might be used later in the schedule instance. The lifetime of a port is an important issue during the
execution of a schedule instance. Ports are bound to implementation technologies, such as COM interfaces. If the
implementation technology that a port is bound to cannot be persisted, and if the implementation technology holds state
information that is reused later, the instance cannot be dehydrated and then rehydrated. If the persistence database fails and
then runs again later, the state information will be lost and schedule instance execution cannot be resumed from the state of
the schedule instance when it was last dehydrated.

When the XLANG Scheduler Engine is shut down, as much information as possible is saved to the persistence database, including
all information that is not in a transactional context.

Related Topics

Instance Management

Managing Session State

Persistence

Using the Method Communication Wizard

Using the XML Communication Wizard

Data Handling
In XLANG, all data is contained within a set of uniquely named messages. New data enters an XLANG schedule instance when a
message is received by an action.

Every XLANG schedule drawing has one Data page. On the Data page you can describe the data flow within an XLANG schedule.
To indicate that data within one message field flows into another message field, draw an arrow from the source message field to
the destination message field.

With the exception of the Constants message, none of the message fields within the messages on the Data page will initially
contain a value. The Constants message is initialized with the values that are specified on the Data page. It is initialized
automatically for each new XLANG schedule instance. For more information about using constants, see The Constants Message.
The values of the other displayed messages are set when each message is sent or received in the XLANG schedule instance. A
message can be received by more than one action. Every time a message is received, the values for that message will be
overwritten. The flow of data into the received message will not be used to set the values for a different received message, even if
the message is sent out at another point in the XLANG schedule. Messages that are exclusively sent out will rely on the data flow
that is displayed on the Data page to set their message fields. A schedule will not compile unless all of the fields are specified for
all of the messages that have been sent.

When a field on the Data page comes from an XPath that points to an optional node in the XML schema, use the following
guidelines:

For received messages when the optional node exists. If this message is received, and the optional node exists in the
XML document, the XPath field stores the node value.

For received messages when the optional node does not exist. If this message is received, and the optional node does
not exist, the XPath field will store a null value. You will need to use a Decision rule with the VBScript expression IsNull
(Message.Field) on this field to determine if the received message contains the optional node. If you do not test for the
existence of a value, and this field provides data flow into another message that is sent, an error will occur when the
XLANG Scheduler Engine tries to create the message to be sent.

For sent messages when the optional node exists. If this message (with the XPath node pointing to an optional XML
node) is being sent, the XLANG Scheduler Engine relies on data flow to create the message. If the node exists in the
Document field of the message, the XLANG Scheduler Engine overwrites it with the value of the XPath.

For sent messages when the optional node does not exist. If this message (with the XPath node pointing to an optional
XML node) is being sent, the XLANG Scheduler Engine relies on data flow to create the message. If the node does not exist in
the provided Document field, the XLANG Scheduler Engine will not create the node to overwrite. This will cause an error.

For messages that will be received from or sent to a message queue, use the following guidelines:

For received messages. If an action will receive a non-XML message from a message queue, you must select Receive
string messages from a queue on the XML translation information page of the XML Communication Wizard. In this
configuration, the Message shape on the Data page will display a new StringData field. This StringData field will contain
the non-XML message received from the queue. The Document field on the message will contain the StringData field,
surrounded by the XLANG Scheduler Engine standard XML wrapper.

For sent messages. If an action will send a non-XML message to a message queue, you must select Send messages to the
queue as a string on the XML translation information page of the XML Communication Wizard. In this configuration,
the Message shape on the Data page will display a new StringData field. To complete this configuration, you must create
a new constant (containing the XLANG Scheduler Engine standard XML wrapper) in the Constants message on the Data
page. The name of this constant is irrelevant, but the data type must be string, and the value of the constant must be: <?
xml version="1.0" ?> <StringData> </StringData>. After you have created this new constant, you must draw a data
flow connection from the new constant on the Constants message to the Document field in the Message shape. You must
also draw a data flow connection from the field containing the non-XML string, to the new StringData field in the Message
shape.

 Notes

The direction of data flow is independent of the direction of message flow. Message flow indicates if a message is sent or
received.

If you want to enable the XLANG schedule to receive data by using a method call without instantiating the component,
select No instantiation on the Static or Dynamic Communication page of either the COM or Script Component Binding
Wizard. If you select No Instantiation, the component is not instantiated, and no code for the method call is executed.
Instead, when the XLANG schedule intercepts the method request information, it returns this information as the response.
The method call is circumvented.

If a message is only used within the body of a while loop, the message values are not initialized on every iteration of the
loop. If a message is used both inside and outside of the body of a while loop, the message values will be retained
throughout each iteration of the loop. The message values might also be retained before and after the business process
sequence flows to the While shape.

If a message that is initialized within the Compensation for or the On Failure of a transaction within a while loop, the
message values will not be available outside of the loop.

If a field within an XML message (including the constants message) with a data type of char provides data flow into a
method message field, the field will be converted to an integer for the method. If the method message field has a data type
of string, the string will contain the integer value; it will not contain the character. If you encounter this problem, and the
source field is part of the constants message, change the data type of the constants field to string. If the source field is part
of an XML message, you will have to use a component to cast the char data type to a string.

The following topics are covered in this section:

The Data Page

The Constants Message

The Port References Message

Field Data Types

System Fields

Node Path Fields

The Data Page
Every XLANG schedule drawing has a Data page. The Data page displays:

One message shape for every message in the XLANG schedule.

One Constants message.

One Port References message containing a port field for each port within the XLANG schedule drawing.

Diagrammatic connections showing the flow of data between the message fields.

Messages consist of a set of uniquely named fields, each containing one data item of a specific data type. Every message in the
XLANG schedule is displayed on the Data page as a table. Each table displays the name of the message and a listing of field
names and their corresponding data types. System fields that do not require data flow are displayed with a yellow background.
User fields, and system fields that do require data flow, are displayed with a white background.

Connections on the Data page point from the right side of a source message field, to the left side of a destination message field.
This connection indicates that the source message field will provide the data for the destination message field. At run time, the
XLANG Scheduler Engine will copy the data from the source message field into the destination message field when the
destination message has to be created. If the source message has not arrived yet, a run time error will occur.

 Notes

The following data types are not supported on the Data page:
BinHex

BinBase64

I8

UI8

If you have a node in an XML document of type BinHex, BinBase64, I8, or UI8, and you specify that the node should be brought
into the scope of the XLANG Scheduler Engine on the Data page, using the XPath to this node, the node will be converted to a
string.

There is a 100-character limit for all field names in XLANG schedules.

Related Topics

The Constants Message

Data Handling

Field Data Types

Node Path Fields

The Port References Message

System Fields

The Constants Message
You can use the Constants message to initialize an XLANG schedule instance with data. Within the XLANG Scheduler Engine, the
Constants message performs a unique function; it is neither sent nor received. It is initialized automatically for each new XLANG
schedule instance. To add a constant to the Constants message, double-click the Constants message, or double-click a field in
the Constants message to open the Constants Message Properties dialog box. Click Add on the Constants Message
Properties dialog box to open the Constant Properties dialog box. In the Constant Properties dialog box, you can name the
constant, choose a data type for the constant, and assign a value to the constant.

 Note

XML does not handle Windows Locale settings for date formatting. If you want to assign a date in a localized format for a
constant, set the constant data type to string. If this constant provides data to a field with a date data type, the XLANG
Scheduler Engine will translate the string to a date, adhering to the localized format.

Related Topics

Data Handling

The Data Page

Field Data Types

Node Path Fields

The Port References Message

System Fields

The Port References Message
The Port References message contains a list of all ports that are created on the Business Process page. A new reference is
added to this list every time a new port is added on the Business Process page. The Port References message enables you to
specify the origin of port locations. The Port References message contains one port field for every port in the
XLANG schedule drawing.

There are scenarios in which ports in an XLANG schedule are not known at design time. This can occur if the destination or origin
of messages is determined from the contents of other messages. For example, a business process might describe a situation in
which an action must respond to a message with an acknowledgment to the originating trading partner. In this example, the
message that is received will typically have a reply-to-address field that contains the originating address of the message. The
XLANG schedule must be able to correlate the contents of the reply-to-address field to the destination address of the
acknowledgement message. You can use the Port References message and an acknowledgement message on the Data page to
implement this scenario. For more information about message exchange, see Integrating BizTalk Services.

 Important

Actions in different branches of a fork cannot communicate with each other. For example, an action in one branch cannot
send a message to a queue from which an action on another branch is waiting to receive a message. If you incorrectly
design your XLANG schedule drawing to support communication of any kind between actions in different branches, the
XLANG schedule instance might fail at run time; however, an error will not be displayed.

Related Topics

The Constants Message

Data Handling

Field Data Types

Node Path Fields

System Fields

Field Data Types
BizTalk Orchestration Designer displays all data types with their XML data type name. The following table lists the OLE
Automation, Visual Basic, and C program equivalents of the displayed XML data type names.

XML UI View OLE Automation Visual Basic C
simple types
boolean VT_BOOL Boolean VARIANT_BOOL
string VT_BSTR String BSTR
cy VT_CY Currency CURRENCY
date VT_DATE Date DATE
dispatch VT_DISPATCH Object IDispatch
error VT_ERROR SCODE
i1 VT_I1 signed char
i2 VT_I2 Integer SHORT
i4 VT_I4 Long LONG
int VT_INT INT
r4 VT_R4 Single FLOAT
r8 VT_R8 Double DOUBLE
ui1 VT_UI1 Byte BYTE
ui2 VT_UI2 USHORT
ui4 VT_UI4 ULONG
uint VT_UINT UINT
unknown VT_UNKNOWN Object IUnknown
variant VT_VARIANT Variant VARIANT

Related Topics

The Constants Message

Data Handling

The Data Page

Node Path Fields

The Port References Message

System Fields

System Fields
Each message can also contain a set of system fields that are automatically created by the XLANG Scheduler Engine.

System F
ield Nam
e

When is this system field displayed? Description

__Status_
_

When the message is being received from a port bo
und to a COM or Script binding.

The HRESULT of the method call.

__Sender_
_

When the message is sent to or received from any p
ort.

When a message is received, this is the SenderID provided by Mes
sage Queuing or COM. When this message is sent, the value is N
ULL.

Documen
t

When the message is sent or received from a port t
hat is bound to Message Queuing or BizTalk Messa
ging.

A string containing the message body that is sent or received.

Related Topics

The Constants Message

Data Handling

Field Data Types

Node Path Fields

The Port References Message

Node Path Fields
When a port bound to Message Queuing or BizTalk Messaging receives an XML document, you can bring specific document
nodes into the data scope of the XLANG Scheduler Engine. If no specific nodes are selected, the XLANG Scheduler Engine will treat
the XML document as an opaque string that is carried within the document system field.

You can bring document nodes into the data scope of the XLANG Scheduler Engine by using the Message Specification page in
the XML Communication Wizard. When you provide an XML specification, the Add and Remove buttons are enabled.

Related Topics

The Constants Message

Data Handling

Field Data Types

The Port References Message

System Fields

Using the XML Communication Wizard

Creating XLANG Schedule Drawings
There are five tasks you must perform when you design an XLANG schedule:

Draw a representation of the business process that the XLANG schedule will run. Use Flowchart shapes to describe the flow
of the business process on the left side of the design page. Your primary business process is drawn on the Business
Process page. Alternate processes are drawn on the Compensation for Transaction, and On Failure of Transaction
pages.

Define rules for the branching decisions and repeated processes that occur within the business process; define concurrent
processes; and design the transactions and subordinate transactions required in the business process.

Create the port implementations that the business process requires. There are four implementation technologies available:
COM components, Windows Scripting Components, Message Queuing Services, and BizTalk Messaging Services.

Define the flow of data between messages. All flow of data between messages is drawn on the Data page.

Draw any necessary business processes for transactions that fail. Alternate business processes are drawn on the
Compensation for Transaction, and On Failure of Transaction pages.

 Note

You can add Flowchart and Implementation shapes to the Business Process, Compensation for Transaction, and On
Failure of Transaction pages. These shapes are not available on the Data page.

The following topics are covered in this section:

Designing Business Processes

Handling Exceptions

Implementing Business Processes

Designing Business Processes
In BizTalk Orchestration Designer, the left side of the Business Process page is the area in which you can design business
processes. A Separator bar divides the Business Process page into a business process design area on the left side, and an
implementation area on the right side.

The following topics are covered in this section:

Designing Actions

Designing Rules

Designing Concurrency

Designing Transactions

Designing Actions
The business process sequence must flow from the Begin shape to the first Flowchart shape in your XLANG schedule drawing.
Typically, the first Flowchart shape in your XLANG schedule drawing will be an Action shape.

There are two configurable properties for a Begin shape. In the Begin Properties dialog box, you can configure the Transaction
Model property to determine if Transaction shapes are supported within an XLANG schedule instance, or if the XLANG schedule
is activated from within a transactional COM component. The first option enables support for Transaction shapes; the second
option disables support for Transaction shapes.

In the Begin Properties dialog box, you can also configure the Transaction Activation property and the XLANG Identity
property. For more information about transaction activation see, Designing Transactions.

XLANG Identity is a read-only property. It contains a globally unique identifier (GUID) that is used to correlate a version of the
XLANG schedule drawing with the XLANG schedule that is generated by it. The GUID is automatically generated when a new
drawing is created, and a new GUID is generated whenever the XLANG schedule drawing is changed.

The only configurable property for an Action shape is the name of the action. The name of the action cannot be longer than 32
characters. Action names have no affect on the behavior of the XLANG schedule.

Related Topics

Designing Concurrency

Designing Rules

Designing Transactions

Flowchart Shapes

Designing Rules
Rules are Microsoft Visual Basic Scripting Edition (VBScript) expressions that are used by Decision and While shapes. Rules can
include:

Intrinsic VBScript expressions, such as Date and Time.

Expressions that evaluate data within a message field.

Expressions that can determine whether a message exists.

A rule contains the following properties that define the behavior of the shape:

Rule name. A required property that is displayed on the XLANG schedule drawing within the shape that uses the rule. The
rule name uniquely identifies the rule. A single, uniquely named rule can be used in multiple Decision and While shapes.
The width of the Decision or While shape that uses the rule is determined by the rule with the longest name that is
contained within the shape.

Rule description. An optional property. It is a description of the rule.

Script expression. A required VBScript expression that refers to data contained in messages. The expression must evaluate
to either TRUE or FALSE.

When you design an XLANG schedule drawing, you create the rules and provide name and rule descriptions. When you add
Implementation shapes to the drawing, you add script expressions.

 Notes

The Script expression property is required only when compiling the XLANG schedule drawing into an XLANG schedule.

There is a message field called the __Exists__ field that is not shown within messages on the Data page. This field can be
used to test for the existence of a message. The existence of a message is determined by whether the message has been
received or defined by the XLANG Scheduler Engine.

Related Topics

Create Rules

Designing Actions

Designing Concurrency

Designing Transactions

Flowchart Shapes

Set Decision Conditions

Designing Concurrency
BizTalk Orchestration Designer supports concurrent actions. The Fork and Join shapes are used to implement concurrent process
flows within an XLANG schedule. You can use the Fork shape to create concurrent process flows, and you can use the Join shape
to synchronize any concurrent process flows that are not terminated by an End shape.

Join properties
The Join shape has two properties that you can set. These properties represent the following logical operators:

AND. The XLANG schedule waits until all process flows reach the join before it continues to the next action in the business
process.

OR. The XLANG schedule waits for the first process flow that reaches the join, and then it continues to the next action in the
business process.

Actions in the other branches of the fork will complete their processes; however, the OR join does not wait for them to be
completed. If the process flow that exits an OR join includes an action that requires data flow from a branch that enters the
OR join and which has not completed its action by the time this action that exits the join is executed, an error will occur.

Valid fork and join process flows
Observe the following guidelines when designing concurrent flows in a business process:

All forked flows must either terminate with an End shape, or be synchronized into a single flow by using a Join shape.

Actions within forked flows cannot communicate with each other. For example, an action in one branch cannot send a
message to a queue from which an action on another branch is waiting to receive a message.

 Caution

If you incorrectly design your XLANG schedule drawing to support communication between actions in different
branches, the XLANG schedule instance might fail at run time; however, an error message will not be displayed.

You cannot use a join to synchronize flows from more than one fork. The Join shape can only be used to synchronize flows
from a matching fork. There is a one-to-one correspondence between the use of the Fork shape and the Join shape.

The following illustration shows two forks that are used to create concurrent flows, and a single join that is used in an
attempt to synchronize these flows. This connection is not legal. If you attempt this type of connection, you will receive an
error message when you compile the XLANG schedule.

Click the illustration to enlarge or reduce.

Figure 1. Concurrent flows that use an illegal join.

The following two illustrations provide two examples of legal joins.

In figure 2, two forks are matched with two joins. The second fork and join pair are nested within the first fork and join pair.

Click the illustration to enlarge or reduce.

Figure 2. Concurrent flows that use a one-to-one correspondence between the fork and join, and use nested
fork-join pairs.

In figure 3, two forks are matched with two joins. The second fork and join pair are nested within the first fork and join pair.
Note that even though one concurrent flow within the second fork and join pair is terminated by an End shape, the other
concurrent flow must still be synchronized by a matching join before its flow can be synchronized with the concurrent flow
from the first fork and join pair.

Click the illustration to enlarge or reduce.

Figure 3. Concurrent flows that use a one-to-one correspondence between the fork and join, and use nested
fork-join pairs as well as an End shape to terminate one flow.

When you synchronize multiple concurrent flows with an OR join, each process flow that enters the join can contain only
one action. If a flow contains more than one action, the flow is not legal.

The following illustration shows an OR join that synchronizes multiple concurrent flows. Each flow contains only one action.

Click the illustration to enlarge or reduce.

Related Topics

Designing Actions

Designing Rules

Designing Transactions

Flowchart Shapes

Set Concurrency Properties

Designing Transactions
BizTalk Orchestration Designer provides a transactional programming model, including error handling and recovery from failed
transactions. You can configure Transaction shapes to create two additional types of pages in BizTalk Orchestration Designer: the
On Failure of Transaction page and the Compensation for Transaction page. These two pages are used to enable business
processes to recover from unsuccessful transactions. On Failure of Transaction and Compensation for Transaction pages can
contain Transaction shapes that reference additional On Failure of Transaction and Compensation for Transaction pages.
The On Failure of Transaction and Compensation for Transaction pages can use the same Port shapes and
Implementation shapes that are displayed on the Business Process page.

The short-lived transactions that you design within BizTalk Orchestration Designer have the four ACID attributes. ACID is an
acronym that is made up of the following properties:

Atomicity. A transaction represents an atomic unit of work. Either all modifications within a transaction are performed, or
none of the modifications are performed.

Consistency. When committed, a transaction must preserve the integrity of the data within the system. If a transaction
performs a data modification on a database that was internally consistent before the transaction started, the database must
still be internally consistent when the transaction is committed. Ensuring this property is largely the responsibility of the
application developer.

Isolation. Modifications made by concurrent transactions must be isolated from the modifications made by other
concurrent transactions. Isolated transactions that run concurrently will perform modifications that preserve internal
database consistency exactly as they would if the transactions were run serially.

Durability. After a transaction has committed, all modifications are permanently in place in the system. The modifications
persist even if a system failure occurs.

In contrast, long-running transactions sacrifice isolation for the ability to handle operations that require an extended period of
time to complete.

The following topics are covered in this section:

Transaction Properties for an XLANG Schedule Drawing

Transaction Properties for Specific Transaction Shapes

Transaction Properties for a Port Implementation

Long-Running Transactions

Short-Lived Transactions

Related Topics

Designing Actions

Designing Concurrency

Designing Rules

Flowchart Shapes

Set Transaction Properties

Transaction Properties for an XLANG Schedule Drawing
By right-clicking the Begin shape on the Business Process page and clicking Properties, you can display the Begin Properties
dialog box. In the Begin Properties dialog box, you can configure the following properties:

Transaction Model. The default setting for this property is Include transactions within the schedule.
Choose Include transactions within the schedule if you are planning to enclose a collection of grouped actions
in a Transaction shape within your XLANG schedule drawing. By choosing this option, you will disable the
Transaction Activation property.

Choose Treat the XLANG schedule as a COM+ component if you want a COM+ component to activate your
XLANG schedule within its COM+ transactional context. If you choose this option, you will not be able to include
transactions within your XLANG schedule drawing, and your use of the Fork shape to implement concurrency
should be restricted. If you do use the Fork shape, all of the actions containing calls to COM+ components should be
restricted to a single outbound branch. This restriction does not apply if the actions in your XLANG schedule
drawing contain calls to COM components. Also, all transactional changes should be performed on a single
outbound branch.

By choosing this option, you will enable the Transaction Activation property.

Transaction Activation. The default setting for this property is Not Supported.
Not Supported. This selection specifies that the XLANG schedule does not support transactions.

Supported. This selection specifies that the XLANG schedule might participate in a COM+ transaction.

Required. This selection specifies that the XLANG schedule requires a COM+ transaction.

Requires New. This selection specifies that the XLANG schedule must participate in a new transaction. If this setting
is enabled, the XLANG Scheduler Engine will automatically initiate a new transaction that is distinct from the
transaction of the caller.

XLANG Identity. For information about the XLANG Identity property, see Flowchart Shapes.

Related Topics

Designing Transactions

Long-Running Transactions

Short-Lived Transactions

Transaction Properties for a Port Implementation

Transaction Properties for Specific Transaction Shapes

Transaction Properties for Specific Transaction Shapes
By right-clicking a Transaction shape on the Business Process page and clicking Properties, you can display the Transaction
Properties dialog box. In the Transaction Properties dialog box, you can configure the following properties:

Type. This property determines the type of transaction that is used for the selected Transaction shape. The default setting
for this property is Short-lived, DTC-style.

Choose Short-lived, DTC-style if you want the transaction to group a collection of actions that are performed as a
single logical unit of work exhibiting the four properties of an ACID transaction. For more information about ACID
transactions, see Designing Transactions. Short-lived, DTC-style transactions are shaded gray on the design page.
This option is available for nested transactions and stand-alone transactions. You cannot choose this option for an
outer transaction that contains a nested transaction.

Choose Long-Running if you want the transaction to group a collection of actions that send and receive messages
over an indefinite period of time. You can also configure a Long-Running transaction to group a collection of
nested transactions; however, transactions are limited to two levels of nesting. Long-Running transactions are
shaded yellow on the design page. This option is available for all transactions.

Choose Timed if you want the Long-Running transaction to abort if it has not completed in a specified amount of
time. Timed transactions are shaded blue on the design page. This option is available for all transactions.

Timeout. This property determines the amount of time (in seconds) that the transaction will be allowed to run before it
aborts. This option is available for Timed and Short-lived, DTC-style transactions.

Retry Count. This property determines the number of times a process within a Short-lived, DTC-style transaction will be
run if the process within the transaction does not complete. For each retry, the state of the application is reset to the starting
point of the process within the transaction.

Backoff Time. This property determines the interval between each attempt to retry the transaction. The backoff time is used
with the retry count value to determine how long to wait before the next transaction retry. The backoff value is exponential.
A backoff value of 2 seconds results in intervals of 2, 4, 8, 16 seconds, and so on between each retry. The formula is B**R (B
raised to the power of R), where B=backoff time and R=current retry count. If the backoff time of a specific transaction retry
attempt is greater than 180 seconds, the XLANG schedule instance will be dehydrated to the persistence database
immediately.

Isolation Level. The isolation level determines the degree to which data within concurrent transactions are accessible to
each other. This option is only available for Short-lived, DTC-style transactions. You should choose:

Serializable to prevent concurrent transactions from making data modifications until the selected transaction is
complete. This is the most restrictive of the four isolation levels.

Read Uncommitted to allow concurrent transactions to make data modifications before the selected transaction is
complete. This is the least restrictive of the four isolation levels.

Read Committed to prevent the selected transaction from accessing data modifications in concurrent transactions
until they are committed. This option is the Microsoft SQL Server default setting.

Repeatable Read to require read locks until the selected transaction is complete.
On Failure. Click Add Code, check the Enabled check box, and then click OK if you want to enable the On Failure of
Transaction page. You will then be able to use the On Failure of Transaction page to design an alternate business process
to handle the failure of the selected transaction. This option is available for all transactions.

Compensation. Click Add Code, check the Enabled check box, and then click OK if you want to enable the
Compensation for Transaction page. You will then be able to use the Compensation for Transaction page to design an
alternate business process to undo the logical unit of work that was performed in a nested transaction that has already
committed. This option is only available for nested transactions.

 Note

Aborting a nested transaction does not automatically cause an abort of the outer transaction. This enables you to design an

outer transaction that can recover from the failure of a nested transaction. However, the failure of a nested transaction can
cause the failure of an outer transaction if the nested transaction's On Failure of Transaction page or Compensation for
Transaction page is designed to abort the outer transaction.

Related Topics

Designing Transactions

Long-Running Transactions

Short-Lived Transactions

Transaction Properties for an XLANG Schedule Drawing

Transaction Properties for a Port Implementation

Transaction Properties for a Port Implementation
You can configure transaction properties for COM components and Windows Script components on the Advanced Port
Properties pages of the COM Component Binding Wizard and the Script Component Binding Wizard. The Advanced Port
Properties page provides an option to abort the current transaction when an error is returned from a method in a component.
On the Advanced Port Properties page, you can configure the following transactional properties:

Transaction support. The Transaction support property specifies the degree to which your component will require,
support, or ignore transactions.

Disabled. This selection specifies that the component will ignore COM transaction management.

Not Supported. This selection specifies that the component will not participate in a transaction, or propagate the
transactions of other components.

Supported. This selection specifies that if a transaction contains an action that is connected to the port to which the
component is bound, the component will be included in the transaction. Otherwise, the component will not have a
transaction.

Requires New. This selection specifies that if a transaction contains an action that is connected to the port to which
the component is bound, the component will be included in the transaction. If there is no transaction containing an
action that is connected to the port to which the component is bound, a new transaction will be created for the
component.

Requires new. This selection specifies that a new transaction will always be created for the component.

 Important

BizTalk Orchestration Designer relies on the transactional behavior of the implementation technologies that are utilized in a
XLANG schedule drawing. It does not provide or impose transactional behavior on a business process if the XLANG
schedule drawing contains a Transaction shape. If a COM component, Message Queue, or Script is not transactional, the
data manipulated by the XLANG schedule drawing will not be modified in a transactional manner.

 Notes

When you set the Transaction Model property to treat the XLANG schedule as a COM component, do not use
Transaction shapes in the XLANG schedule drawing. If you use Transaction shapes, and then attempt to compile the
XLANG schedule drawing into an XLANG schedule, the compile process will not work. You must remove all Transaction
shapes from the XLANG schedule drawing before compiling.

If the use of a COM component occurs in multiple transactions, the COM component must either hold no state or hold state
and support persistence.

If multiple actions communicate with a port bound to a COM or Script component, and these actions can be found within
multiple transactions that are not nested within each other, the component instances will be destroyed and instantiated
again prior to each new transactional context. If the component holds state, and supports persistence, the reactivation will
restore the state. If the component holds state, and does not support persistence, the state will be lost. If the component was
instantiated by another application, the XLANG Scheduler Engine will be able to reactive the component only if it is
persistable. If the component was instantiated by another application and cannot be persisted, the XLANG Scheduler Engine
will not be able to instantiate the component again, and the XLANG schedule will fail with an error.

Related Topics

Designing Transactions

Long-Running Transactions

Short-Lived Transactions

Transaction Properties for an XLANG Schedule Drawing

Transaction Properties for Specific Transaction Shapes

Long-Running Transactions
Long-running transactions do not support isolation, one of the four ACID attributes described in Designing Transactions. The data
within a long-running transaction are not locked; other processes or applications can modify the data. If your data must be
consistent, you should use ACID transactions exclusively. However, because ACID transactions in a long latency environment will
cause severe scalability problems, XLANG schedule drawings support long-running transactions. Long-running transactions
enable you to avoid having to lock databases for extended periods of time. During a long-running transaction, messages are sent
and received over an indefinite period of time. Depending on the requirements of the business process that your XLANG schedule
drawing describes, you can enclose an entire business process (with the exception of the Begin shape and an End shape) within a
long-running transaction.

Typically, a long-running transaction will contain several nested short-lived transactions. For example, in a simple wire transfer
scenario, a long-running transaction might contain the following actions within a nested short-lived transaction:

Withdraw money from a bank account.

Initiate the wire transfer process.

The following illustration shows Send money, a short-lived transaction that is nested within a long-running transaction called
Wire transfer. The nested transaction contains the two actions in the simple wire transfer scenario. When the Initiate the wire
transfer action has completed, the business process sequence flows out of the nested transaction. When this happens, the nested
transaction is committed; the money has been withdrawn from a bank account and sent to a destination. At this point, the
business process sequence flows to the Wait for acknowledgement action in the outer transaction.

Click the illustration to enlarge or reduce.

In this scenario, the Wire transfer transaction has been configured as a Timed transaction. If the sender has not received an
acknowledgement of receipt of the money within the specified amount of time, the outer transaction will abort. When this
happens, the business process sequence flows to the Compensation for Send money page for the nested transaction. Because
the nested transaction has already committed, the alternate business process must describe actions that can be performed to
credit the sender's account. When the business process described in the Compensation for Send money page has been
performed, the business process sequence flows to the On Failure of Wire transfer page for the outer transaction. This page
must contain a business process that describes exception handling for the outer transaction. In this case, the business process
might be to send follow-up e-mail to inform the participants of the status of the transfer.

Related Topics

Designing Transactions

Flowchart Shapes

Short-Lived Transactions

Short-Lived Transactions
A short-lived transaction is a collection of grouped actions that are performed as a single logical unit of work. This logical unit of
work exhibits the four properties of an ACID transaction. For more information about ACID transactions,
see Designing Transactions.

Related Topics

Designing Transactions

Flowchart Shapes

Long-Running Transactions

Handling Exceptions
The XLANG Scheduler Engine can trap system errors. BizTalk Orchestration Designer enables you to design XLANG schedules that
will react to XLANG schedule errors at run time. If you enclose part of a business process within a Transaction shape, you can
design an alternate business process that will run if an error is encountered or if a requirement is not met.

The following topics are covered in this section:

System errors

Application Errors

Related Topic

Set Error Handling Properties

System Errors
There are three severity levels for system errors that can occur while the XLANG Scheduler Engine is running. In ascending order
of severity, the three levels are:

Errors that can be trapped within an XLANG schedule.

Errors that will cause an XLANG schedule instance to terminate.

Errors that can cause the XLANG Scheduler Engine to fail.

The following topics are covered in this section:

Errors That Can Be Trapped Within an XLANG Schedule.

Errors That Will Cause an XLANG Schedule Instance to Terminate.

Errors That Can Cause the XLANG Scheduler Engine to Fail.

Errors That Can Be Trapped Within an XLANG Schedule
The XLANG Scheduler Engine can trap the following system errors:

COM errors that cause failure HRESULTs. For example, an Access Denied message from COM that results in a method being
called within an XLANG schedule when permission is inadequate. This can apply to COM or Script bindings.

Transaction aborts that are caused by enlisted services, such as the Distributed Transaction Coordinator (DTC) aborting a
transaction because the connection to a database was lost. Another example might be the Message Queuing Service
aborting a transaction because the Message Queuing Service is unable to queue a message.

To handle a failure HRESULT using logical branching, the _out message coming from a method call must be tested within a
decision rule. The HRESULT value will be stored within the __Status__ field of the _out message.

To handle a failure HRESULT using transaction failure processes, the Abort transaction if HRESULT indicates failure property
must be set on the last page of the COM component or Script component binding wizards. This property cannot be set unless the
action is within a transaction.

 Important

This option determines whether transactions in which the component is used should be aborted when method calls to the
component return a failure HRESULT. This option can only be set if the communication action that uses this port is within
the process flow of a transaction

Handling a failure in the Message Queuing or BizTalk Messaging implementation technologies can only be performed with
transaction failure processes. To do so, the Use transactional message queues property on the last page of the Message
Queuing binding wizard must be set (this is done automatic for BizTalk Messaging).

 Note

A Message Queuing send action that returns successfully indicates that the message has been successfully placed onto the
queue. It does not indicate that the message has been delivered.

Related Topics

Application Errors

Errors That Can Cause the XLANG Scheduler Engine to Fail

Errors That Will Cause an XLANG Schedule Instance to Terminate

Handling Exceptions

System Errors

Errors That Will Cause an XLANG Schedule Instance to
Terminate
System errors that cause an XLANG schedule instance to fail, but that cannot be trapped within an XLANG schedule include:

A scheduled method that is not synchronized with the component that is called.

A scheduled queue that does not exist.

A scheduled channel that does not exist.

Dataflow from a message that has not arrived yet.

Related Topics

Application Errors

Errors That Can Be Trapped Within an XLANG Schedule

Errors That Can Cause the XLANG Scheduler Engine to Fail

Handling Exceptions

System Errors

Errors That Can Cause the XLANG Scheduler Engine to Fail
System errors that that cannot be trapped by the XLANG Scheduler Engine can cause the XLANG Scheduler Engine to fail along
with all XLANG schedule instances that are running in the same COM+ application. Among these system errors are certain access
violations by components that are running within the XLANG Scheduler Engine's process space. The XLANG Scheduler Engine will
attempt to trap these errors, but in many cases the XLANG Scheduler Engine will not be able to trap them.

Related Topics

Application Errors

Errors That Can Be Trapped Within an XLANG Schedule

Errors That Will Cause an XLANG Schedule Instance to Terminate

Handling Exceptions

System Errors

Application Errors
There are three ways to handle errors that can cause XLANG schedule errors:

Use Logical Branching.

Use Transactional Abort Processes.

Use Timeouts.

Logical Branching
Decisions and rules can be used to branch a process flow on any process page (the Business Process page, any On Failure of
Transaction page, or any Compensation for Transaction page). The following illustration shows a simple test of method
execution.

Click the illustration to enlarge or reduce.

In this example, the Clear_out message will have a system field named __Status__. In the rule HRESULT Success, the script
expression would be Clear_out.[__Status__] >= 0, where a negative HRESULT indicates failure, and 0 or a positive HRESULT
indicates success. By using decisions and rules in this way, any data field within any message can be tested (within the VB Script
expression of any rule) for exceptions, not exclusively for HRESULTs.

Related Topics

Handling Exceptions

Timeouts

Transactional Abort Processes

Transactional Abort Processes
In BizTalk Orchestration Designer, you can use transactions to group a collection of actions that are performed as a single logical
unit of work and ensure that all of the actions within the group complete, or none of them complete. By grouping business
processes within transactions, BizTalk Orchestration Designer can provide the highest level of structure and reliability.

Process flow within a transaction executes normally, until either the transaction completes, or an abort event occurs. An abort
event can come from one of several places:

Encountering the Abort shape within the process flow.

An HRESULT failure that is specified to cause an abort in a port binding.

Any binding technology can, at a system level, introduce a failure event that aborts the transaction. For example, the
Message Queuing might fail to put a message on a queue.

The XLANG Scheduler Engine may encounter an error that causes it to abort a transaction within a given instance. For
example, there may be a DTC error.

Pausing a schedule may require all transactions within that schedule to abort

A Timeout within the transaction properties.

When an abort occurs, a transaction may retry from the beginning, depending on the value set in the Retry count property of the
transaction group. If, after a transaction has retried the specified number of times, it continues to fail, the On Failure of
Transaction business process will be called. This On Failure of Transaction code provides a structured place to handle the
failure of a transaction.

The On Failure of Transaction code does not have to undo any work within the transaction. If the ports are bound to
transactional resources, the Distributed Transaction Coordinator will handle the rollback of all of the enlisted actions within the
transaction. Non-transactional resources will not be rolled back. If the transaction is nested within an outer transaction, and if this
nested transaction has already committed, the business process sequence will flow to the Compensation for Transaction
business process for the nested transaction. The Compensation for Transaction business process is described on the
Compensation for Transaction page. This alternate business process must contain actions that can be performed to undo the
work within the nested transaction.

When the Compensation for Transaction or the On Failure of Transaction code has completed, the business process
sequence will flow out of the bottom of the Transaction shape on the Business Process page. Actions within the business
process sequence that occur after a transaction do not receive an explicit indication of whether the transaction completed or
aborted. To enable an explicit indication, you can set a flag within a message field on either the On Failure of Transaction page,
or the Compensation for Transaction page.

Related Topics

Handling Exceptions

Logical Branching

Timeouts

Timeouts
If an action within a transaction does not receive an expected message from a trading partner, the failure is handled as an
application error. To test for this error, use timed transactions.

For example, in a simple wire transfer scenario, a timed transaction might contain the following actions within a
nested transaction:

Withdraw money from a bank account.

Initiate the wire transfer process.

The following illustration shows Send money, a nested transaction within a timed transaction called Wire transfer. The nested
transaction contains the two actions in the simple wire transfer scenario. When the Initiate the wire transfer action has
completed, the business process sequence flows out of the nested transaction. When this happens, the nested transaction is
committed; the money has been withdrawn from a bank account and sent to a destination. At this point, the business process
sequence flows to the Wait for acknowledgement action in the outer transaction.

Click the illustration to enlarge or reduce.

In this scenario, the Wire transfer transaction has been configured as a timed transaction. If the sender has not received an
acknowledgement of receipt of the money within the specified amount of time, the outer transaction will abort. When this
happens, the business process sequence flows to the Compensation for Send money page for the nested transaction. Because
the nested transaction has already committed, the alternate business process must describe actions that can be performed to
credit the sender's account. When the business process described in the Compensation for Send money page has been
performed, the business process sequence flows to the On Failure of Wire transfer page for the outer transaction. This page
must contain a business process that describes exception handling for the outer transaction. In this case, the business process
might be to send follow-up e-mail to inform the participants of the status of the transfer.

Related Topics

Handling Exceptions

Logical Branching

Transactional Abort Processes

Implementing Business Processes
The Implementation stencil contains four shapes that correspond to the technologies that can be used to implement a port in a
business process. Because every action either sends a message to a port or receives a message from a port, the semantic meaning
of sending or receiving messages varies, depending on the specific implementation technology.

Using Implementation shapes involves two distinct processes. In the first process, a port is bound to an implementation
technology. Conceptually, a port is an abstract location to which a message is sent or from which a message is received. Binding
the port to an implementation defines the type of location to which the port is bound. In the second process, an action is
connected to the port. This process defines the schema of the message that is sent to or received from the port.

BizTalk Orchestration Designer supports four implementation technologies:

COM Components. This technology enables synchronous communication.

Windows Scripting Components. This technology enables synchronous communication.

Message Queuing Services. This technology enables asynchronous communication.

BizTalk Messaging Services. This technology enables asynchronous communication.

The Separator bar divides the design page of BizTalk Orchestration Designer into a business-process design area on the left side,
and an implementation area on the right side. To open a port binding wizard, drag one of the Implementation shapes onto the
design page, to the right of the Separator bar. You can perform this task on the Business Process page, the On Failure of
Transaction page, and on the Compensation for Transaction page.

 Note

You cannot configure an envelope in BizTalk Orchestration Designer. Therefore, if you want to submit a flat file to BizTalk
Orchestration, use BizTalk Editor to translate the contents of the flat file to XML. You can then submit the XML file to BizTalk
Orchestration.

The following topics are covered in this section:

Understanding Port Implementations

Synchronous and Asynchronous Communication

Understanding Port Implementations
A port is a named location that uses a specific implementation. In an XLANG schedule, ports facilitate synchronous and
asynchronous communications and are used to pass messages into or out of the schedule.

In BizTalk Orchestration Designer, a port is defined by the location to which messages are sent or from which messages are
received, and the technology that is used to implement the communication action. Ports are bound on the left side to actions in
the business process flow of the XLANG schedule; and they are bound on the right side to an implementation technology that can
be used to facilitate the required action. The location is uniquely identified by the name of the port.

The location of a port depends in part on the technology used to implement the port. The following table shows the available port
implementations and the location that is associated with each port implementation.

Port implementation Port location
COM component A pointer to an activated instance of an object.
Windows Script Component A pointer to an activated instance of an object.
Message Queuing A queue path name to a message queue.
BizTalk Messaging A channel name for a specific BizTalk Messaging channel.

Ports can be described in two ways:

Static ports. A static port requires all information about the port location and implementation be provided for an XLANG
schedule at design time. The designer who creates the XLANG schedule must know the location to which messages are sent
or from which messages are received, as well as the technology chosen to implement the communication action.

Dynamic ports. A dynamic port requires that specific location information be provided for an XLANG schedule at run time.
The implementation for a dynamic port is chosen at design time, but the location of this port is not known until the XLANG
schedule is running. The location for a dynamic port is provided by a message that passes the location information to the
reference for the port. This message must arrive at a point in the process flow of the XLANG schedule before the
communication that uses this port implementation can be used.

If you want to use a dynamic port for a communication, and the XLANG schedule has not received a message that contains
the reference to the port before the schedule tries to complete the action, an error is generated.

Both static and dynamic ports provide options for synchronous and asynchronous communications, but the port implementations
for these communications differ depending on the technology that you use to implement the port.

Any port can be either a static port or a dynamic port; however, all ports cannot implement synchronous and asynchronous
communications. If you want to create a synchronous communication action you must use a COM or Script component port
implementation. If you want to create an asynchronous communication action you must use a Message Queuing or BizTalk
Messaging port implementation.

The following topics are covered in this section:

Static and Dynamic Ports

Using the COM Component Shape

Using the Script Component Shape

Using the Message Queuing Shape

Using the BizTalk Messaging Shape

Related Topic

Synchronous and Asynchronous Communication

Static and Dynamic Ports
Static and dynamic port behavior varies depending on the type of implementation you use.

Port implementations that use COM or Script components
For a port implementation that uses COM or Script components, the static and dynamic properties represent how a component is
instantiated:

Static. For an XLANG schedule that uses a static port, the XLANG Scheduler Engine instantiates the component that is
defined for this port implementation.

Dynamic. For an XLANG schedule that uses a dynamic port, the XLANG Scheduler Engine does not instantiate the
component. Instead the XLANG schedule waits for another application to instantiate the component. The object instance
must be sent back to the XLANG schedule as a field in a message. On the Data page, a connection must be drawn between
that message field and the port reference for the port that uses this implementation. The XLANG schedule intercepts both
the method request and the method response from the component.

In addition to the Static and Dynamic options, there is a third choice:

No instantiation. For an XLANG schedule that uses a port with no instantiation, the component is not instantiated, and no
code for the method call is executed. Instead, when the XLANG schedule intercepts the method request information, it
returns this information as the response. The method call is circumvented.

Port implementations that use Message Queuing
In a port implementation that uses Message Queuing, the static and dynamic properties are represented as static and dynamic
queues:

Static queue. A static port uses a static queue that is a known, pre-existing queue. You can assign this queue at design time.

If you use a static queue, then you can choose to either use a known queue that never changes, or you can create a new
instance of the same queue each time the XLANG schedule is run. The per-instance queue is identified by a unique ID that is
appended to the name of the queue.

Dynamic queue. A dynamic port uses a dynamic queue that is unknown at design time. The information for a dynamic
queue must be provided at run time within a message field. On the Data page you must create a link from a message field
to the port reference for this port. When a message arrives that contains the queue name, then the XLANG schedule can use
the assigned queue. The message that contains the queue name must arrive before the communication that uses this port
implementation can be used.

Port implementations that use BizTalk Messaging
In a port implementation that uses BizTalk Messaging, the static and dynamic properties are represented as static and dynamic
channels. Dynamic channels can be used only when you are sending messages. Dynamic channels cannot be used to receive
messages.

Static channel. A static port uses a static channel that is a known, pre-existing channel. You can assign this channel at
design time, and it never changes.

Dynamic channel. A dynamic port uses a dynamic channel that is unknown at design time. The information for a dynamic
channel must be provided at run time within a message field. On the Data page you must create a link from a message field
to the port reference for this port. When a message arrives that contains the channel name, then the XLANG schedule can
use the assigned channel. The message that contains the channel name must arrive before the communication that uses this
port implementation can be used.

A port that uses a dynamic channel enables an XLANG schedule to determine which channel to use at run-time, rather than
requiring that a pre-existing channel be defined at design time. This property defines which channel is used when the XLANG
schedule passes the message to BizTalk Messaging Services.

The dynamic channel should not be confused with an open channel that is configured in BizTalk Messaging Manager. An open
channel enables the source organization to be determined at run time from information within the document or in the
parameters submitted with the document. This property defines the source of the documents. For more information about open
channels, see Understanding Channels.

The message that is passed to a port that uses a dynamic channel could specify either an open channel or a channel that is not
open when passing the channel information to BizTalk Messaging Services.

Related Topics

Implement Ports

Synchronous and Asynchronous Communication

Understanding Channels

Using the BizTalk Messaging Shape

Using the COM Component Shape

Using the Message Queuing Shape

Using the Script Component Shape

Using the COM Component Shape
The COM Component shape enables you to use pre-existing components or applications to perform actions within an
XLANG schedule. Because COM technology is synchronous, there is always a bi-directional flow of messages when an action is
performed. In contrast, the flow of messages for an asynchronous technology is in one direction.

The XLANG Scheduler Engine supports sending or receiving messages by the use of Action shapes. When you bind a port to a
COM component in BizTalk Orchestration Designer, the port is bound to an interface that is implemented by a COM component
that has been registered on your system.

A send action that is connected to the port represents the invocation of a specific method call by the XLANG Scheduler Engine.
The IN and IN/OUT parameters are sent to the port. In return, a message with a schema that is defined by the IN/OUT and OUT
parameters of the method call is received from the port. The method call is supported by the interface that is bound to the port.

A receive action that is connected to the port waits for an external application to make a method call to the port. The IN and
IN/OUT parameters define the schema of the message that is received by the port, and the IN/OUT and OUT parameters define
the schema of the message that is sent from the port.

For every action that is connected to a port and bound to a COM component, two messages are exchanged. The messages identify
the method on the interface that is invoked. The schema for the messages correspond to the IN and IN/OUT parameters (and to
the IN/OUT and OUT parameters) of the method signature. Because the type library for the components is accessible, BizTalk
Orchestration Designer can automatically build the schema for these messages without querying the user for this information.

 Important

Use COM components carefully when you implement a long-running business process. If components that hold state are
used in an XLANG schedule, it is recommended that you use components that can be saved by using either the
IPersistStream or IPersistStreamInit interface. This ensures that the XLANG schedule can store its state along with the
state of the components. XLANG schedules must be able to hold state and run durably over a long period of time. If
components that do not hold state are used, a new instance of the component is created every time the XLANG schedule is
rehydrated. However, the use of components that do not hold state should not affect the outcome of the schedule.

Binding is the process of specifying the technology that will implement a port. The COM Component Binding Wizard is made up
of the following five pages:

Welcome to the COM component binding wizard
On the Welcome to the COM component binding wizard page you can create and name a port for which you want to define
an implementation.

Static or dynamic communication
On the Static or dynamic communication page you can define how the component will be instantiated. The following table
lists and describes the static and dynamic communication settings.

Static or Dy
namic Com
munication

Description

Static Select this option if you can provide the XLANG Scheduler Engine with all of the required information to complete t
he implementation at design time.

Dynamic Select this option if the XLANG Scheduler Engine requires additional information at run time to complete the imple
mentation.

No instantiat
ion

Select this option to enable the XLANG schedule to receive data by using a method call without activating the comp
onent. When you select No instantiation, method calls to this component are intercepted, the XLANG Scheduler E
ngine stores the arguments, and the call returns to the caller. The component is never instantiated.

Class information
On the Class information page, you can select a class from a list of registered components or from a moniker.

Interface information
On the Interface information page you can select the interface that you want to use. This page is displayed only if the selected
class contains more than one interface. Visual Basic components always have a single interface.

Method information
On the Method information page you can select the methods that you want to use. This page is displayed only if the selected
class contains more than one method.

Advanced port properties
On the Advanced port properties page you can configure security, transaction support, state management support, and error
handling.

The state management support properties of the COM Component shape include:

Persisting the state of an XLANG schedule before the start of a transaction, and after the completion of a transaction. This
provides durability, ensuring that all committed data modifications are permanently in place in the system. This also enables
retries of a transaction if a failure occurs.

Optimizing instance management by enabling the XLANG Scheduler Engine to dehydrate the XLANG schedule and then
rehydrate the schedule when the message it is waiting for arrives.

You can use the COM Component shape to request authenticated user information for the messages that are received.

Security area

The following table lists and describes the sender identity confirmation settings.

Sender identity con
firmation

Description

Not required Select this option if you want the XLANG schedule to be able to receive a message without knowing the id
entity of the sender.

Optional Select this option if you want the XLANG Scheduler Engine to identify the sender when the component rec
eives a message, if the information is available.

Required Select this option if you do not want the XLANG Scheduler Engine to receive a message unless it can identi
fy the sender.

Transaction support area

The following table lists and describes the transaction support settings.

Transa
ction s
upport

Description

Disable
d

This is for all non-COM+ components. This option specifies that the component will ignore COM transaction manageme
nt.

Not Su
pporte
d

This is only for COM+ components. This option specifies that the component will not participate in a transaction, or prop
agate the transactions of other components.

Suppor
ted

This is only for COM+ components. This option specifies that if a transaction is associated with the port to which the com
ponent is bound, the component will be included in the transaction. Otherwise, the component will not have a transactio
n.

Require
d

This is only for COM+ components. This option specifies that if a transaction is associated with the port to which the com
ponent is bound, the component will be included in the transaction. If there is no transaction associated with the port to
which the component is bound, a new transaction will be created for the component.

Require
s New

This is only for COM+ components. This specifies that a new transaction will always be created for the component.

State management support area

The following table lists and describes the state management support settings.

State managem
ent support

Description

Holds no state This specifies that the XLANG Scheduler Engine will terminate the component instance when it is dehydrated. I
f you select this setting, the XLANG Scheduler Engine will create a new component instance, if it is required, wh
en the schedule is rehydrated.

Holds state, but d
oesn't support pe
rsistence

This specifies that the XLANG Scheduler Engine will be required to leave the component instance running. If th
e system fails while the application is dehydrated, any state that has been held in this component will be lost.

Holds state, and d
oes support persi
stence

This specifies that the XLANG Scheduler Engine will remove the component instance from memory, and then r
estore it to memory by calling either IPersistStream or IPersistStreamInit on the component during dehydr
ation, and then again during rehydration.

Error handling area

In the Error handling area, check the Abort transaction if the method returns a failure HRESULT check box if you want the
XLANG Scheduler Engine to abort the transaction when an error is returned from a method in a component.

 Notes

When an action communicates with a port bound to a COM component and the specified method does not exist on the
component, the XLANG schedule instance will failfast with an event log entry.

BizTalk Orchestration Designer does not support binding to a COM component method that contains a parameter derived
from IDispatch. However, BizTalk Orchestration Designer does support binding to COM component methods containing
parameters of type IDispatch.

If an application has a reference to a COM component in an XLANG schedule by means of the IUnknown interface, that
reference will become invalid after the XLANG schedule instance is dehydrated and rehydrated. All persistable COM
components will be properly rehydrated to the state they were in at the time of dehydration, but the interfaces will be
assigned new addresses. This is expected and normal behavior. If two or more message fields in any single XLANG schedule
instance contain pointers to the same COM component, and the schedule is dehydrated, these message fields will contain
pointers to a single COM component after rehydration. However, the COM component will not be the same one that existed
before dehydration. It will be a newly created COM component that is similar to the COM component that existed before
dehydration. If the original COM component is persistable, the new COM component will have the same state that the
original COM component had before dehydration.

Component uniqueness is not maintained across while loops. If one message within a while loop contains a field that has a
pointer to a COM component, and a different message outside the while loop contains a field that has a pointer to the same
COM component, after dehydration and rehydration these two message fields will no longer have pointers to a single COM
component. The two message fields will have pointers to two separate COM components that are similar to the original
COM component. If the original COM component is persistable, the two new COM components will hold the same state that
the original COM component had before dehydration.

Related Topics

Static and Dynamic Ports

Synchronous and Asynchronous Communication

Using the BizTalk Messaging Shape

Using the Message Queuing Shape

Using the Method Communication Wizard

Using the Script Component Shape

Using the Script Component Shape
The Script Component shape enables you to use pre-existing Windows Script component to perform actions within an
XLANG schedule. Because the Script Component is synchronous, there is always a bi-directional flow of messages when an
action is performed. In contrast, the flow of messages for an asynchronous technology is in one direction.

A send action that is connected to the port represents the invocation of a specific method call by the XLANG Scheduler Engine.
The IN and IN/OUT parameters are sent to the port. In return, a message with a schema that is defined by the IN/OUT and OUT
parameters of the method call is received from the port. The method call is supported by the interface that is bound to the port.

A receive action that is connected to the port waits for an external application to make a method call to the port. The IN and
IN/OUT parameters define the schema of the message that is received by the port, and the IN/OUT and OUT parameters define
the schema of the message that is sent from the port.

For every action that is connected to a port and bound to a Script component, two messages are exchanged. The messages
identify the method on the interface that is invoked. The schema for the messages corresponds to the IN and IN/OUT parameters
(and to the IN/OUT and OUT parameters) of the method signature. Because the type library for the components is accessible,
BizTalk Orchestration Designer can automatically build the schema for these messages without querying the user for this
information.

The XLANG Scheduler Engine waits until the method returns before continuing the business process. To send a message, the
XLANG Scheduler Engine invokes the specified method of a Windows Script component.

To create a new Script component binding, drag the Script Component shape from the Implementation stencil onto the BizTalk
Orchestration design page, to the right of the Separator bar. To edit an existing Script component, right-click the Script
Component shape and click Edit Properties. Both actions start the Script Component Binding Wizard. Binding is the process of
specifying the technology that will implement a port. The Script Component Binding Wizard is made up of the following six pages:

Welcome to the script component binding wizard
On the Welcome to the script component binding wizard page you can create and name a port for which you want to define
an implementation.

Static or dynamic communication
On the Static or Dynamic Communication page you can define how the component will be instantiated. The following table
lists and describes the static and dynamic communication settings.

Static or Dy
namic Com
munication

Description

Static Select this option if you can provide the XLANG Scheduler Engine with all of the required information to complete t
he implementation at design time.

Dynamic Select this option if the XLANG Scheduler Engine requires additional information at run time to complete the imple
mentation.

No instantiat
ion

Select this option to enable the XLANG schedule to receive data by using a method call without activating the comp
onent. When you choose No instantiation, method calls to this component are intercepted, the XLANG Scheduler
Engine stores the arguments, and the call returns to the caller. The component is never instantiated.

Specify the script file
On the Specify the script file page you can type the path to the Windows Script Component (.wsc) file that you want to use.

Component instantiation information
On the Component instantiation information page you can specify if the XLANG Scheduler Engine will use a moniker or a
Prog ID to instantiate the Script component.

Method information
On the Method information page you can select the methods that belong to the selected class.

Advanced port properties

On the Advanced port properties page you can configure security, transaction support, and error handling. You can use the
Script Component shape to request authenticated user information for the messages that are received.

Security area

The following table lists and describes the sender identity confirmation settings.

Sender identity con
firmation

Description

Not required Select this option if you want the XLANG schedule to be able to receive a message without knowing the id
entity of the sender.

Optional Select this option if you want the XLANG Scheduler Engine to identify the sender when the component rec
eives a message, if the information is available.

Required Select this option if you do not want the XLANG Scheduler Engine to receive a message unless it can identi
fy the sender.

Transaction support area

The following table lists and describes the transaction support settings.

Transa
ction s
uppor
t

Description

Disable
d

This is for all non-COM+ components. This option specifies that the component will ignore COM transaction managemen
t.

Not Su
pporte
d

This is only available if the script is installed as a COM+ component. This specifies that the component will not participate
in a transaction, or propagate the transactions of other components.

Suppor
ted

This is only available if the script is installed as a COM+ component. This specifies that if a transaction is associated with t
he port to which the component is bound, the component will be included in the transaction. Otherwise, the component
will not have a transaction.

Requir
ed

This is only available if the script is installed as a COM+ component. This specifies that if a transaction is associated with t
he port to which the component is bound, the component will be included in the transaction. If there is no transaction ass
ociated with the port to which the component is bound, a new transaction to be created for the component.

Requir
es New

This is only available if the script is installed as a COM+ component. This specifies that a new transaction will always be cr
eated for the component.

Error handling area

In the Error handling area, check the Abort transaction if the method returns a failure HRESULT check box if you want the
XLANG Scheduler Engine to start an abort process when an error is returned from a method in a component. To use On Failure
of Transaction and Compensation for Transaction pages, this option must be selected for the XLANG Scheduler Engine. If this
option is not selected, error-recovery processes that are defined on either page will not be run.

 Important

When you use Windows Script Components, they must adhere to the following rules:
Argument declarations must be by reference, not by value.

Visual Basic Scripting subroutines are not supported. Only functions are supported.

Multiple components cannot be used within a single .wsc file.

 Notes

When an action communicates with a port bound to a Script component and the specified method does not exist within the
script component, the XLANG schedule instance will failfast with an event log entry.

Script components that have been run by the XLANG Scheduler Engine cannot be modified until both the XLANG Scheduler

Engine and the Windows Script Host have been shut down.

Related Topics

Static and Dynamic Ports

Synchronous and Asynchronous Communication

Using the BizTalk Messaging Shape

Using the COM Component Shape

Using the Message Queuing Shape

Using the Method Communication Wizard

Using the Message Queuing Shape
The Message Queuing shape enables an XLANG schedule to communicate with another XLANG schedule (or with an
application), in a loosely coupled manner, using a queue. To enable communication between XLANG schedules and applications,
messages are dropped onto a queue and then read. A single XLANG schedule may use several ports that are bound to the
Message Queuing shape.

When a port is bound to the Message Queuing shape, it is also bound to a message queue. The port can be bound to a named
queue, or to a per-instance queue. If a port is bound to a per-instance queue, a unique queue is created and used for each instance
of this XLANG schedule. Per-instance queues provide a convenient way for an XLANG schedule to have a separate queue for each
XLANG schedule instance.

When an action is connected to a port that is bound to a message queue, the following information is used to define the way
messages will be represented in the schedule:

The message that is sent or received by the action must be defined. Because multiple message types can be stored in a queue, the
message type helps identify the type of message that should be received by the action. During a Send action, the message type is
marked on the label property of the message when it is written to the queue.

The Message Queuing shape represents the Message Queuing Service that is used to send or receive messages. To receive a
message, the XLANG Scheduler Engine requires the name of the queue that is used and the name of the root element of the XML
schema that is contained within that message. To send a message, the XLANG Scheduler Engine needs the name of the queue that
is used to transmit messages.

If you configure an XLANG schedule instance to use Message Queuing to receive messages, you can use
the XML Communication Wizard to specify the destination format as either XML or string.

To create a new Message Queuing binding, drag the Message Queuing shape from the Implementation stencil onto the BizTalk
Orchestration design page, to the right of the Separator bar. To edit an existing Message Queuing implementation, right-click the
Message Queuing shape and click Edit Properties. Both actions start the Message Queuing Binding Wizard. Binding is the
process of specifying the technology that will implement a port. The Message Queuing Binding Wizard is made up of the
following four pages:

Welcome to the message queuing binding wizard
On the Welcome to the message queuing binding wizard page you can create and name a port for which you want to define
an implementation, or you can choose an existing, unbound port.

Static or dynamic queue information
On the Static or dynamic queue information page you can specify if the message queue will be defined at design time or at
run time. Choose one of the following options:

Choose Static queue if you can provide queue information at design time.

Choose Dynamic queue if you want the XLANG Scheduler Engine to acquire information from an external source at run time
to determine the queue name.

Queue information
On the Queue information page you can create a new queue or specify an existing queue. Choose one of the following options:

Choose Create a new queue for every instance if you want the XLANG Scheduler Engine to create a per-instance queue
for every XLANG schedule instance.

Choose Use a known queue for all instances if you want the XLANG Scheduler Engine to use a known queue.

Advanced port properties
On the Advanced port properties page you can configure security and choose whether or not you want to enable transaction
support. You can use the Message Queuing shape to request authenticated user information for the messages that are received.

Security area

The following table lists and describes the sender identity confirmation settings.

Sender identity con
firmation

Description

Not required Select this option if you want the XLANG schedule to be able to receive a message without knowing the id
entity of the sender.

Optional Select this option if you want the XLANG Scheduler Engine to identify the sender when the component rec
eives a message, if the information is available.

Required Select this option if you do not want the XLANG Scheduler Engine to receive a message unless it can identi
fy the sender.

You can also select or clear the Use a Windows Group or User Name to control the queue check box. If you select the check
box, enter the name of the user or group that is permitted to write messages to the queue. This option is available only if you are
using a static queue.

Transaction support area

In the Transaction support area, select the Transactions are required with this queue check box to enable transaction support.

 Notes

Currently, the supported name format for queues does not enable remote access to a queue on another computer. Use
public queues instead of private queues when an XLANG schedule communicates with an application on a remote
computer.

When an action communicates with a port bound to Message Queueing and the specified queue for the binding does not
exist, the XLANG schedule instance will failfast with an event log entry.

It is important that the XLANG Scheduler Engine be able to determine if a queue is transactional or not. If a queue is in a
transactional context and a message is sent to the queue, the XLANG Scheduler Engine must know whether the transaction
should be used to communicate with the queue. If the port binding is configured with the Transactions are required with
this queue check box selected, the XLANG Scheduler Engine will failfast the XLANG schedule if it is determined at run time
that the queue is not transactional.

Related Topics

Static and Dynamic Ports

Synchronous and Asynchronous Communication

Using the BizTalk Messaging Shape

Using the COM Component Shape

Using the Script Component Shape

Using the XML Communication Wizard

Using the BizTalk Messaging Shape
The BizTalk Messaging shape represents BizTalk Messaging Services that are used to exchange messages between
BizTalk Orchestration Services and BizTalk Messaging Services. To receive a message, the XLANG Scheduler Engine requires the
HTTP URL address used by the BizTalk Messaging Service to receive documents, the name of the channel, and the message type
of the outbound document definiton. Receiving documents for XLANG schedule activation only requires the message type of the
document definition. To send a message, the XLANG Scheduler Engine requires the name of the channel and the message type of
the inbound document definition. For more information about exchanging messages between BizTalk Orchestration Services and
BizTalk Messaging Services, see Integrating BizTalk Services.

 Important

If you configure a port to activate a new XLANG schedule when a message arrives, you must observe the following
restrictions:

Only one port in a schedule can be used to activate the XLANG schedule when the message arrives.

Only one action can receive through this port.

This one action cannot be in a loop body.

You cannot draw a data flow connection from the port reference for this port to any other message in the schedule.

To create a new BizTalk Messaging binding, drag the BizTalk Messaging shape from the Implementation stencil onto the BizTalk
Orchestration design page, to the right of the Separator bar. To edit an existing BizTalk Messaging implementation, right-click the
BizTalk Messaging shape and click Edit Properties. Both actions start the BizTalk Messaging Binding Wizard. Binding is the
process of specifying the technology that will implement a port. The BizTalk Messaging Binding Wizard is made up of the
following pages:

Welcome to the BizTalk messaging binding wizard
On the Welcome to the BizTalk messaging binding wizard page you can create and name a port for which you want to
define an implementation, or you can choose an existing, unbound port.

Communication direction
On the Communication direction page you can specify if you want to configure the port to send or receive messages.

Static or dynamic communication
The Static or dynamic communication page will only be displayed if you choose Send on the Welcome to the BizTalk
Messaging Binding Wizard page. On the Static or dynamic communication page you can specify if you want the XLANG
Scheduler Engine to use a Static channel that will be defined at design time, or a Dynamic channel that will be defined at run
time.

XLANG schedule activation information
On the XLANG schedule activation information page you can specify if an XLANG schedule instance will be activated on this
receive action. If you choose Yes, the BizTalk Messaging Binding Wizard finishes. If you choose No, the Channel Information
page is dispalyed.

Channel information
On the Channel information page you can specify the name of the channel, and the HTTP URL address used by the BizTalk
Messaging Service to receive documents.

 Notes

When an action communicates with a port bound to BizTalk Messaging and the specified channel for the binding does not
exist, the XLANG schedule instance will failfast with an event log entry.

Including separate send and receive BizTalk Messaging bindings in a single transaction may result in a deadlock condition
that will cause the transaction to fail.

Action events related to messages processed by an XLANG schedule that are either sent to or received from BizTalk
Messaging Services can be tracked in the Tracking database. For more information,
see Tracking XLANG schedule events in the Tracking database.

Related Topics

Static and Dynamic Ports

Synchronous and Asynchronous Communication

Using the COM Component Shape

Using the Message Queuing Shape

Using the Script Component Shape

Using the XML Communication Wizard

Synchronous and Asynchronous Communication
All communication to a COM or Script component implementation is synchronous. If you want to create a communication flow to
a port that uses a COM component or Script component implementation, you must use the Method Communication Wizard.

All communication to an unbound port, or to a Message Queuing or BizTalk Messaging implementation is asynchronous. If you
want to create a communication flow to a port that uses a Message Queuing or BizTalk Messaging implementation, or if you want
to create a communication flow to an unbound port, you must use the XML Communication Wizard.

The following illustration and text describes what an XLANG schedule does for the four possible communication actions.

No
wait

Wait

Wait

Wait

2

Asynchronous send action

Synchronous send action

Asynchronous receive action

Synchronous receive action

1

3

4

4

3

2

1

Wait

Another
application

XLANG
schedule

Com or Script component

Message Queuing or Biztalk Messaging

1. Synchronous receive action
a. The XLANG schedule waits for another application to send a method request and instantiate a component.

b. The schedule intercepts the method request.

c. The schedule waits for the component to return the method response.

d. The schedule intercepts the method response.

e. The schedule continues with the next action in the business process flow.
2. Synchronous send action

a. The XLANG schedule initiates the method request and instantiates the component.

b. The schedule waits for the component to return the method response.

c. The schedule receives the method response.

d. The schedule continues with the next action in the business process flow.
3. Asynchronous receive action

a. The XLANG schedule waits for another application to send a message to a messaging queue or to a BizTalk Messaging
channel.

b. The XLANG schedule receives the message from the messaging queue or from the channel.

c. The schedule continues with the next action in the business process flow.
4. Asynchronous send action

a. The XLANG schedule sends a message to a messaging queue or to a BizTalk Messaging channel.

b. The schedule continues with the next action in the business process flow.

c. Another application receives the message from the message queue or BizTalk Messaging channel.

 Notes

A special case exists for the synchronous receive action. If you choose No instantiation in the COM or Script Component
Binding Wizard, the component is not instantiated, and no code for the method call is executed. Instead, when the XLANG
schedule intercepts the method request information, it returns this information as the response. The method call is
circumvented. For more information about static and dynamic ports and the COM and Script Component Binding Wizards,
see the following topics:

Static and Dynamic Ports

Implement Ports

Using the COM Component Shape

Using the Script Component Shape
Action events related to messages processed by an XLANG schedule that are either sent to or received from BizTalk
Messaging Services can be tracked in the Tracking database. For more information,
see Tracking XLANG schedule events in the Tracking database.

This section contains information about the following topics:

Using the Method Communication Wizard

Synchronous Communication

Using the XML Communication Wizard

Asynchronous Communication

Related Topics

Implement Ports

Static and Dynamic Ports

Using the COM Component Shape

Using the Script Component Shape

Using the Method Communication Wizard
On the Business Process page, the Compensation for Transaction page, and the On Failure of Transaction page you can use
the Method Communication Wizard to define the flow of messages between an Action shape and a COM Component shape or
a Script Component shape. If a message is sent, the XLANG schedule will call the method with the _in message and then wait to
receive the _out message from the component. If a message is to be received, the XLANG schedule will wait for another
application to send the the _in message to the method (by calling a method on the port), and then wait for the _out message from
the component to be sent back to the other application.

 Notes

For Visual Basic programmers, ByVal parameters will only appear in the _in message. All other parameters will appear in
both the _in message and the _out message.

For C Programmers, in parameters will appear in the _in message, out parameters will appear in the _out message, and
in,out parameters will appear in both messages.

For Visual Basic programmers and C programmers, if a parameter appears in both the _in message and the _out message,
the _in message will contain the contents of what was sent into the method, and the _out message will contain the contents
of what was returned by the method.

To start the Method Communication Wizard, drag the right control handle () of an Action shape to the connection point () on a
port bound to a COM Component shape or a Script Component shape. The Method Communication Wizard is made up of the
following three pages:

Welcome to the method communication wizard
On the Welcome to the method communication wizard page you can specify whether the XLANG Scheduler Engine will call a
method or wait for a method call. If you specify that the XLANG Scheduler Engine will wait for a method call, you can set a latency
value to indicate an amount of time in seconds that the XLANG Scheduler Engine is likely to have to wait before a message
arrives. If this value is 180 seconds or less, the XLANG schedule instance will never be dehydrated to the persistence database. If
this value is greater than 180 seconds, the XLANG schedule instance will be dehydrated to the persistence database immediately.
By default, the latency value is set to zero, indicating that the message is expected to arrive immediately.

If an XLANG schedule instance is rehydrated for any reason other than the arrival of a message for which an action is waiting (and
if the XLANG schedule instance then enters a quiescent state), the specified latency value is used to determine whether or not the
XLANG schedule instance will be immediately dehydrated. For example, this can occur when a concurrent branch receives a
message for which it was waiting, or when a computer restart causes all XLANG schedule instances to rehydrate. In this situation,
the latency value is evaluated from the point when the XLANG schedule instance enters a quiescent state. If the amount of time
from the beginning of the XLANG Scheduler Engine's original waiting period (combined with the latency value) is more than 180
seconds from when the XLANG Scheduler Engine entered the quiescent state after rehydration, the XLANG schedule instance will
be dehydrated to the persistence database immediately. This point in the XLANG schedule instance can occur long after the
XLANG Scheduler Engine begins monitoring the arrival of a message.

Message information
On the Message information page you can specify whether a new message or a reference to an existing message should be
created. If you specify that a reference to an existing message should be created, you can select from a list of previously created
messages that have been sent to or received from methods, and which already have corresponding Message shapes. If the
message you want to use is not listed, specify that a new message should be created, and define the data flow for the new
message.

Message specification information
On the Message specification information page you can select a message specification for the message you created or
referenced on the Message Information page.

Related Topics

Asynchronous Communication

Dehydration and Rehydration

Persistence

Synchronous and Asynchronous Communication

Synchronous Communication

Using the XML Communication Wizard

Synchronous Communication
The only methods available for use in synchronous communication are those that were selected for the port implementation.
Methods from other port implementations cannot be used, and XML messages from asynchronous communication flows cannot
be used. To change the available methods, rerun the appropriate binding wizard and select different methods.

The IN and OUT parameters are automatically determined by the parameter requirements of the method that you choose. Both
parameter lists contain the name and data type of the parameter. In addition to any parameters associated with the method, a
message also contains certain required system fields. A synchronous message always contains the following system fields:

__Sender__

This system field is a required IN parameter for the method used in a synchronous message.

__Status__

This system field is a required OUT parameter for the method used in a synchronous message.

Synchronous Messages
When you create a synchronous communication, a Message is created on the Data page. The Message corresponds to the
method and parameters that are used in the communication flow. The Message contains all IN parameters for the method, and
all OUT parameters for the method.

It is possible for a method to contain no parameters; however, the Message always contains required system fields. The Message
schema is shown in the following example:

Method name_in
__Sender__ string
 parameter 1 Data type 1
 parameter 2 Data type 2
 parameter n Data type n
Method name_out
__Status__ string
 Parameter 1 Data type 1
 Parameter 2 Data type 2
 Parameter n Data type n

The following illustration shows a synchronous message pair that contains the system fields __Sender__ and __Status__, as well as
IN and OUT parameters for the method call.

Method_out
Data type 3
Data type 2
Data type 1
String
Parameter 2
Parameter 1
Data type 2
Data type 1
Int
Status
Parameter 3
Parameter 2
Parameter 1

Sender
Method_in

Related Topics

Dehydration and Rehydration

Persistence

Synchronous and Asynchronous Communication

Using the Method Communication Wizard

Using the XML Communication Wizard
On the Business Process page, the Compensation for Transaction page, and the On Failure of Transaction page you can use
the XML Communication Wizard to define the flow of messages between an Action shape and a Message Queuing shape, a
BizTalk Messaging shape, or an unbound port. To start the XML Communication Wizard, drag the right control handle () of an
Action shape to the connection point () on an unbound port, or on a port bound to Message Queuing shape or a BizTalk
Messaging shape. The XML Communication Wizard is made up of the following five pages:

Welcome to the XML communication wizard
On the Welcome to the XML communication wizard page you can specify whether the port will send a message to an action,
or receive a message from an action. If you are creating the communication between an action and a port that has been
implemented using the BizTalk Messaging Shape, the communication direction has already been configured. This occurred when
the BizTalk Messaging Binding Wizard was used to create the port binding.

If the port is configured to receive messages, you can set a latency value to indicate an amount of time in seconds that the
XLANG Scheduler Engine will wait before a message arrives. If this value is 180 seconds or less, the XLANG schedule instance will
never be dehydrated to the persistence database. If this value is greater than 180 seconds, the XLANG schedule instance will be
dehydrated to the persistence database immediately. By default, latency is set to zero seconds, indicating that the message is
expected to arrive immediately.

If an XLANG schedule instance is rehydrated for any reason other than the arrival of a message for which an action is waiting (and
if the XLANG schedule instance then enters a quiescent state), the specified latency value is used to determine whether or not the
XLANG schedule instance will be immediately dehydrated. For example, this can occur when a concurrent branch receives a
message for which it was waiting, or when a computer restart causes all XLANG schedule instances to rehydrate. In this situation,
the latency value is evaluated from the point when the XLANG schedule instance enters a quiescent state. If the amount of time
from the beginning of the XLANG Scheduler Engine's original waiting period (combined with the latency value) is more than 180
seconds from when the XLANG Scheduler Engine entered the quiescent state after rehydration, the XLANG schedule instance will
be dehydrated to the persistence database immediately. This point in the XLANG schedule instance can occur long after the
XLANG Scheduler Engine begins monitoring the arrival of a message.

Message information
On the Message information page you can specify whether a new message or a reference to an existing message should be
created. If you specify that a new message should be created, define the data flow for the new message. For more information
about data flow, see Data Handling. The Label property of a message can be used to optimize the performance of a schedule in
the following manner:

If the Label property of the message is identical to the XML root element that is specified when creating a new Message
shape, the XLANG Scheduler Engine retrieves the message.

If the Label property does not match the value provided for the XML root element, the XLANG Scheduler Engine examines
the contents of the message. If the value of the XML root element that is specified when a new Message shape is created
matches the actual XML root element, the XLANG Scheduler Engine retrieves the message. Otherwise, the XLANG Scheduler
Engine leaves the message on the queue and checks the next message.

XML translation information
On the XML translation information page you can specify whether you want messages sent to or received from the queue as
XML formatted data or as text strings. If you specify that you want messages sent as text strings, the XLANG Scheduler Engine's
standard XML wrapper will be removed from the messages.

Message type information
On the Message type information page you can specify a label that the XLANG Scheduler Engine should use to identify
messages of the type you define. The text that you enter is used to identify the correct messages to receive from the message
queue. If you select the same message type for two different messages, make sure the field names, field types, and XPath queries
match exactly. The XLANG Scheduler Engine will report an error if there is an inconsistency between messages of the same
message type on the same port. On the Message type information page, in the Message type box, enter a label designation
for the message. The XLANG Scheduler Engine will perform the following procedures, based on the information you provide:

The XLANG Scheduler Engine will attempt to match the message type information with the message label in the queue.
When the message type is not matched, the message will be ignored, and the XLANG Scheduler Engine continues looking

for new incoming messages that might match. This enables multiple actions to receive multiple message types from a single
message queue.

If the message is in XML format on the queue, the XLANG Scheduler Engine will attempt to match the message type
information with the XML root element of the message on the queue.

Message specification information
On the Message specification information page you can type the path to the message specification (.xml) file that you want to
use, or you can browse to it. If the message specification you select is a specification that was created using BizTalk Editor, you will
be able to add fields to the data scope of the XLANG Scheduler Engine. You can validate messages against the specification by
selecting the Validate messages against the specification check box. By clicking Browse on the Message specification
information page, you can display the Browse for specification dialog box. You can use the Browse for specification dialog
box to find the specification that you want to use.

If you have not selected a specification, you can click Create on the Message specification information page to open BizTalk
Editor. If you have already selected a specification, you can click Edit on the Message specification information page to open
BizTalk Editor with the selected specification.

By clicking Add on the Message specification information page, you can display the Field selection dialog box. In the Field
selection dialog box, in the Select node tree, you can expand any nodes that you want, and then click the field that you want to
add. In the Field Selection dialog box, you can edit the name and the node path for fields you want to add to the message shape
for the selected port. The data type fields are displayed, but they are not editable.

 Notes

Validation is only available when a message is received. If a message is sent, the validation check box is ignored.

When you click a field in the Select node tree, the field name is automatically added to the Field name box.

When you click a field in the Select node tree, the node path to that field is automatically added to the Node path box.

Editing the node path manually is useful when you want to extract specific data from within a field. For example, if the field
contains an array, you might want to retrieve just one item from the array and not the entire array. However, it is
recommended that you refrain from manually editing the node path for your message specification.

You cannot select a node to add to the Message fields list. You can only select fields. A field also might be referred to as a
leaf node. For example, you cannot select the Seller or Address nodes because they contain leaf nodes. The Name and
Address fields can be selected because they are fields that do not contain additional nodes.

While waiting to receive a message from a message queue, some problems (such as invalid XML messages or insufficient
authentication) will cause a dead letter queue to be dynamically created. The dead letter queue is specific to a COM+
application. The dead letter queue will be given the name .\private$\ApplicationName.DeadLetter. For example, if a message
containing invalid XML arrives on the queue, and you have specified on the XML Translation Information page of the XML
Communication Wizard that the XLANG Scheduler Engine is expecting XML messages from the queue, any invalid XML
messages will be moved to .\private$\ApplicationName.DeadLetter.

If you design two different XLANG schedules to receive different messages from the same message queue, it is possible that
a message might be processed by the wrong XLANG schedule instance. To avoid this problem, use one message queue for
each type of message that is received by an XLANG schedule instance.

Related Topics

Asynchronous Communication

Synchronous and Asynchronous Communication

Synchronous Communication

Using the Method Communication Wizard

Asynchronous Communication
An asynchronous message is put into a message queue or BizTalk Messaging channel, and the XLANG schedule continues. It does
not wait for a response.

The only messages available for use in an asynchronous communication are XML messages. All XML messages are available for
use, and can be specified for more than one port. You cannot use any of the synchronous message pairs that are created by using
the Method Communication Wizard.

Asynchronous Messages
When you create an asynchronous communication, a Message is created on the Data page. The Message corresponds to
information that is sent or received in the communication flow. The Message contains required system fields and any additional
specification fields that you want.

The Message schema is shown in the following example:

Message name
__Sender__ string
Document string
 Field 1 Data type 1
 Field 2 Data type 2
 Field n Data type n

The following illustration shows a message named Message_1. The system fields __Sender__ and Document are automatically
provided and are present in all asynchronous messages. This message also contains two user-selected specification fields.

Field 2
Field 1
Document
Data type 1
string
Data type 2
string
Sender
Message_1

You can add a specification field by using the Field Selection dialog box that is in the XML Communication Wizard. In the Field
Selection dialog box, you can select specification field by clicking a node in the Select node tree. When you click a node, the
node path is added to the Node path box. You must select a leaf node. A leaf node is a node with no children. In the following
illustration, the node Name is a leaf node; however, the node Address is not a leaf node.

A node path is also known as an XPath. You can use the node path as it is selected, or you can type additional criteria to the path.
For example, if you select a node that contains an array, you might want to specify a specific index in the array to retrieve, rather
than retrieving the entire array.

 Note

If you choose to send or receive an XML message as a string, the Message shape that is created on the Data page for this
message contains a field named StringData, and you cannot add specification fields to this message.

The following illustration shows the Field Selection dialog box.

Click the illustration to enlarge or reduce.

For more information about selecting specification fields and using node paths, see the following topics:

Node Path Fields

Using the XML Communication Wizard

Send or receive asynchronous messages

Creating Specifications

Related Topics

Creating Specifications

Dehydration and Rehydration

Node Path Fields

Persistence

Send or receive asynchronous messages

Synchronous and Asynchronous Communication

Using the XML Communication Wizard

Compiling XLANG Schedules
When you have completed an XLANG schedule drawing, you can compile the drawing into an executable XLANG schedule. Before
you compile the drawing, make sure the flow of data between messages has been defined on the Data page. An XLANG schedule
describes the business process and the binding of that process to an implementation technology.

BizTalk Orchestration Designer is designed to provide as much useful information as possible when a problem in your XLANG
schedule is discovered during the compilation process. If BizTalk Orchestration Designer encounters an error, it highlights the
shape that contains the error, displays an error message, and cancels the compilation of the XLANG schedule.

During compilation, BizTalk Orchestration Designer examines each shape to determine if it is complete and correct. The
XLANG Scheduler Engine processes the Begin shape on the Business Process page first, and then descends recursively through
the entire drawing. If the XLANG Scheduler Engine encounters an error, the error will typically occur when the business process
flows to a shape in a deeply nested position. To report the error, the XLANG Scheduler Engine constructs an appropriate error
message. Then, as the XLANG Scheduler Engine returns up through the stack, each method has an opportunity to concatenate its
own error message to the original error message. If none of the methods concatenates an error message to the original error
message, the top-level compilation method adds the following generic error message: Failed to process the XLANG schedule.

The compiled XLANG schedule contains a globally unique identifier (GUID) that matches the XLANG Identity property of the
Begin shape. This identification can be used to correlate a version of the XLANG schedule drawing with the XLANG schedule that
generated it.

 Note

It is highly recommended that you review the How to section for task-specific information about using BizTalk Orchestration
Designer to create XLANG schedule drawings and compile them into executable XLANG schedules.

Related Topics

Compile and Debug XLANG Schedules

Compile an XLANG schedule drawing into an XLANG schedule

Debugging XLANG Schedules

Debugging XLANG Schedules
XLANG Event Monitor is a tool that you can use to monitor running XLANG schedule instances. For specific information about
using XLANG Event Monitor, see the associated Readme.htm file. Both XLANG Event Monitor (XLANGMon.exe) and the readme
installed by the Microsoft BizTalk Server 2000 Setup Wizard are located in the following installation directory: ..\Program
Files\Microsoft BizTalk Server\SDK\XLANG Tools.

XLANG Event Monitor includes the following features:

XLANG Event Monitor displays the XLANG Scheduler Engine working in real time.

After the initial enumeration of the running schedules, XLANG Event Monitor monitors events. XLANG Event Monitor can be
used to suspend and stop running instances.

XLANG Event Monitor has a multiple-document interface (MDI)-like user interface that enables you to simultaneously view
multiple instance traces.

It can simultaneously monitor selected applications on multiple computers.

XLANG Event Monitor provides separate recording and viewing filters.

Related Topics

Compile and Debug XLANG Schedules

Compiling XLANG Schedules

Monitor Running XLANG Schedules

XLANG Schedule Error Messages

Running XLANG Schedules
When installing BizTalk Orchestration Designer, several COM+ applications are installed and configured within Microsoft
Windows 2000 Component Services, including the XLANG Scheduler COM+ application. This application hosts a default instance
of the XLANG Scheduler Engine. Each new COM+ application created in Component Services has an XLANG tab on the properties
dialog box. On the XLANG tab you can enable the new COM+ application to host the XLANG Scheduler Engine. The specific
COM+ application in which a new XLANG schedule will execute can be determined through the moniker syntax used to activate
an instance of an XLANG schedule.

The XLANG Scheduler Engine controls the activation, execution, dehydration, and rehydration of running XLANG schedule
instances. To activate an XLANG schedule, you can create a small application that passes the moniker of an XLANG schedule to the
XLANG Scheduler Engine. The XLANG Scheduler Engine performs the actions within the XLANG schedule and continues the
business process sequence until it becomes necessary to dehydrate the XLANG schedule. Dehydrating an XLANG schedule occurs
when the XLANG Scheduler Engine expects to wait for more than three minutes to receive a message. When the message arrives,
the XLANG Scheduler Engine rehydrates the XLANG schedule instance and continues to perform the actions in the business
process sequence until the schedule either completes or the XLANG Scheduler Engine has to wait for another message. To
support dehydration, you must have a persistence database configured. The recommended network library is TCP/IP.

To display Microsoft Windows 2000 Component Services information, perform the following procedure:

1. On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Component Services.

2. In the console tree, expand Component Services, expand Computers, expand My Computer, and then expand COM+
Applications.

The XLANG tab on the Component Services Properties dialog box displays the following options:

This application is a host for XLANG schedule instances. If enabled, this COM+ application might activate instances of
XLANG schedules. To direct the activation of a schedule instance to a particular COM+ application, use a moniker form that
includes the name of the application. Check this option when you want the application to serve as a host for the XLANG
Scheduler Engine.

Persistence. In this area you can configure Microsoft SQL Server to support the dehydration and rehydration of long-
running business processes:

Create DSN creates the ODBC Data Source Name (DSN) for the COM+ application hosting the XLANG Scheduler
Engine. A file DSN stores information about a database connection in a file. The file has the extension .dsn and by
default is stored in the $\Program Files\Common Files\ODBC\Data Sources directory. Click the Create DSN button
to start the DSN Wizard.

Configure DSN opens the ODBC Data Source Administrator to manage the data source for XLANG schedules in
this COM+ application.

Initialize Tables creates the tables that are needed to support persistence in the SQL Server database you have
defined.

 Important

The Data Source Name configured in the XLANG Scheduler Properties dialog box must be the same as the name
of the COM+ application.

Controlled shutdown. In this area you can select a valid way to shut down the COM+ applications hosting XLANG
schedule instances:

All XLANG Applications shuts down all COM+ applications that are hosting running XLANG schedule instances.

 Note

If you have selected an application other than the default application, This XLANG Application will be displayed.
Restart dehydrated XLANG applications. In this area you can manage dehydrated XLANG applications:

All XLANG Applications rehydrates all COM+ applications that are hosting XLANG schedule instances and, if
possible, continues to run them.

 Important

Do not right-click the COM+ application to shut down running instances of an XLANG schedule. This will leave COM
components loaded in memory instead of unloading them correctly. Instead, use the Controlled Shutdown area of the
XLANG tab in the properties for the XLANG Scheduler COM+ application.

 Notes

When using the client for Microsoft Windows 2000 Terminal Services to initiate an XLANG schedule, the COM+ application
hosting the XLANG Scheduler Engine must have its identity set to a valid Windows 2000 user or group name. The identity of
the COM+ application is set on the Identity page of the properties dialog box for that application. The identity cannot be set
to interactive when using the XLANG Scheduler Engine through a session hosted by Terminal Services.

For task-specific information about running an XLANG schedule, see Run an XLANG Schedule.

The following topics are covered in this section:

Moniker Syntax

Creating an Instantiating Application

Moniker Syntax
Monikers are used to create new XLANG schedule instances or to refer to an existing XLANG schedule instance. In either case, you
can refer to a specific port within the schedule instance. Monikers determine which COM+ application will host the
XLANG Scheduler Engine.

To create a new instance of an XLANG schedule, a moniker for the XLANG schedule must be passed to the COM+ application. The
COM+ application forwards the moniker to the XLANG naming service for resolution and to activate the XLANG schedule
instance with an instance of the XLANG Scheduler Engine. The following code sample shows the general syntax for monikers:

sked://[HostName][!GroupManager][/FilePath][/PortName]

Each segment of the moniker syntax is optional, depending on what type of object you want to instantiate. The following table
lists and describes each of the moniker syntax segments.

Monike
r syntax
segmen
t

Description Examples

HostNa
me

The Host name of the computer running the XLANG Scheduler Engine. This is also referred to as the XLANG
system manager. If omitted, the localhost is used as the default value. This name is not case-sensitive.

sked://
sked://My
Server

GroupM
anager

The XLANG Scheduler Engine group manager that is used to manage XLANG schedule instances. The name
of the group manager is the same as the COM+ application that is designated as an XLANG host. If omitted,
XLANG Scheduler is used as the default value. This name is case-sensitive and may contain spaces.

sked:///
sked://Ano
therServer
!/
sked://Ano
therServer
!MyGroup
/

FilePath The path to an XLANG schedule file (.skx) to be activated. This value is not case-sensitive. sked://hos
t1!MyGrp/
C:\basic.sk
x
sked:///C:\
basic.skx

PortNa
me

The name of a port that is bound to a COM or Windows Script component on an XLANG schedule. This nam
e is case-sensitive.

sked:///C:\
basiccom.s
kx/portA

Moniker syntax can be used to refer to an existing XLANG schedule instance, start an XLANG schedule, or to establish a
communication channel with a particular port on the new XLANG schedule instance.

Monikers that refer to an XLANG schedule instance are created by the XLANG Scheduler Engine and are made available by
creating a connection between the Port References shape and messages that are sent by the XLANG schedule. The exact form of
the port reference depends on which implementation technology the port is bound to and the data type of the target message
field. Ports that are bound to Message Queuing or BizTalk Messaging Services can only be connected to fields of data type String.
The target field contains the name of the queue or messaging endpoint that is bound to the port in the current XLANG schedule
instance.

Ports bound to COM components can be connected to fields of data type String, Object, or Unknown. If the target field is of
data type String, a moniker is created that refers to a port in the current XLANG schedule instance. This moniker is durable. It can
be resolved by using the GetObject function, and the moniker remains valid after a system restart. If the target field is of data
type Object or Unknown, a COM reference to the port instance is passed to the message shape. If this kind of reference is
passed to an external component, it is not valid after a system restart.

The moniker to reference a running XLANG schedule instance can be obtained from the XLANG schedule instance object, as
shown in the following Microsoft Visual Basic code:

Dim oSchedule as IWFWorkflowInstance
Set oSchedule = GetObject("sked:///C:\temp\myschedule.skx")
dim sMoniker as string
sMoniker = oSchedule.FullyQualifiedName

Related Topics

Creating an Instantiating Application

Running XLANG Schedules

Creating an Instantiating Application
An instantiating application passes a moniker for the completed XLANG schedule file to the XLANG Scheduler Engine by using the
COM function GetObject. The following Microsoft Visual Basic code shows how to do this:

Dim objExecute As object
Dim strURL as string

strURL = "sked:///c:\temp\myschedule.skx"

' This enables the XLANG Scheduler Engine to execute the XLANG schedule.
Set objExecute = GetObject(strURL)

If you did not specify a port in the moniker, the Port property of the object that is returned by the GetObject function enables
you to obtain a reference to a port that is bound to a COM component. Similarly, the FullPortName property enables you to
obtain the full, durable name of a port bound to an implementation technology.

The following code shows how to obtain a proxy to a COM or Script port. This code sample continues from the previous code
sample.

Dim oPort as Object
Set oPort = objExecute.Port("SchedulePortName")
Call oPort.ComponentMethodName(arg1,arg2,...argN)

 Note

If the port is bound to a COM object that does not support a dual interface, the oPort variable must be declared with the
appropriate class.

Related Topics

Moniker Syntax

Running XLANG Schedules

Managing Session State
On the Advanced Properties page of the COM Component Binding wizard, you can select a state management value for the
level of persistence that your COM component supports. In the State management support area, select one of the following
options:

Holds no state. This specifies that the XLANG Scheduler Engine will terminate the component instance when it is
dehydrated. If you select this setting, the XLANG Scheduler Engine will create a new component instance, if it is required,
when the schedule is rehydrated.

Holds state, but doesn't support persistence. This specifies that the XLANG Scheduler Engine will be required to leave
the component instance running. If the system fails while the application is dehydrated, any state that has been held in this
component will be lost.

Holds state, and does support persistence. This specifies that the XLANG Scheduler Engine will remove the component
instance from memory, and then restore it to memory by calling either IPersistStream or IPersistStreamInit on the
component during dehydration, and then again during rehydration.

Related Topics

Instance management

Updating XLANG Schedules
There are two ways to update an XLANG schedule. You can overwrite the original XLANG schedule, or you can add a new XLANG
schedule that will run concurrently with the original XLANG schedule.

To overwrite the original XLANG schedule, use BizTalk Orchestration Designer to create a new XLANG schedule drawing and then
compile the XLANG schedule drawing as an XLANG schedule that has the same name as the original XLANG schedule. The XLANG
schedule drawing is saved as an .skv file, which is a customized version of the Microsoft Visio 2000 file format. You can then
compile the XLANG schedule drawing into an XLANG schedule, which is an XML-structured .skx text file that the
XLANG Scheduler Engine understands. To update the original XLANG schedule, copy the new .skx file over the original .skx file.

To add a new XLANG schedule that will run concurrently with the original XLANG schedule, use BizTalk Orchestration Designer to
create a new XLANG schedule drawing and compile the XLANG schedule drawing as an XLANG schedule with a new name. To
ensure that the new XLANG schedule will be correctly activated, you must change the XLANG schedule instance activation
mechanism to point to the new .skx file instead of pointing to the old .skx file. When you have completed this process, new
requests for XLANG schedules will create instances of the new XLANG schedule.

Because all XLANG schedules and their components typically work on a per-instance basis, XLANG schedule instances that are in
the process of executing the original schedule will continue to run to completion. This includes XLANG schedule instances that
have been persisted because the source code of the original schedule has been saved. In this scenario, the execution path will
continue to follow the original business process, and new requests for XLANG schedules will create instances of the new XLANG
schedule.

 Note

When an XLANG schedule uses an object with an interface that has changed, you should load the XLANG schedule drawing
(the .skv file) into BizTalk Orchestration Designer and compile a new .skx file. This will update the binding information in the
.skx file, enabling synchronization with the component's type library.

Configuring BizTalk Messaging Services
Microsoft BizTalk Server 2000 provides two methods for configuring BizTalk Messaging Services to manage the exchange of
documents between trading partners and applications within your business. You can use either BizTalk Messaging Manager,
which is a graphical user interface (UI), or directly access the BizTalk Messaging Configuration object model.

Using BizTalk Messaging Manager or the BizTalk Messaging Configuration object model, you can create messaging ports and
channels to manage the exchange of data. You also can create document definitions, envelopes, and organizations, which you use
to create messaging ports and channels; and distribution lists, which are groups of messaging ports.

 Note

To access or create objects either by using BizTalk Messaging Manager or the BizTalk Messaging Configuration object
model, or to run scripts or applications that access or create such objects, you must belong to a user account in the BizTalk
Server Administrators group. The BizTalk Server Administrators group is created when BizTalk Server 2000 is installed.
Additional users can be added to this group as necessary. For more information about adding a user account,
see Add users to the BizTalk Server Administrators group.

The following topics are covered in this section:

Using BizTalk Messaging Manager

Accessing the BizTalk Messaging Configuration Object Model

Using BizTalk Messaging Manager
BizTalk Messaging Manager is a graphical user interface (UI) with which you can manage the exchange of documents by
configuring BizTalk Messaging Services. BizTalk Messaging Services can also be configured programmatically. For more
information, see Accessing the BizTalk Messaging Configuration Object Model.

 Caution

You should use BizTalk Messaging Manager to configure BizTalk Messaging Services prior to processing documents.
Accessing and modifying objects that might be in use while BizTalk Server 2000 is processing documents can produce
unexpected results.

Documents can be exchanged between trading partners and applications within your business. BizTalk Messaging Manager is
available both locally from the computer on which BizTalk Server 2000 is installed and remotely as a client application. This
enables system administrators to retain security and central control of the server, while enabling remote users to access BizTalk
Messaging Manager.

Microsoft BizTalk Server 2000 Help provides information about how to create and manage channels, messaging ports,
document definitions, envelopes, and organizations, as well as how to use distribution lists.

BizTalk Messaging Manager objects
The following illustration shows the relationship between the objects that you can create by using BizTalk Messaging Manager.

Application (Home organization)
Document
definition
(Inbound)
Messaging Port
(Destination)
Channel
(Source)
Channel
Envelope
Distribution List
Messaging
Ports
Document
definition
(Outbound)
Organization (Trading partner)
Inbound
document
Outbound
document

The following summary provides a brief overview of the objects that you can create by using BizTalk Messaging Manager. This
summary also further explains the relationship between the objects. For more detailed information about each object, click the
link at the end of each description to go to the Help topic for that object.

Channels

Channels are the primary objects in BizTalk Messaging Manager. The purpose of all other BizTalk Messaging Manager objects is
to either create channels or support the operation of channels. Channels identify the source of documents, which can be an
organization, an application within your business, or an XLANG schedule. Channels also identify inbound and outbound
documents by using document definitions. For more information, see Understanding Channels.

Messaging ports

Messaging ports identify a destination for the documents that are processed by a channel. The destination can be an organization,
an application within your business, or an XLANG schedule. A messaging port specifies a destination address to which the
documents are sent, how they are transported to that address, and if and how they are secured and enveloped. For more
information, see Understanding Messaging Ports.

Organizations

Organizations represent other trading partners with which you exchange documents. A special organization type, called the
home organization, represents your business. You can create applications for the home organization that represent the internal
applications that your business uses. Organizations and applications serve as the source for a channel or the destination for a
messaging port. For more information, see Understanding Organizations.

Document definitions

A document definition represents a specific type of document that is processed by BizTalk Server 2000. A document definition
provides a pointer to a specification. Specifications define the document structure, type, and version. Channels specify an inbound
and an outbound document definition to indicate which documents the server processes. A document definition can be used in
any number of channels. For more information, see Understanding Document Definitions.

Envelopes

Envelopes provide BizTalk Server 2000 with the information that the server needs to either open inbound or create outbound
interchanges. Envelopes can be selected from within a messaging port to direct the server in creating outbound interchanges.
Envelopes, which are independent of a messaging port, can be used by BizTalk Server 2000 to open inbound interchanges. For
more information, see Understanding Envelopes.

Distribution lists

Distribution lists are groups of messaging ports with which you can send the same document to a group of different trading
partner organizations or internal applications. You must create at least one channel for a distribution list, just as you do for an
individual messaging port. For more information, see Understanding Distribution Lists.

 Notes

The objects that you can create by using BizTalk Messaging Manager can also be created programmatically by using the
BizTalk Messaging Configuration object model. For more information,
see Accessing the BizTalk Messaging Configuration Object Model.

The objects that you can create by using BizTalk Messaging Manager also use objects that you can create by using other
BizTalk Messaging Services user interfaces. Channels use maps, which you can create by using BizTalk Mapper. Document
definitions use document specifications, and envelopes use envelope specifications. You can create specifications by using
BizTalk Editor.

For help with specific tasks, see How To.

For general background information, see Concepts.

How To...
This section provides task-specific information about how to use BizTalk Messaging Manager. It is highly recommended that you
review the Concepts section to fully understand the relationship between objects that you can create by using BizTalk Messaging
Manager.

The following topics are covered in this section:

Create and Manage Channels

Create and Manage Messaging Ports

Create and Manage Organizations

Create and Manage Document Definitions

Create and Manage Envelopes

Use Distribution Lists

Create and Manage Channels
This section provides task-specific information about how to create and manage channels. It is highly recommended that you
review Understanding Channels in the Concepts section to fully understand channels.

The following procedures are covered in this section:

Create channels

Search for channels

Edit channels

Delete channels

Set Channel Properties

Create channels
You must create a messaging port or a distribution list before you can create a channel. For more information,
see Create messaging ports or Create distribution lists.

1. In BizTalk Messaging Manager, in the Search for other items area, click Messaging ports or Distribution lists and click
Search Now.

2. In the Messaging Port Name list, click the messaging port for which you want to create a channel.

–Or–

In the Distribution List Name list, click the distribution list for which you want to create a channel.

3. In BizTalk Messaging Manager, on the File menu, point to New, point to Channel, and then complete one of the following
steps:

To create a channel from an organization, click From an Organization.

To create a channel from an application, click From an Application.

The New Channel Wizard opens.

4. On the General Information page, set the properties and click Next.

For more information, see Set general channel-information properties.

5. Complete one of the following steps:

If you are creating a channel from an organization, set the properties on the Source Organization page and click
Next. For more information, see Set source organization properties.

If you are creating a channel from an application, set the properties on the Source Application page and click Next.
For more information, see Set source application properties.

6. On the Inbound Document page, set the properties and click Next.

For more information, see Set inbound document properties.

7. On the Outbound Document page, set the properties and click Next.

For more information, see Set outbound document properties.

8. On the Document Logging page, set the properties and click Next.

For more information, see Set document logging properties.

9. On the Advanced Configuration page, set the properties and click Next.

For more information, see Set advanced configuration properties.

10. After you have set all channel properties, on the Advanced Configuration page click Finish to close the Channel Wizard.

 Notes

You cannot name a channel using the reserved system name, Reliable Message Acknowledgement Channel.

You can use this procedure to create either a standard channel or a receipt channel. The procedures in this section contain
notes that explain which channel properties are not available when you are creating a receipt channel.

If you create a messaging port and a channel to use for a pass-through submission of data, you can use only the service
window and the retry count and interval features of the channel, and the transport features of its associated messaging port.
You cannot use the verification of decoding or decryption, filtering, document tracking, or mapping features of the channel.

When you save a channel that references a map that is outside of your local domain, you might receive an error. If you
receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the Microsoft MSDN Web

site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration Utility page, which is
located in the XML chapter of the Web Development book.

Related Topics

Delete channels

Edit channels

Search for channels

Set Channel Properties

Understanding Channels

http://msdn.microsoft.com/downloads/default.asp

Search for channels
1. In BizTalk Messaging Manager, in the Search for other items area, click Channels.

2. To search for all channels, clear all search criteria and click Search Now.

3. Do one or more of the following:

To search for channels with a specific name, in the Search for channels area, in the Channel name box, type the
name of the channel that you want to find and click Search Now. You can enter an incomplete name and the search
returns all possible names that match the incomplete name entry.

To search for channels from a specific type of source, in the Source list, click a source type and click Search Now.

To search for channels associated with a specific messaging port or distribution list, in the Associated with
messaging port or distribution list box, type the name of a messaging port or distribution list and click Search
Now. You can enter an incomplete name and the search returns all possible names that match the incomplete name
entry.

To search for channels that use a specific document definition, in the Using document definition box, type the name
of a document definition and click Search Now. You can enter an incomplete name and the search returns all possible
names that match the incomplete name entry.

 Notes

You can set more than one search criteria before clicking Search Now.

To clear the search criteria and search results, click Clear Search.

You can also search for channels associated with a specific messaging port or distribution list by right-clicking the
messaging port or distribution list and clicking Find Channels.

If you have a large number of objects for which to search, it might take several minutes to return all the objects. You can
narrow the objects returned in a search by using selection criteria.

The default number of items returned in a search is 500. You can adjust this number. For more information,
see Set server connection options.

You can use the following wildcard characters in the search criteria.
Wildcard
character

Description Example

% Any string of zero or more characters. The entry '%open%' finds all names with the word 'open' anywhere in t
he name.

_ (undersc
ore)

Any single character. The entry '_ean' finds four-letter names that end with ean (Dean, Sean, a
nd so on).

[] Any single character within the specifie
d range ([a-f]) or set ([abcdef]).

The entry '[C-P]arsen' finds names ending with arsen and beginning wit
h any single character between C and P (Carsen, Larsen, and so on).

[^] Any single character not within the spe
cified range ([^a-f]) or set ([^abcdef]).

The entry 'de[^s]%' finds all names beginning with de and where the fol
lowing letter is not s.

Related Topics

Delete channels

Edit channels

Set Channel Properties

Understanding Channels

Edit channels
1. In BizTalk Messaging Manager, in the Channel Name list, click the channel that you want to edit.

For information about searching for channels, see Search for channels.

2. On the File menu, click Edit.

The Channel Properties Wizard opens.

3. On the General Information page, edit the appropriate properties.

For more information, see Set general channel-information properties.

After editing the properties on any page, you can click Finish to close the Channel Properties Wizard or click Next to edit
additional channel properties.

4. Complete one of the following steps:

If you are editing a channel from an organization, edit the appropriate properties on the Source Organization page.
For more information, see Set source organization properties.

If you are editing a channel from an application, edit the appropriate properties on the Source Application page. For
more information, see Set source application properties.

5. On the Inbound Document page, edit the appropriate properties.

For more information, see Set inbound document properties.

6. On the Outbound Document page, edit the appropriate properties.

For more information, see Set outbound document properties.

7. On the Document Logging page, edit the appropriate properties.

For more information, see Set document logging properties.

8. On the Advanced Configuration page, edit the appropriate properties.

For more information, see Set advanced configuration properties.

 Notes

You cannot name a channel using the reserved system name, Reliable Message Acknowledgement Channel.

When you save a channel that references a map that is outside of your local domain, you might receive an error. If you
receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the Microsoft MSDN Web
site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration Utility page, which is
located in the XML chapter of the Web Development book.

Related Topics

Create channels

Delete channels

Search for channels

Set Channel Properties

Understanding Channels

http://msdn.microsoft.com/downloads/default.asp

Delete channels
1. In BizTalk Messaging Manager, in the Channel Name list, click the channel that you want to delete.

For information about searching for channels, see Search for channels.

2. On the File menu, click Delete.

 Note

You cannot delete the receipt channel until all channels that refer to it have been deleted.

Related Topics

Create channels

Edit channels

Search for channels

Set Channel Properties

Understanding Channels

Set Channel Properties
This section provides task-specific information about how to configure the properties of a channel. The following procedures are
covered in this section:

Set general channel-information properties

Set source organization properties

Set source application properties

Set inbound document properties

Set outbound document properties

Set document logging properties

Set advanced configuration properties

Select a source organization

Select a receipt channel

Select an inbound document definition

Select a certificate to verify inbound document decryption

Select a certificate to verify inbound document signature

Select an outbound document definition

Select a map

Select a certificate for outbound signature

Override messaging port defaults

Override distribution list defaults

Set Tracking for Inbound Document Properties

Set Channel Filtering Properties

Set general channel-information properties
1. On the General Information page of the Channel Wizard, in the Name box, type the name of the channel.

2. In the Comments box, type any comments for the channel.

3. If you want to create a receipt channel, select the This is a receipt channel check box.

If you are creating a new channel, click Next. For instructions about completing the next step, go to Create channels.

If you are editing an existing channel, click Next. For instructions about completing the next step, go to Edit channels. When you
have completed your changes, click Finish.

 Notes

A receipt channel is a special type of channel that you use to return a receipt to the sender of a document that is received by
BizTalk Server 2000. For more information about receipts, see Understanding Receipts.

You cannot create a receipt channel for an open messaging port or a distribution list.

Related Topics

Create channels

Edit channels

Set Channel Properties

Set source organization properties
1. On the Source Organization page of the Channel Wizard, complete one of the following steps:

Click Open source to create an open channel, which designates that the source is provided either by data within the
document or in parameters submitted along with the document, and click Next.

For more information about submitting documents, see Submitting.

Click Organization to designate a trading partner organization as the source and proceed to step 2.

2. In the Organization area, click Browse.

The Select an Organization dialog box appears.

3. Click an organization and click OK.

For more information, see Select a source organization.

4. If you want to override the default organization identifier for the source organization, click another identifier in the
Organization identifier list.

5. If you require a receipt from the destination, as specified in the messaging port, select the Expect receipt check box and, in
the Receipt interval in minutes box, type a value or click the up or down arrow to increase or decrease the value.

The default value is 120 minutes. For more information about receipts, see Understanding Receipts.

6. If you want to generate a receipt to the source, select the Generate receipt check box, click Browse, and then select a
receipt channel.

For more information, see Select a receipt channel.

If you are creating a new channel, click Next. For instructions about completing the next step, go to Create channels.

If you are editing an existing channel, click Next. For instructions about completing the next step, go to Edit channels. If you have
completed your changes, click Finish.

 Notes

When you select a source organization identifier for use with X12 envelopes, do not select the organization identifier named
Organization, or any other identifier that has a qualifier that exceeds 2 characters or a value that exceeds 15 characters.

When you select a source organization identifier for use with EDIFACT envelopes, do not select the organization identifier
named Organization, or any other identifier that has a qualifier that exceeds 4 characters or a value that exceeds 35
characters.

If you are editing a channel from a specific organization, the Open Source option is not available and you cannot change
the source organization. If you are editing an open channel, the Organization option is not available.

If you are creating or editing a receipt channel, the Expect receipt and Generate receipt properties are not available.

Related Topics

Create channels

Edit channels

Set Channel Properties

Understanding Receipts

Set source application properties
1. On the Source Application page of the Channel Wizard, complete one of the following steps:

Click XLANG Schedule to designate that the source is an XLANG schedule and click Next.

You should not choose this option if you are creating a channel for an open messaging port. For more information
about integrating BizTalk Messaging Services with BizTalk Orchestration Services, see Integrating BizTalk Services.

Click Application to designate an application of the home organization as the source and proceed to step 2.

2. In the Name list, click an application.

3. If you want to override the default organization identifier for the home organization, click another identifier in the
Organization identifier list.

4. If you want to receive a receipt from the destination, select the Expect receipt check box and, in the Receipt interval in
minutes box, type a value or click the up or down arrow to increase or decrease the value.

The default value is 120 minutes. For more information about receipts, see Understanding Receipts.

5. If you want to generate a receipt to the source, select the Generate receipt check box, click Browse, and then select a
receipt channel.

For more information, see Select a receipt channel.

If you are creating a new channel, click Next. For instructions about completing the next step, go to Create channels.

If you are editing an existing channel, click Next. For instructions about completing the next step, go to Edit channels. If you have
completed your changes, click Finish.

 Notes

You can create an XLANG schedule by using BizTalk Orchestration Designer.

When you are creating or editing a receipt channel, or a channel for which an XLANG schedule is specified as the source, the
Expect receipt and Generate receipt properties are not available.

Related Topics

Create channels

Edit channels

Integrating BizTalk Services

Set Channel Properties

Understanding Receipts

Set inbound document properties
1. On the Inbound Document page of the Channel Wizard, to the right of the Inbound document definition name box,

click Browse.

The Select a Document Definition dialog box appears.

2. Click a document definition and click OK.

For more information, see Select an inbound document definition.

3. If you want to verify decryption for the inbound document, select the Verify decryption certificate on inbound
document check box. Then, to the right of the Certificate to verify decryption box, click Browse.

The Select Certificate to Verify Decryption dialog box appears.

4. Select a certificate.

For more information, see Select a certificate to verify inbound document decryption.

5. If you want to verify the digital signature on the inbound document, select the Verify signature certificate on inbound
document check box. Then, to the right of the Certificate to verify signature box, click Browse.

The Select Certificate to Verify Signature dialog box appears.

6. Select a signature certificate.

For more information, see Select a certificate to verify inbound document signature.

7. If you want to track fields in the inbound document, select the Track inbound document check box and click Tracking.

The Tracking for Inbound Document dialog box appears.

8. Set the tracking properties.

For more information, see Set Tracking for Inbound Document Properties.

9. If you want to create a channel filtering expression for the inbound document, select the Filter inbound document check
box and click Filtering.

The Channel Filtering Expressions dialog box appears.

10. Set the filtering properties.

For more information, see Set Channel Filtering Properties.

If you are creating a new channel, click Next. For instructions about completing the next step, go to Create channels.

If you are editing an existing channel, click Next. For instructions about completing the next step, go to Edit channels. If you have
completed your changes, click Finish.

 Notes

When you create a receipt channel, both the inbound and outbound document definitions default to the BizTalk Canonical
Receipt and cannot be transformed by using a map. To transform the outbound receipt to a different format, you must
create and select in the receipt channel an inbound document definition that refers to the canonical receipt specification in
the WebDAV repository. You also must create and select in the receipt channel an outbound document definition that refers
to a specification with the format that you want for the outbound receipt, and specify a map in the receipt channel to
transform the formats. For more information, see Understanding Receipts.

When you create a receipt channel that uses the default BizTalk Canonical Receipt for the inbound document definition, the
tracking and filtering properties are unavailable.

When you create a channel for an open messaging port, and the destination information is provided in the document, the
inbound document definition for that channel must reference a specification that is properly configured. For more
information about how to configure a document specification to process documents for an open messaging port,
see Set dictionary properties.

Related Topics

Create channels

Edit channels

Set Channel Properties

Set outbound document properties
1. On the Outbound Document page of the Channel Wizard, to the right of the Outbound document definition name

box, click Browse.

The Select a Document Definition dialog box appears.

2. Click a document definition and click OK.

For more information, see Select an outbound document definition.

3. If you want to specify a map, select the Map inbound document to outbound document check box. Then, to the right of
the Map reference box, click Browse.

The Select a Map from the WebDAV Repository dialog box appears.

4. Select a map specification.

For more information, see Select a map.

5. If you want to digitally sign the outbound document, select the Sign outbound document check box. Then, to the right of
the Signature certificate box, click Browse.

If you are creating a channel for a messaging port for which the Signature property on the Security Information page is
set to S/MIME, the Sign outbound document check box is automatically selected.

The Select a Signature Certificate dialog box appears.

6. Select a signature certificate.

For more information, see Select a certificate for outbound signature.

If you are creating a new channel, click Next. For instructions about completing the next step, go to Create channels.

If you are editing an existing channel, click Next. For instructions about completing the next step, go to Edit channels. If you have
completed your changes, click Finish.

 Important

The format of an envelope that you specify in a messaging port must agree with the format of the document or documents
that it contains. The document format is determined by the specification referred to in the outbound document definition of
an associated channel. For example, if you choose an envelope with an X12 format for a messaging port, you must select an
outbound document definition for the channel that points to an X12 specification.

When you declare a messaging port as an open messaging port, you should not create channels for the messaging port that
have an outbound document definition with an X12 or EDIFACT specification. To build an X12 or EDIFACT envelope, the
server must have a source and a destination organization identifier. An open messaging port does not specify a destination
organization identifier. In addition, the documents for an open messaging port must have the destination address within the
document, but X12 and EDIFACT documents do not contain this information.

The first time that you open any WebDAV repository dialog box, the WebDAV repository on the local server is selected, even
if your BizTalk Messaging Manager is connected to a database on a remote server. If you browse to a WebDAV repository
on a remote server, the default changes to that server until you select a new WebDAV repository. The default server for all
WebDAV repository dialog boxes is the last server to which a connection was made.

 Notes

When you create a receipt channel, both the inbound and outbound document definitions default to the BizTalk Canonical
Receipt and cannot be transformed by using a map. To use a different format for an outbound receipt, you must create and
select an inbound document definition that refers to the canonical receipt specification in the WebDAV repository. You also
must create an outbound document definition that refers to a specification with the format that you want for the outbound
receipt, as well as a map that transforms the format of the receipt. For more information about receipts,
see Understanding Receipts.

A map is used to transform the inbound document format into the outbound document format. If the specification reference
of the inbound document matches that of the outbound document, no map is required. By default, the Map inbound

document to outbound document check box is not selected. Maps can be created using BizTalk Mapper. For more
information about maps, see Mapping Data.

Related Topics

Create channels

Edit channels

Set Channel Properties

Understanding Receipts

Set document logging properties
1. On the Document Logging page of the Channel Wizard, in the Log inbound document area, select the appropriate

check boxes:

In native format. Stores inbound documents for the channel in the original format. This is the default setting.

In XML format. Stores inbound documents for the channel in XML format.

2. In the Log outbound document area, select the appropriate check boxes:

In native format. Stores outbound documents for the channel in the original format.

In XML format. Stores outbound documents for the channel in XML format.

If you are creating a new channel, click Next. For instructions about completing the next step, go to Create channels.

If you are editing an existing channel, click Next. For instructions about completing the next step, go to Edit channels. If you have
completed your changes, click Finish.

 Notes

There is size limit for documents that use logging, which if exceeded will greatly affect the performance of BizTalk Server.
For more information about the size limit, see Interchange and document size limit.

BizTalk Server 2000 translates non-XML inbound documents from their original, native format into an XML format for
processing, and outbound documents from an XML format into the required, native format of the destination.

Related Topics

Create channels

Edit channels

Set Channel Properties

Set advanced configuration properties
1. On the Advanced Configuration page of the Channel Wizard, if you are creating a channel for a messaging port that

specifies an X12 or EDIFACT envelope format, in the Group control number box type a non-zero value.

2. In the Retry options area, in the Number of retries box, enter the number of times that you want the server to resend the
document if a receipt has not been received and, in the Interval box, enter the number of minutes between retries.

For more information about receipts, see Understanding Receipts.

3. If you want to override the transport or envelope component settings for a messaging port or distribution list, click
Advanced.

If you are creating or editing a channel for a messaging port, the Override Messaging Port Defaults dialog box
appears. For more information, see Override messaging port defaults.

If you are creating or editing a channel for a distribution list, the Override Distribution List Defaults dialog box
appears. For more information, see Override distribution list defaults.

If you are creating a new channel, click Next. For instructions about completing the next step, go to Create channels.

If you are editing an existing channel, click Next. For instructions about completing the next step, go to Edit channels. If you have
completed your changes, click Finish.

Related Topics

Create channels

Edit channels

Retry queue

Set Channel Properties

Understanding Receipts

Select a source organization
1. On the Source Organization page of the Channel Wizard, to the right of the Name box, click Browse.

The Select an Organization dialog box appears.

2. In the Available organizations list, click an organization and click OK.

To continue setting source organization properties, go to Set source organization properties.

Related Topics

Create channels

Edit channels

Set Channel Properties

Set source organization properties

Select a receipt channel
1. On the Source Application or Source Organization page of the Channel Wizard, select the Generate receipt check box

and click Browse.

The Select a Receipt Channel dialog box appears.

2. In the Available receipt channels list, click a receipt channel and click OK.

To continue setting source organization properties, go to Set source organization properties.

To continue setting source application properties, go to Set source application properties.

 Note

The Available receipt channels list displays only receipt channels that are associated with messaging ports for which the
destination is identical to the source for the channel that you are creating. When BizTalk Server 2000 invokes a channel with
a receipt channel specified, the server returns a receipt to the original source of that document by using the receipt channel
specified. For more information about receipts, see Understanding Receipts.

Related Topics

Create channels

Edit channels

Set Channel Properties

Set source application properties

Set source organization properties

Understanding Receipts

Select an inbound document definition
1. On the Inbound Document page of the Channel Wizard, to the right of the Inbound document definition name box,

click Browse.

The Select a Document Definition dialog box appears.

2. In the Available document definitions list, click a document definition and click OK.

To continue setting inbound document properties, go to Set inbound document properties.

 Note

When you create a receipt channel, both the inbound and outbound document definitions default to the BizTalk Canonical
Receipt and cannot be transformed by using a map. To use a different format for an outbound receipt, you must create and
select an inbound document definition that refers to the canonical receipt specification in the WebDAV repository. You also
must create an outbound document definition that refers to a specification with the format that you want for the outbound
receipt, as well as a map that transforms the format of the receipt. For more information about receipts,
see Understanding Receipts.

Related Topics

Create channels

Create document definitions

Edit channels

Set Channel Properties

Set inbound document properties

Understanding Receipts

Select a certificate to verify inbound document decryption
1. On the Inbound Document page of the Channel Wizard, select the Verify decryption on inbound document check box.

2. To the right of the Certificate to verify decryption box, click Browse.

The Select a Certificate to Verify Decryption dialog box appears.

3. In the Certificate name list, click a certificate name and click OK.

To continue setting inbound document properties, go to Set inbound document properties.

 Notes

All certificates are stored in the local computer store. To configure certificates for the S/MIME components by using BizTalk
Messaging Manager, you must belong to a user account in the Windows 2000 Administrators group, and
BizTalk Messaging Services must be running as a local system account or as a user account in the Windows 2000
Administrators group.

Documents are decrypted when BizTalk Server 2000 receives them so that the server can obtain the data it needs to identify
the appropriate channel. The certificate that you specify in the channel verifies that the decryption was done correctly.

All certificates must be named uniquely. If more than one certificate has the same name, only one of the certificates can be
selected. Once one of the certificates is selected, other certificates with the same name no longer appear in the list.

For more information about certificates, see Certificates Overview.

Related Topics

Create channels

Edit channels

Set Channel Properties

Set inbound document properties

Select a certificate to verify inbound document signature
1. On the Inbound Document page of the Channel Wizard, select the Verify signature on inbound document check box.

2. To the right of the Certificate for signature verification box, click Browse.

The Select a Certificate to Verify Signature dialog box appears.

3. In the Certificate name list, click a certificate name and click OK.

To continue setting inbound document properties, go to Set inbound document properties.

 Notes

All certificates are stored in the local computer store. To configure certificates for the S/MIME components by using BizTalk
Messaging Manager, you must belong to a user account in the Windows 2000 Administrators group, and
BizTalk Messaging Services must be running as a local system account or as a user account in the Windows 2000
Administrators group.

All certificates must be named uniquely. If more than one certificate has the same name, only one of the certificates can be
selected. Once one of the certificates is selected, other certificates with the same name no longer appear in the list.

For more information about certificates, see Certificates Overview.

Related Topics

Create channels

Edit channels

Set Channel Properties

Set inbound document properties

Select an outbound document definition
1. On the Outbound Document page of the Channel Wizard, to the right of the Outbound document definition name

box, click Browse.

The Select a Document Definition dialog box appears.

2. In the Available document definitions list, click a document definition and click OK.

To continue setting outbound document properties, go to Set outbound document properties.

 Note

When you create a receipt channel, both the inbound and outbound document definitions default to the BizTalk Canonical
Receipt and cannot be transformed by using a map. To use a different format for an outbound receipt, you must create and
select an inbound document definition that refers to the canonical receipt specification in the WebDAV repository. You also
must create an outbound document definition that refers to a specification with the format that you want for the outbound
receipt, as well as a map that transforms the format of the receipt. For more information about receipts,
see Understanding Receipts.

Related Topics

Create channels

Create document definitions

Edit channels

Set Channel Properties

Set outbound document properties

Understanding Receipts

Select a map
1. On the Outbound Document page of the Channel Wizard, select the Map inbound document to outbound document

check box and, to the right of the Map reference box, click Browse.

The Select a Map from the WebDAV Repository dialog box appears.

2. In the Server box, do one of the following if you want to change the server:

Click a server in the list.

Type the name of a server and press ENTER.

3. Double-click the folder that contains the map that you want, click the map, and then click Open.

To continue setting outbound document properties, go to Set outbound document properties.

 Important

The first time that you open any WebDAV repository dialog box, the WebDAV repository on the local server is selected, even
if your BizTalk Messaging Manager is connected to a database on a remote server. If you browse to a WebDAV repository
on a remote server, the default changes to that server until you select a new WebDAV repository. The default server for all
WebDAV repository dialog boxes is the last server to which a connection was made.

 Notes

If you select http://localhost as the server, BizTalk Messaging Manager automatically converts it to the local computer name.

When you save a channel that references a map that is outside of your local domain, you might receive an error. If you
receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the Microsoft MSDN Web
site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration Utility page, which is
located in the XML chapter of the Web Development book.

Related Topics

Create channels

Edit channels

Mapping Data

Set Channel Properties

Set outbound document properties

http://msdn.microsoft.com/downloads/default.asp

Select a certificate for outbound signature
1. On the Outbound Document page of the Channel Wizard, select the Sign outbound document check box and, to the

right of the Signature certificate box, click Browse.

The Select a Signature Certificate dialog box appears.

2. In the Certificate name list, click a certificate name and click OK.

To continue setting outbound document properties, go to Set outbound document properties.

 Notes

All certificates are stored in the local computer store. To configure certificates for the S/MIME components by using BizTalk
Messaging Manager, you must belong to a user account in the Windows 2000 Administrators group, and
BizTalk Messaging Services must be running as a local system account or as a user account in the Windows 2000
Administrators group.

All certificates must be named uniquely. If more than one certificate has the same name, only one of the certificates can be
selected. Once one of the certificates is selected, other certificates with the same name no longer appear in the list.

For more information about certificates, see Certificates Overview.

Related Topics

Create channels

Edit channels

Set Channel Properties

Set outbound document properties

Override messaging port defaults
1. On the Advanced Configuration page of the Channel Wizard, click Advanced.

If you are creating or editing a channel for a messaging port, the Override Messaging Port Defaults dialog box appears.

2. On the Primary Transport tab, click Properties.

The BizTalk Component Properties dialog box appears.

3. Change the transport component properties that you want to override and click OK.

4. If the messaging port has an envelope and you want to override its settings, click the Envelope tab and click Properties.

The BizTalk Component Properties dialog box appears.

5. Change the envelope component properties that you want to override and click OK.

To continue setting advanced properties, go to Set advanced configuration properties.

 Important

Overriding the transport and envelope properties for a messaging port is an advanced feature. If you do not thoroughly
understand the transport or envelope component properties in these dialog boxes, you should not change them.

If you specified an envelope with a custom format in the messaging port, you must configure the custom serializer
component by using the advanced configuration properties.

 Notes

When you override messaging port properties in a channel, the overrides only apply to that channel.

You cannot override the transport address that was set in a messaging port.

The default setting for the HTTP transport component is to use the HTTP proxy server. This is the correct setting to transport
data to Web sites outside your business's firewall. To transport data to Web sites that are inside your business's firewall
(that is, within your intranet), use this procedure to override the default setting.

For the HTTPS transport component, you should use only certificates that are specified for client authentication. Certificates
that are specified for all purposes do not appear in the list.

The default setting for the file transport component is to append files. If you choose the file transport type with its default
settings in a messaging port and use antivirus software on the server on which BizTalk Server 2000 is installed, and you
send multiple files that have exactly the same name to the same file location, at the same time, BizTalk Server 2000 might
stop responding and must be restarted. You can eliminate this problem by changing the default setting for the file transport
component from Append to file to Overwrite file in the BizTalk SendLocalFile Properties dialog box. You also can
eliminate this problem by creating a unique file for each document instance processed by using the file path format in the
messaging port: file://C:\dir\file%tracking_id%.xml. For more information, see Specify a transport address.

The default setting for the file transport component is to append files. If you choose the file transport type with its default
settings and select an envelope with a reliable envelope format in a messaging port, and then send multiple files to the
same file location, at the same time, you might have unexpected parsing results. You can eliminate this problem by
changing the default setting for the file transport component from Append to file to Overwrite file in the BizTalk
SendLocalFile Properties dialog box.

If the envelope specified in the messaging port has a custom format, and you have created and registered a custom
serializer component, you can configure the properties of the custom serializer component by using this procedure.

The default syntax identifier for an EDIFACT envelope is UNOA (uppercase Latin alphabet). If your data requires a different
syntax, select a different syntax identifier by using this procedure.

If you use EDIFACT release indicators, you should not include release indicator characters in your data. Doing so might
cause the data to exceed the physical character size limits for fields.

Related Topics

Create channels

Edit channels

Set advanced configuration properties

Set Channel Properties

Override distribution list defaults
1. On the Advanced Configuration page of the Channel Wizard, click Advanced.

If you are creating or editing a channel for a distribution list, the Override Distribution List Defaults dialog box appears.

2. In the Select Messaging Port list, select a messaging port that you want to override and click Override.

The Override Messaging Port Defaults dialog box appears.

3. Override the transport and envelope component properties for the selected messaging port.

For more information, see Override messaging port defaults.

4. When you have changed the messaging ports that you want to override, click Close.

To continue setting advanced properties, go to Set advanced configuration properties.

Related Topics

Create channels

Edit channels

Override messaging port defaults

Set advanced configuration properties

Set Channel Properties

Set Tracking for Inbound Document Properties
The Tracking for Inbound Document dialog box lists the specification fields for the inbound document, as well as any
global tracking fields selected in the document definition.

If you select any specification fields by using this dialog box, those fields override the global tracking fields for this channel only.
For each document instance that is processed, the fields that you select in the channel are logged to the Tracking database, rather
than to the global tracking fields.

This section describes how to select or remove specification fields of the inbound document in a channel.

The following procedures are covered in this section:

Select specification fields in a channel

Remove specification fields in a channel

Related Topics

Create channels

Edit channels

Set Channel Properties

Set Global Tracking Properties

Set inbound document properties

Select specification fields in a channel
1. On the Inbound Document page of the Channel Wizard, select the Track inbound document check box and click

Tracking.

The Tracking for Inbound Document dialog box appears.

2. In the Specification fields tree, double-click any record to expand the view.

3. Select a specification field that you want to add to the Fields to track list and complete one of the following procedures:
To add the fie
ld as

Follow this procedure

Integer Click Integer. You can add two fields as integers.
Real Click Real. You can add two fields as real numbers.
Date Click Date. You can add two fields as dates.
Text Click Text. You can add two fields as text.
Custom Click Custom. You can add unlimited fields as a custom type. The fields are stored as an XML concatenated

string with tags for each field.

To continue setting inbound document properties, go to Set inbound document properties.

 Important

If you select any specification fields by using this dialog box, those fields override the global tracking fields for this channel
only. For each document instance that is processed, the fields that you select in the channel are logged to the Tracking
database, rather than to the global tracking fields.

 Notes

To select a specification field to track as an integer, real, or date data type, the field must have that data type assigned in the
specification. For more information about assigning a data type to a specification field, see Set declaration properties.

Specification fields without a data type assigned in the specification can be tracked only as a text or custom data type.

If a specification field that you want to track has a character data type, you can track that field only as a custom data type.

You can select only two specification fields of a specific data type. You can select an unlimited number of fields as a custom
data type.

Related Topics

Create channels

Edit channels

Remove specification fields in a channel

Set Channel Properties

Set Global Tracking Properties

Set Tracking for Inbound Document Properties

Tracking Document Data Fields

Remove specification fields in a channel
1. On the Inbound Document page of the Channel Wizard, select the Track inbound document check box and click

Tracking.

The Tracking for Inbound Document dialog box appears.

2. In the Fields to track list, click the specification field or fields that you want to remove and click Remove.

To continue setting inbound document properties, go to Set inbound document properties.

 Note

When you remove a field from the list of fields to track, it is removed only from the list in this channel; it is not removed
from the specification.

Related Topics

Create channels

Edit channels

Select specification fields in a channel

Set Channel Properties

Set Global Tracking Properties

Set Tracking for Inbound Document Properties

Tracking Document Data Fields

Set Channel Filtering Properties
A channel filtering expression is an XPath expression that can be used to determine if a channel is invoked based upon the value
of a specified field or fields within the document. When Microsoft BizTalk Server 2000 processes a document, the value of the
specified field or fields in each document is evaluated against the channel filtering expression. If the expression is found to be true,
the channel is invoked. If the expression is found to be false, the channel is not invoked.

The following procedures are covered in this section:

Add a channel filtering expression

Edit a channel filtering expression

Remove a channel filtering expression

Related Topic

Set inbound document properties

Add a channel filtering expression
1. On the Inbound Document page of the Channel Wizard, select the Filter inbound document check box and click

Filtering.

The Channel Filtering Expressions dialog box appears.

2. In the Select field tree, double-click any node to expand the view.

3. Click a specification field that you want to use to create a filtering expression and click Add.

The New Expression dialog box appears.

4. In the Operator list, click an operator:
Operator Symbol
Equal to (Default) =
Not equal to !=
Less than <
Equal to or less than <=
Greater than >
Equal to or greater than >=

5. In the Value box, type a value for the expression and click OK.

To continue setting inbound document properties, go to Set inbound document properties.

 Important

A channel filtering expression must be a valid XPath expression. The Add button can be used to create a clause that contains
a specification field, and insert it into an expression; however, it does not generate the correct syntax needed for a valid
XPath expression. For more information about XPath expressions, see Channel Filtering, and go to the Microsoft Web site
(msdn.microsoft.com/library/default.asp), and search on the keyword "XPath."

 Notes

You can type an expression directly into the Expressions list.

To select a specification field for a channel filtering expression, the field must have a data type assigned in the specification.
For more information about assigning a data type to a field, see Set declaration properties.

If the specification field that you are using to create an expression has a Boolean data type, you cannot use the text string
"true" or "false" in the expression value. You must use a numerical value instead, "-1" for true and "0" for false.

If the specification field that you are using to create an expression has a date data type, you must type the value in the
following format, including the hyphens: YYYY-MM-DD.

Related Topics

Create channels

Edit a channel filtering expression

Edit channels

Remove a channel filtering expression

Set Channel Filtering Properties

Set Channel Properties

http://msdn.microsoft.com/library/default.asp

Edit a channel filtering expression
1. On the Inbound Document page of the Channel Wizard, select the Filter inbound document check box and click

Filtering.

The Channel Filtering Expressions dialog box appears.

2. In the Expressions list, edit the expression click OK.

To continue setting inbound document properties, go to Set inbound document properties.

 Important

A channel filtering expression must be a valid XPath expression. For more information about XPath expressions,
see Channel Filtering, and go to the Microsoft Web site (msdn.microsoft.com/library/default.asp), and search on the
keyword "XPath."

Related Topics

Add a channel filtering expression

Remove channel filtering expression

Set Channel Filtering Properties

http://msdn.microsoft.com/library/default.asp

Remove a channel filtering expression
On the Inbound Document page of the Channel Wizard, clear the Filter inbound document check box.

To continue setting inbound document properties, go to Set inbound document properties.

Related Topics

Add a channel filtering expression

Create channels

Edit a channel filtering expression

Edit channels

Set Channel Filtering Properties

Set Channel Properties

Create and Manage Messaging Ports
This section provides task-specific information about how to create and manage messaging ports. It is highly recommended that
you review Understanding Messaging Ports in the Concepts section to fully understand messaging ports.

The following procedures are covered in this section:

Create messaging ports

Search for messaging ports

Edit messaging ports

Delete messaging ports

Set Messaging Port Properties

Create messaging ports
1. In BizTalk Messaging Manager, on the File menu, point to New, point to Messaging Port, and then complete one of the

following steps:

To create a messaging port to a trading partner organization, click To an Organization.

To create a messaging port to an internal application, click To an Application.

The New Messaging Port Wizard opens.

2. Set the properties on the General Information page and click Next.

For more information, see Set general messaging-port information properties.

3. Complete one of the following steps:

If you are creating a messaging port to a specific organization, set the properties on the Destination Organization
page and click Next. For more information, see Set destination organization properties.

If you are creating an open messaging port, click Open destination and click Next.

For an open messaging port, the transport and destination information must be provided either within the document
or in a parameter submitted with the document. For more information, see Submitting.

If you are creating a messaging port to an application, set the properties on the Destination Application page and
click Next. For more information, see Set destination application properties.

4. On the Envelope Information page, set the properties and click Next.

For more information, see Set envelope information properties.

5. On the Security Information page, set the properties.

For more information, see Set security information properties.

6. If you do not want to proceed directly to the Channel Wizard to create a channel, clear the Create a channel for this
messaging port check box. Otherwise, in the Channel type list, click one of the following channel types:

From an organization

From an application

7. After you have set all messaging port properties, on the Security Information page, click Finish to close the Messaging
Port Wizard.

 Important

When you declare a messaging port as an open messaging port, do not create channels for the messaging port that have an
outbound document definition with an X12 or EDIFACT specification. To build an X12 or EDIFACT envelope, the server must
have a source and a destination organization identifier. An open messaging port does not specify a destination organization
identifier. In addition, the documents for an open messaging port must have the destination address within the document,
but X12 and EDIFACT documents do not contain this information.

 Notes

You cannot name a messaging port using the reserved system name, Reliable Message Acknowledgement Port.

If you create a messaging port and a channel to use for a pass-through submission of data, you can use only the service
window and the retry count and interval features of the channel, and the transport features of its associated messaging port.
You cannot use the verification of decoding or decryption, filtering, document tracking, or mapping features of the channel.

Related Topics

Create and Manage Channels

Delete messaging ports

Edit messaging ports

Search for messaging ports

Set Messaging Port Properties

Understanding Messaging Ports

Search for messaging ports
1. In BizTalk Messaging Manager, in the Search for other items area, click Messaging ports.

2. Do one or more of the following:

To search for all messaging ports, clear all search criteria and click Search Now.

To search for a messaging port with a specific name, in the Messaging port name box, type the name of the
messaging port that you want to find and click Search Now. You can enter an incomplete name and the search
returns all possible names that match the incomplete name entry.

To search for messaging ports to a specific type of destination, in the Destination list, click a destination type and
click Search Now.

 Notes

You can set more than one search criteria before clicking Search Now.

If you have a large number of objects for which to search, it might take several minutes to return all the objects. You can
narrow the objects returned in a search by using selection criteria.

The default number of items returned in a search is 500. You can adjust this number. For more information,
see Set server connection options.

To clear the search criteria and search results, click Clear Search.

You can use the following wildcard characters in the search criteria.
Wildcard
character

Description Example

% Any string of zero or more characters. The entry '%open%' finds all names with the word 'open' anywhere in t
he name.

_ (undersc
ore)

Any single character. The entry '_ean' finds four-letter names that end with ean (Dean, Sean, a
nd so on).

[] Any single character within the specifie
d range ([a-f]) or set ([abcdef]).

The entry '[C-P]arsen' finds names ending with arsen and beginning wit
h any single character between C and P (Carsen, Larsen, and so on).

[^] Any single character not within the spe
cified range ([^a-f]) or set ([^abcdef]).

The entry 'de[^s]%' finds all names beginning with de and where the fol
lowing letter is not s.

Related Topics

Delete messaging ports

Edit messaging ports

Understanding Messaging Ports

Edit messaging ports
1. In BizTalk Messaging Manager, in the Messaging Port Name list, click the messaging port that you want to edit.

For information about searching for messaging ports, see Search for messaging ports.

2. On the File menu, click Edit.

The Messaging Port Properties Wizard opens.

3. On the General Information page, edit the appropriate properties.

For more information, see Set general messaging-port information properties.

After editing the properties on any page, you can click Finish to close the Messaging Port Properties Wizard or click Next to
edit additional messaging port properties.

4. Complete one of the following steps:

If you are editing a messaging port to an organization, edit the necessary properties on the Destination
Organization page and click Next. For more information, see Set destination organization properties.

If you are editing a messaging port to an application, edit the appropriate properties on the Destination Application
page and click Next. For more information, see Set destination application properties.

5. On the Envelope Information page, edit the appropriate properties and click Next.

For more information, see Set envelope information properties.

6. On the Security Information page, edit the appropriate properties.

For more information, see Set security information properties.

7. If you do not want to proceed directly to the Channel Wizard to create a channel, clear the Create a channel for this
messaging port check box; otherwise, in the Channel type list, click one of the following channel types:

From an organization

From an application

8. After you have edited all appropriate messaging port properties, you can click Finish on any page to close the Messaging
Port Wizard.

 Note

You cannot name a messaging port using the reserved system name, Reliable Message Acknowledgement Port.

Related Topics

Create and Manage Channels

Create messaging ports

Delete messaging ports

Set Messaging Port Properties

Understanding Messaging Ports

Delete messaging ports
1. In BizTalk Messaging Manager, in the Messaging Port Name list, click the messaging port that you want to delete.

For information about searching for messaging ports, see Search for messaging ports.

2. On the File menu, click Delete.

 Notes

If you have created channels for a messaging port, you cannot delete the messaging port until its associated channels have
been deleted.

You can search for channels associated with a messaging port by right-clicking the messaging port and clicking Find
Channels.

Related Topics

Create and Manage Channels

Create messaging ports

Edit messaging ports

Understanding Messaging Ports

Set Messaging Port Properties
This section provides task-specific information about how to configure the properties of a messaging port. The following
procedures are covered in this section:

Set general messaging-port information properties

Set destination organization properties

Set destination application properties

Set envelope information properties

Set security information properties

Select a destination organization

Select an encryption certificate

Set Transport Properties

Set Envelope Delimiters

Set general messaging-port information properties
1. On the General Information page of the Messaging Port Wizard, in the Name box, type the name of the messaging port.

2. In the Comments box, type any comments that you want for the messaging port and click Next.

If you are creating a new messaging port, click Next. For instructions about completing the next step, go
to Create messaging ports.

If you are editing an existing messaging port, click Next. For instructions about completing the next step, go
to Edit messaging ports. If you have completed your changes, click Finish.

Related Topics

Create messaging ports

Edit messaging ports

Set Messaging Port Properties

Set destination organization properties
1. On the Destination Organization page of the Messaging Port Wizard, complete one of the following steps:

Click Open destination to create an open messaging port and click Next.

For an open messaging port, the transport and destination information must be provided either within the document
or in parameters submitted with the document. For more information, see Submitting.

Click Organization to designate a specific trading partner organization as the destination and then proceed to step 2.

2. In the Organization area, click Browse.

The Select an Organization dialog box appears.

3. Click an organization and click OK.

For more information, see Select a destination organization.

4. In the Primary transport area, click Browse.

The Primary Transport dialog box appears.

5. Set the primary transport properties.

For more information, see Set Transport Properties.

6. If you want to limit the time when documents can be transported, in the Primary transport area, select the Service
window check box.

Then, in the From and To boxes, click the hour and enter a value, or click the up or down arrow to increase or decrease the
value.

7. If you want to specify a secondary transport, in the Backup transport area, click Browse.

The Backup Transport dialog box appears.

8. Set the backup transport properties.

For more information, see Set Transport Properties.

If you are creating a new messaging port, click Next. For instructions about completing the next step, go
to Create messaging ports.

If you are editing an existing messaging port, click Next. For instructions about completing the next step, go
to Edit messaging ports. If you have completed your changes, click Finish.

 Important

When you declare a messaging port as an open messaging port, do not create channels for the messaging port that have an
outbound document definition with an X12 or EDIFACT specification. To build an X12 or EDIFACT envelope, the server must
have a source and a destination organization identifier. An open messaging port does not specify a destination organization
identifier. In addition, the documents for an open messaging port must have the destination address within the document,
but X12 and EDIFACT documents do not contain this information.

 Note

Service window hours are displayed in the coordinated universal time (UTC) format and reflect the time on the server.

Related Topics

Create messaging ports

Edit messaging ports

Set Messaging Port Properties

Set destination application properties
1. On the Destination Application page of the Messaging Port Wizard, complete one of the following steps:

Click New XLANG schedule to designate a port in a new instance of a specified XLANG schedule as the destination.
Then, in the Schedule moniker box, type the moniker of the specified schedule or click Browse to set the path. Then,
in the Port name box, type the name of the specific port in this schedule to which the document is sent.

The syntax for schedule monikers is as follows:

sked://[localhost][!GroupManager][/FilePath][/PortName]

You can only activate XLANG schedules on the local computer.

For more information about monikers, see Moniker Syntax.

Click Running XLANG schedule to designate an active XLANG schedule instance as the destination. Use this option
only to transport a message to an active XLANG schedule when a trading partner returns the message to a specially
configured ASP page using an HTTP transport. For more information, see Integrating BizTalk Services.

Click Application to designate an application of the home organization as the destination, and then click an
application in the Name list.

2. If you selected an application as the destination, complete steps 3 through 5. Otherwise, click Next.

3. In the Primary transport area, click Browse.

The Primary Transport dialog box appears.

4. Set the primary transport properties.

For more information, see Set Transport Properties.

5. If you want to limit the time when documents can be transported, in the Primary transport area, select the Service
window check box.

Then, in the From and To boxes, click the hour and enter a value, or click the up or down arrow to increase or decrease the
value.

6. If you want to specify a secondary transport, in the Backup transport area, click Browse.

The Backup Transport dialog box appears.

7. Set the backup transport properties.

For more information, see Set Transport Properties.

If you are creating a new messaging port, click Next. For instructions about completing the next step, go
to Create messaging ports.

If you are editing an existing messaging port, click Next. For instructions about completing the next step, go
to Edit messaging ports. If you have completed your changes, click Finish.

 Important

If you choose the New XLANG schedule option:
The port that you name must be bound to BizTalk Messaging in the specified schedule, and that binding must be
configured to activate a new schedule instance upon message arrival.

You should have only one port in a schedule that is configured to activate a new schedule instance upon message
arrival, and it should be the first action in the schedule. For more information,
see Implement a port by using BizTalk Messaging.

 Notes

If you choose an XLANG schedule as the destination for a messaging port, there is a maximum limit of 2 MB for the
documents that you process by using this messaging port.

BizTalk Orchestration Designer can be used to create XLANG schedules.

Service window times are displayed in the coordinated universal time (UTC) format and reflect the time on the server.

Related Topics

Create messaging ports

Edit messaging ports

Set Messaging Port Properties

Set envelope information properties
1. On the Envelope Information page of the Messaging Port Wizard, in the Envelope information area, select an envelope

from the list.

If you select an envelope that has an X12 or EDIFACT format, the following steps are required. If you select an envelope that
has a custom format, the following steps are optional.

a. Click Delimiters and set the delimiter properties.

For more information, see Set Envelope Delimiters.

b. In the Interchange control number box, type an interchange control number.
2. If you want to override the default organization identifier for the destination organization, click another identifier in the

Organization identifier list.

If you are creating a new messaging port, click Next. For instructions about completing the next step, go
to Create messaging ports.

If you are editing an existing messaging port, click Next. For instructions about completing the next step, go
to Edit messaging ports. If you have completed your changes, click Finish.

 Important

If you choose an envelope with a Reliable format, you also must configure the Reliable messaging reply-to URL address
in the BizTalk Server Group Properties dialog box. For more information,
see Configure general properties for a server group.

The format of an envelope that you specify in a messaging port must agree with the format of the document or documents
that it contains. The document format is determined by the specification referred to in the outbound document definition of
an associated channel. For example, if you choose an envelope with an X12 format for a messaging port, you must select an
outbound document definition for the channel that points to an X12 specification.

 Notes

When processing envelopes that are compliant with BizTalk Framework 2.0, BizTalk Server 2000 should be considered the
endpoint with regard to the expiration time. When BizTalk Framework 2.0–compliant documents are submitted to BizTalk
Server 2000, either from an application or a trading partner, the following fields are overwritten if present, or created if
absent:

In the properties subsection:

<prop:identity>

<prop:sentAt>

<expiresAt>

In the receipt information subsection:

<sendTo>

<address>

<sendReceiptBy>

For a messaging port to an application, the organization identifiers available in the Organization identifier list are those of
the home organization.

If you use the Loopback transport type, you cannot choose an envelope with a Reliable format.

When you select a destination organization identifier for use with X12 envelopes, you should not select the organization
identifier named Organization, or any other identifier that has a qualifier that exceeds 2 characters or a value that exceeds
15 characters.

When you select a destination organization identifier for use with EDIFACT envelopes, you should not select the

organization identifier named Organization, or any other identifier that has a qualifier that exceeds 4 characters or a value
that exceeds 35 characters.

If you select an envelope with an EDIFACT format, the default syntax identifier is UNOA (uppercase Latin alphabet). If your
data requires a different syntax, select a different syntax identifier by overriding the messaging port defaults in the Channel
Wizard. For more information, see Override messaging port defaults.

Related Topics

Create envelopes

Create messaging ports

Edit messaging ports

Set Messaging Port Properties

Understanding Envelopes

Set security information properties
1. On the Security Information page of the Messaging Port Wizard, in the Encoding area, in the Type list, click one the

following:

(None). Specifies no encoding. This is the default setting.

MIME. Specifies encoding that uses Multipurpose Internet Mail Extensions.

Custom. Specifies encoding that uses a custom encoding component.

 Notes

You can specify a custom encoding component and configure the class identifier (CSLID) only by using the BizTalk
Messaging Configuration object model.

If you specify an envelope that uses a Reliable format, or an envelope that uses a custom XML format without an
envelope specification, and your document has no attachments, your output is not MIME encoded, even if you specify
MIME encoding.

2. In the Encryption area, in the Type list, click one the following:

(None). Specifies no encryption. This is the default setting.

S/MIME. Specifies encryption that uses Secure Multipurpose Internet Mail Extensions.

Custom. Specifies encoding that uses a custom encryption component.

 Note

You can specify a custom encryption component and configure the class identifier (CSLID) only by using the BizTalk
Messaging Configuration object model.

3. If you select S/MIME encryption, in the Encryption area, click Browse.

The Select an Encryption Certificate dialog box appears.

4. Select an encryption certificate.

For more information, see Select an encryption certificate.

5. In the Signature area, in the Type list, click one the following:

(None). Specifies no signature. This is the default setting.

S/MIME. Specifies a signature that uses Secure Multipurpose Internet Mail Extensions.

Custom. Specifies encoding that uses a custom signature component.

 Note

You can specify a custom signature component and configure the class identifier (CSLID) only by using the BizTalk
Messaging Configuration object model.

6. If you do not want to proceed directly to the Channel Wizard to create a channel, clear the Create a channel for this
messaging port check box; otherwise, in the Channel type list, click one of the following channel types:

From an organization

From an application

If you are creating a new messaging port, click Next. For instructions about completing the next step, go
to Create messaging ports.

If you are editing an existing messaging port, click Next. For instructions about completing the next step, go
to Edit messaging ports. If you have completed your changes, click Finish.

Related Topics

Create channels

Create messaging ports

Edit messaging ports

Set Messaging Port Properties

Select a destination organization
1. On the Destination Organization page of the Messaging Port Wizard, click Organization and click Browse.

The Select an Organization dialog box appears.

2. In the Available organizations list, click an organization and click OK.

To continue setting destination organization properties, go to Set destination organization properties.

Related Topics

Create messaging ports

Set destination organization properties

Set Messaging Port Properties

Select an encryption certificate
1. On the Security Information page of the Messaging Port Wizard, in the Encryption area, in the Type list, click S/MIME

and click Browse.

The Select an Encryption Certificate dialog box appears.

2. In the Certificate name list, click a certificate name and click OK.

To continue setting security properties, go to Set security information properties.

 Notes

All certificates must be named uniquely. If more than one certificate has the same name, only one of the certificates can be
selected. Once one of the certificates is selected, other certificates with the same name no longer appear in the list.

For more information about certificates, see Certificates Overview.

Related Topics

Create messaging ports

Set Messaging Port Properties

Set security information

Set Transport Properties
Transport properties include a transport type. The transport type specifies which transport service Microsoft BizTalk Server 2000
uses to convey documents to the destination designated in the messaging port. Transport properties can also include a specific
address to which the data is sent. The address properties vary based on the transport type selected.

This section describes how to set the primary and backup transport properties for a messaging port. The following procedures are
covered:

Select a transport type

Specify a transport address

Select an application integration component

Select a transport type
1. On the Destination Application or Destination Organization page of the Messaging Port Wizard, in the Primary

transport or Backup transport area, click Browse.

The Primary Transport or Backup Transport dialog box appears.

2. In the Transport type list, click one of the following transport types:

Application Integration Component. Specifies a transport that uses an application integration component that has
been registered with BizTalk Server 2000.

File. Specifies a transport that uses the SendLocalFile component.

HTTP. Specifies a transport that uses the Hypertext Transfer Protocol.

HTTPS. Specifies a transport that uses the Secure Hypertext Transfer Protocol.

Loopback. Specifies a transport that returns the outbound document of a channel to a business application,
component, or XLANG schedule that submitted the inbound document using a synchronous submit call. This transport
type is available only for a messaging port that sends documents to an application.

Message Queuing. Specifies a transport that uses the Message Queuing service.

SMTP. Specifies a transport that uses the Simple Mail Transfer Protocol.

3. Complete one of the following steps:

If you choose the Application Integration Component transport type, see Select an application integration component.

If you choose the Loopback transport type, no transport address is required.

If you choose any other transport type, see Specify a transport address.

 Notes

If you choose the Message Queuing transport type and do not use an envelope, there is a maximum size limit of 2 MB for
the documents that you process by using this messaging port.

If you choose the Message Queuing transport type and use an envelope, there is a maximum size limit of 4 MB for the
documents that you process by using this messaging port.

Before you can choose the SMTP transport type, you must configure the SMTP host in BizTalk Administration. For more
information, see Configure general properties for a server group.

The default setting for the HTTP transport component is to use the HTTP proxy server. This is the correct setting to transport
data to Web sites outside your business's firewall. To transport data to Web sites that are inside your business's firewall
(that is, within your intranet), override the default setting in the channel. For more information,
see Override messaging port defaults.

The Loopback transport type can be used to map an inbound document to a different format, envelope or apply security
(encoding, encryption, digital signature) to the document, and then synchronously return the outbound document to the
caller as the response document.

If you choose the Loopback transport type, you cannot use an envelope with a Reliable format.

Related Topics

Create messaging ports

Select an application integration component

Set Messaging Port Properties

Set Transport Properties

Specify a transport address

Specify a transport address
1. On the Destination Application or Destination Organization page of the Messaging Port Wizard, in the Primary

transport or Backup transport area, click Browse.

The Primary Transport or Backup Transport dialog box appears.

2. In the Transport type list, click a transport type other than Loopback or Application Integration Component.

3. In the Address box, type an address for the destination.

4. If you selected the SMTP transport type, in the Return e-mail address box, type an address.

The server uses this address as the From address in the outbound header and as the destination for return e-mail.

To continue setting destination organization properties, go to Set destination organization properties.

 Important

For the File transport type, the default transport-component setting is to append new files to an existing file in the specified
directory.

If you use the File transport to send multiple files with the same name to the same directory, and the files have different
document formats or use different code pages, the data in the appended file will be corrupted.

If you want to create a new file for each document instance, you must use the following file path format:

file://C:\dir\file%tracking_id%.xml

 Notes

For all transport types except Message Queuing, a prefix is automatically created for the address. This prefix is required and
must not be deleted.

For the Message Queuing transport type, the following conditions must be met for a valid address:
Do not use the queue:// prefix in the address.

Use a format name, rather than a path. The following are valid format names:

DIRECT=Protocol:<ServerName>\<QueueName>

PUBLIC=QueueGUID

PRIVATE=MachineGUID\QueueNumber

For more information about Message Queuing, go to the Microsoft Web site (msdn.microsoft.com/library), and
search on the keywords "Message Queuing."

For the File transport type, the following conditions must be met for a valid address:
The file path that you specify must exist. The file path is not created automatically, and you do not receive a warning
that it does not exist.

You must specify a file name with an extension.

An example of a valid file path is:

file://C:\dir\file.xml

For the File transport type, you can include characters and symbols to dynamically modify the file name. The file name
created by the server contains any static characters that you type into the Address box, along with the value of the symbol.
For example, if you type file://C:\Orders\Invoice_%tracking_id%.xml in the Address box, the actual file name might appear
as C:\Orders\Invoice_{12345678-90AB-CDEF-1234-567890ABCDEF}.

The following table contains the symbols that you can use with the File transport type.

http://msdn.microsoft.com/library/default.asp

Symbol Description Unique file n
ame

%datetime% Date and time, in milliseconds, of the file creation. The time is based on Greenwich Mean Tim
e (GMT) rather than local time.

No

%document_n
ame%

Name of the document processed by BizTalk Server. No

%server% Host name of the server that processed the document. No
%tracking_id% Globally unique tracking number. Yes
%uid% Counter that increases over time, represented in milliseconds. This number is reset when the

server is restarted.
No

The default setting for the file transport component is to append files. If you choose the File transport type with its default
settings in a messaging port and use antivirus software on the server on which BizTalk Server 2000 is installed, and you
send multiple files that have exactly the same name to the same file location, at the same time, BizTalk Server 2000 might
stop responding and must be restarted. You can eliminate this problem by changing the default setting for the file transport
component from Append to file to Overwrite file in the BizTalk SendLocalFile Properties dialog box. You also can
eliminate this problem by creating a unique file for each document instance processed by using the file path format in the
messaging port: file://C:\dir\file%tracking_id%.xml. For more information about overriding the append setting for the file
transport component in the advanced properties of the channel, see Override messaging port defaults.

The default setting for the file transport component is to append files. If you choose the File transport type with its default
settings and select an envelope with a Reliable format in a messaging port, and then send multiple files to the same file
location, at the same time, you might have unexpected parsing results. You can eliminate this problem by changing the
default setting for the file transport component from Append to file to Overwrite file in the BizTalk SendLocalFile
Properties dialog box. For more information about overriding the append setting for the file transport component in the
advanced properties of the channel, see Override messaging port defaults.

Related Topics

Create messaging ports

Select an application integration component

Select a transport type

Set Messaging Port Properties

Set Transport Properties

Select an application integration component
1. On the Destination Application or Destination Organization page of the Messaging Port Wizard, in the Primary

transport or Backup transport area, click Browse.

The Primary Transport or Backup Transport dialog box appears.

2. In the Transport type list, click Application Integration Component.

3. To the right of the Component name box, click Browse.

The Select a Component dialog box appears.

4. In the Available components list, click a component and click OK.

To continue setting destination organization properties, go to Set destination organization properties.

 Note

An application integration component must be registered with BizTalk Server 2000 before it will be available in the
Available components list. For more information, see Registering Application Integration Components.

Related Topics

Create messaging ports

Select a transport type

Set Messaging Port Properties

Set Transport Properties

Specify a transport address

Set Envelope Delimiters
Delimiter properties specify which characters are used to separate data within an envelope and the documents of an interchange.
Delimiters are required only for envelopes that use the X12 and EDIFACT formats. They are optional for envelopes that use a
custom format.

Envelope delimiters are set when you select an envelope within a messaging port. The delimiters that are set for a messaging port
apply only to that messaging port. Different delimiters can be set for the same envelope when it is used in a different messaging
port. This section describes how to set delimiter properties. The following procedures are covered:

Set X12 delimiters

Set EDIFACT delimiters

Set custom delimiters

Set X12 delimiters
1. On the Envelope Information page of the Messaging Port Wizard, in the Envelope information area, select an envelope

with an X12 format and click Delimiters.

The X12 Delimiters dialog box appears.

2. Enter delimiter values in either the Character or Hexadecimal box and click OK.

The following table describes the X12 delimiters.

Delimiter Description
Component elemen
t separator

Specifies the character that is used to separate components of data within a composite data field. A composit
e data field is a field that consists of multiple subfields.

Element separator Specifies the character that is used to separate data fields within a record.
Segment terminator Specifies the character that is used to indicate the end of a record.

To continue setting destination organization properties, go to Set envelope information properties.

 Note

You can type either one character in the Character box or two characters in the Hexadecimal box for each delimiter. The
Hexadecimal box can be used to enter nonprinting character delimiters, such as the ENTER key.

Related Topics

Create messaging ports

Set custom delimiters

Set EDIFACT delimiters

Set Envelope Delimiters

Set envelope information properties

Set Port Properties

Set EDIFACT delimiters
1. On the Envelope Information page of the Messaging Port Wizard, in the Envelope information area, select an envelope

with an EDIFACT format and click Delimiters.

The EDIFACT Delimiters dialog box appears.

2. Enter delimiter values in either the Character or Hexadecimal box and click OK.

The following table describes the EDIFACT delimiters.

Delimiter Description
Component elemen
t separator

Specifies the character that is used to separate components of data within a composite data field. A composit
e data field is a field that consists of multiple subfields.

Element separator Specifies the character that is used to separate data fields within a record.
Release indicator Specifies the character that is used to indicate that the following character should not be evaluated as a deli

miter.
Segment terminator Specifies the character that is used to indicate the end of a record.

 Notes

If you use EDIFACT release indicators, do not include release indicator characters in your data. Doing so might cause the
data to exceed the physical character size limits for fields.

You can type either one character in the Character box or two characters in the Hexadecimal box for each delimiter. The
Hexadecimal box can be used to enter nonprinting character delimiters, such as the ENTER key.

The EDIFACT decimal specification delimiter cannot be used.

To continue setting destination organization properties, go to Set envelope information properties.

Related Topics

Create messaging ports

Set custom delimiters

Set Envelope Delimiters

Set envelope information properties

Set Messaging Port Properties

Set X12 delimiters

Set custom delimiters
1. On the Envelope Information page of the Messaging Port Wizard, in the Envelope information area, select an envelope

with a custom format and click Delimiters.

The Custom Delimiters dialog box appears.

2. Enter delimiter values in either the Character or Hexadecimal box and click OK.

The following table describes the custom delimiters.

Delimiter Description
Subfield Specifies the character that is used to separate components of data within a multipart data field.
Field Specifies the character that is used to separate the data fields within a record.
Escape characte
r

Specifies the character that is used to indicate that the following character should not be evaluated as a delimiter
.

Record Specifies the character that is used to indicate the end of a record.

 Note

You can type either one character in the Character box or two characters in the Hexadecimal box for each delimiter. The
Hexadecimal box can be used to enter nonprinting character delimiters, such as the ENTER key.

To continue setting destination organization properties, go to Set envelope information properties.

Related Topics

Create messaging ports

Set EDIFACT delimiters

Set Envelope Delimiters

Set envelope information properties

Set Messaging Port Properties

Set X12 delimiters

Create and Manage Organizations
This section provides task-specific information about how to create and manage organizations. It is highly recommended that you
review Understanding Organizations in the Concepts section to fully understand organizations.

The following procedures are covered in this section:

Configure the home organization

Create organizations

Search for organizations

Edit organizations

Delete organizations

Set Organization Properties

Configure the home organization
1. In BizTalk Messaging Manager, in the Search for other items area, click Organizations.

2. In the Search for organizations area, select the Home organization check box and click Search Now.

3. In the Organization Name list, double-click Home Organization.

The Organization Properties dialog box appears.

4. On the General tab, set the general organization properties.

For more information, see Set general organization properties.

5. Click the Identifiers tab and set the organization identifier properties.

For more information, see Set Organization Identifier Properties.

6. Click the Applications tab and set the application properties.

For more information, see Set Application Properties.

7. After you have set all the necessary home organization properties, click OK to close the Organization Properties dialog
box.

 Important

An organization identifier named Reliable Messaging Acknowledgement SMTP From Address is automatically created for
the home organization. This identifier cannot be removed. You should not modify the name or qualifier for this identifier,
but you can modify the value. The value specified for this identifier is used as the From address when sending
reliable messaging receipts that use the SMTP transport protocol. For more information about reliable messaging receipts,
see Processing Receipts Using Reliable Messaging.

The value specified for the organization identifier (Reliable Messaging Acknowledgement SMTP From Address) is also used
as the From address when the address provided for an open messaging port is an SMTP address. For more information,
see Openness.

 Notes

You can rename the home organization at any time to any name that you want.

In BizTalk Messaging Manager, you can add applications only to the home organization.

Related Topics

Edit organizations

Search for organizations

Set Application Properties

Set Organization Properties

Understanding Organizations

Create organizations
1. In BizTalk Messaging Manager, on the File menu, point to New and click Organization.

The New Organization dialog box appears.

2. On the General tab, set the general organization properties.

For more information, see Set general organization properties.

3. Click the Identifiers tab and set the organization identifier properties.

For more information, see Set Organization Identifier Properties.

4. After you have set all the necessary properties, click OK to close the New Organization dialog box.

Related Topics

Configure the home organization

Delete organizations

Edit organizations

Search for organizations

Set Organization Properties

Understanding Organizations

Search for organizations
1. In BizTalk Messaging Manager, in the Search for other items area, click Organizations.

2. Do one or more of the following:

To search for all organizations, clear all search criteria and click Search Now.

To search for organizations with a specific name, in the Search for organizations area, in the Organization name
box, type the name of the organization that you want to find and click Search Now. You can enter an incomplete
name and the search returns all possible names that match the incomplete name entry.

To search for the home organization only, select the Home organization check box and click Search Now.

 Notes

To clear the search criteria and search results, click Clear Search.

If you have a large number of objects for which to search, it might take several minutes to return all the objects. You can
narrow the objects returned in a search by using selection criteria.

The default number of items returned in a search is 500. You can adjust this number. For more information,
see Set server connection options.

You can use the following wildcard characters in the search criteria.
Wildcard
character

Description Example

% Any string of zero or more characters. The entry '%open%' finds all names with the word 'open' anywhere in t
he name.

_ (undersc
ore)

Any single character. The entry '_ean' finds four-letter names that end with ean (Dean, Sean, a
nd so on).

[] Any single character within the specifie
d range ([a-f]) or set ([abcdef]).

The entry '[C-P]arsen' finds names ending with arsen and beginning wit
h any single character between C and P (Carsen, Larsen, and so on).

[^] Any single character not within the spe
cified range ([^a-f]) or set ([^abcdef]).

The entry 'de[^s]%' finds all names beginning with de and where the fol
lowing letter is not s.

Related Topics

Delete organizations

Edit organizations

Understanding Organizations

Edit organizations
1. In BizTalk Messaging Manager, in the Organization Name list, click the organization that you want to edit.

For information about searching for organizations, see Search for organizations.

2. On the File menu, click Edit.

The Organization Properties dialog box appears.

3. On the General tab, edit any properties that you want to change.

For more information, see Set general organization properties.

4. Click the Identifiers tab and edit any organization identifier properties that you want to change.

For more information, see Set Organization Identifier Properties.

5. If you are editing the home organization, click the Applications tab and edit any application properties that you want to
change.

For more information, see Set Application Properties.

6. After you have edited all the properties that you want to change, click OK to close the Organization Properties dialog box.

 Important

An organization identifier named Reliable Messaging Acknowledgement SMTP From Address is automatically created for
the home organization. This identifier cannot be removed. You should not modify the name or qualifier for this identifier,
but you can modify the value. The value specified for this identifier is used as the From address when sending
reliable messaging receipts that use the SMTP transport protocol. For more information about reliable messaging receipts,
see Processing Receipts Using Reliable Messaging.

The value specified for the organization identifier (Reliable Messaging Acknowledgement SMTP From Address) is also used
as the From address when the address provided for an open messaging port is an SMTP address. For more information,
see Openness.

 Note

In BizTalk Messaging Manager, you can add applications only to the home organization.

Related Topics

Create organizations

Delete organizations

Search for organizations

Understanding Organizations

Delete organizations
1. In BizTalk Messaging Manager, in the Organization Name list, click the organization that you want to delete.

For more information about searching for organizations, see Search for organizations.

2. On the File menu, click Delete.

 Notes

If an organization is used in a messaging port or a channel, you cannot delete it. You must first delete all channels and
messaging ports that use the organization.

You cannot delete the home organization.

Related Topics

Create organizations

Edit organizations

Search for organizations

Understanding Organizations

Set Organization Properties
This section provides task-specific information about how to configure the properties of an organization. The following
procedures are covered in this section:

Set general organization properties

Set Organization Identifier Properties

Set Application Properties

Set general organization properties
1. On the File menu, point to New and click Organization, or in the Organization Name list, double-click an organization.

The Organization dialog box appears.

2. On the General tab, in the Organization name box, type a unique name for the organization.

3. In the Comments box, type any comments that you want for the organization.

Related Topics

Configure the home organization

Create organizations

Edit organizations

Set Organization Properties

Set Organization Identifier Properties
Organization identifiers are used to uniquely identify organizations. An organization can have more than one organization
identifier, but each identifier must be unique for that organization.

When you create a new organization, an organization identifier named Organization is automatically created. The qualifier for this
identifier is OrganizationName, and the value is the name that you give the organization. This server uses this organization
identifier as the default identifier, unless you create additional identifiers and designate one of them as the default identifier.

The following procedures are covered in this section:

Add organization identifiers

Edit organization identifiers

Remove organization identifiers

Related Topics

Configure the home organization

Create organizations

Edit organizations

Organization Identifiers

Set Organization Properties

Add organization identifiers
1. On the File menu, point to New and click Organization, or in the Organization Name list, double-click an organization.

The Organization dialog box appears.

2. Click the Identifiers tab and click Add.

The New Identifier dialog box appears.

3. In the Name area, complete one of the following steps:

Click Standard and click a name in the list.

Click Custom and type a unique name in the box. Then, in the Qualifier box, type a qualifier for the identifier.

4. In the Value box, type a value for the identifier.

5. If you want to set this identifier as the default identifier for the organization, select the Set as default check box; otherwise,
make sure that the check box is cleared.

6. Click OK to close the New Identifier dialog box.

 Important

An organization identifier named Reliable Messaging Acknowledgement SMTP From Address is automatically created for
the home organization. This identifier cannot be removed. You should not modify the name or qualifier for this identifier,
but you can modify the value. The value specified for this identifier is used as the From address when sending
reliable messaging receipts that use the SMTP transport protocol. For more information,
see Processing Receipts Using Reliable Messaging.

The value specified for the organization identifier (Reliable Messaging Acknowledgement SMTP From Address) is also used
as the From address when the address provided for an open messaging port is an SMTP address. For more information,
see Openness.

 Notes

Only one identifier can be designated as the default identifier for an organization. The default identifier is used to identify an
organization unless you specify another organization identifier in a channel or messaging port.

When you create a new organization, an organization identifier named Organization is automatically created. The qualifier
for this identifier is OrganizationName, and the value is the name of the organization. You can create additional identifiers,
but this identifier cannot be modified or removed.

If the server encounters an empty qualifier and a non-empty value when processing an inbound document with a format
other than EDIFACT, it converts the empty qualifier to OrganizationName.

If the server encounters an empty qualifier and a non-empty value when processing an inbound document with an EDIFACT
format, it converts the empty qualifier to a dash (-). If you want to process an inbound document with an EDIFACT format
that has an empty qualifier, or an outbound envelope with an empty qualifier, you must create a custom organization
identifier that has a single dash as the qualifier. For an outbound EDIFACT document, the server converts the dash to an
empty qualifier.

When you create an organization identifier for use with EDIFACT envelopes, the qualifier must not exceed 4 characters and
the value must not exceed 35 characters.

When you create an organization identifier for use with X12 envelopes, the qualifier must not exceed 2 characters and the
value must not exceed 15 characters.

Related Topics

Configure the home organization

Create organizations

Edit organization identifiers

Edit organizations

Organization Identifiers

Remove organization identifiers

Set Organization Identifier Properties

Edit organization identifiers
1. On the File menu, point to New and click Organization, or in the Organization Name list, double-click an organization.

The Organization dialog box appears.

2. Click the Identifiers tab.

3. In the Organization identifiers list, click the organization identifier that you want to edit and click Edit.

The Identifier Properties dialog box appears.

4. In the Name area, complete one of the following steps:

Click Standard and click a name in the list.

Click Custom and type a unique name in the box. Then, in the Qualifier box, type a qualifier for the identifier.

5. In the Value box, type a value for the identifier.

6. If you want to set this identifier as the default identifier for the organization, select the Set as default check box; otherwise,
make sure that the check box is cleared.

7. Click OK to close the Identifier Properties dialog box.

 Important

An organization identifier named Reliable Messaging Acknowledgement SMTP From Address is automatically created for
the home organization. You should not modify the name or qualifier for this identifier, but you can modify the value. This
identifier cannot be removed. The value for this identifier is used as the From address when sending reliable messaging
receipts that use the SMTP transport protocol. For more information, see Processing Receipts Using Reliable Messaging.

The value specified for the organization identifier (Reliable Messaging Acknowledgement SMTP From Address) is also used
as the From address when the address provided for an open messaging port is an SMTP address. For more information,
see Openness.

 Notes

Only one identifier can be designated as the default identifier for an organization. The default identifier is used to identify an
organization unless you specify another organization identifier in a channel or messaging port.

When you create a new organization, an organization identifier named Organization is automatically created. The qualifier
for this identifier is OrganizationName, and the value is the name of the organization. You can create additional identifiers,
but this identifier cannot be modified or removed.

If the server encounters an empty qualifier and a non-empty value when processing an inbound document with a format
other than EDIFACT, it converts the empty qualifier to OrganizationName.

If the server encounters an empty qualifier and a non-empty value when processing an inbound document with an EDIFACT
format, it converts the empty qualifier to a dash (-). If you want to process an inbound document with an EDIFACT format
that has an empty qualifier, or an outbound envelope with an empty qualifier, you must create a custom organization
identifier that has a single dash as the qualifier. For an outbound EDIFACT document, the server converts the dash to an
empty qualifier.

When you create an organization identifier for use with EDIFACT envelopes, the qualifier must not exceed 4 characters and
the value must not exceed 35 characters.

When you create an organization identifier for use with X12 envelopes, the qualifier must not exceed 2 characters and the
value must not exceed 15 characters.

Related Topics

Add organization identifiers

Configure the home organization

Create organizations

Edit organizations

Organization Identifiers

Remove organization identifiers

Set Organization Identifier Properties

Remove organization identifiers
1. On the File menu, point to New and click Organization, or in the Organization Name list, double-click an organization.

The Organization dialog box appears.

2. Click the Identifiers tab.

3. In the Organization identifiers list, click the identifier that you want to remove and click Remove.

 Notes

The designated default organization identifier cannot be removed until you have designated another identifier as the default
identifier.

The organization identifier named Organization is automatically created when you create an organization. This organization
identifier cannot be removed.

Related Topics

Add organization identifiers

Configure the home organization

Create organizations

Edit organization identifiers

Edit organizations

Organization Identifiers

Set Organization Identifier Properties

Set Application Properties
In BizTalk Messaging Manager, you can add applications only to the home organization. The applications that you create enable
you to identify and track the flow of documents between BizTalk Server 2000 and actual internal applications within your
business. You can designate an application of the home organization as a source application in a channel or a
destination application in a messaging port.

The home organization can have any number of applications. Each application name must be unique. The following procedures
are covered in this section:

Add applications

Edit applications

Remove applications

Related Topics

Configure the home organization

Edit organizations

Set Organization Properties

Add applications
1. In BizTalk Messaging Manager, in the Search for other items area, click Organizations.

2. In the Search for organizations area, select the Home organization check box and click Search Now.

3. In the Organization Name list, double-click Home Organization.

The Organization Properties dialog box appears.

4. On the Applications tab, click Add.

The New Application dialog box appears.

5. In the Application name box, type a unique name for the application and click OK.

 Note

In BizTalk Messaging Manager, you can add, edit, and remove applications only for the home organization.

Related Topics

Configure the home organization

Edit applications

Edit organizations

Remove applications

Set Application Properties

Edit applications
1. In BizTalk Messaging Manager, in the Search for other items area, click Organizations.

2. In the Search for organizations area, select the Home organization check box and click Search Now.

3. In the Organization Name list, double-click Home Organization.

The Organization Properties dialog box appears.

4. On the Applications tab, in the Applications list, click the application that you want to edit and click Edit.

The Application Properties dialog box appears.

5. In the Application name box, type a unique name for the application and click OK.

 Note

In BizTalk Messaging Manager, you can add, edit, and remove applications only for the home organization.

Related Topics

Add applications

Configure the home organization

Edit organizations

Remove applications

Set Application Properties

Remove applications
1. In BizTalk Messaging Manager, in the Search for other items area, click Organizations.

2. In the Search for organizations area, select the Home organization check box and click Search Now.

3. In the Organization Name list, double-click Home Organization.

The Organization Properties dialog box appears.

4. On the Applications tab, in the Applications list, click the application that you want to remove and click Remove.

 Note

In BizTalk Messaging Manager, you can add, edit, and remove applications only for the home organization.

Related Topics

Add applications

Configure the home organization

Edit organizations

Set Application Properties

Create and Manage Document Definitions
This section provides task-specific information about how to create and manage document definitions. It is highly recommended
that you review Understanding Document Definitions in the Concepts section to fully understand document definitions.

The following procedures are covered in this section:

Create document definitions

Search for document definitions

Edit document definitions

Delete document definitions

Set Document Definition Properties

Create document definitions
1. In BizTalk Messaging Manager, on the File menu, point to New and click Document Definition.

The New Document Definition dialog box appears.

2. On the General tab, set the general properties.

For more information, see Set general document-definition properties.

3. Click the Global Tracking tab and set the tracking properties.

For more information, see Set Global Tracking Properties.

4. Click the Selection Criteria tab and set the selection criteria properties.

For more information, see Set Selection Criteria Properties.

5. After you have set all the properties that you want, click OK to close the New Document Definition dialog box.

 Notes

You cannot name a document definition Reliable Message Acknowledgement Channel or BizTalk Canonical Receipt, which
are reserved system names.

You cannot specify global tracking fields for the document definition unless you select a specification.

When you select a document definition in a channel, you can override the global tracking fields for that channel by selecting
different specification fields to track. For more information, see Select specification fields in a channel.

When you save a document definition that references a specification that is outside of your local domain, you might receive
an error. If you receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the
Microsoft MSDN Web site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration
Utility page, which is located in the XML chapter of the Web Development book.

Related Topics

Delete document definitions

Edit document definitions

Search for document definitions

Understanding Document Definitions

http://msdn.microsoft.com/downloads/default.asp

Search for document definitions
1. In BizTalk Messaging Manager, in the Search for other items area, click Document Definitions.

2. To search for all document definitions, clear all search criteria and click Search Now.

–Or–

To search for a document definition with a specific name, in the Search for document definitions area, in the Document
definition name box, type the name of the document definition that you want to find and click Search Now. You can enter
an incomplete name and the search returns all possible names that match the incomplete name entry.

 Notes

To clear the search criteria and search results, click Clear Search.

If you have a large number of objects for which to search, it might take several minutes to return all the objects. You can
narrow the objects returned in a search by using selection criteria.

The default number of items returned in a search is 500. You can adjust this number. For more information,
see Set server connection options.

You can use the following wildcard characters in the search criteria:
Wildcard
character

Description Example

% Any string of zero or more characters. The entry '%open%' finds all names with the word 'open' anywhere in t
he name.

_ (undersc
ore)

Any single character. The entry '_ean' finds four-letter names that end with ean (Dean, Sean, a
nd so on).

[] Any single character within the specifie
d range ([a-f]) or set ([abcdef]).

The entry '[C-P]arsen' finds names ending with arsen and beginning wit
h any single character between C and P (Carsen, Larsen, and so on).

[^] Any single character not within the spe
cified range ([^a-f]) or set ([^abcdef]).

The entry 'de[^s]%' finds all names beginning with de and where the fol
lowing letter is not s.

Related Topics

Delete document definitions

Edit document definitions

Understanding Document Definitions

Edit document definitions
1. In BizTalk Messaging Manager, in the Document Definition Name list, click the document definition that you want to edit.

For more information about searching for document definitions, see Search for document definitions.

2. On the File menu, click Edit.

The Document Definition Properties dialog box appears.

3. On the General tab, edit the general properties.

For more information, see Set general document-definition properties.

4. Click the Global Tracking tab and edit the tracking properties.

For more information, see Set Global Tracking Properties.

5. Click the Selection Criteria tab and edit the selection criteria properties.

For more information, see Set Selection Criteria Properties.

6. After you have edited all the properties that you want to change, click OK to close the Document Definition Properties
dialog box.

 Notes

You cannot name a document definition Reliable Message Acknowledgement Channel or BizTalk Canonical Receipt, which
are reserved system names.

You cannot specify global tracking fields for the document definition unless you select a specification.

When you save a document definition that references a specification that is outside of your local domain, you might receive
an error. If you receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the
Microsoft MSDN Web site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration
Utility page, which is located in the XML chapter of the Web Development book.

Related Topics

Create document definitions

Delete document definitions

Search for document definitions

Understanding Document Definitions

http://msdn.microsoft.com/downloads/default.asp

Delete document definitions
1. In BizTalk Messaging Manager, in the Document Definition Name list, click the document definition that you want to

delete.

For more information about searching for document definitions, see Search for document definitions.

2. On the File menu, click Delete.

 Note

If a document definition is used in a channel, you cannot delete it. You must first delete all channels that use the document
definition.

Related Topics

Create document definitions

Edit document definitions

Search for document definitions

Understanding Document Definitions

Set Document Definition Properties
This section provides task-specific information about how to configure the properties of a document definition. The following
procedures are covered in this section:

Set general document-definition properties

Select a document specification

Set Global Tracking Properties

Set Selection Criteria Properties

Set general document-definition properties
1. In the New Document Definition or Document Definition Properties dialog box, click the General tab.

2. In the Document definition name box, type a unique name for the document definition.

3. Select the Document specification check box.

4. Click Browse to select a document specification.

For more information, see Select a document specification.

 Notes

A document specification for a document definition is optional. However, if you do not select a specification, you cannot set
global tracking fields, and the data processed using the document definition:

Is not translated from its native format into XML.

Is not validated against a specification.

Cannot be transformed into another structure or format by using a map.
If you are processing data that you do not want to translate, transform, or validate, such as a binary file, you should not
select a document specification.

Related Topics

Create document definitions

Edit document definitions

Set Document Definition Properties

Understanding Document Definitions

Select a document specification
1. In the New Document Definition or Document Definition Properties dialog box, click the General tab.

2. Select the Document specification check box and click Browse.

The Select a Document Specification from the WebDAV Repository dialog box appears.

3. In the Server box, do one of the following if you want to change the server:

Click a server in the list.

Type the name of a server and press ENTER.

4. Double-click the folder that contains the specification that you want to open, and double-click the file.

 Important

The first time that you open any WebDAV repository dialog box, the WebDAV repository on the local server is selected, even
if BizTalk Messaging Manager is connected to a database on a remote server. If you browse to a WebDAV repository on a
remote server, the default changes to that server until you select a new WebDAV repository. The default server for all
WebDAV repository dialog boxes is the last server to which a connection was made.

 Notes

If you select http://localhost as the server, BizTalk Messaging Manager automatically converts it to the local computer name.

If a document definition is used as the inbound document definition in a channel for an open messaging port, and the
destination information is provided in the document, the document definition must reference a specification that is properly
configured. For more information about how to configure a document specification to process documents for an open
messaging port, see Set dictionary properties.

A document specification is optional; however, in most cases you should select one. If you do not select a specification:
The data that you process is not translated into XML on the inbound side or from XML on the outbound side.

The data is not validated against a specification to ensure that it does not contain errors.

You cannot transform the structure or format of the data by using a map in a channel.

You cannot specify global tracking fields for the document definition.
A document specification is not required if you want to use the document definition in a pass-through submission.

You might experience some delay the first time that you connect to a WebDAV repository on a remote server.

When you save a document definition that references a specification that is outside of your local domain, you might receive
an error. If you receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the
Microsoft MSDN Web site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration
Utility page, which is located in the XML chapter of the Web Development book.

Related Topics

Create document definitions

Edit document definitions

Set Document Definition Properties

Understanding Document Definitions

http://msdn.microsoft.com/downloads/default.asp

Set Global Tracking Properties
On the Global Tracking tab, the Specification fields list provides a tree view of the specification that you selected for the
document definition. You can expand this list to view the fields in the specification and designate a limited number of fields to log
to the Tracking database.

When the document definition is selected as the inbound document definition for a channel, these fields are tracked for each
instance of a document that is processed by that channel. These fields are referred to as global tracking fields. When you select a
document definition in a channel, you have the option of overriding the global tracking fields by selecting different specification
fields to track for each document instance processed by that channel only.

This section describes how to select specification fields for a document definition.

The following procedures are covered in this section:

Select specification fields in a document definition

Remove specification fields in a document definition

Related Topics

Tracking Document Data Fields

Understanding Document Definitions

Select specification fields in a document definition
1. In the New Document Definition or Document Definition Properties dialog box, click the Global Tracking tab.

2. In the Specification fields list, click the expand indicator (+) next to any record, or double-click the record, to expand the
view.

3. Select a specification field that you want to add to the Fields to track list, and then complete one of the following
procedures:
To add the fie
ld as

Follow this procedure

Integer Click Integer. You can add two fields as integers.
Real Click Real. You can add two fields as real numbers.
Date Click Date. You can add two fields as dates.
Text Click Text. You can add two fields as text.
Custom Click Custom. You can add unlimited fields as a custom type. The fields are stored as an XML concatenated

string with tags for each field.

 Notes

To select a specification field to track as an integer, real, or date data type, the field must have that data type assigned in the
specification. For more information about assigning a data type to a specification field, see Set declaration properties.

Specification fields without a data type assigned in the specification can be tracked only as a text or custom data type.

If a specification field that you want to track has a character data type, you can only track that field as a custom type.

When you select a document definition in a channel, you can override the global tracking fields for that channel by selecting
different specification fields to track. For more information, see Select specification fields in a channel.

Related Topics

Create document definitions

Edit document definitions

Remove specification fields in a document definition

Set Document Definition Properties

Set Global Tracking Properties

Tracking Document Data Fields

Understanding Document Definitions

Remove specification fields from a document definition
1. In the New Document Definition or Document Definition Properties dialog box, click the Global Tracking tab.

2. In the Fields to track list, select the specification field or fields that you want to remove and click Remove.

 Note

When you remove a field from the list of fields to track, it is removed only from the list in this document definition; it is not
removed from the specification.

Related Topics

Create document definitions

Edit document definitions

Select specification fields in a document definition

Set Document Definition Properties

Set Global Tracking Properties

Tracking Document Data Fields

Understanding Document Definitions

Set Selection Criteria Properties
Selection criteria are a unique set of name-value pairs that BizTalk Server 2000 only uses to process EDI documents. For inbound
X12 or EDIFACT documents, the server uses selection criteria to uniquely identify and select a document definition because no
document definition name is available within individual EDI documents.

For outbound X12 or EDIFACT documents, selection criteria are used to create the group header information.

The following procedures are covered in this section:

Add selection criteria

Edit selection criteria

Remove selection criteria

Related Topics

Understanding Document Definitions

Understanding Selection Criteria

Add selection criteria
1. In the New Document Definition or Document Definition Properties dialog box, click the Selection Criteria tab and

click Add.

The New Name and Value dialog box appears.

2. In the Name box, type a name for the selection criteria.

3. In the Value box, type a value for the selection criteria and click OK.

 Important

For BizTalk Server 2000 to match the selection criteria values to the corresponding header elements of inbound
interchanges, and to insert the values into the correct header elements of outbound interchanges, you must type the
selection criteria names exactly as shown in the following tables.

X12 header elements

Name Requirement GS element
functional_identifier Mandatory GS01
application_sender_code Mandatory GS02
application_receiver_code Mandatory GS03
standards_version Mandatory GS08

EDIFACT header elements

Name Requirement UNH element UNG element
functional_identifier Mandatory S009, 0065 0038
application_sender_code Optional Not used S006, 0040
application_receiver_code Optional Not used S007, 0044
standards_version_type Mandatory S009, 0052 S008, 0052
standards_version_value Mandatory S009, 0054 S008, 0054

For an outbound EDIFACT interchange, a message header (UNH) is always created. If you specify an
application_sender_code and an application_receiver_code, a group header (UNG) is also created.

The set of selection criteria name-value pairs that you use for each document definition must be unique across all document
definitions.

Related Topics

Create document definitions

Edit document definitions

Edit selection criteria

Remove selection criteria

Set Document Definition Properties

Set Selection Criteria Properties

Understanding Document Definitions

Understanding Selection Criteria

Edit selection criteria
1. In the New Document Definition or Document Definition Properties dialog box, click the Selection Criteria tab.

2. In the Selection criteria list, click the selection criterion that you want to edit and click Edit.

The Name and Value Properties dialog box appears.

3. In the Name box, type a name for the selection criteria.

4. In the Value box, type a value for the selection criteria and click OK.

 Important

For BizTalk Server 2000 to match the selection criteria values to the corresponding header elements of inbound
interchanges, and to insert the values into the correct header elements of outbound interchanges, you must type the
selection criteria names exactly as shown in the following tables.

X12 header elements

Name Requirement GS Element
functional_identifier Mandatory GS01
application_sender_code Mandatory GS02
application_receiver_code Mandatory GS03
standards_version Mandatory GS08

EDIFACT header elements

Name Requirement UNH element UNG element
functional_identifier Mandatory S009, 0065 0038
application_sender_code Optional Not used S006, 0040
application_receiver_code Optional Not used S007, 0044
standards_version_type Mandatory S009, 0052 S008, 0052
standards_version_value Mandatory S009, 0054 S008, 0054

For an outbound EDIFACT interchange, a message header (UNH) is always created. If you specify an
application_sender_code and an application_receiver_code, a group header (UNG) is also created.

The set of selection criteria name-value pairs that you use for each document definition must be unique across all document
definitions.

Related Topics

Add selection criteria

Remove selection criteria

Set Selection Criteria Properties

Understanding Document Definitions

Understanding Selection Criteria

Remove selection criteria
1. In the Document Definition Properties dialog box, click the Selection Criteria tab.

2. In the Selection criteria list, click the criterion that you want to remove and click Remove.

Related Topics

Add selection criteria

Edit selection criteria

Set Selection Criteria Properties

Understanding Document Definitions

Understanding Selection Criteria

Create and Manage Envelopes
This section provides task-specific information about how to create and manage envelopes. It is highly recommended that you
review Understanding Envelopes in the Concepts section to fully understand envelopes.

The following procedures are covered in this section:

Create envelopes

Search for envelopes

Edit envelopes

Delete envelopes

Select an envelope specification

Create envelopes
1. In BizTalk Messaging Manager, on the File menu, point to New and click Envelope.

The New Envelope dialog box appears.

2. In the Envelope name box, type a unique name for the envelope.

3. In the Envelope format list, click one of the following envelope formats:

CUSTOM XML

To enable Microsoft BizTalk Server 2000 to process inbound interchanges with a custom XML format, you must create
an envelope with a custom XML format and a specification reference. However, when you submit custom XML
interchanges, you do not need to specify the envelope name in the submit call parameters. BizTalk Server 2000 is able
to locate the appropriate envelope without a name reference.

X12

You do not need to create an envelope with an X12 format to enable BizTalk Server 2000 to process inbound
interchanges with an X12 format, and you do not need to specify the envelope name in the submit call parameters.

EDIFACT

You do not need to create an envelope with an EDIFACT format to enable BizTalk Server 2000 to process inbound
interchanges with an X12 format, and you do not need to specify the envelope name in the submit call parameters.

FLATFILE

To enable BizTalk Server 2000 to process inbound interchanges with a flat-file format, you must create an envelope
with a flat-file format. When you submit inbound flat-file documents, you must specify the envelope name in the
submit call parameters. For more information, see Submitting.

CUSTOM

To enable BizTalk Server 2000 to process inbound interchanges with a custom format, a format not supported directly
by BizTalk Server 2000, you must create a custom parser component. You need to create an envelope only if the
custom parser requires one. For more information, see Using the IBizTalkParserComponent Interface.

To enable BizTalk Server 2000 to process outbound interchanges with a custom format, you must create an envelope
with a custom format and select the envelope in a messaging port. You also must create and register a custom
serializer component. For more information, see Using the IBizTalkSerializerComponent Interface. You can configure
the custom serializer in the channel on the Advanced Configuration page of the Channel Wizard. For more
information, see Set advanced configuration properties.

RELIABLE

You do not need to create an envelope with a reliable format to enable BizTalk Server 2000 to process inbound
interchanges with a reliable format, and you do not need to specify the envelope name in the submit call parameters.

The reliable format processes envelopes that are compliant with BizTalk Framework 2.0. For more information about
BizTalk Framework 2.0, go to the Microsoft BizTalk Web site (www.microsoft.com/biztalk/).

If you choose the reliable format, you also must configure the Reliable messaging reply-to URL address in the
BizTalk Server Group Properties dialog box. For more information,
see Configure general properties for a server group.

4. If you choose the custom XML, flat-file, or custom format, you can select a specification for the envelope. For more
information, see Select an envelope specification.

 Notes

To enable BizTalk Server 2000 to process outbound interchanges in any format, you must create an envelope.

If you choose the custom XML format and you do not select a specification, the envelope format defaults to the reliable
format.

http://www.microsoft.com/biztalk/

When processing envelopes that are compliant with BizTalk Framework 2.0, BizTalk Server 2000 should be considered the
endpoint with regard to the expiration time. When BizTalk Framework 2.0–compliant documents are submitted to BizTalk
Server 2000, either from an application or a trading partner, the following fields are overwritten if present, or created if
absent:

In the properties subsection:

<prop:identity>

<prop:sentAt>

<expiresAt>

In the receipt information subsection:

<sendTo>

<address>

<sendReceiptBy>

If you change the envelope format and you have selected a specification, you also might need to select a different
specification.

When you save an envelope that references a specification that is outside of your local domain, you might receive an error.
If you receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the Microsoft
MSDN Web site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration Utility
page, which is located in the XML chapter of the Web Development book.

Related Topics

Delete envelopes

Edit envelopes

Search for envelopes

Understanding Envelopes

http://msdn.microsoft.com/downloads/default.asp

Search for envelopes
1. In BizTalk Messaging Manager, in the Search for other items area, click Envelopes.

2. Do one or more of the following:

To search for all envelopes, clear all search criteria and click Search Now.

To search for an envelope with a specific name, in the Search for envelopes area, in the Envelope name box, type
the name of the envelope that you want to find and click Search Now. You can enter an incomplete name and the
search returns all possible names that match the incomplete name entry.

To search for envelopes of a specific format, in the Format list, click a format and click Search Now.

 Notes

You can set more than one search criteria before clicking Search Now.

To clear the search criteria and search results, click Clear Search.

If you have a large number of objects for which to search, it might take several minutes to return all the objects. You can
narrow the objects returned in a search by using selection criteria.

The default number of items returned in a search is 500. You can adjust this number. For more information,
see Set server connection options.

You can use the following wildcard characters in the search criteria:
Wildcard
character

Description Example

% Any string of zero or more characters. The entry '%open%' finds all names with the word 'open' anywhere in t
he name.

_ (undersc
ore)

Any single character. The entry '_ean' finds four-letter names that end with ean (Dean, Sean, a
nd so on).

[] Any single character within the specifie
d range ([a-f]) or set ([abcdef]).

The entry '[C-P]arsen' finds names ending with arsen and beginning wit
h any single character between C and P (Carsen, Larsen, and so on).

[^] Any single character not within the spe
cified range ([^a-f]) or set ([^abcdef]).

The entry 'de[^s]%' finds all names beginning with de and where the fol
lowing letter is not s.

Related Topics

Delete envelopes

Edit envelopes

Understanding Envelopes

Edit envelopes
1. In BizTalk Messaging Manager, in the Envelope Name list, click the envelope that you want to edit.

For information about searching for envelopes, see Search for envelopes.

2. On the File menu, click Edit.

The Envelope Properties dialog box appears.

3. In the Envelope name box, type a unique name for the envelope.

4. In the Envelope format list, click one of the following envelope formats:

CUSTOM XML

To enable BizTalk Server 2000 to process inbound interchanges with a custom XML format, you must create an
envelope with a custom XML format and a specification reference. However, when you submit custom XML
interchanges, you do not need to specify the envelope name in the submit call parameters. BizTalk Server 2000 is able
to locate the appropriate envelope without a name reference.

X12

You do not need to create an envelope with an X12 format to enable BizTalk Server 2000 to process inbound
interchanges with an X12 format, and you do not need to specify the envelope name in the submit call parameters.

EDIFACT

You do not need to create an envelope with an EDIFACT format to enable BizTalk Server 2000 to process inbound
interchanges with an X12 format, and you do not need to specify the envelope name in the submit call parameters.

FLATFILE

To enable BizTalk Server 2000 to process inbound interchanges with a flat-file format, you must create an envelope
with a flat-file format. When you submit inbound flat-file documents, you must specify the envelope name in the
submit call parameters. For more information, see Submitting.

CUSTOM

To enable BizTalk Server 2000 to process inbound interchanges with a custom format, a format not supported directly
by BizTalk Server 2000, you might need to create an envelope. However, you must create a custom parser component
to process these interchanges, which might require an envelope. For more information,
see Using the IBizTalkParserComponent Interface.

To enable BizTalk Server 2000 to process outbound interchanges with a custom format, you must create an envelope
with a custom format and select the envelope in a messaging port. You also must create and register a custom
serializer component. For more information, see Using the IBizTalkSerializerComponent Interface. You can configure
the custom serializer in the channel on the Advanced Configuration page of the Channel Wizard. For more
information, see Set advanced configuration properties.

RELIABLE

You do not need to create an envelope with a reliable format to enable BizTalk Server 2000 to process inbound
interchanges with a reliable format, and you do not need to specify the envelope name in the submit call parameters.

The reliable format processes envelopes that are compliant with BizTalk Framework 2.0. For more information about
BizTalk Framework 2.0, go to the Microsoft BizTalk Web site (www.microsoft.com/biztalk/).

If you choose the reliable format, you also must configure the Reliable messaging reply-to URL address in the
BizTalk Server Group Properties dialog box. For more information,
see Configure general properties for a server group.

5. If you choose the custom XML, flat-file, or custom format, you can select a specification for the envelope. For more
information, see Select an envelope specification.

 Important

If you create an envelope with the reliable format and select that envelope in a messaging port, you also must configure the

http://www.microsoft.com/biztalk/

Reliable messaging reply-to URL address in the BizTalk Server Group Properties dialog box. For more information,
see Configure general properties for a server group.

 Notes

To enable BizTalk Server 2000 to process outbound interchanges in any format, you must create an envelope.

If you choose the custom XML format and you do not select a specification, the envelope format defaults to the reliable
format.

When processing envelopes that are compliant with BizTalk Framework 2.0, BizTalk Server 2000 should be considered the
endpoint with regard to the expiration time. When BizTalk Framework 2.0–compliant documents are submitted to BizTalk
Server 2000, either from an application or a trading partner, the following fields are overwritten if present, or created if
absent:

In the properties subsection:

<prop:identity>

<prop:sentAt>

<expiresAt>

In the receipt information subsection:

<sendTo>

<address>

<sendReceiptBy>

If you change the envelope format and you have selected a specification, you also might need to select a different
specification.

When you save an envelope that references a specification that is outside of your local domain, you might receive an error.
If you receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the Microsoft
MSDN Web site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration Utility
page, which is located in the XML chapter of the Web Development book.

Related Topics

Create envelopes

Delete envelopes

Search for envelopes

Understanding Envelopes

http://msdn.microsoft.com/downloads/default.asp

Delete envelopes
1. In BizTalk Messaging Manager, in the Envelope Name list, click the envelope that you want to delete.

For more information about searching for envelopes, see Search for envelopes.

2. On the File menu, click Delete.

 Note

If an envelope is used in a messaging port, you cannot delete it. You must first delete all messaging ports that use the
envelope.

Related Topics

Create envelopes

Edit envelopes

Search for envelopes

Understanding Envelopes

Select an envelope specification
1. In the New Envelope or Envelope Properties dialog box, select the Envelope specification check box and click Browse.

The Select an Envelope Specification from the WebDAV Repository dialog box appears.

2. In the Server box, do one of the following if you want to change the server:

Click a server in the list.

Type the name of a server and press ENTER.

3. Double-click the folder that contains the specification that you want to open, click the specification, and then click Open.

 Important

The first time that you open any WebDAV repository dialog box, the WebDAV repository on the local server is selected, even
if your BizTalk Messaging Manager is connected to a database on a remote server. If you browse to a WebDAV repository
on a remote server, the default changes to that server until you select a new WebDAV repository. The default server for all
WebDAV repository dialog boxes is the last server to which a connection was made.

 Notes

If you select http://localhost as the server, BizTalk Messaging Manager automatically converts it to the local computer name.

If you choose the custom XML format, you can select a specification for the envelope. If you do not select a specification, the
envelope format defaults to the reliable format that complies with BizTalk Framework 2.0. For more information about
BizTalk Framework 2.0, go to the Microsoft BizTalk Web site (www.microsoft.com/biztalk/).

If you choose the flat-file format, you can select a specification for the envelope. You must select a specification if the
envelope is used for opening inbound interchanges. A specification is not required if the envelope is used for creating
outbound interchanges.

If you choose a custom format, you can select a specification for the envelope. The custom parser or serializer that you
create determines the need for a specification.

To use the custom format, you also must:

Create a custom parser component for opening inbound interchanges with this custom format. For more
information, see Using the IBizTalkParserComponent Interface.

Create and configure a custom serializer component for creating outbound interchanges with this custom format.
For more information, see Using the IBizTalkSerializerComponent Interface.

Configure the custom serializer component using the messaging port override properties in the Channel Wizard. For
more information, see Override messaging port defaults.

When you save an envelope that references a specification that is outside of your local domain, you might receive an error.
If you receive an error, download and configure the WinHTTP proxy utility. To download the utility, go to the Microsoft
MSDN Web site (msdn.microsoft.com/downloads/default.asp), and browse to the WinHTTP Proxy Configuration Utility
page, which is located in the XML chapter of the Web Development book.

Related Topics

Create envelopes

Edit envelopes

Search for envelopes

Understanding Envelopes

http://www.microsoft.com/biztalk/
http://msdn.microsoft.com/downloads/default.asp

Use Distribution Lists
This section provides task-specific information about how to use distribution lists. It is highly recommended that you
review Understanding Distribution Lists in the Concepts section to fully understand distribution lists.

The following procedures are covered in this section:

Create distribution lists

Search for distribution lists

Edit distribution lists

Delete distribution lists

Create distribution lists
1. In BizTalk Messaging Manager, on the File menu, point to New and click Distribution List.

The New Distribution List dialog box appears.

2. In the Distribution list name box, type a unique name for the distribution list.

3. In the Available messaging ports list, select the messaging ports that you want to include and click Add.

The selected messaging ports are added to the Selected messaging ports list.

4. In the Selected messaging ports list, select any messaging ports that you do not want to include and click Remove.

5. After you have set all the necessary properties, click OK to close the New Distribution List dialog box.

 Notes

When you remove a messaging port from a distribution list, it is removed only from the distribution list; it is not removed
from the database.

A distribution list must contain at least one messaging port.

Open messaging ports cannot be added to a distribution list.

To be functional, a distribution list requires at least one channel. For more information about channels,
see Create and Manage Channels.

Related Topics

Delete distribution lists

Edit distribution lists

Search for distribution lists

Understanding Distribution Lists

Search for distribution lists
1. In BizTalk Messaging Manager, in the Search for other items area, click Distribution lists.

2. Do one or more of the following:

To search for all distribution lists, clear all search criteria and click Search Now.

To search for a distribution list with a specific name, in the Search for distribution lists area, in the Distribution list
name box, type the name of the distribution list that you want to find and click Search Now. You can enter an
incomplete name and the search returns all possible names that match the incomplete name entry.

To search for distribution lists that contain a specific messaging port, in the Containing messaging port list, type the
name of the messaging port and click Search Now.

 Notes

To clear the search criteria and search results, click Clear Search.

If you have a large number of objects for which to search, it might take several minutes to return all the objects. You can
narrow the objects returned in a search by using selection criteria.

The default number of items returned in a search is 500. You can adjust this number. For more information,
see Set server connection options.

You can use the following wildcard characters in the search criteria:
Wildcard
character

Description Example

% Any string of zero or more characters. The entry '%open%' finds all names with the word 'open' anywhere in t
he name.

_ (undersc
ore)

Any single character. The entry '_ean' finds four-letter names that end with ean (Dean, Sean, a
nd so on).

[] Any single character within the specifie
d range ([a-f]) or set ([abcdef]).

The entry '[C-P]arsen' finds names ending with arsen and beginning wit
h any single character between C and P (Carsen, Larsen, and so on).

[^] Any single character not within the spe
cified range ([^a-f]) or set ([^abcdef]).

The entry 'de[^s]%' finds all names beginning with de and where the fol
lowing letter is not s.

Related Topics

Create distribution lists

Delete distribution lists

Edit distribution lists

Understanding Distribution Lists

Edit distribution lists
1. In BizTalk Messaging Manager, in the Distribution List Name list, click the distribution list that you want to edit.

For information about searching for distribution lists, see Search for distribution lists.

2. On the File menu, click Edit.

The Distribution List Properties dialog box appears.

3. In the Distribution list name box, type a unique name for the distribution list.

4. In the Available messaging ports list, select the messaging ports that you want to include and, to add them to the
Selected messaging ports list, click Add.

5. In the Selected messaging ports list, select any messaging ports that you do not want to include and click Remove.

6. After you have set all the necessary properties, click OK to close the Distribution List Properties dialog box.

 Notes

When you remove a messaging port from a distribution list, it is removed only from the distribution list; it is not removed
from the database.

A distribution list must contain at least one messaging port.

Open messaging ports cannot be added to a distribution list.

Related Topics

Create distribution lists

Delete distribution lists

Search for distribution lists

Understanding Distribution Lists

Delete distribution lists
1. In BizTalk Messaging Manager, in the Distribution List Name list, click the distribution list that you want to delete.

For more information about searching for distribution lists, see Search for distribution lists.

2. On the File menu, click Delete.

 Notes

You cannot delete a distribution list until all channels that are associated with the distribution list have been deleted.

You can search for channels associated with a distribution list by right-clicking the distribution list and clicking Find
Channels.

Related Topics

Create distribution lists

Search for distribution lists

Understanding Distribution Lists

Concepts
This section provides detailed conceptual information that is essential to understanding BizTalk Messaging Manager. It provides
information about the following topics:

BizTalk Messaging Manager Environment

Understanding Channels

Understanding Messaging Ports

Understanding Organizations

Understanding Document Definitions

Understanding Envelopes

Understanding Receipts

Understanding Distribution Lists

BizTalk Messaging Manager Environment
The following topics are covered in this section:

Configuring BizTalk Messaging Manager Options

BizTalk Messaging Manager User Interface

BizTalk Messaging Manager Shortcut Keys

Security

 Caution

You should use BizTalk Messaging Manager to configure BizTalk Messaging Services prior to processing documents.
Accessing and modifying objects that might be in use while Microsoft BizTalk Server 2000 is processing documents can
produce unexpected results.

Configuring BizTalk Messaging Manager Options
This section explains how to modify BizTalk Messaging Manager options. These options include:

Configuring new messaging ports or channels.

Managing previously configured messaging ports or channels.

Setting the search return value.

Setting the server connection.

Setting the server time-out value.

The following procedures are covered in this section:

Select a BizTalk Messaging Manager configuration option

Set server connection options

 Note

The toolbars in BizTalk Messaging Manager can be repositioned; however, when the application is restarted, the toolbars
return to their original positions.

Select a BizTalk Messaging Manager configuration option
1. On the Start menu, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Messaging

Manager.

The BizTalk Messaging Manager dialog box appears.

2. In the Configuration options area, select one of the following options:

If you want to create and configure a new messaging port to an organization, click Configure a new messaging port
to an organization and click OK.

For more information about creating and configuring a new messaging port to an organization,
see Create messaging ports.

If you want to create and configure a new messaging port to an application, click Configure a new messaging port
to an application and click OK.

For more information about creating and configuring a new messaging port to an application,
see Create messaging ports.

If you want to manage existing messaging ports, click Manage previously configured messaging ports and click
OK.

For more information about managing existing messaging ports, see Edit messaging ports.

If you want to manage existing channels, click Manage previously configured channels and click OK.

For more information about creating and configuring existing channels, see Edit channels.

 Note

If you do not want this dialog box to appear when you open BizTalk Messaging Manager, select the Don't show this
dialog box again check box. To reset the dialog box to appear, on the Tools menu click Options and select the Show
startup dialog box check box.

Related Topics

Create messaging ports

Edit channels

Edit messaging ports

Set server connection options
1. In BizTalk Messaging Manager, on the Tools menu, click Options.

The Options dialog box appears.

2. In the Maximum number of items to return in a search box, complete one of the following steps:

Type a value for the number of items to be returned in a search.

Click the up or down arrow to increase or decrease the value.

3. In the Name of BizTalk Server to connect to box, type the name of a server on which BizTalk Server 2000 is installed.

4. In the Server timeout in seconds box, complete one of the following steps:

Type a value for the number of seconds before the server connection times out.

Click the up or down arrow to increase or decrease the value.

5. To have an opening dialog box appear or not appear when BizTalk Messaging Manager starts, select or clear the Show
startup dialog box check box.

6. After you have set all properties, click OK.

 Notes

The server to which you connect determines the BizTalk Messaging Management database for which you search, edit, or
create new objects by using BizTalk Messaging Manager. The server connection defaults to the last connection that was
made. The server that hosts the WebDAV repository that you use to store and retrieve specifications for documents, maps,
and envelopes is set independently from within the dialog boxes that you use to select specifications. The WebDAV
connection defaults to the last connection that was made.

The default number of items returned in a search is 500.

The default number of seconds before the server connection times out is 20.

The server to which you are currently connected is displayed at the top of the Search pane located on the left side of BizTalk
Messaging Manager.

BizTalk Messaging Manager User Interface
The BizTalk Messaging Manager user interface has two main panes.

The left pane displays:

The name of the server to which BizTalk Messaging Manager is connected.

A list of objects for which you can search.

Search criteria that you can use to narrow your search.

You can search for any objects that you create by using BizTalk Messaging Manager. You can choose the type of object for which
you want to search by clicking the name in the Search for other items area. The search criteria differ according to the object that
you select.

The right pane displays:

The details of the items returned in your most recent search.

The details of the items differ according to the type of object for which you search.

You can sort the items in the search results pane in ascending or descending order by clicking the column headers. You can sort
based on only one column at a time.

 Notes

If you have a large number of a particular type of object for which to search, it might take several minutes to return all the
items. You can reduce the number of items returned in a search by using search criteria.

The default number of items returned in a search is 500. You can adjust this number. For more information,
see Set server connection options.

Related Topics

BizTalk Messaging Manager Shortcut Keys

Search for channels

Search for distribution lists

Search for document definitions

Search for envelopes

Search for messaging ports

Search for organizations

BizTalk Messaging Manager Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Messaging Manager. The following table is a quick reference to these
shortcut keys.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server and Advanced Server Help, see "Using the
keyboard to move the mouse pointer". For more information about MouseKeys in Windows 2000 Professional Help, see
"Move the mouse pointer by using MouseKeys".

Press To
CTRL+A Select all.
CTRL+C Copy text.
CTRL+X Cut text.
CTRL+V Paste text.
CTRL+Z Undo text action.
CTRL+R Create a new messaging port to an organization.
CTRL+SHIFT
+R

Create a new messaging port to an application.

CTRL+L Create a new channel from an organization.
CTRL+SHIFT
+L

Create a new channel from an application.

CTRL+T Create a new distribution list.
CTRL+D Create a new document definition.
CTRL+G Create a new organization.
DELETE Delete the selected item or text.
SHIFT+F10 Display the shortcut menu for the selected item.
SHIFT with an
y arrow key

Select more than one item in a window or select text.

TAB In a dialog box, pressing TAB moves the focus through the buttons and fields of the dialog box.
SHIFT+TAB In a dialog box, pressing TAB moves the focus through the buttons and fields of the dialog box.
CTRL+TAB Toggle tabs of a dialog box in front-to-back order.
CTRL+SHIFT
+TAB

Toggle tabs of a dialog box in back-to-front order.

SPACEBAR Select or clear a check box. The spacebar also acts like a mouse click when the focus is on a button.
ALT+SPACEB
AR

Display the system menu for the active window.

ALT+Underlin
ed letter in a
menu name

Display the corresponding menu.

Underlined le
tter in a com
mand name o
n an open me
nu

Carry out the corresponding command.

ALT+ DOWN
ARROW

Display the drop-down list for an activated list box.

ENTER Carry out the command for the active option or button.
ESC Cancel the current task.
F1 Display online Help.
ALT+F4 Close the active window, or quit the active program.
LEFT ARROW Move the focus to the tab to the left.
RIGHT ARRO
W

Move the focus to the tab to the right.

Any arrow ke
y

Highlight a folder or a file in the main window of a dialog box, while the focus is in that window. This functionality
occurs in the Select a Document Specification from the WebDAV Repository, the Select an Envelope Speci
fication from the WebDAV Repository, and the Select a Map from the WebDAV Repository dialog boxes. Fo
r more information, see Select a document specification, Select an envelope specification, and Select a map.

Related Topic

BizTalk Messaging Manager User Interface

Security
To access or create objects by using BizTalk Messaging Manager, you must have a user account in the BizTalk Server
Administrators group. The BizTalk Server Administrators group is created when BizTalk Server 2000 is installed. Additional users
can be added to this group as necessary. For more information about adding a user account,
see Add users to the BizTalk Server Administrators group.

Understanding Channels
A channel is a set of properties that you can use to configure BizTalk Messaging Services to process a document that it receives.
Channels can be created for a messaging port or a distribution list. Once a channel has processed a document, the document is
transported to the destination specified in the associated messaging port or the messaging ports in the associated distribution list.
You can create one or more channels for a messaging port or distribution list.

In a channel, you specify the source of the documents, which can be a source organization or a source application. Before you can
designate an application as the source for a channel, you must create an application for the home organization, which represents
an actual internal application in your business. You can also designate an XLANG schedule as the source for a channel. You can
create an XLANG schedule by using BizTalk Orchestration Designer. For more information, see Designing BizTalk Orchestrations.
For more information about integrating BizTalk Messaging Services with BizTalk Orchestration Services,
see Integrating BizTalk Services.

You can also explicitly declare an open source for a channel, which means that the source must be specified either within the
document or in a parameter when the document is submitted. This is referred to as an open channel. For more information,
see Submitting.

You also specify an inbound document definition, which represents an incoming document from an internal application or a
trading partner organization. And you specify an outbound document definition, which represents a document to be delivered to
the specified destination. For more information about document definitions, see Understanding Document Definitions.

If the format or structure of an outbound document is different from the format or structure of the inbound document, you must
specify a map for the channel. A map transforms the format or structure of the original inbound document into the outbound
document format or structure that is required by the destination organization or application. For example, if your accounting
application generates purchase orders in a delimited flat-file format but your trading partner requires that purchase orders be in
an X12 format, you can use a map to transform the document format. For more information about maps, see Mapping Data.

You can create more than one channel for a messaging port or distribution list, each with a different configuration. For example,
suppose that you have two internal accounting applications that generate purchase orders in different formats and that you have
a trading partner that wants to receive purchase orders from you in still another format. You can create a single messaging port
to the trading partner. Then, for that messaging port, you can create a channel from each of the applications. The outbound
document definition for both channels would be the same and match the format of your trading partner. However, each channel
would have a different map to transform the inbound document formats from the applications. Because you can create different
channels connected to a single messaging port, you can send all your purchase orders in the same format.

In addition, you can set other properties within a channel to:

Designate specification fields to track for the inbound document definition. Any fields that you designate are logged to a
Tracking database for each document instance processed using this specific channel, in place of any global tracking fields
designated in the document definition. For more information about global tracking fields,
see Tracking Document Data Fields.

Create a channel filtering expression, which determines if BizTalk Server 2000 invokes the channel, based on the value of a
field or fields within the document being processed.

Configure receipts. You can request a receipt from the destination for a document that you send, and you can generate a
receipt to the source for a document that you receive. For more information about processing receipts,
see Understanding Receipts.

Configure security properties. You can specify that the server verify the encryption and signature for an inbound document,
or digitally sign the outbound document.

Specify document logging options. You can store both the inbound and the outbound documents in their native format, in
their intermediate XML format, or both.

Configure advanced properties. You can specify a group control number for documents with EDI formats, set the number
and time interval that the server uses to resend documents, and override the transport component and envelope properties
for the messaging port or distribution list.

You can also create receipt channels by using BizTalk Messaging Manager. A receipt channel is a special type of channel that you
use to return a receipt to the sender of a document that is received by BizTalk Messaging Services. When you create a channel to
process an inbound document that requires a receipt, you can specify the receipt channel that the server should use to process

the receipt. Because of this, you should create a messaging port and an associated receipt channel before you create a messaging
port and channel to process a document that requires a receipt. For more information about processing receipts,
see Understanding Receipts.

When BizTalk Server 2000 receives a document, it locates the appropriate channel, which directs the server in how to process the
document. The server then locates the messaging port or distribution list associated with the channel. The messaging port directs
the server through the sequence of steps necessary to transport the document to the specified destination. If the channel is
associated with a distribution list, the server uses the properties of each of the messaging ports in the distribution list to transport
the document to the specified destinations.

The following topics are covered in this section:

Channel Elements

Valid Channel and Messaging Port Combinations

Channel Elements
Channels consist of the following elements:

Source organization or application
When you create a channel, you designate either an application or an organization as the source for documents. A
source application always represents a business application of your home organization. This could be an accounting application,
an order-entry system, or a line-of-business application. You can also designate an XLANG schedule as the source for documents.
You can create an XLANG schedule by using BizTalk Orchestration Designer. A source organization always represents an external
trading partner.

A channel is always created for a messaging port or a distribution list. The destination for the documents that you receive from
the source of a channel is designated in the messaging port, or in the messaging ports of the distribution list, for which the
channel is created.

Inbound and outbound document definitions
Document definitions in a channel represent the inbound and outbound documents that are processed by BizTalk Server 2000. A
document definition provides a pointer to a specification that defines the document. The specification defines such characteristics
as the document structure, type, and version. For more information, see Understanding Document Definitions.

When BizTalk Server 2000 receives a document, it locates the appropriate channel to process it. The server uses the specification
of the inbound document definition to translate the incoming document into an intermediate XML format. The server maps the
inbound document format and structure to the outbound format and structure, if necessary. Then, the server uses the
specification of the outbound document to translate the outbound document into the format and structure that the destination
application or organization can recognize and use.

Map
The format or structure of an inbound document might be different from the format or structure that is required for the outbound
document. If this is the case, a map can be used to transform the format of the inbound document into the format of the
outbound document.

For example, if you have an accounting application that generates invoices in a comma-delimited, flat-file format, but your trading
partner needs to receive invoices in an X12 format, you can use a map on the channel to transform the format.

A map can also transform the content and structure of a document that uses the same format. For more information,
see Mapping Data.

Tracking and filtering properties
You can designate specification fields to be logged to a Tracking database for the inbound document definition of a channel. The
specification fields that you designate in a channel are logged to a tracking database for each instance of a document processed
using this channel. These fields are logged in place of any global tracking fields that are designated in the inbound document
definition. Any global tracking fields designated for the outbound document definition are ignored. For more information,
see Tracking Document Data Fields.

A channel filtering expression provides an additional way to determine which channels are invoked when BizTalk Server 2000
receives a document. In the case of a channel filtering expression, this determination is based upon the value of a specified field or
fields within the document instance.

When the server processes a document, the value of each of the specified fields is evaluated against the value of the channel
filtering expression. If the expression is found to be true, the channel is invoked. If the expression is found to be false, the channel
is not invoked. For example, if the channel filtering expression is created to check for a purchase order total greater than 1000,
and the PO Total field in the document is 1500, the channel is invoked.

Document logging properties
BizTalk Server 2000 translates non-XML inbound documents from their original, native format into an intermediate Unicode XML
format for processing. BizTalk Server 2000 translates outbound documents from an intermediate Unicode XML format into the
required format for the specified destination. You can choose to store the data of each inbound and outbound document in either
format or in both.

Related Topics

Create and Manage Channels

Understanding Channels

Valid Channel and Messaging Port Combinations

Valid Channel and Messaging Port Combinations
You can create only certain channel (source) and messaging port (destination) combinations that are valid for use with Microsoft
BizTalk Server 2000.

The following valid business scenarios indicate how to configure messaging ports with the correct destination and channels with
the correct source designations to correctly route data.

Scenario 1: Trading partner to an internal application
In this scenario, you create a messaging port with an application of the home organization as its destination. You then create a
channel for this messaging port with the trading partner organization as its source.

Scenario 2: Internal application to trading partner
In this scenario, you create a messaging port with a trading partner organization as its destination. You then create a channel for
this messaging port with an application of the home organization as its source.

Scenario 3: Internal application to internal application
In this scenario, you create a messaging port with an application of the home organization as its destination. You then create a
channel for this messaging port with a different application of the home organization as its source.

Scenario 4: Internal application to distribution list
In this scenario, you create a distribution list, which includes a group of existing messaging ports to organizations or applications.
You then create a channel for this distribution list with an application of the home organization as its source.

Scenario 5: Internal application to open destination
In this scenario, you create a messaging port that you specify as an open messaging port. You then create a channel for this
messaging port with an application of the home organization as its source.

Scenario 6: Open source to internal application
In this scenario, you create a messaging port with an application of the home organization as its destination. You then create a
channel for this messaging port that you specify as an open channel.

 Note

A channel that is specified as an open channel cannot be created for a messaging port that is specified as an open
messaging port.

Scenario 7: Trading partner through intermediary to trading partner
In this scenario, one trading partner sends documents to another through your BizTalk Server 2000, with your business serving as
an intermediary. You create a messaging port with one trading partner organization as its destination. You then create a channel
for this messaging port with a different trading partner as its source.

Related Topics

Channel Elements

Understanding Channels

Understanding Messaging Ports
A messaging port is a set of properties that you can use to configure BizTalk Messaging Services to transport documents to a
specified destination by using a specified transport service. The documents that a messaging port transports originate from the
source that you specify in an associated channel. You can create multiple channels for a single messaging port to send documents
from many sources to the same destination.

A messaging port can be configured to send documents to a designated destination organization, an XLANG schedule, or a
destination application.

For a messaging port to an organization, you can either designate a specific trading partner as the destination or declare an open
destination, which is referred to as an open messaging port. An open messaging port can be used to transport documents only to
trading partner organizations. The destination organization information for an open messaging port must be specified either
within the document or in a parameter when the document is submitted to BizTalk Server 2000. For more information about
submitting documents, see Submitting. For more information about open messaging ports, see Openness.

When the address specified for an open messaging port is an SMTP address, the server must have a From address for the
home organization. To obtain this address, the server uses the value that is specified for a special organization identifier of the
home organization, named Reliable Messaging Acknowledgement SMTP From Address. For more information about how to
configure this organization identifier, see Configure the home organization.

For a messaging port to an application, you can designate either an XLANG schedule or an application of the home organization
as the destination. For more information about the home organization, see Understanding Organizations.

A messaging port to an XLANG schedule can be configured to activate a new instance of a specified XLANG schedule, and then
deliver the document to a specified messaging port of that schedule. In this case, the specified schedule must contain a messaging
port that is bound to BizTalk Messaging. When you specify the schedule, you also name the messaging port. You can also
configure a messaging port to deliver a document to a running instance of an XLANG schedule. In this case, the document must
contain a queue name to which the document should be delivered and that the targeted schedule is monitoring. For more
information about integrating BizTalk Messaging Services with BizTalk Orchestration Services, see Integrating BizTalk Services.

You also use the messaging port properties to designate a specific address to which documents are delivered, the transport type
for getting documents to that location, and how the documents are enveloped and secured prior to transport.

When BizTalk Server 2000 receives a document, it locates the appropriate channel to process it. After the channel processes the
document, it points the server to its associated messaging port or distribution list, which directs the server through the sequence
of steps necessary to envelope, secure, and transport the document to the specified destination.

The following topics are covered in this section:

Messaging Port Elements

Open Messaging Ports

Messaging Port Elements
Messaging ports consist of the following elements:

Destination
The destination for a messaging port can be a trading partner organization, an XLANG schedule, or an application of the
home organization.

A messaging port to an organization can explicitly designate the destination organization, or a messaging port can be declared as
an open messaging port. For open messaging ports, the destination organization is determined at the time the messaging port
processes a document. The destination organization information must be specified either in the document or in parameters when
the document is submitted. For more information, see Submitting.

A messaging port to an XLANG schedule can be configured in two ways. You can configure a messaging port to activate a new
instance of an XLANG schedule by specifying the path to an XLANG schedule. When the messaging port processes a document, it
activates this schedule and then delivers the document to a messaging port in that schedule that you also specify in the
messaging port properties. Or you can configure the messaging port to deliver documents to an active XLANG schedule. You use
this option only when you send a trading partner a message and the trading partner returns a message to a specially configured
ASP page using an HTTP transport. For more information, see Integrating BizTalk Services. You can create an XLANG schedule by
using BizTalk Orchestration Designer. For more information, see Designing BizTalk Orchestrations.

A messaging port can also transport documents to a destination application of the home organization. Before you can designate
an application as the destination for a messaging port, you must add the application to the home organization. For more
information, see Add applications.

Transport properties
The transport properties that you specify for a messaging port determine the transport service used to convey documents to the
destination organization or destination application, and the specific address to which the documents are sent.

The transport properties that you set for a messaging port apply to all channels associated with that messaging port. After
BizTalk Server 2000 invokes a channel to process documents, the server then refers to the properties of the messaging port that is
associated with the channel. The server sends the documents to the address specified in the messaging port, using the transport
type specified in the messaging port.

You can also specify a service window, which designates a specific time range within which documents can be transported.

Envelope information
Envelopes are headers and sometimes footers that are used to prefix or encapsulate documents that are transported. The header
of an envelope contains information about the document or documents that it contains and how to route them. An envelope
header contains the source organization identifier, destination organization identifier, and information about the type of
document or documents that it contains.

BizTalk Server 2000 is capable of receiving and processing interchanges that contain multiple documents and groups of
documents. When transporting documents that use an envelope, BizTalk Server 2000 includes each document in a separate
interchange.

Envelopes are optional; however, if you choose to use an envelope, the format of an envelope that you specify in a messaging
port must agree with the format of the document or documents that it contains. The document format is determined by the
specification referred to in the outbound document definition of an associated channel. For example, if you choose an envelope
with an X12 format for a messaging port, you must select an outbound document definition for the channel that points to an X12
specification. Conversely, if you select an outbound document definition in a channel, the messaging port that the channel is
associated with must have an envelope with a matching format. For example, if you select an outbound document definition that
has a specification with an X12 format, you should specify an X12 envelope in the messaging port.

Security properties
The security properties that you designate for a messaging port apply to all channels associated with that messaging port. For
example, if you designate Secure Multipurpose Internet Mail Extensions (S/MIME) encryption for a messaging port, all documents
processed by channels associated with that messaging port are encrypted using the specified encryption.

If you have documents that need to be secured using a different encryption or that do not need to be encrypted, you need to
create a separate messaging port with the appropriate security properties for those documents.

BizTalk Server 2000 supports Multipurpose Internet Mail Extensions (MIME) encoding.

The MIME message format standard specifies how to format messages so that client programs can decode and display complex
message bodies that can contain rich text, multiple character sets, and binary attachments such as pictures, sounds, spreadsheets,
and so on. MIME is a richer and more flexible technology than Uuencode and provides generic and flexible mechanisms for
including content within messages. With MIME formatting, you can:

Specify alternate content encoding mechanisms for each body part.

Relate groups of multiple content parts within a message.

Use character sets other than US-ASCII character sets in body parts and message header fields.

Specify the intended disposition of a content part (for example, inline or attachment).

BizTalk Server 2000 supports Secure Multipurpose Internet Mail Extensions (S/MIME) certificate-based public key encryption.

Encryption can be applied to business data that you send to your trading partners. By using an encryption certificate to secure the
data, you can ensure that only the intended recipient can access the information.

To encrypt business data, the source organization must have a copy of the public key for the encryption certificate of the
destination organization. The source organization uses this public key certificate to encrypt the business data and then forwards
the encrypted data to the destination organization. The destination organization can then use the private key of its encryption
certificate to decrypt the business data.

For an open messaging port, the encryption security properties are disabled because the destination organization is unknown.

BizTalk Server 2000 supports Secure Multipurpose Internet Mail Extensions (S/MIME) certificate-based public-key digital signing.
For more information about certificates, see Understanding Certificates.

Digital signing can be used to ensure the authenticity of the source of data, to ensure that the data has not been modified, and to
prevent the source of the data from repudiating the message.

A signature certificate is used to create digital signatures for authenticating data. Signing data does not alter the data, but it
generates a digital signature string that is either bundled with the data or transmitted separately.

To digitally sign a document, the data is processed to create a message digest. The source organization's private key is then used
to encrypt the message digest to form the digital signature. The data, along with the digital signature, is transmitted to the
recipient.

To verify a digital signature, the recipient must have a copy of the public key from the sender's signature certificate. The recipient
decrypts the digital signature by using the public key to form a digest and then calculates a message digest independently. The
results of the two digests are compared; if they are identical, the information has not been tampered with.

 Note

For more information about certificates, see Certificates Overview.

Related Topics

Create and Manage Messaging Ports

Open Messaging Ports

Understanding Messaging Ports

Open Messaging Ports
An open messaging port is a messaging port to an organization for which you have not explicitly declared a specific
destination organization. An open messaging port cannot have an application as its destination.

For an open messaging port, the destination and transport information must be provided either in the document or in parameters
when the document is submitted to Microsoft BizTalk Server 2000. If submission parameters are used, they override any
destination and transport information contained in the document. For more information about submitting documents,
see Submitting.

When you create a channel for an open messaging port, and the destination information is provided in the document, the
inbound document definition for that channel must reference a specification that is properly configured. For more information
about how to configure a document specification to process documents for an open messaging port,
see Set dictionary properties.

For an open messaging port, the encryption security properties are disabled because the destination organization is unknown. To
set the encryption properties, you need to specify a certificate from a specific, known destination organization. An encryption
certificate is used to encrypt documents that are transported to the specific destination organization.

You can use an open messaging port to send one or more standardized documents to many different current or future
trading partner organizations without creating a messaging port for each destination. All documents share the same envelope,
security, and transport properties that are established in the messaging port.

An open messaging port differs from a distribution list in the following ways:

With an open messaging port, each document from a channel results in only one document being delivered to only one
destination. With a distribution list, each document from a channel can result in the document being delivered to multiple
destinations.

With an open messaging port, you do not have to change the properties of the messaging port to send information to a
different trading partner organization. With a distribution list, you have to add a messaging port to send information to a
different trading partner organization.

 Important

When you declare a messaging port as an open messaging port, you should not create channels for the messaging port that
have an outbound document definition with an X12 or EDIFACT specification. To build an X12 or EDIFACT envelope, the
server must have a source and a destination organization identifier. An open messaging port does not specify a destination
organization identifier. In addition, the documents for an open messaging port must have the destination address within the
document, but X12 and EDIFACT documents do not contain this information.

Related Topics

Create and Manage Messaging Ports

Messaging Port Elements

Understanding Messaging Ports

Understanding Organizations
The organizations that you create by using BizTalk Messaging Manager represent the trading partners with which you exchange
documents. A special organization type, called the home organization, represents your business.

Home organization
BizTalk Messaging Manager creates the home organization for you automatically. When you configure the home organization,
you can rename it to make it easier to identify as your business. There is only one home organization, and you cannot delete it.

You cannot designate the home organization as a source or destination for documents in a messaging port or a channel. Only
applications of the home organization can be designated as the source or destination for documents within your business. For
example, you might create a messaging port that designates a trading partner organization as the destination for documents that
your business sends. Then, when you create a channel for that messaging port, rather than designating your home organization
as the source, you would designate a specific internal application within your business where the documents originate. You also
can designate one application of the home organization as the source for documents in a channel and another application as the
destination in a messaging port.

Applications of the home organization
The applications that you add to the home organization enable you to identify and track the flow of documents between Microsoft
BizTalk Server 2000 and actual internal applications within your business. However, simply creating an application and
designating it as a source or destination within BizTalk Messaging Manager does not control or enable the flow of documents to
or from an actual internal application. To integrate an internal application with BizTalk Server 2000 and direct the flow of
documents to or from the application, you need to further configure the server.

There are a number of ways to transport documents from an originating application to BizTalk Server 2000. The configuration
needed to integrate an application to transport documents to the server is performed entirely outside BizTalk Messaging
Manager. For more information, see Submitting.

To deliver documents from BizTalk Server 2000 to an internal application can require configuration both within and outside
BizTalk Messaging Manager. The transport type and address that you specify in a messaging port can determine a specific
location to which documents are delivered. An application or a separate component must then be configured to retrieve
documents received at that location for the destination application. Or, within the transport properties of a messaging port, you
can specify an application integration component that is capable of delivering documents directly to an application. For more
information, see Understanding Messaging Ports.

Trading partner organizations
All other organizations that you create with BizTalk Messaging Manager represent external trading partners or business units of a
trading partner. You can create any number of organizations. You can designate a trading partner organization either as a source
of documents in a channel or a destination for documents in a messaging port.

You also can designate one trading partner as the source of documents in a channel and another as the destination for the
documents in a messaging port. In this case, your business serves as a third-party intermediary between the two trading partners.

As with applications, simply creating an organization and designating it as a source or destination within BizTalk Messaging
Manager does not enable the flow of documents to or from that organization. To control and direct the flow of documents
between your partner organizations and BizTalk Server 2000, you need to further configure the server.

There are a number of ways for an external trading partner as a source organization to transport documents to your
BizTalk Server 2000. The configuration needed to do this is similar to the way that you integrate applications to transport
documents to the server, and it is also performed entirely outside BizTalk Messaging Manager. For more information,
see Submitting.

To deliver documents from your BizTalk Server 2000 to an external trading partner as a destination organization can require
configuration both within and outside BizTalk Messaging Manager. The transport type and address that you specify in a
messaging port determine a specific location to which documents are delivered. The destination organization, which must have
access to this location, can then configure its own BizTalk Server, one of its internal applications, or a separate component to
process the documents received at that location. For more information about configuring messaging ports,
see Understanding Messaging Ports.

The following topic is covered in this section:

Organization Identifiers

Organization Identifiers
Microsoft BizTalk Server 2000 and other trading partners use organization identifiers to uniquely identify organizations. An
organization can have more than one organization identifier; however, each identifier must be unique to that organization. For
example, a telephone number, a URL, or a DUNS number can each uniquely identify an organization, but no two organizations
can use the same telephone number as an organization identifier.

An organization identifier consists of three separate elements: a name, a qualifier, and a value. For example, a business might use
a telephone number to uniquely identify itself. In this example, the name of the identifier is "telephone number," the qualifier that
identifies the identifier as a telephone number is the number 12, and the value of the actual telephone number is (801-555-1079).
Each organization identifier name has a unique qualifier that is used in place of the name to indicate the type of identifier. For
example, the standard qualifier for a telephone number identifier is 12. When BizTalk Server 2000 processes documents, only the
qualifier and the value are used to identify organizations.

Each organization must have at least one identifier. When you create an organization, BizTalk Messaging Manager creates an
identifier with the name Organization. The qualifier for this identifier is OrganizationName, and its value is the name that you give
to the organization. This identifier is also set as the default identifier, which means that it is used when no other identifier is
specified. You can create additional identifiers and designate any identifier as the default identifier. You cannot delete the
Organization Name identifier or the designated default identifier. The default identifier is used to identify an organization unless
you override it by selecting a different identifier in a messaging port or channel.

When BizTalk Server 2000 processes and transports a document, it includes the organization identifiers of the
destination organization and the source organization in the envelope header. When BizTalk Server 2000 receives documents, it
searches the data for the source organization and the destination organization identifiers. The server then uses the identifiers and
the document-definition name to determine which channels to use to process the documents.

Interchanges with an EDI format have restrictions on organization identifiers. When you use an organization identifier for X12
envelopes, you should not use the organization identifier named Organization, or any other identifier that has a qualifier that
exceeds 2 characters or a value that exceeds 15 characters. When you use an organization identifier for EDIFACT envelopes, you
should not use the organization identifier named Organization, or any other identifier that has a qualifier that exceeds 4
characters or a value that exceeds 35 characters.

Related Topics

Create and Manage Organizations

Understanding Organizations

Understanding Document Definitions
A document definition represents a specific type of document that is processed by Microsoft BizTalk Server 2000. A document
definition represents the type of inbound or outbound document in a channel and provides a pointer to a document specification.
The document specification defines the document structure, type, and version. The same document specification can be used in
any number of document definitions, and the same document definition can be used in any number of channels.

If the format and structure of the inbound and outbound document in a channel are the same, you can use the same specification
for both. Otherwise, you must specify a map, which the server uses to transform the format or structure of the inbound document
into that of the outbound document.

When BizTalk Server 2000 receives a document, it identifies the appropriate channel or channels that have matching inbound
document definitions. The inbound document definition for each channel points to a specification. The server uses the
specification to translate a non-XML inbound document from its original format into an intermediate XML format, and to validate
the document's structure. The outbound document definition for the channel also points to a specification. The server uses the
outbound document specification to validate the data structure of the outbound document. If required, the server also can use the
specification to translate the outbound document from an XML format into a format that the destination organization or
destination application can recognize and use. The destination is designated in the messaging port with which the channel is
associated.

A document specification for a document definition is optional; however, in most cases you should select one. If you do not select
a specification:

The data that you process is not translated into XML on the inbound side or from XML on the outbound side.

The data is not validated against a specification to ensure that it does not contain errors.

You cannot transform the structure or format of the data by using a map in a channel.

You cannot specify global tracking fields or selection criteria.

A document specification is not required if you want to use the document definition in a pass-through submission for data that is
not in Unicode XML format. An example would be if you want to send binary data through BizTalk Server 2000 to a destination
without transforming the data in any way. In this case, you should not select a document specification for either the inbound or
the outbound document definition of the channel that is used for the pass-through submission.

The following topics are covered in this section:

Tracking Document Data Fields

Understanding Selection Criteria

Related Topics

Create and Manage Document Definitions

Creating Specifications

Mapping Specifications

Understanding Channels

Tracking Document Data Fields
In a document definition, you can designate fields contained within the specification that you want to log to a Tracking database.
The fields that you designate in a document definition are tracked for all document instances processed by channels that use the
document definition as its inbound document definition. Because these fields are tracked for all channels, they are referred to as
global tracking fields.

When you select an inbound document definition for a channel, you can designate specification fields from within the channel to
be tracked. The specification fields that you designate in a channel are tracked in place of any global tracking fields for documents
that are processed by that specific channel.

The fields that you designate for tracking in a document definition or in a channel are logged to a Tracking database only for the
inbound document definition of the channel. Any fields that are designated for tracking in the outbound document definition of
the channel are not tracked.

With the tracking data from the documents that are processed, you can analyze information about your operation. For example,
an invoice-total field can be tracked for every invoice that you send to your trading partners. You can then determine the total
dollar amount for invoices sent to all trading partners for a given period of time, or you can determine the total dollar amount of
invoices for each individual trading partner.

Related Topics

Create and Manage Document Definitions

Using BizTalk Document Tracking

Understanding Selection Criteria
Selection criteria are a unique set of name-value pairs that Microsoft BizTalk Server 2000 uses only to process EDI documents. For
inbound X12 or EDIFACT documents, the server uses selection criteria to uniquely identify and select a document definition
because no document definition name is available within individual EDI documents.

For outbound X12 or EDIFACT documents, selection criteria are used to create the functional group header information in the
envelope.

The following topics are covered in this section:

Using Selection Criteria with Inbound Documents

Using Selection Criteria with Outbound Documents

Using Selection Criteria with Inbound Documents
To process inbound documents, BizTalk Server 2000 must have the name of an inbound document definition. The server usually
obtains the name of the inbound document definition from either a field within the incoming document or a parameter that is
submitted along with the document. For more information, see Submitting.

For X12 and EDIFACT inbound interchanges, the documents can be contained within the functional group or interchange headers.
BizTalk Server 2000 processes the documents contained in these groups and interchanges individually. Because the document-
related information for each document is contained in the functional group or interchange header, the server cannot obtain a
document definition name from within the individual documents. Also, since an interchange can contain multiple groups with
different types of documents, a single document definition name cannot be provided as a submission parameter for the server for
identifying a document definition.

In such cases, BizTalk Server 2000 is able to extract document-related data from the functional group header (the GS header of an
X12 interchange and the UNG header of an EDIFACT interchange) or the interchange header in an EDIFACT interchange without
functional groups. By matching the values of this data to the values of selection criteria specified in a document definition, the
server can uniquely identify the appropriate document definition.

For BizTalk Server 2000 to match the selection criteria values to the corresponding header elements of an inbound interchange,
you must type the selection criteria names exactly as shown in the following tables.

X12 header elements

Name Requirement GS element
functional_identifier Mandatory GS01
application_sender_code Mandatory GS02
application_receiver_code Mandatory GS03
standards_version Mandatory GS08

EDIFACT header elements

Name Requirement UNH element UNG element
functional_identifier Mandatory S009, 0065 0038
application_sender_code Optional Not used S006, 0040
application_receiver_code Optional Not used S007, 0044
standards_version_type Mandatory S009, 0052 S008, 0052
standards_version_value Mandatory S009, 0054 S008, 0054

Related Topics

Create and Manage Document Definitions

Understanding Selection Criteria

Using Selection Criteria with Outbound Documents

Using Selection Criteria with Outbound Documents
To process an outbound X12 or EDIFACT document, BizTalk Server 2000 places each document into a valid envelope of the
appropriate format. To create the envelope, the server inserts the value data of the selection criteria into the corresponding fields
of the group and message headers. To build the headers, the server uses the selection criteria values contained in the outbound
document definition for the channel.

For example, suppose that you create a document definition that has the name-value pair of functional_identifier/ORDERS as one
of its selection criteria. If you then use this as the outbound document definition in a channel, the value of the group header field
that corresponds with the selection criteria named functional_identifier is set to ORDERS in the envelope header.

For BizTalk Server 2000 to insert selection criteria values to the corresponding header elements, you must type the selection
criteria names exactly as shown in the following tables.

X12 header elements

Name Requirement GS element
functional_identifier Mandatory GS01
application_sender_code Mandatory GS02
application_receiver_code Mandatory GS03
standards_version Mandatory GS08

EDIFACT header elements

Name Requirement UNH element UNG element
functional_identifier Mandatory S009, 0065 0038
application_sender_code Optional Not used S006, 0040
application_receiver_code Optional Not used S007, 0044
standards_version_type Mandatory S009, 0052 S008, 0052
standards_version_value Mandatory S009, 0054 S008, 0054

Related Topics

Create and Manage Document Definitions

Understanding Selection Criteria

Using Selection Criteria with Inbound Documents

Understanding Envelopes
An envelope encapsulates electronic business data for transport. An envelope typically consists of header and footer information,
or of header information only. The envelope properties that you specify provide Microsoft BizTalk Server 2000 with information
that the server needs to either open inbound interchanges or create outbound interchanges. When you create an envelope, you
specify an envelope format; for certain types of formats, you also can select an envelope specification.

The envelope formats supported by BizTalk Server 2000 are custom XML, ANSI X12, UN/EDIFACT, flat file (delimited and
positional), custom, and reliable. The reliable format processes envelopes that are compliant with BizTalk Framework 2.0. For
more information about BizTalk Framework 2.0, go to the Microsoft BizTalk Web site (www.microsoft.com/biztalk/). If you specify
a custom envelope format, you must create and register a custom parser component to process inbound envelopes or a custom
serializer component to process outbound envelopes. For more information, see Using the IBizTalkParserComponent Interface
and Using the IBizTalkSerializerComponent Interface.

To enable BizTalk Server 2000 to process inbound interchanges with a custom XML or flat-file format, you must create envelopes
with a matching format. To enable BizTalk Server 2000 to process inbound interchanges with a custom format, you must create
and register a custom parser component. BizTalk Server 2000 can process inbound interchanges with ANSI X12, UN/EDIFACT, or
reliable formats without using an envelope created by using BizTalk Messaging Manager.

To process outbound documents with any format, you must create an envelope and select it in a messaging port to create an
interchange with the required envelope format and header information. BizTalk Server 2000 places only one document in each
outbound interchange.

When you select an envelope with an X12 or EDIFACT format in a messaging port, you must also specify delimiters and an
interchange control number. These EDI properties apply only to the envelopes selected for use with that messaging port. When
you select an envelope with a custom format, then delimiters and an interchange control number are optional and depend on the
requirements of your custom parser or serializer components. When you create a channel for a messaging port that uses an X12,
EDIFACT, or custom envelope, you can specify a functional group control number that applies only to documents processed by
that channel and messaging port combination.

The format of an envelope that you select in a messaging port must agree with the format of the outbound document that it
contains. The format of the outbound document is determined by the specification referred to in the outbound
document definition of a channel. For example, if you choose an envelope with an X12 format for a messaging port, when you
create a channel for that messaging port you must select an outbound document definition that points to a specification that also
has an X12 format.

If you do not specify an envelope when creating a messaging port, the data is sent in XML format without any header.

 Note

When processing envelopes that are compliant with BizTalk Framework 2.0, BizTalk Server 2000 should be considered the
endpoint with regard to the expiration time. When BizTalk Framework 2.0–compliant documents are submitted to BizTalk
Server 2000, either from an application or a trading partner, the following fields are overwritten if present, or created if
absent:

In the properties subsection:

<prop:identity>

<prop:sentAt>

<expiresAt>

In the receipt information subsection:

<sendTo>

<address>

<sendReceiptBy>

The following topics are covered in this section:

Using Envelopes for Inbound Processing

Using Envelopes for Outbound Processing

Related Topics

http://www.microsoft.com/biztalk/

Create and Manage Envelopes

Understanding Messaging Ports

Using Envelopes for Inbound Processing
Microsoft BizTalk Server 2000 can process an inbound interchange with an X12 or EDIFACT format without using an envelope
created by using BizTalk Messaging Manager.

For BizTalk Server 2000 to process an inbound interchange with a flat-file format, you must create an envelope by using BizTalk
Messaging Manager. That envelope must point to a specification that the server can use to interpret and open the interchange.
The name of the envelope must be provided to the server when the interchange is submitted for processing. For more
information, see Submitting.

For BizTalk Server 2000 to process an inbound interchange with a custom XML format, you must create an envelope by using
BizTalk Messaging Manager. However, the server is able to locate the custom XML envelope that it needs to interpret and open
the interchange without the name of the envelope being provided at submission. You can provide the server with the name of the
envelope at submission, but it is not required. For more information, see Submitting.

For BizTalk Server 2000 to process an inbound interchange with a custom format, you must create a custom parser to open the
interchange. For more information, see Using the IBizTalkParserComponent Interface.

The envelopes that you create to process inbound interchanges do not need to be selected in a messaging port to be used by the
server. Only envelopes used for processing outbound interchanges need to be selected in a messaging port.

Related Topics

Create and Manage Envelopes

Understanding Envelopes

Using Envelopes for Outbound Processing

Using Envelopes for Outbound Processing
Messaging ports regulate the outbound flow of data from Microsoft BizTalk Server 2000 to a specified destination. When you
create a messaging port, you can select an envelope for the documents that are processed by that messaging port. If you select an
envelope, the envelope format must match the format of the documents that the envelope contains. The format of the documents
is determined by the specification referred to in the outbound document definition of a channel. Once you create an envelope by
using BizTalk Messaging Manager, you can use it in any number of messaging ports.

When BizTalk Server 2000 processes an outbound document, the server uses the properties of the envelope selected in the
messaging port to create an interchange by encapsulating or prefixing the document. If you do not specify an envelope for a
messaging port, the data is sent in XML format without any header or footer. If you specify a custom XML format, but do not
select an envelope specification, the data is sent using the reliable format. The reliable format processes envelopes that are
compliant with BizTalk Framework 2.0. For more information about BizTalk Framework 2.0, go to the Microsoft BizTalk Web site
(www.microsoft.com/biztalk/).

For BizTalk Server 2000 to process an outbound interchange with a custom format, you must create a custom serializer to create
the interchange. For more information, see Using the IBizTalkSerializerComponent Interface.

When you select an envelope with an X12 or EDIFACT format, you must specify an interchange control number and delimiters. An
interchange control number is used to identify and track documents that are processed using the messaging port. The
interchange control number is incremented with each use of the envelope and messaging port. Delimiters indicate the characters
that are used to separate the records and fields of the envelope and the documents contained in the envelope. For envelopes with
a custom format, an interchange control number and delimiters are optional.

 Important

The envelope format for a messaging port must agree with the document type format of the specification that is referred to
by the outbound document definition for any associated channel. For example, if you choose an envelope with an X12
format for a messaging port, you must select an outbound document definition for the channel that points to an X12
specification.

Related Topics

Create and Manage Envelopes

Understanding Envelopes

Using Envelopes for Inbound Processing

http://www.microsoft.com/biztalk/

Understanding Receipts
When exchanging documents with a trading partner, your business processes might require you to receive receipts for the
documents that you send, or to generate receipts for documents that a trading partner sends to your business.

BizTalk Messaging Services provides two methods for processing receipts for interchanges. For interchanges that use the X12 or
EDIFACT parser, or a custom parser that requires receipts, you can configure BizTalk Messaging Manager to use channel
properties to process receipts. For interchanges that use the XML parser, you have the option of using reliable messaging, which
processes receipts automatically to guarantee the reliable delivery of data.

The following topics are covered in this section:

Processing Receipts Using Channels

Processing Receipts Using Reliable Messaging

Processing Receipts Using Channels
This section explains how you can configure BizTalk Messaging Services to use channel properties to control the processing of
receipts. The destination system is configured to generate (send) receipts to the source system. The source system is configured to
expect (receive) receipts from the destination system and correlate them with the original interchanges. This configuration applies
only if you process interchanges that use the X12 or EDIFACT parser, or a custom parser that requires receipts. For more
information about creating custom parsers, see Using the IBizTalkParserComponent Interface. If you process interchanges that
use the XML parser, see Processing Receipts Using Reliable Messaging.

If you use a custom parser and want to correlate receipts with the original interchanges, you must create a custom correlation
component.

For the source system to receive receipts, the destination system also must be configured to send receipts. Configuring a channel
on the source system to expect a receipt is not sufficient to receive receipts.

This following illustration shows the configuration for both the source and destination systems using channel properties for
processing receipts.

Generate and send receipt
Receive and correlate receipt
Receive and process interchange
Destination System
Source System
Messaging port to
Destination System
PO
Parser
Messaging
port to
Source
System
Outbound
document
definition
Receipt
Document
specification
Document
specification
Inbound

document
definition
Map
Receipt channel
Canonical receipt
Messaging port
to Application
Channel from
Source System
Document
specification
Receipt document
definition
Channel for PO
Generate and send interchange

The following topics are covered in this section:

Configuring the Source System for Channel Receipts

Configuring the Destination System for Channel Receipts

Configuring the Source System for Channel Receipts
This topic explains how to configure BizTalk Messaging Services to send an interchange to a trading partner and to process a
receipt by using channel properties.

You must create a channel and a messaging port to process and transport an interchange to the destination system. You do not
need to create a channel and messaging port to process the receipt that the destination system returns. However, you must create
a document definition that the server uses to validate the receipt when it is returned.

To configure BizTalk Messaging Services to send an interchange to a destination system and to process a receipt by using channel
properties, perform the steps in the following table. References are provided for each procedure, and notes are provided to
indicate special configuration considerations. Other property settings needed to complete the configuration vary according to
your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications for the inbound and ou
tbound document definitions for the original do
cument for the interchange. You also must creat
e a specification for the document definition tha
t the server uses to validate the receipt when it i
s received.

Create and Validate Specifications

 Notes

For the outbound document definition for the channel, you
must create a specification that uses the format required by t
he destination system. For example, X12.

When BizTalk Messaging Services on the destination system process
es the interchange, and the parser requires receipts, the parser does t
he following:

Extracts header elements from the interchange.

Generates a canonical receipt.

Inserts the elements into the canonical receipt.

For the source system, the specification for the outbound document
definition of the channel used to process the interchange also must c
ontain these fields. And, the specification for the document definition
to validate the receipt must contain these fields. The source system u
ses these elements to correlate the receipt with the original interchan
ge

The X12 header elements are:

functional_identifier

standards_version

The EDIFACT header elements are:

functional_identifier

standards_version_type

standards_version_value

Using BizTalk Messaging Manager:

Create the inbound and outbound document de
finitions for creating the channel and a docume
nt definition for the receipt.

Create document definitions

 Notes

In the document definitions, you must select the specification
s that you created previously. For more information,
see Select a document specification.

You also must create a document definition for the receipt.

Create a messaging port for transporting the re
ceipt to the source system.

Create messaging ports

 Note

You must create the messaging port and its associated
receipt channel for processing the receipt first. When you cre
ate the channel for processing the original interchange, you
must specify the receipt channel.

Create a messaging port for transporting the int
erchange to the destination system.

Create messaging ports

Create a channel to process the original intercha
nge from your trading partner.

Create channels

 Notes

On the Source Application or Source Organization page
of the Channel Wizard, select the Expect receipt check box.

In the Expect receipt area, in the Receipt interval in minu
tes box, set the time that that you want to wait to receive the
receipt before resending the original interchange. For more i
nformation, see Set source application properties
or Set source organization properties.

Using BizTalk Document Tracking:
The original interchange is logged to the
Tracking database and the receipt status field is
set to "Expect". The receipt status in the Tracking
database subsequently changes to reflect the st
atus of the receipt process.

Understanding Document-Instance Record Results

Understanding Receipt Results

Submitting receipts on the source system
Receipts are submitted to BizTalk Messaging Services in the same manner as other documents. Once a receipt is submitted, the
X12 and EDIFACT parsers can distinguish a receipt from other documents and direct the server to correlate the receipt with the
original interchange.

 Important

Receipts must be submitted to BizTalk Messaging Services without using any submission parameters.

Configuring the Destination System for Channel Receipts
This topic explains how to configure BizTalk Messaging Services to process an interchange from a trading partner and to generate
a receipt by using channel properties. To do this, you must create a channel and a messaging port to process the outbound
interchange and transport it to the destination system. You do not need to create a channel or a messaging port to process the
receipt that the destination system returns. A parser processes the receipt by using only a document definition.

To configure BizTalk Messaging Services to process an interchange from the source system and to send a receipt by using
channel properties, perform the steps in the following table. References are provided for each procedure, and notes are provided
to indicate special configuration considerations. Other property settings needed to complete the configuration vary according to
your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications for the inbound an
d outbound document definitions that are u
sed to create the receipt channel.

Create and Validate Specifications

 Notes

For the inbound document definition of the receipt channel, you u
se the Canonical Receipt specification. This specification is located
in the WebDAV repository.

For the outbound document definition of the receipt channel, you
must create a specification that uses the format required by your
business process.

When BizTalk Messaging Services on the destination system processes a
n inbound interchange, and the parser requires receipts, the parser does t
he following:

Extracts group header elements.

Generates a canonical receipt

Inserts the header elements into the canonical receipt.

The outbound document specification for the receipt channel must contai
n fields for these header elements. The source system uses the header ele
ments to correlate the receipt with the original interchange.

The X12 header elements are:

functional_identifier

standards_version

The EDIFACT header elements are:

functional_identifier

standards_version_type

standards_version_value

Create the specifications for the inbound an
d outbound document definitions that are u
sed to create the channel to process the ori
ginal interchange from the source system.

Create and Validate Specifications

Using BizTalk Mapper:

Create a map for the receipt channel. Create new maps

 Notes

When you create the receipt channel, you must specify a map. Th
e map is used to transform the canonical receipt into the correct
document type for the outbound document.

You can use one of the maps that are provided with BizTalk Serve
r 2000, if it matches the document type that is required for your b
usiness process. You can retrieve these maps from the WebDAV r
epository.

–Or–

You can create your own map using the Canonical Receipt specifi
cation and a specification that matches the document type requir
ed for your business process.

Using BizTalk Messaging Manager:
Create the document definitions for the rec
eipt channel and for the channel that you u
se to process the original interchange.

Create document definitions

 Notes

In the document definitions, you must select the specifications tha
t you created previously. For more information,
see Select a document specification.

You also must create the document definitions for the channel th
at is used to process the original interchange. The configuration f
or these varies depending on your business process.

Create a messaging port for transporting th
e receipt to the source system.

Create messaging ports

 Note

You must create the messaging port and its associated receipt ch
annel for processing the receipt before you create those that are
used for the original interchange. When you create the channel fo
r processing the original interchange, you must specify the receip
t channel.

Create a receipt channel from an applicatio
n for processing the receipt.

Create channels

 Notes

On the General Information page of the Channel Wizard, select
the This is a receipt channel check box.

On the Source Application page of the Channel Wizard, in the
Name list, select an application.

You can create an application for the home organization that you
use to designate receipts that are generated by the parsers.

On the Inbound Document page of the Channel Wizard, click Br
owse and browse to the document definition that you created ear
lier and that uses the Canonical Receipt specification.

On the Outbound Document page of the Channel Wizard, click
Browse and browse to the document definition that you created
earlier and that uses the specification with the document type req
uired for your business process.

Create a messaging port for transporting th
e documents contained in the original inter
change to their intended destination.

Create messaging ports

 Note

This messaging port does not require special configuration for processin
g receipts.

Create a channel to process the original int
erchange from your trading partner.

Create channels

 Notes

On the Source Organization page of the Channel Wizard, select
the Generate receipt check box.

In the Generate receipt area, click Browse and select the receipt
channel that you created to process the receipt. For more informa
tion, see Set source organization properties.

On the Advanced Configuration page of the Channel Wizard, in
the Retry options area, you can set the number of retries and the
interval. For more information,
see Set advanced configuration properties.

Using BizTalk Document Tracking:
The original interchange and the receipt are
logged to the Tracking database.

Understanding Document-Instance Record Results

Understanding Receipt Results

Processing Receipts Using Reliable Messaging
This section explains how you can configure BizTalk Messaging Services to send and receive receipts by using reliable messaging
envelopes, which create interchanges that are compliant with BizTalk Framework 2.0. Reliable messaging enables receipts to be
processed automatically, to ensure the reliable delivery of data. For more information about BizTalk Framework 2.0, go to the
Microsoft BizTalk Web site, (www.microsoft.com/biztalk/). If you send and receive interchanges that use the X12, EDIFACT, or a
custom parser, see Processing Receipts Using Channels.

By using BizTalk Messaging Manager, you can configure a messaging port to use a reliable envelope format for an outbound
interchange. Envelopes that use the reliable messaging format must always include a reply-to URL address in the header. The
reply-to address is used by the destination system to send a receipt to the interchange sender system.

The following topics are covered in this section:

Configuring the Source System for Reliable Messaging Receipts

Configuring the Destination System for Reliable Messaging Receipts

http://www.microsoft.com/biztalk/

Configuring the Source System for Reliable Messaging Receipts
To configure BizTalk Messaging Services to send an interchange to a destination system and to process a receipt by using
reliable messaging, perform the steps in the following table. References are provided for each procedure, and notes are provided
to indicate special configuration considerations. Other property settings needed to complete the configuration vary according to
your particular business situation and are not specified here.

Step References and notes
Using BizTalk Administratio
n:

Configure the reliable m
essaging reply-to addres
s property.

Configure general properties for a server group.

 Notes

In BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and then
click the server group that you want to configure.

On the Action menu, click Properties.

In the BizTalk Server Group Properties dialog box, in the Reliable messaging re
ply-to URL box, type the URL that this server group uses to receive reliable messagi
ng delivery receipts.

When you create an outbound interchange that uses a reliable messaging envelope,
the server automatically inserts the Reliable messaging reply-to URL into the hea
der of the outbound interchange. The server also places the original interchange int
o the Retry queue. The server uses the Retry options specified in the channel to dete
rmine the number of times to resend the original interchange until a receipt has bee
n received.

Using BizTalk Messaging M
anager:

Create an envelope that
uses the reliable envelop
e format.

Create envelopes

 Notes

In the New Envelope dialog box, in the Envelope format list, click RELIABLE.

If you choose the custom XML format and you do not select a specification, the enve
lope format defaults to the reliable format.

Create a messaging port
for transporting the origi
nal interchange to the de
stination system.

Create messaging ports

 Note

On the Envelope Information page of the New Messaging Port Wizard, in the Envelope i
nformation area, select the envelope that you created previously. For more information, se
e Set envelope information properties.

Create a channel to proc
ess the original interchan
ge.

Create channels

 Notes

On the Source Application or Source Organization page of the Channel Wizard,
do not set any receipt properties.

On the Advanced Configuration page of the Channel Wizard, in the Retry option
s area, you can set the number of retries and the interval. For more information,
see Set advanced configuration properties.

Using BizTalk Document Tr
acking:

On the source system, th
e original, outbound inte
rchange is logged to the
Tracking database; howe
ver, the receipt that is ret
urned is not.

Understanding Document-Instance Record Results

Understanding Receipt Results

Configuring the Destination System for Reliable Messaging
Receipts
When BizTalk Messaging Services for the destination system receives an interchange with a reliable messaging format, it uses a
special document definition, channel, and messaging port to process and transport a receipt to the source system. These special
system objects are not viewable in BizTalk Messaging Manager, and you cannot create similar objects using the reserved system
names.

The server uses the reply-to address that is included in the header of the inbound interchange as the destination address for the
receipt.

You do not need to further configure BizTalk Messaging Services for the destination system to return a receipt for an interchange
that is sent with a reliable messaging envelope, except when the source system specifies an SMTP address as the reliable
messaging reply-to URL address. To send receipts to an SMTP address, your server must be configured to include a From address
in the header of the receipt.

When BizTalk Server 2000 is installed, an organization identifier is created for the home organization. This identifier is named
Reliable Messaging Acknowledgement SMTP From Address, and it cannot be removed. When sending a reliable messaging
receipt to an SMTP address, the server inserts the value that you specify for this organization identifier into the interchange
header as the From address.

To configure BizTalk Messaging Services to send a receipt to a source system using an SMTP reliable messaging reply-to address,
perform the steps in the following table. References are provided for each procedure, and notes are provided to indicate special
configuration considerations. Other property settings needed to complete the configuration vary according to your particular
business situation and are not specified here.

Step References and notes
Using BizTalk Messaging Manager:

Configure the Reliable Messaging Acknowledgemen
t SMTP From Address organization identifier of the
home organization.

Configure the home organization

 Notes

Open the home organization.

In the Organization Properties dialog box, click the Ide
ntifiers tab.

In the Organization identifiers list, click Reliable Mess
aging Acknowledgement SMTP From Address and cli
ck Edit.

In the Identifier Properties dialog box, in the Value box
, type a value for the identifier. For more information, see
 Edit organization identifiers.

 Important

Do not modify the name or qualifier for this identifier, bu
t only modify the value.

Create a messaging port for transporting the origin
al interchange to its intended destination.

Create messaging ports

 Note

This messaging port does not require special configurati
on.

Create a channel to process the original interchange
.

Create channels

 Note

This messaging port does not require special configurati
on.

Using BizTalk Document Tracking:
On the destination system, the inbound interchange
is logged to the Tracking database, but the receipt is
not.

Understanding Document-Instance Record Results

Understanding Receipt Results

Understanding Distribution Lists
A distribution list is a group of messaging ports with which you can send the same document to several different trading partner
organizations or internal applications.

You can use a distribution list to send the same data to several trading partner organizations or internal applications of your
home organization at the same time. For example, you can send the same catalog, price list, or newsletter to several trading
partner organizations by submitting the information only once to Microsoft BizTalk Server 2000.

You must first create a messaging port to each of the trading partner organizations or internal applications that you want to
receive the data, and then add the messaging ports to a distribution list. Open messaging ports cannot be added to a distribution
list. You can create new messaging ports to additional trading partner organizations or internal applications, and then add those
messaging ports to an existing distribution list. For more information, see Create messaging ports.

You must create at least one channel for each distribution list, or else the distribution list is not functional. For more information,
see Create channels.

When BizTalk Server 2000 invokes a channel related to a distribution list, it invokes only the channel that is associated with the
distribution list to process the data. None of the channels that are associated with the individual messaging ports in the
distribution list are invoked. The server uses the properties of each messaging port successively to transport the data to the
destinations specified in the messaging ports.

A distribution list differs from an open messaging port in the following ways:

With a distribution list, each document from a channel can result in the document being delivered to multiple destinations.
With an open messaging port, each document from a channel results in only one document being delivered to only one
destination.

With a distribution list, you have to add a messaging port to send information to a different trading partner organization.
With an open messaging port, you do not have to change the properties of the messaging port to send information to a
different trading partner organization.

Related Topic

Use Distribution Lists

Accessing the BizTalk Messaging Configuration Object Model
This section provides information about how to access the BizTalk Messaging Configuration object model programmatically. It
shows how to manage trading partner relationships and set up messaging ports and channels for the exchange of data, using
Microsoft BizTalk Server 2000. This section also shows how to create document definitions and envelopes, and how to set
organization properties. For additional information, see the following sections:

For general background information, see Concepts.

For information about COM interfaces, enumerations, and error messages, see the Object Model Reference.

For examples of code, see BizTalk Messaging Services Code Samples.

The BizTalk Messaging Configuration object model can also be configured using the BizTalk Messaging Manager graphical user
interface. For more information, see Using BizTalk Messaging Manager.

Concepts
This section provides detailed conceptual information that is important to understanding how to access the BizTalk Messaging
Configuration object model. The following topics are covered:

BizTalk Messaging Configuration Object Model

Channels

Messaging Ports

Openness

Organizations

Document Definitions

Envelopes

For information about code samples that use the BizTalk Messaging Configuration object model,
see BizTalk Messaging Services Code Samples.

BizTalk Messaging Configuration Object Model
The BizTalk Messaging Configuration object model provides an easy way for applications to set up, maintain, and retrieve
messaging ports and channels for trading partner relationships and application-to-application integration. The BizTalk Messaging
Configuration object model can also create envelopes and document definitions, and set organization properties.

The BizTalk Messaging Configuration object model uses a Structured Query Language (SQL) database to store the port
configurations and other relational data. ActiveX Data Objects (ADO) recordsets are returned when querying for lists of object
instances (for example, messaging ports, organizations, and so on).

The BizTalk Messaging Configuration object model consists of Component Object Model (COM) objects that expose the
configuration data required for Microsoft BizTalk Server 2000 to configure the interchange of structured documents between
applications and trading partners. The COM objects represent instances of data in memory that can be stored in the database.

All object properties are read/write, except where noted.

Related Topics

BizTalk Messaging Configuration Objects

Referential Integrity

Security

BizTalk Messaging Configuration Objects
The following table shows the objects of the BizTalk Messaging Configuration object model.

Object Description
BizTalkChannel Contains the configuration related to the source entity and its binding with a BizTalkPort object.
BizTalkConfig Creates and retrieves other BizTalk objects, such as channels, document specifications, and

messaging ports.
BizTalkDocument Identifies and describes the specification of a document.
BizTalkEnvelope Identifies the envelope format and/or the envelope schema used for documents. Envelopes are required fo

r documents using the X12 or EDIFACT format.
BizTalkOrganization Identifies the source or destination point for the exchange of electronic data. An organization can represen

t an external trading partner, your own company, or a business unit of a trading partner or your company.
An organization can designate a source application in a channel or a destination application in a port.

BizTalkPort Defines the destination-related attributes of a document submission.
BizTalkPortGroup Configures a port group. This is a group of complete BizTalkPort objects for sending the same document,

such as a catalog, a price list, or a newsletter, to a group of trading partners.

 Caution

Do not access the database directly. Do not directly call the stored procedures. Make all changes to the database by using
the methods and properties of the BizTalk Messaging Configuration object model. Making changes to the database directly
bypasses many constraints enforced by the BizTalk Messaging Configuration object model and either causes the server to
function incorrectly or corrupts the database.

The BizTalk Messaging Configuration object model should be accessed only at design time. Accessing objects in use while
BizTalk Server is processing documents can produce unexpected results.

BizTalk Server 2000 treats all variables with a BSTR data type as NULL-terminated strings. Any data contained in a BSTR
after the NULL character is ignored. Documents containing embedded NULL characters must be submitted to BizTalk Server
using pass-through mode.

Related Topics

Channels

Document Definitions

Envelopes

Messaging Ports

Organizations

Referential Integrity
Referential dependency must be considered when instantiating objects in BizTalk Server 2000. Referential dependency indicates
that one object refers to, and is dependent upon, another object. For example, a BizTalkChannel object refers to a BizTalkPort
object.

To maintain referential integrity, an object instance cannot be deleted if it is referred to by another object instance. Referential
integrity is maintained when the object referred to exists in the database.

Remove objects in the reverse order from which they are created. If an instance of an object referred to by another instance of an
object is removed, a constraint error is returned. Using the example above, a constraint error is returned if a BizTalkPort object is
removed that is being used by a BizTalkChannel object.

The following sequence shows the preferred order for creating objects to maintain the referential integrity of the objects:

1. BizTalkOrganization

2. BizTalkDocument

3. BizTalkEnvelope (if required)

4. BizTalkPort

The BizTalkPort object requires the BizTalkOrganization object.

The BizTalkPort object conditionally uses the BizTalkEnvelope object.

5. BizTalkChannel

The BizTalkChannel object requires the BizTalkPort object.

The BizTalkChannel object requires the BizTalkDocument object.

The BizTalkChannel object requires the BizTalkOrganization object.

The BizTalkChannel object conditionally uses the BizTalkPortGroup object if the channel is created for port groups.

6. BizTalkPortGroup (if used)

The BizTalkPortGroup object requires the BizTalkPort object.

Security
When accessing or creating objects in the BizTalk Messaging Configuration object model, the script or application must be run in
the context of a user account in the BizTalk Server Administrators group. The BizTalk Server Administrators group is created when
BizTalk Server 2000 is installed. Additional users can be added to this group as necessary. For additional information,
see Add users to the BizTalk Server Administrators group.

Channels
The BizTalkChannel object contains the configuration information related to the source entity and its binding with
a BizTalkPort object. When BizTalk Server 2000 receives a document, a specific BizTalkChannel object, along with the
properties configured in its associated BizTalkPort object or an associated BizTalkPort object within a BizTalkPortGroup,
directs the server through the steps necessary to process that document. Note that multiple channels might be bound to the same
BizTalkPort object. This represents multiple source entities that exchange documents with the same destination.

The BizTalkChannel object identifies the map used for document transformation if the type of the input BizTalkDocument
object is different from the type of the output BizTalkDocument object. It also points to the specification that contains fields for
document tracking and selects the type of logging desired.

Related Topics

Channel Filtering

Configuring

Document Processing

Document Storage

Document Tracking

Identification

Identification
BizTalk Server 2000 determines the appropriate BizTalkChannel object for processing the input document by one of the
following methods:

The source organization identifier, qualifier, and value, the destination organization identifier, qualifier, and value, and the
name of the BizTalkDocument object are parameters of the Submit or the SubmitSync method of the Interchange
object.

The source and destination organization identifiers, qualifiers, and values, and the name of the BizTalkDocument object
are specified in the header fields of the document instance.

The name of the BizTalkChannel object is a parameter of the Submit or the SubmitSync method call.

When BizTalk Server 2000 receives a document, it first identifies all BizTalkChannel objects that support the specified
BizTalkDocument object. The server then looks up each BizTalkPort object and determines if the SourceOrganization and
DestinationOrganization properties identify the source and destination BizTalkOrganization objects specified by the
organization identifiers in the document or in the parameters of Submit when the document is submitted. This includes any open
messaging ports that match either the specified source organization or the destination organization.

This identification process can be bypassed by specifying the name of a BizTalkChannel object to be used as a parameter of
Submit or SubmitSync.

Related Topic

Submitting

Document Processing
When BizTalk Server 2000 identifies a BizTalkChannel object, the server processes this object, which directs the server in the
steps to process the document. To direct the server, the BizTalkChannel object follows its own rules and the rules of its
associated BizTalkPort object.

An input BizTalkDocument object is related to an output BizTalkDocument object by a BizTalkChannel object. The
BizTalkPort object must be created before an associated BizTalkChannel object can be created.

When BizTalk Server 2000 processes a BizTalkChannel object, the server calls upon each associated BizTalkPort object to
provide the document-processing rules needed by the server. The rules set by the properties of the BizTalkChannel object direct
the server in the initial steps of document processing, such as determining which input and output BizTalkDocument object to
use, which map file to use, and what fields to track. Once a document is in its final output format, the properties of the
BizTalkPort object direct the server in the steps to prepare and transport the document according to the rules agreed to by the
source and destination organizations.

When a document is submitted, the server can identify multiple BizTalkPort and BizTalkChannel objects that match the source
organization, the destination organization, and the specified BizTalkDocument object. Therefore, it is possible for one input
document to generate multiple output documents. It is also possible for each output document to be transmitted to a different
location by using different transport properties in the matching BizTalkPort objects, and for each output document instance to
include a different subset of data from the original input document by using different map files.

Configuring
A BizTalkChannel object consists of the internal document processing data for the specified input and
output BizTalkDocument objects. To be fully configured, a BizTalkChannel object must have one complete BizTalkPort object
identified by its Port property. Input and output BizTalkDocument objects must be specified. After the InputDocument
and OutputDocument properties are selected for use in this BizTalkChannel object, a BizTalkPort object or
a BizTalkPortGroup object must be selected.

The name of a BizTalkChannel object must be unique across the database for all objects of its type.

The following properties are required before a BizTalkChannel object can be saved:

InputDocument

Port (or PortGroup)

OutputDocument

Name

Once a BizTalkChannel object has been created or saved, only the following properties can be changed:

Comments

ControlNumberValue

MapReference

Name

TrackFields

Channel Filtering
Channel filtering enables the user to build a filtering expression to select a BizTalkChannel object for processing a
document instance. The server uses these expressions to select the correct BizTalkChannel object. The Expression property
contains an XPath expression that evaluates to a Boolean value. If the expression evaluates to true, the channel is used to process
the document. Otherwise, the channel is not invoked to process the document.

XPath expressions can be used to obtain the value of a specific element, attribute, or collection of these items within an XML
document. Consider the following XML document:

<INVOICE>
 <DATE>12/31/2000</DATE>
 <BILLTO>Vigor Airlines</BILLTO>
 <SUMMARY>
 <ITEM PARTNUMBER="10001" QUANTITY="10"/>
 <ITEM PARTNUMBER="20002" QUANTITY="20"/>
 <TOTAL VALUE="550"/>
 </SUMMARY>
</INVOICE>

Based on this document, the following XPath expression can be created to ensure that this channel only processes invoices that
exceed $500:

myChannel.Expression = "/INVOICE/SUMMARY/TOTAL[@VALUE>""500""]"

In this example, the channel would process the XML document instance because the total is greater than $500. For more
information about XPath expressions, go to the Microsoft Web site (msdn.microsoft.com/library/default.asp) and search for XPath.

 Note

You can use BizTalk Messaging Manager to generate XPath channel filtering expressions. For more information,
see Add a channel filtering expression.

http://msdn.microsoft.com/library/default.asp

Document Storage
You can choose how to log the activity of a document instance using the BizTalkLoggingInfo object. The default is to log the
document in its native form.

For document storage, you have the options shown in the following table.

Property Description
All properties empty Store no copies of the document.
LogNativeInputDocument Store input native format (default setting).
LogNativeOutputDocument Store output native format.
LogXMLInputDocument Store input XML format.
LogXMLOutputDocument Store output interim (XML) format.
Any combination of these choices Store the options as described above.

 Note

There is a size limit for interchanges and documents that use logging, which if exceeded greatly affects the performance of
BizTalk Server. For more information about the size limit, see Interchange and document size limit.

Document Tracking
A BizTalkChannel object points to the specification that contains fields to track the instance of the document. The designated
fields are logged to the Tracking database for each instance of a document that is processed. When you assign an
input BizTalkDocument object for a BizTalkChannel object, you can designate fields to track within the document on this
channel.

When BizTalk Server 2000 runs a BizTalkChannel object, it uses the input BizTalkDocument object to process an input
document. The fields that you have designated for tracking are captured and logged for each instance of that document. Any
fields designated for tracking in the output BizTalkDocument object of the associated BizTalkChannel object are ignored. To
retrieve the information that is tracked during document processing, use the methods of the BTSDocTracking object.

By logging important data from the input documents that are processed, you can track and analyze detailed information about
your operation. For example, an invoice-total field can be logged for every invoice that is sent to your trading partners. You can
then determine the total dollar amount of invoices sent to all trading partners over time or determine the total dollar amount of
invoices to each individual trading partner.

For additional information about document tracking, see Understanding the Tracking Database Schema.

Messaging Ports
Conceptually, a messaging port is a set of rules that trading partner organizations accept for sending documents to one another. It
includes information regarding the destination, transport type, security, and envelope. It identifies the source and
destination BizTalkOrganization objects and the source and destination aliases. It also identifies any applications associated
with the organization, if applicable.

A BizTalkPort object identifies a specific destination organization unless it is designated as an open messaging port, in which
case the destination organization is not specified. For open messaging ports, the BizTalkPort object is valid only if the associated
document or the parameters on the Submit or the SubmitSync method of the Interchange object contain the destination
transport and address information.

The BizTalkPort object also identifies delimiter definitions and the EDI interchange control number. Delimiters are used to
separate the records and fields of the envelope and the documents within the envelope. An interchange control number is used to
identify and track documents that are sent using the envelope. The interchange control number is incremented with each use of
the envelope at run time.

A BizTalkPort object also identifies the encoding, encryption, and signature type, if required.

 Note

Once a BizTalkPort object has been created and saved, the destination organization and the openness associated with the
endpoint cannot be changed.

Related Topics

Openness

Port Groups

Port Groups
The BizTalkPortGroup object configures a group of complete BizTalkPort objects for sending the same document to a group of
trading partners. For example, you can use this when you want to send a document, such as a catalog, a price list, or a newsletter,
that contains identical data to a group of trading partners. One document is sent to a list of partners by calling a single Submit
method on the Interchange object.

There must be at least one BizTalkPort object contained by the BizTalkPortGroup object. You can add or remove BizTalkPort
objects to or from a BizTalkPortGroup by calling the AddPort or the RemovePort method.

A BizTalkPortGroup object must be associated with at least one BizTalkChannel object. After the port group has been created,
associate a channel with the port group by using the PortGroup property available on the BizTalkChannel object. When BizTalk
Server 2000 invokes a channel related to a port group, it invokes only the channel that is associated with the port group to
process the data. None of the channels that are associated with the individual ports in the port group are invoked. The server uses
the properties of each port successively to transport the data to the destinations specified in the ports.

 Notes

Open messaging ports cannot be added to a port group.

BizTalk Messaging Manager refers to port groups as distribution lists.

Related Topic

Submitting

Openness
The Openness property of the BizTalkEndPoint object determines whether the messaging port or channel is open. An open
BizTalkPort object is a messaging port without a specified destination. An open BizTalkChannel object is a channel without a
specified source. The missing information for an open messaging port or channel must be supplied by the associated document
or by the parameters on the Submit or the SubmitSync method of the Interchange object.

If an open channel is specified using BIZTALK_OPENNESS_TYPE_EX_SOURCE or an open messaging port is specified using
BIZTALK_OPENNESS_TYPE_EX_DESTINATION, the Type, Reference, and Store properties cannot be specified on the
BizTalkEndPoint object.

 Note

If an open messaging port is used with the SMTP transport type, the value specified for the BizTalkOrganization identifier
Reliable Messaging Acknowledgement SMTP From Address is used as the From address.

Related Topic

Submitting

Organizations
BizTalkOrganization objects serve as the source or destination for the exchange of electronic data. An organization can
represent an external trading partner, your own company, or a business unit of a trading partner or your company. The home
organization can designate a source application in a channel or a destination application in a messaging port.

Applications are properties of the home organization. Applications can be designated as a source application in
a BizTalkChannel object or as a destination application in a BizTalkPort object.

Aliases
An alias is an organization identifier for the BizTalkOrganization object. There must always be one and only one default alias for
a BizTalkOrganization object, but it can have multiple aliases. An alias is autogenerated for each BizTalkOrganization object.
The default and the autogenerated alias cannot be removed.

For more information, see Create and Manage Organizations.

Document Definitions
The BizTalkDocument object describes and identifies the document specification used to describe the document sent or
received. The document specification defines the structure of a document, as well as any validation rules and descriptions for the
individual elements of the document specification. The BizTalkDocument object includes the version and type of the
specification and, optionally, a reference to the Web Distributed Authoring and Versioning (WebDAV) location of the specification.
For more information about document specifications, see Create and Validate Specifications.

 Notes

The document Content and Namespace properties are not valid until you set the Reference property.

When creating a new BizTalkDocument object that uses a namespace that is already registered with BizTalk Server, the
new document inherits the Reference property of that namespace. The namespace must be unique (case insensitive) for a
new Reference to be created.

The BizTalkDocument object also contains the electronic data interchange (EDI) selection criteria by which BizTalk Server 2000
extracts information from the functional group header of the document to identify this object when the name of the
BizTalkDocument object is not available.

A BizTalkDocument object points to the specification that contains fields to track the instance of the document. The designated
fields are logged to the Tracking database for each document that is processed.

Selection criteria
For some EDI input interchanges, documents are contained within functional group envelopes. When BizTalk Server 2000
processes such documents, it cannot obtain the name of the BizTalkDocument object from a field within each document. Also,
because there are multiple types of documents involved, a single name cannot be specified as a parameter of the Submit method
of the Interchange object. In such cases, the server can locate document-related data within the functional group header (for
example, in the GS header of an X12 interchange). By comparing this data to matching selection criteria specified in
the PropertySet property on the BizTalkDocument object, the server can uniquely identify a BizTalkDocument object. Once
the BizTalkDocument object is identified, the server can obtain the name and then identify and instantiate the
appropriate BizTalkChannel object.

Selection criteria also help BizTalk Server 2000 create the header of the EDI document when it is output.

Global tracking
A BizTalkDocument object points to the specification from which fields can be selected for tracking. The designated fields in the
input document specification are tracked for each document that is processed using that specification. Any fields designated for
tracking in the output document specification are ignored. If a BizTalkChannel object that specifies tracking fields is used with an
input document specification containing fields designated for tracking, only the fields specified by the channel are used for
tracking.

By logging important data from the input documents that are processed, you can track and analyze detailed information about
your operation. For example, an invoice-total field can be logged for every invoice that is sent to your trading partners. You can
then determine the total dollar amount of invoices sent to all trading partners over time or determine the total dollar amount of
invoices to each individual trading partner.

Related Topics

Document Storage

Document Tracking

Envelopes
The BizTalkEnvelope object consists of two pieces of information:

The type of envelope is specified in the Format property. The document Type should match the envelope Format for
"flatfile", "custom xml", "x12", "edifact", and "reliable" document types.

The actual envelope file used is specified in the Reference property.

Input document envelopes
An envelope is required if the input document Type is "flatfile" because the envelope contains information about how to parse
the document into XML and which parser should process the document. Input "flatfile" documents without an envelope fail to be
processed. For all other input document types, an envelope is optional.

Output document envelopes
Envelopes are used to wrap an output document instance that has been transformed into the native format. The envelope used
with an output document is specified on the BizTalkPort object. An envelope is required if the output document Type is "x12" or
"edifact". However, the Reference property is ignored for these format types because indicating that the documents are X12 or
EDIFACT is sufficient to serialize the document. For output documents with a Type of "custom xml", the Reference property is
used if specified. If the Reference property is not specified, "custom xml" documents are submitted for processing in the
transformed XML format.

 Notes

Multiple BizTalkPort objects can refer to an envelope.

The envelope Content and Namespace properties are not valid until you set the Reference property.

When creating a new BizTalkEnvelope object that uses a namespace that is already registered with BizTalk Server, the new
document inherits the Reference property of that namespace. The namespace must be unique (case insensitive) for a new
Reference to be created.

Creating Specifications and Mapping Data
Microsoft BizTalk Server 2000 provides tools with which you can define the structure of a document and map data from one
format to another. These tools are based on Extensible Markup Language (XML) and standards, and they provide the essential
data translation necessary for an application-integration server.

Using BizTalk Editor, you can create specifications that are based on industry standards and common schemas, or you can create
specifications that are unique to your organization.

Using BizTalk Mapper, you can create a map between the records and fields of two different specifications. The server uses the
map to process and translate data into formats that can be shared within your own organization or with your partner
organizations.

The following topics are covered in this section:

Creating Specifications

Mapping Data

Troubleshooting BizTalk Editor and BizTalk Mapper

Creating Specifications
BizTalk Editor is a tool with which you can create, edit, and manage specifications. BizTalk Editor uses
Extensible Markup Language (XML), which provides a common vocabulary to handle overlaps between syntactic, database, and
conceptual schemas.

BizTalk Editor creates specifications by interpreting the properties of records and fields that are contained in a file. Specifications
represent the structured data as XML, regardless of the original format. In addition, specifications that you create or modify in
BizTalk Editor provide common data descriptions that BizTalk Mapper can use to transform data across dissimilar formats. The
specifications provide data portability across business processes. A specification created using BizTalk Editor can be based on any
of the following:

Well-formed XML.

XML-based document templates.

XML-Data Reduced (XDR) schemas.

Document type definitions (DTDs).

ActiveX Data Objects (ADO) recordsets stored as XML.

Electronic data interchange (EDI) (X12 and EDIFACT).

Flat files, including delimited and positional files (for example, SAP IDOCs). A flat file can also be both delimited and
positional.

Structured document formats.

In BizTalk Editor you can open a blank specification, which contains no structure, or you can import an existing schema or
specification. For example, you can import a DTD, which is a structured file that denotes elements and attributes as well as any
constraints on the order, frequency, and content of the elements and attributes. Standard specifications, such as XML, X12, or
EDIFACT, can also be used to create new specifications.

When an instance of a document is imported, BizTalk Editor translates the structure of the document and produces a specification
that is an XML representation of the document. You can edit any necessary records and fields that appear in the BizTalk Editor
specification tree, and then save the structure as a specification. You can import the following file types:

XDR schemas

Well-formed XML

DTDs

Each specification describes the structure of the file, given a specific set of tags. BizTalk Editor also provides several templates that
can be used as starting points for creating specifications for common documents, such as purchase orders, invoices, and advance
shipping notices.

When BizTalk Server processes documents, the server uses a map, which you create by using BizTalk Mapper, to translate
incoming and outgoing data from one specification format to another.

For help with specific tasks, see How To.

For general background information, see Concepts.

For additional resources, see Resources.

For problem-solving instructions, see Troubleshooting BizTalk Editor and BizTalk Mapper.

How To...
This section provides task-specific information about how to create a specification. It is highly recommended that you review
the Concepts section to understand fully the relationship between records and fields and how to specify properties for the type of
specification that you want to create.

The following topics are covered in this section:

Change BizTalk Editor Options

Create and Validate Specifications

Open Specifications

Save, Export, Convert, and Close Specifications

Manage Records and Fields

Specify Properties for Records and Fields

Edit Notes and Syntax Rules

Manage Document Instances

Manage Invalid Character Maps

Manage Views

Change BizTalk Editor Options
1. To view or change options in the BizTalk Editor Options dialog box, on the Tools menu, click Options.

2. On the General tab, you can select the Create a new field as an element check box. For information about this option,
see Create a new field as an element.

Related Topic

Create a new field as an element

Create and Validate Specifications
The following procedures are covered in this section:

Create a specification based on a standard

Create a specification based on a flat file

Create a specification based on an empty template

Create a specification based on an existing specification

Create a specification based on an imported file

Validate a specification

Create a specification based on a standard
1. On the File menu, click New.

2. In the New Document Specification dialog box, click XML, X12, or EDIFACT, and then click OK.

If you select EDIFACT or X12, you must also select a version. Click the folder for the version that you want and click OK.

3. Click the specification type and click OK.

4. Delete records, if necessary.

5. Delete fields, if necessary.

6. Clear codes, if necessary.

7. Save the new specification.

Related Topics

Manage Records and Fields

Specify Properties for Records and Fields

Understanding Specifications

Create a specification based on a flat file
1. On the File menu, click New.

2. In the New Document Specification dialog box, click Blank Specification and click OK.

3. Highlight the root node and click the Reference tab.

4. Double-click the Value field in the Standard row.

5. In the Standard list, click Custom.

6. Press ENTER.

7. Click Yes to confirm the change.

8. Add new records to the root node.

9. Add new records to existing records.

10. Add new fields to the root node.

11. Add new fields to records.

12. Specify Properties for Records and Fields.

13. Save the new specification.

 Note

On the Parse tab, you must set the Structure property of the root node to Delimited if your flat file is both delimited and
positional. Additional record properties are set to either Delimited or Positional, as required.

Flat files based on the UTF-8 code page are not supported by BizTalk Editor.

Related Topics

Manage Records and Fields

Specify Properties for Records and Fields

Understanding Specifications

Create a specification based on an empty template
1. On the File menu, click New.

2. In the New Document Specification dialog box, click Blank Specification and click OK.

3. Add new records to the root node.

4. Add new records to existing records.

5. Add new fields to the root node.

6. Add new fields to records.

7. Specify Properties for Records and Fields.

8. Save the new specification.

Related Topics

Manage Records and Fields

Specify Properties for Records and Fields

Understanding Specifications

Create a specification based on an existing specification
1. On the File menu, click Open.

2. In the Open Document Specification dialog box, browse to a folder that contains an existing specification.

3. Click a file from the list and click Open.

4. Modify the specification as needed.

5. On the File menu, click Save As.

6. In the Save Document Specification As dialog box, in the File Name box, type a name for the specification.

7. In the Encoding list, click either UTF-8 or Unicode and click Save.

If you want to create a specification associated with ASCII characters, click UTF-8 in the Encoding list. For specifications
associated with double-byte characters, click UTF-8 or Unicode in the Encoding list.

8. Manage Records and Fields.

9. Save the new specification.

Related Topics

Code List Values and Descriptions

Manage Records and Fields

Create a specification based on an imported file
1. On the Tools menu, click Import.

2. In the Select Import Module dialog box, click Well-Formed XML Instance, Document Type Definition, or XDR
Schema, and then click OK.

If you are importing an XML-Data Reduced (XDR) file, click XDR Schema.

3. In the Import dialog box, browse to the folder that contains the file that you want to import.

4. Click the file that you want to import and click Open.

BizTalk Editor creates a specification based on the structure of the imported file. You must assign all record and field
property values.

5. Add new records to the root node.

6. Add new records to existing records.

7. Add new fields to the root node.

8. Add new fields to records.

9. Specify Properties for Records and Fields.

10. Save the new specification.

 Important

BizTalk Editor does not support the import of document type definitions (DTDs) that contain comments within elements. To
import these DTDs successfully, you must edit the affected files to remove any comments within elements.

If the file that you import has an element that has content, is repeated in the instance data, and has no children, BizTalk
Editor creates it as a field, rather than a record, when it imports the structure.

If BizTalk Editor cannot determine which element should be the root node, it displays the Select Root Element dialog box.
Select the element that is the root node and click OK.

BizTalk Editor cannot import a DTD and/or an XDR schema that contains a cyclical reference involving the root node. BizTalk
Editor can import a well-formed XML document that contains a cyclical reference involving the root node, although it
displays a warning indicating that cyclical references cannot involve the root node of a document. For more information,
see Cyclical References.

If you import a well-formed XML file that contains a namespace on the root node, the namespace becomes the target
namespace and is ignored elsewhere in the specification. For more information about target namespaces,
see Set reference properties.

If you import a file that contains an element with mixed content (text information as well as subelements), the text
information in that element is ignored on import.

The following table shows what happens when you try to import XDR files or DTDs that contain certain data types. The
columns represent the data types.
 "entity" and "entities" "nmtoken" and "nmtokens" "notation"
X
D
R

The file cannot be imported. The file can be imported. The data
types are removed.

The file cannot be imported.

D
T
D

The file can be imported. The data
types are removed.

The file can be imported. The data
types are removed.

The file can be imported. The data type is importe
d as an enumeration type.

Related Topics

Importing Files

Manage Records and Fields

Specify Properties for Records and Fields

Validate a specification
1. Open a specification or import a schema.

For more information, see Open Specifications or Create a specification based on an imported file.

2. On the Tools menu, click Validate Specification.

The Warnings tab displays warnings indicating any problems that might exist with the specification's structure. You can double-
click a warning and the record or field, and the associated property, are displayed in red in the panes above.

Related Topics

Create a specification based on an imported file

Open Specifications

Open Specifications
The following procedures are covered in this section:

Open existing specifications from a local drive

Open existing specifications from WebDAV

Open existing specifications from a local drive
1. On the File menu, click Open.

2. In the Open Document Specification dialog box, browse to the folder that contains the specification that you want to
open.

3. Click a file from the list and click Open.

Related Topic

Open existing specifications from WebDAV

Open existing specifications from WebDAV
1. On the File menu, click Retrieve From WebDAV.

2. In the Retrieve from WebDAV dialog box, in the Server list, type the server name and press ENTER.

You also can select a server name from the list.

3. Browse to the folder that contains the specification that you want to open, click the specification, and then click Open.

 Note

You might experience a delay the first time you connect to a remote WebDAV server during a session.

Related Topics

Open existing specifications from a local drive

Troubleshooting BizTalk Editor and BizTalk Mapper

Save, Export, Convert, and Close Specifications
The following procedures are covered in this section:

Save new specifications

Save existing specifications

Store specifications

Export XDR schemas

Convert an XDR schema to an XSD schema

Close specifications

Save new specifications
1. On the File menu, click Save As.

2. In the Save Document Specification As dialog box, in the File Name box, type a name for the file.

3. In the Encoding list, click either UTF-8 or Unicode and click Save.

If you want to save a specification associated with ASCII characters, in the Encoding list, click UTF-8. For specifications
associated with double-byte characters, in the Encoding list, click UTF-8 or Unicode.

Save existing specifications
On the File menu, click Save.

 Note

When you save a file, BizTalk Editor stores the file on your hard disk. To save a file to WebDAV, you must have permission to
store the file on the server.

Related Topic

Store specifications

Store specifications
1. On the File menu, click Store to WebDAV.

2. In the Store to WebDAV dialog box, in the Server list, type the server name and press ENTER.

You also can select a server name from the list.

3. Browse to the folder in which you want to store your specification.

4. In the File Name box, type the name of the file.

5. In the Encoding list, click either UTF-8 or Unicode and click Save.

If you want to store a specification associated with ASCII characters, click UTF-8 in the Encoding list. For specifications
associated with double-byte characters, click UTF-8 or Unicode in the Encoding list.

 Important

You cannot store files with double-byte character set file names if you have an incorrect locale setting. To correct this
problem, see ???.xml appears in the WebDAV dialog box.

 Notes

You might experience a delay the first time you connect to a remote WebDAV server.

When you store a file to WebDAV, BizTalk Editor stores the file on a server. To save a file to your hard disk, on the File
menu, click Save As.

Related Topics

Save existing specifications

Save new specifications

Troubleshooting BizTalk Editor and BizTalk Mapper

Export XDR schemas
1. On the Tools menu, click Export XDR Schema.

2. In the Export XDR schema as dialog box, browse to the location to which you want to export the XML-Data Reduced (XDR)
file.

3. In the File name box, type a name for the file.

4. In the Encoding list, click either UTF-8 or Unicode and click Save.

If you want to export a specification associated with ASCII characters, in the Encoding list, click UTF-8. For specifications
associated with double-byte characters, in the Encoding list, click UTF-8 or Unicode.

 Notes

You can export new and existing specifications only while they are open in BizTalk Editor.

When you export a specification, the unique specification information is removed from the structure, and the resulting
structure is saved as a general schema that can be used by other applications.

Related Topics

Open Specifications

Convert an XDR schema to an XSD schema

Convert an XDR schema to an XSD schema
1. Create a folder on your local drive called Convert.

2. Copy the contents of \Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\XSDConverter to Convert.

3. Copy the XDR schema to be converted to Convert.

4. Open a command prompt.

5. Change to the Convert directory.

6. At the command prompt, type

wscript convert.js xdrfilename.xml xsdfilename.xsd

The converted XSD schema, named xsdfilename.xsd, appears in the Convert folder.

 Note

If you do not type a file name for the XSD schema, the script gives the XSD schema the name of the original XDR schema
with .xsd appended to it. For example, if the XDR schema were named xdrfilename.xml, the converted XSD schema would be
named xdrfilename.xml.xsd.

Related Topic

Export XDR schemas

Close specifications
On the File menu, click Close.

Manage Records and Fields
The following procedures are covered in this section:

Add new records to the root node

Add new fields to the root node

Add new records to existing records

Add new fields to records

Insert records

Insert fields

Create a new field as an element

Change fields from attributes to elements

Change fields from elements to attributes

Move records within a specification

Move fields within a specification

Move records from one specification to another

Move fields from one specification to another

Copy records within a specification

Copy fields within a specification

Copy records from one specification to another

Copy fields from one specification to another

Rename a single record

Rename a single field

Rename all records that have the same name

Delete records

Delete fields

Create cyclical references

Create a new instance of an existing record

Create a new instance of an existing element field

Add new records to the root node
1. Click the root node.

2. On the Edit menu, click New Record.

A child record is inserted after the last node in the specification tree.

3. Type a name for the record and press ENTER.

 Notes

For a non-XML file such as a flat file, you can type a Source Tag Identifier property to identify the tag in the non-XML
source file.

Sibling records cannot have the same name.

Related Topic

Specify Properties for Records and Fields

Add new fields to the root node
1. Click the root node.

2. On the Edit menu, click New Field.

A child field is inserted after the last node in the specification tree.

3. Type a name for the field and press ENTER.

 Note

Sibling fields cannot have the same name unless one field has its Type property set to Attribute and the other has its Type
property set to Element.

Related Topics

Change fields from elements to attributes

Create a new field as an element

Specify Properties for Records and Fields

Add new records to existing records
1. Click a record.

2. On the Edit menu, click New Record.

A child record is inserted directly after the selected record or after the last child node of the selected record.

3. Type a name for the record and press ENTER.

 Notes

For a non-XML file such as a flat file, you can type a Source Tag Identifier property to identify the tag in the non-XML
source file.

Sibling records cannot have the same name.

Related Topic

Specify Properties for Records and Fields

Add new fields to records
1. Click a record.

2. On the Edit menu, click New Field.

A child field is inserted directly after the selected record or after the last child node of the selected record.

3. Type a name for the field and press ENTER.

 Note

Sibling fields cannot have the same name unless one field has its Type property set to Attribute and the other has its Type
property set to Element.

Related Topics

Change fields from elements to attributes

Create a new field as an element

Specify Properties for Records and Fields

Insert records
1. Click a record.

2. On the Edit menu, click Insert Record.

A sibling record is inserted directly after the selected record or after the last child node of the selected record.

3. Type a name for the record and press ENTER.

 Note

Sibling records cannot have the same name.

Related Topic

Specify Properties for Records and Fields

Insert fields
1. Click the record or field after which you want to insert a field.

2. On the Edit menu, click Insert Field.

A sibling field is inserted directly after the selected record or after the last child node of the selected record.

3. Type a name for the field and press ENTER.

 Note

Sibling fields cannot have the same name unless one field has its Type property set to Attribute and the other has its Type
property set to Element.

Related Topics

Change fields from elements to attributes

Create a new field as an element

Specify Properties for Records and Fields

Create a new field as an element
1. On the Tools menu, click Options.

2. In the BizTalk Editor Options dialog box, select the Create a new field as an element check box and click OK.

 Note

While this check box is cleared, fields are created as attributes. However, if you select the Create a new field as an
element check box, all new fields are created as elements.

Sibling fields cannot have the same name unless one field has its Type property set to Attribute and the other has its Type
property set to Element.

Related Topic

Change fields from elements to attributes

Change fields from attributes to elements
1. Click a field in the specification tree.

2. On the Declaration tab, double-click the Value field in the Type row. The current setting is Attribute.

3. In the Type list, click Element and press ENTER.

4. Click Yes to confirm the change.

 Note

Sibling fields cannot have the same name unless one field has its Type property set to Attribute and the other has its Type
property set to Element.

Related Topics

Change fields from elements to attributes

Create a new field as an element

Change fields from elements to attributes
1. Click a field in the specification tree.

2. On the Declaration tab, double-click the Value field in the Type row. The current setting is Element.

3. In the Type list, click Attribute and press ENTER.

4. Click Yes to confirm the change.

 Note

Sibling fields cannot have the same name unless one field has its Type property set to Attribute and the other has its Type
property set to Element.

Related Topic

Change fields from attributes to elements

Move records within a specification
1. Click the root node.

2. On the View menu, click Expand Tree Items.

3. Click the record that you want to move and drag it to another node in the tree.

When you release the mouse button, if the mouse pointer is in the upper half of the highlighted node text, the record is
inserted above the node as a sibling. If the mouse pointer is in the lower half of the highlighted node text, the record is
inserted below the node as a sibling. If the mouse pointer is to the right of highlighted node text, the record is inserted
below the highlighted record as a child.

Related Topics

Copy records from one specification to another

Copy records within a specification

Move records from one specification to another

Move fields within a specification
1. Click the root node.

2. On the View menu, click Expand Tree Items.

3. Click the field that you want to move and drag it to another node in the tree.

When you release the mouse button, if the mouse pointer is in the upper half of the highlighted node text, the record is
inserted above the node as a sibling. If the mouse pointer is in the lower half of the highlighted node text, the record is
inserted below the node as a sibling. If the mouse pointer is to the right of highlighted node text, the field is inserted below
the record as a child.

Related Topics

Copy fields from one specification to another

Copy fields within a specification

Move fields from one specification to another

Move records from one specification to another
1. Click the root node in the specification that contains the record that you want to move.

2. On the View menu, click Expand Tree Items.

3. Click the record that you want to move and, on the Edit menu, click Cut.

4. Click Start, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Editor.

You must open a second instance of BizTalk Editor to open a different specification.

5. On the File menu, click Open.

6. In the Open Document Specification dialog box, browse to the folder that contains the specification to which you want to
move the record.

7. Click the file in the list and click Open.

8. Click the root node in the specification.

9. On the View menu, click Expand Tree Items.

10. Click the root node, a record, or a field after which you want to insert the record.

11. On the Edit menu, click Paste.

 Note

If you move a record that has the same name as an existing record, BizTalk Editor automatically adds a number to the end of
the record's name.

Related Topics

Copy records from one specification to another

Copy records within a specification

Move records within a specification

Move fields from one specification to another
1. Click the root node in the specification that contains the field that you want to move.

2. On the View menu, click Expand Tree Items.

3. Click the field that you want to move and, on the Edit menu, click Cut.

4. Click Start, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Editor.

You must open a second instance of BizTalk Editor to open a different specification.

5. On the File menu, click Open.

6. In the Open Document Specification dialog box, browse to the folder that contains the specification to which you want to
move the record.

7. Click the file in the list and click Open.

8. Click the root node in the specification in which you want to move the field.

9. On the View menu, click Expand Tree Items.

10. Click the root node, a record, or a field after which you want to insert the field.

11. On the Edit menu, click Paste.

 Note

If you move a field that has the same name as an existing field, BizTalk Editor automatically adds a number to the end of the
field's name.

Related Topics

Copy fields from one specification to another

Copy fields within a specification

Move fields within a specification

Copy records within a specification
1. Click the root node.

2. On the View menu, click Expand Tree Items.

3. Click the record that you want to copy and, on the Edit menu, click Copy.

4. Click the node after which you want to insert the record and, on the Edit menu, click Paste.

If the selected node is a record, a child record is inserted directly after the selected node. If the selected node is a field, a
sibling record is inserted directly after the selected node.

Related Topics

Copy records from one specification to another

Move records from one specification to another

Move records within a specification

Copy fields within a specification
1. Click the root node.

2. On the View menu, click Expand Tree Items.

3. Click the field that you want to copy and, on the Edit menu, click Copy.

4. Click a node after which you want to insert the field and, on the Edit menu, click Paste.

If the selected node is a record, a child field is inserted directly after the selected node. If the selected node is a field, a sibling
field is inserted directly after the selected node.

Related Topics

Copy fields from one specification to another

Move fields from one specification to another

Move fields within a specification

Copy records from one specification to another
1. Click the root node in the specification that contains the record that you want to copy.

2. On the View menu, click Expand Tree Items.

3. Click the record that you want to copy and, on the Edit menu, click Copy.

4. Click Start, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Editor.

You must open a second instance of BizTalk Editor to open a different specification.

5. On the File menu, click Open.

6. In the Open Document Specification dialog box, browse to the folder that contains the specification to which you want to
move the record.

7. Click the file in the list and click Open.

8. Click the root node in the specification in which you want to copy the record.

9. On the View menu, click Expand Tree Items.

10. Click the root node, record, or field after which you want to insert the record and, on the Edit menu, click Paste.

If the selected node is a record, a child record is inserted directly after the selected node. If the selected node is a field, a
sibling record is inserted directly after the selected node.

 Note

If you copy a record that has the same name as an existing record, BizTalk Editor automatically adds a number to the end of
the record's name.

Related Topics

Copy records within a specification

Move records from one specification to another

Move records within a specification

Copy fields from one specification to another
1. Click the root node in the specification that contains the field that you want to copy.

2. On the View menu, click Expand Tree Items.

3. Click the field that you want to copy and, on the Edit menu, click Copy.

4. Click Start, point to Programs, point to Microsoft BizTalk Server 2000, and then click BizTalk Editor.

You must open a second instance of BizTalk Editor to open a different specification.

5. On the File menu, click Open.

6. In the Open Document Specification dialog box, browse to the folder that contains the specification to which you want to
move the field.

7. Click the file in the list and click Open.

8. Click the root node in the specification to which you want to copy the field.

9. On the View menu, click Expand Tree Items.

10. Click the root node, a record, or a field after which you want to paste the record and, on the Edit menu, click Paste.

If the selected node is a record, a child field is inserted directly after the selected node. If the selected node is a field, a sibling
field is inserted directly after the selected node.

 Note

If you copy a field that has the same name as an existing field, BizTalk Editor automatically adds a number to the end of the
field's name.

Related Topics

Copy fields within a specification

Move fields from one specification to another

Move fields within a specification

Rename a single record
1. Click the record that you want to rename.

2. On the Edit menu, click Rename.

3. Type a new name for the record and press ENTER.

Related Topics

Rename all records that have the same name

Rename a single field

Rename a single field
1. Click the field that you want to rename.

2. On the Edit menu, click Rename.

3. Type a new name for the field and press ENTER.

 Note

Fields that are elements cannot have the same name as an existing record.

Related Topics

Rename all records that have the same name

Rename a single record

Rename all records that have the same name
1. Click any record that has the name that you want to change.

2. On the Edit menu, click Rename All record name.

3. Type a new name for the records.

All records that have the same name are renamed.

 Note

This command is unavailable on the Edit menu unless there are at least two records with the same name.

Related Topics

Rename a single field

Rename a single record

Delete records
1. Click the record that you want to delete.

2. On the Edit menu, click Delete.

3. Click Yes in the confirmation dialog box.

 Caution

When you delete a record, all child records and fields are deleted.

Related Topic

Delete fields

Delete fields
1. Click the field that you want to delete.

2. On the Edit menu, click Delete.

3. Click Yes in the confirmation dialog box.

Related Topic

Delete records

Create cyclical references
1. Select a record below which you want to create a cyclical reference.

This is the base record.

2. On the Edit menu, click New Record.

3. Name the new record the same name as the base record and press ENTER.

A cyclical reference is created.

4. On the Declaration tab, double-click the Value field in the Cycle Count row.

5. Type a number from 1 to 7 and press ENTER.

 Important

The Minimum Occurrences property on the Reference tab for the cyclical reference node must be set to 0. Setting it to 1
will cause an infinite loop.

 Note

You cannot use cyclic references in non-XML specifications. Make sure that you use an XML-based specification.

Related Topic

Cyclical References

Create a new instance of an existing record
1. Click a node where you want to create a new instance of an existing record.

2. On the Edit menu, click New Record or Insert Record.

 Note

If you selected a field in step 1, New Record is unavailable on the Edit menu.

3. Name the new record the same name as the existing record and press ENTER.

You have created two instances of the same record.

 Important

You cannot name a new record instance the same name as a sibling record.

If you name a new record the same name as an ancestor record, you create a cyclical reference, not a new instance of the
existing record. For more information, see Cyclical References.

 Notes

If you click New Record, the new record instance is inserted as a descendant of the record that you selected.

If you click Insert Record, the new record instance is inserted as a sibling of the record or field that you selected.

The node structure below instances of a record is identical; if you remove or add a node to one instance of a record, that
change is automatically reflected in all other instances of the record. Some properties of record instances are identical, and
other properties can be set independently for each instance. For more information about which properties are identical
across record instances and which are not, see Property Scope.

You cannot name an existing record the same name as another existing record.

An alternative way to create a new instance of an existing record is to press the CTRL key and drag an existing record to the
right of the node below which you want to insert the new record instance.

Related Topics

Cyclical References

Property Scope

Create a new instance of an existing element field
1. Select a node where you want to create a new instance of an element field.

 Note

You can create multiple instances of fields only of type Element (on the Declaration tab). You cannot create multiple
instances of fields of type Attribute. If you create two or more attribute fields with the same name, the fields remain
completely independent of each other.

2. On the Edit menu, click New Field or Insert Field.

 Note

If you selected a field in step 1, New Field is unavailable on the Edit menu.

3. Name the new field the same name as the existing field and press ENTER.

You have created two instances of the same field.

 Important

You cannot name a new element field instance the same name as a sibling element field instance.

 Notes

If you click New Field, the new field instance is inserted as a descendant of the record that you selected.

If you click Insert Field, the new field instance is inserted as a sibling of the record or field that you selected.

Some properties of field instances are identical, and other properties can be set independently for each instance. For more
information about which properties are identical across field instances and which are not, see Property Scope.

You cannot name an existing field the same name as another existing field, unless one field has its Type property set to
Attribute and the other field has its Type property set to Element.

An alternative way to create a new instance of an existing element field is to press the CTRL key and drag an existing
element field to the right of the node below which you want to insert the new field instance.

Related Topics

Cyclical References

Property Scope

Specify Properties for Records and Fields
This section includes information about the following topics:

Set declaration properties

Set reference properties

Set parse properties

Declare namespaces

Add custom annotations

Edit custom annotations

Delete custom annotations

Set dictionary properties

Add a custom dictionary property

Rename a custom dictionary property

Clear a dictionary property

Delete a custom dictionary property

Select codes

Clear codes

Clear a property for any field in the Value column

Automatically calculate field positions

Set declaration properties
1. In the specification tree, click the root node, a record, or a field for which you want to set a property, and then click the

Declaration tab.

2. Double-click the field in the Values column that is associated with the property that you want to set.

3. Type data in the field or click the down arrow to select from a list of available options.

4. Press ENTER to accept your changes.

The Declaration tab contains the properties shown in the following tables. The properties that you select are set for the root
node, a record, or a field, depending on which node you have selected.

Declaration Tab: Root Node Properties

P
r
o
p
er
ty

Value

N
a
m
e

The name of the root node.

 Note

If you change the Name value on the Declaration tab, the name of the root node in the specification tree automatically chang
es to match it. In a newly created specification, changing the Name value on the Declaration tab also changes the Schema N
ame value on the Reference tab. However, since it is possible to have a schema name that is different from the root node na
me, changing the Schema Name value has no effect on the Name value or the root node name in the specification tree. Once
the Schema Name value has been edited, however, changing the Name value or the root node name has no effect on the Sc
hema Name value.

D
e
sc
ri
p
ti
o
n

The description of the specification.

T
y
p
e

The type of record.

M
o
d
el

Closed. Indicates that the data contained in the document instance and the specification structure match.

Open. Indicates that the data in the document instance does not totally adhere to the structure of the specification.

If this property value is left blank, the default value is Open.

C
o
n
te
n
t

Element Only. Indicates that the root node can contain only elements. This is the automatic default when the root contains a c
hild record.

Empty. Indicates that the root node cannot contain subelements.

Text Only. Indicates that the root node can contain text and not subelements.

 Note

BizTalk Editor does not support elements that contain mixed content (text information as well as subelements).

O
r
d
er

Select one of the following values:

One. Indicates that one and only one of the constituent elements can appear.

Sequence. Indicates that the constituent elements must appear in the order specified.

Many. Indicates that zero or more of the constituent elements can appear, in any order or combination.

Declaration Tab: Record Properties

Property Value
Name The name of the record.
Descripti
on

The description of the record.

Type The type of record.
Model Closed. Indicates that the data contained in the document instance and the specification structure match.

Open. Indicates that the data in the document instance and the specification structure do not match.

If this property value is left blank, the default value is Open.

Content Element Only. Indicates that the record can contain only elements. This is the automatic default for any record that c
ontains a child record.

Empty. Indicates that the record cannot contain subelements.

Text Only. Indicates that the record can contain text and not subelements.

 Note

BizTalk Editor does not support elements that contain mixed content (text information as well as subelements).

Order Select one of the following values:

One. Indicates that one and only one of the constituent elements can appear.

Sequence. Indicates that the constituent elements must appear in the order specified.

Many. Indicates that zero or more of the constituent elements can appear, in any order or combination.

Cycle Cou
nt

Type the number of cycles you want to be available below the base record. For more information,
see Cyclical References.

 Note

This property field appears only if you have created a cyclical reference.

Declaration Tab: Field Properties

Pro
per
ty

Value

Na
me

The name of the field.

Des
crip
tio
n

The description of the field.

Typ
e

Select one of the following values:

Element

Attribute

Mo
del

Closed. Indicates that the data contained in the document instance and the specification structure match.

Open. Indicates that the data in the document instance and the specification structure do not match.

 Note

If this property value is left blank, the default value is Open.

The Model property is available only for a field with its Type value set to Element.

Co
nte
nt

Text Only. Indicates that the record can contain text and not subelements.

 Note

The Content property is available only for a field with its Type value set to Element.

Text Only is the only value available for the Content property of a field.

Dat
a T
ype

A valid data type. For a list and description of all valid data types, see Summary of Data Type and Data Type Values.

 Important

If the Standard property value on the Reference tab is set to X12, EDIFACT, or Custom, you can assign a Custom Da
ta Type value on the Parse tab. If you specify a Custom Data Type value, the value in the Data Type field is automati
cally changed to match the selection that you specified for the Custom Data Type value. If you already have a value s
pecified in the Custom Data Type field and then specify a value in the Data Type field on the Declaration tab, the va
lue specified in the Custom Data Type field is cleared.

In a specification, if you create a field with the Data Type property set to IDREF or IDREFS, you must create another fi
eld in that specification with the Data Type set to ID.

To select a field for tracking or for use in a channel filtering expression in BizTalk Messaging Manager, you must assign
a data type to that field in the specification.

Dat
a T
ype
Val
ues

If you select Enumeration in the Data Type list, the data type values "a b c" appear by default in the Data Type Values box
. You can replace the default values with custom values separated by spaces.

If you working with an X12 or EDIFACT document and include codes associated with a particular field, those codes automatic
ally appear in the Data Type Values box, and Enumeration automatically appears in the Data Type box.

Mi
ni
mu
m L
eng
th

The minimum number of characters that the field can contain.

 Note

The Minimum Length property can be set only for fields with the following Data Type values: String, Number, Bina
ry (base64), and Binary (hex).

Ma
xim
um
Len
gth

The maximum number of characters that the field can contain.

 Note

The Maximum Length property can be set only for fields with the following Data Type values: String, Number, Bin
ary (base64), and Binary (hex).

Def
aul
t V
alu
e

The value that is provided if the incoming document instance does not contain the field. For more information,
see Default Value Integration.

 Note

The Default Value property appears only in specifications when the Standard property (on the Reference tab for the
root node) is set to XML, and the Type property (on the Declaration tab for the field) is set to Attribute.

Related Topics

Add channel filtering expressions

Cyclical References

Default Value Integration

Select specification fields in a channel

Select specification fields in a document definition

Summary of Data Type and Data Type Values

Set reference properties
1. In the specification tree, click the root node, a record, or a field for which you want to set a property, and then click the

Reference tab.

2. Double-click the field in the Value column that is associated with the property that you want to set.

3. Type data in the Value column field or click the down arrow to select from a list of available options.

The Reference tab contains the properties described in the following tables. The properties that you select are set for the root
node, a record, or a field, depending on which node you have selected.

Reference Tab: Root Node Properties

Property Value
Specificat
ion Name

The name of the specification. This name corresponds to the value of the <Schema> tag in the specification.

Standard Select one of the following values:

XML for creating a specification based on Extensible Markup Language (XML).

X12 for creating a specification based on X12.

EDIFACT for creating a specification based on EDIFACT.

Custom for creating a specification based on flat file, or for creating a custom specification to be parsed with a c
ustom parser.

Standard
s Version

The standards version, such as X12 version 4010, on which the specification is based.

Documen
t Type

The document type, such as 850, on which the specification is based.

Version The version number of the document standard on which the specification is based.
Default R
ecord Del
imiter

Type or select a character to be used as the delimiter within any node for which the Delimiter Type on the Parse tab is
set to Default Record Delimiter.

 Note

This property field displays only if the Standard field on the Reference tab (for the root node) is set to Custom.

Default Fi
eld Delim
iter

Type or select a character to be used as the delimiter within any node for which the Delimiter Type on the Parse tab is
set to Default Field Delimiter.

 Note

This property field displays only if the Standard field on the Reference tab (for the root node) is set to Custom.

Default S
ubfield D
elimiter

Type or select a character that will be used as the delimiter within any node for which the Delimiter Type on the Parse
tab is set to Default Subfield Delimiter.

 Note

This property field displays only if the Standard field on the Reference tab (for the root node) is set to Custom.

Default E
scape Ch
aracter

Type or select a character that will be used as the escape character within any node for which the Escape Type on the
Parse tab is set to Default Escape Delimiter.

 Note

This property field displays only if the Standard field on the Reference tab (for the root node) is set to Custom.

Code Pag
e

Choose one of the following values:

Arabic (1256)

Baltic (1257)

Central-European (1250)

Cyrillic (1251)

Greek (1253)

Hebrew (1255)

Japanese-Shift-JIS (932)

Korean (949)

Little-Endian-UTF16 (1200)

Simplified-Chinese-GBK (936)

Thai (874)

Traditional-Chinese-Big5 (950)

Turkish (1254)

Vietnamese (1258)

Western-European (1252)

 Note

This property field displays only if the Standard field on the Reference tab (for the root node) is set to Custom.

UTF7 (65000) and UTF8 (65001) are not supported by BizTalk Server.

If the Code Page value is left blank, the default value is Western-European (1252).

Receipt Choose one of the following options:

Yes. Indicates that the specification is to be used as an inbound receipt document. A correlator component X12,
EDIFACT, or CUSTOM) is expected to correlate the receipt document to the outbound document that it acknowle
dges (in other words, something previously sent to the sender of the receipt).

No. Indicates that the specification is not to be used as an inbound receipt document.

 Notes

If the receipt value is left blank, the default value is No.

For specifications based on the CanonicalReceipt and for specifications to which the CanonicalReceipt is mappe
d (both are used in the scenario of generating an outbound receipt), the Receipt property should be set to No.

Envelope Choose one of the following options:

Yes. Indicates that the specification is an interchange specification.

No. Indicates that the specification is not an interchange specification.

Target Na
mespace

If you have a BizTalk Framework instance and have specified a namespace in the instance, you must enter the corresp
onding namespace used in the instance.

 Note

If you use "x-schema" in the target namespace value of an instance you might cause a test failure when you test
the instance in BizTalk Mapper.

Reference Tab: Record Properties

Property Value
Minimum
Occurrenc
es

The minimum number of times a record can occur in its position within the node hierarchy. Possible values are 0 or
1.

 Note

If this property value is left blank, the default value is 1.

Maximum
Occurrenc
es

The maximum number of times a record can occur in its position within the node hierarchy. Possible values are 1 an
d *.

 Note

If you type an asterisk (*), the record is considered to be a looping record. If this specification is used in BizTalk
Mapper, it compiles this record as a loop. If you type 1, BizTalk Mapper does not consider this record to be a lo
oping record.

If this property value is left blank, the default value is 1.

Reference Tab: Field Properties

Property Value
Required Choose one of the following options:

Yes. Indicates that the field is required.

No. Indicates that the field is not required.

If this property value is left blank, the default value is No.

Start Position A number that indicates the starting position of the field in the record.

 Note

This property field displays only if the structure of the parent record is positional.

End Position A number that indicates the ending position of the field in the record.

 Note

This property field displays only if the structure of the parent record is positional.

Related Topic

Calculating Field Positions

Understanding Receipts

Set parse properties
1. In the specification tree, click the root node, a record, or a field for which you want to set a property, and then click the Parse

tab.

2. Double-click the field in the Value column that is associated with the property that you want to set.

3. Type data in the field or click the down arrow to select from a list of available options.

The Parse tab contains the properties described in the following tables. The available properties depend on the standard (X12,
EDIFACT, or Custom) and on the structure property that you use. By default, new specifications based on a blank specification
have a standard property of Extensible Markup Language (XML). For each property, enter a value as needed. The properties that
you select are set for the root node, a record, or a field, depending on which node you have selected.

Standard: XML
Parse Tab: Root Node, Record, and Field Properties.

These properties do not display.

Standard: X12 or EDIFACT
 Important

The Wrap, Pad, Escape, and Delimiter values for a record and its child fields should be mutually exclusive.

It is highly recommended that you ensure that the wrap character is different from the escape character.

Parse Tab: Root Node or Record Properties

Proper
ty

Value

Structu
re

This value automatically defaults to Delimited for the root node.

 Note

If the Standard property value is set to X12 or EDIFACT on the Reference tab for the root node of a specification,
you cannot edit the Structure property value on the Parse tab for the root node or any record. If you want to edit t
he Structure property value, you must change the standard to CUSTOM.

Source
Tag Ide
ntifier

The name of the source tag identifier. This is the tag name that is used to match the record with the data.

 Note

For a non-XML file such as a flat file, you can type a Source Tag Identifier property to identify any tag that might
exist in the original file.

The Source Tag Identifier property is case sensitive.

Field O
rder

Select one of the following options:

Prefix. A prefix delimiter appears before each component, and each member of a component in a series. For exam
ple, where * is the delimiter: *a*a*b*c.

Postfix. A postfix delimiter appears after each component, and each member or a component in a series. For exam
ple, where * is the delimiter: a*a*b*c*.

Infix. An infix delimiter appears between components, and members of components in a series. For example, wher
e * is the delimiter: a*a*b*c. This is the inherent field order for all EDI documents.

 Note

If the Field Order value is left blank, the default value is Prefix.

Delimi
ter Typ
e

Select one of the following options to choose a delimiter for the child nodes directly below the current node:

Default Record Delimiter. Indicates that the delimiter is the value of the Default Record Delimiter property, w
hich is defined in the document instance.

Default Field Delimiter. Indicates that the delimiter is the value of the Default Field Delimiter property, which i
s defined in the document instance

Default Subfield Delimiter. Indicates that the delimiter is the value of the Default Subfield Delimiter property,
which is defined in the document instance

Escape
Type

(Also kn
own as
a releas
e chara
cter)

Select the following option to indicate that you want an escape character for the child nodes directly below the current n
ode:

Default Escape Character. Indicates that the escape character is a value defined in the document instance.

An escape character is useful if you have a character in your field data that is also used as the delimiter character for the f
ield's parent node. For example, if your field data is

Browne,Peter,1231,yes

and you have chosen a comma as the delimiter value of the node that contains the field, BizTalk Editor interprets the com
ma after "Browne" to be a delimiter, even if you intend for it to be part of the field data. A solution for this is to place an e
scape character directly preceding the delimiter character that you want to include in the field data. For example, if your e
scape character is specified as a backslash, you can place a backslash directly preceding a delimiter character as in the fol
lowing example:

Browne\,Peter,1231,yes

The comma after the backslash is interpreted by BizTalk Editor as field data rather than a delimiter character.

 Note

The Escape Type property is not available for X12 specifications.

Appen
d New
Line

Select one of the following options:

Yes. Indicates that when the serializer reaches the record delimiter, the serializer automatically appends a new line
(LF,0x0A).

No. Indicates that when the serializer reaches the record delimiter, the serializer continues on the same line for the
following record.

 Note

If the Append New Line value is left blank, the default value is No.

Skip Ca
rriage
Return

Select one of the following options:

Yes. Tells the parser to skip the carriage return (CR) value after a delimiter.

No. Tells the parser not to skip the CR value after a delimiter.

 Note

If the Skip Carriage Return value is left blank, the default value is Yes.

Skip Li
ne Fee
d

Select one of the following options:

Yes. Tells the parser to skip the line feed (LF) value after a delimiter.

No. Tells the parser not to skip the LF value after a delimiter.

 Note

If the Skip Line Feed value is left blank, the default value is Yes.

Ignore
Record
Count

Select one of the following options:

Yes. Tells the parser or the serializer not to count this record when counting the total number of records in the spe
cification.

No. Tells the parser or the serializer to count this record when counting the total number of records in the specifica
tion.

 Notes

When a document instance is submitted to BizTalk Server, if the number of records in the document instance does
not match the calculated number of records in the specification, a parsing failure results. For more information, see
 Parsing errors.

If the Ignore Record Count value is left blank, the default value is Yes.

Parse Tab: Field Properties

Propert
y

Value

Custom
Data Ty
pe

Select one of the following options:

String (AN). AN is for alphanumeric fields.

Binary Hexadecimal (B). B is for binary fields.

Date (CY). CY is for four-digit date fields.

Number (D0-D4). D0 through D4 (inclusive) are for decimal fields. The single-digit number represents the numb
er of digits to the right of the decimal.

Date (DT). DT is for date fields.

String (ID). ID is for identification fields.

Number (N). N is for integer fields.

Number (N0-9). N0 through N9 (inclusive) are for implied decimal fields (the decimal character does not appear
in the data). The single-digit number represents the number of digits to the right of the decimal.

Number (R). R is for real number fields.

Number (R0-R9). R0 through R9 (inclusive) are for real number fields. The single-digit number represents the n
umber of digits to the right of the decimal.

Time (TM). TM is for time fields.

 Important

If you specify a Custom Data Type value, the value in the Data Type field on the Declaration tab is automatical
ly changed to match the selection that you specified for the Custom Data Type value. For example, if you change
the Custom Data Type on the Parse tab to Date (CY), the Data Type value on the Declaration tab automatical
ly changes to Date. If you specify a value in the Data Type field on the Declaration tab, the value specified in th
e Custom Data Type field is cleared.

 Notes

If you specify Date (DT), Date (CY), or Time (TM) for the Custom Data Type property, you must also set a valu
e for the Custom Date/Time Format property.

All of these custom data type values are supported in specifications with the Standard property set to X12. For sp
ecifications with the Standard property set to EDIFACT, the supported custom data type values are String (AN)
and Number (N).

Custom
Date/Ti
me For
mat

If you set Date (DT), Date (CY), or Time (TM) as the Custom Data Type property, click an option in the list.

 Note

This property field is available only if the Custom Data Type is set to Date (DT), Date (CY), or Time (TM).

Justifica
tion

Select one of the following options:

Left. Aligns data to the left in positional files when the data is less than the maximum field length. Also aligns dat
a to the left in delimited files when the amount of data is less than the minimum length requirement.

Right. Aligns data to the right in positional files.

 Note

If the Justification value is left blank, the default value is Left.

Pad Cha
racter

Type a character to pad the field. You can choose any character for a pad character, including a space or a zero. For mor
e information, see Pad Characters.

Wrap Ch
aracter

Type a character to enclose field data. This property is useful if you have a character in your field data that is also used a
s the delimiter value for the field's parent node. For example, if your field data is

Browne,Peter,1231,yes

and you have chosen a comma as the delimiter value of the node that contains the field, BizTalk Editor interprets the co
mma after "Browne" to be a delimiter, even if you intend for it to be part of the field data. A solution for this is to define
a value for the wrap character property and then enclose the field data in the wrap character. For example, you can set t
he wrap character property to double quotation marks for the first field and then type your field data as in the followin
g example:

"Browne,Peter",1231,yes

The comma between the double quotation marks is interpreted by BizTalk Editor to be field data rather than a delimiter
value.

 Notes

If your field data includes characters that are also used as the wrap character, you must enclose those characters i
n another set of wrap characters.

For example, with the wrap character value set to double quotation marks,

"Browne,Peter ""Pete"""

is parsed by BizTalk Editor to appear as

Browne,Peter "Pete"

If the field data in an input document instance includes the line feed character followed directly by the carriage ret
urn character, the corresponding field data in the output document instance includes only the line feed character,
even if both are enclosed in a set of wrap characters.

Minimu
m Lengt
h with P
ad Char
acter

The minimum length of a field in an output document instance, including pad characters. For more information about p
ad characters, see Pad Characters.

 Notes

This property is available only if the pad character is set for that field.

If the Minimum Length property on the Declaration tab is set for the field, the Minimum Length with Pad C
haracter property must be greater than or equal to the value of the Minimum Length property. If the Minimu
m Length property is not set, the Minimum Length with Pad Character property must be greater than or equ
al to one.

Standard: Custom
Structure Property: Delimited

 Important

The Wrap, Pad, Escape, and Delimiter values for a record and its child fields should be mutually exclusive.

It is highly recommended that you ensure that the wrap character is different from the escape character.

Parse Tab: Root Node or Record Properties

Proper
ty

Value

Structu
re

Select the following option for the Root Node property:

Delimited. Indicates that the root node is based on a delimited file structure. Records can be individually based on
delimited or positional file structures.

Select one of the following options for Record properties:

Delimited. Indicates that the record is based on a delimited file structure. Descendant records can be individually
based on delimited or positional file structures.

Positional. Indicates that the record is based on a positional file structure. Positional records cannot have child rec
ords.

 Notes

For a document to be both delimited and positional, the root node must have its Structure property set to Delimit
ed. You can then set the Structure property for individual records to Positional or Delimited, as necessary.

If you change from one structure to another, a message box appears. Click Yes to confirm the structure change. So
me new properties might appear, and some existing properties might be removed.

If you right-click the Structure property value field of a positional record and click Clear Property, BizTalk Editor i
nterprets the structure of the record as delimited. Some new properties might appear, and some existing propertie
s might be removed.

When the Standard property for a document is set to Custom, by default the Structure property for the root nod
e and all records is blank. If you leave the Structure property blank, its value is Delimited.

Source
Tag Ide
ntifier

The name of the source tag identifier. This is the tag name that is used to match the record with the data.

 Note

For a non-XML file, such as a flat file, you can type a Source Tag Identifier property to identify any tag that might
exist in the original file.

The Source Tag Identifier property is case sensitive.

Field O
rder

Select one of the following options:

Prefix. A prefix delimiter appears before each component, and each member of a component, in a series. For exam
ple, where * is the delimiter: *a*a*b*c.

Postfix. A postfix delimiter appears after each component, and each member of a component, in a series. For exam
ple, where * is the delimiter: a*a*b*c*.

Infix. An infix delimiter appears between components, and members of components, in a series. For example, whe
re * is the delimiter: a*a*b*c. This is the inherent field order for all electronic data interchange (EDI) documents.

 Note

If the field order value is left blank, the default value is Prefix.

Delimi
ter Typ
e

Select one of the following options to choose a delimiter for the child nodes directly below the current node:

Character. Allows you to designate a delimiter value on the Parse tab. If you select Character, you must specify a
delimiter value.

Default Record Delimiter. Indicates that the delimiter is the value of the Default Record Delimiter property, on
the Reference tab for the root node.

Default Field Delimiter. Indicates that the delimiter is the value of the Default Field Delimiter property, on the
Reference tab for the root node.

Default Subfield Delimiter. Indicates that the delimiter is the value of the Default Subfield Delimiter property,
on the Reference tab for the root node.

Delimi
ter Val
ue

Type or select a character value for the delimiter. To specify a delimiter value, you must first set the Delimiter Type to C
haracter on the Parse tab.

Escape
Type

(Also kn
own as
a releas
e chara
cter)

Select one of the following options to choose an escape character for the child nodes directly below the current node:

Character. Allows you to designate an escape character value on the Parse tab. If you select Character, you must
specify an escape value.

Default Escape Character. Indicates that the escape character is the value of the Default Escape Delimiter prop
erty, on the Reference tab for the root node.

An escape character is useful if you have a character in your field data that is also used as the delimiter character for the f
ield's parent node. For example, if your field data is

Browne,Peter,1231,yes

and you have chosen a comma as the delimiter value of the node that contains the field, BizTalk Editor interprets the com
ma after "Browne" to be a delimiter, even if you intend for it to be part of the field data. A solution for this is to place an e
scape character directly preceding the delimiter character that you want to include in the field data. For example, if your e
scape character is specified as a backslash, you can place a backslash directly preceding a delimiter character as in the fol
lowing example:

Browne\,Peter,1231,yes

The comma after the backslash is interpreted by BizTalk Editor as field data rather than a delimiter character.

Escape
Value

Type or select a character value for the escape character. To specify an escape character value, you must first set the Esca
pe Type to Character on the Parse tab.

Appen
d New
Line

Select one of the following options:

Yes. Indicates that when the parser reaches the record delimiter, the parser must move to the next line and begin
with the following record on that line.

No. Indicates that when the parser reaches the record delimiter, the parser must continue on the same line for the
following record.

 Note

If the Append New Line value is left blank, the default value is No.

Skip Ca
rriage
Return

Select one of the following options:

Yes. Tells the parser to skip the carriage return (CR) value after a delimiter.

No. Tells the parser not to skip the CR value after a delimiter.

 Note

If the Skip Carriage Return value is left blank, the default value is Yes.

Skip Li
ne Fee
d

Select one of the following options:

Yes. Tells the parser to skip the line feed (LF) value after a delimiter.

No. Tells the parser not to skip the LF value after a delimiter.

 Note

If the Skip Line Feed value is left blank, the default value is Yes.

Ignore
Record
Count

Select one of the following options:

Yes. Tells the parser or the serializer not to count this record when counting the total number of records in the
specification.

No. Tells the parser or the serializer to count this record when counting the total number of records in the specifica
tion.

 Notes

When a document instance is submitted to BizTalk Server, if the number of records in the document instance does
not match the calculated number of records in the specification, a parsing failure results. For more information, see
 Parsing errors.

If the Ignore Record Count value is left blank, the default value is Yes.

Parse Tab: Field Properties

Propert
y

Value

Custom
Data Ty
pe

Select one of the following options:

String (AN). AN is for alphanumeric fields.

Binary Hexadecimal (B). B is for binary fields.

Date (CY). CY is for four-digit date fields.

Number (D0-D4). D0 through D4 (inclusive) are for decimal fields. The single-digit number represents the numb
er of digits to the right of the decimal.

Date (DT). DT is for date fields.

String (ID). ID is for identification fields.

Number (N). N is for integer fields.

Number (N0-9). N0 through N9 (inclusive) are for implied decimal fields (the decimal character does not appear
in the data). The single-digit number represents the number of digits to the right of the decimal.

Number (R). R is for real number fields.

Number (R0-R9). R0 through R9 (inclusive) are for real number fields. The single-digit number represents the n
umber of digits to the right of the decimal.

Time (TM). TM is for time fields.

 Important

If you specify a Custom Data Type value, the value in the Data Type field on the Declaration tab is automatical
ly changed to match the selection that you specified for the Custom Data Type value. For example, if you change
the Custom Data Type on the Parse tab to Date (CY), the Data Type value on the Declaration tab automatical
ly changes to Date. If you specify a value in the Data Type field on the Declaration tab, the value specified in th
e Custom Data Type field is cleared.

 Notes

If you specify Date (DT), Date (CY), or Time (TM) for the Custom Data Type property, you must also set a valu
e for the Custom Date/Time Format property.

Custom
Date/Ti
me For
mat

If you set Date (DT), Date (CY), or Time (TM) as the Custom Data Type property, click an option in the list.

 Note

This property field is available only if the Custom Data Type is set to Date (DT), Date (CY), or Time (TM).

Justifica
tion

Select one of the following options:

Left. Aligns data to the left in positional files when the data is less than the maximum field length. This also aligns
data to the left in delimited files when the amount of data is less than the minimum length requirement.

Right. Aligns data to the right in positional files.

 Note

If no value is selected for the Justification property, data is aligned to the left by default.

If the Justification value is left blank, the default value is Left.

Pad Cha
racter

Type or select a character to pad the field. You can choose any character for a pad character, including a space or a zero.
For more information, see Pad Characters.

Wrap Ch
aracter

Type a character to enclose field data. This property is useful if you have a character in your field data that is also used a
s the delimiter value for the field's parent node. For example, if your field data is

Browne,Peter,1231,yes

and you have chosen a comma as the delimiter value of the node that contains the field, BizTalk Editor interprets the co
mma after "Browne" to be a delimiter, even if you intend for it to be part of the field data. The solution to this is to defin
e a value for the wrap character property and then enclose the field data in the wrap character. For example, you can set
the wrap character property to double quotation marks for the first field and then type your field data as in the followin
g example:

"Browne,Peter",1231,yes

The comma between the double quotation marks is interpreted by BizTalk Editor to be field data rather than a delimiter
value.

 Note

If you have characters in your field data that are also used as the wrap character, you must enclose those characte
rs in another set of wrap characters.

For example, with the wrap character value set to double quotation marks,

"Browne,Peter ""Pete"""

is parsed by BizTalk Editor to appear as

Browne,Peter "Pete".

If the field data in an input document instance includes the line feed character followed directly by the carriage ret
urn character, the corresponding field data in the output document instance includes only the line feed character,
even if both are enclosed in a set of wrap characters.

Minimu
m Lengt
h with P
ad Char
acter

The minimum length of a field in an output document instance, including pad characters. For more information,
see Pad Characters.

 Notes

This property can be set for a field only if the pad character is set for that field.

If the Minimum Length property on the Declaration tab is set for the field, the Minimum Length with Pad C
haracter property must be greater than or equal to the value of the Minimum Length property. If the Minimu
m Length property is not set, the Minimum Length with Pad Character property must be greater than or equ
al to one.

Standard: Custom
Structure Property: Positional
Parse Tab: Root Node Properties or Record Properties

Property Value

Structure Select the following option for the Root Node property:

Positional. Indicates that the root node is based on a positional file structure.

 Notes

A document with a positional root node can have no records.

If you right-click the Structure property value field of a positional root node and click Clear Property, BizTalk Ed
itor interprets the structure of the root node as delimited. Some new properties might appear, and some existing
properties might be removed.

When the Standard property for a document is set to Custom, by default the Structure property for the root no
de and all records is blank. If you leave the Structure property blank, its value is Delimited.

Source T
ag Identi
fier

The name of the source tag identifier. This is the tag name that is used to match the record with the data.

 Note

For a non-XML file, such as a flat file, you can type a Source Tag Identifier property to identify any tag that mig
ht exist in the original file.

The Source Tag Identifier property is case sensitive.

Source T
ag Positi
on

A number that refers to the position of the beginning of the tag in a positional record.

Append
Newline

Select one of the following options:

Yes. Indicates that when the parser reaches the record delimiter, the parser must move to the next line and begin
with the following record on that line.

No. Indicates that when the parser reaches the record delimiter, the parser must continue on the same line for th
e following record.

 Note

If the Append New Line value is left blank, the default value is No.

Skip Carr
iage Ret
urn

Select one of the following options:

Yes. Tells the parser to skip the carriage return (CR) value after a delimiter.

No. Tells the parser not to skip the CR value after a delimiter.

 Note

If the Skip Carriage Return value is left blank, the default value is Yes.

Skip Line
Feed

Select one of the following options:

Yes. Tells the parser to skip the line feed (LF) value after a delimiter.

No. Tells the parser not to skip the LF value after a delimiter.

 Note

If the Skip Line Feed value is left blank, the default value is Yes.

Ignore R
ecord Co
unt

Select one of the following options:

Yes. Tells the parser or the serializer not to count this record when counting the total number of records in the s
pecification.

No. Tells the parser or the serializer to count this record when counting the total number of records in the specifi
cation.

 Notes

When a document instance is submitted to BizTalk Server, if the number of records in the document instance doe
s not match the calculated number of records in the specification, a parsing failure results For more information,
see Parsing errors.

If the Ignore Record Count value is left blank, the default value is Yes.

Parse Tab: Field Properties

Prope
rty

Value

Custo
m Dat
a Typ
e

Select one of the following options:

String (AN). AN is for alphanumeric fields.

Binary Hexadecimal (B). B is for binary fields.

Date (CY). CY is for four-digit date fields.

Number (D0-D4). D0 through D4 (inclusive) are for decimal fields. The single-digit number represents the number
of digits to the right of the decimal.

Date (DT). DT is for date fields.

String (ID). ID is for identification fields.

Number (N). N is for integer fields.

Number (N0-9). N0 through N9 (inclusive) are for implied decimal fields (the decimal character does not appear in
the data). The single-digit number represents the number of digits to the right of the decimal.

Number (R). R is for real number fields.

Number (R0-R9). R0 through R9 (inclusive) are for real number fields. The single-digit number represents the num
ber of digits to the right of the decimal.

Time (TM). TM is for time fields.

 Important

If you specify a Custom Data Type value, the value in the Data Type field on the Declaration tab is automatically
changed to match the selection that you specified for the Custom Data Type value. For example, if you change the
Custom Data Type on the Parse tab to Date (CY), the Data Type value on the Declaration tab automatically cha
nges to Date. If you specify a value in the Data Type field on the Declaration tab, the value specified in the Custo
m Data Type field is cleared.

 Notes

If you specify Date (DT), Date (CY), or Time (TM) for the Custom Data Type property, you must also set a value f
or the Custom Date/Time Format property.

Custo
m Dat
e/Tim
e For
mat

If you set Date (DT), Date (CY), or Time (TM) as the Custom Data Type property, click an option in the list.

 Note

This property field is active only if the Custom Data Type is set to Date (DT), Date (CY), or Time (TM).

Justifi
catio
n

Select one of the following options:

Left. Aligns data to the left in positional files when the data is less than the maximum field length. Also aligns data t
o the left in delimited files when the amount of data is less than the minimum length requirement.

Right. Aligns data to the right in positional files.

 Note

If the Justification value is left blank, the default value is Left.

Pad C
harac
ter

Type a character to be used to pad the field. You can choose any character for a pad character, including a space or a zero.
For more information, see Pad Characters.

Related Topic

Pad Characters

Declare namespaces
1. Click any node in the specification tree.

2. Click the Namespace tab.

3. Right-click the first blank field in the Prefix column and click Add.

4. Type a namespace prefix and press ENTER.

5. Double-click the blank field directly to the right, in the Uniform Resource Name column.

6. Type a Uniform Resource Name and press ENTER.

 Important

BizTalk Editor does not validate the Uniform Resource Name that you enter for a namespace.

For more information about namespaces, see Namespace Declarations.

Related Topics

Add custom annotations

Delete custom annotations

Edit custom annotations

Namespace Declarations

Add custom annotations
1. In the specification tree, click the root node, a record, or a field for which you want to add a custom annotation.

 Note

On the Reference tab, you cannot add a custom annotation for the root node.

2. Click the Declaration tab or the Reference tab, depending on where you want to add the custom annotation.

3. Right-click the first blank field in the Property column and click Add.

Edit mode is activated in the Property box.

4. Type a prefix-name pair (separated by a colon) and press ENTER.

-Or-

Click one of the custom annotations in the list and press ENTER.

5. Double-click the blank field directly to the right, in the Value column.

6. Type the value of the custom annotation and press ENTER.

 Important

For the specification to compile successfully, the namespace prefix used in step 4 must be declared in the specification. For
more information, see Declare namespaces.

Related Topics

Adding SQL Annotations

Declare namespaces

Delete custom annotations

Edit custom annotations

Namespace Declarations

Edit custom annotations
1. In the specification tree, click the node that contains the custom annotation that you want to edit.

2. Click the tab (Declaration or Reference) that references the custom annotation that you want to edit.

3. Double-click the Property field of the custom annotation, edit the field, and then press ENTER.

4. Double-click the Value field of the custom annotation, edit the field, and then press ENTER.

Related Topics

Adding SQL Annotations

Declare namespaces

Namespace Declarations

Delete custom annotations
1. In the specification tree, click the node that contains the custom annotation that you want to delete.

2. Click the tab (Declaration or Reference) that references the custom annotation that you want to delete.

3. Right-click the custom annotation and click Delete.

4. Click Yes to confirm the change.

Related Topics

Add custom annotations

Adding SQL Annotations

Declare namespaces.

Edit custom annotations

Namespace Declarations

Set dictionary properties
1. In the specification tree, click the root node, a record, or a field for which you want to specify a property, and then click the

Dictionary tab.

2. In the Property column, select the check box for the value that you want to associate with the field.

The Dictionary tab contains the properties shown in the following tables. dictionary properties can be set only for specifications
with the Standard property on the Reference tab set to XML or CUSTOM.

Dictionary Tab: Root Node or Record Properties

Property Node path
Document Container Node In an envelope schema, the document node indicates the record that contains the document.

 Note

In a flat file specification (with its Standard property on the Reference tab set to CUSTOM) that is parsed by BizTalk
Server's flat file parser, selecting or clearing the Document Container Node dictionary property check box has no effect.
This dictionary property is made available, however, in case you need to create a custom specification and a custom parser
that use the "Document Container Node" dictionary property.

Dictionary Tab: Field Properties

Property Node path
Document Name Displays the path to the field of a document instance that contains the document name.
Source Type Displays the path to the field of a document instance that contains the source type.
Source Value Displays the path to the field of a document instance that contains the source value.
Destination Type Displays the path to the field of a document instance that contains the destination type.
Destination Value Displays the path to the field of a document instance that contains the destination value.

 Notes

When parsing a specification, the parser uses information on the Dictionary tab to locate a channel. You can create a
channel by using BizTalk Messaging Manager. For more information about channels and BizTalk Messaging Manager,
see Understanding Channels.

If you use a specification to define documents that are submitted to an open messaging port, you must select the
destination value on the Dictionary tab for the field that contains the destination and transport information. The
destination information in a document is overwritten if you use submission parameters. For more information about
submitting documents, see Submitting.

You can also set Dictionary properties by right-clicking a field in the Property column and clicking Set Routing
Information.

Related Topics

Add a custom dictionary property

Clear a dictionary property

Delete a custom dictionary property

Rename a custom dictionary property

Submitting

Understanding Messaging Ports

Add a custom dictionary property
1. In the specification tree, click the field for which you want to add a custom dictionary property.

2. Click the Dictionary tab.

3. Double-click the first blank field in the Property column.

4. Type a name for the property and press ENTER.

 Notes

Use a unique name for each custom property that you create.

The Standard property (for the root node) must not be set for X12 or EDIFACT.

Related Topics

Clear a dictionary property

Delete a custom dictionary property

Rename a custom dictionary property

Set dictionary properties

Rename a custom dictionary property
1. Click the Dictionary tab.

2. Right-click the custom property that you want to rename and click Rename.

3. Type a name for the property and press ENTER.

 Note

Use a unique name for each custom property that you create.

Related Topics

Add a custom dictionary property

Clear a dictionary property

Delete a custom dictionary property

Set dictionary properties

Clear a dictionary property
1. In the specification tree, click the node for which you want clear a dictionary property, and click the Dictionary tab.

2. In the Property column, clear the check box for the value that you want to disassociate from the field.

 Notes

You can also clear a Dictionary property value by right-clicking a field in the Property column and clicking Clear Routing
Information.

By clearing a dictionary property in a node, you remove the routing information.

Related Topics

Add a custom dictionary property

Delete a custom dictionary property

Rename a custom dictionary property

Set declaration properties

Delete a custom dictionary property
1. Click the Dictionary tab.

2. Right-click the custom property that you want to delete and click Delete.

3. Click Yes to confirm the change.

Related Topics

Add a custom dictionary property

Clear a dictionary property

Rename a custom dictionary property

Set dictionary properties

Select codes
1. Click a field in a specification tree.

2. Click the Code List tab.

3. In the Value column, select the check box next to the code that you want to use.

 Notes

Code lists are available only for specifications based on X12 or EDIFACT. However, not all fields in a specification based on
X12 or EDIFACT have codes associated with them. A complete list of available codes for a specific field appears on the Code
List tab. Codes are associated with a field if the check box in the Value field next to the code is selected. A description of the
code appears in the Description field.

When you associate a code with a field on the Code List tab, that association is also shown on the Declaration tab. The
Data Type field on the Declaration tab is automatically set to Enumeration, and the Data Type Values field shows the
code list numbers you selected on the Code List tab. If you clear the Data Type field on the Declaration tab, there will be
no codes selected on the Code List tab. For more information, see Clear a property for any field in the Value column.

To select a range of codes, select the check box next to a code, press SHIFT, and then select the check box next to a second
code. All codes between the first code and the second code are selected.

Occasionally, duplicate code values appear on the Code List tab. These duplicate code values have varying descriptions,
depending on the type of document with which the code value is associated. In the context of validating a
document instance, it is never necessary to select more than one code value. However, it is possible to inadvertently select
more than one code value. The following list summarizes the selection behavior of duplicate code lists:

If you select the top code value in a set of duplicate code values, only that code value is selected.

If you select any code value other than the top code value in a set of duplicate code values, that code value is
selected and the top code value is automatically selected, too.

The top code value in a set of duplicate code values cannot be cleared while any other code values in the set are
selected.

Related Topics

Clear a property for any field in the Value column

Clear codes

Code List Values and Descriptions

Clear codes
1. Click a field in the specification tree.

2. Click the Code List tab.

3. In the Value column, clear the check box that is next to the code that you want to clear.

 Note

Code lists are available only for specifications based on X12 or EDIFACT. However, not all fields in a specification based on
X12 or EDIFACT have codes associated with them. A complete list of available codes for a specific field appears on the Code
List tab. Codes are associated with a field if the check box in the Value field next to the code is selected. A description of the
code appears in the Description field.

Occasionally, duplicate code values appear on the Code List tab. These duplicate code values have varying descriptions,
depending on the type of document with which the code value is associated. In the context of validating a
document instance, it is never necessary to select more than one code value. However, it is possible to inadvertently select
more than one code value. The following list summarizes the selection behavior of duplicate code lists:

If you select the top code value in a set of duplicate code values, only that code value is selected.

If you select any code value other than the top code value in a set of duplicate code values, that code value is
selected and the top code value is automatically selected, too.

The top code value in a set of duplicate code values cannot be cleared while any other code values in the set are
selected.

Related Topics

Code List Values and Descriptions

Select codes

Clear a property for any field in the Value column
1. Click the tab that contains the property that you want to clear.

2. Right-click the field in the Value column and click Clear Property.

Automatically calculate field positions
1. Select a field in a positional record.

2. Double-click the Value field in the Data Type row.

3. In the Data Type list, click a value.

 Note

To specify a Maximum Length value (steps 4 and 5), you must select one of the following Data Type values: String,
Number, Binary (base64), or Binary (hex).

4. Double-click the Value field in the Maximum Length row.

5. Type a number into the Maximum Length Value field and press ENTER.

6. Repeat steps 1-5 for each field in the record.

7. Right-click the record and click Calculate Field Positions.

The following warning appears:

This operation will modify the Start and End Position properties for the fields in the selected record. Do you want to
continue?

8. Click Yes.

The start and end positions are calculated for the fields in the record. For more information, see Calculating Field Positions.

Related Topic

Calculating Field Positions

Edit Notes and Syntax Rules
In the Node Properties dialog box, you can:

Read and edit notes for fields and records.

Read syntax rules for records.

To view the Node Properties dialog box, follow these steps:

1. In the specification tree, right-click a record or field and click Properties.

The Note tab appears by default.

2. To view syntax rules for a record, click the Syntax Rules tab.

 Note

Syntax rules apply only to records.

For information about how to use this dialog box, see the following topics:

Enter Record Notes

View Syntax Rules

Enter Field Notes

Enter Record Notes
For information about how to open the Node Properties dialog box, see Edit Notes and Syntax Rules.

You can use notes to record any information relevant to the record with which they are associated. For example, the purpose of
the record or the reason why it was created.

To record a note, type some text in the Node Properties dialog box and click OK.

 Notes

You cannot add a note to the root node.

You cannot type unprintable characters in notes.

Related Topics

Enter Field Notes

View Syntax Rules

View Syntax Rules
For information about how to open the Node Properties dialog box, see Edit Notes and Syntax Rules.

Syntax rules provide information about how the specification tree must be organized. Syntax rules are found only in specifications
based on the X12 standard.

 Note

Syntax rules apply only to records.

Related Topics

Enter Field Notes

Enter Record Notes

Enter Field Notes
For information about how to open the Node Properties dialog box, see Edit Notes and Syntax Rules.

You can use notes to record any information relevant to the field with which they are associated; for example, the purpose of the
field or the reason why it was created.

To record a note, type some text in the Node Properties dialog box and click OK.

 Note

You cannot type unprintable characters in notes.

Related Topics

Enter Record Notes

View Syntax Rules

Manage Document Instances
In BizTalk Mapper you can create a document instance based on a specification and you can validate a document instance against
a specification.

The following procedures are covered in this section:

Create a document instance

Validate a document instance

Create a document instance
1. Open a specification on which you want to base a document instance.

2. On the Tools menu, click Create XML Instance.

3. In the Create Document Instance as dialog box, browse to the folder in which you want to create a document instance.

4. In the File Name box, type a name for the document instance and click Save.

The new document instance is displayed in the Output tab.

 Note

The only format available for creating a document instance is Unicode.

Related Topic

Validate a document instance

Validate a document instance
1. Open a specification against which you want to validate a document instance.

For more information, see Open Specifications.

2. On the Tools menu, click Validate Instance.

3. In the Validate Document Instance dialog box, browse to the document instance you want to validate and click Open.

When you validate a document instance against a specification based on either the X12 or EDIFACT standard, the
Document Delimiters dialog box appears. Do one of the following:

X12-based specifications. Select the delimiters appropriate for the document you want to validate and click OK.

EDIFACT-based specifications. Select the delimiters and the escape character appropriate for the document you
want to validate and click OK.

The Warning tab displays the message "The document instance validation succeeded" if the document instance is validated
against the specification. If the document instance is not validated against the specification, the Warning tab indicates this and
displays errors that indicate why the document instance was not validated. If you validate a non-XML document instance against a
non-XML specification, if the document instance is validated you can view an Extensible Markup Language (XML) version of the
document on the Output tab.

 Important

It is strongly recommended that before you use a document instance in a production environment you validate the instance
against its source specification and correct any problems displayed on the Warnings tab.

 Notes

BizTalk Editor will not validate a document instance that contains multiple documents.

A document instance that contains a field with a blank attribute value ("") can be validated successfully against a
specification regardless of the value that is set for the Minimum Length property for that field. For example, if a
specification has a field with a Minimum Length property value set to 4, and you attempt to validate a document instance
that has a corresponding field with a blank attribute value, the validation will not fail because of this mismatch. The reason
for this is that the MSXML parser that underlies the validation engine treats an attribute with a blank value as though the
attribute is not specified. This issue will be corrected for the next release of BizTalk Server.

Instance validation does not work properly against electronic data interchange (EDI) instances (both X12 and EDIFACT
standards) unless you remove interchange, group, and document envelopes (both headers and trailers). For X12 documents,
you must remove the ISA, GS, ST, SE, GE, and IEA segments, and for EDIFACT documents you must remove the UNA (if
present), UNB, UNG, UNH, UNT, UNE, and UNZ segments.

A well-formed XML document instance that contains elements typed as XML-Data Reduced (XDR) data types might not
validate against its corresponding specification. To make such a document instance validate against its corresponding
specification, ensure that all elements typed as XDR data types have their Model properties set to Open. For more
information about the Model property, see Set declaration properties.

Non-XML document instances saved in Unicode will not validate correctly unless you remove the byte order marker at the
beginning of the file.

When validating a document instance against a specification with the Standard set to X12, EDIFACT, or Custom, the
document instance must have a document structure that conforms to the standard of the specification. For example, you can
validate an X12 document instance only against an X12 specification.

A document instance that contains an "x-schema" schema reference is always validated using that schema reference,
regardless of the schema that is loaded in BizTalk Editor.

An invalid character map is not a criterion of instance validation. For example, if an instance contains data contained within

the start range and end range in the Invalid Character Map dialog box, validation might still succeed.

Related Topic

Create a document instance

Manage Invalid Character Maps
The following procedures are covered in this section:

Add invalid character ranges

Edit invalid character ranges

Delete invalid character ranges

Add invalid character ranges
1. On the View menu, click Invalid Character Map.

2. In the Invalid Character Ranges dialog box, click the New Character Range button .

3. In the Enter Invalid Character Range dialog box, select a value from the Invalid start range list and press TAB.

4. Click a value in the Invalid end range list and click OK.

5. Repeat steps 2 through 4 to add additional invalid character ranges.

 Important

You can set invalid character ranges only for non-XML documents.

The correct hexadecimal value for a question mark symbol (?) is (0x3f). The default setting in the Invalid start range list
and Invalid end range list is ? (0x0). Do not use this to represent a question mark symbol. To specify a question mark
symbol, select the ? (0x3f) value from the list.

 Note

The values that appear in the Invalid start range and Invalid end range lists are hexadecimal values. If you view the
specification as an Extensible Markup Language (XML) source file by using an application such as Microsoft Internet
Explorer 5 or later, the values appear as decimal values. For example, if you type a semicolon (;) in the Invalid start range
and Invalid end range boxes, the value that appears is ; (0x3b). Viewed by using a browser, this value appears as 59.

To enter an invalid character range, you can also highlight the value in the Invalid start range list, type a numeric or
alphabetic character, and then press TAB to move to the Invalid start range list.

Related Topics

Delete invalid character ranges

Edit invalid character ranges

Edit invalid character ranges
1. On the View menu, click Invalid Character Map.

2. In the Invalid Character Ranges dialog box, select the character range that you want to modify and click the Change
Character Range button .

3. In the Enter Invalid Character Range dialog box:

In the Invalid start range list, select a value.

–Or–

In the Invalid end range list, select a value.

4. Click OK.

5. Repeat steps 2 through 4 to modify additional invalid character ranges.

 Important

You can set invalid character ranges only for non-XML documents.

The correct hexadecimal value for a question mark symbol (?) is (0x3f). The default setting in the Invalid start range list
and Invalid end range list is ? (0x0). Do not use this to represent a question mark symbol. To specify a question mark
symbol, click the ? (0x3f) value in the list.

 Notes

The values that appear in the Invalid start range and Invalid end range lists are hexadecimal values. If you view the
specification as an XML source file by using an application such as Microsoft Internet Explorer 5 or later, the values appear
as decimal values. For example, if you type a semicolon (;) in the Invalid start range and Invalid end range boxes, the
value that appears is ; (0x3b). Viewed by using a browser, this value appears as 59.

To enter a character range, you can also highlight the value in the Invalid start range list, type a numeric or alphabetic
character, and then press TAB to move to the Invalid end range list.

Related Topics

Add invalid character ranges

Delete invalid character ranges

Delete invalid character ranges
 Important

You can set invalid character ranges only for non-XML documents.

1. On the View menu, click Invalid Character Map.

In the Invalid Character Ranges dialog box, click the character range that you want to delete and click the Delete
Character Range button .

2. Click Yes to confirm the change.

Related Topics

Add invalid character ranges

Edit invalid character ranges

Manage Views
The following procedures are covered in this section:

Expand tree items

Collapse tree items

View property values

Change text sizes

Expand tree items
Click the root node or record that you want to expand and, on the View menu, click Expand Tree Items.

 Note

To expand the entire tree, you must click the root node. If you click a record, you expand only the child records and fields
within the record.

Related Topic

Collapse tree items

Collapse tree items
Click the root node or record that you want to collapse and, on the View menu, click Collapse Tree Items.

 Note

To collapse the entire tree, you must click the root node. If you click a record, you collapse only the child records and fields
within the record.

Related Topic

Expand tree items

View property values
On the View menu, click one of the following properties:

Declaration

Reference

Parse

Namespace

Dictionary

Code List

Change text sizes
On the View menu, point to Text Size and click the size that you want.

Concepts
This section provides detailed conceptual information that is essential to understanding BizTalk Editor.

The following topics are covered in this section:

Understanding Specifications

Importing Files

BizTalk Editor Environment

Records, Fields, and Properties

Namespace Support

Adding SQL Annotations

Understanding Specifications
Specifications are BizTalk Server-specific Extensible Markup Language (XML) schemas that are created by BizTalk Editor. You can
create specifications that are based on industry standards (such as XML, EDIFACT, or X12) or non-industry standards (such as
delimited flat files, positional flat files, delimited and positional flat files, blank specifications, or existing files).

Industry standards
Industry standards provide uniform ways for businesses to exchange data electronically. The use of a common business language
enables computers to communicate within an organization or from one business to another. Industry standards specify the
format and data content of electronic business transactions. A specification that is based on an industry standard is considered a
subset of the standard. To create a specification that meets your needs, you can begin with an industry-standard specification as a
baseline and then delete any records and fields you do not need. In addition, you might need to modify properties for the
remaining records and fields.

Non-industry standards
In specifications that are based on non-industry standards, you must define the structure of the document in BizTalk Editor. You
can use BizTalk Editor for various types of non-industry standards: positional flat files, delimited flat files, or combined positional
and delimited flat files.

 Note

On the Parse tab, you must set the Structure property of the root node to Delimited if your flat file is both delimited and
positional. Additional record properties are set to either Delimited or Positional, depending on their attributes.

Blank specifications
A blank specification contains only the root-node element. If you start from a blank specification, you must build the entire
specification structure. Rename the root element and then modify the root-element property values you want to change, such as
the heading information for the specification. You can then add records and fields and their properties as required for your
business processes.

Existing files
You can reuse existing files to take advantage of the investment you have made in developing documents that meet the specific
needs of your business. To reuse an existing file, you must first import the file into BizTalk Editor and then save it as a
specification. Then you must open the saved specification in BizTalk Mapper and map it to whatever format your trading partners
require.

The following topics are covered in this section:

Specification Structure

Supporting Standards

Supporting Other File Formats

Invalid XML Name Characters

Invalid Character Ranges

Related Topics

Create a specification based on a flat file

Create a specification based on an empty template

Create a specification based on an existing specification

Create a specification based on a standard

Records, Fields, and Properties

Specification Structure
Specifications created by BizTalk Editor are well-formed XML. Specification structures vary depending on the type of file you
choose as the basis for building your specification. Regardless of the type, each specification contains the same basic structure.
For example, all specifications start with the <?xml version=""?> tag and continue with header information such as the name of
the file and namespace data. Then the remaining structure is built based on the records and fields contained within your
specification and the attributes associated with the records and fields. You can view the underlying code of a specification by
opening it in Microsoft Internet Explorer 5 or later.

You can create an XML-Data Reduced (XDR) schema from a specification by using the Export XDR Schema command from the
Tools menu. For more information, see Export XDR schemas.

You can create an XSD schema from an XDR schema with a conversion script provided with a complete installation of BizTalk
Server. For more information about converting an XDR schema to an XSD schema,
see Convert an XDR schema to an XSD schema.

Related Topics

Export XDR schemas

Convert an XDR schema to an XSD schema

Supporting Standards
Electronic data interchange (EDI) standards, such as EDIFACT and X12, define a great number of the possible segments and
elements that make up the file structure needed in business documents. Using BizTalk Editor, you can start with these structures
as the basis for your specification and then remove the segments and elements you do not need. The final structure is a subset of
the standard that you and your trading partner(s), or someone else in your organization, agree to use for business data exchange.

If you create or move nodes in an EDIFACT or X12 document, it is strongly recommended that you set the document standard to
Custom. In addition, you should also set the Delimiter Type property to make the altered structure compatible with the rest of
the document. Note that if you set the document standard from Custom back to EDIFACT or X12, all Delimiter Type settings will
be lost. For more information about setting the Custom property, see Set reference properties. For more information about
setting the Delimiter Type property, see Set parse properties.

BizTalk Editor also supports X12 syntax rules, which are relational conditions that exist among two or more data elements for a
record. If the specification contains syntax rules, they are enforced during the server run-time process when the specification is
validated.

There are five types of rules:

All

If TXI08 exists, all of the following nodes must exist:

TXI03
Grouped

If any of the following nodes exist, all must exist:

TXI04

TXI05
Any

At least one of the following nodes must exist:

TXI02

TXI03

TXI06
One

At most one of the following nodes must exist:

TXI02

TXI03

TXI06
Any(conditional)

If PO413 exists, at least one of the following nodes must exist:

P0410

PO411

PO412

Related Topics

Set reference properties

Summary List of Supported EDI-based Documents

Supporting Other File Formats
BizTalk Editor is designed to make it easy to create specifications with positional, delimited, and combined positional and
delimited file structure. The following sections provide specific details about each of these file structures.

Positional flat files
A positional flat file is made up of fields that are the same fixed length and records that have a common end-of-record terminator.
The structure of an incoming file must be represented in the records and fields of the source specification so the positional nature
of the incoming file is preserved. Therefore, before defining the document structure of a source specification, obtain a layout of
the necessary records and fields.

The following table shows an example of a fixed format.

Name Address City Phone
Xxxxxxxxxx Aaaaaaaaaa Ccccccccccccccc xxx-xxx-xxxx
Yyyyyyyyyy Bbbbbbbbbb Ddddddddddddd xxx-xxx-xxxx

The Name field is fixed at a maximum of 10 characters, the Address field maximum is 10 characters, the City field maximum is 15
characters, and the Phone field maximum is 12 characters. The end-of-record terminator is a carriage return and/or line feed
character or characters.

You can use BizTalk Editor to create consecutive records and fields. You can create multiple record types and assign different
delimiters for parent records. For structures that contain multiple record types, the specification of the types and record
terminators must also be specified in the order in which they appear in the document. Fields must be specified by start position,
length, and data type.

 Important

A positional record must always be a child of a delimited record. The delimiter character specified for the parent delimited
record must not appear in the data of the child positional record. There is no way to escape the delimiter character of the
parent delimited record in the data of the child positional field. For more information about delimiters and escape
characters, see Set parse properties.

 Notes

On the Parse tab, you must set the Structure property of the root node to Delimited if your flat file is both delimited and
positional. Additional record properties are set to either Delimited or Positional, depending on their attributes.

If a specification is positional and you change the structure to delimited, the compiled specification includes the original
start position and end position specified on the Reference tab. However, when BizTalk Server parses a specification the
parser ignores this information and processes the specification as a delimited file.

Delimited flat files
A delimited flat file contains one or more records separated by a delimiter. BizTalk Editor does not read delimiters as part of the
data. However, if the delimiter character does appear as data, the data can be formatted so the data and the delimiter are
distinguishable. For example, the field in which a delimiter character appears can be enclosed in quotation marks to indicate that
the delimiter character is to be treated as data and not as a delimiter.

Using BizTalk Editor, you can select specific fields and the delimiters that are associated with them. You can also specify end-of-
record delimiters. To enable the use of delimited flat files, BizTalk Editor supports:

Structures that consist of multiple groups of records.

Multiple record types that are defined by record-type tags.

End-of-record delimiters.

Wrap and escape characters, to distinguish between field data and delimiter values.

Field start, length, and type values.

Field content tags and descriptions.

The ability to transform flat files into specifications that can be used by BizTalk Mapper.

 Note

On the Parse tab, you must set the Structure property of the root node to Delimited if your flat file is both delimited and
positional. Additional record properties are set to either Delimited or Positional, depending on their attributes.

Invalid XML Name Characters
Unicode characters that range from xF900 to xFFFE are not valid in Extensible Markup Language (XML) names. If you use an
invalid Unicode character in an XML name, that character is translated into an escaped numeric entity when you view it in the
specification tree. The escaped numeric entity is encoded as _xHHHH_, where HHHH stands for the four-digit hexadecimal
Unicode code. For example, the name Ship To in a purchase order specification contains a space character, and appears in a
specification tree as Ship_x0020_To. If you move the mouse pointer over a node that contains an encoded Unicode character, a
ToolTip appears that displays the node name with the unencoded Unicode character.

 Note

This occurs when you view a specification tree in BizTalk Editor or in BizTalk Mapper.

Invalid Character Ranges
You can block a character or a range of characters from being output by BizTalk Server. To do this, in BizTalk Editor, open a
specification that is to be used as an destination specification. Open the Invalid Character Ranges dialog box and enter the
characters or the character ranges that you want to prevent being output by BizTalk Server. Whenever BizTalk Server attempts to
process a character specified in the Invalid Character Ranges dialog box of an output specification, processing stops and an error
message appears.

 Note

Character ranges can only be blocked for non-XML documents.

Related Topics

Add invalid character ranges

Delete invalid character ranges

Edit invalid character ranges

Mapping Data

Importing Files
You can import three types of files into BizTalk Editor: well-formed XML instances, document type definitions (DTDs), and
XML-Data Reduced (XDR) schemas. The following sections provide more information about importing files in BizTalk Editor.

 Note

If BizTalk Editor cannot determine which element should be the root node, the Select Root Element dialog box appears.
Select the element that should be the root node and click OK.

After importing a well-formed XML instance, a DTD, or an XDR schema, BizTalk Editor creates a structure that is based on the
imported file and displays a set of records and fields. After you save the file in BizTalk Editor, the file becomes a specification. This
specification has the appropriate header information, and it adheres to a specified structure.

 Important

The following table explains which XDR files and DTDs can be imported when they contain certain data types, and whether
the data type can be imported. The columns represent the data types.
 "entity" and "entities" "nmtoken" and "nmtokens" "notation"
X
D
R

The file cannot be imported. The file can be imported, but the d
ata types are removed.

The file cannot be imported.

D
T
D

The file can be imported, but the d
ata types are removed.

The file can be imported, but the d
ata types are removed.

The file can be imported, but the data type is imp
orted as an enumeration type.

When the last line of a DTD is an entity reference (for example, "%xx"), the DTD cannot be imported into BizTalk Editor.
Creating a new line at the end of the DTD that contains an end-of-line character will enable the DTD to be imported into
BizTalk Editor.

If you try to import a file that contains an external reference to another file, the import will not succeed.

If BizTalk Editor displays warnings related to cyclical references after importing a well-formed
Extensible Markup Language (XML) file, it is highly recommended that you fix the warnings and save the specification
before continuing.

When importing well-formed XML or DTDs, BizTalk Editor cannot interpret data type or field length parameters.

Related Topic

Create a specification based on an imported file

BizTalk Editor Environment
The following topics are covered in this section:

BizTalk Editor User Interface

BizTalk Editor Menus

BizTalk Editor Toolbar Buttons

BizTalk Editor Shortcut Keys

BizTalk Editor User Interface
The BizTalk Editor user interface has three main panes. The left pane displays the specification tree, which is a graphical
representation of a specification. The top node in the specification tree is the root node; it is represented by a document icon with
horizontal green lines . Records and fields fall below the root node in the specification hierarchy. Records share the same icon
with the root node. Fields are represented by a document icon with vertical blue lines . You can expand or collapse a node in the
specification tree by clicking the plus or minus icon to the left of the node.

The right pane contains six tabs: Declaration, Reference, Parse, Namespace, Dictionary, and Code List. Use these tabs to set
property values, namespaces, dictionary properties, and code lists for nodes in a specification. For more information about these
tabs, see Specify Properties for Records and Fields.

The bottom pane contains two tabs: Output and Warning. The Output tab displays an Extensible Markup Language (XML)
document instance created when using the "Create XML Instance" feature of BizTalk Editor. For more information about creating
an XML document instance from a specification, see Create a document instance. The Warning tab indicates whether an attempt
to validate a document instance against a specification was successful, and displays warnings related to an unsuccessful
document validation attempt. For more information, see Validate a document instance.

Related Topics

Create a document instance

Specify Properties for Records and Fields

Validate a document instance

BizTalk Editor Menus
BizTalk Editor menus logically group commands together, making it easy to perform a specific task. For example, you can use the
commands on the View menu to view or to collapse all the records and fields in the specification tree.

The BizTalk Editor menus are as follows:

File. Use this menu to create, open, save, or close a specification.

Edit. Use this menu to cut, copy, paste, insert, rename, or delete records or fields in a specification.

View. Use this menu to select views in the right pane of the user interface, to select views in the bottom pane of the user
interface, to select a text size for the BizTalk Editor display, to display the Invalid Character Map dialog box, to expand or
collapse the specification tree, or to highlight the next warning on the Warnings tab.

Tools. Use this menu to validate a specification, to validate a document instance against a specification, to create an
Extensible Markup Language (XML) document instance from a specification, to import files, to export
XML-Data Reduced (XDR) schemas, or to view BizTalk Editor options.

Help. Use this menu to get how-to and conceptual information about using BizTalk Editor.

Related Topic

Accessing BizTalk Mapper Menus

BizTalk Editor Toolbar Buttons
BizTalk Editor provides a toolbar to complement the menu bar. All of the toolbar buttons display graphic representations of the
tasks they perform. They appear in the following order from left to right:

New

Open

Save

Retrieve from WebDAV

Store to WebDAV

Cut Specification Node

Copy Specification Node

Paste Specification Node

Delete

New Record

New Field

Insert Record

Insert Field

Collapse

Expand

BizTalk Editor Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Editor. The following table is a quick reference to these shortcut keys.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server and Advanced Server Help, see "Using the
keyboard to move the mouse pointer". For more information about MouseKeys in Windows 2000 Professional Help, see
"Move the mouse pointer by using MouseKeys".

Press To
CTRL+N Open a new specification.
CTRL+O Open an existing specification.
CTRL+S Save a specification.
SHIFT+R Insert a record.
CTRL+R Add a new record to a record.
SHIFT+F Insert a field.
CTRL+F Add a new field to a record.
DEL Delete a record or a field.
F4 Highlight the next warning.
F5 Validate a schema.
CTRL+C Copy an object.
CTRL+X Cut an object.
CTRL+V Paste an object.
F6 Move the focus clockwise from pane to pane.
SHIFT+F6 Move the focus counterclockwise from pane to pane.
TAB Toggle the focus from the tab in the right pane to the data sheet below. In a dialog box, pressing TAB moves the fo

cus through the buttons and fields of the dialog box.
SPACEBAR Select or clear a check box. The spacebar also acts like a mouse click when the focus is on a button.
F2 Activate edit mode for a highlighted node in the specification tree. Activate edit mode for a highlighted row in the

data sheet of the right pane.
SHIFT+F2 Activate edit mode for the following fields:

The Property column of a highlighted custom annotation row on the Declaration or Reference tab.

The Prefix column of a highlighted custom annotation row on the Namespace tab.

The property column of a highlighted custom dictionary row on the Dictionary tab.

ALT+ DOWN
ARROW

Display the list for an activated list box.

SHIFT++ Add a new custom annotation when the focus is on the namespace data sheet in the right pane.
ENTER Confirm edits to nodes and values.
ESC Cancel edits to nodes and values.
F1 View the online Help.
ALT+F4 Exit from the program.
LEFT ARROW Activate the tab to the left.
RIGHT ARRO
W

Activate the tab to the right.

Any arrow key Highlight a folder or a file in the main pane of a dialog box, while the focus is on that pane. This functionality occur
s in the New Document Specification, the Store to WebDAV, and the Retrieve from WebDAV dialog boxes.
For more information about the New Document Specification dialog box,
see Create and Validate Specifications. For more information about WebDAV,
see Open existing specifications from WebDAV.

The Applicatio
n key and click
Add on the sh
ortcut menu

Insert a custom property in a specification. This functionality occurs on the Declaration, Reference, Namespace,
and Dictionary tabs while a property is highlighted.

Related Topic

BizTalk Editor User Interface

Records, Fields, and Properties
BizTalk Editor presents a specification as a tree view of records and fields in a given order. Within this structure, you can create
parent-to-child relationships by using records and fields. Records can contain other records or fields, but fields cannot contain
other fields or records. A record is always an element, but a field can be either an element or an attribute. The specification tree,
which presents the records and fields as nodes, provides you with an easy way to view, create, edit, and delete all the records and
fields in a specification. Each node in the specification tree has a set of property definitions, which are represented on six tabs in
the main window of BizTalk Editor: Declaration, Reference, Parse, Namespace, Dictionary, and Code List. The data on these
tabs is necessary for BizTalk Editor to translate a document from its original format to XML. The information defines the structure
of the document, whether the document is positional or delimited, the order and length of the data, and the format of the data.

The following topics are covered in this section:

Records and Their Properties

Fields and Their Properties

Calculating Field Positions

Character Length Limits

Code List Values and Descriptions

Pad Characters

Property Scope

Cyclical References

Default Value Integration

Records and Their Properties
Depending on the type of specification you are building, you might need to add and/or remove records. After adding records to
any specification, you must specify properties. If you remove a record, its properties are also removed, along with all child records
and fields.

If your specification is based on X12 or EDIFACT, you can add only the type of records that exist in that standard, but you can
remove any or all records. If you are building a specification that is based on a blank specification, you must add records. In some
cases, such as when you are building a new specification that is based on an existing specification, you might need to add and
remove records.

When you add or insert a record, you can immediately begin typing to rename the record. You can edit the name of an existing
record and its properties by selecting the record and editing as appropriate.

If you paste into a specification a record with a name that is the same as an existing record, a number is appended to the end of
the name of the record you are pasting.

For information about creating a new instance of an existing record, see Create a new instance of an existing record. For
information about creating a cyclical reference, see Create cyclical references.

Related Topics

Create a new instance of an existing record

Create cyclical references

Property Scope

Specify Properties for Records and Fields

Fields and Their Properties
Depending on the type of specification you are building, you might need to add and/or remove records. Fields correspond to
electronic data interchange (EDI) elements. After adding fields to any specification, including EDI documents, you must specify
property values.

If your specification is based on X12 or EDIFACT, you can add only the type of fields that exist in that standard, but you can
remove any or all fields. If you are building a specification that is based on a blank specification, you must add fields. Regardless
of the document type, you can change the properties of any field.

When you add or insert a new field in a specification, the Type property, located on the Declaration tab, is set to Attribute by
default. You can manually change this value to Element for any field. For information about creating new fields with the Type
property set to Element by default, see Create a new field as an element.

When you add or insert a field, you can immediately begin typing to rename the field. You can edit the name of an existing field
and its properties by selecting the field and editing as appropriate.

If you paste into a specification an element field with a name that is the same as an existing element field, a number is appended
to the end of the name of the field you are pasting. If you paste into a specification a field with the same name as an existing
sibling field (and both fields have the same Type value), a number is appended to the end of the name of the field you are
pasting. For more information about Type values, see Set declaration properties. For information about creating a new instance
of an existing element field, see Create a new instance of an existing element field

Related Topics

Create a new field as an element

Create a new instance of an existing element field

Property Scope

Set declaration properties

Specify Properties for Records and Fields

Calculating Field Positions
BizTalk Editor can automatically calculate the start and end positions for all the fields in a positional record. First set a Data Type
value and a Maximum Length value in the Declaration tab for each field in the positional record. Then right-click the positional
record, and on the shortcut menu, click Calculate Field Positions. The start and end positions for the fields in that record are
automatically calculated. For more information, see Automatically calculate field positions.

The following list explains this feature in greater detail:

If there are start and end positions specified for the fields in a positional record, all but the start position of the first field are
overwritten when you calculate field positions.

When you calculate field positions, the Start Position of the first field of a positional record is set to 1, unless a Start
Position value was set previously for that field. If a Start Position value has already been set for the first field of a
positional record, calculations begin from that value.

Field position calculation takes the Source Tag Identifier into account when calculating field positions. For example,
consider a positional record with the following properties: the Source Tag Identifier is "TAG"; the Source Tag Position is
10; there are four fields with Maximum Length values of 2, 5, 8, and 6; and there is no Start Position value set for the first
field. The start and end positions for the four fields are: Field 1 = 1, 2; Field 2 = 3, 7; unused = 8, 9; TAG = 10, 12; Field 3 =
13, 20; and Field 4 = 21, 26. If the Source Tag Position had been 1, TAG would have had start and end position values of 1
and 3, and the field count would have started at position 4.

The field positions of a record are calculated from the first field in the record sequentially to the last field. When calculating
field positions, if a field is encountered that does not have a value set for the Maximum Length property, the start and end
positions for that field and all subsequent fields of the record are not calculated.

If a sibling record is encountered when calculating field positions, the start and end positions for all fields after the sibling
record are not calculated.

The start and end positions of a field with a Maximum Length value of 1 are equal.

When calculating field positions for a positional record, the positions of fields contained by all descendent records are also
calculated. The positions of sibling fields that occur before a record are calculated, but positions of sibling fields that occur
after a record are not calculated.

Related Topics

Automatically calculate field positions

Character Length Limits
There are limits to the number of characters that you can use in names and property values. The following table shows the
character limits in BizTalk Editor.

Name or property value Maximum num
ber of character
s

Node name (the name of a root node, a record, or a field) 255
Namespace prefix 64
String property value 1024
LONG property value 11
ULONG property value 10
CHAR property value 1
Electronic data interchange (EDI) format property value (the value of an EDI-specific format property, such as t
he Custom Date/Time Format property value on the Parse tab for a field in an EDI-based specification)

15

Target Namespace+Specification name 255

Code List Values and Descriptions
The information contained on the Code List tab specifies X12 or EDIFACT code values and their descriptions. The descriptions
define the meaning of each code. For example, the code value ST in the Address Qualifier Code field of many standard document
specifications means that the information given is for a Ship To address. The codes in the list cannot be modified or deleted. You
can only choose whether or not to associate a code with a field.

Only specifications that are based on an X12 or EDIFACT standard have code lists. However, not all fields in a specification that is
based on X12 or EDIFACT have codes associated with them. A complete list of available codes for a specific field appears on the
Code List tab if that field has a code list reference. Codes are valid for a field if the check box in the Value column next to the code
is selected. A description of the code appears in the Description column.

You can include or exclude codes associated with a field by selecting or clearing the check boxes in the Value column next to the
code listed on the Code List tab. Codes are listed by numeric value or alphabetic value, or by a combination of numeric and
alphabetic values. The value represents a specific description. You can associate a code value to any field in the specification tree.
For example, in the BEG02 field of an X12 850 purchase order, you can select the code OS, which adds an attribute to the BEG02
field that indicates that the field contains special order information.

Code list values and descriptions for the EDI-based specification templates that are provided by BizTalk Server can be found in the
Microsoft Access database file at \Program Files\Microsoft BizTalk Server\XML Tools\Databases\CodeLists\CodeListsX12a.mdb. If
you create new tables in this database for new specification templates, the format for the table name is standard_version. For
example, for a D99A EDIFACT specification template, the corresponding table name would be EDIFACT_D99A.

 Important

If you create a new table in the CodeListsX12a.mdb database, do not put invalid Extensible Markup Language (XML)
characters (Unicode characters from F900 to FFFE) into the Value column of the table. If you save a specification that
contains a field with a selected code list value that is associated with a value in a table with a invalid XML character, you will
be unable to open the specification.

If you associate a code with a field, the Type value on the Declaration tab must be set to Attribute.

 Note

Code lists are available only for specifications based on X12 or EDIFACT. For this reason, you might find that if you change
the structure of an X12-based or EDIFACT-based specification to CUSTOM, and then change it back again to X12 or
EDIFACT, the code list for a particular field might no longer be available on the Code List tab. If this happens, save the
specification and then reopen it. The code list will reappear on the Code List tab for the appropriate field.

Related Topics

Specify Properties for Records and Fields

Pad Characters
BizTalk Editor allows you to manage pad characters in delimited documents to ensure that you get the output that you expect.
Because every delimited document that is processed by BizTalk Server must be translated into Extensible Markup Language (XML)
before mapping takes place, you must make sure that your document specification tells BizTalk Server how to handle pad
characters in delimited document instances. For example, you might have a field in a delimited document instance that looks like
this:

Green*****

The data content of the field is Green, the field is left justified, there are five pad characters to the right of the data content, and the
pad character is an asterisk.

If you do not define the pad character for the field in the specification that corresponds to the field in the document instance,
BizTalk Server interprets the five asterisks to be part of the data content of the field. To ensure that BizTalk Server correctly
handles the pad characters in this field, you need to make sure the properties on the Parse tab for this field are set as in the
following table.

Property Value
Justification Left
Pad Character *
Minimum Leng
th with Pad Ch
aracter

Set this property value if you want the length of the field in your output document instance to be greater than o
r equal to a certain length. BizTalk Server inserts pad characters into the field to achieve the correct minimum fie
ld length in the output document instance.

You can use the Pad Character property to ensure that pad characters in a field are removed from a document instance
submitted to BizTalk Server. The Minimum Length with Pad Character property value ensures that BizTalk Server inserts pad
characters into a field in the output document instance, if this is desired. The Justification property indicates on which side of the
field data content the pad characters are removed (from the input document instance) or inserted (into the output document
instance). Trailing pad characters are added to or removed from a field that is left justified, and leading pad characters are added
to or removed from a field that is right justified. If the Pad Character property for a field is not set, no pad characters are added
to or removed from that field.

Property Scope
If you have two or more instances of a record in a specification, the values of certain properties for these instances must be
identical. In other words, the scope of these properties is global. The scope of certain field properties can also be global, but only if
the Type property for the field is set to Element.

For example, all the properties on the Declaration and Parse tabs are identical for multiple instances of a record or a field. If you
change a declaration or parse property for one instance of a record or a field, that property automatically changes for all other
instances of that record or field. The properties on the Reference and Dictionary tabs are not global in scope, however, so the
values for these properties can be set independently for each instance of a record or a field. Code lists apply only to fields, and
they are not global in scope.

 Notes

The scope of a field can be global only if the Type property is set to Element.

The scope of a field with the Type property set to Attribute is always local.

In BizTalk Editor, only ElementType declarations are global in scope. If you import a schema into BizTalk Editor that
contains AttributeType declarations that are global in scope, and then save the schema as a specification, the
AttributeType declarations are automatically made local in scope within the appropriate ElementType declaration or
declarations.

Cyclical References
A cyclical reference in a specification occurs when a record is created as a descendant to itself. A cyclical reference can occur only
when the Standard property value is set to XML on the Reference tab. BizTalk Editor represents a cyclical reference with an icon

 that appears as a record with a curved arrow through it.

The following illustration shows how a cyclical reference appears in BizTalk Editor.

Click the illustration to enlarge or reduce.

The Cycle Count property appears on the Declaration tab and applies only to a cyclical node. The default value is 1; the
maximum value is 7. The cycle count indicates how many cycles are available below the base record. For example, in the previous
illustration there are a total of four levels for Record1: three from the cycle count of 3 and one from the base record. If you open
this specification in BizTalk Mapper, all four levels of Record1 appear. A Record2 and Field1 also appear for every Record1. You
can connect links to nodes on any level of the cycle.

It is not possible to set dictionary property values for fields that descend from a cyclical node. For example, in the previous
illustration, you can set dictionary property values for Root/Record1/Field1, but you cannot set dictionary property values for any
of the three Field1 references that cycle below Root/Record1/Record1.

Cyclical references are subject to the following restrictions:

Nodes on a cycle path (the nodes that occur between the first record and the last record in a cyclical reference) cannot
appear anywhere else in the specification.

Elements on a cycle path cannot be the source or target of any drag-and-drop or cut-and-paste operation.

Cycles cannot overlap.

The base record of a cyclical reference cannot be the root node of the specification.

 Important

The Minimum Occurrences property on the Reference tab for the cyclical reference node must be set to 0. Setting it to 1
causes an infinite loop.

 Note

If you import a schema that contains a cyclical reference, BizTalk Editor does not automatically check to ensure that the
cyclical reference is valid.

Related Topics

Create cyclical references

Property Scope

Default Value Integration
If a source specification contains a field of type Attribute, and an incoming document instance that is based on the source
specification does not include that field, you might want the specification to provide a default value for the field. To set the default
value for a field in a specification, highlight the field in the specification tree, and on the Declaration tab, type a numeric value
into the Value field for the Default Value property. The Default Value property appears only if the Type property is set to
Attribute. If an incoming document instance does not contain the field, the default value for the field is provided. If an incoming
document instance contains the field, the default value is ignored.

Namespace Support
The following topics are covered in this section:

Namespace Declarations

Preserving Namespaces in Imported Files

Namespace Declarations
Namespaces that are declared in a specification are displayed on the Namespace tab of BizTalk Editor. The following table shows
the prefixes and namespaces that appear on the Namespace tab by default when you open a specification in BizTalk Editor. You
cannot edit these prefixes and namespaces.

Prefix Namespace
(default) urn:schemas-microsoft-com:xml-data
b urn:schemas-microsoft-com:BizTalkServer
d urn:schemas-microsoft-com:datatypes

 Notes

The following namespace is not supported by BizTalk Server:

SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

You can declare custom namespaces in a specification by typing a namespace prefix in the Prefix column and a namespace in the
Uniform Resource Name column of the Namespace tab. BizTalk Editor does not validate the Uniform Resource Name that you
enter for a namespace.

You can also add a custom annotation to any record and field. A custom annotation consists of a prefix-name pair and related
value. The syntax for a prefix-name pair is shown in the following example:

prefix:name

On either the Declaration or Reference tab, type a prefix-name pair in the Property column and type a value in the Value
column. Property values entered on the Declaration tab are global in scope, and property values entered on the Reference tab
are local in scope. For more information about global and local scope, see Property Scope. For more information about adding
custom annotations, see Add custom annotations.

Related Topics

Add custom annotations

Declare namespaces

Preserving Namespaces in Imported Files

Property Scope

Preserving Namespaces in Imported Files
You can import three types of files into BizTalk Editor: XML-Data Reduced (XDR) schemas, well-formed XML instances, and
document type definitions (DTDs). BizTalk Editor handles existing namespaces and prefix-name pairs differently for each type of
document.

Importing an XDR schema
When you import an XDR schema, existing namespaces are handled in the following manner:

Namespace declarations are preserved as custom namespaces and appear on the Namespace tab below the default
namespaces.

Custom namespace prefixes (with the exception of those associated with the Name and Type properties) are preserved
only if the associated namespace is declared.

 Note

BizTalk Editor cannot import an XDR schema with a namespace prefix associated with the Name or Type property.

Importing a well-formed XML instance
When you import a well-formed XML document instance, namespace declarations are removed from the document, and the
prefix-name separator symbol is changed from a colon (:) to an underscore (_) so that the original intention of the namespace
prefix is not lost. For example:

prefix_name

 Important

If you import a well-formed XML document instance that contains a namespace prefix/name pair, then save the imported
instance as a specification, then try to validate the original document instance against the new specification, instance
validation fails. In the new specification, delete the node that contains the prefix/name pair, then for the parent record of that
node, (on Declaration tab) select the Open value for the Model property. Save the specification. You can validate the
document instance against this specification.

 Note

BizTalk Editor cannot import any document that contains a namespace prefix if the associated namespace has not been
declared in the document.

Importing a DTD
When you import a DTD that contains a prefix-name pair, the separator symbol is changed from a colon (:) to an underscore (_).
This is so that in terms of placement within the overall structure, the original intention of the prefix is not lost even though the
prefix notation itself is not supported. For example:

prefix_name

Related Topic

Namespace Declarations

Adding SQL Annotations
You can specify an SQL annotation for any node in a specification. Specifying an SQL annotation on the Declaration tab creates
an annotation that is global in scope. The annotation is saved within the ElementType or AttributeType declaration in the
specification. Specifying an SQL annotation on the Reference tab creates an annotation that is local in scope. The annotation is
saved within the Element or Attribute reference in the specification.

You can select an SQL annotation in the list that appears when you double-click an empty field in the Property column of either
the Declaration tab or the Reference tab for a node in a specification. Enter a value for the SQL annotation in the corresponding
field in the Value column. For all SQL annotations except "sql:relationship" and "sql:xpath-query", the value is ordinary string data.
For more information about adding SQL annotations and other custom annotations, see Add custom annotations.

The following list shows all the possible SQL annotations in BizTalk Editor:

sql:datatype

sql:field

sql:id

sql:id-prefix

sql:is-constant

sql:key-fields

sql:limit-field

sql:limit-value

sql:map-field

sql:is-mapping-schema

sql:overflow-field

sql:relation

sql:relationship

sql:target-namespace

sql:url-encode

sql:use-cdata

sql:xpath-query

The value of "sql:relationship" is one or more name-value pairs, and the name in each name-value pair must be one of four
names: key, key-relation, foreign-key, or foreign-relation. The value of "sql:xpath-query" contains two parts: the first part is
one or more name-value pairs that comprise an attribute or attributes, and the second part is the content of the "sql:xpath-query",
represented as "content=...". These two parts are separated by the pound character (#).

The following table shows valid examples of the "sql:relationship" and "sql:xpath-query" SQL annotations.

SQL annotation Example values
sql:relationship key="CustomerID"
sql:relationship key-relation="Cust"
sql:relationship foreign-key="CustomerID"

sql:relationship foreign-relation="Orders"
sql:xpath-query mapping-schema="Schema.xml" #content=Employees

 Notes

BizTalk Editor does not limit the selection of SQL annotations to only those that are appropriate in the current context. For
example, "sql:relationship" and "xpath-query" are available on the Declaration tab, even though their use must be
restricted to the Reference tab.

When you specify an SQL annotation, a namespace with an "sql" prefix and the corresponding URN value is automatically
declared on the Namespace tab.

When you copy or cut a node with SQL annotations specified on its Reference tab and then paste that node to a different
location in the specification, the SQL annotations are not present in the new node.

Related Topics

Add custom annotations

Namespace Declarations

Property Scope

Resources
This section includes information about the following topics:

Summary of Data Types and Data Type Values

Summary List of Included EDI-based Documents

Summary of Data Types and Data Type Values
The following list provides details and examples to help you specify a value for the Data Type property on the Declaration tab.
After you select one of the following options from the Data Type list, you might need to specify a value in the Data Type Values
box.

Data type
Character

Contains a string, one character long.

String

Contains any text.

Number

Contains a number of digits and can have a leading sign, fractional digits, and an exponent. This follows standard English
punctuation; for example, 15, 3.14, -123.456E+10.

Integer (int)

Contains a number and can include an optional sign. It cannot contain a fraction or exponent; for example, 1, 58502, -13.

Float

Contains a number, with no limit on digits; it can potentially have a leading sign, fractional digits, or an exponent.

Fixed Point (14.4)

The same as Number, but can contain no more than 14 digits to the left of the decimal point and no more than 4 to the right; for
example, 12.0044. This data type can be used for currency values.

Boolean

Contains an expression that is evaluated as either TRUE (1) or FALSE (0).

Date

Contains a date in a subset ISO 8601 format, with no time information; for example, 1988-04-07.

Date Time

Contains a date in a subset of ISO 8601 format, with optional time and no optional zone information. Fractional seconds can be as
precise as nanoseconds; for example, 1988-04-07T18:39:09.

Date Time.tz

Contains a date in a subset ISO 8601 format, with optional time and optional zone information. Fractional seconds can be as
precise as nanoseconds; for example, 1988-04-07T18:39:09-08:00.

Time

Contains a time in a subset ISO 8601 format, with no date and no time zone information; for example, 08:15:27.

Time.tz

Contains a time in a subset ISO 8601 format, with no date information but with optional time zone information; for example,
08:15:27-05:00.

Byte (i1)

Contains a number and can contain an optional sign, such as a minus (-) sign. It cannot contain a fraction or an exponent; for
example, 1, 127, -128.

Word (i2)

Contains a number and can contain an optional sign, such as a minus (-) sign. It cannot contain a fraction or an exponent; for
example, 1, 703, -32768.

Integer (i4)

Contains a number and can contain an optional sign, such as a minus (-) sign. It cannot contain a fraction or an exponent; for

example, 1, 703, -32768, 148343, -1000000000.

Double Integer (i8)

Contains a number and can contain an optional sign, such as a minus (-) sign. It cannot contain a fraction or an exponent; for
example, 1, 703, -32768, 148343, -1000000000.

Unsigned Byte (ui1)

Contains a number. It cannot contain a sign, fraction, or exponent; for example, 1, 255.

Unsigned Word (ui2)

Contains a number. It cannot contain a sign, fraction, or exponent; for example, 1, 255, 65535.

Unsigned Integer (ui4)

Contains a number. It cannot contain a sign, fraction, or exponent; for example, 1, 703, 3000000000.

Unsigned Double Integer (ui8)

Contains a number. It cannot contain a sign, fraction, or exponent; for example, 1, 703, 3000000000.

Real (r4)

Contains a number that has a minimum value of 1.17549435E-38F and a maximum value of 3.40282347E+38F; for example,
3.14285718E+2.

Double Real (r8)

Contains a number that has a minimum value of 2.2250738585072014E308 and a maximum value of
1.7976931348623157E+308; for example, .314159265358979E+1.

Universal Unique Identifier (uuid)

Contains hexadecimal digits representing octets, with optional embedded hyphens that can be ignored; for example, 333C7BC4-
460F-11D0-BC04-0080C7055A83.

Uniform Resource Identifier (uri)

Contains a Uniform Resource Identifier (URI).

Binary (base64)

Contains binary encoding of binary text into characters; for example, conversion of a Graphic Interchange Format (GIF) image into
a text representation.

Binary (hex)

Contains a binary hexadecimal digit that represents octets; for example, 0x0ffaa.

ID

Specifies the field as the ID.

IDREF

Specifies that the field is referenced to the field containing the ID value.

IDREFS

Specifies that the field holds a list of IDs, each separated by a space.

Enumeration

Assigns an ordinal sequence to a series of values; for example, Monday, Tuesday, Wednesday might be enumerated as 1 2 3.

 Note

The Fixed Point (14.4) data type can be used for currency values.

Related Topic

Set Declaration Properties

Summary List of Included EDI-Based Documents
BizTalk Editor supports all EDI-based documents. The following table lists the standard specifications, versions, and document
standards for EDI-based documents available when you create a new specification based on a standard. For more information,
see Create a specification based on a standard.

Standard Version Document standards
X12 2040

3010

3060

4010

810

832

846

850

852 (available in all versions except 2040)

855

856

861

864

867

940 (available only with 3060 and 4010 versions)

944 (available only with 3060 and 4010 versions)

997

EDIFACT D93A

D95A

D95B

D97B

D98A

D98B

APERAK (available in all versions except D93A)

CONTRL (available only with D98A and D98B versions)

DESADV

INVOIC

INVRPT

ORDERS

ORDRSP

PARTIN

PAYEXT

PRICAT

PRODAT (available only with D97B, D98A, and D98B versions)

RECADV (available only with D97B, D98A, and D98B versions)

SLSRPT

XML N/A CommonAdvancedShipNotice

CommonInventoryAdvice

CommonInvoice

CommonPartnerProfile

CommonPO

CommonPOAcknowledgment

CommonPriceCatalog

CommonShippingAdvice

CommonShippingOrder

CanonicalReceipt

Simple SOAP Envelope

BTF1 Envelope

Related Topic

Create a specification based on a standard

Mapping Data
BizTalk Mapper is a translation design tool that enables you to create a correspondence between the records and fields in two
different specification formats. BizTalk Mapper uses links and functoids to accomplish this translation. Functoids perform
operations that range from simple calculations to elaborate script functionality. You can use BizTalk Mapper to graphically
represent the structural transformation relationship between source-specification data elements and destination-specification
data elements. This cross-reference and data-manipulation functionality creates a map that provides a set of instructions that
defines the relationship between two different specification formats. The specification formats are defined by using BizTalk Editor.

A map represents data transformations between a source specification and a destination specification. Microsoft
BizTalk Server 2000 and the Extensible Stylesheet Language (XSL) component of the Microsoft XML Parser version 3.0 use the
run-time data-transformation information that a map provides. When you create a map, the transformation information can be
viewed on the Output tab of BizTalk Mapper.

BizTalk Mapper enables the open exchange of specifications in an Extensible Markup Language (XML) data format. BizTalk Mapper
can open only specifications that have been saved in BizTalk Editor. BizTalk Mapper cannot open generic XML files or non-XML
files. If you need to translate two generic XML files, you must first import them into BizTalk Editor and save them as specifications.

BizTalk Mapper supports a variety of mapping scenarios that range from simple, parent-child tree relationships to detailed,
complex looping of records and hierarchies. When the mapping process is complete, a serializer component uses the specification
to create a file format that can be recognized by your trading partner or internal application. BizTalk Mapper also includes a style-
sheet compiler component that takes the visual representation of the map and creates an XSL style sheet.

The following illustration shows the process of mapping a source specification to a destination specification. The source file is an
EDI-based document, and the destination file is a flat-file document. In this example, the electronic data interchange (EDI)
document structure is converted to an intermediate XML format, the structure of which is represented by an
XML-Data Reduced (XDR) specification. The final format of the data is a flat file. A data-driven parser (that uses the XDR
specification) creates an XML version of the source EDI specification. The XSL engine then transforms this source XML
representation to an XML representation of the destination file format. The destination specification is later serialized to the native
format of the destination file, which is a flat file in this example.

XDR
specification
XDR
specification
XSLT map
XSL engine
EDI to Flat File
Serializer
Data parser
XML document
EDI document
XML document
Flat-file document

For help with specific tasks, see How To.

For general background information, see Concepts.

For additional resources, see Resources.

For problem-solving instructions, see Troubleshooting BizTalk Editor and BizTalk Mapper.

Related Topic

BizTalk Mapper User Interface

How To...
This section provides task-specific information about how to map data from one specification to another. It is highly
recommended that you review the Concepts section to fully understand links and functoids, as well as other mapping properties
and functionality.

The following topics are covered in this section:

Change BizTalk Mapper Options

Create new maps

Open Maps

Save, Store, and Close Maps

Replace Specifications

Manage Functoids

Manage Links

Create and Manage Compiled Maps

Test Maps

Manage Views

Customize the User Interface

Change BizTalk Mapper Options
In the BizTalk Mapper Options dialog box, you can set general options and choose colors for the mapping grid.

To view the BizTalk Mapper Options dialog box, on the Tools menu, click Options. The General tab appears by default.

For information about how to use the BizTalk Mapper Options dialog box, see the following procedures:

BizTalk Mapper Options: General Tab

BizTalk Mapper Options: Colors Tab

BizTalk Mapper Options: General Tab
For information about how to access the BizTalk Mapper Options dialog box, see Change BizTalk Mapper Options.

The General tab provides six options that enable you to customize the behavior of BizTalk Mapper:

Warnings for simple linking errors (selected by default). You receive a warning when you attempt to create a link
between nodes whose data types do not match.

View compiler links (selected by default). Compiler links appear on a map after compiling.

Clear compiler links after user action (cleared by default). Compiler links disappear after taking any action in BizTalk
Mapper.

Allow record content links (cleared by default). Content links from records to functoids can be created.

 Note

Certain functoids have input and/or output that does not use record content and is therefore unaffected by Allow
record content links. This input and output consists of the logical functoids (output), the Count functoid (input),
the Iteration functoid (input), and the Looping functoid (input and output).

Allow multiple inputs to destination tree nodes (cleared by default). Two or more links can be made to a node in the
Destination Specification tree.

Prompt to save before testing the map (selected by default). After you click Test Map on the Tools menu, BizTalk
Mapper displays a dialog box that asks if you want to save changes in your map file.

Related Topic

BizTalk Mapper Options: Colors Tab

BizTalk Mapper Options: Colors Tab
For information about how to access the BizTalk Mapper Options dialog box, see Change BizTalk Mapper Options.

The Colors tab provides options that enable you to customize the colors on the mapping grid. For information about these
options, see the following procedures:

Change mapping grid colors

Change the color of links

Change the color of selected objects

Change the color of compiler warnings

Restore default colors

Related Topic

BizTalk Mapper Options: General Tab

Create new maps
1. On the File menu, click New.

The Select Source Specification Type dialog box appears.

2. Double-click one of the following:

Local Files, and go to step 3.

Templates, and go to step 4.

WebDAV Files, and go to step 3.

3. Browse to the folder that contains the source specification that you want to open and go to step 5.

4. Click EDIFACT, X12, or XML and click OK.

If you select EDIFACT or X12, you must also select the version you want to use. Click the folder for the version you want to
use, click OK, and then go to step 5.

5. Select the source specification and click Open or OK as appropriate.

The Select Destination Specification Type dialog box appears.

6. Double-click one of the following:

Local Files, and go to step 7.

Templates, and go to step 8.

WebDAV Files, and go to step 7.

7. Browse to the folder that contains the destination specification that you want to open and go to step 9.

8. Click EDIFACT, X12, or XML and click OK.

If you select EDIFACT or X12, you must also select the version you want to use. Click the folder for the version you want to
use, click OK, and then go to step 9.

9. Select the destination specification and click Open or OK as appropriate.

 Note

To create a map, you must specify both a source specification and a destination specification.

Related Topics

Replace destination specifications

Replace source specifications

Open Maps
The following procedures are covered in this section:

Open maps from a local hard drive

Retrieve maps from WebDAV

Open maps from a local hard drive
1. On the File menu, click Open.

The Open Map Source dialog box appears.

2. Browse to the folder that contains a map you want to open.

3. Click a map in the list and click Open.

Related Topic

Retrieve maps from WebDAV

Retrieve maps from WebDAV
1. On the File menu, click Retrieve from WebDAV.

The Retrieve from WebDAV dialog box appears.

2. In the Server list, click a server name.

3. Browse to the folder that contains the map you want to retrieve, click the map, and then click Open.

 Notes

You might experience a delay the first time you connect to a remote WebDAV server.

To retrieve a map in WebDAV, you must have permission to retrieve files on the server.

Related Topics

Open maps from a local hard drive

Troubleshooting BizTalk Editor and BizTalk Mapper

Save, Store, and Close Maps
The following procedures are covered in this section:

Save new maps

Save existing maps

Save compiled maps

Store maps

Close maps

Save new maps
1. On the File menu, click Save As.

The Save Map Source As dialog box appears.

2. In the File name box, type a name for the map.

3. In the Encoding list, click either UTF-8 or Unicode and click Save.

If you want to use a specification associated with ASCII characters, click UTF-8. For specifications associated with double-
byte character sets, click Unicode.

 Notes

When you save a map, BizTalk Mapper automatically compiles it. You can view the results of the compiled map in the
Output tab.

When you save a map, BizTalk Mapper saves the map on your hard disk. To store a map in WebDAV, you must have
permission to store files on the server.

Related Topic

Store maps

Save existing maps
On the File menu, click Save.

 Notes

When you save a map, BizTalk Mapper automatically compiles it. You can view the results of the compiled map in the
Output tab.

When you save a map, BizTalk Mapper saves the map on your hard disk. To store a map in WebDAV, you must have
permission to store files on the server.

Related Topic

Store maps

Save compiled maps
1. On the File menu, click Save Compiled Map As.

The Save Compiled Map As dialog box appears.

2. In the File name box, type a name for the file and click Save.

Related Topic

Store maps

Store maps
1. On the File menu, click Store to WebDAV.

The Store to WebDAV dialog box appears.

2. In the Server list, click a server name.

3. Browse to the folder you want to use to store your map and, in the File name box, type the name of the file.

4. In the Encoding list, click either UTF-8 or Unicode and click Save.

If you want to use a specification associated with ASCII characters, click UTF-8. For specifications associated with double-
byte character sets, click Unicode.

 Important

You cannot store files with double-byte character set (DBCS) file names if your locale setting is incorrect. For more
information, see ???.xml appears in the WebDAV dialog box.

 Notes

You might experience a delay the first time you connect to a remote WebDAV server during.

To store a map in WebDAV, you must have permission to store files on the server.

Related Topic

Troubleshooting BizTalk Editor and BizTalk Mapper

Close maps
On the File menu, click Close.

Replace Specifications
The following procedures are covered in this section:

Replace source specifications

Replace destination specifications

Replace source specifications
1. On the Edit menu, click Replace Source Specification.

If you have not saved your map, you are prompted to save changes to the map source.

The Select Source Specification Type dialog box appears.

2. Double-click one of the following:

Local Files, and go to step 3.

Templates, and go to step 4.

WebDAV Files, and go to step 3.

3. Browse to the folder that contains the source specification and go to step 5.

4. Click EDIFACT, X12, or XML and click OK.

If you select EDIFACT or X12, you must also select the version you want to use. Click the folder for the version you want,
click OK, and then go to step 5.

5. Select the source specification and click Open or OK as appropriate.

 Notes

Source test values are preserved when you replace a source specification, provided that the fields associated with these
values exist in the new specification. For more information about source test values, see Test links.

The Warnings tab lists all warnings related to links that might break as a result of replacing the source specification.

You also can right-click any record or field in the Source Specification tree and click Replace Specification.

Related Topics

Replace destination specifications

Test links

Replace destination specifications
1. On the Edit menu, click Replace Destination Specification.

If you have not saved your map, you are prompted to save changes to the map source.

The Select Destination Specification Type dialog box appears.

2. Double-click one of the following:

Local Files, and go to step 3.

Templates, and go to step 4.

WebDAV Files, and go to step 3.

3. Browse to the folder that contains the destination specification and go to step 5.

4. Click EDIFACT, X12, or XML and click OK.

If you select EDIFACT or X12, you must also select the version you want to use. Click the folder for the version you want,
click OK, and then go to step 5.

5. Select the destination specification and click Open or OK as appropriate.

 Notes

Destination constant values are preserved when you replace a destination specification, provided that the fields associated
with these values exist in the new specification. For more information about destination constant values,
see Add constant values.

The Warnings tab lists all warnings related to links that might break as a result of replacing the destination specification.

You also can right-click any record or field in the Destination Specification tree and click Replace Specification.

Related Topics

Add constant values

Replace source specifications

Manage Functoids
The following topics are covered in this section:

Work with the Functoid Palette

Edit Functoid Properties

Work with the Functoid Palette
The functoid palette contains the functoids available in BizTalk Mapper. You can find the functoid that you want in the functoid
palette and drag it to the mapping grid. The various types of functoids are organized in tabs. You might need to click the right
arrow or left arrow to see tabs that are hidden from view.

The following procedures are covered in this section:

Add string functoids

Add mathematical functoids

Add logical functoids

Add date and time functoids

Add conversion functoids

Add scientific functoids

Add cumulative functoids

Add database functoids

Add the Scripting functoid

Add the Record Count functoid

Add the Index functoid

Add the Iteration functoid

Add the Value Mapping functoid

Add the Value Mapping (Flattening) functoid

Add the Looping functoid

Delete functoids

Related Topics

BizTalk Mapper Functoid Palette

Understanding Functoids

Add string functoids
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the String tab.

3. Drag a string functoid from the Functoid Palette to the mapping grid.

For detailed information about specific string functoids, see String Functoids.

4. Drag a record or field from the Source Specification tree to the functoid in the mapping grid, and then drag the functoid to a
record or field in the Destination Specification tree.

 Important

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Allow record content links

Create links between fields and functoids

Create links between records and functoids

String Functoids

Understanding Functoids

Add mathematical functoids
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Mathematical tab.

3. Drag a mathematical functoid from the Functoid Palette to the mapping grid.

For detailed information about specific mathematical functoids, see Mathematical Functoids.

4. Drag a record or field from the Source Specification tree to the functoid in the mapping grid, and then drag the functoid to a
record or field in the Destination Specification tree.

 Important

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Mathematical Functoids

Understanding Functoids

Add logical functoids
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Logical tab.

3. Drag a logical functoid from the Functoid Palette to the mapping grid.

For detailed information about specific logical functoids, see Logical Functoids.

4. Drag a record or field from the Source Specification tree to the functoid in the mapping grid, and then drag the functoid to a
record in the Destination Specification tree.

 Important

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Notes

Logical functoids are case sensitive when comparing two strings. For example, "Abc" and "abc" are not equal. The exception
to this rule is when logical functoids compare strings that represent the Boolean values TRUE and FALSE. For example,
"True" and "true" are equal.

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Logical Functoids

Understanding Functoids

Add date and time functoids
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Date/Time tab.

3. Drag a date and time functoid from the Functoid Palette to the mapping grid.

For detailed information about specific date and time functoids, see Date and Time Functoids.

4. Drag a record or field from the Source Specification tree to the functoid in the mapping grid, and then drag the functoid to a
record or field in the Destination Specification tree.

 Important

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Notes

The Date, Time, and Date and Time functoids require only a link to a field or a record in the Destination Specification tree.

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Date and Time Functoids

Understanding Functoids

Add conversion functoids
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Conversion tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag a conversion functoid from the Functoid Palette to the mapping grid.

For detailed information about specific conversion functoids, see Conversion Functoids.

4. Drag a record or field from the Source Specification tree to the functoid in the mapping grid, and then drag the functoid to a
record or field in the Destination Specification tree.

 Important

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Allow record content links

Conversion Functoids

Create links between fields and functoids

Create links between records and functoids

Understanding Functoids

Add scientific functoids
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Scientific tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag a scientific functoid from the Functoid Palette to the mapping grid.

For detailed information about specific scientific functoids, see Scientific Functoids.

4. Drag a record or field from the Source Specification tree to the functoid in the mapping grid, and then drag the functoid to a
record or field in the Destination Specification tree.

 Important

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Scientific Functoids

Understanding Functoids

Add cumulative functoids
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Cumulative tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag a cumulative functoid from the Functoid Palette to the mapping grid.

For detailed information about specific cumulative functoids, see Cumulative Functoids.

4. Drag a field (with a parent record that is looping) from the Source Specification tree to the functoid in the mapping grid, and
then drag the functoid to a record or field in the Destination Specification tree.

For more information about looping records, see Using Cumulative Functoids.

 Important

For information about the context of this procedure, see Using Cumulative Functoids.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Cumulative Functoids

Understanding Functoids

Add database functoids
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Database tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag a database functoid from the Functoid Palette to the mapping grid.

For detailed information about database functoids, see Database Functoids.

 Important

For information about how to use database functoids to extract information from a database, see Using Database Functoids.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Database Functoids

Understanding Functoids

Add the Scripting functoid
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Advanced tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag the Scripting functoid to the mapping grid.

For detailed information about the Scripting functoid, see Advanced Functoids.

4. Double-click the Scripting functoid.

5. In the Functoid Properties dialog box, click the Script tab, type the script that you want, and then click OK.

6. Drag a record or field from the Source Specification tree to the Scripting functoid in the mapping grid, and then drag the
Scripting functoid to the record or field in the Destination Specification tree.

 Important

If there are multiple functions within a Scripting functoid, the first function is the main or primary function. This function
must have parameters set if there are links into the functoid.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Advanced Functoids

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Manage Views

Add the Record Count functoid
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Advanced tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag the Record Count functoid from the Functoid Palette to the mapping grid.

For detailed information about the Record Count functoid, see Advanced Functoids.

4. Drag a looping record from the Source Specification tree to the Record Count functoid in the mapping grid, and then drag
the Record Count functoid to a field in the Destination Specification tree.

For more information about looping records, see Using the Record Count Functoid.

 Important

For information about the context of this procedure, see Using the Record Count Functoid.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Advanced Functoids

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Understanding Functoids

Add the Index functoid
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Advanced tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag the Index functoid from the Functoid Palette to the mapping grid.

For detailed information about the Index functoid, see Advanced Functoids.

4. Drag a field (with a parent record that is looping) from the Source Specification tree to the Index functoid in the mapping
grid, and then drag the Index functoid to a field in the Destination Specification tree.

For more information about looping records, see Using the Index Functoid.

5. Double-click the Index functoid to display its property sheet.

6. Click the Insert New Parameter button , type the index value, and then press ENTER.

7. Repeat step 6 as necessary.

8. Click OK.

 Important

For information about the context of this procedure, see Using the Index Functoid.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Advanced Functoids

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Understanding Functoids

Add the Iteration functoid
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Advanced tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag the Iteration functoid from the Functoid Palette to the mapping grid.

For detailed information about the Iteration functoid, see Advanced Functoids.

 Important

For information about how to use the Iteration functoid, see Using the Iteration Functoid.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Advanced Functoids

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Understanding Functoids

Add the Value Mapping functoid
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Advanced tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag the Value Mapping functoid from the Functoid Palette to the mapping grid.

For detailed information about the Value Mapping functoid, see Advanced Functoids.

 Important

For information about how to use the Value Mapping functoid, see Using the Value Mapping Functoid.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Add the Value Mapping (Flattening) functoid

Advanced Functoids

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Understanding Functoids

Add the Value Mapping (Flattening) functoid
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Advanced tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag the Value Mapping (Flattening) functoid from the Functoid Palette to the mapping grid.

For detailed information about the Value Mapping (Flattening) functoid, see Advanced Functoids.

 Important

For information about how to use the Value Mapping (Flattening) functoid,
see Using the Value Mapping (Flattening) Functoid.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Add the Value Mapping functoid

Advanced Functoids

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Understanding Functoids

Add the Looping functoid
1. On the View menu, click Functoid Palette.

2. On the Functoid Palette, click the Advanced tab.

You might need to click the right arrow on the Functoid Palette to view the tab.

3. Drag the Looping functoid from the Functoid Palette to the mapping grid.

For detailed information about the Looping functoid, see Advanced Functoids.

 Important

For information about how to use the Looping functoid, see Using the Looping Functoid.

To create a link between a functoid and a record, you must enable the Allow record content links property. To do this, on
the Tools menu, click Options. In the BizTalk Mapper Options dialog box, on the General tab, select the Allow record
content links check box and click OK.

 Note

You might need to expand the specification trees to see the records or fields that you want to map. For more information,
see Expand tree items.

Related Topics

Advanced Functoids

Allow record content links

Create links between fields and functoids

Create links between records and functoids

Understanding Functoids

Delete functoids
1. Right-click the functoid you want to remove and click Delete.

2. Click Yes in the confirmation dialog box.

Edit Functoid Properties
To view the Functoid Properties dialog box, right-click a functoid in the mapping grid and click Properties.

 Notes

You also can double-click a functoid to view its properties.

The General tab displays input-parameter information. The Script tab displays script information.

For information about how to use this dialog box, see the following topics:

Input Parameters

Functoid Scripts

Input Parameters
For information about how to access the Functoid Properties dialog box, see Edit Functoid Properties.

Input parameters for many functoids can be added, deleted, and moved up and down on the General tab of the Functoid
Properties dialog box. For more information, see the following procedures:

Insert input parameters

Delete input parameters

Move input parameters

Rename input parameters

 Note

Some functoids have limits on the number of parameters they can have. Information about how many parameters a
particular functoid can have can be found beneath the Input parameters area on the General tab of the Functoid
Properties dialog box for that functoid.

Insert input parameters
1. Double-click a functoid in the mapping grid.

The Functoid Properties dialog box appears.

2. On the General tab, click the Insert New Parameter button , type the information for the new parameter, and then
press ENTER.

 Note

If the Insert New Parameter button in step 2 is unavailable, the functoid does not accept or require input parameters.

3. Repeat step 2 to add additional parameters, if necessary.

4. Click OK.

 Important

Double quotation marks are not supported within a constant value for an input parameter.

Related Topics

Delete input parameters

Move input parameters

Rename input parameters

Delete input parameters
1. Double-click a functoid in the mapping grid.

2. On the General tab, in the Input parameters area, click the input parameter you want to delete.

3. Click the Delete Selected Parameter button and click OK.

Related Topics

Insert input parameters

Move input parameters

Rename input parameters

Move input parameters
1. Double-click a functoid in the mapping grid.

2. On the General tab, in the Input parameters area, click the input parameter you want to move.

3. Click the Move Up Selected Parameter button to move the parameter up, or click the Move Down Selected
Parameter button to move the parameter down, and click OK.

Related Topics

Delete input parameters

Insert input parameters

Rename input parameters
1. Double-click a functoid in the mapping grid.

2. On the General tab, in the Input parameters area, right-click the input parameter you want to rename and click Change
Value.

3. Type a new parameter name and click OK.

Related Topics

Delete input parameters

Insert input parameters

Move input parameters

Functoid Scripts
For information about how to access the Functoid Properties dialog box, see Editing Functoid Properties.

You can view or edit scripts on the Script tab of the Functoid Properties dialog box.

 Note

You can view the script for any functoid, but you can edit only the script of a Scripting functoid.

Related Topic

Input Parameters

Manage Links
The following topics are covered in this section:

Create links between fields

Create links between fields and functoids

Create links between records and fields

Create links between records and functoids

Create links between functoids

Allow record content links

Redirect links

Delete links

Create links between fields
Drag a field from the Source Specification tree to a field in the Destination Specification tree.

 Important

The data type of a field in the source specification should match the data type of a field to which it is linked in the
destination specification.

 Notes

You cannot link to a node in a destination specification that has a destination constant value associated with it.

You cannot link to a required field in a destination specification that has a default value associated with it. For more
information about making a field required, see Set reference properties. For more information about setting the default
value of a field, see Set declaration properties.

You might need to expand the specification trees to view the fields that you want to map. For more information,
see Expand tree items.

Related Topics

Add constant values

Manage Views

Set declaration properties

Set reference properties

Summary of Data Types and Data Type Values

Create links between fields and functoids
Drag a field from the Source Specification tree or the Destination Specification tree to a functoid in the mapping grid.

-Or-

Drag the functoid from the mapping grid to a field in the Source Specification tree or Destination Specification tree.

 Important

A field with a certain data type property in the Destination Specification of a map should not be linked to a functoid that
produces output of a different data type.

Notes

You must first add a functoid to the mapping grid before you can add a link from a field to the functoid. For more
information about adding a functoid to the mapping grid, see Work with the Functoid Palette.

You cannot link to a node (in a destination specification) that has a destination constant value associated with it.

You cannot link to a required field (in a destination specification) that has a default value associated with it. For more
information about making a field required, see Set reference properties. For more information about setting the default
value of a field, see Set declaration properties.

Related Topics

Add constant values

Manage Views

Set declaration properties

Set reference properties

Work with the Functoid Palette

Create links between records and fields
1. On the Tools menu, click Options.

2. In the BizTalk Mapper Options dialog box, select the Allow record content links check box and click OK.

3. Drag a record from the Source Specification tree to a field in the Destination Specification tree.

—Or—

Drag a record from the Destination Specification tree to a field in the Source Specification tree.

 Notes

You cannot link to a node in a destination specification that has a destination constant value associated with it.

You cannot link to a required field in a destination specification that has a default value associated with it. For more
information about making a field required, see Set reference properties. For more information about setting the default
value of a field, see Set declaration properties.

You might need to expand the specification trees to see the records and fields that you want to map. For more information,
see Expand tree items.

Related Topics

Add constant values

Manage Views

Set declaration properties

Set reference properties

Create links between records and functoids
1. On the Tools menu, click Options.

The BizTalk Mapper Options dialog box appears.

2. Select the Allow record content links check box and click OK.

3. Drag a record from the Source Specification tree or the Destination Specification tree to a functoid in the mapping grid.

-Or-

Drag the functoid from the mapping grid to a record in the Source Specification tree or Destination Specification tree.

 Notes

You must first add a functoid to the mapping grid before you can add a link from a record to the functoid.

You cannot link to a node in a destination specification that has a destination constant value associated with it. For more
information about destination constant values, see BizTalk Mapper User Interface.

Related Topic

Add constant values

Manage Views

Create links between functoids
Drag one functoid to another functoid in the mapping grid.

 Note

Links are processed left to right in the mapping grid. You cannot make a link from one functoid to another functoid directly
above or below it.

Related Topics

Create links between fields and functoids

Create links between records and functoids

Allow record content links
1. On the Tools menu, click Options.

The BizTalk Mapper Options dialog box appears.

2. Select the Allow record content links check box and click OK.

3. Drag a record from the Source Specification tree to a record in the Destination Specification tree.

Redirect links
1. In the mapping grid, click a link to highlight it.

The endpoints of the links are highlighted with small blue boxes.

2. Drag either endpoint to the functoid or node to which you want to connect.

As you drag an endpoint, the pointer becomes a crosshair. If you point to an object to which a link cannot be made, the
pointer becomes a circle with a line through it.

 Important

If you have two or more source links connected to a functoid and you redirect one or more of those source links to different
nodes in the source specification, the order of the functoid's input parameters might not be preserved. Double-click the
functoid to view its input parameters and ensure that they are in the correct order.

Delete links
1. Right-click the link you want to delete and click Delete.

2. Click Yes in the confirmation dialog box.

View Grid Links and Functoids
The following topics are covered in this section:

View links and functoids in the mapping grid

View links and functoids by using the grid preview

View links and functoids in the mapping grid
1. Move the cursor into the mapping grid, near the edge, in the direction that you want to scroll.

The cursor changes from a pointer or pipe (|) to a large arrow.

2. Click and hold the left mouse button to scroll in the direction that the arrow points.

 Note

You can also scroll by clicking in the mapping grid background and then using the arrow keys to scroll in all four directions.

Related Topics

BizTalk Mapper User Interface

View links and functoids by using the grid preview

View links and functoids by using the grid preview
1. On the View menu, click Grid Preview.

The Grid Preview window opens to display a representation of where the functoids are located on the mapping grid.

2. Drag the green locator bar to a new location on the Grid Preview dialog box.

As you move the green locator bar, links and functoids in the mapping grid also move.

 Note

The grid preview is useful for navigating the mapping grid when you have many functoids spread out over the mapping grid.

Related Topics

BizTalk Mapper User Interface

View links and functoids in the mapping grid

Edit Link Properties
To view the Link Properties dialog box, right-click a link in the mapping grid and click Properties.

The General tab appears by default.

For information about how to use this dialog box, see the following topics:

View Link Properties: General Tab

View Link Properties: Compiler Tab

 Note

You also can double-click a link to view its properties.

Related Topics

Compiling Maps

Manage Links

View Link Properties: General Tab
For information about how to access the Link Properties dialog box, see Edit Link Properties.

The General tab displays information about the source and destination of a link. The Source area displays the record path, field
path, or functoid name for the link source, depending on whether the link source is a record, a field, or a functoid. The
Destination area displays the record path, field path, or functoid name for the link destination, depending on whether the link
destination is a record, a field, or a functoid.

Related Topic

View Link Properties: Compiler Tab

View Link Properties: Compiler Tab
For information about how to access the Link Properties dialog box, see Edit Link Properties.

The Compiler tab displays an area for setting compiler properties for source-specification links and an area for setting compiler
properties for destination-specification links. For information about changing these settings, see the following topics:

Select compiler properties for source-specification links

Select compiler properties for destination-specification links

Related Topic

View Link Properties: General Tab

Select compiler properties for source-specification links
1. Right-click a link in the mapping grid that is connected to a node in the source specification and click Properties.

2. Click the Compiler tab and click one of the following options in the Source specification links area:

Copy value (default). Copies the value of the node in the incoming document instance.

Copy name. Copies the name of the node in the incoming document instance.

3. Click OK.

Related Topic

Select compiler properties for destination-specification links

Select compiler properties for destination-specification links
1. Right-click a link in the mapping grid that is connected to a node in the destination specification and click Properties.

2. Click the Compiler tab and select one of the following options in the Destination specification links area:

Flatten links (default). This mode means that the source and destination specifications match and that a one-to-one
link is created for each record and field.

Match links top-down. This mode matches level to level from the top down.

Match links bottom-up. This mode matches level to level from the bottom up.

3. Click OK.

 Notes

If you use a flatten compiler directive, a top-down compiler directive, and a bottom-up compiler directive for links from
fields in the source specification to fields in the destination specification that share the same parent record, BizTalk Mapper
treats all the links as if they were set to the flatten compiler directive.

If you use one or more flatten compiler directives and a top-down compiler directive for links from fields in the source
specification to fields in the destination specification that share the same parent record, BizTalk Mapper treats all the links as
if they were set to the top-down compiler directive.

If you use one or more flatten compiler directives and a bottom-up compiler directive for links from fields in the source
specification to fields in the destination specification that share the same parent record, BizTalk Mapper treats all the links as
if they were set to the bottom-up compiler directive.

If you use one or more top-down compiler directives and one or more bottom-up compiler directives for links from fields in
the source specification to fields in the destination specification that share the same parent record, BizTalk Mapper treats all
the links as if they were set to the flatten compiler directive.

Related Topics

Matching Node-Hierarchy Levels

Select compiler properties for source-specification links

Create and Manage Compiled Maps
The following procedures are covered in this section:

Compile maps

Resolve warnings and errors after compiling a map

Add constant values

Compile maps
On the Tools menu, click Compile Map.

 Caution

BizTalk Mapper generates a warning on the Warnings tab when the compiler encounters a situation that yields incorrect
results. A map must generate no warnings before it can be considered ready for a production environment.

Related Topic

Resolve warnings and errors after compiling a map

Resolve warnings and errors after compiling a map
1. Double-click a warning in the Warnings tab.

The link or functoid that relates to the warning or error is highlighted in the mapping grid.

2. Modify the link or functoid as needed.

3. Repeat steps 1-2 for each warning.

4. On the Tools menu, click Compile Map.

Related Topics

Compile maps

Add constant values
1. Select a record or field in the Destination Specification tree and click the Values tab.

2. In the Destination constant value box, type a value that you want associated with the record or field.

 Note

You cannot create a link to a record or field that has a constant value associated with it.

You can only associate a constant value with a record with its Content property set to Text Only. For more information
about the Content property, see Set declaration properties.

Related Topic

Set declaration properties

Test Maps
The following procedures are covered in this section:

Test record and field properties that have links

Test links

Test functoids

Test record and field properties that have links
 Important

Always compile a map prior to testing it so you can resolve warnings and errors. For more information, see Compile maps.

1. Click a field in the Source Specification tree that is connected to a link.

2. Click the Values tab.

3. Type a value in the Source test value box.

4. On the Tools menu, click Test Map.

 Important

Before the test begins you are prompted to save your file. Save your file prior to testing it as a precautionary measure
to preserve your data in case any problems are accidentally introduced into the map.

5. Click Yes to save the map.

6. Verify the results on the Output tab.

 Note

If the Maximum Occurrences property for a record is an asterisk (*), this indicates that it is a looping record. The incoming
document instance that BizTalk Mapper generates to test the map contains two occurrences of the record.

Related Topics

Compile maps

Testing Maps

Test links
 Important

Always compile a map prior to testing it so you can resolve warnings and errors. For more information, see Compile maps.

1. Click a field in the Source Specification tree that is connected to a link.

2. Click the Values tab.

3. Type a value in the Source test value box.

4. On the Tools menu, click Test Map.

 Important

Before the test begins you are prompted to save your file. Save your file prior to testing it as a precautionary measure
to preserve your data in case any problems are accidentally introduced into the map.

5. Click Yes to save the map.

6. Verify the results on the Output tab.

Related Topics

Compile maps

Testing Maps

Test functoids
 Important

Always compile a map prior to testing it so you can resolve warnings and errors. For more information, see Compile maps.

1. On the Tools menu, click Test Map.

 Important

Before the test begins you are prompted to save your file. Save your file prior to testing it as a precautionary measure
to preserve your data in case any problems are accidentally introduced into the map.

2. Click Yes to save the map.

3. Verify the results on the Output tab.

Related Topics

Compile maps

Testing Maps

Manage Views
The following procedures are covered in this section:

Expand tree items

Collapse tree items

View record and field properties

View namespaces

Adjust the pane size for the Source Specification tree

Adjust the pane size for the Destination Specification tree

Adjust the size of the lower pane

Expand tree items
Click the root node or a record in the specification tree that you want to expand and, on the View menu, click Expand Tree
Items.

—Or—

Right-click the root node or a record in a tree and click Expand Tree Items.

Related Topic

Collapse tree items

Collapse tree items
Click the root node or a record in the specification tree that you want to collapse and, on the View menu, click Collapse
Tree Items.

 Note

You also can right-click the root node or a record in a tree and click Collapse Tree Items.

Related Topic

Expand tree items

View record and field properties
Click a record or field in either the Source Specification tree or the Destination Specification tree and, on the View menu,
click Properties.

—Or—

Click a record or field in either tree and click the Properties tab.

 Note

You might need to drag the scroll bar on the Properties tab to view a specific property and its associated value.

View namespaces
You can view the namespaces in a map by viewing the map in Microsoft Internet Explorer 5 or later.

1. Start Internet Explorer and browse to the map file that you want to open.

2. Scroll to the first <schema> tag (directly following the <srctree> tag) to view namespace information for the
source specification.

3. Scroll to the second <schema> tag (directly following the <sinktree> tag) to view namespace information for the
destination specification.

Related Topic

Namespace Support

Adjust the pane size for the Source Specification tree
1. Place the cursor on the right border of the Source Specification tree pane until the cursor becomes a two-headed arrow.

2. Drag the border to the right to increase the pane size or to the left to decrease the pane size.

 Note

Double-click the border to restore it to its default position.

Related Topics

Adjust the pane size for the Destination Specification tree

Adjust the size of the lower pane

Adjust the pane size for the Destination Specification tree
1. Place the cursor on the left border of the Destination Specification tree pane until the cursor becomes a two-headed arrow.

2. Drag the border to the left to increase the pane size or to the right to decrease the pane size.

 Note

Double-click the border to restore it to its default position.

Related Topics

Adjust the pane size for the Source Specification tree

Adjust the size of the lower pane

Adjust the size of the lower pane
1. Place the cursor on the top border of the lower pane until the cursor becomes a two-headed arrow.

2. Drag the pane upward to increase the pane size or downward to decrease the pane size.

 Note

Double-click the border to restore it to its default position.

Related Topics

Adjust the pane size for the Destination Specification tree

Adjust the pane size for the Source Specification tree

Customize the User Interface
The following procedures are covered in this section:

Change mapping grid colors

Change the color of links

Change the color of selected objects

Change the color of compiler warnings

Restore default colors

Change text size

Change mapping grid colors
1. On the Tools menu, click Options.

The BizTalk Mapper Options dialog box appears.

2. Click the Colors tab.

3. Click the box next to Grid foreground, which represents the dashed lines in the mapping grid, and, in the color palette,
select a new color.

–Or–

Click the box next to Grid background, which represents the background color of the mapping grid, and, in the color
palette, select a new color.

4. Click OK.

Related Topics

Change the color of compiler warnings

Change the color of links

Change the color of selected objects

Restore default colors

Change the color of links
1. On the Tools menu, click Options.

The BizTalk Mapper Options dialog box appears.

2. Click the Colors tab.

3. Click the box next to one of the following:

Fixed links. Fixed links are simple value-copy links in the mapping grid.

Elastic links. Elastic links are simple value-copy links that are dragged from the Source Specification tree to the
Destination Specification tree. Once the link is made, the color of the link changes to the predefined fixed links color.

Partial links. Partial links are links that exist for a field or record whose parent record is collapsed.

Compiler links. Compiler links are the compiler directive links. They are links that are automatically created when a
link is set from a field in the Source Specification tree to a field in the Destination Specification tree and the hierarchy
of the two trees does not match.

4. In the color palette, select a new color.

5. Repeat step 3 change other colors, if necessary.

6. Click OK.

Related Topics

Change mapping grid colors

Change the color of compiler warnings

Change the color of selected objects

Restore default colors

Change the color of selected objects
1. On the Tools menu, click Options.

2. In the BizTalk Mapper Options dialog box, click the Colors tab.

3. Click the box next to Selected objects and, in the color palette, select a new color.

4. Click OK.

Related Topics

Change mapping grid colors

Change the color of compiler warnings

Change the color of links

Restore default colors

Change the color of compiler warnings
1. On the Tools menu, click Options.

The BizTalk Mapper Options dialog box appears.

2. Click the Colors tab.

3. Click the box next to Compiler warnings and, in the color palette, select a new color.

4. Click OK.

Related Topics

Change mapping grid colors

Change the color of links

Change the color of selected objects

Restore default colors

Restore default colors
1. On the Tools menu, click Options.

The BizTalk Mapper Options dialog box appears.

2. Click the Colors tab.

3. Click Restore Default Colors and click OK.

Related Topics

Change mapping grid colors

Change the color of compiler warnings

Change the color of links

Change the color of selected objects

Change text size
On the View menu, point to Text Size and click the size that you want.

Concepts
This section provides detailed conceptual information that is essential to understanding BizTalk Mapper.

The following topics are covered in this section:

Mapping Specifications

Mapping Scenarios

BizTalk Mapper Environment

Creating Links

Matching Node-Hierarchy Levels

Viewing Record, Field, Link, and Functoid Properties

Understanding Functoids

Compiling Maps

Testing Maps

Mapping Specifications
A map identifies how data in one format is to be rendered in another format. A map requires two specifications: one is the source,
and the other is the destination. Mapping data is a data-translation process in which you define the correspondences between the
records and fields in the source specification and the records and fields in the destination specification.

There are two types of mapping: the first is a specific map that is designed to meet the individual needs of one trading partner; the
second is a generic map designed to meet the needs of several trading partners. When you map a trading partner's specific
record and field requirements, you create a map that is unique and specific to that trading partner only. In generic mapping, you
group the requirements of multiple trading partners in one map. Because multiple organizations can be interconnected, and you
can use the same map with multiple trading partners, this feature saves you valuable resources and time.

BizTalk Mapper shows a graphical representation of a map that can include simple value-copy translations, referred to as links,
and complex structural manipulations, referred to as functoids. By combining these elements, you can easily map data between a
source specification and a destination specification.

Mapping Scenarios
The following topics are covered in this section:

Loop Paths

Ordering of Records and Fields

Loop Paths
A record in a specification is looping if the Maximum Occurrences property on the Reference tab for that record is set to *. For
more information about the Maximum Occurrences property, see Set reference properties.

A loop path occurs in a map when a field contained by a looping record in the source specification is linked to a field contained by
a looping record in the destination specification. The following illustration shows two loop paths, one from Root\Record1\Field1
to Root\RecordA\Field1, and the other from Root\Record2\Field2 to \Root\RecordB\Field3.

Click the illustration to enlarge or reduce.

The Properties tab shows Record1 and RecordA to be looping. Record2 and RecordB are also looping.

The following code is a sample input document.

<Root>
<Record1 Field1=Red>
<Record1 Field1=Green>
<Record1 Field1=Blue>
<Record2 Field2=50>
<Record2 Field2=100>
</Root>

Using the previous map, this input document would map to the following output document.

<Root>
<RecordA Field1=Red>
<RecordA Field1=Green>
<RecordA Field1=Blue>
<RecordB Field3=50>
<RecordB Field3=100>
</Root>

A multiple loop path occurs in a map when fields contained by two or more looping records in the source specification are linked
to fields contained by a single looping record in the destination specification.

The following illustration shows an example of a multiple loop path.

Click the illustration to enlarge or reduce.

Multiple loop paths are not supported in BizTalk Mapper. If you attempt to compile a map that contains a multiple loop path, the
Warnings tab indicates that the destination node has multiple source loop paths.

Related Topics

Set reference properties

Ordering of Records and Fields
Implied order of output records and fields is not guaranteed in Extensible Stylesheet Language (XSL). This is because BizTalk
Mapper generates XSL by walking the destination specification structure and then propagating back through the mapping grid to
extract values from the source specification structure. For example, if you want to create an output file that has BillTo Address
records listed first, followed by ShipTo Address records, you must ensure that the BillTo Address precedes the ShipTo Address
record in the destination specification.

The following illustration shows this structure.

Click the illustration to enlarge or reduce.

The ContactType field contains two valid codes (BT and ST) that identify the address as either a BillTo address or a ShipTo address.
To create the desired output, Equal functoids are added to the mapping grid and linked from fields in the source specification to
records in the destination specification.

In the map, the first functoid checks for the following condition:

Is ContactType equal to BT?

If this condition is satisfied, an output record, BillToAddresses, is created and the required fields are mapped to it. If the condition
is not met, BizTalk Mapper must reiterate all the input address records.

 Important

The order in which records and fields appear in an output document instance is dependent on the order of the records and
fields of the corresponding output specification.

BizTalk Mapper Environment
The following topics are covered in this section:

BizTalk Mapper User Interface

BizTalk Mapper Menus

BizTalk Mapper Toolbar Buttons

BizTalk Mapper Functoid Palette

BizTalk Mapper Shortcut Keys

BizTalk Mapper User Interface
The two specifications that are used to create a map appear as tree views in the main window of BizTalk Mapper. The
source specification from which the data is mapped is on the left, and the destination specification to which the data is mapped is
on the right. The mapping grid between the two specifications graphically displays the structural data transformation between the
two specifications. Links and functoids appear in the mapping grid. You can easily move up, down, left, or right in the mapping
grid by moving the pointer to the borders of the mapping grid.

You can use the Grid Preview dialog box to move quickly from one location in the mapping grid to another. By dragging the
green locator bar, you can move up, down, left, or right. A functoid in the mapping grid appears in the preview grid as a red box
that is surrounded by a black outline. If there are two or more functoids in the mapping grid, the graphic appears as two red
boxes attached to one another, surrounded by a black outline.

Beneath the tree views and mapping grid is the lower pane. This area has four tabs:

Properties. When you select a node in the source specification tree or the destination specification tree, the Properties tab
displays the properties and property values for that node.

Values. This tab has two text boxes: Source test value and Destination constant value. You can select a field and then
type a value in the Source test value box. This allows you to test maps with actual values assigned to fields. In the
Destination constant value box, you can specify a value to assign to a field. You cannot create a link from a functoid or
from a node in the source specification to a field with a constant value assigned to it.

Output. This tab displays a compiled Extensible Stylesheet Language (XSL) style sheet when you compile a map, and it
displays test map output when you test a map.

Warnings. This tab displays compiler warnings after you compile a map.

Related Topics

Compiling Maps

Testing Maps

View links and functoids by using the grid preview

BizTalk Mapper Menus
BizTalk Mapper menus logically group commands together, making it easy to perform a specific task. For example, you can use
the commands on the View menu to view all the records and fields in the source specification tree or to collapse all the records
and fields in the destination specification tree.

The BizTalk Mapper menus are as follows:

File. Use this menu to create, open, save, or close a map.

Edit. Use this menu to replace the source or destination specification, or to delete an object in the mapping grid.

View. Use this menu to view the functoid palette, the functoid properties, and the grid preview, as well as to select a text
size for the BizTalk Mapper display, to activate tabs in the lower pane, to expand or collapse the specification trees, or to
highlight the next warning on the Warnings tab.

Tools. Use this menu to compile and test your maps, and to view BizTalk Mapper options.

Help. Use this menu to get how-to and conceptual information about using BizTalk Mapper.

Related Topic

Accessing BizTalk Editor Menus

BizTalk Mapper Toolbar Buttons
BizTalk Mapper provides a toolbar to complement the menu bar. All of the toolbar buttons display graphical representations of
the tasks they perform. They appear in the following order from left to right:

New

Open

Save

Retrieve from WebDAV

Store to WebDAV

Delete

Collapse

Expand

View Functoid Palette

Compile Map

Test Map

BizTalk Mapper Functoid Palette
The functoid palette contains all the functoids available in BizTalk Mapper. A functoid contains code that takes data from a record
or field in the source specification, or from another functoid (such as a Date functoid), processes the data independently, and then
returns a new value that is placed in a record or field in the destination specification. For more information about the functoid
palette, see Understanding Functoids.

Related Topics

Understanding Functoids

Work with the Functoid Palette

BizTalk Mapper Shortcut Keys
You can use shortcut keys to accomplish tasks in BizTalk Mapper. The following table is a quick reference to these shortcut keys.

 Note

Functionality that is not included in this list can be obtained by using the numeric keypad to move the mouse pointer with
MouseKeys. For more information about MouseKeys in Windows 2000 Server and Advanced Server Help, see "Using the
keyboard to move the mouse pointer". For more information about MouseKeys in Windows 2000 Professional Help, see
"Move the mouse pointer by using MouseKeys".

Press To
CTRL+
N

Open a new specification.

CTRL+
O

Open an existing map.

CTRL+
S

Save a map.

CTRL+
F5

Test a map.

F4 Highlight the next warning.
F5 Compile a map.
DEL Delete an object in the mapping grid.
F6 Move the focus clockwise from pane to pane.
SHIFT
+F6

Move the focus counterclockwise from pane to pane. Pressing SHIFT+F6 after opening the functoid palette moves the foc
us to the String tab, allowing you to use the left and right arrow keys to view the other tabs.

TAB Move the focus clockwise in the lower pane from the tab to the panes or fields below. In a dialog box, pressing TAB moves
the focus through the buttons and fields of the dialog box.

SHIFT
+TAB

Move the focus counterclockwise in the lower pane from the tab to the panes or fields below.

SPACE
BAR

Select or clear a check box. The spacebar also acts like a mouse click when the focus is on a button.

F1 View online Help.
ALT+F
4

Exit from the program.

LEFT A
RROW

Activate the tab to the left.

RIGHT
ARRO
W

Activate the tab to the right.

Any ar
row ke
y

Highlight a folder or a file in the main pane of a dialog box, while the focus is on that pane. This functionality occurs in the
Store to WebDAV dialog box and the Retrieve from WebDAV dialog box. For more information,
see Retrieve maps from WebDAV.

Creating Links
Links perform the basic function of copying data from the source specification tree records and fields to the
destination specification tree records and fields. BizTalk Mapper supports one-to-one links and one-to-many links. For example, a
link can join a single record or field from the source specification tree to a single record or field in the destination specification
tree. A link can also join a single record of a field from the source specification tree to multiple records or fields in the destination
specification tree. Links can also join multiple records or fields from the source specification tree to a functoid, which then joins to
a single record or field in the destination specification tree. Multiple records or fields from the source specification tree can join to
a single record or field in the destination specification tree.

Related Topic

Manage Links

Matching Node-Hierarchy Levels
BizTalk Mapper includes compiler directives. Using these directives, you can set the level of matching between the hierarchy of the
source specification tree and the hierarchy of the destination specification tree. When you create a link from one field in the
source specification tree to a field in the destination specification tree, BizTalk Mapper automatically adds compiler links based on
the choices you make in the Destination Specification Links area on the Compiler tab of the Link Properties dialog box. For
more information, see Select compiler properties for destination-specification links. The following illustrations show the node-
hierarchy level matches that are possible:

Flatten link (default mode). This mode means that the parent record for the link has a one-to-one link to each record in
the other tree. In the first case, the source specification is more complex than the destination specification. In the second
case, the destination specification is more complex.

F2
R5
R4
Root2
F1
R3
R2
R1
Root1
User drawn links
Compiler links

R5
R4
R3
Root2
F2
F1
R2
R1
Root1
User drawn links
Compiler links

Match links top-down. This mode matches level to level from the top down. In the first case, the source specification is
more complex than the destination specification. In the second case, the destination specification is more complex.

F2
R5
R4
Root2
F1
R3
R2
R1
Root1
User drawn links
Compiler links

R5
R4
R3
Root2
F2
F1
R2
R1
Root1
User drawn links
Compiler links

Match links bottom-up. This mode matches level to level from the bottom up. In the first case, the source specification is
more complex than the destination specification. In the second case, the destination specification is more complex.

F2
R5
R4
Root2
F1
R3
R2
R1
Root1

User drawn links
Compiler links

R5
R4
R3
Root2
F2
F1
R2
R1
Root1
User drawn links
Compiler links

 Notes

If you use a flatten compiler directive, a top-down compiler directive, and a bottom-up compiler directive for links from
fields in the source specification to fields in the destination specification that share the same parent record, BizTalk Mapper
treats all the links as if they were set to the flatten compiler directive.

If you use one or more flatten compiler directives and a top-down compiler directive for links from fields in the source
specification to fields in the destination specification that share the same parent record, BizTalk Mapper treats all the links as
if they were set to the top-down compiler directive.

If you use one or more flatten compiler directives and a bottom-up compiler directive for links from fields in the source
specification to fields in the destination specification that share the same parent record, BizTalk Mapper treats all the links as
if they were set to the bottom-up compiler directive.

If you use one or more top-down compiler directives and one or more bottom-up compiler directives for links from fields in
the source specification to fields in the destination specification that share the same parent record, BizTalk Mapper treats all
the links as if they were set to the flatten compiler directive.

Related Topic

Compiling Maps

Viewing Record, Field, Link, and Functoid Properties
The source specification and destination specification display the records and fields associated with a specification. You can build
these specifications using BizTalk Editor, or you can import them into BizTalk Editor as well-formed XML. The source specification
appears on the left of the mapping grid, and the destination specification appears on the right of the mapping grid.

Record and field properties and values
The properties and values for records and fields appear on the Properties tab, which is located below the main pane. When you
select a record or field, the key properties and values from the property tabs of BizTalk Editor appear.

Link and functoid properties
The mapping grid of BizTalk Mapper graphically depicts the structure of the data transformation. Links appear as a single line that
connects a record or field in the source specification tree to a record or field in the destination specification tree. Links are also
used to connect a record or field to a functoid. Functoids appear as icons. Properties for links include source and destination data
and compiler directive information. Properties for functoids include input parameter and script information.

Related Topics

Records, Fields, and Properties

Understanding Functoids

Understanding Functoids
BizTalk Mapper supports complex structural transformations from records and fields in the source specification tree to records
and fields in the destination specification tree. Functoids perform calculations by using predefined formulas and specific values,
called arguments. These calculations are executed based on the designated order of the records and fields. By selecting a functoid
from the functoid palette, dragging it to the mapping grid, and linking it to elements in the source specification and destination
specification trees, data can be added together, date or time information can be modified, data can be concatenated, or other
operations can be performed. For example, the Addition functoid adds values.

The Functoid Palette includes the following tabs:

String. These functoids manipulate data strings by using string functions. For example, the String Find functoid finds one
text string within another text string, and returns the position of the first character of the found string.

Mathematical. These functoids perform calculations by using specific values, called arguments, in a particular order, or
structure. For example, the Addition functoid adds the values of the designated fields or records.

Logical. These functoids perform specific logical tests. If a logical functoid is connected to a record in the destination
specification and returns the value "true", the corresponding record in the output document is generated. If a logical
functoid is connected to a record in the destination specification and returns the value "false", the corresponding record in
the output document is not generated. The output of a logical functoid can also be accepted as input for other functoids in a
map.

Date/Time. These functoids manipulate date and time data or add current date, time, or date and time data to a record or
field in the destination specification.

Conversion. These functoids closely match engineering functions such as DEC2HEX, which returns a hexadecimal value
given a decimal value. They can also be used to convert a character to its ASCII value or a value to the corresponding ASCII
character.

Scientific. These functoids convert a numeric value to a scientific value. For example, the Cosine functoid takes a value
from a field or record and returns the angle, in radians, for which you want the cosine.

Cumulative. These functoids return the sum, average, or minimum or maximum input of a looping record.

Database. These functoids extract data from a database.

Advanced. This tab has a functoid that can use custom Microsoft Visual Basic script, functoids for value mapping, and
functoids for managing and extracting information from record loops.

You can also create your own custom functoids. For a sample of a custom functoid, go to the Program Files\Microsoft BizTalk
Server\SDK\Messaging Samples\SampleFunctoid folder on a computer with a complete installation of BizTalk Server or a custom
installation of BizTalk Server that includes Messaging samples.

The following topics are covered in this section:

Using Cascading Functoids

Using Cumulative Functoids

Using Database Functoids

Using the Record Count Functoid

Using the Index Functoid

Using the Iteration Functoid

Using the Value Mapping Functoid

Using the Value Mapping (Flattening) Functoid

Using the Looping Functoid

Using Cascading Functoids
Cascading functoids enable you to create maps for which you must link fields or records to multiple functoids to produce the
necessary output in a field or record in the destination specification. Cascading functoids make it easy to create multiple,
consecutive transformations in the mapping grid. Functoids are cascaded when one functoid is linked to another functoid before
it is linked to a record or field in the destination specification. For example, you can create cascading functoids in which two
concatenated strings are used to produce a third string that is fed into a field in the destination specification. There is no limit to
the number of functoids you can cascade together in the mapping grid; however, complex cascading scenarios might result in
poor performance.

Using Cumulative Functoids
Cumulative functoids operate within the context of the record level in the source specification. Certain records typically occur
many times in an input file. For example, in a purchase order, the item section might occur many times. The item section might
include products, descriptions, prices, and quantities. The following code is an example of a purchase order:

<PurchaseOrder>
 <From>Kevin F. Browne</From>
 <To>Bits, Bytes, & Chips</To>
<LineItems>
 <Item>
 <Product>TravelLight 400</Product>
 <Description>laptop computer</Description>
 <Price>2000</Price>
 <Quantity>1</Quantity>
 </Item>
 <Item>
 <Product>TravelTuff Case</Product>
 <Description>laptop computer case</Description>
 <Price>50</Price>
 <Quantity>2</Quantity>
 </Item>
 <Item>
 <Product>ScreenClean</Product>
 <Description>computer monitor cleaner</Description>
 <Price>2</Price>
 <Quantity>100</Quantity>
 </Item>
</LineItems>
</PurchaseOrder>

The following illustration shows this purchase order displayed in BizTalk Editor.

Click the illustration to enlarge or reduce.

Note that the Maximum Occurrences property on the Reference tab for the Item record is set at *. This indicates that the item
record loops, and BizTalk Mapper compiles this record as a loop.

You might want to find the sum total of all the line items in the purchase order and map the cumulative total into a field in an
output document. To do this, you must first calculate the extended price for each item record in the purchase order and then
aggregate the individual item record totals as the mapping progresses through all the item records in the purchase order.

The following illustration shows a Multiplication functoid and a Cumulative Sum functoid used to aggregate item records
from an incoming purchase order and output the results in the POTotal field of a TotalsDocument document.

Click the illustration to enlarge or reduce.

In this example, all the Item records that exist under the LineItems record of an incoming purchase order participate in the
cumulative operation. The Price and Quantity fields are sent to a Multiplication functoid. The output of the Multiplication
functoid becomes the input of the Cumulative Sum functoid. The output of the Cumulative Sum functoid is the accumulated
value as the Item records are traversed in the input purchase order. This value is sent to the POTotal field of the TotalsDocument
document and is the sum of each of the individual products of price and quantity: (2000x1)+(50x2)+(2x100)=2300.

 Notes

The cumulative aggregation of a particular input takes place over the parent record from which the input link originates.
This also applies to functoid outputs that are fed as input to a cumulative functoid.

Cumulative functoids ignore non-numeric input. For example, an input value of "three" is ignored.

The Cumulative Average, Cumulative Minimum, and Cumulative Maximum functoids behave similarly to the Cumulative
Sum functoid. The Cumulative String functoid behaves differently from the rest of the cumulative functoids in that it
concatenates strings rather than aggregating numeric values.

Related Topics

Add cumulative functoids

Cumulative Functoids

Using Database Functoids
Database functoids extract data from a database. To understand how database functoids are used, consider a large retail
manufacturer with many stores spread over a large geographical area. Each store is designated by a numeric code, and an
address list is distributed to all partners. The address list might contain the following structure:

StoreID: 123

Name: A. Datum Corporation

Address: 1234 Main Street

City: Denver, Colorado

PostalCode: 97402

PhoneNumber: 801-555-0179

StoreManager: Anthony Chor

In subsequent transactions, only the numeric code that represents the store is sent in a purchase order. BizTalk Mapper uses that
code to extract the address information from a database. The following illustration shows such a scenario.

Click the illustration to enlarge or reduce.

In this illustration, the source specification represents an incoming purchase order, and the destination specification represents an
invoice. The Database Lookup functoid performs a database lookup to find the appropriate record from the appropriate table.
The output of the Database Lookup functoid can be connected only to Value Extractor functoids . The Value Extractor
functoids extract the appropriate column name from the lookup record. The Error Return functoid outputs a string containing
error information if there are errors (such as connection failures) at run time.

The Database Lookup functoid requires four input parameters, in the following order:

The lookup value

The database connection string

The table name

The column name for the lookup value

For information about inserting, deleting, and moving input parameters, see Input Parameters.

In the previous example, the first input parameter is taken from the StoreID field of the incoming purchase order, and the
remaining three input parameters are constants on the General tab of the Functoid Properties dialog box for the Database

Lookup functoid. It is possible to create links from the source specification tree to supply values for all four input parameters. For
more information about inserting, deleting, and moving input parameters, see Input Parameters.

The Value Extractor functoid requires the following two input parameters, in the following order:

A link to the Database Lookup functoid

The column name

The Error Return functoid requires exactly one input parameter: a link to the Database Lookup functoid.

 Notes

Some SQL Server data types, such as text, ntext, and image, cannot be used as lookup values for the Database Lookup
functoid.

If there is more than one record that matches the input parameters of the Database Lookup functoid, the Value Extractor
functoid extracts only the first record in the table.

Related Topics

Database Functoids

Input Parameters

Using the Record Count Functoid
The Record Count functoid operates within the context of the record level in the source specification. Certain records typically
occur many times in an input file. For example, in a purchase order, the Item section might occur many times. The Item section
might include products, descriptions, prices, and quantities. The following code is an example of a purchase order:

<PurchaseOrder>
 <From>Kevin F. Browne</From>
 <To>Bits, Bytes, & Chips</To>
<LineItems>
 <Item>
 <Product>TravelLight 400</Product>
 <Description>laptop computer</Description>
 <Price>2000</Price>
 <Quantity>1</Quantity>
 </Item>
 <Item>
 <Product>TravelTuff Case</Product>
 <Description>laptop computer case</Description>
 <Price>50</Price>
 <Quantity>2</Quantity>
 </Item>
 <Item>
 <Product>ScreenClean</Product>
 <Description>computer monitor cleaner</Description>
 <Price>2</Price>
 <Quantity>100</Quantity>
 </Item>
</LineItems>
</PurchaseOrder>

The following illustration shows this purchase order displayed in BizTalk Editor.

Click the illustration to enlarge or reduce.

Note that the Maximum Occurrences property on the Reference tab for the Item record is set at *. This indicates that the Item
record loops, and BizTalk Mapper compiles this record as a loop.

You might want to find the total number of line items in the purchase order and map that value into a field in an output
document. This scenario is a bit different from the conventional mapping scenario in which content from the source document is
mapped to the output document. In this case, the Record Count functoid generates the value that is mapped to the output
document.

The Record Count functoid has one input and one output. The input is a link from a looping record in the source specification.
This record appears many times in the original input document. The output of the Record Count functoid is a link to a field in the
destination specification.

The following illustration shows a Record Count functoid that counts the number of items that exist in an incoming purchase
order and outputs that value to the Number_Of_Items field in the POReport document.

Click the illustration to enlarge or reduce.

Because, in this example, there were three items in the incoming purchase order, the value of the Number_Of_Items field is 3.

Related Topic

Advanced Functoids

Using the Index Functoid
The Index functoid operates within the context of the record level of the source specification. Certain records typically occur many
times in an input file. For example, in a weather report, the DailySummary section might occur many times. The DailySummary
section might include the temperature, the barometric pressure, and the wind speed. The following code is an example of a
weather report:

<WeatherReport>
 <DailySummary>
 <Temperature>20</Temperature>
 <Pressure>80</Pressure>
 <WindSpeed>10</WindSpeed>
 </DailySummary>
 <DailySummary>
 <Temperature>23</Temperature>
 <Pressure>78</Pressure>
 <WindSpeed>20</WindSpeed>
 </DailySummary>
 <DailySummary>
 <Temperature>24</Temperature>
 <Pressure>77</Pressure>
 <WindSpeed>16</WindSpeed>
 </DailySummary>
</WeatherReport>

The following illustration shows this weather report displayed in BizTalk Editor.

Click the illustration to enlarge or reduce.

Note that the Maximum Occurrences property on the Reference tab for the DailySummary record is set at *. This indicates that
the DailySummary record loops, and BizTalk Mapper compiles this record as a loop.

You might want to collect weather information for the first two DailySummary records of the weather report. In BizTalk Mapper,
each field from the DailySummary record of the incoming source specification can be connected to an Index functoid, and each
Index functoid can specify from which DailySummary record to draw the information: the first and the second. The Index
functoids can then be connected to the appropriate fields of a destination specification. Note that Index functoids operate only
between fields that exist below a single parent in the source specification to fields that exist below a single parent in the
destination specification.

The following illustration shows Index functoids used in this way.

Click the illustration to enlarge or reduce.

To get the daily summary information for the first day, the top three Index functoids must have an index value of 1. To get the
daily summary information for the second day, the last three Index functoids must have an index value of 2.

Index sequence inputs are set as input parameters on the General tab of an Index functoid's property sheet. Double-click an
Index functoid to display its property sheet. The first input parameter identifies the field in the source specification that links into
the Index functoid. The succeeding input parameter or parameters indicate index values.

The following illustration shows the property sheet for the top Index functoid in the previous map.

Click the illustration to enlarge or reduce.

 Notes

An Index functoid input parameter assigned any non-numeric constant value is interpreted by BizTalk Mapper to have a
value of 1. For example, in the previous illustration, if the second input parameter were replaced with an input parameter
with a value of "anystring", the mapping result would be unchanged.

Although index sequence input is typically a constant value on the General tab of the Functoid Properties dialog box, it is
possible to use a link from a node in the source specification for the input sequence value. If this link comes from a looping
record that is not a parent of the first input parameter, the index sequence input value comes from the first instance of the
node in the incoming document.

The value of the index sequence input is always in relation to the current context in the source document.

If you had multiple weather reports in the same input file, and each weather report had multiple daily summaries, you might need
to specify more than one index value. The following code is an example of an input file with multiple weather reports:

<WeatherReports>
 <WeatherReport1>
 <DailySummary>
 <Temperature>20</Temperature>
 <Pressure>80</Pressure>
 <WindSpeed>10</WindSpeed>
 </DailySummary>
 <DailySummary>
 <Temperature>23</Temperature>
 <Pressure>78</Pressure>
 <WindSpeed>20</WindSpeed>
 </DailySummary>
 </WeatherReport1>
 <WeatherReport2>
 <DailySummary>
 <Temperature>24</Temperature>
 <Pressure>77</Pressure>
 <WindSpeed>16</WindSpeed>
 </DailySummary>
 <DailySummary>
 <Temperature>22</Temperature>
 <Pressure>79</Pressure>
 <WindSpeed>21</WindSpeed>
 </DailySummary>
 </WeatherReport2>
</WeatherReports>

An Index functoid with two index values, the first set at 1 and the second set at 2, gets a field value from the first daily summary
of the second weather report.

 Important

An index functoid must have as many index values as there are parent nodes from the field level to the first level below the
root node. For example, in the multiple weather report sample document, two index values are required. In the single
weather report sample document, only one index value is required. Failure to set the required number of index values of an
index functoid creates output based on the first node in the source document that matches the first input parameter of the
index functoid.

Related Topic

Advanced Functoids

Using the Iteration Functoid
The Iteration functoid identifies which sequence number in a looping record is being mapped at any given time. The following
illustration shows the Iteration functoid used in conjunction with an Equal functoid.

Click the illustration to enlarge or reduce.

There is a pair of functoids (the Iteration functoid and the Equal functoid) for each of the two records in the
destination specification. The following illustration shows the property sheet for the top Equal functoid.

Click the illustration to enlarge or reduce.

The following code is an example of an incoming document instance that conforms to the structure of the source specification:

<Root>
<Record1 Field1="A"/>
<Record1 Field1="B"/>
</Root>

As the source specification loops through the incoming document instance, the Iteration functoid returns the value 1 while the
first record is being mapped and the value 2 while the second record is being mapped. The Equal functoid returns the value
"true" when its two input parameters are equal. Therefore, the top functoid pair returns the value "true" while the first record of
the incoming document instance is being mapped. The value "true" is passed to Record2 of the destination specification, and
Record2 is written to the output document. If the second input parameter of the bottom Equal functoid has a value of 2, the
bottom functoid pair behaves in a manner similar to the top functoid pair. In other words, when the second record of the
incoming document instance is mapped, Record3 of the destination specification is written to the output document instance. The
following code shows the output document instance:

<Root2>
<Record2 Field2="A"/>
<Record3 Field3="B"/>
</Root2>

Related Topic

Advanced Functoids

Using the Value Mapping Functoid
The Value Mapping functoid requires two input parameters, and returns the value of the second input parameter if the value
of the first parameter is "true". The following illustration shows a map with the Value Mapping functoid used in this way.

Click the illustration to enlarge or reduce.

To complete the map, you must set the input parameters for each functoid. The following illustration shows the property sheet for
each of the three Value Mapping functoids.

Click the illustration to enlarge or reduce.

The following illustration shows the property sheet for the top Equal functoid.

Click the illustration to enlarge or reduce.

The middle Equal functoid property sheet is similar, but its second input parameter has a constant value of Y. The bottom Equal
functoid property sheet is also similar, but its second input parameter has a constant value of Z.

You might have a source document instance that contains the following element.

<Field Name="X" Value="1"/>

A Name value of X makes the top Equal functoid of the map return a value of "true". The "true" value returned by the Equal
functoid makes the Attribute Value functoid that it is linked to return a value of 1.

The following code is an example of document instance that corresponds to the source specification of the map.

<Root>
 <Record>
 <Field Name="X" Value="1"/>
 <Field Name="Y" Value="2"/>
 <Field Name="Z" Value="3"/>
 </Record>
 <Record>
 <Field Name="X" Value="4"/>
 <Field Name="Y" Value="5"/>
 <Field Name="Z" Value="6"/>
 </Record>
 <Record>
 <Field Name="X" Value="7"/>
 <Field Name="Y" Value="8"/>
 <Field Name="Z" Value="9"/>
 </Record>
</Root>

Using this map and this source document instance, BizTalk Server outputs the following document instance.

<Root>
<Record X="1"/>
<Record Y="2"/>
<Record Z="3"/>
<Record X="4"/>
<Record Y="5"/>
<Record Z="6"/>
<Record X="7"/>
<Record Y="8"/>
<Record Z="9"/>
</Root>

 Important

The Value Mapping functoid accepts Boolean input only in the form of the lowercase strings "true" and "false". For
example, if a field in an incoming document instance has a value of "True" and is linked directly to the top input parameter
of a Value Mapping functoid, the value of the second input parameter of the Value Mapping functoid is not passed to the
output document.

Related Topics

Advanced Functoids

Using the Value Mapping (Flattening) Functoid

Using the Value Mapping (Flattening) Functoid
A common scenario for users of Microsoft Commerce Server is to map from a Commerce Server catalog to a flat schema. The
Value Mapping (Flattening) functoid makes this type of map possible. The following code is an example of a Commerce Server
catalog:

<Root>
 <Record>
 <Field Name="X" Value="1"/>
 <Field Name="Y" Value="2"/>
 <Field Name="Z" Value="3"/>
 </Record>
 <Record>
 <Field Name="X" Value="4"/>
 <Field Name="Y" Value="5"/>
 <Field Name="Z" Value="6"/>
 </Record>
 <Record>
 <Field Name="X" Value="7"/>
 <Field Name="Y" Value="8"/>
 <Field Name="Z" Value="9"/>
 </Record>
</Root>

The following code is an example of a flat schema:

<Root>
 <Record X="1" Y="2" Z="3"/>
 <Record X="4" Y="5" Z="6"/>
 <Record X="7" Y="8" Z="9"/>
</Root>

In this mapping scenario it is important to maintain the one-to-one correspondence between the three records in the catalog and
the three records in the flat schema. The following illustration shows a map that maintains this correspondence.

Click the illustration to enlarge or reduce.

In this map, the source specification represents the structure of the incoming catalog, and the destination specification represents
the structure of the outgoing flat schema. There is a pair of functoids (the Equal functoid and the Value Mapping
(Flattening) functoid) for each of the three records. The following illustration shows the property sheet for each of the three
Value Mapping (Flattening) functoids.

Click the illustration to enlarge or reduce.

The following illustration shows the property sheet for the top Equal functoid.

Click the illustration to enlarge or reduce.

The middle Equal functoid property sheet is similar, but its second input parameter has a constant value of Y. The bottom Equal
functoid property sheet is also similar, but its second input parameter has a constant value of Z.

The top functoid pair works together to ensure that the value of X is passed from each of the three records in the catalog to each
of the three records in the flat schema. The Value Mapping (Flattening) functoid returns the value of the second parameter of
its property sheet only if the value of the first parameter is "true". For this reason, the top Value Mapping (Flattening) functoid
returns the value of /Root/Record/Field/@Value only if the Equal functoid it is linked to returns a value of "true". The Equal
functoid to which it is linked returns a value of "true" only for fields in the incoming catalog with Name values of X.

The Equal functoid of the middle functoid pair returns a value of "true" only for fields in the incoming specification with Name
values of Y, so this pair of functoids ensures that the value of Y is passed from each of the three records in the catalog to each of
the three records in the flat schema. The third functoid pair handles the value of Z in a similar manner.

 Important

The Value Mapping (Flattening) functoid accepts Boolean input only in the form of the lowercase strings "true" and
"false". For example, if a field in an incoming document instance has the value "True" and is linked directly to the top input
parameter of a Value Mapping (Flattening) functoid, the value of the second input parameter of the Value Mapping
(Flattening) functoid is not passed to the output document.

 Note

If a record in an incoming catalog document instance has more than one field with an attribute that matches the second
input parameter of one of the Equal functoids in this mapping scenario, only the last record with this match is mapped to
the output document. For example, in the previous example of a Commerce Server catalog, if there were three Field
elements in the first Record element that had Name attributes with values of X, only the last Field element would map.

For information about mapping from a flat schema to a Commerce Server catalog (mapping in the opposite direction from the
previous mapping scenario), see Using the Looping functoid

Related Topics

Advanced Functoids

Using the Looping Functoid

Using the Value Mapping Functoid

Using the Looping Functoid
The Looping functoid is used to combine multiple records and/or fields in the source specification into a single record in the
destination specification. The following illustration shows the Looping functoid used in this way.

Click the illustration to enlarge or reduce.

The BillTo record of the Source Specification and the Addresses record of the Destination Specification loop, as indicated by the
Maximum Occurrences setting of * on the Source Attributes and Destination Attributes sections of the Properties tab. In
this example, the ShipTo and Header records of the Source Specification also loop. If an incoming document instance had three
BillTo records and two ShipTo records, the Looping functoid would combine these to create five Addresses records in the
outgoing document.

The following code is a sample incoming document instance:

<Root>
<BillTo Name="Kim Yoshida" Address="345 North 63rd Street"
City="Boston" PostalCode="07458"></BillTo>
<BillTo Name="Michelle Votava" Address="7890 Broadway"
City="Columbus" PostalCode="46290"></BillTo>
<BillTo Name="Tanya Van Dam" Address="1234 Main Street"
City="Denver" PostalCode="97402"></BillTo>
<ShipTo Name="Patricia Esack" Address="456 First Avenue"
City="Miami" PostalCode="81406"></ShipTo>
<ShipTo Name="Peter Kress" Address="567 2nd Avenue"
City="Seattle" PostalCode="98103"></ShipTo>
<Header ID="01"></Header>
<Header ID="02"></Header>
<Header ID="03"></Header>
</Root>

This incoming document instance would produce the following outgoing document instance when processed by the map shown
in the previous illustration:

<Root>
<Addresses Name="Kim Yoshida" Address="345 North 63rd Street"
City="Boston" PostalCode="07458" ID="01" />
<Addresses Name="Michelle Votava" Address="7890 Broadway"
City="Columbus" PostalCode="46290" ID="01" />
<Addresses Name="Tanya Van Dam" Address="1234 Main Street"
City="Denver" PostalCode="97402" ID="01" />
<Addresses Name="Patricia Esack" Address="456 First Avenue"
City="Miami" PostalCode="81406" ID="01" />
<Addresses Name="Peter Kress" Address="567 2nd Avenue"

City="Seattle" PostalCode="98103" ID="01" />
</Root>

Notice that in each Addresses record created in the outgoing document instance, the value of the ID field is "01". This is because
the Header record is not connected to the Looping functoid. The first ID field value of the incoming document instance is passed
to each record created in the outgoing document instance.

 Important

Under certain conditions some functoids might not behave as expected when they are used in a map with a Looping
functoid. If a functoid meets the following conditions it does not produce the expected results:

The functoid has more than one source specification link.

Two or more of the functoid's source specification links are linked to child fields of the Looping functoid's input
records. The child fields are not siblings.

The functoid has a destination specification link that is linked to a child field of the Looping functoid's output
record.

If you were to add a functoid that met these conditions to the previous map, the functoid might have one source
specification link connected to the Name field under the BillTo record, another source specification link connected to the
Name field under the ShipTo record, and a destination specification link connected to the Name field under the Addresses
record.

Flat schema to Commerce Server catalog
You can use the Looping functoid to map a flat schema to a Microsoft Commerce Server catalog. For more information about flat
schemas and Commerce Server catalogs, see Using the Value Mapping (Flattening) Functoid.

The following illustration shows a flat schema mapped to a Commerce Server catalog.

Click the illustration to enlarge or reduce.

 Important

For this map to work correctly, you must do the following:
For each link that connects to the Name field in the destination specification, set the source-specification link
properties to copy the name. For more information, see Select compiler properties for source-specification links.

For each link that connects to the Value field in the destination specification, set the source-specification link
properties to copy the value. For more information, see Select compiler properties for source-specification links.

For the link that connects the Looping functoid to the record named Field in the destination specification, set
destination-specification link properties to match links top-down. For more information,
see Select compiler properties for destination-specification links.

Insure that Allow multiple inputs to destination tree nodes is selected in the BizTalk Mapper Options dialog
box. For more information, see BizTalk Mapper Options: General Tab.

Related Topics

BizTalk Mapper Options: General Tab

Select compiler properties for destination-specification links

Select compiler properties for source-specification links

Using the Value Mapping (Flattening) Functoid

Compiling Maps
When you compile maps, a visual representation of the transformations is created by the BizTalk Mapper compiler component.
This component also generates the run-time Extensible Stylesheet Language (XSL) style sheet. This process creates a map.
Compiling a map enforces the structural rules and transformations that are specified in the mapping grid. Transformations, such
as links, are processed in the same order that records and fields appear in the instance of the source structure. For example, when
BizTalk Mapper reaches a source record or field that has a link associated with it, BizTalk Mapper compiles the properties of the
link. The action might be a simple copy value that populates a record or field in the destination specification, or the action might
calculate values from one or more records and fields from the source to one or more records and fields in the destination, based
on the properties of a functoid. The execution of each link is independent of the execution of other links.

BizTalk Mapper generates a warning on the Warnings tab when the compiler encounters a situation that yields incorrect output.
For example, if a functoid that requires one input parameter has no input parameters, BizTalk Mapper generates a warning on the
Warnings tab when the map is compiled. A map must generate no warnings before it is ready for a production environment.

The compiling process stores all information about the source and destination specifications, including all content and
functionality of links and objects. The compiled map is used by BizTalk Server to perform the actual translation of an input
instance to an output instance.

Related Topic

Matching Node-Hierarchy Levels

Testing Maps
As you create a map, you can use BizTalk Mapper to verify that the map you designed produces the correct output. The Test Map
feature automatically generates a test instance of the source document from the specification. This feature verifies information,
such as the number of occurrences of records, data types of fields, and so on, from the specification and generates the test
instance. You can specify unique values for any record or field in the Source test value box on the Values tab and test the results
of that data.

When you test a map, BizTalk Mapper automatically compiles it. However, it is best to first compile a map and resolve any
warnings or errors prior to testing it. Before the test begins you are prompted to save your file. Saving your file prior to testing it
is a precautionary measure to preserve your data in case any problems are accidentally introduced into the map.

After you test a map, the results appear on the Output tab. The test data corresponds to the destination specification.

 Note

The BizTalk Mapper map test functionality is limited to testing a map against an automatically generated test document
instance. The test document instance is generated by BizTalk Mapper and is based on the source specification. In other
words, using BizTalk Mapper you cannot test a map with an actual instance of a business document of your own choosing.
However, a sample map test script is included with BizTalk Server that enables you to test a map against a document
instance of your choosing. For more information, see \Program Files\Microsoft BizTalk Server\SDK\Messaging
Samples\MapTest\Readme.txt.

Related Topics

Test functoids

Test links

Test record and field properties that have links

Resources
The following topics are covered in this section:

Customizing Your Display

String Functoids

Mathematical Functoids

Logical Functoids

Date and Time Functoids

Conversion Functoids

Scientific Functoids

Cumulative Functoids

Database Functoids

Advanced Functoids

Maps for Integrating BizTalk Services

Customizing Your Display
You can customize the look of the BizTalk Mapper in several ways. For example, you can change the background mapping grid
colors, specify new colors for links and selected objects, change the color of compiler warnings, and modify the size of text. The
following items can be customized:

Grid foreground. The dashed lines in the mapping grid.

Grid background. The background color of the mapping grid.

Fixed links. Value-copy links in the mapping grid.

Elastic links. Value-copy links that are dragged from the source specification tree to the destination specification tree.

Partial links. Links for a field or record whose parent-record node is collapsed.

Compiler links. Compiler directive links, which are automatically created when a link is set from a field in the source
specification tree to a field in the destination specification tree.

These features are available on the Options dialog box, which is accessible through the Tools menu. You can also make changes
to text size from the View menu.

Related Topic

BizTalk Mapper Options: Colors Tab

String Functoids
Functoid Parameters

 String Find

Returns the position in a str
ing at which another specifi
ed string begins.

This functoid requires two input parameters. The first field that you link to the functoid is the string t
hat determines the position of the second string.

 String Left

Returns a specified number
of characters from a text ite
m, starting with the leftmos
t character.

This functoid requires two input parameters. The first field that you link to the functoid is the string t
hat determines the output string. The second field that you link to the functoid determines the numb
er of characters returned as the output value. The result of the output is a string that is a subset of th
e first field that you linked to the functoid.

 Lowercase

Converts a text item to low
ercase characters.

This functoid requires one input parameter.

 String Right

Extracts a specified number
of characters from a text ite
m, starting with the rightm
ost character.

This functoid requires two input parameters. The first field that you link to the functoid is the string t
hat determines the output string. The second field that you link to the functoid determines the numb
er of characters returned as the output value. The result of the output is a string that is a subset of th
e first field that you linked to the functoid.

 String Length

Returns, as an integer, the s
ize of an object, exclusive of
any pad characters.

This functoid requires one input parameter. The output value indicates the size, in characters, of the d
ata contained in the input field.

 String Extract

Extracts a string specified b
y the start and end position
s of a super string.

This functoid requires three input parameters, one of which must be a string.

The order in which you link the fields to the functoid must adhere to the following criteria:

1. String field

2. Start position field

3. End position field

 Concatenate

Concatenates a series of in
put strings.

This functoid can receive multiple input parameters.

 String Left Trim

Removes leading spaces fr
om a text item.

This functoid requires one input parameter.

 String Right Trim

Removes trailing spaces fro
m a text item.

This functoid requires one input parameter.

 Uppercase

Converts a text item to upp
ercase characters.

This functoid requires one input parameter.

Mathematical Functoids
Functoid Parameters

 Absolute Value

Returns the absolute value of a nu
mber.

This functoid requires one input parameter.

The final value is always positive, regardless of the actual input value.

 Integer

Returns the integer portion of a nu
mber.

This functoid requires one input parameter.

This functoid removes the decimal point of a number and any digits to the right of the decim
al point.

 Maximum Value

Returns the maximum value from a
series of numeric values.

This functoid requires one or more input parameters.

 Minimum Value

Returns the minimum value from a
series of numeric values.

This functoid requires one or more input parameters.

 Modulo

Returns the remainder after the nu
mber is divided by an integer.

This functoid requires two input parameters. This functoid returns the remainder of an intege
r division. This functoid is useful for determining less-than-load type calculations, such as shi
pping quantities.

 Round

Rounds a number to a specified nu
mber of decimal places or to a who
le number if no decimal places are
specified.

This functoid requires two input parameters. The first input linked to the functoid represents t
he value; the second input linked to the functoid represents the number of decimal places by
which you want the number to be rounded. The functoid rounds up or down based on standa
rd calculating rules.

 Square Root

Returns the square root of a numb
er.

This functoid requires one input parameter.

 Addition

Calculates the sum of a series of nu
mbers.

This functoid requires one or more input parameters.

 Subtraction

Subtracts one number from anothe
r number.

This functoid requires one or more input parameters.

 Multiplication

Multiplies one number by another
number.

This functoid requires one or more input parameters.

 Division

Divides one number by another nu
mber.

This functoid requires two input parameters. You can use this functoid with real numbers and
integers.

Logical Functoids
Functoid Parameters

 Greater Than

Returns "true" if the first parameter is greater than the second parameter.

This functoid requires two input parameters.

 Greater Than or Equal To

Returns "true" if the first parameter is greater than or equal to the second para
meter.

This functoid requires two input parameters.

 Less Than

Returns "true" if the first parameter is less than the second parameter.

This functoid requires two input parameters.

 Less Than or Equal To

Returns "true" if the first parameter is less than or equal to the second paramet
er.

This functoid requires two input parameters.

 Equal

Returns "true" if the first parameter is equal to the second parameter.

This functoid requires two input parameters.

 Not Equal

Returns "true" if the first parameter is not equal to the second parameter.

This functoid requires two input parameters.

 Logical String

Returns "true" if the parameter is a string value.

This functoid requires one input parameter.

 Logical Date

Returns "true" if the parameter is a date value.

This functoid requires one input parameter.

 Logical Numeric

Returns "true" if the parameter is a numeric value.

This functoid requires one input parameter.

 Logical OR

Returns the logical OR of parameters.

This functoid requires one or more input paramet
ers.

 Logical AND

Returns the logical AND of parameters.

This functoid requires one or more input paramet
ers.

Date and Time Functoids
Functoid Parameters

 Add Days

Adds a specified number
of days to a date.

This functoid requires two input parameters. The first link must have date information as the input. The
second link determines the number of days to add to the date.

 Date

Returns the current date.

This functoid does not require any input parameters.

The output format is YYYY-MM-DD.

 Time

Returns the current time.

This functoid does not require any input parameters.

The output format is HH:MM:SS.

 Date and Time

Returns the date and time
.

This functoid does not require any input parameters.

The output format is YYYY-MM-DDTHH:MM:SS.

Conversion Functoids
Functoid Parameters

 ASCII from Character

Returns an ASCII value when given a cha
racter.

This functoid requires one input parameter. This functoid converts an underlying ASC v
alue code. For example: A=97

 Character from ASCII

Returns a character when given an ASCII
value.

This functoid requires one input parameter. This functoid converts a value to its underly
ing ASC value code. For example: 98=B

 Hexadecimal

Returns a hexadecimal value when given
a decimal number.

This functoid requires one input parameter. This functoid converts decimal to hexadeci
mal. For example, 10=A.

 Octal

Returns an octal value when given a deci
mal number.

This functoid requires one input parameter. This functoid converts decimal to octal. For
example: (Octal 0-7), 8=10, and 10=12

Scientific Functoids
Functoid Parameters

 Arc Tangent

Returns the arc tangent of a number.

This functoid requires one input parameter. The input value must be in radians.

 Cosine

Returns the cosine of a number.

This functoid requires one input parameter. The input value must be in radians.

 Sine

Returns the sine of a number.

This functoid requires one input parameter. The input value must be in radians.

 Tangent

Returns the tangent of a number.

This functoid requires one input parameter. The input value must be in radians.

 Natural Exponential Function

Returns e raised to a specified power.

This functoid requires one input parameter.

 Natural Logarithm

Returns the logarithm (base e) of a value.

This functoid requires one input parameter.

 10^X

Returns 10 raised to a specified power.

This functoid requires one input parameter.

 Common Logarithm

Returns the logarithm (base 10) of a value.

This functoid requires one input parameter.

 X^Y

Returns a value raised to a specified power.

This functoid requires two input parameters.

 Base-Specified Logarithm

Returns the logarithm (base-specified) of a value.

This functoid requires two input parameters.

Cumulative Functoids
Functoid Parameters

 Cumulative Sum

Sums all values for the connected field by iterating over its parent record.

This functoid requires one input par
ameter.

 Cumulative Average

Calculates the average of all values for the connected field by iterating over its parent record
.

This functoid requires one input par
ameter.

 Cumulative Minimum

Returns the minimum of input spanning over the parent record.

This functoid requires one input par
ameter.

 Cumulative Maximum

Returns the maximum of input spanning over the parent record.

This functoid requires one input par
ameter.

 Cumulative String

Returns the concatenated string of the string values for the connected field by iterating over
its parent record.

This functoid requires one input par
ameter.

Database Functoids
Functoid Parameters

 Database Lookup

Searches a database for a specific value, retrieves the record that contains the value, and
stores it as an ADO record set.

This functoid must have exactly four inp
ut parameters.

 Value Extractor

Returns a value from a specific column in an ADO record set that has been retrieved by t
he Database Lookup functoid.

This functoid must have exactly two inp
ut parameters.

 Error Return

Returns the error string, if any, returned by ODBC when using the Database Lookup fu
nctoid.

This functoid must have exactly one inp
ut parameter.

Advanced Functoids
Functoid Parameters

 Scripting

Custom Visual Basic script.

The number of input parameters for this functoid is configurable, based
on a custom script.

 Record Count

Returns a total count of the records found in the instance
.

This functoid must have one input parameter.

 Index

Returns the value of a record or a field at a specified inde
x.

This functoid must have at least two input parameters. The maximum n
umber of input parameters is limited by the number of levels in the
specification hierarchy.

 Iteration

Returns the iteration number (in a loop) of the source rec
ord.

This functoid must have one input parameter.

 Value Mapping

Returns the value of the second parameter if the value of
the first parameter is "true".

This functoid must have two input parameters.

 Value Mapping (Flattening)

Returns the value of the second parameter if the value of
the first parameter is "true", and flattens the source docu
ment hierarchy.

This functoid must have two input parameters.

 Looping

Creates multiple output records by iterating over each in
put record.

This functoid must have at least one input parameter. There is no maxi
mum limit on the number of input parameters.

Maps for Integrating BizTalk Services
When you integrate BizTalk Orchestration Services and BizTalk Messaging Services using a non-HTTP transport, you might need
to create a map to convert a path name to a format name. For more information, see Integrating BizTalk Services.

Converting a path name to a format name
The following code is an example of a messaging queue path name:

private$\sourcechannel2{9e0016bf-be1f-48fe-82de-b27077ab5e73}

To convert this path name to a format name, you need to add the following string to the beginning of the path name:

queue://Direct=OS:

You can easily do this with the Concatenate functoid.

The following illustration shows a map that uses the Concatenate functoid, which concatenates two or more strings. For more
information about the Concatenate functoid, see String Functoids.

Click the illustration to enlarge or reduce.

Double-clicking the Concatenate functoid displays its properties. The following illustration shows how the properties should
look for a Concatenate functoid in a map that adds the queue://Direct=OS: prefix to the private$\sourcechannel2{9e0016bf-
be1f-48fe-82de-b27077ab5e73} path name.

For more information, see Edit Functoid Properties.

Click the illustration to enlarge or reduce.

Troubleshooting BizTalk Editor and BizTalk Mapper
This section includes information about the following topics:

Password required when trying to connect to a remote WebDAV server

Failure to connect to WebDAV or to store files to WebDAV

???.xml appears in the WebDAV dialog box

BizTalkServerRepositoryMaps folder appears in Retrieve from WebDAV dialog box

Retrieve from WebDAV dialog box or Store to WebDAV dialog box is empty

Failure to connect to http://localhost

Flat file not completely parsed when submitted to BizTalk Server

White space not preserved in flat file submitted to BizTalk Server

Test map fails

DTD Import Fails

Instance validation fails when using the Date or Time field

Password required when trying to connect to a remote
WebDAV server
Cause: User might not have access to the BizTalkServerRepository folder.

Solution: Provide user with access to the BizTalkServerRepository folder. To do this:

1. Click Start, point to Programs, point to Administrative Tools, and then click Internet Services Manager.

2. In the console tree, expand the name of the computer.

3. Expand Default Web Site.

4. Right-click BizTalkServerRepository and click Properties.

5. Click the Directory Security tab.

6. In the Anonymous access and authentication control area, click Edit.

7. Select the Anonymous Access check box and click OK twice.

Failure to connect to WebDAV or to store files to WebDAV
Cause One: If you attempt to retrieve a map or a specification from WebDAV, or store a map or specification to WebDAV, you
might see one of the following messages:

The file cannot be stored in the WebDAV repository. The server may not be available at this time.

No key matching the described characteristics could be found within the current range.

This occurs when the anonymous setting for the user account on the Web server does not have write privileges on the Microsoft
Windows 2000 directory that hosts the repository.

Solution: Give user access to the repository. To do this:

1. Click Start, point to Programs, point to Accessories, and then click Windows Explorer.

2. Navigate to the location in which you installed Microsoft BizTalk Server 2000.

3. Expand the Microsoft BizTalk Server directory, right-click BizTalkServerRepository, and then click Properties.

4. Click the Security tab.

5. Click Add and type the domain name and the user name for the person you want to have permission to the repository in
the following format: domain name\user name.

6. Click OK twice.

Cause Two: If you attempt to retrieve a map or a specification from WebDAV, or store a map or specification to WebDAV, you
might see the following message:

No BizTalk Server repository was found on http://localhost/BizTalkServerRepository/DocSpecs. Enter another server name to
retry the WebDAV connection.

This occurs when FrontPage Server Extensions are enabled on the Web Server.

Solution: Disable FrontPage Server Extensions. If the World Wide Web Publishing service is running, stop and restart this service.

 Note

This problem can occur even if the World Wide Web Publishing Service is not running on the computer hosting the
WebDAV repository.

To disable FrontPage Server Extensions

1. Click Start, point to Programs, point to Administrative Tools, and then click Internet Services Manager.

2. In the details pane, double-click <name of the computer>, right-click Default Web Site, and then click Properties.

The Default Web Site Properties dialog box appears.

3. On the Server Extensions tab, clear the Enable authoring check box, and click OK.

To stop and restart the World Wide Web Publishing Service

1. Click Start, point to Programs, point to Administrative Tools, and then click Component Services.

2. In the console tree, click Services (local).

3. In the details pane, right-click World Wide Web Publishing Service, and click Stop.

4. Right-click World Wide Web Publishing Service, and click Start.

???.xml appears in the WebDAV dialog box
Cause: The set of characters that is displayed for your computer is dependent on the locale setting specified in BizTalk Server.

Solution: Specify the same character set for your computer as for the locale setting specified in BizTalk Server. To do this:

1. Click Start, point to Settings, and then click Control Panel.

2. Double-click Regional Options.

3. On the General tab, in the Language settings for the system area, select the check box for the desired language and click
Set Default.

The Select System Locale dialog box appears.

4. Click the desired locale in the list and click OK twice.

The Change Regional Options dialog box appears.

5. Click Yes to accept the changes and restart your computer.

 Note

After restarting your computer, the selected language in the Regional Options dialog box displays the following
information: Language (default).

Related Topics

Store maps

Store specifications

BizTalkServerRepositoryMaps folder appears in Retrieve from
WebDAV dialog box
Cause: There is a trailing backslash in the Local Path box of the BizTalkServerRepository Properties dialog box.

Solution: Remove the trailing backslash in the Local Path edit box of the BizTalkServerRepository Properties dialog box. To
do this:

1. On the Start menu, point to Programs, point to Administrative Tools, and then click Computer Management.

2. In the Computer Management console, expand Services and Applications, expand Internet Information Services, and
then expand Default Web Site.

3. Right-click BizTalkServerRepository and click Properties.

4. In the Local Path edit box of the BizTalkServerRepository Properties dialog box, remove the trailing backslash and click
OK.

Completing this procedure removes the BizTalkServerRepositoryMaps folder from the Retrieve from WebDAV dialog box.
This folder is unusable, so it is recommended that you remove it.

Retrieve from WebDAV dialog box or Store to WebDAV dialog
box is empty
Cause: Directory browsing is disabled in the BizTalkServerRepository Properties dialog box.

Solution: Enable directory browsing in the BizTalkServerRepository Properties dialog box. To do this:

1. Click Start, point to Programs, point to Administrative Tools, and then click Internet Services Manager.

2. Expand the computer that you are troubleshooting.

3. Expand Default Web Site.

4. Right-click BizTalkServerRepository and click Properties.

5. On the Virtual Directory tab, select Directory browsing.

6. Ensure that Read and Write are also selected and click OK.

Failure to connect to http://localhost
Cause: The Use a proxy server check box is selected, but the Bypass proxy server for local addresses check box is not
selected.

Solution: Keep the Use a proxy server setting on, and turn on the Bypass proxy server for local addresses setting. To do this:

1. Click Start, point to Programs, and then click Internet Explorer.

2. On the Tools menu, click Internet Options.

3. Click the Connections tab and click LAN Settings.

4. In the Local Area Network (LAN) Setting dialog box, in the Proxy Server area, select the Bypass proxy server for local
addresses check box.

5. Click OK twice.

 Note

This failure will not occur if you connect to http://<name of the computer>.

Flat file not completely parsed when submitted to BizTalk
Server
Cause: A delimited flat file might have a parsing error when submitted to BizTalk Server if the file has the following
characteristics:

The Field Order property for the root note set to Prefix or Postfix.

The name of the root node is a sub string of the name of another node in the file.

Solution: Rename the root node so that its name is not a sub string of the name of any other node in the specification.

White space not preserved in flat file submitted to BizTalk
Server
Cause: When a flat file is submitted to BizTalk Server, white space in fields might be trimmed. This is because by default the
underlying MSXML parser does not preserve white space in a field with its Type property (on the Declaration tab) set to
Element.

Solution: If it is important to preserve white space in a field contained in a flat file, in BizTalk Editor be sure to set the Type
property on the Declaration tab of the field in the source specification to Attribute.

Related Topic

Set declaration properties

Test map fails
Cause: When you test a map, BizTalk Mapper compiles the map before testing it. If a warning occurs during the compile, the test
map might not succeed. The following error message appears:

The Extensible Stylesheet Language (XSL) transformation using the test instance document of the source specification failed.

Solution: Resolve all compiler warnings and then recompile the map. To resolve a compiler warning, complete the following:

1. Double-click the word Warning on the Output tab. This highlights the link or functoid associated with the warning
message.

2. Resolve the warning as needed.

To recompile the map:

On the Tools menu, click Compile Map.

Related Topic

Testing Maps

DTD Import Fails
Cause: If you try to import a document type definition (DTD) that contains an external reference to another file, you might see the
following message:

Invalid character found in DTD.

Solution: Remove any external references in a DTD before attempting to import it.

Instance validation fails when using the Date or Time field
Cause: While BizTalk Server is processing an incoming document instance, if there is a link from a functoid or source field to a
destination node with its Data Type property set to Date, Date Time, Date Time.tz, Time, or Time.tz, instance validation fails if the
data coming into the destination node is in any format other than ISO 8601.

Solution: When you link to a field in a destination specification with its Data Type property set to Date, Date Time, Date Time.tz,
Time, or Time.tz, make sure the data that links to that field (whether from a functoid or from a node in an incoming document
instance) is in ISO 8601 format. The following table shows the correct ISO 8601 format for each of the possible Data Type
property values.

Data Type property ISO 8601 format
Date YYYY-MM-DD (1988-04-07)
Date Time YYYY-MM-DDTHH:MM:SS (1988-04-07T18:39:09)
Date Time.tz YYYY-MM-DDTHH:MM:SS-TZH:TZM (1988-04-07T18:39:09-08:00)
Time HH:MM:SS (08:15:27)
Time.tz HH:MM:SS-TZH:TZM (08:15:27-05:00)

Integrating BizTalk Services
Integrating BizTalk Orchestration Services and BizTalk Messaging Services allows you to control the exchange of documents and
messages between your trading partners and internal applications using multiple transport services. It also provides:

Control over complex, long-running transactions and business processes.

Reliable delivery of documents and messages.

Data validation by verifying each document instance against a specification.

Data mapping by using maps to transform document structure and format.

Data security and integrity by using encryption and digital signature certificates.

Support for receipt generation and correlation.

While there are many ways to integrate BizTalk Orchestration Services and BizTalk Messaging Services, this section presents a
common scenario.

In this scenario, you configure an XLANG schedule instance on the source system to initiate and send a message to a destination
system of a trading partner, wait to receive a return message from that partner, and then deliver that return message to the same
XLANG schedule instance that sent the initial message. One example of a common business process where you might apply this
configuration is for sending a purchase order and waiting to receive a purchase order acknowledgment before continuing the
process.

The topics in this section explain the configuration steps required for exchanging messages between your business and a trading
partner by using an HTTP transport and a non-HTTP transport. However, you can use a similar configuration to control the
exchange of messages between applications within your business.

Because BizTalk Server 2000 can serve either as the source system, which sends the initial message, or the destination system,
which sends the return message, this section provides the configuration steps required for both. This also allows you to see the
entire configuration that is required.

For samples of XLANG schedules that reflect these configurations and other related files, browse to the \Program Files\Microsoft
BizTalk Server\SDK\XLANG Samples\Integrating BizTalk Services folder.

 Notes

The term messaging port, which is used in BizTalk Messaging Services, and the term port, which is used in BizTalk
Orchestration Services, have entirely different meanings.

A messaging port is a set of properties that directs BizTalk Messaging Services to transport documents to a specified
destination by using a specified transport service.

A port is a named location that uses a specific implementation. In an XLANG schedule, ports facilitate synchronous
and asynchronous communications and are used to pass messages into or out of the schedule.

Action events related to messages processed by an XLANG schedule that are either sent to or received from BizTalk
Messaging Services can be tracked in the Tracking database. For more information,
see Tracking XLANG schedule events in the Tracking database.

The following topics are covered in this section:

Using an HTTP Transport

Using a Non-HTTP Transport

Related Topics

BizTalk Services

Instance Management

Using an HTTP Transport
This section explains how to integrate and configure BizTalk Orchestration Services and BizTalk Messaging Services for both the
source system and destination system so that:

The source system generates and sends a message to the destination system of a trading partner by using a specific
XLANG schedule instance.

The destination system sends a return message by using an HTTP transport.

The source system receives the return message, and routes it to the same XLANG schedule instance that generated and sent
the initial message.

To configure both systems so that the destination system can use a non-HTTP transport to send return messages,
see Using a non-HTTP Transport.

The following topics are covered in this section:

Configuring the Source System to Use an HTTP Transport

Configuring the Destination System to Use an HTTP Transport

Configuring the Source System to Use an HTTP Transport
The steps in this topic explain how to configure the source system to generate and send a message that contains an HTTP URL
reply-to address. The destination system of the trading partner uses the reply-to address contained in the initial message to send
a return message to an ASP page on the Web site of the source system by using an HTTP transport. If you want to configure the
source system so that the destination system can use a non-HTTP transport to send return messages,
see Configuring the Source System to Use a Non-HTTP Transport. The configuration steps required for using a secure HTTPS
transport are discussed later in this topic.

The HTTP URL that is used as the reply-to address in this configuration is generated by the XLANG schedule based on data from
the port properties. It is comprised of the following elements:

The address of an ASP page on the Web site of the source system to which a return message is sent.

A query string that contains the name of the channel in BizTalk Messaging Services for the source system that is used to
process the return message, and a fully qualified path of a per-instance queue that the XLANG schedule instance creates and
to which the return message is delivered.

The following is an example of an HTTP URL reply-to address.

http://hostname/receiveresponse.asp?channel=ChannelForReply&qpath=hostname.domain.corp.vigorair-
18.com\private$\sendingchannel2{9e0016bf-be1f-48fe-82de-b27077ab5e73}

When the ASP page on the source system receives the return message, it contains script that performs the following steps.

Extracts the channel name and queue path information from the query string.

Converts the queue path from a path name to a format name, and inserts a queue:// prefix, which is required by BizTalk
Messaging Services.

Submits the return message to BizTalk Messaging Services for the source system using the channel name and queue path
information as submission parameters. For more information about submitting documents, see Submitting.

BizTalk Messaging Services for the source system uses the specified channel to process the return message and uses the
associated messaging port, which uses the queue path to transport the return message to the same running XLANG schedule
instance that generated the initial message.

For this source system configuration to work correctly, the destination system of the trading partner also must be correctly
configured. For information about configuring the destination system,
see Configuring the Destination System to Use an HTTP Transport.

To configure the source system to use an HTTP transport, complete the steps in the following table. References are provided for
each procedure, and notes are provided to indicate special configuration considerations. Other property settings needed to
complete the configuration vary according to your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications t
hat are needed for the inb
ound and outbound
document definitions of t
he channel that will proce
ss the initial message.

Create and Validate Specifications

 Notes

You must add a field in each of these specifications for the reply-to address. This fie
ld can be added at any level; however, the location must be agreed upon with the tr
ading partner and match the specifications on the destination system of your tradin
g partner. For more information, see Manage Records and Fields.

Create the specifications t
hat are needed for the inb
ound and outbound docu
ment definitions of the ch
annel that will process the
return message.

Create and Validate Specifications

 Note

These specifications do not require special configuration.

Using BizTalk Messaging Ma
nager:

Create an organization to
represent the trading part
ner and the destination sy
stem.

Create organizations

 Note

This organization does not require special configuration.

Create the document defi
nitions needed to create t
he channel that you use t
o process the initial mess
age.

Create document definitions

 Note

In the document definitions, select the specifications that have the reply-to field. Fo
r more information, see Select a document specification.

Create the document defi
nitions needed to create t
he channel that you use t
o process the return mess
age.

Create document definitions

 Note

These document definitions do not require special configuration.

Create a messaging port t
o an organization to trans
port the initial message to
the destination system.

Create messaging ports

 Note

This messaging port cannot be an open messaging port.

Create a channel from an
application to process the
outbound message from t
he XLANG schedule.

Create channels

 Notes

On the Source Application page of the Channel Wizard, click XLANG schedule. F
or more information, see Set source application properties.

Make a note of the channel name and the inbound document definition name. Thes
e names are used to configure BizTalk Orchestration Services.

Create a messaging port t
o an application to transp
ort the return message to
the active
XLANG schedule instance
that generated the outbou
nd message.

Create messaging ports

 Note

On the Destination Application page of the Messaging Port Wizard, click Runni
ng XLANG schedule. For more information,
see Set destination application properties.

Create a channel from an
organization to process th
e return message from th
e destination system.

Create channels

 Note

Make a note of the channel name and the outbound document definition name tha
t you use. These names are used to configure BizTalk Orchestration Services.

Using BizTalk Orchestration
Designer:

Use a BizTalk Messaging s
hape to implement a port
to send the initial messag
e.

Implement a port by using BizTalk Messaging

 Note

On the Static or Dynamic Channel Information page of the BizTalk Messaging B
inding Wizard, click Static channel, and in the Enter the name of a known, pre-
existing channel box, type the name of the channel in
BizTalk Messaging Manager that you use to process the initial message.

Establish the communicati
on flow between an Actio
n shape and the port that
sends the initial message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizard, click Crea
te a new message, and in the Message name box, type a name for the message.

You can use any name; however, using the name of the inbound document definiti
on for the channel makes it more apparent which message you are sending.

On the Message Type Information page, in the Message type box, type the nam
e of the inbound document definition for the channel that you use to process the m
essage.

On the Message Specification Information page, click Browse, and browse to th
e specification that you use for the inbound document definition of the channel tha
t you use to process the initial message.

On the Message Specification Information page, in the Message fields area, cli
ck Add, and add the field in the specification that was created to contain the reply-t
o address in the initial message.

Use a BizTalk Messaging s
hape to implement a port
where you receive a retur
n message.

Implement a port by using BizTalk Messaging

 Note

On the XLANG Schedule Activation Information page of the BizTalk Messaging
Binding Wizard, click No.

On the Channel Information page, in the Channel name box, type the name of t
he channel in BizTalk Messaging Manager that you use to process the return messa
ge.

BizTalk Orchestration Designer uses the channel name and a GUID to create and na
me a per-instance queue to which the return message is delivered.

On the Channel Information page, in the http URL address where the BizTalk
Messaging Service receives documents box, type the address of the ASP page
where the trading partner can send a return message.

BizTalk Orchestration Designer uses the address and the channel name that you en
tered previously to create an HTTP URL address with a query string that includes th
e channel name and the queue path of the per-instance queue.

Establish the communicati
on flow between an Actio
n shape and the port whe
re you receive a return m
essage.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizard, click Crea
te a new message, and in the Message name box, type a name for the message.

You can use any name; however, using the name of the outbound document definit
ion for the channel makes it more apparent which message you are receiving.

On the Message Type Information page, in the Message type box, type the nam
e of the outbound document definition for the channel that you use to process the
return message.

All messages delivered from BizTalk Messaging Services to an XLANG schedule inst
ance are sent to a message queue. The message label given to these messages is th
e name of the outbound document definition of the channel.

Establish the data flow for
passing the port reference
data to the reply-to addre
ss field.

Draw the flow between messages

 Notes

Click the Data tab.

On the Data page, in the Port References message, click the port reference for the
port that will receive the return message. Then, drag its control handle to the conne
ction point of the reply-to address field in the initial message.

This passes the port reference data into the reply-to address field of the outbound i
nitial message. The port reference is an HTTP URL address of an ASP page, which in
cludes a query string with a channel name and the queue path of the per-instance
queue for the port.

Using the ASP page:
You can use the sample A
SP page that is provided
with BizTalk Server 2000,
or configure an ASP page
that uses the same script
as the sample page.

 Notes

To use the sample ASP page, browse to \Program Files\Microsoft BizTalk Server\SDK\Mess
aging Samples\ReceiveScripts on the installation drive to locate the ReceiveResponse.as
p sample. Then, place this file in the appropriate directory for the Web site of the source sy
stem.

When the sample ASP page receives a return message, its script extracts the channel name
and queue path from the query string in the address of the HTTP header. The ASP page als
o converts the queue path from a path name to a format name, and inserts a queue:// prefi
x. The page then uses this data as parameters to submit the return message to BizTalk Mes
saging Services for the source system. For more information about submitting documents,
see Submitting.

Using a secure HTTPS transport
If your business process requires a secure transport for exchanging messages with a trading partner, you must use an HTTPS
transport.

The only change that you need to make in the source system configuration to use an HTTPS transport is to modify the URL
address for the port where you receive the return message.

When you implement the port that receives the return message, the URL that you enter for the reply-to address must use an
HTTPS prefix, rather than an HTTP prefix.

The following is an example of a reply-to address that uses HTTPS.

https://hostname/receiveresponse.asp?channel=ChannelForReply&qpath=hostname.domain.corp.vigorair-
18.com\private$\sendingchannel2{9e0016bf-be1f-48fe-82de-b27077ab5e73}

The destination system does not require any additional configuration changes.

Related Topics

Configuring the Destination System to Integrate BizTalk Services

Integrating BizTalk Services

Configuring the Destination System to Use an HTTP Transport
The steps in this topic explain how to configure the destination system to receive a message that contains an HTTP URL reply-to
address and send a return message to the source system by using an HTTP transport. If you want to configure the destination
system to use a non-HTTP transport to send return messages,
see Configuring the Destination System to Use a Non-HTTP Transport. The configuration considerations for using a secure
HTTP/S transport are discussed later in this topic.

When BizTalk Messaging Services for the destination system receives the initial message, it is configured to activate a new
instance of a specified XLANG schedule and send the message to a specified port in that XLANG schedule instance.

The XLANG schedule is configured to pass the reply-to address data that is contained in a field of the initial message to the
port reference field for the port that is used to send the return message. The XLANG schedule then submits the return message to
BizTalk Messaging Services using the dynamic channel option.

For the dynamic channel option, specific port data is passed as submission parameters when the message is submitted to BizTalk
Messaging Services. The port reference data, in this case the reply-to address, is passed as the destination identifier parameter,
and the Message type for the port is passed as the document definition name parameter. For more information about
submission parameters, see Submitting. The submission parameters enable BizTalk Messaging Services to identify a specific
channel to process the return message. For more information, see Identification.

When you use the dynamic channel option, the channel in BizTalk Messaging Services must be associated with an
open messaging port. The open messaging port transports the return message to the source system of the trading partner by
using the reply-to address, which is passed as the destination identifier parameter. Because this is the HTTP URL of an ASP page
on the source system, the HTTP transport is used. For more information about open messaging ports, see Open Messaging Ports.

For this destination system configuration to work correctly, the source system of the trading partner also must be correctly
configured. For information about configuring the source system, see Configuring the Source System to Use an HTTP Transport.

To configure the destination system to use an HTTP transport, complete the steps in the following table. References are provided
for each procedure, and notes are provided to indicate special configuration considerations. Other property settings needed to
complete the configuration vary according to your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications for th
e inbound and outbound
document definitions of the ch
annel that you use to process t
he initial message.

Create and Validate Specifications

 Note

You must add a field in each of these specifications for the reply-to address. Th
is field can be added at any level; however, the location must be agreed upon
with the trading partner and match the specifications on the source system of
your trading partner. For more information, see Manage Records and Fields.

Create the specifications that a
re needed for the inbound and
outbound document definition
s of the channel that will proce
ss the return message.

Create and Validate Specifications

 Note

These specifications do not require special configuration.

Using BizTalk Messaging Manag
er:

Create an organization to repr
esent the trading partner with
the source system.

Create organizations

 Note

This organization does not require special configuration.

Create the document definitio
ns needed for creating a chan
nel to process the initial messa
ge and a channel to process th
e return message.

Create document definitions

 Note

In the document definitions, select the previously created specifications. For m
ore information, see Select a document specification.

Create a messaging port to an
application to activate a new X
LANG schedule instance, and t
ransport the initial message to
a port in that XLANG schedule
instance.

Create messaging ports

 Notes

On the Destination Application page of the Messaging Port Wizard, click Ne
w XLANG schedule.

In the Schedule moniker box, type the moniker of the specified schedule or cl
ick Browse to set the path.

In the Port name box, type the name of the specific port in this schedule to wh
ich the document is sent.

For more information, see Set destination application properties.

Create a channel from an orga
nization to process the initial
message from the trading part
ner.

Create channels

 Note

Make a note of the channel name and the outbound document definition nam
e that you use. These names are used to configure BizTalk Orchestration Servic
es.

Create an open messaging por
t to an organization to transpo
rt the return message to the s
ource system.

Create messaging ports

 Note

On the Destination Organization page of the Messaging Port Wizard, click O
pen organization. For more information,
see Set destination application properties.

An open messaging port requires that the destination information be containe
d in the document or provided by submission parameters. When the XLANG sc
hedule submits the return message to BizTalk Messaging Services, it passes th
e reply-to address data, which was contained in the initial message, as the dest
ination identifier submission parameter.

Create a channel from an appli
cation to process the return m
essage from the XLANG sched
ule.

Create channels

 Note

On the Source Application page of the Channel Wizard, click XLANG schedu
le. For more information, see Set source application properties.

Using BizTalk Orchestration Desi
gner:

Use a BizTalk Messaging shap
e to implement a port to recei
ve the initial message.

Implement a port by using BizTalk Messaging

 Notes

On the Communication Direction page of the BizTalk Messaging Binding Wi
zard, click Receive.

On the XLANG Schedule Activation Information page of the BizTalk Messa
ging Binding Wizard, click Yes.

 Important

Choosing Yes configures the port to activate a new schedule instance when a
message arrives. For important information about using this option, see the to
pic referenced for this step.

Establish the communication fl
ow between an Action shape
and the port that receives the i
nitial message.

Send or receive asynchronous messages

 Note

On the Message Information page of the XML Communication Wizard, click
Create a new message, and in the Message name box, type a name for the
message.

You can use any name; however, using the name of the outbound
document definition for the channel makes it more apparent which message y
ou are sending.

On the Message Type Information page, in the Message type box, type the
name of the outbound document definition for the channel that you use to pro
cess the return message.

All messages passed from BizTalk Messaging to an XLANG schedule use a mes
sage queue. The label for these messages is the name of the outbound docum
ent definition of the channel.

Use a BizTalk Messaging shap
e to implement a port to send
the return message with a dyn
amic channel.

Implement a port by using BizTalk Messaging

 Notes

On the Static or Dynamic Channel Information page of the BizTalk Messagi
ng Binding Wizard, click Dynamic channel.

When you create a port that uses a dynamic channel, the channel that BizTalk
Messaging Services uses to process the message is determined by port data p
assed as submission parameters. This is described later in this table.

Establish the communication fl
ow between an Action shape
and the port that is used to se
nd the return message.

Send or receive asynchronous messages

 Note

On the Message Information page of the XML Communication Wizard, click
Create a new message, and in the Message name box, type a name for the
message.

You can use any name; however, using the name of the inbound document def
inition for the channel makes it more apparent which message you are sendin
g.

On the Message Type Information page, in the Message type box, you mus
t type the name of the inbound document definition for the channel that you u
se to process the message.

The inbound document definition data is passed as a submission parameter to
BizTalk Messaging Services. This is described later in this table.

Establish the data flow to pass
the reply-to address field to th
e port reference of the port th
at sends the return message.

Draw the flow between messages

 Notes

Click the Data tab.

On the Data page, in the initial message, click the reply-to address field. Then,
drag its control handle to the left connection point of the port reference in the
Port References message for the port that is used to send the return message
.

 Important

You must connect the reply-to address field to the left connection point of the
port reference. A left connection point on a port reference is available only whe
n a port is configured to use a dynamic channel to send messages.

For a port that uses a dynamic channel, the data for the port reference must be
passed from a field in a previously received message.

In this scenario, the reply-to address data from the initial message is passed to
the port reference field for the port that is used to send the return message. Th
e reply-to address is the HTTP URL to where the return message is sent.

When a port that uses a dynamic channel passes a message to BizTalk Messagi
ng Services, the port reference data is passed as the destination identifier para
meter and the message type data is passed as the document definition parame
ter. The parameters enable BizTalk Messaging Services to identify which chann
el to invoke to process the message. For more information, see Identification a
nd Submitting.

When a port is configured to use a dynamic channel, the destination informati
on is passed as a parameter in an open destination submission. Therefore, any
channel that is invoked by a port that uses a dynamic channel must be associat
ed with an open messaging port.

Using a secure HTTPS transport
Because the messaging port that you use to transport return messages is an open messaging port, you cannot use an encryption
certificate to encrypt documents.

If your business process requires a secure transport for exchanging messages with a trading partner, the source system must
include an HTTPS URL as the reply-to address in the initial messages that are sent to you, rather than an HTTP URL.

For more information, see Configuring the Source System to Use an HTTP Transport.

Using a non-HTTP Transport
This section explains how to integrate and configure BizTalk Orchestration Services and BizTalk Messaging Services for both the
source system and destination system so that:

The source system generates and sends a message to the destination system of a trading partner by using a specific
XLANG schedule instance.

The destination system receives the initial message, activates an XLANG schedule instance that generates a return message,
and then sends the return message to the source system using a non-HTTP transport.

To configure both systems so that the destination system can use an HTTP transport to send return messages,
see Using an HTTP Transport.

The following topics are covered in this section:

Configuring the Source System to Use a Non-HTTP Transport

Configuring the Destination System to Use a Non-HTTP Transport

Configuring the Source System to Use a Non-HTTP Transport
The steps in this topic explain how to configure the source system to generate and send a message that contains the path of a
static queue. The destination system of the trading partner is configured to pass the queue path contained in the message into a
field of a return message, and send it to the source system by using a non-HTTP transport. If you want to configure the source
system so that the destination system can use an HTTP transport to send return messages,
see Configuring the Source System to Use an HTTP Transport.

When the source system receives the return message, it submits the message to BizTalk Messaging Services. BizTalk Messaging
Services transports the return message to the queue that is specified by the queue path contained in the document field. This
queue is monitored by the same XLANG schedule instance that generated the initial message, and the schedule retrieves the
return message from that queue.

For this source system configuration to work correctly, the destination system of the trading partner also must be correctly
configured. For information about configuring the destination system,
see Configuring the Destination System to Use a Non-HTTP Transport.

To configure the source system to use a non-HTTP transport, complete the steps in the following table. References are provided
for each procedure, and notes are provided to indicate special configuration considerations. Other property settings needed to
complete the configuration vary according to your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications for t
he inbound and outbound
document definitions of the
channel that you use to proce
ss the initial message.

Create and Validate Specifications

 Note

You must add a field in each of these specifications for the queue path. This field
can be added at any level; however, the location must be agreed upon with the t
rading partner and match the specifications on the destination system of your tr
ading partner. For more information, see Manage Records and Fields.

Create the specifications for t
he inbound and outbound do
cument definitions of the cha
nnel that you use to process t
he return message.

Create and Validate Specifications

 Notes

You must add a field to the inbound specification for the queue path. This field c
an be added at any level; however, the location must be agreed upon with the tr
ading partner and match the specifications on the destination system of your tr
ading partner. For more information, see Manage Records and Fields.

The queue path field in the inbound specification must be set as the destination
value in the dictionary properties. For more information,
see Set dictionary properties.

When the return message is received and submitted to BizTalk Messaging Servi
ces on the source system, the queue path field is recognized and treated as the
destination identifier parameter. For more information, see Submitting. The mes
saging port transports the return message to the queue specified by this queue
path. The XLANG schedule monitors this queue and retrieves the return messag
e.

Using BizTalk Mapper:
Create a map to be used in th
e channel that processes the i
nitial message.

Create new maps

 Important

The syntax for the queue path name that the XLANG schedule generates must b
e changed from a path name to a format name, and have the queue:// prefix ad
ded. For the HTTP transport scenario, the script in the ASP page makes this chan
ge. To make this change for the non-HTTP transport scenario, you must use a C
oncatenate functoid in a map. For more information,
see Maps for Integrating BizTalk Services.

Using BizTalk Messaging Mana
ger:

Create an organization to rep
resent the trading partner wit
h the destination system.

Create organizations

 Note

This organization does not require special configuration.

Create the document definiti
ons needed to create a chann
el to process the initial messa
ge and a channel to process t
he return message.

Create document definitions

 Note

In the document definitions, select the previously created specifications. For mo
re information, see Select a document specification.

Create a messaging port to a
n organization to transport th
e initial message to the desti
nation system.

Create messaging ports

 Note

This messaging port does not require special configuration.

Create a channel from an app
lication to process the initial
message from the XLANG sc
hedule.

Create channels

 Notes

On the Source Application page of the Channel Wizard, click XLANG schedul
e. For more information, see Set source application properties.

On the Outbound Document page, select the Map inbound document to o
utbound document check box, and to the right of the Map reference box, click
Browse. Then, browse to the map that you created previously and click Open.

Make a note of the channel name and the inbound document definition name t
hat you use. These names are used to configure BizTalk Orchestration Services.

Create an
open messaging port to an o
rganization to transport the r
eturn message to the active X
LANG schedule instance that
generated the initial message
.

Create messaging ports

 Notes

On the Destination Organization page of the Messaging Port Wizard, click O
pen Destination. For more information,
see Set destination organization properties.

For this scenario, you create a messaging port to an organization, even though
you send the return message to an application, an XLANG schedule.

This allows you to use an open messaging port to submit the return message us
ing the queue path information as a submission parameter. For more informati
on, see Submitting.

The open messaging port transports the return message to the static queue that
is specified in the queue path, where the XLANG schedule is configured to retrie
ve it.

Create a channel from an org
anization to process the retur
n message from the destinati
on system.

Create channels

 Notes

The inbound document definition for this channel must use the document defini
tion that uses the previously created specification in which you designated the q
ueue path field as the destination value in the dictionary properties.

Make a note of the channel name and the inbound document definition name t
hat you use. These names are used to configure BizTalk Orchestration Services.

Using BizTalk Orchestration Des
igner:

Use a BizTalk Messaging sha
pe to implement a port to se
nd the initial message.

Implement a port by using BizTalk Messaging

 Note

On the Static or Dynamic Channel Information page of the BizTalk Messagi
ng Binding Wizard, click Static channel, and in the Enter the name of a know
n, pre-existing channel box, type the name of the channel in
BizTalk Messaging Manager that you use to process the initial message.

Establish the communication
flow between an Action sha
pe and the port that sends th
e initial message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizard, click C
reate a new message, and in the Message name box, type a name for the me
ssage.

You can use any name; however, using the name of the inbound document defi
nition for the channel makes it more apparent which message you are sending.

On the Message Type Information page, in the Message type box, type the n
ame of the inbound document definition for the channel that you use to process
the message.

On the Message Specification Information page, click Browse, and browse t
o the specification that you use for the inbound document definition of the chan
nel for the initial message.

On the Message Specification Information page, in the Message fields area
, click Add, and add the field in the specification that was created to contain the
queue path.

Use a Message Queuing shap
e to implement a port where
you receive a return message
.

Implement a port by using Message Queuing

 Notes

In this scenario, you use a Message Queuing port binding, even though you are
receiving a message from BizTalk Messaging Services.

On the Static or Dynamic Queue Information page of the Message Queuing
Binding Wizard, click Static queue.

On the Queue Information page, click Use a known queue for all instances,
and in the Enter the queue name box, type the name of the static queue that y
ou use to process the return message.

Establish the communication
flow between an Action sha
pe and the port where you re
ceive a return message.

Send or receive asynchronous messages

 Note

On the Welcome to the XML Communication Wizard page of the XML Com
munication Wizard, click Receive.

On the Message Information page, click Create a new message, and in the
Message name box, type a name for the message.

You can use any name; however, using the name of the outbound document def
inition for the channel makes it more apparent which message you are receivin
g.

On the Message Type Information page, in the Message type box, type the n
ame of the outbound document definition for the channel that you use to proce
ss the return message.

All messages passed from BizTalk Messaging to an XLANG schedule use a mess
age queue. The label for these messages is the name of the outbound document
definition of the channel.

Establish the data flow from t
he receiving port reference to
the queue path field.

Draw the flow between messages

 Notes

Click the Data tab.

On the Data page, in the Port References message, click the field for the port t
hat receives the return message. Then, drag its control handle to the connection
point of the queue path field in the initial message.

This inserts the port reference data into the queue path field of the initial messa
ge. The port reference is the queue path of the static queue for the port that you
use to receive a return message.

Configuring the Destination System to Use a Non-HTTP
Transport
The steps in this topic explain how to configure the destination system to receive a message that contains a queue path and to
send a return message that contains the same queue path to the source system by using a non-HTTP transport. If you want to
configure the destination system to use an HTTP transport to send return messages,
see Configuring the Destination System to Use an HTTP Transport.

When BizTalk Messaging Services for the destination system receives the initial message, it is configured to activate a new
instance of a specified XLANG schedule and pass the message to a specified port in that XLANG schedule instance.

The XLANG schedule is configured to pass the data contained in the queue path field of the initial message into a matching field
of the return message, and then submit the return message to a channel in BizTalk Messaging Services.

BizTalk Messaging Services uses the specified channel to process the return message and pass it to a messaging port. This
messaging port is configured to transport the return message to an address that is agreed upon with the trading partner with the
source system. This messaging port cannot be an open messaging port.

For this destination system configuration to work correctly, the source system of the trading partner also must be correctly
configured. For information about configuring the source system,
see Configuring the Source System to Use a Non-HTTP Transport.

To configure the destination system to use a non-HTTP transport, complete the steps in the following table. References are
provided for each procedure, and notes are provided to indicate special configuration considerations. Other property settings
needed to complete the configuration vary according to your particular business situation and are not specified here.

Step References and notes
Using BizTalk Editor:

Create the specifications for the inbou
nd and outbound
document definitions of the channel t
hat you use to process the initial mess
age.

Create and Validate Specifications

 Notes

You must add a field in each of these specifications for the queue path.
This field can be added at any level; however, the location must be agre
ed upon with the trading partner and match the specifications on the s
ource system of your trading partner. For more information,
see Manage Records and Fields.

Create the specifications for the inbou
nd and outbound document definition
s of the channel that you use to proce
ss the return message.

Create and Validate Specifications

 Notes

You must add a field in each of these specifications for the queue path.
This field can be added at any level; however, the location must be agre
ed upon with the trading partner and match the specifications on the s
ource system of your trading partner. For more information,
see Manage Records and Fields.

Using BizTalk Messaging Manager:
Create an organization to represent th
e trading partner with the source syst
em.

Create organizations

 Note

This organization does not require special configuration.

Create the document definitions need
ed for creating a channel to process th
e initial message.

Create document definitions

 Note

In the document definitions, select the previously created specifications
. For more information, see Select a document specification.

Create the document definitions need
ed for creating a channel to process th
e return message.

Create document definitions

 Note

In the document definitions, select the previously created specifications
. For more information, see Select a document specification.

Create a messaging port to an applica
tion to activate a new
XLANG schedule instance, and transp
ort the initial message to a port in that
XLANG schedule instance.

Create messaging ports

 Notes

On the Destination Application page of the Messaging Port Wizard,
click New XLANG schedule.

In the Schedule moniker box, type the moniker of the specified sched
ule or click Browse to set the path.

In the Port name box, type the name of the specific port in this schedu
le to which the document is sent.

For more information, see Set destination application properties.

To complete this step, you need the path of an XLANG schedule and th
e name of the port in that schedule to which the initial message is deliv
ered. Therefore, you must first create the XLANG schedule and configur
e its port, as described later in this table.

Create a channel from an organization
to process the initial message from th
e trading partner.

Create channels

 Note

Make a note of the channel name and the outbound document definiti
on name that you use. These names are used to configure
BizTalk Orchestration Services.

Create a messaging port to an organiz
ation to transport the return message
to the source system.

Create messaging ports

 Notes

On the Destination Organization page of the Messaging Port Wizard
, click Organization. To the right of the Name box, click Browse.

In the Select an Organization dialog box, select the organization that
you created previously to represent the trading partner with the source
system. For more information, see Select a destination organization.

On the Destination Organization page of the Messaging Port Wizard
, in the Primary Transport area, click Browse.

In the Primary Transport dialog box, in the Transport type list, select
the transport type, and in the Address box, type an address.

The transport type and address must be agreed upon with the trading
partner and match the specifications on the source system of your trad
ing partner.

You cannot use an open messaging port to send the return message.

Create a channel from an application t
o process the return message from th
e XLANG schedule.

Create channels

 Notes

On the Source Application page of the Channel Wizard, click XLANG
schedule. For more information, see Set source application properties.

Make a note of the channel name and the inbound document definitio
n name that you use. These names are used to configure BizTalk Orche
stration Services.

Using BizTalk Orchestration Designer:
Use a BizTalk Messaging shape to imp
lement a port to receive the initial mes
sage.

Implement a port by using BizTalk Messaging

 Notes

On the Communication Direction page of the BizTalk Messaging Bin
ding Wizard, click Receive.

On the XLANG Schedule Activation Information page of the BizTalk
Messaging Binding Wizard, click Yes.

 Important

Choosing Yes configures the port to activate a new schedule instance
when a message arrives. For important information about using this o
ption, see the topic referenced for this step.

Make a note of the name that you give to this port and the location to
which you save the compiled XLANG schedule. You need this informati
on to configure a messaging port in BizTalk Messaging Services, as des
cribed previously in this table.

Establish the communication flow bet
ween an Action shape and the port th
at receives the initial message.

Send or receive asynchronous messages

 Note

On the Message Information page of the XML Communication Wizar
d, click Create a new message, and in the Message name box, type a
name for the message.

You can use any name; however, using the name of the outbound docu
ment definition for the channel makes it more apparent which messag
e you are sending.

On the Message Type Information page, in the Message type box, t
ype the name of the outbound document definition for the channel tha
t you use to process the return message.

All messages passed from BizTalk Messaging to an XLANG schedule us
e a message queue. The label for these messages is the name of the ou
tbound document definition of the channel.

On the Message Specification Information page, click Browse, and
browse to the specification that you use for the outbound document de
finition of the channel for the initial message.

In the Message fields area, click Add, and add the field in the specifica
tion that was created to contain the queue path address for the initial
message.

Use a BizTalk Messaging shape to imp
lement a port to send the return mess
age.

Implement a port by using BizTalk Messaging

 Note

On the Static or Dynamic Channel Information page of the BizTalk
Messaging Binding Wizard, click Static channel, and in the Enter the
name of a known, pre-existing channel box, type the name of the c
hannel in BizTalk Messaging Manager that you use to process the retur
n message.

Because this port uses a static channel, an open destination submission
call to BizTalk Messaging is not made. Therefore, the channel that is sp
ecified cannot be associated with an open messaging port.

Establish the communication flow bet
ween an Action shape and the port th
at sends the return message.

Send or receive asynchronous messages

 Notes

On the Message Information page of the XML Communication Wizar
d, click Create a new message, and in the Message name box, type a
name for the message.

You can use any name; however, using the name of the inbound docu
ment definition for the channel makes it more apparent which messag
e you are sending.

On the Message Type Information page, in the Message type box, t
ype the name of the inbound document definition for the channel that
you use to process the message.

On the Message Specification Information page, click Browse, and
browse to the specification that you use for the inbound document defi
nition of the channel that you use to process the return message.

In the Message fields area, click Add, and add the field in the specifica
tion that was created to contain the queue path address for the return
message.

Establish the data flow for the queue p
ath field in the initial message to the q
ueue path field in the return message.

Draw the flow between messages

 Notes

Click the Data tab.

On the Data page, click the queue path field in the initial message. The
n, drag its control handle to the connection point of the queue path fiel
d in the return message.

This passes the queue path data from the initial message into the retur
n message.

BizTalk Server 2000 Interface Reference
You can programmatically integrate applications with Microsoft BizTalk Server 2000 by using the BizTalk Messaging
Configuration object model, or by extending and customizing the functionality of the server to suit your business and
information-exchange needs. The interface reference provides all the information necessary for programmers of the Microsoft
Visual Basic and Visual C++ programming languages to use or extend BizTalk Server 2000. This section also includes a complete
list of interfaces, objects, enumerations, code samples, and possible error messages.

BizTalk Server 2000 supports programmatic application integration by accessing the BizTalk Messaging Configuration object
model and submitting documents by calling the methods of the IInterchange interface. BizTalk Server 2000 also supports the
use of extensible application integration components (AICs), including a lightweight integration model and support for the
pipeline-component model available in Microsoft Site Server, Commerce Edition 3.0.

The interface reference is divided into the following parts:

Using the BizTalk Messaging Configuration Object Model
This section provides information about how to access the BizTalk Messaging Configuration object model, including all the
reference pages for the supported interfaces. This information is provided for both Microsoft Visual C++ and Visual Basic
developers. For more information, see Using the BizTalk Messaging Configuration Object Model.

Submitting Documents
This section covers submitting documents to BizTalk Server 2000, using the synchronous and asynchronous methods of the
IInterchange interface. It shows how to move a document once the trading partner relationships are set up, and how to track
documents moving through BizTalk Server 2000. For more information, see Submitting Documents.

Creating Custom Components
This section covers BizTalk Server 2000 support for extensible application integration components (AICs), including a lightweight
integration model and support for the pipeline-component model available in Microsoft Site Server, Commerce Edition 3.0.

This allows developers to do the following:

Enable business applications to receive business documents, using AICs.

Extend the functionality of BizTalk Server 2000 by developing components to perform digital signatures and verification,
encryption and decryption, parsing, and transport.

For more information, see Creating Custom Components.

Administering XLANG Schedules
This section provides information about the interfaces that can be used to access a running instance of a specific XLANG schedule,
or to perform system-wide administrative tasks in the XLANG Scheduler run-time environment. This information is provided for
both Microsoft Visual C++ and Visual Basic developers. For more information, see Administering XLANG Schedules.

BizTalk Server 2000 Interface Reference
You can programmatically integrate applications with Microsoft BizTalk Server 2000 by using the BizTalk Messaging
Configuration object model, or by extending and customizing the functionality of the server to suit your business and
information-exchange needs. The interface reference provides all the information necessary for programmers of the Microsoft
Visual Basic and Visual C++ programming languages to use or extend BizTalk Server 2000. This section also includes a complete
list of interfaces, objects, enumerations, code samples, and possible error messages.

BizTalk Server 2000 supports programmatic application integration by accessing the BizTalk Messaging Configuration object
model and submitting documents by calling the methods of the IInterchange interface. BizTalk Server 2000 also supports the
use of extensible application integration components (AICs), including a lightweight integration model and support for the
pipeline-component model available in Microsoft Site Server, Commerce Edition 3.0.

The interface reference is divided into the following parts:

Using the BizTalk Messaging Configuration Object Model
This section provides information about how to access the BizTalk Messaging Configuration object model, including all the
reference pages for the supported interfaces. This information is provided for both Microsoft Visual C++ and Visual Basic
developers. For more information, see Using the BizTalk Messaging Configuration Object Model.

Submitting Documents
This section covers submitting documents to BizTalk Server 2000, using the synchronous and asynchronous methods of the
IInterchange interface. It shows how to move a document once the trading partner relationships are set up, and how to track
documents moving through BizTalk Server 2000. For more information, see Submitting Documents.

Creating Custom Components
This section covers BizTalk Server 2000 support for extensible application integration components (AICs), including a lightweight
integration model and support for the pipeline-component model available in Microsoft Site Server, Commerce Edition 3.0.

This allows developers to do the following:

Enable business applications to receive business documents, using AICs.

Extend the functionality of BizTalk Server 2000 by developing components to perform digital signatures and verification,
encryption and decryption, parsing, and transport.

For more information, see Creating Custom Components.

Administering XLANG Schedules
This section provides information about the interfaces that can be used to access a running instance of a specific XLANG schedule,
or to perform system-wide administrative tasks in the XLANG Scheduler run-time environment. This information is provided for
both Microsoft Visual C++ and Visual Basic developers. For more information, see Administering XLANG Schedules.

Using the BizTalk Messaging Configuration Object Model
This section provides information about how to use the BizTalk Messaging Configuration object model programmatically. For
additional information, see the following sections:

For general background information, see Concepts.

For information about COM interfaces, enumerations, and error messages, see the Object Model Reference.

For examples of code, see BizTalk Messaging Services Code Samples.

The BizTalk Messaging Configuration object model can also be configured using the BizTalk Messaging Manager graphical user
interface. For more information, see Using BizTalk Messaging Manager.

Object Model Reference
This section provides reference information about interfaces used by Microsoft BizTalk Server 2000 for both Microsoft Visual C++
and Visual Basic programming. Reference information is provided for all interfaces, objects, methods, properties, and
enumerations exposed for accessing the BizTalk Messaging Configuration object model. In addition, a complete list
of Error Messages is provided.

The following COM interfaces and enumerations are documented in this reference:

IBizTalkBase

IBizTalkCertificateInfo

IBizTalkChannel

IBizTalkConfig

IBizTalkDocument

IBizTalkEndPoint

IBizTalkEnvelope

IBizTalkLoggingInfo

IBizTalkOrganization

IBizTalkPort

IBizTalkPortGroup

IBizTalkServiceWindowInfo

IBizTalkTransportInfo

IDictionary

ISimpleList

Object Model Enumerations

IBizTalkBase Interface

IBizTalkBase Interface [C++]
IBizTalkBase Object [Visual Basic]
In C++, the IBizTalkBase interface defines common methods and properties that are inherited by the following objects. In
Microsoft Visual Basic, the IBizTalkBase class defines common methods and properties that are implemented by the following
objects.

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

 Note

The methods and properties of this object are always invoked on the objects listed above, rather than by creating an actual
BizTalkBase object.

The properties of the BizTalkBase object are shown in the following table.

Property Type Description
DateModified BST

R
Date and time at which the information in the object was created or last modified. This is a read-only proper
ty.

Handle long Handle to the object. This is a read-only property.
Name BST

R
Name of the object.

The methods of the BizTalkBase object are shown in the following table.

Method Description
Clear Clears the object in memory. All the member variables of the object in memory are initialized to their default valu

es.
Create Creates a new object in the database.
Load Loads a specified object in memory.
LoadByName Loads a specified object by name in memory.
Remove Removes the object from the database.
Save Saves the object in the database.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkBase::Clear Method

IBizTalkBase::Clear Method [C++]
IBizTalkBase.Clear Method [Visual Basic]
The Clear method clears the object in memory. All member variables of the object in memory are initialized to their default
values.

Syntax
[C++]
HRESULT Clear();
[Visual Basic]
object.Clear()

Parameters
None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This method is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkBase::Create Method

IBizTalkBase::Create Method [C++]
IBizTalkBase.Create Method [Visual Basic]
The Create method creates a new object in the database.

Syntax
[C++]
HRESULT Create(
 long* plBiztalkObjectHandle
);
[Visual Basic]
object.Create()

Parameters
[C++]

plBiztalkObjectHandle

[out, retval] Pointer to a long that contains the handle to the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a Long that contains the handle to the object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This method is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Remarks

The Name property must be set before calling this method. Name must be unique across the database for each object type.
Create updates the DateModified property.

When creating any object that refers to an XML document specification or map located outside your local domain, you might
receive an error. If an error occurs, download and configure the WinHTTP proxy utility. To download this utility, go to the
Microsoft MSDN Web site at msdn.microsoft.com/downloads/default.asp, and browse to the WinHTTP Proxy Configuration Utility
page, which is located in the XML chapter of the Web Development book.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/downloads/default.asp

IBizTalkBase::DateModified Property

IBizTalkBase::DateModified Property [C++]
IBizTalkBase.DateModified Property [Visual Basic]
The DateModified property contains the date and time at which the information in the object was created or last modified.

Syntax
[C++]

Get method:
HRESULT get_DateModified(
 BSTR* pstrModified
);
[Visual Basic]
object.DateModified

Parameters
[C++]

pstrModified

[out, retval] Pointer to a BSTR that contains the date modified.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the date modified.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This property is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Remarks
This is a read-only property. The format for the strModified string is yyyy-mm-dd hh:mm:ss. The time is in coordinated universal
time (UTC). The server sets this property when the Create or the Save method is called for the object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkBase::Handle Property

IBizTalkBase::Handle Property [C++]
IBizTalkBase.Handle Property [Visual Basic]
The Handle property contains the handle to the object.

Syntax
[C++]

Get method:
HRESULT get_Handle(
 long* plBiztalkObjectHandle
);
[Visual Basic]
object.Handle

Parameters
[C++]

plBiztalkObjectHandle

[out, retval] Pointer to a long that contains the handle to the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This property is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkBase::Load Method

IBizTalkBase::Load Method [C++]
IBizTalkBase.Load Method [Visual Basic]
The Load method loads an object in memory.

Syntax
[C++]
HRESULT Load(
 long lBiztalkObjectHandle
);
[Visual Basic]
object.Load(lBiztalkObjectHandle As Long)

Parameters
[C++]

lBiztalkObjectHandle

[in] Long that contains the handle to the object to load.

[Visual Basic]

lBiztalkObjectHandle

Long that contains the handle to the object to load.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This method is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Remarks
Load calls the Clear method internally before loading the object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkBase::LoadByName Method

IBizTalkBase::LoadByName Method [C++]
IBizTalkBase.LoadByName Method [Visual Basic]
The LoadByName method loads an object by name in memory.

Syntax
[C++]
HRESULT LoadByName(
 BSTR strName
);
[Visual Basic]
object.LoadByName(strName As String)

Parameters
[C++]

strName

[in] BSTR that contains the name.

[Visual Basic]

strName

String that contains the name.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This method is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Remarks
LoadByName calls the Clear method internally before loading the object.

Names have a maximum length of 64 characters.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkBase::Name Property

IBizTalkBase::Name Property [C++]
IBizTalkBase.Name Property [Visual Basic]
The Name property contains the name of the object.

Syntax
[C++]

Get method:
HRESULT get_Name(
 BSTR* pstrName
);
Put method:
HRESULT put_Name(
 BSTR strName
);
[Visual Basic]
object.Name

Parameters
[C++]

Get method:

pstrName

[out, retval] Pointer to a BSTR that contains the name of the object.

Put method:

strName

[in] BSTR that contains the name of the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the name.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This property is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Remarks
The server requires the Name property. It must be set before calling the Create or the Save method for the object. Name must
be unique across a database for each object type and must be at least one character long. Names have a maximum length of 64
characters.

The following table lists names reserved for use by BizTalk Server:

Name Object type
Reliable Message Acknowledgement Port IBizTalkPort
Reliable Message Acknowledgement Channel IBizTalkChannel
BizTalk Canonical Receipt IBizTalkDocument
Reliable Messaging Acknowledgement IBizTalkDocument
Reliable Messaging Acknowledgement SMTP From Address IBizTalkOrganization alias
Home Organization IBizTalkOrganization

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkBase::Remove Method

IBizTalkBase::Remove Method [C++]
IBizTalkBase.Remove Method [Visual Basic]
The Remove method removes the object from the database.

Syntax
[C++]
HRESULT Remove();
[Visual Basic]
object.Remove()

Parameters
None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This method is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Remarks
The object cannot be removed if any other object refers to it.

A BizTalkOrganization object cannot be removed if it is the default organization. Before it can be removed, the IsDefault
property must be set to False, and another organization must have the IsDefault property set to True.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Referential Integrity

IBizTalkBase::Save Method

IBizTalkBase::Save Method [C++]
IBizTalkBase.Save Method [Visual Basic]
The Save method saves the object in the database.

Syntax
[C++]
HRESULT Save();
[Visual Basic]
object.Save()

Parameters
None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Applies To
This method is supported by the following objects:

BizTalkChannel

BizTalkDocument

BizTalkEnvelope

BizTalkOrganization

BizTalkPort

BizTalkPortGroup

Remarks
The Save method updates the DateModified property.

When saving any object that refers to an XML document specification or map located outside your local domain, you might
receive an error. If an error occurs, download and configure the WinHTTP proxy utility. To download this utility, go to the
Microsoft MSDN Web site at msdn.microsoft.com/downloads/default.asp, and browse to the WinHTTP Proxy Configuration Utility
page, which is located in the XML chapter of the Web Development book.

Requirements

http://msdn.microsoft.com/downloads/default.asp

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkCertificateInfo Interface

IBizTalkCertificateInfo Interface [C++]
BizTalkCertificateInfo Object [Visual Basic]
Use this object to configure a certificate associated with a BizTalkPort or a BizTalkChannel object.

In C++, use the IBizTalkCertificateInfo interface to access the methods of the BizTalkCertificateInfo object.

The properties of the BizTalkCertificateInfo object are shown in the following table.

Property Type Description
Name BSTR Name of the certificate. This is a read-only property.
Reference BSTR Reference to the certificate in the certificate store.
Store BIZTALK_

STORE_
TYPE

Store type of the certificate.

Usage BIZTALK_USAGE_
TYPE

Type of use for the certificate. This is a read-only property.

Remarks
This object is automatically created when a BizTalkPort or a BizTalkChannel object is instantiated with the CreatePort or
the CreateChannel method of the BizTalkConfig object.

For output documents, access the BizTalkCertificateInfo object by using the EncryptionCertificateInfo property of the
BizTalkPort object. For input documents, access the BizTalkCertificateInfo object by using
the SignatureCertificateInfo, VerifySignatureCertificateInfo, or DecryptionCertificateInfo property of the
BizTalkChannel object. To obtain the set of all existing BizTalkCertificateInfo objects, use the Certificates property of
the BizTalkConfig object.

 Note

All certificates are stored in the local computer store. To configure certificates for the S/MIME components, the script or
application accessing the object model must be run in the context of a user account in the BizTalk Server Administrators
group.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkCertificateInfo::Name Property

IBizTalkCertificateInfo::Name Property [C++]
BizTalkCertificateInfo.Name Property [Visual Basic]
The Name property contains the name of the certificate.

Syntax
[C++]

Get method:
HRESULT get_Name(
 BSTR* pstrName
);
[Visual Basic]
object.Name

Parameters
[C++]

pstrName

[out, retval] Pointer to a BSTR that contains the name.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the name.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkCertificateInfo::Reference Property

IBizTalkCertificateInfo::Reference Property [C++]
BizTalkCertificateInfo.Reference Property [Visual Basic]
The Reference property contains a reference to the certificate in the certificate store.

Syntax
[C++]

Get method:
HRESULT get_Reference(
 BSTR* pstrReference
);
Put method:
HRESULT put_Reference(
 BSTR strReference
);
[Visual Basic]
object.Reference

Parameters
[C++]

Get method:

pstrReference

[out, retval] Pointer to a BSTR that contains the certificate reference.

Put method:

strReference

[in] BSTR that contains the certificate reference.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, the put method returns CryptoAPI errors. Additional
information about CryptoAPI is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns a String that contains the certificate reference.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks

http://msdn.microsoft.com/library/default.asp

A reference to a certificate should be obtained by using the Certificates property on the BizTalkConfig object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkCertificateInfo::Store Property

IBizTalkCertificateInfo::Store Property [C++]
BizTalkCertificateInfo.Store Property [Visual Basic]
The Store property contains the store type for the certificate.

Syntax
[C++]

Get method:
HRESULT get_Store(
 BIZTALK_STORE_TYPE* pStoreType
);
Put method:
HRESULT put_Store(
 BIZTALK_STORE_TYPE eStoreType
);
[Visual Basic]
object.Store

Parameters
[C++]

Get method:

pStoreType

[out, retval] Pointer to an enumeration value that contains the certificate store type. Valid values are from
the BIZTALK_STORE_TYPE enumeration.

Put method:

eStoreType

[in] Enumeration value that contains the certificate store type. Valid values are from the BIZTALK_STORE_TYPE enumeration.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an enumeration value. Valid values are from the BIZTALK_STORE_TYPE enumeration.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The store, which contains the certificate, is determined by the use of the certificate as follows:

Certificate type Store

Decryption MY
Encryption BIZTALK
Signature MY
Verify signature BIZTALK

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkCertificateInfo::Usage Property

IBizTalkCertificateInfo::Usage Property [C++]
BizTalkCertificateInfo.Usage Property [Visual Basic]
The Usage property contains the type of use for the certificate.

Syntax
[C++]

Get method:
HRESULT get_Usage(
 BIZTALK_USAGE_TYPE* pUsageType
);
[Visual Basic]
object.Usage

Parameters
[C++]

pUsageType

[out, retval] Pointer to an enumeration value. Valid values are from the BIZTALK_USAGE_TYPE enumeration.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an enumeration value. Valid values are from the BIZTALK_USAGE_TYPE enumeration.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel Interface

IBizTalkChannel Interface [C++]
BizTalkChannel Object [Visual Basic]
Use the methods and properties of the BizTalkChannel object to configure a channel for processing documents.

In C++, use the IBizTalkChannel interface to access the methods of the BizTalkChannel object.

The properties of the BizTalkChannel object are shown in the following table.

Property Ty
pe

Description

Comments BS
TR

User comments for the object.

ControlNumberValue BS
TR

Value of the group control number.

DateModified BS
TR

Date and time at which the information in the object was created or last modified. This is a
read-only property obtained from the BizTalkBase object.

DecryptionCertificateInfo IDi
spa
tch

Information about the certificate that decrypts the input document.

ExpectReceiptTimeout lon
g

Time, in minutes, in which to expect the receipt for the current document before treating th
e document as expired.

Expression BS
TR

Complete set of equations that filter the selection of the object.

Handle lon
g

Identifier of the object. This is a read-only property obtained from the BizTalkBase object.

InputDocument lon
g

Handle to the input BizTalkDocument object. This is a required property.

IsReceiptChannel VA
RIA
NT
_B
OO
L

Flag that indicates whether the object is a receipt channel.

LoggingInfo IDi
spa
tch

Information about logging.

MapContent BS
TR

Contents of the map that provide instructions on how the input document in the format us
ed by the source organization is to be rendered in the format used by the destination orga
nization, if different. This is a read-only property.

MapReference BS
TR

Full Web Distributed Authoring and Versioning (WebDAV) URL of the map that provides in
structions on how the input document in the format used by the source organization is to b
e rendered in the format used by the destination organization, if different. This is a required
property if the InputDocument property is different from the OutputDocument propert
y.

Name BS
TR

Name of the object. This is a required property obtained from the BizTalkBase object.

OutputDocument lon
g

Handle to the output BizTalkDocument object. This is a required property.

Port lon
g

Associated BizTalkPort object. Either the Port or the PortGroup property must be specifie
d.

PortGroup lon
g

Associated BizTalkPortGroup object. Either the Port or the PortGroup property must be
specified.

ReceiptChannel lon
g

Handle to the receipt channel for this object.

RetryCount lon
g

Number of times to retry submitting a document when there is a failure to connect to the d
estination.

RetryInterval lon
g

Interval between attempts to resubmit a document when there is a failure to connect to the
destination. This value is specified in minutes.

SignatureCertificateInfo IDi
spa
tch

Information about the certificate that signs the output document.

SourceEndpoint IDi
spa
tch

Information about the source.

TrackFields IDi
spa
tch

Dictionary object that stores additional custom tracking fields used to track interchange d
ata for the BizTalkDocument object for the associated BizTalkChannel object.

VerifySignatureCertificateInfo IDi
spa
tch

Information about the certificate that verifies the signature of the input document.

The methods of the BizTalkChannel object are shown in the following table.

Method Description
Clear Clears the object in memory. All member variables of the object in memory are initialized to their default

values. This method is obtained from the BizTalkBase object.
Create Creates a new object in the database. This method is obtained from the BizTalkBase object.
GetConfigComponent Reads the CLSID of the component associated with the BizTalkPort object.
GetConfigData Gets the configuration associated with the specified BizTalkPort object.
Load Loads an object in memory. This method is obtained from the BizTalkBase object.
LoadByName Loads an object by name in memory. This method is obtained from the BizTalkBase object.
Remove Removes the object. This method is obtained from the BizTalkBase object.
Save Saves the object to the database. This method is obtained from the BizTalkBase object.
SetConfigComponent Sets the CLSID of the component associated with the BizTalkPort object.
SetConfigData Sets the configuration information for the associated BizTalkPort object.

Remarks
A BizTalkChannel object requires an associated complete BizTalkPort object. One or more BizTalkChannel objects can be
associated with a BizTalkPort object. A BizTalkChannel object can be associated with only one input BizTalkDocument object
and one output BizTalkDocument object; however, a BizTalkDocument object can be associated with more than one
BizTalkChannel object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topics

Channels

Document Processing

IBizTalkChannel::Comments Property

IBizTalkChannel::Comments Property [C++]
BizTalkChannel.Comments Property [Visual Basic]
The Comments property contains the user comments for the object.

Syntax
[C++]

Get method:
HRESULT get_Comments(
 BSTR* pstrComments
);
Put method:
HRESULT put_Comments(
 BSTR strComments
);
[Visual Basic]
object.Comments

Parameters
[C++]

Get method:

pstrComments

[out, retval] Pointer to a BSTR that contains the comments.

Put method:

strComments

[in] BSTR that contains the comments.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the comments.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::ControlNumberValue Property

IBizTalkChannel::ControlNumberValue Property [C++]
BizTalkChannel.ControlNumberValue Property [Visual Basic]
The ControlNumberValue property contains the value of the group control number.

Syntax
[C++]

Get method:
HRESULT get_ControlNumberValue(
 BSTR* pstrControlNumberValue
);
Put method:
HRESULT put_ControlNumberValue(
 BSTR strControlNumberValue
);
[Visual Basic]
object.ControlNumberValue

Parameters
[C++]

Get method:

pstrControlNumberValue

[out, retval] Pointer to a BSTR that contains the control number.

Put method:

strControlNumberValue

[in] BSTR that contains the control number.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a String that contains the control number.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The ControlNumberValue property must contain a value between 1 and 999999999.

If the Format property of the BizTalkEnvelope object for the associated BizTalkPort object is set to X12, EDIFACT, or Custom,
this property is required.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::DecryptionCertificateInfo Property

IBizTalkChannel::DecryptionCertificateInfo Property [C++]
BizTalkChannel.DecryptionCertificateInfo Property [Visual
Basic]
The DecryptionCertificateInfo property contains information about the certificate that decrypts the input document. This
information includes the Name, Reference, Store, and Usage properties and is created and stored in memory in
the BizTalkCertificateInfo object.

Syntax
[C++]

Get method:
HRESULT get_DecryptionCertificateInfo(
 IDispatch** ppDecryptionCertificateInfoDisp
);
Putref method:
HRESULT putref_DecryptionCertificateInfo(
 IDispatch* pDecryptionCertificateInfoDisp
);
[Visual Basic]
object.DecryptionCertificateInfo

Parameters
[C++]

Get method:

ppDecryptionCertificateInfoDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the certificate information.

Putref method:

pDecryptionCertificateInfoDisp

[in] Pointer to an IDispatch interface that contains the certificate information.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains the certificate information.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::ExpectReceiptTimeout Property

IBizTalkChannel::ExpectReceiptTimeout Property [C++]
BizTalkChannel.ExpectReceiptTimeout Property [Visual Basic]
The ExpectReceiptTimeout property contains the value of the time, in minutes, in which to expect the receipt for the current
document before treating the document as expired.

Syntax
[C++]

Get method:
HRESULT get_ExpectReceiptTimeout(
 long* plMinutes
);
Put method:
HRESULT put_ExpectReceiptTimeout(
 long lMinutes
);
[Visual Basic]
object.ExpectReceiptTimeout

Parameters
[C++]

Get method:

plMinutes

[out, retval] Pointer to a long that contains the minutes.

Put method:

lMinutes

[in] Long that contains the minutes.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the minutes.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::Expression Property

IBizTalkChannel::Expression Property [C++]
BizTalkChannel.Expression Property [Visual Basic]
The Expression property contains an expression that filters the selection of the BizTalkChannel object. If the expression
evaluates to true, the server selects the channel for processing the document.

Syntax
[C++]

Get method:
HRESULT get_Expression(
 BSTR* pstrExpression
);
Put method:
HRESULT put_Expression(
 BSTR strExpression
);
[Visual Basic]
object.Expression

Parameters
[C++]

Get method:

pstrExpression

[out, retval] Pointer to a BSTR that contains the XPath expression.

Put method:

strExpression

[in] BSTR that contains the XPath expression.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a String that contains the expression.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The XPath expression must be based on the input document specification set in the InputDocument property.

 Note

If the specification field that you are using to create an expression has a Boolean data type, you cannot use the text strings
"true" or "false" as the expression value. You must use a numerical value instead: "-1" for true and "0" for false. For example,
to filter a channel so it processes only approved purchase orders, your expression might look like this:

Channel1.Expression = "/PORequest/Total[IsApproved = -1]"

This sample assumes that the input document specification contains a Total subelement with a Boolean IsApproved field.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Channel Filtering

IBizTalkChannel::GetConfigComponent Method

IBizTalkChannel::GetConfigComponent Method [C++]
BizTalkChannel.GetConfigComponent Method [Visual Basic]
The GetConfigComponent method retrieves the CLSID of the component associated with the BizTalkPort object.

Syntax
[C++]
HRESULT GetConfigComponent(
 BIZTALK_CONFIGDATA_TYPE eConfigType,
 long lPortHandle,
 BSTR* pstrCLSID
);
[Visual Basic]
object.GetConfigComponent(_
 eConfigType As BIZTALK_CONFIGDATA_TYPE, _
 lPortHandle As Long _
)

Parameters
[C++]

eConfigType

[in] Enumeration value. Valid values are from the BIZTALK_CONFIGDATA_TYPE enumeration.

lPortHandle

[in] Long that contains the handle to the BizTalkPort object.

pstrCLSID

[out, retval] Pointer to a BSTR that contains the CLSID of the component.

[Visual Basic]

eConfigType

Enumeration value. Valid values are from the BIZTALK_CONFIGDATA_TYPE enumeration.

lPortHandle

Long that contains the handle.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This method returns a String that contains the CLSID of the component.

Error Value [Visual Basic]
[Visual Basic]

http://msdn.microsoft.com/library/default.asp

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
If the eConfigType parameter is set to BIZTALK_CONFIGDATA_TYPE_SIGNATURE and the associated BizTalkPort object has
both the EncryptionType and SignatureType properties set to S/MIME, this method returns an empty string ("").

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::GetConfigData Method

IBizTalkChannel::GetConfigData Method [C++]
BizTalkChannel.GetConfigData Method [Visual Basic]
The GetConfigData method gets the configuration associated with the specified BizTalkPort object.

Syntax
[C++]
HRESULT GetConfigData(
 BIZTALK_CONFIGDATA_TYPE eConfigType,
 long lPortHandle,
 VARIANT* pvarType,
 VARIANT* pvarDictionary
);
[Visual Basic]
object.GetConfigData(_
 eConfigType As BIZTALK_CONFIGDATA_TYPE, _
 lPortHandle As Long, _
 pvarType As Variant _
)

Parameters
[C++]

eConfigType

[in] Enumeration value. Valid values are from the BIZTALK_CONFIGDATA_TYPE enumeration.

lPortHandle

[in] Long that identifies the handle to the associated BizTalkPort object.

pvarType

[in, out] Pointer to a VARIANT that contains the transport type.

pvarDictionary

[in, out] Pointer to a VARIANT that contains a pointer to the IDictionary interface of an object that contains the primary
transport configuration information.

[Visual Basic]

eConfigType

[in] Enumeration value. Valid values are from the BIZTALK_CONFIGDATA_TYPE enumeration.

lPortHandle

Long that identifies the handle to the associated BizTalkPort object.

pvarType

Variant that contains the transport type.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional

information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This method returns a CDictionary object that contains the primary transport configuration information.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The Dictionary object returned by this method has specific string qualifiers used for EDIFACT and X12. The following tables
describe these strings.

EDIFACT

Qualifier string Description
SerializerEdifact_SenderIntID Interchange sender internal identification
SerializerEdifact_SenderIntSubID Interchange sender internal subidentification
SerializerEdifact_RecipientIntID Interchange recipient internal identification
SerializerEdifact_RecipientIntSubID Interchange recipient internal subidentification
SerializerEdifact_RecipientRefPwd Recipient reference/password
SerializerEdifact_RecipientRefPwdQual Recipient reference/password qualifier
SerializerEdifact_ApplicationRef Application reference
SerializerEdifact_ProcPriCode Processing priority code
SerializerEdifact_AckRequest Acknowledgment request
SerializerEdifact_AgreementID Interchange agreement identifier
SerializerEdifact_TestInd Test indicator
SerializerEdifact_UNACtrl "Send UNA Always" or "Send UNA Only When Required"
SerializerEdifact_SyntaxID Syntax identifier

X12

Qualifier string Description
SerializerX12_AuthInfoQual Authorization information qualifier
SerializerX12_AuthInfo Authorization information
SerializerX12_SecInfoQual Security information qualifier
SerializerX12_SecInfo Security information
SerializerX12_CtrlStdID Interchange control standards identifier
SerializerX12_CtrlVerNum Interchange control version number
SerializerX12_AckRequired Acknowledgment required
SerializerX12_UseInd Usage indicator

 Note

For more information about the EDIFACT standard, see the United Nations Economic Commission for Europe Web site
(www.unece.org).

For more information about the X12 standard, see the Data Interchange Standards Association Web site (www.disa.org).

If you override the transport properties of a BizTalkPort object with this method and then change the transport properties in that
BizTalkPort object, you must call this method again.

If the eConfigType parameter is set to BIZTALK_CONFIGDATA_TYPE_SIGNATURE and the associated BizTalkPort object has
both the EncryptionType and SignatureType properties set to S/MIME, this method returns an empty Dictionary object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

http://msdn.microsoft.com/library/default.asp
http://www.unece.org/
http://www.disa.org/

Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::InputDocument Property

IBizTalkChannel::InputDocument Property [C++]
BizTalkChannel.InputDocument Property [Visual Basic]
The InputDocument property contains the handle to the BizTalkDocument object that describes the input document
specification.

Syntax
[C++]

Get method:
HRESULT get_InputDocument(
 long* plInDocHandle
);
Put method:
HRESULT put_InputDocument(
 long lInDocHandle
);
[Visual Basic]
object.InputDocument

Parameters
[C++]

Get method:

plInDocHandle

[out, retval] Pointer to a long that contains the handle to the input BizTalkDocument object.

Put method:

lInDocHandle

[in] Long that contains the handle to the input BizTalkDocument object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the input BizTalkDocument object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a required property.

This property cannot be changed after the Create or the Save method is called.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topics

Configuring

Document Definitions

Document Processing

IBizTalkChannel::IsReceiptChannel Property

IBizTalkChannel::IsReceiptChannel Property [C++]
BizTalkChannel.IsReceiptChannel Property [Visual Basic]
The IsReceiptChannel property contains a flag that indicates whether the object is a receipt channel.

Syntax
[C++]

Get method:
HRESULT get_IsReceiptChannel(
 VARIANT_BOOL* pbIsReceiptChannel
);
Put method:
HRESULT put_IsReceiptChannel(
 VARIANT_BOOL bIsReceiptChannel
);
[Visual Basic]
object.IsReceiptChannel

Parameters
[C++]

Get method:

pbIsReceiptChannel

[out, retval] Pointer to a VARIANT_BOOL that contains the flag. A value of VARIANT_TRUE indicates that this channel is used as a
receipt channel. A value of VARIANT_FALSE indicates that this channel is not used as a receipt channel.

Put method:

bIsReceiptChannel

[in] VARIANT_BOOL that contains the flag. A value of VARIANT_TRUE indicates that this channel is used as a receipt channel. A
value of VARIANT_FALSE indicates that this channel is not used as a receipt channel.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Variant that indicates whether the channel is used as a receipt channel.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h

Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

ReceiptChannel

IBizTalkChannel::LoggingInfo Property

IBizTalkChannel::LoggingInfo Property [C++]
BizTalkChannel.LoggingInfo Property [Visual Basic]
The LoggingInfo property contains information about logging the document. This information includes
the LogNativeInputDocument, LogNativeOutputDocument, LogXMLInputDocument, and LogXMLOutputDocument
properties and is created and stored in memory in the BizTalkLoggingInfo object.

Syntax
[C++]

Get method:
HRESULT get_LoggingInfo(
 IDispatch** ppLoggingInfoDisp
);
Putref method:
HRESULT putref_LoggingInfo(
 IDispatch* pLoggingInfoDisp
);
[Visual Basic]
object.LoggingInfo

Parameters
[C++]

Get method:

ppLoggingInfoDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the logging fields.

Putref method:

pLoggingInfoDisp

[in] Pointer to an IDispatch interface that contains the logging fields.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains the logging fields.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h

Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Storage

IBizTalkChannel::MapContent Property

IBizTalkChannel::MapContent Property [C++]
BizTalkChannel.MapContent Property [Visual Basic]
The MapContent property contains the contents of the map that provide instructions on how the input document in the format
used by the source organization is to be rendered in the format used by the destination organization, if different.

Syntax
[C++]

Get method:
HRESULT get_MapContent(
 BSTR* pstrMapContent
);
[Visual Basic]
object.MapContent

Parameters
[C++]

pstrMapContent

[in] BSTR that contains the map contents.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the map contents.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property. The Create and Save methods copy the text of the map specified by the MapReference property to
this string, if empty.

Once you have created or saved a BizTalkChannel object with MapReference set to a map, any changes you make to the
content of the referenced map are not automatically updated on the referring BizTalkChannel object. To update the
BizTalkChannel object that refers to the revised map, you must save the map, reset the MapReference property of the
BizTalkChannel object to its current value, and then call Save on the referring BizTalkChannel object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::MapReference Property

IBizTalkChannel::MapReference Property [C++]
BizTalkChannel.MapReference Property [Visual Basic]
The MapReference property contains the full Web Distributed Authoring and Versioning (WebDAV) URL of the map that
provides instructions on how the input document in the format used by the source organization is to be rendered in the format
used by the destination organization, if different.

Syntax
[C++]

Get method:
HRESULT get_MapReference(
 BSTR* pstrReference
);
Put method:
HRESULT put_MapReference(
 BSTR strReference
);
[Visual Basic]
object.MapReference

Parameters
[C++]

Get method:

pstrReference

[out, retval] Pointer to a BSTR that contains the map name.

Put method:

strReference

[in] BSTR that contains the map name.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the map name.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a required property if the InputDocument property refers to a different document specification than
the OutputDocument property.

Once you have created or saved a BizTalkChannel object with MapReference set to a map, any changes you make to the
content of the referenced map are not automatically updated on the referring BizTalkChannel object. To update the
BizTalkChannel object that refers to the revised map, you must save the map, reset the MapReference property of the
BizTalkChannel object to its current value, and then call Save on the referring BizTalkChannel object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::OutputDocument Property

IBizTalkChannel::OutputDocument Property [C++]
BizTalkChannel.OutputDocument Property [Visual Basic]
The OutputDocument property contains the handle to the BizTalkDocument object that describes the output document
specification.

Syntax
[C++]

Get method:
HRESULT get_OutputDocument(
 long* plOutDocHandle
);
Put method:
HRESULT put_OutputDocument(
 long lOutDocHandle
);
[Visual Basic]
object.OutputDocument

Parameters
[C++]

Get method:

plOutDocHandle

[out, retval] Pointer to a long that contains the handle to the output BizTalkDocument object.

Put method:

lOutDocHandle

[in] Long that contains the handle to the output BizTalkDocument object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the output BizTalkDocument object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a required property. This property cannot be changed after the Create or the Save method is called.

If the Openness property of the associated BizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_SOURCE,

the InputDocument property can identify an input BizTalkDocument object that has an X12 or an EDIFACT specification. If it
does, however, OutputDocument must not identify a BizTalkDocument object that has an X12 or an EDIFACT specification.

If the Openness property of the associated BizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the
OutputDocument property for this BizTalkChannel object must not identify an output BizTalkDocument object that has an
X12 or an EDIFACT specification.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Definitions

IBizTalkChannel::Port Property

IBizTalkChannel::Port Property [C++]
BizTalkChannel.Port Property [Visual Basic]
The Port property contains the handle to the associated BizTalkPort object.

Syntax
[C++]

Get method:
HRESULT get_Port(
 long* plPortHandle
);
Put method:
HRESULT put_Port(
 long lPortHandle
);
[Visual Basic]
object.Port

Parameters
[C++]

Get method:

plPortHandle

[out, retval] Pointer to a long that contains the handle to the BizTalkPort object.

Put method:

lPortHandle

[in] Long that contains the handle to the BizTalkPort object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the BizTalkPort object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The following constraints are enforced:

Either the Port or the PortGroup property must be specified for a channel.

This property cannot be changed after the Create or the Save method is called.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Messaging Ports

IBizTalkChannel::PortGroup Property

IBizTalkChannel::PortGroup Property [C++]
BizTalkChannel.PortGroup Property [Visual Basic]
The PortGroup property contains the handle to the associated BizTalkPortGroup object.

Syntax
[C++]

Get method:
HRESULT get_PortGroup(
 long* plPortGroupHandle
);
Put method:
HRESULT put_PortGroup(
 long lPortGroupHandle
);
[Visual Basic]
object.PortGroup

Parameters
[C++]

Get method:

plPortGroupHandle

[out, retval] Pointer to a long that contains the handle to the associated BizTalkPortGroup object.

Put method:

lPortGroupHandle

[in] Long that contains the handle to the associated BizTalkPortGroup object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the associated BizTalkPortGroup object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The following constraints are enforced:

Either the Port property or PortGroup must be specified for a channel.

This property cannot be changed after the Create or the Save method is called.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Port Groups

IBizTalkChannel::ReceiptChannel Property

IBizTalkChannel::ReceiptChannel Property [C++]
BizTalkChannel.ReceiptChannel Property [Visual Basic]
The ReceiptChannel property contains the handle to the receipt channel for this object.

Syntax
[C++]

Get method:
HRESULT get_ReceiptChannel(
 long* plReceiptChannelHandle
);
Put method:
HRESULT put_ReceiptChannel(
 long lReceiptChannelHandle
);
[Visual Basic]
object.ReceiptChannel

Parameters
[C++]

Get method:

plReceiptChannelHandle

[out, retval] Pointer to a long that contains the handle.

Put method:

lReceiptChannelHandle

[in] Long that contains the handle.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the receipt channel.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
A BizTalkChannel object can specify a receipt channel only if it is not a receipt channel itself. The channel specified as the receipt
channel must have the IsReceiptChannel property set to TRUE. In addition, the receipt channel must use a messaging port with
a DestinationEndpoint that is the same as the SourceEndpoint on the channel using the receipt channel. This allows the
receipt channel to send a receipt to the original source of the document.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::RetryCount Property

IBizTalkChannel::RetryCount Property [C++]
BizTalkChannel.RetryCount Property [Visual Basic]
The RetryCount property specifies the number of times to retry submitting a document when a destination connection failure
occurs.

Syntax
[C++]

Get method:
HRESULT get_RetryCount(
 long* plCount
);
Put method:
HRESULT put_RetryCount(
 long lCount
);
[Visual Basic]
object.RetryCount

Parameters
[C++]

Get method:

plCount

[out, retval] Pointer to a long that contains the number of retries.

Put method:

lCount

[in] Long that contains the number of retries.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the number of retries.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The RetryCount property must contain a value between 0 and 999. The default value is 3 retries.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::RetryInterval Property

IBizTalkChannel::RetryInterval Property [C++]
BizTalkChannel.RetryInterval Property [Visual Basic]
The RetryInterval property specifies the amount of time, in minutes, between retry attempts when a destination connection
failure occurs during document submission.

Syntax
[C++]

Get method:
HRESULT get_RetryInterval(
 long* pInterval
);
Put method:
HRESULT put_RetryInterval(
 long lInterval
);
[Visual Basic]
object.RetryInterval

Parameters
[C++]

Get method:

pInterval

[out, retval] Pointer to a long that contains the retry interval, in minutes.

Put method:

lInterval

[in] Long that contains the retry interval, in minutes.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the retry interval, in minutes.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The RetryInterval property must contain a value between 1 and 63999. The default value is 5 minutes.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::SetConfigComponent Method

IBizTalkChannel::SetConfigComponent Method [C++]
BizTalkChannel.SetConfigComponent Method [Visual Basic]
The SetConfigComponent method sets the CLSID of the component associated with the BizTalkPort object.

Syntax
[C++]
HRESULT SetConfigComponent(
 BIZTALK_CONFIGDATA_TYPE eConfigType,
 long lPortHandle,
 BSTR strCLSID
);
[Visual Basic]
object.SetConfigComponent(_
 eConfigType As BIZTALK_CONFIGDATA_TYPE, _
 lPortHandle As Long, _
 strCLSID As String _
)

Parameters
[C++]

eConfigType

[in] Enumeration value. Valid values are from the BIZTALK_CONFIGDATA_TYPE enumeration. The
BIZTALK_CONFIGDATA_TYPE_PRIMARYTRANSPORT and BIZTALK_CONFIGDATA_TYPE_SECONDARYTRANSPORT
enumeration values cannot be used with this method.

lPortHandle

[in] Long that contains the handle.

strCLSID

[in] BSTR that contains the CLSID of the component.

[Visual Basic]

eConfigType

Enumeration value. Valid values are from the BIZTALK_CONFIGDATA_TYPE enumeration. The
BIZTALK_CONFIGDATA_TYPE_PRIMARYTRANSPORT and BIZTALK_CONFIGDATA_TYPE_SECONDARYTRANSPORT
enumeration values cannot be used with this method.

lPortHandle

Long that contains the handle.

strCLSID

String that contains the CLSID of the component.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::SetConfigData Method

IBizTalkChannel::SetConfigData Method [C++]
BizTalkChannel.SetConfigData Method [Visual Basic]
The SetConfigData method sets the configuration information for the BizTalkPort object.

Syntax
[C++]
HRESULT SetConfigData(
 BIZTALK_CONFIGDATA_TYPE eConfigType,
 long lConfigDataHandle,
 IDispatch* pConfigDataDisp
);
[Visual Basic]
object.SetConfigData(_
 eConfigType As BIZTALK_CONFIGDATA_TYPE, _
 lConfigDataHandle As Long, _
 pConfigDataDisp As Object _
)

Parameters
[C++]

eConfigType

[in] Enumeration value. Valid values are from the BIZTALK_CONFIGDATA_TYPE enumeration.

lConfigDataHandle

[in] Long that identifies the handle to the associated BizTalkPort object.

pConfigDataDisp

[in] Pointer to the IDictionary interface of an object that contains information about the component specified in the eConfigType
parameter.

[Visual Basic]

eConfigType

Enumeration value. Valid values are from the BIZTALK_CONFIGDATA_TYPE enumeration.

lConfigDataHandle

Long that identifies the handle to the associated BizTalkPort object.

pConfigDataDisp

CDictionary object that contains information about the component specified in the eConfigType parameter.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]

[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The Dictionary object passed to this method has specific string qualifiers used for EDIFACT and X12. For a description of these
qualifiers, see the GetConfigData Method.

When using the BIZTALK_CONFIGDATA_TYPE_PRIMARYTRANSPORT or
BIZTALK_CONFIGDATA_TYPE_SECONDARYTRANSPORT enumeration value, the content of the transport dictionary varies
according to the transport protocol used. The following tables list the transport dictionary fields for each protocol.

HTTP and HTTPS

Field na
me

Data t
ype

Requir
ed

Description

URL String Yes URL of the document destination.
ContentT
ype

String No Value for the Content-Type HTTP/HTTPS property that appears in HTTP headers during transmission. Th
e default value is an empty string ("").

ClientCe
rt

String No Reference to the certificate used with SSL connections using HTTPS. The default value is an empty string
("").

ProxyNa
me

String No URL of the proxy server used when sending documents outside a firewall.

ProxyPor
t

Integer No Port number used by the proxy server.

UseProx
y

Boolea
n

No Value that indicates whether the proxy server is used. The default value is True.

Local File

Field
name

Data
type

Req
uire
d

Description

Filena
me

Strin
g

Yes Name and path of the file to be created.

Copy
Mode

Integ
er

No Value that indicates how the file should be written. Use a value of 0 for overwrite mode, a value of 1 for appen
d mode, and a value of 2 to create a new file. The default value is append mode (1).

UserN
ame

Strin
g

No Windows NT username needed to access a file share. The default value is an empty string ("").

Passw
ord

Strin
g

No Windows NT username needed to access a file share. The default value is an empty string ("").

Message Queuing

Field
name

Dat
a ty
pe

Req
uire
d

Description

Queu
eNam
e

Stri
ng

Yes Name of the Messaging Queue to which the document is sent.

Mess
ageLa
bel

Stri
ng

Yes Value specified in the message label field on the queue.

Priorit
y

Inte
ger

No Priority of the message placed in the queue. This must be a value between 0 and 7, where a higher value indicate
s a higher priority. The default value is 3

AuthL
evel

Inte
ger

No Value indicating whether the message needs to be authenticated using a digital signature. Use a value of 0 to by
pass authentication. A value of 1 indicates that authentication will be used. The default value is 0.

Delive
ry

Inte
ger

No Value indicating how a message is delivered to a queue. Use a value of 1 to indicate that the message should be
backed up until it is delivered to the queue. A value of 0 indicates that the message is only resident in memory. T
he default value is 0.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::SignatureCertificateInfo Property

IBizTalkChannel::SignatureCertificateInfo Property [C++]
BizTalkChannel.SignatureCertificateInfo Property [Visual Basic]
The SignatureCertificateInfo property contains information about the certificate that signs the output document. This
information includes the Name, Reference, Store, and Usage properties and is created and stored in memory in
the BizTalkCertificateInfo object.

Syntax
[C++]

Get method:
HRESULT get_SignatureCertificateInfo(
 IDispatch** ppSignatureCertificateInfoDisp
);
Putref method:
HRESULT putref_SignatureCertificateInfo(
 IDispatch* pSignatureCertificateInfoDisp
);
[Visual Basic]
object.SignatureCertificateInfo

Parameters
[C++]

Get method:

ppSignatureCertificateInfoDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the certificate information.

Putref method:

pSignatureCertificateInfoDisp

[in] Pointer to an IDispatch interface that contains the certificate information.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a BizTalkCertificateInfo object that contains the certificate information.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h

Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::SourceEndpoint Property

IBizTalkChannel::SourceEndpoint Property [C++]
BizTalkChannel.SourceEndpoint Property [Visual Basic]
The SourceEndpoint property contains information about the source. This information includes the Alias, Application,
and Organization properties and is created and stored in memory in the BizTalkEndPoint object.

Syntax
[C++]

Get method:
HRESULT get_SourceEndpoint(
 IDispatch** ppSrcEndpointDisp
);
Putref method:
HRESULT putref_SourceEndpoint(
 IDispatch* pSrcEndpointDisp
);
[Visual Basic]
object.SourceEndpoint

Parameters
[C++]

Get method:

ppSrcEndpointDisp

[out, retval] Address of a pointer to an IDispatch interface that contains information about the source.

Putref method:

pSrcEndpointDisp

[in] Pointer to an IDispatch interface that contains information about the source.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains information about the source.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkChannel::TrackFields Property

IBizTalkChannel::TrackFields Property [C++]
BizTalkChannel.TrackFields Property [Visual Basic]
The TrackFields property identifies the Dictionary object that points to the specification that contains fields to track interchange
data on input documents for this BizTalkChannel object. These tracking fields override the fields set in the TrackFields property
on the BizTalkDocument object.

Syntax
[C++]

Get method:
HRESULT get_TrackFields(
 IDispatch** ppTrackFieldsDisp
);
Putref method:
HRESULT putref_TrackFields(
 IDispatch* pTrackFieldsDisp
);
[Visual Basic]
object.TrackFields

Parameters
[C++]

Get method:

ppTrackFieldsDisp

[out, retval] Address of a pointer to the IDictionary interface of an object that contains the custom tracking fields.

Putref method:

pTrackFieldsDisp

[in] Pointer to the IDictionary interface of an object that contains the custom tracking fields.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a CDictionary object that contains the custom tracking fields.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The fields in the Dictionary object must contain an XPath value that identifies the field to be tracked in a document. By default,
the Dictionary object provides eight predefined fields for tracking data in a document. These predefined fields consist of two

fields for each of the following data types: integer, real, date, and string. If additional fields are required for tracking, you can use
the x_custom_search field in the Dictionary object, and set the value to a SimpleList object. The SimpleList object contains a list
of XPaths pointing to the additional tracking fields. XPath values can be added to and deleted from this list using the Add
and Delete methods.

The following table shows the field names in the Dictionary object for TrackFields:

Field Name Field type
i_value1 Integer value
i_value2 Integer value
r_value1 Real value
r_value2 Real value
d_value1 Date value
d_value2 Date value
s_value1 String value
s_value2 String value
x_custom_search A list to return one or more additional data items

For more information about XPath expressions, go to the Microsoft Web site (msdn.microsoft.com/library/default.asp) and search
for XPath.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Tracking

http://msdn.microsoft.com/library/default.asp

IBizTalkChannel::VerifySignatureCertificateInfo Property

IBizTalkChannel::VerifySignatureCertificateInfo Property [C++]
BizTalkChannel.VerifySignatureCertificateInfo Property [Visual
Basic]
The VerifySignatureCertificateInfo property contains information about the certificate that verifies the signature of the input
document. This information includes the Name, Reference, Store, and Usage properties and is created and stored in memory in
the BizTalkCertificateInfo object.

Syntax
[C++]

Get method:
HRESULT get_VerifySignatureCertificateInfo(
 IDispatch** ppVerifySignatureCertificateInfoDisp
);
Putref method:
HRESULT putref_VerifySignatureCertificateInfo(
 IDispatch* pVerifySignatureCertificateInfoDisp
);
[Visual Basic]
object.VerifySignatureCertificateInfo

Parameters
[C++]

Get method:

ppVerifySignatureCertificateInfoDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the certificate information.

Put method:

pVerifySignatureCertificateInfoDisp

[in] Pointer to an IDispatch interface that contains the certificate information.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a BizTalkCertificateInfo object that contains the certificate information.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkConfig Interface

IBizTalkConfig Interface [C++]
BizTalkConfig Object [Visual Basic]
Use the BizTalkConfig object to create channels, document specifications, envelopes, organizations, ports, and port groups.

In C++, use the IBizTalkConfig interface to access the methods of the BizTalkConfig object.

The properties of the BizTalkConfig object are shown in the following table.

Property Data typ
e

Description

Certificates Object Returns an ADO recordset that contains all specified certificates. This is a read-only property.
Channels Object Returns an ADO recordset that contains all BizTalkChannel objects. This is a read-only property.
Documents Object Returns an ADO recordset that contains all BizTalkDocument objects. This is a read-only property.
Envelopes Object Returns an ADO recordset that contains all BizTalkEnvelope objects.
Organizations Object Returns an ADO recordset that contains all BizTalkOrganization objects. This is a read-only property.
PortGroups Object Returns an ADO recordset that contains all BizTalkPortGroup objects. This is a read-only property.
Ports Object Returns an ADO recordset that contains all BizTalkPort objects. This is a read-only property.

The methods of the BizTalkConfig object are shown in the following table.

Method Description
CreateChannel Returns the address of a pointer to a new BizTalkChannel object.
CreateDocument Returns the address of a pointer to a new BizTalkDocument object.
CreateEnvelope Returns the address of a pointer to a new BizTalkEnvelope object.
CreateOrganization Returns the address of a pointer to a new BizTalkOrganization object.
CreatePort Returns the address of a pointer to a new BizTalkPort object.
CreatePortGroup Returns the address of a pointer to a new BizTalkPortGroup object.

Remarks
In C++, each object created by using one of the methods of this interface inherits the following common methods from
the IBizTalkBase interface. In Microsoft Visual Basic, each object created by using the methods of this class implements the
following common properties and methods from the IBizTalkBase class.

DateModified

Handle

Name

Clear

Create

Load

LoadByName

Remove

Save

When BizTalkPort and BizTalkChannel objects are created, BizTalk Server automatically creates some associated subobjects.
You can access these subobjects by using properties of the BizTalkPort and BizTalkChannel objects.

The relationship between objects, their subobjects, and the properties used to obtain the subobjects is shown in the following
table.

Subobject Associated obj
ect

Property to set

BizTalkEndPoint BizTalkPort DestinationEndpoint
BizTalkEndPoint BizTalkChannel SourceEndpoint
BizTalkLoggingInfo BizTalkChannel LoggingInfo
BizTalkTransportInfo BizTalkPort PrimaryTransport, SecondaryTransport
BizTalkServiceWindowInfo BizTalkPort ServiceWindowInfo
BizTalkCertificateInfo BizTalkPort EncryptionCertificateInfo
BizTalkCertificateInfo BizTalkChannel SignatureCertificateInfo, VerifySignatureCertificateInfo,

or DecryptionCertificateInfo

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkConfig::Certificates Property

IBizTalkConfig::Certificates Property [C++]
BizTalkConfig.Certificates Property [Visual Basic]
The Certificates property returns an ADO recordset that contains all specified certificates.

Syntax
[C++]

Get method:
HRESULT get_Certificates(
 BIZTALK_STORE_TYPE StoreType,
 BIZTALK_USAGE_TYPE UsageType,
 BSTR NamePrefix,
 IDispatch** ppCertsDisp
);
[Visual Basic]
object.Certificates(_
 StoreType As BIZTALK_STORE_TYPE, _
 UsageType As BIZTALK_USAGE_TYPE, _
 NamePrefix As String, _
)

Parameters
[C++]

StoreType

[in] Enumeration value. Valid values are from the BIZTALK_STORE_TYPE enumeration.

UsageType

[in] Enumeration value. Valid values are from the BIZTALK_USAGE_TYPE enumeration.

NamePrefix

[in] BSTR that contains a prefix used as the selection criteria for certificate names. Any certificate Name starting with this value is
returned in the recordset. This value is case sensitive.

ppCertsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all specified certificates.

[Visual Basic]

StoreType

Enumeration value. Valid values are from the BIZTALK_STORE_TYPE enumeration.

UsageType

Enumeration value. Valid values are from the BIZTALK_USAGE_TYPE enumeration.

NamePrefix

String that contains a prefix used as the selection criteria for certificate names. Any certificate Name starting with this value is
returned in the recordset. This value is case sensitive.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

This property returns an Object that contains all specified certificates.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Each record in the ADO recordset returned by this property contains information about an existing BizTalkCertificateInfo object
in the database. The fields in each record contain the following information, listed in order:

Name

Reference

Store

Usage

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp

IBizTalkConfig::Channels Property

IBizTalkConfig::Channels Property [C++]
BizTalkConfig.Channels Property [Visual Basic]
The Channels property returns an ADO recordset that contains all BizTalkChannel objects.

Syntax
[C++]

Get method:
HRESULT Channels(
 IDispatch** ppChannelsDisp
);
[Visual Basic]
object.Channels

Parameters
[C++]

ppChannelsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all BizTalkChannel objects.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all BizTalkChannel objects.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Each record in the ADO recordset returned by this property contains information about an existing BizTalkChannel object in the
database. The fields in each record contain the following information, listed in order:

Handle

Name

DateModified

http://msdn.microsoft.com/library/default.asp

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp

IBizTalkConfig::CreateChannel Method

IBizTalkConfig::CreateChannel Method [C++]
BizTalkConfig.CreateChannel Method [Visual Basic]
[C++]

The CreateChannel method returns the address of a pointer to a new BizTalkChannel object.

[Visual Basic]

The CreateChannel method returns a new BizTalkChannel object.

Syntax
[C++]
HRESULT CreateChannel(
 IDispatch** ppChannelDisp
);
[Visual Basic]
object.CreateChannel()

Parameters
[C++]

ppChannelDisp

[out, retval] Address of a pointer to an IDispatch interface that contains a new BizTalkChannel object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a new BizTalkChannel object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkConfig::CreateDocument Method

IBizTalkConfig::CreateDocument Method [C++]
BizTalkConfig.CreateDocument Method [Visual Basic]
[C++]

The CreateDocument method returns the address of a pointer to a new BizTalkDocument object.

[Visual Basic]

The CreateDocument method returns a new BizTalkDocument object.

Syntax
[C++]
HRESULT CreateDocument(
 IDispatch** ppDocumentDisp
);
[Visual Basic]
object.CreateDocument()

Parameters
[C++]

ppDocumentDisp

[out, retval] Address of a pointer to an IDispatch interface that contains a new BizTalkDocument object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a new BizTalkDocument object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkConfig::CreateEnvelope Method

IBizTalkConfig::CreateEnvelope Method [C++]
BizTalkConfig.CreateEnvelope Method [Visual Basic]
[C++]

The CreateEnvelope method returns the address of a pointer to a new BizTalkEnvelope object.

[Visual Basic]

The CreateEnvelope method returns a new BizTalkEnvelope object.

Syntax
[C++]
HRESULT CreateEnvelope(
 IDispatch** ppEnvelopeDisp
);
[Visual Basic]
object.CreateEnvelope()

Parameters
[C++]

ppEnvelopeDisp

[out, retval] Address of a pointer to an IDispatch interface that contains a new BizTalkEnvelope object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a new BizTalkEnvelope object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkConfig::CreateOrganization Method

IBizTalkConfig::CreateOrganization Method [C++]
BizTalkConfig.CreateOrganization Method [Visual Basic]
[C++]

The CreateOrganization method returns the address of a pointer to a new BizTalkOrganization object.

[Visual Basic]

The CreateOrganization method returns a new BizTalkOrganization object.

Syntax
[C++]
HRESULT CreateOrganization(
 IDispatch** ppOrganizationDisp
);
[Visual Basic]
object.CreateOrganization()

Parameters
[C++]

ppOrganizationDisp

[out, retval] Address of a pointer to an IDispatch interface that contains a new BizTalkOrganization object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a new BizTalkOrganization object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkConfig::CreatePort Method

IBizTalkConfig::CreatePort Method [C++]
BizTalkConfig.CreatePort Method [Visual Basic]
[C++]

The CreatePort method returns the address of a pointer to a new BizTalkPort object.

[Visual Basic]

The CreatePort method returns a new BizTalkPort object.

Syntax
[C++]
HRESULT CreatePort(
 IDispatch** ppPortDisp
);
[Visual Basic]
object.CreatePort()

Parameters
[C++]

ppPortDisp

[out, retval] Address of a pointer to an IDispatch interface that contains a new BizTalkPort object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a new BizTalkPort object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkConfig::CreatePortGroup Method

IBizTalkConfig::CreatePortGroup Method [C++]
BizTalkConfig.CreatePortGroup Method [Visual Basic]
[C++]

The CreatePortGroup method returns the address of a pointer to a new BizTalkPortGroup object.

[Visual Basic]

The CreatePortGroup method returns a new BizTalkPortGroup object.

Syntax
[C++]
HRESULT CreatePortGroup(
 IDispatch** ppPortGroupDisp
);
[Visual Basic]
object.CreatePortGroup()

Parameters
[C++]

ppPortGroupDisp

[out, retval] Address of a pointer to an IDispatch interface that contains a new BizTalkPortGroup object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a new BizTalkPortGroup object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkConfig::Documents Property

IBizTalkConfig::Documents Property [C++]
BizTalkConfig.Documents Property [Visual Basic]
The Documents property returns an ADO recordset that contains all BizTalkDocument objects.

Syntax
[C++]

Get method:
HRESULT Documents(
 IDispatch** ppDocumentsDisp
);
[Visual Basic]
object.Documents

Parameters
[C++]

ppDocumentsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all BizTalkDocument objects.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all BizTalkDocument objects.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Each record in the ADO recordset returned by this property contains information about an existing BizTalkDocument object in
the database. The fields in each record contain the following information, listed in order:

Handle

Name

DateModified

http://msdn.microsoft.com/library/default.asp

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp

IBizTalkConfig::Envelopes Property

IBizTalkConfig::Envelopes Property [C++]
BizTalkConfig.Envelopes Property [Visual Basic]
The Envelopes property returns an ADO recordset that contains all BizTalkEnvelope objects.

Syntax
[C++]

Get method:
HRESULT Envelopes(
 IDispatch** ppEnvelopesDisp
);
[Visual Basic]
object.Envelopes

Parameters
[C++]

ppEnvelopesDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all BizTalkEnvelope objects.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all BizTalkEnvelope objects.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Each record in the ADO recordset returned by this property contains information about an existing BizTalkEnvelope object in
the database. The fields in each record contain the following information, listed in order:

Handle

Name

DateModified

http://msdn.microsoft.com/library/default.asp

Format

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp

IBizTalkConfig::Organizations Property

IBizTalkConfig::Organizations Property [C++]
BizTalkConfig.Organizations Property [Visual Basic]
The Organizations property returns an ADO recordset that contains all BizTalkOrganization objects.

Syntax
[C++]

Get method:
HRESULT Organizations(
 IDispatch** ppOrganizationsDisp
);
[Visual Basic]
object.Organizations

Parameters
[C++]

ppOrganizationsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all BizTalkOrganization objects.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all BizTalkOrganization objects.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Each record in the ADO recordset returned by this property contains information about an existing BizTalkOrganization object
in the database. The fields in each record contain the following information, listed in order:

Handle

Name

DateModified

http://msdn.microsoft.com/library/default.asp

IsDefault

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp

IBizTalkConfig::PortGroups Property

IBizTalkConfig::PortGroups Property [C++]
BizTalkConfig.PortGroups Property [Visual Basic]
The PortGroups property returns an ADO recordset that contains all BizTalkPortGroup objects.

Syntax
[C++]
HRESULT PortGroups(
 IDispatch** ppPortGroupsDisp
);
[Visual Basic]
object.PortGroups

Parameters
[C++]

ppPortGroupsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all BizTalkPortGroup objects.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all BizTalkPortGroup objects.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Each record in the ADO recordset returned by this property contains information about an existing BizTalkPortGroup object in
the database. The fields in each record contain the following information, listed in order:

Handle

Name

DateModified

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at

http://msdn.microsoft.com/library/default.asp

msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp

IBizTalkConfig::Ports Property

IBizTalkConfig::Ports Property [C++]
BizTalkConfig.Ports Property [Visual Basic]
The Ports property returns an ADO recordset that contains all BizTalkPort objects.

Syntax
[C++]

Get method:
HRESULT Ports(
 IDispatch** ppPortsDisp
);
[Visual Basic]
object.Ports

Parameters
[C++]

ppPortsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all BizTalkPort objects.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all BizTalkPort objects.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Each record in the ADO recordset returned by this property contains information about an existing BizTalkPort object in the
database. The fields in each record contain the following information, listed in order:

Handle

Name

DateModified

http://msdn.microsoft.com/library/default.asp

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp

IBizTalkDocument Interface

IBizTalkDocument Interface [C++]
BizTalkDocument Object [Visual Basic]
Use the BizTalkDocument object to identify and describe the document specification of a document.

In C++, use the IBizTalkDocument interface to access the methods of the BizTalkDocument object.

The properties of the BizTalkDocument object are shown in the following table.

Property Ty
p
e

Description

Content B
ST
R

Content of the document specification described by the object. This is a read-only property.

DateModified B
ST
R

Date and time at which the information in the object was created or last modified. This is a read-only property
obtained from the BizTalkBase object.

Handle lo
n
g

Handle to the object. This is a read-only property obtained from the BizTalkBase object.

Name B
ST
R

Name of the object. This is a required property obtained from the BizTalkBase object.

NameSpace B
ST
R

String that resolves naming conflicts between elements in a document. This is a read-only property.

PropertySet ID
is
p
at
ch

Dictionary object that contains the electronic data interchange (EDI) selection criteria (name/value pairs) by w
hich the server extracts information from the functional group header of the EDI document to identify the obje
ct when the document is input. It helps the server create the header of the EDI document when it is output. Thi
s is a required property if the document is an EDI document.

Reference B
ST
R

Full Web Distributed Authoring and Versioning (WebDAV) URL for the document specification referred to by t
his BizTalkDocument object. This is a required property when the TrackFields property is set.

TrackFields ID
is
p
at
ch

Dictionary object that stores the custom fields that Tracking uses to track all documents processed by the ser
ver, based on this document instance. The Reference property must contain a WebDAV URL when this proper
ty is set.

Type B
ST
R

Type of document specification. This is a read-only property.

Version B
ST
R

Version of the document standard. This is a read-only property.

The methods of the BizTalkDocument object are shown in the following table.

Method Description
Clear Clears the object in memory. All member variables of the object in memory are initialized to their default va

lues. This method is obtained from the BizTalkBase object.
Create Creates a new object in the database. This method is obtained from the BizTalkBase object.
Load Loads the object in memory. This method is obtained from the BizTalkBase object.

LoadByName Loads the object by name in memory. This method is obtained from the BizTalkBase object.
LoadByPropertySet Loads the document object by its PropertySet object.
Remove Removes the object from the database. This method is obtained from the BizTalkBase object.
Save Saves the object in the database. This method is obtained from the BizTalkBase object.

Remarks
Each BizTalkDocument object must have at least one associated BizTalkChannel object. More than one BizTalkDocument
object can refer to the same document specification.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Definitions

IBizTalkDocument::Content Property

IBizTalkDocument::Content Property [C++]
BizTalkDocument.Content Property [Visual Basic]
The Content property contains the content of the document specification described by the object.

Syntax
[C++]

Get method:
HRESULT get_Content(
 BSTR* pstrContent
);
[Visual Basic]
object.Content

Parameters
[C++]

pstrContent

[out, retval] Pointer to a BSTR that contains the content.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the content.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

The Reference property is checked when the Create or the Save method is called. If this string is not empty when Create is
called, Content is set to the contents of the document specification and the NameSpace property is changed to the value found
in the document specification.

Once you have created or saved an object with Reference set to a document specification, any changes you make to the Content
or NameSpace of the referenced document specification are not automatically updated on the referring object. To update the
object that refers to the revised document specification, you must save the document specification, reset the Reference property
of the object to its current value, and then call Save on the referring object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkDocument::LoadByPropertySet Method

IBizTalkDocument::LoadByPropertySet Method [C++]
BizTalkDocument.LoadByPropertySet Method [Visual Basic]
The LoadByPropertySet method loads the document object by its PropertySet.

Syntax
[C++]
HRESULT LoadByPropertySet(
 IDispatch** pPropSetDictionaryDisp
);
[Visual Basic]
object.LoadByPropertySet(_
 pPropSetDictionaryDisp As Object _
)

Parameters
[C++]

pPropSetDictionaryDisp

[in] Address of a pointer to an IDispatch interface that contains the PropertySet.

[Visual Basic]

pPropSetDictionaryDisp

Object that contains the PropertySet.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkDocument::NameSpace Property

IBizTalkDocument::NameSpace Property [C++]
BizTalkDocument.NameSpace Property [Visual Basic]
The NameSpace property contains the string that resolves naming conflicts between elements in a document.

Syntax
[C++]

Get method:
HRESULT get_NameSpace(
 BSTR* pstrNameSpace
);
[Visual Basic]
object.NameSpace

Parameters
[C++]

pstrNameSpace

[out, retval] Pointer to a BSTR that contains the namespace.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the namespace.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property. The Reference property is checked when the Create or the Save method is called. If this string is not
empty when Create is called, Content is set to the contents of the document specification and NameSpace is changed to the
value found in the document specification.

Once you have created or saved an object with Reference set to a document specification, any changes you make to the Content
or NameSpace of the referenced document specification are not automatically updated on the referring object. To update the
object that refers to the revised document specification, you must save the document specification, reset the Reference property
of the object to its current value, and then call Save on the referring object.

 Note

When creating a document, the number of characters in the NameSpace combined with the number of characters in the
specification name cannot exceed 255.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkDocument::PropertySet Property

IBizTalkDocument::PropertySet Property [C++]
BizTalkDocument.PropertySet Property [Visual Basic]
The PropertySet property contains a Dictionary object that contains the electronic data interchange (EDI) selection criteria
(name/value pairs) by which the server extracts information from the functional group header of the EDI document to identify the
object when the document is input. It helps the server create the header of the EDI document when it is output.

Syntax
[C++]

Get method:
HRESULT get_PropertySet(
 IDispatch** ppPropSetDisp
);
Putref method:
HRESULT putref_PropertySet(
 IDispatch* pPropSetDisp
);
[Visual Basic]
object.PropertySet

Parameters
[C++]

Get method:

ppPropSetDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the selection criteria.

Putref method

pPropSetDisp

[in] Pointer to an IDispatch interface that contains the selection criteria.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains the selection criteria.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a required property if the document is an EDI document. The Delimiters property of the associated BizTalkPort object
must also be defined.

The following table shows whether names are required in the Dictionary object for PropertySet.

Selection criteria X12 EDIFACT
application_sender_code Yes Yes
application_receiver_code Yes Yes
functional_identifier Yes Yes
standards_version Yes No
standards_version_type No Yes
standards_version_value No Yes

 Note

The name/value pairs contained in the Dictionary object cannot exceed a total of 450 bytes.

PropertySet can be set only if the Reference property is set.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Definitions

IBizTalkDocument::Reference Property

IBizTalkDocument::Reference Property [C++]
BizTalkDocument.Reference Property [Visual Basic]
The Reference property contains the full Web Distributed Authoring and Versioning (WebDAV) URL for the document
specification referred to by the object.

Syntax
[C++]

Get method:
HRESULT get_Reference(
 BSTR* pstrReference
);
Put method:
HRESULT put_Reference(
 BSTR strReference
);
[Visual Basic]
object.Reference

Parameters
[C++]

Get method:

pstrReference

[out, retval] Pointer to a BSTR that contains the reference.

Put method:

strReference

[in] BSTR that contains the reference.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the reference.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
Reference is checked when the Create or the Save method is called. If this string is not empty when Create is called, Content is
set to the contents of the document specification and the NameSpace property is changed to the value found in the document
specification.

Once you have created or saved an object with Reference set to a document specification, any changes you make to the Content
or NameSpace of the referenced document specification are not automatically updated on the referring object. To update the
object that refers to the revised document specification, you must save the document specification, reset the Reference property
of the object to its current value, and then call Save on the referring object.

If Reference is not set, the PropertySet and TrackFields properties must not be set.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkDocument::TrackFields Property

IBizTalkDocument::TrackFields Property [C++]
BizTalkDocument.TrackFields Property [Visual Basic]
The TrackFields property identifies the Dictionary object that stores the custom fields used to track the document. A
BizTalkDocument object points to the specification that contains fields to track the document. The designated fields are logged
to the Tracking database for each instance of a document that is processed. Tracking fields on the BizTalkDocument object are
global. The TrackFields property on the BizTalkChannel object overrides the values specified by this property.

Syntax
[C++]

Get method:
HRESULT get_TrackFields(
 IDispatch** ppTrackFieldsDisp
);
Putref method:
HRESULT putref_TrackFields(
 IDispatch* pTrackFieldsDisp
);
[Visual Basic]
object.TrackFields

Parameters
[C++]

Get method:

ppTrackFieldsDisp

[out, retval] Address of a pointer to the IDictionary interface of the object that contains the custom tracking fields.

Putref method:

pTrackFieldsDisp

[in] Pointer to the IDictionary interface of the object that contains the custom tracking fields.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a CDictionary object that contains the custom tracking fields.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
TrackFields can be set only if the Reference property is set. Tracking fields specified for an output BizTalkDocument object are

ignored.

The fields in the Dictionary object must contain an XPath value that identifies the field to be tracked in a document. By default,
the Dictionary object provides eight predefined fields for tracking data in a document. These predefined fields consist of two
fields for each of the following data types: integer, real, date, and string. If additional fields are required for tracking, you can use
the x_custom_search field in the Dictionary object and set the value to a SimpleList object. The SimpleList object contains a list
of XPaths pointing to the additional tracking fields. XPath values can be added to and deleted from this list using the Add
and Delete methods.

The following table shows the field names in the Dictionary object for TrackFields:

Field Name Field type
i_value1 Integer value
i_value2 Integer value
r_value1 Real value
r_value2 Real value
d_value1 Date value
d_value2 Date value
s_value1 String value
s_value2 String value
x_custom_search A list to return one or more additional data items

For more information about XPath expressions, go to the Microsoft Web site (msdn.microsoft.com/library/default.asp) and search
for XPath.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topics

Document Definitions

Document Tracking

http://msdn.microsoft.com/library/default.asp

IBizTalkDocument::Type Property

IBizTalkDocument::Type Property [C++]
BizTalkDocument.Type Property [Visual Basic]
The Type property contains the type of document specification.

Syntax
[C++]
HRESULT get_Type(
 BSTR* pstrType
);
[Visual Basic]
object.Type

Parameters
[C++]

pstrType

[out, retval] Pointer to a BSTR that contains the document type.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the document type.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property. All document instances must have the same document type as the associated envelope. For example,
if the Format property of the BizTalkEnvelope object is set to X12, Type must also be X12.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkDocument::Version Property

IBizTalkDocument::Version Property [C++]
BizTalkDocument.Version Property [Visual Basic]
The Version property contains the version of the document standard.

Syntax
[C++]
HRESULT get_Version(
 BSTR* pstrVersion
);
[Visual Basic]
object.Version

Parameters
[C++]

pstrVersion

[out, retval] Pointer to a BSTR that contains the version.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the version.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkEndPoint Interface

IBizTalkEndPoint Interface [C++]
BizTalkEndPoint Object [Visual Basic]
Use the BizTalkEndPoint object to configure source information for a BizTalkChannel object and destination information for
a BizTalkPort object.

In C++, use the IBizTalkEndPoint interface to access the methods of the BizTalkEndPoint object.

The properties of the BizTalkEndPoint object are shown in the following table.

Property Type Description
Alias long Handle to the organization identifier type/value pair for the destination BizTalkOrganization object f

or the associated BizTalkPort object.
Application long Handle to the associated application for the destination BizTalkOrganization object for this BizTalkP

ort object.
Openness BIZTALK_

OPENNES
S_
TYPE_EX

Enumeration value that indicates whether the object is open.

Organization long Handle to the destination BizTalkOrganization object for this BizTalkPort object. This is a required p
roperty for this object to be complete unless the Openness property is set to BIZTALK_OPENNESS_
TYPE_EX_DESTINATION.

Remarks
The BizTalkEndPoint object is automatically created when a BizTalkPort object or a BizTalkChannel object is instantiated with
the CreatePort or the CreateChannel method of the BizTalkConfig object.

For destination endpoints, access the BizTalkEndPoint object by using the DestinationEndpoint property of the BizTalkPort
object. For source endpoints, access the BizTalkEndPoint object by using the SourceEndpoint property of the BizTalkChannel
object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkEndPoint::Alias Property

IBizTalkEndPoint::Alias Property [C++]
BizTalkEndPoint.Alias Property [Visual Basic]
The Alias property contains the handle to the alias.

Syntax
[C++]

Get method:
HRESULT get_Alias(
 long* plAliasHandle
);
Put method:
HRESULT put_Alias(
 long lAliasHandle
);
[Visual Basic]
object.Alias

Parameters
[C++]

Get method:

plAliasHandle

[out, retval] Pointer to a long that contains the handle to the alias.

Put method:

lAliasHandle

[in] Long that contains the handle to the alias.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the alias.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkEndPoint::Application Property

IBizTalkEndPoint::Application Property [C++]
BizTalkEndPoint.Application Property [Visual Basic]
The Application property contains the handle to the application.

Syntax
[C++]

Get method:
HRESULT get_Application(
 long* plAppHandle
);
Put method:
HRESULT put_Application(
 long lAppHandle
);
[Visual Basic]
object.Application

Parameters
[C++]

Get method:

plAppHandle

[out, retval] Pointer to a long that contains the handle to the application.

Put method:

lAppHandle

[in] Long that contains the handle to the application.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the application.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkEndPoint::Openness Property

IBizTalkEndPoint::Openness Property [C++]
BizTalkEndPoint.Openness Property [Visual Basic]
The Openness property contains an enumeration value that indicates whether the object has an open destination or source, or
neither.

Syntax
[C++]

Get method:
HRESULT get_Openness(
 BIZTALK_OPENNESS_TYPE_EX* pOpennessType
);
Put method:
HRESULT put_Openness(
 BIZTALK_OPENNESS_TYPE_EX OpennessType
);
[Visual Basic]
object.Openness

Parameters
[C++]

Get method:

pOpennessType

[out, retval] Pointer to an enumeration value. Valid values are from the BIZTALK_OPENNESS_TYPE_EX enumeration.

Put Method:

OpennessType

[in] Enumeration value. Valid values are from the BIZTALK_OPENNESS_TYPE_EX enumeration.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an enumeration value. Valid values are from the BIZTALK_OPENNESS_TYPE_EX enumeration.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The BizTalkPort object is valid only if the associated document or the parameters on the Submit or the SubmitSync method of
the IInterchange interface identify the missing information.

If Openness is set to BIZTALK_OPENNESS_TYPE_EX_SOURCE for a BizTalkEndPoint object associated with a channel, the
following constraints apply:

The SignatureType property must not be set.

The BizTalkPort object cannot be included in a port group.

If Openness is set to BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW on a channel, the associated BizTalkOrganization
object must be the default organization.

If Openness on the object is set to BIZTALK_OPENNESS_TYPE_EX_DESTINATION for a BizTalkEndPoint object associated
with a messaging port, the following constraints apply:

The PrimaryTransportType property must be set to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION.

The EncryptionType property must not be set.

The document or the parameters on Submit or SubmitSync must specify the destination, transport type, and address.

The BizTalkPort object cannot be included in a port group.

 Note

This property cannot be changed on an existing port.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Openness

IBizTalkEndPoint::Organization Property

IBizTalkEndPoint::Organization Property [C++]
BizTalkEndPoint.Organization Property [Visual Basic]
The Organization property contains the handle to the organization.

Syntax
[C++]

Get method:
HRESULT get_Organization(
 long* plOrganizationHandle
);
Put method:
HRESULT put_Organization(
 long lOrganizationHandle
);
[Visual Basic]
object.Organization

Parameters
[C++]

Get method:

plOrganizationHandle

[out, retval] Pointer to a long that contains the handle to the organization.

Put method:

lOrganizationHandle

[in] Long that contains the handle to the organization.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the organization.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkEnvelope Interface

IBizTalkEnvelope Interface [C++]
BizTalkEnvelope Object [Visual Basic]
Use the BizTalkEnvelope object to configure the envelope format used with documents processed by BizTalk Server. An
envelope is the header information for an interchange.

In C++, use the IBizTalkEnvelope interface to access the methods of the BizTalkEnvelope object.

The properties of the BizTalkEnvelope object are shown in the following table.

Property Ty
pe

Description

Content BS
TR

Contents of the selected envelope format specification. This is a read-only property.

DateModified BS
TR

Date and time at which the information in the object was created or last modified. This is a read-only property
obtained from the BizTalkBase object.

Format BS
TR

String that identifies the type of envelope.

Handle lo
ng

Handle to the object. This is a read-only property obtained from the BizTalkBase object.

Name BS
TR

Name of the object. This is a required property obtained from the BizTalkBase object.

NameSpace BS
TR

String that resolves naming conflicts between elements in an envelope specification. This is a read-only prope
rty.

Reference BS
TR

Full Web Distributed Authoring and Versioning (WebDAV) URL name of the envelope format specification file.
This is a required property if the Format property is set to "custom".

Version BS
TR

Version of the envelope format specification. This is a read-only property.

The methods of the BizTalkEnvelope object are shown in the following table.

Method Description
Clear Clears the object in memory. All member variables of the object in memory are initialized to their default values. T

his method is obtained from the BizTalkBase object.
Create Creates a new object in the database. This method is obtained from the BizTalkBase object.
Load Loads the object in memory. This method is obtained from the BizTalkBase object.
LoadByName Loads the object by name in memory. This method is obtained from the BizTalkBase object.
Remove Removes the object from the database. This method is obtained from the BizTalkBase object.
Save Saves the object in the database. This method is obtained from the BizTalkBase object.

Remarks
All document instances in an electronic data interchange (EDI) functional group must have the same format. All document
instances must have the same document type as the associated envelope. For example, if Format is set to X12, the Type property
of the BizTalkDocument objects for the associated BizTalkPort object must also be X12.

If you use an envelope with an EDIFACT format and you want to use a null value for the empty qualifier in the header for the
source or the destination, create a custom identifier with a single dash (-) as the qualifier. To do this, use the CreateAlias method
on the BizTalkOrganization object. When an empty qualifier is encountered on an input EDIFACT envelope, the server converts
the empty qualifier to a dash. For an output EDIFACT envelope, the server converts the dash to an empty qualifier.

The BizTalkEnvelope object is required for input documents if the Type property of the BizTalkDocument object is set to
"flatfile" or "custom xml".

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Envelopes

IBizTalkEnvelope::Content Property

IBizTalkEnvelope::Content Property [C++]
BizTalkEnvelope.Content Property [Visual Basic]
The Content property contains the contents of the selected envelope format specification.

Syntax
[C++]
HRESULT get_Content(
 BSTR* pstrContent
);
[Visual Basic]
object.Content

Parameters
[C++]

pstrContent

[out, retval] Pointer to a BSTR that contains the content.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the content.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

The Reference property is checked when the Create or the Save method is called. If this string is not empty when Create is
called, Content is set to the contents of the envelope specification, and the NameSpace property is changed to the value found
in the envelope specification.

Once you have created or saved an object with Reference set to an envelope specification, any changes you make to the Content
or NameSpace of the referenced envelope specification are not automatically updated on the referring object. To update the
object that refers to the revised envelope specification, you must save the envelope specification, reset the Reference property of
the object to its current value, and then call Save on the referring object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkEnvelope::Format Property

IBizTalkEnvelope::Format Property [C++]
BizTalkEnvelope.Format Property [Visual Basic]
The Format property contains the string that identifies the type of envelope.

Syntax
[C++]

Get method:
HRESULT get_Format(
 BSTR* pstrFormat
);
Put method:
HRESULT put_Format(
 BSTR Format
);
[Visual Basic]
object.Format

Parameters
[C++]

Get method:

pstrFormat

[out, retval] Pointer to a BSTR that contains the envelope format.

Put method:

Format

[in] BSTR that contains the envelope format. The BSTR must be one of the values listed in the Remarks section below.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the envelope format.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The format value must be one of the following strings:

x12

edifact

custom xml (default)

custom

flatfile

reliable

 Note

Any string other than the ones listed here will cause an error at run time.

If this property is set to "custom", the Reference property is required. Also, a custom parser component has to be registered with
the server for input documents with this property set to "custom". For more information about custom parser components,
see Using the IBizTalkParserComponent Interface.

All document instances must have the same document type as the associated envelope. For example, if Format is set to "x12",
the Type property of the BizTalkDocument objects must also be "x12".

If Format is set to X12, edifact, or reliable, the Reference property should not be set.

For more information about envelope formats, see Create envelopes.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Envelopes

IBizTalkEnvelope::NameSpace Property

IBizTalkEnvelope::NameSpace Property [C++]
BizTalkEnvelope.NameSpace Property [Visual Basic]
The NameSpace property contains the string that resolves naming conflicts between elements in an envelope specification.

Syntax
[C++]

Get method:
HRESULT get_NameSpace(
 BSTR* pstrNameSpace
);
[Visual Basic]
object.NameSpace

Parameters
[C++]

pstrNameSpace

[out, retval] Pointer to a BSTR that contains the namespace.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the namespace.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property. The Reference property is checked when the Create or the Save method is called. If this string is not
empty when Create is called, the Content property is set to the contents of the envelope specification, and NameSpace is
changed to the value found in the envelope specification.

Once you have created or saved an object with Reference set to an envelope specification, any changes you make to the Content
or NameSpace of the referenced envelope specification are not automatically updated on the referring object. To update the
object that refers to the revised envelope specification, you must save the envelope specification, reset the Reference property of
the object to its current value, and then call Save on the referring object.

 Note

When creating an envelope, the number of characters in the NameSpace combined with the number of characters in the
specification name cannot exceed 255.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkEnvelope::Reference Property

IBizTalkEnvelope::Reference Property [C++]
BizTalkEnvelope.Reference Property [Visual Basic]
The Reference property contains the full Web Distributed Authoring and Versioning (WebDAV) URL of the envelope format
specification file.

Syntax
[C++]

Get method:
HRESULT get_Reference(
 BSTR* pReference
);
Put method:
HRESULT put_Reference(
 BSTR Reference
);
[Visual Basic]
object.Reference

Parameters
[C++]

Get method:

pReference

[out, retval] Pointer to a BSTR that contains the reference.

Put method:

Reference

[in] BSTR that contains the reference.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the reference.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a required property if the Format property is set to "custom". Reference is checked when the Create or the Save method
is called. If this string is not empty when Create is called, the Content property is set to the contents of the envelope specification,
and the NameSpace property is changed to the value found in the envelope specification.

Once you have created or saved an object with Reference set to an envelope specification, any changes you make to the Content
or NameSpace of the referenced envelope specification are not automatically updated on the referring object. To update the
object that refers to the revised envelope specification, you must save the envelope specification, reset the Reference property of
the object to its current value, and then call Save on the referring object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkEnvelope::Version Property

IBizTalkEnvelope::Version Property [C++]
BizTalkEnvelope.Version Property [Visual Basic]
The Version property contains the version of the envelope format specification.

Syntax
[C++]

Get method:
HRESULT get_Version(
 BSTR* pstrVersion
);
[Visual Basic]
object.Version

Parameters
[C++]

pstrVersion

[out, retval] Pointer to a BSTR that contains the version.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the version.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkLoggingInfo Interface

IBizTalkLoggingInfo Interface [C++]
BizTalkLoggingInfo Object [Visual Basic]
Use the BizTalkLoggingInfo object to configure the document-logging information for an associated BizTalkChannel object.

In C++, use the IBizTalkLoggingInfo interface to access the methods of the BizTalkLoggingInfo object.

The IBizTalkLoggingInfo interface defines the following properties:

Property Type Description
LogNativeInputDocument VARIANT_BO

OL
Flag that indicates whether the input document instance is saved and logged in its
native format.

LogNativeOutputDocument VARIANT_BO
OL

Flag that indicates whether the output document instance is saved and logged in it
s native format.

LogXMLInputDocument VARIANT_BO
OL

Flag that indicates whether the XML input document is saved and logged.

LogXMLOutputDocument VARIANT_BO
OL

Flag that indicates whether the XML output document is saved and logged.

Remarks
The BizTalkLoggingInfo object is automatically created when a BizTalkChannel object is instantiated with the CreateChannel
method of the BizTalkConfig object. You can access the BizTalkLoggingInfo object by using the LoggingInfo property of the
BizTalkChannel object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Storage

IBizTalkLoggingInfo::LogNativeInputDocument Property

IBizTalkLoggingInfo::LogNativeInputDocument Property [C++]
BizTalkLoggingInfo.LogNativeInputDocument Property [Visual
Basic]
The LogNativeInputDocument property contains the flag that indicates whether the input document instance is saved and
logged in its native format.

Syntax
[C++]

Get method:
HRESULT get_LogNativeInputDocument(
 VARIANT_BOOL* pbLogNativeInDoc
);
Put method:
HRESULT put_LogNativeInputDocument(
 VARIANT_BOOL bLogNativeInDoc
);
[Visual Basic]
object.LogNativeInputDocument

Parameters
[C++]

Get method:

pbLogNativeInDoc

[out, retval] Pointer to a VARIANT_BOOL type that contains the flag. A value of VARIANT_TRUE indicates that input documents
will be saved and logged in their native format. A value of VARIANT_FALSE indicates that input documents will not be saved and
logged in their native format.

Put method:

bLogNativeInDoc

[in] VARIANT_BOOL type that contains the flag. A value of VARIANT_TRUE indicates that documents will be saved and logged in
their native format. A value of VARIANT_FALSE indicates that documents will not be saved and logged in their native format.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Variant that contains the flag. A value of True indicates that input documents will be saved and logged in
their native format. A value of False indicates that input documents will not be saved and logged in their native format.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Storage

IBizTalkLoggingInfo::LogNativeOutputDocument Property

IBizTalkLoggingInfo::LogNativeOutputDocument Property
[C++]
BizTalkLoggingInfo.LogNativeOutputDocument Property
[Visual Basic]
The LogNativeOutputDocument property contains the flag that indicates whether the output document instance is saved and
logged in its native format.

Syntax
[C++]

Get method:
HRESULT get_LogNativeOutputDocument(
 VARIANT_BOOL* pbLogNativeOutDoc
);
Put method:
HRESULT put_LogNativeOutputDocument(
 VARIANT_BOOL bLogNativeOutDoc
);
[Visual Basic]
object.LogNativeOutputDocument

Parameters
[C++]

Get method:

pbLogNativeOutDoc

[out, retval] Pointer to a VARIANT_BOOL type that contains the flag. A value of VARIANT_TRUE indicates that output documents
will be saved and logged in their native format. A value of VARIANT_FALSE indicates that output documents will not be saved and
logged in their native format.

Put method:

bLogNativeOutDoc

[in] VARIANT_BOOL type that contains the flag. A value of VARIANT_TRUE indicates that output documents will be saved and
logged in their native format. A value of VARIANT_FALSE indicates that output documents will not be saved and logged in their
native format.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Variant that contains the flag. A value of True indicates that output documents will be saved and logged
in their native format. A value of False indicates that output documents will not be saved and logged in their native format.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Storage

IBizTalkLoggingInfo::LogXMLInputDocument Property

IBizTalkLoggingInfo::LogXMLInputDocument Property [C++]
BizTalkLoggingInfo.LogXMLInputDocument Property [Visual
Basic]
The LogXMLInputDocument property contains the flag that indicates whether the XML input document instance is saved and
logged.

Syntax
[C++]

Get method:
HRESULT get_LogXMLInputDocument(
 VARIANT_BOOL* pbLogXMLInDoc
);
Put method:
HRESULT put_LogXMLInputDocument(
 VARIANT_BOOL bLogXMLInDoc
);
[Visual Basic]
object.LogXMLInputDocument
[C++]

Get method:

pbLogXMLInDoc

[out, retval] Pointer to a VARIANT_BOOL type that contains the flag. A value of VARIANT_TRUE indicates that input documents
will be saved and logged in XML format. A value of VARIANT_FALSE indicates that input documents will not be saved and logged
in XML format.

Put method:

bLogXMLInDoc

[in] VARIANT_BOOL type that contains the flag. A value of VARIANT_TRUE indicates that input documents will be saved and
logged in XML format. A value of VARIANT_FALSE indicates that input documents will not be saved and logged in XML format.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Variant that contains the flag. A value of True indicates that input documents will be saved and logged in
XML format. A value of False indicates that input documents will not be saved and logged in XML format.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Storage

IBizTalkLoggingInfo::LogXMLOutputDocument Property

IBizTalkLoggingInfo::LogXMLOutputDocument Property [C++]
BizTalkLoggingInfo.LogXMLOutputDocument Property [Visual
Basic]
The LogXMLOutputDocument property contains a flag that indicates whether the XML output document instance is saved and
logged.

Syntax
[C++]

Get method:
HRESULT get_LogXMLOutputDocument(
 VARIANT_BOOL* pbLogXMLOutDoc
);
Put method:
HRESULT put_LogXMLOutputDocument(
 VARIANT_BOOL bLogXMLOutDoc
);
[Visual Basic]
object.LogXMLOutputDocument
[C++]

Get method:

pbLogXMLOutDoc

[out, retval] Pointer to a VARIANT_BOOL type that contains the flag. A value of VARIANT_TRUE indicates that output documents
will be saved and logged in XML format. A value of VARIANT_FALSE indicates that output documents will not be saved and
logged in XML format.

Put method:

bLogXMLOutDoc

[in] When putting the property, a VARIANT_BOOL type that contains the flag. A value of VARIANT_TRUE indicates that output
documents will be saved and logged in XML format. A value of VARIANT_FALSE indicates that output documents will not be saved
and logged in XML format.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Variant that contains the flag. A value of True indicates that output documents will be saved and logged
in XML format. A value of False indicates that output documents will not be saved and logged in XML format.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Document Storage

IBizTalkOrganization Interface

IBizTalkOrganization Interface [C++]
BizTalkOrganization Object [Visual Basic]
Use the BizTalkOrganization object to configure organizations, its organization identifiers (aliases), and the applications within
the organization that send and/or receive documents. The application indicates the ultimate source or destination of the
document.

In C++, use the IBizTalkOrganization interface to access the methods of the BizTalkOrganization object.

The properties of the BizTalkOrganization object are shown in the following table.

Property Type Description
Aliases IDispatch ADO recordset of aliases that refer to the object. The alias for an object is the organization identifier t

ype/value pair.
Applications IDispatch ADO recordset of applications that refer to the object.
Comments BSTR User comments for the object.
DateModified BSTR Date and time at which the information in the object was created or last modified. This is a read-only

property obtained from the BizTalkBase object.
Handle long Identifier for the object. This is a read-only property obtained from the BizTalkBase object.
IsDefault VARIANT_

BOOL
Flag that indicates whether the object is the default organization.

Name BSTR Name of the object. This is a required property that is obtained from the BizTalkBase object.

The methods of the BizTalkOrganization object are shown in the following table.

Method Description
Clear Clears the object in memory. All member variables of the object in memory are initialized to their default v

alues. This method is obtained from the BizTalkBase object.
Create Creates a new object in the database. This method is obtained from the BizTalkBase object.
CreateAlias Creates an alias for the object. The alias is the organization identifier type/value pair.
CreateApplication Creates a new application.
GetDefaultAlias Gets the default alias for the object.
Load Loads an object in memory. This method is obtained from the BizTalkBase object.
LoadAlias Loads an existing alias for the object in memory.
LoadApplication Loads an application in memory.
LoadByName Loads an object by name in memory. This method is obtained from the BizTalkBase object.
Remove Removes the object from the database. This method is obtained from the BizTalkBase object.
RemoveAlias Removes an alias.
RemoveApplication Removes an application.
Save Saves the object to the database. This method is obtained from the BizTalkBase object.
SaveAlias Saves this alias.
SaveApplication Saves this application.

Remarks
A BizTalkOrganization object can have more than one application, but each application name must be unique for that object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Organizations

IBizTalkOrganization::Aliases Property

IBizTalkOrganization::Aliases Property [C++]
BizTalkOrganization.Aliases Property [Visual Basic]
The Aliases property returns an ADO recordset that contains information about all aliases that refer to the object. The alias for an
object is the organization qualifier/value pair.

Syntax
[C++]

Get method:
HRESULT get_Aliases(
 IDispatch** ppAliasesDisp
);
[Visual Basic]
object.Aliases

Parameters
[C++]

ppAliasesDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all aliases that refer to the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains all aliases that refer to the object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
BizTalk Messaging Manager refers to aliases as identifiers.

Each record in the ADO recordset returned by this property contains information about the aliases of an existing
BizTalkOrganization object in the database. The fields in each record contain the following information, listed in order:

Handle assigned to the alias.

Name specified in the CreateAlias method.

Boolean specified in the CreateAlias method.

Qualifier specified in the CreateAlias method.

Value specified in the CreateAlias method.

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Organizations

http://msdn.microsoft.com/library/default.asp

IBizTalkOrganization::Applications Property

IBizTalkOrganization::Applications Property [C++]
BizTalkOrganization.Applications Property [Visual Basic]
The Applications property returns an ADO recordset that contains information about all applications that refer to the
Organization object.

Syntax
[C++]

Get method:
HRESULT get_Applications(
 IDispatch** ppApplicationsDisp
);
[Visual Basic]
object.Applications

Parameters
[C++]

ppApplicationsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains all applications that refer to the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all applications that refer to the object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
Each record in the ADO recordset returned by this property contains information about the applications of an existing
BizTalkOrganization object in the database. The fields in each record contain the following information, listed in order:

Handle assigned to the application.

Name specified in the CreateApplication method.

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkOrganization::Comments Property

IBizTalkOrganization::Comments Property [C++]
BizTalkOrganization.Comments Property [Visual Basic]
The Comments property contains the user comments for the object.

Syntax
[C++]

Get method:
HRESULT get_Comments(
 BSTR* pstrComments
);
Put method:
HRESULT put_Comments(
 BSTR strComments
);
[Visual Basic]
object.Comments

Parameters
[C++]

Get method:

pstrComments

[out, retval] Pointer to a BSTR that contains the comments.

Put method:

strComments

[in] When putting the property, a BSTR that contains the comments.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the comments.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkOrganization::CreateAlias Method

IBizTalkOrganization::CreateAlias Method [C++]
BizTalkOrganization.CreateAlias Method [Visual Basic]
The CreateAlias method creates a new alias for this Organization object. The alias for an object is the organization identifier that
contains a name and a qualifier/value pair.

Syntax
[C++]
HRESULT CreateAlias(
 BSTR strName,
 VARIANT_BOOL bDefault,
 BSTR strQualifier,
 BSTR strValue
);
[Visual Basic]
object.CreateAlias(_
 strName As String, _
 bDefault As Boolean, _
 strQualifier As String, _
 strValue As String _
)

Parameters
[C++]

strName

[in] BSTR that contains the name of the alias.

bDefault

[in] VARIANT_BOOL type that contains the flag. This default alias overrides the previous default alias when set to VARIANT_TRUE.
A value of VARIANT_FALSE indicates that this alias should not override the previous default alias. If no alias is specified as the
default, one is assigned when the Create method is called.

strQualifier

[in] BSTR that contains the qualifier. This parameter cannot be set to "group".

strValue

[in] BSTR that contains the value.

[Visual Basic]

strName

String that contains the name of the alias.

bDefault

Boolean that contains the flag. This default alias overrides the previous default alias when set to True. If no alias is specified as
the default, one is assigned when the Create method is called.

strQualifier

String that contains the qualifier. This parameter cannot be set to "group".

strValue

String that contains the value.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
More than one alias can be created for a BizTalkOrganization object. The organization alias must contain a name that is unique
for the specified BizTalkOrganization object, and a qualifier/value pair that is unique across all BizTalkOrganization objects.
One of these aliases must be specified as the default alias for the object.

The server automatically creates an alias named Organization with a default identifier of OrganizationName and the value set to
the organization's name for new organizations. If the organization name is changed, the value is automatically updated with the
new name. This alias cannot be removed.

 Note

When using envelopes with an EDIFACT format and you want to use a null value for the empty qualifier in the header for
the source or the destination, create a custom identifier with a single dash (-) as the qualifier.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Organizations

IBizTalkOrganization::CreateApplication Method

IBizTalkOrganization::CreateApplication Method [C++]
BizTalkOrganization.CreateApplication Method [Visual Basic]
The CreateApplication method creates a new application.

Syntax
[C++]
HRESULT CreateApplication(
 BSTR strName
);
[Visual Basic]
object.CreateApplication(_
 strName As String _
)

Parameters
[C++]

strName

[in] BSTR that contains the name of the application.

[Visual Basic]

strName

String that contains the name of the application.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
If a BizTalkOrganization object is associated with more than one application, each application name must be unique.

 Notes

BizTalk Messaging Manager refers to the default organization as the home organization.

BizTalk Messaging Manager allows applications to be created for the home organization only. The BizTalk Messaging
Configuration object model does not enforce this restriction. Therefore, if you create an application for an organization
other than the default (home) organization, you cannot modify it using BizTalk Messaging Manager.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Organizations

IBizTalkOrganization::GetDefaultAlias Method

IBizTalkOrganization::GetDefaultAlias Method [C++]
BizTalkOrganization.GetDefaultAlias Method [Visual Basic]
The GetDefaultAlias method returns the handle to the default alias for the object. The default alias for an object is the default
organization identifier type/value pair.

Syntax
[C++]
HRESULT GetDefaultAlias(
 long* plAliasHandle
);
[Visual Basic]
object.GetDefaultAlias()

Parameters
[C++]

plAliasHandle

[out, retval] Pointer to a long that contains the handle.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a Long that contains the handle.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Organizations

IBizTalkOrganization::IsDefault Property

IBizTalkOrganization::IsDefault Property [C++]
BizTalkOrganization.IsDefault Property [Visual Basic]
The IsDefault property contains the flag that indicates whether the object is the default organization.

Syntax
[C++]

Get method:
HRESULT get_IsDefault(
 VARIANT_BOOL* pbIsDefault
);
[Visual Basic]
object.IsDefault

Parameters
[C++]

Get method:

pbIsDefault

[out, retval] Pointer to a VARIANT_BOOL type that indicates whether this organization is the default organization. A value of
VARIANT_TRUE indicates that this organization is the default organization. A value of VARIANT_FALSE indicates that this
organization is not the default organization.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Boolean that contains the flag. If True, this organization is the default organization.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property. There must be one and only one default organization at any time.

 Note

BizTalk Messaging Manager refers to the default organization as the home organization.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkOrganization::LoadAlias Method

IBizTalkOrganization::LoadAlias Method [C++]
BizTalkOrganization.LoadAlias Method [Visual Basic]
The LoadAlias method loads an associated alias for the object in memory. The alias for an object is the organization
qualifier/value pair.

Syntax
[C++]
HRESULT LoadAlias(
 long lAliasHandle,
 VARIANT* pvarName,
 VARIANT* pvarDefault,
 VARIANT* pvarQualifier,
 VARIANT* pvarValue
);
[Visual Basic]
object.LoadAlias(_
 lAliasHandle As Long, _
 pvarName As Variant, _
 pvarDefault As Variant, _
 pvarQualifier As Variant, _
 pvarValue As Variant _
)

Parameters
[C++]

lAliasHandle

[in] Long that contains the handle to the alias.

pvarName

[in, out] Pointer to a VARIANT that contains the name of the organization identifier.

pvarDefault

[in, out] Pointer to a VARIANT that contains the default flag.

pvarQualifier

[in, out] Pointer to a VARIANT that contains the qualifier of the organization identifier.

pvarValue

[in, out] Pointer to a VARIANT that contains the value of the organization identifier.

[Visual Basic]

lAliasHandle

Long that contains the handle to the alias.

pvarName

Variant that contains the name of the organization identifier.

pvarDefault

Variant that contains the default flag.

pvarQualifier

Variant that contains the qualifier of the organization identifier.

pvarValue

Variant that contains the value of the organization identifier.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The values used with the parameters of this method can be obtained from the Aliases property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Organizations

IBizTalkOrganization::LoadApplication Method

IBizTalkOrganization::LoadApplication Method [C++]
BizTalkOrganization.LoadApplication Method [Visual Basic]
The LoadApplication method loads an associated application for the object in memory.

Syntax
[C++]
HRESULT LoadApplication(
 long lApplicationHandle,
 VARIANT* pvarName
);
[Visual Basic]
object.LoadApplication(_
 lApplicationHandle As Long, _
 pvarName As Variant _
)

Parameters
[C++]

lApplicationHandle

[in] Long that contains the application handle.

pvarName

[in, out] Pointer to a VARIANT that contains the name of the application.

[Visual Basic]

lApplicationHandle

Long that contains the application handle.

pvarName

Variant that contains the name of the application.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The values used with the parameters of this method can be obtained from the Applications property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkOrganization::RemoveAlias Method

IBizTalkOrganization::RemoveAlias Method [C++]
BizTalkOrganization.RemoveAlias Method [Visual Basic]
The RemoveAlias method removes an alias. The alias for an object is the organization identifier type/value pair.

Syntax
[C++]
HRESULT RemoveAlias(
 long lAliasHandle
);
[Visual Basic]
object.RemoveAlias(_
 lAliasHandle As Long _
)

Parameters
[C++]

lAliasHandle

[in] Long that contains the handle to the alias.

[Visual Basic]

lAliasHandle

Long that contains the handle to the alias.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This record cannot be removed if any of the following conditions apply:

A BizTalkPort or a BizTalkChannel object refers to it.

It has been designated the default organization identifier.

This alias was autogenerated.

The alias handle can be obtained from the Aliases property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Organizations

IBizTalkOrganization::RemoveApplication Method

IBizTalkOrganization::RemoveApplication Method [C++]
BizTalkOrganization.RemoveApplication Method [Visual Basic]
The RemoveApplication method removes an application from the default organization.

Syntax
[C++]
HRESULT RemoveApplication(
 long lApplicationHandle
);
[Visual Basic]
object.RemoveApplication(_
 lApplicationHandle As Long _
)

Parameters
[C++]

lApplicationHandle

[in] Long that contains the handle.

[Visual Basic]

lApplicationHandle

Long that contains the handle.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This record cannot be removed if a BizTalkPort or a BizTalkChannel object refers to it.

The application handle can be obtained from the Applications property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkOrganization::SaveAlias Method

IBizTalkOrganization::SaveAlias Method [C++]
BizTalkOrganization.SaveAlias Method [Visual Basic]
The SaveAlias method saves an alias for the object. The alias for an object is the organization identifier type/value pair.

Syntax
[C++]
HRESULT SaveAlias(
 long lAliasHandle,
 BSTR strName,
 VARIANT_BOOL bDefault,
 BSTR strQualifier,
 BSTR strValue
);
[Visual Basic]
object.SaveAlias(_
 lAliasHandle As Long, _
 strName As String, _
 bDefault As Boolean, _
 strQualifier As String, _
 strValue As String _
)

Parameters
[C++]

lAliasHandle

[in] Long that contains the handle to the alias.

strName

[in] BSTR that contains the name of the organization identifier. This parameter cannot be changed if this alias was autogenerated.

bDefault

[in] VARIANT_BOOL type that contains the default flag. A value of VARIANT_TRUE indicates that this is the default alias for the
organization. A value of VARIANT_FALSE indicates that this is not the default alias for the organization.

strQualifier

[in] BSTR that contains the qualifier of the organization identifier. This parameter cannot be changed if this alias was
autogenerated. This parameter cannot be set to "group".

strValue

[in] BSTR that contains the value of the organization identifier. This parameter cannot be changed if this alias was autogenerated.

[Visual Basic]

lAliasHandle

Long that contains the handle to the alias.

strName

String that contains the name of the organization identifier. This parameter cannot be changed if this alias was autogenerated.

bDefault

Variant that contains the default flag. A value of True indicates that this is the default alias for the organization. A value of False
indicates that this is not the default alias for the organization.

strQualifier

String that contains the qualifier of the organization identifier. This parameter cannot be changed if this alias was autogenerated.
This parameter cannot be set to "group".

strValue

String that contains the value of the organization identifier. This parameter cannot be changed if this alias was autogenerated.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Organizations

IBizTalkOrganization::SaveApplication Method

IBizTalkOrganization::SaveApplication Method [C++]
BizTalkOrganization.SaveApplication Method [Visual Basic]
The SaveApplication method saves this application for the default organization object.

Syntax
[C++]
HRESULT SaveApplication(
 long lApplicationHandle,
 BSTR strName
);
[Visual Basic]
object.SaveApplication(_
 lApplicationHandle As Long, _
 strName As String _
)

Parameters
[C++]

lApplicationHandle

[in] Long that contains the handle to the application.

strName

[in] BSTR that contains the name of the application.

[Visual Basic]

lApplicationHandle

Long that contains the handle to the application.

strName

String that contains the name of the application.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort Interface

IBizTalkPort Interface [C++]
BizTalkPort Object [Visual Basic]
The BizTalkPort object configures a one-way transfer of a document between organizations and applications. It identifies the
source organization and/or application, the destination organization and/or application, the primary transport type, and, if
selected, the associated envelope for transmission.

In C++, use the IBizTalkPort interface to access the methods of the BizTalkPort object.

The properties of the BizTalkPort object are shown in the following table.

Property Type Description
Channels IDispat

ch
ADO recordset that contains information about all BizTalkChannel objects that refer to the
object. This is a read-only property.

Comments BSTR User comments for the Port object.
ControlNumberValue BSTR Value of the interchange control number. This is a required property if the Format property

of the associated BizTalkEnvelope object is set to "x12", "edifact", or "custom". This constr
aint is not enforced for this release, but the server fails if it is not adhered to.

DateModified BSTR Date and time at which the information in the object was created or last modified. This is a r
ead-only property obtained from the BizTalkBase object.

Delimiters IDispat
ch

Dictionary object that contains all delimiters used in the document specification. This is a r
equired property if the Format property of the associated BizTalkEnvelope object is set to
"x12", "edifact", or "custom".

DestinationEndpoint IDispat
ch

Information about the destination.

EncodingType BIZTAL
K_ENCO
DING_
TYPE

Enumeration value that indicates the type of document encoding.

EncryptionCertificateInfo IDispat
ch

Information about the certificate that encrypts the document.

EncryptionType BIZTAL
K_ENCR
YPTION
_
TYPE

Enumeration value that indicates the type of document encryption.

Envelope long Handle to the BizTalkEnvelope object associated with this BizTalkPort object.
Handle long Handle to the object. This is a read-only property obtained from the BizTalkBase object.
Name BSTR Name of the object. This is a required property obtained from the BizTalkBase object.
PrimaryTransport IDispat

ch
Primary transport component information.

SecondaryTransport IDispat
ch

Secondary transport component information.

ServiceWindowInfo IDispat
ch

Service window information.

SignatureType BIZTAL
K_SIGN
ATURE_
TYPE

Enumeration value that indicates the type of digital signing and verification.

The methods of the BizTalkPort object are shown in the following table.

Method Description

Clear Clears the object in memory. All the member variables of the object in memory are initialized to their default valu
es. This method is obtained from the BizTalkBase object.

Create Creates a new object in the database. This method is obtained from the BizTalkBase object.
Load Loads the object in memory. This method is obtained from the BizTalkBase object
LoadByName Loads the object by name in memory. This method is obtained from the BizTalkBase object.
Remove Removes the object from the database. This method is obtained from the BizTalkBase object.
Save Saves the object in the database. This method is obtained from the BizTalkBase object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topics

Document Processing

Messaging Ports

IBizTalkPort::Channels Property

IBizTalkPort::Channels Property [C++]
BizTalkPort.Channels Property [Visual Basic]
The Channels property contains an ADO recordset that contains information about all BizTalkChannel objects that refer to the
object.

Syntax
[C++]

Get method:
HRESULT get_Channels(
 IDispatch** ppChannelsDisp
);
[Visual Basic]
object.Channels

Parameters
[C++]

ppChannelsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the BizTalkChannel objects that refer to the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains the BizTalkChannel objects that refer to the object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Each record in the ADO recordset returned by this property contains information about the BizTalkChannel objects in the
database that are associated with this BizTalkPort object. The fields in each record contain the following information, listed in
order:

Handle

Name

A unique channel identifier, in GUID format.

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

http://msdn.microsoft.com/library/default.asp

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::Comments Property

IBizTalkPort::Comments Property [C++]
BizTalkPort.Comments Property [Visual Basic]
The Comments property contains the user comments for the Port object.

Syntax
[C++]

Get method:
HRESULT get_Comments(
 BSTR* pstrComments
);
Put method:
HRESULT put_Comments(
 BSTR strComments
);
[Visual Basic]
object.Comments

Parameters
[C++]

Get method:

pstrComments

[out, retval] Pointer to a BSTR that contains the comments.

Put method:

strComments

[in] BSTR that contains the comments.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the comments.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::ControlNumberValue Property

IBizTalkPort::ControlNumberValue Property [C++]
BizTalkPort.ControlNumberValue Property [Visual Basic]
The ControlNumberValue property contains the value of the interchange control number.

Syntax
[C++]
HRESULT get_ControlNumberValue(
 BSTR* pstrControlNumberValue
);
Put method:
HRESULT put_ControlNumberValue(
 BSTR strControlNumberValue
);
[Visual Basic]
object.ControlNumberValue

Parameters
[C++]

Get method:

pstrControlNumberValue

[out, retval] Pointer to a BSTR that contains the interchange control number.

Put method:

strControlNumberValue

[in] BSTR that contains the interchange control number.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the interchange control number.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The ControlNumberValue property must contain a value between 1 and 999999999.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h

Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::Delimiters Property

IBizTalkPort::Delimiters Property [C++]
BizTalkPort.Delimiters Property [Visual Basic]
The Delimiters property contains a Dictionary object that contains all delimiters used in the document specification. Delimiters
specifies which characters to use to separate data within the envelope and the documents that are sent using this envelope.

Syntax
[C++]

Get method:
HRESULT get_Delimiters(
 IDispatch** ppDelimitersDisp
);
Putref method:
HRESULT putref_Delimiters(
 IDispatch* pDelimitersDisp
);
[Visual Basic]
object.Delimiters

Parameters
[C++]

Get method:

ppDelimitersDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the delimiters.

Putref method:

pDelimitersDisp

[in] Pointer to an IDispatch interface that contains the delimiters.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains the delimiters.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a required property for the object to be complete if the Format property of the associated BizTalkEnvelope object is set
to "x12", "edifact", or "custom". The PropertySet property of the associated BizTalkDocument object must also be defined. The
following table shows which names are required for the delimiters of the Dictionary object for various formats:

Delimiter X12 EDIFACT
Record_delim Yes Yes
Field_delim Yes Yes
Subfield_delim Yes Yes
Escape_char No Yes

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::DestinationEndpoint Property

IBizTalkPort::DestinationEndpoint Property [C++]
BizTalkPort.DestinationEndpoint Property [Visual Basic]
The DestinationEndpoint property contains information about the destination. This information includes
the Alias, Application, and Organization properties and is created and stored in memory in the BizTalkEndPoint object.

Syntax
[C++]

Get method:
HRESULT get_DestinationEndpoint(
 IDispatch** ppDestEndpointDisp
);
Putref method:
HRESULT putref_DestinationEndpoint(
 IDispatch* pDestEndpointDisp
);
[Visual Basic]
object.DestinationEndpoint

Parameters
[C++]

Get method:

ppDestEndpointDisp

[out, retval] Address of a pointer to an IDispatch interface that contains information about the destination.

Putref method:

pDestEndpointDisp

[in] Pointer to an IDispatch interface that contains information about the destination.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains information about the destination.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
Once a BizTalkPort object has been created, the destination BizTalkOrganization object cannot be changed.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::EncodingType Property

IBizTalkPort::EncodingType Property [C++]
BizTalkPort.EncodingType Property [Visual Basic]
The EncodingType property contains the enumeration value that indicates the type of document encoding.

Syntax
[C++]

Get method:
HRESULT get_EncodingType(
 BIZTALK_ENCODING_TYPE* pEncodingType
);
Put method:
HRESULT put_EncodingType(
 BIZTALK_ENCODING_TYPE EncodingType
);
[Visual Basic]
object.EncodingType

Parameters
[C++]

Get method:

pEncodingType

[out, retval] Pointer to an enumeration value. Valid values are from the BIZTALK_ENCODING_TYPE enumeration.

Put method:

EncodingType

[in] When putting the property, an enumeration value. Valid values are from the BIZTALK_ENCODING_TYPE enumeration.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an enumeration value. Valid values are from the BIZTALK_ENCODING_TYPE enumeration.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The Clear method sets EncodingType to BIZTALK_ENCODING_TYPE_NONE.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::EncryptionCertificateInfo Property

IBizTalkPort::EncryptionCertificateInfo Property [C++]
BizTalkPort.EncryptionCertificateInfo Property [Visual Basic]
The EncryptionCertificateInfo property contains information about the certificate that encrypts the document. This information
includes the Name, Reference, Store, and Usage properties and is created and stored in memory in the BizTalkCertificateInfo
object.

Syntax
[C++]

Get method:
HRESULT get_EncryptionCertificateInfo(
 IDispatch** ppEncryptionCertificateInfoDisp
);
Putref method:
HRESULT putref_EncryptionCertificateInfo(
 IDispatch* pEncryptionCertificateInfoDisp
);
[Visual Basic]
object.EncryptionCertificateInfo

Parameters
[C++]

Get method:

ppEncryptionCertificateInfoDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the certificate information.

Putref method:

pEncryptionCertificateInfoDisp

[in] Pointer to an IDispatch interface that contains the certificate information.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains the certificate information.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h

Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::EncryptionType Property

IBizTalkPort::EncryptionType Property [C++]
BizTalkPort.EncryptionType Property [Visual Basic]
The EncryptionType property contains the enumeration value that indicates the type of document encryption.

Syntax
[C++]

Get method:
HRESULT get_EncryptionType(
 BIZTALK_ENCRYPTION_TYPE* pEncryptionType
);
Put method:
HRESULT put_EncryptionType(
 BIZTALK_ENCRYPTION_TYPE EncryptionType
);
[Visual Basic]
object.EncryptionType

Parameters
[C++]

Get method:

pEncryptionType

[out, retval] Pointer to an enumeration value. Valid values are from the BIZTALK_ENCRYPTION_TYPE enumeration.

Put method:

EncryptionType

[in] Enumeration value. Valid values are from the BIZTALK_ENCRYPTION_TYPE enumeration.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an enumeration value. Valid values are from the BIZTALK_ENCRYPTION_TYPE enumeration.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The Clear method sets EncryptionType to BIZTALK_ENCRYPTION_TYPE_NONE.

If the EncryptionType is set to BIZTALK_ENCRYPTION_TYPE_SMIME, then the EncryptionCertificateInfo property must be
set.

For open messaging ports, EncryptionType must be set to BIZTALK_ENCRYPTION_TYPE_NONE.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::Envelope Property

IBizTalkPort::Envelope Property [C++]
BizTalkPort.Envelope Property [Visual Basic]
The Envelope property contains the handle to the associated BizTalkEnvelope object.

Syntax
[C++]

Get method:
HRESULT get_Envelope(
 long* plEnvelopeHandle
);
Put method:
HRESULT put_Envelope(
 long lEnvelopeHandle
);
[Visual Basic]
object.Envelope

Parameters
[C++]

Get method:

plEnvelopeHandle

[out, retval] Pointer to a long that contains the handle to the object.

Put method:

lEnvelopeHandle

[in] Long that contains the handle to the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the handle to the object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Envelopes

IBizTalkPort::PrimaryTransport Property

IBizTalkPort::PrimaryTransport Property [C++]
BizTalkPort.PrimaryTransport Property [Visual Basic]
The PrimaryTransport property contains the primary transport component information, including the Address, Parameter,
and Type properties of the BizTalkTransportInfo object.

Syntax
[C++]

Get method:
HRESULT get_PrimaryTransport(
 IDispatch** ppTransportInfoDisp
);
Putref method:
HRESULT putref_PrimaryTransport(
 IDispatch* pTransportInfoDisp
);
[Visual Basic]
object.PrimaryTransport

Parameters
[C++]

Get method:

ppTransportInfoDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the primary transport component information.

Putref method:

pTransportInfoDisp

[in] Pointer to an IDispatch interface that contains the primary transport component information.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an Object that contains the primary transport component information.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a required property for the object.

The following constraints are enforced:

If the Openness property of the associated BizTalkEndPoint object is set to
BIZTALK_OPENNESS_TYPE_EX_DESTINATION, the Address property cannot be set, and PrimaryTransport must be set
to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION. The BizTalkServiceWindowInfo object cannot be used with open
destination ports.

Once a BizTalkPort object has been created, the Openness property of the associated BizTalkEndPoint object cannot be
changed.

The Openness property cannot be set to BIZTALK_OPENNESS_TYPE_EX_SOURCE or
BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW.

When using a Type of BIZTALK_TRANSPORT_TYPE_LOOPBACK, the primary and secondary transport Address property
cannot be set, and the BizTalkServiceWindowInfo object cannot be used.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::SecondaryTransport Property

IBizTalkPort::SecondaryTransport Property [C++]
BizTalkPort.SecondaryTransport Property [Visual Basic]
The SecondaryTransport property contains the secondary transport component information, including the Address, Parameter,
and Type properties, and is created and stored in memory in the BizTalkTransportInfo object.

Syntax
[C++]

Get method:
HRESULT get_SecondaryTransport(
 IDispatch** ppTransportInfoDisp
);
Putref method:
HRESULT putref_SecondaryTransport(
 IDispatch* pTransportInfoDisp
);
[Visual Basic]
object.SecondaryTransport

Parameters
[C++]

Get method:

ppTransportInfoDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the secondary transport component information.

Putref method:

pTransportInfoDisp

[in] Pointer to an IDispatch interface that contains the secondary transport component information.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns an Object that contains the secondary transport component information.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a required property for the object to be complete.

The following constraints are enforced:

If the Openness property of the associated BizTalkEndPoint object is set to
BIZTALK_OPENNESS_TYPE_EX_DESTINATION, the Address property cannot be set, and SecondaryTransport must be
set to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION.

Once a BizTalkPort object has been created, the Openness property of the associated BizTalkEndPoint object cannot be
changed.

The Openness property cannot be set to BIZTALK_OPENNESS_TYPE_EX_SOURCE or
BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW.

The Type property cannot be set to BIZTALK_TRANSPORT_TYPE_LOOPBACK.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::ServiceWindowInfo Property

IBizTalkPort::ServiceWindowInfo Property [C++]
BizTalkPort.ServiceWindowInfo Property [Visual Basic]
The ServiceWindowInfo property contains information about the service window. This information includes
the FromTime, IsEnabled, and ToTime properties and is created and stored in memory in the BizTalkServiceWindowInfo
object.

Syntax
[C++]

Get method:
HRESULT get_ServiceWindowInfo(
 IDispatch** ppServiceWindowInfoDisp
);
Putref method:
HRESULT putref_ServiceWindowInfo(
 IDispatch* pServiceWindowInfoDisp
);
[Visual Basic]
object.ServiceWindowInfo

Parameters
[C++]

Get method:

ppServiceWindowInfoDisp

[out, retval] Address of a pointer to an IDispatch interface that contains the service window.

Putref method:

pServiceWindowInfoDisp

[in] Pointer to an IDispatch interface that contains the service window.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns an Object that contains information about the service window.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
If this property is used, the BizTalkServiceWindowInfo object must specify a valid time range by using the FromTime and
ToTime properties.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPort::SignatureType Property

IBizTalkPort::SignatureType Property [C++]
BizTalkPort.SignatureType Property [Visual Basic]
The SignatureType property contains the enumeration value that indicates the type of digital signing and verification.

Syntax
[C++]

Get method:
HRESULT get_SignatureType(
 BIZTALK_SIGNATURE_TYPE* pSignatureType
);
Put method:
HRESULT put_SignatureType(
 BIZTALK_SIGNATURE_TYPE SignatureType
);
[Visual Basic]
object.SignatureType

Parameters
[C++]

Get method:

pSignatureType

[out, retval] Pointer to an enumeration value. Valid values are from the BIZTALK_SIGNATURE_TYPE enumeration.

Put method:

SignatureType

[in] Enumeration value. Valid values are from the BIZTALK_SIGNATURE_TYPE enumeration.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an enumeration value. Valid values are from the BIZTALK_SIGNATURE_TYPE enumeration.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The Clear method sets SignatureType to BIZTALK_SIGNATURE_TYPE_NONE.

BizTalkPort objects associated with open channels cannot have a SignatureType.

If the SignatureType on a BizTalkPort object is changed from BIZTALK_SIGNATURE_TYPE_NONE to
BIZTALK_SIGNATURE_TYPE_SMIME, all channels associated with this BizTalkPort object must have already been saved with
a SignatureCertificateInfo object. Also, if a BizTalkChannel contains a SignatureCertificateInfo object and the
SignatureType of the BizTalkPort is set to BIZTALK_SIGNATURE_TYPE_NONE, the signature will be ignored.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPortGroup Interface

IBizTalkPortGroup Interface [C++]
BizTalkPortGroup Object [Visual Basic]
Use the BizTalkPortGroup object to configure port groups that are used to distribute the same document to many organizations.

In C++, use the IBizTalkPortGroup interface to access the methods of the BizTalkPortGroup object.

The properties of the BizTalkPortGroup object are shown in the following table.

Property Type Description
Channels IDispa

tch
ADO recordset that contains information about all BizTalkChannel objects that refer to this object.

DateModified BSTR Date and time at which the information in the object was created or last modified. This is a read-only prop
erty obtained from the BizTalkBase object.

Handle long Handle to the object. This is a read-only property obtained from the BizTalkBase object.
Name BSTR Name of the object. This is a required property obtained from the BizTalkBase object.
Ports IDispa

tch
ADO recordset that contains information about all BizTalkPort objects that refer to this object.

The methods of the BizTalkPortGroup object are shown in the following table.

Method Description
AddPort Adds a BizTalkPort object to this port group. There must be at least one BizTalkPort object in the port group.
Clear Clears the object in memory. All member variables of the object in memory are initialized to their default values. T

his method is obtained from the BizTalkBase object.
Create Creates a new object in the database. This method is obtained from the BizTalkBase object.
Load Loads the object in memory. This method is obtained from the BizTalkBase object.
LoadByName Loads the object by name in memory. This method is obtained from the BizTalkBase object.
Remove Removes the BizTalkPortGroup object from the database. This method is obtained from the BizTalkBase object.
RemovePort Removes a BizTalkPort object from the port group. There must be at least one BizTalkPort object in the port gro

up.
Save Saves the object in the database. This method is obtained from the BizTalkBase object.

Remarks
There must always be at least one BizTalkPort object and one BizTalkChannel object associated with a BizTalkPortGroup
object. The BizTalkChannel object is associated with the BizTalkPortGroup object, not the BizTalkPort object within the group.
Each BizTalkPort object within the group has another BizTalkChannel object or objects associated with it, but these are ignored
when the port group channel is invoked.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

Related Topic

Port Groups

IBizTalkPortGroup::AddPort Method

IBizTalkPortGroup::AddPort Method [C++]
BizTalkPortGroup.AddPort Method [Visual Basic]
The AddPort method adds a BizTalkPort object to this port group.

Syntax
[C++]
HRESULT AddPort(
 long lPortHandle
);
[Visual Basic]
object.AddPort(_
 lPortHandle As Long _
)

Parameters
[C++]

lPortHandle

[in] Long that contains the handle to the object.

[Visual Basic]

lPortHandle

Long that contains the handle to the object.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The following constraints apply to this method:

There must be at least one BizTalkPort in this BizTalkPortGroup object.

The Openness property of the associated BizTalkEndPoint object to be added must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN.

The port group specified by this object cannot contain any duplicate BizTalkPort objects.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h

Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPortGroup::Channels Property

IBizTalkPortGroup::Channels Property [C++]
BizTalkPortGroup.Channels Property [Visual Basic]
The Channels property contains an ADO recordset that contains information about all BizTalkChannel objects that refer to the
object.

Syntax
[C++]

Get method:
HRESULT get_Channels(
 IDispatch** ppChannelsDisp
);
[Visual Basic]
object.Channels

Parameters
[C++]

ppChannelsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains an ADO recordset that contains all BizTalkChannel
objects that refer to the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all BizTalkChannel objects that refer to the object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
Each record in the ADO recordset returned by this property contains information about the BizTalkChannel objects in the
database that are associated with this BizTalkPortGroup object. The fields in each record contain the following information,
listed in order:

Handle

Name

http://msdn.microsoft.com/library/default.asp

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp

IBizTalkPortGroup::Ports Property

IBizTalkPortGroup::Ports Property [C++]
BizTalkPortGroup.Ports Property [Visual Basic]
The Ports property contains an ADO recordset that contains information about all BizTalkPort objects that refer to the object.

Syntax
[C++]

Get method:
HRESULT Ports(
 IDispatch** ppPortsDisp
);
[Visual Basic]
object.Ports

Parameters
[C++]

ppPortsDisp

[out, retval] Address of a pointer to an IDispatch interface that contains an ADO recordset that contains all BizTalkPort objects
that refer to the object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

This property returns an Object that contains all BizTalkPort objects that refer to the object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
Each record in the ADO recordset returned by this property contains information about the BizTalkPort objects in the database
that are associated with this BizTalkPortGroup object. The fields in each record contain the following information, listed in order:

Handle

Name

Additional information about Microsoft ActiveX Data Objects is available on the Microsoft Developer Network at
msdn.microsoft.com/library/default.asp.

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkPortGroup::RemovePort Method

IBizTalkPortGroup::RemovePort Method [C++]
BizTalkPortGroup.RemovePort Method [Visual Basic]
The RemovePort method removes a BizTalkPort object from this port group.

Syntax
[C++]
HRESULT RemovePort(
 long lPortHandle
);
[Visual Basic]
object.RemovePort(_
 lPortHandle As Long _
)

Parameters
[C++]

lPortHandle

[in] Long that contains the handle to the object to remove.

[Visual Basic]

lPortHandle

Long that contains the handle to the object to remove.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

 Note

In addition to the HRESULT values listed on the error messages page, this method returns OLEDB provider errors. Additional
information about OLEDB is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The last BizTalkPort object associated with the object cannot be removed. A BizTalkPort object cannot be removed if
a BizTalkChannel object refers to it.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

http://msdn.microsoft.com/library/default.asp

IBizTalkServiceWindowInfo Interface

IBizTalkServiceWindowInfo Interface [C++]
BizTalkServiceWindowInfo Object [Visual Basic]
Use the BizTalkServiceWindowInfo object to configure the service window for an associated BizTalkPort object. The service
window indicates a valid time range for transmitting documents.

In C++, use the IBizTalkServiceWindowInfo interface to access the methods of the BizTalkServiceWindowInfo object.

The properties of the BizTalkServiceWindowInfo object are shown in the following table.

Property Type Description
FromTime BSTR Earliest time that the interchange can be transmitted.
IsEnabled VARIANT_BOOL Flag that indicates whether the service window is enabled.
ToTime BSTR Latest time that the interchange can be transmitted.

Remarks
The BizTalkServiceWindowInfo object is automatically created when a BizTalkPort object is instantiated with the CreatePort
method of the BizTalkConfig object. Access the properties of the BizTalkServiceWindowInfo object by using
the ServiceWindowInfo property of the BizTalkPort object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkServiceWindowInfo::FromTime Property

IBizTalkServiceWindowInfo::FromTime Property [C++]
BizTalkServiceWindowInfo.FromTime Property [Visual Basic]
The FromTime property indicates the earliest hour of any day that the interchange can be transmitted.

Syntax
[C++]

Get method:
HRESULT get_FromTime(
 BSTR* pstrFromTime
);
Put method:
HRESULT put_FromTime(
 BSTR strFromTime
);
[Visual Basic]
object.FromTime

Parameters
[C++]

Get method:

pstrFromTime

[out, retval] Pointer to a BSTR that contains the earliest time that the interchange can be transmitted.

Put method:

strFromTime

[in] BSTR that contains the earliest time that the interchange can be transmitted.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the earliest time that the interchange can be transmitted.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The FromTime property must contain an integer value between 0 and 23. Fractional values and minutes cannot be specified.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkServiceWindowInfo::IsEnabled Property

IBizTalkServiceWindowInfo::IsEnabled Property [C++]
BizTalkServiceWindowInfo.IsEnabled Property [Visual Basic]
The IsEnabled property indicates whether a service window is enabled.

Syntax
[C++]

Get method:
HRESULT get_IsEnabled(
 VARIANT_BOOL* pbIsEnabled
);
Put method:
HRESULT put_IsEnabled(
 VARIANT_BOOL bIsEnabled
);
[Visual Basic]
object.IsEnabled

Parameters
[C++]

Get method:

pbIsEnabled

[out, retval] Pointer to a VARIANT_BOOL type that indicates whether a service window is enabled. A value of VARIANT_TRUE
indicates that the service window is enabled. A value of VARIANT_FALSE indicates that the service window is not enabled.

Put method:

bIsEnabled

[in] VARIANT_BOOL type that indicates whether a service window is enabled. A value of VARIANT_TRUE indicates that the service
window is enabled. A value of VARIANT_FALSE indicates that the service window is not enabled.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that indicates whether a service window is enabled. A value of True indicates that the service
window is enabled. A value of False indicates that the service window is not enabled.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkServiceWindowInfo::ToTime Property

IBizTalkServiceWindowInfo::ToTime Property [C++]
BizTalkServiceWindowInfo.ToTime Property [Visual Basic]
The ToTime property contains the latest hour of any day that the interchange can be transmitted.

Syntax
[C++]

Get method:
HRESULT get_ToTime(
 BSTR* pstrToTime
);
Put method:
HRESULT put_ToTime(
 BSTR strToTime
);
[Visual Basic]
object.ToTime

Parameters
[C++]

Get method:

pstrToTime

[out, retval] Pointer to a BSTR that contains the latest time that the interchange can be transmitted.

Put method:

strToTime

[in] BSTR that contains the latest time that the interchange can be transmitted.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the latest time that the interchange can be transmitted.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The ToTime property must contain an integer value between 0 and 23. Fractional values and minutes cannot be specified.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkTransportInfo Interface

IBizTalkTransportInfo Interface [C++]
BizTalkTransportInfo Object [Visual Basic]
Use the BizTalkTransportInfo object to configure the transport service for an associated BizTalkPort object.

In C++, use the IBizTalkTransportInfo interface to access methods of the BizTalkTransportInfo object.

The properties of the BizTalkTransportInfo object are shown in the following table.

Property Type Description
Address BSTR Destination address of the primary transport component.
Parameter BSTR Required return e-mail address for the associated source BizTalkOrganization object if the Type

property is BIZTALK_TRANSPORT_
TYPE_SMTP.

Type BIZTALK_TRANS
PORT_
TYPE

Enumeration value that indicates the type of transport component to be used for the primary trans
port.

Remarks
The BizTalkTransportInfo object is automatically created when a BizTalkPort object is instantiated with the CreatePort method
of the BizTalkConfig object. Access the BizTalkTransportInfo object by using the PrimaryTransport or SecondaryTransport
property of the BizTalkPort object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkTransportInfo::Address Property

IBizTalkTransportInfo::Address Property [C++]
BizTalkTransportInfo.Address Property [Visual Basic]
The Address property contains the destination address.

Syntax
[C++]

Get method:
HRESULT get_Address(
 BSTR* pstrTransportAddress
);
Put method:
HRESULT put_Address(
 BSTR strTransportAddress
);
[Visual Basic]
object.Address

Parameters
[C++]

Get method:

pstrTransportAddress

[out, retval] Pointer to a BSTR that contains the address.

Put method:

strTransportAddress

[in] BSTR that contains the address.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the address.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
If the Openness property of the associated BizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_DESTINATION,
Address cannot be set, and the Type property must be set to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION.

Address must have one of the following prefixes, according to the Type property:

Transport type Prefix Example Address value
APPINTEGRATION Not applicable {11111111-1111-1111-1111-111111111111}
FILE file:// file://C:\Test\MyFile.xml
HTTP http:// http://www.vigorair-18.com/repository/bts.asp
HTTPS https:// https://www.vigorair-18.com/secure/btss.asp
LOOPBACK Not applicable Not applicable
MSMQ Not applicable DIRECT=OS:.\private$\myqueue
NONE Not applicable Not applicable
OPENDESTINATION Not applicable Not applicable
ORCHESTRATIONACTIVATION Not applicable C:\XLANG\Schedules\mysched.skx
SMTP mailto: mailto:patricia@vigorair-18.com

 Notes

The queue:// prefix must be used with an open messaging port when a Message Queue is specified as the destination
address. For open messaging ports, the address is specified either in the document instance or as a parameter when
submitting the document. For more information, see Routing.

When using the Orchestration Activation Component transport type, the Address property must contain the full path of the
XLANG schedule on the local computer. The file:// prefix cannot be used when specifying the path of the XLANG schedule
(.skx) file.

When using the HTTP or HTTPS transport types, BizTalk Server sends the data using a proxy server by default. This is the
correct setting to transport data to computers outside of your company's firewall. However, when sending data within your
company's intranet, you can bypass the use of a proxy server. To do this, you must set the UseProxy field to False in the
transport dictionary. For more information, see SetConfigData.

When using the file:// transport type, you can include symbols to modify the file name. The file name created by the server
contains any static characters you specified in the Address property, along with the actual value of the symbol. For example, if the
Address property is set to "file://C:\Orders\Invoice_%tracking_id%.xml", the actual file name would use a format similar to:
C:\Orders\Invoice_{12345678-90AB-CDEF-1234-567890ABCDEF}. The following table contains the symbols that can be used with
the file:// transport type:

Symbol Description Unique file n
ame

%datetime% Date and time, in milliseconds, of the file creation. The time is based on Greenwich Mean Time (G
MT) rather than local time.

No

%document_na
me%

Name of the document processed by BizTalk Server. No

%server% Host name of the server that processed the document. No
%tracking_id% Globally unique tracking number. Yes
%uid% Counter that increases over time, represented in milliseconds. This number is reset when the serv

er is rebooted.
No

When sending reliable messaging receipts that use the SMTP transport protocol, the value specified in the identifier named
Reliable Messaging Acknowledgement SMTP From Address is used as the From address. This identifier is automatically created
for the default BizTalkOrganization object. This identifier cannot be removed. You should not modify the name or qualifier for
this identifier, but you can modify the value. For more information, see Processing Receipts Using Reliable Messaging.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkTransportInfo::Parameter Property

IBizTalkTransportInfo::Parameter Property [C++]
BizTalkTransportInfo.Parameter Property [Visual Basic]
The Parameter property contains the required return e-mail address of the associated source BizTalkOrganization object if
the Type property is set to BIZTALK_TRANSPORT_TYPE_SMTP.

Syntax
[C++]

Get method:
HRESULT get_Parameter(
 BSTR* pstrPrimaryTransportParameter
);
Put method:
HRESULT put_Parameter(
 BSTR strPrimaryTransportParameter
);
[Visual Basic]
object.Parameter

Parameters
[C++]

Get method:

pstrPrimaryTransportParameter

[out, retval] Pointer to a BSTR that contains the address.

Put method:

strPrimaryTransportParameter

[in] BSTR that contains the address.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the address.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IBizTalkTransportInfo::Type Property

IBizTalkTransportInfo::Type Property [C++]
BizTalkTransportInfo.Type Property [Visual Basic]
The Type property contains the enumeration value that indicates the type of transport component.

Syntax
[C++]

Get method:
HRESULT get_Type(
 BIZTALK_TRANSPORT_TYPE* pTransportType
);
Put method:
HRESULT put_Type(
 BIZTALK_TRANSPORT_TYPE TransportType
);
[Visual Basic]
object.Type

Parameters
[C++]

Get method:

pTransportType

[out, retval] Pointer to an enumeration value. Valid values are from the BIZTALK_TRANSPORT_TYPE enumeration.

Put method:

TransportType

[in] Enumeration value. Valid values are from the BIZTALK_TRANSPORT_TYPE enumeration.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns an enumeration value. Valid values are from the BIZTALK_TRANSPORT_TYPE enumeration.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The following constraints are enforced:

If the Openness property of the associated BizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_DESTINATION,
the Address property cannot be set, and Type must be set to BIZTALK_TRANSPORT_TYPE_OPENDESTINATION.

When using the Message Queuing transport type (BIZTALK_TRANSPORT_TYPE_MSMQ), the following restrictions apply:

When using an envelope, the maximum size of a document submitted to BizTalk Server is 4MB.

When an envelope is not used, the maximum size of a document submitted to BizTalk Server is 2MB.

When using the BIZTALK_TRANSPORT_TYPE_SMTP, the Parameter property must be set to the reply-to SMTP address.

The transport Type of BIZTALK_TRANSPORT_TYPE_ORCHESTRATIONACTIVATION is supported only when
the Openness property of the associated BizTalkEndPoint object is set to BIZTALK_OPENNESS_TYPE_TOWORKFLOW.

When using the Orchestration activation component type (BIZTALK_TRANSPORT_TYPE_ORCHESTRATIONACTIVATION),
the maximum size of a document sent to the port on the XLANG schedule is 2MB.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BizTalkObjectModel.h
Library: Use Microsoft BizTalk Server Configuration Objects 1.0 Type Library (BizTalkObjectModel.dll)

IDictionary Interface

IDictionary Interface [C++]
CDictionary Object [Visual Basic]
The Dictionary object is a collection object that supports the creation, storage, and retrieval of name/value pairs in memory. This
object is used by several methods in the BizTalk Messaging Configuration object model.

In C++, use the IDictionary interface to access the methods of the Dictionary object. In Microsoft Visual Basic, the CDictionary
class defines the methods and properties of a Dictionary object.

The properties of the Dictionary object are shown in the following table.

Property Type Description
Count long Number of entries in the Dictionary object. This is a read-only property.
NewEnum IUnk

nown
Returns the IUnknown interface pointer for the Dictionary object. The caller can use this interface pointer to
call QueryInterface for the enumerator for this object. This is a read-only property.

Prefix BSTR Filter that excludes all entries with a specific prefix when the contents of the Dictionary object are saved.
Value VARI

ANT
Value associated with an entry name.

The methods of the Dictionary object are shown in the following table.

Method Description
GetMultiple Returns the values of multiple entries from the Dictionary object.
PutMultiple Adds specified entries to the Dictionary object or changes them.

Remarks
A Dictionary object is designed to be a general-purpose collection. Therefore, it can be used for anything that is supported by its
internal structure. Every value in a Dictionary object is a Variant. This means that a Dictionary object can be created that
consists of almost any kind of value (including other Dictionary objects).

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

IDictionary::Count Property

IDictionary::Count Property [C++]
CDictionary.Count Property [Visual Basic]
The Count property returns the number of elements in the Dictionary object.

Syntax
[C++]
HRESULT get_Count(
 long* Count
);
[Visual Basic]
object.Count

Parameters
[C++]

Count

[out, retval] Long used to return the count.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the count.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This property is read-only.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

IDictionary::GetMultiple Method

IDictionary::GetMultiple Method [C++]
CDictionary.GetMultiple Method [Visual Basic]
The GetMultiple method returns multiple entries from the Dictionary object.

Syntax
[C++]
HRESULT GetMultiple(
 long cb,
 const LPOLESTR rgolestr[],
 VARIANT rgvar[]
);
[Visual Basic]
object.GetMultiple(_
 cb As Long, _
 rgolestr As String, _
 rgvar As Variant _
)

Parameters
[C++]

cb

[in] Long that specifies the number of values to retrieve.

rgolestr

[in, size_is(cb)] Array of string values that identifies the Dictionary object entries for which the values should be retrieved.

rgvar

[out, size_is(cb)] Array of VARIANTs. When GetMultiple returns, this array contains the values associated with the Dictionary
object entries identified by the rgolestr[] array.

[Visual Basic]

cb

Long that specifies the number of values to retrieve.

rgolestr

Array of string values that identifies the CDictionary object entries for which the values should be retrieved.

rgvar

Array of Variants. When GetMultiple returns, this array contains the values associated with the CDictionary object entries
identified by the rgolestr array.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]

[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
If you call PutMultiple or GetMultiple from Microsoft Visual Basic Scripting Edition (VBScript), these methods fail because they
require data types that VBScript does not support.

IDictionary::NewEnum Property

IDictionary::NewEnum Property [C++]
CDictionary.NewEnum Property [Visual Basic]
[C++]

The NewEnum property retrieves an Enumerator object that implements the IEnumVariant interface of the Dictionary object.

[Visual Basic]

This property is not available in Microsoft Visual Basic.

Syntax
[C++]

Get method:
HRESULT get_NewEnum(
 IUnknown** _NewEnum
);
[Visual Basic]

Not applicable

Parameters
[C++]

_NewEnum

[out, retval] Address of a pointer to an IUnknown interface for an object that implements the IEnumVariant of this collection.
You can call QueryInterface through the returned pointer to retrieve a pointer to the IEnumVariant for this object. To retrieve
the values associated with these elements, you can retrieve the elements in turn, using the Next method of the IEnumVariant
interface, and call the Value method on those elements.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Error Value [Visual Basic]
[Visual Basic]

Not applicable

Remarks
[C++]

This property is read-only.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h

[Visual Basic]

Not applicable

IDictionary::Prefix Property

IDictionary::Prefix Property [C++]
CDictionary.Prefix Property [Visual Basic]
The Prefix property contains a filter that excludes entries with a specific prefix when the contents of the Dictionary object are
saved.

Syntax
[C++]

Get method:
HRESULT get_Prefix(
 BSTR* Prefix
);
Put method:
HRESULT put_Prefix(
 BSTR Prefix
);
[Visual Basic]
object.Prefix

Parameters
[C++]

Get method:

Prefix

[out, retval] Pointer to a BSTR that contains the prefix.

Put method:

Prefix

[in] BSTR that contains the prefix.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the prefix.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
Any name/value pair with a name beginning with the specified prefix is not saved to the database. The prefix default is an
underscore (_). Therefore, any keywords that begin with an underscore are not saved unless the prefix is changed.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

IDictionary::PutMultiple Method

IDictionary::PutMultiple Method [C++]
CDictionary.PutMultiple Method [Visual Basic]
The PutMultiple method adds specified entries to the Dictionary object or changes them.

Syntax
[C++]
HRESULT PutMultiple(
 long cb,
 const LPOLESTR rgolestr[],
 const VARIANT rgvar[]
);
[Visual Basic]
object.PutMultiple(_
 cb As Long, _
 rgolestr As String, _
 rgvar As Variant _
)

Parameters
[C++]

cb

[in] Long that identifies the number of elements in the rgolestr and rgvar arrays.

rgolestr

[in, size_is(cb)] Array of strings that contains the names to add to the Dictionary object.

rgvar

[in, size_is(cb)] Array of VARIANTs that contains the values to add to the Dictionary object.

[Visual Basic]

cb

Long that identifies the number of elements in the rgolestr and rgvar arrays.

rgolestr

Array of Strings that contains the names to add to the CDictionary object.

rgvar

Array of Variants that contains the values to add to the CDictionary object.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
A one-to-one mapping exists between the elements of the rgolestr and rgvar arrays. This means that rgolestr[n] is added to the
Dictionary object and is initialized to rgvar[n]. If the element specified by rgolestr[n] is already in the Dictionary object, the
value associated with the element is overwritten with the value stored in rgvar[n].

[Visual Basic]

If you call PutMultiple or GetMultiple from Microsoft Visual Basic Scripting Edition (VBScript), these methods fail because they
require data types that VBScript does not support.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

IDictionary::Value Property

IDictionary::Value Property [C++]
CDictionary.Value Property [Visual Basic]
The Value property returns or sets the value associated with an entry name.

Syntax
[C++]

Get method:
HRESULT get_Value(
 BSTR bstrName,
 VARIANT* Value
);
Put method:
HRESULT put_Value(
 BSTR bstrName,
 VARIANT Value
);
[Visual Basic]
object.Value(_
 bstrName As String _
)

Parameters
[C++]

Get method:

bstrName

[in] BSTR that contains the name.

Value

[out, retval] Pointer to a VARIANT used to return the value.

Put method:

bstrName

[in] BSTR that contains the name.

Value

[in] When putting the property, a VARIANT that contains the value.

[Visual Basic]

bstrName

String that contains the name.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property optionally returns a Variant that contains the value.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The value of a Dictionary object can be read or written to without explicitly using the Value method by treating the named entry
as a property of the Dictionary object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

ISimpleList Interface

ISimpleList Interface [C++]
CSimpleList Object [Visual Basic]
Use the SimpleList object to create an array of variants that supports enumeration.

In C++, use the ISimpleList interface to access methods of the SimpleList object. In Microsoft Visual Basic, the CSimpleList class
defines the methods and properties of a SimpleList object.

The properties of the SimpleList object are shown in the following table.

Property Type Description
Count long Number of elements in the SimpleList object. This is a read-only property.
Item VARIANT Container for an element of the SimpleList object.

The methods of the SimpleList object are shown in the following table.

Method Description
Add Adds the specified item to the SimpleList object.
Delete Deletes the specified item from the SimpleList object.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

ISimpleList::Add Method

ISimpleList::Add Method [C++]
CSimpleList.Add Method [Visual Basic]
The Add method adds the specified item to the SimpleList object.

Syntax
[C++]
HRESULT Add(
 VARIANT* pVar
);
[Visual Basic]
object.Add(_
 pVar As Variant _
)

Parameters
[C++]

pVar

[in] Pointer to the VARIANT to add to the SimpleList object.

[Visual Basic]

pVar

Variant to add to the CSimpleList object.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

ISimpleList::Count Property

ISimpleList::Count Property [C++]
CSimpleList.Count Property [Visual Basic]
The Count property returns the number of elements in the SimpleList object.

Syntax
[C++]

Get method:
HRESULT get_Count(
 long* Count
);
[Visual Basic]
object.Count

Parameters
[C++]

Count

[out, retval] Pointer to a long used to return the number of items in the SimpleList object.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the number of items in the CSimpleList object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This property is read-only.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

ISimpleList::Delete Method

ISimpleList::Delete Method [C++]
CSimpleList.Delete Method [Visual Basic]
The Delete method deletes the specified item from the SimpleList object.

Syntax
[C++]
HRESULT Delete(
 long Index
);
[Visual Basic]
object.Delete(_
 Index As Long _
)

Parameters
[C++]

Index

[in] Long that contains the index value of the item to delete.

[Visual Basic]

Index

Long that contains the index value of the item to delete.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

ISimpleList::Item Property

ISimpleList::Item Property [C++]
CSimpleList.Item Property [Visual Basic]
The Item property is a read/write Variant that contains an element of the SimpleList object. An initialized Variant is stored at a
specified array index. If an item is already stored at the specified index, that item is overwritten by the put method.

Syntax
[C++]

Get method:
HRESULT get_Item(
 long Index
 VARIANT* Item
);
Put method:
HRESULT put_Item(
 long Index,
 VARIANT Item
);
Putref method:
HRESULT putref_Item(
 long Index,
 VARIANT Item
);
[Visual Basic]
object.Item(_
 Index As Long _
)

Parameters
[C++]

Get method:

Index

[in] Long that contains the index of the item.

Item

[out, retval] Pointer to a VARIANT used to return the item.

Put and Putref methods:

Index

[in] Long that contains the index of the item.

Item

[in] VARIANT that contains the new item.

[Visual Basic]

Index

Long that contains the index of the item.

Return Values

[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Variant that contains the new item.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
When putting a value, use the putref_Item method if you are setting an object reference; use the put_Item method if you are
setting a scalar value.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include commerce.h
Library: Use Microsoft Commerce 2000 Core Components Type Library (MscsCore.dll)

Object Model Enumerations
The following enumerations provide possible values of properties and parameters:

BIZTALK_ENCODING_TYPE

BIZTALK_ENCRYPTION_TYPE

BIZTALK_OPENNESS_TYPE

BIZTALK_OPENNESS_TYPE_EX

BIZTALK_SIGNATURE_TYPE

BIZTALK_STORE_TYPE

BIZTALK_TRANSPORT_TYPE

BIZTALK_USAGE_TYPE

BIZTALK_CONFIGDATA_TYPE

BIZTALK_ENCODING_TYPE
The BIZTALK_ENCODING_TYPE enumeration has one of the following values:

Name Value Description
BIZTALK_ENCODING_TYPE_NONE 1 Specifies that encoding is not used.
BIZTALK_ENCODING_TYPE_MIME 2 Specifies Multipurpose Internet Mail Extensions (MIME) encoding.
BIZTALK_ENCODING_TYPE_CUSTOM 3 Specifies custom encoding.

BIZTALK_ENCRYPTION_TYPE
The BIZTALK_ENCRYPTION_TYPE enumeration has one of the following values:

Name Value Description
BIZTALK_ENCRYPTION_TYPE_NONE 1 Specifies that encryption is not used.
BIZTALK_ENCRYPTION_TYPE_CUSTOM 2 Specifies custom encryption.
BIZTALK_ENCRYPTION_TYPE_SMIME 4 Specifies Secure Multipurpose Internet Mail Extensions (S/MIME) encryption.

BIZTALK_OPENNESS_TYPE
The BIZTALK_OPENNESS_TYPE enumeration has one of the following values:

Name Valu
e

Description

BIZTALK_OPENNESS_TYPE_NOTOPEN 1 Specifies that this instance of the object is not open.
BIZTALK_OPENNESS_TYPE_SOURCE 2 Specifies that the source organization of this instance of the object is open.
BIZTALK_OPENNESS_TYPE_DESTINATIO
N

4 Specifies that the destination organization of this instance of the object is ope
n.

BIZTALK_OPENNESS_TYPE_EX
The BIZTALK_OPENNESS_TYPE_EX enumeration has one of the following values:

Name Valu
e

Description

BIZTALK_OPENNESS_TYPE_EX_NOTOPEN 1 Specifies that this instance of the object is not open.
BIZTALK_OPENNESS_TYPE_EX_SOURCE 2 Specifies that the source organization of this instance of the object is open.
BIZTALK_OPENNESS_TYPE_EX_DESTINATI
ON

4 Specifies that the destination organization of this instance of the object is op
en.

BIZTALK_OPENNESS_TYPE_EX_FROMWOR
KFLOW

8 Specifies that BizTalk Server is receiving a document from an XLANG schedu
le instance.

BIZTALK_OPENNESS_TYPE_EX_TOWORKFL
OW

16 Specifies that BizTalk Server is sending a document to an XLANG schedule i
nstance.

BIZTALK_SIGNATURE_TYPE
The BIZTALK_SIGNATURE_TYPE enumeration has one of the following values:

Name Value Description
BIZTALK_SIGNATURE_TYPE_NONE 1 Specifies that there is no signature.
BIZTALK_SIGNATURE_TYPE_CUSTOM 2 Specifies the custom signature of the document.
BIZTALK_SIGNATURE_TYPE_SMIME 4 Specifies the S/MIME signature of the document.

BIZTALK_STORE_TYPE
The BIZTALK_STORE_TYPE enumeration has one of the following values:

Name Valu
e

Description

BIZTALK_STORE_TYPE_M
Y

1 Specifies that the certificate store is type MY. This store contains certificates authorized only by
your organization.

BIZTALK_STORE_TYPE_BI
ZTALK

2 Specifies that the certificate is stored in the dedicated BizTalk Server 2000 store.

BIZTALK_TRANSPORT_TYPE
The BIZTALK_TRANSPORT_TYPE enumeration has one of the following values:

Name Va
lu
e

Description

BIZTALK_TRANSPORT_TYPE_N
ONE

1 Specifies that this instance of the object does not select a transport component.

BIZTALK_TRANSPORT_TYPE_HT
TP

4 Specifies that this instance of the object selects a Hypertext Transport Protocol (HTTP) tran
sport component.

BIZTALK_TRANSPORT_TYPE_SM
TP

8 Specifies that this instance of the object selects a Simple Mail Transfer Protocol (SMTP) tra
nsport component.

BIZTALK_TRANSPORT_TYPE_
APPINTEGRATION

32 Specifies that this instance of the object selects an application integration component (AIC)
transport component.

BIZTALK_TRANSPORT_TYPE_MS
MQ

12
8

Specifies that this instance of the object selects a Microsoft Message Queuing transport co
mponent.

BIZTALK_TRANSPORT_TYPE_FIL
E

25
6

Specifies that this instance of the object selects a file as a transport component.

BIZTALK_TRANSPORT_TYPE_HT
TPS

10
24

Specifies that this instance of the object selects a Secure Hypertext Transfer Protocol (HTTP
S) transport component.

BIZTALK_TRANSPORT_TYPE_
OPENDESTINATION

20
48

Specifies that the messaging port is an open destination.

BIZTALK_TRANSPORT_TYPE_LO
OPBACK

40
96

Specifies that the document submitted to the server with the SubmitSync method will be
processed and then returned back as the response document of the method.

BIZTALK_TRANSPORT_TYPE_OR
CHESTRATIONACTIVATION

81
92

Specifies that the Address property contains the path of an XLANG schedule to be execute
d.

BIZTALK_USAGE_TYPE
The BIZTALK_USAGE_TYPE enumeration has one of the following values:

Name Value Description
BIZTALK_USAGE_TYPE_ENCRYPTION 1 Specifies that this is an encryption certificate.
BIZTALK_USAGE_TYPE_SIGNATURE 2 Specifies that this is a signature certificate.
BIZTALK_USAGE_TYPE_BOTH 4 Specifies that this certificate is used for both encryption and signature.

BIZTALK_CONFIGDATA_TYPE
The BIZTALK_CONFIGDATA_TYPE enumeration has one of the following values:

Name Value Description
BIZTALK_CONFIGDATA_TYPE_PRIMARYTRANSPORT 0 Configures the primary transport on the messaging port.
BIZTALK_CONFIGDATA_TYPE_SECONDARYTRANSPORT 1 Configures the secondary transport on the messaging port.
BIZTALK_CONFIGDATA_TYPE_ENCRYPTION 2 Configures the encryption certificate on the messaging port.
BIZTALK_CONFIGDATA_TYPE_ENCODING 3 Configures the encoding type on the messaging port.
BIZTALK_CONFIGDATA_TYPE_SIGNATURE 4 Configures the signature verification on the messaging port.
BIZTALK_CONFIGDATA_TYPE_SERIALIZER 5 Configures the serializer on the messaging port.

Error Messages
The properties and methods of the BizTalk Messaging Configuration object model use standard Component Object Model (COM)
HRESULT return values to communicate whether the operation was successful or not.

In C++, these values are the actual return values from the methods themselves (including property get_ and put_ methods). The
program must explicitly perform error checking by examining these return values, or use some variation of structured error
handling.

In Microsoft Visual Basic (VB), and in Visual Basic Scripting Edition (VBS), these values are placed in the Number property of the
global Err object. Error handling is either handled automatically, displaying a standard error dialog box, or explicitly by the
program, checking the value of the Number property of the global Err object. The On Error Resume Next command disables
automatic error handling, thereby enabling explicit error handling.

For additional information about error message values, see the following sections:

Standard COM Errors

BizTalk Server 2000 Error Messages

Standard COM Errors
The following table shows the most common standard COM errors returned by the properties and methods of the BizTalk Server
objects.

Constant Value (3
2-bit)

Description

S_OK 0000000
0

The standard return value used to communicate successful completion.

S_FALSE 0000000
1

An alternate success value, typically used to communicate successful, but non-standard completion. The pr
ecise meaning depends on the method or property in question.

E_UNEXPEC
TED

8000FFF
F

Catastrophic failure error.

E_NOTIMPL 8000400
1

Not implemented error.

E_OUTOFM
EMORY

8007000
E

Out of memory error.

E_INVALID
ARG

8007005
7

One or more arguments are not valid error.

E_NOINTER
FACE

8000400
2

Interface not supported error.

E_POINTER 8000400
3

Pointer not valid error.

E_HANDLE 8007000
6

Handle not valid error.

E_ABORT 8000400
4

Operation aborted error.

E_FAIL 8000400
5

Unspecified error.

E_ACCESSD
ENIED

8007000
5

General access denied error.

MK_E_NOO
BJECT

800401E
5

The object identified by this moniker could not be found.

Additional information may be available using the global Err object. In Visual Basic, the Description property of the Err object
may contain a text description of the error.

In C++, call the OLE DB method GetErrorInfo on the IErrorRecords interface to retrieve the most recently set IErrorInfo pointer
in the current logical thread. The GetDescription method of the IErrorInfo interface may return a text description of the error.
For more information about the GetErrorInfo method, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp) and browse to OLE DB Interfaces in the Platform SDK.

http://msdn.microsoft.com/library/default.asp

BizTalk Server 2000 Error Messages
The BizTalk Messaging Configuration object model error messages defined by BizTalk Server can be used in your application by
including the bts_config_errors.h file located in the BizTalk Server installation directory at \Program Files\Microsoft BizTalk
Server\SDK\Include. These error messages, returned during design time by the methods and properties of the object model,
contain a BTS_ prefix in the message name. All other errors occur during run time, while BizTalk Server is processing a document.

The following table contains both design time and run time errors.

Message nam
e

V
a
l
u
e

Description

CIS_E_OBJECT_
NOT_FOUND

0
x
0
1
0
0

The object was not found.

CIS_E_STATE_N
OT_FOUND

0
x
0
1
0
1

The state engine state was not found in the messaging port definition.

CIS_E_STATE_T
RANSITION

0
x
0
1
0
3

The state table contains a bad engine state transition.

CIS_E_BAD_EN
GINE_CONFIG_
FILE

0
x
0
1
0
5

The string that describes the input state configuration is not valid.

CIS_E_CANNOT
_ADD_STATE

0
x
0
1
0
6

BizTalk Server could not add the user-defined state to the system.

CIS_E_NO_COM
PONENT_FOUN
D

0
x
0
1
0
7

There is no component in the state definition or the ProgID is wrong.

CIS_E_PIPECOM
P_ADMIN_REQ
UIRED

0
x
0
1
0
8

The required IPipelineComponentAdmin interface was not found on the component.

CIS_E_BAD_CO
MPONENT_TYP
E

0
x
0
1
0
9

The component type specified for the state engine is not recognized.

CIS_E_BAD_STA
TE_CONFIG

0
x
0
1
0
A

The state configuration is not valid.

CIS_E_BAD_STA
TE_TYPE

0
x
0
1
0
B

The specified state type is not recognized.

CIS_E_BAD_CO
MPONENT_CO
NFIG

0
x
0
1
0
C

The component configuration is not valid.

CIS_E_INTERNA
L_FAILURE

0
x
0
1
0
F

An internal server failure occurred due to an unknown cause.

CIS_E_CREATE_
SCHEDULER_FA
ILED

0
x
0
1
1
1

The Queue Scheduler for the service could not be created.

CIS_E_AGREEM
ENT_SELECT_FA
ILED

0
x
0
1
1
2

No channels matched the input criteria. Verify that a messaging port and a channel exist, and that they match t
he following fields: Source qualifier: "%1" Source identifier value: "%2" Source document name: "%3" Destinati
on qualifier: "%4" Destination identifier value: "%5" Also verify that any expressions specified for the channels
are compatible with this document.

CIS_E_ERROR 0
x
0
1
1
3

An error occurred in BizTalk Server.%n %n Details:%n ------------------------------%n %1

CIS_E_SERVICE_
INITIALIZATION
_FAILURE

0
x
0
1
1
4

The service failed to start. Verify that this server is enlisted in a BizTalk Server group.

CIS_E_SCHEDU
LER_FAILED

0
x
0
1
1
5

The Queue Scheduler failed and has exited.

CIS_E_WORKER
_THREAD_FAILE
D

0
x
0
1
1
6

A worker thread failed and has exited.

CIS_E_SHARED_
QUEUE_DB_EXE
C_FAILED

0
x
0
1
1
7

Execution against the Shared Queue database has failed.

CIS_E_CANT_RE
AD_WORK_ITE
M

0
x
0
1
1
9

A work item in the Shared Queue database cannot be read.

CIS_E_CHECKP
OINT_FAILED

0
x
0
1
1
c

Checkpointing the work item failed.

CIS_E_CREATE_
DEAD_WORK_IT
EM_FAILED

0
x
0
1
1
e

A new work item in the Suspended queue cannot be created.

CIS_E_GET_SNA
PSHOT_FAILED

0
x
0
1
2
2

A snapshot of the Shared Queue database cannot be taken.

CIS_E_FREE_INT
ERCHANGES_F
AILED

0
x
0
1
2
4

The specified interchanges cannot be freed.

CIS_E_DELETE_I
NTERCHANGE_
FAILED

0
x
0
1
2
5

The specified interchange cannot be deleted.

CIS_E_RECEIVIN
G_INTERCHAN
GE_FAILED

0
x
0
1
2
7

The specified interchange was not received.

CIS_E_GETTING
_NEXT_SCHEDU
LED_WORK_ITE
M_FAILED

0
x
0
1
2
8

The next scheduled work item cannot be obtained for processing.

CIS_E_GET_COU
NT_FAILED

0
x
0
1
2
9

The count on the shared queues cannot be obtained.

CIS_E_TRANSMI
SSION_FAILED

0
x
0
1
2
a

All retry transmissions failed.

CIS_W_TRANS
MISSION_ATTE
MPT_FAILED

0
x
0
1
2
b

A transmission attempt failed.

CIS_W_TRANS
MISSION_XFER
_TO_SECONDA
RY

0
x
0
1
2
c

The primary transport for messaging port "%1" cannot transmit the data. The server will switch to the seconda
ry transport.

CIS_E_RECEIPT_
GENERATION_F
AILED

0
x
0
1
2
e

After creating the work item, the attempt to generate a receipt failed.

CIS_E_RECEIPT_
GENERATION_F
AILED_NO_WO
RK_ITEM

0
x
0
1
2
f

The attempt to generate a receipt failed before the work item was created.

CIS_E_L1_RECEI
PT_CORRELATI
ON_FAILED

0
x
0
1
3
0

Receipt correlation failed.

CIS_E_AGREEM
ENT_LACKING_
PARAMS

0
x
0
1
3
3

At least one of the fields necessary to select a channel is missing. Verify that your document and envelopes ext
ract the proper fields for the parser, or specify the necessary fields upon submission. Channel selection fields:
Source identifier type: "%1" Source identifier value: "%2" Source document name: "%3" Destination identifier t
ype: "%4" Destination identifier value: "%5"

CIS_E_AGREEM
ENT_FAILED

0
x
0
1
3
4

The channel cannot be selected.

CIS_E_ORIGINA
L_L1_INTERCHA
NGE_MISSING

0
x
0
1
3
5

When trying to correlate an incoming receipt, the original interchange and related document(s) are no longer
present.

CIS_E_UNEXPEC
TED_DB_BEHAV
IOR

0
x
0
1
3
6

An unexpected return occurred. The database may need to be restarted.

CIS_E_AGREEM
ENT_INVALID_
MAP

0
x
0
1
3
7

The map specified by the reference "%1" is not valid. Verify that the reference points to a valid map created by
BizTalk Mapper.

CIS_I_SERVICE_
MSG

0
x
0
1
3
8

1%

CIS_E_AGREEM
ENT_MAP_FAIL
ED

0
x
0
1
3
9

The XML document could not be translated. The map specified by reference "%1" failed. Verify that the map is
up to date.

CIS_E_XML_ERR
OR

0
x
0
1
3
A

The XML document could not be parsed on line: %2, position: %3 for the following reason: "%1"

CIS_E_AGREEM
ENT_PROCESSI
NG_FAILED

0
x
0
1
3
f

The server could not finish processing the document.

CIS_E_AGREEM
ENT_PROCESSI
NG_FAILED_W_
NAME

0
x
0
1
4
0

The following channel configuration setting is not valid: "%1"

CIS_E_AGREEM
ENT_INVALID_
QUERY

0
x
0
1
4
1

The "%2" query for the "%1" document tracking field is not a valid XSL pattern. This pattern must be removed
or corrected.

CIS_I_SERVICE_
START

0
x
0
1
4
2

The service has started.

CIS_I_SERVICE_
STOP

0
x
0
1
4
3

The service has stopped.

CIS_E_ERROR_E
X

0
x
0
1
4
4

An error occurred in BizTalk Server.%n %n Details:%n ------------------------------%n %1 %2 %3 %4 %5 %6 %7
%8 %9 %n

CIS_E_ERROR_E
X_HEAD

0
x
0
1
4
5

==
======================================= Date: %1 Source: BizTalk Server 2000 Time: %2
Category: BizTalk Server 2000 User: %3 Computer: %4 Description: An error occurred in BizTalk Server. Details:

CIS_E_ERROR_E
X_FOOT

0
x
0
1
4
6

CIS_E_INVALID_
DATA_FORMAT

0
x
0
1
4
7

The business document that was passed in is not in a recognized format and could not be parsed or decrypted.

CIS_E_CREATE_
ENGINE

0
x
0
1
4
8

BizTalk Server was unable to create a new instance of the processing engine to process a work item. This migh
t be due to a failure to create a new COM+ transaction.

CIS_E_MISSING
DESTINATION
DOCUMENT_SP
EC

0
x
0
1
4
9

BizTalk Server has detected an incomplete messaging port. The destination specification is missing from the m
essaging port.

CIS_E_PROCESS
ING_THREAD_F
AILED

0
x
0
1
4
A

The processing thread failed to start. This might be due to a failure to create the state engine.

CIS_E_NOSRCO
RG

0
x
0
1
4
B

No source organization that corresponds to the ID and Qualifier pair has been specified.

CIS_E_NODEST
ORG

0
x
0
1
4
C

No destination organization that corresponds to the Identifier and Qualifier pair has been specified.

CIS_E_NODOC 0
x
0
1
4
D

No document that corresponds to the document name has been specified.

CIS_E_NOPIPELI
NES

0
x
0
1
4
E

No channel that corresponds to the parameters has been specified.

CIS_E_NOT_RES
UBMITTABLE

0
x
0
1
4
F

The state of the item in the Suspended queue does not allow resubmission.

CIS_E_PIPESELE
CT_POLICY_FAI
LED

0
x
0
1
5
0

No channels matched the certificates that were found with the incoming data. The following certificates accom
panied the submitted data: Signature certificate reference: "%1" Encryption certificate reference: "%2"

CIS_E_SUBMIT_I
NVALIDDOC

0
x
0
1
5
1

The submitted document is not valid. See the following messages for more details.

CIS_E_SUBMITS
YNC_TOOMAN
YDOCS

0
x
0
1
5
2

The SubmitSync method failed because multiple documents where found within the data. Only one document
is allowed per synchronous submission. If this is a structured flat-file submission, then the most common caus
e of failure is extra leading or trailing white space around the data.

CIS_E_SUBMITS
YNC_TOOMAN
YPIPES

0
x
0
1
5
3

The synchronous submission could not be completed because multiple valid channels matched the incoming d
ocument. Only one channel is allowed to match the incoming document.

CIS_E_XMIT_NO
TRANSPORTCO
MP

0
x
0
1
5
4

This server could not create a component with the class ID "%1" for transport. Verify that this component is pr
operly registered. The following error was returned:

CIS_E_XMIT_EM
PTY_DOCUMEN
T

0
x
0
1
5
5

Messaging port "%1" cannot transmit a zero-byte document.

CIS_E_XMIT_FAI
LED_W_NAME

0
x
0
1
5
6

The server could not finish processing messaging port "%1".

CIS_E_XMIT_NO
_INTERFACE

0
x
0
1
5
7

The server could not obtain the "%1" interface from the transport component with CLSID "%2".

CIS_E_XMIT_NO
_BTS_AIC_INTE
RFACES

0
x
0
1
5
8

The server could not obtain either the "%1" or "%2" interfaces from the BizTalk Server application integration c
omponent with CLSID "%3".

CIS_E_XMIT_FAI
LED_W_DETAIL
S

0
x
0
1
5
9

The server encountered a transport error while processing the messaging port "%1", which uses a transport co
mponent with a ProgID of "%2".

CIS_E_NOHDR_
ERROR_EX

0
x
0
1
5
A

%1 %2 %3 %4 %5 %6 %7 %8 %9 %n

CIS_W_COMP_
NOACK

0
x
0
1
5
B

The correlation component "%1" could not find a document for which to send a receipt. No action will be taken
.

CIS_E_CORREL
ATIONCOMP_F
AILED

0
x
0
1
5
C

The correlation component "%1" returned an unexpected failure. The document will be placed in the Suspende
d queue.

CIS_E_CORREL
ATION_FAILED

0
x
0
1
5
D

Receipt correlation processing failed.

CIS_E_XML_VAL
IDATE_ERROR

0
x
0
1
5
E

The XML document has failed validation for the following reason: %1

CIS_E_CHANNE
L_ACCESSDENI
ED

0
x
0
1
5
F

The submitted document does not have the necessary signature or encryption required by channel "%3". The f
ollowing certificates accompanied the submitted data: Signature certificate reference: "%1" Encryption certifica
te reference: "%2"

CIS_I_SERVICE_
RESTARTING

0
x
0
1
6
0

The service is restarting.

BTS_E_CONSTR
AINT

0
x
1
2
0
1

Constraint Error

BTS_E_NOOBJE
CT

0
x
1
2
0
2

The object was not found.

BTS_E_INTERNA
LFAILURE

0
x
1
2
0
3

An internal failure occurred.

BTS_E_ENVELO
PE_CONTROLN
UMBER

0
x
1
2
0
C

If the envelope format is set to X12 or EDIFACT, the control number value must be set to a number greater tha
n or equal to 1.

BTS_E_ENVELO
PE_DELIMETER

0
x
1
2
0
D

If the envelope format is set to X12, then delimiters are required and must be set.

BTS_E_ENCRYP
TION_CUSTOM
_NOCLSID

0
x
1
2
0
E

If the encryption type is Custom, then the class identifier (CLSID) must also be specified.

BTS_E_ENCODI
NG_CUSTOM_
NOCLSID

0
x
1
2
0
F

If the encoding type is Custom, then the class identifier (CLSID) must also be specified.

BTS_E_SIGNAT
URE_CUSTOM_
NOCLSID

0
x
1
2
1
0

If the signature type is Custom, then the class identifier (CLSID) must also be specified.

BTS_E_INVALID
CONTROLNUM
BER

0
x
1
2
1
2

The control number value must be set to a number greater than or equal to 1.

BTS_E_ENVELO
PE_INUSE

0
x
1
2
1
3

The format of the envelope cannot be changed because it is used in a messaging port.

BTS_E_CHANNE
L_MISSINGMAP
SOURCE

0
x
1
2
1
5

The channel is missing the MapSource node.

BTS_E_INVALID
_CERT_USAGE

0
x
1
2
1
6

The certificate is not valid for the current usage. An encryption certificate cannot be used for signing; nor can a
signing certificate be used for encryption. Make sure that the correct certificate is selected.

BTS_E_MISSING
SMTPHOST

0
x
1
2
1
8

The SMTP host is missing. The SMTP host can be configured in BizTalk Server Administration.

BTS_E_INVALID
_ENCRYPT_STO
RE

0
x
1
2
1
9

The encryption store type is not valid. The store type must be BIZTALK.

BTS_E_INVALID
_SGNTCERT_ST
ORE

0
x
1
2
1
A

The signature store type is not valid. The store type must be MY.

BTS_E_DATATO
OLONG

0
x
1
2
1
B

The data length is too long.

BTS_E_INVALID
_VERIFY_ENCRY
PTCERT_STORE

0
x
1
2
1
C

The encryption verification store type is not valid. The store type must be MY.

BTS_E_INVALID
_VERIFY_SGNT
CERT_STORE

0
x
1
2
1
D

The signature verification store type is not valid. The store type must be BIZTALK.

BTS_E_ORGANI
ZATION_UNIQU
E_ID

0
x
1
2
1
F

The organization identifier must be a unique identifier.

BTS_E_ORGANI
ZATION_UNIQU
E_NAME

0
x
1
2
2
0

The organization name must be a unique name.

BTS_E_OBJECT_
ALREADY_EXIST
S

0
x
1
2
2
1

The object already exists. You cannot call the Create() method on a BizTalk Messaging Configuration object mu
ltiple times without also calling the Clear() or Remove() methods.

BTS_E_ALIAS_U
NIQUE_ID

0
x
1
2
2
2

The identifier must be a unique identifier.

BTS_E_ALIAS_U
NIQUE_NAME

0
x
1
2
2
3

The identifier name for this organization must be a unique name.

BTS_E_ALIAS_U
NIQUE_QUALIFI
ERVALUE

0
x
1
2
2
5

The identifier must have a unique qualifier-value pair.

BTS_E_ALIAS_F
OREIGN_OWNE
RID

0
x
1
2
2
6

The organization cannot be removed because it is referred to by an identifier.

BTS_E_XMLSHA
RE_UNIQUE_ID

0
x
1
2
2
7

The primary identifier for the XML Share table in the SQL Server database must be a unique identifier.

BTS_E_XMLSHA
RE_UNIQUE_RE
FERENCE

0
x
1
2
2
8

The reference for the XML Share table in the SQL Server database must be a unique reference.

BTS_E_DOCUM
ENT_UNIQUE_I
D

0
x
1
2
2
9

The document identifier must be a unique identifier.

BTS_E_DOCUM
ENT_UNIQUE_N
AME

0
x
1
2
2
A

The document name must be a unique name.

BTS_E_DOCUM
ENT_FOREIGN_
SHAREID

0
x
1
2
2
C

The XML Share table in the SQL Server database cannot be removed because it is referred to by a document.

BTS_E_ENVELO
PE_UNIQUE_ID

0
x
1
2
2
D

The envelope identifier must be a unique identifier.

BTS_E_ENVELO
PE_UNIQUE_NA
ME

0
x
1
2
2
E

The envelope name must be a unique name.

BTS_E_ENVELO
PE_FOREIGN_S
HAREID

0
x
1
2
3
0

The XML Share table in the SQL Server database cannot be removed because it is referred to by an envelope.

BTS_E_CONTRO
LNUMBER_UNI
QUE_ID

0
x
1
2
3
1

The control-number identifier must be a unique identifier.

BTS_E_PORTGR
OUP_UNIQUE_I
D

0
x
1
2
3
2

The distribution list identifier must be a unique identifier.

BTS_E_PORTGR
OUP_UNIQUE_
NAME

0
x
1
2
3
3

The distribution list name must be a unique name.

BTS_E_MISSING
_VALUE

0
x
1
2
3
5

The identifier value property must have a value.

BTS_E_MISSING
_SRCORGID

0
x
1
2
3
6

The Channel SourceOrganization property must have a value.

BTS_E_APPLICA
TION_UNIQUE_I
D

0
x
1
2
3
7

The application identifier must be a unique identifier.

BTS_E_APPLICA
TION_FOREIGN
_OWNERID

0
x
1
2
3
8

The organization cannot be removed because it is referred to by an application.

BTS_E_APPLICA
TION_UNIQUE_
NAME

0
x
1
2
3
9

For applications within this organization, the application name must be a unique name.

BTS_E_CHANNE
L_UNIQUE_ID

0
x
1
2
3
A

The channel identifier must be a unique identifier.

BTS_E_CHANNE
L_UNIQUE_NA
ME

0
x
1
2
3
B

The channel name must be a unique name.

BTS_E_CHANNE
L_FOREIGN_INP
DOCID

0
x
1
2
3
D

The inbound document cannot be removed because it is used by a channel.

BTS_E_CHANNE
L_FOREIGN_OU
TDOCID

0
x
1
2
3
E

The output document cannot be removed because it is used by a channel.

BTS_E_CHANNE
L_FOREIGN_PO
RTGROUPID

0
x
1
2
3
F

The distribution list cannot be removed because it is used by a channel.

BTS_E_CHANNE
L_FOREIGN_SR
CORGID

0
x
1
2
4
0

The source organization cannot be removed because it is used by a channel.

BTS_E_ENVELO
PE_INVALIDFO
RMAT

0
x
1
2
4
1

The only valid envelope-format strings are: Custom, Custom XML, EDIFACT, Flatfile, X12, and Reliable. The prev
iously specified format will remain unchanged.

BTS_E_CHANNE
L_FOREIGN_CO
NTROLNUMID

0
x
1
2
4
2

The control number cannot be removed because it is used by an channel.

BTS_E_PORT_U
NIQUE_ID

0
x
1
2
4
3

The messaging port identifier must be a unique identifier.

BTS_E_PORT_U
NIQUE_NAME

0
x
1
2
4
4

The messaging port name must be a unique name.

BTS_E_CHANNE
L_FOREIGN_SR
CAPPID

0
x
1
2
4
7

The source application cannot be removed because it is used by a channel.

BTS_E_PORT_F
OREIGN_DSTO
RGID

0
x
1
2
4
8

The destination organization cannot be removed because it is used by a messaging port.

BTS_E_PORT_F
OREIGN_DSTAL
IASID

0
x
1
2
4
9

The destination identifier cannot be removed because it is used by a messaging port.

BTS_E_PORT_F
OREIGN_ENVID

0
x
1
2
4
A

The envelope cannot be removed because it is used by a messaging port.

BTS_E_CHANNE
L_FOREIGN_SR
CALIASID

0
x
1
2
4
B

The source identifier cannot be removed because it is used by a channel.

BTS_E_PORT_F
OREIGN_DSTAP
PID

0
x
1
2
4
C

The destination application cannot be removed because it is used by a messaging port.

BTS_E_PORT_F
OREIGN_CONT
ROLNUMID

0
x
1
2
4
D

The control number cannot be removed because it is used by a messaging port.

BTS_E_DOCUM
ENT_MISSING_
REFERENCE

0
x
1
2
4
E

The Reference property must have a value if the TrackingFields or PropertySet properties are specified.

BTS_E_DOCUM
ENT_REFERENC
E_CANT_BE_CH
ANGED

0
x
1
2
4
F

A document reference cannot be modified if it is referred to by a channel.

BTS_E_PORTGR
OUP_NOTOPEN
GRP

0
x
1
2
5
1

Messaging ports that are set to an open destination or set to an XLANG schedule (BIZTALK_OPENNESS_TYPE_
EX_TOWORKFLOW) cannot be used in distribution lists.

BTS_E_PORTGR
OUP_DUPLICAT
EPORT

0
x
1
2
5
2

A duplicate messaging port cannot be added to the distribution list.

BTS_E_OUTPUT
CONFIG_UNIQ
UE_ID

0
x
1
2
5
5

The output configuration identifier must be a unique identifier.

BTS_E_OUTPUT
CONFIG_FOREI
GN_PORTID

0
x
1
2
5
6

The messaging port cannot be removed because it is used by a channel.

BTS_E_OUTPUT
CONFIG_FOREI
GN_CHANNELI
D

0
x
1
2
5
7

The channel cannot be removed because it is used by a messaging port.

BTS_E_PORT_L
OOPBACK_RELI
ABLE

0
x
1
2
5
F

A messaging port with the transport type Loopback cannot be associated with an envelope that uses the Relia
ble format.

BTS_E_ALIAS_R
ESERVEDWORD

0
x
1
2
6
2

Group is a reserved word for qualifiers and cannot be used as the qualifier for an identifier.

BTS_E_DOCUM
ENT_NEEDMAP
REF

0
x
1
2
6
8

A map reference is required to transform the inbound document to the outbound document if the document s
pecifications are different.

BTS_E_PORT_D
ESTORGNOTSP
ECIFIED

0
x
1
2
6
C

This messaging port must have a destination organization specified.

BTS_E_PORT_MI
SSING_PRITRA
NSTYPE

0
x
1
2
6
D

You must specify a primary transport type for this messaging port. The primary transport cannot be blank, and
it cannot be an open destination.

BTS_E_PORT_MI
SSING_PRITRA
NSADDRESS

0
x
1
2
6
E

This messaging port must have a primary transport address specified.

BTS_E_PORT_IN
VALID_SECTRA
NSTYPE

0
x
1
2
6
F

The secondary transport type cannot be set to Open, Loopback, or to BizTalk Orchestration Activation.

BTS_E_PORT_MI
SSING_SECTRA
NSADDRESS

0
x
1
2
7
0

The secondary transport address is missing, although the transport type has been defined.

BTS_E_PORT_IN
VALID_ORG

0
x
1
2
7
1

The organization specified in this messaging port does not exist.

BTS_E_PORT_IN
VALID_ALIAS

0
x
1
2
7
2

The identifier specified for the organization in this messaging port either does not exist or it does not belong t
o the organization.

BTS_E_PORT_IN
VALID_APPLICA
TION

0
x
1
2
7
3

The application specified for the organization in this messaging port either does not exist or it does not belong
to the organization.

BTS_E_PORT_IN
VALID_ENVELO
PE

0
x
1
2
7
4

The envelope specified in this messaging port does not exist.

BTS_E_PORT_O
PEN_DESTORG_
SPECIFIED

0
x
1
2
7
C

An open-destination messaging port cannot have a destination organization specified.

BTS_E_PORT_O
PEN_DESTAPP_
SPECIFIED

0
x
1
2
7
E

An open-destination messaging port cannot have a destination application specified.

BTS_E_PORT_O
PEN_PRITRANS
TYPEOPEN

0
x
1
2
7
F

An open-destination messaging port must specify a primary transport type as an open destination.

BTS_E_PORT_O
PEN_PRITRANS
ADDRESS

0
x
1
2
8
0

An open-destination messaging port cannot specify a primary transport address.

BTS_E_PORT_O
PEN_PRITRANS
PARAMETER

0
x
1
2
8
1

An open-destination messaging port cannot specify a primary transport parameter.

BTS_E_PORT_O
PEN_SECTRANS
TYPE

0
x
1
2
8
2

An open-destination messaging port cannot specify the secondary transport type.

BTS_E_PORT_O
PEN_SECTRANS
ADDRESS

0
x
1
2
8
3

An open-destination messaging port cannot specify a secondary transport address.

BTS_E_PORT_O
PEN_SECTRANS
PARAMETER

0
x
1
2
8
4

An open-destination messaging port cannot specify a secondary transport parameter.

BTS_E_PORT_O
PEN_ENCRYPTI
ONTYPE

0
x
1
2
8
5

An open-destination messaging port cannot specify an encryption type.

BTS_E_PORT_O
PEN_ENCRYPTI
ONREF

0
x
1
2
8
6

An open-destination messaging port cannot specify an encryption reference.

BTS_E_PORT_SI
GNATTYPEAND
REFERENCE

0
x
1
2
8
7

The signature type is specified; however, the signature reference is missing.

BTS_E_PORT_E
NCRYPTIONTYP
EANDREFEREN
CE

0
x
1
2
8
8

The encryption type is specified; however, the encryption reference is missing.

BTS_E_ALIAS_D
EFAULT

0
x
1
2
8
A

One and only one default identifier is required and permitted at all times. The default identifier cannot be missi
ng, nor can it be duplicated.

BTS_E_ALIAS_A
UTO

0
x
1
2
8
B

The alias, which uses the name "Organization" and the qualifier "OrganizationName," is a system-created alias.
You cannot remove this alias, create another alias that uses the same name and qualifier, or change any fields
of this alias.

BTS_E_TRANSP
ORT_SYNTAXA
PPINT

0
x
1
2
8
E

Either the syntax of this address is incorrect for the Application Integration Component transport type property
, or the component is not registered, or else the component is not a valid AIC component.

BTS_E_TRANSP
ORT_SYNTAXFI
LE

0
x
1
2
8
F

The syntax of this address is incorrect for the File transport type.

BTS_E_TRANSP
ORT_SYNTAXH
TTP

0
x
1
2
9
1

The syntax of this address is incorrect for the HTTP transport type.

BTS_E_TRANSP
ORT_SYNTAXH
TTPS

0
x
1
2
9
2

The syntax of this address is incorrect for the HTTPS transport type.

BTS_E_TRANSP
ORT_SYNTAXS
MTP

0
x
1
2
9
3

The syntax of this address is incorrect for the SMTP transport type.

BTS_E_TRANSP
ORT_SYNTAXN
ONE

0
x
1
2
9
4

You cannot specify a transport address or a parameter when the transport type is set to None, or when the sou
rce or destination are Open.

BTS_E_TRANSP
ORT_LOCALHO
ST

0
x
1
2
9
5

The transport address cannot contain the word "localhost". Replace it with the computer name instead.

BTS_E_PORTGR
OUP_LASTPOR
T

0
x
1
2
9
6

The messaging port cannot be removed if it is the last remaining messaging port in a distribution list.

BTS_E_TRANSP
ORT_MISSING_
PRISMTPPARA
METER

0
x
1
2
9
8

A primary transport parameter is required for the SMTP transport type.

BTS_E_TRANSP
ORT_MISSING_
SECSMTPPARA
METER

0
x
1
2
9
9

A secondary transport parameter is required for the SMTP transport type.

BTS_E_NAMERE
Q

0
x
1
2
9
A

The Name property must always be at least one character long.

BTS_E_INVALID
TIMEFORMAT

0
x
1
2
9
B

The time format is not valid. Enter the time, in hours, in a 24-hour format (from 0 to 23 hours). You can enter o
nly hours, not minutes or seconds.

BTS_E_TIMESTA
MP

0
x
1
2
9
C

This object cannot be saved or removed because the timestamp has changed.

BTS_E_PORTGR
OUP_MISSING_
PORT

0
x
1
2
9
D

A distribution list must contain at least one messaging port.

BTS_E_ORGANI
ZATION_REMO
VEDEFAULT

0
x
1
2
9
E

The home organization cannot be removed.

BTS_E_PORT_SE
RVICEWINDOW
_EQUAL

0
x
1
2
9
F

The start time (FromTime) and end time (ToTime) for the service window cannot be equal.

BTS_E_ENVELO
PE_REFERENCE
NOTALLOWED

0
x
1
2
A
2

The reference property cannot be set for this envelope format.

BTS_E_ENVELO
PE_REFERRED

0
x
1
2
A
3

This envelope cannot be removed because it is used in a messaging port or channel.

BTS_E_TRANSP
ORT_LOOPBAC
K_SECTYPECON
FLICT

0
x
1
2
A
4

The secondary transport type cannot be specified for the messaging port if the primary transport type is set to
Loopback.

BTS_E_TRANSP
ORT_LOOPBAC
K_SECADDRESS
CONFLICT

0
x
1
2
A
5

The secondary transport address cannot be specified for the messaging port if the transport type is set to Loop
back.

BTS_E_PORT_L
OOPBACK_SER
VICEWINDOW

0
x
1
2
A
6

The service window cannot be specified for the messaging port if the transport type is set to Loopback.

BTS_E_PORT_O
PEN_DESTALIA
S_SPECIFIED

0
x
1
2
A
7

An open-destination messaging port cannot have a destination identifier specified.

BTS_E_PORT_O
PEN_SERVICEW
INDOW

0
x
1
2
A
8

The service window cannot be specified for the messaging port if the messaging port is an open-destination m
essaging port.

BTS_E_PORT_SE
RVICEWINDOW
TIMES

0
x
1
2
A
A

To use a service window, you must set both the From and To times or else, do not set either time.

BTS_E_TRANSP
ORT_LOOPBAC
K_PRIADDRESS
CONFLICT

0
x
1
2
A
C

A primary transport address cannot be specified for the messaging port if the transport type is Loopback.

BTS_E_PORT_O
RGCHANGE

0
x
1
2
A
D

The destination-organization identifier cannot be changed after it is created.

BTS_E_PORT_O
PENNESSCHAN
GE

0
x
1
2
A
E

The Openness property cannot be changed after it is created.

BTS_E_PORT_SI
GNATURE_CHA
NNEL_CERTREF

0
x
1
2
A
F

The signature-certification reference for a channel does not match the signature type for the port.

BTS_E_PORT_SI
GNATURE_CHA
NNEL_OPEN

0
x
1
2
B
0

A messaging port that contains a signature type cannot be connected to an open-source channel. Also, a mess
aging port that is already connected to an open-source channel cannot have a signature type assigned to it.

BTS_E_CHANNE
L_OPEN_SRCO
RG

0
x
1
2
B
1

An open-source channel cannot specify a source organization.

BTS_E_PORTGR
OUP_LOOPBAC
KPORT

0
x
1
2
B
2

A messaging port that uses the Loopback transport type cannot be added to a distribution list. Also, the transp
ort type of a messaging port that is already included in a distribution list cannot be changed to Loopback.

BTS_E_CHANNE
L_OPEN_SRCAL
IAS

0
x
1
2
B
3

An open-source channel cannot have a source identifier specified.

BTS_E_CHANNE
L_OPEN_SRCAP
P

0
x
1
2
B
4

An open-source channel cannot specify a source application.

BTS_E_CHANNE
L_PORTORPOR
TGROUP

0
x
1
2
B
5

Either a messaging port or a distribution list, but not both, must be specified in a channel.

BTS_E_CHANNE
L_MISSING_DO
CUMENT

0
x
1
2
B
6

Both input and output documents are needed in a channel.

BTS_E_CHANNE
L_INVALIDTYPE

0
x
1
2
B
7

A channel cannot be set to an open destination or set to an XLANG schedule (BIZTALK_OPENNESS_TYPE_EX_T
OWORKFLOW).

BTS_E_CHANNE
L_MISSING_OU
TDOCREFEREN
CE

0
x
1
2
B
8

If the inbound document definition for a channel has a reference to a specification, the outbound document de
finition must also have a reference to a specification.

BTS_E_CHANNE
L_TRACKFIELDS
CANTBESET

0
x
1
2
B
9

If the inbound document definition for a channel does not have a reference to a specification, the tracking field
s cannot be set.

BTS_E_CHANNE
L_EXPRESSION
CANTBESET

0
x
1
2
B
A

If the inbound document definition for a channel does not have a reference to a specification, the channel-filter
ing expressions cannot be set.

BTS_E_CHANNE
L_MAPREFCAN
TBESET

0
x
1
2
B
B

If the inbound document definition for a channel does not have a reference to a specification then a reference t
o a map cannot be set.

BTS_E_CHANNE
L_NOTSAME_IN
PDOC_OUTDO
C

0
x
1
2
B
C

If the inbound document definition for a channel does not have a reference to a specification then the outboun
d document handle should be the same of inbound document handle.

BTS_E_CHANNE
L_OPEN_RECEIP
TCONFLICT

0
x
1
2
B
D

Channels that are set from an open source or set from an XLANG schedule (BIZTALK_OPENNESS_TYPE_EX_FR
OMWORKFLOW) cannot be receipt channels.

BTS_E_CHANNE
L_RECEIPT_REC
EIPTTIMEOUT

0
x
1
2
B
E

The Expect Receipt Timeout property cannot be set on a receipt channel.

BTS_E_CHANNE
L_RECEIPT_CAN
TSETRECEIPTCH
ANNEL

0
x
1
2
B
F

An identifier cannot be set on a receipt channel.

BTS_E_CHANNE
L_RECEIPT_CO
NFLICT

0
x
1
2
C
0

In a receipt channel, the source specification from the original channel must be used as the destination specific
ation, and the destination specification from the original channel must be used as the source specification.

BTS_E_CHANNE
L_SRCORGDEF
AULT

0
x
1
2
C
1

If the channel is set from an XLANG schedule (BIZTALK_OPENNESS_TYPE_EX_FROMWORKFLOW), the source
organization must be the home organization.

BTS_E_CHANNE
L_PORT_BOTH
OPEN

0
x
1
2
C
2

Both the channel and messaging port cannot be set to Open.

BTS_E_CHANNE
L_RECEIPT_INV
ALID

0
x
1
2
C
3

The Receipt Channel and Expect Receipt Timeout properties cannot be set for an open-source channel. These p
roperties also cannot be set if the messaging port is set to an open destination, set to an XLANG schedule (BIZT
ALK_OPENNESS_TYPE_EX_TOWORKFLOW), or if the messaging port uses the Loopback transport type.

BTS_E_CHANNE
L_RECEIPTMAT
CHNOTFOUND

0
x
1
2
C
4

The corresponding receipt channel for this channel could not be found.

BTS_E_CHANNE
L_RECEIPT_OPE
NPORT

0
x
1
2
C
5

A receipt channel can be connected only to messaging ports that are not open messaging ports.

BTS_E_CHANNE
L_RECEIPT_LOO
PBACKPORT

0
x
1
2
C
6

A receipt channel cannot be connected to a messaging port that uses the Loopback transport type. Also, the tra
nsport type of a messaging port that is already connected to a receipt channel cannot be changed to Loopback.

BTS_E_CHANNE
L_CANNOTUPD
ATE

0
x
1
2
C
8

After a channel is created, the following properties cannot be changed: source organization, openness designat
ion, messaging port, distribution list, and receipt channel designation.

BTS_E_PORT_IN
VALIDOPENNE
SS

0
x
1
2
C
9

A messaging port cannot be set to an open source; nor can it be set from an XLANG schedule (BIZTALK_OPEN
NESS_TYPE_EX_FROMWORKFLOW).

BTS_E_CHANNE
L_CONTROLNU
MBER_ENVELO
PEFORMATMIS
MATCH

0
x
1
2
C
A

If the envelope format for the messaging port is X12 or EDIFACT, the control-number value on the channel mu
st be set.

BTS_E_PORT_E
NVELOPE_SERI
ALIZERCLSID

0
x
1
2
C
B

If the envelope format for the messaging port is set to Custom, a class identifier (CLSID) for the serializer comp
onent must be specified.

BTS_E_CHANNE
L_AIC_TRANSP
ORTCLSID

0
x
1
2
C
D

If the transport type associated with the channel is set to Application Integration Component, a class identifier (
CLSID) must be specified for the primary transport.

BTS_E_CHANNE
L_RECEIPT_POR
TGROUP

0
x
1
2
C
E

If a channel is connected to a distribution list, a receipt channel cannot be specified.

BTS_E_COMPO
NENTREQUIRES
2AGGREGATEFT
M

0
x
1
2
C
F

To be a valid object in the BizTalk Object Model, this custom component must aggregate the free-threaded ma
rshaler.

BTS_E_CERTREF
NOTFOUND

0
x
1
2
D
1

Either the certificate reference could not be found in MY or BIZTALK stores or it is not valid.

BTS_E_NODOC 0
x
1
2
D
2

The Document Definition has been removed from the database. Avoid deleting objects when documents might
exist in the queues which reference these objects.

BTS_E_NOENV 0
x
1
2
D
3

The envelope has been removed from the database. Avoid deleting objects when documents might exist in the
queues which reference these objects.

BTS_E_NOCHA
NNEL

0
x
1
2
D
4

The channel has been removed from the database. Avoid deleting objects when documents might exist in the
queues which reference these objects.

BTS_E_INVALID
REFERENCE

0
x
1
2
D
5

Either the WebDAV repository reference does not contain a valid HTTP address or it contains the text "localhos
t." Please provide either a valid HTTP address or replace the text "localhost" with the actual computer name.

BTS_E_CANNOT
CONTAINSUBO
BJECTS

0
x
1
2
D
6

The property set and delimiter objects cannot contain any subobjects.

BTS_E_INVALID
TRACKFIELDS

0
x
1
2
D
7

The "x_custom_search" field in the tracking field dictionary must be a simple list.

BTS_E_CHANNE
L_INVALID_OR
G

0
x
1
2
D
8

The organization specified in this channel does not exist.

BTS_E_CHANNE
L_INVALID_ALI
AS

0
x
1
2
D
9

The identifier specified for the organization in this channel either does not exist or it does not belong to the or
ganization.

BTS_E_CHANNE
L_INVALID_APP
LICATION

0
x
1
2
D
A

The application specified for the organization in this channel either does not exist or it does not belong to the o
rganization.

BTS_E_CHANNE
L_INVALID_INP
DOCID

0
x
1
2
D
B

The input document specified in this channel does not exist.

BTS_E_CHANNE
L_INVALID_OUT
DOCID

0
x
1
2
D
C

The output document specified in this channel does not exist.

BTS_E_CHANNE
L_INVALID_POR
TGROUP

0
x
1
2
D
D

The distribution list specified in this channel does not exist.

BTS_E_OBJECT_
NOT_XMLSERIL
IZABLE

0
x
1
2
D
E

The given dictionary or simplelist object must implement IPersistXML methods.

BTS_E_CHANNE
L_INVALID_POR
T

0
x
1
2
E
0

At least one messaging port that is referenced in this channel either does not exist or it is not associated with t
his channel.

BTS_E_CHANNE
L_RECEIPT_VER
SIGN_DECRYPT

0
x
1
2
E
1

The Verify Signature or Decrypt Encryption properties cannot be set on a receipt channel.

BTS_E_INVALID
_REQUEST_CHA
NNEL

0
x
1
2
E
2

A channel that is connected to a distribution list cannot be used as a request channel.

BTS_E_DESTINA
TION_NOT_FO
UND

0
x
1
2
E
3

The destination URL is not specified, and the messaging port is an open destination. Either the destination URL
or a destination for the messaging port must be specified.

BTS_E_DESTINA
TION_CONFLIC
T

0
x
1
2
E
4

Both a destination URL and a destination for the messaging port cannot be specified. Specify only one of these
properties.

BTS_E_ASYNC_
TRANSPORT

0
x
1
2
E
5

The transport type for the request channel is not valid. Only the HTTP, HTTPS, and Application Integration Com
ponent transport types are valid for a request channel.

BTS_E_INVALID
_RESPONSE_CH
ANNEL

0
x
1
2
E
6

The response channel can be connected only to a messaging port with a transport type set to Loopback.

BTS_E_INVALID
_VERSION

0
x
1
2
E
7

The database version is incompatible with the installed version of the server. Try running setup again.

BTS_E_INVALID
_SCHEMA

0
x
1
2
E
8

The document or envelope specification is not valid. Open the specification in BizTalk Editor, and then on the T
ools menu, click Validate Specification. Resolve any warnings to ensure that the specification is valid.

BTS_E_CHANNE
L_RECEIPTCHA
NNEL_PORTGR
OUP

0
x
1
2
E
9

A receipt channel cannot be connected to a distribution list.

BTS_E_TRANSP
ORT_ORCHEST
RATION_OPEN
NESS

0
x
1
2
E
A

A messaging port that uses the BizTalk Orchestration Activation transport type must have the Openness Type
property set to an XLANG schedule (BIZTALK_OPENNESS_TYPE_EX_TOWORKFLOW).

BTS_E_TRANSP
ORT_ORCHEST
RATION_ADDR
ESSPARAMETE
R

0
x
1
2
E
B

Both a primary address and a parameter are required for a messaging port that uses a BizTalk Orchestration A
ctivation transport type.

BTS_E_ORCHES
TRATION_INVA
LIDORG

0
x
1
2
E
C

A messaging port that uses a BizTalk Orchestration Activation transport type must have the home organization
set as the destination organization.

BTS_E_INVALID
_FILTEREXPRES
SION

0
x
1
2
E
D

The channel filtering expression is not valid. Make sure that the node-path expression is valid.

BTS_E_MULTIPL
EDOCDEFSFOR
PROPSET

0
x
1
2
E
E

Multiple document definitions were found for the given property set. Only a single document definition for a g
iven property set is expected.

BTS_E_INVALID
_PROPSET

0
x
1
2
E
F

The PropertySet cannot contain non-string element values.

BTS_E_DBSCHE
MA_MISMATCH

0
x
1
3
0
0

The existing Database Schema is not compatible with the current version of the product. You must delete the e
xisting database.

BTS_E_UNEXPE
CTED_INSTALL

0
x
1
3
0
1

The existing Database Schema is newer than the current version that is installed. Setup will rollback the change
s.

CIS_E_DOCSCH
EMA_ATTRIB_M
ISSING

0
x
1
4
0
0

The "%3" attribute is missing in the "%4" element. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
ATTRIB_VALUE

0
x
1
4
0
1

The "%3" attribute value "%4" is not valid. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_EMPTY_EL
EMENT

0
x
1
4
0
2

The "%3" element cannot be empty. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
CHILD_ELEMEN
T

0
x
1
4
0
3

The "%3" element cannot be a child of the "%4" element. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_MULTIPLE
_INFO

0
x
1
4
0
4

Only one record description or one field description is allowed for each element declaration. One of the descri
ptions must be removed. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
FIELD_DECL

0
x
1
4
0
5

The root node cannot contain a field. The root node of the document must contain a record. Verify that the roo
t node in your document is declared as a record. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
LEN_DECL

0
x
1
4
0
6

The minimum length value must be no greater than the maximum length value. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
POSLEN_DECL

0
x
1
4
0
7

The value of the start position must be no greater than the value of the end position. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_NO_INFO
_YET

0
x
1
4
0
8

A field description or record description must be specified before references to other elements. Line: %1, Pos:
%2.

CIS_E_DOCSCH
EMA_INVALID_
SCHEMATYPE_X
ML

0
x
1
4
0
9

Only non-XML document specifications are allowed for this format. The schema_type attribute has the value "x
ml". Verify that the specification selected is a non-XML specification. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_NO_INFO

0
x
1
4
0
A

No record information or field information was found in the "%3" element. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
ATTRIB

0
x
1
4
0
B

The "%3" attribute is not allowed in the "%4" element. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_MISSING_
ELEM_DECL

0
x
1
4
0
C

There is no element with the name "%1" in the document specification.

CIS_E_DOCSCH
EMA_MISSING_
ATTR_DECL

0
x
1
4
0
D

There is no attribute with the name "%1" in the document specification.

CIS_E_DOCSCH
EMA_INVALID_
POSITIONAL_D
ECL

0
x
1
4
0
E

The "%1" record cannot be a child of the "%2" positional record. Only fields can be children of positional recor
ds.

CIS_E_DOCSCH
EMA_INVALID_
RECORD_CHILD
REN

0
x
1
4
0
F

The children of the "%1" delimited record must either be all records or all fields. Records with no tag identifier
cannot have mixed records and fields as children.

CIS_E_DOCSCH
EMA_NO_RECO
RD_CHILDREN

0
x
1
4
1
0

The "%1" delimited record must have at least one child. Records with no tag identifier must have at least one c
hild, or else the record cannot be found in a non-XML format. Either add a child to the record, give the record a
tag identifier, or remove the record from the specification.

CIS_E_DOCSCH
EMA_MISSING_
RECORD_TAG

0
x
1
4
1
1

The "%1" delimited record is marked to repeat but it does not have a tag identifier. Only the last record in a do
cument specification is allowed to have this property. If this record appears only once in the document, then m
ark it as a single occurrence. Otherwise, give the record a tag identifier that tells the server where to look for th
e next record in the specification.

CIS_E_DOCSCH
EMA_NO_ROOT
_ELEMENT

0
x
1
4
1
2

The root-node name "%3" was not found in the specification. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
ROOT_ELEMEN
T

0
x
1
4
1
3

The "%3" element cannot be the root node of this document. Only <Schema> is allowed. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
EMPTY_ATTRIB
UTE

0
x
1
4
1
4

The "%3" attribute in the "%4" element cannot be empty. Either specify a nonempty value or remove the attrib
ute. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_INVALID_
REFERENCE

0
x
1
4
1
5

The "%1" record has an illegal cyclic path through the "%2" record. The only cyclic reference allowed for a reco
rd is if the record has a tag identifier that allows the system to terminate the search. Either remove the cyclic re
ference or add an appropriate tag identifier to the document specification.

CIS_E_DOCSCH
EMA_LOADFAIL
ED

0
x
1
4
1
6

The specification failed to load. See the following messages for details.

CIS_E_DOCSCH
EMA_MISSING_
NS

0
x
1
4
1
7

Valid BizTalk Server specifications for non-XML documents must have the namespace declarations of "urn:sch
emas-microsoft-com:BizTalkServer", "urn:schemas-microsoft-com:datatypes", and "urn:schemas-microsoft-co
m:xml-data" in the root node of the specification.

CIS_E_DOCSCH
EMA_INVALID_
SCHEMA_USAG
E

0
x
1
4
1
8

The specification referenced in the "%1" document is not compatible with the "%2" format. Select a specificatio
n that is compatible with this format, or if this is a valid specification for the defined format, assign "%2" to the
"standard" property on this specification.

CIS_E_DOCSCH
EMA_MISSING_
POSLEN_DECL

0
x
1
4
1
9

The "%3" field is missing a start and end position, and is referenced in the "%4" positional record. Specify valid
start and end positions for this field. Line: %1, Pos: %2.

CIS_E_DOCSCH
EMA_DUPLICAT
E_NAMESPACE

0
x
1
4
1
A

The duplicate namespace declaration "%3" has been found. Please remove the duplicate reference to same na
mespace. Line: %1, Pos: %2.

CIS_E_PARSER_
EOF

0
x
1
4
3
0

The end of the file was reached prematurely.

CIS_E_PARSER_
MISSING_TAG

0
x
1
4
3
1

The required "%1" record was not found in the inbound document.

CIS_E_PARSER_
MISSING_FIELD

0
x
1
4
3
2

The required field "%1" in the "%2" record was not found in the inbound document.

CIS_E_PARSER_
FAILURE

0
x
1
4
3
3

The parser failed to convert the document due to processing errors. See the following messages for details.

CIS_E_PARSER_I
NVALIDDATA

0
x
1
4
3
4

The parser cannot match the current position of the data with the specification. Verify that the version of this s
pecification is consistent with the version of the data and that the root parsing tags match.

CIS_E_PARSER_
NO_DATA

0
x
1
4
3
5

There is no data that can be parsed on the dictionary. Verify that either the "working_data" field or the "file_pat
h" field contains nonempty data.

CIS_E_PARSER_I
NVALID_ENVN
AME

0
x
1
4
3
6

The envelope name "%1" does not reference a valid envelope for the BizTalk Server parser. Either the envelope
name does not exist or there is an envelope specification attached that is not valid.

CIS_E_PARSER_
NO_COMPONE
NTS_FOUND

0
x
1
4
3
9

No parser component recognizes the data. This might be caused by an interchange specification that is missin
g or not valid, or it might be caused by data that is not valid. Verify that both the interchange specification (if o
ne is specified) and the data match.

CIS_E_PARSER_
COMPONENT_F
AILED

0
x
1
4
4
0

While trying to process document #%4 during submission "%1", the parser component named "%2" failed on t
he method "%3" with the error code "%5". Possible causes are: the component found unexpected data in the in
coming stream; a document specification could not be found given the data; or an internal component failure
occurred. If this problem continues, remove this component from the valid list of parser components or contac
t your system administrator.

CIS_E_PARSER_
DOCUMENT_FA
ILED

0
x
1
4
4
1

Document #%4 within submission "%1" was returned as a document that was not valid from the parser comp
onent named "%2". The most frequent cause is a document specification that is not valid or else the componen
t was unable to determine the necessary routing fields. Verify that the proper specification is defined for this d
ata.

CIS_E_PARSER_I
NVALID_DATETI
ME

0
x
1
4
4
2

The "%1" date or time format does not match the format of the "%2" data extracted from the incoming data.

CIS_E_PARSER_I
NVALID_COMP
ONENT

0
x
1
4
4
3

Within submission "%1", the parser component named "%2" could not be loaded. Verify that this component c
an be run in a stand-alone executable and that the server has sufficient permissions to start it.

CIS_W_PARSER
_SKIPPED_COM
PONENT

0
x
1
4
4
4

The parser was unable to probe the specified component. This component will be skipped.

CIS_E_PARSER_
UNUSEABLE_D
OCNAME

0
x
1
4
4
5

The parser cannot use the document "%1" as it has no specification. Please attach a specification to this docum
ent or specify a different one.

CIS_E_PARSER_
CONTROL_NU
MBER_MISMAT
CH

0
x
1
4
4
6

The control number of segment "%1" (%2) does not match that of segment "%3" (%4).

CIS_E_PARSER_
DOCCOUNT_IN
CORRECT

0
x
1
4
4
7

The document or segment count contained in tag "%1" (%2) does not match the number of documents or seg
ments processed (%3).

CIS_E_PARSER_
X12_ISA_PARSE
_FAILED

0
x
1
4
4
8

The parser cannot parse the ISA section of the X12 document. This segment is fixed-width; if fields in this segm
ent do not have correct length, the parsing will fail because the delimiters are picked up from the wrong offset
s.

CIS_E_PARSER_
MIN_LENGTH

0
x
1
4
4
9

The data contains a field value ("%1") that doesn't meet minimum length requirement for tag "%2" (minimum
length is %3).

CIS_E_PARSER_
MAX_LENGTH

0
x
1
4
4
A

The data contains a field value ("%1") that doesn't meet maximum length requirement for tag "%2" (maximum
length is %3).

CIS_E_PARSER_
NO_DATA_CON
SUMED

0
x
1
4
4
B

No data was read by the parser. Make sure that the code page is set correctly for the data. If the data is UNICO
DE, make sure that there is no byte order mark (0xFFFE or 0xFEFF) appears at the beginning of the file.

CIS_E_PARSER_
UNSUPPORTED
_EDIFACT_SYNT
AX

0
x
1
4
4
C

EDIFACT documents with the "UNOX" or the "UNOY" syntax identifier are not supported.

CIS_E_PARSER_
DATA_REMAINI
NG

0
x
1
4
4
D

Additional data in the document instance was not parsed. Make sure that the document instance you want to v
alidate contains only one document.

CIS_E_PARSER_
MISSING_DELI
MITER

0
x
1
4
4
E

While parsing record "%1", the parser cannot find the required delimiter: "%2" (%3).

CIS_E_PARSER_
MISSING_LEADI
NG_DELIMITER

0
x
1
4
4
F

While parsing record "%1", the parser cannot find the required leading delimiter: "%2" (%3).

CIS_E_PARSER_
MISSING_TRAIL
ING_DELIMITER

0
x
1
4
5
0

While parsing record "%1", the parser cannot find the required trailing delimiter: "%2" (%3).

CIS_E_VALIDAT
E_GROUP_RULE

0
x
1
4
5
1

In record "%1", if any of the following fields exist, then all must exist: %2

CIS_E_VALIDAT
E_GROUP_ALL

0
x
1
4
5
2

In record "%1", all of the following fields must exist: %2

CIS_E_VALIDAT
E_GROUP_ONE

0
x
1
4
5
3

In record "%1", only one of the following fields can exist: %2

CIS_E_PARSER_I
NVALID_WRAP
_CHAR_FOUND

0
x
1
4
5
4

While parsing record "%1", the parser found an occurrence of a wrap character, "%2", that is not valid.

CIS_E_VALIDAT
E_GROUP_ANY

0
x
1
4
5
5

In record "%1", one or more of the following fields must exist: %2

CIS_E_PARSER_
EXTRA_DELIMIT
ER

0
x
1
4
5
6

While parsing record "%1", the parser found the following extra delimiter: "%2".

BTS_E_DOCUM
ENT_HAS_INVA
LID_MANIFEST

0
x
1
4
5
7

Error parsing the manifest.

CIS_E_ADMIN_
CACHE_PARSER
S

0
x
1
5
0
4

The latest modification date from the administration parser table could not be loaded.

CIS_E_ADMIN_I
NIT_CACHE

0
x
1
5
0
5

The configuration data in the global cache could not be initialized.

CIS_E_ADMIN_
RELOAD_CACH
E

0
x
1
5
0
6

The configuration data from the database could not be reloaded.

CIS_E_ADMIN_P
ARSER_GETCLSI
D

0
x
1
5
0
7

The class identifiers (CLSIDs) of the parser records could not be loaded.

CIS_E_ADMIN_
CACHE_OBJECT
NOTCREATED

0
x
1
5
0
9

The administration cache cannot be created.

CIS_E_ADMIN_
CACHE_INITIAL
LOAD

0
x
1
5
0
A

The configuration cache data from the database could not be loaded.

CIS_E_ADMIN_
ADD_SERVER_A
CCESS_DENIED

0
x
1
5
0
B

Server "%1" cannot be added because access to the "%2" is denied.

CIS_E_ADMIN_
ADD_SERVER_
NO_SERVICE

0
x
1
5
0
C

Server "%1" cannot be added because BizTalk Server is not installed on the computer.

CIS_E_ADMIN_
DELETE_SERVE
R_NO_ACCESS

0
x
1
5
0
D

The "%1" server cannot be deleted because access to the "%2" service is denied and the service cannot be stop
ped.

CIS_E_ADMIN_
DELETE_GROUP
_SERVER_RUN
NING

0
x
1
5
0
E

This server group cannot be deleted because the "%1" server is still running.

CIS_E_ADMIN_
DELETE_GROUP
_SERVER_ACCE
SS_DENIED

0
x
1
5
0
F

This server group cannot be deleted because access to the "%1" service on "%2" server is denied.

CIS_E_ADMIN_
NOGROUP

0
x
1
5
1
2

The specified administration group does not exist.

CIS_E_ADMIN_
NOSERVER

0
x
1
5
1
3

The specified administration server does not exist.

CIS_E_ADMIN_
NORECEIVESER
VICE

0
x
1
5
1
4

The specified administration receive function does not exist in the database.

CIS_E_ADMIN_
UNEXPECTED_R
EMOVE_RECEIV
ESERVICE

0
x
1
5
1
5

An unexpected error occurred while trying to remove the "%1" receive function from the database.

CIS_E_ADMIN_
UNEXPECTED_R
EMOVE_GROUP

0
x
1
5
1
6

An unexpected error occurred while trying to remove the "%1" group from the database.

CIS_E_ADMIN_
UNEXPECTED_R
EMOVE_SERVE
R

0
x
1
5
1
7

An unexpected error occurred while trying to remove the "%1" server from the database.

CIS_E_ADMIN_
NOTIMESTAMP
S

0
x
1
5
1
A

The specified administration timestamps object does not exist in the database.

CIS_E_ADMIN_
REFRESH_THRE
AD_ERROR

0
x
1
5
1
B

The configuration refresh thread encountered an error while loading the configuration data.

CIS_E_ADMIN_
REFRESH_THRE
AD_EXIT

0
x
1
5
1
C

The configuration refresh thread cannot load the configuration data because of a previous error.

CIS_E_ADMIN_
RECSVC_GENE
RAL

0
x
1
5
1
D

The configuration refresh thread cannot set up one or more receive functions. This might be because SQL Serv
er is not started.

CIS_E_ADMIN_
CREATE_GROU
P

0
x
1
5
2
9

The server group cannot be created because "%1".

CIS_E_ADMIN_L
OAD_GROUP_P
ROPS

0
x
1
5
2
A

The group properties cannot be loaded because "%1".

CIS_E_ADMIN_S
AVE_GROUP_P
ROPS

0
x
1
5
2
B

The group properties cannot be saved because "%1".

CIS_E_ADMIN_
REMOVE_GRO
UP

0
x
1
5
2
C

The server group cannot be removed from the database because "%1".

CIS_E_ADMIN_
GETALLADMIN
GROUPS

0
x
1
5
2
D

All server groups cannot be retrieved from the database.

CIS_E_ADMIN_
GETSERVERS

0
x
1
5
2
E

All servers for the "%1" server group cannot be retrieved from the database because "%2".

CIS_E_ADMIN_
GETRECEIVESER
VICES

0
x
1
5
2
F

All receive functions for the "%1" group cannot be retrieved from database because "%2".

CIS_E_ADMIN_
GETPARSERS_I
N_GROUP

0
x
1
5
3
1

All parsers for the "%1" server group cannot be retrieved from the database because "%2".

CIS_E_ADMIN_
GETLOCALSMT
PHOST

0
x
1
5
3
8

The local SMTP host cannot be retrieved because "%1".

CIS_E_ADMIN_
CREATE_SERVE
R

0
x
1
5
3
9

The server cannot be created because "%1".

CIS_E_ADMIN_L
OAD_SERVER_P
ROPS

0
x
1
5
3
A

The server properties cannot be loaded because "%1".

CIS_E_ADMIN_S
AVE_SERVER_P
ROPS

0
x
1
5
3
B

The server properties cannot be saved because "%1".

CIS_E_ADMIN_
REMOVE_SERV
ER

0
x
1
5
3
C

The server cannot be removed from the database because "%1".

CIS_E_ADMIN_
GETALLADMIN
SERVRES

0
x
1
5
3
D

All servers cannot be retrieved from the database.

CIS_E_ADMIN_
GETSERVERBYN
AME

0
x
1
5
3
E

The server properties for "%1" cannot be retrieved because "%2".

CIS_E_ADMIN_
DECRYPT_PASS
WORD

0
x
1
5
4
0

The "%1" property cannot be retrieved.

CIS_E_ADMIN_E
XEC_COMMMA
ND_ON_PARSE
R

0
x
1
5
4
F

The SQL command "%1" on the parser database table cannot be executed because "%2".

CIS_E_ADMIN_
CREATE_RECEIV
ESERVICE

0
x
1
5
5
D

The receive function cannot be created because "%1".

CIS_E_ADMIN_L
OAD_RECEIVES
ERVICE_PROPS

0
x
1
5
5
E

The receive function properties cannot be loaded because "%1".

CIS_E_ADMIN_S
AVE_RECEIVESE
RVICE_PROPS

0
x
1
5
5
F

The receive function properties cannot be saved because "%1".

CIS_E_ADMIN_
REMOVE_RECEI
VESERVICE

0
x
1
5
6
0

The receive function cannot be removed from the database because "%1".

CIS_E_ADMIN_
GETALLRECEIVE
SERVICES

0
x
1
5
6
1

All receive functions cannot be retrieved from the database because "%1".

CIS_E_ADMIN_
GETALLRECEIVE
SERVICESINSER
VER

0
x
1
5
6
2

All receive functions cannot be retrieved for the "%1" server because "%2".

CIS_E_ADMIN_L
OAD_TIMESTA
MPS

0
x
1
5
6
3

All timestamps cannot be retrieved from the database because "%1".

CIS_E_ADMIN_
GETSQCONNEC
T

0
x
1
5
7
0

The Shared Queue database connection string cannot be retrieved from the database.

CIS_E_ADMIN_
GETCOMPUTER
NAME

0
x
1
5
7
1

The name of the local computer cannot be retrieved. Internally, BizTalk Server is using "localhost" as the comp
uter name.

CIS_E_ADMIN_
MIN_CONSTRAI
NT

0
x
1
5
7
3

The size of the "%1" property is less than the minimum required length for "%2".

CIS_E_ADMIN_
MAX_CONSTRA
INT

0
x
1
5
7
4

The size of the "%1" property is greater than the maximum length allowed for "%2".

CIS_E_ADMIN_
GET_MGMTDB_
CONNECT_PRO
PS

0
x
1
5
7
5

The BizTalk Messaging Management database properties cannot be retrieved.

CIS_E_ADMIN_K
EY_EMPTY

0
x
1
5
7
6

The key to the database table, property "%1", is empty.

CIS_E_ADMIN_
COCREATE_IN_
CREATE

0
x
1
5
7
7

An instance of the "%1" object could not be created while creating a new "%2" object.

CIS_E_ADMIN_
ADO_OPEN_CO
NNECTSTRING

0
x
1
5
7
8

The connection to the BizTalk Messaging Management database could not be opened.

CIS_E_ADMIN_
COCREATE_IN_
LOAD

0
x
1
5
7
9

An instance of the "%1" object could not be created while loading the "%2" properties.

CIS_E_ADMIN_
COCREATE_IN_
SAVE

0
x
1
5
8
0

An instance of the "%1" object could not be created while saving the "%2" properties.

CIS_E_ADMIN_
COCREATE_IN_
REMOVE

0
x
1
5
8
1

An instance of the "%1" object could not be created while trying to remove the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
GETALL

0
x
1
5
8
2

An instance of the "%1" object could not be created while trying to get all instances of "%2".

CIS_E_ADMIN_
COCREATE_IN_
GETALL_INSER
VER

0
x
1
5
8
3

An instance of the "%1" object could not be created while trying to get all instances of the "%2" object in the "
%3" server.

CIS_E_ADMIN_
GET_PROP

0
x
1
5
8
4

The "%1" property cannot be retrieved.

CIS_E_ADMIN_
CLOSE_ADO_C
ONNECTION

0
x
1
5
8
5

The ADO connection cannot be closed.

CIS_E_ADMIN_
CLOSE_ADO_RE
CORDSET

0
x
1
5
8
6

The ADO record set cannot be retrieved.

CIS_E_ADMIN_E
NCRYPT_PASS
WORD

0
x
1
5
8
7

The "%1" property cannot be processed.

CIS_E_ADMIN_
COCREATE_IN_
GETALLNAMES

0
x
1
5
8
8

An instance of the "%1" object could not be created while trying to get the names of all the "%2" object instanc
es.

CIS_E_ADMIN_
COCREATE_IN_
GETOTHERS_OF
_GROUP

0
x
1
5
8
9

An instance of the "%1" object could not be created while trying to get all instance of the "%2" object in the "%
3" group.

CIS_E_ADMIN_
COCREATE_IN_
GET_SMTPHOS
T

0
x
1
5
8
A

An instance of the "%1" object could not be created while trying to get "%2" for the local server.

CIS_E_ADMIN_
COCREATE_IN_
GET_SQ_CONN
ECTSTRING

0
x
1
5
8
B

An instance of the "%1" object could not be created while trying to get the Shared Queue parameters of "%2" i
n order to connect to the database.

CIS_E_ADMIN_
COCREATE_SER
VER_BYNAME

0
x
1
5
8
C

An instance of the "%1" object could not be created while trying to get the properties of the "%2" server instan
ce of the "%3" class.

CIS_E_ADMIN_
GETSQCONNEC
T_IN_OPEN

0
x
1
5
8
D

The Shared Queue database connection string could not be retrieved from the database because "%1".

CIS_E_ADMIN_
COCREATE_EXE
C_SQL_COMM
AND_ON_PARS
ER

0
x
1
5
8
E

An instance of the "%1" object could not be created while trying to execute a SQL command on the "%2" datab
ase table.

CIS_E_ADMIN_
COCREATE_PAR
SER_CLSIDS_IN
_GROUP

0
x
1
5
8
F

An instance of the "%1" object could not be created while retrieving the class identifiers (CLSIDs) for the parser
s that belong to the "%2" group.

CIS_E_ADMIN_I
NVALID_ARGU
MENT

0
x
1
5
9
0

An unexpected internal error occurred. An invalid "%1" argument was used when calling the "%2" method.

CIS_E_ADMIN_
MAX_ENUM_C
ONSTRAINT

0
x
1
5
9
1

The value of the "%1" property is greater than the maximum value allowed for "%2".

CIS_E_ADMIN_
MIN_ENUM_CO
NSTRAINT

0
x
1
5
9
2

The value of the "%1" property is smaller than the minimum value allowed for "%2".

CIS_E_ADMIN_
CREATE_CHAN
GETYPE_TO_BS
TR

0
x
1
5
9
3

The type of the "%1" property could not be changed to a string.

CIS_E_ADMIN_
CREATE_CHAN
GETYPE_TO_BO
OL

0
x
1
5
9
4

The type of the "%1" property could not be changed to Boolean.

CIS_E_ADMIN_
COCREATE_IN_
ENUMINSTANC
ES

0
x
1
5
9
5

An instance of the "%1" object could not be created while enumerating instances of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
PUTINSTANCE

0
x
1
5
9
6

An instance of the "%1" object could not be created while setting an instance of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
GETOBJECT

0
x
1
5
9
7

An instance of the "%1" object could not be created while getting an instance of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
DELETEINSTAN
CE

0
x
1
5
9
8

An instance of the "%1" object could not be created while deleting an instance of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
LOADPROPS

0
x
1
5
9
9

An instance of the "%1" object could not be created while loading properties for an instance of the "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
LOADPARSERS

0
x
1
5
9
B

An instance of the "%1" object could not be created while loading parsers from a database for an instance the "
%2" object.

CIS_E_ADMIN_
COCREATE_IN_
SETPARSERSFR
OM_REGISTRY

0
x
1
5
9
C

An instance of the "%1" object could not be created while setting parsers from the registry for an instance of th
e "%2" object.

CIS_E_ADMIN_
COCREATE_IN_
SETPARSERSFR
OM_CLIENT

0
x
1
5
9
D

An instance of the "%1" object could not be created while setting parsers from the client for an instance of the
"%2" object.

CIS_E_ADMIN_
COCREATE_IN_
REFRESHPARSE
RLIST

0
x
1
5
9
E

An instance of the "%1" object could not be created while refreshing the parser list for an instance of the "%2"
object.

CIS_E_ADMIN_
COCREATE_IN_
MOVETOSUSPE
NDED_Q

0
x
1
5
9
F

An instance of the "%1" object could not be created while moving an instance of "%2" to the Suspended queue
.

CIS_E_ADMIN_
COCREATE_IN_
RESUBMIT

0
x
1
5
A
0

An instance of the "%1" object could not be created while resubmitting an instance of "%2".

CIS_E_ADMIN_
COCREATE_IN_
VIEWDOC

0
x
1
5
A
2

An instance of the "%1" object could not be created while viewing a document instance of "%2".

CIS_E_ADMIN_
COCREATE_IN_
VIEWERRORDE
SC

0
x
1
5
A
3

An instance of the "%1" object could not be created while viewing the error description of an instance of "%2".

CIS_E_ADMIN_
COCREATE_IN_
VIEWINTERCHA
NGE

0
x
1
5
A
4

An instance of the "%1" object could not be created while viewing the interchanges of an instance of "%2".

CIS_E_ADMIN_
COCREATE_IN_
FREEINTERCHA
NGES

0
x
1
5
A
5

An instance of the "%1" object could not be created while freeing the interchanges for an instance of a "%2".

CIS_E_ADMIN_
COCREATE_IN_
STARTSERVER

0
x
1
5
A
6

An instance of the "%1" object could not be created while starting the server for an instance of a "%2".

CIS_E_ADMIN_
COCREATE_IN_
STOPSERVER

0
x
1
5
A
7

An instance of the "%1" object could not be created while stopping the server for an instance of a "%2".

CIS_E_ADMIN_
NO_DELETE_SE
RVER_IN_RECV
SERVICE

0
x
1
5
A
8

The "%1" server cannot be deleted because it is the processing server for at least one receive function.

CIS_E_ADMIN_
UPDATE_GROU
P_SERVER_RUN
NING

0
x
1
5
A
9

The server group properties cannot be changed because the "%1" server is still running.

CIS_E_ADMIN_
UPDATE_GROU
P_SERVER_ACC
ESS_DENIED

0
x
1
5
A
A

The server group properties cannot be changed because access to the "%1" service on "%2" server is denied.

CIS_E_ADMIN_
UPDATE_SERVE
R_SERVER_RUN
NING

0
x
1
5
A
C

The server properties cannot be changed because the "%1" server is still running.

CIS_E_ADMIN_
UPDATE_SERVE
R_SERVER_ACC
ESS_DENIED

0
x
1
5
A
D

The server properties cannot be changed because access to the "%1" service on "%2" server is denied.

CIS_E_ADMIN_
UPDATE_READ_
ONLY_PROP

0
x
1
5
A
E

The "%1" property cannot be changed. It is a read only property.

CIS_E_ADMIN_
DIFFERENT_RO
OT

0
x
1
5
A
F

The "%1" server may already belong to a different BizTalk Server installation.

CIS_E_ADMIN_
NOT_RESUBMIT
ABLE

0
x
1
5
B
0

This Suspended queue item cannot be submitted again.

CIS_E_ADMIN_
DBCONNECT

0
x
1
5
B
1

BizTalk Server failed to access the "%1" database on the "%2" server with the database connection information.

CIS_E_ADMIN_P
URGE_SUSPEN
DEDQ

0
x
1
5
B
2

An instance of the "%1" object could not be created while deleting documents from "%2".

CIS_E_ADMIN_
REQ_PROP_MIS
SING

0
x
1
5
B
3

%1 cannot be NULL.

CIS_E_ADMIN_
WMI_ERROR_H
ANDLING

0
x
1
5
B
4

The BizTalk Server WMI provider error-handling method failed. The original error description for the error that
called the error-handling method is: "%1".

CIS_W_ADMIN_
QUERY_FAILED

0
x
1
5
B
5

An attempt to get the Where clause values for a WMI Query failed.

CIS_E_ADMIN_I
NVALID_ENUM
_CONSTRAINT

0
x
1
5
B
6

The value "%2" of the "%1" property is not valid.

CIS_E_ADMIN_
OPENNESS_CO
NSTRAINT

0
x
1
5
B
7

The value "%2" of the "%1" property is not permitted when the value of the IsPassThrough property is set to T
RUE.

CIS_E_ADMIN_
RECEIVE_INVAL
ID_SERVER_GR
OUP

0
x
1
5
B
8

the specified server and/or group is not valid

CIS_E_ADMIN_I
NVALID_INSTA
NCE_NAME

0
x
1
5
B
9

The specified instance name "%1" contains at least one of the following characters that is not valid: [` ~ ! @ #
$ % ^ & * () + = [] { } | \ ; " ' < > , . ?]

BTS_E_ADMIN_
GROUP_UNIQU
E_NAME

0
x
1
5
B
A

A BizTalk Server group with the same name already exists in the BizTalk Messaging Management database.

BTS_E_ADMIN_
TIMESTAMPS_D
ATA_CORRUPTI
ON

0
x
1
5
B
B

Internal data corruption has been detected in the adm_TimeStamps table of the BizTalk Messaging Manageme
nt database.

BTS_E_ADMIN_
SERVER_UNIQU
E_NAME

0
x
1
5
B
C

A BizTalk Server with the same name already exists in the BizTalk Messaging Management database.

BTS_E_ADMIN_
SERVER_FOREI
GN_GROUPNA
ME

0
x
1
5
B
D

This BizTalk Server does not reference a valid BizTalk Server group in the BizTalk Messaging Management data
base.

BTS_E_ADMIN_
RECSVC_UNIQ
UE_NAME

0
x
1
5
B
E

A BizTalk Server receive function with the same name already exists in the BizTalk Messaging Management dat
abase.

BTS_E_ADMIN_
RECSVC_FOREI
GN_GROUPNA
ME

0
x
1
5
B
F

This BizTalk Server receive function does not reference a valid BizTalk Server group in the BizTalk Messaging
Management database.

BTS_E_ADMIN_
PARSER_UNIQ
UE_ID

0
x
1
5
C
1

A BizTalk Server parser with the same CLSID and Group Name already exists in the BizTalk Messaging Manage
ment database.

BTS_E_ADMIN_
PARSER_FOREI
GN_GROUPNA
ME

0
x
1
5
C
2

This BizTalk Server parser does not reference a valid BizTalk Server group in the BizTalk Messaging Manageme
nt database.

CIS_E_ADMIN_
DB_SPROCVER
SION

0
x
1
5
C
3

The "%1" database on the "%2" server does not contain the necessary database schema.

CIS_E_ADMIN_
DB_VERSION

0
x
1
5
C
4

The "%1" database on the "%2" server is not compatible with the current version of the product.

CIS_E_DTA_LOG
_INTERCHANGE
_DETAILS_FAILE
D

0
x
1
6
0
4

The details of an interchange could not be logged.

CIS_E_DTA_LOG
_DOCUMENT_D
ETAILS_FAILED

0
x
1
6
0
5

The details of a document could not be logged.

CIS_E_DTA_LOG
_GROUP_DETAI
LS_FAILED

0
x
1
6
0
6

The details of a group could not be logged.

CIS_E_DTA_INIT
_FAILED

0
x
1
6
0
A

The DTA object could not be initialized.

CIS_E_DTA_FAIL
ED_TO_GET_AD
MIN_PROPERTI
ES

0
x
1
6
0
E

The administration properties could not be obtained.

CIS_E_DTA_DAT
ABASE_CONNE
CTION

0
x
1
6
0
F

The server could not establish connection to the Tracking database.

CIS_E_DTA_LOG
_DOCUMENT_F
AILED

0
x
1
6
1
9

A copy of the document could not be logged.

CIS_E_DTA_LOG
_INTERCHANGE
_FAILED

0
x
1
6
2
0

A copy of the interchange could not be logged.

CIS_E_DTA_OBJ
ECT_IS_UNINITI
ALIZED

0
x
1
6
2
3

The DTA initialization method must be explicitly invoked before any DTA method can be invoked.

CIS_E_DTA_FAIL
ED_TO_COMMI
T

0
x
1
6
2
5

Changes could not be committed to the database.

CIS_E_DTA_FAIL
ED_TO_LOG_SO
URCE_XML

0
x
1
6
2
6

The intermediate source XML could not be logged.

CIS_E_DTA_FAIL
ED_TO_LOG_DE
ST_XML

0
x
1
6
2
7

The intermediate destination XML could not be logged.

CIS_E_DTA_ACK
_NO_ROW_FO
UND

0
x
1
6
2
B

Acknowledgment correlation failed. The correlation key(s) given did not match any record in the Tracking data
base.

CIS_E_DTA_ACK
_MULTIPLE_RO
WS_FOUND

0
x
1
6
2
C

Acknowledgment correlation failed. The correlation key(s) given match more than one record in the Tracking d
atabase.

CIS_E_DTA_LOG
_MIME_FAILED

0
x
1
6
2
D

The MIME data for submission "%1" could not be logged.

CIS_W_DTA_LO
G_TRACKING_FI
ELD_FAILED

0
x
1
6
2
E

The following tracking field for submission "%1" could not be logged: Tracking field: %2 Specification field na
me: %3 Actual value: %4 Possible causes are either a conversion error or an arithmetic overflow error. Check t
he tracking field settings in the document or channel configuration.

CIS_W_DTA_LO
G_BINARY_TRA
CKING_FIELD_F
AILED

0
x
1
6
2
F

The following tracking field for submission "%1" could not be logged: Tracking field: %2 Specification field na
me: %3 The submission could not be logged because the corresponding XML element or attribute is set to bin
ary type, which can only be tracked as custom type tracking field. Correct the tracking field settings in the docu
ment or channel configuration.

CIS_E_DTA_INIT
_TRANSACTION
AL_SESSION

0
x
1
6
3
1

The server could not create a transactional session for the Tracking object.

CIS_W_DTA_RE
CORD_UPDATE
_FAILED

0
x
1
6
3
2

An attempt to update a tracking record has failed. The record was probably deleted prior to the update action.

CIS_E_RESPON
SE_DOM_LOAD
_FAILED

0
x
1
7
0
1

The XML-DOM could not be loaded from the response data.

CIS_E_RECEIVE_
MSMQ_BYOT_C
REATE_FAILED

0
x
1
7
0
2

A Message Queuing receive function failed to create an IInterchange object using a Bring Your Own Transactio
n (BYOT) object. This may have been caused by editing the BizTalk Server COM+ application or configuring the
BYOT object in its own COM+ application. This BizTalk Message Queuing receive function will be stopped.

CIS_E_RECEIVE_
MSMQ_ZERO_B
YTE_DOC

0
x
1
7
0
3

A Message Queuing receive function read a zero byte document. This document has been discarded.

CIS_E_RECEIVE_
SERVICE_FAILE
D

0
x
1
7
0
4

There was a failure processing the "%1" receive function. Check your receive function configuration in BizTalk
Server Administration.

CIS_E_INITWOR
KITEM

0
x
1
7
0
5

There was a failure creating the internal work item. Make sure that SQL Server is running.

CIS_E_NOPIPELI
NE

0
x
1
7
0
6

A channel with the name "%1" cannot be located.

CIS_E_OPEN_PA
SSTHROUGH

0
x
1
7
0
7

The channel and messaging port openness type are not compatible with the submit method call.

CIS_E_DLQ_DET
AILS

0
x
1
7
0
8

Details about the Suspended queue could not be retrieved.

CIS_E_INVALID_
OPENDEST

0
x
1
7
0
9

The destination specified for the following open-destination messaging port was not valid: %1

CIS_E_SQL_MIS
SINGROWS

0
x
1
7
0
a

Rows were missing from the record returned by SQL OLEDB provider.

CIS_E_BTF_TIME
_STAMP_EXPIRE
D

0
x
1
7
0
b

The BizTalk Framework document "%1" was received with an expired "%2" timestamp. This message will be di
scarded.

CIS_E_ACCESS_
DENIED

0
x
1
7
0
c

The current process did not have administrative privileges and cannot access the Suspended queue.

CIS_E_BTF_ERR
OR_FINDING_T
AG

0
x
1
7
0
d

The parser could either not find the BizTalk Framework tag "%1", or the tag did not have a value. This documen
t will be moved to the Suspended queue.

CIS_E_INVALID_
FORMAT

0
x
1
7
0
e

The "%1" envelope format is not recognized by the server. Specify a valid envelope format.

CIS_E_INVALID_
MAP

0
x
1
7
0
f

The server could not load the map that is referenced by this channel.

CIS_E_MALFOR
MED_EXPR

0
x
1
7
1
0

The expression "%1" is malformed and cannot be interpreted by the server.

CIS_E_DB_SHUT
DOWN

0
x
1
7
1
1

The server is shutting down because of a database failure.

CIS_E_SUBMIT_
BLOCKED

0
x
1
7
1
2

All submit calls have been blocked due to a database failure. After correcting this problem, please go to Comp
onent Services and shut down the 'BizTalk Server Interchange Application', before attempting to call any subm
it method.

CIS_E_CERT_NO
T_FOUND

0
x
1
7
1
3

The required certificate cannot be found in the certificate store.

CIS_E_NODATA 0
x
1
7
1
4

The Submit method call did not contain a document or a file path.

CIS_E_TOOMUC
H_DATA

0
x
1
7
1
5

The Submit method call contained both a document and a file path.

CIS_E_INVALID_
OPENFLAG

0
x
1
7
1
6

The Submit method call was passed an openness type that is not valid. Refer to the BizTalk Server 2000 Help d
ocumentation for the enumeration of these values.

CIS_E_PASSTHR
OUGH_PARAM
S

0
x
1
7
1
7

The Submit method call contained a channel along with source, destination, or document name information. D
o not include source, destination, or document name information when passing the channel as a parameter wi
thin a Submit method call.

CIS_E_NOSRCI
D

0
x
1
7
1
8

The Submit method call contained a source qualifier but no source identifier.

CIS_E_NODESTI
D

0
x
1
7
1
9

The Submit method call contained a destination qualifier but no destination identifier.

MSG_TIMEBOM
B_EXPIRED

0
x
1
7
1
A

Thank you for evaluating Microsoft BizTalk Server 2000. The period for this evaluation version has ended. Plea
se contact Microsoft or your software reseller to obtain a licensed version of Microsoft BizTalk Server 2000.

CIS_E_LOOPBA
CK

0
x
1
7
1
B

An attempt was made to submit a document that uses the Loopback transport type. The Loopback transport ty
pe can only be used when calling the SubmitSync method.

CIS_E_DBEXECU
TE

0
x
1
7
1
C

The following stored procedure call failed: "%1".

CIS_E_MISSING
_SMTPHOST

0
x
1
7
1
D

In order to use the SMTP transport, the SMTP host must be specified. To specify an SMTP host, in BizTalk Serve
r Administration expand Microsoft BizTalk Server 2000, right-click BizTalk Server Group, and then click Propert
ies to open the BizTalk Server Group Properties dialog box. On the General tab, in the SMTP host box, specify t
he SMTP host that you want to use.

CIS_E_INVALID
HANDLE

0
x
1
7
1
E

This method expected a submission handle or an array of submission handles, but the incoming data was not
valid. Verify that the parameters are correct.

CIS_E_DBCONN
ECT

0
x
1
7
1
F

BizTalk Server failed to initialize a connection to database: "%1" on server: "%2".

CIS_E_PASSTHR
OUGH_WITH_N
OCHANNEL

0
x
1
7
2
0

A valid channel name must be specified as a submission parameter on a Submit or SubmitSync method call w
hen the pass-through flag is set to true.

CIS_W_DBFAIL
URE

0
x
1
7
2
1

The database call failed and returned the following error string: "%1". If possible, we will attempt to retry this c
all.

CIS_E_GET_BTM
PARAMS

0
x
1
7
2
2

Unable to load connection parameters for BTM database. Please go to the Administration MMC to resolve this
problem.

CIS_E_UNABLE_
TO_CREATE_CU
STOM_PRE_PR
OC

0
x
1
7
2
3

The custom preprocessing component for the receive function "%1" could not be created. This document will b
e moved to the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_FAI
LED

0
x
1
7
2
4

The custom preprocessing component used by the receive function "%1" failed. This document will be moved t
o the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_N
O_BSTR

0
x
1
7
2
5

The custom preprocessing component used by the File receive function "%1" failed to return a valid BSTR. A va
lid BSTR is required. This document will be moved to the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_IN
VALID_DATA

0
x
1
7
2
6

The custom preprocessing component used by the Message Queue receive function "%1" cannot be called bec
ause the message contains data that is not a BSTR or a BYTE array. This document will be moved to the Suspen
ded queue.

CIS_E_CUSTOM
_PRE_PROC_IN
VALID_CP

0
x
1
7
2
7

The custom preprocessing component used by the Message Queue receive function "%1" failed to return a vali
d code page. This document will be moved to the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_IN
VALID_DATA_O
UT

0
x
1
7
2
8

The custom preprocessing component used by the Message Queue receive function "%1" failed to return a vali
d document, the document must be either a BSTR or a BYTE array. This document will be moved to the Suspen
ded queue.

CIS_E_CUSTOM
_FILE_PRE_PRO
C_FAIL

0
x
1
7
2
9

The custom preprocessing component used by the file receive function "%1" failed. The document "%2" will be
moved to the Suspended queue.

CIS_E_CUSTOM
_PRE_PROC_CA
NT_SET_CTX

0
x
1
7
2
A

The server was unable to set the context on the custom preprocessing component used by the receive function
"%1". This document will be moved to the Suspended queue.

CIS_E_FILERCV_
FILE_SHARE_D
OWN

0
x
1
7
2
B

The file receive function "%1" was unable to connect to the network share "%2". This receive function will try to
connect again.

CIS_E_FILERCV_
NETWORK_DO
WN

0
x
1
7
2
C

The file receive function "%1" is experiencing network problems and was unable to connect to the network sha
re "%2". This receive function will try to connect again.

CIS_E_RECEIVE_
FUNCTION_DIS
ABLED

0
x
1
7
2
D

The receive function "%1" has experienced problems, it will be shut down and disabled. Once these problems h
ave been corrected, re-enable this receive function in BizTalk Server Administration.

CIS_E_UNRECO
VERABLE

0
x
1
7
2
E

There was a serious error within the BizTalk Server scheduler component. The server is being shut down. Resol
ve this problem and then restart the server.

CIS_E_RELIABLE
_NOACK

0
x
1
7
2
F

The server has not received a receipt for the reliable message.

CIS_E_DLQ_ID 0
x
1
7
3
0

Suspended Queue ID: "%1"

CIS_E_CANNOT
_FIRE_EVENT

0
x
1
7
3
1

The server cannot send a WMI event for the Suspended queue item "%1". The most likely cause is that the user
configured for this submission has insufficient privileges to access WMI.

CIS_E_SERIALIZ
ER_INVALID_D
OCUMENT

0
x
1
8
0
0

The document with the "%1" tracking identifier is invalid XML. The serializer cannot continue.

CIS_E_BTF_INV
ALID_ADDRESS
_TYPE

0
x
1
8
0
1

The BizTalk Framework document has an "type" specified that is not valid for the "%1" address field. This docu
ment will be moved to the Suspended queue.

CIS_E_RELIABLE
_MSG_RECEIPT_
REQ_BY

0
x
1
8
0
2

The BizTalk Framework document "%1" will not be transmitted as it has an expired "receiptRequiredBy" timest
amp. This message will be discarded.

CIS_E_CUSTOM
_ENVELOPE_ER
ROR

0
x
1
8
0
3

The custom envelope:"%1" had the property "%2" specified, but the custom envelope generator could not to lo
cate the XML node. This document will be moved to the Suspended queue.

CIS_E_SERIALIZ
ER_INVALID_DA
TETIME

0
x
1
8
0
4

The "%1" date or time format is not valid. Correct the format specification.

CIS_E_SERIALIZ
ER_INVALID_DT
DATA

0
x
1
8
0
5

The "%1" date or time field is not a valid ISO8601 format. Make sure that the XML date or time is formatted co
rrectly.

CIS_E_SERIALIZ
ER_INVALID_DE
LIMITER

0
x
1
8
0
6

The "%1" delimiter is either missing or has a value specified that is not valid. Update the delimiter value.

CIS_E_SERIALIZ
ER_MISSING_P
ROPSET

0
x
1
8
0
7

The "%1" document is missing the entire property set that is required for this serializer to run.

CIS_E_SERIALIZ
ER_MISSING_P
ROP

0
x
1
8
0
8

The property set for the "%1" document either is missing or does not contain a valid value for the "%2" proper
ty. Add or correct this property.

CIS_E_SERIALIZ
ER_INVALIDAR
G

0
x
1
8
0
9

Both source and destination qualifiers and values are required for this serializer to run. Specify qualifiers and v
alues in the messaging port for this transaction.

CIS_E_SERIALIZ
ER_MISMATCH_
SPEC

0
x
1
8
0
A

The serialization produced no output. Verify that the document specification matches the outbound XML docu
ment.

CIS_E_SERIALIZ
ER_FAILED

0
x
1
8
0
B

The serializer could not finish processing. See the following messages for details.

CIS_E_SERIALIZ
ER_INVALID_SR
CQUAL

0
x
1
8
0
C

The "%1" qualifier for the source identifier is too long to be placed in the outbound document header. Update t
he channel with a shorter qualifier.

CIS_E_SERIALIZ
ER_INVALID_SR
CID

0
x
1
8
0
D

The "%1" value for the source identifier is too long to be placed in the output header. Update the channel with
a shorter value.

CIS_E_SERIALIZ
ER_INVALID_DE
STQUAL

0
x
1
8
0
E

The "%1" qualifier for the destination identifier is too long to be placed in the output header. Update the port w
ith a shorter qualifier.

CIS_E_SERIALIZ
ER_INVALID_DE
STID

0
x
1
8
0
F

The "%1" value for the destination identifier is too long to be placed in the output header. Update the port with
a shorter identifier.

CIS_E_SERIALIZ
ER_INVALID_PO
SREC

0
x
1
8
1
0

The "%1" positional record is defined to contain a record length of zero. This happens when there is no tag, an
d none of the fields in this record specify start and end positions. Update the fields to have valid start and end
positions for this record.

CIS_E_SERIALIZ
ER_NODELIMS

0
x
1
8
1
1

This serializer component requires delimiters specified in the messaging port. Specify a valid delimiter set for t
his component.

CIS_E_SERIALIZ
ER_INVALID_CH
AR

0
x
1
8
1
2

The serializer component has encountered a character, "%1", that is not valid. An entry specified in the InvalidC
haracterMap tag of the document specification states that characters between "%2" and "%3" are not valid.

CIS_E_SERIALIZ
ER_INVALID_LE
NGTH

0
x
1
8
1
3

The length of the "%1" field ("%2") is not valid; it must be between %3 and %4. This document will be rejected.

CIS_E_SERIALIZ
ER_SELECT_SIN
GLE_NODE_FAI
LED

0
x
1
8
1
4

The serializer component cannot find the node using the query "%1". This document will be rejected.

CIS_E_SERIALIZ
ER_RELIABLE_U
RL_MISSING

0
x
1
8
1
5

The reply-to URL required for reliable messaging was not set. This document will be rejected.

CIS_E_SERIALIZ
ER_CONTROL_
NUMBER

0
x
1
8
1
6

The serializer component cannot find a control number for %1 %2 in the BizTalk Management database. This d
ocument will be rejected.

CIS_E_CUSTOM
_ENV_PARSE_T
ABLE_ERROR

0
x
1
8
1
7

The serializer component failed to build the custom envelope ID:"%1", this was due to errors in the XML Schem
a supplied. This document will be moved to the Suspended queue.

CIS_E_SUBSYN
C_RELIABLE_MS
G

0
x
1
8
1
8

The BizTalk Framework document that was submitted has "reliability" information specified. This information i
s not permitted in a synchronous call.

CIS_E_CUSTXM
L_BODY_NOT_F
OUND

0
x
1
8
1
9

The parser was unable to locate the XML document node by using the query specified in the XML specification:
"%1".

CIS_E_BTF_ACK
_BAD_MSG_ID

0
x
1
8
1
A

The BizTalk Framework receipt had a <prop:identity> tag that is not valid: "%1". This document will be moved t
o the Suspended queue.

CIS_E_BTF_MA
NIFEST_REF_MI
SSING

0
x
1
8
1
B

The BizTalk Framework document has a <manifest> tag without the mandatory <reference> tag. This docume
nt will be moved to the Suspended queue.

CIS_E_CUSTOM
_ENV_NO_DOC
_NODE

0
x
1
8
1
C

The serializer failed to create the custom envelope because the Document Container Node property was not sp
ecified in the XML specification. This document will be moved to the Suspended queue.

CIS_E_BTF_INV
ALID_XSI_TYPE

0
x
1
8
1
D

The BizTalk Framework document contains an xsi:type attribute "%1" that is not valid. This attribute must not h
ave spaces, and the first character must be alphabetical. This document will be moved to the Suspended queue
.

CIS_E_SERIALIZ
ER_INVALID_SY
NTAX_IDENTIFI
ER

0
x
1
8
1
E

The EDIFACT Syntax Identifier "%1" is not valid. Update the channel with a correct identifier.

CIS_E_SERIALIZ
ER_INVALID_U
NA_CONTROL

0
x
1
8
1
F

The EDIFACT UNA Control value "%1" is not valid. Update the channel with a correct value.

CIS_E_SERIALIZ
ER_EXPECT_BST
R_VALUE

0
x
1
8
2
0

The configuration data for the field "%1" must be a string. Update the data for this field.

BTS_E_XMLSERI
ALIZER_MISSIN
G_DEST

0
x
1
8
2
1

The BizTalk Framework header could not be generated because no destination identifier was specified.

BTS_E_XMLSERI
ALIZER_MISSIN
G_SRC

0
x
1
8
2
2

The BizTalk Framework header could not be generated because no source identifier was specified.

CIS_E_BTF_IDEN
TITY_MISSING

0
x
1
9
0
4

The parser could not find the mandatory BizTalk Framework tag "identity". This document will be moved to the
Suspended queue.

CIS_E_BTF_EXPI
RESAT_MISSIN
G

0
x
1
9
0
5

The parser could not find the mandatory BizTalk Framework tag "expiresAt". This document will be moved to t
he Suspended queue.

CIS_E_MSMQ_
NOT_INSTALLE
D

0
x
1
9
0
6

The Message Queuing receive function could not be started because the Message Queuing service is not instal
led on the server.

CIS_W_FILE_RE
CEIVE_RETRY_F
AILURE

0
x
1
9
0
7

There are file(s) in the "%1" directory that cannot be accessed by the file receive function. The receive service w
ill try again to access the file(s) in "%2" seconds.

CIS_E_FILE_REC
EIVE_DELETE_F
AILURE

0
x
1
9
0
9

The following file could not be deleted after processing: "%1". Make sure that the file attribute is not set to read
-only.

CIS_E_LOGON_
USER_FAILURE

0
x
1
9
0
a

Unable to logon with the account %1. Make sure that %2 has been granted "logon locally" privilege on this ser
ver and that the BizTalk Server account has "act as part of the operating system" privilege.

CIS_E_MSMQ_R
ECEIVE_IMPERS
ONATION_FAIL
URE

0
x
1
9
0
b

The "%1" Message Queuing receive function could not impersonate the logged on user.

CIS_E_RECEIVE_
CANNOT_CREA
TE_THREAD

0
x
1
9
0
c

A receive-function thread cannot be created due to a system error.

CIS_E_MSMQ_R
ECEIVE_OPENQ
_FAILURE

0
x
1
9
0
d

The following Message Queuing queue cannot be opened: "%1" (Message Queuing error code: 0x%2=%3). Ver
ify the existence and security setting of the queue.

CIS_E_MSMQ_R
ECEIVE_PEEKQ_
FAILURE

0
x
1
9
0
e

The Message Queuing queue could not be read: "%1" (Message Queuing error code: 0x%2=%3).

CIS_E_MSMQ_R
ECEIVE_RETRIE
VEQ_FAILURE

0
x
1
9
0
f

A message could not be retrieved from the following Message Queuing queue: '%1' (Message Queuing error:
0x%2=%3).

CIS_E_FILE_REC
EIVE_FINDCHA
NGE_FAILURE

0
x
1
9
1
0

The file-change notification cannot be set up on the following directory: "%1". Make sure that the path is correc
t.

CIS_E_SET_CUR
RENT_DIR_FAIL
URE

0
x
1
9
1
1

The current directory cannot be set to: "%1". Make sure that the path is correct.

CIS_W_RECEIVE
_SUBMIT_FAILU
RE

0
x
1
9
1
4

A submit request initiated from the "%1" receive function has failed.

CIS_E_READON
LY_FILE

0
x
1
9
1
5

The "%1" receive function picked up the following file: '%2'. This file is marked as read-only and cannot be pro
cessed.

CIS_E_BAD_REC
SVC

0
x
1
9
1
6

There was a serious failure in the receive function "%1". This receive service will be shut down, please check th
e event log for additional error messages.

CIS_E_FILE_REC
EIVE_IMPERSO
NATION_FAILU
RE

0
x
1
9
1
7

The "%1" file receive function could not impersonate the logged on user.

CIS_E_MSMQ_R
ECEIVE_UNEXPE
CTED_PASSTHR
OUGH

0
x
1
9
1
8

The ""%1"" Message Queuing receive function is not configured for a pass-through submission, but it has enco
untered a document that was submitted previously as a pass-through submission. Change this receive functio
n to accept pass-through submissions or remove the pass-through document from the queue. This receive fun
ction will be shut down.

CIS_E_BTSDOC
UMENT_INVALI
DNAME

0
x
1
A
0
0

The document named "%1" does not exist. Correct the document name or add the document to the BizTalk Me
ssaging Management database.

CIS_E_BTSDOC
UMENT_INVALI
DDOC

0
x
1
A
0
1

The server could not load any documents with the given criteria.

CIS_E_BTSDOC
UMENT_AMBIG
UOUS_NAMESP
ACE

0
x
1
A
0
2

The root node "%1" is ambiguous because documents "%2" and "%3" refer to different specifications with that
name. Either change the specifications to remove this ambiguity or use the document name explicitly.

CIS_E_BTSDOC
UMENT_AMBIG
UOUS_PROPSE
T

0
x
1
A
0
3

The property set is ambiguous because documents "%1" and "%2" refer to the same property set.

CIS_E_BTSDOC
UMENT_AMBIG
UOUS_PROPSE
TSHAREID

0
x
1
A
0
4

The property set is ambiguous because documents "%1" and "%2" refer to the same property set and have ref
erence "%3".

CIS_E_BTSDOC
UMENT_INVALI
DPROPERTYSET

0
x
1
A
0
5

The following property set was specified: %1.

CIS_E_BTSDOC
UMENT_EMPTY
PROPERTYSET

0
x
1
A
0
6

The property set was empty.

CIS_E_BTSDOC
UMENT_LOADF
AILED

0
x
1
A
0
7

The document "%1" could not be loaded. Possible causes are using a non-envelope specification, or incorrectly
configured tracking details.

CIS_E_BTSENVE
LOPE_LOADFAI
LED

0
x
1
A
2
0

The envelope "%1" could not be loaded. A possible cause is that the specification is not valid. Configure a valid
envelope specification.

CIS_E_FAILED_T
O_JOIN_TX

0
x
1
A
2
1

BizTalk Server failed to join a transaction. Ensure both the DTC and the SQL Server database are running.

MSG_COM_CRE
ATE_FAILED

0
x
1
B
0
1

An instance of the %1 class cannot be created: %2.

MSG_CONNEC
T_WMI_FAILED

0
x
1
B
0
2

A connection to Windows Management on "%1" cannot be established: %2.

MSG_COSETPR
OXY_FAILED

0
x
1
B
0
3

The authentication credential cannot be set for the Windows Management connection: %1.

MSG_WMI_ENU
MINST_FAILED

0
x
1
B
0
4

Instances of the BizTalk Server WMI provider class "%1" cannot be enumerated: %2.

MSG_WMI_GET
PROP_FAILED

0
x
1
B
0
5

The property value of "%1" cannot be retrieved from the BizTalk Server WMI provider because of an unexpecte
d error: %2.

MSG_WMI_EXE
CQUERY_FAILE
D

0
x
1
B
0
6

An unexpected error is preventing execution of the BizTalk Server WMI provider query "%1": %2.

MSG_WMI_GET
OBJ_FAILED

0
x
1
B
0
7

The BizTalk Server WMI provider instance of "%1" cannot be retrieved because of an unexpected error: %2.

MSG_WMI_PUT
PROP_FAILED

0
x
1
B
0
8

The property value of "%1" cannot be changed because of an unexpected error: %2.

MSG_WMI_PUT
INST_FAILED

0
x
1
B
0
9

The property values of the BizTalk Server WMI provider instance "%1" cannot be updated because of an unexp
ected error: %2.

MSG_WMI_DELI
NST_FAILED

0
x
1
B
0
A

The BizTalk Server WMI provider instance "%1" cannot be deleted because of an unexpected error: %2.

MSG_WMI_CRE
ATEINST_FAILE
D

0
x
1
B
0
B

A new instance of the WMI class "%1" cannot be created in the BizTalk Server WMI provider: %2.

MSG_WMI_CRE
ATEGETOBJ_FAI
LED

0
x
1
B
0
C

A new instance of the BizTalk Server WMI provider class "%1" cannot be created because of an unexpected err
or: %2.

MSG_WMI_EXE
CMETHOD_GET
OBJ_FAILED

0
x
1
B
0
D

The method "%1" of the BizTalk Server WMI provider class "%2" cannot be executed because of a failure to retr
ieve the class: %3.

MSG_WMI_EXE
CMETHODCLAS
S_FAILED

0
x
1
B
0
E

The method "%1" of the BizTalk Server WMI provider class "%2" cannot be executed because of a failure to retr
ieve the method information: %3.

MSG_WMI_EXE
CMETHODSPA
WN_FAILED

0
x
1
B
0
F

The method "%1" of the BizTalk Server WMI provider class "%2" cannot be executed because of an unexpected
error: %3.

MSG_WMI_EXE
CMETHODPUTP
ARAM_FAILED

0
x
1
B
1
0

The method "%1" of the BizTalk Server WMI provider class "%2" cannot be executed because of a failure to set
the parameter value: %3.

MSG_WMI_EXE
CMETHOD_FAIL
ED

0
x
1
B
1
1

The method "%1" of the WMI class "%2" cannot be executed by the BizTalk Server WMI provider: %3.

MSG_GET_HOS
TNAME_FAILED

0
x
1
B
1
2

The local computer name cannot be obtained because of an unexpected error: %1.

MSG_OUT_OF_
MEMORY

0
x
1
B
1
4

Insufficient memory.

MSG_FAIL_LOA
D_BMP

0
x
1
B
1
7

At least one of the bitmaps cannot be loaded in the BizTalk Server Administration console: %1.

MSG_FAIL_SET_
BMPSTRIP

0
x
1
B
1
8

At least one pair of bitmaps cannot be added to the image list of the BizTalk Server Administration console: %1
.

MSG_ERROR_
WMI_PATH_EM
PTY

0
x
1
B
1
9

The requested operation cannot be completed because of a previous WMI failure. The WMI object path is empt
y in this case.

MSG_ERROR_B
TM_GRP_ENUM
_FAIL

0
x
1
B
2
0

Unknown problems are preventing the WMI provider from enumerating a list of server groups from the BizTal
k Messaging Management database: %1.

MSG_ERROR_G
RP_DTA_DB_FAI
L

0
x
1
B
2
1

Unknown problems are preventing the WMI provider from accessing the Tracking database for the "%1" grou
p.

MSG_ERROR_G
RP_SQ_DB_FAIL

0
x
1
B
2
2

Unknown problems are preventing the WMI provider from accessing the Shared Queue database the "%1" gro
up.

MSG_ERROR_G
RP_BOTH_DB_F
AIL

0
x
1
B
2
3

Unknown problems are preventing the WMI provider from accessing the Tracking and Shared Queue databas
es for the "%1" group.

MSG_ERROR_D
ECRYPT_FAIL

0
x
1
B
2
4

Password decryption failed: %1.

MSG_WARN_E
NUM4ROOTUP
D_FAILED

0
x
1
B
2
7

Unknown problems are preventing the WMI provider from retrieving following list of servers and their states t
o prepare for BizTalk Messaging Management database update: %1

MSG_ERROR_C
HANGE_ROOTD
B

0
x
1
B
2
8

The server "%1" cannot be updated with the new BizTalk Messaging Management database information: %2.

MSG_ERROR_C
HANGE_ROOTD
B_CONNECT

0
x
1
B
2
9

We cannot connect to the WMI namespace "%1" to update server "%2" with the new BizTalk Messaging Mana
gement database information: %3

MSG_CHANGE_
ROOTDB_SUM
MARY

0
x
1
B
3
0

The BizTalk Messaging Management database change request has been completed. %1%2 %3%4

MSG_CHANGE_
ROOTDB_ON_L
OCAL

0
x
1
B
3
A

Because the server and server group information cannot be retrieved from the original BizTalk Messaging Man
agement database, the BizTalk Messaging Management database information will be updated only on the local
computer "%1". The update has been successful.

MSG_ERROR_U
NEXPECTED_EN
DOFLIST

0
x
1
B
3
C

An unexpected end of list (EOL) for the "%1" class enumeration has been reached.

MSG_ERROR_O
RG_QUALIFIERS
_FROM_DB_FAI
LED

0
x
1
B
3
D

The organization qualifiers cannot be retrieved from the BizTalk Messaging Management database because of
an unexpected error. "%1".

MSG_ERROR_O
RG_VALUES_FR
OM_DB_FAILED

0
x
1
B
3
E

The organization values cannot be retrieved from the BizTalk Messaging Management database because of an
unexpected error. "%1".

MSG_WARN_N
OT_RESUBMITA
BLE

0
x
1
B
3
F

In the selected group of multiple items, at least one item cannot be submitted again.

MSG_WARNIN
G_PROP_VALUE
S_CHANGED

0
x
1
B
4
0

%1 "%2" specified for receive function "%3" has been removed from the BizTalk Messaging Management data
base.

MSG_WARNIN
G_QUALIFIER_C
HANGED

0
x
1
B
4
1

The qualifier and identifier pair "%1" and "%2" specified for receive function "%3" is not valid in the BizTalk Me
ssaging Management database.

MSG_WARNIN
G_ORGANIZATI
ON_CHANGED

0
x
1
B
4
2

Organization "%1" specified for receive function "%2" is not valid in the BizTalk Messaging Management datab
ase.

MSG_TIMEBOM
B_DAYS_LEFT

0
x
1
B
4
3

Thank you for evaluating Microsoft BizTalk Server 2000. The period for this evaluation version has %1 days lef
t. Please contact Microsoft or your software reseller to obtain a licensed version of Microsoft BizTalk Server 20
00.

INTERCHANGE_
EVENT

0
x
3
0
0
5

BizTalk Server: %1

 Note

When an error occurs, the %n variables are replaced with relevant information, such as an object name.

Submitting Documents
This section provides information about how to submit documents to Microsoft BizTalk Server 2000. For additional information,
see the following sections:

For help with specific tasks, see How To.

For general background information, see Concepts.

For information about COM interfaces and enumerations, see the Submitting Documents Reference.

For examples of code, see BizTalk Messaging Services Code Samples.

How To...
This section provides task-specific information about how to submit documents to Microsoft BizTalk Server 2000. It is highly
recommended that you review the Concepts as well. The following topics are covered:

Read the Tracking Database

Submit a Document from a Remote Client

Read the Tracking Database
The purpose of the tracking interface, IBizTalkTrackData, is to facilitate programmatic access to the tracking information of
Microsoft BizTalk Server 2000. This complements the IInterchange interface so that returns from IInterchange calls can be fed
to these IBizTalkTrackData methods to access data about the activity of documents submitted to BizTalk Server 2000.

There can be a one-to-one or a one-to-many relationship between input and output documents. In a normal document flow, one
document is submitted to the server, is tracked and possibly transformed, and one document results as output from the server.
However, the messaging port can be configured so that one document submitted can result in many documents as output to
several destinations:

1. Get the SubmissionHandle return from the Submit method of the IInterchange interface.

2. Call the GetInterchanges method, using the SubmissionHandle return as the input. This method returns a list of
interchanges contained in that submission, including all the data from the Tracking database. Because transport-specific
information (delivery times, receipt flags, and so on) appears in the interchange data, you can look here to confirm or check
status on delivery, for example.

3. Call the GetInDocDetails method, using the SubmissionHandle return as the input. This method returns a list of the
documents that were included in that submission. You can look here to find information about an input document (for
example, was a specific document valid, how many bytes was it, and so on).

4. Call the GetOutDocDetails method, using the SubmissionHandle return as the input. This method returns a list of the
documents that were generated as a result of the submission. You can look here to find information about an output
document (for example, looking for PO #123456 out of a submission made earlier today).

Related Topic

Submitting Documents Reference

Submit a Document from a Remote Client
A document can be submitted to Microsoft BizTalk Server 2000 from a remote client running an application that uses
the IInterchange interface. To accomplish this, follow these steps:

1. Using a computer that has Microsoft BizTalk Server 2000 installed, go to the Start menu, point to Programs, point to
Administrative Tools, and then click Component Services.

2. In the Tree pane, click Component Services, expand Computers, expand My Computer, expand COM+ Applications,
and then click BizTalk Server Interchange Application.

3. On the Action menu, click Export.

4. On the Welcome to the COM Application Export Wizard dialog box, enter the name of an export installation package to
be created.

5. In the Export as area, click the Application proxy option and click Next to finish the wizard.

The COM Application Export Wizard creates a Windows Installer Package file with an .msi extension and its associated Cabinet file
with a .cab extension. Copy these files to the remote client and run the Windows Installer Package file. Now the remote client can
run applications that use the IInterchange interface.

 Notes

The remote client must be running Microsoft Windows 2000.

The computer used to create the installation package acts as an "interchange server" for the remote client that is submitting
documents. Therefore, all documents submitted on the remote client are routed through that server.

You can also create a remote client during the BizTalk Server 2000 installation.

Submitting Documents Reference
This section provides reference information about components and interfaces used to submit documents to Microsoft BizTalk
Server 2000 for both Microsoft Visual C++ and Visual Basic programming. Reference information is provided for all interfaces,
objects, and enumerations exposed for submitting documents to BizTalk Server 2000.

The following COM interfaces and enumerations are documented in this reference:

IBizTalkTrackData

IBTSCustomProcess

IBTSCustomProcessContext

IInterchange

Interchange Enumerations

IBizTalkTrackData Interface

IBizTalkTrackData Interface [C++]
BTSDocTracking Object [Visual Basic]
Use this object to facilitate programmatic access to the tracking information of Microsoft BizTalk Server 2000. This object
complements the Interchange object so that returns from Interchange methods can be passed to these methods for reading
tracking data about the documents submitted to BizTalk Server 2000.

In C++, use the IBizTalkTrackData interface to access the methods of the BizTalkTrackData object.

The methods of the BizTalkTrackData object are shown in the following table.

Method Description
GetInDocDetails Returns an ADO recordset that contains a list of the documents that were included in the SubmissionHandle r

eturn from the Submit method of the IInterchange interface. This method returns specific information for a
n input document.

GetInterchanges Returns an ADO recordset that contains a list of interchanges contained in the SubmissionHandle return fro
m the Submit method of the IInterchange interface, including all the data from the Tracking database. Tran
sport-specific information, such as delivery times and receipt flags, appears in the Tracking database; you can
check there to confirm or check status on delivery, for example.

GetOutDocDetails Returns an ADO recordset that contains a list of the documents that were generated when the Submit meth
od of the IInterchange interface was called. This method returns specific information for an output docume
nt, for example, PO #123456 from a Submit call made earlier today.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSDocTracking.h
Library: Use Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

Related Topics

Understanding the Tracking Database Schema

Document Definitions

Read the Tracking Database

Document Tracking

IBizTalkTrackData::GetInDocDetails Method

IBizTalkTrackData::GetInDocDetails Method [C++]
BTSDocTracking.GetInDocDetails Method [Visual Basic]
The GetInDocDetails method returns an ADO recordset that contains a list of the documents that were included in the
SubmissionHandle return from the Submit method of the IInterchange interface. This method returns specific information for
an input document.

Syntax
[C++]
HRESULT GetInDocDetails(
 BSTR bstrSubmissionID,
 IDispatch** ppdispResult
);
[Visual Basic]
object.GetInDocDetails(_
 bstrSubmissionID As String _
)

Parameters
[C++]

bstrSubmissionID

[in] BSTR that contains the SubmissionHandle string returned by Submit for this document instance.

ppdispResult

[out, retval] Address of a pointer to an IDispatch interface that contains a list of the documents that were included in the
submission.

[Visual Basic]

bstrSubmissionID

String that contains the SubmissionHandle string returned by Submit for this document instance.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns an Object that contains a list of the documents that were included in the submission.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSDocTracking.h
Library: Use Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

Related Topic

Understanding the Tracking Database Schema

IBizTalkTrackData::GetInterchanges Method

IBizTalkTrackData::GetInterchanges Method [C++]
BTSDocTracking.GetInterchanges Method [Visual Basic]
The GetInterchanges method returns an ADO recordset that contains a list of interchanges contained in the SubmissionHandle
return from the Submit method of the IInterchange interface, including all the data from the Tracking database. Because
transport-specific information, such as delivery times and receipt flags, appears in the Tracking database, you can check there to
confirm or check status on delivery, for example.

Syntax
[C++]
HRESULT GetInterchanges(
 BSTR bstrSubmissionID,
 IDispatch** ppdispResult
);
[Visual Basic]
object.GetInterchanges(_
 bstrSubmissionID As String, _
)

Parameters
[C++]

bstrSubmissionID

[in] BSTR that contains the SubmissionHandle string returned by Submit for this document instance.

ppdispResult

[out, retval] Address of a pointer to an IDispatch interface that contains a list of interchanges contained in this submission,
including all the data from the Tracking database.

[Visual Basic]

bstrSubmissionID

String that contains the SubmissionHandle string returned by Submit for this document instance.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method optionally returns an Object that contains a list of interchanges contained in this submission, including all the data
from the Tracking database.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSDocTracking.h
Library: Use Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

Related Topic

Understanding the Tracking Database Schema

IBizTalkTrackData::GetOutDocDetails Method

IBizTalkTrackData::GetOutDocDetails Method [C++]
BTSDocTracking.GetOutDocDetails Method [Visual Basic]
The GetOutDocDetails method returns an ADO recordset that contains a list of the documents that were generated as a result of
the Submit method of the IInterchange interface. This method returns specific information for an output document, for
example, PO #123456 from a Submit call made earlier today.

Syntax
[C++]
HRESULT GetOutDocDetails(
 BSTR bstrSubmissionID,
 IDispatch** ppdispResult
);
[Visual Basic]
object.GetOutDocDetails(_
 bstrSubmissionID As String _
)

Parameters
[C++]

bstrSubmissionID

[in] BSTR that contains the SubmissionHandle string returned by Submit for this document instance.

ppdispResult

[out, retval] Address of a pointer to an IDispatch interface that contains a list of the documents that were generated as a result of
the submission.

[Visual Basic]

bstrSubmissionID

String that contains the SubmissionHandle string returned by Submit for this document instance.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns an Object that contains a list of the documents that were generated as a result of the submission.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSDocTracking.h
Library: Use Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

Related Topic

Understanding the Tracking Database Schema

IBTSCustomProcess Interface

IBTSCustomProcess Interface [C++]
IBTSCustomProcess Object [Visual Basic]
Implement IBTSCustomProcess to create a custom preprocessor for BizTalk Server receive functions.

The methods of IBTSCustomProcess are shown in the following table.

Method Description
Execute Performs the custom processing of the data prior to sending the data to BizTalk Server for processing.
SetContext Retrieves context information associated with the data being processed.

Remarks
For information about custom preprocessors, see Preprocessing Documents in a Receive Function.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcess::Execute Method

IBTSCustomProcess::Execute Method [C++]
IBTSCustomProcess.Execute Method [Visual Basic]
The Execute method performs the custom processing on data obtained from a receive function.

Syntax
[C++]
HRESULT Execute(
 VARIANT vDataIn,
 long nCodePageIn,
 VARIANT_BOOL bIsFilePath,
 VARIANT* nCodePageOut,
 VARIANT* vDataOut
);
[Visual Basic]
object.Execute(_
 vDataIn As Variant, _
 nCodePageIn As Long, _
 bIsFilePath As Boolean, _
 nCodePageOut As Variant, _
 vDataOut As Variant _
)

Parameters
[C++]

vDataIn

[in] VARIANT that contains the input data read by the receive function. For data read from a message queue, the data can be
either an array or a BSTR. If the data is read from a file receive function, this parameter contains the file path. For file receive
functions, the bIsFilePath parameter is set to VARIANT_TRUE.

nCodePageIn

[in] Long that contains the code page of the input data. The code page indicates the character set and keyboard layout used on a
computer.

bIsFilePath

[in] VARIANT_BOOL flag that indicates the type of input data. A value of VARIANT_TRUE indicates that the vDataIn parameter
contains a file path. A value of VARIANT_FALSE indicates that the vDataIn parameter contains data from a message queue.

nCodePageOut

[out] Pointer to a VARIANT that contains the code page of the output data. The code page indicates the character set and
keyboard layout used on a computer.

vDataOut

[out] Pointer to a VARIANT that contains the output data. For file receive functions, this will be a BSTR. The data in this parameter
is sent to BizTalk Server for processing.

[Visual Basic]

vDataIn

VARIANT that contains the input data read by the receive function. If the data is read from a file receive function, this parameter
contains the file path. For file receive functions, the bIsFilePath parameter must be set to True.

nCodePageIn

Long that contains the code page of the input data. The code page indicates the character set and keyboard layout used on a

computer.

bIsFilePath

VARIANT_BOOL flag that indicates the type of input data. A value of True indicates that the vDataIn parameter contains a file
path. A value of False indicates that the vDataIn parameter contains data from a message queue.

nCodePageOut

VARIANT that contains the code page of the output data. The code page indicates the character set and keyboard layout used on
a computer.

vDataOut

VARIANT that contains the output data. The data in this parameter is sent to BizTalk Server for processing.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
If BizTalk Server fails to create the custom preprocessor component, or if the Execute method returns an error or invalid data, the
document being processed is placed in the Suspended queue.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcess::SetContext Method

IBTSCustomProcess::SetContext Method [C++]
IBTSCustomProcess.SetContext Method [Visual Basic]
The SetContext method retrieves information associated with a document submitted to BizTalk Server.

Syntax
[C++]
HRESULT SetContext(
 IBTSCustomProcessContext* pCtx
);
[Visual Basic]
object.SetContext(_
 pCtx As IBTSCustomProcessContext _
)

Parameters
[C++]

pCtx

[in] IBTSCustomProcessContext that contains information associated with the document being processed by BizTalk Server.

[Visual Basic]

pCtx

IBTSCustomProcessContext that contains information associated with the document being processed by BizTalk Server.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
For additional information about the custom process context object, see IBTSCustomProcessContext.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext Interface

IBTSCustomProcessContext Interface [C++]
IBTSCustomProcessContext Object [Visual Basic]
Use this object to retrieve information associated with data being processed by using a custom preprocessor component.

In C++, use the IBTSCustomProcessContext interface to access the methods of the BTSCustomProcessContext object.

The properties of the BTSCustomProcessContext object are shown in the following table.

Property Type Description
ChannelName BSTR Name of the channel.
DestID BSTR Value of the destination organization qualifier.
DestQualifier BSTR Qualifier type of the destination organization.
DocName BSTR Name of the document.
EnvelopeName BSTR Name of the envelope used with the document.
Openness long Value that indicates if the messaging port is open.
PassThrough long Value that indicates whether pass-through submission mode is being used.
SourceID BSTR Value of the source organization qualifier.
SourceQualifier BSTR Qualifier type of the source organization.

Remarks
This object can be obtained by calling the SetContext method on the IBTSCustomProcess object. For information about custom
preprocessors, see Preprocessing Documents in a Receive Function.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::ChannelName Property

IBTSCustomProcessContext::ChannelName Property [C++]
IBTSCustomProcessContext.ChannelName Property [Visual
Basic]
The ChannelName property returns the name of the channel used for processing the current document.

Syntax
[C++]

Get method:
HRESULT get_ChannelName(
 BSTR* bstrPipelineName
);
[Visual Basic]
object.ChannelName()

Parameters
[C++]

bstrPipelineName

[out, retval] Pointer to a BSTR that contains the name of the channel used for processing the current document.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the channel name.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::DestID Property

IBTSCustomProcessContext::DestID Property [C++]
IBTSCustomProcessContext.DestID Property [Visual Basic]
The DestID property returns the value of the destination organization qualifier.

Syntax
[C++]

Get method:
HRESULT get_DestID(
 BSTR* bstrDestID
);
[Visual Basic]
object.DestID()

Parameters
[C++]

bstrDestID

[out, retval] Pointer to a BSTR that contains the value of the destination organization qualifier.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the value of the destination organization qualifier.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::DestQualifier Property

IBTSCustomProcessContext::DestQualifier Property [C++]
IBTSCustomProcessContext.DestQualifier Property [Visual
Basic]
The DestQualifier property returns the destination organization qualifier type.

Syntax
[C++]

Get method:
HRESULT get_DestQualifier(
 BSTR* bstrDestQualifier
);
[Visual Basic]
object.DestQualifier()

Parameters
[C++]

bstrDestQualifier

[out, retval] Pointer to a BSTR that contains the destination organization qualifier type.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

[Visual Basic]

This property returns a String that contains the destination organization qualifier type.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::DocName Property

IBTSCustomProcessContext::DocName Property [C++]
IBTSCustomProcessContext.DocName Property [Visual Basic]
The DocName property returns the name of the document definition used by the current document.

Syntax
[C++]

Get method:
HRESULT get_DocName(
 BSTR* bstrDocName
);
[Visual Basic]
object.DocName()

Parameters
[C++]

bstrDocName

[out, retval] Pointer to a BSTR that contains the document definition name.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the document definition name.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::EnvelopeName Property

IBTSCustomProcessContext::EnvelopeName Property [C++]
IBTSCustomProcessContext.EnvelopeName Property [Visual
Basic]
The EnvelopeName property returns the name of the envelope used with the current document.

Syntax
[C++]

Get method:
HRESULT get_EnvelopeName(
 BSTR* bstrEnvelopeName
);
[Visual Basic]
object.EnvelopeName()

Parameters
[C++]

bstrEnvelopeName

[out, retval] Pointer to a BSTR that contains the envelope name.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the envelope with the current document.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::Openness Property

IBTSCustomProcessContext::Openness Property [C++]
IBTSCustomProcessContext.Openness Property [Visual Basic]
The Openness property returns the openness associated with the messaging port.

Syntax
[C++]

Get method:
HRESULT get_Openness(
 long* lOpenness
);
[Visual Basic]
object.Openness()

Parameters
[C++]

lOpenness

[out, retval] Pointer to a long that indicates openness on the messaging port. The long returned in this parameter represents a
value in the BIZTALK_OPENNESS_TYPE enumeration.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that indicates openness on the messaging port. The Long returned in this property represents a
value in the BIZTALK_OPENNESS_TYPE enumeration.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::PassThrough Property

IBTSCustomProcessContext::PassThrough Property [C++]
IBTSCustomProcessContext.PassThrough Property [Visual
Basic]
The PassThrough property indicates whether the document uses pass-through submission mode.

Syntax
[C++]

Get method:
HRESULT get_PassThrough(
 long* fPassThrough
);
[Visual Basic]
object.PassThrough()

Parameters
[C++]

fPassThrough

[out, retval] Pointer to a long that indicates whether the document uses pass-through submission mode. A value of 0 indicates
that pass-through submission mode is not used. A non-zero value indicates that pass-through submission mode is used with the
current document.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that indicates whether the document uses pass-through submission mode. A value of 0 indicates
that pass-through submission mode is not used. A non-zero value indicates that pass-through submission mode is used with the
current document.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::SourceID Property

IBTSCustomProcessContext::SourceID Property [C++]
IBTSCustomProcessContext.SourceID Property [Visual Basic]
The SourceID property returns the value of the source organization qualifier.

Syntax
[C++]

Get method:
HRESULT get_SourceID(
 BSTR* bstrSourceID
);
[Visual Basic]
object.SourceID()

Parameters
[C++]

bstrSourceID

[out, retval] Pointer to a BSTR that contains the value of the source organization qualifier.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the value of the source organization qualifier.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IBTSCustomProcessContext::SourceQualifier Property

IBTSCustomProcessContext::SourceQualifier Property [C++]
IBTSCustomProcessContext.SourceQualifier Property [Visual
Basic]
The SourceQualifier property returns the source organization qualifier type.

Syntax
[C++]

Get method:
HRESULT get_SourceQualifier(
 BSTR* bstrSourceQualifier
);
[Visual Basic]
object.SourceQualifier()

Parameters
[C++]

bstrSourceQualifier

[out, retval] Pointer to a BSTR that contains the source organization qualifier type.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains the source organization qualifier type.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IInterchange Interface

IInterchange Interface [C++]
Interchange Object [Visual Basic]
Use this object to exchange documents between applications and BizTalk Server 2000 directly or through a receive function

In C++, use the IInterchange interface to access the methods of the Interchange object.

The methods of the Interchange object are shown in the following table.

Method Description
CheckSuspendedQueue Checks the Suspended queue and returns a list of handles to documents or interchanges in t

he queue that match the request criteria.
DeleteFromSuspendedQueue Deletes all specified documents from the Suspended queue.
GetSuspendedQueueItemDetails Returns details of a document in the Suspended queue.
Submit Submits an interchange to BizTalk Server 2000 for asynchronous processing. This method ac

cepts only a string variable as the document or interchange. This means that applications can
not submit other objects, such as DOM objects, CDictionary objects, ADO objects, or any ot
her data type or object type.

SubmitSync Submits an interchange to BizTalk Server 2000 for synchronous transmission. This method r
eturns a response if one is provided. This method accepts only a string variable for the docu
ment or interchange. This means that applications cannot submit other objects, such as DOM
objects, CDictionary objects, ADO objects, or any other data type or object type.

Remarks
Using parameters with Submit and SubmitSync overrides certain fields in the header of a self-routing document.

For information about submitting documents from a remote client, see How To.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include cisapi.h
Library: (cisapi.tlb)

Related Topics

Submitting

Routing

Steps for Submitting a Document by Using COM Interfaces

IInterchange::CheckSuspendedQueue Method

IInterchange::CheckSuspendedQueue Method [C++]
Interchange.CheckSuspendedQueue Method [Visual Basic]
The CheckSuspendedQueue method checks the Suspended queue and returns a list of documents that match the request
criteria.

Syntax
[C++]
HRESULT CheckSuspendedQueue(
 BSTR DocName,
 BSTR SourceName,
 BSTR DestName,
 VARIANT* DocumentHandleList
);
[Visual Basic]
object.CheckSuspendedQueue(_
 DocName As String, _
 SourceName As String, _
 DestName As String _
)

Parameters
[C++]

DocName

[in] BSTR that contains the name of the BizTalkDocument object. This parameter narrows the search for items in the Suspended
queue. If this parameter is omitted, this method matches all BizTalkDocument objects. This is an optional parameter.

SourceName

[in] BSTR that contains the name of the source BizTalkOrganization object. This parameter narrows the search criteria for items
in the Suspended queue. If this parameter is omitted, this method matches all BizTalkOrganization objects. This is an optional
parameter.

DestName

[in] BSTR that contains the name of the destination BizTalkOrganization object. This parameter narrows the search criteria for
items in the Suspended queue. If this parameter is omitted, this method matches all BizTalkOrganization objects. This is an
optional parameter.

DocumentHandleList

[out] Pointer to a VARIANT that contains a list of handles to all documents in the Suspended queue.

[Visual Basic]

DocName

String that contains the name of the BizTalkDocument object. This parameter narrows the search for items in the Suspended
queue. If this parameter is omitted, this method matches all BizTalkDocument objects. This is an optional parameter.

SourceName

String that contains the name of the source BizTalkOrganization object. This parameter narrows the search criteria for items in
the Suspended queue. If this parameter is omitted, this method matches all BizTalkOrganization objects. This is an optional
parameter.

DestName

String that contains the name of the destination BizTalkOrganization object. This parameter narrows the search criteria for

items in the Suspended queue. If this parameter is omitted, this method matches all BizTalkOrganization objects. This is an
optional parameter.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a Variant that contains a list of handles to all documents in the Suspended queue.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The returned items are not deleted from the queue. To delete items from the Suspended queue, use
the DeleteFromSuspendedQueue method.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include cisapi.h
Library: (cisapi.tlb)

Related Topics

Submitting

Steps for Submitting a Document by Using COM Interfaces

IInterchange::DeleteFromSuspendedQueue Method

IInterchange::DeleteFromSuspendedQueue Method [C++]
Interchange.DeleteFromSuspendedQueue Method [Visual
Basic]
The DeleteFromSuspendedQueue method deletes all specified documents from the Suspended queue.

Syntax
[C++]
HRESULT DeleteFromSuspendedQueue(
 VARIANT* DocumentHandleList
);
[Visual Basic]
object.DeleteFromSuspendedQueue(_
 DocumentHandleList As Variant _
)

Parameters
[C++]

DocumentHandleList

[in] Pointer to a VARIANT that contains a full list of handles or a subset for documents to be deleted from the Suspended queue.

[Visual Basic]

DocumentHandleList

Variant that contains a full list of handles or a subset for documents to be deleted from the Suspended queue.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include cisapi.h
Library: (cisapi.tlb)

Related Topics

Submitting

Steps for Submitting a Document by Using COM Interfaces

IInterchange::GetSuspendedQueueItemDetails Method

IInterchange::GetSuspendedQueueItemDetails Method [C++]
Interchange.GetSuspendedQueueItemDetails Method [Visual
Basic]
The GetSuspendedQueueItemDetails method uses the list of handles returned by the CheckSuspendedQueue method to get
information about a single entry in the Suspended queue.

Syntax
[C++]

HRESULT GetSuspendedQueueItemDetails(
 BSTR ItemHandle,
 VARIANT* SourceName,
 VARIANT* DestName,
 VARIANT* DocName,
 VARIANT* ReasonCode,
 VARIANT* ItemData
);

[Visual Basic]

object.GetSuspendedQueueItemDetails(_
 ItemHandle As String, _
 SourceName As Variant, _
 DestName As Variant, _
 DocName As Variant, _
 ReasonCode As Variant, _
 ItemData As Variant _
)

Parameters
[C++]

ItemHandle

[in] BSTR that contains the handle to an item in the Suspended queue.

SourceName

[out] Pointer to the VARIANT that contains the name of the source BizTalkOrganization object.

DestName

[out] Pointer to the VARIANT that contains the name of the destination BizTalkOrganization object.

DocName

[out] Pointer to the VARIANT that contains the name of the BizTalkDocument object.

ReasonCode

[out] Pointer to the VARIANT that contains the reason a document or interchange has been placed in the Suspended queue. For
more information about this value, see the CISReasonToQueue enumeration.

ItemData

[out] Pointer to the VARIANT that contains the document instance or interchange.

[Visual Basic]

ItemHandle

String that contains the handle to an item in the Suspended queue.

SourceName

Variant that contains the name of the source BizTalkOrganization object. The value of this output parameter is set by calling
this method.

DestName

Variant that contains the name of the destination BizTalkOrganization object. The value of this output parameter is set by
calling this method.

DocName

Variant that contains the name of the associated BizTalkDocument object. The value of this output parameter is set by calling
this method.

ReasonCode

Variant that contains the reason a document or interchange has been placed in the Suspended queue. For more information
about this value, see the CISReasonToQueue enumeration. The value of this output parameter is set by calling this method.

ItemData

Variant that contains the document instance or interchange. The value of this output parameter is set by calling this method.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include cisapi.h
Library: (cisapi.tlb)

Related Topics

Submitting

Steps for Submitting a Document by Using COM Interfaces

IInterchange::Submit Method

IInterchange::Submit Method [C++]
Interchange.Submit Method [Visual Basic]
The Submit method sends a document to BizTalk Server 2000 for asynchronous processing. BizTalk Server 2000 places the
document in a queue until the next available server can process it.

Syntax
[C++]
HRESULT Submit(
 BIZTALK_OPENNESS_TYPE lOpenness,
 BSTR Document,
 BSTR DocName,
 BSTR SourceQualifier,
 BSTR SourceID,
 BSTR DestQualifier,
 BSTR DestID,
 BSTR ChannelName,
 BSTR FilePath,
 BSTR EnvelopeName,
 long PassThrough,
 BSTR* SubmissionHandle
);
[Visual Basic]
object.Submit(_
 lOpenness As BIZTALK_OPENNESS_TYPE, _
 Document As String, _
 DocName As String, _
 SourceQualifier As String, _
 SourceID As String, _
 DestQualifier As String, _
 DestID As String, _
 ChannelName As String, _
 FilePath As String, _
 EnvelopeName As String, _
 PassThrough As Long _
)

Parameters
[C++]

lOpenness

[in] Enumeration value that indicates whether associated BizTalkPort objects can be open. Valid values are from
the BIZTALK_OPENNESS_TYPE enumeration.

Document

[in] BSTR that contains the document instance submitted. This parameter accepts only a string buffer as the document or
interchange. This means that applications cannot submit other objects, such as DOM objects, CDictionary objects, ADO objects,
or any other data type or object type. Either the Document parameter or the FilePath parameter must be specified. Do not specify
both. This is an optional parameter.

DocName

[in] BSTR that contains the name of the BizTalkDocument object associated with the instance of the document being submitted.
If the lOpenness parameter is set to BIZTALK_OPENNESS_TYPE_SOURCE, you can select an input BizTalkDocument object that
has an X12 or EDIFACT specification. If you do, however, the output BizTalkDocument must not have an X12 or EDIFACT
specification. If lOpenness is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the BizTalkDocument object must not have an
X12 or EDIFACT specification. The DocName parameter cannot be used if the PassThrough parameter is set to TRUE. This is an
optional parameter.

SourceQualifier

[in] BSTR that contains the qualifier of the source organization. This indicates how the SourceID parameter is to be interpreted.
Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. You must specify a SourceID. The default qualifier
for all new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk
Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
SourceQualifier parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

SourceID

[in] BSTR that contains the value of the qualifier of the source organization. For example, if the SourceQualifier parameter is
Telephone, this value is the telephone number. If the Openness flag is set to OpenSrc, SourceID is interpreted as the source
organization name. The SourceID parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional
parameter.

DestQualifier

[in] BSTR that contains the qualifier of the destination organization. This indicates how the DestID parameter is to be interpreted.
Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. You must specify a DestID. The default qualifier for
all new organizations is OrganizationName and refers to the name of the organization in the database. If a BizTalk Framework
2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
DestQualifier parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

DestID

[in] BSTR that contains the value of the qualifier of the destination organization. For example, if the DestQualifier parameter is
Telephone, this value is the telephone number. If the Openness flag is set to OpenDest, DestID is used as the destination address.
Note that the queue:// prefix must be used with an open messaging port when a Message Queue is specified as the destination
address. The DestID parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

ChannelName

[in] BSTR that contains the name of the BizTalkChannel object that is executed for this document. This bypasses the normal
processing in which the parser tries to determine which messaging port/channel pair to execute, based on routing information in
the parameters or in the document. This is an optional parameter unless the PassThrough parameter is set to TRUE.

FilePath

[in] BSTR that specifies a fully qualified path that contains the document to be submitted, rather than submitting the document
directly as a string. BizTalk Server 2000 supports URL, UNC, and drive: format only. If the document is submitted as a file that is
pointed to by the FilePath parameter, the call returns successfully after BizTalk Server 2000 has successfully copied the file to the
Work queue. It is safe to delete the file from the specified path as soon as this method returns successfully. When a document is
submitted to the server, using FilePath to specify the data, Submit can take 30 seconds or longer if the location of the file resides
on a remote server that is unavailable, if the UNC path is invalid, or if the SQL server is down. Either the Document parameter or
the FilePath parameter must be specified. Do not specify both. The FilePath parameter cannot be used if the PassThrough
parameter is set to TRUE and a map is specified. This is an optional parameter.

EnvelopeName

[in] BSTR that contains the name of the envelope specification to use to break the interchange into documents. When an envelope
name is provided in this parameter, the envelope must have a valid interchange specification. This requirement is enforced for
envelopes created for Custom XML format also. When submitting a flat file to BizTalk Server 2000, you must create an envelope
for this flat file and specify the name of the envelope in EnvelopeName. This is an optional parameter.

PassThrough

[in] Long that indicates how the server processes the document. When this parameter is set to TRUE, no decryption, decoding, or
signature verification is performed on the document. When set to FALSE, the document is decrypted and decoded, and the
signature is verified. When using pass-through submission mode (TRUE), the BIZTALK_OPENNESS_TYPE value must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN and the ChannelName parameter must be specified. In addition, the DocName,
SourceQualifier, SourceID, DestQualifier, and DestID parameters cannot be specified with pass-through submission mode. Pass-
through submission mode should be used to prevent data corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

SubmissionHandle

[out, retval] Pointer to a BSTR that contains a unique identifier for the submitted document or interchange. This handle can be

used to query the Tracking database for the status of the interchange or document submitted. If more than one document is
submitted (an interchange), a single handle is returned, yet the Tracking database enables the user to get the status of all child
documents related to this interchange identifier.

[Visual Basic]

lOpenness

Enumeration value that indicates whether associated BizTalkPort objects can be open. Valid values are from
the BIZTALK_OPENNESS_TYPE enumeration.

Document

String that contains the document instance submitted. This parameter accepts only a string buffer as the document or
interchange. This means that applications cannot submit other objects, such as DOM objects, CDictionary objects, ADO objects,
or any other data type or object type. Either the Document parameter or the FilePath parameter must be specified. Do not specify
both. This is an optional parameter.

DocName

String that contains the name of the BizTalkDocument object associated with the instance of the document being submitted. If
the lOpenness parameter is set to BIZTALK_OPENNESS_TYPE_SOURCE, you can select an input BizTalkDocument object that
has an X12 or EDIFACT specification. If you do, however, the output BizTalkDocument must not have an X12 or EDIFACT
specification. If lOpenness is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the BizTalkDocument object must not have an
X12 or EDIFACT specification. The DocName parameter cannot be used if the PassThrough parameter is set to True. This is an
optional parameter.

SourceQualifier

String that contains the qualifier of the source organization. This indicates how the SourceID parameter is to be interpreted. Valid
values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. You must specify a SourceID. The default qualifier
for all new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk
Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
SourceQualifier parameter cannot be used if the PassThrough parameter is set to True. This is an optional parameter.

SourceID

String that contains the value of the qualifier of the source organization. For example, if the SourceQualifier parameter is
Telephone, this value is the telephone number. If the Openness flag is set to OpenSrc, SourceID is interpreted as the source
organization name. The SourceID parameter cannot be used if the PassThrough parameter is set to True. This is an optional
parameter.

DestQualifier

String that contains the qualifier of the destination organization. This indicates how the DestID parameter is to be interpreted.
Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. You must specify a DestID. The default qualifier for
all new organizations is OrganizationName and refers to the name of the organization in the database. If a BizTalk Framework
2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
DestQualifier parameter cannot be used if the PassThrough parameter is set to True. This is an optional parameter.

DestID

String that contains the value of the qualifier of the destination organization. For example, if the DestQualifier parameter is
Telephone, this value is the telephone number. If the Openness flag is set to OpenDest, DestID is used as the destination address.
Note that the queue:// prefix must be used with an open messaging port when a Message Queue is specified as the destination
address. The DestID parameter cannot be used if the PassThrough parameter is set to True. This is an optional parameter.

ChannelName

String that contains the name of the BizTalkChannel object that is executed for this document. This bypasses the normal
processing in which the parser tries to determine which messaging port/channel pair to execute, based on routing information in
the parameters or in the document. This is an optional parameter unless the PassThrough parameter is set to True.

FilePath

String that specifies a fully qualified path that contains the document to be submitted, rather than submitting the document
directly as a string. BizTalk Server 2000 supports URL, UNC, and drive: format only. If the document is submitted as a file that is
pointed to by the FilePath parameter, the call returns successfully after BizTalk Server 2000 has successfully copied the file to the

Work queue. It is safe to delete the file from the specified path as soon as this method returns successfully. When a document is
submitted to the server, using FilePath to specify the data, Submit can take 30 seconds or longer if the location of the file resides
on a remote server that is unavailable, if the UNC path is invalid, or if the SQL server is down. Either the Document parameter or
the FilePath parameter must be specified. Do not specify both. The FilePath parameter cannot be used if the PassThrough
parameter is set to True and a map is specified. This is an optional parameter.

EnvelopeName

String that contains the name of the envelope specification to use to break the interchange into documents. When an envelope
name is provided as an argument, the envelope must have a valid interchange specification. This requirement is enforced for
envelopes created for Custom XML format also. When submitting a flat file to BizTalk Server 2000, you must create an envelope
for this flat file and specify the name of the envelope in EnvelopeName. This is an optional parameter.

PassThrough

Long that indicates how the server processes the document. When this parameter is True, no decryption, decoding, or signature
verification is performed on the document. When set to False, the document is decrypted and decoded, and the signature is
verified. When using pass-through submission mode (True), the BIZTALK_OPENNESS_TYPE value must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN and the ChannelName parameter must be specified. In addition, the DocName,
SourceQualifier, SourceID, DestQualifier, and DestID parameters cannot be specified with pass-through submission mode. Pass-
through submission mode should be used to prevent data corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a String that contains a unique identifier for the submitted document or interchange. This handle can be
used to query the Tracking database for the status of the interchange or document submitted. If more than one document is
submitted (an interchange), a single handle is returned; yet the Tracking database can access the status of all child documents
related to this interchange identifier.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include cisapi.h
Library: (cisapi.tlb)

Related Topics

Openness

Routing

Submitting

Steps for Submitting a Document by Using COM Interfaces

IInterchange::SubmitSync Method

IInterchange::SubmitSync Method [C++]
Interchange.SubmitSync Method [Visual Basic]
The SubmitSync method sends an interchange or document to BizTalk Server 2000 for synchronous processing. An optional
response document is returned to the caller.

Syntax
[C++]
HRESULT SubmitSync(
 BIZTALK_OPENNESS_TYPE lOpenness,
 BSTR Document,
 BSTR DocName,
 BSTR SourceQualifier,
 BSTR SourceID,
 BSTR DestQualifier,
 BSTR DestID,
 BSTR ChannelName,
 BSTR FilePath,
 BSTR EnvelopeName,
 long PassThrough,
 VARIANT* SubmissionHandle,
 VARIANT* ResponseDocument
);
[Visual Basic]
object.SubmitSync(_
 lOpenness As BIZTALK_OPENNESS_TYPE, _
 Document As String, _
 DocName As String, _
 SourceQualifier As String, _
 SourceID As String, _
 DestQualifier As String, _
 DestID As String, _
 ChannelName As String, _
 FilePath As String, _
 EnvelopeName As String, _
 PassThrough As Long, _
 SubmissionHandle As Variant, _
 ResponseDocument As Variant _
)

Parameters
[C++]

lOpenness

[in] Enumeration value that indicates whether associated BizTalkPort objects can be open. Valid values are from
the BIZTALK_OPENNESS_TYPE enumeration.

Document

[in] BSTR that contains the document instance submitted. This parameter accepts only a string buffer as the document or
interchange. This means that applications cannot submit other objects, such as DOM objects, CDictionary objects, ADO objects,
or any other data type or object type. Either the Document parameter or the FilePath parameter must be specified. Do not specify
both. This is an optional parameter.

DocName

[in] BSTR that contains the name of the BizTalkDocument object associated with the instance of the document submitted. If the
lOpenness parameter is set to BIZTALK_OPENNESS_TYPE_SOURCE, you can select an input BizTalkDocument object that has
an X12 or EDIFACT specification. If you do, however, the output BizTalkDocument must not have an X12 or EDIFACT
specification. If lOpenness is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the BizTalkDocument object must not have an

X12 or EDIFACT specification. The DocName parameter cannot be used if the PassThrough parameter is set to TRUE. This is an
optional parameter.

SourceQualifier

[in] BSTR that contains the qualifier of the source organization. This indicates how the SourceID parameter is to be interpreted.
Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. You must specify a SourceID. The default qualifier
for all new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk
Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
SourceQualifier parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

SourceID

[in] BSTR that contains the value of the qualifier of the source organization. For example, if the SourceQualifier parameter is
Telephone, this value is the telephone number. If the Openness flag is set to OpenSrc, SourceID is interpreted as the source
organization name. The SourceID parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional
parameter.

DestQualifier

[in] BSTR that contains the qualifier of the destination organization. This indicates how the DestID parameter is to be interpreted.
Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. You must specify a DestID parameter. The default
qualifier for all new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk
Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
DestQualifier parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

DestID

[in] BSTR that contains the value of the qualifier of the destination organization. For example, if the DestQualifier parameter is
Telephone, this value is the telephone number. If the Openness flag is set to OpenDest, DestID is used as the destination address.
Note that the queue:// prefix must be used with an open messaging port when a Message Queue is specified as the destination
address. The DestID parameter cannot be used if the PassThrough parameter is set to TRUE. This is an optional parameter.

ChannelName

[in] BSTR that contains the name of the BizTalkChannel object that is executed for this document. This bypasses the normal
processing in which the parser tries to determine which messaging port/channel pair to execute, based on routing information in
the parameters or in the document. This is an optional parameter unless the PassThrough parameter is set to TRUE.

FilePath

[in] BSTR that specifies a fully qualified path that contains the document to be submitted, rather than submitting the document
directly as a string. BizTalk Server 2000 supports URL, UNC, and drive: format only. Either the Document parameter or the
FilePath parameter must be specified. Do not specify both. The FilePath parameter cannot be used if the PassThrough parameter
is set to TRUE and a map is specified. This is an optional parameter.

EnvelopeName

[in] BSTR that contains the name of the envelope specification to use to break the interchange into documents. When an envelope
name is provided in this parameter, the envelope must have a valid interchange specification. This requirement is enforced for
envelopes created for Custom XML format also. This is an optional parameter.

PassThrough

[in] Long that indicates how the server processes the document. When this parameter is set to TRUE, no decryption, decoding, or
signature verification is performed on the document. When set to FALSE, the document is decrypted and decoded, and the
signature is verified. When using pass-through submission mode (TRUE), the BIZTALK_OPENNESS_TYPE value must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN and the ChannelName parameter must be specified. In addition, the DocName,
SourceQualifier, SourceID, DestQualifier, and DestID parameters cannot be specified with pass-through submission mode. Pass-
through submission mode should be used to prevent data corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

SubmissionHandle

[out] Pointer to a BSTR that contains a unique identifier for the submitted document or interchange. This handle can be used to
query the Tracking database for the status of the interchange or document submitted. If more than one document is submitted
(an interchange), a single handle is returned; yet the Tracking database can access the status of all child documents related to this
interchange identifier.

ResponseDocument

[out] Pointer to the VARIANT that contains the optional response document.

[Visual Basic]

lOpenness

Enumeration value that indicates whether associated BizTalkPort objects can be open. Valid values are from
the BIZTALK_OPENNESS_TYPE enumeration.

Document

String that contains the document instance submitted. This parameter accepts only a string buffer as the document or
interchange. This means that applications cannot submit other objects, such as DOM objects, CDictionary objects, ADO objects,
or any other data type or object type. Either the Document parameter or the FilePath parameter must be specified. Do not specify
both. This is an optional parameter.

DocName

String that contains the name of the BizTalkDocument object associated with the instance of the document submitted. If the
lOpenness parameter is set to BIZTALK_OPENNESS_TYPE_SOURCE, you can select an input BizTalkDocument object that has
an X12 or EDIFACT specification. If you do, however, the output BizTalkDocument must not have an X12 or EDIFACT
specification. If lOpenness is set to BIZTALK_OPENNESS_TYPE_DESTINATION, the BizTalkDocument object must not have an
X12 or EDIFACT specification. The DocName parameter cannot be used if the PassThrough parameter is set to True. This is an
optional parameter.

SourceQualifier

String that contains the qualifier of the source organization. This indicates how the SourceID parameter is to be interpreted. Valid
values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. You must specify a SourceID. The default qualifier
for all new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk
Framework 2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
SourceQualifier parameter cannot be used if the PassThrough parameter is set to True. This is an optional parameter.

SourceID

String that contains the value of the qualifier of the source organization. For example, if the SourceQualifier parameter is
Telephone, this value is the telephone number. If the Openness flag is set to OpenSrc, SourceID is interpreted as the source
organization name. The SourceID parameter cannot be used if the PassThrough parameter is set to True. This is an optional
parameter.

DestQualifier

String that contains the qualifier of the destination organization. This indicates how the DestID parameter is to be interpreted.
Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. You must specify a DestID. The default qualifier for
all new organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk Framework
2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The
DestQualifier parameter cannot be used if the PassThrough parameter is set to True. This is an optional parameter.

DestID

String that contains the value of the qualifier of the destination organization. For example, if the DestQualifier parameter is
Telephone, this value is the telephone number. If the Openness flag is set to OpenDest, DestID is used as the destination address.
Note that the queue:// prefix must be used with an open messaging port when a Message Queue is specified as the destination
address. The DestID parameter cannot be used if the PassThrough parameter is set to True. This is an optional parameter.

ChannelName

String that contains the name of the BizTalkChannel object that is executed for this document. This bypasses the normal
processing in which the parser tries to determine which messaging port/channel pair to execute, based on routing information in
the parameters or in the document. This is an optional parameter unless the PassThrough parameter is set to True.

FilePath

String that specifies a fully qualified path that contains the document to be submitted, rather than submitting the document
directly as a string. BizTalk Server 2000 supports URL, UNC, and drive: format only. Either the Document parameter or the
FilePath parameter must be specified. Do not specify both. The FilePath parameter cannot be used if the PassThrough parameter

is set to True and a map is specified. This is an optional parameter.

EnvelopeName

String that contains the name of the envelope specification to use to break the interchange into documents. When an envelope
name is provided in this parameter, the envelope must have a valid interchange specification. This requirement is enforced for
envelopes created for Custom XML format also. This is an optional parameter.

PassThrough

Long that indicates how the server processes the document. When this parameter is True, no decryption, decoding, or signature
verification is performed on the document. When set to False, the document is decrypted and decoded, and the signature is
verified. When using pass-through submission mode (True), the BIZTALK_OPENNESS_TYPE value must be set to
BIZTALK_OPENNESS_TYPE_NOTOPEN and the ChannelName parameter must be specified. In addition, the DocName,
SourceQualifier, SourceID, DestQualifier, and DestID parameters cannot be specified with pass-through submission mode. Pass-
through submission mode should be used to prevent data corruption when exchanging binary files, or when only the server
transport and global tracking features are being used.

SubmissionHandle

Variant that contains a unique identifier for the submitted document or interchange. This handle can be used to query the
Tracking database for the status of the interchange or document submitted. If more than one document is submitted (an
interchange), a single handle is returned; yet the Tracking database can access the status of all child documents related to this
interchange identifier.

ResponseDocument

Variant that contains the optional response document.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
SubmitSync returns an optional response document when provided. If no response is returned, the call returns successfully, but
with no response and with an HRESULT value of S_FALSE. If the destination is another BizTalk Server, an ASP page must be used
to return a response.

A synchronous interchange bypasses all queues and executes all the components required by the messaging port on the calling
thread. For synchronous protocols (HTTP and AIC), an optional response document is returned to the user, if available. This
method is valid only for a single channel match. If the parameters set cause multiple channels to match, synchronous submission
returns an error indicating that multiple channel matches are not allowed for synchronous submission. This method can be used
only for single document interchanges. If the submission contains multiple documents, synchronous submission returns an error
indicating that multiple document submissions are not allowed. This method does not support port groups.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include cisapi.h
Library: (cisapi.tlb)

Related Topics

Openness

Routing

Submitting

Steps for Submitting a Document by Using COM Interfaces

Interchange Enumerations
The following enumeration lists the possible values of properties and parameters:

CISReasonToQueue

CISReasonToQueue
The CISReasonToQueue enumerations are defined in the cisapi.h header file, located on the BizTalk Server installation drive in
the Program Files\Microsoft BizTalk Server\SDK\Include folder.

The CISReasonToQueue enumeration has one of the following values:

Name V
al
u
e

Description

noReason 0 Not supported for this release.
rtdlqParse
rFailure

1 Specifies that the instance of the document was placed in the queue because of failure of the parser.

rtdlqParse
rDocFailur
e

2 Specifies that the instance of the document was placed in the queue because the business document was invalid.

rtdlqDocV
alidation

3 Specifies that the document was placed in the queue because document validation failed.

rtdlqChan
nelSelectF
ailure

4 Specifies that the instance of the document was placed in the queue because of failure in selecting the
correct BizTalkChannel object.

rtdlqInval
idMap

5 Specifies that the instance of the document was placed in the queue because the map referred to by the BizTalkC
hannel object was formatted incorrectly.

rtdlqField
TrackingF
ailure

6 Specifies that the instance of the document was placed in the queue because the server was unable to track the req
uested fields within the document.

rtdlqMap
pingFailur
e

7 Specifies that the instance of the document was placed in the queue because of failure of transformation.

rtdlqSeria
lizerFailur
e

8 Specifies that the instance of the document was placed in the queue because the server could not convert this doc
ument to its native format.

rtdlqEnco
dingFailur
e

9 Specifies that the instance of the document was placed in the queue because the server was unable to encode this i
nterchange.

rtdlqSigni
ngFailure

1
0

Specifies that the instance of the document was placed in the queue because the server was unable to sign this int
erchange.

rtdlqEncry
ptionFailu
re

1
1

Specifies that the instance of the document was placed in the queue because the server was unable to encrypt this
interchange.

rtdlqTrans
missionFa
ilure

1
2

Specifies that the instance of the document was placed in the queue because the server was unable to deliver this
document.

rtdlqUser
Move

1
3

Specifies that the administrator moved this instance of the document to the queue.

rtdlqTime
out

1
4

Specifies that the instance of the document was placed in the queue because a time-out occurred.

rtdlqCust
omCompF
ailure

1
5

Specifies that the instance of the document was placed in the queue because of failure of a custom component.

unkReaso
n

1
6

Specifies that this item was marked as "In process" by an inactive server. On restart of this server, this item was aut
omatically moved to the Suspended queue. There was probably a catastrophic failure on the original server. Conta
ct the system administrator for more information.

rtdlqNoC
hannel

1
7

Specifies that the instance of the document was placed in the queue because the BizTalkChannel object was delet
ed.

rtdlqMissi
ngChanne
l

1
8

Specifies that the instance of the document was placed in the queue because the BizTalkChannel object specified
by the Submit method of the IInterchange interface was not found.

rtdlqInval
idChannel

1
9

Specifies that the instance of the document was placed in the queue because the BizTalkChannel object specified
by the Submit method of the IInterchange interface specifies an open BizTalkPort object. This is not permitted.

rtdlqOutO
fMemory

2
0

Specifies that your computer has run out of memory. Rebooting is recommended.

rtdlqBTFR
ecReqExpi
red

2
1

Specifies that the document was placed in the queue because the BTF timestamp receiptRequiredBy expired.

rtdlqBTFE
xpiresAtE
xpired

2
2

Specifies that the document was placed in the queue because the BTF timestamp expiresAt expired.

rtdlqCorre
lationFail
ure

2
3

Specifies that the document receipt failed.

Concepts
This section provides detailed conceptual information that is important to understand how to submit documents to Microsoft
BizTalk Server 2000. The following topics are covered:

Submitting

Accessing the Suspended queue

Routing

Preprocessing Documents in a Receive Function

Steps for Submitting a Document by Using COM Interfaces

Submitting
All documents must be sent to Microsoft BizTalk Server 2000 by using the Submit or SubmitSync method of the IInterchange
interface in order to be processed. If an application is Microsoft Windows–based and is capable of invoking methods on COM
objects, it can submit a document directly. The business application calls the Submit or SubmitSync method of
the IInterchange interface, passing in the document or the file path of the document as a string supplied as a parameter. This is
the simplest approach because no additional configuration is necessary. However, this method requires that the business
application be designed to support direct calls to BizTalk Server 2000.

If the application is not capable of invoking methods on COM objects, receive functions can be used to submit documents to
BizTalk Server. Receive functions enable applications to post documents or interchanges to specific locations that BizTalk
Server 2000 is monitoring. These locations are defined according to the specific receive function. Each receive function uses
event-based monitoring to recognize the presence of a document or interchange. Once the data is received by the function, it
submits the data to BizTalk Server 2000. For example, a file receive function can be configured to submit a document to BizTalk
Server 2000 when the business application can save a document as a file but cannot submit it directly. For more information
about adding and configuring receive functions, see Manage Receive Functions for a Server Group.

The receive functions are configured to continuously monitor a specific directory or queue for a file to appear and then be
submitted to BizTalk Server 2000. HTTP and SMTP protocols are configured outside BizTalk Server 2000. You must create script
pages for these transport services.

 Notes

There is a size limit for interchanges and documents that use logging, which, if exceeded, greatly affects the performance of
BizTalk Server. For more information about the size limit, see Interchange and document size limit.

A script or application that uses the IInterchange interface to submit documents to BizTalk Server can be run in any user
account.

When processing envelopes that are compliant with BizTalk Framework 2.0, BizTalk Server 2000 should be considered the
endpoint with regard to the expiration time. When BizTalk Framework 2.0-compliant documents are submitted to BizTalk
Server 2000, either from an application or a trading partner, the following fields are overwritten if present, or created if
absent:

In the properties subsection:

<prop:identity>

<prop:sentAt>

<expiresAt>

In the receipt information subsection:

<sendTo>

<address>

<sendReceiptBy>

For examples of code, see BizTalk Messaging Services Code Samples.

Sending documents to BizTalk Server 2000 asynchronously
Applications that submit documents asynchronously to BizTalk Server 2000 call Submit. Receive functions also call Submit.
Submit returns after sending the document. No response document is returned, since the protocol does not support it.

Submit accepts only a string buffer or a file path as the document or interchange. BizTalk Server 2000 supports UNC and local
file path formats.

Sending documents to BizTalk Server 2000 synchronously
Applications that submit documents synchronously to BizTalk Server 2000 call SubmitSync.

A synchronous interchange bypasses all queues and executes all the components required by the messaging port on the calling
thread. For synchronous protocols, an optional response document is returned to the user, if available. This method is valid only
for a single channel match. If the parameters set cause multiple channels to match, synchronous submission returns an error

indicating that multiple channel matches are not allowed for synchronous submission. This method can be used only for single
document interchanges. If the submission contains multiple documents, synchronous submission returns an error indicating that
multiple document submissions are not allowed. This method does not support port groups.

SubmitSync accepts only a string buffer or a file path as the document or interchange. BizTalk Server 2000 supports UNC and
local file path formats.

Error handling with the Submit and SubmitSync methods
When an error occurs when submitting interchanges or documents to BizTalk Server 2000, an event log entry is created and/or
an error is returned to the caller, depending on which method is called and the nature of the failure. Documents submitted can
end up in the Suspended queue due to a number of possible conditions. The following table describes what happens when one or
more of the documents or interchanges submitted are placed in the Suspended queue due to an error during submission.

Method called Error returned to caller Event log entry
Submit Document failure error For every document that fails in processing
SubmitSync Document failure error None

Related Topics

Routing

Steps for Submitting a Document by Using COM Interfaces

Submitting Documents Reference

Accessing the Suspended queue
The Suspended queue contains work items that have failed processing for a variety of reasons, including parsing errors,
serialization errors, failed transmissions, or the inability to find a channel configuration. You can retrieve or delete items from the
queue using the interfaces provided.

 Note

When accessing or deleting items in the Suspended queue, the script or application must be run in the context of a user
account in the BizTalk Server Administrators group. The BizTalk Server Administrators group is created when BizTalk Server
2000 is installed. Additional users can be added to this group as necessary.

Retrieving items from the Suspended queue
To retrieve items from the Suspended queue, applications call the CheckSuspendedQueue method of the IInterchange
interface.

CheckSuspendedQueue retrieves a list of items in the Suspended queue that meets the search criteria specified by the
parameters of the method. This returns a list of handles that can subsequently be used to call the DeleteFromSuspendedQueue
or the GetSuspendedQueueItemDetails method of the IInterchange interface.

Getting item details from the Suspended queue
CheckSuspendedQueue returns a list of handles to items in the Suspended queue. To process these items, you must get the
item details associated with each item in the Suspended queue by using GetSuspendedQueueItemDetails.

GetSuspendedQueueItemDetails retrieves the details about an item in the Suspended queue. If this method does not return
individual details about this item (because the item has been removed between the time CheckSuspendedQueue was called and
the call to this method, for example), each parameter that cannot be determined is returned.

Removing items from the Suspended queue
To remove items from the Suspended queue, applications call DeleteFromSuspendedQueue.

DeleteFromSuspendedQueue removes a list of items from the Suspended queue that meets the search criteria specified by the
parameters of the method.

Routing
To process a document, Microsoft BizTalk Server 2000 must load the rules that govern how the incoming document instance is to
be processed. These rules are known as the channel. A specific BizTalkChannel object is associated with a BizTalkPort object
and connects two organizations.

To find the channel to process the received document, the server must have the source organization, the destination organization,
and the document definition. The server can obtain this information by one of the following methods:

This information can be found in the content of the document itself from the data contained in the routing fields (self-
routing documents).

This information can be explicitly declared in the parameter list of the Submit method of the IInterchange interface (call-
based routing).

This information can be explicitly declared in the properties of a custom receive function. For more information about
receive functions, see Understanding Receive Functions and Document Routing.

You can choose to specify the channel to use when calling Submit. This causes the server to bypass the channel selection
process.

Once the server has this information, it searches for the messaging port/channel pair that matches these routing criteria. If more
than one channel matches, each of the channels is processed, possibly resulting in multiple output documents.

Call-based routing
In call-based routing, the source organization identifier (SourceID), the destination organization identifier (DestID), and the name
of the document definition (DocName) are specified as parameters of Submit. If SourceQualifier and DestQualifier are not
specified, they default to OrganizationName and refer to the name of the organization in the database. If a BizTalk Framework
2.0–compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. If the Openness
flag is set to OpenDest, the DestID is used as the destination address. If SourceID, DestID, or DocName is left blank, the missing
information must be provided by the routing information contained within the document. If one of these parameters/fields is not
in Submit or in the document, the document goes to the Suspended queue.

 Note

Note that the queue:// prefix must be used with an open messaging port when a Message Queue is specified as the
destination address.

Self-routing documents
Self-routing documents have the source organization identifier (SourceID field), the destination organization identifier (DestID
field), and the name of the document definition (DocName field) defined in the routing tags defined by the document
specification, which are contained within the <SelectionFields> tag. If SourceQualifier and DestQualifier are not specified, they
default to OrganizationName and refer to the name of the organization in the database. If a BizTalk Framework 2.0–compliant
document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk. The BizTalk Framework
specification also defines the routing tags for BizTalk Framework–compliant messages. These tags are defined as the <to> and
<from> tags under the <route> tag, which is contained in the <header> tag under the root <biztalk> tag. The first tag under the
<body> tag determines the document type. For more information, see the BizTalk Framework 2.0 Independent Document
Messaging Specification. For X12 or EDIFACT routing, the locations of the routing fields are hard-coded and are not specified in a
document specification.

Preprocessing Documents in a Receive Function
Documents can be submitted to BizTalk Server 2000 for processing by using a receive function. Using this mechanism, other
applications can send their output files to a specified directory or message queue. BizTalk Server continually monitors the
specified location at regular intervals and processes the files or messages placed in that location. BizTalk Server provides
interfaces that allow you to create custom preprocessing components. These components process the file or message picked up
by the receive function prior to submitting the data to BizTalk Server for processing.

A custom preprocessor component is required to implement the category identifier (CATID) CATID_BIZTALK_CUSTOM_PROCESS
in the registry. This allows the BizTalk Server Administration user interface, or administration console, to recognize the custom
preprocessor and display it in the Preprocessor list, where it can be selected.

For additional information, see IBTSCustomProcess and IBTSCustomProcessContext.

Related Topics

BizTalk Server Administration User Interface

Receive Functions

Steps for Submitting a Document by Using COM Interfaces
Use the following steps as a guideline when submitting documents to BizTalk Server with the IInterchange interface,

1. Determine whether the source organization, destination organization, and document definition name are in the parameters
of the Submit or the SubmitSync method of the IInterchange interface or are included in the document; it might be a
combination of the two.

This information can be explicitly declared in the parameter list of Submit or SubmitSync (call-based routing).

One or more of these parameters can be left blank and the missing information can be provided by the routing
information contained within the document.

This information can be found in the content of the document itself from the data in the routing fields (self-routing
documents).

The user can choose to explicitly call out the specific channel to use when calling Submit. This causes the server to
bypass channel selection.

This information can be explicitly declared in the properties of a custom receive function.

2. Decide whether to submit asynchronously or synchronously.

Call Submit, passing in the document or the file path of the document as a string supplied as a parameter. BizTalk
Server 2000 supports URL, UNC, and drive: format for the file path.

Submit accepts only a string variable as the document or interchange.

Call SubmitSync, passing in the document or the file path of the document as a string supplied as a parameter.
A response document is returned to the user, if available.

This method is valid only for a single channel match.

This method can be used only for single-document interchanges.

3. Decide whether to call some of the Suspended queue methods. (This is optional and can be implemented in the same
application or a different application.)

Call the CheckSuspendedQueue method of the IInterchange interface.
Retrieve items from the Suspended queue.

This returns a list of handles that can subsequently be used to call the DeleteFromSuspendedQueue or
the GetSuspendedQueueItemDetails method of the IInterchange interface.

Call GetSuspendedQueueItemDetails.

Retrieve the details about a particular item in the Suspended queue.

Call DeleteFromSuspendedQueue.

Remove items from the Suspended queue.

Creating Custom Components
This section provides information about how to create custom components and extend Microsoft BizTalk Server 2000 to integrate
line-of-business applications and add features such as encryption and decryption or digital signature. With this information, you
can do the following:

Create application integration components (AICs) that enable your applications to receive business documents, using
BizTalk Server 2000.

Extend the functionality of BizTalk Server 2000 by developing custom components to perform digital signature, encryption
and decryption, parsing, serializing, and transport of documents.

For additional information, see the following sections:

For help with specific tasks, see How To.

For general background information, see Concepts.

For information about COM interfaces, see Creating Custom Components Reference.

For examples of code, see BizTalk Messaging Services Code Samples.

How To...
This section provides task-specific information about how to create server components. It is highly recommended that you review
the Concepts in "Creating Custom Components" as well. The following topics are covered:

Creating Pipeline Components

Use the SAP R/3 AIC

Creating Pipeline Components
Use the following steps to create a pipeline component:

1. Create an Active Template Library wizard–generated Inproc server project.

2. Add a simple COM object.

3. Go to the Projectname.idl file and remove the dual or custom interface generated by the wizard in step 2.

4. Verify that the resulting IDL file looks like the code examples that follow. You might choose to implement your own set of
interfaces from the ones defined in Pipecomp.idl.

// SimplePipeComponent.idl : IDL source for SimplePipeComponent.dll
//
import "oaidl.idl";
import "ocidl.idl";
import "pipecomp.idl";

[
 uuid(D26A52F6-63A0-42B1-8C88-3C71C66BB189),
 version(1.0),
 helpstring("SimplePipeComponent 1.0 Type Library")
]
library SIMPLEPIPECOMPONENTLib
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");
 [
 uuid(E66CAF06-18D8-4C70-9D39-5ED9756C21AD),
 helpstring("MySimplePipelineComponent Class")
]
 coclass MySimplePipelineComponent
 {
 [default] interface IPipelineComponentAdmin;
 interface IPipelineComponent;
 interface IPipelineComponentDescription;
 };
};

5. One of the implementations of MySimplePipelineComponent [coclass] is defined in the header file as follows:

// MySimplePipelineComponent.h : Declaration of the
// CMySimplePipelineComponent

#ifndef __MYSIMPLEPIPELINECOMPONENT_H_
#define __MYSIMPLEPIPELINECOMPONENT_H_

#include "resource.h" // main symbols

///
// CMySimplePipelineComponent
class ATL_NO_VTABLE CMySimplePipelineComponent :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMySimplePipelineComponent, &CLSID_MySimplePipelineComponent>,
 public ISupportErrorInfo,
 public IDispatchImpl<IPipelineComponentAdmin, &IID_IPipelineComponentAdmin, &LIBID_SIMPLEPIPECOMPONENTL
ib>,
 public IDispatchImpl<IPipelineComponent, &IID_IPipelineComponent, &LIBID_SIMPLEPIPECOMPONENTLib>,

 public IDispatchImpl<IPipelineComponentDescription, &IID_IPipelineComponentDescription, &LIBID_SIMPLEPI
PECOMPONENTLib>
{
public:
 CMySimplePipelineComponent()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_MYSIMPLEPIPELINECOMPONENT)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CMySimplePipelineComponent)
 COM_INTERFACE_ENTRY2(IDispatch,IPipelineComponentAdmin)
 COM_INTERFACE_ENTRY(IPipelineComponentAdmin)
 COM_INTERFACE_ENTRY(IPipelineComponent)
 COM_INTERFACE_ENTRY(IPipelineComponentDescription)
 COM_INTERFACE_ENTRY(ISupportErrorInfo)
END_COM_MAP()

// ISupportsErrorInfo
 STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

public://IPipelineComponentAdmin
 STDMETHODIMP GetConfigData(IDispatch** ppDict);
 STDMETHODIMP SetConfigData(IDispatch* pDict);

public://IPipelineComponent
 STDMETHODIMP Execute(IDispatch* pdispObject,IDispatch* pdispContext,LONG lFlags,LONG* plErrorLevel);
 STDMETHODIMP EnableDesign(BOOL fEnable);
public: //IPipelineComponentDescription
 STDMETHODIMP ValuesRead(VARIANT* pvar);
 STDMETHODIMP ValuesWritten(VARIANT* pvar);
 STDMETHODIMP ContextValuesRead(VARIANT* pvar);

};

#endif //__MYSIMPLEPIPELINECOMPONENT_H_

Related Topics

Creating Application Integration Components

IPipelineComponent

IPipelineComponentAdmin

Use the SAP R/3 AIC
To use the Systems, Applications, and Products in Data Processing (SAP) AIC, do the following:

Install the DCOM connector

1. Download the SAP Remote Function Call SDK (www.sap.com/bapi).

Go to the COM section and click the DCOM Component Connector.

Follow the instructions from the File Download wizard.

2. Run the image, and unzip it to add the Rfcsdk subdirectories to the client computer.

3. Install the DCOM connector.

4. Follow the installation instructions from the \Rfcsdk\Ccwww subdirectory Install page.

5. Once the connector is installed, create a destination, entering information for the following:

Destination name

Application server

Server number

Client

Language

User

Password

Enter the destination name in BizTalk Messaging Manager
This is the destination name chosen during SAP DCOM connector configuration. For more information,
see Select a destination organization.

Create a COM+ server package

1. Create a COM+ server package.

2. Mark it as Transactions Not Supported.

3. Add AICOMP.dll to this package.

Creating Custom Components Reference
This section provides reference information about components and interfaces used by Microsoft BizTalk Server 2000 for both
C++ and Visual Basic programming. Reference information is provided for all interfaces exposed for extending BizTalk
Server 2000.

The following COM interfaces are documented in this reference for C++ developers:

IBizTalkParserComponent

IBizTalkSerializerComponent

The following COM interfaces and enumerations are documented in this reference for C++ and Visual Basic developers:

IBizTalkAcknowledge

IBizTalkCorrelation

IBTSAppIntegration

IFunctoid

IPipelineComponent

IPipelineComponentAdmin

ISchemaImporter

ISchemaImporterError

ISchemaImporterErrorProvider

Receipt Enumerations

Functoid Enumerations

IBizTalkAcknowledge Interface

IBizTalkAcknowledge Interface [C++]
IBizTalkAcknowledge Object [Visual Basic]
Use this object to process receipts sent to the server.

In C++, use the IBizTalkAcknowledge interface to access the methods of the BizTalkAcknowledge object.

The methods of the BizTalkAcknowledge object are shown in the following table.

Method Description
AckDocument Processes receipts received for documents.
AckGroup Processes receipts received for document groups.
AckInterchange Processes receipts received for document interchanges.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSDocTracking.h
Library: Use Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

Related Topics

Creating Receipt Correlator Components

How Receipts Are Logged

Understanding Receipts

IBizTalkAcknowledge::AckDocument Method

IBizTalkAcknowledge::AckDocument Method [C++]
IBizTalkAcknowledge.AckDocument Method [Visual Basic]
The AckDocument method processes receipts for documents.

Syntax
[C++]
HRESULT AckDocument(
 BSTR bstrSyntax,
 BSTR bstrTrackingId,
 DTA_ACK_STATUS enumAckStatus
);
[Visual Basic]
object.AckDocument(_
 bstrSyntax As String, _
 bstrTrackingId As String, _
 enumAckStatus As DTA_ACK_STATUS _
)

Parameters
[C++]

bstrSyntax

[in] BSTR that contains the syntax of the outbound document to be acknowledged, for example, X12 or EDIFACT.

bstrTrackingId

[in] BSTR that contains the unique tracking identifier of the document. This value is a globally unique identifier (GUID). This value
can be obtained from the Tracking_ID field in the dta_outdoc_details table. For more information,
see Supporting the Tracking Database with Parser and Serializer Components.

enumAckStatus

[in] Enumeration value that indicates the receipt status. Valid values are from the DTA_ACK_STATUS enumeration.

[Visual Basic]

bstrSyntax

String that contains the syntax of the outbound document to be acknowledged, for example, X12 or EDIFACT.

bstrTrackingId

String that contains the unique tracking identifier of the document. This value is a globally unique identifier (GUID). This value can
be obtained from the Tracking_ID field in the dta_outdoc_details table. For more information,
see Supporting the Tracking Database with Parser and Serializer Components.

enumAckStatus

Enumeration value that indicates the receipt status. Valid values are from the DTA_ACK_STATUS enumeration.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This method is called only for receipts on individual documents. If the receipt needs to be mapped, a document definition that
points to CanonicalReceipt.xml shipped in WebDAV must be created for the receipt.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSDocTracking.h
Library: Use Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

IBizTalkAcknowledge::AckGroup Method

IBizTalkAcknowledge::AckGroup Method [C++]
IBizTalkAcknowledge.AckGroup Method [Visual Basic]
The AckGroup method processes receipts for document groups.

Syntax
[C++]
HRESULT AckGroup(
 BSTR bstrSyntax,
 BSTR bstrVersion,
 BSTR bstrRelease,
 BSTR bstrFunctionalGroupId,
 BSTR bstrControlId,
 BSTR bstrSrcAppName,
 BSTR bstrDestAppName,
 DTA_ACK_STATUS enumAckStatus
);
[Visual Basic]
object.AckGroup(_
 bstrSyntax As String, _
 bstrVersion As String, _
 bstrRelease As String, _
 bstrFunctionalGroupId As String, _
 bstrControlId As String, _
 bstrSrcAppName As String, _
 bstrDestAppName As String, _
 enumAckStatus As DTA_ACK_STATUS _
)

Parameters
[C++]

bstrSyntax

[in] BSTR that contains the syntax of the outbound document to be acknowledged, for example, X12 or EDIFACT. You must use
the exact strings for the following syntax types:

X12

EDIFACT

Custom XML

bstrVersion

[in] BSTR that contains the version of the syntax, used primarily for EDI.

bstrRelease

[in] BSTR that contains the release of the version of the syntax, used primarily for EDI.

bstrFunctionalGroupId

[in] BSTR that contains the code for the type of documents in a group, used primarily for EDI.

bstrControlId

[in] BSTR that contains the unique identifier for the control number, used primarily for EDI.

bstrSrcAppName

[in] BSTR that contains the name of the source application.

bstrDestAppName

[in] BSTR that contains the name of the destination application.

enumAckStatus

[in] Enumeration value that indicates the receipt status. Valid values are from the DTA_ACK_STATUS enumeration.

[Visual Basic]

bstrSyntax

String that contains the syntax of the outbound document to be acknowledged, for example, X12 or EDIFACT. You must use the
exact strings for the following syntax types:

X12

EDIFACT

Custom XML

bstrVersion

String that contains the version of the syntax, used primarily for EDI.

bstrRelease

String that contains the release of the version of the syntax, used primarily for EDI.

bstrFunctionalGroupId

String that contains the code for the type of documents in a group, used primarily for EDI.

bstrControlId

String that contains the unique identifier for the control number, used primarily for EDI.

bstrSrcAppName

String that contains the name of the source application.

bstrDestAppName

String that contains the name of the destination application.

enumAckStatus

Enumeration value that indicates the receipt status. Valid values are from the DTA_ACK_STATUS enumeration.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This method is called only for receipts on document groups.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include BTSDocTracking.h
Library: Use Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

IBizTalkAcknowledge::AckInterchange Method

IBizTalkAcknowledge::AckInterchange Method [C++]
IBizTalkAcknowledge.AckInterchange Method [Visual Basic]
The AckInterchange method processes receipts for document interchanges.

Syntax
[C++]
HRESULT AckInterchange(
 BSTR bstrSyntax,
 BSTR bstrInterchangeId,
 BSTR bstrVersion,
 BSTR bstrControlId,
 BSTR bstrSrcAliasQualifier,
 BSTR bstrSrcAliasId,
 BSTR bstrSrcAppName,
 BSTR bstrDestAliasQualifier,
 BSTR bstrDestAliasId,
 BSTR bstrDestAppName,
 DTA_ACK_STATUS enumAckStatus
);
[Visual Basic]
object.AckInterchange(_
 bstrSyntax As String, _
 bstrInterchangeId As String, _
 bstrVersion As String, _
 bstrControlId As String, _
 bstrSrcAliasQualifier As String, _
 bstrSrcAliasId As String, _
 bstrSrcAppName As String, _
 bstrDestAliasQualifier As String, _
 bstrDestAliasId As String, _
 bstrDestAppName As String, _
 enumAckStatus As DTA_ACK_STATUS _
)

Parameters
[C++]

bstrSyntax

[in] BSTR that contains the syntax of the outbound document to be acknowledged, for example, X12 or EDIFACT. You must use
the exact strings for the following syntax types:

X12

EDIFACT

Custom XML

bstrInterchangeId

[in] BSTR that contains the unique tracking identifier of the interchange. This value is a globally unique identifier (GUID).

bstrVersion

[in] BSTR that contains the version of the syntax, used primarily for EDI.

bstrControlId

[in] BSTR that contains the unique identifier for the control number, used primarily for EDI.

bstrSrcAliasQualifier

[in] BSTR that contains the qualifier of the source organization. This indicates how the bstrSrcAliasID parameter is to be
interpreted. Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an
organization. Common qualifiers include the DUNS number, telephone number, and BizTalk. The default qualifier for all new
organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk Framework 2.0–
compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk.

bstrSrcAliasId

[in] BSTR that contains the value of the qualifier of the source organization. For example, if the bstrSrcAliasQualifier parameter is
Telephone, this value is the telephone number.

bstrSrcAppName

[in] BSTR that contains the name of the source application.

bstrDestAliasQualifier

[in] BSTR that contains the qualifier of the source organization. This indicates how the bstrDestAliasID parameter is to be
interpreted. Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an
organization. Common qualifiers include the DUNS number, telephone number, and BizTalk. The default qualifier for all new
organizations is Organization Name and refers to the name of the organization in the database. If a BizTalk Framework 2.0–
compliant document is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk.

bstrDestAliasId

[in] BSTR that contains the value of the qualifier of the source organization. For example, if the bstrDestAliasQualifier parameter is
Telephone, this value is the telephone number.

bstrDestAppName

[in] BSTR that contains the name of the destination application.

enumAckStatus

[in] Enumeration value that indicates the receipt status. Valid values are from the DTA_ACK_STATUS enumeration.

[Visual Basic]

bstrSyntax

String that contains the syntax of the outbound document to be acknowledged, for example, X12 or EDIFACT. You must use the
exact strings for the following syntax types:

X12

EDIFACT

Custom XML

bstrInterchangeId

String that contains the unique tracking identifier of the interchange. This value is a globally unique identifier (GUID).

bstrVersion

String that contains the version of the syntax, used primarily for EDI.

bstrControlId

String that contains the unique identifier for the control number, used primarily for EDI.

bstrSrcAliasQualifier

String that contains the qualifier of the source organization. This indicates how the bstrSrcAliasID parameter is to be interpreted.
Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. The default qualifier for all new organizations is
Organization Name and refers to the name of the organization in the database. If a BizTalk Framework 2.0–compliant document
is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk.

bstrSrcAliasId

String that contains the value of the qualifier of the source organization. For example, if the bstrSrcAliasQualifier parameter is
Telephone, this value is the telephone number.

bstrSrcAppName

String that contains the name of the source application.

bstrDestAliasQualifier

String that contains the qualifier of the source organization. This indicates how the bstrDestAliasID parameter is to be interpreted.
Valid values come from the organization identifier qualifiers that are created when the user creates an alias for an organization.
Common qualifiers include the DUNS number, telephone number, and BizTalk. The default qualifier for all new organizations is
Organization Name and refers to the name of the organization in the database. If a BizTalk Framework 2.0–compliant document
is submitted and a qualifier is not found during parsing, the qualifier defaults to BizTalk.

bstrDestAliasId

String that contains the value of the qualifier of the source organization. For example, if the bstrDestAliasQualifier parameter is
Telephone, this value is the telephone number.

bstrDestAppName

String that contains the name of the destination application.

enumAckStatus

Enumeration value that indicates the receipt status. Valid values are from the DTA_ACK_STATUS enumeration.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This method is called only for receipts on document interchanges.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSDocTracking.h
Library: Use Microsoft BizTalk Server Doc Tracking 1.0 Type Library (CISDTA.dll)

IBizTalkCorrelation Interface
Implement IBizTalkCorrelation to create receipt correlator components.

The method of the BizTalkCorrelation object is shown in the following table.

Method Description
Correlate Extracts all relevant information from the document, document group, or interchange.

 Note

This interface is not available in Microsoft Visual Basic.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

Related Topic

Creating Receipt Correlator Components

IBizTalkCorrelation::Correlate Method
The Correlate method extracts all relevant information from the document, document group, or interchange.

Syntax
[C++]
HRESULT Correlate(
 IUnknown* Acknowledge,
 IDictionary* Dict
);
[Visual Basic]

This method is not available in Microsoft Visual Basic.

Parameters
[C++]

Acknowledge

[in] Pointer to the IBizTalkAcknowledge interface to invoke and set the receipt flag.

Dict

[in] Pointer to an IDictionary interface of an object that contains the receipt information.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

[Visual Basic]

Not applicable

IFunctoid Interface

IFunctoid Interface [C++]
CannedFunctoid Object [Visual Basic]
In C++, implement IFunctoid to create custom mapping functions. IFunctoid defines the generic protocol for calling custom
functions used by the mapping tool.

In Microsoft Visual Basic, implement CannedFunctoid to create custom mapping functions. CannedFunctoid defines the
generic protocol for calling custom functions used by the mapping tool.

This object must register its class identifier (CLSID) under a well-known category identifier (CATID) of the function objects
enumerated by the mapping tool. The CATID is {2560F3BF-DB47-11D2-B3AE-00C04F72D6C1}. Each custom object can support
multiple functions and can contain icons and names for each supported function.

Function identifiers from 0 to 1000 are reserved for built-in functions in the BizTalk Mapper. User-defined functions (custom
functions) should use function identifiers 1001 and above.

The properties of the CannedFunctoid object are shown in the following table.

Property Description
FunctionsCount Returns the number of functions implemented by the functoid.
Version Returns the version of the functoid.

The methods of the CannedFunctoid object are shown in the following table.

Method Description
GetFunctionParameter Retrieves the connection-type bit flags for the specified parameter.
GetFunctionDescripter Retrieves information about a specific functoid.
GetScriptBuffer Retrieves the script code used to implement the functoid.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include CannedFunctoid.h
Library: Use Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

IFunctoid::FunctionsCount Property

IFunctoid::FunctionsCount Property [C++]
CannedFunctoid.FunctionsCount Property [Visual Basic]
The FunctionsCount property returns the number of functions implemented by the functoid.

Syntax
[C++]
HRESULT get_FunctionsCount(
 long* plCount
);
[Visual Basic]
object.FunctionsCount

Parameters
[C++]

plCount

[out, retval] Pointer to a long that contains the number of functions implemented by the functoid.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the number of functions implemented by the functoid.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include CannedFunctoid.h
Library: Use Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

IFunctoid::GetFunctionDescripter Method

IFunctoid::GetFunctionDescripter Method [C++]
CannedFunctoid.GetFunctionDescripter Method [Visual Basic]
The GetFunctionDescripter method retrieves information about a specific functoid.

Syntax
[C++]
HRESULT GetFunctionDescripter(
 long lIndex,
 FUNC_CATEGORY* pFuncCategory,
 SCRIPT_CATEGORY* pScriptCategory,
 FUNC_TYPE* pFuncType,
 BSTR* pbstrName,
 BSTR* pbstrToolTip,
 long* plBitmapID,
 long* plParmCount,
 FUNCID* pFuncId
);
[Visual Basic]
object.GetFunctionDescripter(_
 lIndex As Long, _
 pFuncCategory As FUNC_CATEGORY, _
 pScriptCategory As SCRIPT_CATEGORY, _
 pFuncType As FUNC_TYPE, _
 pbstrName As String, _
 pbstrToolTip As String, _
 plBitmapID As Long, _
 plParmCount As Long _
)

Parameters
[C++]

lIndex

[in] Long that specifies the index number of the function.

pFuncCategory

[in, out] Pointer to a value that contains the FUNC_CATEGORY bit flags for this function.

pScriptCategory

[in, out] Pointer to a value that contains the SCRIPT_CATEGORY bit flags for this function. This value must be set to
SCRIPT_CATEGORY_VBSCRIPT for this release.

pFuncType

[in, out] Pointer to a value that contains the FUNC_TYPE bit flags for this function.

pbstrName

[in, out] Pointer to a BSTR that contains the function name.

pbstrToolTip

[in, out] Pointer to a BSTR that contains the ToolTip that appears when the mouse pointer is paused over the custom functoid icon
in the mapping tool.

plBitmapID

[in, out] Pointer to the long bitmap identifier of the bitmap used for the custom functoid icon displayed in the mapping tool.

plParmCount

[in, out] Pointer to a long that contains the number of parameters implemented by the function.

pFuncId

[out, retval] Pointer to a long that contains the function identifier.

[Visual Basic]

lIndex

Long that specifies the index number of the function.

pFuncCategory

Value that contains the FUNC_CATEGORY bit flags for this function.

pScriptCategory

Value that contains the SCRIPT_CATEGORY bit flags for this function. This value must be set to SCRIPT_CATEGORY_VBSCRIPT
for this release.

pFuncType

Value that contains the FUNC_TYPE bit flags for this function.

pbstrName

String that contains the function name.

pbstrToolTip

String that contains the ToolTip that appears when the mouse pointer is paused over the custom functoid icon in the mapping
tool.

plBitmapID

Long that contains the bitmap identifier of the bitmap used for the custom functoid icon displayed in the mapping tool.

plParmCount

Long that contains the number of parameters implemented by the function.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a Long that contains the function identifier.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include CannedFunctoid.h
Library: Use Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

IFunctoid::GetFunctionParameter Method

IFunctoid::GetFunctionParameter Method [C++]
CannedFunctoid.GetFunctionParameter Method [Visual Basic]
The GetFunctionParameter method retrieves the connection-type bit flags for the specified parameter.

Syntax
[C++]
HRESULT GetFunctionParameter(
 FUNCID funcId,
 long lParameter,
 long* plConnectionType
);
[Visual Basic]
object.GetFunctionParameter(_
 funcId As FUNCID, _
 lParameter As Long _
)

Parameters
[C++]

funcId

[in] Long that contains the function identifier.

lParameter

[in] Long that contains the function parameter number. For output parameters, a value of -1 is used.

plConnectionType

[out, retval] Pointer to a long that contains the CONNECTION_TYPE bit flags for the specified parameter.

[Visual Basic]

funcId

Long that contains the function identifier.

lParameter

Long that contains the function parameter number. For output parameters, a value of -1 is used.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a Long that contains the CONNECTION_TYPE bit flags for the specified parameter.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include CannedFunctoid.h
Library: Use Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

IFunctoid::GetScriptBuffer Method

IFunctoid::GetScriptBuffer Method [C++]
CannedFunctoid.GetScriptBuffer Method [Visual Basic]
The GetScriptBuffer method retrieves the script code used to implement the functoid.

Syntax
[C++]

Get method:
HRESULT GetScriptBuffer(
 FUNCID cFuncId,
 long lInputParameters,
 BSTR* pbstrScriptBuffer
);
[Visual Basic]
object.GetScriptBuffer(_
 cFuncId As FUNCID, _
 lInputParameters As Long _
)

Parameters
[C++]

cFuncId

[in] Long that contains the function identifier.

lInputParameters

[in] Long that indicates the number of connected input parameters for the specified function.

pbstrScriptBuffer

[out, retval] Pointer to a BSTR that contains the script code used to implement the function.

[Visual Basic]

cFuncId

Long that contains the function identifier.

lInputParameters

Long that indicates the number of connected input parameters for the specified function.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a String that contains the script code used to implement the function.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks

This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include CannedFunctoid.h
Library: Use Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

IFunctoid::Version Property

IFunctoid::Version Property [C++]
CannedFunctoid.Version Property [Visual Basic]
The Version property returns the version of the functoid.

Syntax
[C++]
HRESULT get_Version(
 long* pVersion
);
[Visual Basic]
object.Version

Parameters
[C++]

pVersion

[out, retval] Pointer to a long that contains the custom functoid version.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the custom functoid version.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

If the custom functoid is modified in any way, the author should update the version number.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include CannedFunctoid.h
Library: Use Microsoft BizTalk Server Canned Functoids 1.0 Type Library (CannedFunctoid.dll)

IBizTalkParserComponent Interface
Use this object to convert a document to XML for later processing and to identify the BizTalkChannel objects necessary to
process the documents.

In C++, use the IBizTalkParserComponent interface to access the methods of the BizTalkParserComponent object.

The methods of the BizTalkParserComponent object are shown in the following table.

Method Description
GetGroupDetails Gets details of the group for the Tracking database. This method is called only if there are groups i

n the interchange.
GetGroupSize Gets the size of the group after all documents in the group are parsed. This method is called only if

there are groups in the interchange.
GetInterchangeDetails Gets information about the organization identifiers of the source and

destination BizTalkOrganization objects.
GetNativeDocumentOffsets Identifies offsets from the beginning of the stream for final details about the group in the Tracking

database for final logging.
GetNextDocument Examines the data in a document and determines when to get the next document if this is not the l

ast document.
GroupsExist Determines if the interchange contains groups.
ProbeInterchangeFormat Identifies the format of the interchange.

Remarks
Application integration components must be properly registered so that BizTalk Server 2000 can recognize that they belong to
BizTalk Server 2000. Application integration components register themselves with the category ID CATID_BIZTALK_AIC. The
CATIDs are defined in the bts_sdk_guids.h file. For more information, see Registering Application Integration Components.

 Note

This interface is not available in Microsoft Visual Basic.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

Related Topics

Identification

Sequence for Calling Methods of the IBizTalkParserComponent Interface

Using the IBizTalkParserComponent Interface

IBizTalkParserComponent::GetGroupDetails Method
[C++]

The GetGroupDetails method gets details of the group for the Tracking database.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GetGroupDetails(
 IDictionary* Dict
);
[Visual Basic]

Not applicable

Parameters
[C++]

Dict

[in] Pointer to an IDictionary interface of an object that contains details about the group. All information is returned as string
types, no matter how it appears in the data.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Remarks
[C++]

This method is called only if groups are detected in the interchange.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkParserComponent Interface

Using the IBizTalkParserComponent Interface

IBizTalkParserComponent::GetGroupSize Method
[C++]

The GetGroupSize method gets the size of the group after all documents in the group are parsed.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GetGroupSize(
 long* GroupSize,
 BOOL* LastGroup
);
[Visual Basic]

Not applicable

Parameters
[C++]

GroupSize

[out] Pointer to a long that contains the size of the interchange.

LastGroup

[out] Pointer to a Boolean value that indicates whether the group is the last group in the interchange. If this parameter is set to
TRUE, the next method called is GetGroupDetails for the next group in the data. If it is set to FALSE, the component is finished.
When it is released, it leaves the IStream interface after the last byte it has read.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Remarks
[C++]

After all documents in the group are called, the final details about the group are required. Both output parameters are added to
the Tracking database for final logging.

This method is called only if there are groups in the interchange.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkParserComponent Interface

Using the IBizTalkParserComponent Interface

IBizTalkParserComponent::GetInterchangeDetails Method
[C++]

The GetInterchangeDetails method gets information about the organization identifiers of the source and
destination BizTalkOrganization objects.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GetInterchangeDetails(
 IDictionary* Dict
);
[Visual Basic]

Not applicable

Parameters
[C++]

Dict

[in] Pointer to an IDictionary interface of an object that contains information about the organization identifiers of the source and
destination BizTalkOrganization objects.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Remarks
[C++]

The minimum sets of fields are:

Field Description
src_id_type Source qualifier
src_id_value Source ID
dest_id_type Destination qualifier
dest_id_value Destination ID

The parameters of the Submit method of the IInterchange interface override any fields set here.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkParserComponent Interface

Using the IBizTalkParserComponent Interface

IBizTalkParserComponent::GetNativeDocumentOffsets Method
[C++]

The GetNativeDocumentOffsets method identifies offsets from the beginning of the stream for final details about the group in
the Tracking database for final logging.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GetNativeDocumentOffsets(
 BOOL SizeFromXMLDoc,
 LARGE_INTEGER* StartOffset,
 long* DocLength
);
[Visual Basic]

Not applicable

Parameters
[C++]

SizeFromXMLDoc

[out] Boolean value that indicates the XML document passed in from the GetNextDocument method was used to determine the
size. If this parameter is TRUE, the server fills in the StartOffset and DocLength values for the document just parsed. If this
parameter is FALSE, the server ignores the values in StartOffset and DocLength.

StartOffset

[out] Pointer to a LARGE_INTEGER that contains the location of the beginning of the document. This parameter is returned if the
SizeFromXMLDoc parameter is set to TRUE.

DocLength

[out] Pointer to a long that contains the length of the document. This parameter is returned if the SizeFromXMLDoc parameter is
set to TRUE.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Remarks
[C++]

This method is called immediately after GetNextDocument whether or not the document is valid (as long as the parser does not
return an error value). These are offsets into the IStream object relative to the beginning of the stream, not the beginning of the
interchange.

[Visual Basic]

Not applicable

Requirements

[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkParserComponent Interface

Using the IBizTalkParserComponent Interface

IBizTalkParserComponent::GetNextDocument Method
[C++]

The GetNextDocument method examines the data in a document and determines when to get the next document, if this is not
the last document.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GetNextDocument(
 IDictionary* Dict,
 BSTR DocSpecName,
 BOOL* DocIsValid,
 BOOL* LastDocument,
 GeneratedReceiptLevel ReceiptGenerated,
 BOOL* DocIsReceipt,
 BSTR* CorrelationCompProgID
);
[Visual Basic]

Not applicable

Parameters
[C++]

Dict

[in] Pointer to an IDictionary interface of an object into which to set the XML instance created on parsing the current document.
The parsed XML document is placed into the working_data field of the dictionary.

DocSpecName

[in] BSTR that contains the name of the BizTalk document specification used to generate the XML from the document's native
format.

DocIsValid

[out] Pointer to a Boolean value that indicates whether the document instance is valid. If it is invalid but the parser can recover
from it, set this parameter to FALSE. This parameter and the LastDocument parameter are independent. Therefore, if there are no
more documents and the last one is invalid, both flags are set. If the document is invalid and the parser cannot continue, it might
return an error value. The server then stops at the current position of the IStream pointer. The component places the invalid data
(if the parser can recover) in the working_data field for inspection by the system administrator if the document is invalid.

LastDocument

[out] Pointer to a Boolean value that indicates whether this is the last document instance in the group or interchange. When the
last document is found, the LastDocument flag is set to TRUE. If there are groups, this flag signals the last document in the group,
and the GetGroupSize method is called. If there are no groups, this is the last call to get document data from the parser, and the
IStream pointer is set appropriately.

ReceiptGenerated

Enumeration value. Valid values are from the GeneratedReceiptLevel enumeration.

DocIsReceipt

[out] Pointer to Boolean value that identifies whether or not this document is a receipt.

CorrelationCompProgID

[out] Pointer to a BSTR that contains the program ID for the correlation of documents.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkParserComponent Interface

Using the IBizTalkParserComponent Interface

IBizTalkParserComponent::GroupsExist Method
[C++]

The GroupsExist method determines whether the interchange contains groups.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GroupsExist(
 BOOL* GrpsExist
);
[Visual Basic]

Not applicable

Parameters
[C++]

GrpsExist

[out, retval] Pointer to a Boolean value that indicates whether the data format contains groups. If this parameter is set to FALSE,
the GetGroupDetails and GetGroupSize methods are never called.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkParserComponent Interface

Using the IBizTalkParserComponent Interface

IBizTalkParserComponent::ProbeInterchangeFormat Method
[C++]

The ProbeInterchangeFormat method identifies the format of the interchange.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT ProbeInterchangeFormat(
 IStream* pData,
 BOOL FromFile,
 BSTR EnvName,
 IStream* pReceiptData,
 BSTR* Format
);
[Visual Basic]

Not applicable

Parameters
[C++]

pData

[in] Pointer to the IStream object that contains the data for the document interchange. Additional information about the IStream
object is available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

FromFile

[in] Boolean value. TRUE indicates that the data came from the file referred to by the FilePath parameter of the Submit or
the SubmitSync method of the IInterchange interface. FALSE indicates that the data came from the Document parameter of
Submit or SubmitSync as a string. If the data is from a file, no conversion is made. If the data is a string, you can use
UNICODE/MBCS techniques to understand it.

EnvName

[in] BSTR that contains the name of the envelope.

pReceiptData

[in] Pointer to the IStream object that contains the receipt document.

Format

[out] Pointer to a BSTR that contains the format. If the server recognizes the format, it must fill in this parameter with a nonempty
string and hold on to (add a reference count to) the IStream interface because it is not given back to the component. This
IStream object is read-only; it supports only the Read, Stat, and Seek methods. All other methods return E_NOTIMPL. This
method should not return a failure if it does not recognize the format. It returns S_FALSE or an empty or NULL Format string. If
you do not recognize the format, you do not need to move the IStream pointer back to its original position; the server resets the
IStream pointer. Unless your format requires it, do not assume that the pointer is at the beginning. The pointer can be
somewhere in the middle during the probing stage.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

http://msdn.microsoft.com/library/default.asp

Remarks
[C++]

This is the first method that is called by the server. If ProbeInterchangeFormat returns an error in the middle of the document
list, it blocks the server from detecting more document types, even if they could be handled by a custom parser that follows the
failed parser, if there are two or more custom parsers on a server. If the first custom parser fails, any document that follows is not
parsed, even if the other custom parser could handle it, because the server ends the entire parsing operation at the time of the
failure.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSParserComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkParserComponent Interface

Using the IBizTalkParserComponent Interface

IBizTalkSerializerComponent Interface
Use this object to convert a document from XML to the document's original native format.

In C++, use the IBizTalkSerializerComponent interface to access the methods of the BizTalkSerializerComponent object.

The methods of the BizTalkSerializerComponent object are shown in the following table.

Method Description
AddDocument Adds an XML document for storage by the serializer component.
GetDocInfo Gets details of the document.
GetGroupInfo Gets details of the group, such as size and offset, for the Tracking database.
GetInterchangeInfo Gets information about the interchange created.
Init Outputs the document instance to the serializer component and indicates where it should be sent.

Remarks
Application integration components must be properly registered so that Microsoft BizTalk Server 2000 can recognize that they
belong to BizTalk Server 2000. Application integration components register themselves with the category ID
CATID_BIZTALK_AIC. The CATIDs are defined in the bts_sdk_guids.h file. For more information,
see Registering Application Integration Components.

 Note

This interface is not available in Microsoft Visual Basic.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSSerializerComps.h

Related Topics

Sequence for Calling Methods of the IBizTalkSerializerComponent Interface

Using the IBizTalkSerializerComponent Interface

IBizTalkSerializerComponent::AddDocument Method
[C++]

The AddDocument method adds an XML document for storage by the serializer component.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT AddDocument(
 long DocHandle,
 IDictionary* Transport,
 BSTR TrackID,
 long ChannelID
);
[Visual Basic]

Not applicable

Parameters
[C++]

DocHandle

[in] Long that contains the handle to the document that is stored by the component and later retrieved when calling
the GetDocInfo method. This parameter supports out-of-order recreation of the interchange in case the documents need to be
reordered (such as in X12).

Transport

[in] Pointer to an IDictionary interface of an object that contains the XML document to be stored. It is on the working_data field.
This parameter cannot be set by the component. This is an optional parameter.

TrackID

[in] BSTR that contains the document tracking ID used by the server.

ChannelID

[in] Long that contains the BizTalkChannel object associated with the current document.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Remarks
[C++]

This method is called only once per interchange.

[Visual Basic]

Not applicable

Requirements

[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSSerializerComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkSerializerComponent Interface

Using the IBizTalkSerializerComponent Interface

IBizTalkSerializerComponent::GetDocInfo Method
[C++]

The GetDocInfo method gets details of the document.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GetDocInfo(
 long* DocHandle,
 BOOL* SizeFromXMLDoc,
 LARGE_INTEGER* DocStartOffset,
 long* DocLen
);
[Visual Basic]

Not applicable

Parameters
[C++]

DocHandle

[out] Pointer to a long that contains the document handle. For each ID that is passed back, this address is assigned to the group
record that was created when the GetGroupInfo method was called. This parameter also returns properties of the document, for
example, size and length, unless the SizeFromXMLDoc parameter is set to TRUE, in which case the other parameters are ignored.

SizeFromXMLDoc

[out] Pointer to a Boolean value that indicates that the document offset and length values are retrieved from the XML document. If
this parameter is TRUE, the server fills in the DocStartOffset and DocLen values for the document. If this parameter is FALSE, the
server ignores the values in DocStartOffset and DocLen.

DocStartOffset

[out] Pointer to a LARGE_INTEGER that contains the offset to the beginning of the document. This parameter is returned if
SizeFromXMLDoc is set to TRUE.

DocLen

[out] Pointer to a long that contains the length of the document. This parameter is returned if SizeFromXMLDoc is set to TRUE.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Remarks
[C++]

This method is called once for every document in a group (or interchange, if there are no groups).

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSSerializerComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkSerializerComponent Interface

Using the IBizTalkSerializerComponent Interface

IBizTalkSerializerComponent::GetGroupInfo Method
[C++]

The GetGroupInfo method gets details of the group, such as size and offset, for the Tracking database.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GetGroupInfo(
 long* NumDocs,
 LARGE_INTEGER* GrpStartOffset,
 long* GrpLen
);
[Visual Basic]

Not applicable

Parameters
[C++]

NumDocs

[out] Pointer to a long that contains the number of documents in the group.

GrpStartOffset

[out] Pointer to a LARGE_INTEGER that contains the offset to the start of the group in the IStream interface.

GrpLen

[out] Pointer to a long that contains the length of the group.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Remarks
[C++]

This method is called the number of times returned by the GetInterchangeInfo method. Call the GetDocInfo method for each
document in the group.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSSerializerComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkSerializerComponent Interface

Using the IBizTalkSerializerComponent Interface

IBizTalkSerializerComponent::GetInterchangeInfo Method
[C++]

The GetInterchangeInfo method gets information about the interchange created.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT GetInterchangeInfo(
 BSTR* InterchangeID,
 long* lNumGroups
);
[Visual Basic]

Not applicable

Parameters
[C++]

InterchangeID

[out] Pointer to a BSTR that contains the interchange ID, which is placed in the Tracking database.

lNumGroups

[out] Pointer to a long that contains the number of groups generated in the interchange. This can be either 0 or 1. A document
can exist in only one group.

[Visual Basic]

Not applicable

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Remarks
[C++]

This method is called after all the documents are passed in.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSSerializerComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkSerializerComponent Interface

Using the IBizTalkSerializerComponent Interface

IBizTalkSerializerComponent::Init Method
[C++]

The Init method outputs the document instance to the serializer component and indicates its destination.

[Visual Basic]

This method is not available in Microsoft Visual Basic.

Syntax
[C++]
HRESULT Init(
 BSTR srcQual,
 BSTR srcID,
 BSTR destQual,
 BSTR destID,
 long EnvID,
 IDictionary* pDelimiters,
 IStream* OutputStream,
 long NumDocs
);
[Visual Basic]

Not applicable

Parameters
[C++]

srcQual

[in] BSTR that contains the source-organization identifier qualifier.

srcID

[in] BSTR that contains the source-organization identifier value.

destQual

[in] BSTR that contains the destination-organization identifier qualifier.

destID

[in] BSTR that contains the destination-organization identifier value.

EnvID

[in] Long that contains the envelope identifier value.

pDelimiters

[in] Pointer to an IDictionary interface of an object that contains the delimiters used in the document.

OutputStream

[in] Pointer to an IStream interface that contains the data of this document. This IStream pointer is write-only. The only methods
that are supported are Write and Stat; all other methods return E_NOTIMPL. Additional information about the IStream object is
available on the Microsoft Developer Network at msdn.microsoft.com/library/default.asp.

NumDocs

[in] Long that contains the number of documents sent as part of this interchange. For this release, this parameter is set to 1.

[Visual Basic]

Not applicable

Return Values
[C++]

http://msdn.microsoft.com/library/default.asp

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

Not applicable

Requirements
[C++]

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include BTSSerializerComps.h

[Visual Basic]

Not applicable

Related Topics

Sequence for Calling Methods of the IBizTalkSerializerComponent Interface

Using the IBizTalkSerializerComponent Interface

IBTSAppIntegration Interface

IBTSAppIntegration Interface [C++]
IBTSAppIntegration Object [Visual Basic]
Use this object to create an entry point for receiving a document.

In C++, use the IBTSAppIntegration interface to access the methods of the BTSAppIntegration object.

The method of the BTSAppIntegration object is shown in the following table.

Method Description
ProcessMessage Processes the document.

Remarks
Application integration components must be properly registered so that Microsoft BizTalk Server 2000 can recognize that they
belong to BizTalk Server 2000. Application integration components register themselves with the category ID
CATID_BIZTALK_AIC. The CATIDs are defined in the bts_sdk_guids.h file. For more information,
see Registering Application Integration Components.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

Related Topic

Using the IBTSAppIntegration Interface

IBTSAppIntegration::ProcessMessage Method

IBTSAppIntegration::ProcessMessage Method [C++]
IBTSAppIntegration.ProcessMessage Method [Visual Basic]
The ProcessMessage method processes a document and returns a response document, if available. This method is called at run
time when the server is sending a document to the component.

Syntax
[C++]
HRESULT ProcessMessage(
 BSTR bstrDocument,
 BSTR* pbstrResponseDocument
);
[Visual Basic]
object.ProcessMessage(_
 bstrDocument As String _
)

Parameters
[C++]

bstrDocument

[in] BSTR that contains the document.

pbstrResponseDocument

[retval, out] Pointer to a BSTR that contains the response document.

[Visual Basic]

bstrDocument

String that contains the document.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

String that contains the response document.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
Components can return a response string to pass back a text-based response to an application, using the SubmitSync method of
the IInterchange interface to send documents.

Components must raise an error if a problem with processing occurs so that the document can be retransmitted or sent to the
Suspended queue. If no error is returned, the server assumes that the component successfully processed the data.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include btsaic.h
Library: Use Microsoft BizTalk Server Application Interface Components 1.0 Type Library (btscomplib.tlb)

IPipelineComponent Interface

IPipelineComponent Interface [C++]
IPipelineComponent Object [Visual Basic]
Use this object to create custom pipeline components that can execute in Microsoft BizTalk Server 2000 to extend its functionality.

In C++, use the IPipelineComponent interface to access the methods of the PipelineComponent object.

The methods of the PipelineComponent object are shown in the following table.

Method Description
EnableDesign Configures the component for execution in one of two modes: design mode or execution mode.
Execute Executes the operation expected of the component, given the transport Dictionary object and other configuratio

n settings.

Remarks
Application integration components must be properly registered so that BizTalk Server 2000 can recognize that they belong to
BizTalk Server 2000. Application integration components register themselves with the category ID CATID_BIZTALK_AIC. The
CATIDs are defined in the bts_sdk_guids.h file. For more information, see Registering Application Integration Components.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include pipecomp.h
Library: Use Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

Related Topic

Creating Application Integration Components

IPipelineComponent::EnableDesign Method

IPipelineComponent::EnableDesign Method [C++]
IPipelineComponent.EnableDesign Method [Visual Basic]
The EnableDesign method configures the component for execution in one of two modes: design mode or execution mode.

Syntax
[C++]
HRESULT EnableDesign(
 BOOL fEnable
);
[Visual Basic]
object.EnableDesign(_
 fEnable As Boolean _
)

Parameters
[C++]

fEnable

Boolean value that indicates the mode of the component. A value of TRUE specifies that the component runs in design mode. A
value of FALSE (default) specifies execution mode.

[Visual Basic]

fEnable

Boolean that indicates the mode of the component. A value of True specifies that the component runs in design mode. A value of
False (default) specifies execution mode.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The pipeline component runs in execution mode by default.

This method is called when the Override messaging port defaults page is opened in the Channel Wizard's Advanced
Configuration page. It is also called when the property page is closed and the fEnable parameter is set to true. Design mode is
not enabled unless this method has been called with the fEnable parameter set to True.

Design-only fields are returned only when the fEnable parameter is set to true. Otherwise, the Dictionary object passed to the
server contains unnecessary information.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include pipecomp.h
Library: Use Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

IPipelineComponent::Execute Method

IPipelineComponent::Execute Method [C++]
IPipelineComponent.Execute Method [Visual Basic]
The Execute method executes the operation expected of the component, given the transport Dictionary object and other
configuration settings. Microsoft BizTalk Server 2000 calls this method, passing in the transport Dictionary object. The
component can read these Dictionary object values, perform the necessary functions, and optionally write new values back to
the transport Dictionary object for further processing.

Syntax
[C++]
HRESULT Execute(
 IDispatch* pDispOrder,
 IDispatch* pDispContext,
 long lFlags,
 long* plErrorLevel
);
[Visual Basic]
object.Execute(_
 pDispOrder As Object, _
 pDispContext As Object, _
 lFlags As Long _
)

Parameters
[C++]

pDispOrder

[in] Pointer to the transport Dictionary object.

pDispContext

[in] Not supported for this release.

lFlags

[in] Reserved.

PlErrorLevel

[out, retval] Reserved.

[Visual Basic]

pDispOrder

Object that contains the transport CDictionary object.

pDispContext

Not supported for this release.

lFlags

Reserved.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns a Long that contains the error level.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
For a component designed to run in BizTalk Server 2000, the first parameter is a Transport Dictionary object. The Transport
Dictionary values can be read by the component for processing. The string values supplied by the server for all application
integration components (AICs) are as follows:

Src_ID_Type: The type of identifier used for the source organization.

Src_ID_Value: The value of the source organization identifier.

Dest_ID_Type: The type of identifier used for the destination organization.

Dest_ID_Value: The value of the destination organization identifier.

Document_Name: The name of the input document definition.

Tracking_ID: A key value that is based on the globally unique identifier (GUID) and used for tracking.

For a component that runs in a Commerce Server order-processing pipeline, the first parameter contains the OrderForm object.

This method is called at run time when the server is sending a document to the component. This method is called immediately
after the SetConfigData method of the IPipelineComponentAdmin interface. The document is passed in the first parameter as
a dictionary within the working_data field of the Dictionary object. Components can add the ResponseField key to the
Dictionary object to pass back a text-based response to an application, using the SubmitSync method of the IInterchange
interface.

The component must raise an error if a problem with processing occurs so that the server can retry transmission later and, after
all retries, send the document to the Suspended queue. If no error is returned, the server assumes that the component
successfully processed the data.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include pipecomp.h
Library: Use Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

IPipelineComponentAdmin Interface

IPipelineComponentAdmin Interface [C++]
IPipelineComponentAdmin Object [Visual Basic]
Use this object between the component and the component user interface.

In C++, use the IPipelineComponentAdmin interface to access the methods of the PipelineComponentAdmin object.

The methods of the PipelineComponentAdmin object are shown in the following table.

Method Description
GetConfigData Returns a Dictionary object that contains the configuration data for the component for the user interface to dis

play these values.
SetConfigData Sets the configuration settings for a component, using the contents of a Dictionary object.

Remarks
Application integration components must be properly registered so that BizTalk Server 2000 can recognize that they belong to
BizTalk Server 2000. Application integration components register themselves with the category ID CATID_BIZTALK_AIC. The
CATIDs are defined in the bts_sdk_guids.h file. For more information, see Registering Application Integration Components.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include pipecomp.h
Library: Use Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

Related Topic

Creating Application Integration Components

IPipelineComponentAdmin::GetConfigData Method

IPipelineComponentAdmin::GetConfigData Method [C++]
IPipelineComponentAdmin.GetConfigData Method [Visual
Basic]
The GetConfigData method returns a Dictionary object that contains the configuration data for the component to be used to
display these values. GetConfigData enables the user interface component to read the current value from the component and
display it on the property page initially.

Syntax
[C++]
HRESULT GetConfigData(
 IDispatch** ppConfigDictionary
);
[Visual Basic]
object.GetConfigData()

Parameters
[C++]

ppConfigDictionary

[out, retval] Address of a pointer to a Dictionary object from which the user interface can read the configuration data.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method optionally returns a CDictionary object from which the user interface can read the configuration data.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
When a BizTalkPort object is first saved, this method is called to get the defaults for use in autoconfiguring the application
integration component (AIC) from the Dictionary object provided. Components must provide defaults for all mandatory
properties, whenever possible.

This method is called when the user selects the property page. It is used to supply property page defaults. It is called again when
the property page is closed. The contents of this returned Dictionary object are not used.

Components must always return a valid dictionary pointer from GetConfigData.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include pipecomp.h

Library: Use Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

IPipelineComponentAdmin::SetConfigData Method

IPipelineComponentAdmin::SetConfigData Method [C++]
IPipelineComponentAdmin.SetConfigData Method [Visual
Basic]
The SetConfigData method sets the configuration for a component, using the contents of a Dictionary object. With this method,
the user interface can set or change these values. SetConfigData enables the user interface to write the updated value from the
property page to the component.

Syntax
[C++]
HRESULT SetConfigData(
 IDispatch* pConfigDictionary
);
[Visual Basic]
object.SetConfigData(_
 pConfigDictionary As Object _
)

Parameters
[C++]

pConfigDictionary

[in] Pointer to a Dictionary object that contains the configuration information.

[Visual Basic]

pConfigDictionary

CDictionary object that contains the configuration information.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

None.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
The server calls SetConfigData when the property page is saved. It is used to verify the values entered by the user on the
property page. The contents of this provided Dictionary object are also stored in the database.

This method is called immediately before the Execute method of the IPipelineComponent interface at run time, when the
server is ready to send a document to the component. Data stored during design time from autoconfiguration or from property-
page updates is passed to the component to allow for property setup prior to calling Execute.

Components validate the properties provided in SetConfigData and raise an error if any of the properties are invalid or missing.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include pipecomp.h
Library: Use Microsoft Commerce 2000 Default Pipeline Components Type Library (pipecomplib.tlb)

ISchemaImporter Interface

ISchemaImporter Interface [C++]
SchemaImporter Object [Visual Basic]
Use this object to handle the importing of DTDs, XDRs, and well-formed XML documents.

In C++, use the ISchemaImporter interface to access the properties and methods of the SchemaImporter object.

The properties of the SchemaImporter object are shown in the following table.

Property Description
ImportFormatDescription Returns descriptive text about a supported import format.
ImportFormatIcon Returns an icon for a supported import format.
NumberOfSupportedImportFormats Returns the number of supported data formats from which a schema can be extracted.

The method of the SchemaImporter object is shown in the following table.

Method Description
ExtractXMLSchema Extracts a schema from a document.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporter::ExtractXMLSchema Method

ISchemaImporter::ExtractXMLSchema Method [C++]
SchemaImporter.ExtractXMLSchema Method [Visual Basic]
The ExtractXMLSchema method extracts a schema from a document.

Syntax
[C++]
HRESULT ExtractXMLSchema(
 long lFormatIndex,
 BSTR strDocumentPath,
 IDispatch** ppSchemaDOM
);
[Visual Basic]
object.ExtractXMLSchema(_
 lFormatIndex As Long, _
 bstrDocumentPath As String _
)

Parameters
[C++]

lFormatIndex

[in] Index value that specifies the type of document from which to import the schema. Pass in 0 to import well-formed XML, 1 to
import a document type definition (DTD), or 2 to import an XDR schema.

strDocumentPath

[in] Path to the document from which to import the schema.

ppSchemaDOM

[out, retval] Address of a pointer to an IDispatch interface that contains the extracted XML schema.

[Visual Basic]

lFormatIndex

Index value that specifies the type of document from which to import the schema. Pass in 0 to import well-formed XML, 1 to
import a document type definition (DTD), or 2 to import an XDR schema.

bstrDocumentPath

Path to the document from which to import the schema.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This method returns an Object that contains information about the extracted XML schema.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporter::ImportFormatDescription Property

ISchemaImporter::ImportFormatDescription Property [C++]
SchemaImporter.ImportFormatDescription Property [Visual
Basic]
The ImportFormatDescription property returns descriptive text about a supported import format.

Syntax
[C++]

HRESULT get_ImportFormatDescription(
 long lFormatIndex,
 BSTR* ppbstrDescription
);

[Visual Basic]

object.ImportFormatDescription(_
 lFormatIndex As Long _
)

Parameters
[C++]

lFormatIndex

[in] Index value that specifies the type of document from which to import the schema. Pass in 0 to import well-formed XML, 1 to
import a document type definition (DTD), or 2 to import an XDR schema.

ppbstrDescription

[out, retval] Pointer to a BSTR that contains a textual description of the input document format.

[Visual Basic]

lFormatIndex

Index value that specifies the type of document from which to import the schema. Pass in 0 to import well-formed XML, 1 to
import a document type definition (DTD), or 2 to import an XDR schema.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that contains a textual description of the input document format.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporter::ImportFormatIcon Property

ISchemaImporter::ImportFormatIcon Property [C++]
ISchemaImporter.ImportFormatIcon Property [Visual Basic]
The ImportFormatIcon property returns an icon for a supported import format.

Syntax
[C++]

HRESULT get_ImportFormatIcon(
 long lFormatIndex,
 long* pIconID
);

[Visual Basic]

object.ImportFormatIcon(_
 lFormatIndex As Long _
)

Parameters
[C++]

lFormatIndex

[in] Index value that specifies the type of document from which to import the schema. Pass in 0 to import well-formed XML, 1 to
import a document type definition (DTD), or 2 to import an XDR schema.

pIconID

[out, retval] Pointer to a long that contains the icon identifier for the input format.

[Visual Basic]

lFormatIndex

Index value that specifies the type of document from which to import the schema. Pass in 0 to import well-formed XML, 1 to
import a document type definition (DTD), or 2 to import an XDR schema.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that is the icon identifier for the input format.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read only-property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporter::NumberOfSupportedImportFormats
Property

ISchemaImporter::NumberOfSupportedImportFormats
Property [C++]
SchemaImporter.NumberOfSupportedImportFormats Property
[Visual Basic]
The NumberOfSupportedImportFormats property returns the number of supported data formats from which a schema can be
extracted.

Syntax
[C++]

HRESULT get_NumberOfSupportedImportFormats(
 long* plNumber
);

[Visual Basic]

object.NumberOfSupportedImportFormats

Parameters
[C++]

plNumber

[out, retval] Pointer to a long that indicates the number of supported import formats.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that contains the number of supported import formats.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporterError Interface

ISchemaImporterError Interface [C++]
SchemaImporterError Object [Visual Basic]
Use this object to identify and decipher errors or warnings.

In C++, use the ISchemaImporterError interface to access the properties of the SchemaImporterError object.

The properties of the SchemaImporterError object are shown in the following table.

Property Description
IsWarning Returns a value that identifies the object as an error or a warning.
NodePath Returns the path to the node that generated the error or warning.
Text Returns the error or warning message.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporterError::IsWarning Property

ISchemaImporterError::IsWarning Property [C++]
SchemaImporterError.IsWarning Property [Visual Basic]
The IsWarning property returns a value that identifies the object as an error or a warning.

Syntax
[C++]

HRESULT get_IsWarning(
 VARIANT_BOOL* pIsWarning
);

[Visual Basic]

object.IsWarning

Parameters
[C++]

pIsWarning

[out, retval] Set to VARIANT_TRUE if the object is a warning; otherwise, set to VARIANT_FALSE to indicate that the object is an
error.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Boolean value. Set to True if the object is a warning; otherwise, set to False to indicate that the object is
an error.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporterError::NodePath Property

ISchemaImporterError::NodePath Property [C++]
SchemaImporterError.NodePath Property [Visual Basic]
The NodePath property returns the path to the node that generated the error or warning.

Syntax
[C++]

HRESULT get_NodePath(
 BSTR* pbstrNodePath
);

[Visual Basic]

object.NodePath

Parameters
[C++]

pbstrNodePath

[out, retval] Pointer to a BSTR that contains the fully qualified name of the node that generated the error or warning.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that is the fully qualified name of the node that generated the error or warning.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporterError::Text Property

ISchemaImporterError::Text Property [C++]
SchemaImporterError.Text Property [Visual Basic]
The Text property returns the error or warning message.

Syntax
[C++]

HRESULT get_Text(
 BSTR* pbstrText
);

[Visual Basic]

object.Text

Parameters
[C++]

pbstrText

[out, retval] Pointer to a BSTR that contains the text associated with the error or warning.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a String that is the text associated with the error or warning.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporterErrorProvider Interface

ISchemaImporterErrorProvider Interface [C++]
SchemaImporterErrorProvider Object [Visual Basic]
Use this object to return errors or warnings.

In C++, use the ISchemaImporterErrorProvider interface to access the properties of the SchemaImporterErrorProvider
object.

The properties of the SchemaImporterErrorProvider object are shown in the following table.

Property Description
Error Returns the error or warning.
NumberOfErrors Returns the number of errors or warnings.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporterErrorProvider::Error Property

ISchemaImporterErrorProvider::Error Property [C++]
SchemaImporterErrorProvider.Error Property [Visual Basic]
The Error property returns the error or warning.

Syntax
[C++]

HRESULT get_Error(
 long lIndex,
 ISchemaImporterError** pdswError
);

[Visual Basic]

object.Error(_
 lIndex As Long _
)

Parameters
[C++]

lIndex

[in] Index of the required error or warning.

pdswError

[out, retval] Address of a pointer to an ISchemaImporterError interface that contains the error or warning.

[Visual Basic]

lIndex

Index of the required error or warning.

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a SchemaImporterError object that contains the error or warning.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

ISchemaImporterErrorProvider::NumberOfErrors Property

ISchemaImporterErrorProvider::NumberOfErrors Property
[C++]
SchemaImporterErrorProvider.NumberOfErrors Property [Visual
Basic]
The NumberOfErrors property returns the number of errors or warnings.

Syntax
[C++]

HRESULT get_NumberOfErrors(
 long* plNumberOfErrors
);

[Visual Basic]

object.NumberOfErrors

Parameters
[C++]

plNumberOfErrors

[out, retval] Pointer to a long that indicates the number of errors.

[Visual Basic]

None

Return Values
[C++]

For a list of all error messages returned by BizTalk Server, see Error Messages.

[Visual Basic]

This property returns a Long that indicates the number of errors.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the Error Messages page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SchemaImporter.h
Library: Use Microsoft BizTalk Server Import Extension Module 1.0 Type Library (ExtensionMod.dll)

Receipt Enumerations
The following receipt enumeration provides possible values of properties and parameters for the IBizTalkAcknowledge
interface:

DTA_ACK_STATUS

GeneratedReceiptLevel

DTA_ACK_STATUS
The DTA_ACK_STATUS enumeration has one of the following values:

Name Value Description
DTA_ACK_NONE 0 No receipt is expected.
DTA_ACK_PENDING 1 The receipt is expected but has not yet arrived.
DTA_ACK_OVERDUE 2 The receipt has timed out.
DTA_ACK_ACCEPTED 3 The receipt has arrived with a status of accepted.
DTA_ACK_PARTIALLY_ACCEPTED 4 The receipt has arrived with a status of accepted with errors.
DTA_ACK_REJECTED 5 The receipt has arrived with a status of rejected.

GeneratedReceiptLevel
The GeneratedReceiptLevel enumeration has one of the following values:

Name Value Description
NoReceiptGenerated 0 No receipt is created.
DocReceiptGenerated 1 A receipt is generated for each document.
GroupReceiptGenerated 2 A receipt is generated for each group.
InterchangeReceiptGenerated 3 A receipt is generated for each interchange.

Functoid Enumerations
The following functoid enumerations provide possible values of properties and parameters:

CONNECTION_TYPE

FUNC_CATEGORY

FUNC_TYPE

SCRIPT_CATEGORY

CONNECTION_TYPE
The CONNECTION_TYPE enumeration defines the following values:

Name Value Description
CONNECT_TYPE_NONE 0 The connection type is none.
CONNECT_TYPE_FIELD 1 The connection type is field.
CONNECT_TYPE_RECORD 2 The connection type is record.
CONNECT_TYPE_RECORD_CONTENT 4 The connection type is record content.
CONNECT_TYPE_FUNC_STRING 8 The connection type function is string.
CONNECT_TYPE_FUNC_MATH 16 The connection type function is mathematical.
CONNECT_TYPE_FUNC_DATACONV 32 The connection type function is data conversion.
CONNECT_TYPE_FUNC_DATETIME_FMT 64 The connection type function is date/time format.
CONNECT_TYPE_FUNC_SCIENTIFIC 128 The connection type function is scientific.
CONNECT_TYPE_FUNC_BOOLEAN 256 The connection type function is Boolean.
CONNECT_TYPE_FUNC_SCRIPTER 512 The connection type function is script.
CONNECT_TYPE_FUNC_COUNT 1024 The connection type function is count.
CONNECT_TYPE_FUNC_INDEX 2048 The connection type function is index.
CONNECT_TYPE_FUNC_CUMULATIVE 4096 The connection type function is cumulative.
CONNECT_TYPE_FUNC_VALUE_MAPPING 8192 The connection type function is value mapping.
CONNECT_TYPE_FUNC_LOOPING 16384 The connection type function is looping.
CONNECT_TYPE_FUNC_ITERATION 32768 The connection type function is iteration.
CONNECT_TYPE_FUNC_DBLOOKUP 65536 The connection type function is database lookup.
CONNECT_TYPE_FUNC_DBEXTRACT 131072 The connection type function is database extraction.
CONNECT_TYPE_ALL -1 The connection type includes all connection types.
CONNECT_TYPE_ALL_EXCEPT_RECORD -3 The connection type includes all connection types except records.

FUNC_CATEGORY
The FUNC_CATEGORY enumeration defines the following values:

Name Valu
e

Description

FUNC_CATEGORY_STRING 3 The function category is string.
FUNC_CATEGORY_MATH 4 The function category is mathematical.
FUNC_CATEGORY_DATACONV 5 The function category is data conversion.
FUNC_CATEGORY_DATETIME_FMT 6 The function category is date/time format.
FUNC_CATEGORY_SCIENTIFIC 7 The function category is scientific.
FUNC_CATEGORY_BOOLEAN 8 The function category is Boolean.
FUNC_CATEGORY_SCRIPTER 9 The function category is script.
FUNC_CATEGORY_COUNT 10 The function category is count. This value is not supported for this release.
FUNC_CATEGORY_INDEX 11 The function category is index.
FUNC_CATEGORY_CUMULATIVE 12 The function category is cumulative.
FUNC_CATEGORY_VALUE_MAPPIN
G

13 The function category is value mapping. This value is not supported for this release
.

FUNC_CATEGORY_LOOPING 14 The function category is looping. This value is not supported for this release.
FUNC_CATEGORY_ITERATION 15 The function category is iteration. This value is not supported for this release.
FUNC_CATEGORY_DBLOOKUP 16 The function category is database lookup.
FUNC_CATEGORY_DBEXTRACT 17 The function category is database extraction.
FUNC_CATEGORY_UNKNOWN 31 The function category is unknown.

FUNC_TYPE
The FUNC_TYPE enumeration defines the following values:

Name Value Description
FUNC_TYPE_STD 1 The function type is standard.
FUNC_TYPE_VARIABLEINPUT 2 The function type is variable input.
FUNC_TYPE_SCRIPTOR 3 The function type is script.

SCRIPT_CATEGORY
The SCRIPT_CATEGORY enumeration defines the following values:

Name Val
ue

Description

SCRIPT_CATEGORY_VB
SCRIPT

0 The custom functoid function is written in the Microsoft Visual Basic Scripting Edition (VBScript) la
nguage.

SCRIPT_CATEGORY_JSC
RIPT

1 The custom functoid function is written in the Microsoft JScript language. This value is not support
ed for this release.

SCRIPT_CATEGORY_XSL
SCRIPT

2 The custom functoid function is written in the Extensible Stylesheet Language (XSL). This value is n
ot supported for this release.

Concepts
This section provides detailed conceptual information that is important to understanding how to extend Microsoft BizTalk
Server 2000. BizTalk Server 2000 can perform data transformation, digital signature, encryption and decryption, parsing,
serializing, and transport of documents. In addition, you can create your own application integration components (AICs) to extend
the capabilities of BizTalk Server 2000.

The following topics are covered:

Creating Application Integration Components

Using the IBizTalkParserComponent Interface

Using the IBizTalkSerializerComponent Interface

Supporting the Tracking Database with Parser and Serializer Components

Creating Receipt Correlator Components

For samples of code, see BizTalk Messaging Services Code Samples.

Creating Application Integration Components
When creating an application integration component (AIC), you can implement either the pipeline model using
the IPipelineComponent interface or the lightweight model using the IBTSAppIntegration interface.

Application integration components are COM objects that the BizTalk Server state engine calls to deliver data to an application. If
a messaging port is configured in BizTalk Server 2000 to include the use of an AIC for application integration, this component is
automatically instantiated and passed the requisite data. The component then determines how to handle communicating this data
back to the application. This can be done using private API calls, invoking other COM objects, using database writes, and so on.

By default, AICs run in the LocalSystem account. If another security context is required, set it as part of the implementation of the
AIC. However, if an AIC is installed as a COM+ application, an administrator can configure security of the AIC by using the
Component Services console.

Related Topics

Lightweight Application Integration Components

Pipeline Application Integration Components

Registering Application Integration Components

Pipeline Application Integration Components
One approach for application integration with BizTalk Server 2000 is the creation of a pipeline component. This is the same model
used in Microsoft Site Server Commerce Edition 3.0 for application integration with the Commerce Interchange pipeline (CIP) and
the Order Processing pipeline (OPP). BizTalk Server 2000 supports this method so that pipeline components written for
application integration for CIP and OPP are compatible. This is also a useful technique when the component requires
configuration properties.

The primary entry point for a pipeline component is the Execute method of the IPipelineComponent interface. This is the
method that BizTalk Server 2000 calls to transfer control and to pass the data to the component. It is in the implementation of this
method that the component does its work.

Related Topics

IPipelineComponent

IPipelineComponentAdmin

Lightweight Application Integration Components
BizTalk Server 2000 supports an additional model for application developers who want a lighter-weight model for application
integration, one that does not support a design-time user interface or configuration properties. This model requires a single
interface that contains a single method as an entry point. The component is implemented, and the document is passed to it
through the ProcessMessage method of the IBTSAppIntegration interface.

IBTSAppIntegration is for applications that do not need properties for their component and need only an entry point for
receiving a document. This is a simpler approach to application integration than pipeline components. BizTalk Server 2000
queries for this interface first. If it does not find this interface implemented, it queries for the pipeline component interfaces.

Registering Application Integration Components
To use an application integration component (AIC) in BizTalk Server 2000, the component must be registered with the category
IDs for all pipeline components and for the specific type of pipeline component, in this case application integration.

Register the AIC as an out-of-process component to provide better isolation. An AIC can be registered as an in process (inproc)
component to increase its performance. However, an inproc component that fails to respond during an error condition might
cause BizTalk Server to fail. Therefore, an AIC should be thoroughly tested before registering it as an inproc component.

 Notes

An out-of-process component registered as a COM+ application must be configured to run in an identity other than the
interactive user.

The application integration component must be registered by a user in the BizTalk Server Administrators group. The BizTalk
Server Administrators group is created when BizTalk Server 2000 is installed. Additional users can be added to this group as
necessary.

For more information about Component Services and COM+, go to the MSDN Online Library Web site
(msdn.microsoft.com/library/default.asp) and browse to Component Services in the Platform SDK.

Assigning affinity
Each application integration component (AIC) must be associated with two category IDs. One category ID marks the component
as a BizTalk Server component. A component so marked appears in a list of components in the BizTalk Server administration
console. The second category ID indicates the type or purpose of the component. This second association is called affinity. Only
those components whose affinity is registered as application integration components appear in lists of such components.

To register affinity for an AIC created with Microsoft Visual C++ using ATL, include the following code in your header file:

#include "bts_sdk_guids.h"
// Implement the Component and AIC Category IDs (CATID)
BEGIN_CATEGORY_MAP(AIC_ClassName)
 IMPLEMENTED_CATEGORY(CATID_BIZTALK_COMPONENT)
 IMPLEMENTED_CATEGORY(CATID_BIZTALK_AIC)
END_CATEGORY_MAP()

To register affinity for an AIC created with Microsoft Visual Basic:

1. After registering your component using Regsvr32.exe, search the registry for the CLSID of your AIC under the following key:

HKEY_CLASSES_ROOT\CLSID

2. Expand the Implemented Categories key of your AIC.

3. Add two new keys with the following names:

HKEY_CLASSES_ROOT\CLSID\AIC_CLSID\Implemented Categories\{5C6C30E7-C66D-40e3-889D-08C5C3099E52}

HKEY_CLASSES_ROOT\CLSID\AIC_CLSID\Implemented Categories\{BD193E1D-D7DC-4b7c-B9D2-92AE0344C836}

These GUIDs can be found in bts_sdk_guids.h in the Program Files\Microsoft BizTalk Server\SDK\Include folder. The first key
shown in step 3 above identifies the AIC as a BizTalk Server component (CATID_BIZTALK_COMPONENT). The second key shown in
step 3 above identifies the component as an AIC (CATID_BIZTALK_AIC).

Testing affinity
To test affinity, use BizTalk Messaging Manager to create a port that uses the AIC. For more information,
see Select an application integration component.

http://msdn.microsoft.com/library/default.asp

Using the IBizTalkParserComponent Interface
The parser has two responsibilities:

Convert the documents to XML for later processing.

Get the parameters necessary to select the channel (these are the source qualifier, source identifier, destination qualifier,
destination identifier, and document definition name). These returned fields are combined with the parameters of
the Submit method of the IInterchange interface to select the channels necessary to process the documents.

This interface gets information from the component for one interchange. If the incoming data stream represents multiple
interchanges, the server selects the component at every interchange boundary. This simplifies construction of a component
because it deals with only one interchange at a time. There is one component instance per thread. No single object needs to be
safe for multiple threads. This interface is supported only in C++.

If the ProbeInterchangeFormat method of the IBizTalkParserComponent interface returns an error in the middle of the
document list, it blocks the server from detecting more document types, even if they could be handled by a custom parser that
follows the failed parser, if there are two or more custom parsers on a server. If the first custom parser fails, any document that
follows is not parsed, even if the other custom parser could handle it, because the server ends the entire parsing operation at the
time of the failure.

For additional information, see Sequence for Calling Methods of the IBizTalkParserComponent Interface.

Related Topic

Registering Application Integration Components

Sequence for Calling Methods of the IBizTalkParserComponent
Interface
The following tables show a possible sequence for calling the methods, based on the sample interchange.

If you have an interchange with two groups, with two documents in the first group and one in the second, the methods are called
in the following sequence:

Method Return
ProbeInterchangeFormat Non-empty format string
GetInterchangeDetails N/A
GroupsExist True
GetGroupDetails N/A
GetNextDocument The LastDoc parameter is set to False.
GetNativeDocumentOffsets N/A
GetNextDocument The LastDoc parameter is set to True.
GetNativeDocumentOffsets N/A
GetGroupSize The LastGroup parameter is set to False.
GetGroupDetails N/A
GetNextDocument The LastDoc parameter is set to True.
GetNativeDocumentOffsets N/A
GetGroupSize The LastGroup parameter is set to True.

If you have an interchange with two documents, the methods are called in the following sequence:

Method Return
ProbeInterchangeFormat Non-empty format string
GetInterchangeDetails N/A
GroupsExist False
GetNextDocument The LastDoc parameter is set to False.
GetNativeDocumentOffsets N/A
GetNextDocument The LastDoc parameter is set to True.
GetNativeDocumentOffsets N/A

Using the IBizTalkSerializerComponent Interface
The serializer converts the document from XML back to its native format. This interface is intended to work on a single
interchange and is designed to get information from the component for one interchange. This simplifies the construction of this
component because it has to deal with only one interchange at a time. There is only one instance per thread. No single object
needs to be safe for multiple threads. This interface is supported only in C++.

Related Topic

Registering Application Integration Components

Sequence for Calling Methods of the
IBizTalkSerializerComponent Interface
The following tables show the possible sequence of calling the methods of the IBizTalkSerializerComponent interface, based
on the following sample interchanges.

If you have an interchange with one document, the methods are called in the following sequence:

Method Return
Init The numdocs parameter is set to 1.
AddDocument The docHandle parameter is set to 0.
GetInterchangeInfo The numGroups parameter is set to 0.
GetDocInfo The docHandle parameter is set to 0.

If you have an interchange with one group, with one document in the group, the methods are called in the following sequence:

Method Return
Init The numdocs parameter is set to 1.
AddDocument The docHandle parameter is set to 0.
GetInterchangeInfo The numGroups parameter is set to 1.
GetGroupInfo The numdocs parameter is set to 1.
GetDocInfo The docHandle parameter is set to 0.

If you have an interchange with two groups, with two documents in the first group and one in the second, the methods are called
in the following sequence (this assumes support of batching):

Method Return
Init The numdocs parameter is set to 3.
AddDocument The handle parameter is set to 0.
AddDocument The handle parameter is set to 1.
AddDocument The handle parameter is set to 2.
GetInterchangeInfo The numGroups parameter is set to 2.
GetGroupInfo The numdocs parameter is set to 2.
GetDocInfo The handle parameter is set to 1.
GetDocInfo The handle parameter is set to 0.
GetGroupInfo The numdocs parameter is set to 1.
GetDocInfo The handle parameter is set to 2.

Related Topic

IBizTalkSerializerComponent

Supporting the Tracking Database with Parser and Serializer
Components
When creating a custom parser or serializer, you might want your component to support the BizTalk Server Tracking database. To
accomplish this, the component must use the IDictionary interface to add key/value pairs into the database.

Interchange table
The following table contains the list of keys that can be used to support the Tracking database from the interchange level with a
custom component. The table used in the database is dta_interchange_details.

Diction
ary key

Inb
ou
nd
or
Ou
tbo
un
d

Colum
n logg
ed in
Tracki
ng dat
abase

Description

Src_ID_
Type

Bot
h

*nvcSr
cAliasQ
ualifier

This is the qualifier for the source organization. This value can come from a parameter supplied in a Submit
call or from a receive function in the BizTalk Server Administration user interface. A parser can overwrite this
value to manipulate the routing information used for channel selection.

Src_ID_
Value

Bot
h

*nvcSr
cAliasI
d

This contains the value of the qualifier of the source organization. This value can come from a parameter su
pplied in a Submit call or from a receive function in the BizTalk Server Administration user interface. A pars
er can overwrite this value to manipulate the routing information used for channel selection.

In_Src_I
D_App

Inb
oun
d

nvcSrc
AppNa
me

This is the interchange level identifier for the source application of an EDI interchange. When the parser sets
the value with this dictionary key, the value is logged on the inbound interchange in the Tracking database.

Dest_ID
_Type

Bot
h

*nvcDe
stAlias
Qualifi
er

This is the qualifier for the destination organization. This value can come from a parameter supplied in a Su
bmit call or from a receive function in the BizTalk Server Administration user interface. A parser can overwri
te this value to manipulate the routing information used for channel selection.

Dest_ID
_Value

Bot
h

*nvcDe
stAliasI
d

This contains the value of the qualifier of the destination organization. This value can come from a paramete
r supplied in a Submit call or from a receive function in the BizTalk Server Administration user interface. A p
arser can overwrite this value to manipulate the routing information used for channel selection.

In_Dest
_ID_App

Inb
oun
d

nvcDes
tAppN
ame

This is the interchange level identifier for the destination application of an EDI interchange. When the parser
sets the value with this dictionary key, the value is logged on the inbound interchange in the Tracking datab
ase.

intercha
nge_id

Inb
oun
d

nvcCon
trolID

This is the unique control number used to identify an EDI interchange instance between trading partners. W
hen the parser sets the value with this dictionary key, the value is logged on the inbound interchange in the
Tracking database.

intercha
nge_ver
sion

Inb
oun
d

nvcVer
sion

This is the version of an EDI interchange. When the parser sets the value with this dictionary key, the value is
logged on the inbound interchange in the Tracking database.

Out_Src
_ID_App

Out
bou
nd

*nvcSr
cAppN
ame

This is the interchange level identifier for the source application of an EDI interchange. When the serializer s
ets the value with this dictionary key, the value is logged on the outbound interchange in the Tracking datab
ase.

Out_De
st_ID_A
pp

Out
bou
nd

*nvcDe
stAppN
ame

This is the interchange level identifier for the destination application of an EDI interchange. When the serializ
er sets the value with this dictionary key, the value is logged on the outbound interchange in the Tracking da
tabase.

out_inte
rchange
_id

Out
bou
nd

*nvcCo
ntrolID

This is the unique control number used to identify an EDI interchange instance between trading partners. Th
e serializer usually generates this unique value. When the serializer sets the value with this dictionary key, th
e value is logged on the outbound interchange in the Tracking database.

out_inte
rchange
_versio
n

Out
bou
nd

*nvcVe
rsion

This is the version of the EDI standard. When the serializer sets the value with this dictionary key, the value is
logged on the outbound interchange in the Tracking database.

 Note

The columns of the dta_interchange_details table marked with an asterisk (*) are used for receipt correlation.

Group table
The following table contains the list of keys that can be used to support the Tracking database from the group level with a custom
component. The table used in the database is dta_group_details. This table applies to both inbound and outbound documents.

Diction
ary key

Colum
n logg
ed in
Tracki
ng dat
abase

Description

group_i
d

*nvcCo
ntrolID

This is the unique control number of a group instance within an EDI interchange. Both the parser and the serializ
er can set the value with this key. The value is logged on the inbound and the outbound group, respectively, in t
he Tracking database. For outbound document processing, the serializer usually generates this value.

function
al_identi
fier

*nvcFu
nctiona
lGroupI
D

This is the code for the type of documents in an EDI group. Both the parser and the serializer can set the value w
ith this key. The value is logged on the inbound and the outbound group, respectively, in the Tracking database.
In the serializer, this value can be read from the document’s PropertySet.

applicati
on_send
er_code

*nvcSrc
AppNa
me

This is the group level identifier for the source application in an EDI group. Both the parser and the serializer can
set the value with this key. The value is logged on the inbound and the outbound group, respectively, in the Trac
king database. In the serializer, this value can be read from the document’s PropertySet.

applicati
on_recei
ver_cod
e

*nvcDe
stAppN
ame

This is the group level identifier for the destination application in an EDI group. Both the parser and the serialize
r can set the value with this key. The value is logged on the inbound and the outbound group, respectively, in th
e Tracking database. In the serializer, this value can be read from the document’s PropertySet.

standar
ds_versi
on

*nvcVe
rsion

This is the version of the EDI standard. Both the parser and the serializer can set the value with this key. The valu
e is logged on the inbound and the outbound group, respectively, in the Tracking database.

standar
ds_relea
se

*nvcRel
ease

This is the release of the version of the EDI standard. Both the parser and the serializer can set the value with thi
s key. The value is logged on the inbound and the outbound group, respectively, in the Tracking database.

 Note

The columns of the dta_group_details table marked with an asterisk (*) are used for receipt correlation.

Inbound document table
The following table contains the list of keys that can be used to support the Tracking database from the document level with a
custom component. The table used in the database is dta_indoc_details. This table applies to inbound documents only.

Dictiona
ry key

Column l
ogged in
Tracking
database

Description

doc_id nvcControl
ID

This is the unique control number of an EDI document instance. When the parser sets the value with this di
ctionary key, the value is logged on the inbound document in the Tracking database.

standards
_version

nvcVersion This is the version of the EDI standard. When the parser sets the value with this dictionary key, the value is l
ogged on the inbound document in the Tracking database.

standards
_release

nvcRelease This is the release of the version of the EDI standard. When the parser sets the value with this dictionary ke
y, the value is logged on the inbound document in the Tracking database.

doc_type nvcDocTyp
e

This is the document type or transaction set identifier. When the parser sets the value with this dictionary k
ey, the value is logged on the inbound document in the Tracking database.

Outbound document table
The following table contains the list of keys that can be used to support the Tracking database from the document level with a
custom component. The table used in the database is dta_outdoc_details. This table applies to outbound documents only.

Dictionar
y key

Colum
n logg
ed in
Trackin
g data
base

Description

out_doc_d
oc_id

nvcCont
rolID

This is the unique control number of an EDI document instance. When the serializer sets the value with this di
ctionary key, the value is logged on the outbound document in the Tracking database.

out_doc_sy
ntax

nvcSynt
ax

This is the code for document syntax, such as XML, X12, EDIFACT, H7, and so on. When the serializer sets the
value with this dictionary key, the value is logged on the outbound document in the Tracking database.

out_doc_st
andards_v
ersion

nvcVers
ion

This is the version of the EDI standard. When the serializer sets the value with this dictionary key, the value is
logged on the outbound document in the Tracking database. In the serializer, this value can be read from the
document’s PropertySet.

out_doc_st
andards_re
lease

nvcRele
ase

This is the release of the version of the EDI standard. When the serializer sets the value with this dictionary ke
y, the value is logged on the outbound document in the Tracking database. In the serializer, this value can be
read from the document’s PropertySet.

out_doc_d
oc_type

nvcDoc
Type

This is the document type or transaction set identifier. When the serializer sets the value with this dictionary
key, the value is logged on the outbound document in the Tracking database.

Tracking_I
D

uidTrac
kingGUI
D

This is the tracking identifier of the document for which a receipt is generated.

 Note

The Tracking_ID key is used when calling the AckDocument method.

Interchange and document tables
The following table contains the list of keys that can be used to support the Tracking database from the interchange and
document level with a custom component. The table used in the database for interchange data is dta_interchange_data. The table
used in the database for document data is dta_document_data.

Dicti
onary
key

Inb
oun
d or
Out
bou
nd

Colum
n logg
ed in
Trackin
g data
base

Description

in_cod
epage

Inbo
und

nCodeP
age

This is the system code page value with which interchange/document data is encoded. When the parser sets
the value with this dictionary key, the value is logged in the data record related to the inbound interchange/
document in the Tracking database.

out_c
odepa
ge

Out
bou
nd

nCodeP
age

This is the system code page value with which interchange/document data is encoded. When the serializer s
ets the value with this dictionary key, the value is logged in the data record related to the outbound intercha
nge/document in the Tracking database.

Related Topic

Understanding the Tracking Database Schema

Creating Receipt Correlator Components
Receipt correlator components can be implemented to correlate documents, groups of documents, and interchanges with their
receipts. To use a receipt correlator, you must implement a custom parser using the IBizTalkParserComponent interface. This is
required because the server can obtain only the progID of the receipt correlator to be used by calling the GetNextDocument
method on the IBizTalkParserComponent interface.

In addition, with BizTalk Server on the receiver side where the receipt is being generated, the parser component is responsible for
putting the acknowledgment status, as well as sufficient information, on the receipt (a Canonical Receipt to begin with, but it can
be mapped into other receipt document schemas, such as AK997 in EDI) to allow the correlator component on the sender side to
uniquely identify the original outbound interchange, group, or document record. For an XML document, using the GUID is usually
sufficient. But for EDI interchanges, since GUID cannot be used (there is no placeholder for any GUID in an EDI interchange), a
combination of EDI-specific fields is needed for this unique identifier. For instance, the default X12 correlator component uses a
combination of the following fields for this purpose: version, release, functional group ID, control ID, source application name, and
destination application name.

Whenever the server receives a receipt as an inbound document, the parser component's responsibility is to detect the inbound
document as being a receipt, to extract all relevant information needed for correlation, and to place the receipt onto the transport
dictionary. Upon returning from the GetNextDocument method call, the parser should set the DocIsReceipt parameter to TRUE
and the CorrelationCompProgID parameter to the progID of the corresponding correlator component.

The server calls the Correlate method on the IBizTalkCorrelation interface, and passes in a pointer to
the IBizTalkAcknowledge object and the transport dictionary containing the receipt as the working data. Then the receipt
correlator's implementation of the Correlate method extracts all relevant information about the document, document group, or
interchange that should have been set by the parser component from the transport dictionary. Using this information, the
Correlate method then calls AckDocument, AckGroup, or AckInterchange on the IBizTalkAcknowledge interface and sets
the DTA_ACK_STATUS value for that document, group, or interchange.

Note that the server does not immediately call IBizTalkCorrelation. The receipt document and the correlation progID are stored
to the database for later correlation. When the document is picked up for processing, the correlation component is created and
invoked with the transport dictionary that was given by the parser component and a pointer to IBizTalkAcknowledge.

Related Topic

Understanding Receipts

Administering XLANG Schedules
To administer XLANG schedules, use the following interfaces:

IWFSystemAdmin

IWFGroupAdmin

To access a running instance of a specific XLANG schedule, use the following interfaces:

IWFWorkflowInstance

IWFProxy

For more information, see Programmatic Administration.

Administering XLANG Schedules
To administer XLANG schedules, use the following interfaces:

IWFSystemAdmin

IWFGroupAdmin

To access a running instance of a specific XLANG schedule, use the following interfaces:

IWFWorkflowInstance

IWFProxy

For more information, see Programmatic Administration.

XLANG Schedule Reference
The following illustration shows the relationship between the XLANG interfaces covered in this section, and the corresponding
monikers.

sked://[host]
System manager
IWFSystemAdmin
sked://[host][!group]
XLANG schedule instance
XLANG schedule instance
XLANG schedule instance
Group manager
Group manager
Group manager
WorkflowInstance
IWFProxy
IWFWorkflowInstance
IWFWorkflowInstance
IWFWorkflowInstance
IWFGroupAdmin
IWFGroupAdmin
IWFGroupAdmin
sked://[host][!group]/file.skx
sked://[host][!group]/file.skx/port
Proxy to COM-bound XLANG port

The following XLANG schedule interfaces are available:

Administrator Interfaces:

IWFGroupAdmin

IWFSystemAdmin

Schedule Instance Interfaces:

IWFProxy

IWFWorkflowInstance

Related Topics

Programmatic Administration

IWFGroupAdmin Interface

IWFGroupAdmin Interface [C++]
IWFGroupAdmin Object [Visual Basic]
The IWFGroupAdmin interface allows a client application to control running instances of an XLANG schedule. Use this interface
to stop, suspend, resume, and retrieve information about all the schedule instances associated with a group manager.

The IWFGroupAdmin interface defines the following properties:

Property Type Description
Count long The number of running schedule instances associated with this group manager.
FullyQualifiedName BSTR The moniker of this group manager.
InstanceIsResident VARIANT_B

OOL
A value that indicates whether the specified schedule instance is currently resident in mem
ory.

InstanceIsSuspended VARIANT_B
OOL

A value that indicates whether the specified schedule instance is currently in a suspended s
tate.

Name BSTR The name of this group manager.
UseFileDSN VARIANT_B

OOL
A value that indicates whether a file Data Source Name (DSN) is used for dehydrating the s
chedule instances.

The IWFGroupAdmin interface defines the following methods:

Method Description
ResumeInstance Resumes the execution of a schedule in a suspended state.
Shutdown Dehydrates all running schedule instances, and stops the group manager.
Startup Starts all the dehydrated schedule instances for the current group manager.
SuspendInstance Pauses execution of the schedule instance.
TerminateInstance Stops execution of the schedule instance.

Remarks
To obtain a reference to an IWFGroupAdmin object, you can invoke the COM GetObject function using a moniker. The
following Microsoft Visual Basic code sample shows how to obtain a reference to the default XLANG Scheduler Group Manager
on the local computer.

Dim oGM As IWFGroupAdmin
Set oGM = GetObject("sked://!XLANG Scheduler")

To obtain a reference to other group managers, replace "XLANG Scheduler" with the name of the COM+ application that has been
designated as an XLANG Scheduler Engine host or group manager. You can determine whether a COM+ application is a group
manager by using the IsWorkflowHost method on the IWFSystemAdmin interface.

You can also obtain a reference to all group managers associated with the XLANG Scheduler System Manager through the
collection of IWFGroupAdmin objects contained by the SysMgr object. The following Microsoft Visual Basic code displays the
fully qualified name of each group manager.

Dim oSM As SysMgr
Dim oGM As IWFGroupAdmin
Set oSM = GetObject("sked://")
For Each oGM In oSM
 MsgBox ("Group Manager: " + oGM.FullyQualifiedName)
Next

The IWFGroupAdmin object also enumerates a collection of the IWFWorkflowInstance objects that represent currently
running schedule instances for this group manager.

You can determine the XLANG Scheduler System Manager associated with any group manager by following these steps:

1. Retrieve the FullyQualifiedName property of the IWFGroupAdmin object.

2. Parse the XLANG Scheduler System Manager name out of the moniker string returned.

This is the portion between the sked:// prefix and the exclamation point (!).

3. Obtain a reference to the SysMgr object using a moniker created with the XLANG Scheduler System Manager name from
step 2.

For additional information about monikers, see Moniker Syntax.

 Note

When using C++, the COM CoGetObject function is used in place of GetObject.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::Count Property

IWFGroupAdmin::Count Property [C++]
IWFGroupAdmin.Count Property [Visual Basic]
The Count property contains the number of running XLANG schedule instances associated with this group manager.

Syntax
[C++]

Get method:
HRESULT get_Count(
 long* lCount
);
[Visual Basic]
object.Count

Parameters
[C++]

Get method:

lCount

[out, retval] Pointer to a long that contains the number of running schedule instances associated with this group manager.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a Long that contains the number of running schedule instances associated with this group manager.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::FullyQualifiedName Property

IWFGroupAdmin::FullyQualifiedName Property [C++]
IWFGroupAdmin.FullyQualifiedName Property [Visual Basic]
The FullyQualifiedName property contains the moniker of this group manager.

Syntax
[C++]

Get method:
HRESULT get_FullyQualifiedName(
 BSTR* varFullyQualifiedName
);
[Visual Basic]
object.FullyQualifiedName

Parameters
[C++]

Get method:

varFullyQualifiedName

[out, retval] Pointer to a BSTR that contains the moniker of this group manager.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the moniker of this group manager.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Although a group manager can be instantiated through a local moniker, this property always includes the full Domain Name
Services (DNS) style system name. For example, suppose the default XLANG Scheduler Group Manager, named XLANG Scheduler,
is running on a computer named MyMachine in the domain vigorair-18.com. The FullyQualifiedName property would contain a
value of sked://MyMachine.vigorair-18.com!XLANG Scheduler.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h

Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

Related Topic

Moniker Syntax

IWFGroupAdmin::InstanceIsResident Property

IWFGroupAdmin::InstanceIsResident Property [C++]
IWFGroupAdmin.InstanceIsResident Property [Visual Basic]
The InstanceIsResident property contains a value that indicates whether the specified XLANG schedule instance is currently
resident in memory.

Syntax
[C++]

Get method:
HRESULT get_InstanceIsResident(
 BSTR varInstanceId,
 VARIANT_BOOL* pvarIsResident
);
[Visual Basic]
object.InstanceIsResident(_
 varInstanceId As String _
)

Parameters
[C++]

Get method:

varInstanceId

[in] BSTR that contains the globally unique identifier (GUID) assigned to the schedule instance.

pvarIsResident

[out, retval] Pointer to a VARIANT_BOOL set to VARIANT_TRUE if the specified schedule instance is currently resident in memory.
If the specified schedule instance is currently dehydrated, this parameter is set to VARIANT_FALSE.

[Visual Basic]

varInstanceId

String that contains the globally unique identifier (GUID) assigned to the schedule instance.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a Boolean set to True if the specified schedule instance is currently resident in memory. If the specified
schedule is currently dehydrated, this property is set to False.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks

This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::InstanceIsSuspended Property

IWFGroupAdmin::InstanceIsSuspended Property [C++]
IWFGroupAdmin.InstanceIsSuspended Property [Visual Basic]
The InstanceIsSuspended property contains a value that indicates whether the specified XLANG schedule instance is currently in
a suspended state.

Syntax
[C++]

Get method:
HRESULT get_InstanceIsSuspended(
 BSTR varInstanceId,
 VARIANT_BOOL* pvarIsSuspended
);
[Visual Basic]
object.InstanceIsSuspended(_
 varInstanceId As String _
)

Parameters
[C++]

Get method:

varInstanceId

[in] BSTR that contains the globally unique identifier (GUID) assigned to the schedule instance.

pvarIsSuspended

[out, retval] Pointer to a VARIANT_BOOL set to VARIANT_TRUE if the specified schedule instance is currently in a suspended
state. If the specified schedule instance is not suspended, this parameter is set to VARIANT_FALSE.

[Visual Basic]

varInstanceId

String that contains the globally unique identifier (GUID) assigned to the schedule instance.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a Boolean set to True if the specified schedule instance is currently in a suspended state. If the specified
schedule is not suspended, this property is set to False.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks

This is a read-only property.

This property should be checked prior to calling the ResumeInstance method.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::Name Property

IWFGroupAdmin::Name Property [C++]
IWFGroupAdmin.Name Property [Visual Basic]
The Name property contains the name of this group manager.

Syntax
[C++]

Get method:
HRESULT get_Name(
 BSTR* varName
);
[Visual Basic]
object.Name

Parameters
[C++]

Get method:

varName

[out, retval] Pointer to a BSTR that contains the name of this group manager.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the name of this group manager.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

This property is the same as the name of the hosting COM+ application.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::ResumeInstance Method

IWFGroupAdmin::ResumeInstance Method [C++]
IWFGroupAdmin.ResumeInstance Method [Visual Basic]
The ResumeInstance method starts the XLANG schedule instance executing from a suspended state.

Syntax
[C++]
HRESULT ResumeInstance(
 BSTR bInstanceId
);
[Visual Basic]
object.ResumeInstance(_
 bInstanceId As String _
)

Parameters
[C++]

bInstanceId

[in] BSTR that contains the globally unique identifier (GUID) assigned to the schedule instance to be resumed.

[Visual Basic]

bInstanceId

String that contains the globally unique identifier (GUID) assigned to the schedule instance to be resumed.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
The schedule instance can be paused with the SuspendInstance method. Prior to calling the ResumeInstance method,
the InstanceIsSuspended property should be checked.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::Shutdown Method

IWFGroupAdmin::Shutdown Method [C++]
IWFGroupAdmin.Shutdown Method [Visual Basic]
The Shutdown method stops the group manager and dehydrates all running XLANG schedule instances.

Syntax
[C++]
HRESULT Shutdown();
[Visual Basic]
object.Shutdown()

Parameters
[C++]

None

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
Prior to stopping the group manager, all running schedule instances associated with this group manager are dehydrated to the
database specified in the Data Source Name (DSN) file, and requests for activation of any new schedule instances are refused until
shutdown is completed.

Any component that is bound in an XLANG schedule should not invoke this method to stop the group manager, as this can
produce unexpected results.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::Startup Method

IWFGroupAdmin::Startup Method [C++]
IWFGroupAdmin.Startup Method [Visual Basic]
The Startup method starts all the previously running dehydrated XLANG schedule instances associated with this group manager.

Syntax
[C++]
HRESULT Startup();
[Visual Basic]
object.Startup()

Parameters
[C++]

None

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
The XLANG Scheduler System Manager normally calls this method. Users should not call this method directly.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::SuspendInstance Method

IWFGroupAdmin::SuspendInstance Method [C++]
IWFGroupAdmin.SuspendInstance Method [Visual Basic]
The SuspendInstance method pauses the running XLANG schedule instance in its current state.

Syntax
[C++]
HRESULT SuspendInstance(
 BSTR bInstanceId
);
[Visual Basic]
object.SuspendInstance(_
 bInstanceId As String _
)

Parameters
[C++]

bInstanceId

[in] BSTR that contains the globally unique identifier (GUID) assigned to the schedule instance to be suspended.

[Visual Basic]

bInstanceId

String that contains the globally unique identifier (GUID) assigned to the schedule instance to be suspended.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
The schedule instance can be restarted with the ResumeInstance method.

This method might block if actions with COM-bound ports are waiting for a method to complete, or if a short-lived transaction is
currently in progress.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::TerminateInstance Method

IWFGroupAdmin::TerminateInstance Method [C++]
IWFGroupAdmin.TerminateInstance Method [Visual Basic]
The TerminateInstance method stops a running XLANG schedule instance.

Syntax
[C++]
HRESULT TerminateInstance(
 BSTR bInstanceId
);
[Visual Basic]
object.TerminateInstance(_
 bInstanceId As String _
)

Parameters
[C++]

bInstanceId

[in] BSTR that contains the globally unique identifier (GUID) assigned to the schedule instance to be stopped.

[Visual Basic]

bInstanceId

String that contains the globally unique identifier (GUID) assigned to the schedule instance to be stopped.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
A terminated schedule instance can never be restarted or resumed.

This method might block if actions with COM-bound ports are waiting for a method to complete, or if a short-lived transaction is
currently in progress.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFGroupAdmin::UseFileDSN Property

IWFGroupAdmin::UseFileDSN Property [C++]
IWFGroupAdmin.UseFileDSN Property [Visual Basic]
The UseFileDSN property contains a value that indicates whether a Data Source Name (DSN) file is used for dehydrating the
XLANG schedule instances.

Syntax
[C++]

Get method:
HRESULT get_UseFileDSN(
 VARIANT_BOOL* pfUseFileDSN
);
[Visual Basic]
object.UseFileDSN

Parameters
[C++]

Get method:

pfUseFileDSN

[out, retval] Pointer to a VARIANT_BOOL set to VARIANT_TRUE if the group manager uses a DSN file for dehydrating schedule
instances. If a DSN file is not used, this parameter is set to VARIANT_FALSE.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a Boolean set to True if the group manager uses a DSN file for dehydrating schedule instances. If a DSN
file is not used, False is returned.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

The value of this property is set when the group manager process is launched. The DSN setting in the COM+ catalog is changed
either on the XLANG tab of the XLANG Scheduler Properties dialog box or by setting the UseFileDSN property on
the IWFSystemAdmin interface. If the DSN value is changed while the group manager is running, the value of this property is
not dynamically updated. The new value is not reflected until the next time the group manager is launched. Updates to this
property require the caller to be in the XLANG Administrator role and are not normally performed by user code.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFProxy Interface

IWFProxy Interface [C++]
IWFProxy Object [Visual Basic]
The IWFProxy interface contains information about ports in an XLANG schedule instance that are bound to a COM component.
Use this interface to obtain a schedule instance. If this interface is used on a non-COM port binding, an error is returned.

The IWFProxy interface defines the following properties:

Property Type Description
FullyQualifiedName BSTR The fully qualified name of a COM-bound port.
WorkflowInstance IWFWorkflowInstance The current schedule instance.

Remarks
A reference to this interface can be obtained from:

The Port property available on the IWFWorkflowInstance interface.

An XLANG schedule moniker that specifies the port name.

The following Microsoft Visual Basic code sample shows how to activate an XLANG schedule on the local computer by using a
moniker, and obtain a reference to the named port on that XLANG schedule instance.

Dim oPort As Object
Set oPort = GetObject("sked:///C:\schedules\test.skx/PortA")

At this point, the oPort variable contains a reference to the COM object bound in PortA of the schedule instance.

For additional information about monikers, see Moniker Syntax.

 Note

When using C++, the COM CoGetObject function is used in place of GetObject.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFProxy::FullyQualifiedName Property

IWFProxy::FullyQualifiedName Property [C++]
IWFProxy.FullyQualifiedName Property [Visual Basic]
The FullyQualifiedName property contains the moniker of the port instance to which this proxy is bound.

Syntax
[C++]

Get method:
HRESULT get_FullyQualifiedName(
 BSTR* varFullyQualifiedName
);
[Visual Basic]
object.FullyQualifiedName

Parameters
[C++]

Get method:

varFullyQualifiedName

[out, retval] Pointer to a BSTR that contains the moniker of the port.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the moniker of the port.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

The moniker retrieved with this property can be used with the COM GetObject function to obtain a reference to the XLANG
schedule instance. This moniker is valid as long as the schedule instance is running. If the schedule instance is dehydrated and
rehydrated for any reason, such as rebooting the system, the moniker remains valid. Once the schedule instance completes, or
ends by using the TerminateInstance method, the moniker can no longer be used.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h

Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFProxy::WorkflowInstance Property

IWFProxy::WorkflowInstance Property [C++]
IWFProxy.WorkflowInstance Property [Visual Basic]
The WorkflowInstance property contains a reference to the current XLANG schedule instance.

Syntax
[C++]

Get method:
HRESULT get_WorkflowInstance(
 IWFWorkflowInstance** varScheduleInst
);
[Visual Basic]
object.WorkflowInstance

Parameters
[C++]

Get method:

varScheduleInst

[out, retval] Address of a pointer to an IWFWorkflowInstance interface that contains the current schedule instance.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns an Object that contains the current schedule instance.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFSystemAdmin Interface

IWFSystemAdmin Interface [C++]
SysMgr Object [Visual Basic]
The IWFSystemAdmin interface provides a client application with system-wide administrative control over the XLANG Scheduler
Engine. Use this interface to start, stop, and retrieve information about the group managers.

The IWFSystemAdmin interface defines the following properties:

Property Type Description
Count long Contains the number of group managers associated with this XLANG Scheduler System M

anager.
FullyQualifiedName BSTR Contains the fully qualified DNS-style name of the XLANG Scheduler System Manager.
IsWorkflowHost VARIANT_BO

OL
Checks whether the COM+ server application is an XLANG Scheduler Engine host.

Item BSTR Returns a reference to the named schedule group.
UseFileDSN VARIANT_BO

OL
Indicates whether a file Data Source Name (DSN) is used for dehydrating the XLANG sched
ule instances.

The IWFSystemAdmin interface defines the following methods:

Method Description
ShutdownAll Shuts down all group managers.
ShutdownApp Shuts down a specific group manager.
Startup Starts all group managers.
TestAdminStatus Checks a caller for XLANG Scheduler Engine administrator access.

Remarks
To obtain a reference to this object, you can invoke the COM GetObject function using a moniker. The following Microsoft Visual
Basic code sample shows how to obtain a reference to the XLANG Scheduler System Manager on the local computer.

Dim oSM As SysMgr
Set oSM = GetObject("sked://")

This object also enumerates a collection of the IWFGroupAdmin objects that represent the group managers associated with this
XLANG Scheduler System Manager.

For additional information about monikers, see Moniker Syntax.

 Note

When using C++, the COM CoGetObject function is used in place of GetObject.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFSystemAdmin::Count Property

IWFSystemAdmin::Count Property [C++]
SysMgr.Count Property [Visual Basic]
The Count property contains the number of running group managers.

Syntax
[C++]

Get method:
HRESULT get_Count(
 long* lCount
);
[Visual Basic]
object.Count

Parameters
[C++]

Get method:

lCount

[out, retval] Pointer to a long that contains the number of running group managers.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a Long that contains the number of running group managers.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFSystemAdmin::FullyQualifiedName Property

IWFSystemAdmin::FullyQualifiedName Property [C++]
SysMgr.FullyQualifiedName Property [Visual Basic]
The FullyQualifiedName property contains the moniker of this XLANG Scheduler System Manager.

Syntax
[C++]

Get method:
HRESULT get_FullyQualifiedName(
 BSTR* varFullyQualifiedName
);
[Visual Basic]
object.FullyQualifiedName

Parameters
[C++]

Get method:

varFullyQualifiedName

[out, retval] Pointer to a BSTR that contains the moniker of this XLANG Scheduler System Manager.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the moniker of this group manager.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Although an XLANG Scheduler System Manager can be instantiated through a local moniker, this property always includes the
full Domain Name Services (DNS) style system name. For example, suppose the XLANG Scheduler System Manager is running on
a computer named MyMachine in the domain vigorair-18.com. The FullyQualifiedName property would contain a value of
sked://MyMachine.vigorair-18.com.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h

Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

Related Topic

Moniker Syntax

IWFSystemAdmin::IsWorkflowHost Property

IWFSystemAdmin::IsWorkflowHost Property [C++]
SysMgr.IsWorkflowHost Property [Visual Basic]
The IsWorkflowHost property controls whether the named COM+ server application is an XLANG Scheduler Engine host.

Syntax
[C++]

Get method:
HRESULT get_IsWorkflowHost(
 BSTR varAppName,
 VARIANT_BOOL* pIsWorkflowHost
);
Put method:
HRESULT put_IsWorkflowHost(
 BSTR varAppName,
 VARIANT_BOOL varIsWorkflowHost
);
[Visual Basic]
object.IsWorkflowHost(_
 varAppName As String _
)

Parameters
[C++]

Get method:

varAppName

[in] BSTR that contains the COM+ server application name.

pIsWorkflowHost

[out, retval] Pointer to a VARIANT_BOOL that indicates whether the COM+ server application is hosting the XLANG Scheduler
Engine.

Put method:

varAppName

[in] BSTR that contains the COM+ server application name.

varIsWorkflowHost

[out, retval] VARIANT_BOOL that indicates whether the COM+ server application is hosting the XLANG Scheduler Engine.

[Visual Basic]

varAppName

String that contains the COM+ server application name.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a Boolean that indicates whether the COM+ server application is hosting the XLANG Scheduler Engine.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This property cannot be set on the XLANG Scheduler Engine application, or on any COM+ application marked as read-only.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFSystemAdmin::Item Property

IWFSystemAdmin::Item Property [C++]
SysMgr.Item Property [Visual Basic]
The Item property returns a reference to one of the running group managers.

Syntax
[C++]

Get method:
HRESULT get_Item(
 BSTR strGrpMgrName,
 IUnknown** ppItem
);
[Visual Basic]
object.Item(_
 strGrpMgrName As String _
)

Parameters
[C++]

Get method:

strGrpMgrName

[in] BSTR that contains the group name corresponding to the hosting COM+ server application name. Group names are case
sensitive and can contain spaces.

ppItem

[out, retval] Address of a pointer to an IUnknown interface that refers to a group manager.

[Visual Basic]

strGrpMgrName

[in] String that contains the group name corresponding to the hosting COM+ server application name. Group names are case
sensitive and can contain spaces.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a group manager Object.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFSystemAdmin::ShutdownAll Method

IWFSystemAdmin::ShutdownAll Method [C++]
SysMgr.ShutdownAll Method [Visual Basic]
The ShutdownAll method stops the group managers and terminates their associated COM+ applications.

Syntax
[C++]
HRESULT ShutdownAll();
[Visual Basic]
object.ShutdownAll()

Parameters
[C++]

None

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
When the ShutdownAll method is called, new schedule activations are disabled and the shutdown notice is propagated to all
running group managers. Once this method has completed, all group managers are stopped and the system can be safely
rebooted.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFSystemAdmin::ShutdownApp Method

IWFSystemAdmin::ShutdownApp Method [C++]
SysMgr.ShutdownApp Method [Visual Basic]
The ShutdownApp method stops a specific group manager application and terminates the associated COM+ application.

Syntax
[C++]
HRESULT ShutdownApp(
 BSTR varAppName
);
[Visual Basic]
object.ShutdownApp(_
 varAppName As String _
)

Parameters
[C++]

varAppName

[in] BSTR that contains the COM+ server application name to be stopped.

[Visual Basic]

varAppName

String that contains the COM+ server application name to be stopped.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
When the ShutdownApp method is called, new schedule activations on the named application are disabled and all running
XLANG schedule instances associated with that application are stopped. If this method is called on the default XLANG Scheduler
Group Manager, all group managers are shut down. Calling this method on the default XLANG Scheduler Group Manager is
equivalent to calling the ShutdownAll method.

 Note

The COM+ application name of the default XLANG Scheduler Group Manager is XLANG Scheduler.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later

Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFSystemAdmin::StartUp Method

IWFSystemAdmin::StartUp Method [C++]
SysMgr.StartUp Method [Visual Basic]
The StartUp method starts the group managers.

Syntax
[C++]
HRESULT StartUp();
[Visual Basic]
object.StartUp()

Parameters
[C++]

None

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
When this method is invoked, rehydration is initiated for all group managers and, subsequently, all XLANG schedules. This
method is asynchronous, and it can complete before all group managers and schedules are running.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFSystemAdmin::TestAdminStatus Method

IWFSystemAdmin::TestAdminStatus Method [C++]
SysMgr.TestAdminStatus Method [Visual Basic]
The TestAdminStatus method determines whether a caller on the IWFGroupAdmin interface is an XLANG Scheduler Engine
administrator.

Syntax
[C++]
HRESULT TestAdminStatus();
[Visual Basic]
object.TestAdminStatus()

Parameters
[C++]

None

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This method is intended for internal use by the group managers.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFSystemAdmin::UseFileDSN Property

IWFSystemAdmin::UseFileDSN Property [C++]
SysMgr.UseFileDSN Property [Visual Basic]
The UseFileDSN property contains a value that indicates whether a COM+ server application uses a Data Source Name (DSN) file
for dehydrating the XLANG schedule instances.

Syntax
[C++]

Get method:
HRESULT get_UseFileDSN(
 BSTR varAppName,
 VARIANT_BOOL* pfUseFileDSN
);
Put method:
HRESULT put_UseFileDSN(
 BSTR varAppName,
 VARIANT_BOOL* varUseFileDSN
);
[Visual Basic]
object.UseFileDSN(_
 varAppName As String _
)

Parameters
[C++]

Get method:

varAppName

[in] BSTR that contains the COM+ server application name.

pfUseFileDSN

[out, retval] Pointer to a VARIANT_BOOL set to VARIANT_TRUE if the COM+ server application uses a DSN file for dehydrating
schedule instances. If a DSN file is not used, this parameter is set to VARIANT_FALSE.

Put method:

varAppName

[in] BSTR that contains the COM+ server application name.

varUseFileDSN

[out, retval] VARIANT_BOOL that indicates whether the COM+ server application uses a DSN file for dehydrating schedule
instances. If a DSN file is not used, this parameter is set to VARIANT_FALSE.

[Visual Basic]

varUseFileDSN

Boolean that indicates whether the COM+ server application uses a DSN file for dehydrating schedule instances. If a DSN file is
not used, this parameter is set to False.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages

or Standard COM Errors.

[Visual Basic]

This property returns a Boolean set to True if the COM+ server application uses a DSN file for dehydrating schedule instances. If
a DSN file is not used, False is returned.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
If this property is changed while any group manager is running, the value of this property is not dynamically updated in the group
managers. Therefore, the UseFileDSN property value exposed by the IWFGroupAdmin interface contains an incorrect value. The
updated value is not reflected until the next time the group manager is launched.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SysMgr.h
Library: Use XLANG Scheduler - System Manager (SKEDSMGR.dll)

IWFWorkflowInstance Interface

IWFWorkflowInstance Interface [C++]
IWFWorkflowInstance Object [Visual Basic]
The IWFWorkflowInstance interface allows a client application to navigate the ports of an XLANG schedule instance, check the
completion status, and determine whether the schedule instance completed successfully. Use this interface to gather information
about a specific, running schedule instance.

The IWFWorkflowInstance interface defines the following properties:

Property Type Description
CompletionStatus long A value that indicates the success or failure of the schedule instance.
FullPortName BSTR The full name of a port in a form usable by the associated technology.
FullyQualifiedName BSTR The fully qualified name of this schedule instance.
InstanceId BSTR The unique identifier associated with this schedule instance.
IsCompleted VARIANT_BOO

L
A value that indicates whether the schedule instance completed.

ModuleId BSTR The unique identifier of the XML module that contains the schedule and binding informati
on.

ModuleName BSTR The name of the XML module that contains the schedule and binding information.
ParentInstanceID BSTR The unique identifier of the parent schedule instance.
Port IUnknown A reference to the named port. This is applicable only to COM-based port bindings.

The IWFWorkflowInstance interface defines the following method:

Method Description
WaitForCompletion Blocks until the schedule instance completes.

Remarks
A reference to this interface can be obtained from:

The WorkflowInstance property available on the IWFProxy interface.

The collection of IWFWorkflowInstance objects returned by the IWFGroupAdmin object.

An XLANG schedule moniker.

The following Microsoft Visual Basic code sample shows how to instantiate an XLANG schedule on the local computer and obtain
a reference to that schedule instance.

Dim oWFI As IWFWorkflowInstance
Set oWFI = GetObject("sked:///C:\schedules\test.skx")

To obtain a reference to all currently running schedule instances in a group manager, you can access the collection of
IWFWorkflowInstance objects contained by the IWFGroupAdmin object. The following Microsoft Visual Basic code displays the
fully qualified name of each schedule instance running in the default XLANG Scheduler Group Manager.

Dim oGM As IWFGroupAdmin
Dim oWFI As IWFWorkflowInstance
Set oGM = GetObject("sked://!XLANG Scheduler")
For Each oWFI In oGM
 MsgBox ("XLANG Schedule: " + oWFI.FullyQualifiedName)
Next

When using multiple group managers, you can determine the group manager associated with any schedule instance by following
these steps:

1. Retrieve the FullyQualifiedName property of the IWFWorkflowInstance object.

2. Parse the group manager name out of the moniker string returned.

This is the portion that begins with an exclamation point (!) and ends with a slash (/).

3. Obtain a reference to the IWFGroupAdmin object using a moniker created with the group manager name from step 2.

For additional information about monikers, see Moniker Syntax.

 Note

When using C++, the COM CoGetObject function is used in place of GetObject.

When accessing this object in Microsoft Visual Basic, you must declare your object variable with the appropriate type
information rather than using the Object type. For example:

Dim myInstance As IWFWorkflowInstance

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::CompletionStatus Property

IWFWorkflowInstance::CompletionStatus Property [C++]
IWFWorkflowInstance.CompletionStatus Property [Visual Basic]
The CompletionStatus property indicates the final completion status of the XLANG schedule instance.

Syntax
[C++]

Get method:
HRESULT get_CompletionStatus(
 long* varCompletionStatus
);
[Visual Basic]
object.CompletionStatus

Parameters
[C++]

Get method:

varCompletionStatus

[out, retval] Pointer to a long that contains the completion status of the schedule instance. A value of 0 indicates success.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

 Note

A return value of S_OK does not indicate that the processes or applications associated with the schedule instance completed
successfully. It indicates only that the schedule instance was completely processed by the XLANG Scheduler Engine, without
errors.

[Visual Basic]

This property returns a Long that contains the completion status.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h

Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::FullPortName Property

IWFWorkflowInstance::FullPortName Property [C++]
IWFWorkflowInstance.FullPortName Property [Visual Basic]
The FullPortName property contains the full name of the specified port.

Syntax
[C++]

Get method:
HRESULT get_FullPortName(
 BSTR varParam,
 BSTR* varFullPortName
);
[Visual Basic]
object.FullPortName(_
 varParam As String _
)

Parameters
[C++]

Get method:

varParam

[in] BSTR that contains the name of the port to be retrieved.

varFullPortName

[out, retval] Pointer to a BSTR that contains the full port name.

[Visual Basic]

varParam

String that contains the name of the port to be retrieved.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the full port name.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

The full port name is returned in a form that is usable by the associated binding technology. For example, a port that is bound to a
COM component returns a fully qualified moniker as the name of the port. For a port that is bound to Microsoft Message

Queuing, this method returns the full path of the queue.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::FullyQualifiedName Property

IWFWorkflowInstance::FullyQualifiedName Property [C++]
IWFWorkflowInstance.FullyQualifiedName Property [Visual
Basic]
The FullyQualifiedName property contains the moniker of the XLANG schedule instance.

Syntax
[C++]

Get method:
HRESULT get_FullyQualifiedName(
 BSTR* varFullyQualifiedName
);
[Visual Basic]
object.FullyQualifiedName

Parameters
[C++]

Get method:

varFullyQualifiedName

[out, retval] Pointer to a BSTR that contains the moniker of the schedule instance.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the moniker of the schedule instance.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::InstanceId Property

IWFWorkflowInstance::InstanceId Property [C++]
IWFWorkflowInstance.InstanceId Property [Visual Basic]
The InstanceId property contains the globally unique identifier (GUID) assigned to the current XLANG schedule instance.

Syntax
[C++]

Get method:
HRESULT get_InstanceId(
 BSTR* varInstanceId
);
[Visual Basic]
object.InstanceId

Parameters
[C++]

Get method:

varInstanceId

[out, retval] Pointer to a BSTR that contains the GUID of the schedule instance.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the GUID of the schedule instance.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::IsCompleted Property

IWFWorkflowInstance::IsCompleted Property [C++]
IWFWorkflowInstance.IsCompleted Property [Visual Basic]
The IsCompleted property indicates whether the XLANG schedule instance has finished executing.

Syntax
[C++]

Get method:
HRESULT get_IsCompleted(
 VARIANT_BOOL* varIsCompleted
);
[Visual Basic]
object.IsCompleted

Parameters
[C++]

Get method:

varIsCompleted

[out, retval] Pointer to a VARIANT_BOOL that, if VARIANT_TRUE, indicates the schedule instance has finished executing. If
VARIANT_FALSE, the schedule instance is still executing.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a Boolean that, if True, indicates the schedule instance has finished executing. If False, the schedule
instance is still executing.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::ModuleId Property

IWFWorkflowInstance::ModuleId Property [C++]
IWFWorkflowInstance.ModuleId Property [Visual Basic]
The ModuleId property contains the globally unique identifier (GUID) of the XLANG module associated with the current XLANG
schedule instance.

Syntax
[C++]

Get method:
HRESULT get_ModuleId(
 BSTR* varModuleId
);
[Visual Basic]
object.ModuleId

Parameters
[C++]

Get method:

varModuleId

[out, retval] Pointer to a BSTR that contains the GUID of the XLANG module associated with the current schedule instance.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the GUID of the XLANG module associated with the current schedule instance.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::ModuleName Property

IWFWorkflowInstance::ModuleName Property [C++]
IWFWorkflowInstance.ModuleName Property [Visual Basic]
The ModuleName property contains the name of the XLANG module associated with the current XLANG schedule instance.

Syntax
[C++]

Get method:
HRESULT get_ModuleName(
 BSTR* varModuleName
);
[Visual Basic]
object.ModuleName

Parameters
[C++]

Get method:

varModuleName

[out, retval] Pointer to a BSTR that contains the name of the XLANG module associated with the current schedule instance.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the name of the XLANG module associated with the current schedule instance.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

The module name is defined in the XLANG schedule (.skx) file.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::ParentInstanceID Property

IWFWorkflowInstance::ParentInstanceID Property [C++]
IWFWorkflowInstance.ParentInstanceID Property [Visual Basic]
The ParentInstanceID property contains the globally unique identifier (GUID) assigned to the parent XLANG schedule instance of
the current schedule instance.

Syntax
[C++]

Get method:
HRESULT get_ParentInstanceID(
 BSTR* varParentInstanceID
);
[Visual Basic]
object.ParentInstanceID

Parameters
[C++]

Get method:

varParentInstanceID

[out, retval] Pointer to a BSTR that contains the GUID of the parent schedule instance of the current schedule instance.

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns a String that contains the GUID of the parent schedule instance of the current schedule instance.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

The property returns a NULL value if no parent schedule instance exists.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::Port Property

IWFWorkflowInstance::Port Property [C++]
IWFWorkflowInstance.Port Property [Visual Basic]
The Port property contains a reference to a COM-bound port.

Syntax
[C++]

Get method:
HRESULT get_Port(
 BSTR varParam,
 IUnknown** varPort
);
[Visual Basic]
object.Port

Parameters
[C++]

Get method:

varParam

[in] BSTR that contains the name of the port to which to obtain a reference.

varPort

[out, retval] Address of a pointer to an IUnknown interface that contains a reference to a port in the current XLANG schedule
instance.

[Visual Basic]

varParam

String that contains the name of the port to which to obtain a reference.

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

This property returns an Object that contains the specified port.

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Remarks
This is a read-only property.

The MK_E_NOOBJECT error code is returned if the moniker or port name passed in the varParam parameter is incorrect.

When using Microsoft Visual Basic, the variable used for the port reference returned by using this property should be declared as

a specific class or as a Variant. You can't obtain the port reference if you declare the variable as an Object since the port actually
returns an IUnknown reference.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

IWFWorkflowInstance::WaitForCompletion Method

IWFWorkflowInstance::WaitForCompletion Method [C++]
IWFWorkflowInstance.WaitForCompletion Method [Visual
Basic]
The WaitForCompletion method waits until the current XLANG schedule instance completes executing.

Syntax
[C++]
HRESULT WaitForCompletion();
[Visual Basic]
object.WaitForCompletion()

Parameters
[C++]

None

[Visual Basic]

None

Return Values
[C++]

For a list of error messages returned by the XLANG Scheduler Engine, see XLANG Schedule Error Messages
or Standard COM Errors.

[Visual Basic]

None

Error Value [Visual Basic]
[Visual Basic]

If an error is raised, Err.Number is set to one of the values documented on the XLANG Schedule Error Messages
or Standard COM Errors page.

Requirements
Windows NT/2000: Requires Windows 2000 SP1 or later
Header: Include SkedCore.h
Library: Use XLANG Scheduler Runtime Type Library (SkedCore.dll)

BizTalk Messaging Services Code Samples
Sample files are located in the Messaging Samples folder in the Microsoft BizTalk Server installation drive. Browse to \Program
Files\Microsoft BizTalk Server\SDK\Messaging Samples on the installation drive to find the sample files. This is only a relative
path. Depending on your installation of BizTalk Server 2000, you might have to modify this path.

The following samples are available in the BizTalk Server 2000 SDK:

Sample
folder n
ame

Readme file Description

BTConfi
gAssista
nt

Readme.doc This tool enables the user to see all details of a configuration. It also provides a mechanism to easily
import and export configurations.

BTFDevT
oolkit

ReadMe.txt This folder contains the BizTalk Framework Developers' Toolkit and XML Components.

BTSAppI
ntegrati
on\VB
(Visual B
asic)

Readme.txt This sample demonstrates an application integration component (AIC) that implements the IBTSAp
pIntegration interface.

BTSAppI
ntegrati
on\VC
(C++)

Readme.txt This sample demonstrates an AIC that implements the IBTSAppIntegration interface using ATL.

Custom
PreProce
ssor

Readme.txt This sample demonstrates a simple implementation of a custom preprocessor to be used with either
File or Message Queuing receive functions.

DirectInt
egration

Readme.doc This tool helps users submit documents to BizTalk Messaging Services and check the results of the s
ubmission. Tracking and Suspended Queue information is used to determine the results.

Distribut
ionList

DistributionListRe
adme.txt

This sample configures a BizTalk distribution list (port group) and submits a document to it.

MapTest Readme.txt This tools allows users to create a document using an XML document instance, a compiled BizTalk S
erver map, and an optional schema.

Miscella
neous

No readme files ar
e included with the
se samples.

Several Microsoft Visual Basic Scripting Edition (VBScript) files are included in this folder that perfor
m various tasks. Descriptions are available in comment blocks at the beginning of these files. To vie
w them, open the .vbs file in an editor.

Pipeline
Compon
ent\VB
(Visual B
asic)

Readme.txt This sample demonstrates an AIC that implements the IPipelineComponent and IPipelineCompo
nentAdmin interfaces in Visual Basic.

Pipeline
Compon
ent\VC
(C++)

Readme.txt This sample demonstrates an AIC that implements the IPipelineComponent and IPipelineCompo
nentAdmin interfaces, using ATL.

ReceiveS
cripts

ReceiveReadme.txt This folder contains example files for receiving data into BizTalk Messaging Services.

Sample1 Sample1Readme.t
xt

This sample demonstrates how to configure BizTalk Messaging Services and submit a document to
BizTalk Server 2000. Also included in the sample are the creation and use of open destination messa
ging ports, organization aliases, and custom envelopes.

Sample2 Sample2Readme.t
xt

This sample demonstrates how to configure BizTalk Messaging Services to generate "receipts" when
sending documents.

Sample3 Sample3Readme.t
xt

This sample demonstrates how to configure a distribution list (port group) and send a document to i
t.

SampleF
unctoid

Readme.txt This sample demonstrates a custom functoid that performs date format conversion.

SampleI
mporter

Readme.txt This sample demonstrates a custom import module, which imports a delimited flat file and displays i
t in BizTalk Editor.

SOC Readme.txt This sample demonstrates a synchronous interaction with the XLANG Scheduler Engine.
SQLServ
erAgentJ
obs

Readme.txt This sample demonstrates SQL scripts for monitoring receipts and purging the tracking information.

VBCustP
reProces
sor

Readme.txt This sample demonstrates a simple implementation of a custom preprocessor to be used with a File
receive function.

XSDCon
verter

Readme.txt This sample converts an XDR schema to an XSD schema.

 Notes

When using C++, you need to add Program Files\Microsoft BizTalk Server\SDK\Include to the include directory list.

Some of the samples have a dependency on the Pipecomplib.tlb file. For these samples, you need to add \Program
Files\Common Files\Microsoft Shared\Enterprise Servers\Commerce to the include directory list.

© Microsoft Corporation. All rights reserved.

BizTalk: Implement Design Patterns for Business Rules with Or
chestration Designer
Christian Thilmany and Todd McKinney
This article assumes you're familiar with COM+, MSMQ, and Visual Basic
Level of Difficulty 1 2 3
Browse the code for this article at Code Center: BizTalk Patterns
SUMMARY Because the value of good software planning and design should never be underestimated, it can be beneficial to use
one of the many existing design patterns as a foundation for solving some of your toughest architecture problems. This article d
escribes several traditional design patterns including the Observer pattern and the Dispatcher pattern, elaborates on their structu
res, what they're used for, and how they can help you build a BizTalk-based solution. Following this is a discussion on using the B
izTalk Orchestration Designer to build designs and integrate existing business processes.

hen it comes to software design, a good design is a good solution regardless of the technology. And no matter how good t

he technology may be, it is only as good as its design, and specifically the implementation of that design. In fact, a great design w
ith older technology may still be good, but a bad design with new technology is usually just bad. Most great designs aren't devel
oped on the first attempt; they must go through stages of change before they can be considered valuable. How do you learn to a
pproach existing designs in a new way? And once you have a good design, how do you make it reusable? An even better questio
n is how do you reuse what others have struggled to perfect?
 If you are thinking about Unified Modeling Language (UML), you are close, but not quite there. UML helps, but it really only c
ontains the hieroglyphics (or language) you may need to convey your design. It is the standardized and fossilized assemblage of
those UML symbols we need, and all of the historical toil that has gone along with those assemblies. Enter design patterns.
 In this article, we will explain and implement the Observer and Chain of Responsibility patterns adapted from the book Desig
n Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995). We'll do the same with one of our own patt
erns, called the Dispatcher. We'll show you how to use these patterns in such a way that they can be applied to a loosely coupled
architecture as one implemented with BizTalk. This is not to say that these patterns only apply to BizTalk or any particular imple
mentation. In fact, design patterns have traditionally been associated with purely object-oriented languages. In this article we will
take some of the more traditional object-oriented design patterns, such as the Observer pattern, and use them in slightly differen
t ways, while still keeping their behavioral benefits intact.
 We hope to show how traditional design patterns can be seen and utilized in any design, or in any technology. Recognizing t
hem not only helps improve your own custom design, but it also helps explain an existing implementation, whether this implem
entation is custom code you must now support or a commercial application such as BizTalk. We will also refer to other related pa
tterns such as Interface, Factory Method, and Delegation. Finally, we will implement each pattern in the context of the BizTalk Orc
hestration Designer and put the patterns to work in a custom way. In addition, we'll even point out a few patterns that BizTalk its
elf uses.
 Our sample implementation, available for download from the link at the top of this article, focuses on a product support depa
rtment. (No, it is not another purchase order or reservations code sample!) The sample application will show how applying patte
rns to BizTalk can significantly ease the development and design for each subdepartment. It will provide the ability to answer and
route online product support questions effectively and efficiently. But first we must explain the patterns themselves.

Learning about Design Patterns

 One of the better places to start learning about patterns is with the "Gang of Four"Erich Gamma, Richard Helm, Ralph Johnso
n, and John Vlissides, authors of Design Patterns. Like the "three amigos" of UML (Grady Booch, James Rumbaugh, and Ivar Jaco
bson), these four began the work of forming what is now thought of as the standard patterns. Besides Christopher Alexander, wh
o first spoke of design patterns when referring to the actual architecture of buildings, the Gang of Four's work represents some o
f the original thoughts on object-oriented design patterns. In their book, they use C++ and Smalltalk; however, the book is geare
d to the patterns themselves, and not the language used to implement them. This general applicability to all languages is what m
akes patterns so powerful.
 If you're looking for a true introduction to the world of object-oriented design, and to some of the more fundamental pattern
s, read Craig Larman's Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Proc
ess (Prentice Hall, 2001). His General Responsibility Assignment Software Patterns (GRASP) provide some of the more basic obje
ct-oriented principles as applied to design patterns such as Low Coupling, High Cohesion, Expert, and so on. Traditionally, howev

http://msdn.microsoft.com/code/default.asp?URL=/code/sample.asp?url=/msdn-files/026/002/473/msdncompositedoc.xml

er, design patterns are geared to object-oriented languages.
 For the developer using Visual Basic® 6.0 or earlier, this presents somewhat of a challenge. Using patterns with these version
s of Visual Basic (which only support interface inheritance and don't support implementation inheritance) limits developers from
using those patterns that do not make heavy use of implementation inheritance. Those patterns, such as the ones from the Gang
of Four that use moderate levels of implementation inheritance, can be used with interface inheritance instead. This can still be d
one without damaging the intent of the pattern. This is exactly what we will demonstrate when we apply the Observer and Chain
of Responsibility patterns later in our code. This does not apply to architectural patterns or to known design patterns that origina
lly (or only) intended to use interface inheritance.

Design Patterns versus Architectural Patterns

 Besides being an outstanding communications tool, design patterns help make the design process faster. This allows solution
providers to take the time to concentrate on the business implementation. More importantly, patterns help formalize the design t
o make it reusable. Reusability not only applies to the components themselves, but also to the stages the design must go throug
h to morph itself into your final solution. The ability to apply a patterned repeatable solution is worth the little time spent learnin
g formal patterns, or to even formalize your own.
 When referring to design patterns in this article you will note that we usually leave out the word "design" since we are not on
ly covering design patterns, but also what some refer to as architectural patterns. Most pattern books typically cover design patte
rns since more of the well-known patterns are at the design level. Rarely do they encroach upon the architectural level.
 What is the difference? Some of this is subjective, but design patterns tend to be applied at lower levels of detail than architec
tural patterns. This means looking at how design applies to the structure of code within an architecture and the structure of the a
pplication as well.
 In contrast, architectural patterns are usually focused on the reexecutable binary pieces of the system and not as much on the
design within the system. Existing material covering architectural patterns is currently rather limited, but will hopefully become c
ommonplace as time progresses. What we will be discussing in this article is a mixture of the two: combining known design patt
erns with a more architectural solution.

Pattern Descriptions

 To help explain what patterns are, the Gang of Four breaks a pattern's description into sections, which helps not only explain t
he pattern in detail, but also shows its context and its relationship with other design principles. These sections include: intent, mo
tivation, applicability, structure (for example, UML notation), and consequences. In addition, areas such as the pattern's participan
ts, its collaborations with other elements, and its implementation help provide elemental detail so that the pattern can be specific
ally applied to a design. A little sample code helps as well.
 Some patterns can be self-explanatory. Others, however, are not. Some patterns may even overlap in meaning, thus it is reco
mmended that all patterns follow certain classifications based on principles such as the pattern's purpose and scope. Design Patt
erns breaks this down into creational, structural, and behavioral categories. The point of all this sometimes convoluted classificati
on is to give the pattern its context. Otherwise it is sometimes difficult to know when, or even how, to apply it.
 Unlike the Gang of Four, we limit our pattern descriptions to a few consolidated descriptives. Hopefully this will give enough i
nformation about each pattern and how it can be implemented.

The Chain of Responsibility Pattern

 The intent of the Chain of Responsibility pattern is to provide a loosely coupled sender/receiver relationship by providing mo
re than one component an opportunity to handle a request. This chains all receiving components and passes the request along t
he chain until the request is handled.
Motivation In an environment where business rules may be implemented in different components, or even in different applicati
ons, request senders should only have to maintain simple relationships. The sender or requester may only have enough informat
ion to send requests to one party. Also, to avoid unnecessary coupling of business logic among all requesters, only one receiver
need be contacted in order to initiate a request. In cases where business rules may be distributed among separated applications
or environments, it is prudent to hold requesters to a single relationship to avoid unnecessary coupling.
Context When a request is made that may require complex resolution, you might have to distribute the business rules used to f
ulfill that request. This may be due to system complexity, application architecture, or the request may be general enough to warr
ant a form routing to adequately respond with a reasonable answer.
 As is the case for our product support sample, the request may not be fulfilled at one application site due to the distribution o
f the knowledge bases used to answer a request. The request must be routed until it can be handled. This also provides the benef
it of not requiring the sender to have intimate knowledge of the appropriate receiver upon which to make the request. Finally, as
in our sample, it provides enough flexibility to allow the routing order to change or even provide additional receivers in the syste
m without the sender ever knowing.
Solution and Structure Here's where this pattern gets interesting. Traditionally when dealing with only object implementations
of a class structure (for example, a system of just Visual Basic-based components and no BizTalk), the structure would look exactl
y like the Chain of Responsibility class model (see Figure 1).

Figure 1 Pattern Class Model

Any client could make a request to a member of the chain via a single interface, IHandler. Notice that this is where our UML mod
el differs slightly from the original UML model from the Gang of Four: we substitute the base class for an interface so that this ca
n be implemented using Visual Basic 6.0. When calling HandleRequest, the implementor of IHandler would then either handle th
e request or forward it on to the next member of the chain. Each handler, via the ConcreteHandler implementation, would have t
he ability to decide how to handle the request. The client doesn't know or care who handles it, as long as it is handled somewher
e. In a loosely coupled system such as BizTalk, the choice for applying this pattern opens up several additional implementation p
ossibilities, as we'll soon show later in this article.
Implementation In our example, the product support concrete handler can be a direct recipient of a method call, as we just des
cribed. However, with BizTalk you can now loosely couple the links between each concrete handler by using message queuing. T
his not only allows each concrete handler a loosely coupled way of receiving a request in a BizTalk-friendly manner, but it also pr
ovides a guaranteed form of delivering a request. This implementation can even be further expanded to span organizations by m
eans of the BizTalk Messaging Manager. (Unfortunately, we don't have the space to cover this part of BizTalk here.) In our produc
t support example we use Microsoft® Message Queuing (MSMQ) to do just that (see Figure 2).

The Observer Pattern

 The intent of the Observer pattern (see Figure 3) is to provide a mechanism to allow objects to subscribe dynamically to stat
e change notifications from another object.

Figure 3 Observer Pattern Class Model

Motivation When client objects communicate with a server object of some kind, it's beneficial for those client objects to be mad
e aware of server-side state changes in that object. This allows subscriber clients the opportunity to react to those state changes i
n a more dynamic fashion, thus adding robustness to the application.
Context Suppose a client communicates on a regular basis with a server object, but that communication is time-critical. As in th
e case with our observable component in the product support sample, each initial registration with the observable causes the pu
blisher of information (Observable) to retain a copy of that reference for later notification. The server, or observable object in this
case, just notifies all observers of the state change, not caring which objects (or schedules in our case) are actually observing it. T
ake heed, however. If there are hundreds of schedules all needing to be notified, this could be a significant performance hit. In thi
s case, the notification mechanism would be better served running from a separate multicasting thread.
Solution and Structure As with the Chain of Responsibility pattern, this is where this pattern becomes interesting in the context
of BizTalk. Traditionally, the Observer pattern is made up of an observer class which implements an interface containing a metho
d that the Observable will call during notification. Notice that, like the Chain of Responsibility, our pattern model differs from the
Gang of Four's by our use of interfaces. On the other side, the Observable class implements an interface that the observer calls in
order to register with it. The observer calls Register whenever that client wants to begin receiving notifications. The Observable cl
ass then keeps a list of observers and, during state changes, calls the notification method on the interface passed to it by the obs
erver during registration.
 You may already be familiar with this publisher/subscriber-type relationship. If an observer wants to stop receiving notificati
on, then that observer simply unregisters with the Observable object in similar fashion, or during notification unregistration may
be automatic and immediate; this is a design decision. With BizTalk, the Observer and Observable boundaries usually will begin a
nd end with exit and entry points of a compiled schedule, as you'll soon see.
Implementation In our example, we use the Observer pattern to receive notification of changes to the knowledge base. This not
ification takes the form of application-to-application communication. A component that wants to receive notification passes in a
reference to itself, which is instantiated and called when the status change occurs. Note that this implementation also takes a loo
sely coupled, stateless form. We do not pass a live object reference, as with a callback, but rather a BizTalk-based schedule path t
hat is composed as a moniker and used to instantiate the observer on notification.

https://msdn.microsoft.com/en-us/library/bb985570(v=msdn.10).aspx

The Dispatcher Pattern

 The intent of the Dispatcher pattern is to provide a single point of contact, or brokered handler, to all external requesters. In a
ddition, it also provides a simple mechanism or entry/exit point into an existing system to decouple external systems from reque
sting internal components.
Motivation When trying to decouple synchronous or even asynchronous component-to-component communications, this patte
rn helps provide a single point upon which to communicate. This also isolates internally running components from having knowl
edge of which protocols will be used to communicate with external systems. This is especially important where existing orchestra
tions in BizTalk have already been implemented, thus preventing multiple changes from being made within the BizTalk-based sc
hedule.
Context In our product support example, BizTalk will be used to orchestrate support question responses and route those questio
n/responses appropriately. The dispatcher will be used to forward those questions not handled by anyone in the product support
channel that we have set up. This external communication could be with external trading partners or within the organization. By
providing a loosely coupled single point of communication to external resources from within each BizTalk-based schedule, we pr
ovide a proxy upon which to implement any change in that communication path. Changes could include protocol, message type,
or process flow change as handled by other BizTalk-based schedules or directly with the external partner.
Solution and Structure The Dispatcher pattern (see Figure 4) is made up of a main broker-like Dispatcher component which is
called by any client (an existing path within a BizTalk-based schedule in our case). The Dispatcher component then forwards that
request in a uniform fashion to the external resource which can be identified by the message itself (an XML message in our case).
Identifying the external component to call by message is only one option. The contract between the Dispatcher and the external r
esource, in this case a ConcreteDispatchable, must be established.

Figure 4 Dispatcher Pattern Class Model

 For example, if direct component communication through COM is determined as the means of communication from the Disp
atcher to the Dispatchable, then through the message that is passed to the Dispatcher, the Dispatcher may be able to instantiate t
he external components, and through its established contract call a predetermined interface on that method (IDispatchable). This
is only one example of the many implementation forms of this pattern.
Implementation In our example, the Dispatcher pattern is used to provide a flexible integration point with external systems. Thi
s particular implementation uses a factory-method style of object creation based on the topic. Another viable option would be to
pass the progid of the ConcreteDispatchable object in the XML message itself, or even use the BizTalk "openness" features to dyn
amically instantiate the appropriate external component (see the BizTalk documentation for details). The choice is yours but the s
ame principles apply. The following code illustrates the creation of specific implementation component instances based on the to
pic found in the XML document.

sTopic = oDOM.selectSingleNode(".//topic").Text
If sTopic <> "" Then
 'Dispatcher ACTS as a factory method pattern as well
 If sTopic = "BizTalk" Then
 Set oDispatchable =
 CreateObject("BizTalkPatterns.ConcreteDispatchable")
 Call oDispatchable.Execute(sXML)
 ElseIf sTopic = "MSMQ" Then
 'and so on...
 'Set oDispatchable = CreateObject("...")

Other BizTalk-friendly Patterns

 Two other database-friendly patterns worth mentioning are the Interface pattern and the Factory Method pattern. Although t
he Interface pattern is a simple design pattern, using interfaces in an environment such as BizTalk is extremely useful. In keeping
with using patterns that exhibit loosely coupled aspects, using an interface to all components abstracts the caller from changes t
o the implementation of the component implementing the interface. This increases the robustness of the architecture and may el
iminate unnecessary recompilations in Visual Basic as well as provide a contract upon which to build further implementations us
ing that same interface.
 The Dispatcher pattern in our example demonstrated another well-known design pattern that uses a single method as the fac
tory or creator of other objects. This Factory Method pattern isolates the caller from knowing the complexities of instantiating an
d initializing other worker components in the system. This comes in handy when dealing with external systems where coupling e
xternal components in each BizTalk Orchestration would violate its loosely coupled design.
 But what does all this have to do with BizTalk? Well, let's see.

BizTalk and the Orchestration Designer

 BizTalk is made up of many elements, including the Orchestration Designer which we used to orchestrate the components in
our sample. The Orchestration Designer is one of the most powerful and flexible features of BizTalk. Misusing it is also one of the
easiest ways to turn a bad design into a bad solution.
 Communicating to a BizTalk server implementation simply means using XML as the message format. As you may already kn
ow, BizTalk is completely structured around XML and uses a SOAP 1.1 XML message format. The BizTalk-friendly XML message i
s nothing more than a SOAP 1.1 XML message with additional biztags to comply with the BizTalk Framework specification.
 BizTalk Server 2000 is the Microsoft implementation of the BizTalk framework specification. While BizTalk Server happens to
run on a Windows® 2000 platform, the framework specification is implementation-agnostic. Any language could be used to imp
lement a BizTalk server as long as it complies with the framework. This provides one of the most powerful features of BizTalk. A
message could be sent to a BizTalk server (known as reliable messaging in BizTalk Server 2000) from anywhere as long as it's a
well-formed and valid BizTalk message (see the BizTalk Framework 1.0 for details at http://www.biztalk.org). A BizTalk message c
an be received by an Active Server Page or message queue and forwarded to a running BizTalk server via BizTalk Messaging Ma
nager. A message may even be sent directly to a compiled BizTalk Orchestration schedule. But where do you implement complex
logic after a BizTalk server gets its hands on the message? This is where the Orchestration Designer comes in.
 The BizTalk Orchestration Designer is a Microsoft Visio® 2000-based design tool that, when compiled, can run as an XLANG
schedule. XLANG itself is described through XML (view a compiled schedule in Notepad and see for yourself). The designer provi
des a high-level means of orchestrating a middleware system's moving parts. Those moving parts can take the form of a messag
e queue, COM component, BizTalk Channel, file, e-mail message, or HTTP-based service. Orchestration Designer provides a way t
o create loosely coupled business processes that may optionally be long-running in nature. With the Orchestration Designer, ana
lysts not privy to the implementation complexities of COM or Web development can participate in the development of business r
ules by using the designer in Visio to lay out the business flow. The developer can then implement the moving parts that these d
esigners orchestrate.
 But what is the best way to implement BizTalk-friendly moving parts? This is where design patterns come in.

Using the BizTalk Orchestration Designer

 There are three key object categories in the business process page of the Orchestration Designer: flowchart shapes, ports, an
d implementation shapes. Conceptually, the way this works is that you, or your friendly neighborhood business analyst, use the f
lowchart shapes to create the process flow. The flowchart shapes support basic constructs such as if�then�else decisions, loopi
ng while a condition is true, branching execution, rejoining the branches together, and defining transactional boundaries. These r
elatively simple constructs can be used to create infinitely complex process logic. Implementation shapes come in a few varieties,
most of which will be familiar to readers who have used MSMQ and COM+. You can implement application functionality in four
basic ways: COM+ components, script components, MSMQ, or BizTalk Messaging. The glue that binds the business process to th
e implementation code is the third major object category in BizTalk process designthe port.
 Ports are named locations where messages are sent and received. Ports can be defined initially as unbound or bound. To crea
te an unbound port, on a design page in the BizTalk Orchestration Designer, right-click on the separator bar and select Add New
Port from the popup menu. One primary use of the unbound port is to import an XML document and define the fields that will c
omprise the message to be passed. Note that unbound ports are less useful than bound ports for defining message flows, especi
ally those that are bidirectional.
 To create a bound port, drag an implementation shape onto the right side of the Orchestration Designer page and follow the
wizard steps for that implementation. Binding a port provides the ability to define precisely what will travel through the port in e
ach direction, since the target implementation is known when the binding is created. These steps are explained in greater detail i
n the BizTalk Server 2000 help file. The difference between these two means of port creation is illustrated in Figure 5. Ports are lo
cated on the separator bar, with the business process depicted to the left of the bar and the implementation displayed to the righ
t.
 BizTalk Orchestration shouldn't be used to design processes at too granular a level (see the Orchestration whitepapers at
http://www.microsoft.com/biztalk). Its primary value is integration of existing business processes. To illustrate this idea, consider
a traditional business application that uses COM+ components to control the process, and additional COM+ components to perf
orm the work. System designers should strive to replace the controller functionality of such an application with BizTalk, and mak
e use of the existing COM+ work components. As an analogy, you should do your choreography with BizTalk, and do the dancin
g with COM+, MSMQ, script components, and the BizTalk message tools.
 Enough of the tool itself, how do we implement our patterns?

Implementing the Patterns

 To provide some context to the scenario that we are tackling, consider the following situation. A hypothetical software compa
ny that is small but growing fast has engaged us to consult on their internal systems. The problem is that their existing product s
upport process is taking too much manpower to staff, and the company is having a difficult time gathering quality metrics on thi
s function. The existing system is implemented in Microsoft Exchange, and uses the workflow capabilities of that product to route
issues among support personnel.

http://www.biztalk.org/
https://msdn.microsoft.com/en-us/library/bb985570(v=msdn.10).aspx
http://www.microsoft.com/biztalk/

 What is needed is a comprehensive self-service solution to augment the existing application, and to answer questions withou
t direct product support involvement. It would be a simple matter to expose the existing internal knowledge database to the Web
as a solution to the problem (see Figure 6), but we want to illustrate that there are benefits to using BizTalk Server to accomplish
this integration of existing and new functionality.

Figure 6 Default.asp Query Submission Form

 One of our goals in creating the samples was to demonstrate the flexibility of using BizTalk Server Orchestration as the core a
pplication engine. Multiple integration points are possible using this architecture. Consider our first entry point into the system: a
n ASP page creates a COM+ component, then calls a method on that component that places the request message into an MSMQ
queue. An XLANG schedule, which already has an instance running, picks up the request from the queue, launches a new schedul
e instance to monitor the queue, and proceeds to service the request by calling other COM+ components. Entry point number tw
o illustrates a completely different scenario for achieving similar functionality. Here we take a request message from the browser
and post it directly into the XLANG schedule from the ASP page.
 The pattern implementations we have chosen also achieve a high degree of flexibility and extensibility. The Chain of Responsi
bility pattern is inherently flexible, functioning similarly to a linked list. The only knowledge required of a participant in the chain i
s where to forward the request if it can't be resolved. This is made even more flexible in our BizTalk implementation by allowing t
he component to directly forward the message via a call to Client.Execute. Client.Execute simply acts as a wrapper around the MS
MQ APIs such that a message can be sent to a specified queue. The ConcreteHandler tells Client.Execute which queue to send to,
which also happens to be the next queue in the chain. If, however, the component developer does not want to mess with the MS
MQ APIs, the queue name can also be returned back to a running schedule where BizTalk is used to dynamically send the messa
ge to the appropriate queue in the chain. This is one of the niceties of BizTalk. The designer can now benefit by diverging from th
e traditional pattern implementation by doing it the "BizTalk way."
 The code in Figure 7 shows the logic for arbitrarily passing a message to the next component using each of the methods just
described. If the Boolean variable bSendDirect is true, the component is instantiated and called. If bSendDirect is false, the value i
s returned to the schedule and the orchestration invokes the component via MSMQ.
 BizTalk Server also greatly simplifies the implementation of the Dispatcher pattern in our samples. We simply branch executi
on of unhandled requests to the Dispatcher implementation from within our orchestration schedule. By doing this, we have creat
ed a well-defined integration point with external systems that has built-in flexibility and extensibility to guard against major code
rewrites when the operating environment changes.
 Finally, the Observer pattern's functionality provides a simple and powerful mechanism for dynamically modifying system fu
nctionality, and responding to events that the application developer deems to be interesting. With a minimum of additional effor
t, we could use BizTalk Server's persistence mechanisms to create Observer/Observable relationships (or publish/subscribe if yo
u prefer) that live beyond catastrophic events like system failures. In the following code, we illustrate the Observable object as it
provides notification to all registered observers through XLANG. The XLANG scheduler allows us to access the schedule as an obj
ect.

From IObservable_Notify:
 While (nCount < m_iObserverCount)
 sSchedule = m_saObservers(nCount)

 strURL = "sked:///" & sSchedule
 ' This enables the XLANG Scheduler Engine to execute the XLANG
 ' schedule.
 Set objExecute = GetObject(strURL)
 Set oObserver = objExecute.Port("Observer")

https://msdn.microsoft.com/en-us/library/bb985570(v=msdn.10).aspx

For related articles see:
House of COM
"Make Your Legacy Apps Work on the Internet"
For background information see:
http://www.microsoft.com/biztalk
Design Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson, and Vlissides (Addison-Wesley, 199
5)
Christian Thilmany is President of the eTier Group Inc. a consulting firm in Houston, TX. He specializes in distributed application
architectures for Internet, Intranet, and client/server development. He can be reached at christian@etier.com.
Todd McKinney is a Senior Consultant for Microsoft Services, specializing in middleware, enterprise development technologies, a
nd system design. He can be reached at toddmck@microsoft.com.

From the October 2001 issue of MSDN Magazine.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmind99/html/legacy.asp
http://www.microsoft.com/biztalk/
mailto:christian@etier.com
mailto:toddmck@microsoft.com

Microsoft BizTalk Server Technical Articles

BizTalk Messaging: Building BizTalk Server Custom Parsers and
Serializers
Joseph Fultz
Microsoft Corporation

February 2001

Summary: BizTalk Server 2000 includes interfaces that allow developers to add proprietary parsers and serializers for specialize
incoming and outgoing file formats. This article discusses and defines custom BizTalk Server 2000 parsers and serializers, the
purposes they serve, and the interfaces required to implement them. It also walks you through a simple parser and serializer pair
implementation. (50 printed pages)

Download BTSParserSerialCode.exe.

Contents

Introduction
Prerequisites
Setting Up the Test Harness
Implementing a BizTalk Custom Parser
Implementing a BizTalk Server Serializer
Overall Summary
Appendix: Code Snippets

Introduction
Microsoft® BizTalk™ Server 2000 is one of Microsoft's .NET Servers. It is a powerful tool for handling the trading of documents
between companies, organizations, and applications. It has state-of-the-art features for handling transactions, workflow,
document transformation, and delivery—all of which are based on industry standards such as HTTP, HTTPS, XML, and XSL.

While the out-of-the-box features and tools of BizTalk Server will meet the needs of most users, there will be times when custom
work is needed to handle specialized incoming and outgoing file formats. For this reason, BizTalk Server 2000 has been created
with interfaces to allow developers to add their own proprietary parsers and serializers. This document explores and describes
what custom BizTalk Server 2000 parsers and serializers are, what purposes they serve, the interfaces required to implement
them, and walks through an implementation of a simple parser and serializer pair.

This white paper is targeted at those who have at least a working familiarity with BizTalk Server 2000, COM, and Microsoft Visual
C++®. Throughout the paper, terminology associated with BizTalk Server 2000—channels, ports, receipts, interchanges, and so
on—will be used freely. If you need clarification on any of the topics covered, there are articles online at
http://www.microsoft.com/biztalk, or you can review the BizTalk Server documentation.

BizTalk Server 2000 includes parsers for flat file formats, XML, and EDI that when combined with document specifications defined
within BizTalk Editor are very powerful and flexible and will usually meet your needs. However, there are various reasons that
implementing a custom parser and serializer pair might be important. Some examples of this would be receiving and parsing a
document that contains binary data that must be submitted to BizTalk Server 2000, the desire to have custom receipt correlation,
accepting interchanges (files) that contain multiple documents, or simply to handle custom document types that do not lend
themselves to XML-Data Reduced (XDR) representations, for example, RosettaNet objects (http://www.rosettanet.org). The case of
the interchange with multiple documents is a very tangible example. Imagine that you want to enable partners to submit to you a
document that represents a batch of documents. This is a very common practice in the health care industry for processing billing.
So, each of the documents in a single file can be a valid XML instance of the document, but the included XML parser will not be
able to parse it because the document as a whole has multiple root nodes and is not a valid instance of the document, nor is it a
valid XML instance at all. For example, a valid instance might have the following format:

<docroot>
<header>
<field1/>
<field2/>
</header>
<body>
<field3/>
<field4/>
</body>

http://download.microsoft.com/download/8/B/2/8B2A6C61-B020-4A43-B81B-D153857983F5/BTSParserSerialCode.exe
http://www.microsoft.com/biztalk
http://www.rosettanet.org/

However, the partners from whom you receive interchanges that represent a batch would send a file containing:

While you could simply implement a custom BizTalk Server preprocessor, the most you could do with the preprocessor is wrap
the documents in a parent XML structure or reorder the file completely. However, doing either one of these will break the concept
of groups and multiple documents per group by making the input interchange appear to be one document. Thus, you want to
implement a custom parser to handle the parsing of this document. In this case, it would be as simple as breaking up the stream
into its separate documents and passing on the data. The parsers that ship with BizTalk Server recognize groups and multiple
documents per group.

This document will review interface and method implementations as they relate to BizTalk Server parsers and serializers. While
addressing these topics, this document will explore other BizTalk Server 2000 topics, as they are relevant to the sections on the
component and interface implementations. The sample implementation will be based upon passing a simple equation into BizTalk
Server 2000, parsing that equation, solving the equation, and serializing the response in a format similar to the incoming
document. The example that we are using was chosen because it enables you to easily review and compare the inbound
interchange contents pre- and post-parser and serializer execution. A simple data example is chosen, because complex XML and
file structures are not the focus of this document.

The inbound and outbound documents will be persisted commerce dictionaries. Commerce dictionaries are objects originally
introduced into the platform within Microsoft Site Server and are very similar to the dictionary objects provided by the scripting
library (Scripting.Dictionary). The dictionary objects that we will be using are for storing in memory name and value pairs as
defined by the user (developer). Commerce dictionaries differ from their scripting library counterparts in several ways, one of
which is that commerce dictionaries are free threaded. Additionally, commerce dictionaries support persistence of the entire
dictionary object into XML through the IPersistXML interface. It is this interface that we will use to create the object (dictionary)
representation of our incoming dictionary-persisted XML and to persist the resulting data dictionary into an XML format.

For the sample implementation, the flow of the document will be as follows:

1. Receive XML persisted dictionary.
2. BizTalk Server passes data to custom parser.
3. Parser recreates dictionary object.
4. Parser creates XML instance from dictionary.
5. Equation solved in the channel by a BizTalk Server map.
6. Serializer creates a dictionary object from the outbound XML.
7. Serializer creates outbound XML by calling the dictionary's IPersistXML interface.
8. BizTalk Server saves final instance of outbound document.

</docroot>

<docroot>
<header>
<field1/>
<field2/>
</header>
<body>
<field3/>
<field4/>
</body>
</docroot>

<docroot>
<header>
<field1/>
<field2/>
</header>
<body>
<field3/>
<field4/>
</body>
</docroot>

…n

Note The code samples used do not have exception handling, are not optimized, and are not factored. Thus, they are
not intended for production systems.

Prerequisites
To implement the examples set forth in this document, you need to have BizTalk Server 2000 and all of its prerequisites installed.
Additionally, you must have Microsoft Visual Studio® 6 (SP4) installed.

Some files that are needed specifically for BizTalk Server 2000 development are as follows:

bts_sdk_guids.h
btsparsercomps.h
btsserializercomps.h
commerce.h

All of these files can be found in the /SDK/Include folder where BizTalk Server 2000 is installed. For example, on my computer the
path is C:\Program Files\Microsoft BizTalk Server\SDK\Include\.

Additionally, I made use of a couple of files, computil.h and computil.cpp, from Microsoft Commerce Server 2000 (they were
formerly shipped with Site Server 3.0 Commerce Edition). While it is not necessary to use these files, they contain some functions
for setting and retrieving dictionary elements that you would probably write yourself to minimize having to repeat the same few
lines of code every time that you want to set or retrieve values from the dictionary object with which you are working.

For the purpose of this example, I have also created a couple of functions for use in the sample code and placed them into misc.h
and misc.cpp files. You can find those functions in the appendix. Now that the prerequisites are out of the way, we can set up the
test harness, which will help us to validate that everything is working as it should before we introduce custom code.

Setting Up the Test Harness
At this point I am sure that you are ready to create the custom parser and serializer, but first we need to put in place the BizTalk
Server artifacts that are needed to test our example parser and serializer. To test this, we need to set up some type of harness for
the application. This will include a channel, a receive function, a port, a document definition, and a map.

Once BizTalk Server has been set up with our test harness, we will validate the harness by passing in a compliant XML equation
document, solve it through the map inside the channel, and write the outbound document. Having validated that BizTalk
Messaging is set up appropriately to handle the equation XML instance, we can move forward to implementing the parser.

So, before we even begin with the code, let us set up BizTalk Messaging Services so that we can test our parser and serializer. Of
the items that we need to set up, the first thing is to decide on and define the document that we will be using in our sample.

Creating the Document Specification

I am using a standard equation document that I use variances of in testing various XML-based application prototypes. The
following schema defines the document that we are going to use:

<?xml version="1.0"?>
<!-- Generated by using BizTalk Editor on Tue, Dec 05 2000 01:32:56 PM -->
<!-- Microsoft Corporation (c) 2000 (http://www.microsoft.com) -->
<Schema name="Equation" b:BizTalkServerEditorTool_Version="1.0" b:root_
reference="Equation" b:standard="XML" xmlns="urn:schemas-microsoft-
 com:xml-data" xmlns:b="urn:schemas-microsoft-com:BizTalkServer"
 xmlns:d="urn:schemas-microsoft-com:datatypes">
<b:SelectionFields/>

<ElementType name="Result" content="textOnly" model="closed">
<b:RecordInfo/>
</ElementType><ElementType name="Operator" content="textOnly" model="closed">
<b:RecordInfo/>
</ElementType><ElementType name="Operand2" content="textOnly" model="closed">
<b:RecordInfo/>
</ElementType><ElementType name="Operand1" content="textOnly" model="closed">
<b:RecordInfo/>
</ElementType><ElementType name="Equation" content="eltOnly" model="closed">
<b:RecordInfo/>
<element type="Operand1" maxOccurs="1" minOccurs="0"/>
<element type="Operand2" maxOccurs="1" minOccurs="0"/>

An instance of the above schema would look like this:

There is purposefully nothing complex about this data or its representation so that we can focus on the details of implementing
parsers and serializers. Once you have created the specification as a file, save it to your repository and create a document
definition using BizTalk Messaging Manager. Name the definition SimpleEquationXML. We will need to map the inbound equation
to an outbound equation and, through the map, solve the equation.

Creating the Map

Open BizTalk Editor and use SimpleEquationXML as both your source and destination document. Map Operand1, Operand2, and
Operator one-to-one.

Figure 1. BizTalk Mapper

Next you will need to use the Scripting functoid to generate the result. Place the Scripting functoid onto the mapping surface
and connect Operand1, Operand2, and Operator into it in the given order. Open the Scripting functoid and ensure that the
parameters are in the correct order. Click the Script tab and place the following script in it:

<element type="Operator" maxOccurs="1" minOccurs="0"/>
<element type="Result" maxOccurs="1" minOccurs="0"/>
</ElementType></Schema>

<Equation>
 <Operand1>43</Operand1>
 <Operand2>26</Operand2>
 <Operator>*</Operator>
 <Result></Result>
</Equation>

Function SolveEquation(oper1, oper2, operator)
 Dim result

 oper1 = cdbl(oper1)
 oper2 = cdbl(oper2)

 Select Case cstr(operator)
 Case "*"
 result = oper1 * oper2
 Case "+"
 result = oper1 + oper2
 Case "-"
 result = oper1 - oper2
 Case "/"
 if oper2 = 0 then
 result = 0
 else

Save and test your map. Save the map as map_SolveSimpleEquation. Be sure to put it into the repository. Now that the document
and the map are defined, BizTalk Messaging must be configured to receive and process the instances of the document.

Setting Up for Document Processing

You need to create a place for incoming and outgoing documents. I used C:\input and C:\output on my computer. Now let's set up
the port. Open BizTalk Messaging Manager and create a new port to an organization. I called mine port_TestParser. For this test I
used a couple of organizations that I have defined for testing on my computer. Define the primary transport of File with a location
of C:\output\solved_%tracking_id%_.xml. Accept the defaults for everything else.

When prompted, create a new channel named cha_TestParser, set the source organization to open, use our previously defined
document definition (SimpleEquationXML) as both the incoming and outgoing document, use the previously defined map as the
document map, and take the defaults for everything else.

Lastly, set up a receive function in the BizTalk Server Administration snap-in. Create a new File receive function named
recv_SimpleEquation and point it to your receive location for types of *.xml. On the advanced settings, set the channel to
cha_TestParser.

At this point you should be able to create a sample XML instance from the editor. Modify it and run the document through the
channel by using the File receive function. You can use this instance of the document if you want:

The output file should look like this:

At this point we have not done anything with the custom parser and serializer. Instead, we have set up and validated our test
harness, thus ensuring that our configuration will produce expected results before we introduce the parser and serializer into the
environment. It is a good practice when working with BizTalk Server to ensure that you can successfully pass through the channel
first. Subsequently, it is good to ensure that you have channel pass-through and appropriate mapping of the document types—
which is what we just accomplished through our test. Make sure that you are able to generate this type of output through your
BizTalk Server configuration before you continue.

Now that the pieces of BizTalk Messaging are set up, we will move to implementing the parser and serializer pair to work with
XML generated from persisting a dictionary object. The following XML is an instance of that dictionary XML. You will want to
create an XML file with it on your system for your use.

 result = oper1/oper2
 end if
 end select

 SolveEquation = result
End Function

<Equation>
 <Operand1>43</Operand1>
 <Operand2>26</Operand2>
 <Operator>*</Operator>
 <Result></Result>
</Equation>

<Equation>
 <Operand1>43</Operand1>
 <Operand2>26</Operand2>
 <Operator>*</Operator>
 <Result>1118</Result>
</Equation>

<DICTIONARY xmlns:dt="uuid:304FB305-29A4-11d3-B0D4-00C04F8ED7A2" version="1.0">
<DICTITEM key="Operation"><VALUE dt:dt="string" xml-space="preserve">*</VALUE></DICTITEM>
<DICTITEM key="Operand1"><VALUE dt:dt="string" xml-space="preserve">1</VALUE></DICTITEM>
<DICTITEM key="Operand2"><VALUE dt:dt="string" xml-space="preserve">4</VALUE></DICTITEM>
</DICTIONARY>

Save the file for later. Once the code for the parser is implemented and the parser is ready to run within BizTalk Server, we will
need this file to test the parser.

Implementing a BizTalk Custom Parser
We will implement a parser that expects a dictionary object persisted to XML. The parser will create a dictionary object from the
XML, pull out the expected name-value pairs, build the expected SimpleEquationXML document, and place it into the transport
dictionary for BizTalk Server to pass on to subsequent parsers and then into the channel. This will allow BizTalk Messaging to
produce the equation XML with a mapped result at the other end of the channel.

Within a channel, BizTalk Messaging can be configured to track inbound and outbound documents in both native and XML
format. These tracked documents can then be viewed through the BizTalk Document Tracking tool. The native format is the
original document format, whereas the XML format represents the format that BizTalk Server places the document into internally.
The XML format will match the document specification used, whereas the native format will not necessarily be the same. Thus in
our example, the native format will be the document as it exists on disk and before our parser does anything with it. The XML
format will be the output from our parser. We very well could have used a binary object BLOB of some type, but using the XML
persisted dictionary will give us a very visible example. This will enable us to visibly inspect the native and XML representations
within BizTalk Document Tracking and be able to easily read and compare the pre- and post-parser documents. Next let us take a
look at what the parser interface looks like and how it works.

The Parser Interface

A custom parser in BizTalk Server is a COM component that implements the IBizTalkParserComponent interface. A custom
parser is responsible for transforming data from an incoming document into a representation that is used and expected within
BizTalk Server. In our example, the parser will be responsible for transforming a commerce dictionary object persisted to XML into
the SimpleEquationXML document that BizTalk Messaging is expecting. The IBizTalkParserComponent interface is comprised of
seven methods. The following table shows the method names and describes their function.

Method Description
GetGroupDetails Gets details of the group for the Document Tracking database. This method is called only if there are grou

ps in the interchange.
GetGroupSize Gets the size of the group after all documents in the group are parsed. This method is called only if there

are groups in the interchange.
GetInterchangeDetai
ls

Gets information about the organization identifiers of the source and destination BizTalkOrganization
objects.

This function also performs a sleuth of other tasks, such as finding dynamic delimiters and codepages. It
also fills the selection fields.

GetNativeDocument
Offsets

Identifies offsets from the beginning of the stream for final details about the group in the Document Trac
king database for final logging.

GetNextDocument Examines the data in a document and determines when to get the next document if this is not the last doc
ument.

GroupsExist Determines if the interchange contains groups.
ProbeInterchangeFor
mat

Identifies the format of the interchange.

For a simple interchange that contains a single document, the calling order for the methods is:

1. ProbeInterchangeFormat
2. GetInterchangeDetails
3. GroupsExist
4. GetNextDocument
5. GetNativeDocumentOffsets

The number of times the methods for handling document groups and retrieving the next document information are called is
dependent on the number of groups and number of documents that exist in a given interchange. The parser method calls have
been designed to facilitate handling multiple documents and multiple groups of documents in any given interchange. The parser
is responsible for informing BizTalk Server as to the existence of groups. If groups exist and are expected in an interchange, the
parser must be able to handle them.

A more complex interchange might contain groups and multiple documents per group. BizTalk Server handles the interchange by

calling the parser interfaces in the following manner:

BizTalk Server calls ProbeInterchangeFormat, in which the parser gathers information about the interchange, checks the
document to determine if it will handle it, potentially grabs a pointer to the data in the interchange, and informs BizTalk Server of
the document format if it recognizes it.

GetInterchangeDetails is called and the parser grabs any needed information from the dictionary passed to the call.

GroupsExists is next in the call order, and the parser checks for the existence of multiple groups and subsequently informs
BizTalk Server that this interchange has groups, thus causing BizTalk Server to call some additional methods.

GetGroupDetails is the next method called and is where the call pattern diverges from the simple example. Within this call the
parser returns information to BizTalk Server with regard to the group identity of the document or documents that the parser is
about to process.

GetNextDocument is called until the parser reaches the last document in the group. Then the parser indicates that this is the last
document as it normally would, but because the parser already determined that the group exists, this indication is of the last
document in the group, but not necessarily in the interchange.

GetNativeDocumentOffsets operates as it usually would by indicating to BizTalk Server from where in the stream to grab the
original data for this document.

GetGroupSize is called and the parser informs BizTalk Server of the number of documents in the group and whether this is the
last group. If this is not the last group, BizTalk Server subsequently calls GetGroupDetails, thus starting another round of
document parsing.

Figure 2 shows the flow and decision tree for parser method calls described here.

Figure 2. Logical flow of parser method calls

Between the text and the diagram you should have a pretty clear picture of how the methods are called from BizTalk Server. Since
we have now covered what the methods are, described briefly their function, and reviewed the call order, let's review the code
implemented in the sample.

Base Code

In creating our example components, we will keep it as simple as possible to focus on the purpose of learning how and why to
implement the interface methods. Hence, there will not be any complex error handling or reporting and the code will not be

optimized and factored. Follow these steps to create the skeleton code:

1. Create a new project through the ATL COM App Wizard named FirstParser.
2. Inside FirstParser, create a new ATL Simple Object named Parser1. This is the component in which we will implement the

IBizTalkParserComponent interface.
3. Include the following files inside Parser1.h:

a. bts_sdk_guids.h
b. BTSParserComps.h. This file contains the definition for our interface, IBizTalkParserComponent.
c. Computil.h. This file contains the method PutDictValue, which we will use to add data to dictionary objects. While

this is not necessary, it relieves you from writing similar code to accomplish the same task.
4. Include the functions from the appendix. I created separate files, but you can add the functions to the project however you

see fit. These functions are not necessary for BizTalk Server development, but rather were developed specifically for this
example.

5. Compile the project to make sure that everything is sitting in place.
6. Add the interface and method for IBizTalkParserComponent.
7. Inside Parser1.h, add "public IBizTalkParserComponent" to the class inheritance list.
8. Add the following method prototypes to the class declaration:

9. Add COM_INTERFACE_ENTRY(IBizTalkParserComponent) to COM_MAP so that it will be returned from a QueryInterface
request.

10. Add IMPLEMENTED_CATEGORY(CATID_BIZTALK_PARSER) to the CATEGORY_MAP. This is what will identify your
component as a parser to BizTalk server. So don't forget it.

11. While you are in this file, go ahead and add the following private members to the class; we will use them later:

//Methods for IBizTalkParserComponent
HRESULT STDMETHODCALLTYPE ProbeInterchangeFormat(IStream
 __RPC_FAR *pData, BOOL FromFile,
 BSTR EnvName, IStream __RPC_FAR *pReceiptData, BSTR __RPC_
 FAR *Format);

HRESULT STDMETHODCALLTYPE GetInterchangeDetails(IDictionary __RPC
 _FAR *Dict);

HRESULT STDMETHODCALLTYPE GroupsExist(BOOL __RPC_FAR *GrpsExist);

HRESULT STDMETHODCALLTYPE GetGroupDetails(IDictionary __RPC_FAR *Dict);

HRESULT STDMETHODCALLTYPE GetGroupSize(long __RPC_
 FAR *GroupSize,
 BOOL __RPC_FAR *LastGroup);

HRESULT STDMETHODCALLTYPE GetNextDocument(IDictionary __RPC_FAR *Dict,
 BSTR DocName, BOOL __RPC_FAR *DocIsValid, BOOL __RPC_
 FAR *LastDocument,
 enum GeneratedReceiptLevel __RPC_FAR *ReceiptGenerated, BOOL __RPC
 _FAR *DocIsReceipt,
 BSTR __RPC_FAR *CorrelationCompProgID);

HRESULT STDMETHODCALLTYPE GetNativeDocumentOffsets(BOOL __RPC_FAR *SizeFromXMLDoc,
 LARGE_INTEGER __RPC_FAR *StartOffset, long __RPC_
 FAR *DocLength);

 IStream* m_pData;
 char* m_pCharData;
 BOOL m_FromFile;
 long m_TotalNumDocs;
 long m_LastDocEndIndex;

12. In the class constructor we will initialize all the member variables:

13. Add an override for the FinalRelease method so that we can let go of our IStream interface:

14. At this point you should have the class declaration complete. Now open the CPP file and add empty method
implementations for each of the methods defined by IBizTalkParserComponent.

15. Compile. At this point you should have an empty implementation of a BizTalk Server parser.

Just for your own edification during a debug session, in each of the parser method calls add a line similar to this:

Additionally, you might want to add "hr = TraceDictionaryValues(Dict);" to the GetInterchangeDetails, GetNextDocument, and
GetGroupDetails methods just to give you a look at what is in the dictionary as it is passed in to the method.

If you are re-implementing this sample code, I would suggest that you use the example code for implementing the functions
through the copy-paste coding style. I will refer to implementing code snippets within the document, but to get the entire code
base you will need to refer to the sample source because this document serves to explain the interfaces, not to deliver the code.

With the base code and base understanding in place, the following sections will go through each method on the parser interface
in detail. The methods will be covered in the order of expected execution.

Implementing the parser interfaces

In implementing the parser, we will focus on implementing the parser to handle a single instance or multiple instances of the
document inside the interchange and to assume static routing. In a more complex scenario there could exist dynamically routed
and self-routed documents. For the sake of clarity, we are keeping the example complex enough to be relevant, but simple
enough to be easily understood. During the coverage of the interface methods, this document will briefly review the items that
would be used and how they would be used to address tracking, dynamic routing, and groups inside the interchange. Refer to the
parser implementation in the sample code as you work your way through this implementation. While parts of it will be in this
document, it will be clearer if you relate the contents of this document to the sample source code.

 long m_LastDocLength;
 long m_CurrentDocument;
 long m_LastPositionInString;

 BOOL IsValidDocType(IStream* pStream);
 BOOL CreateXMLFromDictionary(IDictionary* pDataDict, BSTR* OutputXML);
 BOOL CheckStreamForMultipleDocs();

CParser1()
{
 m_TotalNumDocs= 0;
 m_LastDocEndIndex= 0;
 m_LastDocLength= 0;
 m_CurrentDocument= 0;
 m_LastPositionInString = 0;
 m_FromFile= 0;
 m_pData= 0;
}

void FinalRelease()
{
 if(m_pData != NULL){m_pData->Release();}
}

ATLTRACE("In CParser1::[method name]\n");

ProbeInterchangeFormat

This method is the first method called by the BizTalk Server parser engine. In this method we gather several pieces of information
and inform BizTalk Server of whether this is a format that is recognized by our parser.

First the parser must extract enough information from the stream pointer to ascertain whether it has a document with which it
can work. This can be as complex or as simple as you need it to be. In other words, if a document coming in has a special
encryption algorithm, if it needs to have checksums verified on it that are related only to pieces of the interchange, or if it needs
anything else special and specific to determine whether this is an interchange for your parser, you would implement it here. It
could be checking for a version number, validating some checksum, or checking a digital signature in the document. In other
words, it is up to you, or the semantics of the document exchange agreement, to define the mechanism by which you verify that
this is a document that the parser should operate on. In our case, we will simply check for the GUID of the Commerce.Dictionary
object to exist within the first 64 bytes of the stream. To do this, the sample code implements a function, IsValidDocType:

We read the first 64 bytes from the stream to check for the GUID:

If indeed we read 64 bytes, let's check it for our GUID:

Based on the return from the string compare, we return a TRUE or FALSE to indicate whether this appears to be an interchange
that we want:

Within the parser we implement some code to check the document to see if it is the type that the parser can handle. If it is not, we
must return a value to BizTalk Server telling it that we didn't fail, but we don't want this data. The code looks something like this:

BOOL CParser1::IsValidDocType(IStream* pStream)
{
 HRESULT hr;
 ULONG bytesread;
 BOOL retval = FALSE;

 BYTE* pbData = new BYTE[TEST_DOC_NUM_BYTES + 1];

 hr = pStream->Read ((void*)pbData, TEST_DOC_NUM_BYTES, &bytesread);

 //test for guid
 if (SUCCEEDED(hr))
 {
 //set the null
 BYTE* pFinalChar = pbData + bytesread;
 *pFinalChar = 0;

 //do the test
 char* lpszTestReturn = NULL;

 lpszTestReturn = strstr((char*)pbData, "uuid:304FB305-29A4-11d3-B0D4-00C04F8ED7A2");

 retval = (*lpszTestReturn == NULL) ? (FALSE) : (TRUE);

 }

 delete pbData;
 return retval;
}

if(!IsValidDocType(pData))
{
 hr = pData->Seek (dLibMove, STREAM_SEEK_SET, NULL);
 return S_FALSE;
}

The return code S_FALSE lets BizTalk Server know that we didn't do anything with this interchange. For a complete list of possible
BizTalk Server return codes, look in the BizTalk Server online documentation under the topic BizTalk Server 2000 Error Messages.

Note that we only validated that the interchange appears to have something in it that we handle. We could investigate the stream
a little more to also determine if it appears to be the type of dictionary we want, that is, a dictionary representing a simple
equation. If we did so, it would be to determine whether we think that the stream contains the type of dictionary, but not actually
validate any documents. The GetNextDocument method allows the parser to inform BizTalk Server as to the validity of a given
document, thus document validation is done there.

Once the parser has verified that this is an interchange it wants, it needs to save a reference to the IStream* that is passed into
the method. Within this method call is the only place where BizTalk Server will pass the parser a pointer to the data stream. If the
parser doesn't get a reference to it now, there will not be another chance. Add a member variable to the class for this, that is,
IStream* m_pData;. Now you need to save the reference:

Determine the number of documents within the interchange by counting the number of end tags in the interchange:

Set the document format variable. BizTalk Server will pass this information on to subsequent parsers.

Don't forget to include AddRef or you will potentially find yourself with a NULL or invalid IStream pointer when the subsequent
calls to your parser are made. In the sample code, I have added a couple of other pieces of code for tracing some information to
the output window, but you only need to check the message type, save a reference to the stream, and set the message format.

Additionally, in this method we retrieve all the data from the stream and place it in a member variable of the parser class. This
simplifies the parsing, as the code will only deal with the character pointer.

Near the top of the function, before we actually checked the interchange, we ensured the stream pointer was at the beginning and
retrieved some information on the stream with the following code:

We allocate memory for a BYTE pointer by using the cbsize member of the stats (type STATSG) variable, which contains the size in
bytes of the stream. We add one byte for a null terminator so that we can treat this as a null-terminated string.

m_pData = pData;
pData->AddRef ();

//get the number of documents in this interchange
CheckStreamForMultipleDocs();

bstrFormat = *Format;
bstrFormat = "Custom XML";
*Format = bstrFormat.Detach ();

//check the data in the stream to see if it is what we want
STATSTG stats;
LARGE_INTEGER dLibMove;
CComBSTR BSTRData;
ULONG bytesread;
BYTE* pbData;

hr = pData->Stat (&stats, 0);
m_FromFile = FromFile;
//make sure that the stream is at the beginning.
 It should be, but being defensive isn't all //bad.
if (SUCCEEDED(hr))
{
 dLibMove.QuadPart = 0;
 hr = pData->Seek (dLibMove, STREAM_SEEK_SET, NULL);
}

Now we read all the data and then set the last byte of the BYTE pointer to NULL.

Also, notice that I have written code to determine if the stream was originally from a file. If it is from a file, it is likely single-byte
characters. If it is not, it is likely a BSTR.

Since I am saving off the data for this example, I am converting to a char* before saving it. Later on when we look at
GetNextDocument we will discuss this further. However, for now leave the stream pointer at its end location as we move on to
covering GetInterchangeDetails.

GetInterchangeDetails

In this method call the parser will retrieve information with regard to source and destination organization identifiers. Additionally,
if an envelope were being used, that information would be available to the parser through this method call. In the sample code,
you will see that there is only a method call to write the dictionary name-value pairs out to the debug window.

For most XML implementations you will likely not do anything within this function. The dictionary will probably contain the
following fields, which can be viewed in the debug window from the TraceDictionaryValues call.

Name Description
Tracking_ID GUID (string) for tracking purposes
Document_Name String name of document type
submission_id GUID (string) to uniquely identify submission
s_Interchange_Spec String for identifying interchange specification (envelope)

Additionally, if you were working with an EDI type you would possibly have these name-value pairs in the dictionary.

//get all of the data out of the stream
pbData = new BYTE[stats.cbSize.LowPart + 1];

hr = pData->Read ((void*)pbData, stats.cbSize.LowPart , &bytesread);

//add null terminator

BYTE* pFinalChar = pbData + bytesread;
*pFinalChar = 0;

//save off the data to a member variable for use later
if(m_FromFile)
{
 m_pCharData = (char*)pbData;
}
else
{
 USES_CONVERSION;
 m_pCharData = W2A((LPWSTR)pbData);
};

HRESULT STDMETHODCALLTYPE CParser1::GetInterchangeDetails(
 IDictionary __RPC_FAR *Dict)
{
ATLTRACE("In CParser1::GetInterchangeDetails\n");
//write the minimal fields from the dictionary to the output device
//I am using some helper functions borrowed from a commerce server.
HRESULT hr;

hr = TraceDictionaryValues(Dict);
return hr;
}

Type Value Name Description
EDIFACT
 interchange_release Message type release number
 interchange_id Interchange control reference
 Dest_ID_Value Recipient identification
 Dest_ID_Type Identification qualifier
 Out_Dest_ID_App Identification application
 Src_ID_Value Sender identification
 Src_ID_Type Identification qualifier
 In_Src_ID_App Identification application
X12
 interchange_id Interchange control reference
 Dest_ID_Value Recipient identification
 Dest_ID_Type Identification qualifier
 Src_ID_Value Sender identification
 Src_ID_Type Identification qualifier

Several of the values presented in these tables are used for self-routing documents, for example, the Dest_ID_ and Src_ID_
prefixed value names. In the sample code we did not do anything with envelopes or the source and destination identifiers. Thus,
this method has no effect on our sample implementation. The only thing that we do in the sample implementation is display any
values within the incoming dictionary in the debug window.

Now that the parser has retrieved information with regard to the interchange and has grabbed a pointer to the data stream,
BizTalk Server is interested in knowing whether the interchange contains groups.

GroupsExist

In any given interchange, you might have multiple documents that are batched for processing. For example, you might have a
document specification that represents a remittance. However, that remittance might not contain the concept of a batch within its
specification. Additionally, not only might more than one document exist, but more than one group of documents might exist.
Hence, you might have data within a single file that is logically similar to the following:

Notice that since there are multiple root nodes, it would be impossible to represent this as XML without wrapping the entire thing
within a root node. This is because the XML specification dictates that an XML document must contain one and only one root
node. However, this is the manner in which many batched EDI transactions are communicated. BizTalk Server ships EDI parsers
and serializers that handle these types of complex interchanges automatically.

The GroupsExist method is where you tell the BizTalk Server parsing engine whether the interchange that you are dealing with
has multiple groups within your document. This function is targeted at EDI type transactions where not only might you have
multiple documents within the interchange, but additionally you might have multiple groups. This is because historically EDI is
handled by batching all transactions and sending them at set intervals of time. An example could be that a reseller might batch all
purchase orders (POs) from multiple distributors into a single interchange and send that to the vendor, in which case the vendor
will potentially have multiple POs from multiple distributors. Whereas you were starting from scratch and creating an XML-based
PO for this purpose, you might take this into consideration and create a group PO superstructure, thus facilitating the existence of
multiple POs from multiple organizations and removing the complexity of a multidocument interchange.

If you tell BizTalk Server that you have multiple groups within an interchange, BizTalk Server will subsequently make a call into
your component to GetGroupDetails. Furthermore, within GetNextDocument if the parser informs BizTalk Server that it has

<interchange header> [header info] </interchange header>
<groupheader> [lots of group information] </groupheader>
<document> [very valuable doc info] </document>
<document> [very valuable doc info] </document>
<document> [very valuable doc info] </document>
 <grouptrailer> [group trailer info] </grouptrailer>
<groupheader> [lots of group information] </groupheader>
<document> [very valuable doc info] </document>
<document> [very valuable doc info] </document>
<document> [very valuable doc info] </document>
 <grouptrailer> [trailer info] </grouptrailer>
<interchange trailers>[interchange trailer info]<interchange trailer>

processed the last document and does not indicate within GetGroupSize that it has reached the last group, BizTalk Server will
then call GetGroupDetails again and start the processing for the next set of documents by calling GetNextDocument. In our
implementation, we will not process a separate group, but we will, for demonstration purposes, process an interchange with
multiple documents. Thus our multi-document interchange will contain two instances of XML persisted dictionary objects:

GetGroupDetails

Provided that the parser identified groups in the call to GroupsExist, the GetGroupDetails method will be called before
processing each group. Information about the document group is set in this method. Some of the fields that might exist or that
you might place into the dictionary pointer that is passed to this method are shown in the following table.

Type Value Name
General
 Tracking_ID
 Document_Name
 syntax
 submission_id
EDIFACT
 application_receiver_code
 application_sender_code
 functional_identifier
 standards_version
 standards_release
 group_id
X12
 application_receiver_code
 application_sender_code
 functional_identifier
 standards_version
 group_id

Since we are not working with groups in this example, this implementation only contains code to dump the dictionary object to
the output device. This serves heuristically to show what, if anything, is being passed into the method call through the dictionary
object.

Subsequent to the GetGroupDetails call is the GetNextDocument call, which is where most of the parsing work takes place.

GetNextDocument

<DICTIONARY xmlns:dt="uuid:304FB305-29A4-11d3-B0D4-00C04F8ED7A2" version="1.0">
<DICTITEM key="Operation"><VALUE dt:dt="string" xml-space="preserve">*</VALUE></DICTITEM>
<DICTITEM key="Operand1"><VALUE dt:dt="string" xml-space="preserve">1</VALUE></DICTITEM>
<DICTITEM key="Operand2"><VALUE dt:dt="string" xml-space="preserve">4</VALUE></DICTITEM>
</DICTIONARY>

<DICTIONARY xmlns:dt="uuid:304FB305-29A4-11d3-B0D4-00C04F8ED7A2" version="1.0">
<DICTITEM key="Operation"><VALUE dt:dt="string" xml-space="preserve">-</VALUE></DICTITEM>
<DICTITEM key="Operand1"><VALUE dt:dt="string" xml-space="preserve">5</VALUE></DICTITEM>
<DICTITEM key="Operand2"><VALUE dt:dt="string" xml-space="preserve">17</VALUE></DICTITEM>
</DICTIONARY>

HRESULT STDMETHODCALLTYPE CParser1::GetGroupDetails(IDictionary __RPC_FAR *Dict)
{
 HRESULT hr;
 ATLTRACE("In CParser1::GetGroupDetails\n");
 hr = TraceDictionaryValues(Dict);
 return S_OK;
}

Within the GetNextDocument method is where the majority of a parser's work exists. It is within this method that your parser
will transform the input document into the XML format that is expected by the channel. It is also within this method that you
would discover the route of a self-routing document. Examining the elements specified in the document specification as routing
tags would do this. Hence, you would create the XML instance, discover the source and destination values contained within the
self-routing document, and set the SrcQual, SrcID, DestQual, and DestID name-value pairs of the transport dictionary within the
method call. Our sample implementation is not using a self-routing document and therefore does not set those fields.

However, we do parse the document, create the expected XML document, and set the WORKING_DATA field of the transport
dictionary to our resulting XML. Furthermore, if within the interchange more than one document exists, the call to this method
would return LastDocument as false and parse the subsequent documents, repeating the same steps until there are no more
documents to process within the interchange.

In the ProbeInterchangeFormat method call, the sample code stores a char* within the class that contains the data of the
stream. I will work with it to parse through the interchange and determine document offsets. Keep in mind that this sample code
is using single-byte character strings. In the following code, we will also see that there are member variables of the class being set
to track the end position of the current document and the length of the current document. In the GetNativeDocumentOffsets
call that is made subsequent to this call, the parser engine will be looking for the offset from the beginning of the stream and the
document length in order to track the inbound document.

Get a pointer to the part of the character pointer that we haven't processed. We do this by tracking our offset in bytes during
processing and adding the number of bytes to the pointer variable that contains our data.

Get a character pointer to the character after the last character of the end tag of a single instance of the dictionary document.

Determine the current document's length by subtracting the address of the first character of the unprocessed string from the
address of the end character.

Next we allocate and initialize memory for our document bytes based on the length that we just determined.

We will now need to copy the string of the dictionary XML into a variable so that we can pass it to the RehydrateDictionary call
and get back our source dictionary.

As we parse the data, we want to keep track of where we are in the data stream so that we can inform BizTalk Server where to find
the native document in the IStream* and so that we can know from where to continue parsing in subsequent calls to

//parse out the document
long CurrentDocLength;
char* pUnprocessedSubString;
char* pEndTag;
char* pCurrentDocument;
//get a pointer to the character after the end tag

pUnprocessedSubString = m_pCharData + m_LastDocEndIndex;
pEndTag = strstr(pUnprocessedSubString, END_DOC_IDENTIFIER);

pEndTag += strlen(END_DOC_IDENTIFIER);

//determine the length of the document
CurrentDocLength = pEndTag - pUnprocessedSubString + 1;

//copy document from string
pCurrentDocument = new char[CurrentDocLength+1];
memset ((void*)pCurrentDocument, 0, CurrentDocLength + 1);

strncpy(pCurrentDocument, pUnprocessedSubString, CurrentDocLength);

GetNextDocument.

Now that we have the Commerce.Dictionary XML from the stream, we will reconstruct the dictionary object through its LoadXML
method. The IPersistXML::LoadXML method accepts XML previously created by the IPersistXML::SaveXML method. The
dictionary object implements the IPersistXML interface. The LoadXML method is called within the RehydrateDictionary
function in order to turn the source XML into a Commerce.Dictionary object.

At this point we have parsed a single document from our input stream (interchange) and we have converted to a
Commerce.Dictionary object. The next step is to create, from the data in the dictionary, an instance of an XML document, the
SimpleEquationXML document in our case, that BizTalk Messaging is expecting in the channel. We should have a dictionary object
from which we can extract expected name-value pairs and create the XML instance. Once we have created the proper XML
document, we have to set the WORKING_DATA field of the dictionary passed to the method call. Parsed data is passed back to
BizTalk Server from the parser through the WORKING_DATA field of the working dictionary passed to the GetNextDocument
method.

Note that in the code block the DocIsValid flag is set based on whether we could successfully create the expected XML document.
If you attempted to parse the document and create the XML representation that is expected in the channel, but were unable to do
so because the native document does not contain the correct data or correct fields, you would set this variable to FALSE. Be sure
to set LastDocument to TRUE or you might end up sending BizTalk Server spiraling into an infinite loop of calling
GetNextDocument.

The following table can be used as a truth table as to what the implications are with regard to the various output combinations for
the function's HRESULT and the DocIsValid flag.

HRESULT DocIsValid Meaning
S_OK T Document accepted, continue with next document
S_OK F Document rejected, continue with next document
S_FALSE T Errors occurred, accept document and continue
S_FALSE F Errors occurred, reject document and continue

//set the position place holders
//these are noted with Last, but represent current doc in this fn call
//they represent the last doc processed in the GetNativeDocOffsets call
m_LastDocLength = CurrentDocLength;
m_LastDocEndIndex= m_LastDocEndIndex + m_LastDocLength;

if (SUCCEEDED(hr))
{
 hr = pDataDict.CoCreateInstance (L"Commerce.Dictionary");
 if(SUCCEEDED(hr))
 {
 BYTE* pFinalChar = pbData + bytesread;
 *pFinalChar = 0;
 BSTRData = (char*)pbData;
 hr = RehydrateDictionary (BSTRData, pDataDict);
 }
}

if (SUCCEEDED(hr))
{
 //create the output xml instance
 *DocIsValid = CreateXMLFromDictionary (pDataDict, &bstrData);
 //Attempting to set the WORKING_DATA field of the transport dictionary
 hr = PutDictValue(Dict, L"WORKING_DATA", bstrData);
}

*LastDocument = (m_CurrentDocument == m_TotalNumDocs) ? (TRUE):(FALSE);

E_FAILED Any Catastrophic failure, dump data and terminate

With regard to the copy of the data to a char* in the ProbeInterchangeFormat method, normally you would move through the
stream as you parse. However, in the sample code all the data is saved to a char* and all the parsing takes place against the char*.
However, notice that the IStream* was left at its end position in ProbeInterchangeFormat. There are some things to note that
are of significant consequence:

If you do not move the IStream* from the beginning byte, BizTalk Server will fail the parsing. For example, if I read all the data
into a char* and then reset the IStream* to the beginning, even though I might parse and return a valid document from the char*,
BizTalk Server will recognize that the IStream* is at the beginning and fail the parsing session, reporting an error that nothing
was read from the stream.

If the IStream* is not at the end and you set LastDocument to TRUE, BizTalk Server will disregard the LastDocument flag and
call GetNextDocument again.

Once the last document has been processed for the interchange, or for a particular group in the interchange, BizTalk Server calls
the GetNativeDocumentOffsets method call of the parser. It is within this call that the parser provides BizTalk Server with the
information needed to facilitate document tracking.

GetNativeDocumentOffsets

In this method, the parser informs BizTalk Server about how to extract the information related to the last parsed document from
the stream. Let's say that for the purposes of auditing we want to ensure that we log all incoming files and store them in their
inbound format. To do this, BizTalk Server will call this function. Inside this function you must set the SizeFromXMLDoc parameter
to FALSE. If we set this to TRUE, BizTalk Server will try to ascertain from what point and how far from that point to read from the
stream to log the native data by sizing the outbound XML instance that your parser creates. Since our incoming format does not
directly match the size of the resulting XML instance, we must set this to FALSE and also manually set the StartOffset and
DocLength parameters within the code.

The StartOffset parameter is the variable that BizTalk Server uses to determine from where in the stream to start reading to get
the native document. The DocLength variable is how far BizTalk Server should read from the StartOffset parameter. BizTalk Server
will use this information to read from the stream and log the document in the BizTalk Server tracking repository.

To accomplish this, we can track our processing by adding member variables to our class:

During the GetNextDocument call, we will set these. Thus, the code for this implementation of GetNativeDocumentOffsets
looks like this:

Using the sample dictionary XML from earlier in this document, I copied it and created a file that contained two instances of that
XML. Thus we have one file that contains two XML documents. I ran through this sample parser, and the single document became
two output documents. Of interest, and to the point of this paragraph, is the document tracking. Because of the code that was
implemented in this method and the fact that in the channel setup I selected to track the inbound document in both native format
and XML format, I was able to view the data pre-Parser1 and post-Parser1. By running BizTalk Document Tracking from my Start
menu and querying for the documents as related to the document type and organization, I can view the documents in the
interchange.

Long m_LastDocEndIndex;
Long m_LastDocLength;

HRESULT STDMETHODCALLTYPE CParser1::GetNativeDocumentOffsets(BOOL __RPC_
 FAR *SizeFromXMLDoc, LARGE_INTEGER __RPC_
 FAR *StartOffset, long __RPC_FAR *DocLength)
{
 ATLTRACE("In CParser1::GetNativeDocumentOffsets\n");
 //Tell BizTalk Server that we will give it the doc offset and length
 *SizeFromXMLDoc = FALSE;
 StartOffset->QuadPart = m_LastDocEndIndex - m_LastDocLength;
 *DocLength = m_LastDocLength;
 return S_OK;
}

Figure 3. BizTalk Document Tracking main page

By running a query for the test source organization and the document definition that was used (in this case the definition is
Equation, with a logical name associated with the document specification SimpleEquation), BizTalk Document Tracking produces a
screen with results as shown in the following illustration.

Figure 4. Document Tracking Query Results page

You can clearly see the two documents as the two line items with GUIDs in figure 4. These are the two documents that the parser
produced as part of the two-document interchange; if either of the documents is selected, BizTalk Document Tracking will display
both the native input data and the resulting XML from the Parser1 implementation. Be sure to note that this is data from before
the document passes through the channel. You can see what they look like in the following illustration.

Figure 5. Document data views

By tracking both documents, you can ensure that you will pass audit. Furthermore, if indeed there ever were a problem, a
comparison could be made between the incoming document and the post-parser document.

Something to consider is document tracking with regard to binary document submission, that is, a Microsoft Excel document.
BizTalk Server cannot effectively track the document, since the document cannot be broken apart. This means for tracking
purposes the parser would either respond to BizTalk Server in such a way as to not track binary objects or documentsBLOBs
within BizTalk Document Tracking, or the parser would indicate to BizTalk Server to track the entire binary steam for each parsed
out document. Once again, a Microsoft Excel spreadsheet might have several sheets, each of which is a distinct document. For the
purposes of tracking, it might be better in practice to store binary documents in place of your own design and keep a set of data
to relate the document to the Tracking_ID and submission_id that you get through the parser interfaces.

GetGroupSize

Take solace in knowing that this is the last interface that we must address with regard to parsers. This method is required when
processing interchanges that include groups. Though we did not implement a group processing parser in the sample, had we
done so, you would need to fully implement this method. If you refer to figure 2, you can clearly see that GetGroupSize is called
directly after the call to GetNativeDocumentOffsets. However, it is only called if the parser indicated that the interchange it is
parsing contains groups. For our example we set it to return E_UNEXPECTED. For our sample this method should never be called;
if it is called, the call is indeed unexpected.

Fortunately, even if we had implemented groups within our parser, there is not much happening in this function call. If the parser
had indicated that groups exist, this call would be made after the parser returned a TRUE for the LastDocument flag of
GetNextDocument. At that point, our custom parser would return the size of the group in the GroupSize parameter and indicate
whether it had just finished processing the last group in the LastGroup parameter. If the last group is processed, the parser will
exit. If not, GetGroupDetails will be called subsequent to this method.

At this point all the methods on the parser interface have been covered, so you should be able to run the example parser with this
information and be able to clearly ascertain how the parser works.

Running the Parser

Now that all the interfaces are complete, you can build and register the parser. Once the parser is successfully registered, run
BizTalk Server Administration and choose the properties for the BizTalk Server root node.

HRESULT STDMETHODCALLTYPE CParser1::GetGroupSize(long __RPC_
 FAR *GroupSize,
BOOL __RPC_FAR *LastGroup)
{
 ATLTRACE("In CParser1::GetGroupSize\n");
 return E_UNEXPECTED;
}

Figure 6. BizTalk Server Administration main page

Once the Properties dialog box appears, click the Parsers tab and click Refresh. Parser1 should show up in the list.

Figure 7. BizTalk Server Group Properties dialog box

Use the arrows on the right side of the dialog box to move Parser1 to the top of the list so that it will be called first. Click OK. The
parser is ready to be used by BizTalk Server.

You should be able to run through the test harness we initially set up by dropping an instance of the dictionary XML into the File
receive function. If you were to drop a SimpleEquationXML instance and a dictionary XML instance into the receive function,
providing that the same values are used in both documents, they should both produce the same results from passing through the
channel. This is because the parser converts the dictionary XML into the SimpleEquationXML document type before passing it to
BizTalk Server.

One more thing to note on running the parser: If you wanted to debug your parser as BizTalk Server called the methods, you
would simply need to attach to the MSCIS.EXE process. I find that the easiest way to work when debugging is to stop the BizTalk
Server service and set up the debugger to use MSCIS.EXE as its debugging process. Thus, the BizTalk Server service will start
running when you start debugging and stop when you are finished.

Implementing the Parser Summary

At this point the FirstParser component has an interface name Parser1. This object is able to receive Commerce.Dictionary objects
that contain certain fields and that have been persisted to XML through their IPersistXML interface. Moreover, the document
should run through a channel and, on the other end, BizTalk Server should produce XML that represents the equation XML that
we set up internally and that contains the result of the equation inside the XML. Furthermore, the parser can handle multiple
instances of the dictionary equation XML within a single interchange. While this is a fairly simple example, we have explored how
to build a BizTalk Server parser component. That is, we parsed the incoming data stream into a format that BizTalk Server is
expecting within the channel. We also looked at how we tell BizTalk Server where the native document sits within the input stream
so that it can save a copy of the data to the Tracking database. Although there is no code for it in the example, we also outlined
what the parser would need to do if the document was self-routing and what it means for an interchange to contain groups.

That parser represents only half of the equation. Most likely if there is a very specialized format coming in, there will be a
requirement for the same format coming out. It is on the outbound side that the custom serializer does its work.

Implementing a BizTalk Server Serializer
Congratulations! If you are going through this document top-down and reviewing the code, you are halfway done, and the
example serializer is simpler to implement than the example parser. While the job of the custom parser is to parse the incoming
data and convert it into a format that is understood by BizTalk Server, the job of the serializer is to take an outgoing document
and write it to a particular format from the internal XML representation. Examples of this might be persisting outgoing documents
to Microsoft Word, Microsoft Excel, EBCDIC, and Packed Decimal, or anything else that you can imagine. For the example code, the
serializer takes the outgoing XML document, pulls out the data from the fields, places the data as name-value pairs into a
dictionary, retrieves the XML representation of that dictionary object through the IPersistXML interface, and finally places the
data to be stored into the outgoing stream. Let's take a look at what the serializer interface methods are and how they work.

Serializer Interfaces

To implement a custom BizTalk Server serializer, we must implement a single interface consisting of five methods.

Method Description
AddDocument Adds an XML document for storage by the serializer component.
GetDocInfo Gets details of the document.
GetGroupInfo Gets details of the group, such as size and offset, for the Document Tracking database.
GetInterchangeInfo Gets information about the interchange created.
Init Outputs the document instance to the serializer component and indicates where it should be sent.

For a simple interchange that contains a single document, the calling order for the methods will be:

1. Init
2. AddDocument
3. GetInterchangeInfo
4. GetDocInfo

GetGroupInfo will be called only if a group exists in the document. In the example implementation we will not be dealing with
groups, so GetGroupInfo will not be called. The number of times the methods for handling document groups and adding
documents are called is dependent on the number of groups and number of documents that exist in a given interchange. For
further information on the call order of the methods for the serializer, see the BizTalk Server 2000 documentation and look for the
topic "Sequence for Calling Methods of the IBizTalkParserComponent Interface."

The calls to the serializer currently seem to pass only one document at a time, so we will not have to parse the data before
preparing it for serialization. If we were to implement a more complex interchange containing groups, the serializer execution
would take the following steps:

Init is called so that the serializer can retrieve some information and get a pointer to the output data stream.

Next AddDocument is called to allow the serializer to parse, translate, and transform the outbound data into the format that it
wants and add it to the outbound stream.

AddDocument is called repeatedly until the last document has been processed. At that point, GetInterchangeInfo is called and
the serializer returns an interchange identifier and the number of groups that exist.

If groups exist in the outbound interchange, the next call is to GetGroupInfo. In GetGroupInfo the serializer will tell BizTalk
Server how many documents are in the group, the offset into the stream to find the group, and the length, in bytes, of all
documents in the group.

GetDocInfo is then called for each document in each group and has similar responsibility as the parser method of
GetNativeDocumentOffsets. Once this method has been called for each document in a group, GetGroupInfo is called and then
GetDocInfo is called again.

The following diagram represents the call path for the serializer functions as described above.

Figure 8. Logical flow of serializer method calls

For this release of BizTalk Server, the number of documents passed to the serializer at a time seems to always be one. This is not
all bad because it simplifies the work that we have to do. Note that the execution path has the serializer processing all documents
and placing them into the outgoing stream before BizTalk Server starts requesting information on the groups and documents in
the interchange. Having reviewed the execution flow, let's take look at the code.

Base Code

In FirstParser, create a new ATL simple object named Serializer1. This will give us two objects within this library:
FirstParser.Parser1 and FirstParser.Serializer1.

Include the following files inSerializer1.h:

bts_sdk_guids.h
BTSSerializerComps.h. This file contains the definition for the IBizTalkSerializer interface.
Computil.h. This file contains the GetDictValue method, which we will use to add data to dictionary objects. While this is
not necessary, it relieves you from writing similar code to accomplish the same task.
Include the functions from the appendix. I included the misc.h and misc.cpp files from the parser implementation.

Compile the project to make sure that everything compiles. If it compiles, it must work.

Add the interface and method for the IBizTalkSerializerComponent interface.

In Serializer1.h, add "public IBizTalkSerializerComponent" to the class inheritance list. This enables us to implement the methods
for the parser on our component and, once finished with a few following details, be able to return an IBizTalkSerializerComponent
pointer from our component when requested by QueryInterface.

Add the following method prototypes to the class declaration:

//Serializer method prototypes
HRESULT STDMETHODCALLTYPE CSerializer1::Init(BSTR srcQual, BSTR srcID,BSTR destQual,
 BSTR destID, long EnvID, IDictionary __RPC_FAR *pDelimiters,
 IStream __RPC_FAR *OutputStream, long NumDocs, long PortID);

HRESULT STDMETHODCALLTYPE CSerializer1::AddDocument(long DocHandle,
 IDictionary __RPC_FAR *Transport, BSTR TrackID, long ChannelID);

HRESULT STDMETHODCALLTYPE CSerializer1::GetInterchangeInfo(BSTR __RPC_
 FAR *InterchangeID, long __RPC_FAR *lNumGroups);

HRESULT STDMETHODCALLTYPE CSerializer1::GetGroupInfo(long __RPC_FAR *NumDocs,
 LARGE_INTEGER __RPC_FAR *GrpStartOffset, long __RPC_FAR *GrpLen);

HRESULT STDMETHODCALLTYPE CSerializer1::GetDocInfo(long __RPC_FAR *DocHandle,
 BOOL __RPC_FAR *SizeFromXMLDoc, LARGE_INTEGER __RPC_FAR *DocStartOffset,
 long __RPC_FAR *DocLen);

Add COM_INTERFACE_ENTRY(IBizTalkSerializerComponent) to COM_MAP so that it will be returned if requested through
QueryInterface.

Add IMPLEMENTED_CATEGORY(CATID_BIZTALK_SERIALIZER) to CATEGORY_MAP. This is what will identify your component as a
serializer to BizTalk Server. So don't forget it.

While you are in this file, go ahead and add the following private members to the class; we will use them later.

In the constructor, initialize the member variables:

Add an override for the FinalRelease method so that we can release our IStream interface:

At this point you should have the class declaration complete. Now open the CPP file and add empty method implementations for
each of the methods defined by IBizTalkSerializerComponent.

Compile. At this point you should have an empty implementation of a BizTalk Server serializer.

Just for your own edification during a debug session, in each of the parser method calls add a line similar to this:

Additionally, you might want to add "hr = TraceDictionaryValues(Dict);" to the methods that receive from or write to a dictionary.

You will want to reference the MSXML libraries. You could do this by including the proper header files in your project. In the
sample, we used the #import directive to import msxml3.dll:

If you are reimplementing this sample code, I would suggest that you use the example code for implementing the functions
through the copy-paste coding style. I will refer to implementing code snippets within the document, but to get the entire code
base you will need to refer to the sample source because this document serves to explain the interfaces, not to deliver the code.

Implementing the Serializer Interfaces

You should now have a complete parser and a skeleton serializer. In the serializer we will focus on where to get the document and
what to do with it by reviewing the serializer sample method implementations.

IStream* m_DataStream;
long m_CurrentStreamPos;
long m_LastDocLength;
long m_LastDocHandle;

HRESULT CreateDictionaryFromEquationXML(IDictionary* OutputDict, BSTR DictXML);

CSerializer1()
{
 m_CurrentStreamPos = 0;
 m_LastDocLength = 0;
 m_LastDocHandle = 0;
 m_DataStream = 0;
}

void FinalRelease()
{
 if(m_DataStream != NULL){m_DataStream->Release();}
}

ATLTRACE("In CSerializer1::[method name]\n");

#import "msxml3.dll" named_guids raw_interfaces_only

Init

This method is the first method called on the serializer component, and it is where we grab some information that we need and a
pointer to our outgoing data stream. The example code does not do a lot of work here. The source and destination information is
passed into this method for use. The number of documents is passed in and currently will always be 1. However, just in case
something changes, we will add code to ensure that the number of documents is indeed 1. We will also ensure that the stream
pointer is not null.

We will need to save a reference to the stream that gets passed into the method.

Additionally, as a proactive measure, we will make sure that the stream is at the beginning.

If we were expecting to get passed delimiters into the serializer, they would be found within the dictionary passed into this
method. Once the call to Init is completed, the BizTalk Server parsing engine will continue by calling AddDocument.

AddDocument

AddDocument is the primary place in the serializer where work is performed. This is where you will implement all the code
within the serializer to move the data from the format within the stream to the expected output format.

As a parameter to this method, we receive a pointer to a Commerice.Dictionary object, which contains the document that we have
to convert to the output format. For our example this is an elementary process. First, we grab the data from the dictionary object.

The next step is to convert the XML into a dictionary instance so that we can generate the dictionary XML. The following method
call is responsible for doing this.

The code implemented within CreateDictionaryFromEquationXML is implemented as:

Create an XMLDom instance and load it with the SimpleEquation XML passed into the AddDocument method.

if (!OutputStream || NumDocs != 1) {return E_INVALIDARG;}

//grab the stream pointer, you won't get another chance
hr = OutputStream->AddRef ();
m_DataStream = OutputStream;

//make sure the stream is at the beginning. It should be, but this can't hurt
Move.QuadPart = 0;
hr = m_DataStream->Seek (Move, STREAM_SEEK_SET, NULL);

hr = EquationDict.CoCreateInstance (L"Commerce.Dictionary");
if(SUCCEEDED(hr)){hr = GetDictValue(Transport, L"working_data", &IncomingXML);}
//just ensuring proper type
if(SUCCEEDED(hr)){hr = IncomingXML.ChangeType (VT_BSTR);}

if(SUCCEEDED(hr)){hr = CreateDictionaryFromEquationXML(EquationDict, IncomingXML.bstrVal);}

HRESULT CSerializer1::CreateDictionaryFromEquationXML(IDictionary* OutputDict, BSTR DictXML)
{
HRESULT hr;
VARIANT_BOOL IsLoaded;
CComBSTR NodeValue;
CComPtr<MSXML2::IXMLDOMDocument2> pXMLDoc;
CComPtr<MSXML2::IXMLDOMNodeList> pXMLNodeList;
CComPtr<MSXML2::IXMLDOMNode> pXMLNode;

The next several sections of code retrieve the specific values from the XML document that the serializer needs to create the
outgoing dictionary object.

This code is pretty simple. You could explore different mechanisms (for example, XPath) to accomplish the same task that was
accomplished using getElementsByTagName, get_item, and get_text. At the end of this method call we return OutputDict with all
the expected name-value pairs.

Once we have the dictionary, we use the IPersistXML interface of the dictionary to generate the outgoing XML. This done within
the call to DehydrateDictionary.

The code for DehydrateDictionary can be found in the appendix of this document.

Once we have the XML in a BSTR, we need to place it into the stream. The stream expects double-byte characters. If you place
ANSI characters into the stream, you will find that the persisted document will come out as garbage. Additionally, we will have to
tell BizTalk Server how large this document is inside the stream. We will take the easy way out by multiplying the string length by
two. In a real implementation you would want to convert the BSTR to a byte pointer and set the size from that. However, for our
example, this will be sufficient.

hr = pXMLDoc.CoCreateInstance (MSXML2::CLSID_DOMDocument30);
hr = pXMLDoc->loadXML(DictXML, &IsLoaded);

NodeValue="";
hr = pXMLDoc->getElementsByTagName(L"Operand1", &pXMLNodeList);
if(SUCCEEDED(hr)){hr = pXMLNodeList->get_item(0, &pXMLNode);}
if(SUCCEEDED(hr)){hr = pXMLNode->get_text(&NodeValue);}
hr = PutDictValue(OutputDict, L"Operand1", NodeValue);
pXMLNodeList.Release();
pXMLNode.Release();

NodeValue="";
hr = pXMLDoc->getElementsByTagName(L"Operand2", &pXMLNodeList);
if(SUCCEEDED(hr)){hr = pXMLNodeList->get_item(0, &pXMLNode);}
if(SUCCEEDED(hr)){hr = pXMLNode->get_text(&NodeValue);}
hr = PutDictValue(OutputDict, L"Operand2", NodeValue);
pXMLNodeList.Release();
pXMLNode.Release();

NodeValue="";
hr = pXMLDoc->getElementsByTagName(L"Operator", &pXMLNodeList);
if(SUCCEEDED(hr)){hr = pXMLNodeList->get_item(0, &pXMLNode);}
if(SUCCEEDED(hr)){hr = pXMLNode->get_text(&NodeValue);}
hr = PutDictValue(OutputDict, L"Operation", NodeValue);
pXMLNodeList.Release();
pXMLNode.Release();

NodeValue="";
hr = pXMLDoc->getElementsByTagName(L"Result", &pXMLNodeList);
if(SUCCEEDED(hr)){hr = pXMLNodeList->get_item(0, &pXMLNode);}
if(SUCCEEDED(hr)){hr = pXMLNode->get_text(&NodeValue);}
hr = PutDictValue(OutputDict, L"result", NodeValue);

return hr;
}

if(SUCCEEDED(hr)){hr = DehydrateDictionary(&OutgoingXML, EquationDict);}

m_LastDocLength = OutgoingXML.Length () * 2;
hr = m_DataStream->Write((void*)OutgoingXML.m_str , m_
 LastDocLength, &byteswritten);
m_CurrentStreamPos +=byteswritten;

Note that the length is assigned to a member variable because it will be needed again later in the GetDocInfo call. We took the
easy road here, because we know two things:

BizTalk Server currently is only passing one document at a time.
In our Init implementation we checked to make sure that it had only one document coming into the serializer.

We also have to save the DocHandle to a member variable, because BizTalk Server will also be expecting it in the GetDocInfo call.
This would be a little more complex if we were expecting multiple documents, because we would need to save off the document
handle for each document and track each document's offset inside the stream.

GetInterchangeInfo

In GetInterchangeInfo we will tell BizTalk Server the number of groups and return an InterchangeID. For our sample
implementation we will set the number of groups to 0 and return a GUID for the InterchangeID.

Next we will create a GUID for the InterchangeID.

GetDocInfo

Similar to the parser method GetNativeDocumentOffsets, in this method we will tell BizTalk Server the handle to the document
that it gave to us in AddDocument and the size and location of the document inside the stream.

This information will be used by BizTalk Document Tracking to track the document as it is being serialized. If we were to take a
look at document tracking, we should be able to see the native and the XML formats of the documents. Running a two-document
interchange through the serializer and parser pair resulted in BizTalk Document Tracking having an incoming interchange with
two documents and two separate outgoing interchanges. The following illustration shows the native and XML format windows for
one of the documents.

HRESULT hr;
*lNumGroups = 0;
// Use a GUID tracking ID
UUID tracking_id;
CComBSTR StringUUID;
WCHAR* pwszUUID;

hr=HRESULT_FROM_WIN32(UuidCreate(&tracking_id));
hr=HRESULT_FROM_WIN32(UuidToStringW(&tracking_id, &pwszUUID));
StringUUID = pwszUUID;
*InterchangeID = StringUUID.Detach ();
hr = HRESULT_FROM_WIN32(RpcStringFreeW(&pwszUUID));

*DocHandle = m_LastDocHandle;
*SizeFromXMLDoc = FALSE;
DocStartOffset->QuadPart = m_CurrentStreamPos - m_LastDocLength;
*DocLen = m_LastDocLength;

Figure 9. BizTalk Document Tracking showing documents for the parser and serializer

The window on the left shows the document as it was submitted to BizTalk Server. The window on the right shows the document
after it passed through the parser, the mapping in the channel, and finally through the serializer back to the dictionary XML
format. If we were to click the View XML format option, we would be shown the equation XML that BizTalk Server was using
internally.

GetGroupInfo

Once again, we are not doing anything with groups in this sample. We simply return E_NOTIMPL.

However, were this method to be implemented, it would return to BizTalk Server the number of documents in the group, the
offset into the stream for the start of the group, and the number of bytes (length) of the group.

Modifying the Initial Test Harness for the Serializer

Once you have all the needed code in the serializer, or even if you want to do it with just the stub code, compile the parser and
then register it. This will allow us to set up the test scenario.

Setting up the test for the serializer is exactly the same as the parser test harness setup except for a couple of minor changes. You
could follow those directions augmented by the following or modify the existing ports and channels that were used for the parser
test. Furthermore, you could simply use the parser test harness and make a few minor changes.

You will need to create a document definition for the dictionary XML. I called mine DictionaryXMLSchema and the Schema. Up
until now we have been using the dictionary XML without a schema. However, for our serializer we need an envelope that
represents the document's persisted form. That schema looks like this:

HRESULT hr;
hr = E_NOTIMPL;
return hr;

<?xml version="1.0" ?>
<!-- Generated by using BizTalk Editor on Wed, Dec 20 2000 10:59:42 AM -->
<!-- Microsoft Corporation (c) 2000 (http://www.microsoft.com) -->
<Schema name="DICTIONARY" b:BizTalkServerEditorTool_
Version="1.0" b:root_
reference="DICTIONARY" b:standard="XML" xmlns="urn:schemas-microsoft-
 com:xml-data" xmlns:b="urn:schemas-microsoft-
 com:BizTalkServer" xmlns:d="urn:schemas-microsoft-
 com:datatypes">
 <b:SelectionFields />
<ElementType name="VALUE" content="textOnly" model="open">
<b:RecordInfo />
<AttributeType name="xml-space">
 <b:FieldInfo />
</AttributeType>
<AttributeType name="dt_dt">
 <b:FieldInfo />
</AttributeType>

Once you have created the document definition, the next step is to create an envelope of CUSTOM type that uses this document
definition. I called mine DictionaryXML.

Figure 10. Creating an envelope

Once the envelope is created, you create your associated port and channel. I created a separate port and channel for clarity, but
you could reuse the ones from the parser test and modify the envelope being used.

In the envelope page we must specify the envelope that we just created. Notice the Delimiters button. If you put delimiters in
here, they will show up in the dictionary passed into the serializer's Init method.

Figure 11. Setting the port properties to include the envelope

The next change is creating the channel. At the end of the channel setup, in the Advanced Configuration dialog box, you will
need to click the Advanced button so that we can point to our serializer. Once you have clicked it and receive the tabbed dialog
box, click the Envelope tab. From the drop-down list, select the serializer.

<attribute type="dt_dt" />
<attribute type="xml-space" />
</ElementType>
<ElementType name="DICTITEM" content="eltOnly" model="open">
<b:RecordInfo />
<AttributeType name="key">
 <b:FieldInfo />
</AttributeType>
<attribute type="key" />
 <element type="VALUE" maxOccurs="*" minOccurs="0" />
</ElementType>
<ElementType name="DICTIONARY" content="eltOnly" model="open">
<b:RecordInfo />
<AttributeType name="version">
<b:FieldInfo />
 </AttributeType>
 <attribute type="version" />
 <element type="DICTITEM" maxOccurs="*" minOccurs="0" />
</ElementType>
</Schema>

Figure 12. Setting the channel properties to use the custom serializer

Once that is selected, you should be able to modify the receive function from earlier to point to the new channel that is set up with
the serializer, run a document through the parser and serializer, and test to see if it produces the correct output. Of course, I would
suggest running debug first to step through the code.

Running the Serializer

Once messaging has been configured or reconfigured, to use the custom serializer (and envelope), you can run the same example
files that were used for the parser. If you set up a separate set of messaging artifacts for testing the serializer, you will need to
either create a new File receive function or change the existing one to use the new channel.

Execution and debugging should work the same as before. The major difference is that now once the document has passed
through the channel, the end result should be a dictionary XML document and not an equation XML document.

Implementing the Serializer Summary

After implementing the parser, the serializer should have seemed simple. This is due to the fact that we were dealing with a single
document at a time, whereas in the parser we had multiple documents in the interchange and a little more complication. We
looked at how to retrieve the data and format it for sending it back into the stream. We also looked at how to tell BizTalk Server to
track our outgoing document so that we could use BizTalk Document Tracking not only to look at our inbound documents in
native and XML formats, but also to look at our outbound documents. Finally, we looked at how to set up BizTalk Server to use the
serializer that we implemented.

Overall Summary
While the BizTalk Server interfaces for integrating your own form of parsing and serializing at first seem daunting, the challenge
is knowing what BizTalk Server is expecting in the method calls and that, in fact, it boils down to parsing a character string.

While not covered in this document in detail, we briefly touched on what one would have to change to implement the handling of
groups within a single interchange. Additionally, we referred to the fact that if we want to implement our own custom correlation,
we would implement the parser to expect receipts. Once the parser found that the incoming document was indeed a receipt, the
parser would parse the receipt and pass back to BizTalk Server a ProgID for a custom correlator to handle processing the receipt.

In reality, this example was not complex, but I hope that it served its purpose of delineating the information and facilitating the
review of the documents so that you could see the incoming and outgoing documents in a way as to help make everything lucid.
Included with the source download that accompanies this document will be the BizTalk Server 2000 exports for the channels,
ports, envelopes, and document definitions used in this example.

Appendix: Code Snippets
The following two miscellaneous functions handle calls to the IPersistXML interface of a Commerce.Dictionary object.

HRESULT STDMETHODCALLTYPE RehydrateDictionary(BSTR DictXML, CComPtr<IDictionary> pDict)
{
 HRESULT hr;
 CComPtr<IPersistXML> pPersistXML;
 hr = pDict.QueryInterface(&pPersistXML);
 if(SUCCEEDED(hr)){ hr = pPersistXML->LoadXML(NULL, DictXML);}

 return hr;

This method serves a heuristic purpose in facilitating inspection of the contents of Commerce.Dictionary objects.

This is a preliminary document and may be changed substantially prior to final commercial release. This document is provided
for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in
this document is subject to change without notice. The entire risk of the use or the results of the use of this document remains with
the user. The example companies, organizations, products, people and events depicted herein are fictitious. No association with
any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject

}

HRESULT DehydrateDictionary (BSTR* outXML, CComPtr<IDictionary> pDict)
{
HRESULT hr;
CComPtr<IPersistXML> pPersistXML;

hr = pDict.QueryInterface(&pPersistXML);
hr = pPersistXML->SaveXML(NULL, outXML);
return hr;
}

HRESULT STDMETHODCALLTYPE TraceDictionaryValues(IDictionary *pDict)
{
HRESULT hr;
CComPtr<IEnumVARIANT> pEnumVar;
CComPtr<IUnknown> pEnum;
CComVariant *ItemsInDict;
CComVariant ValuesInDict;
CComBSTR TraceMSG;
ULONG NumFetched;
long ElemsInDict;
long idxElem;

TraceMSG = "\n";
hr = pDict->get__NewEnum (&pEnum);
if(SUCCEEDED(hr)){hr = pDict->get_Count(&ElemsInDict);}
ItemsInDict = new CComVariant[ElemsInDict];
if(SUCCEEDED(hr)){hr = pEnum.QueryInterface (&pEnumVar);}

hr = pEnumVar->Next(ElemsInDict, ItemsInDict, &NumFetched);
if(SUCCEEDED(hr))
{
 for (idxElem=0;idxElem<ElemsInDict;idxElem++)
 {
 if (ItemsInDict[idxElem].vt == VT_BSTR)
 {
 hr = GetDictValue(pDict, ItemsInDict[idxElem].bstrVal , &ValuesInDict);
 if(SUCCEEDED(hr))
 {
 TraceMSG += ItemsInDict[idxElem].bstrVal;
 TraceMSG += " = ";
 TraceMSG += ValuesInDict.bstrVal;
 TraceMSG += "\n";
 }
 }
 } //end for loop
}
if(SUCCEEDED(hr)){ATLTRACE(TraceMSG);}
return hr;
}

matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, BizTalk, Visual C++, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Microsoft BizTalk Server Technical Articles

BizTalk Orchestration Example: Automating the Procurement
Process
Brian Loesgen
Stellcom, Inc.

July 2001

Download Biztalkrfqsample.exe.

Summary: This white paper will show an example of how to use BizTalk Orchestration and COM+ to solve a common real-world
business requirement. (13 printed pages)

Contents

Overview
Data Flow
The RFQ Process
The Purchase Process
Conclusion

Overview
The purpose of this white paper is to illustrate usage of various elements of Microsoft® BizTalk™ Server 2000. It highlights the
following key technologies:

Automatic schedule instantiation
Importing flat files
BizTalk Orchestration timed transactions
Schedule correlation with a non-instantiating COM component
BizTalk Orchestration while loops
Dynamic document routing

This white paper is based on a procurement process business scenario. Requests for quotation (RFQs) for a particular commodity
item are sent out to three suppliers. The suppliers send back their quotes and users issue an order to the lowest bidder.

The procurement process is divided into two logical business processes:

The RFQ process of requesting, receiving, and processing quotations (an XLANG schedule sends out the requests for
quotation and selects a winning bidder).
The purchase process of actually placing orders (an XLANG schedule sends out an order using the BizTalk Server self-
routing document capability).

Data Flow
The following illustration shows the entire procurement cycle, which consists of two XLANG schedules. The illustration shows the
tasks that the schedules contain and the evolution of the data as it moves through those tasks.

The top band shows the two BizTalk Orchestration XLANG schedules. These are stand-alone schedules that are loosely coupled
through Message Queuing (also known as MSMQ).

The second band shows the high-level tasks that occur in the XLANG schedules.

The third band shows the names of the documents as identified using BizTalk Messaging Manager.

The fourth band shows the structure of the documents at the various stages in their life cycle, and shows where in the process
flow the documents evolve from one type of document to another.

http://download.microsoft.com/download/biztalkserver/automate/1.0/WIN98MeXP/EN-US/BizTalkRFQSample.exe

Figure 1. BizTalk RFQ Sample Document Evolution (Click to enlarge)

The RFQ Process
The RFQ process sends out requests for quotation to three suppliers, waits for a predetermined period of time, and selects the
lowest bidder as the winner. At a high level, we will follow these steps:

Convert a flat file requisition to an XML message
Instantiate the schedule
Send the RFQ to three suppliers
Wait for either three responses or a time-out, whichever occurs first
Place the winning bid on a Message Queuing queue

BizTalk Messaging Entities

The entities we will need in BizTalk Messaging to support our ProcessRFQs XLANG schedule are as follows:

Name Type Use
ReceiveRequisition Messaging port Activation port to our ProcessRFQs XLANG schedule
RFQ_Supplier_1
RFQ_Supplier_2
RFQ_Supplier_3

Messaging ports Ports to the three suppliers used in this scenario

ReceiveResponse Messaging port Non-instantiating COM port used to receive quotation responses from the suppliers
SendRFQs Distribution list Distribution list that points at the three supplier ports
ReceiveRequisition Channel Channel called by the receive function as part of schedule instantiation
SendRFQs Channel Channel to the distribution list of bidders
Supplier_1
Supplier_2
Supplier_3

Organizations Supplier organizations

RequisitionFlatfile
Requisition
RFQ

Document definitions Documents that we will flow through the business process

FlatfileToRequisition
RequisitionToRFQ

Maps Maps that are used to convert between document types

Schedule Instantiation

The entire procurement process is triggered by a tab-delimited flat file appearing in a folder that is being polled by a BizTalk
Server receive function. The file is deposited into the folder by an external process, perhaps an export operation from another
application, an FTP transfer, creation from an ASP page, or even a file copy operation. The following is a sample file:

Figure 2. Sample file

BizTalk Server needs to know the structure of a flat file in order to parse it properly. This is achieved by using an envelope, which

sets out the structure of the ASCII file and serves as a wrapper for the document as it moves through BizTalk Server. Delimiters for
the flat file are specified in BizTalk Editor on the Parse tab.

The Advanced tab of the file receive function allows you to specify which envelope should be used (if any), as well as a channel. In
our case, we have an envelope called Requisition and a channel called ReceiveRequisition.

The final step in importing the document is to let BizTalk Server know how to convert the ASCII file to the document definition set
forth by the envelope, which is done by the FlatfileToRequisition map.

At this point, BizTalk Messaging Services now has enough information to be able to pick up the flat file and send it to the channel.
The map is applied as the message flows through the channel. The document that emerges is an XML document, a Requisition.

Into the Schedule

After the requisition has been passed on by the receive function, the remainder of our business process is managed by BizTalk
Orchestration. The following is the XLANG schedule for this process, as seen from BizTalk Orchestration Designer:

Figure 3. XLANG schedule (Click to enlarge)

At a high level, the following steps occur in the schedule:

Receive a requisition.
Add a reference to this instance of the schedule.
Send the RFQ out to three suppliers.
Enter a timed transaction and wait for three responses or a time-out (whichever occurs first).
Determine the lowest bidder.
Place the RFQ returned from the lowest bidder on a Message Queuing queue.

We will now look at each of these steps in detail.

Receiving a requisition

We have seen that a receive function polls a folder for a flat file and pushes it through a channel that maps it to a Requisition XML
document.

The ReceiveRequisition channel called by the receive function is connected to a ReceiveRequisition messaging port that has a new
XLANG schedule specified as a destination with a port name of ReceiveRequisition. When the channel is invoked, a new instance
of the schedule will be created and the received document will be passed into it at the ReceiveRequisition port.

Adding an instance reference

As the business process runs and we send out RFQs, we will in all likelihood have multiple instances of this schedule in progress
at various stages of their life cycle and at any given time. We need a mechanism that will allow us to correlate each response that
we receive back to the schedule instance that originated the corresponding RFQ.

Each instance of an XLANG schedule has a unique identifier associated with it (a GUID). This GUID can be derived from a port
reference.

In this example, we pass our RFQ document to a Windows® Script Component that builds a URL to an Active Server Pages (ASP)
page that will act as the response recipient. The URL consists of two distinct parts: the ASP page that will receive the response, and
a parameter, wfid, which specifies the GUID of the schedule instance. We build this Reply-to URL dynamically in the script
component and it will look something like this:

http://localhost/rfq_sample/receiveQuote.asp?wfid=sked://bl-notebook!XLANG
 Scheduler/{6CF959C3-7374-414E-8B03-EA8D0B1A1FE9}

With the moniker value assigned to wfid, we will have everything we need to make the correlation between the originating
requests and the responses we receive from our suppliers.

Sending out RFQs

For the sake of this sample, we have set up three fictitious suppliers, each of which has a BizTalk Server messaging port set up to
receive the RFQs. The ports point at RFQ.asp on localhost. The sole purpose of RFQ.asp is to receive an RFQ document, populate
the price with a random value, and then post the document to the location specified in the Reply-to element.

We could have sent out the RFQs individually to each supplier, but for the sake of convenience, we have set up in BizTalk
Messaging Manager a BizTalk Server distribution list that includes each of these three messaging ports. This allows us to send out
all three RFQs at one time.

Receiving responses—the RFQs component

The RFQs COM component contains two classes:

A loop iteration counter
An RFQ assessor

The loop iteration counter is used to count the number of passes through the message receiving loop, and the RFQ assessor
captures the returned quotations and exposes a method to determine the lowest bidder.

There may be many concurrent instances of this schedule in progress at any point in time. This leaves us with a dilemma. We
need to maintain state information (the iteration count through the loop and any messages received as part of the loop), yet
doing so would require the server to keep the stateful resources alive as it waits for responses. This is not a viable solution
because it would not scale.

The solution is to let BizTalk Server dehydration persist the stateful components.

For the XLANG Scheduler Engine to be able to persist a COM component, it must support the IPersist interface. To do this with a
Microsoft Visual Basic® component such as the RFQs component, select "Persistable" in the properties of the class in the Visual
Basic IDE.

The XLANG Scheduler will not be able to dehydrate schedules that host stateful components that do not support IPersist, so this
situation should be avoided if there are considerations around scalability or server resources.

Receiving responses—the timed transaction

From a business perspective, there is a special consideration in our scenario that must be taken into account: although we sent
out three requests for quotation, we don't know how many responses we will receive. We can request a receipt for the message
and use a receipt channel to confirm that the message was received, however that only tells us that the RFQ was received and
does not necessarily mean that the supplier will be sending a reply.

The solution to the non-responding bidder issue is to use a timed transaction, and set the transaction time-out to be the time to
wait before moving on.

BizTalk Orchestration Designer uses colored regions to indicate transaction boundaries. These regions are color-coded according
to transaction type, and in the case of a timed transaction are blue as shown. Note that in the schedule we refer to our COM
component both before and after the transaction. We need to select the winning bidder after the transaction has completed or
aborted, because we have two potential exit conditions: receiving all the responses or a transaction time-out. If we create the RFQ
assessor inside the transaction, it will not be available to us if the transaction fails. For this reason, we have an Initialize stub
method that is called to force the XLANG Scheduler to create the component before entering the transaction.

Figure 4. Receiving quotes

Receiving responses—the while loop

Responses are received inside of a while loop in the schedule.

As you would expect, BizTalk Server while loops continue processing a specified set of tasks while a specified condition is true. A
while shape has two exit branches: the "Continue" branch that is followed when the loop check condition is not true, and the loop
branch that leads to the tasks that make up the loop itself. This loop branch is terminated with an End shape—which when
executed indicates the end of the branch, not the end of schedule execution—and control returns to the loop check condition.

In our case, the check condition is the counter in the RFQs component. However, we have a sequencing issue to resolve: the loop
continuation condition (a Boolean value) needs to be initialized before we test it, or it will be null as far as the XLANG Scheduler is
concerned and we will never enter the while loop. This is the reason for making sure the Start Counter task immediately precedes
the while loop.

After we enter into our loop, we increment the iteration counter and then wait for a response to be received. If three responses
have been received prior to the time-out, the loop condition is no longer true and we exit the loop.

Receiving responses—the non-instantiating COM object

XLANG schedules can contain a special kind of COM component, a non-instantiated COM component that serves as a point you
can refer to from outside the schedule. The wfid parameter we added to our Reply-to URL is actually a moniker, and by appending
the name of the non-instantiating COM component port, we will be able to get a reference into the schedule. Conceptually, this is
a one-way path from an outside application into a running XLANG schedule instance, and this is how we will ultimately be able to
correlate a response with the schedule instance that originated it.

In the sample application, we use an ASP page, ReceiveQuote.asp, to receive the incoming quotations. To clarify this topic further,
relevant code from the page is shown below:

'// Read the workflow ID parameter. Must do this before doing the binary read.
strWorkflowID = Request("wfid")
'// Create a moniker using the workflow instance ID and the port reference
strMoniker = strWorkflowID & "/ReceiveDoc"
'// Create an instance of the XMLDOM to hold the incoming response
Set xmldoc = Server.CreateObject("MSXML2.DOMDocument")
xmldoc.async=false
'// Do a binary read of the XML that was POSTed to us
xmldoc.load(Request)
'// Create an instance of the support object
Set objPort = Server.CreateObject("XLANGSupport.Correlate")
'// Submit the document we received
Call objPort.SubmitToPort(strMoniker, xmldoc.xml)

ReceiveQuote.asp receives the response that was posted by HTTP from one of our bidders, loads it into an instance of the
XMLDOM and instantiates an XLANGSupport.Correlate component that is used as part of the correlation process (included with
the source code for this white paper). We then call the submitToPort method of the XLANGSupport.Correlate component, passing
through the moniker and received document, as shown below:

There are three ways to use the GetObject function to work with schedules:

1. When you issue a GetObject call passing through a moniker that includes the name of a schedule, a new instance is created
and a reference to it is returned.

2. When you issue a GetObject call passing through a moniker that includes an instance GUID for a schedule, a reference to
that running schedule instance is returned.

3. When you issue a GetObject call passing through a moniker that includes an instance GUID for a schedule, and also a port
name, a reference to that port in that running schedule instance is returned.

The port name refers to a non-instantiating COM object in the schedule. We are effectively calling a method that only accepts a
single parameter, which is a message being injected into a running schedule instance. A stub method must exist in a COM
component in order for the COM Component Binding Wizard in BizTalk Orchestration to identify the port, although no code will
be executed. The port is just an entry point to our schedule.

In this case, the GetObject(strMoniker) call will get us a reference to the ReceiveDoc port of the running instance of the schedule
identified by the GUID in the moniker. We then call the ReceiveDoc stub function on the port to pass in the received document.

So, to recap the route back into the workflow from our bidder:

Message is received by ReceiveQuote.asp.
ReceiveQuote.asp instantiates XLANGSupport.Correlate.
ReceiveQuote.asp calls the SubmitToPort method of XLANGSupport.Correlate, passing through a moniker containing
instance and port information, as well as the document being submitted.
SubmitToPort gets a reference to the specified workflow instance.
SubmitToPort calls the "ReceiveDoc" method of the port.

The XLANG Scheduler resumes execution of the workflow at the ReceiveQuote port. The only input value is the document that
was received.

The last step in our quotation receive process is to save a copy of the document in our COM component, which is the RetainQuote
task that passes the document it just received to the AddQuote method of the RFQs component.

Determining the lowest bidder

As we iterated through the while loop that received quotations from our suppliers, we were collecting those quotations inside a
stateful COM component.

It is very important for performance reasons to specify the statefulness of components in the Orchestration COM Component
Binding Wizard. This is where you are telling the XLANG Scheduler whether your component maintains state information and if
so, whether it can be persisted.

The GetBestQuote task calls the GetBestQuote method of the RFQs component, which will return the lowest priced quotation.

Placing the winning bid on a Message Queuing queue

The ProcessRFQ schedule communicates with the ProcessOrder schedule through a message queue. The end result of our
Request for Quotation business process, the winning bid, gets placed on an MSMQ message queue.

Public Function submitToPort(strMoniker, strDoc)
 Dim objPort
 Set objPort = GetObject(strMoniker)
 objPort.ReceiveDoc (strDoc)
 Set objPort = Nothing
End Function
Public Function ReceiveDoc(strDoc As String)
'// shell required by BTS port binding wizard. Do not remove...
End Function

This loosely coupled message-based architecture affords us the most scalability and flexibility.

Connecting Up the Data Flow

The following diagram shows the message flow through the schedule.

Item 1 shows the call to the Windows Script Component. Note the Port Reference to AddWFID. It is from this value that we are
able to extract the instance GUID that we use for correlation. The output of the AddWFID script is the RFQ message, Item 2.

Item 3 shows the quotation we received being passed through to the AddQuote method call. Item 4 shows the result of the
GetBestQuote flowing to the OrderToBePlaced message that we will put on the message queue.

Figure 5. Quotation in the AddQuote method call

The Purchase Process
The second workflow involved in this example is far simpler than the first, because the business process itself is far simpler. All we
do here is pick up a winning bid from a known queue location, convert it to a purchase order, and send it out to a vendor.

This schedule features an important capability of BizTalk Messaging: dynamic routing. The endpoint to which we send the
purchase order is specified in the document itself.

BizTalk Messaging Entities

The entities we will need in BizTalk Messaging Services to support our PlaceOrder XLANG schedule are as follows:

Name Type Use
WinningBid Messaging port Activation port to the PlaceOrder XLANG schedule
Order Messaging port Open destination messaging port used to send orders
WinningBid Channel Channel called by the receive function as part of schedule instantiation
Order Channel Channel used to send outbound order
Purchase Order Document definition Purchase order sent to a supplier
RFQToPurchaseOrder Map Converts an RFQ to a purchase order

Schedule Instantiation

The purchase order issuing process is triggered when an RFQ appears in a Message Queuing queue that is being polled by a
BizTalk Server receive function. In our case the message is being deposited by the ProcessRFQs XLANG schedule that we just
discussed, but other processes or applications could also be depositing messages there.

Into the Schedule

After the RFQ has been passed on by the receive function, the remainder of the business process is managed by BizTalk
Orchestration. The following is the XLANG schedule for this process, as seen from the BizTalk Orchestration Designer:

Figure 6. The remainder of the business process (Click to enlarge)

You can see that this schedule is far simpler than the first one. These are the steps that occur in the schedule:

Receive RFQ
Display a message
Send an order

We will now look at each of these steps in detail.

Receiving an RFQ

In the prior example, we saw that a receive function can poll a file folder. In this case we're polling a Message Queuing queue
instead.

When an RFQ appears in this predefined queue, the receive function pushes it through the WinningBid channel. As it flows
through the channel, the RFQToPurchaseOrder map is applied and the RFQ document is converted into a PurchaseOrder
document.

The WinningBid channel called by the receive function is connected to a WinningBid messaging port that has a XLANG schedule
instantiation specified as a destination, with a port name of GetWinningBid. This means that when the channel is invoked, a new
instance of the PlaceOrder schedule will be created and the received document will be passed into it at the GetWinningBid port.

Display a message

Obviously we would not have this situation in the real world. This task simply provides feedback as the sample runs because this
is the only feedback mechanism in either of the schedules in this white paper. It displays the endpoint of the winning bidder.

Send an order

We have now reached the end of this business process that began with a simple flat file. This is also where we see the dynamic
routing at work.

When we reach this task we call the submitOrder method of our RFQs component, passing the document into it.

The submitOrder method will take that document and submit it to BizTalk Messaging, which in turn will send it to the proper
destination. The destination endpoint is included in the RFQ document with which we started this business process—in the
OrderAccepterAddress element. But how does BizTalk Server know which element to use?

The answer is that we have told it where to look, by using BizTalk Editor to specify in the document definition that the
OrderAccepterAddress element is the "Destination Value." This identification is done on the Dictionary tab, as shown below:

Figure 7. Identifying the destination value

Conclusion
This white paper has shown an example of using BizTalk Orchestration and COM+ to solve a common real-world business
requirement.

From a business standpoint, we have created a process whereby a flat file enters one end of a business process, it gets sent to
multiple suppliers as a request for quotation, and the successful bidder receives an order. The entire process is highly automated
and runs with no human intervention whatsoever.

From a technical standpoint, we have exercised many capabilities of BizTalk Server. We have seen:

How to use while loops and timed transactions in BizTalk Orchestration.
How to use a non-instantiating COM component to correlate a response with a running schedule instance.
How separate business processes can be loosely coupled together using Message Queuing.
How the dynamic self-routing document capabilities of BizTalk Server can be used to route a document to a destination
specified inside the document itself.

This white paper has exercised some of the more advanced capabilities of BizTalk Messaging and BizTalk Orchestration, and has
shown how they can be assembled to provide advanced business process automation solutions.

Brian Loesgen is a Principal Software Engineer at Stellcom Inc., a leader in providing wireless-based engineering solutions for the
mobile economy. Brian utilizes his XML expertise to translate new, leading-edge technology into real-world value. He is a co-
author of the "Professional XML," "Professional ASP/XML," and "Professional Windows DNA" books from Wrox, as well as having
written technical white papers for Intel, Microsoft and others. Brian has spoken at XML One, XML Devcon Conferences, the Wrox
Developer Conferences, and numerous other major technical conferences worldwide.

Microsoft BizTalk Server Technical Articles

BizTalk Orchestration: Transactions, Exceptions, and
Debugging
Ulrich Roxburgh
Microsoft Corporation

February 2001

Summary: This article examines the transactional support available in Microsoft BizTalk Orchestration Services and looks at how
to use the transactions and exception-handling support to handle errors that might occur in schedules. In addition, it looks at how
to debug schedules and components in schedules. This article is targeted at designers and developers implementing long-running
business processes using BizTalk Orchestration Services. (22 printed pages)

Contents

Introduction
Orchestration and Transactions: The Long and the Short of It!
Error Handling in Schedules
Debugging Schedules

Introduction
With Microsoft® BizTalk™ Orchestration Designer, users can design long-running business processes, specify an implementation
for the individual actions that make up those processes, and compile this information into an executable XML representation,
known as an XLANG schedule. The schedules created are distributed across time, organizations, and applications, in a loosely
coupled and scalable manner. However, because of the highly distributed nature of these processes, the likelihood of errors and
exceptions occurring during execution of schedules is even greater than for traditional short-lived business processes.

Orchestration Designer presents a visual design and development environment that separates the business process being
developed from the implementation of that process. Using this tool, developers can specify an implementation for each of the
individual actions that make up those processes and can compile this information into an executable XML representation. BizTalk
Orchestration Designer provides a rich set of programming constructs, including transactions and exception processing
semantics.

Transactions are provided to group collections of actions into a single logical unit of work, to ensure that all the work done by the
actions within the group is committed, or that all the work is undone. This grouping of actions provides the highest level of
structure and reliability. There is support not only for short-lived transactions, but also for transactions spanning long-running
business processes, and timed transactions

Exception processing provides additional logic to undo the results of transactions or to provide an alternate series of actions to
take in the event of a processing error. This exception processing includes On Failure and Compensation processing to support
error handling for long-running business processes.

Finally this article discusses methodologies to debug and troubleshoot BizTalk Server Orchestration Services and BizTalk
Messaging Services.

Orchestration and Transactions: The Long and the Short of It!

What Is a Transaction?

Mankind has engaged in transactions since the earliest times. In a typical scenario, a buyer and a seller negotiate a suitable price
for some goods. Assuming an agreement is struck, the buyer hands over the money in exchange for the goods. The important
point here is that either the whole transaction proceeds or none of the transaction proceeds. If the buyer gets the money and the
seller gets the goods, everyone is happy. If the seller doesn't get the money, he doesn't give the goods to the buyer, which is still
an acceptable outcome. However, if the buyer hands over the money and doesn't get the goods, the buyer is unhappy. Similarly, if
the seller hands over the goods but doesn't get the money, the seller is unhappy.

If the buyer and the seller don't trust each other to uphold their end of the bargain, they might call on the services of a trusted
intermediary. To carry out the transaction, the buyer hands the money to the intermediary, and the seller hands the goods to the
intermediary. The intermediary then ensures that the seller receives the money and the buyer receives the goods.

What does all this have to do with transactions on computers? Consider a process to transfer money in a banking application:
money is taken from one account (a value is decremented in a record in one database) and put into another account (a value is
incremented by the same amount in a record in another database). This series of operations must act like a single atomic

operation (that is, perform as a single indivisible operation). This is termed a transaction (the term is derived from the phrase
"transformation action"). A transaction is an action or series of actions that transform a system from one consistent state to
another.

Transactions adhere to a set of properties known as ACID properties:

Atomicity. A transaction represents an atomic unit of work. Either all modifications within a transaction are performed or
none of the modifications are performed.
Consistency. When committed, a transaction must preserve the integrity of the data within the system. If a transaction
performs a data modification on a database that was internally consistent before the transaction started, the database must
still be internally consistent when the transaction is committed. Ensuring this property is largely the responsibility of the
application developer.
Isolation. Modifications made by concurrent transactions must be isolated from the modifications made by other
concurrent transactions. Isolated transactions that run concurrently will perform modifications that preserve internal
database consistency exactly as they would if the transactions were run serially.
Durability. After a transaction has committed, all modifications are permanently in place in the system. The modifications
persist even if a system failure occurs.

Just like the analogy about transactions in a marketplace, often neither party involved in a transaction has control over the other
one (for example, in a transaction involving updates in two separate databases), so neither party is able to guarantee the atomicity
of the process. And just like in the marketplace analogy, the solution to this problem is to introduce a third party or intermediary
to ensure that either both actions occur or neither action occurs.

On Microsoft® Windows NT® 4 and Microsoft Windows® 2000, this intermediary is known as the Microsoft Distributed
Transaction Coordinator (MSDTC). MSDTC was first released together with Microsoft SQL Server™ 6 and provides an object-
based programming model for creating, destroying, managing, and monitoring transactions. MSDTC works in conjunction with
some helper services (known as resource managers) to ensure that the ACID properties for a transaction are maintained.

Resource managers own the objects affected by the transactions and are responsible for the persistent storage of the resource
objects. A resource must have a resource manager to take part in a transaction with the Distributed Transaction Coordinator. Note
also that the Distributed Transaction Coordinator and the resource managers can be distributed across multiple nodes on a
network.

To coordinate the actions in a transaction, and to maintain the ACID properties, the Distributed Transaction Coordinator and the
resource managers use a protocol known as the two-phase commit protocol. The algorithm for the two-phase commit protocol is
a complex sequence of operations, which increases in complexity as the number of resources (and therefore resource managers)
increases. The most significant feature of the protocol is that the records that will be updated must be locked during the two-
phase commit. This lock on the database records remains until the transaction is either aborted or committed. This factor has an
important bearing on transactions in long-running business processes.

Despite the fact that the Distributed Transaction Coordinator greatly improves the ease with which programmers utilize
transactions in their applications, this model still suffers from one big weakness. Transactions are typically implemented within
components (initiated, and committed or aborted). When the actions that make up a complete transaction are spread across
multiple components (that is, initiated in one component and either committed or aborted in another), it is difficult to reuse those
components to implement new transactions composed of a different combination of components.

In the diagram, Transaction 1 is initiated inside the Customer component and committed in the Invoice component. There is also
an Agent component, which initiates a second transaction. Now if for some business process another transaction (Transaction 2)
is created that consists of the Customer and Agent components, the transaction can't be easily composed, because both
components initiate a transaction but neither component completes the transactions (commits or aborts the transaction).

In 1997, Microsoft released the Microsoft Transaction Server (and also released a new version of the MSDTC). This product was
revolutionary in providing a declarative model for transaction programming. Now, instead of programming the transaction
semantics within a component (and thus essentially hard-coding the composition of the transaction), the programmer declares
transaction properties for a component as a whole, and implements entire transactions by composing the transaction from
individual COM components.

This new model allowed programmers to compose their transactions in a much simpler manner, greatly increasing reuse of
transactional components. COM components became the building blocks for business transactions. All of the services provided by
Microsoft Transaction Server have now migrated to Windows 2000 and have been significantly enhanced as COM+ services
under Windows 2000.

COM+ provides five levels of transactional support:

Disabled. This selection specifies that the component will ignore COM transaction management.
Not Supported. This selection specifies that the component will not participate in a transaction, or propagate the
transactions of other components.
Supported. This selection specifies that if a transaction is currently running, the component will be included in the
transaction. However, the component will not initiate a transaction.
Required. This selection specifies that if a transaction is currently running, the component will be included in the
transaction. If there is no transaction running, a new transaction will be created for the component.
Requires new. This selection specifies that a new transaction will always be created for the component.

BizTalk Orchestration leverages off the existing COM+ services, providing a sophisticated graphical programming paradigm for
developing complex business processes, complete with transaction programming and exception handling semantics, that provide
the same kind of revolutionary transaction programming semantics as COM+ services.

There are multiple levels of transactional support within BizTalk Orchestration. The first level of that support comes from treating
an entire schedule as a COM+ transactional component. Next, it is possible to specify transactional semantics for a collection of
actions within that schedule by enclosing those actions within a transaction shape. This allows schedules to support short-lived
DTC style transactions (transactions managed by the Distributed Transaction Coordinator and utilizing the underlying COM+
services), and to additionally support long-running transactions (which represent business processes that run over an extended
time period) and timed transactions (which represent actions that might time out after an extended period). Schedules also
support transaction compensation and exception processing semantics.

Business Process Diagrams as a Transaction Participant

The first level of transaction support provided by BizTalk Orchestration Services allows an entire schedule to be treated as a
transactional component. The transactional support of the schedule is set declaratively in a manner similar to the way
transactional support is declared for a COM+ component. The schedule is then initiated by a COM+ component, which might or
might not already be running within a transactional context. In essence, the schedule provides the implementation of that
transactional COM+ component.

The transaction model for a schedule can be set by opening the Properties dialog box for the Begin shape at the start of the
schedule. By default this is set to Include transactions within the schedule. To treat the whole schedule as a transactional
component, select Treat the XLANG Schedule as a COM+ Component. The level of transactional activation for the schedule
can also be set:

Select Not Supported if the XLANG schedule does not support transactions.

Select Supports if the XLANG schedule participates in a COM+ transaction.
Select Requires if the XLANG Scheduler Engine works with COM+ to ensure that all the COM components that are created
by the schedule are transactional.
Select Requires New if the XLANG schedule must participate in a new transaction. If this setting is enabled, COM+ services
automatically initiate a new transaction that is distinct from the caller's transaction.

Using this mechanism, the orchestration engine effectively provides business process automation implemented within a single
COM+ component. That is, the whole schedule functions as a single COM+ component, and that COM+ component can support
transactions as described above. Note that when using an entire schedule as a component, that schedule cannot contain any
transaction shapes itself (transaction shapes can be included in the schedule, but the schedule won't compile), and there are
limitations on the use of concurrent streams of execution within the schedule—when using the Fork shape in the schedule, all
transactional actions must occur in one stream of execution.

Note that the mechanism of using the schedule as a self-contained transactional component relies on the underlying COM+
services to manage transactions. If a transaction is aborted, only the actions implemented in terms of transactional components
will be rolled back. Transactional components can be COM+ components, Script Components, or transactional Microsoft Message
Queues.

In this example, the schedule has been configured as Treat the XLANG Schedule as a COM+ Component (in the Properties
dialog box of the Begin shape). It has also been configured to require a transaction. The implementation of the schedule (not
shown) reads a message from a transactional message queue (receive queue) and writes the message to another transactional
message queue (send queue).

If this schedule is executed by instantiating it from a COM+ component, which is also configured to require a transaction, and that
transaction is committed (the component calls SetCommit), a message will be read from the receive queue and written to the
send queue. If, however, the COM+ component for some reason aborts the transaction (calls SetAbort), the message that was
read from the receive queue will be replaced in the queue, and no message will be written to the send queue.

Types of Transactions within Schedules

If the transaction model for a schedule is set to Include Transactions within the XLANG Schedule (the default setting), the
schedule can contain transaction shapes. To add transactions to a schedule, drag the Transaction shape from the flowchart
palette and position it to enclose all the actions that will take part in the transaction.

It is also possible to nest one or more transaction shapes within an outer transaction shape. A short-lived transaction groups a
series of actions within its boundaries, but it cannot nest another transaction. Long-running transactions and timed transactions,
however, can be used to group any combination of actions—short-lived transactions, long-running transactions, or timed
transactions. Note, however, that transactions cannot be nested deeper than two levels.

Properties for the transaction can be set by clicking Properties for the transaction shape, which displays the Transaction
Properties dialog box. This allows the transaction to be named and the transaction type (timed, short-lived, or long-running) and
other transaction properties to be set.

Additionally, On Failure code or Compensation code can be added to the schedule if appropriate. On Failure code creates a new
page on the schedule (On Failure of Transaction page), which is used to design an alternate business process to handle the
failure of the selected transaction. This option is available for all transactions (see "Transaction On Failure Processing" later in this
article). Compensation code also creates a new page in the schedule (Compensation for Transaction page), which is used to
design an alternate business process to undo the logical unit of work that was performed in a nested transaction that has already
committed. This option is available only for nested transactions (see "Transaction Compensation Processing" later in this article).

The other transaction properties that can be set are:

Timeout. This property sets the time a transaction is allowed to run before it will be automatically aborted or retried. This
property cannot be set for long-running transactions.
Retry count. This property determines the number of times a process within a short-lived transaction will be run if the
process within the transaction does not complete. For each retry, the state of the application is reset to the starting point of
the process within the transaction. This option is available only for short-lived transactions.
Backoff time. This property determines the interval between each attempt to retry the transaction. The backoff time is used
with the retry count value to determine how long to wait before the next transaction retry. The backoff value is exponential.
A backoff value of 2 seconds results in intervals of 2, 4, 8, 16 seconds, and so on between each retry. The formula is B**R (B
raised to the power of R), where B=backoff time and R=current retry count. If the backoff time of a specific transaction retry
attempt is greater than 180 seconds, the XLANG schedule instance will be dehydrated to the persistence database
immediately. This option is available only for short-lived transactions.
Isolation level. The isolation level determines the degree to which data within concurrent transactions is accessible to each
other. This option is available only for short-lived transactions. The choices are:

Serializable to prevent concurrent transactions from making data modifications until the selected transaction is
complete. This is the most restrictive of the four isolation levels.
Read Uncommitted to allow concurrent transactions to make data modifications before the selected transaction is
complete. This is the least restrictive of the four isolation levels.
Read Committed to prevent the selected transaction from accessing data modifications in concurrent transactions
until they are committed. This option is the Microsoft SQL Server default setting.
Repeatable Read to require read locks until the selected transaction is complete.

Short-lived (DTC Style) Transactions

When a transaction shape is set up on a schedule, it defaults to being a short-lived transaction (transaction box is filled in gray).
This transaction type is dependent on the underlying transaction support from COM+ and MSDTC. Short-lived transactions allow
atomic (single, indivisible) units of work to be created from a number of discrete and independent units.

Although the properties for the transaction can be set in the Properties dialog box, and the boundaries of the transaction defined
by the actions that are grouped within the transaction shape, short-lived transactions depend on the transaction properties set for
the implementation port connected to that action, and the transaction properties of the components, message queues, or scripts
referenced by that implementation port.

Specifically, this means that the implementation for the actions enclosed by a transaction shape should be COM+ components
that support transactions, scripts that are marked as transactional, or reads and writes to transactional message queues if those

actions are to be successfully aborted. If a transaction shape encloses an action connected to an implementation port that does
not support transactions, the work done by that COM+ component, script, or queue will not be rolled back if the transaction is
aborted. Taking this into account, nontransactional components can still be used to implement actions that are part of a
transaction.

The schedule shows three actions that are enclosed in a short-lived transaction. In the implementation of this schedule (not
shown), the first action is a message arriving in a transactional message queue (receive queue). A COM+ component is then
instantiated, and a method is called on the component. The method displays a dialog box, which lets the user select either to
commit or to abort the transaction (call SetCommit or SetAbort within the method on the COM+ component). The last action
takes the original message and writes it to another transactional message queue (send queue). When this schedule is executed, if
the user elects to call SetCommit, the message will be read from the receive queue and placed in the send queue. However, if the
user elects to call SetAbort, the message will remain in the receive queue.

The last thing to note is that for every instance of this schedule, a new instance of the Query Abort component will be
instantiated as the short-lived transaction starts, and that instance will be destroyed when the transaction terminates (either
aborts or commits). This is the same just-in-time activation model first delivered with Microsoft Transaction Server. Any state held
by the component will be lost.

Long-running Transactions

When looking at a business process that might execute over an indefinite time period, traditional short-lived transactions can't be
used. This is because each short-lived transaction holds database locks and resources. Given that there can be thousands of
business processes running on a computer at any particular time, the number of these resources held would be impractical.
Instead, the transaction type is set to be long-running. A long-running transaction has all the ACID properties described
previously except one, Isolation.

Isolation means that nothing outside a transaction can even see (let alone update) any of the data that is being used within a
transaction. The reason for isolation is that the result of the transaction is unknown until it either commits or aborts, so the
current data value might be valid or invalid. Since the data might be invalid, nothing else can be allowed to access the data, in case
it is misused. Isolation is a property of short-lived transactions (one of the ACID properties) and is implemented by locking
records in the database.

In a long-running distributed business process, records in a database can't be locked for extended periods of time, nor can
records be locked in databases distributed across organizations (imagine trying to convince the database administrator of another
organization to let you lock records in his database!). Long-running transactions are specifically designed to group collections of
actions into more granular atomic units of work that can exist across time, organizations, and applications. In a long-running
transaction, other transactions can see the data being used by the transaction. Of course long-running transactions can also be
composed of actions that are themselves short-lived transactions (short-lived transactions can be nested within long-running
transactions).

For example, imagine a business process that is initiated when a purchase order request is received. The request is logged to a
database and then sent to the request approver. It might take some time (weeks!) for the approval response to be received, at
which point the response is also logged to a database and the purchase order is sent to the supplier. Receiving the initial request
(and logging it) and receiving the response (and logging it) are themselves each composed of multiple actions (receiving and
logging).

In this scenario, short-lived transactions are used to group related actions into a single atomic transaction (receiving a message

and logging it to the database). However, the receipt of the purchase request message and the receipt of the approval message
can't be grouped within a single short-lived transaction, because that would lock rows in the database for indefinite periods.
Imagine if 5000 users all did that at the same time! Instead, a long-running transaction is used to group the two short-lived
transactions, which might be separated by a significant time period.

Now imagine what happens when this business process is executed. First, the purchase request is received and the database is
updated in a short-lived transaction. If anything goes wrong, the transaction will be aborted and all changes will be undone;
otherwise, the transaction commits. Then the schedule waits for the arrival of the approval message. When the message arrives,
the database is again updated transactionally.

If anything goes wrong, the To Supplier transaction will abort automatically. However, the Receive PO transaction can't be
aborted, because it has already been committed. In this event, the first transaction needs to supply some code that can undo the
actions it has performed, in the event of a transaction abort after the transaction has already committed. This is known as a
compensating transaction (see "Transaction Compensation Processing" later in this article). In this scenario, if something causes
the To Supplier transaction to abort, the resource managers and MSDTC will take care of undoing all work done by the To
Supplier transaction. The Compensation code supplied by the Receive PO transaction will undo the already committed changes
made by that transaction.

The overall grouping (composition) of short-lived transactions into a long-lived transaction is controlled by the long-lived
transaction. Typically, a long-running transaction will contain several nested short-lived transactions. Depending on the
requirements of the business process described by the XLANG schedule drawing, an entire business process (with the exception
of the Begin shape and an End shape) can be enclosed within a long-running transaction as shown here.

Timed Transactions

Timed transactions are used to trigger an abort of a long-running transaction if it has not completed in a specified amount of
time. Long-running transactions do not utilize the time-out property on the property page. It is typically very difficult to decide in
advance how long a business process should take. However, it is possible to make a reasonable estimate of how long a specific
action within a business process should take, for example, the arrival of a message.

Thus, a timed transaction can be used to group short-lived transactions and to wait for the arrival of a message within a specified
time period. If the message arrives in time, the timed transaction commits; otherwise, the timed transaction aborts and causes the
short-lived transactions to execute their Compensation code.

In the example, a short-lived transaction is used to Send Money. This transaction groups the Withdraw Money and Initiate
Wire Transfer actions. When the Initiate Wire Transfer action has completed, the business process sequence flows out of the
nested transaction. When this happens, the nested transaction is committed: the money is withdrawn from a bank account and
sent to a destination. At this point, the business process sequence flows to the Wait for Acknowledgement action in the outer
transaction.

In this scenario, the Wire Transfer transaction has been configured as a timed transaction. If the sender has not received an
acknowledgement of receipt of the money within the specified amount of time, the outer transaction will abort. When this
happens, the business process sequence flows to the Compensation for Send Money page for the nested transaction and to the
On Failure of Wire Transfer page for the outer transaction (see "Transaction Compensation Processing" later in this article).

Timed transactions can also be modeled by having two flows of execution within a schedule, one of which waits for the arrival of
the message, while the other has a timer that will time out within the specified period. Whichever event occurs first (arrival of the
message or time-out of the timer) completes the transaction (causing a commit or abort, respectively). However, modeling a
timed business process in this way would impose restrictions on the ability of the schedule to dehydrate itself, and, in any event,
timed transactions are much more convenient.

Transaction Properties of Implementation Ports

As noted previously, there is a distinction between the action shapes used in a schedule and the implementation of those shapes
in the implementation port. The transaction properties of the actions are dependent on the transactional properties of the
underlying implementation. This means that only actions that are implemented using transactional components will actually take
part in a transaction.

Specifically, this means that the implementation of the actions enclosed by a transaction shape must be COM+ components that
support transactions, scripts that are marked as transactional, or reads and writes to transactional Message Queues if those
actions are to be successfully aborted. When linking the binding of COM+ or script components to the port implementation, the
transaction support of that implementation port can be set in the same way as transaction support for a COM+ application is set
(disabled, not supported, supported, required, requires new).

It is perfectly acceptable to implement actions inside a transaction with nontransactional implementation ports, but any changes
made by those implementations won't be rolled back in the event of a transaction abort. In any case, transactions won't be
supported in implementation ports unless they deal with resources that are managed by resource managers that can work with
the Distributed Transaction Coordinator, which in practice means most common databases, and Microsoft Message Queuing.
Nontransactional cases are handled using On Failure processing (see "Transaction On Failure Processing" later in this article).

The last transaction property that can be set in the port implementation is the ability to abort a transaction if an error occurs
during the processing of that component or script. Using this mechanism, the current transaction can be aborted by returning a
COM+ error from a COM+ object or script.

What Causes Transactions to Abort?

How is a transaction potentially aborted? Transactions execute normally until either the process flows outside the transaction
boundaries (the transaction commits and completes) or an abort occurs. An abort can occur for a number of reasons:

Encountering the Abort shape within the process flow.
A failure return code from a COM+ component (HRESULT) that is specified to cause an abort in a port binding.
Any binding technology can, at a system level, introduce a failure event that aborts the transaction. For example, Message

Queuing might fail to put a message on a queue.
The XLANG Scheduler Engine (the COM+ application that executes instances of schedules) might encounter an error that
causes it to abort a transaction within a given instance. For example, there might be a DTC error.
Pausing a schedule might require all transactions within that schedule to abort.
A transaction time-out within the transaction properties.

When an abort occurs, a transaction might retry from the beginning, depending on the value set in the Retry count property of
the transaction group. If, after a transaction has retried the specified number of times, it continues to fail, the On Failure business
process will be called. This On Failure code provides a structured place to handle the failure of a transaction.

Error Handling in Schedules
As the previous section shows, short-lived transactions can be used to provide automatic rollback and recovery for some of the
actions in schedules. However, many of the actions can't be implemented in a transactional manner, so to handle error conditions,
other forms of error handling, such as exception processing, and compensating transactions must be used. This section focuses
on how to build error handling into schedules.

Causes of Errors

Looking first at the possible cause of errors in a schedule, there are three levels of errors that can occur while the XLANG
Scheduler Engine is running. In decreasing order of severity, these are:

Errors that cause a failure. System errors that cannot be trapped by the XLANG Scheduler Engine can cause the engine to
fail along with all schedule instances that are running in the same COM+ application. The most likely cause of such a failure
is an in-process, badly written COM+ component. Such components should be well tested out-of-process and then placed
in process.
Errors that cause an abnormal termination, including an out-of-sync COM+ component, a message queue that does not
exist, or a messaging channel that does not exist.
Errors that can be trapped.

Naturally, during the processing of the schedule, errors need to be detected and handled appropriately. Errors that can be trapped
within an XLANG schedule include COM components that return failure HRESULTs (this applies to COM+ components or scripts)
and transaction aborts caused by enlisted services (such as if the connection to a database was lost).

Handling Errors

As indicated in the previous section, the XLANG Scheduler Engine can trap application and system errors. XLANG schedules can
be designed to react to errors at run time, either by testing explicitly for an error result using a decision rule or by using
transaction failure processing.

To use logical branching to explicitly test for an error result, the value returned after calling a method on a COM+ component or
script is tested. This value is stored within the __Status__ field of the _out message from the COM component (all actions in a
schedule are implemented in terms of messages; in the case of COM+ components this means a message is sent in to the
component and another message is sent out from the component).

To implement this, a Decision shape is added immediately after the action whose result needs to be tested, and a rule is added to
test the output of the COM component (_out.__Status__ >= 0, where a negative HRESULT indicates failure and a positive
HRESULT indicates success). Specific failure codes can also be tested for, if this is appropriate. These codes are defined in the
header file Winerror.h.

Errors can also be handled using transaction failure processing. If an action is enclosed within a transaction shape and the action
is implemented as a COM+ component or script, and that component or script aborts the transaction, the work done by all

components taking part in the transaction will be undone. If the component that triggers the abort is not transactional, the
transaction abort needs to be triggered in some other way. Setting the error handling within the COM Component Binding
Wizard to abort the transaction if the method returns a failure HRESULT does this.

This option will have an effect only if the communication action that uses this port is within the process flow of a transaction.
When this is set for a COM+ component or script, and a bad HRESULT is returned, any transaction currently running will be
aborted. The same functionality can be achieved in a schedule by testing for the bad HRESULT using a Decision shape, and then
executing an Abort shape if a bad HRESULT is returned (but the error handling in the COM Component Binding Wizard is much
more convenient).

Handling a failure in the Message Queuing or BizTalk Messaging implementation technologies can only be performed with
transaction failure processes. Transactional support is specified in the Message Queuing Binding Wizard by indicating that
transactions are required with this queue (this is done automatically for BizTalk Messaging). Note that a Message Queuing send
action that returns successfully indicates that the message has been successfully placed onto the queue, but it does not indicate
that the message has been delivered.

Transaction On Failure Processing

Grouping individual actions that use short-lived transactions into more granular business processes is obviously one very
effective mechanism for safeguarding schedules against errors. However, with long-running business processes, a number of
other mechanisms must be used to develop schedules that can handle errors appropriately.

With short-lived transactions, the boundaries of transactions are set declaratively using the Transaction shape, and then those
transactions are aborted either by calling SetAbort within a transactional component or by having a component return a bad
HRESULT, which can be trapped. If the actions within the transaction are bound to transactional resources, the Distributed
Transaction Coordinator will handle the rollback of all the enlisted actions within the transaction. Any work done will then be
completely undone.

However, there are many circumstances where traditional short-lived transactions are either inadequate or unable to perform as
required. In these cases, On Failure processing can be used to add additional error handling semantics to schedules. On Failure
processing is implemented as unique, separate flows within schedules, implemented on separate processing pages in BizTalk
Orchestration Designer. When setting the properties for a Transaction shape, the business process designer can choose to add
code for On Failure processing. This results in an additional page, On Failure of Transaction, being added to the schedule . The
business process designer can add additional logic here to handle the failure of the transaction. This code will be invoked if the
transaction aborts (after the transaction has aborted, and all the transactional components have undone their work).

Now, when a short-lived transaction aborts, any actions bound to nontransactional resources (for example, sending e-mail) will
not be rolled back. Additional actions can be added to the On Failure of Transaction processing page to undo these
nontransactional actions (for example, sending another e-mail that states that the first e-mail should be ignored).

Of course On Failure code can do literally anything, and it does not have to confine itself to undoing actions grouped within the

transaction. As well as undoing nontransactional actions, other work might need to be done when a transaction aborts. In a typical
business process, aborting a transaction and cleaning up the work done is seldom sufficient. At the very least, the transaction
failure might need to be logged, but more typically it will also need to perform other actions, such as letting the user know the
result of the transaction. Once again, On Failure processing can be used to implement these actions in the event of a transaction
failure.

On Failure processing can also be applied to long-running transactions and timed transactions. For example, if a timed transaction
is set up to await the receipt of a message, the On Failure processing can be used to alert the appropriate user when the message
fails to arrive.

There is one further subtlety associated with On Failure processing, namely that any actions that occur after a transaction have no
way to determine if that transaction committed or aborted, unless this information is passed to those actions in a message. For
example, consider a schedule with a number of actions, some of which are grouped into a transaction. A message (an XML
document perhaps) passes through the schedule from start to finish.

If the transaction commits, everything will operate correctly, and the message will be updated by the actions (the work done by
the actions will be committed). However, imagine if one of the actions aborts the transaction. In this case, all the changes to the
message will be undone. An action after the transaction will not be able to tell if the transaction has committed or aborted (that
information is not passed on), and it won't have any idea which actions successfully processed the data and which action failed,
since all changes to the message will be rolled back.

The On Failure of Transaction page again is the best way to implement this scenario. The On Failure code will be executed after
the transaction aborts and, significantly, all changes made to messages will be available to the On Failure code. Additionally, the
On Failure code can set fields in the message that indicate that a transaction abort has occurred, so that successive actions can
take appropriate action.

Transaction Compensation Processing

On Failure processing works in terms of a single transaction. Transaction abort processing becomes even more complex with
long-running business processes and nested transactions (as discussed previously, transactions can be nested within long-
running or timed transactions).

The example shows the timed transaction Wire Transfer, which groups the short-lived transaction Send Money. If this schedule
is run, the Send Money transaction will execute (and presumably commit). The schedule will then wait for an acknowledgement
to indicate that the wire transfer has occurred correctly.

If the acknowledgement does not arrive within the specified time period (whatever time-out was set for the timed transaction),
the timed transaction (Wire Transfer) will abort. However, the inner transaction (Send Money) cannot be aborted, since it has
already committed. Even if On Failure code were supplied for this transaction, it would not be called, because this inner
transaction has not failed.

This scenario is handled by providing Compensation processing for the inner transaction. In the Transaction Properties dialog
box for a nested transaction, Compensation processing code can be added, which (like On Failure processing) results in an
additional page, Compensation for Transaction, being added to the schedule. Code can be added to this page to compensate
for the (already committed) inner transaction.

With nested transactions, it is entirely feasible that multiple Compensation for Transaction and On Failure of Transaction
processing pages will exist within the schedule, and that more than one of these will be executed to perform the error handling
required. In the previous example, assume that the transaction Send Money has both an On Failure of Transaction page and a

Compensation for Transaction page, and that the timed transaction Wire Transfer has an On Failure of Transaction page.

There are two likely scenarios for failure in this schedule. The first is that the Send Money transaction aborts, in which case the
On Failure processing for the Send Money transaction will be executed. Normally, the On Failure processing for the Wire
Transfer transaction would not execute, since the outcome of the inner transaction does not affect the outcome of the outer
transaction. In this case, since no acknowledgement will be sent, the outer timed transaction will also eventually fail, and the On
Failure code for the Wire Transfer will be called. The second scenario is that Send Money will commit, but the
acknowledgement message will not be received within the time-out period, causing the timed transaction to abort. In this case the
Compensation processing for Send Money will execute first, followed by the On Failure processing for Wire Transfer.

Debugging Schedules
With traditional development systems, it is now commonplace to provide visual debugging facilities, such as those found in
Microsoft Visual Basic® and Microsoft Visual C++®. Microsoft BizTalk™ Server does not provide a graphical debugging facility
for orchestration schedules. However, remember that orchestration schedules represent a different kind of executable process
from traditional short-lived synchronous processes, so the traditional debugging model alone is not effective.

When an orchestration schedule is designed using BizTalk Orchestration Designer, the schedule drawing is in effect a painting of a
business process. To represent a process, three artifices are used:

An Action, which is always either send or receive a message.
A Message, which is data that is sent or received.
A Port, where messages are sent to or received from.

In addition, because the schedule represents a process, there is the concept of sequencing from one action to another. When the
orchestration schedule is compiled and then executed, typically multiple instances of the schedule will be initiated as individual
(long-running) executable processes.

To debug these executables, a combination of tracing and conventional debugging proves most effective. To debug the
sequencing of a schedule (the flow from one action to another), tracing is useful. To debug the implementation of an individual
action, traditional debugging mechanisms can be employed. By combining the two techniques, schedules can be debugged most
effectively.

Tracing Schedules

When running a schedule, the schedule is executed under the control of the XLANG Scheduler Engine, which is a COM+
application. When BizTalk Server is installed, a single instance of the scheduler engine is created, named XLANG Scheduler (the
default). It is also possible to create custom COM+ applications that host XLANG schedules.

When these COM+ applications (default or custom) execute a schedule, they generate various events that can be trapped and
displayed. BizTalk Server provides a tool, called the XLANG Event Monitor, to trap and display these events. The XLANG Event
Monitor can subscribe to events published by host applications on any number of distributed computers, and can store these
events for later analysis.

When the XLANG Event Monitor starts, it subscribes to receive events from all XLANG schedule host applications on the local
computer. The main window shows all the COM+ applications that host XLANG schedules and, for each host COM+ application,

shows all schedule instances that are currently running or completed, coded according to the following scheme:

Green dot. Represents a running XLANG schedule.
Black dot. Represents a successfully completed XLANG schedule.
Red dot. Represents an XLANG schedule that completed with an error.
Blue snowflake. Represents a dehydrated XLANG schedule.
Blue lines. Represents a suspended (or paused) XLANG schedule. The schedule stays in this state until it is resumed or
terminated.

Each instance in addition has the unique identifier for the instance listed (the instance GUID). Any of the listed running schedule
instances can be suspended or terminated from the XLANG Event Monitor.

The XLANG Event Monitor can also be used to start a new instance of a schedule by selecting the COM+ application that is to host
the schedule instance and selecting the appropriate schedule file (.skx file).

All the events of a specific schedule instance can be viewed by double-clicking a schedule instance within the XLANG Event
Monitor. The events shown can also be filtered to show only certain classes of events, such as transactions, or errors; once events
have been captured, they can be saved to disk and later reloaded for display.

Debugging Components in Schedules

While schedules themselves can't be loaded into a visual environment and debugged, COM+ components in those schedules can
be debugged. This is done in exactly the same way as debugging a standard COM+ component that is being called from a client
application (because in fact the schedule is implemented as a COM+ application, which instantiates and calls these custom COM+
objects).

To debug a Visual Basic component, the project is loaded into Visual Basic and built as usual. Note that the component must be
compiled to Compile to Native Code and Create Symbolic Debug Information. The No Optimization check box should also
be selected while debugging. Breakpoints can then be set, and the component run from the Visual Basic Integrated Development
Environment. When the schedule is executed, it runs normally until it tries to instantiate the component and execute a method on
that component. At this point, execution will stop at the breakpoint that was set. The component can be debugged as normal at
this point.

Note If the XLANG Scheduler Engine has already loaded the DLL, it will not be possible to compile the component. If
this occurs, the XLANG Scheduler Engine must be shut down, using the Component Services application. To do this,
start the Component Services application, find the XLANG Scheduler Engine COM+ application, and click Shut Down
on the context menu (right mouse button). The component should then compile. Alternatively, if BizTalk Orchestration
Designer is running, it has a menu option to Shut Down All Running XLANG Schedule Instances, which can be
used instead. After selecting this, all XLANG schedules will be shut down, releasing the lock on the DLL so it can be
compiled.

Other Debugging Tips

In addition to tracing the progress of a schedule using the XLANG Event Monitor, other system monitors can be used to detect
errors in running schedules and to track execution of a schedule. Errors raised by the XLANG Scheduler Engine will appear on the
Application tab of the Event Viewer. These events are labeled as XLANG Scheduler errors within the Event Viewer. If necessary,
the events presented in the Event Viewer can also be filtered to show only this event type.

The WFBinding group of errors in the Event Viewer means that a problem has occurred in the per-instance message queue
interface between BizTalk Messaging Services and BizTalk Orchestration Services. The Orchestration port setting in BizTalk
Messaging Services Messaging Port wizard requires you to enter manually the Orchestration port name and should you spell
incorrectly the Orchestration port name then a WFBinding error will occur.

Another common error is a parsing validation error. These errors are most often caused when the instance document does not
conform to the document specification created in the BizTalk Editor. In this case the document is delivered to the Suspended
Queue and the error is logged in the Event Viewer. If you right-click on the item in the Suspended Queue you can examine, and
copy, the document contents to the clipboard. It is often easiest to solve these problems by pasting the clipboard contents into a
text editor such as Notepad and saving the file. Now that you have a document instance on the file system open the document
specification in the BizTalk Editor and use the Tools-Validate Instance menu item to validate against your existing document
instance. Note that even though the dialog box defaults to *.xml you can validate other file types, such as *.csv if you have a flat-
file schema. Once you have successfully validated the document then save it to WebDAV.

For performance reasons Microsoft BizTalk Server 2000 does not read document definitions or maps from WebDAV at runtime.
While this significantly increases performance, it also results in more work for the developer that can cause versioning issues. In
particular BizTalk Messaging Services do not refresh contents of any files saved in WebDAV into the runtime engine. When you
change a document specification and save it to WebDAV you must also open up the Messaging Manager, open up the
appropriate document definition and then press the Apply button. This will cause the Messaging Manager to refresh its copy of
the data from WebDAV. Similarly you need to refresh envelopes and channels manually when the document specification for
envelopes, or the maps used in the channels are changed.

Other commonly observed issues include:

Symptom: A File is dropped in a directory but the Receive function associated with it does not pick it up.

Possible causes of this are:

The File has a read-only attribute. In this case there will be an event in Event Log saying that the Receive Function could not
pickup a file with a certain name because it was read-only.
The File name does not match the mask specified in Receive function configuration, in this case fix the configuration.
An Incorrect directory specified in Receive function configuration. If the directory exists, there will be no symptoms of
something being wrong. If the directory does not exist, the Receive function will get disabled and an event will get logged.
Fix the error and re-enable the receive function in the properties page.
BizTalk server is stopped. Each receive function is configured to run on a certain BizTalk server, and this server must be
running.
SQL server is stopped. If receive function cannot put the document on the Work queue it will not remove it from the
directory

Symptom: A File is removed from the pickup directory but the subsequent processing does not happen.

Possible causes:

Document could not be parsed or the Messaging Manager has not been refreshed from WebDAV.
No channel matched the set of Source Org, Destination Org and Doc Def that was specified in receive function properties.
Verify these properties to ensure a channel matches.

Symptom: The same schedule appears to be started multiple times after a single document submission.

Possible causes:

A channel can connect to one or more messaging ports. In this case multiple channels connect to a messaging port that
instantiates an orchestration instance.

In a similar manner that you break down the complexity of a programming problem in Visual Basic into smaller more
manageable parts, when you use BizTalk Server you should isolate which part of the infrastructure contains the issue you wish to
resolve. For example, if you are uncertain that the document being delivered from BizTalk Messaging Services to BizTalk
Orchestration Services contains the correct instance data then change the messaging port to output to a file instead and examine
the contents of the document.

To track execution of running schedules, the Performance Monitor can be used to display the effects of the implementation
components of the schedule. These effects include, but aren't limited to:

Monitoring messages in specific message queues (from the Microsoft Message Queuing Queue object).
Microsoft Message Queuing incoming and outgoing messages (from the Microsoft Message Queuing Service object).
BizTalk Messaging document and interchanges processed (from the BizTalk Server object).
Items in the BizTalk Messaging Suspended queue (from the BizTalk Server object).
Active, aborted, and committed transactions (from the Distributed Transaction Coordinator object).

As well as the Performance Monitor, the Component Services MMC (Microsoft Management Console) can be used to monitor the
transactions initiated and committed or aborted (this can also be done using the SQL Profiler application). The Component
Services application can also be used to monitor the instantiation of any of the COM+ components that are installed as COM+
applications.

This is a preliminary document and may be changed substantially prior to final commercial release. This document is provided
for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in
this document is subject to change without notice. The entire risk of the use or the results of the use of this document remains with
the user. The example companies, organizations, products, people and events depicted herein are fictitious. No association with
any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unpublished work. © 2001 Microsoft Corporation. All rights reserved.

Microsoft, BizTalk, Visual Basic, Visual C++, Windows, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the U.S.A. and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners

This article may contain URLs that were valid when originally
published, but now link to sites or pages that no longer exist.
To maintain the flow of the article, we've left these URLs in the
text, but disabled the links.

For more information on BizTalk Server and the technology preview download, visit:
BizTalk Server product page

BizTalk Server 2000: Architecture and Tools for Trading Partner
Integration
Aaron Skonnard and Bob Laskey

This article assumes youï¿½re familiar with Visual Basic and XML
Level of Difficulty 1 2 3
Bob Laskey is a Senior Consultant in the Microsoft eBusiness Solutions Group in Austin, TX. Bobï¿½s current focus is
helping dot-coms deploy Microsoft e-commerce technology using Windows 2000 and BizTalk Server 2000. You can
reach him at rlaskey@microsoft.com.

Aaron Skonnard is an instructor and researcher at DevelopMentor where he co-manages the XML curriculum. Aaron
wrote Essential WinInet (Addison-Wesley Longman, 1998) and co-authored Essential XML (Addison-Wesley Longma
n) to be released June 2000. Reach Aaron at http://www.skonnard.com.

This article provides an overview of the concepts involved with implementing a trading partner integration system on BizTalk S
erver 2000 and details the document interchange server architecture and toolset. Additionally, an early look was taken at some
business process integration features planned for the production release of the product that allow easy design, execution and s
haring of new business processes with trading partners. The concepts and architecture presented allow companies to prepare in
ternal line-of-business applications and trading partners for systems that improve customer service and reduce operating costs.

uilding business-to-business (B2B) e-commerce systems presents many challenges to the system architect. Often, each c
ompany involved stores their data and documents in formats that are different from the formats used by the other partici
pating companies. These companies need a way to integrate what tend to be vastly different systems.
 MicrosoftÂ® BizTalkâ¢ Server 2000 can help organizations quickly establish and manage Internet relationships with

other organizations. It makes it possible for them to automate document interchange with any other partner organization, regar
dless of the conversion requirements and data formats used. This provides a cost-effective approach for integrating business pr
ocesses across enterprises. Figure 1 describes some of the scenarios in which BizTalk Server 2000 can be used effectively. In this
article weï¿½ll describe the important architectural concepts and features of BizTalk Server 2000 that youï¿½ll need to be famili
ar with before you can implement your own BizTalk Server 2000-based solution.
 BizTalk Server 2000 is a data and business process integration server designed to facilitate collaborative e-commerce busine
ss processes. The server is built on industry-standard XML technology. It includes a document interchange engine, a business pr
ocess execution engine, and a set of business document and server management tools. A business document editor and mapper
are provided, in addition to useful tools for managing trading partner relationships, administering server clusters, and tracking t
ransactions.
 At runtime, BizTalk Server 2000 is a scalable engine for validating business documents, translating data formats, transformin
g schema, transporting documents, and tracking transactions. Supported data formats include UN/EDIFACT and X12 Electronic
Data Interchange (EDI), text delimited, positionally delimited flat files, and XML. Transport protocols supported include HTTP, Sec
ure Sockets Layer (SSL), Microsoft Message Queue (MSMQ), FTP, DCOM, and SMTP.
 During the design and development stage, BizTalk Server 2000 provides an enterprise application integration framework for
integrating third-party and custom applications. This is achieved by defining COM interfaces for application integration compon
ents and by providing out-of-the-box COM components for transport and security services.
 The ultimate goal of BizTalk Server 2000 is to integrate trading partners as part of collaborative business processes. Here, an
organization represents an endpoint in a document exchange. An organization can have properties associated with it including n
ames and unique corporate identifiers, such as a corporationï¿½s Dun & Bradstreet number. Distribution lists allow the same do

http://www.microsoft.com/biztalkserver/
mailto:rlaskey@microsoft.com
http://www.skonnard.com/
https://msdn.microsoft.com/en-us/library/bb984908(v=msdn.10).aspx

cument to be routed to multiple organizations as part of a single agreement. An agreement is a set of rules that will govern that
distribution. Organization profiles may also be exported to facilitate the exchange of trading partner information.

BizTalk Server Basics

 An agreement defines the rules for exchanging data between two or more organizations. They define the source and destinat
ion organizations, at least one document specification, document envelopes, security settings, and transport settings. Basically, t
he flow of data into and out of BizTalk Server 2000 must be governed by an agreement. Figure 2 shows a typical agreement for
a purchase order.
 For example, say ESitesRUs, a fictitious online retailer, accepts orders from Web customers and sends purchase orders to Wo
rldwide Importers Inc. for processing. Upon receiving the PO and fulfilling the order, Worldwide Importers Inc. sends ESitesRUs
a shipment notification. ESitesRUs integrates the shipment status information into their online customer service site. To configur
e this traditional fulfillment transaction on BizTalk Server 2000, you create two agreements: an outbound agreement, which defi
nes the rules for sending purchase orders, and an inbound agreement, which defines the rules for accepting shipment notificatio
ns.
 An outbound agreement defines ESitesRUs as the source organization and Worldwide Importers as the destination organizat
ion. This agreement also includes the documentation specifications for the purchase order as well as security and transport setti
ngs for the data exchange. The inbound agreement defines Worldwide Importers Inc. as the source organization and ESitesRUs a
s the destination organization. The shipment notification document specification and security and transport settings are also defi
ned in this agreement.
 A third type of agreementâ"an open agreementâ"is a special type that defines a single organization. The missing trading part
ner information is provided when the document is submitted to BizTalk Server 2000.
 Business documents are the fundamental unit of data exchange between trading partners in a BizTalk Server 2000-based sol
ution. A business documentï¿½s physical format may be XML, EDI, or comma-separated values, among others. Logically, they ar
e simply collections of records and fields. Business analysts must review schema initiatives in their industries, perform gap analy
sis between published specifications and internal business requirements, and negotiate details with trading partners. Industry eff
orts are underway to ease this process by publishing schema libraries and providing tools for collaboratively defining and refini
ng these schemas. Examples include BizTalk.org (http://www.biztalk.org), OASIS, and RosettaNet.

Figure 3 Document Specification in BizTalk Editor

 BizTalk Server 2000 treats all document types as XML regardless of the original format. Document specifications are require
d to define the translation from the original document format to the BizTalk Server 2000 intermediate XML format. Figure 3 sho
ws an example of a document specification in the BizTalk Editor. Figure 4 shows the XML source code for the document specific
ation as generated by the editor. After the document exists in the internal XML format, it will have to be transformed. To perform
schema transformations, the XML transformations can be defined through document maps.

https://msdn.microsoft.com/en-us/library/bb984908(v=msdn.10).aspx
http://www.biztalk.org/

Figure 4 Document Specification Source XDR

 Envelopes are EDI, text, or XML data structures that provide a way to add header information, such as addressing and docum
ent identifiers, to business documents. The server also uses envelopes to support processing of inbound and outbound EDI inter
changes. Incidentally, the server supports batch processing of inbound EDI, but handles outbound EDI one transaction at a time.
 Document maps are typically used to alter the schema or data format of a business document from a source organizationï¿
½s native representation to a representation requested by a destination organization. For example, a companyï¿½s business ap
plication may be able to produce XML documents, but their trading partnerï¿½s application may require a SAP IDOC or an EDI d
ocument. Or perhaps each partner has simply used different XML document structures to define a purchase order.
 Pipelines tie together the built-in or custom processing steps during a data interchange. They allow a developer to customize
many aspects of an agreement. Pipelines are used to link the document definitions for an outbound agreement or distribution li
st to a document definition of an inbound agreement. Agreements help the server identify the appropriate pipeline to run, and t
hen provide important document processing rules to the pipeline.
 A concept known as pipeline filtering is configured within BizTalk Server 2000 pipelines. This feature allows documents to be
processed based on values in user-specified fields of a document. Tracking or storing subsets of documents or entire source or
destination documents is also a feature supported within pipelines. Alternatively, document tracking settings may be specified in
the document specification (as weï¿½ll discuss later). Specifying these settings in the document specification instead of in a pipe
line allows the same settings to be used in multiple pipelines.
 Digital certificate identification and processing rules are also defined within a pipeline. Finally, pipelines allow the analyst to s
elect the map for creating a destination document from the source document submitted to BizTalk Server 2000.
 Custom components called application integration components (AIC), or simply pipeline components, may also be inserted i
nto a pipeline. AICs allow the line-of-business application developer to easily integrate existing third-party or custom application
s with BizTalk Server 2000-brokered transactions by developing pipeline components that implement a set of COM interfaces. Bi
zTalk Server 2000 invokes methods on the IPipelineComponent and related interfaces to access extended functionality during th
e execution of interchange agreements. Pipeline components frequently implement custom transport services.
 There are numerous ways to exchange data between servers on the Internet, and BizTalk Server 2000 supports many standar
d protocols by encapsulating HTTP, SMTP, MSMQ, FTP, file, and DCOM functionality provided by WindowsÂ® 2000. The server f
eatures that support these protocols are called Transport Services and Receive Functions. Transport Services are used for sendin
g business data from BizTalk Server 2000, while Receive Functions allow applications to submit business documents to BizTalk S
erver 2000 without any programming.
 BizTalk Server 2000 supports the following transport services: HTTP, HTTPS, SMTP, MSMQ, FTP, file, and fax. Additionally, doc
uments may be sent programmatically from BizTalk Server 2000 with a custom COM AIC.
 FTP, file, and message queuing are supported receive functions. The FTP receive function polls a given location and uses FTP
to send files to BizTalk Server 2000. The file receive function is invoked by a file system event when activity occurs in the defined
directory. The source file is copied and submitted to BizTalk Server 2000. The message queuing receive function provides event-
based integration with MSMQ to read messages from a queue and submit the message body to BizTalk Server 2000. Document
s may also be programmatically submitted, either synchronously or asynchronously, through COM interfaces. An ASP receive fu
nction may also be easily implemented by creating an ASP page to which partners will use HTTP to post business data. In the AS
P, just submit the received HTML form data to BizTalk Server 2000 by calling the serverï¿½s COM interface. Thatï¿½s all there is
to it.
 MIME is supported as a content encoding type, while S/MIME and PKCS are supported for data encryption and digital signat
ures. Custom encoding, security, and transport logic may also be plugged directly into BizTalk Server 2000. This encoding archit
ecture conveniently allows data integration to be independent of the network protocol used to communicate with trading partne
rs.
 An interchange protocol is a set of rules each trading partner must adhere to in a business document exchange. This protocol
may define characteristics such as acknowledgment requirements, retry and timeout thresholds, and performance requirements.
Although BizTalk Server 2000 does not directly implement the concept of an interchange protocol, it is an important concept to
negotiate among trading partners and to implement using the built-in components and extensibility model provided by the serv
er.

Architecture and Tools

 The BizTalk Server 2000 architecture uses Windows 2000 Server and Microsoft SQL Serverâ¢ 2000 to implement a horizont
ally scalable, reliable, and extensible document interchange engine. Figure 5 provides a system-level view of a BizTalk Server 20
00 deployment.

Figure 5 BizTalk Server 2000 Deployment

 A standard deployment may include one or more BizTalk Server 2000 servers configured as a group. Each server will proces
s documents independently of the others to provide horizontal scaling and fault tolerance without a separate clustering solution.
Server groups share document specifications and maps through the Windows 2000 Web Distributed Authoring and Versioning
(WebDAV) service. They share working interchange data by accessing a set of shared SQL Server queues.
 Four SQL Server queues are used during the processing of a document: scheduled queue, work queue, retry queue, and susp
ended queue. Documents are retrieved from the scheduled queue by the first available BizTalk server and placed on the work qu
eue for processing. The scheduled queue ensures high server throughput by providing server resource management. If a necess
ary service is unavailable to process a document, the document will be placed onto the scheduled queue so the servers can proc
eed to another interchange. Documents that fail due to processing errors such as network or validation errors are placed on the
suspended queue or retry queue for later attempts. Microsoft Cluster Server may be used in combination with SQL Server to pr
ovide scalable and fault-tolerant deployment for the BizTalk Server 2000 shared queues.
 BizTalk Server 2000 relies on many Windows 2000 Server platform services. Internet Information Services (IIS) 5.0 and the N
etwork Load Balancing Service provide the components necessary for scalable HTTP and ASP processing. Cluster Service provid
es a highly available deployment architecture to the shared SQL Server databases. COM+ component services and MSMQ provi
de DCOM-based integration and MSMQ receive functions and transports. The built-in WebDAV service provides distributed acc
ess to document schemas and maps.
 BizTalk Server 2000 also uses the Microsoft XML toolset, which includes a validating XML parser that supports XML Data Red
uced (XDR) Schemas and Document Type Definitions (DTD) as well as Extensible Stylesheet Language (XSL) and XSL Transforma
tion Language (XSLT). Of course, the server also gains the increased scalability, reliability, and availability that is inherent in Win
dows 2000 Server.

Document Processing

 Submitting a business document to BizTalk Server 2000 triggers a series of logical processing steps by the interchange engi
ne: agreement route, parse, validate, transform, serialize, and transport.
 BizTalk Server 2000 receives business data from business applications in one of two ways. A document may be submitted dir
ectly by a COM-aware application through the IInterchange interface, or indirectly by a file, FTP, MSMQ, or custom receive functi
on. Hereï¿½s an example of direct COM application submission:

strDocument = "<CommonPO/>"

Set objInterchange = _
 CreateObject("Interchange.Interchange")

objInterchange.Submit _
 MODELDB_OPENNESS_TYPE_NOTOPEN, _
 strDocument, "PurchaseOrder", _
 "Source Organization Name", _
 "SourceOrg", _
 "Destination Organization Name", _
 "DestOrg", [pipeline name], _
 [file path], [envelope name], _
 strSubmitHandle, _
 strResponseData
 The Submit method takes arguments that describe the agreement, the document being submitted, source and destination or
ganizations, custom pipelines, or enveloping information. It then returns a handle to the submitted document. This handle allow
s the developer to identify this document within queues or the document tracking and activity database.
 Business data may be self-routing or the routing information may be placed explicitly in the COM method call. Routing infor
mation may also be described to the server in the configuration of a custom receive function. The server uses this routing infor

mation to identify the correct interchange agreement used to process the document.
 Business data is submitted to BizTalk Server 2000 as text. As described earlier, this text may be any file format as long as a Bi
zTalk document specification can been created to describe its structure and format. The server ships with parsers for well-forme
d XML, UN/EDIFACT EDI, X12 EDI, text, or positionally delimited flat files. It also allows for third-party development of new parser
s. The server selects the appropriate parser based on the envelope specified by the agreement.
 Regardless of the original data format, the parser looks up the document specification defined in the agreement, loads it usin
g the WebDAV protocol, and uses it to create intermediate XML representations of the submitted business data. The server perfo
rms internal document processing using this intermediate XML representation prior to serializing the data into the final destinati
on document format. If the parsing step fails, the document will be placed in the server groupï¿½s suspended queue.
 Once the server has created the XML representation of the business data, it will validate the structure and grammar of the do
cument instance using rules provided by the document specification. Since all BizTalk Server 2000 agreements require documen
t specifications, the validation will occur for both XML and non-XML business data. Invisible to the developer or analyst, the valid
ation is implemented within BizTalk Server 2000 using standard XML technology. The intermediate XML representation of the b
usiness document created during the serverï¿½s parsing step is simply an instance of the XDR document specification. This mea
ns that the server can use the validating Microsoft XML parser. In cases where XDR validation is not sufficientâ"such as with X12
and UN/EDIFACT documentsâ"the server validation engine processes a set of extended attributes that correspond to special vali
dation rules.
 Validation errors cause the document to be flagged as invalid in the document tracking database and work queues. Since ser
ver queues are implemented in a SQL Server database, they can be processed by the developer through published object model
s or by direct access using Transact-SQL stored procedures.
 Transformation is the process of executing the maps created with the BizTalk Mapper (see Figure 6). The server loads the ma
p defined in the agreementï¿½s pipeline configuration and applies the transformation to the document. The maps move the dat
a in the fields and records of a source document instance into the fields and records of a new destination document instance. Th
e business data is in the serverï¿½s private intermediate XML representation before and after this logical processing step.
 The serialization process is the opposite of the parsing process. The internal XML representation of a document is serialized t
o the format defined by the document specification. This format may be well-formed XML, or it may be UN/EDIFACT EDI, X12 ED
I, text, or positionally delimited flat files. This serialized format is the document routed to the destination organization specified b
y the agreement.
 After the business data has been transformed into the appropriate format for the destination organization, the transport serv
ice defined by the agreement (HTTP, HTTP/S, SMTP, MSMQ, FTP, file, or fax) is selected and the data is sent to the destination loc
ation specified in the agreement. If the transport fails, the document will be placed in the retry queue if its count is nonzero; othe
rwise it will be placed in the suspended queue.
 Weï¿½ve briefly mentioned the serverï¿½s method of handling document-processing errors. Much of this is based on movi
ng the erroneous document to the appropriate queue and on providing an object model (and T-SQL scripts) to query the SQL Se
rver queues. In addition, the developer can make use of server-generated Windows Management Instrumentation (WMI) events
to handle exception processing. Another technique is to employ stored procedures to analyze document queues.
 Business-to-business e-commerce transactions must be secure whether the server is processing purchase transactions for a
Fortune 500 enterprise or fulfilling orders for a startup internet company. BizTalk Server 2000 addresses the issue of security by
giving the developer a number of out-of-the-box authentication and encryption components that take advantage of security ser
vices in Windows 2000. SSL support is provided through the built-in HTTPS transport service. This adds server-to-server authen
tication and transport layer encryption to the document interchange. Documents may also be encoded using built-in S/MIME en
coding components, ensuring document integrity, authentication of the sending party, and payload encryption. The Public Key C
ryptography System (PKCS) for encrypting and decrypting document payloads is also supported. Finally, digital signatures may
be applied to outbound messages and verified on inbound messages using the BizTalk Server 2000 native support for digital sig
natures.
 Most of these techniques require organizations to get X.509 digital certificates from a trusted certificate authority. If none of t
hese techniques meets the demands of an enterpriseï¿½s security policies, the server can be extended through custom security
components that make use of the Microsoft Cryptography API as well as new security features in Windows 2000 such as suppor
t for smart cards and the Kerberos protocol.

BizTalk Document Editor and Mapper

 BizTalk Server 2000 represents business document schemas as document specifications. Document specifications define the
structure of a business document in a way that is independent of the underlying data format (well-formed XML, UN/EDIFACT ED
I, X12 EDI, text, or positionally delimited flat files) using a familiar metaphor based on records and fields. Document specification
s define a way to translate between the documentï¿½s original data format and the serverï¿½s internal XML format.
 The BizTalk Editor is a graphical tool that allows analysts and developers to create document specifications in a number of w
ays. A document specification can be created by manually defining records and fields in the editor tool. The server also provides
ready-to-use specifications for many UN/EDIFACT and X12 EDI documents, SAP IDOCs, and sample XDR schemas. Finally, the ed
itor provides instance import functionality that allows the user to import well-formed XML document instances, XML DTDs, and
XDR schemas. It allows the user to edit and save the resulting BizTalk document specification.
 Although it is transparent to the user, BizTalk Server 2000 represents document specifications internally with standard XDR s

https://msdn.microsoft.com/en-us/library/bb984908(v=msdn.10).aspx

Figure 9 BizTalk Server MMC
Snap-in

chema technology plus extended attributes to enable server processing of the documents during an interchange. The document
specification author can define attributes on data items such as minimum and maximum number of occurrences, whether it is o
ptional, data types, fixed data values, enumerated lists, and more. BizTalk Server 2000 builds on standard XML to provide rich do
cument specification capabilities.
 As described earlier, Figure 3 shows a purchase order document specification in the BizTalk Editor, and Figure 4 is a partial l
isting of the XDR schema produced by the tool, illustrating the definition of the PurchaseOrder ElementType. Once it is finalized
by the W3C, the standard XML Schema Definition Language (XSDL) will replace the current XDR syntax.
 In addition to the tools provided for working with business document specifications, BizTalk Server 2000 includes the BizTalk
Mapper for transforming a document from the internal XML representation of an inbound document to the internal XML repres
entation of an outbound document. This mapping allows BizTalk Server 2000 to alter the schema (transformation) and data for
mat (translation) of business documents. The final XML document is eventually serialized to the format defined by the outbound
document specification, which may not always be XML.
 BizTalk Mapper provides the design environment and BizTalk Server 2000 provides the runtime engine to create and execute
document maps that translate data formats and transform data schemas. The BizTalk Mapperï¿½s use of standard XSLT technol
ogy to internally represent mapping rules is transparent to the analyst or developer. The Microsoft XSLT implementation provid
es COM and scripting language integration. BizTalk Mapper and BizTalk Server 2000 take advantage of this integration to provid
e built-in reusable components called functoids that may be inserted onto the BizTalk Mapper design surface and called at runti
me.
 Functoids that ship with BizTalk Server 2000 are grouped into seven categories: String, Mathematical, Logical, Date, Conversi
on, Scientific, and Advanced. Examples of common String functoids are Substring and upper or lower-case conversions. If a map
needs to extract a manufacturerï¿½s part number from a vendorï¿½s 256-character catalog ID, these String functoids may be v
aluable. Obtaining a timestamp with the Current Date functoid also has clear value in business-to-business document processin
g. The Advanced functoids category includes the versatile Custom Visual BasicÂ® Script functoid. As the name suggests, this allo
ws the developer to define custom script logic that will be applied to source data values during the execution of a map.

Figure 7 BizTalk Mapper Compiled XSLT

 Figure 6 shows a map between two different purchase order schemas in the BizTalk Mapper. Figure 7 is a partial listing of t
he XML and XSLT produced by the tool. It illustrates the primary components of a BizTalk map. <srctree> and <sinktree> contai
n the document schema for the source and destination documents. <links> describes the graphical mapping. <functions> inclu
des the functoids (or pre-built mapping components), and <CompiledXSL> contains the XSL transformation language required t
o execute the transformation at runtime.

Management and Analysis Tools

 There are two types of management tools included in BizTalk Server 2000. The first is the BizTalk Management Desk, which a
nalysts and developers can use to define the important aspects of a trading partner relationship through a graphical console. Th
e second, which system administrators use, is the Microsoft Management Console (MMC) snap-in environment used to configur
e deployment characteristics of server groups.

 The BizTalk Management Desk allows the recreation and configuration of trading partner ag
reements and all associated properties (organizations, distribution lists, document specifications
, envelopes, transport protocols, security settings, and pipelines). Document tracking and activit
yâ"the level of auditing the server groups will performâ"is also configured from the Manageme
nt Desk. Figure 8 shows the Agreement Editor within the BizTalk Management Desk.
 Figure 9 shows the left-hand pane of the BizTalk Server 2000 MMC snap-in. Using this cons
ole, groups, queue activity, receive functions and individual servers may be managed remotely
or locally. This includes adding or removing servers from groups, checking the status of docum
ents on the shared queues, and creating new receive functions. It is often convenient to customi
ze the MMC to include BizTalk Server 2000, IIS, SQL Server, Event Viewer, COM+ Component S
ervices, and MSMQ management snap-ins so you can manage all of a solutionï¿½s component
s from a single console.

Business Process Integration

 Most of our discussion has centered on server capabilities to facilitate the exchange of busin
ess documents between trading partners. BizTalk Server 2000 will also provide tools and a runti

https://msdn.microsoft.com/en-us/library/bb984908(v=msdn.10).aspx
https://msdn.microsoft.com/en-us/library/bb984908(v=msdn.10).aspx

me to facilitate the modeling, development, and execution of business processesâ"where data exchange is only one key aspect. C
OM+, of course, will provide the component architecture and services for business process implementation. Message sequencin
g, receipt correlation, content-based routing, and retry logic may easily be designed and implemented using the BizTalk Server 2
000 core document interchange coupled with these advanced business process integration features.

For related articles see:
MSDN Online XML Developer Center

Background information:
Microsoft BizTalk 2000
BizTalk.org Web site

Bob Laskey is a Senior Consultant in the Microsoft eBusiness Solutions Group in Austin, TX. Bobï¿½s current focus is helping dot-
coms deploy Microsoft e-commerce technology using Windows 2000 and BizTalk Server 2000. You can reach him at
rlaskey@microsoft.com.
Aaron Skonnard is an instructor and researcher at DevelopMentor where he co-manages the XML curriculum. Aaron wrote Esse
ntial WinInet (Addison-Wesley Longman, 1998) and co-authored Essential XML (Addison-Wesley Longman) to be released June
2000. Reach Aaron at http://www.skonnard.com.

From the May 2000 issue of MSDN Magazine.

http://msdn.microsoft.com/xml/default.asp
http://www.microsoft.com/biztalkserver/
http://www.biztalk.org/biztalk
mailto:rlaskey@microsoft.com
http://www.skonnard.com/

Microsoft BizTalk Server Technical Articles

High-Availability Solutions Using Microsoft Windows 2000
Cluster Service
Microsoft Corporation

Created: January 2002
Revised: March 2003

Applies to:
 Microsoft® BizTalk™ Server 2000
 Microsoft® Windows 2000 Advanced Server
 Microsoft® Windows 2000 Datacenter Server

Summary: Learn how to plan, design, and deploy a highly available implementation of Microsoft BizTalk Server using the Cluster
service component of Microsoft Windows 2000.

This article is intended for customers who have stringent requirements for system uptime and guaranteed data delivery.

Part 1 contains general information about the importance of clustering and the software, hardware, and cost considerations
for its deployment.
Part 2 contains detailed steps for setting up the cluster.

Click here to download a copy of this document.

http://go.microsoft.com/fwlink/?LinkId=14180

Microsoft BizTalk Server Technical Articles

Learning BizTalk Server 2000
Igor Leybovich and Scott Woodgate
Microsoft Corporation

May 2001

Learning BizTalk is a set of lessons and code samples that are designed to get a new user up to speed with Microsoft® BizTalk™
Server 2000.

Unlike the BizTalk Tutorial that ships in the BizTalk Server 2000 box, these lessons follow the principle of learn by decomposition.
Install the first lesson, understand the business problem and immediately run the entire scenario, which features two
orchestration schedules and BizTalk Messaging services passing XML documents. Next, understand each element of the overall
scenario by working through lessons that explain how to use the BizTalk Editor, Mapper, Messaging Manager, Administrator, and
Orchestration Designer.

Download LearnBizTalk.exe.

Contents

Lesson 1
Lesson 2
Lesson 3
Lesson 4
Lesson 5
Lesson 6
Lesson 7

http://download.microsoft.com/download/a/f/7/af75d56a-02b9-4002-88a0-30f2027e0c54/LearnBizTalk.exe
https://msdn.microsoft.com/en-us/library/ms942737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ms942741(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ms942745(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ms942749(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ms942753(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ms942757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ms942761(v=bts.10).aspx

Microsoft BizTalk Server Technical Articles

Learning BizTalk Server 2000: Lesson 1
Igor Leybovich and Scott Woodgate
Microsoft Corporation

May 2001

Summary: The first in a series of 7 articles designed to show you how Microsoft BizTalk Server 2000 can help your business
exchange a variety of documents with business partners, as well as integrate internal business processes and applications. In this
lesson, you will learn the fundamental concepts surrounding BizTalk Server, and the tools and processes required to start building
solutions with BizTalk Server. (8 printed pages)

Download LearnBizTalk.exe.

Note

You will need to install Microsoft® BizTalk Server™ 2000 in order to complete this lesson. Before you install Microsoft
BizTalk Server, make sure you have read the Readme.htm and Installation Guide.htm documents, paying particular
attention to the following important prerequisites:

You must have a computer running Microsoft Windows® 2000 with Service Pack 1 or above (Professional or Server both
work), including IIS and MSMQ services, and an account with administrative rights on that computer.
You must have Microsoft SQL Server™ 7.0 with Service Pack 2 or above (you can install SQL Server Desktop Edition if you
choose to run everything on a single workstation running Windows 2000 Professional) and password for the "sa" account. If
you use SQL Server 2000, you must configure it for "mixed" security mode in the install wizards that is not the default.
Microsoft Visio® 2000 SR1 Standard or above must be installed on the computer where you are installing BizTalk Server.
In Internet Services Manager, turn off the Enable authoring option on the Server Extensions tab of the Default Web Site.

Also, in order to execute the scripts for these lessons, you need to install the MSMQ component of Windows 2000.

Contents

Introduction
What is BizTalk Server?
Why Use BizTalk Server?
Do You Speak My Language?
Document Exchange Concepts
Install BizTalk Server
Let's Do Business
Run the Scenario

Introduction
Welcome to the "Learning Microsoft BizTalk Server" lesson series!

Over the course of the following lessons, you will learn how Microsoft BizTalk Server 2000 can help your business exchange a
variety of documents with business partners, as well as integrate internal business processes and applications.

What Is BizTalk Server?
Microsoft BizTalk Server 2000 provides a powerful development and execution environment that orchestrates business processes,
both within and between businesses. BizTalk Server can handle business transactions that run as long as weeks or months.

BizTalk Server 2000 features include the ability to define business document specifications and how these documents have to be
transformed when passed between applications, and the ability to monitor and log server activity.

The server provides a standard gateway for sending and receiving documents across the Internet, as well as providing a range of
services that ensures data integrity, delivery, and security.

Why Use BizTalk Server?
You might ask yourself: "Why should I use BizTalk Server over any other solution?" In today's world of fast-changing technologies
and standards, it is imperative to ensure that a solution you build is based on commonly accepted protocols and document
formats. It is also important to know that your solution will enable integration with the widest variety of business partners and

http://download.microsoft.com/download/a/f/7/af75d56a-02b9-4002-88a0-30f2027e0c54/LearnBizTalk.exe

applications, will work securely over the Internet, and will scale as your business needs grow. As you will soon discover, BizTalk
Server addresses these criteria very effectively.

The business environment in the 21st century is very different from what it used to be just a few years ago. Today's organizations
embrace the global marketplace, and this dictates a need to be able to efficiently operate 24 hours a day, 7 days a week. The
customers are now more sophisticated than ever, and they want to stay informed in real time, which translates into an accelerated
pace of business and decision-making processes. Finally, business relationships have become highly dynamic, and new customers
and partners expect businesses to adapt quickly.

The technical and operational challenges abound as well. There's a need to support multiple applications on a variety of platforms,
and to integrate with business partners using the Internet, extranets, B2B exchanges, and other resources. At the same time,
existing information technology investments need to be preserved and leveraged, which requires having an ability to support
legacy systems and EDI (electronic data interchange) and X12 networks. And perhaps most importantly, to effectively compete in
today's market, you need to be able to build new solutions on "Internet time," utilizing open Internet standards and technology to
assure maximum interoperability.

Microsoft BizTalk Server uses XML internally to "describe" your business documents, and it uses such standard Internet protocols
as HTTP and SMTP to deliver these documents to their destinations, thus allowing you to interoperate with various applications
running in any environment as long as those applications support Internet standards. You can send documents to BizTalk Server
as XML, EDI or as flat files.

So why is XML important, so important, in fact, that the BizTalk Server team chose this language to represent internal documents
and processes?

Do You Speak My Language?
To interchange documents in an environment where neither side wants to depend on the technology the other side is using,
businesses need to choose a lingua franca in which to write these documents. This common language is exactly what XML has
become lately.

XML, which stands for eXtensible Markup Language, is a flexible way to create common information formats and share both the
format and the data on the Web. The document that is written in XML can be viewed and edited with any text editor, and it is
usually pretty simple to understand. In the example below, a company called Northwind Traders is ordering two monitors from
Contoso, Ltd. Take a look at Northwind's internal requisition request, which it represents in XML format.

Despite an abundance of angle brackets, equal signs, and quotation marks, this document is fairly easy to understand and to
follow. Yet at the same time, this document follows a certain predefined format, called a schema. A schema is an XML document
that describes the format of other XML documents. Unlike other XML documents, though, a schema does not contain any data,
and it only defines rules of what might appear in an XML document based on this schema.

Both XML and XML schemas are currently undergoing a formal standardization process by the World Wide Web
Consortium (W3C). XML has reached a level of "W3C Recommendation," the highest level that W3C assigns. This
recommendation can be found at http://www.w3.org/XML. At the time of this writing, XML Schemas have not reached
the status of Recommendation. Microsoft BizTalk Server 2000 defines documents using a format known as XML-Data
Reduced, which is a functional subset of this specification and one of the precursors to the W3C XML Schema effort,
which gives you many of the benefits of XML Schema today. You can get the latest information on XML Schema on
the Web at http://www.w3.org/XML/schema.html.

Document Exchange Concepts
Microsoft BizTalk Server addresses the two key aspects of any document exchange.

BizTalk Messaging Services provides the ability to send business documents in a secure and reliable manner. An example of such
a document could be a purchase order sent to your supplier, or a request for a price quote on the same product sent to multiple
suppliers in order to select the lowest bidder.

<NorthwindReq>
<Header reqNumber="IL0829" reqStatus="New" dateCreated="2000-10-24" timeCreated="16:29:00" />
<Shipping name="Brian H. Valentine" addr1="1234 Main Street" city="Anytown" state="AB"
zip="12345" country="USA" phone="(800)555-0123" />
<Items count="2" totalPrice="790.00">
<Item partNo="270FS" description="27-inch flat screen monitor" qty="2" unitPrice="395.00" />
</Items>
</NorthwindReq>

http://www.w3.org/xml/
http://www.w3.org/xml/schema.html

BizTalk Orchestration Services are all about defining business processes that were used to create the message and then
implementing them using a highly integrated graphical environment. Processes defined using BizTalk Orchestration Services have
the key characteristic that they are easily modifiable when the business changes, providing you with agility to respond to business
changes.

Best of all, because most business processes involve sending and receiving documents and applying business rules to their
processing, BizTalk Messaging Services and BizTalk Orchestration Services combine naturally, allowing you to create elegantly
integrated solutions.

In this lesson, and in the lessons that follow, we will teach you about the fundamental concepts surrounding BizTalk Server, and
also provide you with the skills to understand the tools and processes required to start building solutions with BizTalk Server.

Install BizTalk Server
In the remaining lessons, we will work together through the sample scenario of Northwind Traders buying computer equipment
from Contoso, Ltd. We will explain what happens at every step of that process, and we will show you how to define formats of
business documents in XML using BizTalk Editor, how to describe internal business processes using BizTalk Orchestration
Designer, and finally how to tie it all together without having to write any code! Well, okay—some code. While there is no coding
specific to BizTalk Server integration, you still need to build your own business-specific rules; however, in these lessons we will
keep this code to an absolute minimum.

All the examples in the lessons are designed in such a way that they can be installed and executed on a single computer; however,
you can also configure two or more servers to closely match the distributed nature of your particular environment if you want to
do so.

Before you install Microsoft BizTalk Server, make sure you have read the Readme.htm and Installation Guide.htm documents,
paying particular attention to the following important prerequisites:

You must have a computer running Microsoft Windows® 2000 with Service Pack 1 or above (Professional or Server both
work), including IIS and MSMQ services, and an account with administrative rights on that computer.
You must have Microsoft SQL Server™ 7.0 with Service Pack 2 or above (you can install SQL Server Desktop Edition if you
choose to run everything on a single workstation running Windows 2000 Professional) and password for the "sa" account. If
you use SQL Server 2000, you must configure it for "mixed" security mode in the install wizards that is not the default.
Microsoft Visio® 2000 SR1 Standard or above must be installed on the computer where you are installing BizTalk Server.
The Enable authoring option on the Server Extensions tab of the Default Web Site must be turned off in the Internet
Services Manager.

Also, in order to execute the scripts for these lessons you need to install MSMQ component of Windows 2000.

Let's Do Business
Now that you have successfully installed and configured BizTalk Server, let's talk about a business scenario we will use in our
lessons.

A computer hardware retailer, Northwind Traders, is ordering computer parts from Contoso, Ltd. An internal procurement
application at Northwind is creating a purchase requisition, just like the one we showed previously, and writes it as a file on a hard
drive. This file is picked up by BizTalk Server and passed to Northwind's order approval process. If the requisition is declined, it is
marked as such and written as a file on a hard drive. If it is approved, a purchase order is generated and sent to Contoso using
HTTP protocol, just like in a real-world scenario. In our simplified example, a requisition is always approved if it does not exceed
$1,000, and is declined otherwise.

In our example, both businesses are using Microsoft BizTalk Server 2000. While BizTalk Servers work well with each other, you can
also use BizTalk Server to interact with businesses that are not using this technology.

Once the BizTalk Server on the Contoso side receives the purchase order (in our scenario we will use the same instance of BizTalk
Server to perform tasks for both sides), it passes the purchase order on to Contoso's business process, which generates an invoice
to be delivered to Northwind, once again using HTTP protocol. Finally, BizTalk Server on Northwind's side receives the invoice and
writes it as a file on a hard drive.

Figure 1 shows what this process looks like at a high level.

Figure 1. Example of a business process that uses BizTalk Server and the HTTP protocol

Run the Scenario
To execute the scenario above, download and run the archive file LearnBizTalk.exe.

Be sure to choose C:\ as the default location where the files should be extracted. This creates a C:\LearnBizTalk directory
containing all the files necessary for our lessons. After all the files have been extracted, run the script file Setup.vbs located in the
C:\LearnBizTalk\Scripts directory. This script file configures BizTalk Server for use during these lessons. Depending on your server
environment, the script might take a few minutes to complete, which will be indicated by a message box.

Once the script has completed, locate the files named ReqToApprove.xml and ReqToDecline.xml in the
C:\LearnBizTalk\Documents directory. Examine each file by double-clicking it to open it in Microsoft Internet Explorer. Notice that
the reqStatus field is set to New, and note the values of the totalPrice and reqNumber fields in each document.

You are now ready to see BizTalk Server in action. Copy the file named ReqToDecline.xml from the C:\LearnBizTalk\Documents
directory and paste it into the C:\LearnBizTalk\Pickup directory. Make sure you are not moving the file but rather copying it
because it will be processed by BizTalk Server and removed from the \Pickup directory. Since the order total in this requisition
exceeds $1,000, it gets declined and a message box is displayed informing you of this.

Copy the file named ReqToApprove.xml from the C:\LearnBizTalk\Documents directory and paste it into the
C:\LearnBizTalk\Pickup directory. Now, instead of being declined, the requisition is approved, a purchase order is generated and
sent to Contoso, the purchase order is processed, an invoice is created and sent back to Northwind, and finally an invoice is
received at Northwind and written as a file to the C:\LearnBizTalk\Output directory. Go ahead and open ContosoInvoice.xml from
the \Output directory in Internet Explorer by double-clicking it. Note the value of the reference field is now the same as the
original reqNumber field.

That completes Lesson 1. Congratulations—you have successfully installed BizTalk Server and run your first scenario.

In Lesson 2 and the lessons that follow, we will take a closer look at what happens at each step of this process, and how to
configure BizTalk Server to perform all the necessary tasks.

https://msdn.microsoft.com/en-us/library/ms942741(v=bts.10).aspx

Microsoft BizTalk Server Technical Articles

Learning BizTalk Server 2000: Lesson 2
Igor Leybovich and Scott Woodgate
Microsoft Corporation

May 2001

Summary: The second in a series of 7 articles designed to show you how Microsoft BizTalk Server 2000 can help your business
exchange a variety of documents with business partners, as well as integrate internal business processes and applications. In this
lesson, we will configure BizTalk Server to perform all the necessary tasks in a sample business scenario, and discuss basic
concepts and terminology. (9 printed pages)

Note

You will need to install Microsoft® BizTalk™ Server 2000 in order to complete this lesson. Before you install Microsoft
BizTalk Server, make sure you have read the Readme.htm and Installation Guide.htm documents, paying particular
attention to the following important prerequisites:

You must have a computer running Microsoft Windows® 2000 with Service Pack 1 or above (Professional or Server both
work), including IIS and MSMQ services, and an account with administrative rights on that computer.
You must have Microsoft SQL Server™ 7.0 with Service Pack 2 or above (you can install SQL Server Desktop Edition if you
choose to run everything on a single workstation running Windows 2000 Professional) and password for the "sa" account. If
you use SQL Server 2000, you must configure it for "mixed" security mode in the install wizards that is not the default.
Microsoft Visio® 2000 SR1 Standard or above must be installed on the computer where you are installing BizTalk Server.
In Internet Services Manager, turn off the Enable authoring option on the Server Extensions tab of the Default Web Site.

Also, in order to execute the scripts for these lessons, you need to install the MSMQ component of Windows 2000.

Contents

Introduction
Why Use BizTalk Messaging Services?
Configuring File Receive Functions
Configuring Messaging Ports and Channels
Defining Document Specifications
Running It

Introduction
We will now review individual steps of the scenario that we set up in Lesson 1. From time to time throughout the remaining
lessons, we will ask you to execute additional script files. These files make adjustments to the BizTalk Server configuration that we
originally created, so we can see the results of execution of individual steps rather than the complete process that we showed in
Lesson 1.

To begin, run the script file L2Prep.vbs located in the C:\LearnBizTalk\Scripts directory. This alters the configuration of BizTalk
Messaging Services, so instead of delivering the document to BizTalk Orchestration, it writes it as a file that we can examine.

Figure 1 provides you with a closer look at what happens during this phase.

https://msdn.microsoft.com/en-us/library/ms942737(v=bts.10).aspx

Figure 1. Supplier and buyer business processes

Why Use BizTalk Messaging Services?
BizTalk Messaging Services provides a simple and efficient way to pass documents between internal applications, as well as
between external business partners. BizTalk Messaging Services enable you define how your documents are received, processed,
and delivered to their destinations, as well as providing such essential features as validating document structure, digital
signatures, encryptions, and guaranteed delivery over unreliable transports.

Configuring File Receive Functions
Suppose we need a means to take a file that was created by an internal application and get it into BizTalk Messaging Services. File
Receive functions fulfill this role. One advantage of working with an output file is that an internal business application that creates
this file does not need to know anything about BizTalk Server. It simply creates a file containing the document somewhere on a
file system, and BizTalk Server instantly picks it up. Indeed, if you can create output files and receive input files into your existing
applications, you probably will be able to use them with BizTalk Server without a single modification.

Another important aspect of using File Receive functions is that it introduces an element of asynchronous execution to your
design. Asynchronous, from Greek meaning "not at the same time," pertains to processes that proceed independently of each
other. Being asynchronous is very important in a distributed environment, because it allows each part in the solution to stand by
itself and not be affected by the temporary unavailability of another part, whether due to failure or scheduled maintenance. For
example, if you experience a brief network failure, the overall application is not affected since the documents produced by your
internal business applications would simply accumulate on the hard drive. Once the network is available again, BizTalk Server
picks up and processes all the files it finds in the designated directory. You could also easily add more BizTalk Servers and
configure them to process documents from the same directory, should you generate more documents than could be processed
by one server with an acceptable speed.

To look at how we configured the File Receive function, open the BizTalk Server Administration application, expand BizTalk
Server Group, expand Receive Functions, right-click ReceiveReq, and then click Properties. You can see that this function was
configured as a File Receive function, and on the Services tab you can see where we identified the directory to poll for files and
the file types to pick up, as shown in Figure 2.

Figure 2. A configured File Receive function

On the Advanced tab, we instructed BizTalk Server where to deliver the files it finds. On that tab, we also identified a channel,
called Channel To Approval, to which the receive function will pass the documents. Channels, as well as related messaging ports,
are new concepts. We will discuss them next.

File Receive functions are not the only way to submit documents to BizTalk Server. You can also receive documents
from Message Queuing, through e-mail (SMTP), and from Web pages (HTTP/HTTPS), as well as from COM from
within your own applications.

Configuring Messaging Ports and Channels
To deliver the document to a destination, you must define the destination in BizTalk Messaging Services. Destinations are known
in BizTalk Messaging Services as messaging ports. A messaging port also contains a set of properties with which you can direct
how documents are secured and transported to their destination, be it an internal application or an external business partner.

You can group messaging ports into distribution lists to send the same document to several different destinations,
whether they are business partners or internal applications.

Let's take a look at the messaging port, which we called Req Approval Port, that we defined when you ran the setup script. This is
a messaging port to an internal application that represents Northwind's business process for requisition approval. Open BizTalk
Messaging Manager, click Messaging ports, and then click Search Now. In the right pane, double-click Req Approval Port to
edit it. Click Next. The Destination Application dialog box shows that this document will be delivered to file, as shown in Figure 3.

Figure 3. The Messaging Port Properties dialog box

In Lesson 1, this messaging port delivered the message to an XLANG schedule within BizTalk Orchestration Services, which
implements the approval process. (We will discuss BizTalk Orchestration Services in more detail in the next lesson.) We have
deliberately changed this by running the script at the start of the lesson so you can see the output.

Instead of delivering a document to BizTalk Orchestration Services or a File, you can configure a messaging port to deliver
documents using any of the supported protocols, which include HTTP(S), SMTP, Message Queuing, and custom application
integration components (AICs).

You can also configure a messaging port with extra security features by optionally encrypting your document and/or adding a
digital signature to it.

Now let's define a channel through which this document is delivered. A channel contains a set of properties, which identifies the
source organization or application that has sent out the document. The channel also defines the specific steps that are performed
by BizTalk Server before the document is delivered to the associated messaging port. Take a look at the relationship between
receive functions, channels, and messaging ports.

Figure 4. Relationship between receive functions, channels, and messaging ports

To see how we've set up the channel that delivers requisitions to Northwind's approval process, open BizTalk Messaging
Manager, click Channels, and then click Search Now. In the right pane, double-click Channel To Approval to edit it. Click Next.
Alternatively, you can right-click the messaging port Req To Approval and choose the menu option Find Channels to show you
all the channels, or show only Channel To Approval connected to the Req To Approval. In the dialog boxes that follow, we have
defined that the documents to be processed by this channel will originate from an internal purchasing application, and that these
documents will be in a format described by a document definition named Northwind Req.

https://msdn.microsoft.com/en-us/library/ms942737(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ms942745(v=bts.10).aspx

Figure 5. The Channel Properties dialog box

You can optionally instruct a channel to translate a document from one document definition into another, as well as
specify which information must be logged for tracking purposes as the channel delivers documents. Lesson 5 contains
more about document translation.

So what is this document definition, and how do we create one?

Defining Document Specifications
In the first lesson, we explained how important it is for businesses to use the same language for describing the documents that
are passed between them. This common language is XML. Although XML documents are stored in a text format and can be
opened with any text editor, creating or modifying them manually is a very tedious and error-prone process. Fortunately, BizTalk
Server provides an excellent tool called BizTalk Editor that greatly simplifies this task. All of our XML specifications are stored in
the C:\LearnBizTalk\Documents directory. Open the NorthwindReq.xml file located in this directory in BizTalk Editor and it will
appear as shown here.

https://msdn.microsoft.com/en-us/library/ms942737(v=bts.10).aspx

Figure 6. The BizTalk Editor window

BizTalk Editor provides an easy way to visualize a document's format, to define data types for individual elements and attributes,
to define which data fields are required and which are optional, and much more. This particular document schema represents an
XML document, but the Editor looks similar for EDI and Flat-file schemas.

Since you can work with the specification on any workstation where you have BizTalk Editor installed, after the specification has
been created it also needs to be added to the BizTalk Server WebDAV repository so the BizTalk server can retrieve it.

WebDAV (World Wide Web Distributed Authoring and Versioning) is the Internet Engineering Task Force (IETF)
standard for collaborative authoring on the Web. It facilitates collaborative editing and file management between
users located remotely from each other on the Internet. You can find more information regarding WebDAV on the
IETF Web site at http://ietf.org/rfc/rfc2518.txt.

Creating the document definition is now simply a matter of associating a specific XML specification created in the BizTalk Editor
and stored in WebDAV with a name to be used by BizTalk Server. To test this feature, in BizTalk Messaging Manager, on the File
menu, click New, and then click Document Definition. Type a name for the document definition, select the Document
specification check box, and then click Browse. The dialog box that appears next lets you choose any schema stored in the
BizTalk Server WebDAV repository. Click OK to save the new document definition.

You can create multiple document definitions that are based on the same schema document. You can optionally
define global document tracking options for each document definition that you create.

Running It
Now let's execute the part of the scenario we just reviewed. Copy the ReqToApprove.xml file from the C:\LearnBizTalk\Documents
directory and paste it into the C:\LearnBizTalk\Pickup directory. The File Receive function ReceiveReq that we defined will pick up
that file and deliver it to the Req Approval Port messaging port through the Channel To Approval channel. At the beginning of this
lesson we ran a special script, which modified our channel and messaging port definitions. So instead of delivering the requisition
document to BizTalk Orchestration Services, the messaging port simply wrote the document contents to a file called
NorthwindRequisition.xml in the C:\LearnBizTalk\Output directory. Examine that file by double-clicking it to open it in Internet
Explorer. You will see that it's exactly the same document which we placed in the \Pickup directory.

Perform these steps again, this time using the ReqToDecline.xml file. The file in the \Output directory will be overwritten with our
newly submitted requisition.

http://ietf.org/rfc/rfc2518.txt

It appears that you haven't achieved a lot with BizTalk Messaging in this lesson. We picked up a file from the file system in one
directory and deposited it in another directory. Clearly there is a lot more that you can do with BizTalk Messaging Services, and
now that you understand the basic concepts and terminology, we will show you some of these features.

In the next lesson, we will take a look at how Northwind's requisition approval process is defined using BizTalk Orchestration
Services.

https://msdn.microsoft.com/en-us/library/ms942745(v=bts.10).aspx

Microsoft BizTalk Server Technical Articles

Learning BizTalk Server 2000: Lesson 3
Igor Leybovich and Scott Woodgate
Microsoft Corporation

May 2001

Summary: The third in a series of 7 articles designed to show you how Microsoft BizTalk Server 2000 can help your business
exchange a variety of documents with business partners, as well as integrate internal business processes and applications. In this
lesson, we will take a look at how a requisition approval process is defined using BizTalk Orchestration Services. (7 printed pages)

Note

You will need to install Microsoft® BizTalk™ Server 2000 in order to complete this lesson. Before you install Microsoft
BizTalk Server, make sure you have read the Readme.htm and Installation Guide.htm documents, paying particular
attention to the following important prerequisites:

You must have a computer running Microsoft Windows® 2000 with Service Pack 1 or above (Professional or Server both
work), including IIS and MSMQ services, and an account with administrative rights on that computer.
You must have Microsoft SQL Server™ 7.0 with Service Pack 2 or above (you can install SQL Server Desktop Edition if you
choose to run everything on a single workstation running Windows 2000 Professional) and password for the "sa" account. If
you use SQL Server 2000, you must configure it for "mixed" security mode in the install wizards that is not the default.
Microsoft Visio® 2000 SR1 Standard or above must be installed on the computer where you are installing BizTalk Server.
In Internet Services Manager, turn off the Enable authoring option on the Server Extensions tab of the Default Web Site.

Also, in order to execute the scripts for these lessons, you need to install the MSMQ component of Windows 2000.

Contents

Introduction
What is Orchestration?
Analyst's Point of View
Developers See It Differently
Joining the Two Sides
Let's Run It

Introduction
Now let's discuss how Northwind Traders implemented its requisition approval process using BizTalk Orchestration Services.
Figure 1 gives a more detailed view of what needs to be done.

Figure 1. Requisition approval process for Northwind Traders

What Is Orchestration?
So now that you know how to submit your business documents to BizTalk Messaging Services from Lesson 2, you might ask
yourself: "How do I define what my business processes are, and how can BizTalk Server help me to apply these processes?" The
answer to that question is BizTalk Orchestration Services. Microsoft BizTalk Server 2000 solves two problems: it provides you with
BizTalk Messaging Services to send messages between business processes, and it provides you with BizTalk Orchestration
Services to create your business processes.

BizTalk Orchestration Services enables you to create a detailed representation of your business process, and also to
programmatically implement the business process within an integrated design environment based on Microsoft Visio 2000.
Historically, the business-process design phase and the implementation phase were performed separately. One of the important
features of BizTalk Orchestration Services is the integration of these previously distinct phases within a unified graphical design
environment.

Because business processes are defined in a graphical environment, when these processes change at the business level this can
be much more rapidly reflected at the implementation level.

In addition to integrating design and implementation, BizTalk Orchestration Services provides several other important features to
solve tasks that are hard to achieve today: the ability to create processes containing concurrency, doing multiple tasks at the same
time, and the ability to create robust, long-running business processes that span applications, platforms, and organizations. To
achieve the second feature, create robust, long-running business processes, BizTalk Orchestration Services saves instances of
long-running business processes and suspends them, which conserves computing resources and provides extra reliability. At a
later point, the server restarts these processes from the exact point at which they were suspended while waiting for a long
operation to finish. Even if the computer was turned off in the interim, the suspended processes restart when triggered. An
example of such a long-running operation could be waiting for payment of an invoice, an operation that usually takes 20 to 30
days before completing. Go ahead and open the BizTalk Orchestration Designer and, from the File menu, open the file
NorthWindApprovalL3.skv from c:\LearnBizTalk\Schedules.

Analyst's Point of View
If you are one of the many business analysts who frequently draw diagrams using Microsoft Visio, you will feel right at home the
moment you open BizTalk Orchestration Designer. Figure 2 shows Northwind's approval process drawing that was designed in
BizTalk Orchestration Designer.

Figure 2. Approval process created in BizTalk Orchestration Designer

https://msdn.microsoft.com/en-us/library/ms942741(v=bts.10).aspx

You are simply defining your business process using such basic shapes as Action, Decision, and While shapes. You are not
required to think in terms of documents, specifications, components, and messages—leave this work to the developer. No
limitations are imposed on the number or names of the steps in your process. In addition, you can use Fork shapes to split the
process into multiple concurrent paths, such as requesting the same price quote from multiple suppliers, and later reunite these
paths with a Join shape. Finally, you can use the Transaction shape to "wrap" several steps of the process into a unitary
transaction if business requirements dictate this.

Developers See It Differently
Once the business process has been defined, you can now implement it by instructing BizTalk Server as to what must be done to
perform each of the tasks drawn by an analyst. If you are a software developer, this is probably the moment you've been waiting
for, thinking that we would finally show some coding tasks. As much as we hate to disappoint you, we must say that BizTalk
Orchestration Services does most of the work, so the amount of code that's left to be written is minimal, if any.

Figure 3 shows the developer's side of the diagram.

Figure 3. Implementation process created in BizTalk Orchestration Designer

As a developer you certainly need to understand how to use the BizTalk Messaging shape, the COM Component shape, and
the Message Queuing shape. Note that you do not write any code to bind the business processes together; your coding is in the
individual components of specialized business logic, rather than in the glue that holds them together.

For example, when you drag and drop the BizTalk Messaging shape onto the drawing, you open the BizTalk Messaging Binding
Wizard, which walks you through a series of simple pages to define which messaging port is associated with a given
implementation shape. As you may recall, a messaging port is simply a collection of properties associated with a certain
document destination, and your business process can certainly be such a destination.

At the same time, for simpler tasks you can also create lightweight components in a scripting language of your choice, such as
Microsoft Visual Basic® Scripting Edition (VBScript). We have used a component like this in this XLANG schedule drawing. Our
script component exposes a method called DeclineReq, whose only job is to display a message box alerting the user that a
requisition has been declined.

The NorthwindApprovalL3.skv XLANG schedule contains two script components and one BizTalk Messaging shape.

Of course, if a specific part of the business process requires you to perform specialized tasks, such as accessing internal databases
or interfacing with a mainframe system, you would most likely implement them in a COM component and simply call its
appropriate methods from BizTalk Orchestration Services.

In the next lesson, we will take a closer look at the process of creating a Script Component.

Joining the Two Sides
Finally, we need to connect the business analyst's view with the implementation. Each flowchart shape used by an analyst, as well
as each implementation shape used by a developer, has a "handle" on its side. Using familiar Visio techniques, you connect an
action shape on the left with an implementation shape on the right by simply drawing a line between their handles. Once the
shapes are connected, the XML Communication Wizard opens and you then answer a few questions to determine how the
communication between the shapes occurs.

Now that all the action and implementation shapes have been connected, we are almost done. The last step, on the Data page, is
to define how the actual business document will be passed from one action to the next. You can view the Data page by clicking
the Data tab at the bottom of the drawing in BizTalk Orchestration Designer. The next lesson contains more details about that.

Let's Run It
To test the parts of the scenario we have discussed up to this point, run the following script file: L3Post.vbs. This script temporarily
alters our XLANG schedule drawing so the requisition does not get passed to Contoso just yet. Don't worry, we will return
everything to its original configuration later, but now it is useful to make this change so that you can visualize this step of the
process.

Copy the ReqToDecline.xml file from the C:\LearnBizTalk\Documents directory and paste it into the C:\LearnBizTalk\Pickup
directory. The File Receive function picks up that file and delivers it to BizTalk Messaging Services. BizTalk Messaging Services in
turn invokes the Northwind requisition approval process using BizTalk Orchestration Services, since we defined an XLANG
schedule as the destination for the messaging port that was created for this business process. Finally, BizTalk Orchestration
Services processes the requisition and displays a message box informing you that this particular requisition was declined. Go
ahead and do it again, this time using the ReqToApprove.xml file. The message box informs you that the requisition has been
approved.

In Lesson 4, we will focus on configuring Implementation shapes in BizTalk Orchestration Designer, developing a Script
Component, and determining what needs to be done on the Data page so that our document is properly passed from action to
action.

https://msdn.microsoft.com/en-us/library/ms942749(v=bts.10).aspx

Microsoft BizTalk Server Technical Articles

Learning BizTalk Server 2000: Lesson 4
Igor Leybovich and Scott Woodgate
Microsoft Corporation

May 2001

Summary: The fourth in a series of 7 articles designed to show you how Microsoft BizTalk Server 2000 can help your business
exchange a variety of documents with business partners, as well as integrate internal business processes and applications. In this
lesson, we will examine the developer's implementation of a sample business requisition-approval process. (12 printed pages)

Note

You will need to install Microsoft® BizTalk™ Server 2000 in order to complete this lesson. Before you install Microsoft
BizTalk Server, make sure you have read the Readme.htm and Installation Guide.htm documents, paying particular
attention to the following important prerequisites:

You must have a computer running Microsoft Windows® 2000 with Service Pack 1 or above (Professional or Server both
work), including IIS and MSMQ services, and an account with administrative rights on that computer.
You must have Microsoft SQL Server™ 7.0 with Service Pack 2 or above (you can install SQL Server Desktop Edition if you
choose to run everything on a single workstation running Windows 2000 Professional) and password for the "sa" account. If
you use SQL Server 2000, you must configure it for "mixed" security mode in the install wizards that is not the default.
Microsoft Visio® 2000 SR1 Standard or above must be installed on the computer where you are installing BizTalk Server.
In Internet Services Manager, turn off the Enable authoring option on the Server Extensions tab of the Default Web Site.

Also, in order to execute the scripts for these lessons, you need to install the MSMQ component of Windows 2000.

Contents

Introduction
Receiving Documents in BizTalk Orchestration Services
Getting to the Data
Doing Something Useful
Creating a Script Component
Sending the Document Out
The Data Page

Introduction
In this lesson, we will slightly extend the Lesson 3 XLANG schedule and examine the developer's implementation of the
Northwind's requisition-approval process. First, open up the NorthwindApproval.skv file in BizTalk Orchestration Designer, as
shown in Figure 1. This file is very similar to the NorthwindApprovalL3.skv that we used in Lesson 3, except one of the Windows
Script Components has been replaced by a BizTalk Messaging shape with the words Channel To Contoso written on it.

https://msdn.microsoft.com/en-us/library/ms942745(v=bts.10).aspx

Figure 1. A requisition-approval process in BizTalk Orchestration Designer

Using BizTalk Orchestration Services, the requisition-approval process is implemented in the form of an XLANG schedule. We will
look at configuration parameters for various Implementation shapes, review the process involved in creating a Windows Script
Component implementation, and explain what must be done on the Data page in BizTalk Orchestration Designer to assure the
correct flow of information in and out of an XLANG schedule.

Receiving Documents in BizTalk Orchestration Services
As we mentioned earlier, an XLANG schedule is the place where you implement your business process. In most cases, this process
must examine various fields of an incoming document and make decisions or perform actions based on their values. In our
example, we check the Total value of the Requisition document and approve the requisition only if its total is less than $1,000.

Of course, the Requisition document must first be delivered to the approval process. By now you are probably wondering: "What
exactly is this process, and where is it running?" We will answer this question in this lesson.

After a business analyst side of the XLANG schedule drawing has been completed, and a developer adds the implementations, the
diagram is compiled into an XLANG schedule. The schedule is a file written in the XLANG language, which is a language that
describes the logical sequencing of business processes, as well as the implementation of the business process by using various
technologies. The XLANG language is expressed in XML. The XLANG schedule defines all the steps that must be performed,
components that must be called, and data that must be passed in order to fulfill the defined process. Once both sides of the
diagram are completed, you can compile the XLANG schedule drawing by clicking Make XLANG filename.skx from the File
menu in BizTalk Orchestration Designer.

In previous lessons you learned how to send a message containing a business document by using BizTalk Messaging Services.
Now we need to combine the message and the business process.

In Lesson 2, we defined a messaging port and configured it to deliver the Requisition document to an XLANG schedule. We
specified the name of an XLANG schedule (the XLANG file) that should be started by BizTalk Messaging Services in order to
process the requisition. We also specified the name of an orchestration port to receive the requisition within the schedule. This
orchestration port must be configured inside BizTalk Orchestration Designer. Notice that the word port is used to refer to two
different things, a messaging port defined in the BizTalk Messaging Manager and an orchestration port defined in the BizTalk
Orchestration Designer are not the same thing—this is a little confusing, but once you understand the notion they are different,
you will be fine. When you add a BizTalk Messaging shape to the right-hand side of the XLANG schedule drawing, the BizTalk
Messaging Binding Wizard starts. Double-click the BizTalk Messaging shape with the Activation icon to follow through the wizard.
In this wizard, you name the orchestration port (this name must match the one you specified in BizTalk Messaging Manager), and
also indicate whether this port receives documents or sends them, and whether it is used to start a business process. That's it!
Now you can pass documents from BizTalk Messaging Services to BizTalk Orchestration Services.

https://msdn.microsoft.com/en-us/library/ms942741(v=bts.10).aspx

If you indicate that a port is used to send documents from the XLANG schedule to BizTalk Messaging Services (rather
than receive them), the BizTalk Messaging Binding Wizard requires the name of a channel that will receive these
documents. Note that this channel does not have to exist at the time you create your XLANG schedule drawing, but it
must exist when the schedule is executed.

Another way to receive a document in an XLANG Schedule is to use the Message Queuing shape. When you add this
shape to the drawing, the Message Queuing Binding Wizard starts and you are asked to specify the name of a private
or public message queue that will be used to send or receive documents. However, if you choose to use Message
Queuing to receive documents, the schedule does not start automatically, unlike when you receive documents from
BizTalk Messaging Services. You must have another way to start the schedule after the document is posted on a
queue.

After an orchestration port is configured, you need to associate it with an action defined by an analyst. Click on an Action shape
on the left side of the drawing and connect the control handle on the right side to the orchestration port that you created. This will
start the XML Communication Wizard, which once again reminds us that Microsoft® BizTalk™ Server 2000 handles all its internal
data flow by using XML. You will be prompted to create a message that will be used to carry the document through the
orchestration process represented by the XLANG schedule. If you are using the pre-built schedule, then double-click on the blue
line that connects the Receive Requisition action with the ReceiveReq port to display the XML communication wizard. The wizard
will also remind you to connect this message to other messages on the Data page. We will review the Data page at the end of
this lesson.

Next, you need to specify whether the document is processed in XML format. If it isn't, the XLANG Scheduler Engine must "wrap"
the document in the engine's standard XML wrapper.

After that, you will be asked to specify a message type. Use the same document definition you used to configure the messaging
port that delivered this document to the XLANG schedule, or type in the name of the root element from your document schema
here.

Finally, you can optionally specify the name and location of an XML file, which contains your document specification, and BizTalk
Orchestration Services can validate each document against this specification prior to processing it.

Now that we know how to receive documents from BizTalk Messaging Services, let's look at what we can do with these
documents within BizTalk Orchestration Services.

Getting to the Data
Previously, you configured an XML communication for a message and indicated which XML specification represented the
document being received. Now you can use BizTalk Orchestration Services to retrieve values of individual fields inside the
document and transfer the information to COM components or other messages.

Open the XML communication wizard for the ReceiveReq port one more time and click Next four times to get to the Message
Specification Information page of the wizard. In the Message fields area, you will notice several entries. One of them, named
"Document", is the field that represents an entire document passed to the XLANG schedule. Click the Add button. Because we
specified that the documents passed into the XLANG schedule would match a specific XML specification, namely the Northwind
Requisition specification, you can now select individual fields from this document by using a standard XML query language called
XPath.

XPath is a language for addressing parts of an XML document. XPath is a public standard maintained by the W3C. You
can find more information about XPath at http://www.w3.org/TR/xpath.html.

As you click on individual nodes of the XML specification, an XPath for the node appears in the Node path box. Figure 2 shows
the Field Selection dialog box with the totalPrice field selected.

http://www.w3.org/TR/xpath.html

Figure 2. Field Selection dialog box

You can add other fields from the specification to your message in a similar way. All the fields added in this dialog box become
available on the Data page in BizTalk Orchestration Designer, so they can now be used in expressions and passed as parameters
to components. We will take a closer look at the Data page at the end of this lesson.

Now let's turn to the left side of the XLANG schedule drawing to see how we used this extracted field value, totalPrice, inside the
Decision shape. In the Decision shape, right-click the Requisition Total<1000? rule, and then click Properties. A dialog box
similar to the one in Figure 3 appears.

Figure 3. Rule Properties dialog box

Look at the Script expression box—the value of the totalPrice field can be simply accessed by using the
MessageName.FieldName notation. In our case, we used Message_1.totalPrice to get the Total Price value of the Requisition
document.

Doing Something Useful
Now that we have the document inside the XLANG schedule, we can call various business components and simply pass our
document as one of the parameters. These components can address a multitude of business rules, access corporate databases
and legacy systems, send e-mail messages, and generally do anything you'd like them to do. The components could also modify
the document itself if so required and return these changes back to the XLANG schedule to be passed on to the next action. All
that's required of your developers is to implement the business logic as standard COM components, then add these components
on the right side of the XLANG schedule drawing, choose which methods to call—and you are almost done!

Let's briefly review what we have achieved with BizTalk Server so far. We read the Requisition document from a file on the hard

drive and passed that file into BizTalk Messaging Services (using a File Receive function); then we validated this document against
an XML specification (by using a channel) and passed it to BizTalk Orchestration Services; after that we received the document
inside an XLANG schedule and retrieved values of specific fields (using XML Communication Wizard); and finally in a Decision
shape, we used rule properties to evaluate values and build our business logic. Until now everything we did not require any
programming on your part. At some point, however, you may need to write a business component to implement certain
company-specific actions (such as looking up requisition-approval limits for certain members of your staff). This is the time to
write a COM component.

Creating a Script Component
Did you know that you could create COM components by simply writing a script? The answer is to use Windows Script
Components. Script Components provide you with an easy way to create COM components by using scripting languages such as
Microsoft Visual Basic® Scripting Edition (VBScript) and Microsoft JScript®. You can use Script Components just like any other
COM components in any application that supports COM.

Script Components are not as high performance as compiled components because they are interpreted at run time,
but they are an excellent way to prototype an interface for a COM component that will be developed later.

To give you a head start on the creation of Script Components, Microsoft has released the Windows Scripting Component Wizard.
Once you download this wizard and run it, creating the skeleton code for your component is quite easy: choose a name for the
component, decide which scripting language you will use to implement it, specify which properties and methods your component
will have, and click Finish. The wizard generates all the code necessary for your component and saves it in a file with a .wsc
extension. All that's left for you to do is to open this file in the editor of your choice and to add the actual code behind your
methods. It's that easy!

The component that we will use has two methods—ApproveReq and DeclineReq and each method has a single parameter:
document. The step in the Windows Script Component Wizard where you add these methods to the script file is shown in Figure
4.

Figure 4. Adding methods to the script file in Windows Script Component Wizard

The following code is for the Requisition Approval component:

<?xml version="1.0"?>
<component>

<registration
 description="Req Approval"
 progid=" LearnBizTalk.ProcessReq"
 version="1.00"
 classid="{AD454A9F-58FE-4877-B7CD-F61BD45988F5}"
>
</registration>

<public>
 <method name="ApproveReq">

http://msdn.microsoft.com/scripting/

Everything in this file was generated by the wizard, except for the implementation code of the ApproveReq and DeclineReq
methods that appear in boldface above.

In addition to being the easiest way to implement simple COM components, Script Components have another important use.
Your business process flow might prove to be quite complex, with COM components to be created by your developers taking
several weeks to write and test. This does not mean that you cannot design and test your XLANG schedule drawing before those
components are finished. Simply use the Script Component Wizard to create mock-up versions of your complex COM
components, complete with properties and methods they expose, and then use these script components in your XLANG schedule
drawing in place of actual COM components that will be completed later. Not only can you now design your XLANG schedule
drawing without having to wait for other developers to finish their coding, but you can also test BizTalk Messaging Services and
BizTalk Orchestration Services integration with the confidence of knowing that your Script Components can be easily replaced
with COM components developed in another language at any time in the future. When the time comes, simply add a COM
Component shape to the drawing, answer a few questions in the COM Component Binding Wizard to create a new orchestration
port, and then disconnect your existing Action shape that was previously attached to a Script Component port implementation
and re-connect it to a new port. Recompile the schedule and you are done!

Sending the Document Out
After you finished processing the document inside the XLANG schedule, sending it out is as easy as it was getting it in. If you want
to send the document back to BizTalk Messaging, add a BizTalk Messaging shape to the right-hand side of the drawing and
specify the name of the channel to which the document must be sent. After the orchestration port is created, connect an Action
shape to this port and in the XML Communication Wizard specify whether the document is sent as XML or as a string, message
type information, and an optional XML specification to validate the document, similar to what you did earlier when you
configured BizTalk Orchestration Services to receive documents from BizTalk Messaging Services.

You can also send documents out of an XLANG schedule by using Message Queuing. In that case, instead of specifying
the name of a channe,l you will need to specify a name of a private or public queue to which the document will be
posted.

The Data Page
And now, the moment we have been putting off for a while. After an XLANG schedule drawing has been drawn, and all the
Implementation shapes have been connected to their Action counterparts, all that's left to do is instruct BizTalk Orchestration
Services how our document should "flow" from one step of the process to the next. Before you complete the Data page, it looks
similar to Figure 5.

 <PARAMETER name="Document"/>
 </method>
 <method name="DeclineReq">
 <PARAMETER name="Document"/>
 </method>
</public>

<script language="VBScript">
<![CDATA[

function ApproveReq(Document)
 MsgBox "Orchestration Engine Approved Requisition:" & vbCrLf & vbCrLf & Document, 64, "Req
uisition Approved"
end function

function DeclineReq(Document)
 MsgBox "Orchestration Engine Declined Requisition:" & vbCrLf & vbCrLf & Document, 16, "Req
uisition Declined"
end function

]]>
</script>

</component>

Figure 5. An incomplete Data page in BizTalk Orchestration Designer

Note that it shows several groups of fields, with each group named after the message that carries the document to or from an
orchestration port.

We now need to indicate that the document received from BizTalk Messaging Services by Message_1 needs to be passed on to
the DeclineReq_in message, which is the message that will submit the document to the Script Component, as well as to
Message_2, which will send the same document back to BizTalk Messaging Services. You can rearrange the messages on this
page to make the drawing look simpler to understand. The resulting page, which should look similar to the Data page in
NorthwindApproval.skv, looks like Figure 6.

Figure 6.

After all the message fields have been connected, save the drawing and compile a schedule file using the File menu. You are
done! Your XLANG schedule is now ready to be executed.

In the next lesson, we will prepare the document for delivery to the trading partner by transforming it with maps, and explain how
to use these maps with BizTalk Messaging Services.

https://msdn.microsoft.com/en-us/library/ms942753(v=bts.10).aspx

Microsoft BizTalk Server Technical Articles

Learning BizTalk Server 2000: Lesson 5
Igor Leybovich and Scott Woodgate
Microsoft Corporation

May 2001

Summary: The fifth in a series of 7 articles designed to show you how Microsoft BizTalk Server 2000 can help your business
exchange a variety of documents with business partners, as well as integrate internal business processes and applications. In this
lesson, we look at how the Requisition document is prepared for submission to a trading partner, and at the steps taken within
BizTalk Messaging Services to accomplish this task. (6 printed pages)

Note

You will need to install Microsoft® BizTalk™ Server 2000 in order to complete this lesson. Before you install Microsoft
BizTalk Server, make sure you have read the Readme.htm and Installation Guide.htm documents, paying particular
attention to the following important prerequisites:

You must have a computer running Microsoft Windows® 2000 with Service Pack 1 or above (Professional or Server both
work), including IIS and MSMQ services, and an account with administrative rights on that computer.
You must have Microsoft SQL Server™ 7.0 with Service Pack 2 or above (you can install SQL Server Desktop Edition if you
choose to run everything on a single workstation running Windows 2000 Professional) and password for the "sa" account. If
you use SQL Server 2000, you must configure it for "mixed" security mode in the install wizards that is not the default.
Microsoft Visio® 2000 SR1 Standard or above must be installed on the computer where you are installing BizTalk Server.
In Internet Services Manager, turn off the Enable authoring option on the Server Extensions tab of the Default Web Site.

Also, in order to execute the scripts for these lessons, you need to install the MSMQ component of Windows 2000.

Contents

Introduction
The Map Holds the Answer
Putting it Together
Testing the Solution

Introduction
In the previous lessons, we learned how Microsoft BizTalk Server 2000 accepts documents from line-of-business applications, and
how these documents are processed within BizTalk Orchestration Services.

Now let's look at how the Requisition document is prepared for submission to Contoso Ltd., and the steps taken within BizTalk
Messaging Services to accomplish this task.

The Map Holds the Answer
As you recall, the Requisition document we have been using so far represented an internal purchase requisition produced by an
application at Northwind Traders. Once this requisition is approved by a business process (implemented in our scenario using
BizTalk Orchestration Services), a purchase order must be sent to Contoso to actually buy the merchandise. Do you see what's
missing here? We don't have a purchase order (PO) document yet; all we've got is a requisition! However, we do know the
structure of Contoso PO, and we also know that most of the data required to create the PO document, such as list of items and a
billing address, is actually contained within the requisition. Can BizTalk Server once again assist us in transforming one document
into another without doing much coding? If you answered yes, you are right!

The tool that helps us do this job is BizTalk Mapper. BizTalk Mapper uses another Internet standard called XSL Transformations
(XSLT), which is a language for transforming XML documents from one XML schema into another.

XSLT is a W3C recommendation and you can learn more about it by visiting W3C's Web site at
http://www.w3.org/TR/xslt.html.

Luckily, you don't need to know anything about XSLT to use BizTalk Mapper. BizTalk Mapper is a highly graphical tool that
presents you with both specifications side-by-side and lets you define transformations by simply drawing lines between the
specification fields. For those cases when simple rules such as "Field A from Document 1 is mirrored into Field B in Document 2"
are not enough, the Mapper offers a series of powerful transformation elements called functoids. There are over 60 functoids
included with BizTalk Mapper, enabling you to perform mathematical, logical, string, date/time, scientific, database, and other

https://msdn.microsoft.com/en-us/library/ms942749(v=bts.10).aspx
http://www.w3.org/TR/xslt.html

operations. There is also a script functoid that enables you to write your own subroutines in Microsoft Visual Basic® Scripting
Edition (VBScript), in case none of the existing functoids are suited for the operation. The resulting VBScript code is embedded
directly into the XSLT generated by BizTalk Mapper.

You can do even more powerful things using "cascading functoids," a method of passing results of one functoid
execution as an input to the next functoid.

You can also create custom functoids in a language such as Visual Basic and add them to your functoid pallet for
future use.

For our business scenario, we built a map that translates Northwind's requisition document into Contoso's purchase order. This
map is stored in the file ContosoPOMap.xml located in the C:\LearnBizTalk\Documents\ directory. By opening this map in BizTalk
Mapper, you will see the screen shown in Figure 1.

Figure 1. A requisition mapped to a purchase order in BizTalk Mapper

Most of the fields required to build the PO document for Contoso were already present in the Requisition document, perhaps
under different names. Some of the fields, such as PO Number, are new, and therefore their values had to be generated.

You can see that we used three functoids in this map: a string concatenation functoid that combines two address fields in the
requisition into one field in the PO, a date/time functoid that generates the current timestamp for the "created" field, and a script
functoid that implements a specific business rule to generate a PO number (in our simplified world it simply picked a random
number for the PO number).

If the values of some destination fields do not change over time (for example, your company's name and address), BizTalk Mapper
enables you to specify constant values to be used. Simply highlight the field for which you need to provide a constant value, click
the Values tab, and enter your value. Figure 2 shows the Values tab.

Figure 2. Specifying constant values in BizTalk Mapper

Putting it Together
Now that we have created the map, let's go back to BizTalk Messaging Manager and configure the channel called "Channel To
Contoso", which is used to deliver the PO to Contoso while using our map.

Remember, this is the same channel that we specified in XLANG schedule drawing described in Lesson 3 when we configured an
orchestration port "Send PO" that delivered the Requisition document to Contoso. Note that our XLANG schedule outputs the
same Requisition document as it receives, and it is not aware of any potential transformations to this document (such as
translation into a Purchase Order) that occur later inside the BizTalk Messaging Services. This separation between a business
process used for the requisition approval and technical details behind managing document format and delivery mechanism is
what makes the overall solution so flexible and easily adaptable.

The key point here is that BizTalk Orchestration Services is the technology for creating business processes, while BizTalk
Messaging Services is the technology for reliably sending documents between business processes to integrate them.

In the future, if Contoso decides to change the format of its POs, you will only be required to update your specification for
Contoso PO and update the map to reflect the new specification changes, rather then recreate the entire business process.

When you configure the channel in BizTalk Messaging Manager, if you specify an outbound document definition that is different
from an inbound one, BizTalk Messaging Manager will automatically ask you to provide a map document to translate between
these two document specifications. Figure 3 shows this process.

https://msdn.microsoft.com/en-us/library/ms942745(v=bts.10).aspx

Figure 3. Configuring a channel in the Channel Properties dialog box

Testing the Solution
Let's test the solution we have built so far. Before continuing, locate the L5Post.vbs script file in the C:\LearnBizTalk\Scripts\
directory and double-click to run it. This script will undo the temporary changes we made to our orchestration process at the end
of Lesson 3 and will once again enable BizTalk Orchestration Services to output the document to BizTalk Messaging Services.

Now copy the ReqToDecline.xml file we used earlier and paste it into the C:\LearnBizTalk\Pickup\ directory. As before, this
requisition gets declined and you receive the message box that informing you of this.

Copy and paste the ReqToApprove.xml file instead. This requisition will get approved and sent by BizTalk Orchestration Services
to BizTalk Messaging Services. The channel receives the document, converts it into Contoso's PO by applying the map we
specified, and for now BizTalk Messaging Services simply writes the resulting document under the name ContosoPO.xml to the
C:\LearnBizTalk\Output\ directory.

Go ahead and double-click the output file to open it in Microsoft Internet Explorer. Look at the values of PO Number field that was
randomly generated by the script functoid, the Created field that has the time when this file was generated, and the Address field
that contains the values from both original Addr1 and Addr2 fields concatenated by the string functoid.

In the next lesson, we will learn about some different ways to deliver documents to your business partners and how standard
Internet protocols once again help to make this job easier.

https://msdn.microsoft.com/en-us/library/ms942757(v=bts.10).aspx

Microsoft BizTalk Server Technical Articles

Learning BizTalk Server 2000: Lesson 6
Igor Leybovich and Scott Woodgate
Microsoft Corporation

May 2001

Summary: The sixth in a series of 7 articles designed to show you how Microsoft BizTalk Server 2000 can help your business
exchange a variety of documents with business partners, as well as integrate internal business processes and applications. In this
lesson, you will learn about the business process used to send a purchase order to a trading partner, and how this order is
received and stored by the partner. (6 printed pages)

Note

You will need to install Microsoft® BizTalk™ Server 2000 in order to complete this lesson. Before you install Microsoft
BizTalk Server, make sure you have read the Readme.htm and Installation Guide.htm documents, paying particular
attention to the following important prerequisites:

You must have a computer running Microsoft Windows® 2000 with Service Pack 1 or above (Professional or Server both
work), including IIS and MSMQ services, and an account with administrative rights on that computer.
You must have Microsoft SQL Server™ 7.0 with Service Pack 2 or above (you can install SQL Server Desktop Edition if you
choose to run everything on a single workstation running Windows 2000 Professional) and password for the "sa" account. If
you use SQL Server 2000, you must configure it for "mixed" security mode in the install wizards that is not the default.
Microsoft Visio® 2000 SR1 Standard or above must be installed on the computer where you are installing BizTalk Server.
In Internet Services Manager, turn off the Enable authoring option on the Server Extensions tab of the Default Web Site.

Also, in order to execute the scripts for these lessons, you need to install the MSMQ component of Windows 2000.

Contents

Introduction
Choosing a Protocol
Receiving Documents Over HTTP
Using the Queue
Testing the Scenario

Introduction
In this lesson we will learn about the process Northwind uses to send the purchase order (PO) to Contoso, and how this order is
received and stored by Contoso.

Choosing a Protocol
After the PO document is generated, it needs to be submitted to Contoso for processing. When choosing a transport for this task,
you must consider several important aspects:

1. The transport must use a standard protocol—you want to know that your trading partner can receive documents using a
variety of software running on any platform.

2. The transport must be reliable—you want to be sure that the document was indeed received by the trading partner on the
other side.

3. The transport must be secure—you want to know that you can encrypt the entire transmission process to protect sensitive
data.

For our solution, we chose a transport that utilizes the HTTP protocol. HTTP is a standard protocol used by Internet browsers to
retrieve information from Web servers. Most administrators of corporate firewalls feel comfortable with allowing transmissions
based on HTTP to be sent outside the company. This is an important aspect of the process, and it involves choosing the right
transport. Your Microsoft BizTalk Server needs to communicate with internal applications, databases, and legacy systems;
therefore, it must be located within the firewall. At the same time, it may need to send and receive documents from an outside
partner, preferably using a well-known protocol that can go through the firewall.

HTTP is reliable from a transport perspective because it defines a standard way for the receiving side to communicate the status
of the transmission back to the sender. From a business process perspective, you want to be able to recover when temporary
Internet glitches cause a transmission failure. BizTalk Server can monitor the transmission process, retry sending documents for a

pre-configured number of times, and alert an administrator if transmission was unsuccessful.

Finally, HTTP has a secure variation, HTTPS, which allows encryption of the entire transmission by using standard algorithms.
HTTPS encrypts the entire communication stream with a trading partner, and it can be used in conjunction with encrypting and
digitally signing the document to provide an extra level of security.

An alternative way of sending documents to business partners is to use the File transport to save a document into a
file on a hard drive, and then use another process to pick up these files and deliver them to a partner with an EDI-VAN
dialer or an FTP process.

Receiving Documents over HTTP
Now let’s look at what must be done on the receiving side in order to accept a document transmitted by BizTalk Server using
HTTP and process it. For our scenario, we will assume that Contoso also uses BizTalk Server to receive POs and generate and send
invoices.

Since BizTalk Server is running on Microsoft Windows 2000 Server, a platform that includes Internet Information Server (IIS) 5.0,
Contoso can use a fairly simple Active Server Page (ASP) script to accept documents from Northwind’s BizTalk Server and submit
them for processing to BizTalk Server on Contoso’s side.

Please note that in these lessons, we use a single instance of BizTalk Server to simulate processing on both Northwind
and Contoso’s sides. In the real world, these would be separate servers running at each respective company’s sites.

After an ASP script receives the document, it must eventually send it back to BizTalk Server for further processing. While there are
several options available to achieve this, we would like to emphasize the importance of designing a solution that can achieve this
result in a fail-safe way. For example, if Contoso’s servers are temporarily down for a scheduled maintenance or an upgrade, or if
Contoso is experiencing an unusually high load on their servers, and the processing of POs cannot be done in real time, this
should not affect Northwind’s or any other trading partner’s ability to submit PO documents. As a matter of fact, Northwind
should be completely unaware of anything happening on Contoso’s side and of technology being used, short of the fact that the
PO can be transmitted successfully. Therefore, although BizTalk Server provides a standard way to accept documents using COM,
it isn’t the best approach in this particular example.

Let’s look at a better way to architect this part of a solution. Once the ASP script receives the transmitted document, it should
store it on some reliable medium, and then exit indicating that the document was successfully received. Meanwhile, BizTalk Server
can retrieve the stored document and process it in a completely asynchronous manner. In Lesson 2, we learned about File Receive
functions in BizTalk Messaging Services and how to use them to monitor directories for files that have to be processed. So, in one
possible scenario, our ASP script could simply store a document into a file to be picked up later by a File Receive function. Such
architecture provides a lot of flexibility for us to decide when documents are to be processed by BizTalk Server, and to decide
when to add more BizTalk Servers to process incoming documents, should business needs increase.

Now we would like to present an alternative way of achieving the same reliable results without storing documents in files and
having the added benefit of being transactional.

Using the Queue
Message Queuing (also known as MSMQ) is one of the standard components of Windows 2000 Server, and it provides a simple
and reliable way to build an asynchronous solution just like the one we are designing.

After the document is received by an ASP script, instead of storing it into a file on a hard drive, we can post the document as a
message on a message queue on the server, and then deliver it to BizTalk Messaging Services by using a Message Queuing
Receive function, which works similarly to a File Receive function.

The overall process is presented in Figure 1.

https://msdn.microsoft.com/en-us/library/ms942741(v=bts.10).aspx

Figure 1. BizTalk Messaging Services transaction using ASP and MSMQ

To create a new Message Queuing receive function, open BizTalk Server Administration, expand BizTalk Server Group, right-click
Receive Functions, click New, and then click Message Queuing Receive Function. Provide a name for your function, then
enter the queue name for the polling location, and click Advanced to enter a name of a channel that will process documents
received by this function. You can look at the properties of the ReceivePO Message Queuing Receive function that was
configured during setup. This receive function will process PO documents accepted by the ASP script discussed previously. This
function has been temporarily suspended, so the documents will remain on the queue, which enables you to examine them. You
can re-enable this function at the end of this lesson.

If you are using a private message queue to store documents, enter the queue name using the following format:
DIRECT=OS:.\private$\<queue_name>. If you are using a public queue, enter the queue name in the following format:
DIRECT=OS:<server_name>\<queue_name>.

Now let’s review the script inside the ContosoReceive.asp file to see the series of steps performed to accept the data transmitted
by BizTalk Server, and to post it to a message queue. We begin by using a BinaryRead method of a Request object provided by
ASP to read all of the transmitted data. Next, we utilize Microsoft Active Data Objects to transform the received data from binary
format to text format. Finally, we use Message Queuing functions to create a new queue message and post it to a private queue
that we chose.

You can see the entire source code inside the ContosoReceive.asp file located in C:\LearnBizTalk\ASP\ directory.

Testing the Scenario
Before testing our scenario, please locate the L6Post.vbs script file in the C:\LearnBizTalk\Scripts\ directory and double-click to run
it. This script will restore the configuration of the Port To Contoso messaging port that was modified earlier and instruct it to
deliver documents to Contoso using HTTP transport, rather than writing it to a file as was done in Lesson 5.

Now, copy the requisition file ReqToApprove.xml and paste it into a Pickup directory. The file will get processed by a File receive
function, then passed from BizTalk Messaging Services to BizTalk Orchestration Services for approval, then delivered back to
BizTalk Messaging Services, and finally transmitted to Contoso by using the HTTP protocol.

An ASP script simulating Contoso’s side will read the transmitted data, convert it back into a document, and post the document to
a local private queue.

Afterwards, a Message Queuing receive function should retrieve the document off the queue and submit it to BizTalk Messaging
Services, however as you may recall we temporarily disabled this receive function so we can examine the document posted to the
queue.

In order to see the messages on the queue, open the Administrative Tools application on your Windows 2000 computer and
double-click the Computer Management icon. In Computer Management, expand Services and Applications and locate
Message Queuing. Expand Message Queuing, expand Private Queues, and then expand ContosoPOQueue. When you click
Queue Messages in the left pane, the right pane shows all the messages currently posted to the queue. You can right-click on the
message in the right pane, click Properties, and then click the Body tab to see the beginning of the message body.

After you examine the message, delete it from the queue by right-clicking Queue Messages in the left pane, and then clicking All
Tasks and Purge.

https://msdn.microsoft.com/en-us/library/ms942753(v=bts.10).aspx

In the next lesson, we will discuss the final steps of our scenario, such as processing the Purchase Order document by Contoso,
generating the Invoice, and delivering it to Northwind.

https://msdn.microsoft.com/en-us/library/ms942761(v=bts.10).aspx

Microsoft BizTalk Server Technical Articles

Learning BizTalk Server 2000: Lesson 7
Igor Leybovich and Scott Woodgate
Microsoft Corporation

May 2001

Summary: The final installment in a series of 7 articles designed to show you how Microsoft BizTalk Server 2000 can help your
business exchange a variety of documents with business partners, as well as integrate internal business processes and
applications. In this lesson, you will learn how a supplier receives a PO sent by a buyer over the Internet, processes it using BizTalk
Messaging Services and BizTalk Orchestration Services, generates the invoice, and sends it back. You will also see how the buyer
receives the invoice and stores it, thus completing the buyer-supplier communications example. (7 printed pages)

Note

You will need to install Microsoft® BizTalk™ Server 2000 in order to complete this lesson. Before you install Microsoft
BizTalk Server, make sure you have read the Readme.htm and Installation Guide.htm documents, paying particular
attention to the following important prerequisites:

You must have a computer running Microsoft Windows® 2000 with Service Pack 1 or above (Professional or Server both
work), including IIS and MSMQ services, and an account with administrative rights on that computer.
You must have Microsoft SQL Server™ 7.0 with Service Pack 2 or above (you can install SQL Server Desktop Edition if you
choose to run everything on a single workstation running Windows 2000 Professional) and password for the "sa" account. If
you use SQL Server 2000, you must configure it for "mixed" security mode in the install wizards that is not the default.
Microsoft Visio® 2000 SR1 Standard or above must be installed on the computer where you are installing BizTalk Server.
In Internet Services Manager, turn off the Enable authoring option on the Server Extensions tab of the Default Web Site.

Also, in order to execute the scripts for these lessons, you need to install the MSMQ component of Windows 2000.

Contents

Introduction
What's in the Queue
Processing the Order
Closing the Loop

Introduction
In this lesson, we will learn how Contoso receives the PO sent by Northwind over the Internet, processes this order using BizTalk
Messaging Services and BizTalk Orchestration Services, generates the invoice, and sends it back to Northwind. Finally, we will
review how Northwind receives the invoice and stores it, thus completing our example of the buyer-supplier communications.

Figure 1 shows the remaining parts of the scenario.

Figure 1. Buyer-supplier communications diagram

Let’s take a closer look at what happens in each individual step.

What’s in the Queue?
Lesson 6 ended when a PO document received by an ASP script on Contoso’s side was delivered to a message queue. We also
learned about configuring a Message Queuing receive function, which monitors the message queue for any incoming messages
and delivers them to BizTalk Orchestration Services. We chose to store incoming POs on a message queue, rather than storing
them in files, because message queue offers an additional level of reliability by supporting transactions, a feature not found in a
file system.

After the Message Queuing receive function takes the document off the queue, it submits the document to the channel, which in
turn delivers it to the messaging port we created for Contoso’s business process. This port is configured to transport the
document to an XLANG schedule, indicating that it will start an XLANG schedule to run Contoso’s business process in a manner
similar to the Requisition document that was submitted to Northwind’s XLANG schedule in Lesson 4.

Processing the Order
The actual work that has to be completed to process a real PO will of course vary from one company to the next. To simplify our
scenario, we defined a single Action shape within Contoso’s XLANG schedule drawing, which represented all of the actions that
would be normally performed by a real-world supplier, such as checking inventory levels, communicating shipping instructions to
the warehouse, and so on.

The implementation for the Action shape is a simple Script Component that displays a message box, which advises the user of a
PO that is being processed. Here again, we used Script Component Wizard to assist us in the creation of this component.

Of course, in a production system, no message boxes should ever be displayed by any BizTalk Orchestration Services
components, for the simple reason that there will not be a user currently logged on at the server to observe and acknowledge
these messages. Until a user dismisses the message box, the schedule will not continue to run, potentially causing undesirable
effects. A more appropriate means of communication is by sending e-mail messages, or by writing Windows Event Log entries
that could in turn trigger other actions.

The BizTalk Orchestration process for Contoso is represented in Figure 2.

https://msdn.microsoft.com/en-us/library/ms942757(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/ms942749(v=bts.10).aspx

Figure 2. Business process for Contoso in BizTalk Orchestration Designer

Once again, in this XLANG schedule drawing, we utilized the XML Communication Wizard to extract individual values of fields, in
this case PONumber and Generated fields, from the PO document and pass them to the Script Component as parameters without
having to write any code. This is similar to the way we extracted the value of the RequisitionTotal field from the Requisition
document in Lesson 4.

On the Data page of the XLANG schedule drawing, we connected these fields to input parameters of the DoWork method of the
Script component. As you can see in Figure 3, the entire PO is not passed to the component, just the two individual fields that we
extracted.

Figure 3. Fields from the PO document passed to Windows Script Component

Finally, after the user clicks OK on the message box presented by the Script Component, the XLANG schedule sends the PO back
to BizTalk Messaging Services, where it is transformed into an invoice by using another map, and then sent to Northwind by using
the HTTP transport—the same transport Northwind used to send POs to Contoso.

Once an ASP script on Northwind’s side receives the invoice document, it stores the invoice as a file for further processing. In a
real-world scenario, such processing could include matching the invoice with the original requisition and PO, updating internal
systems with invoice information, and so on.

Closing the Loop

https://msdn.microsoft.com/en-us/library/ms942749(v=bts.10).aspx

Congratulations! Over the course of these 7 lessons you have been involved in the creation of a fully functional, albeit simple,
integration scenario between a buyer and a supplier. Let’s test our final application.

Before we begin, we must execute one last script, L7Post.vbs, located in C:\LearnBizTalk\Scripts\ directory. This script will re-
enable the Message Queuing receive function we temporarily suspended in Lesson 6 so that we could see the messages posted to
the queue.

Start by copying the requisition document, ReqToApprove.xml, from the C:\LearnBizTalk\Documents directory and, as we did
earlier, pasting in into the C:\LearnBizTalk\Pickup directory.

Let’s outline the complete flow for this scenario:

The File Receive function at Northwind reads the file ‘ReqToApprove.xml’ that was placed in a Pickup directory and sends it
to the Northwind’s BizTalk Orchestration Services process by using BizTalk Messaging Services.
The XLANG schedule extracts the value of the RequisitionTotal field, and because it is less than $1,000, it approves the
requisition by sending it back to BizTalk Messaging Services.
BizTalk Messaging Services receives the requisition from BizTalk Orchestration Services and uses a map to create a PO
document. This document is then transmitted to Contoso using the industry standard HTTP protocol.
An ASP script on Contoso’s side receives the transmission, extracts the document, and posts it as a message to a private
message queue.
A Message Queuing receive function finds a new document on the queue, retrieves it, and uses BizTalk Messaging Services
to send it to BizTalk Orchestration Services for processing.
The XLANG schedule extracts the values of PONumber and Generated fields and invokes a method on a Script Component,
which simply alerts the user of the arrival of the PO by displaying a message box.
The XLANG schedule sends the PO back to the BizTalk Messaging Services for invoice generation.
BizTalk Messaging Services applies a map to turn the PO into an invoice and transmits it to Northwind by using the HTTP
protocol.
An ASP script at Northwind accepts the transmission, extracts the document and saves it as the file
C:\LearnBizTalk\Output\ContosoInvoice.xml.
This completes the process of integrating these two businesses.

Figure 4 represents the complete process by showing the two XLANG schedules, BizTalk Messaging Services, Receive Functions,
ASP pages and queues and how they all interact:

https://msdn.microsoft.com/en-us/library/ms942757(v=bts.10).aspx

Figure 4. End-to-end buyer/supplier transaction process

If you now open the C:\LearnBizTalk\Output directory, you will find a file named ContosoInvoice.xml containing the invoice that
Northwind received from Contoso and stored in this file.

To undo the configuration changes made to your BizTalk Server installation by the scripts you ran during these lessons, execute
Cleanup.vbs script located in C:\LearnBizTalk\Scripts\ directory. After the script completes, which will be indicated by a message
box, you can safely remove the C:\LearnBizTalk directory and all the files it contains.

We hope these lessons have helped you better understand Microsoft BizTalk Server and shown you how BizTalk Server can
significantly reduce the amount of work required to integrate businesses and business processes. You can learn more about the
product on the Web at http://www.microsoft.com/biztalk, where you will find technical product information, white papers, training
and events, and third-party offerings.

Also, use the BizTalk Server Tutorial found in the BizTalk Server documentation. The tutorial works through a more complex
scenario than the one we presented in these lessons, and is a useful next step.

http://www.microsoft.com/biztalk/
http://www.microsoft.com/biztalk/techinfo/productdocumentation/default.asp

Microsoft BizTalk Server Technical Articles

Legacy File Integration Using Microsoft BizTalk Server 2000
Microsoft Corporation

February 2001

Summary: This article discusses the integration of existing legacy systems using Microsoft BizTalk Server 2000. It is intended as an introduction to a range of concepts associated with BizTalk Server 2000 and
is suitable for both technical and non-technical audiences who might be working with BizTalk Server for the first time.

Specifically, this paper provides an overview of the BizTalk Server tools that enable you to create the required components to interface to legacy systems. This includes a scenario with three phases that
demonstrates integration by using industry-standard XML and EDI file formats as well as delimited and positional files. (28 printed pages)

Download BTSLegacyFile.exe.

Contents

Introduction
Overview
Integrating Your Legacy System with the World BizTalk Editor: What Is It, How Does It Work, What Is the Purpose? How to Use Existing Data Sources Scenario Overview Internal Application Integration Integrating Customers with EDI and Flat Files

Introduction
A member of the Microsoft® .NET Enterprise Server family of products, Microsoft BizTalk™ Server 2000 unites, in a single product, enterprise application integration (EAI) and business-to-business integration.
BizTalk Server 2000 enables developers, IT professionals, and business analysts to easily build dynamic business processes that span applications, platforms, and businesses over the Internet.

In addition to BizTalk Server 2000, Microsoft, with its industry partners, has led innovation on enabling technologies that are necessary for Internet-based business solutions, including BizTalk Framework 2.0,
which is a platform-independent, Extensible Markup Language (XML) framework for application integration and electronic commerce. BizTalk Framework 2.0 provides the basis for interoperable reliable
messaging for BizTalk Server 2000.

As well as these innovations, Microsoft recognizes there are many legacy systems in enterprises today that do not currently support XML. To provide a complete solution framework, BizTalk Server 2000
integrates with a wide range of file formats. This paper discusses the integration of existing legacy systems within EAI and business-to-business frameworks that use BizTalk Server 2000. It is intended as an
introduction to a range of concepts associated with BizTalk Server 2000 and is useful to technical and non-technical audiences that might be working with BizTalk Server for the first time.

Specifically, this paper overviews the BizTalk Server concepts that provide you with the ability to create the required components to interface to legacy systems. This includes a scenario with three phases that
demonstrates integration by using industry-standard XML and EDI file formats as well as delimited and positional files.

Overview
It is generally acknowledged that organizations must embrace the global marketplace in order to expand the market for their goods and services. While embracing the global market expands the possible
reach of an organization, it also introduces fundamentally new computing demands. It requires systems that run 24 hours a day, 365 days a year.

In addition to maintaining high availability, organizations need to reduce cycle times for every aspect of these systems. This enables them to reduce the time to market and achieve a higher level of service for
both customers and partners.

In order for organizations to be able to act, react, and adapt at the speed that the modern economy requires, they need to be able to make decisions faster than they ever have before. They need to transform
data into information and information into knowledge. They need to be able to share knowledge more effectively to assist in the identification of new business opportunities and to capitalize on opportunities
when they are available.

Central to all of these changes is integration and interoperability between systems. The computing platform should enable you to use industry standards as well as organizational systems and skills to achieve
the greatest gains both in time-to-market and efficiencies.

In order to minimize time-to-market, it is critical that organizations are able to use existing systems to reduce the time-to-market, regardless of the operating environment, programming model, or other
constraints. In addition, to have a single, consistent infrastructure, the integration must enable organizations to integrate applications and processes internally as well as extend the integration to customers
and business partners.

Integrating Your Legacy System with the World
Most of the existing or legacy systems that are currently active in the corporate world are proprietary and utilize proprietary interfaces to expose themselves to the outside world. These take the form of either
a document import facility or the exposure of an underlying data model through an application programming interface (API) or API equivalent. As a result, the integration of internal or external applications is
an expensive exercise both in terms of initial development and ongoing maintenance.

Microsoft BizTalk Server provides the ability to expose these applications through an XML interface; therefore supporting both proprietary data formats as well as current and potentially future standards in
XML.

Why is this important? BizTalk Server allows you to reuse existing files to take advantage of the investment you have made in current data formats that meet the specific needs of your business.

BizTalk Editor: What Is It, How Does It Work, What Is the Purpose?
BizTalk Server defines the Extensible Markup Language (XML) representation of a document by using a graphical, simple-to-use tool. This tool, BizTalk Editor, enables you to create, edit, and manage
specifications. A specification is a BizTalk Server-specific XML schema. It makes extensive use of XML, providing a common vocabulary to handle overlaps between syntactic, database, and conceptual data
schemas.

Specifications represent the structured data as XML, regardless of the original format, and are a core component of integrating existing and legacy file formats into BizTalk Server.

Each specification describes the structure of the file, given a specific set of tags. BizTalk Editor also provides several templates that can be used as starting points for creating specifications for common
documents, such as purchase orders, invoices, and advance shipping notices.

To assist in integrating formats, such as various flat files, BizTalk Editor enables the specification of the basic parsing rules for interpreting or producing file formats other than XML.

How to Use Existing Data Sources
With the range of legacy systems currently available and the industry tendency to redefine terms on a regular basis, the following explains the basic terms and concepts used in the sample scenarios.
Specifically, this section explains positional and delimited files, as well as the function of parsers, serializers, receive functions, and envelopes.

What Are Positional and Delimited Files?

A delimited flat file contains one or more records separated by a record delimiter. A delimited record contains one or more fields separated by a common field delimiter. The following are examples of
delimited files with delimited records.

Example 1

Example 2

In Example 1, the delimiters are a comma (,) for separating the fields and a carriage return (<CR>) for distinguishing the end of records. In Example 2, the delimiters are a comma (,) for separating the fields
and an asterisk (*) for distinguishing the end of records.

When creating specifications within BizTalk Editor, remember that BizTalk Server does not read delimiters as part of the data when processing the files.

A delimited file can have positional records within it. A positional flat file consists of fields that are the same length and records that have a common end-of-record terminator.

The following is an example of a positional format:

DATE,PRODUCT,PRICE
DATE,PRODUCT,PRICE

DATE,PRODUCT,PRICE* DATE,PRODUCT,PRICE*

http://download.microsoft.com/download/A/2/7/A2795A81-8110-48A7-B5C5-B0BB6A11F535/BTSLegacyFile.exe

The date field is fixed at a length of six characters, while the product code and price are fixed at a length of seven and six characters, respectively. In this example the end-of-record marker or delimiter is an
asterisk (*).

When using BizTalk Server, it is important to note that a positional record must always be a child of a delimited record. The delimiter character specified for the parent-delimited record must not appear in the
data of the child positional record.

It is worth noting that files can consist of a combination of delimited and positional records.

Envelopes

A BizTalk Server envelope consists of two key pieces of information:

The type of envelope, which should match the envelope format for flat file, custom XML, X12, EDIFACT, or reliable document types.
The optional envelope specification.

Envelopes fall into two main categories or types:

Input document envelopes are required if the input document type is flat file because the envelope contains information about how to parse the document into XML and which parser should process the
document. For additional information, see the previous section on flat files.
Output document envelopes are used to wrap an output document that has been transformed into the native format. The envelope used with an output document is specified in the port configuration.
An envelope is always required if the output document is in an X12 or EDIFACT format. For documents that are output in a custom XML format, the reference specification is used to assist with the
serializing process.

Envelopes are used in conjunction with parsers (input) to take input files into XML or serializers (output) to take XML intermediate files into the output format.

Parsers and Serializers

Parsers and serializers are the key tools for facilitating integration into legacy file formats. Parsers are a component of BizTalk Server that processes files from a non-XML-based format such as X12, EDIFACT,
or delimited flat file into a valid specification based on a set of predefined parameters. The following illustration shows a flat file being sent to BizTalk Server. The file is parsed into XML by the flat file parser
with the help of the file envelope.

Serializers are a component of BizTalk Server that processes files from specifications or XML formats into non-XML-based file formats such as flat file, X12, and EDIFACT based on a set of rules or parameters.
The following illustration shows BizTalk Server generating an X12 format file.

Receive Functions

Receive functions are a component of BizTalk Server that enables any server to collect messages from external sources such as the file system or Microsoft Message Queuing. The File and Message Queuing
receive functions use an event model rather than a polling model to collect messages.

A File receive function is activated when a file is created in a specified directory. If this file matches the required criteria, it is consumed by the receive function and submitted to BizTalk Server.
A Message Queuing receive function is activated when a message arrives on the designated message queue. Like the File receive function, the message, if it matches the required criteria, is consumed by
the receive function and submitted to BizTalk Server.

Receive functions provide an excellent, GUI based approach to integrate external systems, especially those from legacy systems, into BizTalk Server.

To extend the functionality of a receive function and to provide more flexibility when using legacy files, additional message processing can be conducted prior to the message being submitted to BizTalk
Messaging. BizTalk Server provides interfaces that enable you to create custom preprocessing components.

A simple example of preprocessor use would be the conversion of a file that has been compressed for transmission from a proprietary format back into standard ASCII prior to submission to BizTalk
Messaging.

Application Integration Components

An application integration component (AIC) provides a method for creating a programmatic integration point to a legacy line-of-business application. The integration point is tightly coupled, meaning that the
structure and logic of the integration component are often closely aligned with a particular application and application version.

Each AIC is a component (COM object) that BizTalk Server calls to deliver data to an application.

At a summary level, an AIC provides two different methods for achieving a tightly coupled integration into the designated line-of-business applications:

The pipeline AIC. This will be familiar to any users of Microsoft Site Server Commerce Edition or Microsoft Commerce Server. It effectively allows the utilization of the Commerce Server pipeline
components.
The lightweight AIC. This is provided for developers who want a lightweight model for application integration. It does not support design-time user interface or configuration properties and requires a
single interface that contains a single method as an entry point. The component is implemented, and the document is passed to it.

Note that if a messaging port is configured in BizTalk Server to include the use of an AIC, then the messaging port simply functions as a new transport protocol with the component being automatically
instantiated and passed the requisite data.

Scenario Overview
After extensive discussions, the Chief Technical Officer of Northwind Traders, Limited, has decided to introduce a message-based architecture enabling the company to decouple its applications and achieve a
range of projected benefits, including loosely coupled integration with suppliers and partners.

Projected benefits from the new message-based environment include the ability to replace systems, or to adopt new best-of-breed solutions, with minimum impact on the existing installed technology. This
change in architecture is expected to reduce ongoing system maintenance costs and total commitment to expenditure.

In addition, the specific financial benefits of the new direction will allow the company to take advantage of the investment it has made in current data formats that have been created to meet the specific needs
of the business.

DATEXXPRODUCTPRICEX*000110A123 $15.60*

Northwind Traders currently has the following installed and operational line-of-business systems:

Northwind Traders has maintained a mainframe-based manufacturing system that handles specific activities, including stock management, bill of materials, and just-in-time ordering activities. Although
this system is being phased out and its functions replaced by the new Enterprise Resource Planning (ERP) system, it is expected to remain in place for the next two years.
As part of the drive to reduce cost and introduce a range of enterprise-wide management efficiencies, the organization has commenced implementation of an ERP system that has already taken over key
financial activities. Although the next, and future, versions will support many of the emerging XML-based industry standards, the current version has been on the market for two years and provides
integration points through a proprietary flat-file format.
In line with the improved management information, Northwind Traders recognizes its customers as its key asset and has recently implemented a Customer Relationship Management (CRM) system. This
system, deployed on Microsoft SQL Server 2000, uses many of the new database features, allowing it to support XML natively even though it does not adopt a specific industry standard.

The project team determined that this was to be done in three phases:

Internal application integration
Customer integration
Supplier integration

The following sections detail the integration requirements to achieve these three phases and integrate various data and file formats into the legacy system.

Internal Application Integration
As part of adopting the message-based architecture, the project team selected XML as the standard for integration of applications. Whenever possible, they adopted an industry-standard message format
rather than creating their own. This enables the mapping of data between proprietary formats, including EDI, flat files, and custom XML, to a common XML format. The long-term goal is that as the available
software matures and adopts emerging XML standards, Northwind Traders will be able to integrate new systems simply by passing them existing XML messages without the need for specialized integration
efforts.

The following illustration is a high-level representation of the new system architecture for Northwind Traders.

Application Integration Overview

Northwind Traders needed to create specifications for each of the data formats in the system. Initially both the ERP and the CRM system will integrate customer information and will produce a customer-
details update message. Remembering that the selected architecture requires all messages to be translated into an industry-standard format, the following XML has been defined as the standard message type
(A2A_CustomerUpdateMessage.xml). This message is created through BizTalk Editor.

This will require that both the ERP system and the CRM system have their messages translated into the standard format for distribution to the other systems. The following sample message
(CustomerUpdateTransaction.XML) will be used in the system:

Now that a standard format for the customer update has been selected, the required specifications need to be built.

ERP System Integration

First we will examine the document specifications and the envelopes for the ERP system.

Customer Update Specifications and Envelopes

The internal ERP system requires files in the following delimited flat-file format using record identifiers to differentiate the content:

The ERP system is able to import this into a standard format for processing as a batch.

Information received in the standard message format is translated by the BizTalk Mapper tool. BizTalk Mapper requires two specifications to facilitate the translation of the data into the legacy format. The
starting format is the standard XML message (A2A_CustomerUpdateMessage.xml), while the legacy format is represented by the specification (A2A_ERPCustomerUpdateFile.XML). The parsing information to
allow BizTalk Messaging to both serialize the XML file into flat files and to parse flat files and create the matching XML document is in the specification, and the envelope type instructs BizTalk Server to
serialize to a flat file specifically.

Once the specification has been created, the parsing information can be created to allow BizTalk Server to process the flat files into and out of the system. Important settings that are specified within BizTalk
Editor are reviewed in the following tables.

Note that in some instances the default BizTalk Server setting has been selected specifically to highlight it. Most parameters within the specifications and envelopes have a default setting that is utilized when
the user does not explicitly select an option. A comprehensive list of these can be found in the Microsoft BizTalk Server 2000 online Help.

<CustomerUpdates>
 <CustomerUpdate @CustomerCode>
 <AddressDetails @Type @AddressLine1 @AddressLine2 @PostalCode @State @Country>
</AddressDetails>
 <Contacts @FirstName @SecondName @Salutation @Email>
</Contacts>
 <ArchiveDetails @UserID @Date @Time @Comment>
</ArchiveDetails>
 </CustomerUpdate>
</CustomerUpdates>

<CustomerUpdates>
 <CustomerUpdate CustomerCode="CC099">
 <AddressDetails Type="Delivery" AddressLine1="BizTalk Plaza"
AddressLine2="26 Building Terrace" PostalCode="10087" State="NS"
Country="United Land Colony">
</AddressDetails>
 <Contacts FirstName="Mike" SecondName="Nash" Salutation="Capt"
E-mail="someone@microsoft.com">
</Contacts>
<ArchiveDetails UserID="GRAYT" Date="11/10/2001" Time="1:15AM"
Comment="Change of address">
</ArchiveDetails>
 </CustomerUpdate>
</CustomerUpdates>

1, CustomerCode,AddressType,Street,StreetAddress,DateUpdated,UpdatedBy
2, CustomerCode,FirstName,Surname,Phone,Email,DateUpdated,UpdatedBy

Specifi
cation

Edito
r tab

Property Comment

Root no
de

Refer
ence

Standard This is set to Custom.

 Default Recor
d Delimiter

The default record delimiter is set to CR (carriage return) or (0xd) hex and is used on the Parse tab in the specification.

 Default Field
Delimiter

The default field delimiter is set to a comma or (0x2c) hex and is used on the Parse tab in the specification.

 Envelope This is set to YES to specify that the specification is an envelope.
 Parse Structure The structure for the file is delimited. This is how BizTalk Server is able to recognize or create the records within the file. This specifically descries the AddressDetails and Contacts r

ecord types.
 Field Order The field order is PostFix, indicating that the record delimiters appear at the end of each record. N.B. PreFix, indicating that the record delimiters appear before the record is the def

ault, so you often need to change this setting when you are working flat files (such as .CSV).
 Delimiter Typ

e
The default record delimiter is selected because this has already been set. The CR (carriage return) delimiter allows BizTalk Server to determine at which point the record finishes a
nd to validate that the data returned represents a valid record according to the specification.

 Append Newl
ine

This value is set to Yes. The output file required a record delimiter similar to that of a text file. This delimiter is a CRLF (carriage return line feed). By selecting to append a new line,
BizTalk Server automatically adds an LF (line feed) to the end of each record during serialization from the XML document to the flat file.

 Skip Carriage
Return

This value is set to No. Because files sometimes have superfluous CR and LF characters to make the file readable, BizTalk Server enables you to automatically skip these when pars
ing the file. In this instance the default record delimiter is CR, which specifies to process this character.

 Skip Line Fee
d

This value is set to Yes. In this instance the default record delimiter is CR, and the additional LF during the parsing process can be skipped.

AddressD
etails

Refere
nce

Maximum Occ
urrences

This value is set to * because this record type can appear multiple times.

 Parse Structure The structure for the AddressDetails records will be Delimited.
 Source Tag Ident

ifier
This value is set to 1. The record identifier for address details is the record type.

 Field Order The field order is InFix, indicating that the field delimiters within this record are between the fields.
 Delimiter Type The default field delimiter is selected because this has already been set to a comma. This enables BizTalk Server to determine where the data starts and ends and to validat

e that the data returned represents a valid record according to the specification.
AddressDe
tails/

StreetAddr
ess1

Parse Wrap Character This value is set to quotation marks or (0x22) hex. This allows the field to be output and to include characters such as commas that have been specified as field delimiters.

AddressDe
tails/

StreetAddr
ess2

Parse Wrap Character This value is set to quotation marks or (0x22) hex. This allows the field to be output and to include characters such as commas that have been specified as field delimiters.

Conta
cts

Refere
nce

Maximum Occu
rrences

This value is set to * because this record type can appear multiple times.

 Parse Structure The structure for the Contacts records will be Delimited.
 Source Tag Identi

fier
This value is set to 2. The record identifier for address details is the record type.

 Field Order The field order is InFix, indicating that the field delimiters within this record are between the fields.
 Delimiter Type The default field delimiter is selected because this has already been set to a comma. This enables BizTalk Server to determine where the data starts and ends and to validate th

at the data returned represents a valid record according to the specification.

Important Concepts

One of the important features provided by BizTalk Editor when processing and generating legacy files is the wrap character. The wrap character enables the author to enclose field data and is of specific
relevance when dealing with delimited files. In some instances the data itself contains the delimiter character. For example, a street address might be represented as:

In a comma-delimited file, this causes the single data field to be interpreted as two distinct fields. By utilizing the wrap character, a given data field can be isolated regardless of its content. Therefore, our
previous example would become:

The comma between the double quotation marks is interpreted by BizTalk Editor to be field data rather than a delimiter value.

Testing Your Specification

Once created, the specification can be validated against the sample file. This enables you to ensure that the specification can parse the data output from the ERP system and serialize data into a format for
processing by the ERP system. The ERPCustomerUpdateBatch.dat file is a batch file from the ERP system. Use BizTalk Editor to load the new specification and use the Validate Instance option from the Tools
menu to ensure that the parsing rules entered match the flat file. The sample file is found in the C:\Whitepaper samples\Sample Data directory.

Updating BizTalk Server

Once the specifications and envelopes have been created, they must be registered within BizTalk Server, and the relevant ports, channels, and applications must be created. Note: If you have run the installation
script then you have already completed this step. The definition of ports, channels, organizations, and applications is covered in detail in the Microsoft BizTalk Server 2000 online Help, and is dealt with
specifically in the online tutorial.

Type Format Name Comment
Envelope FLATFILE ERPCustomerUpdateEnvelope The format tells BizTalk Server what parser to use when serializing or parsing the file.
Specification - ERP Customer Update File This is the specification describing the XML incarnation of the final file format. It uses the document specification A2A_ERPCustomerUpdateFile.
Specification - Customer Update Message This is the specification describing the XML file holding the updates to be processed.
Application - MessagingSystem Because all messages are being handled by a central system, this has been entered into BizTalk Server as an application in its own right.
Port - Backoffice ERP System This outputs a file for processing by the ERP system.
Channel - ERP Customer Update This transforms the standard message to the XML representation of the data required by the ERP system and delivers it to the port.
Port - Backoffice CRM System This outputs a file for processing by the CRM system.
Channel - CRM Customer Update This transports the standard XML message to the port.

System Processing Overview

1st Floor, 25 Test Street., Manchester

"1st Floor, 25 Test Street.",Manchester

1. The required message arrives from the messaging system, .\Whitepaper Sample\A2A Processing\. Once collected by the receive function, CustomerUpdateProcessing, it is delivered into the channel.
Because two channels are specified to receive this document format, BizTalk Server sends a copy to both channels, ERP Customer Update and CRM Customer Update.

2. Once in the channel, the document is matched and validated against the standard customer update specification.
3. ERP channel. A map transforms the standard format message into a format specifically for the ERP system before delivering it to the Port to Backoffice ERP System port. CRM channel. The XML file is

validated against the output specification before being delivered to the Port to Backoffice CRM System port.
4. ERP channel. The designated envelope, ERPCustomerUpdateEnvelope, transforms the XML message into a flat file following all the rules and parameters containined in the envelope. CRM channel. The

XML file is output directly to the file system.
5. Once complete, the file, now containing the new format, is delivered to the file system.

Testing the Scenario

To test this scenario, install the article sample system using the instructions included in the appendix. Once set up, the process is activated by dropping a copy of CustomerUpdateMessage.xml from the
.\Whitepaper Sample\Sample Data\ directory into the .\Whitepaper Sample\A2A Processing\ directory. Once the process completes, update the following directories as follows:

.\Whitepaper Sample\A2A Processing\ Should no longer have the sample file.

.\Whitepaper Sample\A2A Processing\CRM System\ Should now contain an additional .xml file.

.\Whitepaper Sample\A2A Processing\ERP System\ Should now contain an additional .dat file.

Integrating Customers with EDI and Flat Files
After successfully completing the enterprise application integration, Northwind Traders proceeded to phase two, customer integration. Northwind Traders believed that two key business imperatives can be
achieved by direct integration with its customers. These are:

Maintaining its position as an organization that is responsive to customer requests.
Reducing the cost per transaction, which is a key metric in the business-to-business environment, in order to gain additional competitive advantage.

After analysis of the key transactions processed, purchase orders were identified as a transaction that is processed in significant numbers with a considerable number of keying errors. By introducing purchase
orders into the company as an STP (Straight Through Processing) transaction, they will be able to eliminate re-keying errors, increase the number of transactions processed, and improve the rate of
responsiveness to customer queries. This required provision for the following scenarios:

EDI support for purchase orders supplied in an X12 4010 850 format.
Support for a delimited format.

While the ideal scenario is to utilize XML for the point-to-point integration with customers, the customers are heavily dependent on legacy technology, specifically electronic data interchange (EDI) and
proprietary flat-file formats. By utilizing standard features in BizTalk Server, including support for EDI and XML, auditing, tracking, and encryption, Northwind Traders is able to implement its business-to-
business integration in a timely manner.

EDI Integration

The following section contains an overview of the key aspects of EDI only. EDI is the subject of another article and should be referred to for a more detailed review of the topic.

To enable the integration of EDI purchase orders, Northwind Traders utilized the standard specifications provided by BizTalk Server. This included the following specifications found in the templates directory
of BizTalk Server:

EDI - X12 4010 870 specification for purchasing
EDI - X12 4010 997 specification for receipts
XML - Common purchase order
XML - Canonical receipt

When setting up EDI specifications, in this instance specifically X12, it is important to include the document selection criteria. Selection criteria are a unique set of name-value pairs that BizTalk Server uses
when processing EDI documents. In the instance of X12 documents, the server uses selection criteria to uniquely identify and select a document definition because no document definition name is available
within individual EDI documents.

The specification for the standard X12 4010 documents has not been included in this paper due to the document size; the specification is, however, available in the accompanying sample and in any default
BizTalk Server installation.

When working with EDI X12 standards, make sure that you provide information that enables BizTalk Server to identify the documents correctly. In this instance the following settings are required to enable
BizTalk Server to correctly select and process the X12 document. These settings represent the document's property set and are entered on the Selection Criteria tab during document creation within BizTalk
Messaging. An example of the correct selection criteria can be found in the X12 specification, X12 850 Purchase Order, included in the samples.

functional_identifier Equates to field GS01; should be a two-character field

application_receiver_code Equates to field GS03; should be a code 2 to 15 characters long

application_sender_code Equates to field GS02; should be a code 2 to 15 characters long

standards version Equates to field GS08; should be a number

Updating BizTalk Server

The specifications and envelopes must be registered within BizTalk Server and the relevant ports, channels, and applications created. Note: If you have run the installation script then you have already
completed this step.

Type Format Name Comment
Envelope X12 X12 The format tells BizTalk Server what parser to use when parsing the file. No specification is required.
Specification X12 4010 X12 850 Purchase Order This is the specification describing the EDI format of the purchasing file.
Specification X12 4010 X12 997 Acknowledgement/Receipt This is the specification describing the EDI format of the receipt to be sent to the customer.
Specification XML Common Purchase Order This is the specification describing the common purchase order and its associated XML structure.
Specification XML Receipt This is the specification describing the canonical receipt and its associated XML structure.
Port - Incoming Purchase Orders This outputs a file into the inbound directory for the company.
Channel - Incoming X12-850 Purchase Order This transforms the EDI standard message to the XML representation of the data required by the system and delivers it to the port.

Testing the Scenario

To test the process drop a copy of PurchaseOrder.edi from the .\Whitepaper Sample\Customer A\Sample Data\ directory into the .\Whitepaper Sample\Customer A\Documents Out\ directory. Once the
process is completed, update the following directories as follows:

.\Whitepaper Sample\Customer A\Documents Out\ Should no longer have the sample file.

.\Whitepaper Sample\Customer A\Documents In\ Should now contain an additional .edi file.

.\Whitepaper Sample\Documents In\ Should now contain an additional .xml file.

System Processing Overview

1. The required message arrives from the customer in an EDI format and is collected by the receive function, Receive Purchase Order.
2. BizTalk Server uses its EDI parser to process the document into XML and pass it into the channel, where it is validated against the required specification. In addition, it generates a receipt to acknowledge

the successful arrival of the customer's purchase order. Receipt generation functionality is provided by BizTalk Server when dealing with EDI documents and is covered in more detail in the EDI article.
3. The map reformats the message from the EDI style to the common purchase order format.
4. The channel outputs the purchase order to the port.
5. The port delivers the message to the file system.
6. BizTalk Server delivers a canonical receipt to the designated receipt channel.
7. The receipt channel maps the canonical receipt to the required X12 4010 997 receipt format.
8. The receipt channel validates the message against the output specification and delivers the message to the port.
9. The X12 formatted receipt is delivered onto the file system.

Flat File Integration

Some customers, using a popular industry-specific legacy system, deliver purchase order files in a positional format.

The parsing function translates the information received from the customer. The specification for the inbound message and therefore the parser is found in FixedLengthPurchaseOrder.xml.

Once the specification has been created, the parsing information can be created to allow BizTalk Server to process the flat files into and out of the system. Important settings that are specified within BizTalk
Editor are shown in the following tables.

Specific
ation

Editor
tab

Property Comment

Root No
de

Refere
nce

Standard This is set to Custom.

 Default Record
Delimiter

The default record delimiter is set to CR or (0xd) hex and is used on the Parse tab in the specification.

 Parse Structure The structure for the file will be both delimited and positional. This is the root node and describes the records within it. The records are positional, but each record is separated
from the others by a CR (carriage return).

 Field Order The field order is PostFix, indicating that the record delimiters will appear at the end of each record.
 Delimiter Type The default record delimiter is selected since this has already been set. The CR (carriage return) delimiter allows BizTalk Server to determine at which point the record finishes

and to validate that the data returned represents a valid record according to the specification.
 Skip Carriage R

eturn
This value is set to No. Because files sometimes have superfluous CR and LF characters to make the file readable, BizTalk Server allows you to automatically skip these when p
arsing the file. In this instance the default record delimiter is CR and is specified to be processed.

 Skip Line Feed This value is set to"Yes. In this instance the default record delimiter is CR, and the additional LF can be skipped during the parsing process.
Header Reference Maximum Occurrences This value is set to 1, indicating that only a single header line can appear.
 Parse Structure The structure for the header records will be Positional
 Source Tag Identifier The value is H, indicating that the record is identified from all the others by the constant value H.
 Source Tag Position This value is 1, indicating that the first position in the file is where the Source Tag Identifier will appear.
Header/OrderDate Reference Required This value is set to Yes, indicating that the data field is required.
 Start Position The value is 2, indicating that the field starts at position 2.
 End Position The value is 20, indicating that the field ends at position 20.
Header/OrderNum Reference Required This value is set to Yes, indicating that the data field is required.
 Start Position The value is 10, indicating that the field starts at position 10.
 End Position The value is 20, indicating that the field ends at position 20.
Detail Reference Maximum Occurrences This value is set to *, indicating that any number of DETAIL lines can occur.
 Parse Structure The structure for the Detail records will be Positional.
 Source Tag Identifier The value is D, indicating that the record is identified from all the others by the constant value D.
 Source Tag Identifier The value is 1, indicating that the first position in the file is where the Source Tag Identifier will appear.
Detail/Product Code Reference Required This value is set to Yes, indicating that the data field is required.
 Start Position The value is 2, indicating that the field starts at position 2.
 End Position The value is 11, indicating that the field ends at position 11.
Detail/Qty Reference Required This value is set to Yes, indicating that the data field is required.
 Start Position The value is 12, indicating that the field starts at position 12.
 End Position The value is 16, indicating that the field ends at position 16.
Detail/Value Reference Required This value is set to Yes, indicating that the data field is required.
 Start Position The value is 17, indicating that the field starts at position 17.
 End Position The value is 25, indicating that the field ends at position 25. By default the field is left-justified and padded with spaces so no additional information can be specified.

Once created, the specification can be validated against the sample file. This enables you to ensure that the specification can parse the data provided by the customer and convert it to XML that can be utilized
by the messaging system that Northwind Traders is implementing. The FlatFilePurchaseOrder.dat file is a sample file from the customer and can be found in the C:\Whitepaper Samples\CustomerB\Sample
Data\ directory. Use BizTalk Editor to load the new specification and use the Validate Instance option from the Tools menu to ensure that the parsing rules entered match the flat file.

Updating BizTalk Server

Once the specifications and envelopes have been created, they must be registered within BizTalk Server and the relevant ports, channels, and applications created. Note: If you have run the installation script
then you have already completed this step.

Type Format Name Comment
Envelope FLATFILE CustomerTypeB The format tells BizTalk Server what parser to use when serializing or parsing the file
Specification XML Fixed Length Purchase Order This is the specification describing the XML incarnation of the file format. It uses the FixedLengthPurchaseOrder.xml specification.
Port - Incoming Purchase Orders Outputs a file into the Documents In directory for processing.
Channel - Fixed Length Purchase Order Transforms the standard message to the XML representation of the data required by the ERP system and delivers it to the port.

System Processing Overview

1. The required message arrives from the customer site, .\Whitepaper Sample\Customer B\Documents Out\, and is delivered into the channel, Fixed Length Purchase Order, by the receive function, Receive
Order From Customer B.

2. Once in the channel, the document is parsed from its flat file format and converted to an XML format that matches the inbound specification. The parser uses the properties entered on the Parse tab
within BizTalk Editor as the basic parsing parameters.

3. The document is validated against the outbound XML specification and delivered to the port.
4. Once complete, the file, now containing the new format, is delivered onto the file system.

Testing the Scenario

To test this scenerio drop a copy of FlatFilePurchaseOrder.dat from the .\Whitepaper Sample\Customer B\Sample Data\ directory into the .\Whitepaper Sample\Customer B\Documents Out\ directory. Once
the process completes, update the following directories as follows.

.\Whitepaper Sample\Customer B\Documents Out\ Should no longer have the sample file.

.\Whitepaper Sample\Documents In\ Should now contain an additional .xml file.

Integrating Suppliers with Flat Files
Northwind Traders deals with three main suppliers who use the same popular mainframe-based legacy system. For this reason, queries on stock availability are distributed into and out of the system in
positional formats, similar to traditional COBOL copybooks.

The serializing function of BizTalk Server translates information into a format to be sent to the supplier. The specification for the outbound document and therefore the serializer is found in
FixedLengthStockQuery.xml.

Once the specification has been created, the serializing information can be created to enable BizTalk Server to process the XML files into the required flat file format. Important settings that are specified within
BizTalk Editor are shown in the following tables.

Specification Editor Tab Property Comment
Root Node Reference Standard This is set to Custom.
 Parse Structure The structure for the file is Positional.
Header Reference Minimum Occurrences This value is set to 1, indicating that only a single header line can appear.
 Reference Maximum Occurrences This value is set to 1, indicating that only a single header line can appear.
 Parse Structure The structure for the header records will be Positional.
ProductCode Reference Required This value is set to Yes, indicating that the data field is required.
 Start Position The value is 1.
 End Position The value is 11.
Qty Reference Required This value is set to Yes, indicating that the data field is required.
 Start Position The value is 12.
 End Position The value is 16.
Package Reference Required This value is set to Yes, indicating that the data field is required.
 Start Position The value is 17.
 End Position The value is 25.
 Declaration Data Type Value This has been set to Enumeration and therefore allows the entry of a range of valid values into the Data Type Values field on the same page.

Once created, the specification can be validated against the sample file. This enables you to ensure that the specification can parse the data provided by the customer and convert it to XML that can be utilized
by the messaging system that Northwind Traders is implementing. The FlatFileStockQuery.dat file is a sample file for the supplier. Use BizTalk Editor to load the new specification and use the Validate
Instance option on the Tools menu to ensure that the parsing rules entered match the flat file.

Updating BizTalk Server

Once the specifications and envelopes have been created, they must be registered within BizTalk Server and the relevant ports, channels, and applications created.

Type Format Name Comment
Envelope FLATFIL

E
FlatFileSupplier The format tells BizTalk Server what serializer to use when serializing the file.

Specificatio
n

XML Flat File Stock Query This is the specification that describes the XML message and that also holds the rules for creating the flat file. It uses the specification FixedLengthStockQuery.x
ml.

Port - Outbound Stock Querie
s

This outputs a file into the Documents In directory for processing.

Channel - Stock Queries This transfers the initial XML query to the port.

System Processing Overview

1. The required stock query message arrives from an internal application. This message comes from the customer site, .\Whitepaper Sample\ Documents Out\, and is delivered into the channel, Stock
Queries, by the receive function, Request Stock Availability.

2. Once in the channel, the document is validated against the inbound document specification.
3. The document is validated against the outbound XML specification and delivered to the port.
4. The outbound message is then processed by the serializer. Using the parameters entered on the Parse tab of BizTalk Editor and the envelope (FlatFileSupplier), the message is formatted as a flat file and

delivered to the file system.

Testing the Scenario

To test this scenario drop a copy of StockQuery.xml from the .\Whitepaper Sample\Sample Data\ directory into the .\Whitepaper Sample\ Documents Out\ directory. Once the process completes, update the
directories as follows:

.\Whitepaper Sample\ Documents Out\ Should no longer have the sample file.

.\Whitepaper Sample\Supplier A\Documents In\ Should now contain an additional .dat file.

Common Issues

The following are four of the more common questions about legacy files that do not have immediately obvious solutions. These are clearly documented in the online documentation and reproduced here for
reference when working with the examples in this paper.

Flat file not completely parsed when submitted to BizTalk Server

A delimited flat file might have a parsing error when submitted to BizTalk Server if the file has the following characteristics:

The Field Order property for the root note is set to Prefix or Postfix.
The name of the root node is a substring of the name of another node in the file.

The solution to this is to rename the root node so that its name is not a substring of the name of any other node in the specification. Also, ensure that the document submitted matches the specification it is
being validated against. You can do this by using the Validate Instance property on the Tools menu of the specification editor.

White space not preserved in flat file submitted to BizTalk Server

When a flat file is submitted to BizTalk Server, white space in fields might be trimmed. This is because, by default, the underlying MSXML parser does not preserve white space in a field with its Type property
(on the Declaration tab) set to Element.

If it is important to preserve white space in a field contained in a flat file, in BizTalk Editor be sure to set the Type property on the Declaration tab of the field in the source specification to Attribute.

Server does not return all documents in a flat file interchange

This is usually caused because one of the documents in the interchange does not meet the document specification. For example, one of the documents is missing a required field.

The solution is to locate the document within the interchange that does not meet the specification, fix it, and resubmit the interchange. Although an error is returned for the specific document that does not
meet the specification, BizTalk Server cannot process all the documents in the interchange. The flat file structure is an open format and is not designed to implement redundancy checking.

The server returns the following error: "The X12 4010 855 document is missing the entire property set that is required for this serializer to run."

When working with EDI X12 standards, make sure that BizTalk Server has all the information required to identify the document. These criteria are represented in the document's property set and are entered
on the Selection Criteria tab during document creation within BizTalk Messaging. An example of the correct selection criteria can be found in the X12 specification, X12 850 Purchase Order, included in the
samples.

functional_identifier Equates to field GS01; should be a two-character field

application_receiver_code Equates to field GS03; should be a code 2 to 15 characters long

application_sender_code Equates to field GS02; should be a code 2 to 15 characters long

standards version Equates to field GS08; should be a number

Appendix: Sample Installation
A range of specifications, sample scripts, ports, and channels is provided with this paper. To install the samples, perform the following steps:

Perform a clean installation of BizTalk Server, although this is not required if you have already defined conflicting names for document definitions, channels, ports, envelopes or organizations then the setup
script will fail.

Unzip the attached WhitepaperSamples.zip file onto the C drive. This creates all the required directories that include sample data.

Edit the BuildWhitepaper2.vbs script and adjust the HOSTNAME variable to the name of your server.

Copy the folder \Whitepaper Sample\Configuration\Maps\Whitepaper to the WebDAV repository which is located by default in \Program Files\Microsoft BizTalk Server\BizTalkServerRepository\Maps to
create a \Program Files\Microsoft BizTalk Server\BizTalkServerRepository\Maps\Whitepaper folder

Copy the folder \Whitepaper Sample\Configuration\DocSpecs\Whitepaper to the WebDAV repository which is located by default in \Program Files\Microsoft BizTalk Server\BizTalkServerRepository\Maps to
create a \Program Files\Microsoft BizTalk Server\BizTalkServerRepository\DocSpecs\Whitepaper folder

Execute the BuildWhitepaper2.vbs script. This builds all the dependencies and requirements for BizTalk Server.

Assuming an install on C drive, create the following four receive functions in the BizTalk Server Administrator:

Customer Update Processing (File)

Polling location: C:\Whitepaper Sample\A2A Processing\

File types to poll for: *.XML

Envelope: <None>

Channel name: <None>

Source Selected:

 Organization Name: OrganizationName

 Organization identifier value: Home Organization

Destination Selected:

 Organization Name: OrganizationName

 Organization identifier value: Home Organization

Document definition name: Customer Update Message

Receive Order From Customer B (File)

Polling location: C:\Whitepaper Sample\Customer B\documents Out\

File types to poll for: *.DAT

Envelope: Customer Type B

Channel name: Fixed Length Purchase Order

Document definition name: <None>

Receive Purchase Order (File)

Polling location: C:\Whitepaper Sample\Customer A\Documents Out\

File types to poll for: *.EDI

Envelope: <None>

Channel name: Incoming X12-850 Purchase Order

Document definition name: <None>

Request Stock Availability (File)

Polling location: C:\Whitepaper Sample\Documents Out\

File types to poll for: *.XML

Envelope: <None>

Channel name: Stock Queries

Document definition name: <None>

This is a preliminary document and may be changed substantially prior to final commercial release. This document is provided for informational purposes only and Microsoft makes no warranties, either
express or implied, in this document. Information in this document is subject to change without notice. The entire risk of the use or the results of the use of this document remains with the user. The example
companies, organizations, products, people and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying
with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

' Change the HOSTNAME to your server before executing this script.
Const HOSTNAME = "GRAYDEMO"

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unpublished work. ©2001 Microsoft Corporation. All rights reserved.

Microsoft, BizTalk, Visual Basic, Visual C++, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Microsoft BizTalk Server Technical Articles

Microsoft BizTalk Server 2000: Building a Reverse Auction with
BizTalk Orchestration
Bob Laskey
James Parker
Microsoft Corporation

July 2000

Summary: This article discusses the business process orchestration features of Microsoft BizTalk Server 2000. (16 printed pages)

Contents

Introduction
Business Process Orchestration
Implementing a Reverse Auction
Advanced BizTalk Orchestration Features
Summary

Introduction
Building e-commerce applications requires the integration of data and business processes within and across organizations. The
MSDN Magazine article, BizTalk Server 2000: Architecture and Tools for Trading Partner Integration, described a set of tools and
services provided by Microsoft® BizTalk™ Server 2000. These tools and services add the following data messaging capabilities to
the e-commerce architect's toolbox: document specification editor, document schema mapper, data format translation service,
schema transformation service, document tracking database, and security and transport services. This set of XML-based
messaging services is available for early prototyping today as a BizTalk Server 2000 Technology Preview Web release from
Microsoft. In this article, we describe a second, just as important, set of tools and services provided by BizTalk Server 2000 that
address business process orchestration. Business process orchestration includes the visual modeling, implementation and
management of distributed business processes. BizTalk Server 2000 introduces BizTalk Orchestration (BTO), which adds business
process orchestration capabilities to the e-commerce architect's toolbox. BTO is based on a new application of XML called XLANG,
which is a language to define the semantics of business processes and for binding process activities to software implementations.
Microsoft BizTalk Server 2000 is the integrated suite of messaging tools and services described in the MSDN Magazine article
combined with the business process orchestration tools and services described in this article. BizTalk Server 2000 will be available
from Microsoft to download in a Web beta release this summer.

In the remainder of this article, we provide an overview of BizTalk Orchestration and drill into an example solution. With the
application developer in mind, we will show how to use BizTalk Server 2000 to model a simple reverse auction. Reverse auctions
are a common dynamic pricing technique characterized by a single buyer issuing a request for quote (RFQ) and accepting bids
from multiple sellers.

Business Process Orchestration
Architectures that integrate applications and organizations must support a variety of data schemas, data formats, and application
protocols. BizTalk Server 2000 messaging services provide an infrastructure to ease this burden. However, this only eases data
integration challenges. Data must be integrated as part of an organization's or a value chain's e-business processes. BizTalk
Orchestration (BTO) facilitates the visual modeling of processes by business analysts and the implementation of processes by
developers. Additionally, a run-time engine executes the modeled business process. Finally, BTO includes tools to ease the
management of processes and exceptions. All of these features leverage existing investments in Microsoft Windows® 2000,
Microsoft Visual Studio®, and COM+.

Visual Process Modeling for Analysts

BizTalk Server 2000 provides a graphical environment, the BTO visual designer, for business process modeling using the
professional drawing capabilities of Microsoft Visio® 2000. The environment includes three views of a modeled process. A
Flowchart view is provided for business analysts. The Implementation view and the Data Flow view, discussed below, are
provided for developers. In the flowchart view, the analyst models business processes by defining a series of actions. An action is
a step in a sequence of execution that sends or waits to receive data. The business analyst leverages a set of built-in Visio stencil
shapes to model looping, parallel execution and branching or routing. The available flowchart shapes are listed in Table 1.

Flowchart shap
e

Purpose

Abort Triggers the rollback of a transaction, invoking a specified exception handling or compensation transaction sche
dule

Action Specifies that a message is going to be sent or received through a specific implementation shape
Begin Represents the start of a process
Decision Branching construct to determine the next execution step based on user-defined or built-in rules
End Represents the end of a branch of execution
Join Joins two separate threads of execution
Fork Splits a single thread of execution into two parallel threads
While Looping construct to iterate through a group of actions
Role Provides an abstraction to describe a set of shapes as a communicating entity that sends or receives messages
Transaction Groups actions into a discrete unit of work that either completely succeeds or has no effect

Table 1. Available flowchart shapes and their purpose

Once the business process is defined and documented, the analyst's job is complete. Figure 1 is a screen-shot of the analyst's
design canvas.

View Figure 1. Flowchart Design Canvas

Implementation Binding for Developers

In addition to the flowchart view, the visual design environment provides an implementation view and a data flow view. Given the
flowchart, a Windows 2000 developer or architect uses the implementation view to bind process activities to implementation
shapes such as MSMQ queues, COM+ components, Windows Script Host scripts, and, of course, BizTalk Server 2000 messaging
services. Finally, the developer uses the data flow view to flow data into and out of messages that are produced and consumed by
the implementation artifacts. These implementation shapes may represent self-contained business components or they may be
facades for legacy applications or distributed applications. For example, a COM+ component bound to a process action may
invoke a SOAP RPC method call on a remote Web service or it may use COMTI to integrate with a legacy host application. Of
course, a process action may bind to BizTalk Server messaging to produce X12 or UN/EDIFACT EDI messages or instances of
specifications created with the BizTalk Editor and transformed with maps created with the BizTalk Mapper. Binding to BizTalk
Server 2000 messaging services is discussed in more detail in the Advanced BizTalk Orchestration Features section of this article.
The completed set of flowchart, implementation, and data flow views are referred to as a BizTalk application.

It is important to understand the concepts involved with binding an implementation to a process so let's spend some time
discussing bindings, ports, messages, and data flows in more detail. Each action in a BizTalk application must be bound to, or
associated with, an implementation. The BTO Engine is responsible for invoking the bound implementation at the time specified in
the process model. Bindings are easy to create in the BTO visual designer by simply dragging an implementation shape onto the
design canvas and connecting the dots. When an implementation shape appears on the design canvas, a port is automatically
created and placed in between the action shape and the implementation shape. A port is an abstraction that BTO uses to associate
messages with implementations and activities. Messages represent inputs and outputs flowing to and from implementations.

For example, consider an action called CreateRFQ that is bound to a CRequestForQuote Visual Basic component that exposes
the following method:

The visual design tool will create messages which correspond to the in and out arguments for the CreateRFQ method. In our
reverse auction scenario described below, an RFQ is defined by a BizTalk Document Specification. Messages have a property,
which can point to a BizTalk specification. A port will also be created that encapsulates the input and output messages and
manages the flow of data into and out of the COM+ implementation.

Once the implementation has been selected and placed on the design canvas and connectors drawn between the process actions
and the port, we must tell the BTO visual designer what data elements we are interested in flowing into and out of the port. To do
this we navigate to the data flow view of our business process. In this view, we see shapes that represent each of the messages we
have created in our implementation view. For example, we will see messages corresponding to the CRequestForQuote output
arguments. We simply draw lines between data elements in messages—the run-time engine takes care of flowing the right data
at the right time into and out of our implementations through Ports. Figures 2 and 3 are screen-shots of the developer's design
canvases.

View Figure 2. Binding Design Canvas

Public Function CreateRFQ() As String

Figure 3. Data Flow Design Canvas

COM+ components, MSMQ queues, WSH scripts and BizTalk messaging services are all supported in-the-box implementation
bindings. Dragging each implementation onto the design canvas invokes a wizard specific to the implementation's properties. For
example, a COM+ binding requires the developer to locate the registered component and select the interface and methods being
bound to the port. The MSMQ binding requires the developer to specify a queue name. The BizTalk messaging services binding
requires the developer to specify the BizTalk channel. Figure 4 is a screen-shot of the COM+ binding wizard. Properties on Ports,
Messages, Actions and Implementations are, of course, also available outside of the wizard with a right-click of the mouse button.
For extensibility, the binding architecture is open to third parties. Microsoft and other software vendors may add additional
bindings such as relational databases, SOAP, or line-of-business application connectors. These third-party bindings may include
implementation shapes, binding wizards, and off-the-shelf components for easy integration into modeled business processes.

View Figure 4. COM+ Binding Wizard

Once the visual business process model is completed, the Visio design environment may be used to validate and compile the
model into its XML representation. The visual design file is saved with the .skv (schedule visual) extension and the compiled
BizTalk application—the XLANG—is generated with an .skx (schedule XML) extension. The BTO Engine is capable of executing the
process described by this generated BizTalk application. The Engine supports processes that include branching, sequencing,
concurrency, and synchronization and long-running transactions.

It is important to highlight one of the basic premises of a BizTalk application: the separation of business process and
implementation. A business process may be modeled and different software components and applications may be bound to the
process either statically-at design time, or dynamically-at run time. This separation between process model and implementation
goes deeper than the visual design environment. This separation is a core feature of BizTalk Orchestration and truly allows
business analysts and developers to quickly adapt to meet new organizational and competitive requirements.

Process Execution and Management

A BizTalk application defines a schedule for executing an implementation of a business process. The execution of the schedule is
carried out by the BizTalk Orchestration Engine. The Engine is a COM+ application designed to manage a large number of
concurrently executing, long-running business processes. The architecture manages long-running processes by persisting their
state using Microsoft SQL Server™ 7.0 (and later versions) and COM+ components that support IPersist implementations. These
persisted processes may then be re-hydrated at the appropriate time based on internal events, such as timers, or external events,
such as message arrivals. Figure 5 illustrates the BTO Engine application in the Component Services MMC snap-in.

View Figure 5. Component Services MMC snap-In

Visual Basic programmers, or other COM+ developers working in languages such as Microsoft VBScript, Microsoft Jscript®, or
Microsoft Visual C++®, can instantiate a BizTalk application by calling GetObject on a URL moniker string. The following is an
example of a moniker.

The moniker example above includes two parts. First, the name of the generated .skx file is provided. Second the name of the
module that should be executed is given. The second part may be given by a workflow module name or by specifying an XPath
query to the module's location in the .skx file. For example:

sked://localhost/"c:\workflows\mywf.skx",name="main"

sked://localhost/"c:\workflows\mywf.skx",
 query="//module[@name='main']"

Both of these examples start the Engine and instruct it to begin executing the module named main. Note that this article is based
on a pre-beta version of BizTalk Server 2000 so syntax is possible, and likely, to change by the time the beta becomes available.

In addition to the URL moniker approach to executing BizTalk applications, the Engine exposes an object model for interacting
with it and with individual application instances. Besides starting and stopping applications, this object model allows third parties
to build sophisticated management tools for BizTalk Server 2000. The run-time engine persists running processes as XML and
stores this state in a SQL Server database. This combination of XML and a relational database with built-in XML support provides
a platform for querying and managing running processes. The BizTalk Server 2000 object model coupled with access to the state
of running processes, Document Tracking and Activities (DTA) database, and Windows Management Interfaces (WMI) provides a
large number of opportunities for managing business processes and for building third-party tools that make this job even easier.

Now we have enough of a background to allow us to move forward with using the tools and services to actually build an
application with these BizTalk Server 2000 technologies.

Implementing a Reverse Auction
A popular topic in business-to-business e-commerce is dynamic pricing. A common type of dynamic pricing is a reverse auction.
In a reverse auction, a buyer issues a request for quote (RFQ) to a large number of sellers. The buyer then reviews multiple bids
and accepts the optimal bid from the chosen supplier. The optimal bid is usually the bid with the lowest price. This contrasts with
a typical forward auction. Forward auctions consist of a seller accepting buy bids from multiple buyers. The winning bid is usually
the one with the highest price. Another popular topic is the digital marketplace for matching buyers and sellers of goods and
services. The marketplace is often designed to be the broker between a buyer and seller in scenarios that involve dynamic pricing.
For example, a buyer might submit an RFQ to a marketplace to which he belongs. Sellers who are also members of the
marketplace have a right to bid on the RFQ. The marketplace provides a mass of buyers and sellers to create a more efficient
business process as well as provides value-added services such as community services, localization, and trading partner
authentication. The marketplace typically charges a subscription or transaction based fee.

We will not attempt to build an entire business-to-business marketplace that implements reverse auctions in this article. However,
we will implement a simplified business process that addresses the RFQ/Bid business process between a single buyer and an
online marketplace. A common way to represent interactions between components in an application or organizations in a
business process is with Sequence, or Object Interaction, diagrams. These diagrams can easily communicate the delineation of
responsibility between entities in an interaction and the ordering of these interactions for both technical and non-technical team
members. Figure 6 is a sequence diagram that represents the buyer, marketplace, and seller in a simplified RFQ/Bid process. This
diagram was simplified to ensure clarity of the process. Acknowledgement and receipt messages are excluded, exception and
error processing is not shown, and interactions are limited to a single buyer and single seller. Our goal for the ensuing text is to
implement the buyer-side of this RFQ/Bid interaction using BizTalk Server 2000 business process orchestration features.

Figure 6. Reverse Auction Interaction Diagram

The Reverse Auction Business Process

The starting point is to visually model the business process. The business analyst does this by creating a flowchart in the Visio
2000 BTO visual designer. The flowchart should represent the business process actions taken by the buyer's purchasing
department or purchasing system. Initially the buyer decides to purchase 100 widgets. An RFQ is generated that represents the
details of this order including items such as required delivery dates, approved vendors, and manufacturer warranties. The RFQ is
sent to a digital marketplace where it will be processed according to marketplace rules and posted for appropriate vendors to
review. Vendors may post bids in response to the RFQ that are forwarded to the buyer by the marketplace. Note that the
marketplace provides the implementation of buyer and seller rules such as managing approved vendor lists, authenticating
credentials, and verifying credit and inventory availability. The buyer processes each bid and selects the "best" bid based on

business criteria or bidding algorithms that help to ensure the best value. Once the best bid is selected, a bid acceptance is sent to
the bidding vendor for transaction execution.

So let's model this business process using the BTO visual designer. We will use the term action to represent a step in the business
process. The buyer requires two actions to make his buying requirements known to potential sellers: Create RFQ and Issue RFQ.
Create RFQ generates an RFQ document. Issue RFQ sends the document to the marketplace. The buyer process now enters into a
bid-processing loop. Each bid that is received triggers a Receive Bid action and a Process Bid action. Receive Bid consumes bids
sent from the marketplace. Process Bid may be as simple as storing the bid-price, quantity, and ship date for example-in a
purchasing database or it may include more complex business logic. The marketplace sends bids to the buyer until some loop exit
criteria are met. These exit criteria may be something as simple as a count or a timer or a more complex business rule. For
simplicity, our exit criteria will simply be the receipt of three bids. We will rely on the marketplace to ensure that each of our bids
is from three separate sellers and that all sellers are buyer approved vendors. Once the loop exits, a set of business rules will be
applied to select the optimal bid. Let's call this action Select Best Bid. Finally, the action Accept Bid will cause a Bid Acceptance
document to be created and sent to the winning seller.

Figure 7 illustrates this business process in the BTO visual designer and includes each of the actions described above as well as a
built-in While shape and canned COM+ Loop implementation to track the number of processed bids across this long running
transaction. Note that a user-defined rule is provided to define the looping criteria—Counter < 3—and that a built-in continuation
rule is provided by the While shape.

Figure 7. Reverse Auction Flowchart

This diagram is created in the same manner as any other Visio 2000 diagram. Create a new BizTalk application and drag shapes
from the flowchart stencil onto the design canvas. Use the connector to connect actions and ensure to start and terminate the
flowchart with Begin and End shapes. Once the diagram is complete, it must be saved to the file system. As noted earlier, these
files have an .skv extension. We will validate and save the design after the implementation binding is complete.

The Reverse Auction Implementation

Now that the business process is defined, the developer has an opportunity to provide an implementation. Our reverse auction
will make use of XML, Visual Basic and MSMQ. A more complete implementation would involve other components, such as SQL
Server and third-party purchasing applications. At a minimum however, we need to provide a custom implementation for Create
RFQ, Process Bid, and Select Best Bid. Issue RFQ, Receive Bid, and Accept Bid also require implementation bindings but we will
leverage the built-in support for MSMQ to limit the amount of custom development needed.

The following steps are required to implement the reverse auction: define XML specifications, implement and bind Visual Basic
components, create and bind MSMQ queues, bind loop counter, configure data flows, and run the application. Let's walk through
each of these steps in sequence.

Define XML Specifications

First, we define the schema for the business documents we intend to exchange between buyer, seller, and marketplace. There are
three such documents: Request for Quote, Bid, and Bid Acceptance. Using the BizTalk Editor, we have created specifications for
each. Sample instances of each of these specifications are provided below. Recall from the MSDN Magazine article that these
specifications are simply XML Data Reduced (XDR) schema with a bit of additional markup to assist the server with its translation,
validation, and transformation services.

Implement and Bind Visual Basic Components

Second, we identify and build components required to implement Create RFQ, Receive Bid and Accept Bid. We will define a class
for RFQs called CRequestForQuote and a class for Bids called CBid. Although for production projects, it is a best practice to
define interfaces prior to writing code, our sample application is simple enough that we will just use the default interface created
by Visual Basic Public functions and subroutines. CRequestForQuote exposes the public method CreateRFQ(). CreateRFQ()
takes no arguments and generates an instance of the RequestForQuoteSpec. CBid exposes the public methods ProcessBid()
and SelectBestBid(). ProcessBid() accepts an instance of BidSpec.xml for application processing. SelectBestBid() takes no
arguments and returns an instance of BidSpec.xml that represents the winning vendor bid. Stub implementations for each of
these methods shown below.

After the Visual Basic components are registered, we can drag a COM+ implementation shape from the implementation stencil
onto the design canvas. This initiates a Wizard for pointing the shape to the appropriate registered components and allows us to
select which interfaces and methods we would like the BTO Engine to invoke. A port is created and messages are created for the
input and output arguments derived from the input and output arguments of the COM+ component. We use the connector to
associate the flowchart action with the port and to associate the port with the implementation shape. Figure 2, shown earlier,
illustrates the COM+ implementation binding process. There is one implementation step remaining to complete our Visual Basic
binding. The data flow into and out of the component must be configured. We will configure all data flows after we complete our
implementation bindings, as shown below.

<RequestForQuote>
 <Product Quantity="150" Type="WidgetA">
 <Warranty TimePeriod="30"/>
 </Product>
 <Product Quantity="225" Type="WidgetB">
 <Warranty TimePeriod="120"/>
 </Product>
</RequestForQuote>

<Bid>
 <Product Quantity="150" Type="WidgetA" TotalCost="1345.65">
 <Availability PromiseDate="2000-09-09" PromiseQty="101"/>
 </Product>
 <Bidder BidderOrgID="TheBidder"/>
</Bid>

<BidAcceptance>
 <Product Quantity="150" Type="WidgetA" TotalCost="1345.65">
 <Availability PromiseDate="2000-09-09" PromiseQty="101"/>
 </Product>
 <Bidder BidderOrgID="TheBidder"/>
</BidAcceptance>

CRequestForQuote

'CreateRFQ() interacts with a hypothetical line-of-business application
'to create an XML RFQ document instance. The RFQ is returned.
Public Function CreateRFQ() As String
 CreateRFQ = 'get the document
End Function

CBid

Create and Bind MSMQ Queues

Third, we identify implementation required for the Issue RFQ, Receive Bid, and Accept Bid actions. For each of these, we will
leverage the seamless support for MSMQ built into BizTalk Server 2000. Issue RFQ will be bound to a queue called RFQOut.
Receive Bid will be bound to a queue called BidIn. Lastly, Accept Bid will be bound to a queue called BidAcceptanceOut. BizTalk
Server 2000 will do all the work required to place messages on these queues and read messages off the queue. The BTO Engine
will flow the specified messages into the queue and from the queue into the bound Visual Basic components. No coding required.
For this sample application, we use private queues running on the local machine. This allows the sample to run on a single stand-
alone Windows 2000 Advanced Server. The queues are named the following:

It is important to specify each BTO queue to be transactional. For simplicity, this example binds directly to MSMQ queues. In a real
scenario involving integration with an online exchange or trading partners, our binding is likely to require the data format
translation and data schema transformation services of BizTalk messaging services. It may also make sense to leverage the secure
transport features of BizTalk messaging. For example, business documents may be encrypted and digitally signed using S/MIME
and then posted over a secure HTTPS channel. In this case, we would simply replace our MSMQ binding with a built-in BizTalk
messaging services binding shape and configure the Channels and Ports in the BizTalk Management Desk. The BTO Engine
application may be referenced directly from the Channel and Port Configuration Wizards. The integration is seamless.
Nevertheless, for the sake of brevity and clarity we bind directly to MSMQ queues in this sample application.

After our queues are created, our binding process is very similar to what was required to bind the Visual Basic components. We
simply drag a MSMQ implementation shape from the implementation stencil onto the design canvas. This initiates a wizard for
pointing the shape to the appropriate queue. A port is created and a message is created for the data being placed on or read from
the queue. We use the connector to associate the flowchart action with the port and to associate the port with the implementation
shape. Figure 8 illustrates the completed MSMQ and COM+ implementation binding process.

View Figure 8. MSMQ and COM+ Binding for Reverse Auction

Bind Loop Counter

Fourth, we must provide an implementation binding for the loop counter. For this, we use a canned, or in-the-box, LoopControl
component that exposes Initialize() and Increment() methods. In the prerelease version tested for this article, the binding
process was identical to the process used for the Visual Basic components. It is likely that this step will be simplified in the
released version of BizTalk Server 2000. Certain activities such as looping, counters, and timers are commonplace in business
processes and may be provided as out-of-the-box artifacts for inclusion in any design.

Configure Data Flow

Once this binding is complete, there is one item left for the developer. Data flow must be configured on the data flow view, or in
Visio parlance, the data flow sheet. The best way to describe the flow is with an illustration. Figure 9 is a screenshot of the
completed data flow for the reverse auction sample application. There are six flow steps.

1. CreateRFQ generates a RFQ document instance that flows into the RFQMessage.
2. RFQMessage is placed on the outbound RFQOut queue.
3. Bids are received on the inbound BidIn queue and flow into the BidMessage.

'ProcessBid() is given an instance of an XML Bid and submits it to an
'auction application for processing.
Public Sub ProcessBid(ByVal xmlstrBid As String)
 'send Bid to LOB
 Return
End Sub

'SelectBestBid() asks the auction system for the best bid and
'returns it as an XML document instance.
Public Function SelectBestBid() As String
 SelectBestBid = 'get the document
End Function

.\private$\BidIn

.\private$\RFQOut

.\private$\BidAcceptanceOut

4. The BidMessage flows into the ProcessBid input arguments.
5. SelectBestBid generates a Bid instance that flows into the BidAcceptance Message.
6. The BidAcceptanceMessage is placed on the outbound BidAcceptanceOut queue.

Note that we take a shortcut in this sample application. We magically turn the best Bid into a BidAcceptance. In a full
implementation, we would use BizTalk messaging schema transformation services to perform this magic for us and insert the
appropriate data fields from a Bid into the appropriate fields in a BidAcceptance. We may even leverage BizTalk Functoids to
perform database looks up or other custom processing during the mapping process.

View Figure 9. Reverse Auction Data Flow

Running the Reverse Auction

Now that the activity diagram, implementation binding, and data flows are complete, we use the Validate option of the BTO
visual designer menu to validate the workflow and locate any errors. After all errors have been fixed, we can generate and save
the application design file. The file, generated with an .skx extension (for schedule XML), is a well-formed XML document that
describes the business process to the BTO Engine. Figure 10 is the completed BizTalk application.

View Figure 10. Reverse Auction BizTalk Server 2000 XLANG Schedule

A simple test harness was built using Windows Scripting Files (also known as Scriptlets). This HTML/JScript application simply
creates and executes an instance of the reverse auction application and provides a button to place Bids on the inbound queue.
Monitor the outbound BidAcceptance queue to determine when the Bid Acceptance is sent indicating completion. Simply run
the application, send three bids and the BTO Engine does the rest. To gain a little more visibility into inner workings of the run
time, open the MSMQ Explorer and monitor the arrival and departure of messages. Turn on queue journaling for more detail.
Finally, COM+ Spy in the Platform SDK allows you to monitor, at the Action and Port level, precisely what the BTO Engine is doing
by trapping BizTalk Events. Figure 11 is a screenshot of the test harness and Figure 12 shows the reverse auction queues in the
MSMQ MMC snap-In.

Figure 11. Reverse Auction Test Harness

Figure 12. Reverse Auction Queues

The BizTalk specifications, sample instances, Visual Basic implementation stubs, BizTalk visual design (.skv), XML (.skx) files, and
the wsf/htm test harness used in this article will be converted to work with the Web released beta BizTalk Server 2000 and made
available for download from MSDN.

Advanced BizTalk Orchestration Features
The reverse auction sample application described in this article only touches on the features provided by BizTalk Orchestration.
The buyer's business process includes a single path of execution with a simple while-loop and a counter. A real business process
is much more complicated. BizTalk Server 2000 provide features such as roles, dynamic ports, transactions, and BizTalk channel
binding that allow these complex processes to be modeled and implemented using the tools and services employed in this article.

Most business processes involve multiple persons, computer systems, applications, or organizations interacting in complex ways.
Roles are a BTO visual designer feature that is available to support this type of application. A role is an entity that sends or

receives messages and may be a collection of multiple roles. A business process can easily be broken into sub-processes and
associated with a role. The roles can then communicate with each other to achieve the desired result. A simple example of this
would be to extend our reverse auction sample application to include the seller business process in addition to the buyer process
we have already modeled. We could then create a Buyer and a Seller role that communicate through a Marketplace role.

While roles help the modeler and developer modularize business process development, features such as sequential, concurrent,
and conditional execution of actions allow the modeling of complex processes. The Fork and Join shapes provide a mechanism to
model concurrency. The Decision and While shapes provide a mechanism to model conditional execution. Rules allow the
business analyst or developer to query run-time information such as message values and to route the process' execution
accordingly. Of course, each of these graphical shapes is translated into a description of the process and binding and the run-time
engine manages the execution of these advanced process constructs.

Another characteristic of most business processes is their dynamic nature. The separation of process from implementation that
BizTalk Server 2000 provides goes a long way towards supporting business processes that frequently change. However, what if
the business process changes based on run-time characteristics? For example, our reverse auction buyer may wish to send an
RFQ for direct goods directly to a small set of suppliers but send an RFQ for non-direct goods such as office supplies to a digital
marketplace for ad hoc bidding. Dynamic ports are provided for this type of challenge. A process may be modeled that allows an
implementation to be selected at run time. In our example, we might simply bind to a different queue based on the type of good
being requested in the RFQ.

The Transaction flowchart shape was introduced earlier in the article. This shape is important because it represents an important
BTO feature: support for both short-lived Microsoft Distributed Transaction Coordinator style transactions and long-running
transactions. Long-running transactions are groups of short-lived transactions that must be treated together as discrete units of
work. An important requirement of transaction design is the ability to rollback previously completed work when an error occurs.
In a long-running transaction that is distributed across a wide-area network such as the Internet, a traditional two-phase commit
transaction is undesirable but we would still like to commit and rollback the transaction as necessary. In these cases, the architect
must provide the application infrastructure with details on how to undo work items in the case of failure. The BTO visual designer
allows an architect to specify a Catch process or a Compensating process that will be invoked by the BTO Engine to catch error
conditions or to provide a compensating transaction to undo work already completed.

The last and possibly most important feature of BizTalk Server 2000 is the seamless integration between the business process
orchestration capabilities of BTO and the data processing capabilities of BizTalk messaging services. Note that some of the
terminology between technology preview and beta has changed. Loosely speaking, pipelines are deprecated and channels and
ports are introduced in the core-messaging engine. This allows trading partner agreements to be configured in the BizTalk
Management Desk as channels and ports that can be bound directly to actions in a business process. Features such as SOAP
Enveloping via the BizTalk Framework, Distribution Lists, Specifications, Maps, Transport, and Security Settings are all available
directly from a business process. The Binding Wizard for BizTalk Messaging simply allows the developer to provide the name of a
channel.

Summary
In summary, this article discussed the business process orchestration features of BizTalk Server 2000. These features, called
BizTalk Orchestration, coupled with the core BizTalk Server 2000 data messaging services discussed in the MSDN Magazine
article comprise a sophisticated set of Windows 2000 XML based tools and services for integrating applications within and across
businesses. Many of the data messaging features are available today for prototyping in the Technology Preview release, while the
upcoming Web release of BizTalk Server 2000 Beta will provide an opportunity to begin piloting next generation e-commerce
architectures. Visit the BizTalk Server Web site to keep up to date.

Bob Laskey is an e-commerce architect in Microsoft's dot-com consulting practice based in Austin, TX. He can be reached at
rlaskey@microsoft.com.

James Parker is an e-commerce architect in Microsoft's Industry Solutions Group based in Austin, TX. He can be reached at
jampar@microsoft.com.

http://www.microsoft.com/biztalkserver/
mailto:rlaskey@microsoft.com
mailto:jampar@microsoft.com

Microsoft BizTalk Server Technical Articles

Microsoft BizTalk Server 2000 Deployment Considerations
Microsoft Coproration

February 2001

Summary: Microsoft BizTalk Server 2000 provides the infrastructure to enable solutions for business-to-business electronic
commerce and enterprise application integration (EAI). This article describes deployment configurations, explains why you might
decide to implement each configuration, and offers guidelines for building them. (31 printed pages)

Contents

Introduction
Deployment Models
 Small- to Medium-sized Organization Application Integration
 Large Organization Application Integration
 XML format integration
 BizTalk Server distribution lists
 Loosely coupled integration using a data distribution bus
Deployment Considerations
 Firewall Restrictions and Considerations
 HTTP-only interactions
 Responses and time-outs in long-running processes
 Message Queuing fan-out
 Load Balancing Considerations
 COM+ component load balancing
 Windows Network Load Balancing Service
 Building Scalable and Available Web Applications
 Synchronous Web-based model
 Synchronous facade on an asynchronous back-end processing system
 Designing BizTalk Server Groups
 Redundant server group configurations
 Partitioned or specialized server group configurations
 BizTalk Servers running BizTalk Orchestration Services
 BizTalk Messaging Services
 BizTalk messaging objects
 Custom BizTalk messaging components
 Application integration components
 ASP property pages
 Tracking database maintenance
 BizTalk Orchestration Services
 BizTalk Orchestration .skx and .skv files
 Implementation technologies
 BizTalk Server run-time authentication and identity
 Configuring BizTalk Orchestration Services
 Persistence database configuration and maintenance
 Security
 Security administration
 Server affinity of XLANG schedules
 Message queue size limits
 Scalability issues
 Shutting down applications that host XLANG schedules
 Message queuing dead letter queues
 XLANG schedule activation
 Updating XLANG schedules
Conclusion
For More Information

Introduction
Microsoft® BizTalk™ Server 2000 provides an application infrastructure that enables businesses to implement remote data
interchange with external partners. BizTalk Server 2000 also solves the problem of integrating dissimilar applications across

multiple remote and autonomous business units within a business domain. This article describes the deployment models and
considerations for business-to-business electronic-commerce and enterprise application integration (EAI) implementations. For
small businesses, deploying BizTalk Server can be straightforward and relatively trivial, but for large global businesses with a
distributed application environment, much care and thought must be taken to design a deployment architecture that reduces the
complexity of management while providing a robust and extensible application environment.

It is highly recommended that you have an understanding of the information contained in the BizTalk Server 2000 product
documentation before you read this article.

This article outlines two basic deployment models and six types of deployment considerations:

Deployment models. The deployment models are grouped into two general categories: application integration within a
small- to medium-sized organization (SMORG), and application integration within a large organization (LORG). The
information in this section will help you determine which deployment model is appropriate for your business environment.
Deployment considerations. This section contains a variety of guidelines that describe the issues you need to consider
when you deploy BizTalk Server 2000. The six most important deployment considerations are:

1. Firewall restrictions and considerations. Many of the constraints that are placed on the implementation of
business-to-business deployments are driven by the need for protection from external attacks. This section describes
what you need to consider when you deploy BizTalk Server 2000 behind a firewall.

2. Load balancing considerations. This section describes how to increase performance and optimize the use of
processing power in a multiple-server deployment.

3. Building scalable and available Web applications. This section compares the issues you need to consider when
you build Web applications using either the synchronous model or the asynchronous model.

4. Designing BizTalk Server groups. This section explains the key organizing principle in BizTalk Server
Administration.

5. BizTalk Messaging Services. This section describes some background information, information about best practices,
and troubleshooting tips relating to BizTalk Messaging Services.

6. BizTalk Orchestration Services. This section describes some of the design issues that are specific to BizTalk
Orchestration Services that you need to consider for BizTalk Server deployment.

Deployment Models
Unlike many competitive products that focus on either external or internal data interchange, BizTalk Server 2000 offers a platform
and feature set that solves both the business-to-business and enterprise application integration (EAI) problem set. It can be as
difficult to integrate custom-built applications with applications that are purchased as it is to integrate business processes
between trading partners. The architecture for integrating applications within a business depends greatly on the size of the
business, its structure, and the complexity of the business processes. The following sections focus on two deployment models. The
first deployment model is for a simple small- to medium-sized business. The second model is for a more complex, large-scale
business.

Small- to Medium-sized Organization Application Integration

Typically, small- to medium-sized organizations (SMORGs) have a centralized Information Technology (IT) group that controls
systems and applications. Often, a limited number of systems and applications within these businesses are core to business
operations. Point-to-point application integration is a typical deployment architecture in this environment.

In a SMORG environment, you can deploy BizTalk Server as a routing and transformation hub that connects all applications with a
single BizTalk Server group to facilitate application integration. Channels, ports, and XLANG schedules are created for the purpose
of integrating specific applications. This model for a simple deployment of BizTalk Server is suitable for SMORGs. The same
deployment in a LORG environment can quickly become inefficient and unmanageable. In point-to-point application integration,
there is a one-to-one relationship between an application on one system and an application on another system. For example, a
procurement application on one system might have a point-to-point application integration relationship with an inventory
application on another system. Using BizTalk Server, management is centralized and each application is under the control of a
single group.

The following illustration shows point-to-point application integration.

Figure 1. Point-to-point application integration

Large Organization Application Integration

Many large businesses do not use a single centrally managed system. Large organizations (LORGs) are typically organized in
autonomous, discrete business units that develop, maintain, support, and administer their own systems. There is a need for these
business units to share data with applications that are controlled by other business units, as well as to communicate with external
trading partners. Cross-business-unit integration is the combined burden of the central Information Technology (IT) group and
the business unit development staff.

Many LORGs need a more distributed and manageable solution than the simple point-to-point application integration used by
SMORGs. Competitive EAI technologies that specifically market to LORGs have adopted a new paradigm for integrating
applications, known as Publish and Subscribe, or Pub-Sub. In Pub-Sub–based integration products, the publishers of, and
subscribers to, the data is unaware of each other. Data is published by one application and subscribed to by other applications.
This paradigm focuses on integrating applications with the data distribution infrastructure of the business domain, instead of
integrating applications directly with each other. In this model, applications can be easily plugged into the business network data
bus and the applications can participate in the business process flow without creating tightly coupled dependencies between
systems. The BizTalk Server distributed integration bus can be deployed to provide Pub-Sub–based integration functionality. The
BizTalk Server distributed integration bus is made up of distribution lists that enable a one-to-many data distribution model.

The following illustration shows one-to-many application integration using the BizTalk Server distributed integration bus.

Figure 2. One-to-many application integration using the BizTalk Server distributed integration bus

XML format integration

Because applications are not bound by interfaces or common data stores, but by common or intermediary data formats, the
applications can evolve their implementations without affecting the overall process flow of the business. BizTalk Server 2000
provides the basis for implementing content-based routing and an integration platform based on formats of document types, also
known as specifications. BizTalk Server is document-type or specification-centric in nature. To achieve a greater level of business
integration than most other products, BizTalk Server uses XML. When applications require specific non-XML formats, BizTalk
Server provides transformation and serialization features that can deliver data in the native format of the target application or
endpoint at the point of integration/transport. The ultimate goal is that the data flowing between applications is in an
intermediary XML format and not in a format of any particular or specific application. This goal might not be realized initially and
does not hamper the integration.

BizTalk Server distribution lists

A key feature of BizTalk Server is the distribution list, which allows one-to-many distribution of data to applications and other
BizTalk Server groups. Distribution lists are implemented in BizTalk Messaging Services by first creating a distribution list that
contains a set of previously configured messaging ports. Channels for particular types of documents are then added to deliver
documents to the distribution list that contains a collection of messaging ports that determines the delivery endpoints of the
document. Each messaging port in the distribution list refers to another organization or application.

Loosely coupled integration using a data distribution bus

BizTalk Server distribution lists facilitate the deployment of BizTalk Server-based enterprise application integration (EAI)
middleware that interconnects applications and external counter-parties in a loosely coupled fashion. In this context, loosely
coupled is defined as integrating endpoints by using a messaging infrastructure that does not require the sending and receiving
endpoints to be preconfigured with specific knowledge of the counter endpoint's existence. Each BizTalk Server group can be
configured as a part of a BizTalk Server data distribution bus so that each BizTalk Server group is aware of other BizTalk Server
groups that have channels configured to receive and process a particular set of data. In this fashion, BizTalk Server groups can be
linked for more efficient distribution of data by using distribution lists. Each BizTalk Server group can represent a subset of all
endpoints, whether they are applications or trading partners. Effectively, each BizTalk Server group can serve to model the
business unit and departmental system partitioning. For example, BizTalk Server groups used by the accounting department do
not need to carry configuration data for subscribing members of other BizTalk Server groups that require copies of the same
messages. BizTalk Server inter-group document delivery is a more efficient way to distribute data than using application-to-
application integration.

Deployment Considerations
The architecture for deploying EAI, using distributed and discrete application processing, is driven by the necessity to build
business domains and boundaries. This section discusses and recommends solutions for these deployment problems. As
deployments of BizTalk Server mature, new and updated XLANG schedules must be seamlessly integrated with tools that provide
version control of server configurations. In high-performance environments, it is critical that BizTalk Server can be remotely
monitored and proactively administered.

The BizTalk Server 2000 deployment areas for you to consider are:

Firewall restrictions and considerations.
Load balancing considerations.
Building scalable and available Web applications.
Designing BizTalk Server groups.
BizTalk Messaging Services.
BizTalk Orchestration Services.

Firewall Restrictions and Considerations

Among the challenges that arise when businesses engage in business-to-business data interchange is the question of how
companies can implement robust application solutions while maintaining a secure environment. Protecting systems and data is
paramount to most businesses. Web-based application deployment must take into account the dangerous and volatile
environment encountered on the Internet, where attacks are anticipated and occur frequently. To protect their domains, many
businesses use firewalls that restrict network traffic to the HTTPS and FTP transport protocols. Additionally, firewalls open only a
limited number of ports to the Internet (for example, port 80 for HTTP). Also, double firewalls are often used to isolate Web
servers from an intranet or from local area networks (LANs). The space between these firewalls is referred to as the demilitarized
zone (DMZ). In the past, network groups within businesses have stipulated that data cannot be persisted within the DMZ, and that
all traffic from the DMZ to an intranet must be strictly monitored or filtered for textual data, using HTTP as the transport protocol.
However, some of these restrictions have recently been relaxed as new business models require the implementation of Web-
based applications running dynamic content. Previously, only static Web content crossed into the DMZ.

HTTP-only interactions

Many Web-based applications require synchronous interactions between the client and the server. Although there are concerns
about the scalability of this type of application architecture, it is still the predominant scenario that is deployed on the Internet at
this time. Synchronous Web-based applications receive a request from a client and return a response to the client using the same
request session. This is the model for HTTP Request and HTTP Response. Many clients expect HTTP Response to carry a business-
level response to the request that they posted. The expectation is that the request waits for the response. The following scenario
describes an architecture that complies with this synchronous requirement.

This scenario includes a data farm of Internet Information Services (IIS) servers. The data farm might also include Commerce

Servers. These servers receive documents over HTTPS and then submit the documents to a BizTalk Server group for processing. In
this scenario, there might be a firewall that allows only HTTP traffic through port 80 between the IIS and Commerce Server data
farm and the BizTalk Server group.

To build a configuration based on this scenario, you must adhere to the following requirements:

The IIS and Commerce Server data farm and the BizTalk Server group must be scaled out independently.
Communication between the two data farms must be restricted to port 80 and use HTTP exclusively.
Load balance requests across servers in both data farms must be made independently.
Optionally, you can design support for synchronous HTTP interactions between Web clients and BizTalk Servers.

To comply with these requirements, it is often not possible to use Distributed Component Object Model (DCOM) calls between
the data farms. DCOM calls from the IIS and Commerce Servers in the DMZ to BizTalk Servers would require the opening of
arbitrary ports. This is often unacceptable in a business environment.

The following illustration shows a configuration based on the scenario described in this section, using Microsoft Internet Security
and Acceleration (ISA) Server as the firewall server.

Figure 3. Configuration based on the scenario described in this section, using Microsoft Internet Security and
Acceleration (ISA) Server as the firewall server

This configuration provides a simple implementation model. The two data farms are loosely coupled and can scale out
independently by using HTTP and the Network Load Balancing Service (NLBS) as intermediary load-balancing servers.

Active Server Pages (ASPs) on Commerce Server and IIS servers in the DMZ use the server-optimized MSXML 3.0 HTTP client to
forward HTTP Requests with messages to the internal IIS and BizTalk Servers over HTTPS. The MSXML 3.0 HTTP client is
multithreaded and reentrant. Optionally, a Microsoft Internet Security and Acceleration server can be used to implement a
request-forwarding reverse proxy.

In the synchronous model, ASP pages on the IIS and BizTalk Servers within an intranet call directly into the local BizTalk Servers
by using the SubmitSync method of the IInterchange interface. BizTalk Server returns a response. In the asynchronous model,
the ASP page calls the Submit method or places the message onto a local message queue, or file share, that a Message Queuing
receive function monitors. When asynchronous calls to the BizTalk Server are used, the following occurs:

BizTalk Messaging Services are optimized to receive documents from a message queue by using a Message Queuing
receive function. If the document size is greater than 4 megabytes (MB) in ASCII, or 2 MB in Unicode, the message queue
size limit is exceeded. In this case, the document must be submitted to BizTalk Server using either the IInterchange
interface (to support transactions), or by using a File receive function.

ASP pages can quickly save messages in message queues without processing the messages. This reduces the page latency
and releases HTTP connections in an expedient manner.
ASP pages submit documents to BizTalk Server by using receive functions or the Submit method on the IInterchange
interface.

When BizTalk Orchestration Services are used to implement business logic, the document that is passed to the Submit method or
the SubmitSync method of the IInterchange interface is processed on the local server by an XLANG schedule instance. You can
configure BizTalk Server to activate a new XLANG schedule instance to process the document, or the document can be processed
by an activated XLANG schedule instance. For information about configuring BizTalk Orchestration Services, see "BizTalk
Orchestration Services" later in this article. If new XLANG schedules are to be activated when a specified document type is
received, and if there is a high volume of incoming documents of this type, the tightly coupled approach could overwhelm the
servers on which XLANG schedules are activated. Newly activated XLANG schedules will compete for resources with the XLANG
schedules that are already running. This might affect the throughput and the latency of the overall application. To avoid this
problem use a loosely coupled approach.

Responses and time-outs in long-running processes

In this scenario, the Web page is blocking the HTTP Request that is awaiting a response from the stateless component. The
stateless component is polling a queue, awaiting a response message that is based on the globally unique identifier (GUID) of the
request (also referred to as the message label). When processing on the back end is expeditious to the client, it appears to be
synchronous. If there is heavy load, a time-out thread in the stateless object returns an out parameter to the Web page. This out
parameter represents the following instruction:

Processing incomplete, please check back later with the Message GUID to retrieve the response.

At that time, the Web page either redirects the client requests to a CheckStatus/FetchResponse page, which simply calls a
component to poll the queue, or a script in the client browser handles the response polling. The GUID can be placed in the cookie
and used to retrieve the response asynchronously.

Variations of this are possible; for example, using a SQL query to the CheckStatus/FetchResponse page from the Web page or
component. This is not possible in businesses that require no direct back-end database interaction from Web servers in the
firewall. In this situation, Message Queuing can be used for decoupling and throttling requests from responses.

Message Queuing fan-out

To enable a firewall to allow Internet access to Message Queuing Services, Message Queuing traffic is delivered through port
1801, which is a reserved Transmission Control Protocol (TCP) port. If port 1801 is open for Message Queuing traffic and if
asynchronous communication is used for the interaction between the Web client and the BizTalk Servers, it is recommended that
you use Message Queuing to move messages out of the DMZ and into the business domain. Because Message Queuing 2.0 does
not support remote transacted reads, a custom message queue fan-out component is required to move messages in a transacted
fashion to local queues in the data farm. Assuming that messages have not been placed in the queue by an ASP page on the
server running Message Queuing, this custom message queue fan-out component can be developed to pull messages off the
queue and send them to local queues on the BizTalk Servers. Load balancing schemes can take advantage of Microsoft
Windows® Management Instrumentation (WMI) reporting to determine the performance characteristics of each server before
forwarding the message to the BizTalk Server with the smallest load.

The following illustration shows a configuration based on the scenario described in this section, using Microsoft Internet Security
and Acceleration Server (ISA) as the firewall.

Figure 4. Configuration based on the scenario described in this section, using Microsoft Internet Security and
Acceleration Server (ISA) as the firewall

Load Balancing Considerations

To increase performance and optimize the use of processing power in a multiple-server deployment, it is necessary to ensure that
new work is submitted to the server that is currently performing the least amount of processing. Load balancing is the process of
determining the identity of the server that is currently performing the least amount of processing, and then directing new work to
that server.

There are two load-balancing tools you can use in your BizTalk Server deployment:

COM+ component load balancing
Windows Network Load Balancing Service

COM+ component load balancing

COM+ component load balancing implements load balancing on the middle tier of a three-tier deployment. In a three-tier
deployment, the middle tier provides business services. The deployment model described in this section uses component load
balancing to distribute the Submit method load across a BizTalk Server data farm where the messages are moved through the
DMZ from IIS and Commerce Servers by using Message Queuing. Within a single transaction, a component reads messages from
the clustered Message Queuing server, making a Distributed Component Object Model (DCOM) invocation to the Submit
method on the IInterchange interface. Although a synchronous implementation can be used, it is recommended that you use the
asynchronous model for component load balancing because of the improvement in scalability that can be achieved with Message
Queuing.

The following illustration shows a configuration based on the scenario described in this section, using Microsoft Internet Security
and Acceleration (ISA) Server as the firewall server.

Figure 5. Configuration based on the scenario described in this section, using Microsoft Internet Security and
Acceleration (ISA) Server as the firewall server

Windows Network Load Balancing Service

Windows Network Load Balancing Service (NLBS), a component of Microsoft Windows 2000 Advanced Server and Windows
2000 Datacenter Server, distributes Internet Protocol (IP) requests across cluster members. NLBS is a software-based load
balancer that resides on each cluster member. NLBS can be used to distribute HTTP calls across BizTalk Servers running within an
IIS data farm. It is recommended that you separate NLBS traffic from BizTalk Server and Microsoft SQL Server™ processing traffic
by using two network interface cards (NICs) in each NLBS server.

Building Scalable and Available Web Applications

There are two core models you can use to build scalable and available Web applications. These models are:

A synchronous Web-based model.
A synchronous façade on an asynchronous back-end processing system.

Synchronous Web-based model

When using the Component Object Model (COM), the SubmitSync method on the IInterchange interface is used to make
synchronous calls into BizTalk Server. In this way, a response document can be returned to the caller by using a back-end
application integration component or by using an XLANG schedule. If the SubmitSync method is used, care must be taken to
handle time-out and back-end application processing component failures. Using an asynchronous model is a more scalable
approach to building application services, but it does not always correspond to many of the current synchronous Web application
models. A request-response correlation architecture must be implemented to provide users and client applications with the
synchronous façade that either provides an asynchronous Submit method invocation, or sends a response to a message queue.

Due to the nature of processing Web applications that require a synchronous HTTP interface, there are many scalability issues.
Retaining open connections for long periods of time can make the application unavailable for new requests. The design goals for
the processing of Web applications requiring a synchronous HTTP interface are:

To receive and save the request, providing the caller with the acknowledgement and assurance that the request was
received and understood.
To process the request without impacting the ability to receive new requests.

To return a response to the caller that is correlated to their request. When the scenario requires, return the response on the
same HTTP connection stream of the original request.
To support time-outs of the client requests by providing a subsequent mechanism that retrieves stored (queued) responses.

Synchronous façade on an asynchronous back-end processing system

Many businesses want the Web-based user experience (or the programmatic experience) to be synchronous, if possible. However,
understanding that there are scalability limitations when implementing a front-to-back synchronous solution, these businesses
have chosen to place a synchronous façade on an asynchronous, back-end processing application architecture. In this way, these
applications can continue to receive requests at high rates regardless of the back-end processing latencies. The back end can then
be scaled out independently of the Web server layer.

The Web page that is accessed passes the message to a stateless component. This stateless component invokes a component (that
might be pooled) to encapsulate Message Queuing and save the message to a queue. Either the Web page or the stateless
component provides a globally unique identifier (GUID) to each request message. If the stateless component provides the GUID,
the GUID is returned to the ASP page as an out parameter or placed into the IIS application or session object. In this way,
messages can be safely moved from the DMZ through a single port in the last firewall into the business domain. These messages
are then read within a Distributed Transaction Coordinator (DTC) transaction from the queue. This is known as a clustered
resource. The messages are then sent in a load-balanced fashion to a data farm of processing servers using either COM+
Component Load Balancing or Message Queuing by a multithreaded component or service.

Designing BizTalk Server Groups

A BizTalk Server group is the key organizing principle in BizTalk Server. BizTalk Server groups are collections of individual BizTalk
Servers that are centrally managed, configured, and monitored. BizTalk Server uses the following queues to contain incoming and
outgoing documents that are in various stages of routing and processing in BizTalk Server:

Work queue
Scheduled queue
Retry queue
Suspended queue

All servers in a group can be configured the same so they perform the same receiving and processing functions. Alternatively,
servers can be configured to perform a specific function, such as receive only. The purpose of grouping is to provide redundancy
and to increase performance and fault tolerance. This section provides recommendations for structuring a BizTalk Server group.

BizTalk Servers in a group host services that manage document interchange between endpoints and/or applications. These
services include messaging components that are used to send and receive documents, and orchestration components that are
used to implement business logic and manage state for long-running transactions.

Redundant server group configurations

In a redundant server group configuration, all BizTalk Servers within a group are configured to share the same Shared Queue,
Tracking, and BizTalk Messaging Management database. In this configuration, a document is posted to an ASP page. The ASP
page is configured to place documents in a specific message queue that a Message Queuing receive function monitors. The
Messaging Queuing receive function submits the document to BizTalk Server, where it is placed in the Work queue. The first
available server picks up the document from the Work queue and completes processing. This solution enables any server in the
group to process the document. The following illustration shows the structure of a group of servers.

Figure 6. Structure of a group of servers

Partitioned or specialized server group configurations

In this configuration, all servers in the group are configured to share the same Shared Queue, Tracking, and BizTalk Messaging
Management databases. However, at least one BizTalk Server is specifically configured to receive documents, usually by using the
HTTP transport service. A document arrives in a message queue and is picked up and submitted to BizTalk Server. The BizTalk
Server that runs the Message Queuing receive function does not participate in document processing. This results in rapid
document submission that helps prevent documents from accumulating in the message queue. BizTalk Servers configured only to
receive documents provide the following functionality:

Decryption, decoding, and digital signature verification.
Parsing and document validation.
Submitting the document to the Work queue for processing on successful submissions or into the Suspended queue for
faulty submissions.

The other BizTalk Servers in the group are responsible for processing. In this partitioned configuration, the server used to receive
documents must be part of a fail-over cluster to provide fault tolerance. This is because the receiving server is neither functionally
replicated nor redundant. The following illustration shows the structure of a group of servers for partitioned processing.

Figure 7. Structure of a group of servers for partitioned processing

To configure a BizTalk Server to receive documents

1. Open BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and expand the server group for the server that
you want to configure.

2. Right-click the server that you want to configure and click Properties.

The Properties dialog box appears.

3. Clear the Participate in work-item processing check box.

To configure a BizTalk Server for document processing

1. Open BizTalk Server Administration, expand Microsoft BizTalk Server 2000, and expand the server group for the server that
you want to configure.

2. Right-click the server that you want to configure, click Properties.

The Properties dialog box appears.

3. Select the Participate in work-item processing check box.
4. In the Maximum number of receive function threads allowed box, type a value greater than zero.
5. In the Maximum number of worker threads per processor allowed box, type the number of worker threads that you

want to use.

Note The server will not participate in document processing if no receive functions are activated and no
applications post documents to it by using the IInterchange interface.

BizTalk Servers running BizTalk Orchestration Services

BizTalk Orchestration Services can either run on the same server that runs BizTalk Messaging Services, or BizTalk Orchestration
Services can be scaled out on individually dedicated BizTalk Servers. By scaling out BizTalk Orchestration Services on individually
dedicated servers, BizTalk Messaging Services do not need to contend for CPU and file I/O resources with BizTalk Orchestration
Services. XLANG schedule activation requires server affinity for rehydrated XLANG schedule instances; therefore, BizTalk Servers
running BizTalk Orchestration Services must be clustered in an active-passive manner. Active servers and passive servers are part
of a redundant configuration that provides a high level of availability. If the server that is performing the processing (the active
server) fails, one or more of the passive servers will become active and perform the processing. In this configuration, if the active
server fails, the passive server continues executing the XLANG schedule instances from the last known state.

BizTalk Messaging Services
It is highly recommended that you review the information in the topic "BizTalk Services" in the BizTalk Server 2000 product
documentation before you read this section. This section contains background information, information about best practices, and
troubleshooting tips relating to BizTalk Messaging Services.

BizTalk messaging objects

BizTalk Server uses the following objects to configure the necessary properties to process and transmit submitted work items:

Channels. A set of properties that direct BizTalk Server through the appropriate steps to process documents. Channel
properties include a source organization or application, a document definition, a map, and field and document tracking
settings.
Messaging ports. A set of properties that specify how an interchange or document is transported to a destination
organization or application. Messaging port properties include transport services, destination organization or application,
security settings, and envelope settings.
Distribution lists. A group of messaging ports. Use a distribution list to send the same document to more than one trading
partner organization or applications. In the BizTalk Messaging Configuration object model, a distribution list is called a port
group.
Organizations. The trading partners with which your business exchanges interchanges and documents. An organization
can be internal, such as an application of another division of a company. Alternatively, an organization can be external, such
as a different business.
Document definitions. A set of properties that represents an inbound or outbound document and that might provide a
pointer to a specification. A specification defines the document structure, document type, and version. However, a pointer
from the document definition to a specification is not required.

Envelopes. A set of properties that can represent the transport information for a document. An envelope associated with an
inbound interchange or document provides BizTalk Server with the information that it needs to interpret the submitted
document. For example, the envelope can contain a pointer to the document definition. An envelope associated with an
outbound interchange or document gives BizTalk Server the information that it needs to create the document. Envelope
properties are optional for most file formats.
BizTalk Configuration Assistant (BTConfigAssistant). This tool enables you to view all of the details of a configuration. It
also provides a mechanism for easily importing and exporting configurations, and deploying BizTalk Messaging Services to
a new server. BTConfigAssistant is in the Messaging Samples folder in the Microsoft BizTalk Server installation drive. Browse
to \Program Files\Microsoft BizTalk Server\SDK\Messaging Samples on the installation drive to find this tool. This is only a
relative path. Depending on your installation of BizTalk Server 2000, you might have to modify this path.

Custom BizTalk messaging components

There are several extensibility options for BizTalk Messaging Services. These include the ability to integrate custom components
that implement one or more integration interfaces.

BizTalk Server 2000 Enterprise Edition supports product extensibility that enables more complex document processing. The
extensions available in BizTalk Server Enterprise Edition are:

Custom parsers. To enable parsing of formats that are not supported in the native parsers provided by BizTalk Server
2000, the enterprise edition enables you to create custom parser components that conform to a well-defined parser
interface. You can configure these components in BizTalk Server to parse documents for the formats that they support.
Custom serializers. To enable serializing of documents into proprietary or other formats that are not supported by the
serializers that are provided with BizTalk Server 2000, the enterprise edition enables you to create custom serializer
components that conform to a well-defined serializer interface. You can configure these components in BizTalk Server to
serialize documents into the formats that they support.
Custom preprocessing components. BizTalk Messaging Services support a preprocessing link to the Message Queuing
and File receive functions that allows custom components implementing the IPreProcess interface to provide custom
processing on the receiving of documents prior to submission to the server.

Application integration components

Integrating with BizTalk Messaging Services using the Component Object Model (COM) at the transport layer is possible by
implementing one of two sets of interfaces:

IPipelineComponent and IPipelineComponentAdmin
IBTSAppIntegration

Any object that implements the interface set (or the single interface) and selects the AIC messaging port transport type will be
invoked by BizTalk Messaging Services when a document passes through the messaging port. Registering these AICs with an
affinity GUID or within a COM+ application package enables them to appear in BizTalk Messaging Manager.

ASP property pages

AICs that implement the IPipelineComponent set of interfaces can optionally receive additional configuration data at run time
along with the delivery of messages on the CDictionary object. The additional run-time data is configured by placing ASP
property pages in the directory designated for the property pages (for example, \Program Files\Microsoft BizTalk
Server\MessagingManager\pipeline). To select and set the values of these property pages, open BizTalk Messaging Manager and
edit the channel. The Advanced button in the last dialog box enables you to set the properties for the primary transport.

Tracking database maintenance

When document tracking is used, the Tracking database will increase in size. It is necessary to implement SQL replication and
purge procedures to move data from the Tracking database to a data warehouse. To maintain the Tracking database, you can use
DTA_SampleJobs.sql, a sample SQL Server script that is provided to remove records from the Tracking database. You can find this
sample script in the \Program Files\Microsoft BizTalk Server\SDK\Messaging Samples\SQLServerAgentJobs folder. Review the
readme included with this sample for more information about how to tailor the script to your specific BizTalk Server deployment.

Note If you are using SQL Server 7.0 with Service Pack (SP) 2, the tables that have image or text columns might not
shrink in size, even if you delete rows from those tables in the Tracking database. SQL Server SP 3 helps to alleviate
this issue. SP 3 is available at the Microsoft SQL Server Web site (www.microsoft.com/sql/downloads/sp3.htm).

This issue does not occur in SQL Server 2000.

If you configure your BizTalk Server deployment to track documents, you might need to change the following SQL Server settings
for the Tracking database:

Auto shrink
Truncate log on checkpoint
Automatically grow file

The option, Automatically grow file, is the recommended configuration option for the Tracking database.

For more information about maintaining the Tracking database, see "Administering Databases" in the Microsoft BizTalk
Server 2000 Operations article.

BizTalk Orchestration Services

It is highly recommended that you review the information in the topics "BizTalk Services" and "Server Administration" in the
BizTalk Server 2000 product documentation before you read this section. The Server Administration topics contain detailed
information about the configuration of BizTalk Servers running BizTalk Orchestration Services. This section contains background
information, information about best practices, and troubleshooting tips relating to BizTalk Orchestration Services.

BizTalk Orchestration .skx and .skv files

In BizTalk Orchestration Designer, XLANG schedule drawings are saved with the .skv file extension. You can then compile the
XLANG schedule drawing into an XLANG schedule, which is an XML-structured file with the .skx file extension. The XLANG
Scheduler Engine can then process the .skx file. You will need to implement version control for both .skv files and .skx files using
products such as Microsoft Visual SourceSafe®.

Implementation technologies

BizTalk Orchestration Designer provides four Implementation shapes. These shapes are used to describe the implementation
technologies that are used to implement a port in a business process. The implementation technologies are:

COM components. This implementation technology enables you to use preexisting components or applications to perform
actions within an XLANG schedule. The COM implementation technology is synchronous. There is always a bidirectional
flow of messages when an action is performed.
Windows Script Components. This implementation technology enables you to use preexisting components or
applications to perform actions within an XLANG schedule, using a Windows Script Component (.wsc) file. The Windows
Script Component implementation technology is synchronous. There is always a bidirectional flow of messages when an
action is performed.
Message Queuing. This implementation technology enables an XLANG schedule to communicate with another XLANG
schedule (or with an application), in a loosely coupled manner by using a message queue.
BizTalk Messaging. This implementation technology enables you to use BizTalk Messaging Services to exchange messages
between BizTalk Orchestration Services and BizTalk Messaging Services.

By visually inspecting the *.skv file, you can build an inventory of the required implementation technologies. It is also possible to
create a list of specific binding objects programmatically by parsing the *.skx files and extracting binding-specific elements.

The following code shows XLANG binding examples:

COM binding

Message queue binding

<portBinding tag="0!57">
<portRef location="LineItemUtil"/>
<portTranslation>
 <com:interface tag="0!53" iid="55f3c4f3-fb27-4789-a5bd-263bbc4b672a"
clsid="a8f6910c-bb6b-4edc-a93c-fa104066e858" holdstate="1" />
</portTranslation>
</portBinding>

BizTalk Server run-time authentication and identity

When BizTalk Server is installed, a COM+ application named XLANG Scheduler is created on the system. This application can host
or execute XLANG schedules. To simplify setup, especially for developers who initially install BizTalk Server, the COM+ application
is configured to run as Interactive user. However, in the deployment scenario it is strongly recommended that you do not
configure COM+ applications that host XLANG schedules to use the Interactive user account. Instead, configure COM+
applications that host XLANG schedules to run under a specific user account. This account should be distinct for each host,
depending on the types of XLANG schedules that are being executed by the different hosts and depending on the security
requirements. Configure access to the persistence database for this account, and configure access to any other required resources.

Configuring BizTalk Orchestration Services

On a computer, multiple COM+ applications can be configured to host XLANG schedules. Hosting the BizTalk Orchestration
Services run-time environment in different COM+ applications provides the following benefits:

Fault isolation. An access violation in an in-process component used by an XLANG schedule can cause the BizTalk
Scheduler Engine to fail. This is similar to a poorly written in-process Internet Server Application Programming Interface
(ISAPI) dynamic-link library (DLL) causing Internet Information Server (IIS) to fail. If an access violation in an in-process
component used by an XLANG schedule does cause the BizTalk Scheduler Engine to fail, it can affect all of the other hosted
XLANG schedules. Therefore, it is recommended that you limit the use of in-process components used by XLANG schedules
to those that have been thoroughly tested.
Flexible security. Different COM+ applications can run using different security settings (such as COM+ roles).

To create a new COM+ application that can host the BizTalk Orchestration run-time environment:

When creating the XLANG host, configure the application to run under a specific user identity (ID), do not use Interactive
user. Otherwise, you will need to have the system logged in as this user permanently. This is not practical in a business
deployment.
Use unique accounts for each COM+ application, but group them together to simplify access control.
It is recommended that you group all Access Control Lists (ACLs) in a single Windows 2000 group. This will enable you to
use a unique identity for each server application and treat them the same with respect to ACLs on other system resources.
Configure a Data Source Name (DSN) for the newly created XLANG host. As described in the "Persistence Database
Configuration" section of this article, the DSN can point to a database that is shared by other XLANG hosts within the BizTalk
Server group.

For more information, see "Create and Configure an XLANG Schedule Host Application" in the BizTalk Server 2000 product
documentation.

Note For Component Services Administration Help, on the Start menu, point to Settings, click Control Panel,
double-click Administrative Tools, and then double-click Component Services. Press F1 or on the Help menu, click
the Help topics item.

Persistence database configuration and maintenance

BizTalk Orchestration Services use a Microsoft SQL Server database to manage the state of XLANG schedule instances. A Data
Source Name (DSN) must be configured for every instance of an XLANG schedule to ensure that each XLANG schedule instance
points to a Microsoft SQL Server database. As part of the setup process, the DSN is configured for the default XLANG Scheduler
Engine. A DSN, pointing to a Microsoft SQL Server database, must be configured for additional COM+ applications that can host
XLANG schedules. Each of the individual BizTalk Servers running BizTalk Orchestration Services can point to different databases,
or share a common database. Using multiple Microsoft SQL Servers introduces additional complexity. It is recommended that you
deploy a Microsoft SQL Server that is dedicated to providing state management for BizTalk Servers running BizTalk Orchestration
Services.

For more information about how to configure a DSN for a persistence database, see "Manage XLANG Applications and
Databases" in the BizTalk Server 2000 product documentation.

<portTranslation>
 <msmq:queue tag="0!41"
queueName=".\private$\Items_in"/>
</portTranslation>

The persistence database size must be configured to grow as the XLANG Scheduler Engine persists data about activated XLANG
schedule instances. BizTalk Orchestration Services will not remove the information about XLANG schedule instances from the
persistence database. This is true even for XLANG schedule instances that have completed. Because the persistence database
increases in size with use, it is necessary to implement SQL replication and purge procedures to move data from the persistence
database to a data warehouse.

Scripts to purge completed XLANG schedule instances, along with other utilities to manage the persistence database are not
included with BizTalk Server. For information about maintaining the persistence database, go to the Microsoft BizTalk Server Web
site (www.microsoft.com/biztalk/).

Caution Do not attempt to create your own tool(s) to maintain the persistence database. By creating and using your
own tool(s) to maintain the persistence database, you risk deleting important production data or corrupting the
persistence database.

Security

XLANG Scheduler, the default COM+ application that is installed by BizTalk Server, defines the security roles that control which
users can interact with XLANG hosts in different ways. These security roles apply to all XLANG hosts configured on a server. It is
not possible to define unique sets of users for these roles on a per-XLANG host basis. For more information, see "Security for
Applications That Host XLANG Schedule Instances" in the BizTalk Server 2000 product documentation.

Security administration

Security data used to access resources such as message queues and file shares (for example, Domain\Account) must be
implemented for the given deployment environment.

Server affinity of XLANG schedules

Instances of an XLANG schedule have affinity to the COM+ XLANG application and the server on which they were activated. This
implies that the XLANG schedule instances are not automatically rehydrated on a different server if the server on which the
XLANG schedule instance has affinity fails. One way to address this issue is to set up servers running BizTalk Server in an active-
passive type of fail-over cluster. In this configuration, if the active server fails, the passive server continues executing the XLANG
schedule instances from the last known state.

Message queue size limits

A message queue has a storage limit of 4 MB per-message that is stored in a message queue and a total limit of 2 gigabytes (GB)
for all messages that can be stored in a message queue.

Scalability issues

There are several reasons why the scalability of activated XLANG schedules might be affected by a particular deployment. The
most common reasons are discussed here. Some of these are not related to the deployment architecture, but relate to the design
and implementation of the XLANG schedules.

If Microsoft Visual Basic® components are called in an XLANG schedule, a performance decrease is experienced when there
is a large number of outstanding calls. The XLANG Scheduler Engine is configured to execute within a multithreaded
apartment, and there is only a limited pool of threads that can be used by the XLANG Scheduler Engine to invoke
components that need to execute in single threaded apartments. Because all Visual Basic components are single threaded
apartments, calls to these components will block if there are many outstanding concurrent calls. To avoid this problem, use
Microsoft Visual C++® to create multithreaded apartment components.
Low throughput of XLANG schedule instances is often caused by bottlenecks in the database that is used to store the state
of XLANG schedules. The problem is amplified when multiple BizTalk Servers are configured to use the same database.
Throughput can be improved by configuring BizTalk Orchestration Services to use different databases. For further
improvement, the databases can be configured to use different hard disks. Using different Microsoft SQL Servers for some
or all of the Orchestration Services is likely to provide even better results.

Following are two additional methods you can use to reduce the use of the database by the XLANG Scheduler Engine:

Review the design of XLANG schedule drawings to minimize the use of the Transaction shape.
Review the design of XLANG schedule drawings to ensure that the latency on receive actions is set to a value that is
less than three minutes. This prevents the dehydration of XLANG schedule instances that contain rapidly occurring
receive actions.

Private message queues are known to perform substantially better than public message queues because they do not require
an Active Directory lookup. As described in "Persistence Database Configuration," the persistence database might become a
bottleneck.
Visual Basic components used from COM+ server applications could deadlock and cause XLANG schedule instances to stop
responding. This is a known Visual Basic issue. The workaround is to ensure that the components are built with the Retain
in memory option set (from project properties in the Visual Basic environment).
Avoid making method calls to components that run for an extended period of time.
The XLANG Scheduler Engine uses ActiveX® Data Objects (ADO) to save the state of XLANG schedules to the persistence
database. By default, ADO installs itself as apartment threaded, which could cause a severe performance slowdown. You can
run a batch file that ADO provides (\Program Files\Common Files\System\ado\makfre15.bat) that converts ADO to be "Both
threaded."
When XLANG schedules using transactions are executed under heavy stress (a large number of concurrent XLANG schedule
instances), Distributed Transaction Coordinator (DTC) transactions might time out. This might occur because the XLANG
Scheduler Engine enrolls in the application's DTC transaction to perform state management. XLANG schedule designers
might not realize this and set the time-out to a value that might work well under low-stress situations but that can
encounter problems at higher stress levels. Transaction time-out values of less than 60 seconds are not recommended.
In addition to increasing the transaction time-out, the time-out values for ADO connection and commands might also need
to be increased. Executing the following code in a .reg file adds the appropriate registry keys to the registry and also sets the
time-out values to 300 seconds (the default is 60 seconds):

Unfortunately, the error messages in the event log may not be very helpful when time-out problems occur. The following
entries are typically seen in the event log:

Shutting down applications that host XLANG schedules

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\BizTalk Server\1.0\XLANG Scheduler]
"ADOConnectionTimeout"=dword:0000012c
"ADOCommandTimeout"=dword:0000012c

event log:
Error1
The state of the XLANG schedule instance could not be saved to the database.
 Detailed information is provided in the following message.
Module name: mymodule
Module ID: {EE8FB9FA-AB64-492A-A127-56A1EFDB2C50}
Instance ID: {6B48FF17-791B-474F-8EE2-AD35FF8E5A30}
Database error(s):
Error Code = 0x8004e007 : You made a method call on a COM+ component
 that has a transaction that has already committed or aborted.
XLANG Scheduler Engine Internals Information:
File: d:\bts\private\sked\src\runtime\persistence\persist.cpp
Line: 261
Error 2:
An error was encountered while attempting to persist an XLANG schedule instance.
 Detailed information is provided in the following message.
Error source: Field
name: __Correlation__
HRESULT: 0x80040e14
Module name: mymodule
Module ID: {EE8FB9FA-AB64-492A-A127-56A1EFDB2C65}
Instance ID: {6FE02E74-7FE2-401B-93F3-EC208636257B}
Error Code = 0x80040e14 :

If you need to bring a BizTalk Server that hosts BizTalk Orchestration Services offline, for example for maintenance purposes, you
must perform a controlled shutdown of all XLANG applications to ensure that data associated with XLANG schedules is not lost. A
controlled shutdown saves the state for running XLANG schedules to the appropriate persistence database. If you perform a
controlled shutdown on the default XLANG Scheduler application, all XLANG schedules are gracefully shut down and preserved. If
you perform a controlled shutdown on a COM+ application that you created after installation, only the XLANG schedules
associated with that COM+ application are gracefully shut down and preserved. All other XLANG schedules will remain running
until you shut down the COM+ application(s) with which they are associated.

To restart the XLANG schedules, you must restart all the schedules at the same time in the default XLANG Scheduler application.
You cannot restart applications that are associated with a specific COM+ application.

Message queuing dead letter queues

Each configured XLANG host creates a dead letter queue that is used to store documents that are rejected. The dead letter queue
is a private message queue in the following format: <xlang hostname>.deadletter. All XML documents that either fail schema
validation or are ill formed (and cannot, therefore, be parsed) are dropped into this queue. Data left in private queues that are
created on a per-instance basis for the XLANG schedule is also moved to the dead letter queue before the queues are destroyed.

XLANG schedule activation

The BizTalk Messaging implementation technology in BizTalk Orchestration Services uses a private message queue to pass data
between BizTalk Orchestration Services and BizTalk Messaging Services. A private queue is created for each port that is bound to
BizTalk Messaging Services when an XLANG schedule instance is activated. The private queue is destroyed when the XLANG
schedule instance completes. Per-instance queues might become a management problem when there are hundreds of
simultaneously active XLANG schedule instances.

To avoid the use of per-instance queues, use a Message Queuing port, instead of a BizTalk Messaging port, to activate an XLANG
schedule. To implement this design, no changes are needed in the configuration of the messaging port in BizTalk Messaging
Manager. However, if you require correlation to a running instance of an XLANG schedule, you must use per-instance queues.

Updating XLANG schedules

As newer versions of BizTalk Server become available, you might need to update existing XLANG schedules to run on these newer
versions. There are two ways to update an existing XLANG schedule. You can overwrite the original XLANG schedule, or you can
add a new XLANG schedule that runs concurrently with the original XLANG schedule.

To overwrite the original XLANG schedule, use BizTalk Orchestration Designer to create a new XLANG schedule drawing and then
compile the XLANG schedule drawing as an XLANG schedule that has the same name as the original XLANG schedule. The XLANG
schedule drawing is saved as an .skv file. You can then compile the XLANG schedule drawing into an XLANG schedule, which is an
XML-structured .skx text file. To update the original XLANG schedule, copy the new .skx file over the original .skx file.

To add a new XLANG schedule that runs concurrently with the original XLANG schedule, use BizTalk Orchestration Designer to
create a new XLANG schedule drawing and compile the XLANG schedule drawing as an XLANG schedule with a new name. To
ensure that the new XLANG schedule is correctly activated, you must change the XLANG schedule instance activation mechanism
to point to the new .skx file instead of pointing to the old .skx file. When you have completed this process, new requests for
XLANG schedules create instances of the new XLANG schedule.

Because all XLANG schedules and their components typically work on a per-instance basis, XLANG schedule instances that are in
the process of executing the original XLANG schedule continue to run to completion. This includes XLANG schedule instances that
have been dehydrated. In this scenario, the execution path continues to follow the original business process, and new requests for
XLANG schedules create instances of the new XLANG schedule.

Note When an XLANG schedule uses an object with an interface that has changed, you must open the XLANG
schedule drawing (the .skv file) in BizTalk Orchestration Designer and compile a new .skx file. This updates the binding
information in the .skx file, enabling synchronization with the component's type library.

Conclusion
BizTalk Server 2000 enables you to create solutions for enterprise application integration (EAI) and business-to-business
integration with strategic trading partners. BizTalk Server 2000 enables Information Technology (IT) professionals and business
analysts to build dynamic business processes that span applications, platforms, and businesses over the Internet. BizTalk Server
2000 also enables you to:

Integrate dissimilar applications across multiple remote and autonomous business units within a business domain.
Implement remote data interchange with external trading partners.

Maintain security within your business, even as you use the Internet to expand your ability to implement data interchange
with trading partners.
Use existing XLANG schedules with future versions of BizTalk Server, as they become available.

For More Information
"Microsoft BizTalk Server 2000 Operations." February 2001. 35 pp. Available on the Microsoft BizTalk Server Web site.

"Orchestrating Business Processes with Microsoft BizTalk Server 2000." February 2001. 22 pp. Available on the
Microsoft BizTalk Server Web site.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real
company, organization, product, person or event is intended or should be inferred.

Copyright © 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, SourceSafe, Visio, Visual Basic, Visual C++, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

http://www.microsoft.com/biztalk
http://www.microsoft.com/biztalk

Microsoft BizTalk Server Technical Articles

Microsoft BizTalk Server 2000 Operations
Microsoft Corporation

February 2001

Summary: This article describes the concepts, tasks, and administrative issues a system administrator needs to know to operate
and maintain a Microsoft BizTalk Server 2000 installation. An overview of the BizTalk Messaging Services and BizTalk
Orchestration Services concepts relevant to administering BizTalk Server 2000 is provided. Additionally, this article outlines the
administrative tasks and issues that system administrators might encounter. Anyone reading this article should also read the
"Microsoft BizTalk Server 2000 Deployment Considerations" article, which contains important background information for this
topic. (33 printed pages)

Contents

Introduction
BizTalk Messaging Services Concepts
BizTalk Server Orchestration Services Concepts
Administering BizTalk Server
Administering Transport Services
Tracking Interchanges and Documents
Security Issues
Monitor a BizTalk Server 2000 Deployment
Troubleshooting BizTalk Server
Conclusion
For More Information

Introduction
Organizations that deploy a business-to-business e-commerce solution must keep the deployment functioning 24 hours a day, 7
days a week. Indeed it has become increasingly more common for enterprise application integration to have a similar up-time
requirement. This article outlines the administrative tasks a system administrator must perform to keep an installation of
Microsoft® BizTalk™ Server 2000 running on a continual basis. Also discussed are important concepts and common
administrative issues about which system administrators must be aware.

The eight major areas of administration and management related to BizTalk Server 2000 are:

Server administration. You can use BizTalk Server Administration to manage server groups and adjust server properties
for maximum performance.
Database administration. You can use scripts and tools to maintain the following four types of databases associated with
BizTalk Server: BizTalk Messaging Management, Tracking, Shared Queue, and Orchestration Persistence.
Messaging objects administration. You can use BizTalk Messaging Manager or the BizTalk Messaging Configuration
object model to update messaging objects, such as channels and messaging ports. You can also use BizTalk Messaging
Manager or the BizTalk Messaging Configuration object model to facilitate the processing and transmission of interchanges
and documents.
Receive function and parser administration. You can use BizTalk Server Administration to manage receive functions
and parsers.
Application administration. You can use Component Services to manage the default XLANG Scheduler application, or to
add and configure additional COM+ applications that host XLANG schedules.
Tracking interchanges and documents. You can use BizTalk Server Administration to change the tracking settings for a
server group. Additional tracking settings can be set by using BizTalk Messaging Manager or the BizTalk Messaging
Configuration object model. Tracking results can be viewed by using BizTalk Document Tracking.
Monitoring a BizTalk Server deployment. You can use System Monitor, Microsoft® Windows® 2000 Event Viewer, and
XLANG Event Monitor to monitor BizTalk Server.
Troubleshooting. You can use BizTalk Server Administration to view the Suspended queue for processing and
transmission errors. You can use Event Monitor to troubleshoot server errors, BizTalk Server application errors, XLANG
Scheduler errors, and other COM+ application errors.

In addition to the administrative tasks associated with managing a BizTalk Server installation, all system administrators must be
aware of the following concepts and administrative issues:

BizTalk Messaging Services. How to submit interchanges and documents to BizTalk Server and how the appropriate
properties must be configured to process and transmit submitted interchanges and documents.
BizTalk Orchestration Services. The difference between XLANG schedule drawings and XLANG schedules and how
XLANG schedules work.
Tracking overview. How interchanges, documents, and action events related to messages processed by XLANG schedules
are tracked in the Tracking database and viewed in BizTalk Document Tracking. After BizTalk Server is implemented, settings
might need to be reconfigured to accommodate changes in business processes.
Transport services. Common implementation and maintenance issues for a variety of transport services that should be
considered when administering a BizTalk Server 2000 installation.
Security. The security features that BizTalk Server uses and the configuration changes that might be necessary when
managing a BizTalk Server 2000 installation.

BizTalk Messaging Services Concepts
BizTalk Messaging Services are services included in Microsoft BizTalk Server 2000 that enable you to send, receive, parse, and
track interchanges and documents from other organizations or applications. In addition, BizTalk Messaging Services include the
ability to generate receipts for certain file formats, correlate and map data, verify the integrity of documents, and provide secure
methods for exchanging documents with trading partners and applications.

To implement BizTalk Messaging Services, BizTalk Server uses messaging objects, receive functions, COM methods, parsers, and a
Microsoft® SQL Server™ database (version 7.0 with SP2 or SQL Server 2000). Messaging objects, such as channels and
messaging ports, are used to configure the necessary properties to process and transmit interchanges and documents submitted
to BizTalk Server. Receive functions and in some cases the Submit and SubmitSync methods are used to submit incoming
documents to BizTalk Server for processing. Once a document is submitted, the appropriate parser parses it and, if necessary,
converts it to XML. Finally, the Tracking database stores interchange and document records for incoming and outgoing
interchanges and documents that are processed by BizTalk Server.

Messaging Objects

BizTalk Server uses the following messaging objects to configure the necessary properties to process and transmit submitted
work items:

Channels. A set of properties that directs BizTalk Server through the appropriate steps to process documents. Channel
properties include a source organization or application, a document definition, a map, and field and document tracking
settings.
Messaging ports. A set of properties that specifies how an interchange or document is transported to a destination
organization or application. Messaging port properties include transport services, destination organization or application,
security settings, and envelope settings.
Distribution lists. A group of messaging ports. Use a distribution list to send the same document to more than one trading
partner organization or application. In the BizTalk Messaging Configuration object model, a distribution list is called a port
group.
Organizations. The trading partners with which your business exchanges interchanges and documents. An organization
can be internal, such as an application in another division of your company. Or an organization can be external, such as a
different business.
Document definitions. A set of properties that represents an inbound or outbound document and that might provide a
pointer to a specification. A specification defines the document structure, document type, and version. However, a pointer
from the document definition to a specification is not required.
Envelopes. A set of properties that can represent the transport information for a document. An envelope associated with an
inbound interchange or document provides BizTalk Server with the information that it needs to interpret the submitted
document. For example, the envelope can contain a pointer to the document definition. An envelope associated with an
outbound interchange or document gives BizTalk Server the information that it needs to create the document. Envelope
properties are optional for most file formats.

Submitting Interchanges and Documents

Interchanges and documents must be submitted to BizTalk Server by using receive functions or the Submit or SubmitSync
method of the IInterchange interface. Once an interchange or document is submitted, the appropriate parser in BizTalk Server
parses it, unless the interchange or document is submitted with the pass-through flag enabled. BizTalk Server does not parse
interchanges and documents submitted with the pass-through flag enabled.

Using Receive Functions

It is recommended that you use receive functions to submit interchanges and documents to BizTalk Server. Receive functions can
take advantage of caching, thus optimizing the performance of BizTalk Server. BizTalk Server supports two types of receive
functions: File and Message Queuing.

Receive functions are event-based. This means that a receive function waits for an event in a specified folder or message queue.
When an interchange or document is placed in the folder or message queue, the receive function immediately picks up the
interchange or document and submits it to BizTalk Server for processing. If the interchange or document is large and it takes
more than a few seconds to write the interchange or document to the folder or message queue, the receive function locks the file
and goes into a polling mode until the interchange or document is completely copied to the receive location. Once the
interchange or document is completely copied, the receive function submits it to BizTalk Server for processing and deletes the
document from the message queue or the file system.

Using the Submit and SubmitSync methods

You can use the Submit and SubmitSync methods if the application that submits interchanges and documents to BizTalk Server
meets the following criteria:

The application is a Microsoft Windows-based application.
The application is capable of invoking methods on COM objects.
The application can be designed to support direct calls to BizTalk Server 2000.

Again, it is recommended that you use receive functions to submit interchanges and documents to BizTalk Server. Use the
Submit or SubmitSync method only if you cannot use a receive function.

Parsers

Once an interchange or document is submitted to BizTalk Server, it is parsed. If the document is in a non-XML format, such as EDI
or flat file, the parser converts the submitted interchange or document into an intermediary XML format for processing. Four
specialty parsers are included with BizTalk Server to parse the following document type formats: XML, X12, EDIFACT, and flat file.

Tracking Overview

Included in BizTalk Server 2000 is the capability to track:

Metadata for interchanges, such as source and destination organization, time the interchange or document was processed,
and so on.
Whole copies of documents in their native or XML format.
Specific fields.
Custom fields.
Action events related to messages processed by XLANG schedules.

For more information about tracking documents and interchanges, see "Tracking Interchanges and Documents" later in this
paper.

Security Overview

To facilitate the exchange of secure information between trading partners, BizTalk Server 2000 uses security features offered
through Microsoft Windows 2000 and Microsoft SQL Server. Some of the security features used by BizTalk Server 2000 are
included in the following list:

Authentication. Authentication verifies the identity of a user who is logging on to a computer.
Public key infrastructure. Public key infrastructure is a set of policies and procedures used to securely exchange
information between trading partners. Elements of public key infrastructure include a public key, a private key, Certification
Authorities, and digital signing.

For more information about planning your public key infrastructure by using Secure Sockets Layer (SSL) and Secure
Multipurpose Internet Mail Extensions (S/MIME), go to the Microsoft TechNet Web site (www.microsoft.com/TechNet/) and
search for "Public Key Infrastructure."

Digital signatures. Digital signatures are a guarantee that a document has not been altered after the digital signature was
added. Digital certificates are used to ensure that the sender is not an impersonator.

http://www.microsoft.com/TechNet/default.mspx/

Multipurpose Internet Mail Extensions (MIME). MIME is a standard encoding method used to transmit data through
Internet e-mail. When data is sent, it is encoded. When data is received, it is decoded. The file header includes the
information that the recipient needs to decode the information.

For more information about MIME, go to the MSDN Online Library Web site (msdn.microsoft.com/library/default.asp) and
search for "About Simple Internet (RFC 822) Messages."

Secure/Multipurpose Internet Mail Extensions (S/MIME). S/MIME is the secure version of MIME. Before data is sent, it
is encrypted to guarantee secure transmission.
Secure Sockets Layer (SSL). Secure Sockets Layer uses a randomly generated private key that can be used only for that
session. At the beginning of a session, the server sends the public key to the browser. The browser randomly generates a
private key and sends it back to the server.

For more information about SSL, go to the MSDN Online Library Web site (msdn.microsoft.com/library/default.asp) and
search for "Using Schannel CSPs."

In addition to the security features listed here, BizTalk Server 2000 uses logon properties, local policies, service accounts, control
of a user's ability to send interchanges and documents to BizTalk Server 2000, and certificates to enhance security. These issues
are described in "Security Issues)" later in this article.

BizTalk Server Orchestration Services Concepts
BizTalk Orchestration Services are composed of tools and services included in BizTalk Server that enable you to design, compile,
and run XLANG schedules. Typically, a business analyst and a developer are involved in designing and compiling XLANG
schedules. The system administrator manages the deployment and operation of XLANG schedules. Additionally, the system
administrator might create custom COM+ applications to host XLANG schedules and create persistence databases to store
dehydrated XLANG schedule states.

There are eight concepts related to understanding and running XLANG schedules. They are:

XLANG language. An XML-based language that describes the logical sequencing of business processes. The XLANG
language also describes the implementation of the business process by using various application services.
XLANG schedule drawing. A representation of all the different steps in a business process. For example, if an employee
requests a new computer, an XLANG schedule can be used to show the flow of information from the initial request from the
employee, to the acceptance or denial of the request, to the purchase of the computer—if the request is accepted—to the
generation of the invoice and the payment of the invoice. The XLANG schedule drawing includes the protocol that trading
partners agree to use to exchange data and the flow of data between message fields. A completed drawing can be compiled
and run as an XLANG schedule. An XLANG schedule drawing is saved with the file extension .skv.
XLANG schedule. Specific business processes expressed in the XLANG language. An XLANG schedule is saved with the file
extension .skx.
XLANG schedule instance. A particular occurrence of an XLANG schedule. The XLANG Scheduler Engine can run a single
instance, or multiple instances, of an XLANG schedule. Different instances of the same XLANG schedule contain different
messages, but all instances follow the same business-process rules.
XLANG identity. A globally unique identifier that is used to distinguish version instances of an XLANG schedule drawing.
This property is read-only and cannot be changed by users. Each time an XLANG schedule drawing is updated, the identity is
also updated. The XLANG identity can be used to correlate an XLANG schedule with the specific version of an XLANG
schedule drawing from which the schedule was compiled.
XLANG schedule state. The information contained in an XLANG schedule instance. This information includes:

Messages that have been sent or received by that instance.
Any COM objects used by that instance that contain state information and are able to preserve state information.
The progress of that instance toward the completion of the business process.

XLANG Scheduler. The default COM+ application that is installed when you install BizTalk Server 2000. This application is
used to host running instances of XLANG schedules.
XLANG Scheduler Engine. A service that runs XLANG schedule instances and controls the activation, execution,
dehydration, and rehydration of an XLANG schedule.

Dehydration and Rehydration

When an instance of an XLANG schedule is running, it is processed in memory. Because XLANG schedules are designed to
support long-running, loosely coupled, executable business processes, it can become impractical to have thousands of XLANG
schedule instances continuously running over a long period of time because it would be a poor use of resources. In addition, if an

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/

XLANG schedule runs only in memory, data is lost or possibly corrupted if the server on which the XLANG schedule is running
fails. In these situations, the XLANG Scheduler Engine infrastructure dehydrates or rehydrates XLANG schedule instances.

An XLANG schedule is dehydrated when an XLANG schedule instance is waiting for a message and no other activity is occurring
in the schedule instance. Dehydration means that the instance-specific state information is stored in the appropriate persistence
database and the XLANG schedule no longer resides in memory.

An XLANG schedule is rehydrated when the message for which the XLANG schedule instance is waiting arrives. At this time the
XLANG schedule instance is rehydrated, the instance-specific state information is removed from the persistence database, and the
schedule instance resides in memory again.

An XLANG schedule instance remains dehydrated until it is either rehydrated or explicitly terminated by an administrator. This
enables a business process to run reliably for an extended time period.

Administering BizTalk Server
The following five areas of administration are related to maintaining BizTalk Server in a state of continuous operation:

Administering servers. Administrative tasks include managing server groups and servers.
Administering databases. Administrative tasks include maintaining the four types of databases associated with BizTalk
Server.
Administering messaging objects. Administrative tasks include managing messaging objects such as channels,
messaging ports, and envelopes.
Administering receive functions and parsers. Administrative tasks include managing receive functions and changing the
parser order.
Administering applications. Administrative tasks include managing the default XLANG Scheduler, creating and managing
COM+ applications to host new XLANG schedules, and managing application identities.

Administering Servers

Some of the most common tasks related to server administration include:

Adding and managing server groups.
Adding and managing servers installed with BizTalk Server 2000.
Managing interchanges and documents in the Shared Queue database.

Use BizTalk Server Administration to perform these server administration tasks. Or perform many of these tasks
programmatically by using the Windows Management Instrumentation (WMI) layer.

Managing Server Groups

Server groups are the basic organizing principle for server administration in BizTalk Server 2000. Servers are organized into
groups to increase performance and provide a level of redundancy and fault tolerance. Server groups have eight properties that
can be configured to manage the servers within the group. There are many reasons why you might need to modify one or more
of these properties after the initial deployment of BizTalk Server. For example, you might need to associate a server group with a
new and/or replicated Tracking or Shared Queue database, or you might need to update the SMTP host that a server group uses.

Server group properties can be modified in BizTalk Server Administration in the <Server Group Name> Properties dialog box.
The following table lists some of the common configuration updates and which property you must modify to implement the
update.

If you need to do this Modify this server group property On this ta
b

Change the SMTP host that a server group uses. SMTP Host General
Change the URL the server group uses to receive reliable messaging r
eceipts.

Reliable messaging reply-to URL General

Modify how often the Messaging Management object cache is refresh
ed.

Messaging Management object cache int
erval

General

Add and/or change the proxy server that the server group uses. Proxy server General
Change the Tracking database that the server group uses. Tracking database Connectio

n
Change the Shared Queue database that the server group uses. Shared Queue database Connectio

n

Turn on or off tracking settings. Enable document tracking Tracking
Turn on or off the ability to log incoming interchanges. Log incoming interchange Tracking
Turn on or off the ability to log outgoing interchanges. Log outgoing interchange Tracking
Turn on or off the ability to log original MIME-encoded messages. Log the original MIME-encoded message Tracking
Change the parser order or refresh the parser list from the registry. Arrange the server call sequence Parser

Managing Servers

There are two situations that require you to change server properties:

Adding a server to a group
Changing the balance between throughput and performance for one or more servers in one or more groups

Servers in a server group are configured to balance server performance and maximum throughput. If your business needs
change, you might need to adjust the server settings that were configured when BizTalk Server was installed. For example, you
might be required to process more documents more quickly. Or you might need to configure a server in a group to receive only
interchanges and documents. When you adjust server properties, experiment with various combinations in a test environment
before you change the server properties on your production BizTalk Servers.

You can change server properties in BizTalk Server Administration in the <Server name> Properties dialog box. The following
list describes each of the server properties and the implications of changing the settings:

Maximum number of receive function threads allowed. Specifies the maximum number of receive function threads on
a per-processor basis. Increasing this number increases the throughput of the receive functions on the server. In general, if a
BizTalk Server is receiving and processing documents or just processing documents, set this property to 1. However, if a
BizTalk Server is configured to receive only, set this property to 4 to optimize throughput.
Participate in work-item processing. Specifies whether the server is processing interchanges and documents. If the
Participate in work-item processing check box is selected, the server processes interchanges and documents in the Work
queue. If this check box is cleared, the server does not process any interchanges or documents in the Work queue.

If you need to configure a server so it receives only documents, clear the Participate in work-item processing check box.
Or if you need to dedicate a server in one of the server groups to administration, clear the check box for this option on that
server.

Maximum number of worker threads per processor allowed. Specifies the maximum number of worker threads on a
per-processor basis. A low setting might cause a bottleneck if your BizTalk Server installation processes a high volume of
documents and interchanges. Increase the setting to relieve the bottleneck. However, if the setting is too high, performance
degradation might occur. In general, setting this property to 14 or 16 provides the best throughput.
Time between BizTalk Server Scheduler calls. Specifies the range for time between BizTalk Server Scheduler calls. A
thread polls the Work queue for interchanges and documents that need to be processed. This option controls how often that
thread polls the Work queue. If the amount of data that you receive increases, you might need to lower this number. If the
amount of data that you receive decreases, you might need to increase this setting.

The Maximum number of worker threads per processor allowed and the Time between BizTalk Server Scheduler
calls settings are two factors that influence how often BizTalk Server accesses the Shared Queue database. If the amount of
data that you receive and process has changed since you installed BizTalk Server 2000, you might need to adjust these
settings. For example, if you need to limit how often the Shared Queue database is accessed, set the number lower for
Maximum number of worker threads per processor allowed and higher for Time between BizTalk Server
Scheduler calls. Similarly, if you need to increase the volume to the databases, increase the number for the maximum
number of worker threads and decrease the setting for the time between scheduler calls. Again, test the new configurations
in a simulated environment before you implement the changes on your production BizTalk Servers.

Managing Queues

When an interchange or document is submitted to BizTalk Server 2000, it is stored in the Shared Queue database until it is
completely processed. The Shared Queue SQL Server database is graphically represented in BizTalk Server Administration as the
Queues item in each server group. The Queues item, also called the Shared Queue, contains four subitems that represent the
four queues of the Shared Queue. They are the Work, Scheduled, Retry, and Suspended queues. By accessing these queues, you
can determine what stage of processing the interchange or document is in. For example, you can determine if a document has
been processed and is waiting for transmission or if an interchange or document failed processing.

Managing the Work queue

The Work queue contains interchanges and documents that are currently in process. Unless you are continually processing a large
number of documents, this queue usually is empty. Interchanges and documents placed in this queue are processed upon arrival,
and they are not in the queue for very long.

Any item in the Work queue can be moved to the Suspended queue. Move interchanges and documents to the Suspended queue
only if you want to prevent them from being processed. Once an interchange or document is moved to the Suspended queue, it
can be deleted, resubmitted, or retransmitted to the Work queue to complete processing.

Managing the Scheduled queue
The Scheduled queue contains interchanges and documents that have been processed by BizTalk Server and are waiting for
transmission based on the service window. Like the Work queue, any item in the Scheduled queue can be moved to the
Suspended queue.

Managing the Retry queue
The Retry queue contains interchanges and documents to be resubmitted for delivery and documents that are waiting for reliable
messaging receipts. You cannot tell the difference between the two types of transmissions. By default, failed transmissions are
retried every five minutes for a maximum of three tries before they are moved to the Suspended queue. If your business process
requires that you change this default setting, you can change the number of retries available and the interval in the appropriate
channel in BizTalk Messaging Manager. Or you can change the interval number of retries programmatically by using the
RetryCount and RetryInterval properties of the BizTalk Messaging Configuration object model.

Managing the Suspended queue
The Suspended queue stores and displays interchanges and documents that have failed processing for reasons such as parsing
errors, serialization errors, missing channels, and so on. Most interchanges or documents in this queue can be deleted,
resubmitted, or retransmitted to BizTalk Server for processing. Interchanges and documents that failed parsing cannot be
resubmitted or retransmitted. You must delete these documents and submit them to BizTalk Server again from the original
application or organization. In addition, the Suspended queue is a source of information to help you troubleshoot BizTalk Server
errors and processing problems. For more information about troubleshooting, see "Troubleshooting BizTalk Server" later in this
paper.

Accessing and viewing the Shared Queue
You can access the Shared Queue by viewing the Queues item in each server group in BizTalk Server Administration. You can
also access the Shared Queue by using the Windows Management Instrumentation (WMI) layer. Interchanges and documents
appear in each of the queues in the order of "first in, first out." That is, the oldest items in the Work, Retry, Scheduled, or
Suspended queue appear first and the newest items appear last. Additionally, up to 15,000 interchanges and/or documents
appear in a queue at a time. In BizTalk Server Administration, the queue count in the console tree—the number in parentheses
next to each queue—represents how many actual items are in that particular queue. If there are more than 15,000 actual items in
a queue, remove or resubmit current items in the queue so that newer items can be displayed. For example, if there are 16,000
items in the Retry queue, you must move at least 1,000 items from the Retry queue to the Suspended queue to view the newest
1,000 items in the Retry queue. From the Suspended queue, you can resubmit or delete the interchanges or documents that were
in the Retry queue.

Refreshing BizTalk Server Administration

There is no automatic refresh cycle for BizTalk Server Administration. If you want to view the current status of server groups,
servers, receive functions, the number of items in a queue, and so on, you must refresh BizTalk Server Administration. You can
perform this procedure on any item in the console tree or on an individual item. For example, when you refresh the Microsoft
BizTalk Server Administration item, all items in BizTalk Server Administration are refreshed. When you refresh a server group,
only the items in that server group are refreshed.

Administering Databases

The second aspect of administration that relates to BizTalk Server is database administration. The following four types of
Microsoft SQL Server databases are associated with BizTalk Server 2000:

BizTalk Messaging Management database. This database stores information for all server and messaging configuration.
Server configuration information includes server group and server settings, and receive functions. Messaging configuration
includes channels, messaging ports, document definitions, organizations, and so on.
Tracking database. This database stores all interchanges, documents, and receipts that are processed by BizTalk Server if
tracking settings for a server group, channel, and/or document definition are turned on.

Shared Queue database. This database holds documents while they are being processed or waiting to be processed.
Documents are removed from this database after they have been processed.
Orchestration Persistence database. This database stores the XLANG schedule state when an XLANG schedule is
dehydrated.

BizTalk Server 2000 stores the four types of databases it uses in SQL Server, so a majority of the administrative tasks associated
with managing the databases are associated with managing SQL Server. Because there is a large amount of information
published about SQL Server administration, this paper will not repeat that information with the exception of the following topics:

Database replication
SQL Server settings
Database administration issues

For more information about administering SQL Server, see the Microsoft SQL Server Web site (www.microsoft.com/sql).

Database Replication

A general administrative task that can be performed with databases is replication. It is recommended that you replicate and
provide a backup facility for the four types of databases associated with BizTalk Server. You can make duplicate copies of your
data, move those copies to different locations, and synchronize the data automatically. This ensures that all copies have the same
data values. Replication can be implemented between databases on the same server, or on different servers that are connected by
a local area network (LAN).

SQL Server Settings

After you deploy BizTalk Server 2000, you might need to change the following settings associated with your SQL Server
databases:

Auto shrink
Truncate log on checkpoint
Automatically grow file

You can change the Auto shrink and Truncate log on checkpoint settings in SQL Server Enterprise Manager in the <Database
Name> Properties dialog box on the Options tab. You can change the Automatically grow file setting in SQL Server
Enterprise Manager in the <Database Name> Properties dialog box on the Settings tab.

The Auto shrink and Truncate log on checkpoint settings control disk space allocation. If you want to avoid unnecessary disk
space allocation, enable the Auto shrink and Truncate log on checkpoint options in SQL Server. The Truncate log option is
available only in SQL Server 7.0.

The Automatically grow file setting enables the four types of SQL Server databases associated with BizTalk Server to grow in
size if necessary. When SQL Server is installed, the Automatically grow file setting is enabled by default. Keep this setting
enabled under the following conditions:

If you want SQL Server to handle low database space conditions automatically.
If SQL Server is the only application using disk space and when ample disk space exists to grow databases.
If you want to use disk Quota Alerts to alert you that a database is nearing its capacity limits. This enables you to prevent a
BizTalk Server from failing because one of the databases it uses reaches capacity.

Although it is recommended that you leave the Automatically grow file setting enabled, you might need to turn this setting off
in the following situations:

If you must have control over how much space SQL Server uses.
If SQL Server shares the same disk with other applications and those applications must have disk space available at all
times.
If you want BizTalk Server or other processes to stop when SQL Server is out of space. This allows clean-up processes to
run, and BizTalk Server can be restarted when the clean-up process is complete.

Database Administration Issues

Of the four types of databases associated with BizTalk Server, two require special maintenance attention: the Tracking and
Orchestration Persistence databases. These two types of databases can grow in size quickly and require regular maintenance.

http://www.microsoft.com/sql

Maintaining the Tracking database
If you configured all tracking options for a server group in BizTalk Server Administration and if you configured any channels or
document definitions to track specific fields, your Tracking database will grow in size very quickly. To maintain the Tracking
database, you can use DTA_SampleJobs.sql, a sample SQL Server script that is provided to remove records from the Tracking
database. This script removes copies of the intermediary XML records stored in the dta_debug_doc table if the number of records
in the table is greater than 25,000. This script also monitors the dta_outdoc_details table for records that are expecting receipts,
but the waiting period has elapsed. You can find this sample script in the \Program Files\Microsoft BizTalk Server\SDK\Messaging
Samples\SQLServerAgentJobs folder. Review the readme included with this sample for more information about how to tailor the
script to your specific BizTalk Server deployment.

Note If you are using SQL Server 7.0 with SP2, the tables that have image or text columns might not shrink in size,
even if you delete rows from those tables in the Tracking database. SQL Server SP3 helps to alleviate this issue. SP3 is
available at the Microsoft SQL Server Web site (www.microsoft.com/sql/downloads/sp3.htm).

This issue does not occur in SQL Server 2000.

Replicating the Tracking database
It is recommended that your database maintenance plan includes automatic replication of the Tracking database. If the Tracking
database grows too large, BizTalk Server performance is greatly affected. You can use the SQL Server Enterprise Manager console
to set up replication and to set up jobs to remove transactions from the database based on criteria that you specify.

Caution Do not change the code, such as stored procedures or triggers, in the Tracking database. Do not access the
Tracking database directly. Do not directly call the stored procedures or add triggers. Making changes to the Tracking
database in this way might cause BizTalk Server to function incorrectly, cause the loss of data, or corrupt the Tracking
database.

Maintaining the Orchestration Persistence database
Scripts to clean up old XLANG schedule instances along with other utilities to manage the persistence database used by BizTalk
Orchestration Services are not included with BizTalk Server. However, this issue will be corrected in a future release. For
information about maintaining the persistence database, articles, and the most recent updates on the availability of such scripts,
go to the Microsoft BizTalk Server Web site (www.microsoft.com/biztalk/).

Caution Do not attempt to create your own tool(s) to maintain the Orchestration Persistence database(s). If you
access the Orchestration Persistence database in this way, you could delete important production data or corrupt the
Orchestration Persistence database.

Administering Messaging Objects

You can use BizTalk Messaging Manager or the BizTalk Messaging Configuration object model to configure additional messaging
objects or to update and manage current messaging objects. For example, you might need to update the URL for the HTTP
transport service in a messaging port. Or you might want to change the fields that you track in a channel or document definition.

The following table lists some of the messaging object properties that a system administrator might need to update or
reconfigure.

If you need to do this Configure this property On this messaging obj
ect

Update or reconfigure a transport service. Primary transport, Backup transport Messaging ports or distr
ibution lists (port group
s)

Change where an interchange or document is sent. Open destination, Organization, New XLANG s
chedule, Running XLANG schedule, Applicatio
n

Messaging port or distri
bution list (port group)

Change the envelope for an interchange or documen
t instance for a specific trading partner.

Envelope information Messaging port or distri
bution list (port group)

Change or update an envelope format. Envelope format Envelope
Set the option so an interchange or document gener
ates a receipt when it is received from a trading part
ner.

Generate receipt Channel

Set the option for an interchange or document to exp
ect a receipt when it is sent to a trading partner.

Expect receipt Channel

http://www.microsoft.com/sql/downloads/sp3.htm
http://www.microsoft.com/biztalk/

Change from whom an interchange or document is e
xpected.

XLANG schedule, Application, Open source, Or
ganization

Channel

Change the name of an organization. Organization name Organization
Change fields that are tracked. Fields to track Channel or document d

efinition
Change the name of a document definition. Document definition name Document definition

Administering Receive Functions and Parsers

In addition to messaging objects, receive functions and parsers must also be managed in BizTalk Server 2000. You can use BizTalk
Server Administration to manage receive functions and parsers.

Receive Function Administration issues

For many different reasons, you might need to delete a server from a server group. For example, you might need to replace a
server with a new one. Or you might need to move a server from one group to another to provide better load balancing in the
new server group. If you plan to delete a server from a server group, you must first complete one of the following tasks:

Reconfigure all receive functions that point to the server that you want to delete to point to a different server in the server
group.
Delete the receive functions that point to the server you want to delete if they can no longer be used.

You are prevented from deleting a server from a server group if one or more receive functions point to it.

Parser administration issues
If you receive files in formats other than XML, X12, EDIFACT, or flat file, you must create your own parser and register it on the
appropriate BizTalk Server. If you create a custom parser, it appears at the bottom of the parser list after the parser is registered
and the list is refreshed. This list can only be refreshed locally. That is, if you registered the custom parser on BizTalk Server A, you
must refresh the parser list on BizTalk Server A. You cannot refresh the parser list from a remote computer.

When BizTalk Server is installed, parsers appear in the parser list in the following order:

BizTalk.ParserXML.1
BizTalk.ParserEdifact.1
BizTalk.ParserX12.1
BizTalk.ParserFFile.1.

Again, if you add any custom parsers, they appear at the end of this list unless you change the parser order. To maximize BizTalk
Server performance, for the document format that you receive most frequently, put the corresponding parser at the top of the list.
For example, if you receive mostly flat files, change the parser order so that the flat-file parser is at the top of the list.

Administering Applications

The focus of application administration is managing the COM+ applications that host XLANG schedules. When BizTalk Server is
installed, two COM+ applications are installed that you must administer:

The default XLANG Scheduler application. This application hosts the default instance of the XLANG Scheduler Engine.
The BizTalk Server Interchange Application. This application hosts the roles that limit who can send interchanges and
documents to BizTalk Server.

Tasks related to application administration include:

Changing the configuration of the default XLANG Scheduler application.
Adding new COM+ applications.
Changing the application identity.
Changing the default Orchestration Persistence database settings and configuring settings for new persistence databases.
Adding new persistence databases.
Changing data source name (DSN) settings.
Performing a controlled shutdown of XLANG schedules.
Restarting XLANG schedules.

Managing XLANG Scheduler and Other COM+ Applications

The default XLANG Scheduler application and Orchestration Persistence database are created during the installation of BizTalk
Server 2000. If all your security and application processes are exactly the same, the default XLANG Scheduler application could
host all of your XLANG schedules. Since this business scenario is unlikely, you will probably need to create new COM+
applications to host XLANG schedules or you might need to modify the default XLANG Scheduler application. How and when you
create new COM+ applications depends on security issues and application processes. For example, you might want to isolate
applications that run specific schedule instances. To do this, you need to create a COM+ application for each application that you
want to isolate. Or, if you have specific security requirements for some applications or XLANG schedules, you will need to create a
COM+ application for those XLANG schedules.

Each new COM+ application that you create has an XLANG tab in the properties dialog box for that COM+ application. On the
XLANG tab, you can enable the new COM+ application to host instances of the XLANG Scheduler Engine. The specific COM+
application in which a new XLANG schedule runs is determined by the moniker syntax used to activate an instance of an XLANG
schedule.

Changing the Application Identity

When you create a COM+ application, it is recommended that you change the application identity from an interactive user
account to a service account. With an interactive user account, if a user is not logged on, the application will not run. However, if
you change the interactive account to a service account, a specific user does not have to be logged on all the time, thus
compromising security. A service account is an account with specific properties that allow the account to act as part of the
operating system. Therefore, a specific user, or any user at all, does not have to be logged on for the application to process
messages.

Managing Orchestration Persistence Database Settings

You could use the default Orchestration Persistence database to store all dehydrated XLANG schedules. However, this
configuration would cause the persistence database to grow in size quickly. It is recommended that you create new persistence
databases as appropriate for your business needs and processes. If you have many XLANG schedules that dehydrate often, you
will need more persistence databases than if you have a few XLANG schedules that dehydrate infrequently.

In addition, if you associate a COM+ application with a new or existing persistence database, you must change the data source
name (DSN) for that COM+ application. The DSN connects the COM+ application to the correct persistence database. If you
change the persistence database, you must change the DSN for the COM+ application.

Shutting Down and Restarting XLANG Applications

If you need to bring a BizTalk Server that hosts BizTalk Orchestration Services offline, for example for maintenance purposes, you
must perform a controlled shutdown of all XLANG applications so that data associated with XLANG schedules is not lost. A
controlled shutdown saves the state for running XLANG schedules to the appropriate persistence database. If you perform a
controlled shutdown on the default XLANG Scheduler application, all XLANG schedules are gracefully shut down and the XLANG
schedule instance data is preserved. If you perform a controlled shutdown on a COM+ application that you created after
installation, only the XLANG schedules associated with that COM+ application are gracefully shut down and preserved. All other
XLANG schedules remain running until you shut down the COM+ application(s) with which they are associated.

To restart the XLANG schedules, you must restart all the schedules at the same time in the default XLANG Scheduler application.
You cannot restart applications that are associated with a specific COM+ application.

Caution If you want to perform a controlled shutdown, do not right-click a COM+ application and choose Shut
down. Additionally, do not use the Shut down item on the Action menu. These procedures perform an uncontrolled
shutdown. If you perform an uncontrolled shutdown, one of the following might occur:

If running XLANG schedules are fully transactional, executing transactions might abort.
If running XLANG schedules are not fully transactional, data that is in process in the schedule is lost.
If an XLANG schedule has not been persisted, there will be data loss and the XLANG schedule will not automatically restart.

Instead, go to BizTalk Server 2000 Help and follow the "Shut down all XLANG applications" procedure.

Do not shut down Windows without performing a controlled shutdown of all XLANG applications.

Administering Transport Services
BizTalk Server 2000 supports the following transport services:

HTTP
HTTPS
SMTP
File
Message Queuing
Application integration components (AICs)
Loopback

The type of transport that is used depends on the business process and the type of data that is exchanged. For example, the File
transport service is often used with internal applications or with legacy systems. Message queuing is used to exchange messages
and documents between BizTalk Orchestration Services and BizTalk Messaging Services. HTTP is often used to exchange
documents with trading partners.

Each transport service requires special considerations to keep the system running smoothly. This topic discusses some of the
issues you might encounter with some of the transport services.

When managing your BizTalk Server deployment, here are some things to keep in mind about some of the transport services.

HTTP and HTTPS

Proxy servers and firewalls. If you do not properly configure TCP ports or if you use nonstandard ports, BizTalk Server
might have problems connecting to the HTTP server. In both cases, BizTalk Server will not specify that the improperly
configured TCP ports or the nonstandard ports are the issue. However, an "unable to connect" error will appear in the Event
Log.
User name and password changes. HTTPS can be configured to require a user to log on. However, if the user name and
password change, BizTalk Server might be unable to access the Active Server Pages (ASP). In this case, the failure shows up
as a random HTTP error.

For more information about configuring user names and passwords with HTTPS, see
"Advanced Configuration of Channel Properties" later in this paper.

Secure Sockets Layer port. Determine if the server is using the standard Secure Sockets Layer (SSL) port. If you do not use
the standard SSL port, port 443, you must know what port should be used and modify the HTTP URL accordingly.
Client certificates. If you decide to implement client certificates, ensure that you determine if the issuer of the client
certificate is a trusted Certificate Authority (CA). You might encounter situations where an HTTP client receives a certificate
from a valid issuing Certificate Authority, but the HTTP server might not have knowledge of the Certificate Authority. In this
situation, the HTTP server might not accept the client certificate when the client attempts a connection with the HTTP server.
If you or your trading partners require client certificate authentication over HTTP, you must agree upon the Certificate
Authority. For example, if you send a client certificate to a trading partner, you must also send them a link to where they can
download the Certificate Authority's certificate.

Likewise, all your trading partners must inform you who their Certificate Authority is. Additionally, they must provide you
with a link to their Certificate Authority's certificate.

Message Queuing

Because transactional receives are limited to local computers and BizTalk Server does not forward messages, you can configure
the Message Queuing server to forward messages. For more information about Message Queuing, go to the MSDN Online
Library Web site (msdn.microsoft.com/library/default.asp) and search for "Message Queuing."

Note Transactional message queues are recommended, but not required. However, it is recommended that you use
transactional message queues to ensure that no data is lost when documents are submitted from a message queue to
BizTalk Server.

SMTP

A common issue that you might encounter when using SMTP as a transport service is the recognition of the e-mail address to
which the application is sending an interchange or document. For example, the SMTP address might not be known or the server
that houses the address might not be known. In these situations, verify that the e-mail address is correct.

When BizTalk Server sends an interchange or document to a trading partner or internal application using SMTP as a transport
service, it does not send the mail directly to the Internet or intranet. Instead, BizTalk Server uses an SMTP server to forward the
mail message to its final destination. If the SMTP server is offline, the interchange or document will not be delivered.

http://msdn.microsoft.com/library/

Administrators must check the SMTP server to verify that it is running and routing e-mail correctly.

Some SMTP servers require a From address before they forward an e-mail message. In this situation, the messaging port must be
configured with the correct return e-mail alias to accommodate the return SMTP address.

Tracking Interchanges and Documents
When BizTalk Server is installed, the ability to track metadata for interchanges is automatically activated. However, the capability
to store whole copies of documents or specific or custom fields, or to track action events related to messages processed by
XLANG schedules, must be configured separately. This section provides an overview of the available tracking settings in BizTalk
Server 2000 and when you might need to configure and/or adjust those settings.

Tracking Settings for a Server Group

When BizTalk Server 2000 is installed, or when you add a new server group, the following tracking options for a server group are
enabled by default:

Enable document tracking
Log incoming interchange
Log outgoing interchange

These settings allow BizTalk Server to store the metadata for interchanges and documents to the Tracking database. The metadata
for interchanges and documents includes source organization information, destination organization information, document type,
date and time the interchange was processed by BizTalk Server, document count, error information, and control ID.

This tracking setting applies to a server group and is configured in BizTalk Server Administration.

Tracking Settings in Channels and Document Definitions

The ability to store whole copies of documents or to store standard and/or custom fields is not automatically enabled. These
options are configured in the appropriate channel or document definition. If channels and document definitions were not
configured to track documents or standard and/or custom fields as part of the initial BizTalk Server deployment, be judicious
about configuring these settings. Configure tracking settings in BizTalk Messaging Manager only if you need to:

Store complete copies of incoming and outgoing document instances.
Track specific fields.
Track custom fields.

If you turn all the tracking settings on in a channel and/or document, you will store redundant data. This will cause the Tracking
database to grow quickly in size. If the Tracking database gets too large and if you do not regularly maintain it, the performance of
BizTalk Server 2000 will be negatively impacted.

Tracking XLANG Schedule Action Events

Messages processed by an XLANG schedule can be exchanged between BizTalk Messaging Services and BizTalk Orchestration
Services. The ability to track the action events related to these messages is not automatically enabled. If tracking XLANG schedule
events was not configured as part of your BizTalk Server deployment, you can enable the sample application,
WorkFlowAuditClient.exe, to track action events related to messages processed by XLANG schedules. You must complete the
following three steps to enable this feature:

1. Register the sample dynamic-link library (DLL) file, WorkFlowAudit.dll.

You can find this sample file in the \Program Files\Microsoft BizTalk Server\SDK\XLANG Samples\WorkFlowAudit\bin
folder.

2. Run the WorkFlowAuditClient.exe application to activate WorkFlowAudit.dll.

You can find this sample application in the \Program Files\Microsoft BizTalk Server\SDK\XLANG
Samples\WorkFlowAuditClient folder.

For additional information, you can view the documentation (Readme.txt) found in the \Program Files\Microsoft BizTalk
Server\SDK\XLANG Samples\WorkFlowAudit\Docs folder.

3. Click the Start button in the WorkFlowAuditClient application to initiate the logging of action events related to an XLANG
schedule in the Tracking database.

Tracking Issues

If you need to change the tracking settings configured with your deployment of BizTalk Server, this section discusses some of the
implications involved:

Tracking settings. Administrative issues include determining when you need to track metadata for interchanges and
documents, whole copies of documents, specific fields, and custom fields.
Balancing tracking settings. Administrative issues include adjusting the settings in BizTalk Server Administration, BizTalk
Messaging Manager, or the BizTalk Messaging Configuration object model.
When to turn off tracking settings. Administrative issues include determining if and when you need to turn off tracking
settings.
Tracking action events related to messages processed by XLANG schedules. Administrative issues include starting
the application that enables the Tracking database to store action events related to messages processed by XLANG
schedules.
Tracking database schema overview. Administrative issues include accessing the Tracking database if you need to
present data stored in the Tracking database in a different format—for example, when using a reporting tool such as Crystal
Reports.

Types of Tracking Settings

If your business needs require that you keep a copy of interchanges in their original format for nonrepudiation and commerce
law concerns, make sure that the tracking settings for each server group are enabled. If you want to create an audit trail for
internal purposes, or if you want easy access to data on a per-document basis, configure tracking settings in channels and/or
document definitions using the BizTalk Messaging Configuration object model or BizTalk Messaging Manager.

Note If you use a preprocessor, be sure to provide a mechanism to preserve the interchange document before it is
preprocessed. Interchanges and documents are not stored in the Tracking database until they are submitted to BizTalk
Server for processing. Preprocessing occurs before an interchange or document is submitted to BizTalk Server.
Therefore the interchange or document is not stored in the Tracking database before it is preprocessed.

Balancing Tracking Settings

You can configure tracking settings for a server group and in channels and/or document definitions. However, enabling all these
tracking settings will cause your Tracking database to grow quickly in size. In addition to affecting the performance of BizTalk
Server, you will store redundant data.

When to Turn Off Tracking Settings

There are two common situations in which you might need to turn off tracking settings for a server group and/or in a channel
and/or document definition. They are:

You plan to receive interchanges or documents that are larger than the equivalent of 20 MB of Unicode XML.
You have absolutely no need to track interchanges and documents processed by BizTalk Server.

If you plan to receive interchanges or documents in XML Unicode format that are larger than 20 MB, it is advisable to turn off
tracking settings for the server group that will receive the interchange. If you plan to receive ANSI flat-file interchanges that are
larger than 7 to 10 MB in size, it is advisable to turn off tracking settings for the server group that will receive the interchange.

Similarly, if you plan to receive document instances in XML Unicode format that are greater than 20 MB, it is advisable to turn off
document logging settings in BizTalk Messaging Manager. Or, if you plan to receive ANSI flat files that are larger than 7 to 10 MB,
it is advisable to turn off document logging settings in BizTalk Messaging Manager.

If you have absolutely no need to track interchanges and documents that you send and receive, you can turn off all tracking
settings. However, you must understand the implications of doing this. First, if tracking settings for a server group are disabled,
tracking settings configured in channels and/or document definitions are also disabled. Second, no interchanges or documents
are tracked in the Tracking database. This means that once a document leaves the Shared Queue, there is no way to trace it. If you
need to trace an interchange or document for troubleshooting purposes, your task will be more difficult. Therefore, you must be
very careful about disabling tracking settings for a server group(s).

Tracking Action Events Related to Messages Processed by XLANG Schedules

If you completed the three steps necessary to track action events related to messages processed by XLANG schedules, but no

action events appear in the BizTalk Document Tracking user interface, the WorkFlowAuditClient application might have been
stopped. Records are logged in the dta_wf_EventData and dta_wf_WorkFlowEvent tables only if the WorkFlowAuditClient
application is started. To start the WorkFlowAuditClient application, you must complete the three steps listed in the topic
"Tracking XLANG Schedule Action Events" earlier in this paper. If the WorkFlowAuditClient application is stopped, no records are
logged in the dta_wf_EventData and dta_wf_WorkFlowEvent tables.

Tracking Database Schema Overview

BizTalk Document Tracking is a stand-alone Web application included with BizTalk Server 2000 for the purpose of creating
queries on the Tracking database to view interchange and document records. Most of the data that is stored in the Tracking
database is available through BizTalk Document Tracking. However, it might be necessary for you to query the Tracking database
directly. For example, you might want to create your own user interface or use Crystal Reports to create a custom report from the
Tracking database.

In these situations, you will need to access the Tracking database tables directly. This section provides a general overview of the
Tracking database schema. For more detailed information, in BizTalk Server 2000 Help, see "Understanding the Tracking Database
Schema."

All servers in a server group share a single Tracking database. If tracking settings are enabled for the server group, the Tracking
database stores metadata related to interchange and document activity in BizTalk Server. If tracking settings are enabled in a
channel and/or document definition used by the server group, the Tracking database can also store:

Whole copies of documents.
Specific fields.
Custom fields.

The Tracking database consists of three main tables and six secondary tables. The three main tables in the Tracking database are:

dta_interchange_details. Contains one record for each document submitted to BizTalk Server.
dta_outdoc_details. Contains one record for each document generated by BizTalk Server.
dta_indoc_details. Contains one record for each interchange processed by BizTalk Server.

The secondary tables are:

dta_group_details. Provides extensibility components (parser, serializer, and receipt correlator) for document formats that
employ like-kind document groups (for example, X12 or EDIFACT) within an interchange.
dta_interchange_data. Contains one row for every interchange submitted to or sent by BizTalk Server. This table also
stores any response documents returned to the IInterchange::SubmitSync method.
dta_document_data. Contains one record for every document submitted to or sent by BizTalk Server.
dta_debugdoc_data. Contains one row for every inDoc or outDoc item that is configured (on the messaging channel
object) to record its interim XML format.
dta_routing_details. Functions as a mirror of messaging ports for the purpose of eliminating a cross-database
dependency on the BizTalk Messaging Management database.
dta_custom_field_names. Contains a row for each distinct capture-field node name and data type pair encountered by
BizTalk Server.
dta_MIME_data. Contains one row for every MIME-encoded interchange submitted to BizTalk Server.

The following illustration shows the overall database schema of the Tracking database. For clarity, only the table names are listed.
The lines that connect the tables demonstrate how the tables are connected through foreign key fields and the relationship
between the tables.

The following table explains what the different links between the tables represent.

This link Represents this relationship
One-to-many relationship

None or one-to-many relationship

One-to-none or one-to-many relationship

One-to-one relationship

One-to-none or one-to-one relationship

Caution Do not change the code, such as stored procedures or triggers, in the Tracking database. Do not access the
Tracking database directly. Do not directly call the stored procedures or add triggers. Making changes to the Tracking
database in this way might cause BizTalk Server to function incorrectly, cause the loss of data, or corrupt the Tracking
database.

Note If you need to access the Tracking database, for example to use a reporting tool such as Crystal Reports, access
a replicated copy of the Tracking database.

Related Tables

There are thirteen additional tables that are a part of the Tracking database. These tables are not included in the illustration
because they support the secondary tables or store binary large object data. The related tables are:

dta_ack_status_values. Stores the receipt status values.
dta_blobtype_values. Stores the binary large object types.
dta_data_level_values. Stores the data level values used in BizTalk Server.
dta_direction_values. Stores the direction of the interchange.
dta_error_message. Stores the error messages used in BizTalk Document Tracking.
dta_group_correlation_keys. Stores the group correlation keys.
dta_interchange_correlation_keys. Stores the interchange correlation keys.
dta_transport_type_values. Stores the transport type values.
dta_ui_codepage_charset. Stores the system code pages for character encoded data.
dta_ui_user_queries. Stores the advanced queries that individual users create and save.
dta_validity_values. Stores the validity values.
dta_wf_EventData. Contains one record for each property logged in relation to a monitored COM+ event fired by an
XLANG schedule. Sets of multiple rows in this table share a common parent in the dta_wf_WorkFlowEvent table. Records
are logged only if WorkFlowAudit.dll is activated. For more information about activating WorkFlowAudit.dll, see "Tracking
XLANG Schedule Action Events" earlier in this paper.
dta_wf_WorkFlowEvent. Contains one record for each monitored COM+ event fired by an XLANG schedule. Records are
logged only if WorkFlowAudit.dll is activated. For more information about activating WorkFlowAudit.dll, see "Tracking
XLANG Schedule Action Events" earlier in this paper.

Security Issues

After the initial installation of BizTalk Server, you might need to change the following security settings:

Logon properties and local policies
Service accounts
Roles in the BizTalk Server Interchange Application

Logon Properties and Local Policies

Logon properties control a user's ability to access specific computers or data, such as a page on a Web site. If users provide the
correct user name and password, they gain access to resources. If they do not provide the correct user name and password, they
are denied access.

Local policies are based on the computer a user is logged on to and provide the second layer of security. The local policies on a
computer control policies such as user rights assignment, audit policy, and passwords.

For more information about settings for logon properties and local policies, in BizTalk Server 2000 Help, see "BizTalk Server 2000
Setup and Configuration."

Service Accounts

It is recommended that BizTalk Server 2000 be run under service accounts rather than interactive user accounts. With interactive
user accounts, a user must be logged on for the application to run. For example, if BizTalk Server is set up to run under an
interactive user account, and if that particular user is not logged on, BizTalk Server will not process any documents.

When BizTalk Server is installed, the account identity is automatically configured to run under a service account. However, the
default XLANG Scheduler application, any new COM+ applications that you create, and the BizTalk Server Interchange Application
default to an interactive user account. There are several potential problems with using an interactive user account. First, if the user
logs off, the application stops running. Second, if a malicious hacker obtains the user's user name and password, the hacker could
do a lot of damage. Third, if an application is running on a computer while an administrator is logged on, the application runs
under the administrator's identity and could make calls on behalf of the client using the administrator's rights. To prevent this, it is
recommended that you create a service account and use the service account to run BizTalk Server.

For more information about settings for service accounts, in BizTalk Server 2000 Help, see "Create a service account."

Control of a User's Ability to Submit Documents

Controlling a user's ability to submit interchanges and documents to BizTalk Server provides yet another layer of security. The
following properties for the BizTalk Server Interchange Application are configured to control who can send interchanges and
documents:

Authentication level
Impersonation level
Access permissions
Launch permissions
Configuration permissions

Using Certificates

If your deployment of BizTalk Server includes using certificates, it is recommended that you associate all certificates with a
computer instead of with a specific user. This means that when you issue a certificate, you must do one of the following:

If you created a service account, log on using the service account you created.
Specify that you want the certificate associated with the computer and not with a specific user when you issue the certificate.

If you associate a certificate with a specific user, BizTalk Server must be configured to run with the credentials of that specific user.
Additionally, if you have certificates associated with multiple users, the administration tasks can increase significantly. However, if
a certificate is associated with the computer, any valid user can be logged on and the validity of the certificate is not affected.

If your business process requires that you associate certificates with specific users, you must store the certificates in the
Certificates (Local Computer) item in the Certificates snap-in. BizTalk Server does not check the user store for certificates. In
addition, if a user's password changes and that user is associated with a certificate, you must update the following two
applications:

BizTalk Server Interchange Application

BizTalk Messaging Service

For more information about certificates and BizTalk Server, in BizTalk Server 2000 Help, see "Certificates Overview." Or go to the
MSDN Online Library Web site (msdn.microsoft.com) and search for "Certificate services and components."

Advanced Configuration of Channel Properties

When you create or edit a channel, you can configure the channel to override the messaging port properties, if necessary. This
allows you to send interchanges and documents to password-protected folders, message queues, ASP pages, and so on. User
names and passwords can be associated with a channel and messaging port combination for the following transport services:

File
HTTP and HTTPS
SMTP
Messaging Queuing

To associate a user name and password with a channel and messaging port combination, on the Advanced Configuration page
of the Channel Wizard, click the Advanced button. Verify that the Primary Transport tab is selected and then click Properties.
Type a valid user name and password. If necessary, you can change other relevant information such as the name of the message
queue location or the From address if you are using SMTP.

Monitor a BizTalk Server 2000 Deployment
Three tools are available to monitor and test the performance of BizTalk Messaging Services. They are:

System Monitor. A part of the Performance tool provided with Microsoft Windows 2000. Use this tool to collect and
review real-time data about memory, disk, processor, and so on.
Windows 2000 Event Viewer. Included in BizTalk Server Administration. Use this tool to view BizTalk Server and XLANG
Scheduler errors.
XLANG Event Monitor. A tool provided with BizTalk Server 2000 that allows you to monitor XLANG schedule events and
the progress of XLANG schedules.

This section describes each of these tools and provides an overview of how to use them to monitor your deployment of BizTalk
Server 2000.

System Monitor

You can use System Monitor, a part of the Performance tool included with Windows 2000, to graphically display counter readings
that you specify as they change over time. To access System Monitor, perform the following step:

On the Start menu, point to Settings, click Control Panel, double-click Administrative Tools, and then double-click
Performance.

System Monitor is an item in the Performance tool console. What you monitor and how depends on your specific deployment of
BizTalk Server 2000. However, you want to choose counters that monitor objects relevant to your installation and that indicate
how well a specific component is working and/or is affected. For example, you might choose the Disk read/writes/sec counter to
monitor the Physical Disk object. The information that you collect regarding the Disk read/writes/sec counter gives you insight
about how SQL Server and the Message Queuing and File transport services are performing.

For more information about specific counters to use to monitor BizTalk Messaging Services, in BizTalk Server 2000 Help, see
"Evaluating the Performance of a Configuration."

Windows 2000 Event Viewer

Event Viewer is the second component of the monitoring plan. Use Event Viewer to assist you in troubleshooting server and
document processing problems. You can find Event Viewer in BizTalk Server Administration.

You can configure Event Viewer to display all information about security, application, and system problems. Or you can configure
Event Viewer to display only BizTalk Server application and XLANG Scheduler errors.

XLANG Event Monitor

When the XLANG Scheduler Engine executes XLANG schedules, it generates many types of events, showing the progress of the
schedule instances. BizTalk Server 2000 provides a tool that you can use to monitor XLANG schedule events and to see the

http://msdn.microsoft.com/library/

progress of the schedule instances. You can monitor the default XLANG Scheduler application, or you can monitor the custom
COM+ applications that you create to host XLANG schedules. XLANG Event Monitor can subscribe to all events published by the
host applications on local or remote computers. XLANG Event Monitor can also store these events to a file for future analysis.

XLANG Event Monitor has the capability to receive events from all XLANG schedule host applications on the local computer or
from XLANG schedule host applications on one or more remote computers. When XLANG Event monitor is installed, the default
behavior is to receive events from the XLANG schedule host applications on the local computer. If you want to include events
from XLANG schedule hosts on remote computers, you must update the event sources by clicking the EventSources option on
the Recording menu to include remote computers.

If you want to use XLANG Event Monitor, you must install it separately. You can find the XLANG Event Monitor application in the
\Program Files\Microsoft BizTalk Server\SDK\XLANG Tools folder. Review the readme located in the same folder for more
information about how to use XLANG Event Monitor.

Troubleshooting BizTalk Server
Three major tools are available to aid you in troubleshooting BizTalk Server 2000: Event Viewer, the Suspended queue, and
XLANG Event Monitor.

Troubleshooting Using Windows 2000 Event Viewer

You can configure error handling in BizTalk Server 2000 at the server level through Event Viewer. Event Viewer creates a log that
contains information about hardware, software, and system problems. From BizTalk Server Administration, you can customize the
Event Viewer to show application and XLANG Scheduler errors that are specific to BizTalk Server 2000, which makes
troubleshooting for BizTalk Server efficient.

Troubleshooting Using the Suspended Queue

The following options are available from the Suspended queue to aid you in the troubleshooting process:

View Error Description. Enables system administrators to view error descriptions that indicate why the document was
sent to the Suspended queue.
View Interchange. Enables system administrators to view the contents of an interchange that has failed processing for a
variety of reasons, including parsing errors or failed transmissions.
View Document. Enables system administrators to view the contents of a document that has failed processing for a variety
of reasons, including serialization errors or the inability to find a channel.

Once you have determined the reason BizTalk Server could not process the interchange or document, the following options are
available in the Suspended queue to help you resolve the situation:

Delete. Enables system administrators to completely remove an entry from the Suspended queue. This action is not
recoverable. After a document has been deleted from the Suspended queue, you cannot retrieve it.
Resubmit. Enables system administrators to resubmit most interchanges and documents to BizTalk Server for processing.
You cannot resubmit or retransmit interchanges or documents that failed parsing. You must delete those interchanges and
documents and submit them to BizTalk Server again from the original organization or application. Resubmit can also be
used to retransmit documents in the Suspended queue. When an interchange or document is resubmitted, it is processed
from the point of failure. When a document is retransmitted, it is processed as though it was submitted to BizTalk Server for
the first time.

Troubleshooting Using XLANG Event Monitor

You can use XLANG Event Monitor to aid in troubleshooting BizTalk Server. XLANG Event Monitor can help you identify the
following states of XLANG schedules:

Running
Successfully completed
Completed with errors
Dehydrated
Suspended

You can also use XLANG Event Monitor to examine events that are published for an instance. Combine the event information with
the XLANG schedule state information and the Event Viewer error messages to get a clearer picture of the issue you are
troubleshooting.

Conclusion
Understanding the eight major areas of administration related to BizTalk Server and understanding the concepts behind how
BizTalk Messaging Services and BizTalk Orchestration Services work can help system administrators manage and configure
BizTalk Server to boost performance for their particular installations. Understanding these concepts also helps the system
administrator troubleshoot more effectively.

For More Information
"Microsoft BizTalk Server 2000 Deployment Considerations."

"Orchestrating Business Processes with Microsoft BizTalk Server 2000."

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This Article is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Copyright © 2001 Microsoft Corporation. All rights reserved.

Microsoft, BizTalk, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

https://msdn.microsoft.com/en-us/library/ms942763(v=bts.10).aspx

Microsoft BizTalk Server Technical Articles

Using EDI with Microsoft BizTalk Server 2000
Microsoft Corporation

January 2001

Summary: This article shows how Microsoft BizTalk Server 2000 adds value to companies that use electronic data interchange
(EDI). It also shows how BizTalk Server adds value to smaller companies that don’t use EDI, but want to interoperate with
companies that use EDI. The relative strengths and limitations of BizTalk Server and EDI are shown, and the article ends with a
description of BizTalk Server limitations in its support of EDI in comparison with an EDI server. (14 printed pages)

Contents

Introduction
EDI Overview
Enhancing an EDI Environment by Using BizTalk Server
Using BizTalk Server in Smaller Companies
Translating and Transforming Documents
Comparing BizTalk Server with EDI Technology
Conclusion

Introduction
Many companies today use electronic data interchange (EDI) to exchange business documents. This article discusses how
Microsoft® BizTalk™ Server 2000 can help both large businesses that are currently using EDI and smaller businesses that do not
use EDI but that want to trade with these larger businesses.

BizTalk Server can help a company that uses EDI in the following ways:

Enabling enterprise application integration (EAI). BizTalk Server automates the exchange of internal business data.
Creating new relationships with smaller trading partners. BizTalk Server provides a cost-effective way to exchange
electronic documents with companies that choose not to use EDI.
Facilitating future growth. BizTalk Server provides a cost-effective way to handle the expansion of a company’s
messaging and document interchange requirements.

Smaller companies can benefit from BizTalk Server by using it to establish electronic document exchange relationships with larger
companies that use both EDI and XML. A smaller company can also streamline its internal business processes by employing the
EAI capabilities of BizTalk Server.

The ability of BizTalk Server to translate and transform documents is central to its EAI and document exchange capabilities. This
article introduces BizTalk Editor and BizTalk Mapper, tools that help to direct the translation and transformation of EDI documents
and other electronic documents. BizTalk Editor enables you to create and edit specifications (a BizTalk Server-specific schema).
BizTalk Mapper uses specifications to map the structure of one document instance to the structure of another document instance.

This article also compares the relative strengths and weaknesses of BizTalk Server when compared with EDI technology.

EDI Overview
Electronic data interchange (EDI) is a set of standards for controlling the exchange of business documents (such as purchase
orders and invoices) between computers. Businesses can use EDI to ensure that the documents they exchange are interpreted
correctly, regardless of the platforms or internal applications they use. Because EDI enables electronic documents to move from
one computer to another without the need for human intervention, it is faster, cheaper, and more accurate than the exchange of
paper documents.

Standardization efforts for EDI formats began in the 1960s, led by the transportation industry. The need for a uniform standard
that encompassed all industries prompted the creation of the Accredited Standards Committee (ASC) X12, sanctioned by the
American National Standards Institute (ANSI), in 1979. The Accredited Standards Committee X12 created the EDI standard
commonly referred to as X12, which was used primarily for American domestic trade. Meanwhile, the European community
developed its own EDI standard called Guidelines on Trade Data Interchange (GTDI). A new standard that borrowed from both
X12 and GTDI, called Electronic Data Interchange for Administration, Commerce, and Transport (EDIFACT), was developed at the
United Nations. The International Organization for Standardization (ISO) adopted EDIFACT in 1987. Although in 1992 ASC X12
members approved the adoption of EDIFACT as the universal EDI standard, X12 continues to be a widely used EDI standard in
North America.

Although EDI has been around for nearly forty years, it has not triggered an explosion in business-to-business electronic
commerce. In fact, the number of businesses trading electronically today compared to those using phone or fax is limited. The
reasons for this are numerous and include the following:

EDI server systems are typically expensive.
The EDI document format is somewhat cryptic.
EDI document transport was historically a value-added network (VAN) that incurred both an expensive setup fee and
ongoing operational costs.

Enhancing an EDI Environment by Using BizTalk Server
Although many companies have long-term strategies that involve replacing their legacy infrastructure, a company that is heavily
invested in EDI might not want to immediately discard its investment and replace it entirely with an XML-based BizTalk Server
system. However, BizTalk Server can add a great deal of value to a company that chooses to continue using EDI in the short term.
Areas where BizTalk Server can enhance the operations of a company that uses EDI include:

Enabling enterprise application integration.
Creating new relationships with smaller trading partners.
Facilitating future growth.

Enterprise Application Integration

Integrating with business partners is only one of the challenges that face businesses today. Equally important is the integration of
internal business applications, such as accounting, inventory, and customer relationship management (CRM) systems.

EDI systems do not typically offer EAI infrastructure, and they support only a limited subset of possible electronic document
formats other than EDI. One of the strengths of BizTalk Server is its ability to automate and streamline the flow of a company’s
business data both internally and externally.

The following illustration shows a simplified representation of how a company that uses EDI might use its EDI server to exchange
business documents.

Organization A’s EDI server sends and receives standard EDI documents to and from Organization B over a VAN. Each transaction
over the VAN incurs an expense for Organization A. Organization A’s EDI server communicates with its accounting, inventory, and
CRM applications either by manual data entry or by custom-built software.

The following illustration shows how a BizTalk Server hub can be added to this system to facilitate the integration of Organization
A’s internal applications.

In this scenario, BizTalk Server becomes the hub of Organization A’s internal data exchange. The BizTalk Server hub provides an
accurate and cost-effective way to automatically update the organization’s line-of-business applications when a transaction with
Organization B occurs. The key to the success of this scenario is the ability of BizTalk Server to be the universal message gateway.
BizTalk Server can automatically send data to Organization A’s internal applications in XML or flat-file format, or even in custom
formats with the introduction of custom parsers and serializers. BizTalk Server uses the TCP/IP communication layer built into
Microsoft® Windows® 2000, which is commonly used for communication between applications in an organization. With BizTalk
Server these EAI processes can be put in place at costs far lower than would be possible by paying developers to create custom
communications applications. BizTalk Server enables internal data exchange that is far more accurate and efficient than can ever
be achieved by manual processes.

New Relationships with Smaller Trading Partners

BizTalk Server makes it easy for a company currently using EDI with trading partners to also exchange documents with smaller
trading partners who cannot afford or do not want to use EDI. The following illustration shows how Organization A can add a new
trading partner to its existing communications network.

Organization A’s BizTalk Server hub can electronically exchange business documents with Organization C using TCP/IP over the
Internet. These documents can be delivered in a format that is easy for Organization C to use, such as XML. In this scenario both
Organization A and Organization C enjoy the accuracy and efficiency of the automated exchange of electronic business
documents. Neither company needs to incur the high costs of setting up a new EDI relationship or the ongoing expense of a VAN.

Future Growth

Organization A might find that it needs to set up new automated messaging with Organization B beyond what it has implemented
with its EDI server. Organization A will find that the least expensive and most direct solution is to use its BizTalk Server hub for
exchanging these new messages. In this way it bypasses its EDI server altogether. In time, Organization A might need to make
more significant changes in its data-exchange relationship with Organization B. This would be an ideal time for Organization A to
forgo its EDI server entirely and replace it with the BizTalk Server hub.

Using BizTalk Server in Smaller Companies
Many smaller companies could benefit from the exchange of electronic business documents with larger companies that use EDI,
but they cannot justify the setup and operational costs associated with traditional EDI servers. BizTalk Server provides a cost-
effective solution to this problem (and can also be leveraged with trading partners that use XML and other non-EDI formats).
BizTalk Server enables a small company to automatically transform its business documents into an electronic format that an EDI
server of a larger company can use. The following illustration shows such a relationship.

Organization D might be so small that it runs its entire business on Microsoft Office, or it might use another business tools suite
that can read and write XML documents or provide adapters for BizTalk Server. BizTalk Server can process Organization D’s
documents and transport them to and from the EDI server of Organization B. Organization D might have BizTalk Server and other
business applications installed on a single computer, or it might be a larger company with business applications distributed
across several computers. In either case, Organization D’s BizTalk Server hub can serve the dual purpose of exchanging EDI
documents with Organization B and automatically integrating the flow of internal business data within the company.

Translating and Transforming Documents
A key strength of BizTalk Server is its ability to accept input in a wide variety of document formats, map that input into almost any
document structure, and then output the new document structure into a wide variety of document formats. XML is central to the
translation and transformation capabilities of BizTalk Server, which is in large part what makes BizTalk Server such a powerful tool
for enterprise application integration and business-to-business electronic commerce.

The following illustration and accompanying list show how BizTalk Server internally processes a document.

1. The incoming document instance is sent to BizTalk Server.
2. The parser uses the source specification associated with the incoming document instance to translate the incoming

document instance to XML (if it is not already in this format). The source specification is created in BizTalk Editor.
3. The XML file is transformed by an XSLT map into another XML file of the desired structure (nodes in the incoming XML file

are mapped to nodes in the outgoing XML file). The XSLT map is created in BizTalk Mapper.
4. The serializer uses the destination specification associated with the outgoing document instance to translate the outgoing

XML file to the outgoing document instance (if it is not already in this format). The destination specification is created in
BizTalk Editor.

5. BizTalk Server outputs the outgoing document instance and transports it to a destination.

The parsers and serializers included with BizTalk Server can translate XML, EDI (X12 and EDIFACT), and flat files (delimited and
positional). Parsers and serializers for other formats might be available in the future. For more information, go to the Microsoft
BizTalk Server 2000 Web site (www.microsoft.com/biztalk).

If you create your own parsers and serializers, BizTalk Server can translate files of any format. Regardless of the format of an
incoming document instance, BizTalk Server translates it to an XML file so that the XSLT map can transform the incoming
document structure into the structure necessary for the outgoing document. Even if a BizTalk Server hub inputs and outputs EDI
documents, internally these documents are translated to XML. This enables BizTalk Server to take advantage of the power and
flexibility of XML when transforming documents from one structure to another.

BizTalk Editor

BizTalk Editor enables you to create the specifications used by BizTalk Server to translate document formats to and from XML, and
to create the maps that transform the translated XML files from one structure to another. The following illustration shows an EDI
purchase-order specification based on an X12_4010_850 schema displayed in BizTalk Editor. The hierarchical structure of a
document is displayed in the left pane of BizTalk Editor, regardless of whether the document format is XML, EDI, or flat-file. The
right pane contains tabs that display property settings for the nodes in the document hierarchy.

A specification that is based on an industry standard schema, such as the X12_4010_850 schema, is a subset of that standard
schema. For example, the specification in the illustration is a subset of the X12_4010_850 schema because the nodes that
ordinarily exist between the CUR and ITD nodes have been removed. With BizTalk Editor you can create a new document
specification based on a standard X12 or EDIFACT template and remove the nodes that you don’t need.

BizTalk Mapper

With no coding, you can use BizTalk Mapper to create XSLT maps that BizTalk Server uses to transform the structure of an
incoming document instance to the structure of an outgoing document instance. The source specification in a map is associated
with the incoming document, and the destination specification is associated with the outgoing document. The following
illustration shows an X12-based purchase-order specification that is mapped to a purchase order specification with a different
structure. This map represents the document transformation from the incoming EDI document to the XML format acceptable for
the accounting application in Organization A. The display is format independent—in this case the document displayed in the left
pane is an EDI file, while the document displayed in the right pane is an XML file.

The illustration shows links from five nodes in the source specification to five corresponding nodes in the destination
specification. If you viewed this map in BizTalk Mapper, you could see the remainder of the specifications by scrolling and by
expanding nodes in the specifications. BizTalk Mapper uses built-in, reusable functions called functoids to enable more complex
transformations than the simple links shown here.

BizTalk Mapper has a grid preview function that is useful for navigating to a particular subsection of a complex map, such as
might be required when mapping EDI documents.

Comparing BizTalk Server with EDI Technology
As explained earlier in this article, BizTalk Server offers functionality and advantages that EDI technology cannot provide. For
anyone currently using EDI who is considering deploying BizTalk Server in their business, it is important to understand the
strengths and limitations of both EDI and BizTalk Server.

EDI Strengths

Currently deployed in many businesses. EDI is a long-established standard, and many large businesses currently use it
successfully.
Uses agreed-upon standards. EDI standards are recognized by everyone who uses EDI.
Standards are fairly rigid. Rigid standards require conformity.

EDI Limitations

High cost. EDI systems are costly to set up and maintain. Hiring and retaining EDI experts is expensive.
Value-added networks (VANs). Many companies that use EDI use VANs to exchange documents. VANs are expensive to
set up and incur costs each time they are used.
Document format is not easily human-readable. It is difficult for a person to read an EDI document.
Not well suited for enterprise application integration (EAI). An EDI server handles connections outside the business.
BizTalk Server handles connections both outside the business and within the business.
Many industry-specific subvariations of standard documents. In some industries, such as the automotive and
aerospace industries, EDI document standards have been extended for industry-specific purposes. This can cause document
translation difficulties between variants of standard EDI documents given the expectation for rigid standards interpretation.

BizTalk Server Strengths

Uses XML as a foundation. BizTalk Server uses XML to translate and transform documents regardless of the document

format required for input and output. This creates an extremely flexible environment for document exchange both now and
in the future. XML as a document format has the following advantages:

XML is self-describing and creates documents that are relatively easy for people to read. This makes it easier for a
person unfamiliar with a particular BizTalk Server installation to become familiar with it.
XML experts are plentiful, and they are less expensive than EDI experts.
XML is very flexible and extensible.

Easy setup and maintenance. BizTalk Server systems are easier to set up and maintain than EDI systems.
Many schemas available. There is a large and growing library of schemas available to users of BizTalk Server. For more
information about this schema library, go to the Microsoft BizTalk Server 2000 Web site (www.microsoft.com/biztalk).
Enterprise application integration. BizTalk Server handles enterprise application integration, and does it very well. For
more information about case studies on BizTalk Server for EAI, go to the Microsoft BizTalk Server 2000 Web site
(www.microsoft.com/biztalk).
Orchestration capabilities. In addition to the universal messaging capabilities described in this article, BizTalk Server has
powerful orchestration capabilities. BizTalk Orchestration enables the user to design and execute long-running, loosely
coupled business transactions.

BizTalk Server Limitations in its Support of EDI

BizTalk Server supports EDI formats and receipting. While many customers have found that this is sufficient for interoperating
with EDI-based systems, true EDI servers have functionality that is not available in BizTalk Server at the time of release. Following
are limitations in BizTalk Server support of EDI. Included are approaches to using the BizTalk Server extensibility model and
consulting to overcome many of these limitations. In a number of cases consultants have already implemented these features for
customers, but currently there is no example code available to demonstrate these features. These solutions will add processing
time to document throughput.

Outbound Batching

Limitation. Although BizTalk Server can process aggregate collections of EDI documents, it cannot produce them.
Solution. Include a predelivery batching routine on the outbound side of BizTalk Server, and a debatching routine on the
inbound side of BizTalk Server. This is to accommodate aggregate responses to transmittals batched outside BizTalk Server.
Effort Required. A low to medium level of effort is required to implement a solution.

Segment Compound “Tags”

Limitation. Currently, the source tag identifier is the only mechanism in BizTalk Server by which instance data is matched
to schema-defined structure. BizTalk Server cannot resolve parsing operations when the source tag identifier in the
document instance, by itself, is not sufficient for determining a structure match in the schema. An example of this might
occur with the HL segments in an X12 856 advanced ship notice, where field data other than the source tag identifier adds
hierarchical context to the meaning of the record’s tag (“HL” in this case).
Solution. Create new EDI parsers that perform parsing look-ahead logic to consider not only the tag but also the content
qualifiers of various EDI segments.
Effort Required. A high level of effort is required to implement a solution.

Envelope Creation

Limitation. BizTalk Server cannot populate custom envelopes. Nor can BizTalk Server deviate from the EDI-based
envelopes that it provides, in the case where it is necessary to use optional fields on the envelope.
Solution. Develop a predelivery process to add content to envelopes. This might involve having BizTalk Server build an
envelope, and then populating the envelope in the add-on process. Alternatively, the add-on process could create and
populate the record. In either case, the data could be from the BizTalk Messaging Management database, a private add-on
database, or both.
Effort Required. A medium level of effort is required to implement a solution.

Functional Acknowledgments

Limitation. There are four limitations in this area:
BizTalk Server parsers cannot take advantage of the range of EDI batching or aggregation functionality that an EDI
server can. For example, BizTalk Server is unable to reject an entire group based on individual document failure

http://www.microsoft.com/biztalk
http://www.microsoft.com/biztalk

within the group.
Detail does not include the field level, so it is often impossible to know, for example, which field failed validation.
The validation step stops at the first error.
BizTalk Server provides no notification or other action when receipts become overdue.

Solution. There are no solutions for the first three limitations. To solve the last limitation, you must set up stored
procedures as Microsoft® SQL Server™ jobs. The purpose of this is to sweep the tracking database periodically to look for
overdue receipts and to perform notification as needed.
Effort Required. A low to medium level of effort is required to implement a solution.

EDI Data Types

Limitation. When creating a specification in BizTalk Editor, you cannot specify EDI data types for X12 document field
contents. This limitation is most significant in custom data types that have to do with explicit or implied decimal placement
and the number of digits before and after the decimal.
Solution. There is no solution for this limitation within the context of BizTalk Server.

Envelope Mapping

Limitation. BizTalk Server cannot map data from envelopes.
Solution. There is no solution for this limitation within the context of BizTalk Server.

Binary Segment Content

Limitation. BizTalk Server cannot specify a maximum size for a binary field if that maximum is in excess of 32-bit MAXINT.
Solution. There is no solution for this limitation within the context of BizTalk Server.

Control Number Enforcement

Limitation. There is no way for BizTalk Server to know when duplicate items are submitted for processing except through
the use of the BizTalk Framework.
Solution. Develop a preprocess that scans all data in the tracking database (or in a replicated warehouse of all historic
tracking data) to verify the uniqueness of received data prior to submitting it to BizTalk Messaging.
Effort Required. A medium level of effort is required to implement a solution.

Floating Segments

Limitation. BizTalk Server does not support floating segments. Segments defined in schemas are fixed to specific locations
in the data according to where the schema explicitly places them.
Solution. There is no solution for this limitation within the context of BizTalk Server.

VAN Integration

Limitation. There are two limitations in this area:
BizTalk Server has no built-in VAN transport components for sending or receiving data.
BizTalk Server has no mechanism for entering VAN sender and receiver status reports into a tracking database.

Solution. Develop application integration components (AICs) to serve as the transport mechanism to interact with a VAN.
There might also be a need to create tables related to the tracking database that would hold VAN sender and receiver status
reports. This is because there is also a foreign key relationship between the new tables and existing tracking tables.
Effort Required. A medium to high level of effort is required to implement a solution.

Envelope Data Viewing

Limitation. It is not possible to see envelopes in BizTalk Document Tracking, other than by viewing the parent interchange
for documents being searched.
Solution. Modify the BizTalk Document Tracking user interface so that the envelopes are optionally displayed with the
individual work items.
Effort Required. A high level of effort is required to implement a solution.

Conclusion
BizTalk Server can add value to any company that needs to automate its internal data flow or automate the exchange of business
documents with other companies. This includes companies that use EDI as well as companies that don’t use EDI but need to do so
to build business relationships with EDI-based companies. Although BizTalk Server is not an EDI server, it enables you to use EDI
and other formats for business-to-business integration as well as EAI. BizTalk Server provides a very powerful and flexible
framework to move your enterprise forward.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This Article is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, BizTalk, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners

Microsoft BizTalk Server Technical Articles

WMI in Microsoft BizTalk Server 2000
Microsoft Corporation

March 2001

Summary: This white paper shows you how Microsoft BizTalk Server 2000 can be used with Windows Management
Instrumentation (WMI) to manage Administration objects and consume events. BizTalk Server's implementation of WMI is
discussed along with an example of a temporary event consumer. The schema classes are documented and the white paper ends
with a library of code examples that provide solutions to common tasks encountered when using BizTalk Server with WMI. (94
printed pages)

Contents

Introduction
Understanding WMI in BizTalk Server
BizTalk Server Namespace
BizTalk Server Provider and Registration
Using WMI in BizTalk Server
Declaring Variables
Connecting to the Microsoft_BizTalk Server Namespace
Creating the Event Object
Monitoring Events
Handling Errors
BizTalk Server WMI Reference
DocSuspendedEvent
InterchangeProvError
MicrosoftBizTalkServer_Group
MicrosoftBizTalkServer_GroupReceiveFunction
MicrosoftBizTalkServer_GroupServer
MicrosoftBizTalkServer_MgmtDB
MicrosoftBizTalkServer_Queue
MicrosoftBizTalkServer_ReceiveFunction
MicrosoftBizTalkServer_RetryQueue
MicrosoftBizTalkServer_ScheduledQueue
MicrosoftBizTalkServer_Server
MicrosoftBizTalkServer_SuspendedQueue
MicrosoftBizTalkServer_WorkQueue
Appendix: Solutions Library
 Working with Documents
 Working with Groups
 Working with the Management Database
 Working with Receive Services
 Working with Servers
 Working with Queues

Introduction
Windows® Management Instrumentation (WMI) is a data-management layer included in Microsoft® Windows® 2000. Microsoft
BizTalk™ Server 2000 uses the WMI layer to encapsulate administrative functions that support the management of systems in an
enterprise.

This white paper contains sample code in Microsoft Visual Basic®, and Visual Basic Script.

For background and overview information about WMI, see the article
Microsoft Windows Management Instrumentation: Background and Overview, at the MSDN Online Library Web site.

For information about how to use WMI to administer Windows and applications across your enterprise, see the article
Windows Management Instrumentation: Administering Windows and Applications across Your Enterprise, at the MSDN Online
Library Web site.

The most recent version of the WMI SDK is available from the Microsoft Web site at
http://msdn.microsoft.com/Downloads/sdks/wmi/eula.asp.

Understanding WMI in BizTalk Server

https://msdn.microsoft.com/en-us/library/ms811538(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/bb985153(v=bts.10).aspx
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/wmi.asp

When you use BizTalk Server Administration to change group, server, queue, and database management settings, the new values
are stored in the BizTalk Messaging Management database through the BizTalk Server WMI provider. In BizTalk Server 2000, this
WMI provider uses a Microsoft SQL Server™ database to store administrative objects. All timestamps are created by using the
local time on the Microsoft SQL Server. However, the WMI provider refers to all timestamps in coordinated universal time (UTC).
The administration console then converts the timestamps back to local time for display.

The WMI provider acts as an intermediary between WMI and BizTalk Administration objects. The WMI provider gathers
information from a resource (managed object) and makes it available to management applications through the WMI API.

The BizTalk schema classes are registered and defined by using Managed Object Format (MOF), which is a compiled language
based on the Interface Definition Language (IDL). You place this information in an .mof file that you submit to the MOF compiler,
Mofcomp.exe.

The MOF code examples in the following sections are taken from the InterchangeProvSchema.mof file found in the \Program
Files\Microsoft BizTalk Server\Setup folder. This file, along with SrvEvents.mof, contains the BizTalk Server namespace, provider,
provider registration, and schema class definitions.

To access the WMI database layer programmatically, see BizTalk Server WMI Reference, later in this white paper, which
documents the BizTalk Server WMI schema classes that correspond to the administration objects.

BizTalk Server Namespace
Every WMI namespace contains a set of system classes, including __NAMESPACE. A namespace groups a collection of classes
into logical units. Every computer has a defined namespace at the top of the hierarchy called the Root namespace. The location of
a namespace is described by a path.

In the following MOF code, "MicrosoftBizTalkServer" is specified as the value for the Name property of the __NAMESPACE
system class for BizTalk Server:

BizTalk Server defines the "MicrosoftBizTalkServer" namespace as a sibling of the Root namespace, logically distinguishing the
BizTalk Server-managed environment from other managed environments.

BizTalk Server Provider and Registration
When WMI receives a request from a BizTalk Server management application, it forwards the request to the WMI provider,
"InterchangeProv." The WMI provider retrieves, modifies, deletes, and/or enumerates instances of the BizTalk Server schema
classes. In addition, "InterchangeProv" supplies dynamic instance information and generates event information.

In the following MOF code, "InterchangeProv" is specified as the value for the Name property of the of __Win32Provider system
class:

"InterchangeProv" is a custom provider designed to interact with the managed objects in the BizTalk Server environment. For a
complete reference of these managed objects and their properties and methods, see BizTalk Server WMI Reference, later in this
white paper.

In the following MOF code, an instance of the __InstanceProviderRegistration system class is used to register the instance
provider with WMI:

#pragma namespace ("\\\\.\\Root")
instance of __Namespace
{
 Name = "MicrosoftBizTalkServer";
}

instance of __Win32Provider as $P
{
 Name = "InterchangeProv";
 ClsId = "{9ac8efd6-c454-11d2-92c7-00c04fa356e8}";
};

instance of __InstanceProviderRegistration
{
 Provider = $P;

The BizTalk Server instance provider supports data retrieval, data modification, data deletion, data enumeration, and query
processing.

In the following MOF code, an instance of the __MethodProviderRegistration system class is used to register the method
provider with WMI:

Using WMI in BizTalk Server
WMI provides a powerful event architecture that enables modifications in management information to be identified, aggregated,
and associated with other management information, which can then be forwarded to local or remote management applications.
Event handling and notification is a key benefit provided by WMI that provides a mechanism for identifying and dealing with
hardware or software events and errors.

After an event occurs, a notification is delivered to one or more registered recipients, knows as event consumers. Event
consumers can register to receive certain types of notifications. Event consumers register to receive notifications without any
knowledge of how events and notifications are provided. To register, event consumers specify a filter that is created by using the
WMI Query Language (WQL). The query describes the conditions under which the consumer receives the event notification.

In addition to DCOM interfaces, WMI supports a uniform scripting application programming interface (API) that gives applications
and scripts access to the WMI provider on either a local computer or a remote computer.

This section shows the basic steps necessary to write a temporary WMI event consumer with Microsoft Visual Basic script,
although some of the associated DCOM interfaces are mentioned.

For code examples that show how to create and manipulate the BizTalk Administration objects by using WMI, see "Appendix:
Solutions Library," later in this white paper.

Note If you have Health Monitor installed (either from Microsoft Application Center 2000 or Microsoft BackOffice®),
you can configure Health Monitor through its Monitor Management Console (MMC) user interface (UI) (or its WMI
class) to consume events.

For more information about publishing and consuming events, see the article Event Notification in the WMI SDK on the MSDN
Online Library Web site.

For more information about WMI Application Programming, go to the MSDN Online Library Web site and search for WMI
Application Programming.

Declaring Variables
In order to write an event consumer using WMI, you will need to obtain a locator object, a services object, an event object, and an
object to represent a WMI class instance.

First, declare the variables, as shown in the following code:

The locator object variable, wbemLocat, of type SwbemLocator is used to connect to WMI. To connect to the
"MicrosoftBizTalkServer" namespace under the Root namespace ("Root/MicrosoftBizTalkServer"), you set the services object

 SupportsGet = TRUE;
 SupportsPut = TRUE;
 SupportsDelete = TRUE;
 SupportsEnumeration = TRUE;
 QuerySupportLevels = {"WQL:UnarySelect"};
};

instance of __MethodProviderRegistration
{
 Provider = $P;
};

Dim wbemLocat
Dim wbemSrvcs
Dim wbemEvent
Dim wbemObject

http://msdn.microsoft.com/library

variable, wbemSrvcs, of type SWbemServices. The event object variable, wbemEvent, of type SwbemEventSource is needed to
execute a query to receive events. To retrieve an event from the event query, you set the wbemObject variable of type
SwbemObject.

Connecting to the Microsoft_BizTalk Server Namespace
After you declare the variables, you need to retrieve the locator object. If you are using the scripting API, create a
WbemScripting.SwbemLocator object, as shown in the following code:

Note that the first step for any application using WMI is to retrieve a locator object. If you are using the DCOM interfaces, you
would retrieve an IWBEMLocator pointer by using the COCreateInstance method with the CLSID_WbemLocator, as shown in
the following code:

Using the locator object and the ConnectServer method, you can request a connection to the WMI service. The following code
attempts to connect to WMI by specifying the Root namespace on the local computer. In the following code, substitute the string
"ComputerName" with the name of the server that publishes the event:

If Err.number is equal to 0, then the connection to the WMI namespace is established. Specify both the computer name and the
namespace; otherwise, if these fields are left blank, you will be connected to the default namespace on the local computer.

The returned SWbemServices object provides a communication path to the SQL Server database that is used to store
administrative objects.

Creating the Event Object
Now that you have connected to the "MicrosoftBizTalkServer" namespace, you need to create the event object. The following code
generates an event object to receive event notifications:

The filter used in the SWbemServices.ExecNotificationQuery method call is "Select * from DocSuspendedEvent", which is
written using WQL. Like SQL queries, WQL queries can be refined to return a specific set of properties, or a subset of instances
that satisfy some criteria.

When the consumer submits this query, it requests to be notified of all occurrences of the event represented by the
DocSuspendedEvent class. This request includes a request for notification on all of the event's system and nonsystem
properties. When the event provider submits the query, it registers support for generating notifications whenever an event
represented by the DocSuspendedEvent class occurs.

Monitoring Events
Now that you have created the event object for the DocSuspendedEvent class, you need to set up the mechanism to monitor

Set wbemLocat = CreateObject("WbemScripting.SWbemLocator")

IWbemLocator* piWMI = NULL;
HRESULT hr;

 hr = CoCreateInstance(
 CLSID_WbemLocator,
 NULL,
 CLSCTX_INPROC_SERVER,
 IID_IWbemLocator,
 (LPVOID*) &piWMI
);

Set wbemSrvcs = wbemLocat.ConnectServer("ComputerName", _
 "root\MicrosoftBizTalkServer")

Set wbemEvent = _
 wbemSrvcs.ExecNotificationQuery("Select * from DocSuspendedEvent")

events represented by that class. First, set wbemObject of type SWbemObject to Empty, as shown in the following code:

Then, if an event is available, the SWbemEventSource.NextEvent method retrieves the event from an event query, as shown in
the following code:

The SWbemObject object supports generic properties and methods that apply to all WMI objects, as well as exposing the
properties and methods of the object as dynamic automation properties and methods of this object.

Use the following code to retrieve the GUID for the item in the suspended queue event:

If the wbemObject is not set to Empty, then the GUID for the item in the Suspended queue event is retrieved; otherwise; a
timeout error occurs while waiting for the Suspended queue event.

Note that stringSuspendedGuid is a property of the DocSuspendedEvent class. The Properties_ property returns an
SWbemPropertySet object that is a collection of the properties for the current class or instance, in this case the
DocSuspendedEvent class. The Item method then retrieves an SWbemProperty from the collection, in this case the
stringSuspendedGuid property.

For more information about WMI Application Programming in BizTalk Server, see the next section, Handling Errors, and
Appendix: Solutions Library, later in this white paper.

Handling Errors
This section uses Microsoft Visual Basic code to illustrate how to determine whether a WMI method returns an error, and if so,
how to decipher the meaning of the error.

First, you declare two variables: an SwbemLastError object to contain and manipulate error objects, and an array of String
objects to contain the numerical value, parameter information, and text description of the error, as shown in the following code:

To determine whether WMI raises an error, check the Err object. If the Err object is not equal to 0, then an error has been raised.
Then, you can try to set the SwbemLastError object to a new instance.

Note that the TypeName function is used to return information about the objWMIError variable. If it is equal to Nothing, error
information is not available, and the attempt to create the error object has failed.

If the call succeeds and an error object returns, the status of the object is reset and the members of the string array are set to
meaningful values, as shown in the following code:

wbemObject = Empty

Set wbemObject = wbemEvent.NextEvent(Timeout)

EventSuspendedQueueWaitForEvent = _
 wbemObject.Properties_.Item("stringSuspendedGuid").Value

Dim objWMIError As SWbemLastError
Dim strError(0 To 2) As String

If Err <> 0 Then
 strError(0) = Hex(Err.Number)
 Set objWMIError = New SWbemLastError
 If TypeName(objWMIError) <> "Nothing" Then
 strError(1) = objWMIError.ParameterInfo
 strError(2) = objWMIError.Description
 Else
 Err.Clear
 strError(1) = ""
 strError(2) = ""
 End If
 Else

BizTalk Server WMI Reference
The BizTalk Server WMI classes are defined in text files using the Managed Object Format (MOF). Note that each class has a key
property qualifier. The key property qualifier tells you that any instance of that class (or any instance of a derived class) can be
uniquely identified by the value of the key property qualifier. This is a concept borrowed from database technologies.

To access the functionality provided by WMI you implement a set of DCOM interfaces. These interfaces make it possible to write
management applications that work with classes and instances managed by WMI. For more information about these interfaces,
such as IWbemClassObject and IWbemServices, see the Platform SDK.

In addition, you can access WMI from environments that support Automation objects through scripting objects that wrap the
DCOM interfaces. For example, the SWbemObject class wraps the IWbemClassObject interface, and SWbemServices wraps
IWbemServices. When using WMI with the BizTalk Server schema classes, you can get complete access to WMI through
Microsoft Visual Basic or Visual Basic Scripting Edition (VBScript). Visual Basic projects can access these objects by adding
Microsoft WMI Scripting V1.1 Library in the Reference dialog box.

The COM API is available directly to C/C++ programmers. You can use the Scripting API to develop script and applications based
on Microsoft Visual Basic that you can use to view or control managed objects.

For a complete description of the interfaces in the WMI COM API, see the article COM API for WMI, in the WMI SDK on the MSDN
Online Library Web site.

For a description of the interfaces in the Scripting API, see the article Scripting API for WMI, in the WMI SDK on the MSDN Online
Library Web site.

DocSuspendedEvent
The DocSuspendedEvent class represents events raised by documents sent to the Suspended queue.

DocSuspendedEvent inherits from the __ExtrinsicEvent system class, an abstract base class that serves as a superclass for all
user-defined event types.

The DocSuspendedEvent class defines the following property:

Property Description
stringSuspendedGuid Contains the tracking key of the item in the Suspended queue event.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: SrvEvents.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

StringSuspendedGuid Property

Contains the tracking key of the item in the Suspended queue event.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

 strError(0) = 0
 strError(1) = ""
 strError(2) = ""
 End If

string stringSuspendedGuid;

https://msdn.microsoft.com/en-us/library/aa389276(v=bts.10).aspx
https://msdn.microsoft.com/en-us/library/aa393258(v=bts.10).aspx

Return values

A string data type.

Remarks

This property is read-only.

The tracking key of the item in the Suspended queue event is based on a globally unique identifier (GUID).

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: SrvEvents.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

InterchangeProvError
The InterchangeProvError class represents error information returned by the interchange provider when creating class
instances.

InterchangeProvError inherits from the __ExtendedStatus system class, which is used to report detailed status and error
information.

The InterchangeProvError class defines the following property:

Property Description
InterchangeProvName Contains the name of the interchange provider returning error information.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

InterchangeProvError Property

Contains the name of the interchange provider returning error information.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

String data type.

Remarks

This property is read-only.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later

String InterchangeProvName;

Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_Group
The MicrosoftBizTalkServer_Group class represents a logical grouping of a specific number of BizTalk Servers in an enterprise.
It is the management abstraction for global BizTalk properties.

MicrosoftBizTalkServer_Group is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as needed.

The MicrosoftBizTalkServer_Group class defines the following properties:

Property Description
ConfigurationCacheRefreshInt
erval

Indicates how often the server refreshes the cache of the BizTalk Messaging Configuration obje
cts, in seconds.

ConnectToDbStatus Indicates the status of the connection to the Tracking and Shared Queue databases.
DateModified Indicates the last modification date of the instance data.
DocTrackDbLogon Contains the user ID component of the connect string for the Tracking database.
DocTrackDbName Contains the database name component of the connect string for the Tracking database.
DocTrackDbPassword Contains the password component of the connect string for the Tracking database.
DocTrackDbServer Contains the server name component of the connect string for the Tracking database.
EnableDocumentTracking Indicates whether document tracking is enabled or disabled.
LoggingPointState Represents a collection of flags that indicate the events that cause a Tracking entry to be logge

d.
Name Contains the name of the server.
ParserOrder Contains the CLSIDs of the parser components registered in the Registry, sorted in parsing ord

er.
ProxyHost Contains the proxy host address.
ProxyPort Indicates the proxy port number.
QueueDbLogon Contains the user ID component of the connect string for the Shared Queue database.
QueueDbName Contains the database name component of the connect string for the Shared Queue database.
QueueDbPassword Contains the password component of the connect string for the Shared Queue database.
QueueDbServer Contains the server name component of the connect string for the Shared Queue database.
ReliableMessagingReplyToUR
L

Contains the URL repository for reliable messaging.

RetryQueueCount Indicates the number of documents in the Retry queue.
ScheduledQueueCount Indicates the number of documents in the Scheduled queue.
SMTPHost Contains the name of the SMTP host that is used for this group.
SuspendedQueueCount Indicates the number of documents in the Suspended queue.
UseProxyServer Indicates whether or not to use the proxy server.
WorkQueueCount Indicates the number of documents in the Work queue.

The MicrosoftBizTalkServer_Group class defines the following methods:

Method Description
PurgeSuspendedQueue Enables an administrator to remove all the documents in the Suspended queue.
RefreshParserListFromRegi
stry

Updates the list of parser components in the database, based on current components registered in
the Registry.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ConfigurationCacheRefreshInterval Property

Indicates how often the server refreshes the cache of the BizTalk Messaging Configuration objects, in seconds.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

Unsigned 32-bit unsigned integer that indicates how often the server refreshes the cache of the BizTalk Messaging Configuration
objects, in seconds.

Remarks

This property is read/write.

This property has a default value of 50.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ConnectToDbStatus Property

Indicates the status of the connection to the Tracking and Shared Queue databases.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the status of the connection to the Tracking and Shared Queue databases.

Remarks

This property is read-only.

Permissible values for this property are "BothDbConnectOK," "DTAConnectFail," "SQConnectFail," and "BothConnectFail," which
map to the integers 0, 1, 2, and 3, respectively. Note that the integer values must be used in code and script.

The following code is taken from the MOF file (InterchangeProvSchema.mof), and shows the mapping:

uint32 ConfigurationCacheRefreshInterval = 50;

uint32 ConnectToDbStatus;

Values {"BothDbConnectOK", "DTAConnectFail", "SQConnectFail",
 "BothConnectFail"},
ValueMap{"0", "1", "2", "3"}

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DateModified Property

Indicates the last modification date of the instance data.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A datetime data type that indicates the last modification date of the instance data.

Remarks

This property is read-only.

The value of this property is in date and time format. For more information, see the Platform SDK.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DocTrackDbLogon Property

Contains the user ID component of the connect string for the Tracking database.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the user ID component of the connect string for the Tracking database.

Remarks

This property is read/write.

datetime DateModified;

string DocTrackDbLogon;

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DocTrackDbName Property

Contains the database name component of the connect string for the Tracking database.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the database name component of the connect string for the Tracking database.

Remarks

This property is read/write.

The maximum value for the length of this property is 123 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DocTrackDbPassword Property

Contains the password component of the connect string for the Tracking database.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the password component of the connect string for the Tracking database.

Remarks

string DocTrackDbName;

string DocTrackDbPassword;

This property is write-only.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DocTrackDbServer Property

Contains the server name component of the connect string for the Tracking database.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the server name component of the connect string for the Tracking database.

Remarks

This property is read/write

The maximum value for the length of this property is 60 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

EnableDocumentTracking Property

Indicates whether document tracking is enabled or disabled.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A boolean data type that indicates whether document tracking is enabled or disabled. If TRUE, document tracking is enabled;

string DocTrackDbServer;

boolean EnableDocumentTracking = 1;

otherwise, this value is FALSE and document tracking is disabled.

Remarks

This property is read/write.

The default value for this property is TRUE.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

LoggingPointState Property

Represents a collection of flags that indicate the events that cause a Tracking entry to be logged.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that represents a collection of flags which indicate the events that cause a Tracking entry to be logged.

Remarks

This property is read/write.

Permissible values for this property are "LogIncomingInterchange," "LogMIMEBlob," and "LogOutgoingInterchange," which map
to the integers 0, 1, and 2, respectively. Note that the integer values must be used in code and script.

The following code is taken from the MOF file (InterchangeProvSchema.mof), and shows the mapping:

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Name Property

Contains the name of the server.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

uint32 LoggingPointState;

Values{"LogIncomingInterchange", "LogMIMEBlob",
 "LogOutgoingInterchange" },
BitMap{"0", "1", "2"}

Parameters

None

Return values

A string data type that contains the name of the server.

Remarks

This property is read/write.

The value of this property acts as the key for the class; its value uniquely identifies an instance of the class.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ParserOrder Property

Contains the CLSIDs of the parser components registered in the Registry, sorted in parsing order.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the CLSIDs of the parser components registered in the Registry, sorted in parsing order.

Remarks

This property is read/write.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ProxyHost Property

Contains the proxy host address.

Syntax

string Name;

string ParserOrder[];

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the proxy host address.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ProxyPort Property

Indicates the proxy port number.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the proxy port number.

Remarks

This property is read/write.

The default value for this property is 80.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

PurgeSuspendedQueue Method

Enables an administrator to remove all the documents in the Suspended queue.

string ProxyHost;

uint32 ProxyPort = 80;

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

QueueDbLogon Property

Contains the user ID component of the connect string for the Shared Queue database.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the user ID component of the connect string for the Shared Queue database.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

QueueDbName Property

Contains the database name component of the connect string for the Shared Queue database.

Syntax

uint32 PurgeSuspendedQueue();

string QueueDbLogon;

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the database name component of the connect string for the Shared Queue database.

Remarks

This property is read/write.

The maximum value for the length of this property is 123 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

QueueDbPassword Property

Contains the password component of the connect string for the Shared Queue database.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the password component of the connect string for the Shared Queue database.

Remarks

This property is write-only.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

QueueDbServer Property

Contains the server name component of the connect string for the Shared Queue database.

string QueueDbName;

string QueueDbName;

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the server name component of the connect string for the Shared Queue database.

Remarks

This property is read/write.

The maximum value for the length of this property is 60 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ReliableMessagingReplyToURL Property

Contains the URL repository for reliable messaging.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the URL repository for reliable messaging.

Remarks

This property is read/write.

The maximum value for the length of this property is 512 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

RefreshParserListFromRegistry Method

string QueueDbServer;

string ReliableMessagingReplyToURL;

Updates the list of parser components in the database, based on current components registered in the Registry.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None.

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

RetryQueueCount Property

Indicates the number of documents in the Retry queue.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the number of documents in the Retry queue.

Remarks

This property is read-only.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ScheduledQueueCount Property

Indicates the number of documents in the Scheduled queue.

Syntax

uint32 RefreshParserListFromRegistry();

uint32 RetryQueueCount;

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the number of documents in the Scheduled queue.

Remarks

This property is read-only.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

SMTPHost Property

Contains the name of the SMTP host that is used for this group.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the SMTP host that is used for this group.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

SuspendedQueueCount Property

Indicates the number of documents in the Suspended queue.

Syntax

uint32 ScheduledQueueCount;

string SMTPHost;

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the number of documents in the Suspended queue.

Remarks

This property is read-only.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

UseProxyServer Property

Indicates whether or not to use the proxy server.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A boolean data type that indicates whether or not to use the proxy server. If TRUE, a proxy server is used; otherwise, this value is
FALSE and a proxy server is not used.

Remarks

This property is read/write.

The default value for this property is FALSE.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

WorkQueueCount Property

Indicates the number of documents in the Work queue.

uint32 SuspendedQueueCount;

boolean UseProxyServer = 0;

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the number of documents in the Work queue.

Remarks

This property is read-only.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_GroupReceiveFunction
The MicrosoftBizTalkServer_GroupReceiveFunction class is an association class that is provided as a convenience.
Associations are instances of association classes and are used to represent relationships between other WMI objects.

MicrosoftBizTalkServer_GroupReceiveFunction is a dynamic class, supplied by the WMI provider "InterchangeProv" at run
time, as needed. This class allows you to retrieve all the receive functions in a group.

The MicrosoftBizTalkServer_GroupReceiveFunction class defines the following properties:

Property Description
Antecedent References the properties of the BizTalk Server group.
Dependent References the properties of the receive function that is associated with the BizTalk Server group.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Antecedent Property

References the properties of the BizTalk Server group.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

uint32 WorkQueueCount;

MicrosoftBizTalkServer_Group ref Antecedent;

Return values

A ref data type that references the properties of the BizTalk Server group. The returned reference is to an instance of a
MicrosoftBizTalkServer_Group object.

Remarks

This property is read-only.

The value of this property acts as a key for the class; its value along with the value of Dependent uniquely identifies an instance
of the class.

This property is the parent component of an aggregation association.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Dependent Property

References the properties of the receive function that is associated with the BizTalk Server group.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A ref data type that references the properties of the receive function that is associated with the BizTalk Server group. The returned
reference is to an instance of a MicrosoftBizTalkServer_ReceiveFunction object.

Remarks

This property is read-only.

The value of this property acts as a key for the class; its value along with the value of Antecedent uniquely identifies an instance
of the class.

This property is the child component of an aggregation association.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_GroupServer
The MicrosoftBizTalkServer_GroupServer class is an association class that is provided as a convenience. Associations are
instances of association classes and are used to represent relationships between other WMI objects.

MicrosoftBizTalkServer_GroupServer is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as
needed. This class allows you to retrieve all the servers in a group.

MicrosoftBizTalkServer_ReceiveFunction ref Dependent;

The MicrosoftBizTalkServer_GroupServer class defines the following properties:

Property Description
Antecedent References the properties of the BizTalk Server group.
Dependent References the properties of the server that is associated with the BizTalk Server group.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Antecedent Property

References the properties of the BizTalk Server group.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A ref data type that references the properties of the BizTalk Server group. The returned reference is to an instance of a
MicrosoftBizTalkServer_Group object.

Remarks

This property is read-only.

The value of this property acts as a key for the class; its value along with the value of Dependent uniquely identifies an instance
of the class.

This property is the parent component of an aggregation association.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Dependent Property

References the properties of the server that is associated with the BizTalk Server group.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

MicrosoftBizTalkServer_Group ref Antecedent;

MicrosoftBizTalkServer_Server ref Dependent;

None

Return values

A ref data type that references the properties of the server that is associated with the BizTalk Server group. The returned reference
is to an instance of a MicrosoftBizTalkServer_Server object.

Remarks

This property is read-only.

The value of this property acts as a key for the class; its value along with the value of Antecedent uniquely identifies an instance
of the class.

This property is the child component of an aggregation association.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_MgmtDB
The MicrosoftBizTalkServer_MgmtDB class represents the BizTalk Messaging Management database.

MicrosoftBizTalkServer_MgmtDB is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as needed.

The MicrosoftBizTalkServer_MgmtDB class defines the following properties:

Property Description
LocalServer Contains the name of the class, identifying the instance of the class.
MgmtDbLogo
n

Contains the user ID component of the BizTalk Messaging Management database connect string.

MgmtDbNam
e

Contains the initial catalog component of the BizTalk Messaging Management database connect string and repre
sents the database name.

MgmtDbPass
word

Contains the password component of the BizTalk Messaging Management database connect string.

MgmtDbServe
r

Contains the data source part of the BizTalk Messaging Management database connect string.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

LocalServer Property

Contains the name of the class, identifying the instance of the class.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

string LocalServer;

Return values

A string value that contains the name of the class, identifying the instance of the class.

Remarks

This property is read-only.

The value of this property acts as the key for the class; its value uniquely identifies an instance of the class.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MgmtDbLogon Property

Contains the user ID component of the BizTalk Messaging Management database connect string.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that Contains the user ID component of the BizTalk Messaging Management database connect string.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MgmtDbName Property

Contains the initial catalog component of the BizTalk Messaging Management database connect string and represents the
database name.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

string MgmtDbLogon;

string MgmtDbName;

Parameters

None

Return values

A string data type that contains the initial catalog component of the BizTalk Messaging Management database connect string and
represents the database name.

Remarks

This property is read/write.

The maximum value for the length of this property is 123 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MgmtDbPassword Property

Contains the password component of the BizTalk Messaging Management database connect string.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the password component of the BizTalk Messaging Management database connect string.

Remarks

This property is write-only.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MgmtDbServer Property

Contains the data source part of the BizTalk Messaging Management database connect string.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

string MgmtDbPassword;

Parameters

None

Return values

A string data type that contains the data source part of the BizTalk Messaging Management database connect string.

Remarks

This property is read/write.

The maximum value for the length of this property is 60 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_Queue
The MicrosoftBizTalkServer_Queue class is abstract and serves only as a base for new classes. This class should not be
implemented.

The MicrosoftBizTalkServer_Queue class defines the following properties:

Property Description
Destination Contains the name of the organization or application that receives the document.
Group Contains the name of the group to which the queue belongs.
QID Identifies an instance of the class.
Source Contains the name of the organization or application that sends the document.
Timestamp Indicates the last time the document was used, or when it entered the queue.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Destination Property

Contains the name of the organization or application that receives the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

string MgmtDbServer;

string Destination;

Return values

A string data type that contains the name of the organization or application that receives the document.

Remarks

This property is read-only.

The maximum value for the length of this property is 512 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Group Property

Contains the name of the group to which the queue belongs.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the group to which the queue belongs.

Remarks

This property is read-only.

The value of this property acts as a key for the class; its value along with the value of QID uniquely identifies an instance of the
class.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

QID Property

Identifies an instance of the class.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

string Group;

uint32 QID;

Parameters

None

Return values

32-bit unsigned integer that identifies an instance of the class.

Remarks

This property is read-only.

The value of this property acts as a key for the class; its value along with the value of Group uniquely identifies an instance of the
class.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Source Property

Contains the name of the organization or application that sends the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the organization or application that sends the document.

Remarks

This property is read-only.

The maximum value for the length of this property is 64 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Timestamp Property

Indicates the last time the document was used, or when it entered the queue.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

string Source;

Parameters

None

Return values

Indicates the last time the document was used, or when it entered the queue.

Remarks

This property is read-only.

The value of this property is in date and time format. For more information, see the Platform SDK.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_ReceiveFunction
The MicrosoftBizTalkServer_ReceiveFunction class represents a service that is set up on a BizTalk Server to handle incoming
interchanges by using a specific protocol such as File, Message Queuing, or Script.

MicrosoftBizTalkServer_ReceiveFunction is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as
needed.

The MicrosoftBizTalkServer_ReceiveFunction class defines the following properties:

Property Description
ChannelName Contains the name of the channel that the receive function should pass to the Submit method call when the

pass-through flag is enabled.
Comment Contains user comments.
DateModified Indicates the last modification date of the instance data.
DestinationID Represents the ID of the organization or application that receives the document.
DestinationQualifi
er

Represents the ID type of the organization or application that receives the document.

DisableReceiveFu
nction

Indicates whether to enable or disable the receive function.

DocumentName Contains the name of the document definition for the input document of a channel.
EnvelopeName Contains the name of an envelope definition instance in the BizTalk Messaging Management database.
FilenameMask Contains the file name mask to use for receive functions that pull files from the file system for input to BizTa

lk Server.
GroupName Contains the name of the group to which the server belongs.
IsPassThrough Indicates whether a Submit method call is made with the pass-through flag enabled or disabled.
Name Contains the name of the component.
OpennessFlag Indicates the value of the lOpenness parameter that the receive function passes to the Submit method.
Password Contains the password to use for FTP or Message Queuing receive functions that require a user name and p

assword.
PollingLocation Contains the name of the directory to poll (directory, message queue, and so on) for receive functions that r

equire polling.
PreProcessor Indicates any pre-processing that must be done for received document.
ProcessingServer Contains the name of the server that is currently processing the interchange.
SourceID Contains the ID of the organization or application that sends the document.
SourceQualifier Contains the ID type of the organization or application that sends the document.

datetime Timestamp;

Username Contains the user name to use for FTP or Message Queuing receive functions.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ChannelName Property

Contains the name of the channel that the receive function should pass to the Submit method call when the pass-through flag is
enabled.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the channel that the receive function should pass to the Submit method call when
the pass-through flag is enabled.

Remarks

This property is read/write.

The maximum value for the length of this property is 64 characters.

This property is required for custom receive functions.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Comment Property

Contains user comments.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

string ChannelName;

string Comment;

A string data type that contains user comments.

Remarks

This property is read/write.

The maximum value for this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DateModified Property

Indicates the last modification date of the instance data.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A datetime data type that indicates the last modification date of the instance data.

Remarks

This property is read-only.

The value of this property is in date and time format. For more information, see the Platform SDK.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DestinationID Property

Represents the ID of the organization or application that receives the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

datetime DateModified;

string DestinationID;

Return values

A string data type that represents the ID of the organization or application that receives the document.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

This property is required for custom receive functions.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DestinationQualifier Property

Represents the ID type of the organization or application that receives the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that represents the ID type of the organization or application that receives the document.

Remarks

This property is read/write.

The maximum value for the length of this property is 64 characters.

This property is required for custom receive functions.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DisableReceiveFunction Property

Indicates whether to enable or disable the receive function.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

string DestinationQualifier;

boolean DisableReceiveFunction = 0;

Parameters

None.

Return values

A boolean data type that indicates whether to enable or disable the receive function. If TRUE, the receive function is disabled;
otherwise, this value is FALSE and the receive function is enabled.

Remarks

This property is read/write.

The default value for this property is FALSE.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DocumentName Property

Contains the name of the document definition for the input document of a channel.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the document definition for the input document of a channel.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

This property is required for custom receive functions.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

EnvelopeName Property

Contains the name of an envelope definition instance in the BizTalk Messaging Management database.

Syntax

string DocumentName;

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of an envelope definition instance in the BizTalk Messaging Management database.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

This property is required for custom receive functions.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

FilenameMask Property

Contains the file name mask to use for receive functions that pull files from the file system for input to BizTalk Server.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the file name mask to use for receive functions that pull files from the file system for input to
BizTalk Server.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

string EnvelopeName;

string FilenameMask;

GroupName Property

Contains the name of the group to which the server belongs.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the group to which the server belongs.

Remarks

This property is read-only.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

IsPassThrough Property

Indicates whether a Submit method call is made with the pass-through flag enabled or disabled

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A boolean data type that indicates whether a Submit method call is made with the pass-through flag enabled or disabled. If
TRUE, the pass-through flag is enabled; otherwise, this value is FALSE and the pass-through flag is disabled.

Remarks

This property is read/write.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof

string GroupName;

boolean IsPassThrough = 0;

Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Name Property

Contains the name of the component.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the component.

Remarks

This property is read/write.

The value of this property acts as the key for the class; its value uniquely identifies an instance of the class.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

OpennessFlag Property

Indicates the value of the lOpenness parameter that the receive function passes to the Submit method.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that Indicates the value of the lOpenness parameter that the receive function passes to the Submit
method.

Remarks

This property is read/write.

Permissible values for this property are "NotOpen", "OpenSource", and "OpenDestination," which map to the integers 0, 1, and 2,
respectively. Note that the integer values must be used in code and script.

string Name;

uint32 OpennessFlag;

The following code is taken from the MOF file (InterchangeProvSchema.mof), and shows the values:

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Password Property

Contains the password to use for FTP or Message Queuing receive functions that require a user name and password.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the password to use for FTP or Message Queuing receive functions that require a user name and
password.

Remarks

The property is read/write.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

PollingLocation Property

Contains the name of the directory to poll (directory, message queue, and so on) for receive functions that require polling.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Values {"NotOpen", "OpenSource", "OpenDestination"}

string Password;

string PollingLocation;

Return values

A string data type that contains the name of the directory to poll (directory, message queue, and so on) for receive functions that
require polling.

Remarks

This property is read/write.

The maximum value for the length of this property is 260 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

PreProcessor Property

Indicates any pre-processing that must be done for received document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that indicates any pre-processing that must be done for received document.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ProcessingServer Property

Contains the name of the server that is currently processing the interchange.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

string PreProcessor;

string ProcessingServer;

Parameters

None

Return values

A string data type that contains the name of the server that is currently processing the interchange.

Remarks

This property is read/write.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

SourceID Property

Contains the ID of the organization or application that sends the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the ID of the organization or application that sends the document.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

This property is required for custom receive functions.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

SourceQualifier Property

Contains the ID type of the organization or application that sends the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

string SourceID;

Parameters

None

Return values

A string data type that contains the ID type of the organization or application that sends the document.

Remarks

This property is read/write.

The maximum value for the length of this property is 64 characters.

This property is required for custom receive functions. The value of this property can be a phone number, a Dunn & Bradstreet
number, and so on.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Username Property

Contains the user name to use for FTP or Message Queuing receive functions.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the user name to use for FTP or Message Queuing receive functions.

Remarks

This property is read/write.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_RetryQueue
The MicrosoftBizTalkServer_RetryQueue class represents a logical grouping of interchanges in the Shared queue that are

string SourceQualifier;

string Username;

awaiting receipt correlation, or interchanges that are due to be sent to multiple destinations.

MicrosoftBizTalkServer_RetryQueue is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as
needed.

MicrosoftBizTalkServer_RetryQueue inherits the following properties from the MicrosoftBizTalkServer_Queue class.

Property Description
Destination Represents the organization or application that receives the document.
Group Represents the name of the group to which the queue belongs.
QID Identifies an instance of the class and is used as the key.
Source Represents the organization or application that sends the document.
Timestamp Represents the last time the document was used, or when it entered the queue.

The MicrosoftBizTalkServer_RetryQueue class defines the following properties:

Property Description
LastRetryTime Indicates the last time the server attempted a transmission.
ProcessingServer Contains the name of the server that last processed the document.
RemainingRetryCount Indicates the number of outstanding retries remaining.
RetryInterval Indicates the wait time between retry intervals.
ServiceWindowFromTime Indicates the start time of the service window in which to send interchanges.
ServiceWindowToTime Indicates the end time of the service window in which to send interchanges.

The MicrosoftBizTalkServer_RetryQueue class defines the following method:

Method Description
MoveToSuspendedQueue Enables the administrator to move the selected document to the Suspended queue.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

LastRetryTime Property

Indicates the last time the server attempted a transmission.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A datetime data type that indicates the last time the server attempted a transmission.

Remarks

This property is read-only.

The value of this property is in date and time format. For more information, see the Platform SDK.

Requirements

datetime LastRetryTime;

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MoveToSuspendedQueue Method

Enables the administrator to move the selected document to the Suspended queue.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None.

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ProcessingServer Property

Contains the name of the server that last processed the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the server that last processed the document.

Remarks

This is a read-only property.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later

uint32 MoveToSuspendedQueue();

string ProcessingServer;

Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

RemainingRetryCount Property

Indicates the number of outstanding retries remaining.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the number of outstanding retries remaining.

Remarks

This property is read-only.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

RetryInterval Property

Indicates the wait time between retry intervals, in minutes.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the wait time between retry intervals, in minutes.

Remarks

This property is read-only.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later

uint32 RemainingRetryCount;

uint32 RetryInterval;

Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ServiceWindowFromTime Property

Indicates the start time of the service window in which to send interchanges.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A datetime data type that indicates the start time of the service window in which to send interchanges.

Remarks

This property is read-only.

The value of this property is in date and time format. For more information, see the Platform SDK.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ServiceWindowToTime Property

Indicates the end time of the service window in which to send interchanges.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A datetime data type that indicates the end time of the service window in which to send interchanges.

Remarks

This property is read-only.

The value of this property is in date and time format. For more information, see the Platform SDK.

datetime ServiceWindowFromTime;

datetime ServiceWindowToTime;

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_ScheduledQueue
The MicrosoftBizTalkServer_ScheduledQueue class represents a logical grouping of interchanges in the Shared queue that are
scheduled for a later delivery time based on a service window.

MicrosoftBizTalkServer_ScheduledQueue is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as
needed.

MicrosoftBizTalkServer_ScheduledQueue inherits the following properties from the MicrosoftBizTalkServer_Queue class.

Property Description
Destination Represents the organization or application that receives the document.
Group Represents the name of the group to which the queue belongs.
QID Identifies an instance of the class and is used as the key.
Source Represents the organization or application that sends the document.
Timestamp Represents the last time the document was used, or when it entered the queue.

The MicrosoftBizTalkServer_ScheduledQueue class defines the following properties:

Property Description
ProcessingServer Contains the name of the server that last worked on the document.
ServiceWindowFromTime Indicates the start time of the service window in which to send interchanges.
ServiceWindowToTime Indicates the end time of the service window in which to send interchanges.

The MicrosoftBizTalkServer_ScheduledQueue class defines the following method:

Method Description
MoveToSuspendedQueue Enables the administrator to move the selected document to the Suspended queue.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MoveToSuspendedQueue Method

Enables the administrator to move the selected document to the Suspended queue.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32 bit unsigned integer.

For more information, see Handling Errors, earlier in this white paper.

uint32 MoveToSuspendedQueue();

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ProcessingServer Property

Contains the name of the server that last worked on the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the server that last worked on the document.

Remarks

This property is read-only.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ServiceWindowFromTime Property

Indicates the start time of the service window in which to send interchanges.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A datetime data type that indicates the start time of the service window in which to send interchanges.

Remarks

This property is read-only.

string ProcessingServer;

datetime ServiceWindowFromTime;

The value of this property is in interval format. For more information, see the Platform SDK.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ServiceWindowToTime Property

Indicates the end time of the service window in which to send interchanges.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A datetime data type that indicates the end time of the service window in which to send interchanges.

Remarks

This property is read-only.

The value of this property is in interval format. For more information, see the Platform SDK.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_Server
The MicrosoftBizTalkServer_Server class represents specific Windows 2000 computers within a BizTalk Server group that are
running BizTalk Messaging Services.

MicrosoftBizTalkServer_Server is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as needed.

The MicrosoftBizTalkServer_Server class defines the following properties:

Property Description
DateModified Indicates the date of the last modification of the instance data.
GroupName Contains the name of the group to which the server belongs.
MaxRecvSvcThreadsPerPr
ocessor

Indicates the maximum number of receive function threads that BizTalk Server can use per process
or for asynchronous calls.

MaxWorkerThreadsPerPro
cessor

Indicates the maximum number of worker threads that BizTalk Server can use per processor for asy
nchronous calls.

Name Contains the name of the server.
ParticipateInWorkItemPro
cessing

Indicates whether or not the server participates in work-item processing.

SchedulerWaitTime Indicates the time interval that BizTalk Server scheduler waits between tries.
ServiceState Indicates the state of the BizTalk Server services on a particular server.

datetime ServiceWindowToTime;

The MicrosoftBizTalkServer_Server class defines the following methods:

Method Description
FreeInterch
anges

Frees interchanges that are currently assigned to a specific server if the server is stopped, removed, or in an error st
ate, so that other servers can work on these interchanges.

StartServer Starts BizTalk Server services on a specific server.
StopServer Stops the BizTalk Server services on a specific server.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DateModified Property

Indicates the date of the last modification of the instance data.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A datetime data type that indicates the date of the last modification of the instance data.

Remarks

This property is read-only.

The value of this property is in date and time format. For more information, see the Platform SDK.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

FreeInterchanges Property

Frees interchanges that are currently assigned to a specific server if the server is stopped, removed, or in an error state, so that
other servers can work on these interchanges.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

datetime DateModified;

uint32 FreeInterchanges();

None

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

GroupName Property

Contains the name of the group to which the server belongs.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the group to which the server belongs.

Remarks

This property is read-only.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MaxRecvSvcThreadsPerProcessor Property

Indicates the maximum number of receive function threads that BizTalk Server can use per processor for asynchronous calls.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

string GroupName;

uint32 MaxRecvSvcThreadsPerProcessor = 4;

Return values

32-bit unsigned integer that indicates the maximum number of receive function threads that BizTalk Server can use per processor
for asynchronous calls.

Remarks

This property is read/write.

The default value for this property is 4.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MaxWorkerThreadsPerProcessor Property

Indicates the maximum number of worker threads that BizTalk Server can use per processor for asynchronous calls.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates the maximum number of worker threads that BizTalk Server can use per processor for
asynchronous calls.

Remarks

This property is read/write.

The default value for this property is 4.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Name Property

Contains the name of the server.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

uint32 MaxWorkerThreadsPerProcessor = 4;

string Name;

Parameters

None

Return values

A string data type that contains the name of the server.

Remarks

This property is read/write.

The value of this property acts as the key for the class; its value uniquely identifies an instance of the class.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ParticipateInWorkItemProcessing Property

Indicates whether or not the server participates in work-item processing.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A boolean data type that indicates whether or not the server participates in work-item processing. If TRUE, the server participates
in work-item processing; otherwise, this value is FALSE and the server does not participate in work-item processing.

Remarks

This property is read/write.

The default value for this parameter is TRUE.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

SchedulerWaitTime Property

Indicates the time interval that BizTalk Server scheduler waits between tries, in milliseconds.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

boolean ParticipateInWorkItemProcessing = 1;

Parameters

None

Return values

32-bit unsigned integer that indicates the time interval that BizTalk Server scheduler waits between tries, in milliseconds.

Remarks

This property is read/write.

The default value for this parameter is 2000 milliseconds.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ServiceState Property

Indicates the state of the BizTalk Server services on a particular server.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit integer that indicates the state of the BizTalk Server services on a particular server.

Remarks

This property is read-only.

Permissible values for this parameter are

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

StartServer Method

Starts BizTalk Server services on a specific server.

Syntax

uint32 SchedulerWaitTime = 2000;

uint32 ServiceState;

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Remarks

The execution of this method is valid anytime the specific server is in a stopped state.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

StopServer Method

Stops the BizTalk Server services on a specific server.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Remarks

The execution of this method is valid anytime the specific server is in a running state.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_SuspendedQueue
The MicrosoftBizTalkServer_SuspendedQueue class represents a logical grouping of interchanges in the Shared queue that

uint32 StartServer();

uint32 StopServer();

could not be successfully processed.

MicrosoftBizTalkServer_SuspendedQueue is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as
needed.

MicrosoftBizTalkServer_SuspendedQueue inherits the following properties from the MicrosoftBizTalkServer_Queue class.

Property Description
Destination Represents the organization or application that receives the document.
Group Represents the name of the group to which the queue belongs.
QID Identifies an instance of the class and is used as the key.
Source Represents the organization or application that sends the document.
Timestamp Represents the last time the document was used, or when it entered the queue.

The MicrosoftBizTalkServer_SuspendedQueue class defines the following properties:

Property Description
DocName Contains the name of the document definition related to the document in the queue.
ErrorDescription Contains the first 64 characters of the error description.
QGUID Contains the submission GUID of the Suspended queue work item.
State Indicates the state of the document or interchange in the Suspended queue.

The MicrosoftBizTalkServer_SuspendedQueue class defines the following methods:

Method Description
Resubmit Enables an administrator to resubmit the selected document to the server.
ViewDocument Enables an administrator to view the contents of a selected document on the Suspended queue.
ViewErrorDescription Enables the administrator to view a description of the error.
ViewInterchange Enables the administrator to view the contents of a selected interchange on the Suspended queue.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DocName Property

Contains the name of the document definition related to the document in the queue.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the document definition related to the document in the queue.

Remarks

This property is read only.

The maximum value for the length of this property is 256 characters.

string DocName;

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ErrorDescription Property

Contains the first 64 characters of the error description.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the first 64 characters of the error description.

Remarks

This property is read only.

The maximum value for the length of this property is 64 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

QGUID Property

Contains the submission GUID of the Suspended queue work item.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the submission GUID of the Suspended queue work item.

Remarks

This property is read only.

string ErrorDescription;

string QGUID;

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Resubmit Method

Enables an administrator to resubmit the selected document to the server.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Remarks

This method enables an administrator to resubmit interchanges after problems have been fixed.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

State Property

Indicates the state of the document or interchange in the Suspended queue.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit integer that indicates the state of the document or interchange in the Suspended queue. For more information, see
Remarks.

uint32 Resubmit();

uint32 State;

Remarks

This property is read-only.

The tables in this section show the possible processing states of a document or interchange in the Suspended queue.

Documents in the following states are at the interchange level, so you should use the ViewInterchange method to view the data.
In addition, interchanges in these states cannot be resubmitted, so in this case you should not call Resubmit.

Value Description
0 Initial
1 Custom component
2 Parsing

Documents in the following states are at the document level, so you should use the ViewDocument method to view the data. In
addition, documents in the document validation state (3) cannot be resubmitted, so in this case you should not call Resubmit.

Value Description
3 Document validation
4 Channel selection
5 Field tracking
6 Correlating
7 Mapping
8 Serializing

Documents in the following states are at the interchange level, so you should use the ViewInterchange method to view the data.

Value Description
9 Encoding
10 Signing
11 Encrypting
12 Transmitting

Note that the ViewErrorDescription method can be used to retrieve error description information on failed documents and
interchanges.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ViewDocument Method

Enables an administrator to view the contents of a selected document on the Suspended queue.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

Document[]
[out] An array of bytes, representing the information in the document. This data may need to be converted into a readable
format. The maximum size for this parameter is 4 MB. If the data exceeds 4 MB, the data will be truncated. For more information

uint32 ViewDocument(
 uint8 Document[],
 uint32 CodePage
);

about this parameter, see Remarks.
CodePage

[out] The code page of the document. For more information about this parameter, see Remarks.

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Remarks

The following table shows the possible values for the CodePage parameter and their meanings.

Value Description
-1 No codepage available
0 Default system codepage
1200 Unicode codepage
1252 ASCII codepage

If the value returned in CodePage is 0 or 1200, the data is displayable and no conversion is needed. However, if the value is -1,
you should try loading the data into MSXML.

If the value returned in CodePage is 1252, you should try loading the data into MSXML. If this fails, you can use the
MultiByteToWideChar function, passing in CodePage as the codepage parameter to the Win32 API. For information on
MultiByteToWideChar, see the Platform SDK.

For more information about displaying the contents of the document, see "Displaying the Contents of a Document or
Interchange" in "Appendix: Solutions Library," later in this white paper.

If the data contained in Document is over 4 MB, C++ programmers can use the
IInterchange::GetSuspendedQueueItemDetails method to retrieve the document.

If the data contained in Document is over 4 MB, Microsoft Visual Basic programmers can use the
Interchange.GetSuspendedQueueItemDetails method to retrieve the document.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ViewErrorDescription Method

Enables the administrator to view a description of the error.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

CompleteErrorDescription
[out] A string describing the error.

Return values

32-bit unsigned integer, an HRESULT.

uint32 ViewErrorDescription(
 string CompleteErrorDescription
);

For more information, see Handling Errors, earlier in this white paper.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ViewInterchange Method

Enables the administrator to view the contents of a selected interchange on the Suspended queue.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

Interchange[]
[out] An array of bytes, representing the information in the interchange. This data may need to be converted into a readable
format. The maximum size for this parameter is 4 MB. If the data exceeds 4 MB, the data will be truncated. For more
information, see Remarks.

CodePage
[out] The code page of the interchange. For more information, see Remarks.

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Remarks

The following table shows the possible values for the CodePage parameter and their meanings.

Value Description
-1 No codepage available
0 Default system codepage
1200 Unicode codepage
1252 ASCII codepage

If the value returned in CodePage is 0 or 1200, the data is displayable and no conversion is needed. However, if the value is -1,
you should try loading the data into MSXML.

If the value returned in CodePage is 1252, you should try loading the data into MSXML. If this fails, you can use the
MultiByteToWideChar function, passing in CodePage as the codepage parameter to the Win32 API. For information on
MultiByteToWideChar, see the Platform SDK.

For more information about displaying the contents of the interchange, see "Displaying the Contents of a Document or
Interchange" in the Working with Documents section of the Appendix: Solutions Library.

If the data contained in Interchange is over 4 MB, C++ programmers can use the
IInterchange::GetSuspendedQueueItemDetails method to retrieve the interchange.

If the data contained in Interchange is over 4 MB, Microsoft Visual Basic programmers can use the
Interchange.GetSuspendedQueueItemDetails method to retrieve the interchange.

uint32 ViewInterchange(
uint8 Interchange[],
uint32 CodePage
);

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MicrosoftBizTalkServer_WorkQueue
The MicrosoftBizTalkServer_WorkQueue class represents a logical grouping of interchanges in the Shared queue that are
currently in process.

MicrosoftBizTalkServer_WorkQueue is a dynamic class, supplied by the WMI provider "InterchangeProv" at run time, as
needed.

MicrosoftBizTalkServer_WorkQueue inherits the following properties from the MicrosoftBizTalkServer_Queue class.

Property Description
Destination Represents the organization or application that receives the document.
Group Represents the name of the group to which the queue belongs.
QID Identifies an instance of the class and is used as the key.
Source Represents the organization or application that sends the document.
Timestamp Represents the last time the document was used, or when it entered the queue.

The MicrosoftBizTalkServer_WorkQueue class defines the following properties:

Property Description
DocName Contains the name of the document definition related to the document in the queue.
EngineState Indicates whether the work item is waiting for receipt correlation or waiting for transmission.
ProcessingServer Contains the name of the server that last processed the document.

The MicrosoftBizTalkServer_WorkQueue class defines the following method:

Method Description
MoveToSuspendedQueue Enables the administrator to move the selected document to the Suspended queue.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

DocName Property

Contains the name of the document definition related to the document in the queue.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the document definition related to the document in the queue.

Remarks

string DocName;

This property is read-only.

The maximum value for the length of this property is 256 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

EngineState Property

Indicates whether the work item is waiting for receipt correlation or waiting for transmission.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer that indicates whether the work item is waiting for receipt correlation or waiting for transmission. For
more information, see Remarks below.

Remarks

This property is read-only.

The possible values for this property are defined by the BTSCoreQueueStates enumeration, as shown in the following code:

The following table provides the numerical values of the constants defined in the BTSCoreQueueStates enumeration.

Value Constant
29 Processing
30 Correlation
31 TransmissionWServiceWindow
33 Transmission

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

MoveToSuspendedQueue Method

uint32 EngineState;

typedef enum {
 Processing = STATE_TRANSLATION,
 Correlation = STATE_RECEIPT_CORRELATION,
 TransmissionWServiceWindow = STATE_FIND_TRANSMISSION,
 Transmission = STATE_TRANSMISSION
} BTSCoreQueueStates;

Enables the administrator to move the selected document to the Suspended queue.

Syntax

The syntax shown is language neutral. This method is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

32-bit unsigned integer, an HRESULT.

For more information, see Handling Errors, earlier in this white paper.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

ProcessingServer Property

Contains the name of the server that last processed the document.

Syntax

The syntax shown is language neutral. This property is supported in C++, Microsoft Visual Basic, and Visual Basic Script.

Parameters

None

Return values

A string data type that contains the name of the server that last processed the document.

Remarks

This property is read-only.

The maximum value for the length of this property is 63 characters.

Requirements

Windows NT/2000: Requires Windows 2000 SP1 or later
Header and Library: Wbemidl.h, Wbemuuid.lib
MOF File: InterchangeProvSchema.mof
Scripting Library: Microsoft WMI Scripting V1.1 Library (wbemdisp.tlb)

Appendix: Solutions Library
This section uses Microsoft Visual Basic examples to demonstrate code solutions to common tasks encountered when using

uint32 MoveToSuspendedQueue();

string ProcessingServer;

BizTalk Server with WMI.

To ensure that your Visual Basic projects can access the WMI objects used in the following code, you need to add the Microsoft
WMI Scripting V1.1 Library in the Reference dialog.

Then, you can declare the WMI locator and services variables:

In addition, the following constants should be defined:

You should make the connection to WMI with the following code:

Working with Documents

The code examples in this section are useful when working with documents and interchanges. An interchange is a collection of
one or more document instances that comprises a single transmission.

This section presents functions that work together to convert variant data from a document or interchange into a string.

Displaying the Contents of a Document or Interchange

When using the ViewDocument or ViewInterchange methods of the MicrosoftBizTalkServer_SuspendedQueue class, you
may need to convert the returned byte array into a readable format.

The following function takes a codepage and variant data and returns a string:

Public g_objLocator As SWbemLocator
Public g_objService As SWbemServices

Public Const GROUP_NAMESPACE = "MicrosoftBizTalkServer_Group"
Public Const MGMT_NAMESPACE = "MicrosoftBizTalkServer_MgmtDB"
Public Const SERVER_NAMESPACE = "MicrosoftBizTalkServer_SERVER"
Public Const RECVSVC_NAMESPACE = "MicrosoftBizTalkServer_ReceiveFunction"
Public Const QUEUE_NAMESPACE = "MicrosoftBizTalkServer_Queue"
Public Const WORKQ_NAMESPACE = "MicrosoftBizTalkServer_WorkQueue"
Public Const SCHEDULEDQ_NAMESPACE = _
 "MicrosoftBizTalkServer_ScheduledQueue"
Public Const RETRYQ_NAMESPACE = "MicrosoftBizTalkServer_RetryQueue"
Public Const SUSPENDEDQ_NAMESPACE = _
 "MicrosoftBizTalkServer_SuspendedQueue"

Set g_objLocator = New SWbemLocator
Set g_objService = g_objLocator.ConnectServer(, _
 "root/MicrosoftBizTalkServer")

Function ConvertViewDocument(ByVal varData As Variant, _
 ByVal codepage As Long) As String
 Dim varData2() As Byte
 Dim i As Long
 Dim strTemp As String
 Dim Dom As New DOMDocument

 On Error Resume Next
 ReDim varData2(UBound(varData))
 For i = LBound(varData) To UBound(varData)
 varData2(i) = varData(i)
 Next
 If codepage = -1 Then
 strTemp = CStr(varData2)
 Call Dom.loadXML(strTemp)
 If Err <> 0 Then
 ConvertViewDocument = ""
 ElseIf Dom.parseError.errorCode <> 0 Then

The following function is used by the ConvertViewDocument function to convert the variant data into a string:

The following private function is used by the ConvertVarToBstr function to return a character set:

Working with Groups

The code examples in this section are useful when working with groups. Server groups are collections of individual servers that
are centrally managed, configured, and monitored.

This section presents functions that create a group, delete a group, retrieve a group by name, and retrieve all groups.

Creating a Group

The following function creates a group:

 ConvertViewDocument = ""
 Else
 ConvertViewDocument = Dom.xml
 End If
 Else
 ConvertViewDocument = ConvertVarToBstr(varData2, codepage)
 End If
End Function

Public Function ConvertVarToBstr(ByRef varData As Variant, _
 ByVal strCodePage As String) As String
 Dim stm As New ADODB.Stream

 Select Case UCase(TypeName(varData))
 Case "STRING"
 ConvertVarToBstr = varData
 Case "BYTE()"
 stm.Type = adTypeBinary ' adTypeBinary
 stm.Open
 stm.Write varData
 stm.Position = 0
 stm.Type = adTypeText
 stm.Charset = GetCharset(strCodePage)
 ConvertVarToBstr = stm.ReadText
 stm.Close
 Case Else
 ConvertVarToBstr = ""
 End Select
End Function

Private Function GetCharset(ByVal codepage As String)
 Select Case codepage
 Case 932
 GetCharset = "shift-jis"
 Case 1252
 GetCharset = "us-ascii"
 Case 160001
 GetCharset = "utf-8"
 Case 1200
 GetCharset = "unicode"
 End Select
End Function

Public Function CreateGroup(ByVal strGroupName As String, _
 ByVal strDocTrackDbLogon As String, _
 ByVal strDocTrackDbName As String, _

Deleting a Group

The following function deletes a group:

 ByVal strDocTrackDbPassword As String, _
 ByVal strDocTrackDbServer As String, _
 ByVal strQueueDbLogon As String, _
 ByVal strQueueDbName As String, _
 ByVal strQueueDbPassword As String, _
 ByVal strQueueDbServer As String, _
 Optional ByVal lAdminCacheRefreshInterval As Long, _
 Optional ByVal strSMTPHost As String, _
 Optional ByVal strReliableMessagingReplyToURL As String, _
 Optional UseProxyServer As Boolean, _
 Optional strProxyName As String, _
 Optional lProxyport As Long, _
 Optional lLoggingPointState As Integer) _
 As Boolean

 Dim objBTGroup As SWbemObject
 Dim objBTGroupInstance As SWbemObject

 On Error Resume Next
 Set objBTGroup = g_objService.Get(GROUP_NAMESPACE)
 Set objBTGroupInstance = objBTGroup.SpawnInstance_

 CreateGroup = True
 objBTGroupInstance.Name = strGroupName
 objBTGroupInstance.DocTrackDbLogon = strDocTrackDbLogon
 objBTGroupInstance.DocTrackDbName = strDocTrackDbName
 objBTGroupInstance.DocTrackDbPassword = strDocTrackDbPassword
 objBTGroupInstance.DocTrackDbServer = strDocTrackDbServer
 objBTGroupInstance.QueueDbLogon = strQueueDbLogon
 objBTGroupInstance.QueueDbName = strQueueDbName
 objBTGroupInstance.QueueDbPassword = strQueueDbPassword
 objBTGroupInstance.QueueDbServer = strQueueDbServer

 If strReliableMessagingReplyToURL <> "" Then
 objBTGroupInstance.ReliableMessagingReplyToURL = _
 strReliableMessagingReplyToURL
 End If
 If lAdminCacheRefreshInterval <> 0 Then
 objBTGroupInstance.ConfigurationCacheRefreshInterval = _
 lAdminCacheRefreshInterval
 End If
 objBTGroupInstance.UseProxyServer = UseProxyServer
 objBTGroupInstance.ProxyHost = strProxyName
 If lProxyport = 0 Then
 objBTGroupInstance.ProxyPort = lProxyport
 Else
 objBTGroupInstance.ProxyPort = lProxyport
 End If
 objBTGroupInstance.LoggingPointState = lLoggingPointState
 objBTGroupInstance.SMTPHost = strSMTPHost
 objBTGroupInstance.Put_ (wbemChangeFlagCreateOnly)
 If Err <> 0 Then
 ' Handle the error.
 CreateGroup = False
 End If
End Function

Public Function DeleteGroup(ByVal strGroupName As String) As Boolean
 On Error Resume Next
 DeleteGroup = True
 Call g_objService.Delete(GROUP_NAMESPACE & ".NAME=""" _
 & strGroupName & """")

Retrieving a Group by Name

The following function retrieves a group by name:

Retrieving All Groups

The following function retrieves all groups:

Working with the Management Database

The code examples in this section are useful when working with the BizTalk Messaging Management database. The management
database stores information for all server configurations, including group and server settings, and receive functions.

This section presents functions that create the management database and retrieve the management database.

Creating the Management Database

The following function creates the management database:

 If Err <> 0 Then
 ' Handle the error.
 DeleteGroup = False
 End If
End Function

Public Function GetGroupByName(ByVal strGroupName As String) As Object
 Dim objBTGroup As SWbemObject
 On Error Resume Next
 Set GetGroupByName = Nothing
 Set GetGroupByName = g_objService.Get(GROUP_
 NAMESPACE & ".NAME=""" & _
 strGroupName & """")
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Public Function GetAllGroups() As SWbemObjectSet
 Dim objBTGroup As SWbemObject

 On Error Resume Next
 Set GetAllGroups = Nothing
 Set objBTGroup = g_objService.Get(GROUP_NAMESPACE)
 Set GetAllGroups = objBTGroup.Instances_
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Public Function CreateMgmtDB(ByVal strMgmtDbLogon As String, _
 ByVal strMgmtDBPassword As String, _
 ByVal strMgmtDBServer As String, _
 ByVal strMgmtDBDatabase As String, _
 ByVal strLocalServer As String) As Boolean

 Dim objBTSMgmt As SWbemObject
 Dim objBTSMgmtInstance As SWbemObject
 On Error Resume Next

 CreateMgmtDB = True

Retrieving the Management Database

The following function retrieves the management database:

Working with Receive Services

The code examples in the section are useful when working with receive services. You create receive services to process data.

This section presents functions that create a File receive service, delete a File receive service, retrieve a receive service by name,
retrieve all receive services, and retrieve all receive services by group.

Creating a File Receive Service

The following function creates a receive service:

 Set objBTSMgmt = g_objService.Get(GROUP_NAMESPACE)
 Set objBTSMgmtInstance = objBTGroup.SpawnInstance_

 objBTSMgmtInstance.MgmtDbLogon = strMgmtDbLogon
 objBTSMgmtInstance.MgmtDBPassword = strMgmtDBPassword
 objBTSMgmtInstance.MgmtDbServer = strMgmtDBServer
 objBTSMgmtInstance.MgmtDbDatabase = strMgmtDBDatabase
 objBTSMgmtInstance.localserver = strLocalServer
 objBTSMgmtInstance.Put_ (wbemChangeFlagCreateOnly)
 If Err <> 0 Then
 ' Handle the error.
 CreateMgmtDB = False
 End If
End Function

Public Function GetMgmtDB(ByVal strLocalServer As String) As SWbemObject
 Dim objBTSMgmt As SWbemObject
 Dim objSet_BTSMgmt As SWbemObjectSet
 Dim objBTSMgmtInstance As SWbemObject

 On Error Resume Next
 Set GetMgmtDB = Nothing
 Set objBTSMgmt = g_objService.Get(MGMT_NAMESPACE)
 Set objSet_BTSMgmt = objBTSMgmt.Instances_
 If objSet_BTSMgmt.Count <> 1 Then
 ' Handle the error.
 Exit Function
 End If

 Set GetMgmtDB = objSet_BTSMgmt.Item(MGMT_NAMESPACE & _
 ".LocalServer=""" & strLocalServer & """")
End Function

Public Function CreateReceiveService(ByVal strRecvSvcName As String, _
 ByVal strGroupName As String, _
 ByVal strProcessingServer As String, _
 ByVal strFileMask As String, _
 ByVal fProtocolType As ProtocolType, _
 ByVal strPollingLoc As String, _
 Optional ByVal strPassword As String, _
 Optional ByVal strUsername As String, _
 Optional ByVal strDocumentName As String, _
 Optional ByVal strSourceID As String, _
 Optional ByVal strSourceQualifier As String, _
 Optional ByVal strDestinationID As String, _
 Optional ByVal strDestinationQualifier As String, _
 Optional ByVal lOpenness As Integer, _
 Optional ByVal lPassthrough As Integer, _

Deleting a File Receive Service

The following function deletes a receive service:

 Optional ByVal strChannelName As String, _
 Optional fDisabled As Boolean, _
 Optional ByVal strEnvelopeName As String, _
 Optional ByVal strComment As String, _
 Optional ByVal strPreProcessor As String) _
 As Boolean

 Dim objBTSRecvSvc As SWbemObject
 Dim objBTSRecvSvcInstance As SWbemObject

 On Error Resume Next
 CreateReceiveService = True
 Set objBTSRecvSvc = g_objService.Get(RECVSVC_NAMESPACE)
 Set objBTSRecvSvcInstance = objBTSRecvSvc.SpawnInstance_

 objBTSRecvSvcInstance.Name = strRecvSvcName
 objBTSRecvSvcInstance.groupName = strGroupName
 objBTSRecvSvcInstance.Comment = strComment
 objBTSRecvSvcInstance.FilenameMask = strFileMask
 objBTSRecvSvcInstance.ProcessingServer = strProcessingServer
 objBTSRecvSvcInstance.ProtocolType = fProtocolType
 objBTSRecvSvcInstance.PollingLocation = strPollingLoc
 objBTSRecvSvcInstance.password = strPassword
 objBTSRecvSvcInstance.UserName = strUsername
 objBTSRecvSvcInstance.DocumentName = strDocumentName
 objBTSRecvSvcInstance.SourceID = strSourceID
 objBTSRecvSvcInstance.SourceQualifier = strSourceQualifier
 objBTSRecvSvcInstance.DestinationID = strDestinationID
 objBTSRecvSvcInstance.DestinationQualifier = strDestinationQualifier
 objBTSRecvSvcInstance.EnvelopeName = strEnvelopeName
 objBTSRecvSvcInstance.DisableReceiveFunction = fDisabled
 objBTSRecvSvcInstance.PreProcessor = strPreProcessor

 If lOpenness <> 0 Then
 objBTSRecvSvcInstance.OpennessFlag = lOpenness
 End If

 If lPassthrough <> 0 Then
 objBTSRecvSvcInstance.IsPassThrough = lPassthrough
 End If

 If strChannelName <> "" Then
 objBTSRecvSvcInstance.ChannelName = strChannelName
 End If

 objBTSRecvSvcInstance.Put_ (wbemChangeFlagCreateOnly)
 If Err <> 0 Then
 ' Handle the error.
 CreateReceiveService = False
 End If
End Function

Public Function DeleteReceiveSvc(ByVal strRecvSvcName As String) _
 As Boolean
 On Error Resume Next
 DeleteReceiveSvc = True
 Call g_objService.Delete(RECVSVC_NAMESPACE & ".NAME=""" & _
 strRecvSvcName & """")
 If Err <> 0 Then
 ' Handle the error.
 DeleteReceiveSvc = False

Retrieving a Receive Service by Name

The following function retrieves a receive service by name:

Retrieving All Receive Services

The following function retrieves all receive services:

Retrieving All Receive Services by Group

The following function retrieves all receive services by group:

Working with Servers

The code examples in this section are useful when working with servers. A server in a server group hosts the appropriate BizTalk

 End If

End Function

Public Function GetReceiveFunctionByName(ByVal strRecvFunction _
 As String) _
 As SWbemObject
 On Error Resume Next
 Set GetReceiveFunctionByName = Nothing
 Set GetReceiveFunctionByName =
 g_objService.Get(RECVSVC_NAMESPACE & _

 ".NAME=""" & strRecvFunction & """")
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Public Function GetAllReceiveServices() As SWbemObjectSet
 Dim objBTSRecvSvc As SWbemObject

 On Error Resume Next
 Set GetAllReceiveServices = Nothing
 Set objBTSRecvSvc = g_objService.Get(RECVSVC_NAMESPACE)
 Set GetAllReceiveServices = objBTSRecvSvc.Instances_
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Public Function GetAllReceiveSvcsByGroup(ByVal strGroupName As String)
 Dim strWMIQuery As String

 On Error Resume Next
 strWMIQuery = "select * from " & RECVSVC_NAMESPACE & _
 " where groupname= '" & strGroupName & "'"
 Set GetAllReceiveSvcsByGroup =
 g_objService.ExecQuery(strWMIQuery)
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Messaging Services functionality to manage document exchange between other servers and applications that are external to the
BizTalk server group.

This section presents functions that create a server, delete a server, start a server, stop a server, retrieve a server by name, retrieve
all servers, and retrieve all servers by group.

Creating a Server

The following function creates a server:

Deleting a Server

The following function deletes a server:

Starting a Server

The following function will start a server:

Public Function CreateServer(ByVal strServerName As String, _
 ByVal strGroupName As String, _
 ByVal lMaxWorkerThreadsPerProcessor As Long, _
 ByVal lSchedulerWaitTime As Double) As Boolean

 Dim objBTSSvr As SWbemObject
 Dim objBTSSvrInstance As SWbemObject

 On Error Resume Next
 CreateServer = True
 Set objBTSSvr = g_objService.Get(SERVER_NAMESPACE)
 Set objBTSSvrInstance = objBTSSvr.SpawnInstance_

 objBTSSvrInstance.Name = strServerName
 objBTSSvrInstance.groupName = strGroupName
 objBTSSvrInstance.MaxWorkerThreadsPerProcessor = _
 lMaxWorkerThreadsPerProcessor
 objBTSSvrInstance.SchedulerWaitTime = lSchedulerWaitTime
 Call objBTSSvrInstance.Put_(wbemChangeFlagCreateOnly)
 If Err <> 0 Then
 ' Handle the error.
 CreateServer = False
 End If
End Function

Public Function DeleteServer(ByVal strServerName As String) As Boolean

 On Error Resume Next
 DeleteServer = True
 Call g_objService.Delete(SERVER_NAMESPACE & ".NAME=""" _
 & strServerName & """")
 If Err <> 0 Then
 ' Handle the error.
 DeleteServer = False
 End If
End Function

Public Function StartServer(ByVal strServerName As String) As Boolean
 Dim strWMIPath As String
 Dim objBTSSvrs As SWbemObject

 On Error Resume Next
 StartServer = True
 strWMIPath = SERVER_NAMESPACE & ".NAME=""" & strServerName & """"

Note that if Err is not equal to 0, and the hexadecimal value of the error is not equal to 80070420, then the service was already
running.

Stopping a Server

The following function will stop a server:

Note that if Err is not equal to 0, and the hexadecimal value of the error is not equal to 80070426, then the service was not
running.

Retrieving a Server by Name

The following function will retrieve a server by name:

Retrieving All Servers

The following function retrieves all servers:

 Set objBTSSvrs = g_objService.ExecMethod(strWMIPath, "StartServer")
 If Err <> 0 And Hex(Err) <> "80070420" Then
 ' Handle the error.
 StartServer = False
 Else
 Err.Clear
 End If
End Function

Public Function StopServer(ByVal strServerName As String) As Boolean
 Dim strWMIPath As String
 Dim objBTSSvrs As SWbemObject

 On Error Resume Next
 StopServer = True
 strWMIPath = SERVER_NAMESPACE & ".NAME=""" & strServerName & """"
 Set objBTSSvrs = g_objService.ExecMethod(strWMIPath, "StopServer")
 If Err <> 0 And Hex(Err) <> "80070426" Then
 ' Handle the error.
 StopServer = False
 Else
 Err.Clear
 End If
End Function

Public Function GetServerByName(ByVal strServerName As String) _
 As SWbemObject
 On Error Resume Next
 Set GetServerByName = Nothing
 Set GetServerByName = g_objService.Get(SERVER_NAMESPACE & ".NAME=""" _
 & strServerName & """")
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Public Function GetAllServers() As SWbemObjectSet
 Dim objBTSSvrs As SWbemObject

 On Error Resume Next
 Set objBTSSvrs = g_objService.Get(SERVER_NAMESPACE)
 Set GetAllServers = objBTSSvrs.Instances_

Retrieving All Servers by Group

The following function retrieves all servers by group:

Working with Queues
The code examples in this section are useful when working with queues. Queues are used to contain incoming and outgoing
documents that are in various stages of routing and processing in BizTalk Server.

This section presents functions that retrieve queues by group and retrieve all queues.

Retrieving Queues by Group

This section illustrates functions that retrieve the Work, Retry, Suspended, or Scheduled queue by group.

The Work queue contains documents that are currently being processed by BizTalk Server. The following function retrieves the
Work queue by group:

The Retry queue contains documents that are being resubmitted for delivery and documents that are waiting for reliable
messaging receipts. The following function retrieves the retry queue by group:

The Suspended queue contains work items that have failed processing for a variety of reasons, including parsing errors,
serialization errors, and failed transmissions. The following function retrieves the suspended queue by group:

 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Public Function GetAllServersByGroup(ByVal strGroupName As String) _
 As SWbemObjectSet
 Dim strWMIQuery As String
 On Error Resume Next
 strWMIQuery = "select * from " & SERVER_NAMESPACE & _
 " where groupname= '" & strGroupName & "'"
 Set GetAllServersByGroup = g_objService.ExecQuery(strWMIQuery)
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Public Function GetWorkQByGroup(ByVal strGroupName As String) _
 As SWbemObjectSet
 Set GetWorkQByGroup = GetXXXXQByGroup(strGroupName, WORKQ_NAMESPACE)
End Function

Public Function GetRetryQByGroup(ByVal strGroupName As String) _
 As SWbemObjectSet
 Set GetRetryQByGroup = GetXXXXQByGroup(strGroupName, RETRYQ_NAMESPACE)
End Function

Public Function GetSuspendedQByGroup(ByVal strGroupName As String) _
 As SWbemObjectSet
 Set GetSuspendedQByGroup = GetXXXXQByGroup(strGroupName, _
 SUSPENDEDQ_NAMESPACE)
End Function

The Scheduled queue contains work items that have been processed by BizTalk Server and are waiting for transmission. The
following function retrieves the scheduled queue by group:

The following helper function is used by the above functions to retrieve a given queue by group:

Retrieving All Queues

The following function retrieves all queues:

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the
date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date
of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE
INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real
company, organization, product, person or event is intended or should be inferred.

Copyright © 2001 Microsoft Corporation. All rights reserved.

Public Function GetScheduledQByGroup(ByVal strGroupName As String) _
 As SWbemObjectSet
 Set GetScheduledQByGroup = GetXXXXQByGroup(strGroupName, _
 SCHEDULEDQ_NAMESPACE)
End Function

Public Function GetXXXXQByGroup(ByVal strGroupName As String, _
 ByVal QueueNameSpace As String) _
 As SWbemObjectSet
 Dim strWMIQuery As String
 On Error Resume Next

 strWMIQuery = "select * from " & QueueNameSpace & _
 " where group= """ & strGroupName & """"
 Set GetXXXXQByGroup = g_objService.ExecQuery(strWMIQuery)
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Public Function GetAllQueues() As SWbemObjectSet
 Dim objBTQueue As SWbemObject

 On Error Resume Next
 Set GetAllQueues = Nothing
 Set objBTQueue = g_objService.Get(QUEUE_NAMESPACE)
 Set GetAllQueues = objBTQueue.Instances_
 If Err <> 0 Then
 ' Handle the error.
 End If
End Function

Microsoft, ActiveX, BizTalk, SourceSafe, Visio, Visual Basic, Visual C++, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

	Cover Page
	BizTalk Server 2000
	Product Documentation
	Getting Started with Microsoft BizTalk Server 2000
	Getting Started with Microsoft BizTalk Server 2000
	Introducing Microsoft BizTalk Server 2000
	 BizTalk Server Features
	 BizTalk Services
	 BizTalk Server Application Model
	 BizTalk Server Administration Model
	BizTalk Server Glossary

	 Differentiating BizTalk Server 2000 Standard and Enterprise Edition Features
	 BizTalk Server Scalability
	 BizTalk Server Group Support
	 BizTalk Orchestration Services Support
	 BizTalk Messaging Services Support
	 Extensibility Support

	 How to Use Help
	 Help Overview
	 Finding a Help Topic
	 Bookmarking a Help Topic
	 Copying a Help Topic
	 Printing a Help Topic
	 Changing the Font Size
	 Using Language Filtering
	 Help Viewer Shortcut Keys

	 Accessibility for People with Disabilities
	 Contacting Microsoft Product Support Services

	 BizTalk Server 2000 Tutorial
	 Preliminary Setup
	 Create folders
	 Copy files
	 Create local Web site folders
	 Create message queues
	 Install the auxiliary components
	 Uninstall the auxiliary components

	 Module 1: Modeling Business Processes
	 Creating the XLANG Schedule for the Buyer
	 Create the buyer actions
	 Connect the buyer actions in a sequence
	 Implement a port by using Message Queuing to receive a purchase order request
	 Create the communication flow for the Receive PO Request action
	 Implement a port by using a script component
	 Define message properties for the script component
	 Write the script expression for the decision rule
	 Define the data flow
	 Save the XLANG schedule drawing
	 Compile the XLANG schedule
	 Run the XLANG schedule

	 Module 1 Summary

	 Module 2: Creating Specifications and Maps
	 Using BizTalk Editor
	 Use the existing payment specification
	 Create the payment specification
	 Add new records to the Payment root node of the payment specification
	 Add new records to existing records in the payment specification
	 Add new fields to existing records in the payment specification
	 Store the payment specification to WebDAV
	 Use the existing purchase order request specification
	 Create the purchase order request specification
	 Add new records to the root node in the purchase order request specification
	 Add new records to existing records in the purchase order request specification
	 Add new fields to existing records in the purchase order request specification
	 Save the purchase order request specification

	 Using BizTalk Mapper
	 Use existing InvoiceToPayment map
	 Create the InvoiceToPayment map
	 Create links between fields
	 Use functoids to create links
	 Compile the map
	 Store the map to WebDAV

	 Module 2 Summary

	 Module 3: Configuring BizTalk Messaging Services
	 Configuring the Buyer System
	 Configure the buyer system using a configuration script
	 Create the organizations for the buyer system
	 Create the document definitions for the buyer and seller systems
	 Create a messaging port to Bits, Bytes, & Chips for the buyer system
	 Create a channel from ProElectron for the buyer system
	 Create a messaging port to Bits, Bytes, & Chips within the buyer system
	 Create a channel from Bits, Bytes, & Chips for the buyer system
	 Create a File receive function for the buyer system

	 Configuring the Seller System
	 Create the organizations for the seller system
	 Create a messaging port to Bits, Bytes, & Chips for the seller system
	 Create a channel from ProElectron for the seller system
	 Create a messaging port to ProElectron for the seller system
	 Create a channel from Bits, Bytes, & Chips for the seller system

	 Module 3 Summary

	 Module 4: Completing the XLANG Schedule
	 Add invoice and payment actions
	 Bind the Message Queuing service to receive an invoice
	 Define message properties for the Receive Invoice service
	 Bind the BizTalk Messaging Services
	 Define message properties for the BizTalk Messaging Services
	 Save the completed XLANG schedule drawing
	 Compile the completed XLANG schedule
	 Run the completed XLANG schedule
	 Module 4 Summary

	 Tutorial Summary
	 Appendix: Creating Auxiliary Components
	 Creating the Application
	 Open the application
	 Add the required references to the application
	 Define and initialize the Message Queue objects
	 Add code to place data on a queue
	 Add code to activate the XLANG schedule and call ExecuteMSMQ
	 Save and compile the application

	 Creating the Windows Script Component
	 Add script to register the component
	 Add script to implement the methods
	 Delete the WSC component

	 Creating the Application Integration Component (AIC)
	 Create an ActiveX DLL project for the AIC
	 Add the required references for the AIC
	 Implement the required interface
	 Define and initialize the class objects
	 Implement the interface method
	 Terminate the class objects
	 Create the resource file
	 Build the component and set binary compatibility
	 Register the AIC

	BizTalk Server 2000 Administration
	 Installing BizTalk Server 2000
	 Hardware and Software Requirements
	 Minimum Hardware Requirements
	 Recommended Configuration to Optimize Performance for Document Messaging
	 Software Requirements
	 Windows 2000 Prerequisites
	 Install Windows 2000 Server, Advanced Server, or Professional with Service Pack 1
	 Install Windows 2000 Service Pack 1
	 Install Message Queuing
	 Install Internet Information Services (IIS)
	 Configure IIS settings for BizTalk Server 2000
	 Setting Up User Accounts
	 Add a user account to the Administrators group
	 Create a service account

	 Installing SQL Server 7.0 or SQL Server 2000
	 Install SQL Server 7.0 or 2000
	 Check for SQL Server 7.0 Service Pack 2
	 Install SQL Service Pack 2 for SQL Server 7.0
	 Install SQL Server client tools
	 Change the default network library to TCP/IP
	 Set SQL authentication mode for SQL Server 2000
	 Verify that SQL Server is running
	 Avoid unnecessary disk space allocation
	 SQL Server and BizTalk Server 2000 Database Interactions

	 Installing Visio 2000 SR-1A
	 Install Visio 2000 Standard Edition SR-1A

	 Installation Instructions
	 Complete Installation
	 Perform a complete installation of BizTalk Server 2000
	 Start the World Wide Web Publishing Service
	 Install BizTalk Document Tracking Remotely
	 Configure Internet Explorer security settings

	 Tools Installation
	 Perform a tools installation of BizTalk Server 2000

	 Custom Installation
	 Perform a custom installation of BizTalk Server 2000

	 Silent Installation
	 Perform a silent installation of BizTalk Server 2000

	 Removing BizTalk Server 2000
	 Remove BizTalk Server 2000

	 Understanding Security
	 BizTalk Server 2000 Setup and Configuration
	 Logon Properties
	 Local Policies
	 Using a Service Account
	 Submitting Work Items
	 Add a role to the BizTalk Server Interchange Application
	 Associate a new role with the Submit and SubmitSync methods

	 Transport Services
	 HTTP and HTTPS
	 SMTP
	 Message Queuing 2.0
	 File

	 Security for Applications That Host XLANG Schedule Instances
	 Best Practices for Securing COM+ Applications
	 Securing the Orchestration Persistence Database
	 Confirming the Sender's Identity

	 Certificates Overview
	 Understanding Certificates
	 Certificates Needed by BizTalk Server
	 Create a certificate manager

	 Certificate Name Restrictions

	 Crypto API
	 Collaborative Data Objects

	 Enhancing Performance and Scalability
	 Scaling BizTalk Server
	 Scaling BizTalk Server Vertically
	 Scale Up BizTalk Server
	 Scale Up the Databases
	 Scale Up the Transport Services
	 HTTP/HTTPS (Scale Up)
	 File (Scale Up)
	 SMTP (Scale Up)
	 Message Queuing (Scale Up)

	 Scaling BizTalk Server Horizontally
	 Scale Out BizTalk Messaging Services
	 Component Load Balancing

	 Scale Out the Databases
	 Scale Out the Transport Services
	 HTTP/HTTPS (Scale Out)
	 File (Scale Out)
	 SMTP (Scale Out)
	 Message Queuing (Scale Out)

	 Performance Optimization
	 General Performance Recommendations
	 Optimizing BizTalk Orchestration Services
	 Optimizing XLANG Schedules
	 Optimizing the Contents of XLANG Schedules

	 Optimizing BizTalk Messaging Services
	 Creating and Optimizing Specifications
	 Creating and Optimizing Maps
	 Optimizing BizTalk Server Group Properties
	 Optimizing Server Properties
	 Optimizing Registry Settings
	 Improve processing performance

	 Optimizing Encryption
	 Optimizing Communication
	 Configuring Firewalls

	 Architecture Design, Review and Testing
	 Architectural Design
	 Develop Transaction Components
	 Identify Transports
	 Initial Architecture

	 Architecture Testing and Analysis
	 Evaluating the Performance of a Configuration
	 Improving the Architecture

	 Maintaining Performance
	 Creating a Performance Maintenance Plan
	 Using Application Center 2000

	Administering Servers and Applications
	 Server Administration
	 How To...
	 Open BizTalk Server Administration
	 Open Component Services
	 Add users to the BizTalk Server Administrators group
	 Configure the BizTalk Messaging Management database
	 Refresh the administration console
	 Start the BizTalk Messaging Service
	 Add, Delete, and Configure a Server Group
	 Add a server group
	 Configure general properties for a server group
	 Configure connection properties for a server group
	 Configure tracking properties for a server group
	 Configure the parser order for a server group
	 Delete a server group

	 Add, Delete, and Configure Servers in a Group
	 Add a server to a group
	 Delete a server from a group
	 Configure a server in a group
	 Change the BizTalk Messaging Management database for a server

	 Run Servers in a Group
	 Start a server in a group
	 Stop a server in a group
	 Free interchanges from a server

	 Manage Queues
	 Move documents to the Suspended queue
	 View error descriptions
	 View interchanges
	 View documents
	 Resubmit documents
	 Delete documents

	 Manage Databases for a Server Group
	 Shut down the BizTalk Server Interchange Application
	 Remove the Tracking and Shared Queue databases
	 Manually restore the Tracking database
	 Manually restore the Shared Queue database

	 Manage Receive Functions for a Server Group
	 Add a File receive function
	 Configure a File receive function: General tab
	 Configure a File receive function: Services tab
	 Add a Message Queuing receive function
	 Configure a Message Queuing receive function: General tab
	 Configure a Message Queuing receive function: Services tab
	 Configure advanced properties for File or Message Queuing receive functions
	 Delete a receive function

	 Manage Event Viewer
	 Configure Event Viewer for BizTalk Server errors
	 View application-related errors in Event Viewer

	 Manage XLANG Applications and Databases
	 Manage the Default XLANG Scheduler Application and Database
	 Configure the default XLANG Scheduler application
	 Change the application identity for the default XLANG Scheduler application
	 Change the settings for the default Orchestration Persistence database
	 Shut down all XLANG applications
	 Restart all XLANG applications

	 Manage Other COM+ Applications That Host XLANG Schedules
	 Create a new persistence database
	 Change the application identity for a COM+ application
	 Change the DSN settings for a COM+ application
	 Shut down a COM+ application that hosts XLANG schedules

	 Monitor Running XLANG Schedules
	 XLANG Schedule Error Messages

	 Concepts
	 WMI Overview
	 BizTalk Server Administration Environment
	 BizTalk Server Administration User Interface
	 BizTalk Server Administration Shortcut Keys

	 Administration Cache
	 Managing BizTalk Server Databases
	 Managing the BizTalk Messaging Management Database
	 Changing the BizTalk Messaging Management database
	 Removing servers from the BizTalk Messaging Management database
	 Moving servers between BizTalk Messaging Management databases
	 Moving remote servers between BizTalk Messaging Management databases

	 Managing BizTalk Server Group Databases
	 Shared Queue Database
	 Tracking Database

	 Groups and Servers
	 BizTalk Server Groups
	 Relationship between Groups and Servers
	 Group Status States
	 BizTalk Servers
	 Understanding server properties
	 Server states

	 Handling Server Errors
	 Receive Functions
	 Available Receive Functions
	 Custom Preprocessors
	 Multiple Instances of Receive Function Types
	 Understanding Receive Functions and Document Routing
	 Understanding Receive Function Advanced Properties

	 Using Queues
	 Work queue
	 Scheduled queue
	 Retry queue
	 Suspended queue

	 Administration Privileges

	 Troubleshooting BizTalk Server Administration
	 Error getting all groups from a database
	 Interchange and document size limit
	 Transaction time-out discrepancy between Component Services and BizTalk Server 2000
	 BizTalk Messaging Service does not start
	 Slowed performance when deleting a large quantity of documents from the Suspended queue
	 Output validation failure
	 Server does not return all documents in a flat-file interchange
	 Class identifier appears in the Preprocessor list
	 An interchange or document appears as binary data in the Suspended queue
	 BizTalk Server stopped processing documents
	 Receive function does not delete the document
	 Unable to connect to a SQL server installed on a clustered machine
	 Receive functions stopped processing documents
	 Error when moving a remote server to a different BizTalk Messaging Management Database
	 Parsing errors

	 Programmatic Administration

	 Tracking Documents
	 How To...
	 Open BizTalk Document Tracking for the First Time
	 Open BizTalk Document Tracking
	 Add Users to BizTalk Server Report Users Group
	 Use Queries to Search and Sort Interchange and Document Data
	 Search by date for interchange and document information
	 Search by organization for interchange and document information
	 Search by document type for interchange and document information
	 Search for interchange and document information by combining query parameters
	 Clear search criteria for organizations and document types
	 Customize the Query Results page
	 View search parameters for the Query Results page

	 Use Advanced Queries
	 Build advanced queries
	 Locate existing advanced queries
	 Edit existing advanced queries
	 Clear existing advanced queries from a query
	 Delete existing advanced queries

	 Save Interchange, Document, and Custom Search Data
	 Save interchange data
	 Save document instance data
	 Save custom-field search data

	 Concepts
	 BizTalk Document Tracking Environment
	 BizTalk Document Tracking User Interface
	 BizTalk Document Tracking Shortcut Keys

	 Using BizTalk Document Tracking
	 Understanding Tracking Settings for a Server Group
	 Understanding Tracking Settings in BizTalk Messaging Manager

	 Understanding the Tracking Database Schema
	 Metadata Core Tables
	 Secondary Tables
	 Metadata Core Table Structure
	 Structure of Secondary Tables
	 Related Tables
	 How Interchanges and Documents Are Logged
	 How Receipts Are Logged
	 How Routing Information Is Logged
	 Tracking XLANG Schedule Events in the Tracking Database

	 Understanding How to Find Interchanges and Associated Documents
	 Understanding Queries
	 Understanding Advanced Queries

	 Understanding Query Results
	 Tracking Database Schema Basics
	 Understanding Interchange Record Results
	 Understanding Document-Instance Record Results
	 Understanding Receipt Results
	 Understanding Results for Failed Transmissions

	 Understanding Integrated XLANG Schedule Status for an Interchange

	 Troubleshooting BizTalk Document Tracking
	 Problem displaying BizTalk Document Tracking user interface
	 Interchanges and documents are not stored
	 Nothing is displayed in the query results
	 Tracking fields are not displayed in the query results
	 Too many search arguments

	BizTalk Server 2000 Application Development
	Designing BizTalk Orchestrations
	 How To...
	 Use BizTalk Orchestration Designer
	 Open and Save XLANG Schedule Drawings
	 Create a new XLANG schedule drawing
	 Open an existing XLANG schedule drawing
	 Save an XLANG schedule drawing

	 View Pages, Shapes, and Stencils
	 View the Design Pages
	 View the Business Process page
	 View the Data page
	 View the Business Process and Data pages
	 View Compensation for Transaction pages
	 View On Failure of Transaction pages
	 View a page

	 View Shapes
	 View Flowchart shapes
	 View Flowchart and Communication shapes
	 View Flowchart, Communication, and Implementation shapes

	 View Stencils
	 View the Flowchart stencil
	 View the Implementation stencil

	 Use Multiple Windows
	 Open a new window
	 Tile windows
	 Cascade windows
	 Change the window focus

	 Use Annotations
	 Add annotations
	 Edit annotations
	 Format text in annotations
	 Delete annotations

	 Preview, Print, or Resize XLANG Schedule Drawings
	 Use Print Preview
	 Print an XLANG schedule drawing
	 Resize an XLANG schedule drawing

	 Add, Delete, and Connect Shapes
	 Add shapes
	 Name shapes
	 Delete shapes
	 Delete unused ports and messages
	 Connect Shapes
	 Select a shape
	 Connect two shapes
	 Use the Connector Tool
	 Align shapes along a vertical or horizontal axis

	 Set Conditional Properties
	 Set Decision Conditions
	 Add a rule to a decision
	 Edit a rule in a decision
	 Delete a rule from a decision
	 Determine the evaluation order of rules

	 Set While Loop Conditions
	 Add a rule to a while loop
	 Edit a rule in a while loop
	 Delete a rule from a while loop
	 Preserve state in a while loop

	 Create Rules
	 Create a rule
	 Use the expression assistant
	 Add constants to a rule
	 Delete unused rules

	 Set Concurrency Properties
	 Create concurrent flows
	 Set the Join Type property
	 Join concurrent flows
	 End a concurrent flow

	 Set Transaction Properties
	 Set Transaction Properties for an XLANG Schedule
	 Set the transaction model
	 Set the transaction activation property

	 Set Individual Transaction Properties
	 Group actions and flows within a transaction
	 Design nested transactions
	 Create flows that enter and leave transactions
	 Name a transaction
	 Set the transaction Type property
	 Set the Timeout property
	 Set the Retry count property
	 Set the Backoff time property
	 Set the Isolation level property

	 Describe Component and Message Queuing Transaction Support
	 Describe the level of transaction support in a COM component
	 Describe the level of transaction support in a Windows Script Component
	 Describe the transaction support provided by a message queue

	 Set Error Handling Properties
	 Abort a process flow
	 Enable Transaction Error Handling
	 Enable On Failure error handling
	 Enable Compensation error handling

	 Enable Component Error Handling
	 Abort a transaction if a COM component returns a failure
	 Abort a transaction if a Windows Script Component returns a failure

	 Implement Ports
	 Add an unbound port to an XLANG schedule drawing
	 Add a bound port to an XLANG schedule drawing
	 Implement a port by using a COM component
	 Implement a port by using a Windows Script Component
	 Implement a port by using Message Queuing
	 Implement a port by using BizTalk Messaging
	 Modify port implementation properties

	 Send or Receive Messages
	 Establish the communication flow between an action and a port
	 Send or receive synchronous messages
	 Send or receive asynchronous messages
	 Modify the communication flow between an action and a port

	 Draw the Flow of Data Between Messages
	 Select a message
	 Select a field within a message
	 Draw the flow between messages
	 Delete a message
	 Match a specific message with a specific port
	 Use Constants
	 Add constants
	 Edit constants
	 Delete constants

	 Run XLANG Schedules
	 Compile and Debug XLANG Schedules
	 Compile an XLANG schedule drawing into an XLANG schedule
	 Run an XLANG schedule
	 Debug compiled Visual Basic components
	 Refresh method signatures
	 Shut down all running XLANG schedules

	 Create and Configure an XLANG Schedule Host Application
	 Create a COM+ application to host XLANG schedules
	 Configure a COM+ application to host XLANG schedules

	 Concepts
	 BizTalk Orchestration Services
	 Understanding Business Processes
	 Workflow Diagrams
	 Interaction Diagrams

	 BizTalk Orchestration Designer Environment
	 Design Pages
	 Flowchart Shapes
	 Implementation Shapes
	 Communication Shapes
	 BizTalk Orchestration Designer Shortcut Keys

	 XLANG Schedules
	 XLANG Overview
	 Instance Management
	 Persistence
	 Dehydration and Rehydration
	 Data Handling
	 The Data Page
	 The Constants Message
	 The Port References Message
	 Field Data Types
	 System Fields
	 Node Path Fields

	 Creating XLANG Schedule Drawings
	 Designing Business Processes
	 Designing Actions
	 Designing Rules
	 Designing Concurrency
	 Designing Transactions
	 Transaction Properties for an XLANG Schedule Drawing
	 Transaction Properties for Specific Transaction Shapes
	 Transaction Properties for a Port Implementation
	 Long-Running Transactions
	 Short-Lived Transactions

	 Handling Exceptions
	 System Errors
	 Errors That Can Be Trapped Within an XLANG Schedule
	 Errors That Will Cause an XLANG Schedule Instance to Terminate
	 Errors That Can Cause the XLANG Scheduler Engine to Fail

	 Application Errors
	 Logical Branching
	 Transactional Abort Processes
	 Timeouts

	 Implementing Business Processes
	 Understanding Port Implementations
	 Static and Dynamic Ports
	 Using the COM Component Shape
	 Using the Script Component Shape
	 Using the Message Queuing Shape
	 Using the BizTalk Messaging Shape

	 Synchronous and Asynchronous Communication
	 Using the Method Communication Wizard
	 Synchronous Communication
	 Using the XML Communication Wizard
	 Asynchronous Communication

	 Compiling XLANG Schedules
	 Debugging XLANG Schedules
	 Running XLANG Schedules
	 Moniker Syntax
	 Creating an Instantiating Application

	 Managing Session State
	 Updating XLANG Schedules

	Configuring BizTalk Messaging Services
	Using BizTalk Messaging Manager
	 How To...
	 Create and Manage Channels
	 Create channels
	 Search for channels
	 Edit channels
	 Delete channels
	 Set Channel Properties
	 Set general channel-information properties
	 Set source organization properties
	 Set source application properties
	 Set inbound document properties
	 Set outbound document properties
	 Set document logging properties
	 Set advanced configuration properties
	 Select a source organization
	 Select a receipt channel
	 Select an inbound document definition
	 Select a certificate to verify inbound document decryption
	 Select a certificate to verify inbound document signature
	 Select an outbound document definition
	 Select a map
	 Select a certificate for outbound signature
	 Override messaging port defaults
	 Override distribution list defaults
	 Set Tracking for Inbound Document Properties
	 Select specification fields in a channel
	 Remove specification fields in a channel

	 Set Channel Filtering Properties
	 Add a channel filtering expression
	 Edit a channel filtering expression
	 Remove a channel filtering expression

	 Create and Manage Messaging Ports
	 Create messaging ports
	 Search for messaging ports
	 Edit messaging ports
	 Delete messaging ports
	 Set Messaging Port Properties
	 Set general messaging-port information properties
	 Set destination organization properties
	 Set destination application properties
	 Set envelope information properties
	 Set security information properties
	 Select a destination organization
	 Select an encryption certificate
	 Set Transport Properties
	 Select a transport type
	 Specify a transport address
	 Select an application integration component

	 Set Envelope Delimiters
	 Set X12 delimiters
	 Set EDIFACT delimiters
	 Set custom delimiters

	 Create and Manage Organizations
	 Configure the home organization
	 Create organizations
	 Search for organizations
	 Edit organizations
	 Delete organizations
	 Set Organization Properties
	 Set general organization properties
	 Set Organization Identifier Properties
	 Add organization identifiers
	 Edit organization identifiers
	 Remove organization identifiers

	 Set Application Properties
	 Add applications
	 Edit applications
	 Remove applications

	 Create and Manage Document Definitions
	 Create document definitions
	 Search for document definitions
	 Edit document definitions
	 Delete document definitions
	 Set Document Definition Properties
	 Set general document-definition properties
	 Select a document specification
	 Set Global Tracking Properties
	 Select specification fields in a document definition
	 Remove specification fields from a document definition

	 Set Selection Criteria Properties
	 Add selection criteria
	 Edit selection criteria
	 Remove selection criteria

	 Create and Manage Envelopes
	 Create envelopes
	 Search for envelopes
	 Edit envelopes
	 Delete envelopes
	 Select an envelope specification

	 Use Distribution Lists
	 Create distribution lists
	 Search for distribution lists
	 Edit distribution lists
	 Delete distribution lists

	 Concepts
	 BizTalk Messaging Manager Environment
	 Configuring BizTalk Messaging Manager Options
	 Select a BizTalk Messaging Manager configuration option
	 Set server connection options

	 BizTalk Messaging Manager User Interface
	 BizTalk Messaging Manager Shortcut Keys
	 Security

	 Understanding Channels
	 Channel Elements
	 Valid Channel and Messaging Port Combinations

	 Understanding Messaging Ports
	 Messaging Port Elements
	 Open Messaging Ports

	 Understanding Organizations
	 Organization Identifiers

	 Understanding Document Definitions
	 Tracking Document Data Fields
	 Understanding Selection Criteria
	 Using Selection Criteria with Inbound Documents
	 Using Selection Criteria with Outbound Documents

	 Understanding Envelopes
	 Using Envelopes for Inbound Processing
	 Using Envelopes for Outbound Processing

	 Understanding Receipts
	 Processing Receipts Using Channels
	 Configuring the Source System for Channel Receipts
	 Configuring the Destination System for Channel Receipts

	 Processing Receipts Using Reliable Messaging
	 Configuring the Source System for Reliable Messaging Receipts
	 Configuring the Destination System for Reliable Messaging Receipts

	 Understanding Distribution Lists

	Accessing the BizTalk Messaging Configuration Object Model
	 Concepts
	 BizTalk Messaging Configuration Object Model
	 BizTalk Messaging Configuration Objects
	 Referential Integrity
	 Security

	 Channels
	 Identification
	 Document Processing
	 Configuring
	 Channel Filtering
	 Document Storage
	 Document Tracking

	 Messaging Ports
	 Port Groups

	 Openness
	 Organizations
	 Document Definitions
	 Envelopes

	Creating Specifications and Mapping Data
	 Creating Specifications
	 How To...
	 Change BizTalk Editor Options
	 Create and Validate Specifications
	 Create a specification based on a standard
	 Create a specification based on a flat file
	 Create a specification based on an empty template
	 Create a specification based on an existing specification
	 Create a specification based on an imported file
	 Validate a specification

	 Open Specifications
	 Open existing specifications from a local drive
	 Open existing specifications from WebDAV

	 Save, Export, Convert, and Close Specifications
	 Save new specifications
	 Save existing specifications
	 Store specifications
	 Export XDR schemas
	 Convert an XDR schema to an XSD schema
	 Close specifications

	 Manage Records and Fields
	 Add new records to the root node
	 Add new fields to the root node
	 Add new records to existing records
	 Add new fields to records
	 Insert records
	 Insert fields
	 Create a new field as an element
	 Change fields from attributes to elements
	 Change fields from elements to attributes
	 Move records within a specification
	 Move fields within a specification
	 Move records from one specification to another
	 Move fields from one specification to another
	 Copy records within a specification
	 Copy fields within a specification
	 Copy records from one specification to another
	 Copy fields from one specification to another
	 Rename a single record
	 Rename a single field
	 Rename all records that have the same name
	 Delete records
	 Delete fields
	 Create cyclical references
	 Create a new instance of an existing record
	 Create a new instance of an existing element field

	 Specify Properties for Records and Fields
	 Set declaration properties
	 Set reference properties
	 Set parse properties
	 Declare namespaces
	 Add custom annotations
	 Edit custom annotations
	 Delete custom annotations
	 Set dictionary properties
	 Add a custom dictionary property
	 Rename a custom dictionary property
	 Clear a dictionary property
	 Delete a custom dictionary property
	 Select codes
	 Clear codes
	 Clear a property for any field in the Value column
	 Automatically calculate field positions

	 Edit Notes and Syntax Rules
	 Enter Record Notes
	 View Syntax Rules
	 Enter Field Notes

	 Manage Document Instances
	 Create a document instance
	 Validate a document instance

	 Manage Invalid Character Maps
	 Add invalid character ranges
	 Edit invalid character ranges
	 Delete invalid character ranges

	 Manage Views
	 Expand tree items
	 Collapse tree items
	 View property values
	 Change text sizes

	 Concepts
	 Understanding Specifications
	 Specification Structure
	 Supporting Standards
	 Supporting Other File Formats
	 Invalid XML Name Characters
	 Invalid Character Ranges

	 Importing Files
	 BizTalk Editor Environment
	 BizTalk Editor User Interface
	 BizTalk Editor Menus
	 BizTalk Editor Toolbar Buttons
	 BizTalk Editor Shortcut Keys

	 Records, Fields, and Properties
	 Records and Their Properties
	 Fields and Their Properties
	 Calculating Field Positions
	 Character Length Limits
	 Code List Values and Descriptions
	 Pad Characters
	 Property Scope
	 Cyclical References
	 Default Value Integration

	 Namespace Support
	 Namespace Declarations
	 Preserving Namespaces in Imported Files

	 Adding SQL Annotations

	 Resources
	 Summary of Data Types and Data Type Values
	 Summary List of Included EDI-Based Documents

	 Mapping Data
	 How To...
	 Change BizTalk Mapper Options
	 BizTalk Mapper Options: General Tab
	 BizTalk Mapper Options: Colors Tab

	 Create new maps
	 Open Maps
	 Open maps from a local hard drive
	 Retrieve maps from WebDAV

	 Save, Store, and Close Maps
	 Save new maps
	 Save existing maps
	 Save compiled maps
	 Store maps
	 Close maps

	 Replace Specifications
	 Replace source specifications
	 Replace destination specifications

	 Manage Functoids
	 Work with the Functoid Palette
	 Add string functoids
	 Add mathematical functoids
	 Add logical functoids
	 Add date and time functoids
	 Add conversion functoids
	 Add scientific functoids
	 Add cumulative functoids
	 Add database functoids
	 Add the Scripting functoid
	 Add the Record Count functoid
	 Add the Index functoid
	 Add the Iteration functoid
	 Add the Value Mapping functoid
	 Add the Value Mapping (Flattening) functoid
	 Add the Looping functoid
	 Delete functoids

	 Edit Functoid Properties
	 Input Parameters
	 Insert input parameters
	 Delete input parameters
	 Move input parameters
	 Rename input parameters

	 Functoid Scripts

	 Manage Links
	 Create links between fields
	 Create links between fields and functoids
	 Create links between records and fields
	 Create links between records and functoids
	 Create links between functoids
	 Allow record content links
	 Redirect links
	 Delete links
	 View Grid Links and Functoids
	 View links and functoids in the mapping grid
	 View links and functoids by using the grid preview

	 Edit Link Properties
	 View Link Properties: General Tab
	 View Link Properties: Compiler Tab
	 Select compiler properties for source-specification links
	 Select compiler properties for destination-specification links

	 Create and Manage Compiled Maps
	 Compile maps
	 Resolve warnings and errors after compiling a map
	 Add constant values

	 Test Maps
	 Test record and field properties that have links
	 Test links
	 Test functoids

	 Manage Views
	 Expand tree items
	 Collapse tree items
	 View record and field properties
	 View namespaces
	 Adjust the pane size for the Source Specification tree
	 Adjust the pane size for the Destination Specification tree
	 Adjust the size of the lower pane

	 Customize the User Interface
	 Change mapping grid colors
	 Change the color of links
	 Change the color of selected objects
	 Change the color of compiler warnings
	 Restore default colors
	 Change text size

	 Concepts
	 Mapping Specifications
	 Mapping Scenarios
	 Loop Paths
	 Ordering of Records and Fields

	 BizTalk Mapper Environment
	 BizTalk Mapper User Interface
	 BizTalk Mapper Menus
	 BizTalk Mapper Toolbar Buttons
	 BizTalk Mapper Functoid Palette
	 BizTalk Mapper Shortcut Keys

	 Creating Links
	 Matching Node-Hierarchy Levels
	 Viewing Record, Field, Link, and Functoid Properties
	 Understanding Functoids
	 Using Cascading Functoids
	 Using Cumulative Functoids
	 Using Database Functoids
	 Using the Record Count Functoid
	 Using the Index Functoid
	 Using the Iteration Functoid
	 Using the Value Mapping Functoid
	 Using the Value Mapping (Flattening) Functoid
	 Using the Looping Functoid

	 Compiling Maps
	 Testing Maps

	 Resources
	 Customizing Your Display
	 String Functoids
	 Mathematical Functoids
	 Logical Functoids
	 Date and Time Functoids
	 Conversion Functoids
	 Scientific Functoids
	 Cumulative Functoids
	 Database Functoids
	 Advanced Functoids
	 Maps for Integrating BizTalk Services

	 Troubleshooting BizTalk Editor and BizTalk Mapper
	 Password required when trying to connect to a remote WebDAV server
	 Failure to connect to WebDAV or to store files to WebDAV
	 ???.xml appears in the WebDAV dialog box
	 BizTalkServerRepositoryMaps folder appears in Retrieve from WebDAV dialog box
	 Retrieve from WebDAV dialog box or Store to WebDAV dialog box is empty
	 Failure to connect to http://localhost
	 Flat file not completely parsed when submitted to BizTalk Server
	 White space not preserved in flat file submitted to BizTalk Server
	 Test map fails
	 DTD Import Fails
	 Instance validation fails when using the Date or Time field

	 Integrating BizTalk Services
	 Using an HTTP Transport
	 Configuring the Source System to Use an HTTP Transport
	 Configuring the Destination System to Use an HTTP Transport

	 Using a non-HTTP Transport
	 Configuring the Source System to Use a Non-HTTP Transport
	 Configuring the Destination System to Use a Non-HTTP Transport

	BizTalk Server 2000 Interface Reference
	 BizTalk Server 2000 Interface Reference
	Using the BizTalk Messaging Configuration Object Model
	Object Model Reference
	 IBizTalkBase Interface
	 IBizTalkBase::Clear Method
	 IBizTalkBase::Create Method
	 IBizTalkBase::DateModified Property
	 IBizTalkBase::Handle Property
	 IBizTalkBase::Load Method
	 IBizTalkBase::LoadByName Method
	 IBizTalkBase::Name Property
	 IBizTalkBase::Remove Method
	 IBizTalkBase::Save Method

	 IBizTalkCertificateInfo Interface
	 IBizTalkCertificateInfo::Name Property
	 IBizTalkCertificateInfo::Reference Property
	 IBizTalkCertificateInfo::Store Property
	 IBizTalkCertificateInfo::Usage Property

	 IBizTalkChannel Interface
	 IBizTalkChannel::Comments Property
	 IBizTalkChannel::ControlNumberValue Property
	 IBizTalkChannel::DecryptionCertificateInfo Property
	 IBizTalkChannel::ExpectReceiptTimeout Property
	 IBizTalkChannel::Expression Property
	 IBizTalkChannel::GetConfigComponent Method
	 IBizTalkChannel::GetConfigData Method
	 IBizTalkChannel::InputDocument Property
	 IBizTalkChannel::IsReceiptChannel Property
	 IBizTalkChannel::LoggingInfo Property
	 IBizTalkChannel::MapContent Property
	 IBizTalkChannel::MapReference Property
	 IBizTalkChannel::OutputDocument Property
	 IBizTalkChannel::Port Property
	 IBizTalkChannel::PortGroup Property
	 IBizTalkChannel::ReceiptChannel Property
	 IBizTalkChannel::RetryCount Property
	 IBizTalkChannel::RetryInterval Property
	 IBizTalkChannel::SetConfigComponent Method
	 IBizTalkChannel::SetConfigData Method
	 IBizTalkChannel::SignatureCertificateInfo Property
	 IBizTalkChannel::SourceEndpoint Property
	 IBizTalkChannel::TrackFields Property
	 IBizTalkChannel::VerifySignatureCertificateInfo Property

	 IBizTalkConfig Interface
	 IBizTalkConfig::Certificates Property
	 IBizTalkConfig::Channels Property
	 IBizTalkConfig::CreateChannel Method
	 IBizTalkConfig::CreateDocument Method
	 IBizTalkConfig::CreateEnvelope Method
	 IBizTalkConfig::CreateOrganization Method
	 IBizTalkConfig::CreatePort Method
	 IBizTalkConfig::CreatePortGroup Method
	 IBizTalkConfig::Documents Property
	 IBizTalkConfig::Envelopes Property
	 IBizTalkConfig::Organizations Property
	 IBizTalkConfig::PortGroups Property
	 IBizTalkConfig::Ports Property

	 IBizTalkDocument Interface
	 IBizTalkDocument::Content Property
	 IBizTalkDocument::LoadByPropertySet Method
	 IBizTalkDocument::NameSpace Property
	 IBizTalkDocument::PropertySet Property
	 IBizTalkDocument::Reference Property
	 IBizTalkDocument::TrackFields Property
	 IBizTalkDocument::Type Property
	 IBizTalkDocument::Version Property

	 IBizTalkEndPoint Interface
	 IBizTalkEndPoint::Alias Property
	 IBizTalkEndPoint::Application Property
	 IBizTalkEndPoint::Openness Property
	 IBizTalkEndPoint::Organization Property

	 IBizTalkEnvelope Interface
	 IBizTalkEnvelope::Content Property
	 IBizTalkEnvelope::Format Property
	 IBizTalkEnvelope::NameSpace Property
	 IBizTalkEnvelope::Reference Property
	 IBizTalkEnvelope::Version Property

	 IBizTalkLoggingInfo Interface
	 IBizTalkLoggingInfo::LogNativeInputDocument Property
	 IBizTalkLoggingInfo::LogNativeOutputDocument Property
	 IBizTalkLoggingInfo::LogXMLInputDocument Property
	 IBizTalkLoggingInfo::LogXMLOutputDocument Property

	 IBizTalkOrganization Interface
	 IBizTalkOrganization::Aliases Property
	 IBizTalkOrganization::Applications Property
	 IBizTalkOrganization::Comments Property
	 IBizTalkOrganization::CreateAlias Method
	 IBizTalkOrganization::CreateApplication Method
	 IBizTalkOrganization::GetDefaultAlias Method
	 IBizTalkOrganization::IsDefault Property
	 IBizTalkOrganization::LoadAlias Method
	 IBizTalkOrganization::LoadApplication Method
	 IBizTalkOrganization::RemoveAlias Method
	 IBizTalkOrganization::RemoveApplication Method
	 IBizTalkOrganization::SaveAlias Method
	 IBizTalkOrganization::SaveApplication Method

	 IBizTalkPort Interface
	 IBizTalkPort::Channels Property
	 IBizTalkPort::Comments Property
	 IBizTalkPort::ControlNumberValue Property
	 IBizTalkPort::Delimiters Property
	 IBizTalkPort::DestinationEndpoint Property
	 IBizTalkPort::EncodingType Property
	 IBizTalkPort::EncryptionCertificateInfo Property
	 IBizTalkPort::EncryptionType Property
	 IBizTalkPort::Envelope Property
	 IBizTalkPort::PrimaryTransport Property
	 IBizTalkPort::SecondaryTransport Property
	 IBizTalkPort::ServiceWindowInfo Property
	 IBizTalkPort::SignatureType Property

	 IBizTalkPortGroup Interface
	 IBizTalkPortGroup::AddPort Method
	 IBizTalkPortGroup::Channels Property
	 IBizTalkPortGroup::Ports Property
	 IBizTalkPortGroup::RemovePort Method

	 IBizTalkServiceWindowInfo Interface
	 IBizTalkServiceWindowInfo::FromTime Property
	 IBizTalkServiceWindowInfo::IsEnabled Property
	 IBizTalkServiceWindowInfo::ToTime Property

	 IBizTalkTransportInfo Interface
	 IBizTalkTransportInfo::Address Property
	 IBizTalkTransportInfo::Parameter Property
	 IBizTalkTransportInfo::Type Property

	 IDictionary Interface
	 IDictionary::Count Property
	 IDictionary::GetMultiple Method
	 IDictionary::NewEnum Property
	 IDictionary::Prefix Property
	 IDictionary::PutMultiple Method
	 IDictionary::Value Property

	 ISimpleList Interface
	 ISimpleList::Add Method
	 ISimpleList::Count Property
	 ISimpleList::Delete Method
	 ISimpleList::Item Property

	 Object Model Enumerations
	 BIZTALK_ENCODING_TYPE
	 BIZTALK_ENCRYPTION_TYPE
	 BIZTALK_OPENNESS_TYPE
	 BIZTALK_OPENNESS_TYPE_EX
	 BIZTALK_SIGNATURE_TYPE
	 BIZTALK_STORE_TYPE
	 BIZTALK_TRANSPORT_TYPE
	 BIZTALK_USAGE_TYPE
	 BIZTALK_CONFIGDATA_TYPE

	 Error Messages
	 Standard COM Errors
	 BizTalk Server 2000 Error Messages

	Submitting Documents
	 How To...
	 Read the Tracking Database
	 Submit a Document from a Remote Client

	Submitting Documents Reference
	 IBizTalkTrackData Interface
	 IBizTalkTrackData::GetInDocDetails Method
	 IBizTalkTrackData::GetInterchanges Method
	 IBizTalkTrackData::GetOutDocDetails Method

	 IBTSCustomProcess Interface
	 IBTSCustomProcess::Execute Method
	 IBTSCustomProcess::SetContext Method

	 IBTSCustomProcessContext Interface
	 IBTSCustomProcessContext::ChannelName Property
	 IBTSCustomProcessContext::DestID Property
	 IBTSCustomProcessContext::DestQualifier Property
	 IBTSCustomProcessContext::DocName Property
	 IBTSCustomProcessContext::EnvelopeName Property
	 IBTSCustomProcessContext::Openness Property
	 IBTSCustomProcessContext::PassThrough Property
	 IBTSCustomProcessContext::SourceID Property
	 IBTSCustomProcessContext::SourceQualifier Property

	 IInterchange Interface
	 IInterchange::CheckSuspendedQueue Method
	 IInterchange::DeleteFromSuspendedQueue Method
	 IInterchange::GetSuspendedQueueItemDetails Method
	 IInterchange::Submit Method
	 IInterchange::SubmitSync Method

	 Interchange Enumerations
	 CISReasonToQueue

	 Concepts
	 Submitting
	 Accessing the Suspended queue
	 Routing
	 Preprocessing Documents in a Receive Function
	 Steps for Submitting a Document by Using COM Interfaces

	Creating Custom Components
	 How To...
	 Creating Pipeline Components
	 Use the SAP R/3 AIC

	Creating Custom Components Reference
	 IBizTalkAcknowledge Interface
	 IBizTalkAcknowledge::AckDocument Method
	 IBizTalkAcknowledge::AckGroup Method
	 IBizTalkAcknowledge::AckInterchange Method

	 IBizTalkCorrelation Interface
	 IBizTalkCorrelation::Correlate Method

	 IFunctoid Interface
	 IFunctoid::FunctionsCount Property
	 IFunctoid::GetFunctionDescripter Method
	 IFunctoid::GetFunctionParameter Method
	 IFunctoid::GetScriptBuffer Method
	 IFunctoid::Version Property

	 IBizTalkParserComponent Interface
	 IBizTalkParserComponent::GetGroupDetails Method
	 IBizTalkParserComponent::GetGroupSize Method
	 IBizTalkParserComponent::GetInterchangeDetails Method
	 IBizTalkParserComponent::GetNativeDocumentOffsets Method
	 IBizTalkParserComponent::GetNextDocument Method
	 IBizTalkParserComponent::GroupsExist Method
	 IBizTalkParserComponent::ProbeInterchangeFormat Method

	 IBizTalkSerializerComponent Interface
	 IBizTalkSerializerComponent::AddDocument Method
	 IBizTalkSerializerComponent::GetDocInfo Method
	 IBizTalkSerializerComponent::GetGroupInfo Method
	 IBizTalkSerializerComponent::GetInterchangeInfo Method
	 IBizTalkSerializerComponent::Init Method

	 IBTSAppIntegration Interface
	 IBTSAppIntegration::ProcessMessage Method

	 IPipelineComponent Interface
	 IPipelineComponent::EnableDesign Method
	 IPipelineComponent::Execute Method

	 IPipelineComponentAdmin Interface
	 IPipelineComponentAdmin::GetConfigData Method
	 IPipelineComponentAdmin::SetConfigData Method

	 ISchemaImporter Interface
	 ISchemaImporter::ExtractXMLSchema Method
	 ISchemaImporter::ImportFormatDescription Property
	 ISchemaImporter::ImportFormatIcon Property
	 ISchemaImporter::NumberOfSupportedImportFormats Property

	 ISchemaImporterError Interface
	 ISchemaImporterError::IsWarning Property
	 ISchemaImporterError::NodePath Property
	 ISchemaImporterError::Text Property

	 ISchemaImporterErrorProvider Interface
	 ISchemaImporterErrorProvider::Error Property
	 ISchemaImporterErrorProvider::NumberOfErrors Property

	 Receipt Enumerations
	 DTA_ACK_STATUS
	 GeneratedReceiptLevel

	 Functoid Enumerations
	 CONNECTION_TYPE
	 FUNC_CATEGORY
	 FUNC_TYPE
	 SCRIPT_CATEGORY

	 Concepts
	 Creating Application Integration Components
	 Pipeline Application Integration Components
	 Lightweight Application Integration Components
	 Registering Application Integration Components

	 Using the IBizTalkParserComponent Interface
	 Sequence for Calling Methods of the IBizTalkParserComponent Interface

	 Using the IBizTalkSerializerComponent Interface
	 Sequence for Calling Methods of the IBizTalkSerializerComponent Interface

	 Supporting the Tracking Database with Parser and Serializer Components
	 Creating Receipt Correlator Components

	Administering XLANG Schedules
	 Administering XLANG Schedules
	XLANG Schedule Reference
	 IWFGroupAdmin Interface
	 IWFGroupAdmin::Count Property
	 IWFGroupAdmin::FullyQualifiedName Property
	 IWFGroupAdmin::InstanceIsResident Property
	 IWFGroupAdmin::InstanceIsSuspended Property
	 IWFGroupAdmin::Name Property
	 IWFGroupAdmin::ResumeInstance Method
	 IWFGroupAdmin::Shutdown Method
	 IWFGroupAdmin::Startup Method
	 IWFGroupAdmin::SuspendInstance Method
	 IWFGroupAdmin::TerminateInstance Method
	 IWFGroupAdmin::UseFileDSN Property

	 IWFProxy Interface
	 IWFProxy::FullyQualifiedName Property
	 IWFProxy::WorkflowInstance Property

	 IWFSystemAdmin Interface
	 IWFSystemAdmin::Count Property
	 IWFSystemAdmin::FullyQualifiedName Property
	 IWFSystemAdmin::IsWorkflowHost Property
	 IWFSystemAdmin::Item Property
	 IWFSystemAdmin::ShutdownAll Method
	 IWFSystemAdmin::ShutdownApp Method
	 IWFSystemAdmin::StartUp Method
	 IWFSystemAdmin::TestAdminStatus Method
	 IWFSystemAdmin::UseFileDSN Property

	 IWFWorkflowInstance Interface
	 IWFWorkflowInstance::CompletionStatus Property
	 IWFWorkflowInstance::FullPortName Property
	 IWFWorkflowInstance::FullyQualifiedName Property
	 IWFWorkflowInstance::InstanceId Property
	 IWFWorkflowInstance::IsCompleted Property
	 IWFWorkflowInstance::ModuleId Property
	 IWFWorkflowInstance::ModuleName Property
	 IWFWorkflowInstance::ParentInstanceID Property
	 IWFWorkflowInstance::Port Property
	 IWFWorkflowInstance::WaitForCompletion Method

	 BizTalk Messaging Services Code Samples

	Technical Articles
	BizTalk: Implement Design Patterns for Business Rules with Orchestration Designer
	BizTalk: Implement Design Patterns for Business Rules with Orchestration Designer
	BizTalk Messaging: Building BizTalk Server Custom Parsers and Serializers
	BizTalk Orchestration Example: Automating the Procurement Process
	BizTalk Orchestration: Transactions, Exceptions, and Debugging
	BizTalk Server 2000: Architecture and Tools for Trading Partner Integration
	High-Availability Solutions Using Microsoft Windows 2000 Cluster Service
	Learning BizTalk Server 2000
	Learning BizTalk Server 2000: Lesson 1
	Learning BizTalk Server 2000: Lesson 2
	Learning BizTalk Server 2000: Lesson 3
	Learning BizTalk Server 2000: Lesson 4
	Learning BizTalk Server 2000: Lesson 5
	Learning BizTalk Server 2000: Lesson 6
	Learning BizTalk Server 2000: Lesson 7

	Legacy File Integration Using Microsoft BizTalk Server 2000
	Microsoft BizTalk Server 2000: Building a Reverse Auction with BizTalk Orchestration
	Microsoft BizTalk Server 2000 Deployment Considerations
	Microsoft BizTalk Server 2000 Operations
	Using EDI with Microsoft BizTalk Server 2000
	WMI in Microsoft BizTalk Server 2000

