
 

  
   

 

  
   

 

 

  

 

   

   

 

  
   

Programming/Windows

ISBN: 978-0-7356-7176-8

About the Author
Charles Petzold has been writing 
about Windows programming 
for 25 years. A Windows Pioneer 
Award winner, Petzold is author 

of the classic Programming Windows, the 
widely acclaimed Code: The Hidden  
Language of Computer Hardware and  
Software, Programming Windows Phone 7, 
and more than a dozen other books.

Writing Windows 8 Apps with C# and XAML
Like Windows itself, this classic book has been reimagined for  
a new world of programming and user experiences. Guided  
by developer legend Charles Petzold, Programming Windows,  
Sixth Edition teaches how to use your existing C# skills with  
XAML and the Windows Runtime to create full-screen, touch  
apps for Windows 8.

Master the elementals
• Create and initialize objects with code or XAML
• Handle user-input events such as taps
• Manage and experiment with dynamic layout 
• Visually redefine a control’s appearance
• Create Windows Runtime libraries
• Use MVVM for data binding and commanding
• Work with asynchronous methods; write your own
• Animate transitions and create 2D and 3D effects
• Manage resolution, scaling, and navigation

Extend your skills and apps
• Handle pointer, manipulation, tap, and hold events
• Manipulate bitmaps and rich text
• Work with GPS and orientation sensors 
• Call Win32® and DirectX® functions
• Enable share, search, and print

microsoft.com/mspress

U.S.A. $59.99
Canada  $62.99

[Recommended ]

 

  
   

 

  
   

 

 

  

 

   

   

 

  
   

Get C# and C++ code samples
Ready to download at: 
http://go.microsoft.com/FWLink/?Linkid=277058

 

About the Sixth Edition
• Completely rewritten for Windows 8

• Focuses on creating apps using C#,  
 XAML, and the Windows Runtime

• Expertly teaches essential skills in Part 1:  
 Elementals

• Rounds out your Windows 8 education  
 in Part 2: Specialties

• Provides code samples in both C#  
 and C++

edition

Petzold

Program
m

ing 
W

indow
s  

W
riting W

indow
s 8 Apps w

ith C# and XAM
L

Sixth Edition
Programming Windows

Kraig Brockschmidt

Programming 
Windows Store 
Apps with HTML, 
CSS, and JavaScript  
Second Edition

Pr
of

es
sio

na
l

FIRST 
PREVIEW

spine = 2.07”



FIRST PREVIEW 

This excerpt provides early content from a book currently 

in development, and is still in draft, unedited format. See 

additional notice below. 

PUBLISHED BY 

Microsoft Press 

A Division of Microsoft Corporation 

One Microsoft Way 

Redmond, Washington 98052-6399 

 

Copyright © 2013 Microsoft Corporation 

  

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 

means without the written permission of the publisher. 

 

This document supports a preliminary release of a software product that may be changed substantially prior to 

final commercial release. This document is provided for informational purposes only and Microsoft makes no 

warranties, either express or implied, in this document. Information in this document, including URL and other 

Internet website references, is subject to change without notice. The entire risk of the use or the results from 

the use of this document remains with the user.  

 

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, 

people, places, and events depicted in examples herein are fictitious. No association with any real company, 

organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be 

inferred. 

 

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty 

/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of 

their respective owners. 

 

This book expresses the author’s views and opinions. The information contained in this book is provided without 

any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers or 

distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this 

book. 

 

Acquisitions, Developmental, and Project Editor: Devon Musgrave 

Cover: Twist Creative • Seattle and Joel Panchot 

 

2



Introduction 

It seems like it was only a few months ago that I was writing the introduction for the first edition of this 

book, Programming Windows 8 Apps in HTML, CSS, and JavaScript. Of course, it was only 8 months 

ago! It’s been a remarkably short time between the release of Windows 8 and the Windows 8.1 Preview 

that we’ve made available as of June 26th 2013 for the //build conference. And yet much has been 

improved in the Windows platform during that time. 

First of all, however, let me thank the hundreds of thousands of readers who downloaded the first 

edition of this ebook, both directly from Microsoft Press and from the Amazon Kindle store where the 

book has maintained a high ranking among programming titles as well as within the broader computer 

& technology category. I’m delighted that this work has been serving you well, and I was certainly 

inspired to start in on this second edition as soon as I began reading the specifications for Windows 8.1 

Preview. My notes on what to add, what to change, and what to expand are quite lengthy! 

In this First Preview of the second edition, which constitutes only those chapters that I and my 

editors have worked through so far, I will not cover the whole Windows 8.1 Preview story, of course. 

For that I can still recommend the first edition of this book as a basis. Then check out the session videos 

from //build 2013 that you can find through http://buildwindows.com. The Windows Developer Center, 

http://dev.windows.com, also has updated documentation that covers the Windows 8.1 Preview, so you 

can find much more there. I can specifically recommend Windows 8.1 Preview: New APIs and features 

for developers. 

This second edition is intended to stand alone for developers who are starting with Windows 8.1 

Preview. It represents the state of Windows 8.1 Preview rather than trying to document the delta from 

Windows 8. For this reason I’m not going into much detail about migrating apps from Windows 8 nor 

trying to highlight all the changes to both APIs and behaviors. Check the Developer Center for such 

information. 

Here’s a quick summary of what’s in this First Preview: 

 Chapter 1, “The Life Story of a Windows Store App,” is much the same as in the first edition, 

with some small additions. For the most part, the core characteristics of the Windows platform 

is the same as with Windows 8, with the biggest exception being the view model for apps where 

we now have a variable sizing model. 

 Chapter 2, “Quickstart,” is updated for Windows 8.1 Preview, and I’ve added some sections that 

cover extra improvements to the Here My Am! app that we’ll be building over the course of the 

book. 

 Chapter 3, “App Anatomy, Page Navigation, and Promises,” is expanded from the first edition. 

Besides updating the text for small bits like new tile sizes in Windows 8.1 Preview, I’ve added a 

section on extended splash screens, tightened up the discussion of promises, written out some 

3

http://aka.ms/BrockschmidtBook
http://buildwindows.com/
http://dev.windows.com/
http://msdn.microsoft.com/library/windows/apps/bg182410
http://msdn.microsoft.com/library/windows/apps/bg182410


details of the new task scheduler for the UI thread, and included a new section on debugging 

and profiling. 

 Chapter 4, “Using Web Content and Services,” is a mixture of new content and networking 

topics from the first edition’s Chapter 14. I moved these topics earlier in the book because using 

web content is increasingly important for apps, if not essential. This chapter covers network 

connectivity, hosting content (especially with the new webview control), making HTTP requests 

(especially through the new Windows.Web.Http.HttpClient API), background transfers (which 

have been improved), authentication, and a little on Live Services. 

 Appendix A, “Demystifying Promises,” completes the discussion of promises that starts in 

Chapter 3. That is, Chapter 3 covers the essentials about using promises, which are often 

returned from asynchronous Windows Runtime APIs. After writing the first edition, I wanted to 

spend more time with promises for my own sake, but it’s just my nature to leave a paper trail of 

my learnings! So, in this appendix we start from scratch about what promises are, see how 

promises are expressed in WinJS, explore how to create and source promises, and then pick 

apart some specific promise-heavy code. 

 Appendix B, “Additional Networking Topics,” contains material that is related to Chapter 4 but 

didn’t fit into that flow or that is more peripheral in nature. 

As you can see, in this second edition I’ll be using appendices to go deeper into certain topics that 

would be too much of a distraction from the main flow of the chapters. Let me know what you think. 

Some of this material I’ve already posted on my blog, http://www.kraigbrockschmidt.com/blog, where 

I’ve been working on various topics since we published the first edition. I’ll continue to be posting 

there, though perhaps not quite on a daily basis as work on this second edition takes priority! 

Be mindful that the chapter organization of this second edition is still in flux, so references to later 

chapters are subject to change. As you can expect from the length of the change list I mentioned 

earlier, I’m going to be adding many pages to this second edition that all need to be appropriately 

organized! 

Who This Book Is For 

This book is about writing Windows Store apps using HTML5, CSS3, and JavaScript. Our primary focus 

will be on applying these web technologies within the Windows 8 and Windows 8.1 Preview platform, 

where there are unique considerations, and not on exploring the details of those web technologies 

themselves. For the most part, then, I'm assuming that you're already at least somewhat conversant 

with these standards. We will cover some of the more salient areas like the CSS grid, which is central to 

app layout, but otherwise I trust that you're capable of finding appropriate references for most 

everything else. 

That said, much of this book is not specific to HTML, CSS, or JavaScript at all, because it’s focused on 

4

http://www.kraigbrockschmidt.com/blog


the Windows platform and the Windows Runtime (WinRT) APIs. As such, at least half of this book will 

be useful to developers working in other languages (like C# or C++) who want to understand the 

system better. Much of Chapter 4 and Appendix B in this First Preview, for example, is specific to 

WinRT. The subjects of app anatomy and promises in Chapter 3 and Appendix A, on the other hand, 

are very specific to the JavaScript option. In any case, this is a free ebook, so there’s no risk, regardless 

of your choice of language and presentation technology! 

In this book I'm assuming that your interest in Windows has at least two basic motivations. One, you 

probably want to come up to speed as quickly as you can, perhaps to carve out a foothold in the 

Windows Store sooner rather than later. Toward that end, I've front-loaded the early chapters with the 

most important aspects of app development that also give you experience with the tools, the API, and 

some core platform features. On the other hand, you probably also want to make the best app you can, 

one that performs really well and that takes advantage of the full extent of the platform. Toward this 

end, I've also endeavored to make this book comprehensive, helping you at least be aware of what's 

possible and where optimizations can be made. 

Many insights have come to me from working directly with real-world developers on their real-

world apps. As part of the Windows Ecosystem team, myself and my teammates have been on the front 

lines bringing those first apps to the Windows Store. This has involved writing bits of code for those 

apps and investigating bugs, along with conducting design, code, and performance reviews with 

members of the Windows engineering team. As such, one of my goals with this book is to make that 

deep understanding available to many more developers, including you! 

What You'll Need (Can You Say “Samples”?) 

To work through this book, you should have Windows 8.1 Preview installed on your development 

machine, along with the Windows SDK for Windows 8.1 Preview and the associated tools. All the tools, 

along with a number of other resources, are listed on the Windows 8.1 Preview page. You’ll specifically 

need Microsoft Visual Studio Express 2013 for Windows 8.1 Preview. We’ll also acquire other tools 

along the way as we need them in this ebook. (Note that for all the screen shots in this book, I switched 

Visual Studio from its default “dark” color theme to the “light” theme, as the latter works better against 

a white page.) 

Also be sure to download the Samples pack listed on this page, or visit Windows app samples and 

specifically download the SDK’s JavaScript samples. We'll be drawing from many—if not most—of 

these samples in the chapters ahead, pulling in bits of their source code to illustrate how many 

different tasks are accomplished. 

One of my secondary goals in this book, in fact, is to help you understand where and when to use 

the tremendous resources in what is clearly the best set of samples I’ve ever seen for any release of 

Windows. You’ll often be able to find a piece of code in one of the samples that does exactly what you 

need in your app or that is easily modified to suit your purpose. For this reason I’ve made it a point to 

personally look through every one of the JavaScript samples, understand what they demonstrate, and 

5

http://msdn.microsoft.com/en-US/windows/apps/bg182409
http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-App-Samples/file/60708/47/Windows%208%20app%20samples.zip
http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-App-Samples


then refer to them in their proper context. This, I hope, will save you the trouble of having to do that 

level of research yourself and thus make you more productive in your development efforts. 

In some cases I’ve taken one of the SDK samples and made certain modifications, typically to 

demonstrate an additional feature but sometimes to fix certain bugs or demonstrate a better 

understanding that came about after the sample had to be finalized. I’ve included these modifications 

in the companion content for this book, which you can download at 

http://aka.ms/FirstPreview/CompContent 

That companion content also contains a few additional examples of my own, which I always refer to 

as “examples” to make it clear that they aren’t official SDK content. (I’ve also rebranded the modified 

samples to make it clear that they’re part of this book.) I’ve written these to fill gaps that the SDK 

samples don’t address, or to provide a simpler demonstration of a feature that a related sample shows 

in a more complex manner. You’ll also find many revisions of an app I call “Here My Am!” that we’ll 

start building in Chapter 2 and again refine throughout the course of this book. This includes localizing 

it into a number of different languages by the time we reach the end. (By the way, you might find that 

with Windows 8.1 Preview that the app runs better outside the debugger; in the debugger I’ve seen 

issues getting geolocation readings, which limits the app’s functionality quite a bit.) 

The companion content includes a few videos that explain how to use tools like Visual Studio and 

Blend much better than text. Note that with this First Preview, though, that I have not updated these 

videos to the Windows 8.1 Preview tools. They’re still be useful, but keep an eye out for changes (such 

as the Device tab in Blend). 

Beyond all this, you’ll find that the Windows samples gallery as well as the Visual Studio sample 

gallery also lets you search and browse additional projects that have been contributed by other 

developers—perhaps also you! (On the Visual Studio site, by the way, be sure to filter on Windows 

Store apps because the gallery covers all Microsoft platforms.) And, of course, there will be many more 

developers who share projects on their own. 

In this book I occasionally refer to posts on the Windows 8 App Developer blog, which has recently 

become the Windows App Builder Blog. This is a great resource to follow, and you might also refer to 

the Windows Store for Developers blog, which has also merged into the App Builder site. And if you’re 

interested in the Windows 8 backstory—that is, how Microsoft approached this whole process of 

reimagining the operating system—check out the Building Windows 8 blog. 

Some Formatting Notes 

Throughout this book, identifiers that appear in code—such as variable names, property names, and 

API functions and namespaces—are formatted with a color and a fixed-point font. Here’s an example: 

Windows.Storage.ApplicationData.current. At times, a fully qualified name like this—those that 

include the entire namespace—can become quite long and don’t readily break across lines. In this First 

6

http://aka.ms/FirstPreview/CompContent
http://code.msdn.microsoft.com/windowsapps/
http://code.msdn.microsoft.com/vstudio
http://code.msdn.microsoft.com/vstudio
http://blogs.msdn.com/b/windowsappdev/
http://blogs.windows.com/windows/b/appbuilder/
http://blogs.msdn.com/b/windowsstore/
http://blogs.msdn.com/b/b8/


Preview we’ve elected not to hyphenate these, so with something like 

Windows.Security.Cryptography.CryptographicBuffer.convertStringToBinary you’ll see a gap 

on the previous line. We’ll take care of these for the final version of this second edition. 

For simplicity’s sake (and because such hyphens produced some headaches in the first edition of this 

book), I’ve often omitted the namespace because I trust you’ll see it from the context. Plus, it’s easy 

enough to search on the last piece of the identifier on http://dev.windows.com and find its reference 

page—or just click on the links I’ve included.  

Occasionally, you’ll also see an event name in a different color, as in datarequested. These 

specifically point out events that originate from Windows Runtime objects, for which there are a few 

special considerations for adding and removing event listeners in JavaScript to prevent memory leaks, 

as discussed in Chapter 3. I make a few reminders about this point throughout the chapters, but the 

purpose of this special color is to give you a quick reminder that doesn’t break the flow of the 

discussion otherwise. 

We Want to Hear from You 

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset. 

Please tell us what you think of this book at  

http://aka.ms/tellpress  

The survey is short, and we read every one of your comments and ideas. Thanks in advance for your 

input! 

Stay in Touch 

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress. And you can 

keep up with Kraig here: http://www.kraigbrockschmidt.com/blog. 

 

7

http://dev.windows.com/
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress
http://www.kraigbrockschmidt.com/blog


Chapter 1 

The Life Story of a Windows Store 

App: Platform Characteristics 

of Windows 8 

Paper or plastic? Fish or cut bait? To be or not to be? Standards-based or native? These are the 

questions of our time…. 

Well, OK, maybe most of these aren’t the grist for university-level philosophy courses, but certainly 

the last one has been increasingly important for app developers. Standards-based apps are great 

because they run on multiple platforms; your knowledge and experience with standards like HTML5 

and CSS3 are likewise portable. Unfortunately, because standards generally take a long time to 

produce, they always lag behind the capabilities of the platforms themselves. After all, competing 

platform vendors will, by definition, always be trying to differentiate! For example, while HTML5 now 

has a standard for geolocation/GPS sensors and has started on working drafts for other forms of sensor 

input (like accelerometers, compasses, near-field proximity, and so on), native platforms already make 

these available. And by the time HTML’s standards are in place and widely supported, the native 

platforms will certainly have added another set of new capabilities. 

As a result, developers wanting to build apps around cutting-edge features—to differentiate from 

their own competitors!—must adopt the programming language and presentation technology 

imposed by each native platform or take a dependency on a third-party framework that tries to bridge 

the differences. 

Bottom line: it’s a hard choice. 

Fortunately, Windows 8 (and subsequent versions, of course) provides what I personally think is a 

brilliant solution for apps. Early on, the Windows team set out to solve the problem of making native 

capabilities—the system API, in other words—directly available to any number of programming 

languages, including JavaScript. This is what’s known as the Windows Runtime API, or just WinRT for 

short (an API that’s gradually making its way onto the Windows Phone platform as well). 

WinRT APIs are implemented according to a certain low-level structure and then “projected” into 

different languages—namely C++, C#, Visual Basic, and JavaScript—in a way that looks and feels 

natural to developers familiar with those languages. This includes how objects are created, configured, 

and managed; how events, errors, and exceptions are handled; how asynchronous operations work (to 

keep the user experience fast and fluid); and even the casing of method, property, and event names. 

8



The Windows team also made it possible to write native apps that employ a variety of presentation 

technologies, including DirectX, XAML, and, in the case of apps written in JavaScript, HTML5 and CSS3.  

This means that Windows gives you—a developer already versed in HTML, CSS, and JavaScript 

standards—the ability to use what you know to write fully native Windows Store apps using the WinRT 

API and still utilize web content! And I do mean fully native apps that both offer great content in 

themselves and integrate deeply with the surrounding system and other apps (unlike “hybrids” where 

one simply hosts web content within a thin, nearly featureless native shell). These apps will, of course, 

be specific to the Windows platform, but the fact that you don’t have to learn a completely new 

programming paradigm is worthy of taking a week off to celebrate—especially because you won’t have 

to spend that week (or more) learning a complete new programming paradigm! 

It also means that you’ll be able to leverage existing investments in JavaScript libraries and CSS 

template repositories: writing a native app doesn’t force you to switch frameworks or engage in 

expensive porting work. 

That said, it is also possible to use multiple languages to write an app, leveraging the dynamic 

nature of JavaScript for app logic while leveraging languages like C# and C++ for more 

computationally intensive tasks. (See “Sidebar: Mixed Language Apps” later in this chapter.) 

Throughout this book we’ll explore how to leverage what you know of standards-based web 

technologies to build great Windows Store apps. In the next chapter we’ll focus on the basics of a 

working app and the tools used to build it. Then we’ll look at fundamentals like the fuller anatomy of 

an app, using web content, controls, collections, layout, commanding, state management, and input, 

followed by chapters on media, animations, contracts through which apps work together, devices, 

WinRT components (through which you can use other programming languages and the APIs they can 

access), and the Windows Store (a topic that includes localization and accessibility). There is much to 

learn. 

For starters, let’s talk about the environment in which apps run and the characteristics of the 

platform on which they are built—especially the terminology that we’ll depend on in the rest of the 

book (highlighted in italics). We’ll do this by following an app’s journey from the point when it first 

leaves your hands, through its various experiences with your customers, to where it comes back home 

for renewal and rebirth (that is, updates). For in many ways your app is like a child: you nurture it 

through all its formative stages, doing everything you can to prepare it for life in the great wide world. 

So it helps to understand the nature of that world!  

Terminology note What we refer to as Windows Store apps, or sometimes just Store apps, are those 

that are acquired from the Windows Store and for which all the platform characteristics in this chapter 

(and book) apply. These are distinctly different from traditional desktop applications that are acquired 

through regular retail channels and installed through their own installer programs. Unless noted, then, 

an “app” in this book refers to a Windows Store app. 

9



Leaving Home: Onboarding to the Windows Store 

For Windows Store apps, there’s really one port of entry into the world: customers always acquire, 

install, and update apps through the Windows Store. Developers and enterprise users can side-load 

apps, but for the vast majority of the people you care about, they go to the Windows Store and 

nowhere else. 

This obviously means that an app—the culmination of your development work—has to get into the 

Store in the first place. This happens when you take your pride and joy, package it up, and upload it to 

the Store by using the Store/Upload App Packages command in Visual Studio.1 The package itself is an 

appx file (.appx)—see Figure 1-1—that contains your app’s code, resources, libraries, and a manifest. 

The manifest describes the app (names, logos, etc.), the capabilities it wants to access (such as areas of 

the file system or specific devices like cameras), and everything else that’s needed to make the app 

work (such as file associations, declaration of background tasks, and so on). Trust me, we’ll become 

great friends with the manifest! 

 

FIGURE 1-1  An appx package is simply a zip file that contains the app’s files and assets, the app manifest, a 

signature, and a sort of table-of-contents called the blockmap. When uploading an app, the initial signature is 

provided by Visual Studio; the Windows Store will re-sign the app once it’s certified. The blockmap, for its part, 

describes how the app’s files are broken up into 64K blocks. In addition to providing certain security functions (like 

detecting whether a package has been tampered with) and performance optimization, the blockmap is used to 

determine exactly what parts of an app have been updated between versions so the Windows Store only needs to 

download those specific blocks rather than the whole app anew. This greatly reduces the time and overhead that a 

user experiences when acquiring and installing updates. 

                                                           

1 To do this you’ll need to create a developer account with the Store by using the Store > Open Developer Account command in 

Visual Studio Express. Visual Studio Express and Expression Blend, which we’ll be using as well, are free tools that you can obtain 

from http://dev.windows.com. This also works in Visual Studio Ultimate, the fuller, paid version of this flagship development 

environment. 

10

http://dev.windows.com/


 

The upload process will walk you through setting your app’s name (which you do ahead of time 

using the Store > Reserve App Name and Store > Associate App with Store commands in Visual 

Studio), choosing selling details (including price tier, in-app purchases, and trial periods), providing a 

description and graphics, and also providing notes to manual testers. After that, your app goes through 

a series of job interviews, if you will: background checks (malware scans and GeoTrust certification) and 

manual testing by a human being who will read the notes you provide (so be courteous and kind!). 

Along the way you can check your app’s progress through the Windows Store Dashboard.2 

The overarching goal with these job interviews (or maybe it’s more like getting through airport 

security!) is to help users feel confident and secure in trying new apps, a level of confidence that isn’t 

generally found with apps acquired from the open web. As all apps in the Store are certified, signed, 

and subject to ratings and reviews, customers can trust all apps from the Store as they would trust 

those recommended by a reliable friend. Truly, this is wonderful news for most developers, especially 

those just getting started—it gives you the same access to the worldwide Windows market that has 

been previously enjoyed only by those companies with an established brand or reputation. 

It’s worth noting that because you set up pricing, trial versions, and in-app purchases during the on-

boarding process, you’ll have already thought about your app’s relationship to the Store quite a bit! 

After all, the Store is where you’ll be doing business with your app, whether you’re in business for fame, 

fortune, fun, or philanthropy. 

As a developer, indeed, this relationship spans the entire lifecycle of an app—from planning and 

development to distribution, support, and servicing. This is, in fact, why I’ve started this life story of an 

app with the Windows Store, because you really want to understand that whole lifecycle from the very 

beginning of planning and design. If, for example, you’re looking to turn a profit from a paid app or in-

app purchases, perhaps also offering a time-limited or feature-limited trial, you’ll want to engineer your 

app accordingly. If you want to have a free, ad-supported app, or if you want to use a third-party 

commerce solution for in-app purchases (bypassing revenue sharing with the Store), these choices also 

affect your design from the get-go. And even if you’re just going to give the app away to promote a 

cause or to just share your joy, understanding the relationship between the Store and your app is still 

important. For all these reasons, you might want to skip ahead and read the “Your App, Your Business” 

section of Chapter 18, "Apps for Everyone," before you start writing your app in earnest. Also, take a 

look at the Preparing your app for the Store topic on the Windows Developer Center. 

Anyway, if your app hits any bumps along the road to certification, you’ll get a report back with all 

the details, such as any violations of the Windows app certification requirements (part of the Windows 

Store agreements section). Otherwise, congratulations—your app is ready for customers! 

                                                           

2 All of the automated tests except the malware scans are incorporated into the Windows App Certification Kit, affectionately 

known as the WACK. This is part of the Windows SDK that is itself included with the Visual Studio Express/Expression Blend 

download. If you can successfully run the WACK during your development process, you shouldn’t have any problem passing the 

first stage of onboarding. 

11

https://appdev.microsoft.com/StorePortals
http://msdn.microsoft.com/library/windows/apps/hh694079.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694082.aspx
http://msdn.microsoft.com/library/windows/apps/hh694082.aspx


 

Sidebar: The Store API and Product Simulator 

The Windows.ApplicationModel.Store.CurrentApp class in WinRT provides the ability for 

apps to retrieve their product information from the store (including in-app purchases), check 

license status, and prompt the user to make purchases (such as upgrading a trial or making an 

in-app purchase).  

Of course, this begs a question: how can an app test such features before it’s even in the 

Store? The answer is that during development, you use these APIs through the 

CurrentAppSimulator class instead. This is entirely identical to CurrentApp (and in the same 

namespace) except that it works against local data in an XML file rather than live Store data in 

the cloud. This allows you to simulate the various conditions that your app might encounter so 

that you can exercise all your code paths appropriately. Just before packaging your app and 

sending it to the Store, you just change CurrentAppSimulator to CurrentApp and you’re good 

to go. (If you forget, the simulator will simply fail on a non-developer machine, like those used by 

the Store testers.) 

Discovery, Acquisition, and Installation 

Now that your app is out in the world, its next job is to make itself known and attractive to potential 

customers. Simply said, while consumers can find your app in the Windows Store through browsing or 

search, you’ll still need to market your product as always. That’s one reality of publishing software that 

certainly hasn’t changed. That aside, even when your app is found in the Store it still needs to present 

itself well to its suitors. 

Each app in the Store has a product description page where people see your app description, screen 

shots, ratings and reviews, and the capabilities your app has declared in its manifest, as shown in Figure 

1-2. That last bit means you want to be judicious in declaring your capabilities. A music player app, for 

instance, will obviously declare its intent to access the user’s music library but usually doesn’t need to 

declare access to the pictures library unless it has a good justification. Similarly, a communications app 

would generally ask for access to the camera and microphone, but a news reader app probably 

wouldn’t. On the other hand, an ebook reader might declare access to the microphone if it had a 

feature to attach audio notes to specific bookmarks. 

12



 

FIGURE 1-2 A typical app page in the Windows Store, where the manifest in the app package determines what 

appears in the app permissions. PuzzleTouch, for example, declares the Pictures Library, Webcam, and Internet 

(Client) capabilities, which are shown by clicking Device Capabilities by the arrow. 

The point here is that what you declare needs to make sense to the user, and if there are any doubts 

you should clearly indicate the features related to those declarations in your app’s description. (Note 

how Puzzle Touch does that for the camera.) Otherwise the user might really wonder just what your 

news reader app is going to do with the microphone and might opt for another app that seems less 

intrusive.3 

The user will also see your app pricing, of course, and whether you offer a trial period. Whatever the 

case, if they choose to install the app (getting it for free, paying for it, or accepting a trial), your app 

now becomes fully incarnate on a real user’s device. The appx package is downloaded to the device 

and installed automatically along with any dependencies, such as the Windows Library for JavaScript 

(see “Sidebar: What is the Windows Library for JavaScript?”). As shown in Figure 1-3, the Windows 

deployment manager creates a folder for the app, extracts the package contents to that location, 

creates appdata folders (local, roaming, and temp, which the app can freely access, along with settings 

files for key-value pairs and some other system-managed folders), and does any necessary fiddling with 

the registry to install the app’s tile on the Start screen, create file associations, install libraries, and do all 

those other things that are again described in the manifest. It can also start live tile updates if you 

provide an appropriate URI in your manifest. There are no user prompts during this process—especially 

not those annoying dialogs about reading the licensing agreement! 

                                                           

3 The user always has the ability to disallow access to sensitive resources at run time for those apps that have declared the intent, 

as we’ll see later. However, as those capabilities surface directly in the Windows Store, you want to be careful to not declare those 

that you don’t really need. 

13



 

FIGURE 1-3  The installation process for Windows Store apps; the exact sequence is unimportant. 

In fact, licensing terms are integrated into the Store; acquisition of an app implies acceptance of 

those terms. (However, it is perfectly allowable for apps to show their own license acceptance page on 

startup, as well as require an initial login to a service if applicable.) But here’s an interesting point: do 

you remember the real purpose of all those lengthy, annoyingly all-caps licensing agreements that we 

pretend to read? Almost all of them basically say that you can install the software on only one machine. 

Well, that changes with Windows Store apps: instead of being licensed to a machine, they are licensed 

to the user, giving that user the right to install the app on up to five different devices. 

In this way Store apps are a much more personal thing than desktop apps have traditionally been. 

They are less general-purpose tools that multiple users share and more like music tracks or other media 

that really personalize the overall Windows experience. So it makes sense that users can replicate their 

customized experiences across multiple devices, something that Windows supports through automatic 

roaming of app data and settings between those devices. (More on that later.) 

In any case, the end result of all this is that the app and its necessary structures are wholly ready to 

awaken on a device, as soon as the user taps a tile on the Start page or launches it through features like 

Search and Share. And because the system knows about everything that happened during installation, 

it can also completely reverse the process for a 100% clean uninstall—completely blowing away the 

appdata folders, for example, and cleaning up anything and everything that was put in the registry. 

This keeps the rest of the system entirely clean over time, even though the user may be installing and 

uninstalling hundreds or thousands of apps. We like to describe this like the difference between having 

guests in your house and guests in a hotel. In your house, guests might eat your food, rearrange the 

furniture, break a vase or two, feed leftovers to the pets, stash odds and ends in the backs of drawers, 

and otherwise leave any number of irreversible changes in their wake (and you know desktop apps that 

14



do this, I’m sure!). In a hotel, on the other hand, guests have access only to a very small part of the 

whole structure, and even if they trash their room, the hotel can clean it out and reset everything as if 

the guest was never there. 

Sidebar: What Is the Windows Library for JavaScript? 

The HTML, CSS, and JavaScript code in a Windows Store app is only parsed, compiled, and 

rendered at run time. (See the “Playing in Your Own Room: The App Container” section below.) 

As a result, a number of system-level features for apps written in JavaScript, like controls, 

resource management, and default styling are supplied through the Windows Library for 

JavaScript, or WinJS, rather than through the Windows Runtime API. This way, JavaScript 

developers see a natural integration of those features into the environment they already 

understand, rather than being forced to use different kinds of constructs. 

WinJS, for example, provides an HTML implementation of a number of controls such that they 

appear as part of the DOM and can be styled with CSS like other intrinsic HTML controls. This is 

much more natural for developers than having to create an instance of some WinRT class, bind it 

to an HTML element, and style it through code or some other proprietary markup scheme. 

Similarly, WinJS provides an animations library built on CSS that embodies the Windows user 

experience so that apps don’t have to figure out how to re-create that experience themselves. 

Generally speaking, WinJS is a toolkit that contains a number of independent capabilities that 

can be used together or separately. So WinJS also provides helpers for common JavaScript 

coding patterns, simplifying the definition of namespaces and object classes, handling of 

asynchronous operations (that are all over WinRT) through promises, and providing structural 

models for apps, data binding, and page navigation. At the same time, it doesn’t attempt to wrap 

WinRT unless there is a compelling scenario where WinJS can provide real value. After all, the 

mechanism through which WinRT is projected into JavaScript already translates WinRT structures 

into those familiar to JavaScript developers. 

Truth be told, you can write a Windows Store app in JavaScript without WinJS, but you’ll 

probably find that it saves you from all kinds of tedious work. In addition, WinJS is shared 

between every Store app written in JavaScript, and it's automatically downloaded and updated as 

needed when dependent apps are installed. We’ll see many of its features throughout this book, 

though some won’t cross our path. In any case, you can always explore what’s available through 

the WinJS section of the Windows API reference. 

Sidebar: Third-Party Libraries 

WinJS is an example of a special shared library package that is automatically downloaded from 

the Windows Store for apps that depend on it. Microsoft maintains a few of these in the Store so 

that the package need be downloaded only once and then shared between apps. Shared third-

party libraries are not currently supported. 

15

http://msdn.microsoft.com/library/windows/apps/br211377.aspx


However, apps can freely use third-party libraries by bringing them into their own app 

package, provided of course that the libraries use only the APIs available to Windows Store apps. 

For example, apps written in JavaScript can certainly use jQuery, Modernizer, Dojo, prototype.js, 

Box2D, and others, with the caveat that some functionality, especially UI and script injection, 

might not be supported. Apps can also use third-party binaries, known as WinRT components, 

that are again included in the app package. See this chapter’s "Sidebar: Mixed Language Apps." 

Playing in Your Own Room: The App Container 

Now just as the needs of each day may be different when we wake up from our night’s rest, Store apps 

can wake up—be activated—for any number of reasons. The user can, of course, tap or click the app’s 

tile on the Start page. An app can also be launched in response to charms like Search and Share, 

through file or protocol associations, and a number of other mechanisms. We’ll explore these variants 

as we progress through this book. But whatever the case, there’s a little more to this part of the story 

for apps written in JavaScript. 

In the app’s hidden package folder are the same kind of source files that you see on the web: .html 

files, .css files, .js files, and so forth. These are not directly executable like .exe files for apps written in 

C#, Visual Basic, or C++, so something has to take those source files and produce a running app with 

them. When your app is activated, then, what actually gets launched is that something: a special app 

host process called wwahost.exe4, as shown in Figure 1-4. 

 

FIGURE 1-4  The app host is an executable (wwahost.exe) that loads, renders, and executes HTML, CSS, and 

JavaScript, in much the same way that a browser runs a web application. 

                                                           

4 “wwa” is an old acronym for Windows Store apps written in JavaScript; some things just stick…. 

16



The app host is more or less Internet Explorer without the browser chrome—more in that your app 

runs on top of the same HTML/CSS/JavaScript engines as Internet Explorer, less in that a number of 

things behave differently in the two environments. For example: 

 A number of methods in the DOM API are either modified or not available, depending on their 

design and system impact. For example, functions that display modal UI and block the UI thread 

are not available, like window.alert, window.open, and window.prompt. (Try 

Windows.UI.Popups.MessageDialog instead for some of these needs.) 

 The engines support additional methods, properties, and even CSS media queries that are 

specific to being an app as opposed to a website. Elements like audio, video, and canvas also 

have additional methods and properties. At the same time, objects like MSApp and methods like 

requestAnimationFrame that are available in Internet Explorer are also available to Store apps 

(MSApp, for its part, provides extra features too). 

 The default page of an app written in JavaScript runs in what’s called the local context wherein 

JavaScript code has access to WinRT, can make cross-domain HTTP requests, and can access 

remote media (videos, images, etc.). However, you cannot load remote script (from http[s] 

sources, for example), and script is automatically filtered out of anything that might affect the 

DOM and open the app to injection attacks (e.g., document.write and innerHTML properties). 

 Other pages in the app, as well as webview and iframe elements within a local context page, 

can run in the web context wherein you get web-like behavior (such as remote script) but don’t 

get WinRT access nor cross-domain HTTP requests (though you can use much of WinJS). Web 

context elements are generally used to host web content on a locally packaged page (like a 

map control), as we’ll see in Chapter 2, "Quickstart," or to load pages that are directly hosted on 

the web, while not allowing web pages to drive the app.  

For full details on all these behaviors, see HTML and DOM API changes list and HTML, CSS, and 

JavaScript features and differences on the Windows Developer Center, http://dev.windows.com. As with 

the app manifest, you should become good friends with the Developer Center. 

Now all Store apps, whether hosted or not, run inside an environment called the app container. This 

is an insulation layer, if you will, that blocks local interprocess communication and either blocks or 

brokers access to system resources. The key characteristics of the app container are described as follows 

and illustrated in Figure 1-5: 

 All Store apps (other than some that are built into Windows) run within a dedicated 

environment that cannot interfere with or be interfered with other apps, nor can apps interfere 

with the system. 

 Store apps, by default, get unrestricted read/write access only to their specific appdata folders 

on the hard drive (local, roaming, and temp). Access to everything else in the file system 

(including removable storage) has to go through a broker. This gatekeeper provides access only 

if the app has declared the necessary capabilities in its manifest and/or the user has specifically 

17

http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://dev.windows.com/


allowed it. We’ll see the specific list of capabilities shortly. 

 Access to sensitive devices (like the camera, microphone, and GPS) is similarly controlled—the 

WinRT APIs that work with those devices will fail if the broker blocks those calls. And access to 

critical system resources, such as the registry, simply isn’t allowed at all. 

 Store apps cannot programmatically launch other apps by name or file path but can do so 

through file or URI scheme associations. Because these are ultimately under the user’s control, 

there’s no guarantee that such an operation will start a specific app. However, we do encourage 

app developers to use app-specific URI schemes that will effectively identify your specific app as 

a target. Technically speaking, another app could come along and register the same URI scheme 

(thereby giving the user a choice), but this is unlikely with a URI scheme that’s closely related to 

the app’s identity. 

 Store apps are isolated from one another to protect from various forms of attack. This also 

means that some legitimate uses (like a snipping tool to copy a region of the screen to the 

clipboard) cannot be written as a Windows Store app; they must be a desktop application. 

 Direct interprocess communication is blocked between Store apps (except in some debugging 

cases), between Store apps and desktop applications, and between Store apps and local 

services. Apps can still communicate through the cloud (web services, sockets, etc.), and many 

common tasks that require cooperation between apps—such as Search and Share—are handled 

through contracts in which those apps don’t need to know any details about each other. 

 

FIGURE 1-5  Process isolation for Windows Store apps. 

18



Sidebar: Mixed Language Apps 

Windows Store apps written in JavaScript can only access WinRT APIs directly. Apps or libraries 

written in C#, Visual Basic, and C++ also have access to a subset of Win32 and .NET APIs, as 

documented on Win32 and COM for Windows Store apps. Unfair? Not entirely, because you can 

write a WinRT component in those other languages that make functionality built with those other 

APIs available in the JavaScript environment (through the same projection mechanism that 

WinRT itself uses). Because these components are compiled into binary dynamic-link libraries 

(DLLs), they will also typically run faster than the equivalent code written in JavaScript and also 

offer some degree of intellectual property protection (e.g., hiding algorithms). 

Such mixed language apps thus use HTML/CSS for their presentation layer and some app logic 

while placing the most performance critical or sensitive code in compiled DLLs. The dynamic 

nature of JavaScript, in fact, makes it a great language for gluing together multiple components. 

We’ll see more in Chapter 17, "WinRT Components." 

Note that when your main app is written in JavaScript, we recommend using only WinRT 

components written in C++ to avoid having two managed environments loaded into the same 

process. Using WinRT components written in C# or Visual Basic will work but incurs a significant 

memory overhead. 

Different Views of Life: Views and Resolution Scaling 

So, the user has tapped on an app tile, the app host has been loaded into memory, and it’s ready to get 

everything up and running. What does the user see? 

The first thing that becomes immediately visible is the app’s splash screen, which is described in its 

manifest with an image and background color. This system-supplied screen guarantees that at least 

something shows up for the app when it’s activated, even if the app completely gags on its first line of 

code or never gets there at all. In fact, the app has 15 seconds to get its act together and display its 

main window, or Windows automatically gives it the boot (terminates it, that is) if the user switches 

away. This avoids having apps that hang during startup and just sit there like a zombie, where often the 

user can only kill it off by using that most consumer-friendly tool, Task Manager. (Yes, I’m being 

sarcastic—Task Manager is today much more user-friendly than it used to be.) Of course, some apps 

will need more time to load, in which case you create an extended splash screen. This just means 

making the initial view of your main window look the same as the splash screen so that you can then 

overlay progress indicators or other helpful messages like “Go get a snack, friend, ‘cause yer gonna be 

here a while!” Better yet, why not entertain your users so that they have fun with your app even during 

such a process? We’ll see the details of extended splash screens in Chapter 3, “App Anatomy and Page 

Navigation.” 

Now, when a normally launched app comes up, it has full command of the entire screen—well, not 

19

http://msdn.microsoft.com/library/windows/apps/br205757.aspx


entirely. Windows reserves a one pixel space along every edge of the display through which it detects 

edge gestures, but the user doesn’t see that detail. Your app still gets to draw in those areas, mind you, 

but it will not be able to detect pointer events therein. A small sacrifice for full-screen glory! 

The purpose of those edge gestures—swipes from the edge of the screen toward the center—is to 

keep both system chrome and app commands (like menus and other commanding UI) out of the way 

until needed—an aspect of the design principle we call “content before chrome.” This helps the user 

fully stay immersed in the app experience. To be more specific, the left and right edge gestures are 

reserved for the system, whereas the top and bottom are for the app. Swiping up from the top or 

bottom edges, as you’ve probably seen, brings up the app bar on the bottom of the screen where an 

app places most of its commands, and possibly also a navigation bar on the top. 

When running full-screen, the user’s device can be oriented in either portrait or landscape, and apps 

can process various events to handle those changes. An app can also specify a preferred startup 

orientation in the manifest and can also lock the orientation when appropriate. For example, a movie 

player will generally want to lock into landscape mode such that rotating the device doesn’t change 

the display. We’ll see these layout details in Chapter 7, "Layout." 

What’s also true is that your app might not always be running full-screen. In landscape mode, you 

app can share the screen real estate with perhaps as many as four other apps, depending on the screen 

size.5 (See Figure 1-6.) By default, Windows allows the user to resize an app down to 500 pixels wide, 

and you can indicate in your manifest that you support the narrower 320px width. In practical terms, it 

means that your app layout must be responsive, as it’s called on the web, where you’re able to 

accommodate different aspect ratios and different widths and heights. Generally speaking, most if not 

all of this can be handled through CSS media queries using the orientation feature (to detect portrait 

or landscape aspect ratio) along with min-width and max-width. We’ll see distinct examples in Chapter 

2. It’s also worth noting that when one app launches another through file or protocol associations, it 

can specify whether and how it wants to remain visible. This makes it possible to really have two apps 

working together side-by-side. Indeed, the default behavior when the user activates a hyperlink in an 

app is that the browser will open in a 50/50 split view alongside the app.  

                                                           

5 For developers familiar with Windows 8, the distinct view states of filled, snapped, fullscreen-portrait, and fullscreen-

landscape are replaced in Windows 8.1 Preview and beyond with this variable sizing. 

20



 

FIGURE 1-6 Various arrangements of Windows Store apps—a 50/50 split view on the smaller screen (in front), and 

four apps sharing the screen on a large monitor (behind). Depending on the minimum size indicated in their 

manifests, apps must be prepared to show properly in any width and orientation, a process that generally just 

involves visibility of elements and layout that can often be handled entirely within CSS media queries. 

In narrow widths, especially the optional 320px minimum, apps will often change the view of their 

content or its level of detail. For instance, in portrait aspect ratios (height > width), horizontally 

oriented lists are typically switched to a vertical orientation, perhaps with fewer details. But don’t be 

nonchalant about this: consciously design views for every page in your app and design them well. After 

all, users like to look at things that are useful and beautiful, and the more an app does this with its 

narrow views, the more likely it is that users will keep that app visible even while they’re working in 

another. 

Another key point for all views is that they aren’t mode changes. When an app is resized but still 

visible, or when orientation changes, the user is essentially saying, “Please stand over here in this 

doorway, or please lean sideways.” So the app should never change what it’s doing (like switching from 

a game board to a high score list) when updating its view; it should just present itself appropriately for 

that width or orientation.  

Beyond these partial views, an app should also expect to make good use of many different screen 

sizes. The app will be run on many different displays, anywhere from 1024x768 (the minimum hardware 

requirement), all the way up to resolutions like 2560x1440. The guidance here is that apps with fixed 

content (like a game board) will generally scale in size across different resolutions, whereas apps with 

variable content (like a news reader) will generally show more content. For more details, refer to 

Guidelines for scaling to screens and the Designing UX for apps topic. 

21

http://msdn.microsoft.com/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/library/windows/apps/hh779072.aspx


It might also be true that you’re running on a high-resolution device that also has a very small 

screen (high pixel density), such as the 10.6” Surface Pro that has a 1920x1200 resolution. Fortunately, 

Windows does automatic scaling such that the app still sees a 1366x768 display (more or less) through 

CSS, JavaScript, and the WinRT API. In other words, you almost don’t have to care. The only concern is 

bitmap (raster) graphics, which need to accommodate those scales, as we’ll see in Chapter 7. 

As a final note, when an app is activated in response to a contract like Search or Share, its initial view 

might not be the full window at all but rather its specific landing page for that contract that overlays 

the current foreground app. We’ll see these details in Chapter 13, "Contracts." 

Sidebar: Single-Page vs. Multipage Navigation 

When you write a web application with HTML, CSS, and JavaScript, you typically end up with a 

number of different HTML pages and navigate between them by using <a href> tags or by 

setting document.location. 

This is all well and good and works in a Windows Store app, but it has several drawbacks. One 

is that navigation between pages means reloading script, parsing a new HTML document, and 

parsing and applying CSS again. Besides obvious performance implications, this makes it difficult 

to share variables and other data between pages, as you need to either save that data in 

persistent storage or stringify the data and pass it on the URI. 

Furthermore, switching between pages is visually abrupt: the user sees a blank screen while 

the new page is being loaded. This makes it difficult to provide a smooth, animated transition 

between pages as generally seen within the Windows personality—it’s the antithesis of “fast and 

fluid” and guaranteed to make designers cringe. 

To avoid these concerns, apps written in JavaScript are typically structured as a single HTML 

page (basically a container div) into which different bits of HTML content, called page controls in 

WinJS, are loaded into the DOM at run time, similar to how AJAX works. This has the benefit of 

preserving the script context and allows for transition animations through CSS and/or the WinJS 

animations library. We’ll see the details in Chapter 3. 

Those Capabilities Again: Getting to Data and Devices 

At run time, now, even inside the app container, your app has plenty of room to play and to delight 

your customers. It can employ web connectivity to its heart’s content, either directly hosting content in 

its layout with the webview control or obtaining data through HTTP requests (Chapter 4). An app has 

many different controls at its disposal, as we’ll see in Chapters 5 and 6, and can style them however it 

likes from the prosaic to the outrageous. Similarly, designers have the whole gamut of HTML and CSS 

to work with for their most fanciful page layout ideas, along with a Hub control that simplifies a 

common home page experience (Chapter 7).An app can work with commanding UI like the app bar 

22



(Chapter 8), manage state and user data (Chapters 9 and 10), and receive and process pointer events, 

which unify touch, mouse, and stylus (Chapter 11—with these input methods being unified, you can 

design for touch and get the others for free; input from the physical and on-screen keyboards are 

likewise unified). Apps can also work with sensors (Chapter 11), rich media (Chapter 12), animations 

(Chapter 13), contracts (Chapter 14), tiles and notifications (Chapter 15), , and various devices and 

printing (Chapter 16). They can optimize performance and extend their capabilities through WinRT 

components (Chapter 17), and they can adapt themselves to different markets, provide accessibility, 

and work with various monetization options like advertising, trial versions, and in-app purchases 

(Chapter 18). 

Many of these features and their associated APIs have no implications where user privacy is 

concerned, so apps have open access to them. These include controls, touch/mouse/stylus input, 

keyboard input, and sensors (like the accelerometer, inclinometer, and light sensor). The appdata 

folders (local, roaming, and temp) that were created for the app at installation are also openly 

accessible. Other features, however, are again under more strict control. As a person who works 

remotely from home, for example, I really don’t want my webcam turning on unless I specifically tell it 

to—I may be calling into a meeting before I’ve had a chance to wash up! Such devices and other 

protected system features, then, are again controlled by a broker layer that will deny access if (a) the 

capability is not declared in the manifest, or (b) the user specifically disallows that access at run time. 

Those capabilities are listed in the following table: 

Capability Description Prompts for user 

consent at run time 

Internet (Client) Outbound access to the Internet and public networks (which includes 

making requests to servers and receiving information in response).6 

No 

Internet (Client & Server) 

(superset of Internet (Client); 

only one needs to be declared) 

Outbound and inbound access to the Internet and public networks 

(inbound access to critical ports is always blocked). 

No 

Private Networks 

(Client & Server) 

Outbound and inbound access to home or work intranets (inbound access 

to critical ports is always blocked). 

No 

   

Music Library 

Pictures Library 

Video Library7 

Read/write access to the user’s Music/Pictures/Videos area on the file 

system (all files). 

No 

Removable Storage Read/write access to files on removable storage devices for specifically 

declared file types. 

No 

Microphone Access to microphone audio feeds (includes microphones on cameras). Yes 

Webcam Access to camera audio/video/image feeds. Yes 

Location Access to the user’s location via GPS. Yes 

Proximity The ability to connect to other devices through near-field communication 

(NFC). 

No 

                                                           

6 Note that network capabilities are not necessary to receive push notifications because those are received by the system 

and not the app. 
7 The Documents Library capability that was present in Windows 8 was removed as of Windows 8.1 Preview because the 

scenarios that actually needed it could be handled through file pickers. 

23



Enterprise Authentication Access to intranet resources that require domain credentials; not typically 

needed for most apps. Requires a corporate account in the Windows 

Store. 

No 

Shared User Certificates Access to software and hardware (smart card) certificates. Requires a 

corporate account in the Windows Store. 

Yes, in that the user 

must take action to 

select a certificate, 

insert a smart card, etc. 

 

When user consent is involved, calling an API to access the resource in question will prompt for user 

consent, as shown in Figure 1-7. If the user accepts, the API call will proceed; if the user declines, the 

API call will return an error. Apps must accordingly be prepared for such APIs to fail, and they must 

then behave accordingly. 

 

FIGURE 1-7 A typical user consent dialog that’s automatically shown when an app first attempts to use a brokered 

capability. This will happen only once within an app, but the user can control their choice through the Settings 

charm’s Permissions command for that app. 

When you first start writing apps, really keep the manifest and these capabilities in mind—if you 

forget one, you’ll see APIs failing even though all your code is written perfectly (or was copied from a 

working sample). In the early days of building the first Windows Store apps at Microsoft, we routinely 

forgot to declare the Internet (Client) capability, so even things like getting to remote media with an 

img element or making a simple call to a web service would fail. Today the tools do a better job of 

alerting you if you’ve forgotten a capability, but if you hit some mysterious problem with code that 

you’re sure should work, especially in the wee hours of the night, check the manifest! 

We’ll encounter many other sections of the manifest besides capabilities in this book. For example, 

you can provide a URI through which Windows can request tile updates so that your app has a live tile 

experience even before the user runs it the first time. The removable storage capability requires you to 

declare the specific file types for your app (otherwise access will generally be denied). The manifest also 

contains content URIs: specific rules that govern which URIs are known and trusted by your app and can 

thus act to some degree on the app’s behalf. The manifest is also where you declare things like your 

preferred orientation, background tasks (like playing audio or handling real-time communication), 

contract behaviors (such as which page in your app should be brought up in response to being invoked 

via a contract), custom protocols, and the appearance of tiles and notifications. You and your app will 

become bosom buddies with the manifest. 

The last note to make about capabilities is that while programmatic access to the file system is 

controlled by certain capabilities, the user can always point your app to other nonsystem areas of the 

file system—and any type of file—from within the file picker UI. (See Figure 1-8.) This explicit user 

action, in other words, is taken as consent for your app to access that particular file or folder 

24



(depending on what you’re asking for). Once you’re app is given this access, you can use certain APIs to 

record that permission so that you can get to those files and folders the next time your app is 

launched. 

In summary, the design of the manifest and the brokering layer is to ensure that the user is always in 

control where anything sensitive is concerned, and as your declared capabilities are listed on your app’s 

description page in the Windows Store, the user should never be surprised by your app’s behavior. 

  

FIGURE 1-8  Using the file picker UI to access other parts of the file system from within a Store app, such as folders 

on a drive root (but not protected system folders). This is done by tapping the down arrow next to “Files.” Typically, 

the file picker will look much more interesting when it’s pointing to a media library! 

Taking a Break, Getting Some Rest: Process Lifecycle 

Management 

Whew! We’ve covered a lot of ground already in this first chapter—our apps have been busy, busy, 

busy, and we haven’t even started writing any code yet! In fact, apps can become really busy when they 

implement certain sides of contracts. If an app declares itself as a Search, Share, Contact, or File Picker 

target in its manifest (among other things), Windows will activate the app in response to the 

appropriate user actions. For example, if the user invokes the Share charm and picks your app as a 

Share target, Windows will activate the app with an indication of that purpose. In response, the app 

displays its specific share UI—not the whole app—and when that task is complete, Windows will shut 

your app down again (or send it to the background if it was already running) without the need for 

additional user input. 

This automatic shutdown or sending the app to the background are examples of automatic lifecycle 

management for Windows Store apps that helps conserve power and optimize battery life. One reality 

of traditional multitasking operating systems is that users typically leave a bunch of apps running, all of 

25



which consume power. This made sense with desktop apps because many of them can be at least 

partially visible at once. But for Store apps, the system is boldly taking on the job itself and using the 

full-screen nature of those apps to its advantage. 

Apps typically need to be busy and active only when the user can see them (in whatever view). 

When most apps are no longer visible, there is really little need to keep them idling. It’s better to just 

turn them off, give them some rest, and let the visible apps utilize the system’s resources. 

So when an app goes to the background, Windows will automatically suspend it after about 5 

seconds (according to the wall clock). The app is notified of this event so that it can save whatever state 

it needs to (which I’ll describe more in the next section). At this point the app is still in memory, with all 

its in-memory structures intact, but it will simply not be scheduled for any CPU time. (See Figure 1-9.) 

This is very helpful for battery life because most desktop apps idle like a gasoline-powered car, still 

consuming a little CPU in case there’s a need, for instance, to repaint a portion of a window. Because a 

Windows Store app in the background is completely obscured, it doesn’t need to do such small bits of 

work and can be effectively frozen. In this sense it is much more like a modern electric vehicle that can 

be turned on and off as often as necessary to minimize power consumption. 

If the user then switches back to the app (in whatever view, through whatever gesture), it will be 

scheduled for CPU time again and resume where it left off (adjusting its layout for the view, of course). 

The app is also notified of this event in case it needs to re-sync with online services, update its layout, 

refresh a view of a file system library, or take a new sensor reading because any amount of time might 

have passed since it was suspended. Typically, though, an app will not need to reload any of its own 

state because it was in memory the whole time. 

 

FIGURE 1-9  Process lifetime states for Windows Store apps.  

There are a couple of exceptions to this. First, Windows provides a background transfer API—see 

Chapter 4—to offload downloads and uploads from app code, which means apps don’t have to be 

running for such transfers to happen. Apps can also ask the system to periodically update live tiles on 

the Start page with data obtained from a service, or they can employ push notifications (through the 

26



Windows Push Notification Service, WNS) so that they need not even be running for this purpose—see 

Chapter 15, “Tiles, Notifications, the Lock Screen, and Background Tasks.” Second, certain kinds of apps 

do useful things when they’re not visible, such as audio players, communications apps, or those that 

need to take action when specific system events occur (like a network change, user login, etc.). With 

audio, as we’ll see in Chapter 12, “Media,” an app specifies background audio in its manifest (where 

else!) and sets certain properties on the appropriate audio elements. This allows it to continue running 

in the background. With system events, as we’ll also see in Chapter 15, an app declares background 

tasks in its manifest that are tied to specific functions in their code. In this case, Windows will wake the 

app from the suspended state when an appropriate trigger occurs. This is shown at the bottom of 

Figure 1-9. 

Over time, of course, the user might have many apps in memory, and most of them will be 

suspended and consume very little power. Eventually there will come a time when the foreground 

app—especially one that’s just been launched—needs more memory than is available. In this case, 

Windows will automatically terminate one or more apps, dumping them from memory. (See Figure 1-9 

again.) 

But here’s the rub: unless a user explicitly closes an app—by using Alt+F4 or a top-to-bottom swipe, 

because Windows Store policy specifically disallows apps with their own close commands or gestures—

she still rightly thinks that the app is running. If the user activates it again (as from its tile), she will 

expect to return to the same place she left off. For example, a game should be in the same place it was 

before (though automatically paused), a reader should be on the same page, and a video should be 

paused at the same time. Otherwise, imagine the kinds of ratings and reviews your app will be getting 

in the Windows Store! 

So you might say, “Well, I should just save my app’s state when I get terminated, right?” Actually, no: 

your app will not be notified when it’s terminated. Why? For one, it’s already suspended at that time, so 

no code will run. In addition, if apps need to be terminated in a low memory condition, the last thing 

you want is for apps to wake up and try to save state which might require even more memory! It’s 

imperative, as hinted before, that apps save their state when being suspended and ideally even at other 

checkpoints during normal execution. So let’s see how all that works. 

Remembering Yourself: App State and Roaming 

To step back for a moment, one of the key differences between traditional desktop applications and 

Windows Store apps is that the latter are inherently stateful. That is, once they’ve run the first time, they 

remember their state across invocations (unless explicitly closed by the user or unless they provide an 

affordance to reset the state explicitly). Some desktop applications work like this, but most suffer from 

a kind of identity crisis when they’re launched. Like Gilderoy Lockhart in Harry Potter and the Chamber 

27



of Secrets, they often start up asking themselves, “Who am I?”8 with no sense of where they’ve been or 

what they were doing before. 

Clearly this isn’t a good idea with Store apps whose lifetime is being managed automatically. From 

the user’s point of view, apps are always running even if they’re not. It’s therefore critical that apps first 

manage settings that are always in effect and then also save their session state when being suspended. 

This way, if the app is terminated and restarted, it can reload that session state to return to the exact 

place it was before. (An app receives a flag on startup to indicate its previous execution state, which 

determines what it should do with saved session state. Details are in Chapter 3.) 

There’s another dimension to statefulness too. Remember from earlier in this chapter that a user can 

install the same Windows Store app on up to five different devices? Well, that means that an app, 

depending on its design of course, can also be stateful between those devices. That is, if a user pauses a 

video or a game on one device or has made annotations to a book or magazine on one device, the 

user will naturally want to be able to go to another device and pick up at exactly the same place. 

Fortunately, Windows makes this easy—really easy, in fact—by automatically roaming app settings 

and state, along with Windows settings, between devices on which the user is logged in with the same 

Microsoft account, as shown in Figure 1-10. 

 

FIGURE 1-10  Automatic roaming of app roaming data (folder contents and settings) between devices. 

                                                           

8 For those readers who have not watched this movie all the way through the credits, there’s a short vignette at the very end. 

During the movie, Lockhart—a prolific, narcissistic, and generally untruthful autobiographer—loses his memory from a backfiring 

spell. So in the vignette he’s shown in a straitjacket on the cover of his newest book, Who am I? 

28



They key here is understanding how and where an app saves its state. (We already know when.) If 

you recall, there’s one place on the file system where an app has unrestricted access: its appdata folder. 

Within that folder, Windows automatically creates subfolders named LocalState, RoamingState, and 

TempState when the app is installed (I typically refer to them without the “State” appended.) The app 

can programmatically get to any of these folders at any time and can create in them all the files and 

subfolders to fulfill its heart’s desire. There are also APIs for managing individual Local and Roaming 

settings (key-value pairs), along with groups of settings called composites that are always written to, 

read from, and roamed as a unit. (These are useful when implementing the app’s Settings features for 

the Settings charm, as covered in Chapter 9, “The Story of State.”) 

Now, although the app can write as much as it wants to the appdata areas (up to the capacity of the 

file system), Windows will automatically roam the data in your Roaming sections only if you stay below 

an allowed quota (~100K, but there’s an API for that). If you exceed the limit, the data will still be there 

but none of it will be roamed. Also be aware that cloud storage has different limits on the length of 

filenames and file paths as well as the complexity of the folder structure. So keep your roaming state 

small and simple. If the app needs to roam larger amounts of data, use a secondary web service like 

SkyDrive. 

So the app really needs to decide what kind of state is local to a device and what should be roamed. 

Generally speaking, any kind of settings, data, or cached resources that are device-specific should 

always be local (and Temp is also local), whereas settings and data that represent the user’s interaction 

with the app are potential roaming candidates. For example, an email app that maintains a local cache 

of messages would keep those local but would roam account settings (sans passwords, see Tip below) 

so that the user has to configure the app on only one device. It would probably also maintain a per-

device setting for how it downloads or updates emails so that the user can minimize network/radio 

traffic on a mobile device. A media player, similarly, would keep local caches that are dependent on the 

specific device’s display characteristics, and it would roam playlists, playback positions, favorites, and 

other such settings (should the user want that behavior, of course). 

Tip For passwords in particular, always store them in the Credential Locker (see Chapter 4). If the user 

allows password roaming (PC Settings > Sync Your Settings > Passwords), the locker’s contents will be 

roamed automatically. 

When state is roamed, know that there’s a simple “last writer wins” policy where collisions are 

concerned. So, if you run the same app on two devices at the same time, don’t expect there to be any 

fancy merging or swapping of state. After all kinds of tests and analysis, Microsoft’s engineers finally 

decided that simplicity was best! 

Along these same lines, I'm told that if a user installs an app, roams some settings, uninstalls the 

app, then within "a reasonable time" reinstalls the app, the user will find that those settings are still in 

place. This makes sense, because it would be too draconian to blow away roaming state in the cloud 

the moment a user just happened to uninstall an app on all their devices. There's no guarantee of this 

behavior, mind you, but Windows will apparently retain roaming state for an app for some time. 

29



Sidebar: Local vs. Temp Data 

For local caching purposes, an app can use either local or temp storage. The difference is that 

local data is always under the app’s control. Temp data, on the other hand, can be deleted if the 

user runs the Disk Cleanup utility. Local data is thus best used to support an app’s functionality, 

and temp data is used to support run-time optimization at the expense of disk space. 

For Windows Store apps written in HTML and JavaScript, you can also use existing caching 

mechanisms like HTML5 local storage, IndexedDB, app cache, and so forth. All of these will be 

stored within the app’s LocalState folder. 

Sidebar: The Opportunity of Per-User Licensing and Data Roaming 

Details aside, I personally find the cross-device roaming aspect of the platform very exciting, 

because it enables the developer to think about apps as something beyond a single-device or 

single-situation experience. As I mentioned earlier, a user’s collection of apps is highly personal 

and it personalizes the device; apps themselves are licensed to the user and not the device. In 

that way, we as developers can think about each app as something that projects itself 

appropriately onto whatever device and into whatever context it finds itself. On some devices it 

can be oriented for intensive data entry or production work, while on others it can be oriented 

for consumption or sharing. The end result is an overall app experience that is simply more 

present in the user’s life and appropriate to each context. 

An example scenario is illustrated below, where an app can have different personalities or 

flavors depending on user context and how different devices might be used in that context. It 

might seem rather pedestrian to think about an app for meal planning, recipe management, and 

shopping lists, but that’s something that happens in a large number of households worldwide. 

Plus it’s something that my wife would like to see me implement if I wrote more code than text! 

This, to me, is the real manifestation of the next era of personal computing, an era in which 

personal computing expands well beyond, yet still includes, a single device experience. Devices 

are merely viewports for your apps and data, each viewport having a distinct role in the larger 

story of how your move through and interact with the world at large. 

30



 

 

Coming Back Home: Updates and New Opportunities 

If you’re one of those developers that can write a perfect app the first time, I have to ask why you’re 

actually reading this book! Fact of the matter is that no matter how hard we try to test our apps before 

they go out into the world, our efforts pale in comparison to the kinds of abuse that customers will 

heap on them. To be more succinct: expect problems. An app might crash under circumstances we 

never predicted, or there just might be usability problems because people are finding creative ways to 

use the app outside of its intended purpose. 

Fortunately, the Windows Store dashboard—go to http://dev.windows.com and click the Dashboard 

tab at the top—makes it easy for you get the kind of feedback that has traditionally been very difficult 

to obtain. For one, the Store maintains ratings and reviews for every app, which will be a source of 

valuable insight into how well your app fulfills its purpose in life and a source of ideas for your next 

release. And you might as well accept it now: you’re going to get praise (if you’ve done a decent job), 

and you’re going to get criticism, even a good dose of nastiness (even if you’ve done a decent job!). 

Don’t take it personally—see every critique as an opportunity to improve, and be grateful that people 

took the time to give feedback. As a wise man once said upon hearing of the death of his most vocal 

critic, “I’ve just lost my best friend!” 

The Store will also provide you with crash analytics so that you can specifically identify problem 

31

http://dev.windows.com/


areas in your app that evaded your own testing. This is incredibly valuable—maybe you’re already 

clapping your hands in delight!—because if you’ve ever wanted this kind of data before, you’ve had to 

implement the entire mechanism yourself. No longer. This is one of the valuable services you get in 

exchange for your annual registration with the Store. (Of course, you can still implement your own too.) 

With this data in hand and all the other ideas you either had to postpone from your first release or 

dreamt up in the meantime, you’re all set to have your app come home for some new love before its 

next incarnation. 

Updates are onboarded to the Windows Store just like the app’s first version. You create and upload 

an app package (with the same package name as before but a new version number), and then you 

update your description, graphics, pricing, and other information. After that your updated package 

goes through the same certification and signing process as before, and when all that’s complete your 

new app will be available in the Store and often automatically installed for your existing customers 

(unless they opt out). And remember that with the blockmap business described earlier, only those 

parts of the app that have actually changed will be downloaded for an update. This means that issuing 

small fixes won’t force users to repeat potentially large downloads each time, bringing the update 

model closer to that of web applications. 

When an update gets installed that has the same package name as an existing app, note that all the 

settings and appdata for the prior version remain intact. Your updated app should be prepared, then, 

to migrate a previous version of its state if and when it encounters such. 

This brings up an interesting question: what happens with roaming data when a user has different 

versions of the same app installed on multiple devices? The answer is twofold: first, roaming data has its 

own version number independent of the app, and second, Windows will transparently maintain 

multiple versions of the roaming state so long as there are apps installed on the user’s devices that 

reference those state versions. Once all the devices have updated apps and have converted their state, 

Windows will delete old versions. 

Another interesting question with updates is whether you can get a list of the customers who have 

acquired your app from the Store. The answer is no, because of privacy considerations. However, there 

is nothing wrong with including a registration feature in your app through which users can opt in to 

receive additional information from you, such as more detailed update notifications. Your Settings 

panel is a great place to include this. 

The last thing to say about the Store is that in addition to analytics about your own app—which also 

includes data like sales figures, of course—it also provides you with marketwide analytics. These help 

you explore new opportunities to pursue—maybe taking an idea you had for a feature in one app and 

breaking that out into a new app in a different category. Here you can see what’s selling well (and 

what’s not) or where a particular category of app is underpopulated or generally has less than average 

reviews. For more details, again see the Dashboard at http://dev.windows.com. 

32

http://dev.windows.com/


And, Oh Yes, Then There’s Design 

In this first chapter we’ve covered the nature of the world in which Windows Store apps live and 

operate. In this book, too, we’ll be focusing on the details of how to build such apps with HTML, CSS, 

and JavaScript. But what we haven’t talked about, and what we’ll only be treating minimally, is how you 

decide what your app does—its purpose in the world!—and how it clothes itself for that purpose. 

This is really the question of good design for Windows Store apps—all the work that goes into apps 

before we even start writing code. 

I said that we’ll be treating this minimally because I simply do not consider myself a designer. I 

encourage you to be honest about this yourself: if you don’t have a good designer working with you, 

get one. Sure, you can probably work out an OK design on your own, but the demands of a consumer-

oriented market combined with a newer design language like that employed in Windows 8—where the 

emphasis is on simplicity and tailored experiences—underscores the need for professional help. It’ll 

make the difference between a functional app and a great app, between a tool and a piece of art, 

between apps that consumers accept and those they love. 

With design, I do encourage developers to peruse the material on Designing UX for apps for a 

better understanding of design principles. But let’s be honest: as a developer, do you really want to 

ponder what “fast and fluid” means (and design not just static wireframes but also the dynamic aspects 

of an app like animations, page transitions, and progress indicators)? Do you want to spend your time 

in graphic design and artwork (which is essential for a great app)? Do you want to haggle over the 

exact pixel alignment of your layout in all views? If not, find someone who does, because the 

combination of their design sensibilities and your highly productive hacking will produce much better 

results than either of you working alone. As one of my co-workers puts it, a marriage of “freaks” and 

“geeks” often produces the most creative, attractive, and inspiring results. 

Let me add that design is neither a one-time nor a static process. Developers and designers will 

need to work together throughout the development experience, as design needs will arise in response 

to how well the implementation really works. For example, the real-world performance of an app might 

require the use of progress indicators when loading certain pages or might be better solved with a 

redesign of page navigation. It may also turn out, as we found with one of our early app partners, that 

the kinds of graphics called for in the design simply weren’t available from the app’s back-end service. 

The design was lovely, in other words, but couldn’t actually be implemented, so a design change was 

necessary. So make sure that your ongoing relationship with your designers is a healthy and happy one. 

And on that note, let’s get into your part of the story: the coding! 

33

http://msdn.microsoft.com/library/windows/apps/hh779072.aspx


 

 

Chapter 2 

Quickstart 

This is a book about developing apps. So, to quote Paul Bettany’s portrayal of Geoffrey Chaucer in 

A Knight’s Tale, “without further gilding the lily, and with no more ado,” let’s create some! 

A Really Quick Quickstart: The Blank App Template 

We must begin, of course, by paying due homage to the quintessential “Hello World” app, which we 

can achieve without actually writing any code at all. We simply need to create a new app from a 

template in Visual Studio: 

1. Run Visual Studio Express for Windows. If this is your first time, you’ll be prompted to obtain a 

developer license. Do this, because you can’t go any further without it! 

2. Click New Project… in the Visual Studio window, or use the File > New Project menu command. 

3. In the dialog that appears (Figure 2-1), make sure you select JavaScript under Templates on the 

left side, and then select Blank Application in the middle. Give it a name (HelloWorld will do), a 

folder, and click OK. 

 

FIGURE 2-1  Visual Studio’s New Project dialog using the light UI theme. (See the Tools > Options menu 

command, and then change the theme in the Environment/General section). I use the light theme in this 

book because it looks best against a white page background. 

34



 

 

4. After Visual Studio churns for a bit to create the project, click the Start Debugging button (or 

press F5, or select the Debug > Start Debugging menu command). Assuming your installation is 

good, you should see something like Figure 2-2 on your screen. 

 

FIGURE 2-2  The only vaguely interesting portion of the Hello World app’s display. The message is at least a 

better invitation to write more code than the standard first-app greeting! 

By default, Visual Studio starts the debugger in local machine mode, which runs the app full screen 

on your present system. This has the unfortunate result of hiding the debugger unless you’re on a 

multimonitor system, in which case you can run Visual Studio on one monitor and your Windows Store 

app on the other. Very handy. See Running apps on the local machine for more on this.1 

Visual Studio offers two other debugging modes available from the drop-down list on the toolbar 

(Figure 2-3) or the Debug/[Appname] Properties menu command (Figure 2-4): 

 

FIGURE 2-3  Visual Studio’s debugging options on the toolbar. 

 

FIGURE 2-4  Visual Studio’s debugging options in the app properties dialog. 

The Remote Machine option allows you to run the app on a separate device, which is absolutely 

essential for working with devices that can’t run desktop apps at all, such as the Microsoft Surface and 

                                                           

1 For debugging the app and Visual Studio side by side on a single monitor, check out the utility called ModernMix from 

Stardock that allows you to run Windows Store apps in separate windows on the desktop. 

35

http://msdn.microsoft.com/library/windows/apps/hh441483.aspx
http://www.stardock.com/products/modernmix/


 

 

other ARM devices. Setting this up is a straightforward process: see Running apps on a remote 

machine, and I do recommend that you get familiar with it. Also, when you don’t have a project loaded 

in Visual Studio, the Debug menu offers the Attach To Process command, which allows you to debug 

an already-running app. See How to start a debugging session (JavaScript). 

Tip If you ever load a Windows SDK sample into Visual Studio and Remote Machine is the only 

debugging option that’s available, the build target is probably set to ARM (the rightmost drop-down): 

 

Set the build target to Any CPU and you’ll see the other options. Note apps written in JavaScript, C#, or 

Visual Basic that contain no C++ WinRT components (see Chapter 17, “Windows Runtime 

Components”), should always use the Any CPU target. 

Another tip If you ever see a small  on the tile of one of your app projects, or for some reason it just 

won’t launch from the tile, your developer license is probably out of date. Just run Visual Studio or 

Blend to renew it. If you have a similar problem on an ARM device (such as the Microsoft Surface), 

especially when using remote debugging, you’ll need renew the license from the command line using 

PowerShell. See Installing developer packages on Windows RT in the section “Obtaining or renewing 

your developer license” for instructions. 

The Simulator, for its part, duplicates your current environment inside a new login session and 

allows you to control device orientation, set various screen resolutions and scaling factors, simulate 

touch events, and control the data returned by geolocation APIs. Figure 2-5 shows Hello World in the 

simulator with the additional controls labeled on the right. We’ll see more of the simulator as we go 

along, though you may also want to peruse the Running apps in the simulator topic. 

 

FIGURE 2-5  Hello World running in the simulator, with added labels on the right for the simulator controls. Truly, 

the “Blank App” template lives up to its name! 

36

http://msdn.microsoft.com/library/windows/apps/hh441469.aspx
http://msdn.microsoft.com/library/windows/apps/hh441469.aspx
http://msdn.microsoft.com/library/windows/apps/hh771032.aspx
http://msdn.microsoft.com/library/windows/apps/bg126232.aspx
http://msdn.microsoft.com/library/windows/apps/hh441475.aspx


 

 

Sidebar: How Does Visual Studio Run an App? 

Under the covers, Visual Studio is actually deploying the app similar to what would happen if you 

acquired it from the Store. The app will show up on the Start screen’s All Apps view, where you 

can also uninstall it. Uninstalling will clear out appdata folders and other state, which is very 

helpful when debugging. 

There’s really no magic involved: deployment can actually be done through the command 

line. To see the details, use the Store/Create App Package in Visual Studio, select No for a Store 

upload, and you’ll see a dialog in which you can save your package to a folder. In that folder 

you’ll then find an appx package, a security certificate, and a batch file called Add-

AppxDevPackage. That batch file contains PowerShell scripts that will deploy the app along with 

its dependencies. 

These same files are also what you can share with other developers who have a developer 

license, allowing them to side-load your app without needing your full source project. 

Blank App Project Structure 

Although an app created with the Blank template doesn’t offer much in the visual department, it lets us 

see the core structure of any project. That structure is found in Visual Studio’s Solution Explorer (as 

shown in Figure 2-6). 

In the project root folder: 

 default.html The starting page for the app. 

 <Appname>_TemporaryKey.pfx A temporary signature created on first run. 

 package.appxmanifest The manifest. Opening this file will display Visual Studio’s manifest 

editor (shown later in this chapter). Browse around in this UI for a few minutes to familiarize 

yourself with what’s here: references to the various app images (see below), a checkmark on the 

Internet (Client) capability, default.html selected as the start page, and all the places where you 

control different aspects of your app. We’ll be seeing these throughout this book; for a 

complete reference, see the App packages and deployment and Using the manifest designer 

topics. And if you want to explore the manifest XML directly, right-click this file and select View 

Code. This is occasionally necessary to configure uncommon options that aren’t represented in 

the editor UI. 

The css folder contains a default.css file where you’ll see media query structures for the four view 

states that all apps should honor. We’ll see this in action in the next section, and I’ll discuss all the 

details in Chapter 7, “Layout.” 

The images folder contains four placeholder branding images, and unless you want to look like a 

real doofus developer, always customize these before sending your app to the Store (and to provide 

37

http://msdn.microsoft.com/library/windows/apps/hh464929.aspx
http://msdn.microsoft.com/library/windows/apps/br230259.aspx


 

 

scaled versions too, as we’ll see in Chapter 3, “App Anatomy, Page Navigation, and Promises”): 

 logo.scale-100.png A default 150x150 (100% scale) image for the Start screen. 

 smalllogo.scale-100.png A 30x30 image for the zoomed-out Start screen and other places at 

run time. 

 splashscreen.scale-100.png A 620x300 image that will be shown while the app is loading. 

 storelogo.scale-100.png A 50x50 image that will be shown for the app in the Windows 

Store. This needs to be part of an app package but is not used within Windows at run time. For 

this reason it’s easy to overlook—make a special note to customize it. 

The js folder contains a simple default.js. 

The References folder points to CSS and JavaScript source files for the WinJS library, which you can 

open and examine anytime. (If you want to search within these files, you must open and search only 

within the specific file. These are not included in solution-wide or project-wide searches.) 

NuGet Packages If you right-click References you’ll see a menu command Manage NuGet 

Packages…. This opens a dialog box through which you can bring many different libraries and SDKs 

into your project, including jQuery, knockout.js, Bing Maps, and many more from both official and 

community sources. For more information, see http://nuget.org/. 

 

FIGURE 2-6  A Blank app project fully expanded in Solution Explorer. 

As you would expect, there’s not much app-specific code for this type of project. For example, the 

HTML has only a single paragraph element in the body, the one you can replace with “Hello World” if 

you’re really not feeling complete without doing so. What’s more important at present are the 

38

http://nuget.org/


 

 

references to the WinJS components: a core stylesheet (ui-dark.css or ui-light.css), base.js, and ui.js: 

<!DOCTYPE html> 

<html> 

<head> 

    <meta charset="utf-8"> 

    <title>Hello World</title> 

 

    <!-- WinJS references --> 

    <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet"> 

    <script src="//Microsoft.WinJS.1.0/js/base.js"></script> 

    <script src="//Microsoft.WinJS.1.0/js/ui.js"></script> 

 

    <!-- HelloWorld references --> 

    <link href="/css/default.css" rel="stylesheet"> 

    <script src="/js/default.js"></script> 

</head> 

<body> 

    <p>Content goes here</p> 

</body> 

</html> 

You will generally always have these references in every HTML file of your project (using an 

appropriate version number, and perhaps using ui-light.css instead). The //’s in the WinJS paths 

refer to shared libraries rather than files in your app package, whereas a single / refers to the root of 

your package. Beyond that, everything else is standard HTML5, so feel free to play around with adding 

some additional HTML of your own and see the effects. 

Tip When referring to in-package resources, always use a leading / on URIs. This is especially 

important when using page controls (see Chapter 3) because those pages are loaded into a different 

location in the DOM than where they exist in the project structure. 

Where the JavaScript is concerned, default.js just contains the basic WinJS activation code centered 

on the WinJS.Application.onactivated event along with a stub for an event called 

WinJS.Application.oncheckpoint (from which I’ve omitted a comment block): 

(function () { 

    "use strict"; 

 

    var app = WinJS.Application; 

    var activation = Windows.ApplicationModel.Activation; 

 

    app.onactivated = function (args) { 

        if (args.detail.kind === activation.ActivationKind.launch) { 

            if (args.detail.previousExecutionState !==  

                activation.ApplicationExecutionState.terminated) { 

                // TODO: This application has been newly launched. Initialize  

                // your application here. 

            } else { 

                // TODO: This application has been reactivated from suspension.  

                // Restore application state here. 

39



 

 

            } 

            args.setPromise(WinJS.UI.processAll()); 

        } 

    }; 

 

    app.oncheckpoint = function (args) { 

    }; 

 

    app.start(); 

})(); 

We’ll come back to checkpoint in Chapter 3. For now, remember from Chapter 1, “The Life Story of 

a Windows Store App,” that an app can be activated in many ways. These are indicated in the 

args.detail.kind property whose value comes from the 

Windows.ApplicationModel.Activation.ActivationKind enumeration. 

When an app is launched directly from its tile on the Start screen (or in the debugger as we’ve been 

doing), the kind is just launch. As we’ll see later on, other values tell us when an app is activated to 

service requests like the search or share contracts, file-type associations, file pickers, protocols, and 

more. For the launch kind, another bit of information from the 

Windows.ApplicationMode.Activation.ApplicationExecutionState enumeration tells the app 

how it was last running. Again, we’ll see more on this in Chapter 3, so the comments in the default 

code above should satisfy your curiosity for the time being. 

Now, what is that args.setPromise(WinJS.UI.processAll())for? As we’ll see many times, 

WinJS.UI.processAll instantiates any WinJS controls that are declared in HTML—that is, any element 

(commonly a div or span) that contains a data-win-control attribute whose value is the name of a 

constructor function. The Blank app template doesn’t include any such controls, but because just about 

every app based on this template will, it makes sense to include it by default.2 As for 

args.setPromise, that’s employing something called a deferral that we’ll also defer to Chapter 3. 

As short as it is, that little app.start(); at the bottom is also very important. It makes sure that 

various events that were queued during startup get processed. We’ll again see the details in Chapter 3. 

I’ll bet you’re looking forward to that chapter now! 

Finally, you may be asking, “What on earth is all that ceremonial (function () { … })(); 

business about?” It’s just a convention in JavaScript called a self-executing anonymous function that 

implements the module pattern. This keeps the global namespace from becoming polluted, thereby 

propitiating the performance gods. The syntax defines an anonymous function that’s immediately 

executed, which creates a function scope for everything inside it. So variables like app along with all the 

function names are accessible throughout the module but don’t appear in the global namespace.3 

                                                           

2 There is a similar function WinJS.Binding.processAll that processes data-win-bind attributes (Chapter 5), and 

WinJS.Resources.processAll that does resource lookup on data-win-res attributes (Chapter 18). 

3 See Chapter 2 of Nicolas Zakas’s High Performance JavaScript (O’Reilly, 2010) for the performance implications of scoping. 

More on modules can be found in Chapter 5 of JavaScript Patterns by Stoyan Stefanov (O’Reilly, 2010) and Chapter 7 of 

40



 

 

You can still introduce variables into the global namespace, of course, and to keep it all organized, 

WinJS offers a means to define your own namespaces and classes (see WinJS.Namespace.define and 

WinJS.Class.define), again helping to minimize additions to the global namespace. We’ll learn more 

of these in Chapter 5, “Controls, Control Styling, and Data Binding.” 

Now that we’ve seen the basic structure of an app, let’s build something more functional and get a 

taste of the WinRT APIs and a few other platform features. 

Get familiar with Visual Studio If you’re new to Visual Studio, the tool can be somewhat daunting at 

first because it supports many features, even in the Express edition. For a quick, roughly 10-minute 

introduction, Video 2-1 in this chapter’s companion content to will show you the basic workflows and 

other essentials. 

QuickStart #1: Here My Am! and an Introduction to Blend for 

Visual Studio 

When my son was three years old, he never—despite the fact that he was born to two engineers 

parents and two engineer grandfathers—peeked around corners or appeared in a room saying “Hello 

world!” No, his particular phrase was “Here my am!” Using that particular variation of announcing 

oneself to the universe, our next app can capture an image from a camera, locate your position on a 

map, and share that information through the Windows Share charm. Does this sound complicated? 

Fortunately, the WinRT APIs actually make it quite straightforward! 

Sidebar: How Long Did It Take to Write This App? 

This app took me about three hours to write. “Oh sure,” you’re thinking, “you’ve already written a 

bunch of apps, so it was easy for you!” Well, yes and no. For one thing, I also wrote this part of 

the chapter at the same time, and endeavored to make some reusable code, which took extra 

time. More importantly, the app came together quickly because I knew how to use my tools—

especially Blend—and I knew where I could find code that already did most of what I wanted, 

namely all the Windows SDK samples on http://code.msdn.microsoft.com/windowsapps/. 

As we’ll be drawing from many of these most excellent samples in this book, I encourage you 

to download the whole set—go to the URL above, and click the link for “Windows 8 app 

samples”. On that page you can get a .zip file with all the JavaScript samples. Once you unzip 

these, get into the habit of searching that folder for any API or feature you’re interested in. For 

example, the code I use below to implement camera capture and sharing data came directly 

from a couple of samples. (Again, if a sample seems to support only the Remote Machine 

debugging option, check the build target and set it to Any CPU.) 

                                                           

Eloquent JavaScript by Marijn Haverbeke (No Starch Press, 2011). 

41

http://code.msdn.microsoft.com/windowsapps/


 

 

I also strongly encourage you to spend a half-day, even a full day, getting familiar with Visual 

Studio and Blend for Visual Studio, and just running samples so that you know what tremendous 

resources are available to you. Such small investments will pay huge productivity dividends even 

in the short term! 

Design Wireframes 

Before we start on the code, let’s first look at design wireframes for this app. Oooh…design? Yes! 

Perhaps for the first time in the history of Windows, there’s a real design philosophy to apply to apps in 

Windows 8. In the past, with desktop apps, it’s been more of an “anything goes” scene. There were 

some UI guidelines, sure, but developers could generally get away with making up any user experience 

that made sense to them, like burying essential checkbox options four levels deep in a series of modal 

dialog boxes. Yes, this kind of stuff does make sense to developers; whether it makes sense to anyone 

else is highly questionable! 

If you’ve ever pretended or contemplated pretending to be a designer, now is the time to surrender 

that hat to someone with real training or set development aside for a year or two and invest in that 

training yourself. Simply said, design matters for Windows Store apps, and it will make the difference 

between apps that really succeed and apps that merely exist in the Windows Store and are largely 

ignored. And having a design in hand will just make it easier to implement because you won’t have to 

make those decisions when you’re writing code. (If you still intend on filling designer shoes and 

communing with apps like Adobe Illustrator, be sure to visit Designing UX for apps for the philosophy 

and details of Windows Store app design, plus design resources.) 

Note Traditional wireframes are great to show a static view of the app, but in the “fast and fluid” 

environment of Windows 8, the dynamic aspects of an app—animations and movement—are also very 

important. Great app design includes consideration of not just where content is placed but how and 

when it gets there in response to which user actions. Chapter 12, “Purposeful Animations,” discusses 

the different built-in animations that you can use for this purpose. 

When I had the idea for this app, I drew up simple wireframes, let a few designers laugh at me 

behind my back (and offer helpful adjustments), and eventually landed on layouts for the various views 

as shown in Figures 2-7 through 2-9. These reflect the guidelines of the “grid system” described on 

Laying out an app page, which defines what’s called the layout silhouette that includes the size of 

header fonts, their placement, and specific margins. These recommendations encourage a degree of 

consistency between apps so that users’ eyes literally develop muscle memory for common elements of 

the UI. That said, they are not hard and fast rules—designers can and do depart from when it makes 

sense. 

Generally speaking, layout is based on a basic 20 pixel unit, with 5 pixel sub-units. In the full 

landscape view of Figure 2-7, you can see the recommended left margin of 120px, the recommended 

top margin of 140px above the content region, and placement of the header’s baseline at 100px, which 

42

http://design.windows.com/
http://msdn.microsoft.com/library/windows/apps/hh872191.aspx


 

 

for a 42pt font translates to a 44px top margin. For partial landscape views with width <= 1024px, the 

left margin shrinks to 40px (not shown). In the portrait and narrow views of Figure 2-8 and 2-9, the 

various margins and gaps get smaller but still align to the grid.  

What happened to snapped and filled views? In the first release of Windows 8, app design focused 

on four view states known as landscape, portrait, filled, and snapped. With Windows 8.1 Preview, 

distinct names for these states are deprecated in favor of simply handling different display sizes and 

aspect ratios—known as responsive design on the web. For apps, the minimum design size is now 

500x768 pixels, and an app can indicate in the manifest whether it supports a narrow view (formerly 

known as snapped) in the 320-499px range. The “Here My Am!” app as designed in this section 

supports all sizes including narrow. Aspect ratios (width/height) of 1 and below (meaning square to 

tall) use the vertically-oriented layouts; aspect ratios greater than 1 use a horizontally-oriented layout. 

With this change, you can use the standard CSS3 media queries of landscape and portrait to 

differentiate aspect ratios; the view state media queries from Windows 8 still work as well, but don’t 

differentiate between the filled state (a narrower landscape) and the 50% split view that will often have 

an aspect ratio less than 1. 

Note, however, that the header font sizes, from which we derive the top header margins, were defined 

in the WinJS stylesheets in Windows 8 but were removed for Windows 8.1. To adjust the font size for 

narrow views, then, default.css in Here My Am! has specific rules to set h1 and h2 element sizes. 

 

FIGURE 2-7  Wireframe for wide aspect ratios (width/height > 1). The left margin is nominally 120px, changing to 

40px for smaller (<1024px) widths. The “1fr” labels denote proportional parts of the CSS grid (see Chapter 7) that 

occupy whatever space remains after the fixed parts are laid out. 

43



 

 

  

FIGURE 2-8  Wireframes for narrow (320-499px) and portrait (500px or higher) aspect ratios (width/height <= 1). 

Sidebar: Design for All Size Variations! 

Just as I thought about all size variations for Here My Am!, I encourage you to do the same for 

one simple reason: your app will be put into every state whether you design for it or not (with the 

exception of the narrow 320px view if you don’t indicate it in your manifest). Users control the 

views, not the app, so if you neglect to design for any given state, your app will probably look 

hideous in that state. You can, as we’ll see in Chapter 7, lock the landscape/portrait orientation 

for your app if you want, but that’s meant to enhance an app’s experience rather than being an 

excuse for indolence. So in the end, unless you have a very specific reason not to, every page in 

your app needs to anticipate all different sizes and dimensions. 

This might sound like a burden, but these variations don’t affect function: they are simply 

different views of the same information. Changing the view never changes the mode of the app. 

Handling different views, therefore, is primarily a matter of which elements are visible and how 

those elements are laid out on the page. It doesn’t have to be any more complicated than that, 

and for apps written in HTML and JavaScript the work can mostly, if not entirely, be handled 

through CSS media queries. 

Enough said! Let’s just assume that we have a great design to work from and our designers are off 

sipping cappuccino, satisfied with a job well done. Our job is how to then execute on that great design. 

Create the Markup 

For the purposes of markup, layout, and styling, one of the most powerful tools you can add to your 

44



 

 

arsenal is Blend for Visual Studio, which is included for free when you install Visual Studio Express. 

Blend has full design support for HTML, CSS, and JavaScript. I emphasize that latter point because 

Blend doesn’t just load markup and styles: it loads and executes your code, right in the “Artboard” (the 

design surface), because that code so often affects the DOM, styling, and so forth. Then there’s 

Interactive Mode…but I’m getting ahead of myself! 

Blend and Visual Studio are very much two sides of a coin: they can share the same projects and 

have commands to easily switch between them, depending on whether you’re focusing on design 

(layout and styling) or development (coding and debugging). To demonstrate that, let’s actually start 

building Here My Am! in Blend. As we did before with Visual Studio, launch Blend, select New Project…, 

and select the Blank App template. This will create the same project structure as before. (Note: Video 2-

2 shows all these steps together.) 

Following the practice of writing pure markup in HTML—with no styling and no code, and even 

leaving off a few classes we’ll need for styling—let’s drop the following markup into the body element 

of default.html (replacing the one line of <p>Content goes here</p>): 

<div id="mainContent"> 

    <header aria-label="Header content" role="banner"> 

        <h1 class="titlearea win-type-ellipsis"> 

            <span class="pagetitle">Here My Am!</span> 

        </h1> 

    </header> 

    <section aria-label="Main content" role="main"> 

        <div id="photoSection" aria-label="Photo section"> 

            <h2 class="group-title" role="heading">Photo</h2> 

            <img id="photo" src="/images/taphere.png" 

                alt="Tap to capture image from camera" role="img" /> 

        </div> 

        <div id="locationSection" aria-label="Location section"> 

            <h2 class="group-title" role="heading">Location</h2> 

            <iframe id="map" src="ms-appx-web:///html/map.html" aria-label="Map"></iframe> 

        </div> 

    </section> 

</div> 

Here we see the five elements in the wireframe: a main header, two subheaders, a space for a photo 

(for now an img element with a default “tap here” graphic), and an iframe that specifically houses a 

page in which we’ll instantiate a Bing maps web control.4 

You’ll see that some elements have style classes assigned to them. Those that start with win- come 

from the WinJS stylesheet.5 You can browse these in Blend by using the Style Rules tab, shown in 

                                                           

4 If you’re following the steps in Blend yourself, the taphere.png image should be added to the project in the images folder. 

Right-click that folder, select Add Existing Item, and then navigate to the complete sample’s images folder and select 

taphere.png. That will copy it into your current project. Note, though, that we’ll do away with this later in this chapter. 

5 The two standard stylesheets are ui-dark.css and ui-light.css. Dark styles are recommended for apps that deal with 

media, where a dark background helps bring out the graphical elements. We’ll use this stylesheet because we’re doing 

45



 

 

Figure 2-9. Other styles like titlearea, pagetitle, and group-title are meant for you to define in 

your own stylesheet, thereby overriding the WinJS styles for particular elements. 

 

FIGURE 2-9  In Blend, the Style Rules tab lets you look into the WinJS stylesheet and see what each particular style 

contains. Take special notice of the search bar under the tabs. This is here so you don’t waste your time visually 

scanning for a particular style—just start typing in the box, and let the computer do the work! 

The page we’ll load into the iframe, map.html, is part of our app package that we’ll add in a 

moment, but note how we reference it. The ms-appx-web:/// protocol indicates that the iframe and 

its contents will run in the web context (introduced in Chapter 1), thereby allowing us to load the 

remote script for the Bing maps control. The triple slash, for its part—or more accurately the third 

slash—is shorthand for “the current app package” (a value that you can obtain from 

document.location.host), so we don’t need to create an absolute URI for in-package content. (For 

more details on this and other protocols, see URI schemes in the documentation.) 

To indicate that a page should be loaded in the local context, the protocol is just ms-appx://. It’s 

important to remember that no script is shared between these contexts (including variables and 

functions), relative paths stay in the same context, and communication between the two goes through 

the HTML5 postMessage function, as we’ll see later. All of this prevents an arbitrary website from 

driving your app and accessing WinRT APIs that might compromise user identity and security. 

Note I’m using an iframe element in this first example because it’s probably familiar to most readers. 

In Chapter 4, “Using Web Content and Services,” we’ll change the app to use a webview element, which 

is much more flexible than an iframe and is the recommended means to host web content. 

                                                           

photo capture. The light stylesheet is recommended for apps that work more with textual content. 

46

http://msdn.microsoft.com/library/windows/apps/jj655406.aspx


 

 

I’ve also included various aria-* attributes on these elements (as the templates do) that support 

accessibility. We’ll look at accessibility in detail in Chapter 18, “Apps for Everyone,” but it’s an important 

enough consideration that we should be conscious of it from the start: a majority of Windows users 

make use of accessibility features in some way. And although some aspects of accessibility are easy to 

add later on, adding aria-* attributes in markup is best done early. 

In Chapter 18 we’ll also see how to separate strings (including ARIA labels) from our markup, 

JavaScript, and even the manifest, and place them in a resource file for the purposes of localization. 

This is something you might want to do from early on, so see the “Preparing for Localization” section in 

that chapter for the details. Note, however, that resource lookup doesn’t work in Blend, so you might 

want to hold off on the effort until you’ve done most of your styling. 

Styling in Blend 

At this point, and assuming you were paying enough attention to read the footnotes, Blend’s real-time 

display of the app shows an obvious need for styling, just like raw markup should. See Figure 2-10. 

 

FIGURE 2-10  The app in Blend without styling, showing a view that is much like the Visual Studio simulator. If the 

taphere.png image doesn’t show after adding it, use the View/Refresh menu command.  

The tabs along the upper left give you access to your Project files, Assets like all the controls you can 

add to your UI, and a browser for all the Style Rules defined in the environment. On the lower left side, 

the Live DOM tab lets you browse your element hierarchy and the Device tab lets you set orientation, 

screen resolution, view state, and minimum size. Clicking an element in the Live DOM will highlight it in 

the designer, and clicking an element in the designer will highlight it in the Live DOM section. 

47



 

 

Over on the right side you see what will become a very good friend: the section for HTML Attributes 

and CSS Properties. With properties, the list at the top shows all the sources for styles that are being 

applied to the currently selected element and where, exactly, those styles are coming from (often a 

headache with CSS). The location selected in this list, mind you, indicates where changes in the 

properties pane below will be written, so be very conscious of your selection! That list will also contain 

an item called “Computed Values” which will show you the exact values applied through the styles, 

such as the actual sizes of variable parts of a CSS grid. 

Now to get our gauche, unstylish page to look like the wireframe, we need to go through the 

elements and create the necessary selectors and styles. First, I recommend creating a 1x1 grid in the 

body element as this seems to help everything in the app size itself properly. So add display: -ms-

grid; -ms-grid-rows: 1fr; -ms-grid-columns: 1fr; to default.css for body. 

CSS grids also make this app’s layout fairly simple: we’ll just use a couple of nested grids to place the 

main sections and the subsections, following the general pattern of styling that works best in Blend: 

 Set the insertion point of the style rule within Blend’s Style Rules tab by dragging the orange-

yellow line control. This determines exactly where any new rule you create will be written. In the 

image below, new rules would be inserted in default.css after .NewDockedStyle, which is itself 

inside a media query: 

 

 In the Live DOM pane (the lower left side in Blend), right-click the element you want to style 

and select Create Style Rule From Element Id or Create Style Rule From Element Class. This will 

create a new style rule (at the insertion point indicated in Style Rules above). Then in the CSS 

properties pane on the right, find the rule that was created and add the necessary style 

properties. 

Note If the menu items in the Live DOM pane are both disabled, go to the HTML 

Attributes pane (upper right) and add an id, a class, or both, then return to the menu in the 

Live DOM. If you do styling without having a distinct rule in place, you’ll create inline styles 

in the HTML that will mean lots of hand-editing later on. So you might as well save yourself 

the trouble! 

48



 

 

 Repeat with every other element you want to style, which could include body, html, and so 

forth, all of which appear in the Live DOM. 

So for the mainContent div, we create a rule from the Id and set it up with display: -ms-grid; -

ms-grid-columns: 1fr; and -ms-grid-rows: 140px 1fr 60px;. (See Figure 2-11.) This creates the 

basic vertical areas for the wireframes. In general, you won’t want to put left or right margins directly in 

this grid because the lower section will often have horizontally scrolling content that should bleed off 

the left and right edges. In the case of Here My Am! we could use one grid, but instead we’ll add those 

margins in a nested grid within the header and section elements. 

  

FIGURE 2-11  Setting the grid properties for the mainContent div. Notice how the View Set Properties Only 

checkbox (upper right) makes it easy to see what styles are set for the current rule. Also notice how the grid rows 

and columns appear on the artboard, including sliders (circled) to manipulate rows and columns directly. 

Showing this and the rest of the styling—going down into each level of the markup and creating 

appropriate styles in the appropriate media queries for the view states—is best done in video. Video 2-

2 (available with this book’s downloadable companion content) shows this process starting with the 

creation of the project, styling the different views, and switching to Visual Studio (right-click the project 

name in Blend and select Edit In Visual Studio) to run the app in the simulator for verification. It also 

demonstrates the approximate time it takes to style such an app once you’re familiar with the tools. 

The result of all this in the simulator looks just like the wireframes—see Figures 2-12 through 2-14—

and all the styling is entirely contained within the appropriate media queries of default.css. Most 

importantly, the way Blend shows us the results in real time is an enormous time-saver over fiddling 

with the CSS and running the app over and over again, a painful process that I’m sure you’re familiar 

49



 

 

with! (And the time savings are even greater with Interactive Mode; see Video 5-1 in the companion 

content created for Chapter 5.) 

 

FIGURE 2-12  Full landscape view. 

 

FIGURE 2-13  Partial landscape view (when sharing the screen with other apps). 

50



 

 

   

FIGURE 2-14  Narrow aspect ratio views: 320px wide (left), 50% wide (middle), and full portrait (right). These images 

are not to scale with one another. You can also see that the fixed placeholder image in the Photo section doesn’t 

scale well to the 50% view; we’ll solve this later in the chapter in “Improving the Placeholder Image with a Canvas 

Element.” 

Adding the Code 

Let’s complete the implementation now in Visual Studio. Again, right-click the project name in Blend’s 

Project tab and select Edit In Visual Studio if you haven’t already. Note that if your project is already 

loaded into Visual Studio when you switch to it, it will (by default) prompt you to reload changed files. 

Say yes.6 At this point, we have the layout and styles for all the necessary views, and our code doesn’t 

need to care about any of it except to make some refinements, as we’ll see. 

What this means is that, for the most part, we can just write our app’s code against the markup and 

not against the markup plus styling, which is, of course, a best practice with HTML/CSS in general. Here 

are the features that we’ll now implement: 

 A Bing maps control in the Location section showing the user’s current location. We’ll create 

and display this map automatically. 

 Use the WinRT APIs for camera capture to get a photograph in response to a tap on the Photo 

                                                           

6 On the flip side, note that Blend doesn’t automatically save files going in and out of Interactive Mode. Be aware, then, if 

you make a change to the same file open in Visual Studio, switch to Blend, and reload the file, you will lose changes. 

51



 

 

img element. 

 Provide the photograph and the location data to the Share charm when the user invokes it. 

Figure 2-15 shows what the app will look like when we’re done, with the Share charm invoked and a 

suitable target app like Twitter selected. 

 

FIGURE 2-15  The completed Here My Am! app with the Share charm invoked (and if you think that the coordinates 

shown here pinpoint my house, the truth is they’ll send you out into the bushes a few miles away). 

Creating a Map with the Current Location 

For the map, we’re using a Bing maps web control instantiated through the map.html page that’s 

loaded into an iframe on the main page (again, we’ll switch over to a webview element later on). As 

we’re loading the map control script from a remote source, map.html must be running in the web 

context. We could employ the Bing Maps SDK here instead, which provides script we can load into the 

local context. For the time being, I want to use the remote script approach because it gives us an 

opportunity to work with web content and the web context in general, something that I’m sure you’ll 

want to understand for your own apps. We’ll switch to the local control in Chapter 9, “The Story of 

State.” 

That said, let’s put map.html in an html folder. Right-click the project and select Add/New Folder 

(entering html to name it). Then right-click that folder, select Add/New Item…, and then select HTML 

Page. Once the new page appears, replace its contents with the following:7 

                                                           

7 Note that you should replace the credentials inside the init function with your own key obtained from 

https://www.bingmapsportal.com/. 

52

http://msdn.microsoft.com/library/hh846481.aspx
https://www.bingmapsportal.com/


 

 

<!DOCTYPE html> 

<html> 

    <head> 

        <title>Map</title> 

        <script type="text/javascript"  

            src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0"></script> 

         

        <script type="text/javascript"> 

            //Global variables here 

            var map = null; 

 

            document.addEventListener("DOMContentLoaded", init); 

            window.addEventListener("message", processMessage); 

 

            //Function to turn a string in the syntax { functionName: ..., args: [...] } 

            //into a call to the named function with those arguments. This constitutes a generic  

            //dispatcher that allows code in an iframe to be called through postMessage. 

            function processMessage(msg) { 

                //Verify data and origin (in this case the local context page) 

                if (!msg.data || msg.origin !== "ms-appx://" + document.location.host) { 

                    return; 

                } 

 

                var call = JSON.parse(msg.data); 

 

                if (!call.functionName) { 

                    throw "Message does not contain a valid function name."; 

                } 

 

                var target = this[call.functionName]; 

 

                if (typeof target != 'function') { 

                    throw "The function name does not resolve to an actual function"; 

                } 

                 

                return target.apply(this, call.args); 

            } 

 

 

            //Create the map (though the namespace won't be defined without connectivity) 

            function init() { 

                if (typeof Microsoft == "undefined") { 

                    return; 

                } 

 

                map = new Microsoft.Maps.Map(document.getElementById("mapDiv"), { 

                    //NOTE: replace these credentials with your own obtained at 

                    //http://msdn.microsoft.com/en-us/library/ff428642.aspx 

                    credentials: "...", 

                    //zoom: 12, 

                    mapTypeId: Microsoft.Maps.MapTypeId.road 

                }); 

            } 

             

53



 

 

            function pinLocation(lat, long) { 

                if (map === null) { 

                    throw "No map has been created"; 

                } 

 

                var location = new Microsoft.Maps.Location(lat, long);  

                var pushpin = new Microsoft.Maps.Pushpin(location, { }); 

                map.entities.push(pushpin); 

                map.setView({ center: location, zoom: 12, }); 

                return; 

            } 

 

            function setZoom(zoom) { 

                if (map === null) { 

                    throw "No map has been created"; 

                } 

 

                map.setView({ zoom: zoom }); 

            } 

        </script> 

    </head> 

    <body> 

        <div id="mapDiv"></div> 

    </body> 

</html> 

Note that the JavaScript code here could be moved into a separate file and referenced with a 

relative path, no problem. I’ve chosen to leave it all together for simplicity. 

At the top of the page you’ll see a remote script reference to the Bing Maps control. We can again 

reference remote script here because the page is loaded in the web context within the iframe (ms-

appx-web:// in default.html). You can then see that the init function is called on DOMContentLoaded 

and creates the map control. Then we have a couple of other methods, pinLocation and setZoom, 

which can be called from the main app as needed. 

Of course, because this page is loaded in an iframe in the web context, we cannot simply call those 

functions directly from the local context in which our app code runs. We instead use the HTML5 

postMessage function, which raises a message event within the iframe. This is an important point: the 

local and web contexts are kept separate so that arbitrary web content cannot drive an app or access 

WinRT APIs (as required by Windows Store certification policy). The two contexts enforce a boundary 

between an app and the web that can only be crossed with postMessage. 

In the code above, you can see that we pick up such messages (the window.onmessage handler) and 

pass them to the processMessage function, a little generic routine I wrote to turn a JSON string into a 

local function call, complete with arguments. 

To see how this works, let’s look at calling pinLocation from within default.js (our local context app 

code). To make this call, we need some coordinates, which we can get from the WinRT Geolocation 

APIs. We’ll do this within the app’s onready handler (which fires after the app is fully running). This way 

the user’s location is set on startup and saved in the lastPosition variable for later sharing: 

54



 

 

//Drop this after the line: var activation = Windows.ApplicationModel.Activation; 

var lastPosition = null; 

 

 

//Add this after the app.onactivated handler 

app.onready = function () { 

    var gl = new Windows.Devices.Geolocation.Geolocator(); 

 

    gl.getGeopositionAsync().done(function (geocoord) { 

    var position = geocoord.coordinate.point.position; 

 

        //Save for share 

        lastPosition = { latitude: position.latitude, longitude: position.longitude }; 

 

        callFrameScript(document.frames["map"], "pinLocation", 

            [position.latitude, position.longitude]);  

    }); 

} 

where callFrameScript is another little helper function to turn a target element, function name, and 

arguments into an appropriate postMessage call: 

function callFrameScript(frame, targetFunction, args) { 

    var message = { functionName: targetFunction, args: args }; 

    frame.postMessage(JSON.stringify(message), "ms-appx-web://" + document.location.host); 

} 

A few points about all this code. To obtain coordinates, you can use either the WinRT or HTML5 

geolocation APIs. The two are almost equivalent, with slight differences described in Chapter 10, “Input 

and Sensors,” in “Sidebar: HTML5 Geolocation.” The API exists in WinRT because other supported 

languages (C# and C++) don’t have access to HTML5 APIs. We’re focused on WinRT APIs in this book, 

so we’ll just use functions in the Windows.Devices.Geolocation namespace. 

Next, in the second parameter to postMessage (both in default.js and map.html) you see a 

combination of ms-appx:// or ms-appx-web:// with document.location.host. This essentially 

means “the current app from the [local or web] context,” which is the appropriate origin of the 

message. Notice that we use the same value to check the origin when receiving a message: the code in 

map.html verifies it’s coming from the app’s local context, whereas the code in default.js verifies that 

it’s coming from the app’s web context. Always make sure to check the origin appropriately; see 

Validate the origin of postMessage data in Developing secure apps. 

Finally, the call to getGeopositionAsync has an interesting construct, wherein we make the call and 

chain this function called done onto it, whose argument is another function. This is a very common 

pattern that we’ll see while working with WinRT APIs, as any API that might take longer than 50ms to 

complete runs asynchronously. This conscious decision was made so that the API surface area leads to 

fast and fluid apps by default. 

In JavaScript, such APIs return what’s called a promise object, which represents results to be 

delivered at some time in the future. Every promise object has a done method whose first argument is 

55

http://msdn.microsoft.com/library/windows/apps/hh849625.aspx#validate_the_origin_of_postmessage_data
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx


 

 

the function to be called upon completion, known as the completed handler (often an anonymous 

function). It can also take two optional functions to wire up error and progress handlers as well. We’ll 

see much more about promises as we progress through this book, such as the then function that’s just 

like done and allows further chaining (Chapter 3), and how promises fit into async operations more 

generally (Chapter 17). 

The argument passed to the completed handler contains the results of the async call, which in our 

example above is a Windows.Geolocation.Geoposition object containing the last reading. (When 

reading the docs for an async function, you’ll see that the return type is listed like 

IAsyncOperation<Geoposition>; the name within <> indicates the actual data type of the results, so 

refer to the docs on that type for its details.) The coordinates from this reading are what we then pass 

to the pinLocation function within the iframe, which in turn creates a pushpin on the map at those 

coordinates and then centers the map view at that same location.8 

What’s in an (async) name? Within the WinRT API, all async functions have Async in their names. 

Because this isn’t common practice within the DOM API and other JavaScript toolkits, async functions 

within WinJS don’t use that suffix. In other words, WinRT is designed to be language-neutral and 

follows its own conventions; WinJS consciously follows typical JavaScript conventions. 

Oh Wait, the Manifest! 

Now you may have tried the code above and found that you get an “Access is denied” exception when 

you try to call getGeopositionAsync. Why is this? Well, the exception says we neglected to set the 

Location capability in the manifest. Without that capability set, calls that depend on the capability will 

throw an exception. 

If you were running in the debugger, that exception is kindly shown in a dialog box: 

 

                                                           

8 Later, in the section “Receiving Messages from the iframe,” we’ll make the pushpin draggable and show how the app can 

pick up location changes from the map. 

56



 

 

If you run the app outside of the debugger—from the tile on your Start screen—you’ll see that the 

app just terminates without showing anything but the splash screen. This is the default behavior for an 

unhandled exception. To prevent that behavior, add an error-handling function as the second 

parameter to the async promise’s done method: 

gl.getGeopositionAsync().done(function (geocoord) { 

    //... 

}, function(error) { 

    console.log("Unable to get location."); 

}); 

The console.log function writes a string to the JavaScript Console window in Visual Studio, which is 

obviously a good idea (you can also use WinJS.log for this purpose, which allows more customization, 

as we’ll discuss in Chapter 3). Now run the app outside the debugger and you’ll see that the app runs, 

because the exception is now considered “handled.” Back in the debugger, set a breakpoint on the 

console.log line and you’ll hit that breakpoint after the exception appears and you press Continue. 

(This is all we’ll do with the error for now; in Chapter 8, “Commanding UI,” we’ll add a better message 

and a retry command.) 

If the exception dialog gets annoying, you can control which exceptions pop up like this through 

the Debug > Exceptions dialog box (shown in Figure 2-16), under JavaScript Runtime Exceptions. If you 

uncheck the box under User-unhandled, you won’t get a dialog when that particular exception occurs.  

  

FIGURE 2-16  JavaScript run-time exceptions in the Debug/Exceptions dialog of Visual Studio. 

When the Thrown box is checked for a specific exception (as it is by default for Access is denied to 

help you catch capability omissions), Visual Studio will always display the “exception occurred” message 

before your error handler is invoked. If you uncheck Thrown, your error handler will be called without 

any message. 

Back to the capability: to get the proper behavior for this app, open package.appxmanifest in your 

57

http://msdn.microsoft.com/library/windows/apps/jj150612.aspx


 

 

project, select the Capabilities tab (in the editor UI), and check Location, as shown in Figure 2-17. 

 

FIGURE 2-17  Setting the Location capability in Visual Studio’s manifest editor. (Note that Blend supports editing the 

manifest only as XML.) 

Now, even when we declare the capability, geolocation is still subject to user consent, as mentioned 

in Chapter 1. When you first run the app with the capability set, then, you should see a popup like this, 

which appears in the user’s chosen color scheme to indicate that it’s a message from the system: 

 

If the user blocks access here, the error handler will again be invoked as the API will throw an Access 

denied exception. 

Keep in mind that this consent dialog will only appear once for any given app, even across 

debugging sessions. After that, the user can at any time change their consent in the Settings > 

Permissions panel as shown in Figure 2-18, and we’ll learn how to deal with such changes in Chapter 8. 

For now, if you want to test your app’s response to the consent dialog, go to the Start screen and 

uninstall the app from its tile. You’ll then see the popup when you next run the app. 

58



 

 

 

FIGURE 2-18  Any permissions that are subject to user consent can be changed at any time through the Settings 

Charm > Permissions pane. 

Sidebar: Writing Code in Debug Mode 

Because of the dynamic nature of JavaScript, it’s impressive that the Visual Studio team figured 

out how to make the IntelliSense feature work quite well in the Visual Studio editor. (If you’re 

unfamiliar with IntelliSense, it’s the productivity service that provides auto-completion for code 

as well as popping up API reference material directly inline; learn more at JavaScript IntelliSense). 

That said, a helpful trick to make IntelliSense work even better is to write code while Visual 

Studio is in debug mode. That is, set a breakpoint at an appropriate place in your code, and then 

run the app in the debugger. When you hit that breakpoint, you can then start writing and 

editing code, and because the script context is fully loaded, IntelliSense will be working against 

instantiated variables and not just what it can derive from the source code. You can also use 

Visual Studio’s Immediate Window to execute code directly to see the results. (You will need to 

restart the app, however, to execute that new code in place.) 

Capturing a Photo from the Camera 

In a slightly twisted way, I hope the idea of adding camera capture within a so-called “quickstart” 

chapter has raised serious doubts in your mind about this author’s sanity. Isn’t that going to take a 

whole lot of code? Well, it used to, but no longer. The complexities of camera capture have been 

encapsulated within the Windows.Media.Capture API to such an extent that we can add this feature 

with only a few lines of code. It’s a good example of how a little dynamic code like JavaScript combined 

with well-designed WinRT components—both those in the system and those you can write yourself—

are a powerful combination! (You can also write your own capture UI if you like; see Chapter 11.) 

59

http://msdn.microsoft.com/library/bb385682.aspx


 

 

To implement this feature, we first need to remember that the camera, like geolocation, is a privacy-

sensitive device and must also be declared in the manifest, as shown in Figure 2-19. 

 

FIGURE 2-19  The camera capability in Visual Studio’s manifest editor. 

On first use of the camera at run time, you’ll see another consent dialog as follows, where again the 

user can later change their consent in Settings > Permissions (shown earlier in Figure 2-18): 

 

Next we need to wire up the img element to pick up a tap gesture. For this we simply need to add 

an event listener for click, which works for all forms of input (touch, mouse, and stylus), as we’ll see in 

Chapter 10: 

document.getElementById("photo").addEventListener("click", capturePhoto.bind(photo)); 

Here we’re providing capturePhoto as the event handler, and using the function object’s bind 

method to make sure the this object inside capturePhoto is bound directly to the img element. The 

result is that the event handler can be used for any number of elements because it doesn’t make any 

references to the DOM itself: 

//Place this under var lastPosition = null; (within the app.onactivated handler) 

var lastCapture = null; 

 

 

60



 

 

//Place this after callFrameScript 

function capturePhoto() { 

    //Due to the .bind() call in addEventListener, "this" will be the image element, 

    //but we need a copy for the async completed handler below. 

    var captureUI = new Windows.Media.Capture.CameraCaptureUI(); 

    var that = this; 

 

    //Indicate that we want to capture a JPEG that's no bigger than our target element -- 

    //the UI will automatically show a crop box of this size.  

    captureUI.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.jpeg; 

 

    captureUI.photoSettings.croppedSizeInPixels = 

        { width: that.clientWidth, height: that.clientHeight }; 

 

    //Note: this will fail if we're in any view where there's not enough space to display the UI. 

    captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 

        .done(function (capturedFile) { 

            //Be sure to check validity of the item returned; could be null if the user canceled. 

            if (capturedFile) { 

                lastCapture = capturedFile;  //Save for Share 

                that.src = URL.createObjectURL(capturedFile, { oneTimeOnly: true }); 

            } 

        }, function (error) { 

            console.log("Unable to invoke capture UI:" + error.message); 

        }); 

} 

We do need to make a local copy of this within the click handler, though, because once we get 

inside the async completed function (see the function inside captureFileAsync.done) we’re in a new 

function scope and the this object will have changed. The convention for such a copy of this is to call 

it that. Got that? (You can call it anything, of course.) 

To invoke the camera UI, we only need create an instance of 

Windows.Media.Capture.CameraCaptureUI with new (a typical step to instantiate dynamic WinRT 

objects), configure it with the desired format and size (among many other possibilities as discussed in 

Chapter 11), and then call captureFileAsync. This will check the manifest capability and prompt the 

user for consent, if necessary. 

This is an async call, so we hook a .done on the end with a completed handler, which in this case 

will receive a Windows.Storage.StorageFile object. Through this object you can get to all the raw 

image data you want, but for our purpose we simply want to display it in the img element. That’s easy 

as well! Data types from WinRT and those in the DOM API are made to interoperate seamlessly, so a 

StorageFile can be treated like an HTML blob. This means you can hand a StorageFile object to the 

URL.createObjectURL method and get back an URI that can be directly assigned to the img.src 

attribute. The captured photo appears!9 

                                                           

9 The {oneTimeOnly: true} parameter indicates that the URI is not reusable and should be revoked via 

URL.revokeObjectURL when it’s no longer used, as when we replace img.src with a new picture. Without this, we would 

61



 

 

Note that captureFileAsync will call the completed handler if the UI was successfully invoked but 

the user hit the back button and didn’t actually capture anything. This is why we do the extra check on 

the validity of capturedFile. An error handler on the promise will, for its part, pick up failures to 

invoke the UI in the first place. This will happen if the view state of the app is too small for the capture 

UI to be usable, in which case error.message will say “A method was called at an unexpected time.” As 

we’ll see in Chapter 7, you can check the app’s view state and take other action under such conditions, 

but for now we’ll just fail silently. 

Note that a denial of consent will show a message in the capture UI directly, so it’s unnecessary to 

display your own errors with this particular API: 

 

When this happens, you can again go to Settings > Permissions and give consent to use the camera, 

as shown in Figure 2-18 earlier. 

Sharing the Fun! 

Taking a goofy picture of oneself is fun, of course, but sharing the joy with the rest of the world is even 

better. Up to this point, however, sharing information through different social media apps has meant 

using the specific APIs of each service. Workable, but not scalable. 

Windows 8 instead introduced the notion of the share contract, which is used to implement the 

Share charm with as many apps as participate in the contract. Whenever you’re in an app and invoke 

Share, Windows asks the app for its source data, which it provides in one or more formats. Windows 

then generates a list of target apps (according to their manifests) that understand those formats, and 

displays that list in the Share pane. When the user selects a target, that app is activated and given the 

source data. In short, the contract is an abstraction that sits between the two, so the source and target 

apps never need to know anything about each other. 

This makes the whole experience all the richer when the user installs more share-capable apps, and 

it doesn’t limit sharing to only well-known social media scenarios. What’s also beautiful in the overall 

experience is that the user never leaves the original app to do sharing—the share target app shows up 

in its own view as an overlay that only partially obscures the source app (refer back to Figure 2-15). This 

way, the user remains in the context of the source app and returns there directly when the sharing is 

                                                           

leak memory with each new picture. If you’ve used URL.createObjectURL in the past, you’ll see that the second 

parameter is now a property bag, which aligns with the most recent W3C spec. 

62



 

 

completed. In addition, the source data is shared directly with the target app, so the user never needs 

to save data to intermediate files for this purpose. 

So instead of adding code to our app to share the photo and location to a particular target, like 

Facebook or Twitter, we need only package the data appropriately when Windows asks for it. 

That asking comes through the datarequested event sent to the 

Windows.ApplicationModel.DataTransfer.DataTransferManager object.10 First we just need to 

set up an appropriate listener—place this code is in the activated event in default.js after setting up 

the click listener on the img element: 

var dataTransferManager =  

    Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView(); 

dataTransferManager.addEventListener("datarequested", provideData); 

Note The notion of a current view as we see here is has nothing to do with particular view states like 

landscape or portrait; it’s really just a way of saying, “get the singular instance of this system object 

that’s related to the current app.” You use getForCurrentView instead of creating an instance with 

new because you only ever need one instance of such objects for any given app. getForCurrentView 

will instantiate the object if necessary, or return one that’s already available. 

For this event, the handler receives a Windows.ApplicationModel.DataTransfer.DataRequest 

object in the event args (e.request), which in turn holds a DataPackage object (e.request.data). To 

make data available for sharing, you populate this data package with the various formats you have 

available, as we’ve saved in lastPosition and lastCapture. So in our case, we make sure we have 

position and a photo and then fill in text and image properties (if you want to obtain a map from Bing 

for sharing purposes, see Get a static map): 

//Drop this in after capturePhoto 

function provideData(e) {  

    var request = e.request; 

    var data = request.data; 

     

    if (!lastPosition || !lastCapture) { 

        //Nothing to share, so exit 

        return; 

    } 

 

    data.properties.title = "Here My Am!"; 

    data.properties.description = "At (" 

        + lastPosition.latitude + ", " + lastPosition.longitude + ")";  

     

    //When sharing an image, include a thumbnail  

    var streamReference =  

        Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(lastCapture); 

                                                           

10 Because we’re always listening to datarequested while the app is running and add a listener only once, we don’t need to 

worry about calling removeEventListener. For details, see “WinRT Events and removeEventListener” in Chapter 3. 

63

http://msdn.microsoft.com/library/ff701724.aspx


 

 

    data.properties.thumbnail = streamReference; 

 

    //It's recommended to always use both setBitmap and setStorageItems for 

    // sharing a single image since the target app may only support one or the other. 

 

    //Put the image file in an array and pass it to setStorageItems 

    data.setStorageItems([lastCapture]); 

 

    //The setBitmap method requires a RandomAccessStream.  

    data.setBitmap(streamReference); 

} 

The latter part of this code is pretty standard stuff for sharing a file-based image (which we have in 

lastCapture). I got most of this code, in fact, directly from the Share content source app sample, 

which we’ll look at more closely in Chapter 13, “Contracts.” We’ll also talk more about files and streams 

in Chapter 9. 

With this last addition of code, and a suitable sharing target installed (such as the Share content 

target app sample, as shown in Figure 2-20, or Twitter as shown in Figure 2-21), we now have a very 

functional app—in all of 35 lines of HTML, 125 lines of CSS, and less than 100 lines of JavaScript! 

  

FIGURE 2-20  Sharing (monkey-see, monkey-do!) to the Share target sample in the Windows SDK, which is highly 

useful for debugging as it displays information about all the formats the source app has shared. 

64

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782


 

 

 

FIGURE 2-21 Sharing to Twitter. The fact that Twitter’s brand color is nearly identical to the Windows SDK is sheer 

coincidence. The header color of the sharing pane always reflects the target app’s specific color. 

Extra Credit: Improving the App 

The Here My Am! app as we’ve built it so far is nicely functional and establishes core flow of the app, 

and you can find this version in the HereMyAm2a folder of the companion content. However, there are 

some functional deficiencies that we could improve upon: 

 Because geolocation isn’t always as accurate as we’d like, the pushpin location on the map 

won’t always be where we want it. To correct this, we can make the pin draggable and report 

its updated position to the app via postMessage from the iframe to the app. This will also 

complete the interaction story between local and web contexts. 

 The placeholder image that reads “Tap to capture photo” works well in some views, but looks 

terrible in others (such as the 50% view as seen in Figure 2-14). We can correct this, and 

simplify localization and accessibility concerns later on, by drawing the text on a canvas 

element and using it as the placeholder. 

 Although automatically cropping the captured image to the size of the photo display area, 

this takes control away from users who might like to crop the image themselves. Furthermore, 

as we change views in the app, the image just gets scaled to the new size of the photo area 

without any concern for preserving aspect ratio. By keeping that aspect ratio in place, we can 

then allow the user to crop however they want and adapt well across view states. 

 By default, captured images are stored in the app’s temporary app data folder. It’d be better 

65



 

 

to move those images to local app data, or even to the Pictures library, so we could later add 

the ability to load a previously captured image (as we’ll do in Chapter 8 when we implement 

an app bar command for this purpose). 

The sections that follow explore all these details, and together produce the HereMyAm2b app in the 

companion content. 

Note For the sake of simplicity, we’ll not separate strings (like the text for the canvas element) into a 

resource file as you typically want to do for localization. This will also give us the opportunity in 

Chapter 18 to explore where such strings appear throughout an app and how to extract them. If you’re 

starting your own project now, however, you might want to read the section “World Readiness and 

Globalization” in Chapter 18 right away so you can properly structure your resources from the get-go. 

Receiving Messages from the iframe 

Just as app code in the local context can use postMessage to send information to an iframe in the 

web context, the iframe can use postMessage to send information to the app. In our case, we want to 

know when the location of the pushpin has changed so that we can update lastPosition. 

First, here’s a simple utility function I added to map.html to encapsulate the appropriate 

postMessage calls to the app from the iframe: 

function function notifyParent(event, args) { 

    //Add event name to the arguments object and stringify as the message 

    args["event"] = event; 

    window.parent.postMessage(JSON.stringify(args), "ms-appx://" + document.location.host); 

} 

This function basically takes an event name, adds it to an object containing parameters, stringifies 

the whole thing, and then posts it back to the parent. 

To make a pushpin draggable, we simply add the draggable: true option when we create it in the 

pinLocation function (in map.html): 

var pushpin = new Microsoft.Maps.Pushpin(location, { draggable: true }); 

When a pushpin is dragged, it raises a dragend event. We can wire up a handler for this in 

pinLocation just after the pushpin is created, which then calls notifyParent with an event of our 

choosing: 

Microsoft.Maps.Events.addHandler(pushpin, "dragend", function (e) { 

    var location = e.entity.getLocation(); 

    notifyParent("locationChanged", 

        { latitude: location.latitude, longitude: location.longitude }); 

}); 

Back in default.js (the app), we add a listener for incoming messages inside app.onactivated: 

window.addEventListener("message", processFrameEvent); 

66



 

 

where the processFrameEvent handler looks at the event in the message and acts accordingly: 

function processFrameEvent (message) { 

    //Verify data and origin (in this case the web context page) 

    if (!message.data || message.origin !== "ms-appx-web://" + document.location.host) { 

        return; 

    } 

 

    if (!message.data) { 

        return; 

    } 

 

    var eventObj = JSON.parse(message.data); 

 

    switch (eventObj.event) { 

        case "locationChanged": 

            lastPosition = { latitude: eventObj.latitude, longitude: eventObj.longitude }; 

            break; 

 

        default: 

            break; 

    } 

}; 

Clearly, this is more code than we’d need to handle a single message or event from an iframe, but I 

wanted to give you something that could be applied more generically in your own apps. In any case, 

these additions now allow you to drag the pin to update the location on the map and thus also the 

location shared through the Share charm. 

Improving the Placeholder Image with a Canvas Element 

Although our default placeholder image, /images/taphere.png, works well in a number of views, it gets 

inappropriately squashed or stretched in others. We could create multiple images to handle these 

cases, but that will bloat our app package and make our lives more complicated when we look at 

variations for pixel density (Chapter 3) along with contrast settings and localization (Chapter 18). To 

make a long story short, handling different pixel densities can introduce up to four variants of an 

image, contrast concerns can introduce four more variants, and localization introduces as many variants 

as the languages you support. So if, for example, we had three basic variants of this image and 

multiplied that with four pixel densities, four contrasts, and ten languages, we’d end up with 48 images 

per language or 480 across all languages! That’s too much to maintain, for one, and that many images 

will dramatically bloat the size of your app package (a deterrent to users downloading it). 

Fortunately, there’s an easy way to solve this problem across all variations, which is to just draw the 

text we need (for which we can use a localized string later on) on a canvas element and then use the 

HTML blob APIs to display that canvas in an img element. Here’s a routine that does all of that, which 

we call within app.onready (to make sure document layout has happened): 

function setPlaceholderImage() { 

    //Ignore if we have an image (shouldn't be called under such conditions) 

67



 

 

    if (lastCapture != null) { 

        return; 

    } 

 

    var photo = document.getElementById("photo"); 

    var canvas = document.createElement("canvas"); 

    canvas.width = photo.clientWidth; 

    canvas.height = photo.clientHeight; 

 

    var ctx = canvas.getContext("2d"); 

    ctx.fillStyle = "#7f7f7f"; 

    ctx.fillRect(0, 0, canvas.width, canvas.height); 

    ctx.fillStyle = "#ffffff"; 

 

    //Use 75% height of the photoSection heading for the font 

    var fontSize = .75 * 

        document.getElementById("photoSection").querySelector("h2").clientHeight; 

    ctx.font = "normal " + fontSize + "px 'Arial'"; 

    ctx.textAlign = "center";         

    ctx.fillText("Tap to capture photo", canvas.width / 2, canvas.height / 2); 

 

    var img = photo.querySelector("img"); 

 

    //The blob should be released when the img.src is replaced 

    img.src = URL.createObjectURL(canvas.msToBlob(), { oneTimeOnly: true }); 

} 

Here we’re simply creating a canvas element that’s the same width and height as the photo display 

area, but we don’t attach it to the DOM (no need). We draw our text on it with a size that’s 

proportional to the photo section heading. Then we obtain a blob for the canvas using its msToBlob 

method, hand it to our friend URL.createObjectURL, and assign the result to the img.src. Voila! 

Because the canvas element will be discarded once this function is done (that variable goes out of 

scope) and because we make a oneTimeOnly blob from it, we can call this function anytime the photo 

section is resized, which we can detect with the window.onresize event. We need to use this same 

event to handle image scaling, so let’s see how all that works next. 

Handling Variable Image Sizes 

If you’ve been building and playing with the app as we’ve described it so far, you might have noticed a 

few problems with the photo area besides the placeholder image. For one, if the resolution of the 

camera is not sufficient to provide a perfectly sized image as indicated by our cropping size, the 

captured image will be scaled to fit the photo area without concern for preserving the aspect ratio (see 

Figure 2-22, left side). Similarly, if we change views (or display resolution) after any image is captured, 

the photo area gets resized and the image is again scaled to fit, without always producing the best 

results (see Figure 2-22, right side). 

68



 

 

  

FIGURE 2-22 Poor image scaling with a low-resolution picture from the camera where the captured image isn’t 

inherently large enough for the display area (left), and even worse results in the 50% view when the display area’s 

aspect ratio changes significantly. 

To correct this, we’ll need to dynamically determine the largest image dimension we can use within 

the current display area, then scale the image to that size while preserving the aspect ratio and keeping 

the image centered in the display. 

For centering purposes, the easiest solution I’ve found to this is to create a surrounding div with a 

CSS grid wherein we can use row and column centering. So in default.html: 

<div id="photo" class="graphic"> 

    <img id="photoImg" src="#" alt="Tap to capture image from camera" role="img" /> 

</div> 

and in default.css: 

#photo { 

    display: -ms-grid; 

    -ms-grid-columns: 1fr; 

    -ms-grid-rows: 1fr; 

} 

 

#photoImg { 

    -ms-grid-column-align: center; 

    -ms-grid-row-align: center; 

} 

The graphic style class on the div always scales to 100% width and height of its grid cell, so the 

one row and column within it will also occupy that full space. By adding the centering alignment to the 

photoImg child element, we know that the image will be centered regardless of its size. 

69



 

 

To scale the image in this grid cell, then, we either set the image element’s width style to 100% if its 

aspect ratio is greater than that of the display area, or set its height style to 100% if the opposite is 

true. For example, on a 1366x768 display, the size of the display area in landscape view is 583x528 for 

an aspect ratio of 1.1, and let’s say we get an 800x600 image back from camera capture with an aspect 

ratio of 1.33. In this case the image is scaled to 100% of the display area width, making the displayed 

image 583x437 with blank areas on the top and bottom. Conversely, in 50% view the display area on 

the same screen is 612x249 with a ratio of 2.46, so we scale the 800x600 image to 100% height, which 

comes out to 332x249 with blank areas on the left and right. 

The size of the display area is readily obtained through the clientWidth and clientHeight 

properties of the surrounding div we added to the HTML. The actual size of the captured image is then 

readily available through its StorageFile object’s properties.getImagePropertiesAsync method. 

Putting all this together, here’s a function that sets the appropriate style on the img element given its 

parent div and the captured file: 

function scaleImageToFit(imgElement, parentDiv, file) { 

    file.properties.getImagePropertiesAsync().done(function (props) { 

        var scaleToWidth = 

            (props.width / props.height > parentDiv.clientWidth / parentDiv.clientHeight); 

        imgElement.style.width = scaleToWidth ? "100%" : ""; 

        imgElement.style.height = scaleToWidth ? "" : "100%"; 

    }, function (e) { 

        console.log("getImageProperties error: " + e.message); 

    }); 

} 

With this in place, we can simply call this in our existing capturePhoto function immediately after 

we assign a new image to the element: 

img.src = URL.createObjectURL(capturedFile, { oneTimeOnly: true }); 

scaleImageToFit(img, photoDiv, capturedFile); 

To handle view changes and anything else that will resize the display area, we can add a resize 

handler within app.onactivated: 

window.addEventListener("resize", scalePhoto); 

Where the scalePhoto handler can call scaleImageToFit if we have a captured image or the 

setPlaceholderImage function we created in the previous section otherwise: 

function scalePhoto() { 

    var photoImg = document.getElementById("photoImg"); 

 

    //Make sure we have an img element 

    if (photoImg == null) { 

        return; 

    } 

 

    //If we have an image, scale it, otherwise regenerate the placeholder 

    if (lastCapture != null) { 

        scaleImageToFit(photoImg, document.getElementById("photo"), lastCapture); 

70



 

 

    } else { 

        setPlaceholderImage(); 

    } 

} 

With such accommodations for scaling, we can also remove the line from capturePhoto that set 

captureUI.photoSettings.croppedSizeInPixels, thereby allowing us to crop the captured image 

however we like. Figure 2-23 shows these improved results. 

  

FIGURE 2-23 Proper image scaling after making the improvements. 

Moving the Captured Image to AppData (or the Pictures 

Library) 

If you take a look in Here My Am! TempState folder within its appdata, you’ll see all the pictures you’ve 

taken with the camera capture UI. If you set a breakpoint in the debugger and look at capturedFile, 

you’ll see that it has an ugly file path like C:\Users\kraigb\AppData\Local\Packages\ 

ProgrammingWin8-JS-CH2-HereMyAm2b_5xchamk3agtd6\TempState\picture001.png. Egads. Not the 

friendliest of locations, and definitely not one that we’d want a typical consumer to ever see! 

Because we’ll want to allow the user to reload previous pictures later on (see Chapter 9), it’s a good 

idea to move these images into a more reliable location. Otherwise they could disappear at any time if 

the user runs the Disk Cleanup tool. 

Tip For quick access to the appdata folders for your installed apps, type %localappdata%/packages 

into the path field of Windows Explorer or in the Run dialog (Windows+R key). 

For the purposes of this exercise, we’ll move each captured image into a HereMyAm folder within 

71



 

 

our local appdata and also rename the file in the process to add a timestamp. In doing so, we can also 

see how to use an ms-appdata:///local/ URI to directly refer to those images within the img.src 

attribute. (This protocol is described in URI schemes along with its roaming and temp variants, the ms-

appx protocol for in-package contents, as we’ll discuss in Chapter 4, and the ms-resource protocol for 

resources, as described in Chapter 18.) 

To move the file, we can use its built-in StorageFile.copyAsync method, which requires a target 

StorageFolder object and a new name. We can then delete the temp file with its deleteAsync 

method. 

The target folder is obtained from Windows.Storage.ApplicationData.current.localFolder. 

The only real trick to all of this is that we have to chain together multiple async operations. We’ll 

discuss this in more detail in Chapter 3, but the way you do this is to have each completed handler in 

the chain return the promise from the next async operation in the sequence, and to use then for each 

step except for the last, when we use done. The advantage to this is that we can throw any exceptions 

along the way and they’ll be picked up in the error handler given to done. Here’s how it looks in a 

modified capturePhoto function: 

var img = photoDiv.querySelector("img"); 

var capturedFile; 

 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 

    .then(function (capturedFileTemp) { 

        if (!capturedFileTemp) { throw ("no file captured"); } 

        capturedFile = capturedFileTemp;  

 

        //Open the HereMyAm folder, creating it if necessary 

        var local = Windows.Storage.ApplicationData.current.localFolder; 

        return local.createFolderAsync("HereMyAm", 

            Windows.Storage.CreationCollisionOption.openIfExists); 

 

        //Note: the results from the returned promise are fed into the 

        //completed handler given to the next then in the chain. 

    }) 

    .then(function (myFolder) { 

        //Again, check validity of the result 

        if (!myFolder) { throw ("could not create local appdata folder"); } 

 

        //Append file creation time to the filename (should avoid collisions, 

        //but need to convert colons) 

        var newName = " Capture - " +  

            capturedFile.dateCreated.toString().replace(/:/g, "-") + capturedFile.fileType;  

 

        //Make the copy 

        return capturedFile.copyAsync(myFolder, newName);  

    }) 

    .then(function (newFile) { 

        if (!newFile) { throw ("could not copy file"); } 

 

        lastCapture = newFile;  //Save for Share 

        img.src = "ms-appdata:///local/HereMyAm/" + newFile.name; 

72

http://msdn.microsoft.com/library/windows/apps/jj655406.aspx


 

 

        //newFile.name includes extension 

 

        scaleImageToFit(img, photoDiv, newFile); 

 

        //Delete the temporary file 

        return capturedFile.deleteAsync(); 

    }) 

    //No completed handler needed for the last operation 

    .done(null, function (error) { 

        console.log("Unable to invoke capture UI:" + error.message); 

    }); 

This might look a little complicated to you at this point, but trust me, you’ll quickly become 

accustomed to this structure when dealing with multiple async operations. If you can look past all the 

syntactical ceremony here and simply follow the words Async and then, you can see that the sequence 

of operations is simply this: 

 Capture an image from the camera capture UI, resulting in a temp file. 

 Create or open the HereMyAm folder in local appdata, resulting in a folder object. 

 Copy the captured file to that folder, resulting in a new file. 

 Delete the temp file, which has no results. 

To help you follow the chain, I’ve use different colors in the code above to highlight each set of 

async calls and their associated then methods and results, along with a final call to done. What works 

very well about this chaining structure—which is much cleaner than trying to nest operations within 

each other’s completed handlers—is that any exceptions that occur, whether from WinRT or a direct 

throw, are shunted to the one error handler at the end, so we don’t need separate error handlers for 

every operation (although you can if you want). We’ll talk more about all this in Chapter 3. 

Finally, by changing two lines of this code and—very importantly—declaring the Pictures library 

capability in the manifest, you can move the files to the Pictures library instead. Just change the line to 

obtain localFolder to this instead: 

var local = Windows.Storage.KnownFolders.picturesLibrary; 

and use URL.createObjectUrl with the img element instead of the ms-appdata URI: 

img.src = URL.createObjectURL(newFile, {oneTimeOnly: true}); 

as there isn’t a URI scheme for the picture library. Of course, the line above works just fine for a file in 

local appdata, but I wanted to give you an introduction to the ms-appdata:// protocol. 

With that, we’ve completed our improvements to Here My Am!, which you can again find in the 

HereMyAm2b example with this chapter’s companion content. And I think you can guess that this is 

only the beginning: we’ll be adding many more features to this app as we progress through this book! 

73



 

 

The Other Templates: Projects and Items 

In this chapter we’ve worked only with the Blank App template so that we could understand the basics 

of writing a Windows Store app without any other distractions. In Chapter 3, we’ll look more deeply at 

the anatomy of apps through a few of the other templates, yet we won’t cover them all. We’ll close this 

chapter, then, with a short introduction to these very handy tools to get you started on your own 

projects. 

Navigation Template 

“A project for a Windows Store app that has predefined controls for navigation.” (Blend/Visual Studio 

description) 

The Navigation template builds on the Blank template by adding support for “page” navigation, 

where the pages in question are more sections of content than distinct pages like we know on the 

Web. As discussed in Chapter 1, Windows Store apps written in JavaScript are best implemented by 

having a single HTML page container into which other pages are dynamically loaded. This allows for 

smooth transitions (as well as animations) between those pages and preserves the script context. Many 

web apps, in fact, use this single-page approach. 

The Navigation template, and the others that remain, employ a Page Navigator control that 

facilitates loading (and unloading) pages in this way. You need only create a relatively simple structure 

to describe each page and its behavior. We’ll see this in Chapter 3. 

In this model, default.html is little more than a simple container, with everything else in the app 

coming through subsidiary pages. The Navigation template creates only one subsidiary page, yet it 

establishes the framework for how to work with multiple pages. Additional pages are easily added to a 

project through a page item template (right click a folder in your project in Visual Studio and select 

Add > New Item > Page Control). 

Grid Template 

“A three-page project for a Windows Store app that navigates among grouped items arranged in a grid. 

Dedicated pages display group and item details.” (Blend/Visual Studio description) 

Building on the Navigation template, the Grid template provides the basis for apps that will navigate 

collections of data across multiple pages. The home page shows grouped items within the collection, 

from which you can then navigate into the details of an item or into the details of a group and its items 

(from which you can then go into individual item details as well). 

In addition to the navigation, the Grid template also shows how to manage collections of data 

through the WinJS.Binding.List class, a topic we’ll explore much further in Chapter 6, “Collections 

and Collection Controls.” It also provides the structure for an app bar and shows how to simplify the 

app’s behavior in narrow views. 

74



 

 

The name of the template, by the way, derives from the particular grid layout used to display the 

collection, not from the CSS grid. 

Hub Template 

“A three-page project for a Windows Store app that implements the hub navigation patterns by using a 

hub control on the first page and provides two dedicated pages for displaying group and item details.” 

(Blend/Visual Studio description) 

Functionally similar to a Grid Template app, the Hub template uses the WinJS Hub control for a 

home page with heterogeneous content (that is, where multiple collections could be involved). From 

there the app navigates to group and item pages. We’ll learn about the Hub control in Chapter 7. 

Split Template 

“A two-page project for a Windows Store app that navigates among grouped items. The first page allows 

group selection while the second displays an item list alongside details for the selected item.” 

(Blend/Visual Studio description) 

This last template also builds on the Navigation template and works over a collection of data. Its 

home page displays a list of groups, rather than grouped items as with the Grid template. Tapping a 

group navigates to a group detail page that is split into two sides (hence the template name). The left 

side contains a vertical list of items; the right side shows details for the currently selected item. 

Like the Grid template, the Split template provides an app bar structure and handles different views 

intelligently. That is, because vertically oriented views don’t lend well to splitting the display 

horizontally, the template shows how to switch to a page navigation model within those view states to 

accomplish the same ends. 

Item Templates 

In addition to the project templates described above, there are a number of item templates that you 

can use to add new files of particular types to a project, or add groups of files for specific features. 

Once a project is created, right-click the folder in which you want to create the item in question (or the 

project file to create something at the root), and select Add > New item. This will present you with a 

dialog of available item templates, as shown in Figure 2-24 for features specific to Store apps. We’ll 

encounter more of these throughout this book. 

75



 

 

 

FIGURE 2-24 Available item templates for a Windows Store app written in JavaScript. 

What We’ve Just Learned 

 How to create a new Windows Store app from the Blank app template. 

 How to run an app inside the local debugger and within the simulator, as well as the role of 

remote machine debugging. 

 The features of the simulator that include the ability to simulate touch, set view states, and 

change resolutions and pixel densities. 

 The basic project structure for Windows Store apps, including WinJS references. 

 The core activation structure for an app through the WinJS.Application.onactivated event. 

 The role and utility of design wireframes in app development, including the importance of 

designing for all view states, where the work is really a matter of element visibility and layout. 

 The power of Blend for Visual Studio to quickly and efficiently add styling to an app’s markup. 

Blend also makes a great CSS debugging tool. 

 How to safely use web content (such as Bing maps) within a web context iframe and 

communicate between that page and the local context app by using the postMessage method. 

 How to use the WinRT APIs, especially async methods involving promises such as geolocation 

and camera capture. Async operations return a promise to which you provide a completed 

handler (and optional error and progress handlers) to the promise’s then or done method. 

76



 

 

 Manifest capabilities determine whether an app can use certain WinRT APIs. Exceptions will 

result if an app attempts to use an API without declaring the associated capability. 

 How to share data through the Share contract by responding to the datarequested event. 

 How to handle sequential async operations through chained promises. 

 How to move files on the file system and work with basic appdata folders. 

 The kinds of apps supported through the other app templates: Navigation, Grid, Hub, and Split. 

77



Chapter 3 

App Anatomy, Page Navigation, and 

Promises 

During the early stages of writing this book (the first edition, at least), I was also working closely with a 

contractor to build a house for my family. While I wasn’t on site every day managing the whole effort, I 

was certainly involved in nearly all decision-making throughout the home’s many phases, and I 

occasionally participated in the construction itself. 

In the Sierra Nevada foothills of California, where I live, the frame of a house is built with the 

plentiful local wood, and all the plumbing and wiring has to be in the walls before installing insulation 

and wallboard (aka sheetrock). It amazed me how long it took to complete that infrastructure. The 

builders spent a lot of time adding little blocks of wood here and there to make it much easier for 

them to do the finish work later on (like hanging cabinets), and lots of time getting the wiring and 

plumbing put together properly. All of this disappeared entirely from sight once the wallboard went up 

and the finish work was in place. 

But then, imagine what a house would be like without such careful attention to structural details. 

Imagine having some light switches that just don’t work or control the wrong fixtures. Imagine if the 

plumbing leaks inside the walls. Imagine if cabinets and trim start falling off the walls a week or two 

after moving into the house. Even if the house manages to pass final inspection, such flaws would make 

it almost unlivable, no matter how beautiful it might appear at first sight. It would be like a few of the 

designs of the famous architect Frank Lloyd Wright: very interesting architecturally and aesthetically 

pleasing, yet thoroughly uncomfortable to actually live in. 

Apps are very much the same story—I’ve marveled, in fact, just how many similarities exist between 

the two endeavors! An app might be visually beautiful, even stunning, but once you start using it day 

to day (or even minute to minute), a lack of attention to the fundamentals will become painfully 

apparent. As a result, your customers will probably start looking for somewhere else to live, meaning 

someone else’s app! 

This chapter, then, is about those fundamentals: the core foundational structure of an app upon 

which you can build something that looks beautiful and really works well. This takes us first into the 

subject of app activation (how apps get running) and then app lifecycle transitions (how they are 

suspended, resumed, and terminated). We’ll then look at page navigation within an app, working with 

promises, async debugging, and making use of various profiling tools. One subject that we won’t talk 

about here are background tasks; we’ll see those in Chapter 14, “Alive with Activity,” because there are 

limits to their use and they must be discussed in the context of the lock screen. 

78



 

Generally speaking, these anatomical concerns apply strictly to the app itself and its existence on a 

client device. Chapter 4, “Using Web Content and Services,” expands this story to include how apps 

reach out beyond the device to consume web-based content and employ web APIs and other services. 

In that context we’ll look at additional characteristics of the hosted environment that we first 

encountered in Chapter 2, “Quickstart,” such as the local and web contexts, basic network connectivity, 

and authentication. A few other fundamentals, like input, we’ll pick up in later chapters. 

Let me offer you advance warning that this chapter and the next are more intricate than most 

others because they specifically deal with the software equivalents of framing, plumbing, and wiring. 

With my family’s house, I can completely attest that installing the lovely light fixtures my wife picked 

out seemed, in those moments, much more satisfying than the framing work I’d done months earlier. 

But now, actually living in the house, I have a deep appreciation for all the nonglamorous work that 

went into it. It’s a place I want to be, a place in which my family and I are delighted, in fact, to spend 

the majority of our lives. And is that not how you want your customers to feel about your apps? 

Absolutely! Knowing the delight that a well-architected app can bring to your customers, let’s dive in 

and find our own delight in exploring the intricacies! 

App Activation 

One of the most important things to understand about any app is how it goes from being a package 

on disk to something that’s up and running and interacting with users. Such activation can happen a 

variety of ways: through tiles on the Start screen, toast notifications, and various contracts, including 

Search, Share, and file type and URI scheme associations. Windows might also pre-launch the user’s 

most frequently used apps (not visibly, of course), after updates and system restarts. In all these 

activation cases, you’ll be writing plenty of code to initialize your data structures, acquire content, 

reload previously saved state, and do whatever else is necessary to establish a great experience for the 

human beings on the other side of the screen. 

Tip Pay special attention to what I call the first experience of your app, which starts with your app’s 

page in the Store, continues through download and installation (meaning: pay attention to the size of 

your package), and finished up through first launch and initialization that brings the user to your app’s 

home page. When a user taps an Install button in the Store, he or she clearly wants to try your app, so 

streamlining the path to interactivity is well worth the effort. 

Branding Your App 101: The Splash Screen and Other Visuals 

With activation, we first need to take a step back even before the app host gets loaded, to the very 

moment a user taps your tile on the Start screen or when your app is launched some other way (except 

for pre-launching). At that moment, before any app-specific code is loaded or run, Windows displays 

your app’s splash screen image against your chosen background color, both of which you specify in 

your manifest. 

79



 

The splash screen shows for at least 0.75 seconds (so that it’s never just a flash even if the app loads 

quickly) and accomplishes two things. First, it guarantees that something shows up when an app is 

activated, even if no app code loads successfully. Second, it gives users an interesting branded 

experience for the app—that is, your image—which is better than a generic hourglass. (So don’t, as one 

popular app I know does, put a generic hour class in your splash screen image!) Indeed, your splash 

screen and your app tile are the two most important ways to uniquely brand your app. Make sure you 

and your graphic artist(s) give full attention to these. (For further guidance, see Guidelines and checklist 

for splash screens.) 

The default splash screen occupies the whole view where the app is being launched (in whatever 

view state), so it’s a much more directly engaging experience for your users. During this time, an 

instance of the app host gets launched to load, parse, and render your HTML/CSS, and load, parse, and 

execute your JavaScript, firing events along the way, as we’ll see in the next section. When the app’s 

first page is ready, the system removes the splash screen. 

Note This system-provided splash screen is composed of only your splash screen image and your 

background color and does not allow any customization. However, through an extended splash screen, 

described later, you can control the entire display. 

Additional graphics and settings in the manifest also affect your branding and overall presence in 

the system, as shown in the table below. Be especially aware that the Visual Studio and Blend templates 

provide some default and thoroughly unattractive placeholder graphics. Take a solemn vow right now 

that you truly, truly, cross-your-heart will not upload an app to the Windows Store with these defaults 

graphics still in place! (The Windows Store will reject your app if you forget, delaying certification.) 

You can see that the table lists multiple sizes for various images specified in the manifest (on the 

Application UI tab) to accommodate varying pixel densities: 100%, 140%, and 180% scale factors, and 

even a few at 80% (don’t neglect the latter: they are typically used for most desktop monitors). 

Although you can just provide a single 100% scale image for each of these, it’s almost guaranteed that 

stretching that graphics for higher pixel densities will look bad. Why not make your app look its best? 

Take the time to create each individual graphic consciously. 

All items in this table are found in the Application UI > Visual Assets section of the manifest editor 

(except for the first, which is found at the top). The editor shows you which scale images you have in 

your package, as shown in Figure 3-1. To see all visual elements at once, select All Image Assets in the 

left-hand list. 

Item Use Image Sizes 

100% 

140% 180% 

Display Name (at the top 

of the Application UI tab) 

Appears in the “all apps” view on the Start 

screen, search results, the Settings charm, and 

in the Store. 

n/a n/a n/a 

Tile > Short name Optional: if provided, is used for the name on 

the tile in place of the Display Name, as Display 

Name may be too long for a square tile. 

n/a n/a n/a 

80

http://msdn.microsoft.com/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/library/windows/apps/hh465338.aspx


 

Tile > Show name Specifies which tiles should show the app name 

(the small 70x70 tile will never show the name). 

If none of the items are checked, the name 

never appears. 

n/a n/a n/a 

Tile > Default size Indicates whether to show the square or wide 

tile on the Start screen after installation. 

n/a n/a n/a 

Tile > Foreground text Color of name text shown on the tile if 

applicable (see Show name). Options are Light 

and Dark. There must be a 1.5 contrast ratio 

between this and the background color. Refer 

to The Paciello Group’s Contrast Analyzer for 

more. 

n/a n/a n/a 

Tile > Background color Color used for transparent areas of any tile 

images, the default background for secondary 

tiles, notification backgrounds, buttons in app 

dialogs, borders when the app is a provider for 

file picker and contact picker contracts, headers 

in settings panes, and the app’s page in the 

Store. Also provides the splash screen 

background color unless that is set separately. 

n/a n/a n/a 

Splash Screen > 

Background color 

Color that will fill the majority of the splash 

screen; if not set, the App UI Background color 

is used. 

n/a n/a n/a 

Square 70x70 logo A small square tile image for the Start screen. If 

provided, the user has the option to display this 

after installation; it cannot be specified as the 

default. (Note also that live tiles are not 

supported on this size.) 

70x70 

(+ 80% scale at 

56x56) 

98x98 126x126 

Square 150x150 logo Square tile image for the Start screen. 150x150 

(+ 80% scale at 

120x120) 

210x210 270x270 

Wide 310x150 logo Optional wide tile image. If provided, this is 

shown as the default unless overridden by the 

Default option below. The user can use the 

square tile if desired.  

310x150 

(+80% scale at 

248x120) 

434x210 558x270 

Square 310x310 logo Optional double-size/large square tile image. If 

provided, the user has the option to display this 

after installation; it cannot be specified as the 

default. 

310x310 

(+80% scale at 

248x248) 

434x434 558x558 

Square 30x30 logo Tile used in zoomed-out and “all apps” views of 

the Start screen, and in the Search and Share 

panes if the app supports those contracts as 

targets. Also used on the app tile if you elect to 

show a logo instead of the app name in the 

lower left corner of the tile. Note that there are 

also four “Target size” icons that are specifically 

used in the desktop file explorer when file type 

associations exist for the app. We’ll cover this in 

Chapter 13, “Contracts.” 

30x30 

(+80% scale at 

24x24) 

42x42 54x54 

Store logo Tile/logo image used for the app on its product 

description page in the Windows Store. This 

image appears only in the Windows Store and 

is not used by the app or system at runtime. 

50x50 70x70 90x90 

Badge logo Shown next to a badge notification to identify 

the app on the lock screen (uncommon, as this 

requires additional capabilities to be declared; 

24x24 33x33 43x43 

81

http://www.paciellogroup.com/resources/contrastAnalyser


 

see Chapter 14, “Alive with Activity”). 

Splash screen When the app is launched, this image is shown 

in the center of the screen against the 

Background color. The image can utilize 

transparency if desired. 

620x300 868x420 1116x540 

 

 

FIGURE 3-1 Visual Studio’s Visual Assets section in the Application UI tab of the manifest editor. It automatically 

detects whether a scaled asset exists for the base filename (such as images\logo.png). 

In the table, note that 80% scale tile graphics are used in specific cases like low DPI modes 

(generally when the DPI is less than 130 and the resolution is less than 2560 x 1440) and should be 

provided with other scaled images. When you upload your app to the Windows Store, you’ll also need 

to provide some additional graphics. See the App images topic in the docs under “Promotional images” 

for full details. 

The combination of small, square, wide, and large square tiles allows the user to arrange the start 

screen however they like. For example: 

82

http://msdn.microsoft.com/library/windows/apps/hh846296.aspx


 

 

Of course, it’s not required that your app supports anything other than the 150x150 square tile; all 

others are optional. In that case Windows will scale your 150x150 tile down to the 70x70 small size to 

give users at least that option. 

When saving scaled image files, append .scale-80, .scale-100, .scale-140, and .scale-180 to the 

filenames, before the file extension, as in splashscreen.scale-140.png (and be sure to remove any file 

that doesn’t have a suffix). This allows you, both in the manifest and elsewhere in the app, to refer to an 

image with just the base name, such as splashscreen.png, and Windows will automatically load the 

appropriate variant for the current scale. Otherwise it looks for one without the suffix. No code needed! 

This is demonstrated in the HereMyAm3a example, where I’ve added all the various branded graphics 

(with some additional text in each graphic to show the scale). With all of these graphics, you’ll see the 

different scales show up in the manifest editor, as shown in Figure 3-1 above. 

To test these different graphics, use the set resolution/scaling button in the Visual Studio 

simulator—refer to Figure 2-5 in Chapter 2—or the Device tab in Blend, to choose different pixel 

densities on a 10.6” screen (1366 x 768 =100%, 1920 x 1080 = 140%, and 2560 x 1440 = 180%), or the 

7” or 7.5” screens (both use 140%). You’ll also see the 80% scale used on the other display choices, 

including the 23” and 27” settings. In all cases, the setting affects which images are used on the Start 

screen and the splash screen, but note that you might need to exit and restart the simulator to see the 

new scaling take effect. 

One thing you might also notice is that full-color photographic images don’t scale down very well 

to the smallest sizes (store logo and small logo). This is one reason why Windows Store apps often use 

simple logos, which also keeps them smaller when compressed. This is an excellent consideration to 

keep your package size smaller when you make more versions for different contrasts and languages. 

We’ll see more on this in Chapter 18, “Apps for Everyone.” 

Tip Two other branding-related resources you might be interested in are the Branding your Windows 

Store app topic in the documentation (covering design aspects) and the CSS styling and branding your 

app sample (covering CSS variations and dynamically changing the active stylesheet). 

83

http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2


 

Activation Event Sequence 

As the app host is built on the same parsing and rendering engines as Internet Explorer, the general 

sequence of activation events is more or less what a web application sees in a browser. Actually, it’s 

more rather than less! Here’s what happens so far as Windows is concerned when an app is launched 

(refer to the ActivationEvents example in the companion code to see this event sequence as well as the 

related WinJS events that we’ll discuss a little later): 

1. Windows displays the default splash screen using information from the app manifest 

(except for pre-launching). 

2. Windows launches the app host, identifying the app’s installation folder and the name of 

the app’s Start Page (an HTML file) as indicated in the Application UI tab of the manifest 

editor.1 

3. The app host loads that page’s HTML, which in turn loads referenced stylesheets and script 

(deferring script loading if indicated in the markup with the defer attribute). Here it’s 

important that all files are properly encoded for best startup performance. (See the sidebar 

below.) 

4. document.DOMContentLoaded fires. You can use this to do early initialization specifically 

related to the DOM, if desired. This is also the place to perform one-time initialization work 

that should not be done if the app is activated on multiple occasions during its lifetime. 

5. Windows.UI.WebUI.WebUIApplication.onactivated fires. This is typically where you’ll 

do all your startup work, instantiate WinJS and custom controls, initialize state, and so on. 

6. Once the activated event handler returns, the default splash screen is dismissed unless 

the app has requested a deferral, as discussed later in the “Activation Deferrals and 

setPromise” section. 

7. window.onload fires. At this point you trust that document layout is complete, as when 

performing initialization that’s sensitive to element size. 

What’s also very different is that an app can again be activated for many different purposes, such as 

contracts and associations, even while it’s already running. As we’ll see in later chapters, the specific 

page that gets loaded (step 3) can vary by contract, and if a particular page is already running it will 

receive only the Windows.UI.WebUI.WebUIApplication.onactivated event and not the others. 

For the time being, though, let’s concentrate on how we work with this core launch process, and 

because you’ll generally do your initialization work within the activated event, let’s examine that 

structure more closely. 

                                                           

1 To avoid confusion with the Windows Start screen, I’ll often refer to this as the app’s home page unless I’m specifically 

referring to the entry in the manifest. 

84

http://msdn.microsoft.com/library/windows/apps/hh849088.aspx#load_only_what_you_need


 

Sidebar: File Encoding for Best Startup Performance 

To optimize bytecode generation when parsing HTML, CSS, and JavaScript, which speeds app 

launch time, the Windows Store requires that all .html, .css, and .js files are saved with Unicode 

UTF-8 encoding. This is the default for all files created in Visual Studio or Blend. If you’re 

importing assets from other sources including third-party libraries, check this encoding: in Visual 

Studio’s File Save As dialog (Blend doesn’t have a Save As feature), select Save with Encoding and 

set that to Unicode (UTF-8 with signature) – Codepage 65001. The Windows App Certification Kit 

will issue warnings if it encounters files without this encoding. 

  

Along these same lines, minification of JavaScript isn’t particularly important for Windows 

Store apps. Because an app package is downloaded from the Windows Store as a unit and often 

contains other assets that are much larger than your code files, minification won’t make much 

difference there. Once the package is installed, bytecode generation means that the package’s 

JavaScript has already been processed and optimized, so minification won’t have any additional 

performance impact. If your intent is to obfuscate your code (because it is just there in source 

form in the installation folder), see “Protecting Your Code” in Chapter 18. 

Activation Code Paths 

As we saw in Chapter 2, new projects created in Visual Studio or Blend give you the following code in 

js/default.js (a few comments have been removed): 

(function () { 

    "use strict"; 

 

    var app = WinJS.Application; 

    var activation = Windows.ApplicationModel.Activation; 

 

    app.onactivated = function (args) { 

        if (args.detail.kind === activation.ActivationKind.launch) { 

            if (args.detail.previousExecutionState !==  

                activation.ApplicationExecutionState.terminated) { 

                // TODO: This application has been newly launched. Initialize  

                // your application here. 

            } else { 

                // TODO: This application has been reactivated from suspension.  

                // Restore application state here. 

            } 

            args.setPromise(WinJS.UI.processAll()); 

85



 

        } 

    }; 

 

    app.oncheckpoint = function (args) { 

    }; 

 

    app.start(); 

})(); 

Let’s go through this piece by piece to review what we already learned and complete our 

understanding of this core code structure: 

 (function () { … })(); surrounding everything is again the JavaScript module pattern. 

 "use strict" instructs the JavaScript interpreter to apply Strict Mode, a feature of ECMAScript 

5. This checks for sloppy programming practices like using implicitly declared variables, so it’s a 

good idea to leave it in place. 

 var app = WinJS.Application; and var activation = 

Windows.ApplicationMode.Activation; both create substantially shortened aliases for 

commonly used namespaces. This is a common practice to simplify multiple references to the 

same part of WinJS or WinRT, and it also provides a small performance gain. 

 app.onactivated = function (args) {…} assigns a handler for the WinJS.UI.onactivated 

event, which is a wrapper for Windows.UI.WebUI.WebUIApplication.onactivated (but will 

be fired after window.onload). In this handler: 

 args.detail.kind identifies the type of activation. 

 args.detail.previousExecutionState identifies the state of the app prior to this 

activation, which determines whether to reload session state. 

 WinJS.UI.processAll instantiates WinJS controls—that is, elements that contain a data-

win-control attribute, as we’ll cover in Chapter 5, “Controls, Control Styling, and Data 

Binding.” 

 args.setPromise instructs Windows to wait until WinJS.UI.processAll is complete 

before removing the splash screen. (See “Activation Deferrals and setPromise” later in this 

chapter.) 

 app.oncheckpoint, which is assigned an empty function, is something we’ll cover in the “App 

Lifecycle Transition Events” section later in this chapter. 

 app.start() (WinJS.Application.start()) initiates processing of events that WinJS queues 

during startup. 

Notice how we’re not directly handling any of the events that Windows or the app host is firing, like 

DOMContentLoaded or Windows.UI.WebUI.WebUIApplication.onactivated. Are we just ignoring 

those events? Not at all: one of the convenient services that WinJS offers through 

86

http://msdn.microsoft.com/library/br230269.aspx


 

WinJS.UI.Application is a simplified structure for activation and other app lifetime events. Its use is 

entirely optional but very helpful. 

With its start method, for example, a couple of things are happening. First, the 

WinJS.Application object listens for a variety of events that come from different sources (the DOM, 

WinRT, etc.) and coalesces them into a single object with which you register your handlers. Second, 

when WinJS.Application receives activation events, it doesn’t just pass them on to the app’s handlers 

immediately, because your handlers might not, in fact, have been set up yet. So it queues those events 

until the app says it’s really ready by calling start. At that point WinJS goes through the queue and 

fires those events. That’s all there is to it. 

As the template code shows, apps typically do most of their initialization work within the WinJS 

activated event, where there are a number of potential code paths depending on the values in 

args.details (an IActivatedEventArgs object). If you look at the documentation for activated, 

you’ll see that the exact contents of args.details depends on specific activation kind. All activations, 

however, share some common properties: 

args.details 

Property 

Type (in Windows.Application-

Model.Activation) 

Description 

kind ActivationKind The reason for the activation. The possibilities are 

launch (most common); restrictedLaunch 

(specifically for app to app launching); search, 

shareTarget, file, protocol, fileOpenPicker, 

fileSavePicker, contactPicker, and 

cachedFileUpdater (for servicing contracts); and 

device, printTask, settings, and 

cameraSettings (generally used with device apps). 

For each supported activation kind, the app will have 

an appropriate initialization path. 

previousExecutionState ApplicationExecutionState The state of the app prior to this activation. Values are 

notRunning, running, suspended, terminated, and 

closedByUser. Handling the terminated case is 

most common because that’s the one where you want 

to restore previously saved session state (see “App 

Lifecycle Transition Events”). 

splashScreen SplashScreen Contains an ondismissed event for when the system 

splash screen is dismissed. This also contains an 

imageLocation property 

(Windows.Foundation.Rect) with coordinates where 

the splash screen image was displayed, as noted later 

in “Extended Splash Screens.” 

 

Additional properties provide relevant data for the activation. For example, launch provides the 

tileId and arguments from secondary tiles (see Chapter 14), as well as a prelaunchActivated flag (a 

Boolean) that indicates the app can skip visual aspects of startup like extended splash screens. The 

search kind (the next most commonly used) provides queryText and language, the protocol kind 

provides a uri, and so on. We’ll see how to use many of these in their proper contexts, and sometimes 

they apply to altogether different pages than default.html. What’s contained in the templates (and 

87

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.iactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/br212679.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.activationkind.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx


 

what we’ve already used for an app like Here My Am!) is primarily to handle normal startup from the 

app tile or when launched within Visual Studio’s debugger. 

WinJS.Application Events 

WinJS.Application isn’t concerned only with activation—its purpose is to centralize events from 

several different sources and turn them into events of its own. Again, this enables the app to listen to 

events from a single source (either assigning handlers via addEventListener(<event>) or on<event> 

properties; both are supported). Here’s the full rundown on those events and when they’re fired (if 

queued, the event is fired within your call to WinJS.Application.start): 

 loaded Queued for DOMContentLoaded in both local and web contexts.2 This is fired before 

activated. 

 activated Queued in the local context for Windows.UI.WebUI.WebUIApplication.-

onactivated (and again fires after window.onload). In the web context, where WinRT is not 

applicable, this is instead queued for DOMContentLoaded (where the launch kind will be launch 

and previousExecutionState is set to notRunning). 

 ready Queued after loaded and activated. This is the last one in the activation sequence. 

 error Fired if there’s an exception in dispatching another event. (If the error is not handled 

here, it’s passed onto window.onerror.) 

 checkpoint Fired when the app should save the session state it needs to restart from a 

previous state of terminated. It’s fired in response to both the document’s beforeunload 

event as well as Windows.UI.WebUI.WebUIApplication.onsuspending. 

 unload Also fired for beforeunload after the checkpoint event is fired. 

 settings Fired in response to 

Windows.UI.ApplicationSettings.SettingsPane.oncommandsrequested. (See Chapter 9, 

“The Story of State.”) 

I think you’ll generally find WinJS.Application to be a useful tool in your apps, and it also 

provides a few more features as documented on the WinJS.Application page. For example, it 

provides local, temp, roaming, and sessionState properties, which are helpful for managing state. 

We saw a little of local already in Chapter 2; we’ll see more later on in Chapter 9. 

The other bits are the queueEvent and stop methods. The queueEvent method drops an event into 

the queue that will get dispatched, after any existing queue is clear, to whatever listeners you’ve set up 

on the WinJS.Application object. Events are simply identified with a string, so you can queue an 

event with any name you like, and call WinJS.Application.addEventListener with that same name 

                                                           

2 There is also WinJS.Utilities.ready through which you can specifically set a callback for DOMContentLoaded. This is 

used within WinJS, in fact, to guarantee that any call to WinJS.UI.processAll is processed after DOMContentLoaded. 

88

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211903.aspx


 

anywhere else in the app. This makes it easy to centralize custom events that you might invoke both 

during startup and at other points during execution without creating a separate global function for 

that purpose. It’s also a powerful means through which separately defined, independent components 

can raise events that get aggregated into a single handler. (For an example of using queueEvent, see 

Scenario 2 of the App model sample.) 

As for stop, this is provided to help with unit testing so that you can simulate different activation 

sequences without having to relaunch the app and somehow recreate a set of specific conditions when 

it restarts. When you call stop, WinJS removes its listeners, clears any existing event queue, and clears 

the sessionState object, but the app continues to run. You can then call queueEvent to populate the 

queue with whatever events you like and then call start again to process that queue. This process can 

be repeated as many times as needed. 

Activation Deferrals and setPromise 

As noted earlier under “Activation Event Sequence,” once you return from your handler for 

WebUIApplication.onactivated (or WinJS.Application.onactivated), Windows assumes that 

your home page is ready and that it can dismiss the default splash screen. The same is true for 

WebUIApplication.onsuspending (and by extension, WinJS.Application.oncheckpoint): Windows 

assumes that it can suspend the app once the handler returns. More generally, WinJS.Application 

assumes that it can process the next event in the queue once you return from the current event. 

This gets tricky if your handler needs to perform one or more async operations, like an HTTP 

request. Clearly, your handling of the event won’t really be complete until those operations are 

finished. But because they’re running on other threads, you’ll end up returning from your handler while 

the operations are still pending, which could cause your home page to show before its ready or the 

app to be suspended before it’s finished saving state. Not quite what you want to have happen! 

For this reason, you need a way to tell Windows and WinJS to defer their default behaviors until the 

async work is complete. The mechanism that provides for this is in WinRT called a deferral, and the 

setPromise method that we’ve seen in WinJS ties into this. 

Let’s see first how this works on the WinRT level. The args given to 

WebUIApplication.onactivated contains a little method called getDeferral (technically 

Windows.UI.WebUI.ActivatedOperation.getDeferral). This function returns a deferral object that 

contains a complete method. By calling getDeferral, you tell Windows to leave the system splash 

screen up until you call complete (subject to a 15-second timeout as described in “Extended Splash 

Screens” below). The code looks like this: 

//In the activated handler 

var activatedDeferral = Windows.UI.WebUI.ActivatedOperation.getDeferral(); 

 

someOperationAsync().done(function () { 

    //After initialization is complete  

    activatedDeferral.complete(); 

} 

89

http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.activateddeferral.aspx


 

This same mechanism is employed elsewhere in WinRT. You’ll find that the args for 

WebUIApplication.onsuspending also has a getDeferral method, so you can defer suspension until 

an async operation completed. So does the DataTransferManager.ondatarequested event that we 

saw in Chapter 2 for working with the Share charm. You’ll also encounter deferrals when working with 

the Search charm, printing, background tasks, Play To, and state management, as we’ll see in later 

chapters. In short, wherever there’s a potential need to do async work within an event handler, you’ll 

find getDeferral. 

Within WinJS now, whenever WinJS provides a wrapper for a WinRT event, as with 

WinJS.Application.onactivated, it also wraps the deferral mechanism into a single setPromise 

method that you’ll find on the args object passed to the relevant event handler. Because you need 

deferrals when performing async operations in these event handlers, and because async operations in 

JavaScript are always represented with promises, it makes sense for WinJS to provide a generic means 

to link the deferral to the fulfillment of a promise. That’s exactly what setPromise does.  

WinJS, in fact, automatically requests a deferral whether you need it or not. If you provide a promise 

to setPromise, WinJS will attach a completed handler to it and call the deferral’s complete at the 

appropriate time. Otherwise WinJS will call complete when your event handler returns. 

You’ll find setPromise on the args passed to the WinJS.Application loaded, activated, ready, 

checkpoint, and unload events. Again, setPromise both defers Windows’ default behaviors for 

WinRT events and tells WinJS.Application to defer processing the next event in its queue. This allows 

you, for example, to delay the activated event until an async operation within loaded is complete. 

Now we can see the purpose of setPromise within the activation code we saw earlier: 

var app = WinJS.Application; 

 

app.onactivated = function (args) { 

    if (args.detail.kind === activation.ActivationKind.launch) { 

        //... 

        args.setPromise(WinJS.UI.processAll()); 

        } 

}; 

WinJS.UI.processAll starts an async operation to instantiate WinJS controls. It returns a promise 

that is fulfilled when all those controls are ready. Clearly, if we have WinJS controls on our home page, 

we don’t want to dismiss the default splash screen until processAll is done. So we defer that dismissal 

by passing that promise to setPromise. 

Oftentimes you’ll want to do more initialization work of your own when processAll is complete. In 

this case, simply call then with your own completed handler, like so: 

args.setPromise(WinJS.UI.processAll().then(function () { 

    //Do more initialization work 

})); 

Here, be sure to use then and not done because the latter returns undefined rather than a promise, 

90

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datatransfermanager.datarequested.aspx


 

which means that no deferral will happen. See “Error Handling Within Promises: then vs. done” later on. 

Because setPromise just waits for a single promise to complete, how do you handle multiple async 

operations? Just pick the one you think will take the longest? No—there are a couple of ways to do 

this. First, if you need to control the sequencing of those operations, you can chain them together as 

we already saw in Chapter 2 and as we’ll discuss further in this chapter under “Be True to Your 

Promises.” Just be sure that the end result of the chain is a promise that becomes the argument to 

setPromise—again, use then and not done! 

Second, if the sequence isn’t important but you need all of them to complete, you can combine 

those promises by using WinJS.Promise.join, passing the result to setPromise. If you need only one 

of the operations to complete, you can use WinJS.Promise.any instead. Again, see “Be True to Your 

Promises” later on. 

The other means is to register more than one handler with WinJS.Application.onactivated; 

each handler will get its own event args and its own setPromise function, and WinJS will combine 

those returned promises together with WinJS.Promise.join. 

Extended Splash Screens 

Though the default splash screen helps keep the user engaged when they launch an app, the user 

won’t stay engaged if that same splash screen stays up for a really long time. In fact, “a really long 

time” for a typical consumer amounts to all of 15 seconds (if that), at which point he or she will pretty 

much start to assume that the app has hung and return to the Start screen to launch some other app 

that won’t waste the afternoon. For this reason, Windows has an automatic 15-second timeout for 

launching an app. If the app doesn’t get its home page up in that time—that is, return from the 

activated event and complete any deferral—and the user switches away, then boom! Windows will 

terminate the app. (This saves the user from having to do the sordid deed in Task Manager.) 

Note The 15-second timeout is entirely independent from the deferral mechanism as described in the 

previous section. Using a deferral applies only to handling async operations during activation and does 

not lengthen the timeout. 

Shortening the amount of time a user has to wait is the whole reason why Windows will pre-launch 

frequently used apps without making them visible. Nevertheless, it’s still important to get going 

quickly. 

The first consideration, of course, is to optimize your startup process to be as fast as possible. (For 

example, you can use the defer="defer" attribute on script attributes to defer-load JavaScript files 

that aren’t needed during initialization.) Still, sometimes an app really needs more than 15 seconds to 

get going, especially the first time it’s run after being installed. For example, an app might need to 

expand a bunch of compressed data from its app package into local appdata such that subsequent 

launches are much faster. Many games do this with graphics and other resources, optimizing the local 

storage for device characteristics; other apps might populate a local IndexedDB from data in a JSON 

91



 

file or download and cache a bunch of data from an online service. (In the latter scenario you can pre-

cache online content, as explained in Chapter 4.) 

It’s also possible for the user to launch your app shortly after rebooting the system, in which case 

there might be lots of disk activity going on. As a result, any disk I/O in your activation path could take 

much longer than usual. 

In all these cases, you want to show the user that something is actually happening so that she 

doesn’t think to switch away and risk terminating the app. You might also just want to create a more 

engaging startup experience than the default splash screen provides. 

An extended splash screen is what allows you to fully customize the splash screen experience. In 

truth, an extended splash screen is not a system object or such—it’s just an implementation strategy for 

the first page of your app in which you’ll do the majority of your startup work before displaying your 

real home page. In fact, a typical approach is to just overlay a full-sized div on top of your home page 

for this purpose and then remove that div from the DOM (or animate it out of view) when initialization 

is complete. 

The trick (as recommended on Guidelines and checklist for splash screens) is to make this first app 

page initially look exactly like the default splash screen so that there’s no visible transition between the 

two. At this point many apps simply add a progress indicator with some kind of a “Please go grab a 

drink, do some jumping jacks, or enjoy a few minutes of meditation while we load everything” 

message. Matching the system splash screen, however, doesn’t mean that the extended splash screen 

has to stay that way. Because the entire display area is under your control, you can create whatever 

experience you want: you can kick off animations, perform content transitions, play videos, and so on. 

And because your first page is up, meaning that you’ve returned from your activated handler, you’re 

no longer subject to the 15-second timeout. In fact, you can hang out on this page however long you 

want, even waiting for user input (as when you require a login to use the app). 

I recommend installing and running various apps from the Store to see different effects in action. A 

few popular titles include Skype, Netflix, Jetpack Joyride, and some of the Bing apps that are included 

with Windows (like News and Travel). Netflix, for example, gracefully slides the default splash screen 

logo up to make space for a shadow and a progress ring. Now compare the experience of a good 

extended splash screen to the static default experience that other apps provide. Which do you prefer? 

And which do you think users of your app will prefer? 

Making a seamless transition from the default splash screen is the purpose of the 

args.detail.splashScreen object included with the activated event. This object—see 

Windows.ApplicationModel.Activation.SplashScreen—contains an imageLocation property (a 

Windows.Foundation.Rect) indicating the placement and size of the splash screen image on the 

current display. (These values depend on the screen resolution and pixel density.) On your extended 

splash screen page, then, initially position your default image at this same location and then give the 

user some great entertainment by animating it elsewhere. You also use imageLocation to determine 

where to other messages, progress indicators, and other content relative to that image. 

92

http://msdn.microsoft.com/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx


 

The splashScreen object also provides an ondismissed event so that you can perform specific 

actions when the system-provided splash screen is dismissed and your extended splash screen comes 

up. This is typically used to trigger the start of on-page animations, starting video playback, and so on. 

Important Because an extended splash screen is just a page in your app, it can be placed into any 

view state at any time. So, as with every other page in your app, make sure your extended splash 

screen can handle different sizes and orientations. We’ll talk about this more in Chapter 7, “Layout,” 

when we discuss sizing strategies. 

For one example of an extended splash screen, refer to the Splash screen sample in the Windows 

SDK. While it shows the basic principles in action, all it does it add a message and a button that 

dismisses the splash screen, plus the SDK sample structure muddies the story somewhat. So let’s see 

something more straightforward and visually interesting, which you can find in the 

ExtendedSplashScreen example in this chapter’s companion content. The four stages of this splash 

screen (for a full landscape view) are shown in Figure 3-2. Note that this example does not 

accommodate different views at present; we’ll fix that in Chapter 7. 

  
 

  

FIGURE 3-2 Four stages of the ExtendedSplashScreen example: (1) the default splash screen, upper left, (2) 

animating the logo and the title, upper right, (3) showing the progress indicator, lower left, and (4) fading out the 

extended splash screen to reveal the main page, lower right. A 10-second countdown in the upper left corner of the 

screen simulates initialization work. 

The first stage, in the upper left of Figure 3-2, is the default splash screen that uses only the logo 

image. The pie graphic in the middle is 300x300 pixels, with the rest of the PNG file transparent so that 

the background color shows through. Now let’s see what happens when the app gets control. 

93

http://code.msdn.microsoft.com/windowsapps/Splash-screen-sample-89c1dc78


 

The home page for the app, default.html, contains two div elements, one with the final (and 

thoroughly unexciting) page contents and another with the contents of the extended splash screen: 

<div id="mainContent"> 

    <h1>This is the real start page</h1> 

    <p>Other content goes here.</p> 

</div> 

 

<div id="splashScreen"> 

    <p><span id="counter"></span></p> 

    <img id="logo" src="/images/splashscreen.png" /> 

    <img id="title" src="/images/splashscreentitle.png" /> 

    <progress id="progress" class="win-ring win-large"></progress> 

</div> 

In the second div, which overlays the first because it’s declared last, the counter element shows a 

countdown for debug purposes, but you can imagine such a counter turning into a determinate 

progress bar or a similar control. The rest of the elements provide the images and a progress ring. But 

we can’t position any of these elements in CSS until we know more about the size of the screen. The 

best we can do is set the splashScreen element to fill the screen with the background color and set 

the position style of the other elements to absolute so that we can set their exact location from 

code. This is done in default.css: 

#splashScreen { 

    background: #B25000;  /* Matches the splash screen color in the manifest */ 

    width: 100%;            /* Cover the whole display area */ 

    height: 100%; 

} 

 

    #splashScreen #counter { 

        margin: 10px; 

        font-size: 20px;  

    } 

 

    #splashScreen #logo { 

        position: absolute; 

    } 

 

    #splashScreen #title { 

        position: absolute; 

    } 

 

    #splashScreen #progress { 

        position: absolute; 

        color: #fc2; /* Use a gold ring instead of default purple */ 

    } 

In default.js now, we declare some module-wide variables for the splash screen elements, plus two 

values to control how long the extended splash screen is displayed (simulating initialization work) and 

one that indicates when to show the progress ring: 

 

94



 

var app = WinJS.Application; 

var activation = Windows.ApplicationModel.Activation; 

 

var ssDiv = null;           //Splash screen overlay div 

var logo = null;            //Child elements 

var title = null; 

var progress = null; 

 

var initSeconds = 10;       //Length in seconds to simulate loading 

var showProgressAfter = 4; //When to show the progress control in the countdown 

var splashScreen = null; 

In the activated event handler, we can now position everything based on the 

args.detail.splashScreen.imageLocation property (note the comment regarding 

WinJS.UI.processAll and setPromise, which we’re not using here): 

app.onactivated = function (args) { 

    if (args.detail.kind === activation.ActivationKind.launch) { 

        //WinJS.UI.processAll is needed ONLY if you have WinJS controls on the extended 

        //splash screen, otherwise you can skip the call to setPromise, as we're doing here.  

        //args.setPromise(WinJS.UI.processAll()); 

 

        ssDiv = document.getElementById("splashScreen"); 

        splashScreen = args.detail.splashScreen;    //Need this for later 

        var loc = splashScreen.imageLocation; 

 

        //Set initial placement of the logo to match the default start screen 

        logo = ssDiv.querySelector("#logo"); 

        logo.style.left = loc.x + "px"; 

        logo.style.top = loc.y + "px"; 

             

        //Place the title graphic offscreen to the right so we can animate it in 

        title = ssDiv.querySelector("#title"); 

        title.style.left = ssDiv.clientWidth + "px";  //Just off to the right 

        title.style.top = loc.y + "px";                  //Same height as the logo 

 

        //Center the progress indicator below the graphic and initially hide it 

        progress = ssDiv.querySelector("#progress"); 

        progress.style.left = (loc.x + loc.width / 2 - progress.clientWidth / 2) + "px"; 

        progress.style.top = (loc.y + loc.height + progress.clientHeight / 4) + "px"; 

        progress.style.display = "none"; 

At this stage, the display still appears exactly like the upper left of Figure 3-2, only it’s our extended 

splash screen page and not the default one. Thus we can return from the activated handler at this 

point and the user won’t see any change, but now we can do something more visually interesting and 

informational while the app is loading. 

To simulate initialization work and make some time for animating the logo and title, I have a simple 

countdown timer using one-second setTimeout calls: 

        //Start countdown to simulate initialization 

        countDown(); 

    } 

95



 

}; 

 

function countDown() { 

    if (initSeconds == 0) { 

        showMainPage(); 

    } else { 

        document.getElementById("counter").innerText = initSeconds; 

 

        if (--showProgressAfter) { 

            progress.style.display = ""; 

        } 

 

        initSeconds--;  

        setTimeout(countDown, 1000);  

    } 

} 

Notice how we show our main page when (our faked) initialization is complete and how the 

previously positioned (but hidden) progress ring is shown after a specified number of seconds. You 

can see the progress ring on the lower left of Figure 3-2. 

To fade from our extended splash screen to the main page (a partial fade is shown on the lower 

right of Figure 3-2), the showMainPage function employs the WinJS Animations Library as below, where 

WinJS.UI.Animation.fadeOut takes an array of the affected elements. fadeOut returns a promise, so 

we can attach a completed handler to know when to hide the now-invisible overlay div, which we can 

remove from the DOM to free memory: 

function showMainPage() { 

    //Hide the progress control, fade out the rest, and remove the overlay 

    //div from the DOM when it's all done. 

    progress.style.display = "none"; 

    var promise = WinJS.UI.Animation.fadeOut([ssDiv, logo, title]); 

 

    promise.done(function () { 

        ssDiv.removeNode(true); 

        splashScreen.ondismissed = null; //Clean up any closures for this WinRT event 

    }); 

} 

We’ll explore the animations library in Chapter 12, “Purposeful Animations,” so for now, you can 

refer to the documentation if you want to know more. 

To complete the experience, we now want to add some animations to translate and spin the logo to 

the left and to slide in the title graphic from its initial position off the right side of the screen. The 

proper time to start these animations is when the args.detail.splashScreen.ondismissed event is 

fired, as I do within activated just before calling my countDown function. This dismissed event 

handler simply calculates the translation amounts for the logo and title and sets up a CSS transition for 

both using the helper function WinJS.UI.executeTransition: 

        //Start our animations when the default splash screen is dismissed 

        splashScreen.ondismissed = function () { 

96

http://msdn.microsoft.com/library/windows/apps/br212674.aspx
http://msdn.microsoft.com/library/windows/apps/hh779763.aspx


 

            var logoImageWidth = 300;  //Logo is 620px wide, but image is only 300 in the middle 

            var logoBlankSide = 160;   //That leaves 160px to either side 

 

            //Calculate the width of logo image + separator + title. This is what we want to end 

            //up being centered on the screen. 

            var separator = 40; 

            var combinedWidth = logoImageWidth + separator + title.clientWidth; 

 

            //Final X position of the logo is screen center - half the combined width - blank 

            //area. The (negative) translation is this position minus the starting point (loc.x) 

            var logoFinalX = ((ssDiv.clientWidth - combinedWidth) / 2) - logoBlankSide; 

            var logoXTranslate = logoFinalX - loc.x; 

 

            //Final X position of the title is screen center + half combined width - title width. 

            //The (negative) translation is this position minus the starting point (screen width) 

            var titleFinalX = ((ssDiv.clientWidth + combinedWidth) / 2) - title.clientWidth; 

            var titleXTranslate = titleFinalX - ssDiv.clientWidth; 

                 

            //Spin the logo at the same time we translate it 

            WinJS.UI.executeTransition(logo, { 

                property: "transform", delay: 0, duration: 2000, timing: "ease", 

                to: "translateX(" + logoXTranslate + "px) rotate(360deg)" 

            }); 

 

            //Ease in the title after the logo is already moving (750ms delay) 

            WinJS.UI.executeTransition(title, { 

                property: "transform", delay: 750, duration: 1250, timing: "ease", 

                to: "translateX(" + titleXTranslate + "px)"  

            }); 

        } 

This takes us from the upper left of Figure 3-2 through the upper right stage, to the lower left stage. 

To really appreciate the effect, of course, just run the example! 

This code structure will likely be similar to what you need in your own apps, only use a single 

setTimeout call to delay showing a progress control, replace the countDown routine with your real 

async initialization work, and set up whatever elements and animations are specific to your splash 

screen design. Take special care that the majority of your initialization work happens either 

asynchronously or is started within the dismissed handler so that the default splash screen is dismissed 

quickly. Never underestimate a user’s impatience! 

WinRT Events and removeEventListener 

Before going further, we need to take a slight detour into a special consideration for events that 

originate from WinRT, such as dismissed. You may have noticed that I’m highlighting these with a 

different text color than other events. 

As we’ve already been doing in this book, typical practice within JavaScript, especially for websites, is 

to call addEventListener to specify event handlers or to simply assign an event handler to an 

97



 

on<event> property of some object. Oftentimes these handlers are just declared as inline anonymous 

functions: 

var myNumber = 1; 

element.addEventListener(<event>, function (e) { myNumber++; } ); 

Because of JavaScript’s particular scoping rules, the scope of that anonymous function ends up 

being the same as its surrounding code, which allows the code within that function to refer to local 

variables like myNumber in the code above. 

To ensure that such variables are available to that anonymous function when it’s later invoked as an 

event handler, the JavaScript engine creates a closure, a data structure that describes the local variables 

available to that function. Usually the closure requires only a small bit of memory, but depending on 

the code inside that event handler, the closure could encompass the entire global namespace—a rather 

large allocation! Every such closure increases the memory footprint or working set of the app, so it’s a 

good practice to keep closures at a minimum. For example, declaring a separate named function—

which has its own scope—rather than using an anonymous function, will reduce the size of any 

necessary closure. 

More important than minimizing closures is making sure that the event listeners themselves—and 

their associated closures—are properly cleaned up and their memory allocations released. Typically, 

this is not even something you need to think about. When objects such as HTML elements are 

destroyed or removed from the DOM, their associated listeners are automatically removed and closures 

are released. However, in a Windows Store app written in HTML and JavaScript, events can also come 

from WinRT objects. Because of the nature of the projection layer that makes WinRT available in 

JavaScript, WinRT ends up holding references to JavaScript event handlers (known also as delegates) 

and the JavaScript closures hold references to those WinRT objects. As a result of these cross-

references, the associated closures aren’t released unless you do so explicitly with 

removeEventListener (or assignment of null to an on<event> property). 

This is not a problem, mind you, if the app always listens to a particular event. For example, the 

suspending and resuming events are two that an app typically listens to for its entire lifetime, so any 

related allocations will be cleaned up when the app is terminated. It’s also not much of a concern if you 

add a listener only once, as with the splash screen dismissed event in the previous section. (In that 

case, however, you might notice that I still cleaned up the listener explicitly, because there’s no reason 

to keep any closures in memory once the extended splash screen completes.) 

Do pay attention, however, when an app listens to a WinRT object event only temporarily and 

neglects to explicitly call removeEventListener, and when the app might call addEventListener for 

the same event multiple times (in which case you can end up duplicating closures). With what are 

called page controls, which are used to load HTML fragments into a page (as discussed later in this 

chapter under “Page Controls and Navigation”), it’s common to call addEventListener or assign a 

handler to an on<event> property on some WinRT object within the page’s ready method. When you 

do this, be sure to match that call with removeEventListener (or assign null to on<event>) in the 

page’s unload method to release the closures.  

98



 

Note Events from WinJS objects don’t need this attention because the library already handles removal 

of event listeners. The same is true for listeners you might add for window and document events that 

persist for the lifetime of the app. 

Throughout this book, the WinRT events with which you need to be concerned are highlighted with 

a special color, as in datarequested (except where the text is also a hyperlink). This is your cue to 

check whether an explicit call to removeEventListener or on<event>=null is necessary. Again, if 

you’ll always be listening for the event, removing the listener isn’t needed, but if you add a listener 

when loading a page control, or anywhere else where you might add that listener again, be sure to 

make that extra call. Be especially aware that the samples in the Windows SDK don’t necessary pay 

attention to this detail, so don’t duplicate the oversight. 

In the chapters that follow, I will remind you of what we’ve just discussed on our first meaningful 

encounter with a WinRT event. Keep your eyes open for the WinRT color coding in any case. We’ll also 

come back to the subject of debugging and profiling toward the end of this chapter, where we’ll learn 

about tools that can help uncover memory leaks. 

App Lifecycle Transition Events and Session State 

Now that we’ve seen how an app gets activated into a running state, our next concern is with what can 

happen to it while it’s running. To an app—and the app’s publisher—a perfect world might be one in 

which consumers ran that app and stayed in that app forever (making many in-app purchases, no 

doubt!). Well, the hard reality is that this just isn’t reality. No matter how much you’d love it to be 

otherwise, yours is not the only app that the user will ever run. After all, what would be the point of 

features like sharing or split-screen views if you couldn’t have multiple apps running together? For 

better or for worse, users will be switching between apps, changing view states, and possibly closing 

your app, none of which the app can control. But what you can do is give energy to the “better” side of 

the equation by making sure your app behaves well under all these circumstances. 

The first consideration is focus, which applies to controls in your app as well as to the app itself (the 

window object). Here you can simply use the standard HTML blur and focus events. For example, an 

action game or one with a timer would typically pause itself on window.onblur and perhaps restart 

again on window.onfocus. 

A similar but different condition is visibility. An app can be visible but not have the focus, as when 

it’s sharing the screen with others. In such cases an app would continue things like animations or 

updating a feed, which it would stop when visibility is lost (that is, when the app is actually in the 

background). For this, use the visibilitychange event in the DOM API, and then examine the 

visibilityState property of the window or document object, as well as the document.hidden 

property. (The event works for visibility of individual elements as well.) A change in visibility is also a 

good time to save user data like documents or game progress. 

99

http://msdn.microsoft.com/library/windows/apps/hh441213.aspx
http://msdn.microsoft.com/library/windows/apps/hh453385.aspx


 

For view state changes, an app can detect these in several ways. As shown in the Here My Am! 

example, an app typically uses media queries (in declarative CSS or in code through media query 

listeners) to reconfigure layout and visibility of elements, which is really all that view states should 

affect. (Again, view state changes never change the mode of the app.) At any time, an app can also 

retrieve its view state through Windows.UI.ViewManagement.ApplicationView.orientation 

(returning an ApplicationViewOrientation value of either portrait or landscape), the size of the 

app window, and other details from ApplicationView like isFullScreen; details in Chapter 7.3 

When your app is closed (the user swipes top to bottom or presses Alt+F4), it’s important to note 

that the app is first moved off-screen (hidden), then suspended, and then closed, so the typical DOM 

events like body.unload aren’t much use. A user might also kill your app in Task Manager, but this 

won’t generate any events in your code either. Remember also that apps should not close themselves 

nor offer a means for the user to do so (this violates Store certification requirements), but they can use 

MSApp.terminateApp to close due to unrecoverable conditions like corrupted state. 

Suspend, Resume, and Terminate 

Beyond focus, visibility, and view states, there are three other critical moments in an app’s lifetime: 

 Suspending When an app is not visible in any view state, it will be suspended after five 

seconds (according to the wall clock) to conserve battery power. This means it remains wholly in 

memory but won’t be scheduled for CPU time and thus won’t have network or disk activity 

(except when using specifically allowed background tasks). When this happens, the app receives 

the Windows.UI.WebUI.WebUIApplication.onsuspending event, which is also exposed 

through WinJS.Application.oncheckpoint. Apps must return from this event within the five-

second period, or Windows will assume the app is hung and terminate it (period!). During this 

time, apps save transient session state and should also release any exclusive resources acquired 

as well, like file streams or device access. (See How to suspend an app.) 

 Resuming If the user switches back to a suspended app, it receives the 

Windows.UI.WebUI.WebUIApplication.onresuming event. This is not surfaced through 

WinJS.Application, mind you, because WinJS has no value to add, but it’s easy enough to use 

WinJS.Application.queueEvent for this purpose. We’ll talk more about this event in coming 

chapters, as it’s used to refresh any data that might have changed while the app was suspended. 

For example, if the app is connected to an online service, it would refresh that content if 

enough time has passed while the app was suspended, as well as check connectivity status 

(Chapter 4). In addition, if you’re tracking sensor input of any kind (like compass, geolocation, 

or orientation, see Chapter 10), resuming is a good time to get a fresh reading. You’ll also want 

to check license status for your app and in-app purchases if you’re using trials and/or 

expirations (see Chapter 18). There are also times when you might want to refresh your layout 

                                                           

3 The Windows 8 view states from ApplicationView.value—namely fullscreen-landscape, fullscreen-portrait, 

filled, and snapped—are deprecated in Windows 8.1 in favor of just checking orientation and window size. 

100

http://msdn.microsoft.com/library/windows/apps/hh465138.aspx


 

(as we’ll see in Chapter 7), because it’s possible for your app to resume directly into a different 

view state than when it was suspended, or resume to a different screen resolution as when the 

device has been connected to an external monitor. The same goes for enabling/disabling 

clipboard-related commands (Chapter 8), refreshing any tile updates (see Chapter 14), and 

checking any saved state that might have been modified by background tasks or roaming 

(Chapter 9). 

 Terminating When suspended, an app might be terminated if there’s a need for more 

memory. There is no event for this, because by definition the app is already suspended and no 

code can run. Nevertheless, this is important for the app lifecycle because it affects 

previousExecutionState when the app restarts. 

Before we go further, it’s essential to know that you can simulate these conditions in the Visual 

Studio debugger by using the toolbar drop-down shown in Figure 3-3. These commands will trigger 

the necessary events as well as set up the previousExecutionState value for the next launch of the 

app. (Be very grateful for these controls—there was a time when we didn’t have them, and it was 

painful to debug these conditions!) 

 

FIGURE 3-3 The Visual Studio toolbar drop-down to simulate suspend, resume, and terminate. 

We’ve briefly listed those previous states before, but let’s see how they relate to the events that get 

fired and the previousExecutionState value that shows up when the app is next launched. This can 

get a little tricky, so the transitions are illustrated in Figure 3-4 and the table below describes how the 

previousExecutionState values are determined. 

Value of previousExecutionState Scenarios 
notrunning First run after install from Store. 

First run after reboot or log off. 

App is launched within 10 seconds of being closed by user (about the time it 

takes to hide, suspend, and cleanly terminate the app; if the user relaunches 

quickly, Windows has to immediately terminate it without finishing the 

suspend operation). 

App was terminated in Task Manager while running or closed itself with 

MSApp.terminateApp. 

running App is currently running and then invoked in a way other than its app tile, 

such as Search, Share, secondary tiles, toast notifications, and all other 

contracts. When an app is running and the user taps the app tile, Windows 

just switches to the already-running app and without triggering activation 

events (though focus and visibilitychange will both be raised). 

suspended App is suspended and then invoked in a way other than the app tile (as above 

for running). In addition to focus/visibility events, the app will also receive 

101



 

the resuming event. 

terminated App was previously suspended and then terminated by Windows due to 

resource pressure. Note that this does not apply to MSApp.terminateApp 

because an app would have to be running to call that function. 

closedByUser App was closed by an uninterrupted close gesture (swipe down or Alt+F4). 

An “interrupted” close is when the user switches back to the app within 10 

seconds, in which case the previous state will be notrunning instead. 

 

 

FIGURE 3-4 Process lifecycle events and previousExecutionState values. 

The big question for the app, of course, is not so much what determines the value of 

previousExecutionState as what it should actually do with this value during activation. Fortunately, 

that story is a bit simpler and one that we’ve already seen in the template code: 

 If the activation kind is launch and the previous state is notrunning or closedByUser, the app 

should start up with its default UI and apply any persistent state or settings. With 

closedByUser, there might be scenarios where the app should perform additional actions (such 

as updating cached data) after the user explicitly closed the app and left it closed for a while. 

 If the activation kind is launch and the previous state is terminated, the app should start up in 

the same session state as when it was last suspended. 

 For launch and other activation kinds that include additional arguments or parameters (as with 

secondary tiles, toast notifications, and contracts), it should initialize itself to serve that purpose 

by using the additional parameters. The app might already be running, so it won’t necessarily 

initialize its default state again. 

102



 

In the first two requirements above, persistent state refers to state that always applies to an instance 

of the app, such as user accounts, UI configurations, and similar settings. Session state, on the other 

hand, is the transient state of a particular instance and includes things like unsubmitted form data, 

page navigation history, scroll position, and so forth. 

We’ll see the full details of managing state in Chapter 9. What’s important to understand at present 

is the relationship between the lifecycle events and session state, in particular. When Windows 

terminates a suspended app, the app is still running in the user’s mind. Thus, when the user activates the 

app again for normal use (activation kind is launch, rather than through a contract), he or she expects 

that app to be right where it was before. This means that by the time an app gets suspended, it needs 

to have saved whatever state is necessary to make this possible. It then rehydrates the app from that 

state when previousExecutionState is terminated. This creates continuity across the suspend-

terminate-restart boundary. 

For more on app design where this is concerned, see Guidelines for app suspend and resume. Be 

clear that if the user directly closes the app with Alt+F4 or the swipe-down gesture, the suspending 

and checkpoint events will also be raised, so the app still saves session state. However, the app won’t 

be asked to reload session state when it’s restarted because previousExecutionState will be 

notRunning or closedByUser. 

It works out best, actually, to save session state as it changes during the app’s lifetime, thereby 

minimizing the work needed within the suspending event (where you have only five seconds). Mind 

you, this session state does not include persistent state that an app would always reload or reapply in 

its activation path. The only concern here is maintaining the illusion that the app was always running. 

You always save session state to your appdata folders or settings containers, which are provided by 

the Windows.Storage.ApplicationData API. Again, we’ll see all the details in Chapter 9. What I want 

to point out here are a few helpers that WinJS provides for all this. 

First is the WinJS.Application.checkpoint event, which is raised when suspending fires. 

checkpoint provides a single convenient place to save both session state and any other persistent data 

you might have, if you haven’t already done so. 

Second is the WinJS.Application.sessionState object. On normal startup, this is just an empty 

object to which you can add whatever properties you like, including other objects. A typical strategy is 

to just use sessionState directly as a container for session variables. Within the checkpoint event, 

WinJS automatically serializes the contents of this object (using JSON.stringify) into a file within your 

local appdata folder (meaning that all variables in sessionState must have a string representation). 

Note that because WinJS ensures that its own handler for checkpoint is always called after your app 

gets the event, you can be assured that WinJS will save whatever you write into sessionState at any 

time before your checkpoint handler returns. 

Then, when the app is activated with the previous state of terminated, WinJS automatically 

rehydrates the sessionState object so that everything you put there is once again available. If you 

use this object for storing variables, you need only to avoid setting those values back to their defaults 

103

http://msdn.microsoft.com/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdata.aspx


 

when reloading your state. 

Third, if you don’t want to use the sessionState object or you have state that won’t work with it, 

the WinJS.Application object makes it easy to write your own files without having to use async 

WinRT APIs. Specifically, it provides (as shown in the documentation) local, temp, and roaming objects 

that each have methods called readText, writeText, exists, and remove. These objects each work 

within their respective appdata folders and provide a simplified API for file I/O, as shown in Scenario 1 

of the App model sample. 

A final aid ties into a deferral mechanism like the one for activation. Windows will normally suspend 

your app as soon as you return from the suspending event (regardless of whether five seconds have 

elapsed). If you start async operations within your handler, then, you need to defer suspension until 

those operations are complete. 

On the WinRT level, the event args for suspending contains an instance of 

Windows.UI.WebUI.WebUIApplication.SuspendingOperation. This provides a getDeferral 

method that returns a deferral object with a complete method. As with activation, you call complete 

when your async operations are finished. 

WinJS again provides a deferral mechanism oriented around promises. The event args for 

WinJS.Application.oncheckpoint provides a setPromise method that ties into the underlying 

WinRT deferral. You pass a promise for an async operation (or combined operations) to setPromise, 

which in turn calls the deferral’s complete method once the promise is fulfilled. 

Well, hey! All this sounds pretty good—is this perhaps a sneaky way to circumvent the restriction on 

running Windows Store apps in the background? Will my app keep running indefinitely if I request a 

deferral by never calling complete? 

No such luck, amigo. Accept my apologies for giving you a fleeting moment of exhilaration! Deferral 

or not, five seconds is the most you’ll ever get. Still, you might want to take full advantage of that time, 

perhaps to first perform critical async operations (like flushing a cache) and then to attempt other 

noncritical operations (like a sync to a server) that might greatly improve the user experience. For such 

purposes, the suspendingOperation object also contains a deadline property, a Date value 

indicating the time in the future when Windows will forcibly suspend you regardless of any deferral. 

Once the first operation is complete, you can check if you have time to start another, and so on. 

A basic demonstration of using the suspending deferral, by the way, can be found in the App 

activated, resume, and suspend sample. This also provides an example of activation through a custom 

URI scheme, a subject that we’ll be covering later in Chapter 13, “Contracts.” An example of handling 

state, in addition to the updates we’ll make to Here My Am! in the next section, can be found in 

Scenario 3 of the App model sample. 

 

104

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d


 

Basic Session State in Here My Am! 

To demonstrate some basic handling of session state, I’ve made a few changes to Here My Am! as 

given in the HereMyAm3b example in the companion content. Here we have two pieces of information 

we care about: the variables lastCapture (a StorageFile with the image) and lastPosition (a set of 

coordinates). We want to make sure we save these when we get suspended so that we can properly 

apply those values when the app gets launched with the previous state of terminated. 

With lastPosition, we can just move this into the sessionState object (prepending 

app.sessionState.). If this value exists on startup, we can skip making the call to 

getGeopositionAsync because we already have a location: 

//If we don't have a position in sessionState, try to initialize 

if (!app.sessionState.lastPosition) { 

    var gl = new Windows.Devices.Geolocation.Geolocator(); 

 

    gl.getGeopositionAsync().done(function (geocoord) { 

        var position = geocoord.coordinate.point.position; 

 

        //Save for share 

        app.sessionState.lastPosition = { 

            latitude: position.latitude, longitude: position..longitude }; 

 

        updatePosition(); 

    }, function (error) { 

        console.log("Unable to get location."); 

    }); 

} 

With this change I’ve also moved the bit of code to update the map location into a separate 

function that ensures a location exists in sessionState: 

function updatePosition() { 

    if (!app.sessionState.lastPosition) { 

        return; 

    } 

 

    callFrameScript(document.frames["map"], "pinLocation", 

        [app.sessionState.lastPosition.latitude, app.sessionState.lastPosition.longitude]); 

} 

Note also that because app.sessionState is initialized to an empty object by default, { }, 

lastPosition will be undefined until the geolocation call succeeds. This also works to our advantage 

when rehydrating the app. Here’s what the previousExecutionState conditions look like for this: 

if (args.detail.previousExecutionState !==  

    activation.ApplicationExecutionState.terminated) { 

    //Normal startup: initialize lastPosition through geolocation API 

} else { 

    //WinJS reloads the sessionState object here. So try to pin the map with the saved location 

    updatePosition(); 

} 

105



 

Because the contents of sessionState are automatically saved in 

WinJS.Application.oncheckpoint and automatically reloaded when the app is restarted with the 

previous state of terminated, our previous location will exist in sessionState and updatePosition 

just works. 

You can test all this by running the HereMyAm3b app, taking a suitable picture and making sure 

you have a location. Then use the Suspend and Shutdown option on the Visual Studio toolbar to 

terminate the app. Set a breakpoint on the updatePosition call above, and then restart the app in the 

debugger. You’ll see that sessionState.lastPosition is initialized at that point. 

With the last captured picture, we don’t need to save the StorageFile, just the pathname: we 

copied the file into our local appdata (so it persists across sessions already) and can just use the ms-

appdata:// URI scheme to refer to it. When we capture an image, we just save that URI into 

sessionState.imageURI (the property name is arbitrary) at the end of the promise chain inside 

capturePhoto: 

app.sessionState.imageURI = "ms-appdata:///local/HereMyAm/" + newFile.name; 

img.src = app.sessionState.imageURI; 

Again, because imageURI is saved within sessionState, this value will be available when the app is 

restarted after being terminated. We also need to re-initialize lastCapture with a StorageFile so 

that the image is available through the Share contract. For this we can use 

Windows.Storage.StorageFile.getFileFromApplicationUriAsync. Here, then, is the code within 

the previousExecutionState == terminated case during activation: 

//WinJS reloads the sessionState object here, so initialize from the saved image URI 

//and location.  

if (app.sessionState.imageURI) { 

    var uri = new Windows.Foundation.Uri(app.sessionState.imageURI); 

    Windows.Storage.StorageFile.getFileFromApplicationUriAsync(uri).done(function (file) { 

        lastCapture = file; 

 

        var img = document.getElementById("photoImg"); 

        img.src = app.sessionState.imageURI; 

        scaleImageToFit(img, document.getElementById("photo"), file); 

    }); 

} 

 

updatePosition(); 

I’ve placed the code to set img.src inside the completed handler here because we want the image 

to appear only if we can also access its StorageFile again for sharing. Otherwise the two features of 

the app would be out of sync. 

In all of this, note again that we don’t need to explicitly reload these variables within the 

terminated case because WinJS reloads sessionState automatically. If we managed our state more 

directly, such as storing some variables in roaming settings within the checkpoint event, we would 

reload and apply those values at this time. 

106



 

Note Using ms-appdata:/// and getFileFromApplicationUriAsync (or its sibling 

getFileFromPathAsync) works because the file exists in a location that we can access 

programmatically by default. It also works for libraries for which we declare a capability in the 

manifest. If, however, we obtained a StorageFile from the file picker, we’d need to save that in the 

Windows.Storage.AccessCache to preserve access permissions across sessions. We’ll revisit the access 

cache in Chapter 9. 

Page Controls and Navigation 

Now we come to an aspect of Windows Store apps that very much separates them from typical web 

applications but makes them very similar to AJAX-based sites. In many web applications, page-to-page 

navigation uses <a href> hyperlinks or setting document.location from JavaScript. This is all well and 

good; oftentimes there’s little or no state to pass between pages, and even then there are well-

established mechanisms for doing so, such as HTML5 sessionStorage and localStorage (which work 

just fine in Store apps, by the way). 

This type of navigation presents a few problems for Store apps, however. For one, navigating to a 

new page means a wholly new script context—all the JavaScript variables from your previous page will 

be lost. Sure, you can pass state between those pages, but managing this across an entire app likely 

hurts performance and can quickly become your least favorite programming activity. It’s better and 

easier, in other words, for client apps to maintain a consistent in-memory state across pages. 

Also, the nature of the HTML/CSS rendering engine is such that a blank screen appears when 

navigating a hyperlink. Users of web applications are accustomed to waiting a bit for a browser to 

acquire a new page (I’ve found many things to do with an extra 15 seconds!), but this isn’t an 

appropriate user experience for a fast and fluid Windows Store app. Furthermore, such a transition 

doesn’t allow animation of various elements on and off the screen, which can help provide a sense of 

continuity between pages if that fits with your design. 

So, although you can use direct links, Store apps typically implement “pages” by dynamically 

replacing sections of the DOM within the context of a single page like default.html, akin to how 

“single-page” web applications work. By doing so, the script context is always preserved and individual 

elements or groups of elements can be transitioned however you like. In some cases, it even makes 

sense to simply show and hide pages so that you can switch back and forth quickly. Let’s look at the 

strategies and tools for accomplishing these goals. 

WinJS Tools for Pages and Page Navigation 

Windows itself, and the app host, provide no mechanism for dealing with pages—from the system’s 

perspective, this is merely an implementation detail for apps to worry about. Fortunately, the engineers 

who created WinJS and the templates in Visual Studio and Blend worried about this a lot! As a result, 

they’ve provided some marvelous tools for managing bits and pieces of HTML+CSS+JS in the context 

of a single container page: 

107



 

 WinJS.UI.Fragments contains a low-level “fragment-loading” API, the use of which is 

necessary only when you want close control over the process (such as which parts of the HTML 

fragment get which parent). We won’t cover it in this book; see the documentation and the 

Loading HTML fragments sample. 

 WinJS.UI.Pages is a higher-level API intended for general use and is employed by the 

templates. Think of this as a generic wrapper around the fragment loader that lets you easily 

define a “page control”—simply an arbitrary unit of HTML, CSS, and JS—that you can easily pull 

into the context of another page as you do other controls.4 They are, in fact, implemented like 

other controls in WinJS (as we’ll see in Chapter 5), so you can declare them in markup, 

instantiate them with WinJS.UI.process[All], use as many of them within a single host page 

as you like, and even nest them. 

These APIs provide only the means to load and unload individual “pages”—they pull HTML in from 

other files (along with referenced CSS and JS) and attach the contents to an element in the DOM. That’s 

it. As such they can be used for any number of purposes, such as a custom control model, depending 

on how you like to structure your code. For some examples, see Scenario 1 of the HTML Page controls 

sample. 

Page controls and fragments are not gospel To be clear, there’s absolutely no requirement that you 

use the WinJS mechanisms described here in a Windows Store app. These are simply convenient tools 

for common coding patterns. In the end, it’s just about making the right elements and content appear 

in the DOM for your user experience, and you can implement that however you like. 

Assuming that you’ll want to save yourself loads of trouble and use WinJS for page-to-page 

navigation, you’ll need two other pieces. The first is something to manage a navigation stack, and the 

second is something to hook navigation events to the loading mechanism of WinJS.UI.Pages. 

For the first piece, you can turn to WinJS.Navigation, which supplies, through about 150 lines of 

CS101-level code, a basic navigation stack. This is all it does. The stack itself is just a list of URIs on top 

of which WinJS.Navigation exposes state, location, history, canGoBack, and canGoForward 

properties. The stack is manipulated through the forward, back, and navigate methods, and the 

WinJS.Navigation object raises a few events—beforenavigate, navigating, and navigated—to 

anyone who wants to listen (through addEventListener).5 

What this means is that WinJS.Navigation by itself doesn’t really do anything unless some other 

piece of code is listening to those events. That is, for the second piece of the navigation puzzle we 

need a linkage between WinJS.Navigation and WinJS.UI.Pages, such that a navigation event causes 

the target page contents to be added to the DOM and the current page contents to be removed. 

                                                           

4 If you are at all familiar with user controls in XAML, this is the same idea. 

5 The beforenavigate event can be used to cancel the navigation, if necessary. Either call args.preventDefault (args 

being the event object), return true, or call args.setPromise where the promise is fulfilled with true. 

108

http://msdn.microsoft.com/library/windows/apps/br229781.aspx
http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07
http://msdn.microsoft.com/library/windows/apps/hh770584.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4
http://msdn.microsoft.com/library/windows/apps/br229778.aspx


 

The basic process is as follows, and it’s also shown in Figure 3-5: 

1. Create a new div with the appropriate size (typically the whole app window). 

2. Call WinJS.UI.Pages.render to load the target HTML into that element (along with any 

script that the page uniquely references). This is an async function that returns a promise. 

We’ll take a look at what render does later on. 

3. When that loading (that is, rendering) is complete, attach the new element from step 1 to 

the DOM. 

4. Remove the previous page’s root element from the DOM. If you do this before yielding the 

UI thread, you won’t ever see both pages on-screen together. 

 

FIGURE 3-5 Performing page navigation in the context of a single host (typically default.html) by replacing 

appending the content from page2.html and removing that from page1.html. Typically, each page occupies the 

whole display area, but page controls can just as easily be used for smaller areas. 

As with page navigation in general, you’re again free to do whatever you want here, and in the early 

developer previews of Windows 8 that’s all that you could do! But as developers built the first apps for 

the Windows Store, we discovered that most people ended up writing just about the same boilerplate 

code over and over. Seeing this pattern, two standard pieces of code have emerged. One is the WinJS 

back button control, WinJS.UI.BackButton, which listens for navigation events to enable itself when 

appropriate. The other is a piece is called the PageControlNavigator and is magnanimously supplied 

by the Visual Studio templates. Hooray! 

Because the PageControlNavigator is just a piece of template-supplied code and not part of 

WinJS, it’s entirely under your control: you can tweak, hack, or lobotomize it however you want.6 In any 

                                                           

6 The Quickstart: using single-page navigation topic also shows a clever way to hijack HTML <a href> hyperlinks and hook 

them into WinJS.Navigation.navigate. This can be a useful tool, especially if you’re importing code from a web app or 

otherwise want to create page links in declarative markup. 

109

http://msdn.microsoft.com/en-us/library/windows/apps/hh452768.aspx


 

case, because it’s likely that you’ll often use the PageControlNavigator (and the back button) in your 

own apps, let’s look at how it all works in the context of the Navigation App template. 

Note Additional samples that demonstrate basic page controls and navigation, along with handling 

session state, can be found in the following SDK samples: App activate and suspend using WinJS (using 

the session state object in a page control), App activated, resume and suspend (described earlier; 

shows using the suspending deferral and restarting after termination), and Navigation and navigation 

history (showing page navigation along with tracking and manipulating the navigation history). In fact, 

just about every sample uses page controls to switch between different scenarios, so you have no 

shortage of examples to draw from! 

The Navigation App Template, PageControl Structure, and 

PageControlNavigator 

Taking one step beyond the Blank App template, the Navigation App template demonstrates the basic 

use of page controls. (The more complex templates build navigation out further.) If you create a new 

project with this template in Visual Studio or Blend, here’s what you’ll get: 

 default.html Contains a single container div with a PageControlNavigator control pointing 

to pages/home/home.html as the app’s home page. 

 js/default.js Contains basic activation and state checkpoint code for the app. 

 css/default.css Contains global styles. 

 pages/home Contains a page control for the “home page” contents, composed of 

home.html, home.js, and home.css. Every page control typically has its own markup, script, 

and style files. Note that CSS styles for page controls are cumulative as you navigate from page 

to page. See “Page-Specific Styling” later in this chapter. 

 js/navigator.js Contains the implementation of the PageControlNavigator class. 

To build upon this structure, you can add additional pages to the app with the page control item 

template in Visual Studio. For each page I recommend first creating a specific folder under pages, 

similar to home in the default project structure. Then right-click that folder, select Add > New Item, 

and select Page Control. This will create suitably named .html, .js. and .css files in that folder. 

Now let’s look at the body of default.html (omitting the standard header and a commented-out 

AppBar control): 

<body> 

    <div id="contenthost" data-win-control="Application.PageControlNavigator" 

        data-win-options="{home: '/pages/home/home.html'}"></div> 

</body> 

All we have here is a single container div named contenthost (it can be whatever you want), in 

which we declare the Application.PageControlNavigator as a custom WinJS control. (This is the 

110

http://code.msdn.microsoft.com/windowsapps/App-activation-events-and-d39c53d5
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa


 

purpose of data-win-control and data-win-options, as we’ll see in Chapter 5.) With this we specify 

a single option to identify the first page control it should load (/pages/home/home.html). The 

PageControlNavigator will be instantiated within our activated handler’s call to 

WinJS.UI.processAll. 

Within home.html we have the basic markup for a page control. Below is what the Navigation App 

template provides as a home page by default, and it’s pretty much what you get whenever you add a 

new page control from the item template (with different filenames, of course): 

<!DOCTYPE html> 

<html> 

<head> 

    <!--... typical HTML header and WinJS references omitted -->  

    <link href="/css/default.css" rel="stylesheet"> 

    <link href="/pages/home/home.css" rel="stylesheet"> 

    <script src="/pages/home/home.js"></script> 

</head> 

<body> 

    <!-- The content that will be loaded and displayed. --> 

    <div class="fragment homepage"> 

        <header aria-label="Header content" role="banner"> 

            <button data-win-control="WinJS.UI.BackButton"></button> 

            <h1 class="titlearea win-type-ellipsis"> 

                <span class="pagetitle">Welcome to NavApp!</span> 

            </h1> 

        </header> 

        <section aria-label="Main content" role="main"> 

            <p>Content goes here.</p> 

        </section> 

    </div> 

</body> 

</html> 

The div with fragment and homepage CSS classes, along with the header, creates a page with a 

standard silhouette and a WinJS.UI.BackButton control that automatically wires up keyboard, mouse, 

and touch events and again keeps itself hidden when there’s nothing to navigate back to. (Isn’t that 

considerate of it!) All you need to do is customize the text within the h1 element and the contents 

within section, or just replace the whole smash with the markup you want. (By the way, even though 

the WinJS files are referenced in each page control, they aren’t actually reloaded; they exist here to 

allow you to edit a standalone page control in Blend.) 

Tip The leading / on what looks like relative paths to CSS and JavaScript files actually creates an 

absolute reference from the package root. If you omit that /, there are many times—especially with 

path controls—when the relative path is not what you’d expect, and the app doesn’t work. In general, 

unless you really know you want a relative path, use the leading /. 

The definition of the actual page control is in pages/home/home.js; by default, the templates just 

provide the bare minimum: 

111



 

(function () { 

    "use strict"; 

 

    WinJS.UI.Pages.define("/pages/home/home.html", { 

        // This function is called whenever a user navigates to this page. It 

        // populates the page elements with the app's data. 

        ready: function (element, options) { 

            // TODO: Initialize the page here. 

        } 

    }); 

})(); 

The most important part is WinJS.UI.Pages.define, which associates a project-based URI (the 

page control identifier, always starting with a /, meaning the project root), with an object containing 

the page control’s methods. Note that the nature of define allows you to define different members of 

the page in multiple places: multiple calls to WinJS.UI.Pages.define with the same URI will add 

members to an existing definition and replace those that already exist. 

Tip Be mindful that if you have a typo in the URI that creates a mismatch between the URI in define 

and the actual path to the page, the page won’t load but there won’t be an exception or other visible 

error. You’ll be left wondering what’s going wrong! So, if your page isn’t loading like you think it 

should, carefully examine the URI and the file paths to make sure they match exactly. 

For a page created with the Page Control item template, you get a couple more methods in the 

structure (some comments omitted; in this example page2 was created in the pages/page2 folder): 

(function () { 

    "use strict"; 

 

    WinJS.UI.Pages.define("/pages/page2/page2.html", { 

        ready: function (element, options) { 

        }, 

 

        unload: function () { 

            // TODO: Respond to navigations away from this page. 

        } 

 

        updateLayout: function (element) { 

            // TODO: Respond to changes in layout. 

        }, 

    }); 

})(); 

A page control is essentially just an object with some standard methods. You can instantiate the 

control from JavaScript with new by first obtaining its constructor function from 

WinJS.UI.Pages.get(<page_uri>) and then calling that constructor with the parent element and an 

object containing its options. This operation already encapsulated within WinJS.UI.Pages.render, as 

we’ll see shortly. 

 

112



 

Although a basic structure for the ready method is provided by the templates, WinJS.UI.Pages 

and the PageControlNavigator will make use of the following if they are available, which are 

technically the members of an interface called WinJS.UI.IPageControlMembers: 

PageControl Method When Called 

init Called before elements from the page control have been created. 

processed Called after WinJS.UI.processAll is complete (that is, controls in the page have been 

instantiated, which is done automatically), but before page content itself has been added to the 

DOM. Once you return from this method, WinJS animates the new page into view with 

WinJS.UI.Animation.enterPage, so all initialization of properties and data-binding should occur 

within this method. 

ready Called after the page have been added to the DOM. 

error Called if an error occurs in loading or rendering the page. 

unload Called when navigation has left the page. 

updateLayout Called in response to the window.onresize event, which signals changes between various view 

states. 

 

Note that WinJS.UI.Pages calls the first four methods; the unload and updateLayout methods, on 

the other hand, are used only by the PageControlNavigator. 

Of all of these, the ready method is the most common one to implement. It’s where you’ll do 

further initialization of controls (e.g., populate lists), wire up other page-specific event handlers, and so 

on. Any processing that you want to do before the page content is added to the DOM should happen 

in processed, and note that if you return a promise from processed, WinJS will wait until that promise 

is fulfilled before starting the enterpage animation. 

The unload method is also where you’ll want to remove event listeners for WinRT objects, as 

described earlier in this chapter in “WinRT Events and removeEventListener.” The updateLayout 

method is important when you need to adapt your page layout to a new view, as we’ve been doing in 

the Here My Am! app. 

As for the PageControlNavigator itself, which I’ll just refer to as the “navigator,” the code in 

js/navigator.js shows how it’s defined and how it wires up navigation events in its constructor: 

(function () { 

    "use strict"; 

 

    // [some bits omitted] 

    var nav = WinJS.Navigation; 

 

    WinJS.Namespace.define("Application", { 

        PageControlNavigator: WinJS.Class.define( 

        // Define the constructor function for the PageControlNavigator. 

            function PageControlNavigator (element, options) { 

                this.element = element || document.createElement("div"); 

                this.element.appendChild(this._createPageElement()); 

 

                this.home = options.home; 

 

                // ... 

113

http://msdn.microsoft.com/library/windows/apps/jj126146.aspx
http://msdn.microsoft.com/library/windows/apps/br212672.aspx


 

 

                // Adding event listeners; addRemovableEventListener is a helper function 

                addRemovableEventListener(nav, 'navigating', 

                    this._navigating.bind(this), false); 

                addRemovableEventListener(nav, 'navigated', 

                    this._navigated.bind(this), false); 

 

                // ... 

            }, { 

    // ... 

First we see the definition of the Application namespace as a container for the 

PageControlNavigator class (see “Sidebar: WinJS.Namespace.define and WinJS.Class.define” later). Its 

constructor receives the element that contains it (the contenthost div in default.html), or it creates a 

new one if none is given. The constructor also receives an options object that is the result of parsing 

the data-win-options string of that element. The navigator then appends the page control’s contents 

to this root element, adds listeners for the WinJS.Navigation.onnavigated event, among others.7 

The navigator then waits for someone to call WinJS.Navigation.navigate, which happens in the 

activated handler of js/default.js, to navigate to either the home page or the last page viewed if 

previous session state was reloaded: 

if (app.sessionState.history) { 

    nav.history = app.sessionState.history; 

} 

args.setPromise(WinJS.UI.processAll().then(function () { 

    if (nav.location) { 

        nav.history.current.initialPlaceholder = true; 

        return nav.navigate(nav.location, nav.state); 

    } else { 

        return nav.navigate(Application.navigator.home); 

    } 

})); 

Notice how this code is using the WinJS sessionState object exactly as described earlier in this 

chapter, taking advantage again of sessionState being automatically reloaded when appropriate. 

When a navigation happens, the navigator’s _navigating handler is invoked, which in turn calls 

WinJS.UI.Pages.render to do the loading, the contents of which are then appended as child 

elements to the navigator control: 

_navigating: function (args) { 

    var newElement = this._createPageElement(); 

    var parentedComplete; 

    var parented = new WinJS.Promise(function (c) { parentedComplete = c; }); 

 

    this._lastNavigationPromise.cancel(); 

 

                                                           

7 If the use of .bind(this) is unfamiliar to you, please see my blog post, The purpose of this<event>.bind(this). 

114

http://kraigbrockschmidt.com/blog/?p=32


 

    this._lastNavigationPromise = WinJS.Promise.timeout().then(function () { 

        return WinJS.UI.Pages.render(args.detail.location, newElement, 

            args.detail.state, parented); 

    }).then(function parentElement(control) { 

        var oldElement = this.pageElement; 

        if (oldElement.winControl && oldElement.winControl.unload) { 

            oldElement.winControl.unload(); 

        } 

        WinJS.Utilities.disposeSubTree(this._element); 

        this._element.appendChild(newElement); 

        this._element.removeChild(oldElement); 

        oldElement.innerText = ""; 

        parentedComplete(); 

    }.bind(this)); 

 

    args.detail.setPromise(this._lastNavigationPromise); 

}, 

If you look past all the business with promises that you see here (which essentially makes sure the 

rendering and parenting process is both asynchronous and yields the UI thread), you can see how the 

navigator is handling the core process shown earlier in Figure 3-5. It first creates a new page element. 

Then it calls the previous page’s unload event, after which it asynchronously loads the new page’s 

content. Once that’s complete, the new page’s content is added to the DOM and the old page’s 

contents are removed. Note that the navigator uses the WinJS disposal helper, 

WInJS.Utilities.disposeSubTree to make sure that we fully clean up the old page. This disposal 

pattern invokes the navigator’s dispose method (also in navigator.js), which makes sure to remove any 

event handlers it added. 

Tip In a page control’s JavaScript code you can use this.element.querySelector rather than 

document.querySelector if you want to look only in the page control’s contents and have no need to 

traverse the entire DOM. Because this.element is just a node, however, it does not have other 

traversal methods like getElementById. 

And that, my friends, is how it works! In addition to the HTML Page controls sample, and to show a 

concrete example of doing this in a real app, the code in the HereMyAm3c sample has been converted 

to use this model for its single home page. To make this conversion, I started with a new project by 

using the Navigation App template to get the page navigation structures set up. Then I copied or 

imported the relevant code and resources from HereMyAm3b, primarily into pages/home/home.html, 

home.js, and home.css. And remember how I said that you could open a page control directly in Blend 

(which is why pages have WinJS references)? As an exercise, open the HereMyAm3c project in Blend. 

You’ll first see that everything shows up in default.html, but you can also open home.html by itself and 

edit just that page. 

Note To give an example of calling removeEventListener for the WinRT datarequested event, I 

make this call in the unload method of pages/home/home.js. 

115

http://msdn.microsoft.com/library/windows/apps/bg186461.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4


 

Be aware that WinJS calls WinJS.UI.processAll in the process of loading a page control (before 

calling the processed method), so we don’t need to concern ourselves with that detail when using 

WinJS controls in a page. On the other hand, reloading state when 

previousExecutionState==terminated needs some attention. Because this is picked up in the 

WinJS.Application.onactivated event before any page controls are loaded and before the 

PageControlNavigator is even instantiated, we need to remember that condition so that the home 

page’s ready method can later initialize itself accordingly from app.sessionState values. For this I 

simply write another flag into app.sessionState called initFromState (true if 

previousExecutionState is terminated, false otherwise.) The page initialization code, now in the 

page’s ready method, checks this flag to determine whether to reload session state. 

The other small change I made to HereMyAm3c is to use the updateLayout method in the page 

control rather than attaching my own handler to window.onresize. With this I also needed to add a 

height: 100%; style to the #mainContent rule in home.css. In previous iterations of this example, the 

mainContent element was a direct child of the body element and it inherited the full screen height 

automatically. Now, however, it’s a child of the contentHost, so the height doesn’t automatically pass 

through and we need to set it to 100% explicitly. 

Sidebar: WinJS.Namespace.define and WinJS.Class.define 

WinJS.Namespace.define provides a shortcut for the JavaScript namespace pattern. This helps 

to minimize pollution of the global namespace as each app-defined namespace is just a single 

object in the global namespace but can provide access to any number of other objects, functions, 

and so on. This is used extensively in WinJS and is recommended for apps as well, where you 

define everything you need in a module—that is, within a (function() { ... })() block—and 

then export selective variables or functions through a namespace. In short, use a namespace 

anytime you’re tempted to add any global objects or functions! 

Here’s the syntax: var ns = WinJS.Namespace.define(<name>, <members>) where <name> 

is a string (dots are OK) and <members> is any object contained in { }’s. Also, WinJS.Namespace.-

defineWithParent(<parent>, <name>, <members>) defines one within the <parent> 

namespace. 

If you call WinJS.Namespace.define for the same <name> multiple times, the <members> are 

combined. Where collisions are concerned, the most recently added members win. For example: 

WinJS.Namespace.define("MyNamespace", { x: 10, y: 10 }); 

WinJS.Namespace.define("MyNamespace", { x: 20, z: 10 }); 

//MyNamespace == { x: 20, y: 10, z: 10} 

WinJS.Class.define is, for its part, a shortcut for the object pattern, defining a constructor 

so that objects can be instantiated with new. 

Syntax: var className = WinJS.Class.define(<constructor>, <instanceMembers>, 

<staticMembers>) where <constructor> is a function, <instanceMembers> is an object with 

116

http://msdn.microsoft.com/library/windows/apps/br212667.aspx
http://msdn.microsoft.com/library/windows/apps/br229813.aspx


 

the class’s properties and methods, and <staticMembers> is an object with properties and 

methods that can be directly accessed via <className>.<member> (without using new). 

Variants: WinJS.Class.derive(<baseClass>, ...) creates a subclass (... is the same arg 

list as with define) using prototypal inheritance, and WinJS.Class.mix(<constructor>, 

[<classes>]) defines a class that combines the instance (but not static) members of one or 

more other <classes> and initializes the object with <constructor>. 

Finally, note that because class definitions just generate an object, WinJS.Class.define is 

typically used inside a module with the resulting object exported to the rest of the app as a 

namespace member. Then you can use new <namespace>.<class> anywhere in the app. 

For more details on classes in WinJS, see the series of posts on my blog starting with Exploring 

WinJS.Class Patterns, Part 1: Defining Classes and Object Construction.  

Sidebar: Helping Out IntelliSense 

If you start poking around in the WinJS source code—for example, to see how WinJS.UI.Pages 

is implemented—you’ll encounter certain structures within code comments, often starting with a 

triple slash, ///. These are used by Visual Studio and Blend to provide rich IntelliSense within the 

code editors. You’ll see, for example, /// <reference path…/> comments, which create a 

relationship between your current script file and other scripts to resolve externally defined 

functions and variables. This is explained on the JavaScript IntelliSense page in the 

documentation. For your own code, especially with namespaces and classes that you will use 

from other parts of your app, use these comment structures to describe your interfaces to 

IntelliSense. For details, see Extending JavaScript IntelliSense, and again look around the WinJS 

JavaScript files for many examples. 

The Navigation Process and Navigation Styles 

Having seen how page controls, WinJS.UI.Pages, WinJS.Navigation, and the 

PageControlNavigator all relate, it’s straightforward to see how to navigate between multiple pages 

within the context of a single HTML container (e.g., default.html). With the PageControlNavigator 

instantiated and a page control defined via WinJS.UI.Pages, simply call 

WinJS.Navigation.navigate with the URI of that page control (its identifier). This loads that page’s 

contents into a child element inside the PageControlNavigator, unloading any previous page. That 

becomes page visible, thereby “navigating” to it so far as the user is concerned. You can also use (like 

the WinJS BackButton does) the other methods of WinJS.Navigation to move forward and back in 

the nav stack, which results in page contents being added and removed. The 

WinJS.Navigation.canGoBack and canGoForward properties allow you to enable/disable navigation 

controls as needed. Just remember that all the while, you’ll still be in the overall context of your host 

page where you created the PageControlNavigator control. 

117

http://kraigbrockschmidt.com/blog/?p=326
http://kraigbrockschmidt.com/blog/?p=326
http://msdn.microsoft.com/library/bb385682.aspx
http://msdn.microsoft.com/library/hh874692.aspx


 

As an example, create a new project using the Grid App template and look at these particular areas: 

 pages/groupedItems/groupedItems is the home or “hub” page. It contains a ListView control 

(see Chapter 6) with a bunch of default items. 

 Tapping a group header in the list navigates to section page (pages/groupDetail). This is done 

in pages/groupedItems/groupedItems.html, where an inline onclick handler event navigates 

to pages/groupDetail/groupDetail.html with an argument identifying the specific group to 

display. That argument comes into the ready function of pages/groupDetail/groupDetail.js. 

 Tapping an item on the hub page goes to detail page (pages/itemDetail). The itemInvoked 

handler for the items, the _itemInvoked function in pages/groupedItems/groupedItem.js, calls 

WinJS.Navigation.navigate("/pages/itemDetail/itemDetail.html") with an argument 

identifying the specific item to display. As with groups, that argument comes into the ready 

function of pages/itemDetail/itemDetail.js. 

 Tapping an item in the section page also goes to the details page through the same 

mechanism—see the _itemInvoked function in pages/groupDetail/groupDetail.js. 

 The back buttons on all pages wire themselves into WinJS.Navigation.back for keyboard, 

mouse, and touch events. 

The Split App template works similarly, where each list item on pages/items is wired to navigate to 

pages/split when invoked. Same with the Hub App template that has a hub page using the 

WinJS.UI.Hub control that we’ll meet in Chapter 7. 

The Grid App and Hub App templates also serve as examples of what‘s called the Hub-Section-Item 

navigation style (it’s most explicitly so in the Hub App). Here the app’s home page is the hub where the 

user can explore the full extent of the app. Tapping a group header navigates to a section, the second 

level of organization where only items from that group are displayed. Tapping an item (in the hub or in 

the section) navigates to a details page for that item. You can, of course, implement this navigation 

style however you like; the Grid App template uses page controls, WinJS.Navigation, and the 

PageControlNavigator. (Semantic zoom, as we’ll see in Chapter 6, is also supported as a navigation 

tool to switch between hubs and sections.) 

An alternate navigation choice is the Flat style, which simply has one level of hierarchy. Here, 

navigation happens to any given page at any time through a navigation bar (swiped in along with the 

app bar, as we’ll see in Chapter 8, “Commanding UI”). When using page controls and 

PageControlNavigator, navigation commands or buttons can just invoke 

WinJS.Naviation.navigate for this purpose. Note that in this style, there typically is no back button: 

users are expected to always swipe in the navigation bar from the top and go directly to the desired 

page. 

These styles, along with many other UI aspects of navigation, can be found on Navigation design for 

Windows Store apps. This is an essential topic for designers. 

118

http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx


 

Sidebar: Initial Login and In-App Licensing Agreements (EULA) Pages 

Some apps might require either a login or acceptance of a license agreement to do anything, 

and thus it’s appropriate that such pages are the first to appear in an app after the splash screen. 

In these cases, if the user does not accept a license or doesn’t provide a login, the app should 

display a message describing the necessity of doing so, but it should always leave it to the user 

to close the app if desired. Do not close the app automatically. (This is a Store certification 

requirement.) 

Typically, such pages appear only the first time the app is run. If the user provides a valid 

login, or if you obtain an access token through the Web Authentication Broker (see Chapter 4), 

those credentials/token can be saved for later use via the 

Windows.Security.Credentials.PasswordVault API. If the user accepts a EULA, that fact 

should be saved in appdata and reloaded anytime the app needs to check. These settings (login 

and acceptance of a license) should then always be accessible through the app’s Settings charm. 

Legal notices, by the way, as well as license agreements, should always be accessible through 

Settings as well. See Guidelines and checklist for login controls. 

Optimizing Page Switching: Show-and-Hide 

Even with page controls, there is still a lot going on when navigating from page to page: one set of 

elements is removed from the DOM, and another is added in. Depending on the pages involved, this 

can be an expensive operation. For example, if you have a page that displays a list of hundreds or 

thousands of items, where tapping any item goes to a details page (as with the Grid App template), 

hitting the back button from a detail page will require complete reconstruction of the list. 

Showing progress indicators can help alleviate the user’s anxiety, and the recommendation is to 

show such indicators after two seconds and provide a means to cancel the operation after ten seconds. 

Even so, users are notoriously impatient and will likely want to quickly switch between a list of items 

and item details. In this case, page controls might not be the best design. Forcing your customers to 

stare at a spinning progress control time and time again will probably not keep them as customers! 

You could use a split (master-detail) view, of course, but that means splitting the available screen 

real estate. A good alternative is to actually keep the list/master page fully loaded the whole time. 

Instead of navigating to the item details page in the way we’ve seen, simply render that details page 

(using WinJS.UI.Pages.render directly) into another div that occupies the whole screen and overlays 

the list (similar to what we did with the extended splash screen), and then make that div visible without 

removing the list page from the DOM. When you dismiss the details page, just hide its div. This way 

you get the same effect as navigating between pages but the whole process is much quicker. You can 

also apply WinJS animations like enterContent and exitContent to make the transition more fluid. 

If necessary, you can clear out the details div by just setting its innerHTML to "". However, if each 

details page has the same structure for every item, you can leave it entirely intact. When you “navigate” 

to the next details page, you would go through and refresh each element’s data and properties for the 

119

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/library/windows/apps/Hh701582.aspx
http://msdn.microsoft.com/library/windows/apps/hh701585.aspx


 

new item before making that page visible. This could be significantly faster than rebuilding the details 

page all over again. 

Note that because the PageControlNavigator implementation in navigator.js is provided by the 

templates and becomes part of your app, you can modify it however you like to handle these kinds of 

optimizations in a more structured manner that’s transparent to the rest of your code. 

Page-Specific Styling 

When creating an app that uses page controls, you’ll end up with each page having its own .css file in 

which you place page-specific styles. What’s very important to understand here, though, is that while 

each page’s HTML elements are dynamically added to and removed from the DOM, any and all CSS 

that is loaded for page controls is cumulative to the app as a whole. That is, styles behave like script and 

are preserved across page “navigations.” This can be a source of confusion and frustration, so it’s 

essential to understand what’s happening here and how to work with it. 

Let's say the app's root page is default.html and its global styles are in css/default.css. It then has 

several page controls defined in pages/page1 (page1.html. page1.js, page1.css), pages/page2 

(page2.html. page2.js, page2.css), and pages/page1 (page3.html. page3.js, page3.css). Let's also say that 

page1 is the “home” page that’s loaded at startup. This means that the styles in default.css and 

page1.css have been loaded when the app first appears. 

Now the user navigates to page2. This causes the contents of page1.html to be dumped from the 

DOM, but its styles remain in the stylesheet. So when page2 is loaded, page2.css gets added to the 

overall stylesheet as well, and any styles in page2.css that have identical selectors to page1.css will 

overwrite those in page1.css. And when the user navigates to page3 the same thing happens again: the 

styles in page3.css are added in and overwrite any that already exist. But so far we haven’t seen any 

unexpected effect of this. 

Now, say the user navigates back to page1. Because the apphost's rendering engine has already 

loaded page1.css into the stylesheet, page1.css won't be loaded again. This means that any styles that 

were overwritten by other pages' stylesheets will not be reset to those in page1.css—basically you get 

whichever ones were loaded most recently. As a result, you can see some mix of the styles in page2.css 

and page3.css being applied to elements in page1. 

The same thing happens with .js files, by the way, which are not reloaded if they've been loaded 

already. To avoid collisions in JavaScript, you either have to be careful to not duplicate variable names 

or to use namespaces to isolate them from one another. Because there isn’t a means to specifically 

unload or reload CSS files, it boils down to avoiding collision between selectors. You can do this with 

unique selectors for each page, or you can scope your styles to each page specifically. For the latter, 

wrap each page’s contents in top-level div with a unique class, as in <div class="page1">. This 

allows you to scope every style rule in page1.css with the page name. For example: 

 

 

120



 

.page1 p { 

    font-weight: bold; 

} 

Such a strategy can also be used to define stylesheets that are shared between pages, as with 

implementing style themes. If you scope the theme styles with a theme class, you can include that class 

in the top-level div to apply the theme. 

A similar case arises if you want to use the ui-light.css and ui-dark.css WinJS stylesheets in different 

pages of the same app. Here, whichever one is loaded second will define the global styles such that 

subsequent pages that refer to ui-light.css might appear with the dark styles. 

Fortunately, WinJS already scopes those styles that differ between the two files: those in ui-light.css 

are scoped with a CSS class win-ui-light and those in ui-dark.css are scoped with win-ui-dark. This 

means you can just refer to whichever stylesheet you use most often in your .html files and then add 

either win-ui-light or win-ui-dark to those elements that you need to style differently. When you 

add either class, note that the style will apply to that element and all its children. For a simple 

demonstration of an app with one dark page (as the default) and one light page, see the PageStyling 

example in the companion content. 

Be True to Your Promises: Creating, Joining, and Error 

Handling 

Even though we’ve just got our first apps going, we’ve already seen a lot to do with async operations 

and promises. We’ve seen their basic usage, and in the “Moving the Captured Image to AppData (or 

the Pictures Library)” section of Chapter 2, we saw how to combine multiple async operations into a 

sequential chain. At other times, as mentioned with extended splash screens earlier, you might want to 

combine multiple parallel async operations into a single promise. Indeed, as you progress through this 

book you’ll find that async APIs, and thus promises, seem to pop up as often as dandelions in a lawn 

(without being a noxious weed, of course)! Indeed, the implementation of the 

PageControlNavigator._navigating method that we saw earlier has a few characteristics that are 

worth exploring. 

The subject of promises gets rather involved, however, so instead of burdening you with the details 

in the main flow of this chapter, you’ll find a full treatment of promises in Appendix A, “Demystifying 

Promises,” a draft version of which is included in this First Preview PDF. Here I want to focus on the 

most essential aspects of promises that we’ll encounter throughout the rest of this book, and we’ll take 

a quick look at the features of the WinJS.Promise class. 

Note There are a number of different specifications for promises. The one presently used in WinJS and 

the WinRT API is known as Common JS/Promises A. 

121

http://wiki.commonjs.org/wiki/Promises/A


 

Using Promises 

The first thing to understand about a promise is that it’s really nothing more than a code construct or a 

calling convention. As such, promises have no inherent relationship to async operations—they just so 

happen to be very useful in that regard! A promise is simply an object that represents a value that 

might be available at some point in the future (or might be available already). It’s just like we use the 

term in human relationships. If I say to you, “I promise to deliver a dozen donuts,” clearly I don’t have 

those donuts right now, but I assume that I’ll have them some time in the future, and when I do, I’ll 

deliver them. 

A promise, then, implies a relationship between two people or, to be more generic, two agents, as I 

call them. There is the originator who makes the promise—that is, the one who has some goods to 

deliver—and the consumer or recipient of that promise, who will also be the later recipient of the 

goods. In this relationship, the originator creates a promise in response to some request from the 

consumer (typically an API call). The consumer can then do whatever it wants with both the promise 

itself and whatever goods the promise delivers. This includes sharing the promise with other interested 

consumers—the promise will deliver its goods to each of them. 

The way a consumer listens for delivery is by subscribing a completed handler through the promise’s 

then or done methods. (We’ll discuss the differences later.) The promise invokes this handler when it 

has obtained its results. In the meantime, the consumer can do other work, which is exactly why 

promises are used with async operations. It’s like the difference between waiting in line at a restaurant’s 

drive-through for a potentially very long time (the synchronous model) and calling out for pizza 

delivery (the asynchronous model): the latter gives you the freedom to do other things.  

Of course, if the promised value is already available, there’s no need to wait: it will be delivered 

synchronously to the completed handler as soon as then/done is called. 

Similarly, problems can arise that make it impossible to fulfill the promise. In this case the promise 

will invoke any error handlers given to then/done as the second argument. Those handlers receive an 

error object containing name and message properties with more details, and after this point the 

promise is in what’s called the error state. This means that any subsequent calls to then/done will 

immediately (and synchronously) invoke any given error handlers. 

A consumer can also cancel a promise if it decides it no longer needs the results. A promise has a 

cancel method for this purpose, and calling it both halts any underlying async operation within the 

promise and puts the promise into the error state. 

Some promises—which is to say, some async operations—also support the ability to report 

intermediate results to any progress handlers given to then/done as the third argument. Check the 

documentation for the particular API in question.8 

                                                           

8 If you want to impress your friends while reading the WinRT API documentation, know that if an async function shows it 

122

http://msdn.microsoft.com/library/windows/apps/br211667.aspx


 

Finally, two static methods on the WinJS.Promise object might come in handy when using 

promises: 

 is determines whether an arbitrary value is a promise, returning a Boolean. It basically makes 

sure it’s an object with a function named “then”; it does not test for “done”. 

 theneach takes an array of promises and subscribes completed, error, and progress handlers to 

each promise by calling its then method. Any of the handlers can be null. The return value of 

theneach is itself a promise that’s fulfilled when all the promises in the array are fulfilled. We 

call this a join, as described in the next section.  

Tip If you’re new to the concept of static methods, these refer to functions that exist on an object class 

that you call directly through the fully-qualified name, such as WinJS.Promise.theneach. These are 

distinct from instance methods, which must be called through a specific instance of the class. For 

example, if you have a WinJS.Promise object in the variable p, you cancel that particular instance with 

p.cancel(). 

Joining Parallel Promises 

Because promises are often used to wrap asynchronous operations, it’s certainly possible that you can 

have multiple operations going on in parallel. In these cases you might want to know either when one 

promise in a group is fulfilled or when all the promises in the group are fulfilled. The static functions 

WinJS.Promise.any and WinJS.Promise.join provide for this. Here’s how they compare: 

Function any join 

Arguments An array of promises An array of promises 

Fulfilled when One of the promises is fulfilled (a logical OR) All of the promises are fulfilled (a logical AND) 

Fulfilled result This is a little odd. It’s an object whose key 

property identifies the promise that was 

fulfilled and whose value property is an 

object containing that promise’s state. Within 

that state is a _value property that contains 

the actual result of that promise. 

This isn’t clearly documented but can be 

understood from the source code or simple 

tests from the consumer side. If the promises in 

the join all complete, the completed handler 

receives an array of results from the individual 

promises (even if those results are null or 

undefined). If there’s an error in the join, the 

error object passed to the error handler is an 

array that contains the individual errors. 

Progress behavior None Reports progress to any subscribed handlers 

where the intermediate results are an array of 

results from those individual promises that 

have been fulfilled so far. 

Behavior after fulfillment All the operations for the remaining promises 

continue to run, calling whatever handlers 

might have been subscribed individually. 

None—all promises have been fulfilled. 

Behavior upon cancellation Canceling the promise from any cancels all 

promises in the array, even if the first has 

already been fulfilled. 

Cancels all other promises that are still 

pending. 

                                                           

returns a value of type IAsync[Action | Operation]WithProgress, it will invoke progress handlers. If it lists only 

IAsync[Action | Operation], progress is not supported.  

123

http://msdn.microsoft.com/library/windows/apps/br211867.aspx
http://msdn.microsoft.com/library/windows/apps/br211765.aspx
http://msdn.microsoft.com/library/windows/apps/br229727.aspx
http://msdn.microsoft.com/library/windows/apps/br229660.aspx
http://msdn.microsoft.com/library/windows/apps/br211774.aspx


 

Behavior upon errors Invokes the subscribed error handler for every 

error in the individual promises. This one error 

handler, in other words, can monitor 

conditions of the underlying promises. 

Invokes the subscribed error handler with an 

array of error objects from any failed promises, 

but the remainder continue to run. In other 

words, this reports cumulative errors in the way 

that progress reports cumulative completions. 

 

Appendix A, by the way, has a small code snippet that shows how to use join and the array’s 

reduce method to execute parallel operations but have their results delivered in a specific sequence. 

Sequential Promises: Nesting and Chaining 

In Chapter 2, when we added code to Here My Am! to copy the captured image to another folder, we 

got our first taste of using chained promises to run sequential async operations. To review, what makes 

this work is that any promise’s then method returns another promise that’s fulfilled when the given 

completed handler returns. (That returned promise also enters the error state if the first promise has an 

error.) That completed handler, for its part, returns the promise from the next async operation in the 

chain, the results of which are delivered to the next completed handler down the line. 

Though it may look odd at first, chaining is the most common pattern for dealing with sequential 

async operations because it works better than the more obvious approach of nesting. Nesting means to 

call the next async API within the completed handler of the previous one, fulfilling each with done. For 

example (extraneous code removed for simplicity): 

//Nested async operations, using done with each promise 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 

    .done(function (capturedFileTemp) { 

        //... 

        local.createFolderAsync("HereMyAm", ...) 

            .done(function (myFolder) { 

                //... 

                capturedFile.copyAsync(myFolder, newName) 

                    .done(function (newFile) { 

                    }) 

            }) 

      }); 

The one advantage to this approach is that each completed handler will have access to all the 

variables declared before it. Yet the disadvantages begin to pile up. For one, there is usually enough 

intervening code between the async calls that the overall structure becomes visually messy. More 

significantly, error handling becomes much more difficult. When promises are nested, error handling 

must be done at each level with distinct handlers; if you throw an exception at the innermost level, for 

instance, it won’t be picked up by any of the outer error handlers. Each promise thus needs its own 

error handler, making real spaghetti of the basic code structure: 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
    .done(function (capturedFileTemp) { 
        //... 
        local.createFolderAsync("HereMyAm", ...) 

124



 

            .done(function (myFolder) { 
                //... 
                capturedFile.copyAsync(myFolder, newName) 
                    .done(function (newFile) { 
                    }, 
                    function (error) { 
                    }) 
            }, 
            function (error) { 
            }); 
      }, 

      function (error) { 

      }); 

I don’t know about you, but I really get lost in all the }’s and )’s (unless I try hard to remember my 

LISP class in college), and it’s hard to see which error function applies to which async call. And just 

imagine throwing a few progress handlers in as well! 

Chaining promises solves all of this with the small tradeoff of needing to declare a few extra temp 

variables outside the chain for any variables that need to be shared amongst the various completed 

handlers. Each completed handler in the chain again returns the promise for the next operation, and 

each link is a call to then except for a final call to done to terminate the chain. This allows you to indent 

all the async calls only once, and it has the effect of propagating errors down the chain, as any 

intermediate promise that’s in the error state will be passed through to the end of the chain very 

quickly. This allows you to have only a single error handler at the end: 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 

    .then(function (capturedFileTemp) { 

        //... 

        return local.createFolderAsync("HereMyAm", ...); 

    }) 

    .then(function (myFolder) { 

        //... 

        return capturedFile.copyAsync(myFolder, newName); 

    }) 

    .done(function (newFile) { 

    }, 

    function (error) { 

    }) 

To my eyes (and my aging brain), this is a much cleaner code structure—and it’s therefore easier to 

debug and maintain. If you like, you can even end the chain with done(null, errorHandler), as we 

did in Chapter 2: 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 

    //... 

    .then(function (newFile) { 

    }) 

    .done(null, function (error) { 

    }) 

}) 

125



 

Remember, though, that if you need to pass a promise for the whole chain elsewhere, as to a 

setPromise method, you’ll use then throughout. 

Error Handling in Promise Chains: then vs. done 

This brings us to why we have both then and done and to why done is used at the end of a chain as 

well as for single async operations. 

To begin with, then returns another promise, thereby allowing chaining, whereas done returns 

undefined, so it always occurs at the end of a chain. Second, if an exception occurs within one async 

operation’s then method and there’s no error handler at that level, the error gets stored in the promise 

returned by then (that is, the returned promise is in the error state). In contrast, if done sees an 

exception and there’s no error handler, it throws that exception to the app’s event loop. This will 

bypass any local (synchronous) try/catch block, though you can pick them up in either in 

WinJS.Application.onerror or window.onerror handlers. (The latter will get the error if the former 

doesn’t handle it.) If you don’t have an app-level handler, the app will be terminated and an error 

report sent to the Windows Store dashboard. For that reason we recommend that you implement an 

app-level error handler using one of the events above. 

In practical terms, then, this means that if you end a chain of promises with a then and not done, all 

exceptions in that chain will get swallowed and you’ll never know there was a problem! This can place 

an app in an indeterminate state and cause much larger problems later on. So, unless you’re going to 

pass the last promise in a chain to another piece of code that will itself call done (as you do, for 

example, when using a setPromise deferral or if you’re writing a library from which you return 

promises), always use done at the end of a chain even for a single async operation.9 

Promise error events If you look carefully at the WinJS.Promise documentation, you’ll see that it has 

an error event along with addEventListener, removeEventListener, and dispatchEvent methods. 

This is primarily used within WinJS itself and is fired on exceptions (but not cancellation). Promises 

from async WinRT APIs, however, do not fire this event, so apps typically use error handlers passed to 

then/done for this purpose. 

Debugging and Profiling 

As we’ve been exploring the core anatomy of an app in this chapter, now’s a good time to talk about 

debugging and profiling, or, as I like to put it, becoming a doctor of internal medicine for your app. 

After all, we’ve been learning about app anatomy, so it’s appropriate to explore how we diagnose how 

well that anatomy is working. 

                                                           

9 Some samples in the Windows SDK might still use then instead of done, especially for single async operations. This came 

from the fact that done didn’t yet exist at one point and not all samples have been updated. 

126



 

Debug Output, Error Reports, and the Event Viewer 

It’s sometimes heartbreaking to developers that window.prompt and window.alert are not available 

to Windows Store apps as quickie debugging aids. Fortunately, you have two other good options for 

that purpose. One is Windows.UI.Popups.MessageDialog, which is actually what you use for real user 

prompts in general. The other is console.log, as we’ve used in our code already, which will send text 

to Visual Studio’s output pane. These messages can also be logged as Windows events, as we’ll see in a 

moment. 

For readers who are seriously into logging, beyond the kind you do with chainsaws, WinJS provides 

a more flexible method called WinJS.log. This is a curious beast because although it’s ostensibly part 

of the WinJS namespace, it’s actually not directly implemented within WinJS itself! At the same time, it’s 

used all over the place in the library for errors and other reporting. For instance: 

WinJS.log && WinJS.log(safeSerialize(e), "winjs", "error"); 

This kind of JavaScript syntax, by the way, means “check whether WinJS.log exists and, if so, call it.” 

The && is a shortcut for an if statement: the JavaScript engine will not execute the part after the && if 

the first part is null, undefined, or false. 

Anyway, the purpose of WinJS.log is to allow you to implement your own logging function and 

have it pick up WinJS’s logging as well as any you do yourself with the above syntax. What’s more, you 

can turn the logging on and off at any time, something that’s not possible with console.log unless, 

well, you write a wrapper like WinJS.log! 

Your WinJS.log function, as described in the documentation, should accept three parameters: 

1. The message to log. 

2. A string with a tag or tags to categorize the message. WinJS always uses “winjs” and sometimes 

adds an additional tag like “binding”, in which case the second parameter is “winjs binding”. I 

typically use “app” in my own code. 

3. A string describing the type of the message. WinJS will use “error”, “info”, “warn”, and “perf”.  

Conveniently, WinJS offers a basic implementation of this which you set up by calling 

WinJS.Utilities.startLog(). This assigns a function to WinJS.log that uses 

WinJS.Utilities.formatLog to produce decent-looking output to the console. What’s very useful is 

that you can pass a list of tags (in a single string) to startLog and only those messages with those tags 

will show up. Multiple calls to startLog will aggregate those tags. Then you can call 

WinJS.Utilities.stopLog to turn everything off and start again if desired (stopLog is not made to 

remove individual tags). As a simple example, see the HereMyAm3d example in the companion 

content. 

Tip Before creating an app package to upload to the store, be sure to comment out your call to 

startLog. That way your app won’t be making any unnecessary calls in its released version. 

127

http://msdn.microsoft.com/library/windows/apps/jj150612.aspx
http://msdn.microsoft.com/library/windows/apps/hh701617.aspx
http://msdn.microsoft.com/library/windows/apps/hh701587.aspx
http://msdn.microsoft.com/library/windows/apps/hh701626.aspx


 

Another DOM API function to which you might be accustomed is window.close. You can still use 

this as a development tool, but in released apps Windows interprets this call as a crash and generates 

an error report in response. This report will appear in the Store dashboard for your app, with a message 

telling you to not use it! After all, Store apps should not provide their own close affordances, as 

described in requirement 3.6 of the Store certification policy. 

There might be situations, however, when a released app needs to close itself in response to 

unrecoverable conditions. Although you can use window.close for this, it’s better to use 

MSApp.terminateApp because it allows you to also include information as to the exact nature of the 

error. These details show up in the Store dashboard, making it easier to diagnose the problem. 

In addition to the Store dashboard, you should make fast friends with the Windows Event Viewer.10 

This is where error reports, console logging, and unhandled exceptions (which again terminate the app 

without warning) can be recorded. To enable this, navigate to Application And Services Logs (after 

waiting for a minute while the tool initializes itself) and expand Microsoft > Windows > AppHost. Then 

left-click to select Admin (this is important), right-click Admin, and select View > Show Analytic And 

Debug Logs. This turns on full output, including tracing for errors and exceptions, as shown in Figure 3-

6. Then right-click AppTracing (also under AppHost) and select Enable Log. This will trace any calls to 

console.log as well as other diagnostic information coming from the app host. 

 

FIGURE 3-6 App host events, such as unhandled exceptions, load errors, and logging can be found in Event Viewer. 

                                                           

10 If you can’t find Event Viewer, press the Windows key to go to the Start screen and then invoke the Settings charm. 

Select Tiles, and turn on Show Administrative Tools. You’ll then see a tile for Event Viewer on your Start screen. 

128

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx


 

We already introduced Visual Studio’s Exceptions dialog in Chapter 2; refer back to Figure 2-16. For 

each type of JavaScript exception, this dialog supplies two checkboxes labeled Thrown and User-

unhandled. Checking Thrown will display a dialog box in the debugger (see Figure 3-7) whenever an 

exception is thrown, regardless of whether it’s handled and before reaching any of your error handlers. 

 

FIGURE 3-7 Visual Studio’s exception dialog. As the dialog indicates, it’s safe to press Continue if you have an error 

handler in the app; otherwise the app will terminate. Note that the checkbox in this dialog is a shortcut to toggle 

the Thrown checkbox for this exception type in the Exceptions dialog. 

If you have error handlers in place, you can safely click the Continue button in the dialog of Figure 

3-7 and you’ll eventually see the exception surface in those error handlers. (Otherwise the app will 

terminate; see below.) If you click Break instead, you can find the exception details in the debugger’s 

Locals pane, as shown in Figure 3-8. 

 

 

FIGURE 3-8 Information in Visual Studio’s Locals pane when you break on an exception. 

The User-unhandled option (enabled for all exceptions by default) will display a similar dialog 

whenever an exception is thrown to the event loop, indicating that it wasn’t handled by an app-

provided error function (“user” code from the system’s perspective). 

You typically turn on Thrown only for those exceptions you care about; turning them all on can 

make it very difficult to step through your app! But it’s especially helpful if you’re debugging an app 

and end up at the debugger line in the following bit of WinJS code, just before the app is terminated: 

129



 

var terminateAppHandler = function (data, e) { 

    debugger; 

    MSApp.terminateApp(data); 

}; 

If you turn on Thrown for all JavaScript exceptions, you’ll then see exactly where the exception 

occurred. You can also just check Thrown for only those exceptions you expect to catch. 

Do leave User-unhandled checked for everything else. In fact, unless you have a specific reason not 

to, make sure that User-unhandled is checked next to JavaScript Runtime Exceptions here because this 

will include those exceptions not otherwise listed. This way you can catch (and fix) any exceptions that 

might abruptly terminate the app, which is something your customers should never experience. 

Async Debugging 

Working with asynchronous APIs presents a challenge where debugging is concerned. Although we 

have a means to sequence async operations with promise chains (or nested calls, for that matter), each 

step in the sequence involves an async call, so you can’t just step through as you would with 

synchronous code. If you try this, you’ll step through lots of promise code (in WinJS or the JavaScript 

projection layer for WinRT) rather than your completed handlers, which isn’t particularly helpful. 

What you’ll need to do instead is set a breakpoint on the first line within each completed handler 

and on the first line of each error function. As each breakpoint is hit, you can step through that 

completed handler. When you reach the next async call, click the Continue button in Visual Studio so 

that the async operation can run. After that you’ll hit the breakpoint in the next completed handler or 

the breakpoint in the error handler. 

When you stop at a breakpoint, or when you hit an exception within an async process, take a look at 

the debugger’s Call Stack pane (in the lower right of Visual Studio), as shown here: 

 

Generally speaking, the Call Stack shows you the sequence of functions that lead up to the point 

where the debugger stopped, at which point you can double-click any of the lines and examine that 

function context. With async calls, however, what you primarily see is the chain of generic handlers 

within WinJS or the JavaScript projection layer, none of which give you much useful information about 

the original calling context. Fortunately, that latter context is shown separately below the [Async Call] 

line near the bottom. In this example I set a breakpoint in the first completed handler after starting 

130



 

camera capture in HereMyAm3c. That completed handler is an anonymous function, as the first line of 

the Call Stack indicates, but you can see at the bottom that the real context is the capturePhoto 

function within home.js. 

The real utility of this comes when an exception occurs somewhere other than within you own 

handlers, because the lines after [Async Call] tell you the exact code that started the operation. 

The other feature for async debugging is the Tasks pane, as shown below. You turn this on through 

the Debug > Windows >Tasks menu command. You’ll see a full list of active and completed async 

operations that are part of the current call stack. 

 

Performance and Memory Analysis 

Alongside its excellent debugging tools, Visual Studio also offers additional tools to help evaluate the 

performance of an app, analyze its memory usage, and otherwise discover and diagnose problems that 

affect the user experience of an app and its effect on the system. To close this chapter, I wanted to give 

you a brief overview of what’s available along with pointers to where you can learn more. 

When running analysis tools, it’s important that you exercise the app like a user would. That way you 

get results that are meaningful to the real user experience—that is, the human experience!—rather 

than results that would be meaningful to a robot. In fact, as you think about performance, approach it 

as a means of optimizing your app’s dynamic user experience. In the end, all the performance analysis 

in the world won’t be worth anything unless is translates into two things: better ratings and reviews in 

the Windows Store, and greater app revenue. Otherwise all your work is a classic case of what Tom 

DeMarco, in his book Why Does Software Cost So Much? (Dorset House, 1995) calls “measurement 

dysfunction,” which means focusing on details that ultimately deliver the wrong results.11 

                                                           

11 DeMarco tells this amusing story as an example of metrics at their worst: “Consider the case of the Soviet nail factory that 

was measured on the basis of the number of nails produced. The factory managers hit upon the idea of converting their 

entire factory to production of only the smallest nails, tiny brads. Some commissar, realizing this as a case of dysfunction, 

came up with a remedy. He instituted measurement of tonnage of nails produced, rather than numbers. The factory 

immediately switched over to producing only railroad spikes. The image I propose to mark the dysfunction end of the 

spectrum is a Soviet carpenter, looking perplexed, with a useless brad in one hand and an equally useless railroad spike in 

the other.” 

131



 

Remember also to run performance analysis on a variety of hardware, especially lower-end devices 

such as ARM tablets where performance improvements are going to matter much more than they will 

on your souped-up dev machine. In fact, slower devices are the ones you should be most concerned 

about, because their users will probably be the first to notice any issues and ding your app ratings 

accordingly. And yes, you can run the performance tools on a remote machine in the same way you 

can do remote debugging (but not in the simulator). Also be aware that analysis tools always run 

outside of the debugger for obvious reasons, because stopping at breakpoints and so forth would 

produce bad performance data! 

So, on to the tools. These are found on the Debug > Performance And Diagnostics… menu, which 

brings up the hub shown below: 

 

What’s shown here are the tools built into Visual Studio; the hub is extensible with third-party tools 

that will appear here as well. For the built-in tools, the table below explains what each one does and 

how to think about data they collect. 

Tool Description 

CPU Sampling Starts a data collector and launches the app. Once you exercise the app through whatever 

scenarios you’d like to analyze, return to Visual Studio and click on the Stop Profiling link. 

After a few seconds Visual Studio will then display a report that shows when and where 

function calls are made, and how much time is being spent in which function. This is a much 

better view into what’s happening with the app over time than a static report or watching 

the CPU % in Task Manager. It’s helpful for finding bottlenecks which could certainly impact 

user experience, though if you’re spending most of the app’s time within functions that are 

doing the work the user really wants, then it’s necessarily not a bad thing! 

 

See How to profile JavaScript code in Windows Store apps on a local machine and How to 

profile JavaScript code in Windows Store apps on a remote device. 

 

132

http://msdn.microsoft.com/library/windows/apps/hh696637.aspx
http://msdn.microsoft.com/library/windows/apps/hh969530.aspx
http://msdn.microsoft.com/library/windows/apps/hh969530.aspx


 

HTML UI Responsiveness Launches the app and provides a graph of Visual Throughput (frames per second) for the 

rendering engine over time, helping to identify places where rendering becomes slow. It also 

provides a millisecond breakdown of CPU utilization in various subsystems: loading, 

scripting, garbage collection, styling, rendering, and image decoding, with various important 

lifecycle events indicated along the way. This data is also shown on a time line where you 

can select any part to see the breakdown in more detail. All this is helpful for finding areas 

where the interactions between subsystems is adding lots of overhead, where there’s 

excessive fragmentation, or where work being done in a particular subsystem is causing a 

drop in visual throughput. 

 

JavaScript Profiler Overlaps somewhat with HTML UI Responsiveness, producing very similar results but with 

more detail. The HTML UI Responsiveness tool, for example, tells you when script is 

executing; the Profiler tool includes what was executing when and how long it too, as well as 

an aggregated report of calls over time. A walkthrough of working with this data can be 

found on How to profile a JavaScript App for performance problems (MSDN blogs). 

 

Energy Consumption Launches the app and collects data about power usage (in milliwatts) over time, split up by 

CPU, display, and network. 

JavaScript Memory Launches the app and provides a dynamic graph of memory usage over time, allowing you 

to see memory spikes that occur in response to user activity, and whether that memory is 

being properly freed. 

 

I very much encourage you to spend a few hours exercising these tools and getting familiar with the 

information they provide. Then make them a regular part of your coding/testing cycle, because the 

earlier you can catch performance and memory issues, the easier it will be to fix them. For more 

detailed information in these areas, see Performance best practices for Windows Store apps using 

JavaScript and General best practices for performance. 

It’s important, of course, with all these tools to clearly correlate certain events in the app with the 

various measurements. This is the purpose of the performance.mark function, which exists in the 

global JavaScript namespace.12 Events written with this function appear as User Marks in the timelines 

generated by the different tools, as shown in Figure 3-9. In looking at the figure, note that the 

resolution of marks on the timeline on the scale of seconds, so use marks to indicate only significant 

user interaction events rather than every function entry and exit. 

As one example of using these tools, let’s run the Here My Am! app through the memory analyzer 

to see if we have any problems. We’ll use the HereMyAm3d example in the companion code where I’ve 

added some performance.mark calls for events like startup, capturing a new photo, rendering that 

photo, and exercising the Share charm. Figure 3-9 shows the results. For good measure—logging, 

actually!—I’ve also converted console.log calls to WinJS.log, where I’ve used a tag of “app” in each 

call and in the call to WinJS.Utilities.startLog (see default.js). 

                                                           

12 This function is part of a larger group of methods on the performance object that reflect developing standards. For more 

details, see Timing and Performance APIs. 

133

http://blogs.msdn.com/b/visualstudioalm/archive/2013/04/24/how-to-profile-a-javascript-windows-store-app-for-performance-problems.aspx
http://msdn.microsoft.com/library/windows/apps/jj819177.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/library/windows/apps/jj572389.aspx
http://msdn.microsoft.com/library/windows/apps/jj572389.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh767418.aspx


 

 

FIGURE 3-9 Output of the JavaScript Memory analyzer annotated with different marks. The red dashed line is also 

added in this figure to show the ongoing memory footprint; it is not part of the tool’s output. 

Referring to Figure 3-9, here’s what I did after starting up the app in the memory analyzer. Once the 

home page was up (first mark), I repositioned the map and its pushpin (second mark), and you can see 

that this increased memory usage a little within the Bing maps control. Next I invoked the camera 

capture UI (third mark), which clearly increased memory use as expected. After taking a picture and 

displaying it in the app (fourth mark), you can see that the allocations from the camera capture UI have 

been released, and that we land at a baseline footprint that now includes a rendered image. I then do 

into the capture UI two more times, and in each case you can see the memory increase during the 

capture, but it comes back to our baseline each time we return to the main app. There might be some 

small differences in memory usage here depending on the size of the image, but clearly we’re cleaning 

up the image that gets replaced each time. Finally I invoked the Share charm (last mark), and we can 

see that this caused no additional memory usage in the source app, which is expected because all the 

work is being done in the target. As a result, I feel confident that the app is managing its memory well. 

If, on the other hand, that baseline kept going up over time, then I’d know I had a leak somewhere. 

The Windows App Certification Toolkit 

The other tool you should run on a regular basis is the Windows App Certification Toolkit (WACK), 

which is actually one of the first tools that’s automatically run on your app when you submit it to the 

Windows Store. In other words, if this toolkit reports failures on your local machine, you can be certain 

that you’d fail certification very early in the process. 

Running the toolkit can be done as part of building an app package for upload, but until then, 

launch it from your Start screen (it’s called Windows App Cert Kit). When it comes up, select Validate 

134



 

Windows Store App, which (after a disk-chewing delay) presents you with a list of installed apps, 

including those that you’ve been working with in Visual Studio. It takes some time to generate that list 

if you have lots of apps installed, so you might use the opportunity to take a little stretching break. 

Then select the app you want to test, and take the opportunity to grab a snack, take a short walk, play 

a few songs on the guitar, or otherwise entertain yourself while the WACK gives your app a good 

whacking. 

Eventually it’ll have an XML report ready for you. After saving it (you have to tell it where), you can 

view the results. Note that for developer projects it will almost always report a failure on bytecode 

generation, saying “This package was deployed for development or authoring mode. Uninstall the 

package and reinstall it normally.” To fix this, uninstall it from the Start menu, select a Release target in 

Visual Studio, and then use the Build > Deploy Solution menu command. But you can just ignore this 

particular error for now. Any other failure will be more important to address early on—such as crashes, 

hangs, and launch/suspend performance problems—rather than waiting until you’re ready to submit to 

the Store. 

Note Visual Studio also has a code analysis tool on the Build > Run Code Analysis On Solution menu, 

which examines source code for common defects and other violation of best practices. However, this 

tool does not presently work with JavaScript. 

What We’ve Just Learned 

 How apps are activated (brought into memory) and the events that occur along the way. 

 The structure of app activation code, including activation kinds, previous execution states, and 

the WinJS.UI.Application object. 

 Using extended splash screens when an app needs more time to load, and deferrals when the 

app needs to use async operations on startup. 

 APIs in the MSApp object for prioritizing work on the UI thread. 

 The important events that occur during an app’s lifetime, such as focus events, visibility 

changes, view state changes, and suspend/resume/terminate. 

 The basics of saving and restoring state to restart after being terminated, and the WinJS utilities 

for implementing this. 

 How to implement page-to-page navigation within a single page context by using page 

controls, WinJS.Navigation, and the PageControlNavigator from the Visual Studio/Blend 

templates, such as the Navigation App template. 

 Details of promises that are commonly used with, but not limited to, async operations. 

 How to join parallel promises as well as execute a sequential async operations with chained 

135



 

promises. 

 How exceptions are handled within chained promises and the differences between then and 

done. 

 How to create promises for different purposes. 

 Methods for getting debug output and error reports for an app, within the debugger and the 

Windows Event Viewer. 

 How to debug asynchronous code. 

 How to perform basic performance and memory analysis with Visual Studio tools. 

136



Chapter 4 

Using Web Content and Services 

The classic aphorism, “No man is an island,” is a way of saying that all human beings are interconnected 

within a greater social, emotional, and spiritual reality. And what we see as greatness in a person is very 

much a matter of how deeply he or she has realized this truth. 

The same is apparently also true for apps. The data collected by organizations such as Distmo shows 

that connected apps—those that reach beyond themselves and their host device rather than thinking 

of themselves as isolated phenomena—generally rate higher and earn more revenue in various app 

stores. In other words, just as the greatest of human beings are those who have fully realized their 

connection to an expansive reality, so also are great apps. 

This means that we cannot simply take connectivity for granted or give it mere lip service. What 

makes that connectivity truly valuable is not doing the obvious, like displaying some part of a web 

page in an app, downloading some RSS feed, or showing a few updates from the user’s social network. 

Greatness needs to do more than that—it needs to bring online connectedness to life in creative and 

productive ways that also make full use of the local device and its powerful resources. These are 

“hybrid” apps at their best. 

Beyond social networks, consider what can be obtained from thousands of web APIs that are 

accessible through simple HTTP requests, as listed on sites like http://www.programmableweb.com/. As 

of this writing, that site lists over 9000 separate APIs, a number that continues to grow monthly. This 

means not only that there are over 9000 individual sources of interesting data that an app might 

employ, but that there are literally billions of combinations of those APIs. In addition to traditional RSS 

mashups (combining news feeds), a vast unexplored territory of API mashups exists, which means 

bringing disparate data together in meaningful ways. The Programmable Web, in fact, tracks web 

applications of this sort, but as of this writing there were several thousand fewer such mashups than 

there were APIs! It’s like we’ve taken only the first few steps on the shores of a new continent, and the 

opportunities are many.1 

I think it’s pretty clear why connected apps are better apps: as a group, they simply deliver a more 

compelling and valuable user experience than those that limit themselves to the scope of a client 

device. Thus, it’s worth taking the time early in any app project to make connectivity and web content a 

central part of your design. This is why we’re discussing the subject now, even before considerations 

like controls and other UI elements! 

                                                           
1 Increasing numbers of entrepreneurs are also realizing that services and web APIs in themselves can be a profitable 

business. Companies like Mashape and Mashery also exist to facilitate such monetization by managing scalable access 

plans for developers on behalf of the service providers. You can also consider creating a marketable Windows Runtime 

Component that encapsulates your REST API within class-oriented structures. 

137

http://www.programmableweb.com/
http://www.mashape.com/
http://www.mashery.com/


Of course, the real creative effort to find new ways to use online content is both your challenge and 

your opportunity. What we can cover in this chapter are simply the tools that you have at your disposal 

for that creativity. 

We’ll begin with the essential topic of network connectivity, because there’s not much that can be 

done without it! Then we’ll explore the options for directly hosting dynamic web content within an 

app’s own UI, as is suitable for many scenarios. Then we’ll look at the APIs for HTTP requests, followed 

by those for background transfers that can continue when an app is suspended or not running at all. 

We’ll then wrap up with the very important subject of authentication, which includes working with the 

user’s Microsoft account, user profile, and Live Connect services. 

One part of networking that we won’t cover here is sockets, because that’s a lower-level mechanism 

that has more context in device-to-device communication. We’ll come back to that in Chapter 16, 

“Devices and Printing.” Similarly, setting up service connections for live tiles and push notifications are 

covered in Chapter 14, “Alive with Activity.” And there is yet more to say on some web-related and 

networking-related subjects, but I didn’t want those details to intrude on the flow of this chapter. You 

can find those topics in Appendix B, “Additional Networking Topics.” 

Sidebar: Debugging Network Traffic with Fiddler 

Watching the traffic between your machine and the Internet can be invaluable when trying to 

debug networking operations. For this, check out the freeware tool from Telerik called Fiddler 

(http://fiddler2.com/get-fiddler). In addition to inspecting traffic, you can also set breakpoints on 

various events and fiddle with (that is, modify) incoming and outgoing data. 

Sidebar: Windows Azure Mobile Services 

No discussion of apps and services is complete without giving mention to the highly useful 

features of Windows Azure Mobile Services, especially as you can start using them for free and 

start paying only once your apps become successful and demand more bandwidth. 

 Data: easy access to cloud-based table storage (SQL Server) without the need to use HTTP 

requests or other low-level mechanisms. The client-side libraries provide very 

straightforward APIs for create, insert, update, and delete operations, along with queries. 

On the server side, you can attach node.js scripts to these operations, allowing you to 

validate and adjust the data as well as trigger other processes if desired. 

 Authentication: you can authenticate users with Mobile Services using a Microsoft account 

or other identity providers. This supplies a unique user id to Mobile Services as you’ll often 

want with data storage. You can also use server-side node.js scripts to perform other 

authorization tasks. 

 Push Notifications: a streamlined back-end for working with the Windows Notification 

Service to support live tiles, badges, toasts, and raw notifications in your app. 

138

http://fiddler2.com/get-fiddler
http://www.windowsazure.com/en-us/develop/mobile/


 Services: sending email, scheduling backend jobs, and uploading images. 

To get started, visit the Mobile Services Tutorials and Resources page. We’ll also see some of 

these features in Chapter 14 when we work with live tiles and notifications. And don’t forget all 

the other features of Windows Azure that can serve all your cloud needs, which have either free 

trials or limited free plans to get you started. 

Network Information and Connectivity 

At the time I was writing on the subject of live tiles for the first edition of this book (see Chapter 14) 

and talking about all the connections that Windows Store apps can have to the Internet, my home and 

many thousands of others in Northern California were completely disconnected due to a fiber optic 

breakdown. The outage lasted for what seemed like an eternity by present standards: 36 hours! 

Although I wasn’t personally at a loss for how to keep myself busy, there was a time when I opened one 

of my laptops, found that our service was still down, and wondered for a moment just what the 

computer was really good for! Clearly I’ve grown, as I suspect you have too, to take constant 

connectivity completely for granted. 

As developers of great apps, however, we cannot afford to be so complacent. It’s always important 

to handle errors when trying to make connections and draw from online resources, because any 

number of problems can arise within the span of a single operation. But it goes much deeper than that. 

It’s our job to make our apps as useful as they can be when connectivity is lost, perhaps just because 

our customers got on an airplane and switched on airplane mode. That is, don’t give customers a 

reason to wonder about the usefulness of their device in such situations! A great app will prove its 

worth through a great user experience even if it lacks connectivity. 

Indeed, be sure to test your apps early and often, both with and without network connectivity, to 

catch little oversights in your code. In Here My Am!, for example, my first versions of the script in 

html/map.html didn’t bother to check whether the remote script for Bing Maps had actually been 

downloaded; as a result, the app terminated abruptly when there was no connectivity. Now it at least 

checks whether the Microsoft namespace (for the Microsoft.Maps.Map constructor) is valid. So keep 

these considerations in the back of your mind throughout your development process. 

Be mindful that connectivity can vary throughout an app session, where an app can often be 

suspended and resumed, or suspended for a long time. With mobile devices especially, one might 

move between any number of networks without necessarily knowing it. Windows, in fact, tries to make 

the transition between networks as transparent as possible, except where it’s important to inform the 

user that there may be costs associated with the current provider. Window Store policy, in fact, requires 

that apps are aware of data transfer costs on metered networks and prevent “bill shock” from not-

always-generous mobile broadband providers. Just as there are certain things an app can’t always do 

when the device is offline, the characteristics of the current network might also cause it to defer or 

avoid certain operations as well. 

139

http://www.windowsazure.com/develop/mobile/resources


Anyway, let’s see how to retrieve and work with connectivity details, starting with the different types 

of networks represented in the manifest, followed by obtaining network information, dealing with 

metered networks, and providing for an offline experience. And unless noted otherwise, the classes and 

other APIs that we’ll encounter are in the Windows.Networking namespace. 

Note Network connectivity, by its nature, is an intricate subject, as you’ll see in in the sections that 

follow. But don’t feel compelled to think about all these up front! If you want to take connectivity 

entirely for granted for a while and get right into playing with web content and making HTTP requests, 

feel free to skip ahead to the “Hosting Content” and “HTTP Requests” sections. You can certainly come 

back here later. 

Network Types in the Manifest 

Nearly every sample we’ll be working with in this book has the Internet (Client) capability declared in its 

manifest, thanks to Visual Studio turning that on by default. This wasn’t always the case: early app 

builders within Microsoft would occasionally scratch their heads wondering just why something really 

obvious—like making a simple HTTP request to a blog—failed outright. Without this capability, there 

just isn’t any Internet! 

Still, Internet (Client) isn’t the only player in the capabilities game. Some networking apps will also 

want to act as a server to receive incoming traffic from the Internet, and not just make requests to 

other servers. In those cases—such as file sharing, media servers, VoIP, chat, multiplayer/multicast 

games, and other bi-directional scenarios involving incoming network traffic, as with sockets—the app 

must declare the Internet (Client & Server) capability, as shown in Figure 4-1. This lets such traffic 

through the inbound firewall, though critical ports are always blocked. 

There is also network traffic that occurs on a private network, as in a home or business, where the 

Internet isn’t involved at all. For this there is the Private Networks (Client & Server) capability, also 

shown in Figure 4-1, which is good for file or media sharing, line-of-business apps, HTTP client apps, 

multiplayer games on a LAN, and so on. What makes any given IP address part of this private network 

depends on many factors, all of which are described on How to configure network isolation capabilities. 

For example, IPv4 addresses in the ranges of 10.0.0.0–10.255.255.255, 172.16.0.0–172.31.255.255, and 

192.168.0.0–192.168.255.255 are considered private. Users can flag a network as trusted, and the 

presence of a domain controller makes the network private as well. Whatever the case, if a device’s 

network endpoint falls into this category, the behavior of apps on that device is governed by this 

capability rather than those related to the Internet. 

140

http://msdn.microsoft.com/library/windows/apps/windows.networking.aspx
http://msdn.microsoft.com/library/windows/apps/Hh770532.aspx


 

FIGURE 4-1 Additional network capabilities in the manifest. 

Sidebar: Localhost Loopback 

Regardless of the capabilities declared in the manifest, local loopback—that is, using 

http://localhost URIs—is blocked for Windows Store apps. An exception is made for machines on 

which a developer license has been installed, as described in “Sidebar: Using the Localhost” in the 

“Background Transfer” section of this chapter (we’ll need to use it with a sample there). This 

exception exists only to simplify debugging apps and services together on the same machine 

during development. 

Network Information (the Network Object Roster) 

Regardless of the network involved, everything you want to know about that network is available 

through the Connectivity.NetworkInformation object. Besides a single networkstatuschanged 

event that we’ll discuss in “Connectivity Events” a little later, the interface of this object is made up of 

methods to retrieve more specific details in other objects. 

Below is the roster of the methods in NetworkInformation and the contents of the objects 

obtained through them. You can exercise the most common of these APIs through the indicated 

scenarios of the Network information sample: 

 getHostNames Returns a vector (see note below) of HostName objects, one for each 

connection, that provides various name strings (displayName, canonicalName, and rawName), 

the name’s type (from HostNameType, with values of domainName, ipv4, ipv6, and bluetooth), 

and an ipinformation property (of type IPInformation) containing prefixLength and 

networkAdapter properties for IPV4 and IPV6 hosts. (The latter is a NetworkAdapter object 

with various low-level details.) The HostName class is used in various networking APIs to identify 

a server or some other endpoint. 

 getConnectionProfiles (Scenario 3) Returns a vector of ConnectionProfile objects, one 

for each connection, among which will be the active Internet connection as returned by 

141

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnametype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.ipinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkadapter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx


getInternetConnectionProfile. Also included are any wireless connections you’ve made in 

the past for which you indicated Connect Automatically. (In this way the sample will show you 

some details of where you’ve been recently!) See the next section for more on 

ConnectionProfile. 

 getInternetConnectionProfile (Scenario 1) Returns a single ConnectionProfile object 

for the currently active Internet connection. If there is more than one connection, this method 

returns the preferred profile that’s most likely to be used for Internet traffic. 

 getLanIdentifiers (Scenario 4) Returns a vector of LanIdentifier objects, each of which 

contains an infrastructureId (LanIdentifierData containing a type and value), a 

networkAdapterId (a GUID), and a portId (LanIdentifierData). 

 getProxyConfigurationAsync Returns a ProxyConfiguration object for a given URI and the 

current user. The properties of this object are canConnectDirectly (a Boolean) and proxyUris 

(a vector of Windows.Foundation.Uri objects for the configuration). 

 getSortedEndpointPairs Sorts an array of EndpointPair objects according to 

HostNameSortOptions. An EndpointPair contains a host and service name for local and 

remote endpoints, typically obtained when you set up specific connections like sockets. The two 

sort options are none and optimizeForLongConnections, which vary connection behaviors 

based on whether the app is making short or long duration connection. See the documentation 

for EndpointPair and HostNameSortOptions for more details. 

 

What is a vector? A vector is a WinRT type that’s often used for managing a list or collection. It has 

methods like append, removeAt, and clear through which you can manage the list. Other methods 

like getAt and getMany allow retrieval of items, and a vector supports the [] operator like an array. A 

vector is also derived from an interface called IIterable whose single method first returns an 

iterator object that can also be used to traverse the collection. Overall, vectors and iterators are part of 

a group of classes in Windows.Foundation.Collections that also includes key-value pairs, maps, 

observable maps, and property sets. We’ll encounter more of these throughout this book. 

The ConnectionProfile Object 

Of all the information available through the NetworkInformation object, the most important for apps 

is found in ConnectionProfile, most frequently that returned by getInternetConnectionProfile 

because that’s the one through which an app’s Internet traffic will flow. The profile is what contains all 

the information you need to make decisions about how you’re using the network, especially for cost 

awareness. It’s also what you’ll typically check when there’s a change in network status. Scenarios 1 and 

3 of the Network information sample retrieve and display most of these details. 

Each profile has a profileName property (a string), such as “Ethernet” or the SSID of your wireless 

access point, plus a getNetworkNames method that returns a vector of friendly names for the endpoint. 

The networkAdapter property contains a NetworkAdapter object for low-level details, should you 

142

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.lanidentifier.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.proxyconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/br206631.aspx
http://msdn.microsoft.com/library/windows/apps/br226025.aspx
http://msdn.microsoft.com/library/windows/apps/br226026.aspx
http://msdn.microsoft.com/library/windows/apps/br206657.aspx
http://msdn.microsoft.com/library/windows/apps/br207249.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201


want them, and the networkSecuritySettings property contains a NetworkSecuritySettings object 

properties describing authentication and encryption types. 

More generally interesting is the getNetworkConnectivityLevel, which returns a value from the 

NetworkConnectivityLevel enumeration: none (no connectivity), localAccess (the level you hate to 

see when you’re trying to get a good connection!), constrainedInternetAccess (captive portal 

connectivity, typically requiring further credentials as is often encountered in hotels, airports, etc.), and 

internetAccess (the state you’re almost always trying to achieve). The connectivity level is often a 

factor in your app logic and something you typically watch with network status changes. 

To track the inbound and outbound traffic on a connection, the getLocalUsage method returns a 

DataUsage object that contains bytesReceived and bytesSent, either for the lifetime of the 

connection or for a specific time period. Similarly, the getConnectionCost and getDataPlanStatus 

provide the information an app needs to be aware of how much network traffic is happening and how 

much it might cost the user. We’ll come back to this in “Cost Awareness” shortly, including how to see 

per-app usage in Task Manager. 

Connectivity Events 

It is very common for a running app to want to know when connectivity changes. This way it can take 

appropriate steps to disable or enable certain functionality, alert the user, synchronize data after being 

offline, and so on. For this, apps need only watch the 

NetworkInformation.onnetworkstatuschanged event, which is fired whenever there’s a significant 

change within the hierarchy of objects we’ve just seen (and be mindful that this event comes from a 

WinRT object). For example, the event will be fired if the connectivity level of a profile changes. It will 

also be fired if the Internet profile itself changes, as when a device roams between different networks, 

or when a metered data plan is approaching or has exceeded its limit, at which point the user will start 

worrying about every megabyte of traffic. In short, you’ll generally want to listen for this event to 

refresh any internal state of your app that’s dependent on network characteristics and set whatever 

flags you use to configure the app’s networking behavior. This is especially important for transitioning 

between online and offline and between unlimited and metered networks; Windows, for its part, also 

watches this event to adjust its own behavior, as with the Background Transfer APIs. 

Note Windows Store apps written in JavaScript can also use the basic window.nagivator.ononline 

and window.navigator.onoffline events to track connectivity. The window.navigator.onLine 

property is also true or false accordingly. These events, however, will not alert you to changes in 

connection profiles, cost, or other aspects that aren’t related to the basic availability of an Internet 

connection. For this reason it’s generally better to use the WinRT APIs. 

You can play with networkstatuschanged in Scenario 5 of the Network information sample. As you 

connect and disconnect networks or make other changes, the sample will update its details output for 

the current Internet profile if one is available (code condensed from js/network-status-change.js): 

 

143

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networksecuritysettings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkconnectivitylevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.datausage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.networkstatuschanged.aspx
http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201


var networkInfo = Windows.Networking.Connectivity.NetworkInformation; 

// Remember to removeEventListener for this event from WinRT as needed 

networkInfo.addEventListener("networkstatuschanged", onNetworkStatusChange); 

 

function onNetworkStatusChange(sender) { 

    internetProfileInfo = "Network Status Changed: \n\r"; 

    var internetProfile = networkInfo.getInternetConnectionProfile(); 

 

    if (internetProfile === null) { 

        // Error message 

    } else { 

        internetProfileInfo += getConnectionProfileInfo(internetProfile) + "\n\r"; 

        // display info 

    } 

 

    internetProfileInfo = ""; 

} 

Of course, listening for this event is useful only if the app is actually running. But what if it isn’t? In 

that case an app needs to register a background task for what’s known as the networkStateChange 

trigger, typically applying the internetAvailable or internetNotAvailable conditions as needed. 

We’ll talk more about background tasks in Chapter 14; for now, refer to the Network status 

background sample for a demonstration. The sample itself simply retrieves the Internet profile name 

and network adapter id in response to this trigger; a real app would clearly take more meaningful 

action, such as activating background transfers for data synchronization when connectivity is restored. 

The basic structure is there in the sample nonetheless. 

It’s also very important to remember that network status might have changed while the app was 

suspended. Apps that watch the networkstatuschanged event should also refresh their connectivity-

related state within their resuming handler. 

As a final note, check out the Troubleshooting and debugging network connections topic, which has 

a little more guidance on responding to network changes as well as network errors. 

Cost Awareness 

If you ever crossed between roaming territories with a smartphone that’s set to automatically download 

email, you probably learned the hard way to disable syncing in such circumstances. I once drove from 

Washington State into Canada without realizing that I would suddenly be paying $15/megabyte for the 

privilege of downloading large email attachments. Of course, since I’m a law-abiding citizen I did not 

look at my phone while driving (wink-wink!) to notice the roaming network. Well, a few weeks later I 

knew what “bill shock” was all about! 

The point here is that if users conclude that your app is responsible for similar behavior, regardless 

of whether it’s actually true, the kinds of rating and reviews you’ll receive in the Windows Store won’t 

be good! If your app might transfer any significant data, it’s vital to pay attention to changes in the cost 

of the connection profiles you’re using, typically the Internet profile. Always check these details on 

startup, within your networkstatuschanged event handler, and within your resuming handler. 

144

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtriggertype.aspx
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://msdn.microsoft.com/library/windows/apps/hh770534.aspx


You—and all of your customers, I might add—can track your app’s network usage in the App 

History tab of Task Manager, as shown below. Make sure you’ve expanded the view by tapping More 

Details on the bottom left if you don’t see this view. You can see that it shows Network and Metered 

Network usage along with the traffic due to tile updates: 

 

Programmatically, as noted before, the profile supplies usage information through its 

getConnectionCost and getDataPlanStatus methods. The first method returns a ConnectionCost 

object with four properties: 

 networkCostType A NetworkCostType value, one of unknown, unrestricted (no extra 

charges), fixed (unrestricted up to a limit), and variable (charged on a per-byte or per-

megabyte basis). 

 roaming A Boolean indicating whether the connection is to a network outside of your 

provider’s normal coverage area, meaning that extra costs are likely involved. An app should be 

very conservative with network activity when this is true unless the user consents to more data 

usage. 

 approachingDataLimit A Boolean that indicates that data usage on a fixed type network 

(see networkCostType) is getting close to the limit of the data plan. 

 overDataLimit A Boolean indicating that a fixed data plan’s limit has been exceeded and 

overage charges are definitely in effect. When this is true, an app should again be very 

conservative with network activity, as when roaming is true. 

The second method, getDataPlanStatus, returns a DataPlanStatus object with these properties: 

 dataPlanLimitInMegabytes The maximum data transfer allowed for the connection in each 

billing cycle. 

145

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectioncost.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkcosttype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.dataplanstatus.aspx


 dataPlanUsage A DataPlanUsage object with an all-important megabytesUsed property and 

a lastSyncTime (UTC) indicating when megabytesUsed was last updated. 

 maxTransferSizeInMegabytes The maximum recommended size of a single network 

operation. This property reflects not so much the capacities of the metered network itself (as its 

documentation suggests), but rather an appropriate upper limit to transfers on that network. 

 nextBillingCycle The UTC date and time when the next billing cycle on the plan kicks in 

and resets dataPlanUsage to zero. 

 inboundBitsPerSecond and outboundBitsPerSecond Indicate the nominal transfer speed of 

the connection. 

With all these properties you can make intelligent decisions about your app’s network activity 

and/or warn the user about possible overage charges. Clearly, when the networkCostType is 

unrestricted, you can really do whatever you want. On the other hand, when the type is variable 

and the user is paying for every byte, especially when roaming is true, you’ll want to inform the user of 

that status and provide settings through which the user can limit the app’s network activity, if not halt 

that activity entirely. After all, the user might decide that certain kinds of data are worth having. For 

example, they should be able to set the quality of a streaming movie, indicate whether to download 

email messages or just headers, indicate whether to download images, specify whether caching of 

online data should occur, turn off background streaming audio, and so on.  

Such settings, by the way, might include tile, badge, and other notification activities that you might 

have established, as those can generate network traffic. If you’re also using background transfers, you 

can set the cost policies for downloads and uploads as well. 

An app can, of course, ask the user’s permission for any given network operation. It’s up to you and 

your designers to decide when to ask and how often. Windows Store policy, for its part (section 4.5), 

requires that you ask the user for any transfer exceeding one megabyte when roaming and 

overDataLimit are both true, and when performing any transfer over 

maxTransferSizeInMegabytes. 

On a fixed type network, where data is unrestricted up to dataPlanLimitInMegabytes, we find 

cases where a number of the other properties become interesting. For example, if overDataLimit is 

already true, you can ask the user to confirm additional network traffic or just defer certain operations 

until the nextBillingCycle. Or, if approachingDataLimit is true (or even when it’s not), you can 

determine whether a given operation might exceed that limit. This is where the connection profile’s 

getLocalUsage method comes in handy to obtain a DataUsage object for a given period (see How to 

retrieve connection usage information for a specific time period). Call getLocalUsage with the time 

period between lastSyncTime and DateTime.now(). Then add that value to megabytesUsed and 

subtract the result from dataPlanLimitInMegabytes. This tells you how much more data you can 

transfer before incurring extra costs, thereby providing the basis for asking the user, “Downloading this 

file will exceed your data plan limit. Do you want to proceed?” 

146

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.dataplanusage.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh465162.aspx
http://msdn.microsoft.com/library/windows/apps/hh465162.aspx


For simplicity’s sake, you can think of cost awareness in terms of three behaviors: normal, 

conservative, and opt-in, which are described on Managing connections on metered networks and, 

more broadly, on Developing connected apps. Both topics provide additional guidance on making the 

kinds of decisions described here already. In the end, saving the user from bill shock—and designing a 

great user experience around network costs—is definitely an essential investment. 

Tip A very powerful way to deal with cost awareness is through what’s called a filter on which the 

Windows.Web.Http.HttpClient API is built. This allows you to keep the app logic much cleaner by 

handling all cost decisions on the lower level of the filter. To see this in action, refer to scenario 11 of 

the HttpClient sample. 

Sidebar: Simulating Metered Networks 

You may be thinking, “OK, so I get the need for my app to behave properly with metered 

networks, but how do I test such conditions without signing up with some provider and paying 

them a bunch of money (including roaming fees) while I’m doing my testing?” The simple answer 

is that you can simulate the behavior of metered networks with either the Visual Studio simulator 

or directly in Windows with any Wi-Fi connection. 

In the simulator, click the Change Network Properties button on the lower right side of the 

simulator’s frame (it’s the command above Help—refer back to Figure 2-5 in Chapter 2, 

“Quickstart”). This brings up the following dialog: 

 

In this dialog you can create a profile with whatever name and options you’d like. The 

variations for cost type, data limit status, and roaming allow you to test all conditions that your 

app might encounter. As such, this is your first choice for working with cost awareness. 

To simulate a metered network with a Wi-Fi connection, invoke the Settings charm and tap on 

your network connection near the bottom (see below left, specifically the upper left icon, shown 

here as “Nuthatch”). In the Networks pane that then opens up (below right), right-click a wireless 

connection to open the menu and then select Set As Metered Connection: 

147

http://msdn.microsoft.com/library/windows/apps/hh750310.aspx
http://msdn.microsoft.com/library/windows/apps/hh465399.aspx
http://code.msdn.microsoft.com/windowsapps/HttpClient-sample-828a4eb2


  

Although this option will not set up DataUsage properties and all that a real metered network 

might provide, it will return a networkCostType of fixed, which allows you to see how your app 

responds. You can also use the Show Estimated Data Usage menu item to watch how much 

traffic your app generates during its normal operation, and you can reset the counter so that you 

can take some accurate readings: 

 

 

Running Offline 

The other user experience that is likely to earn your app a better reputation is how it behaves when 

there is no connectivity or when there’s a change in connectivity. Ask yourself the following questions: 

 What happens if your app starts without connectivity, both from tiles (primary and secondary) 

and through contracts such as search, share, and the file picker? 

 What happens if your app runs the first time without connectivity? 

 What happens if connectivity is lost while the app is running? 

 What happens when connectivity comes back? 

As described above in the “Connectivity Awareness” section, you can use the 

networkstatuschanged event to handle these situations while running and your resuming handler to 

check if connection status changed while the app was suspended. If you have a background task tied to 

148



the networkStateChange trigger, it would primarily save state that your resuming handler would then 

check. 

It’s perfectly understood that some apps just can’t run without connectivity, in which case it’s 

appropriate to inform the user of that situation when the app is launched or when connectivity is lost 

while the app is running. In other situations, an app might be partially usable, in which case you should 

inform the user more on a case-by-case basis, allowing them to use unaffected parts of the app. Better 

still is to cache data that might make the app even more useful when connectivity is lost. Such data 

might even be built into the app package so that it’s always available on first launch. 

Consider the case of an ebook reader app that would generally acquire new titles from an online 

catalog. For offline use it would do well to cache copies of the user’s titles locally, rather than rely solely 

on having a good Internet connection. The app’s publisher might also include a number of popular free 

titles directly in the app package such that a user could install the app while waiting to board a plane 

and have at least those books ready to go when the app is first launched at 30,000 feet. Other apps 

might include some set of preinstalled data at first and then add to that data over time (perhaps 

through in-app purchases) when unrestricted networks are available. By following network costs 

closely, such an app might defer downloading a large data set until either the user confirms the action 

or a different connection is available. 

How and when to cache data from online resources is probably one of the fine arts of software 

development. When do you download it? How much do you acquire? Where do you store it? Should 

you place an upper limit on the cache? Do you allow changes to cached data that would need to be 

synchronized with a service when connectivity is restored? These are all good questions ask, and 

certainly there are others to ask as well. Let me at least offer a few thoughts and suggestions. 

First, you can use any network transport to acquire data to cache, such as the various HTTP request 

APIs we’ll discuss later, the background transfer API, as well as the HTML5 AppCache mechanism. 

Separately, other content acquired from remote resources, such as images and even script 

(downloaded within iframe or webview elements), are also cached automatically like typical temporary 

Internet files. Note that all caching mechanisms are subject to the storage limits defined by Internet 

Explorer (whose subsystems are shared with apps written with HTML and JavaScript). You can also 

exercise some control over caching through the HttpClient API. 

How much data you cache depends, certainly, on the type of connection you have and the relative 

importance of the data. On an unrestricted network, feel free to acquire everything you feel the user 

might want offline, but it would be a good idea to provide settings to control that behavior, such as 

overall cache size or the amount of data to acquire per day. I mention the latter because even though 

my own Internet connection appears to the system as unrestricted, I’m charged more as my usage 

reaches certain tiers (on the order of gigabytes). As a user, I would appreciate having a say in matters 

that involve significant network traffic. 

Even so, if caching specific data will greatly enhance the user experience, separate that option to 

give the user control over the decision. For example, an ebook reader might automatically download a 

whole title while the reader is perhaps just browsing the first few pages. Of course, this would also 

149

http://msdn.microsoft.com/library/ie/hh673545.aspx


mean consuming more storage space. Letting users control this behavior as a setting, or even on a per-

book basis, lets them decide what’s best. For smaller data, on the other hand—say, in the range of 

several hundred kilobytes—if you know from analytics that a user who views one set of data is highly 

likely to view another, automatically acquiring and caching those additional data sets could be the 

right design. 

The best places to store cached data are your app data folders, specifically the LocalFolder and 

TemporaryFolder. Avoid using the RoamingFolder to cache data acquired from online sources: besides 

running the risk of exceeding the roaming quota (see Chapter 9, “The Story of State, Part 1”), it’s also 

quite pointless. Because the system would have to roam such data over the network anyway, it’s better 

to just have the app re-acquire it when it needs to. 

Whether you use the LocalFolder or TemporaryFolder depends on how essential the data is to the 

operation of the app. If the app cannot run without the cache, use local app data. If the cache is just an 

optimization such that the user could reclaim that space with the Disk Cleanup tool, store the cache in 

the TemporaryFolder and rebuild it again later on. 

In all of this, also consider that what you’re caching really might be user data that you’d want to 

store outside of your app data folders. That is, be sure to think through the distinction between app 

data and user data! We’ll think about this more in Chapter 9. 

Finally, you might again have the kind of app that allows offline activity (like processing email) 

where you will have been caching the results of that activity for later synchronization with an online 

resource. When connectivity is restored, then, check if the network cost is suitable before starting your 

sync process. 

Hosting Content: the WebView and iframe Elements 

One of the most basic uses of online content is to load and render an arbitrary piece of HTML (plus CSS 

and JavaScript) into a discrete element within an app’s overall layout. The app’s layout is itself, of 

course, defined using HTML, CSS, and JavaScript, where the JavaScript code especially has full access to 

both the DOM and WinRT APIs. For security considerations, however, such a privilege cannot be 

extended to arbitrary content—it’s given only to content that is part of the app’s package and has thus 

gone through the process of Store certification. For everything else, then, we need ways to render 

content within a more sandboxed environment. 

There are two ways to do this, as we’ll see in this section. One is through the HTML iframe element, 

which is very restricted in that it can display only in-package pages (ms-appx[-web]:/// URIs) and 

secure online content (https://). The other more general-purpose choice is the x-ms-webview 

element, which I’ll just refer to as the webview for convenience. It works with ms-appx-web, http[s], 

and ms-appdata URIs, and it provides a number of other highly useful features such as using your own 

link resolver. The two caveats with the webview is that it does not at present support IndexedDB or 

HTML5 AppCache, which the iframe does. If you require these capabilities, you’ll need to use an 

150



iframe through an https: URI. At the same time, the webview also has integrated SmartScreen 

filtering support to protect your app from phishing attacks. Such choices! 

In earlier chapters we’ve already encountered the ms-appx-web URI scheme and made mention of 

the local and web contexts. We’ll start this section by exploring these contexts and other security 

considerations in more detail, because they apply directly to iframe and webview elements alike. 

Caution iframe and x-ms-webview elements are not intended to let you just build an app out of 

remote web pages. Section 2 of the Windows Store app certification requirements, in fact, specifically 

disallows this: “the primary app experience must take place within the app,” meaning that it doesn’t 

happen within hosted websites. A few key reasons for this are that websites typically aren’t set up well 

for touch interaction (which violates requirement 3.5) and often won’t work well in different view states 

(violating requirement 3.6). In short, overuse of web content will likely mean that the app won’t be 

accepted by the Store, though web content that’s specifically designed for use with an app and 

behaves like native app content won’t be so scrutinized. 

Requirement 3.9 also disallows dynamically downloading code or data that changes how the app 

interacts with the WinRT API. This is admittedly a bit of a gray area, as downloading data to configure 

a game level, for instance, doesn’t quite fall into this category. Nevertheless, this requirement is taken 

seriously so be very careful about making assumptions here. 

Local and Web Contexts (and iframe Elements) 

As described in Chapter 1, “The Life Story of a Windows Store App,” apps written with HTML, CSS, and 

JavaScript are not directly executable like their compiled counterparts written in C#, Visual Basic, or 

C++. In our app packages, there are no EXEs, just .html, .css, and .js files that are, plain and simple, 

nothing but text. So something has to turn all this text that defines an app into something that’s 

actually running in memory. That something is again the app host, wwahost.exe, which creates what we 

call the hosted environment for Store apps. 

Let’s review what we’ve already learned in Chapters 1 and 2 about the characteristics of the hosted 

environment: 

 The app host (and the apps in it) use brokered access to sensitive resources, controlled both by 

declared capabilities in the manifest and run-time user consent. 

 Though the app host provides an environment very similar to that of Internet Explorer (10+), 

there are a number of changes to the DOM API, documented on HTML and DOM API changes 

list and HTML, CSS, and JavaScript features and differences. A related topic is Windows Store 

apps using JavaScript versus traditional web apps. 

 HTML content in the app package can be loaded into the local or web context, depending on 

the hosting element. iframe elements can use the ms-appx:/// scheme to refer to in-package 

pages loaded in the local context or ms-appx-web:/// to specify the web context. (The third / 

again means “in the app package”; the Here My Am! app uses this to load its map.html file into 

a web context iframe.) Remote https content in an iframe and all content in a webview 

151

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/library/windows/apps/hh465408.aspx
http://msdn.microsoft.com/library/windows/apps/hh465408.aspx


always runs in the web context. 

 Any content within a web context can refer to in-package resources (such as images and other 

media) with ms-appx-web URIs. For example, a page loaded into a webview from an http 

source can refer to an app’s in-package logo. (Such a page, of course, would not work in a 

browser!) 

 The local context has access to the WinRT API, among other things, but cannot load remote 

script (referenced via http://); the web context is allowed to load and execute remote script 

but cannot access WinRT. 

 ActiveX control plug-ins are generally not allowed in either context and will fail to load in both 

iframe and webview elements. The few exceptions are noted on Migrating a web app. 

 In the local context, strings assigned to innerHTML, outerHTML, adjacentHTML, and other 

properties where script injection can occur, as well as strings given to document.write and 

similar methods, are filtered to remove script. This does not happen in the web context. 

 Every iframe and webview element—in either context—has its own JavaScript global 

namespace that’s entirely separate from that of the parent page. Neither can access the other. 

 The HTML5 postMessage function can be used to communicate between an iframe and its 

containing parent across contexts; with a webview such communication happens with the 

invokeScriptAsync method and window.external.notify. These capabilities can be useful 

to execute remote script within the web context and pass the results to the local context; script 

acquired in the web context should not be itself passed to the local context and executed there. 

(Again, Windows Store policy disallows this, and apps submitted to the Store are analyzed for 

such practices.) 

 Further specifics can be found on Features and restrictions by context, including which parts of 

WinJS don’t rely on WinRT and can thus be used in the web context. (WinJS, by the way, is not 

supported for use on web pages outside of an app, just the web context within an app.) 

An app’s home page—the one you point to in the manifest in the Application UI > Start Page 

field—always runs in the local context, and any page to which you navigate directly (via <a href> or 

document.location) must also be in the local context. When using page controls to load HTML 

fragments into your home page, those fragments are of course rendered into the local context. 

Next, a local context page can contain any number of webview and iframe elements. For the 

webview, because it always loads its content in the web context and cannot refer to ms-appx URIs, it 

pretty much acts like an embedded web browser where navigation is concerned. 

Each iframe element, on the other hand, can load in-package content in either local or web 

context. (By the way, programmatic read-only access to your package contents is obtained via 

Windows.ApplicationMode.Package.Current.InstalledLocation.) Referring to a remote location 

(https) will always place the iframe in the web context. 

152

http://msdn.microsoft.com/library/windows/apps/hh465143.aspx
http://msdn.microsoft.com/library/windows/apps/hh465373.aspx


Here are some examples of different URIs and how they get loaded in an iframe: 

<!-- iframe in local context with source in the app package --> 

<!-- these forms are allowed only from inside the local context --> 

<iframe src="/frame-local.html"></iframe> 

<iframe src="ms-appx:///frame-local.html"></iframe> 

 

<!-- iframe in web context with source in the app package --> 

<iframe src="ms-appx-web:///frame-web.html"></iframe> 

 

<!-- iframe with an external source automatically assigns web context --> 

<iframe src="https://my.secure.server.com"></iframe> 

Also, if you use an <a href="..." target="..."> tag with target pointing to an iframe, the 

scheme in href determines the context. And once in the web context, an iframe can host only other 

web context iframes such as the last two above; the first two elements would not be allowed. 

Tip Some web pages contain frame-busting code that prevents the page from being loaded into an 

iframe, in which case the page will be opened in the default browser and not the app. In this case, use 

a webview if you can; otherwise you’ll need to work with the site owner to create an alternate page 

that will work for you. 

Although Windows Store apps typically don’t use <a href> or document.location for page 

navigation, similar rules apply if you do happen to use them. The whole scene here, though, can begin 

to resemble overcooked spaghetti, so I’ve simplified the exact behavior for these variations and for 

iframes in the following table: 

Target Result in Local Context Page Result in Web Context Page 

<iframe src="ms-appx:///"> iframe in local context Not allowed 

<iframe src="ms-appx-web:///"> iframe in web context iframe in web context 

<iframe src="https:// "> iframe in web context iframe in web context 

<a href="[uri]" target="myFrame"> 

<iframe name="myFrame"> 

iframe in local or web context 

depending on [uri] 

iframe in web context; [uri] 

cannot begin with ms-appx. 

<a href="ms-appx:///"> Links to page in local context Not allowed unless explicitly 

specified (see below) 

<a href="ms-appx-web:///"> Not allowed Links to page in web context 

<a href="[uri]"> with any other protocol including 

http[s] 

Opens default browser with [uri] Opens default browser with [uri] 

 

The last two items in the table really mean that a Windows Store app cannot navigate from its top-

level page (in the local context) directly to a web context page of any kind (local or remote) and remain 

within the app—the app host will launch the default browser instead. That’s just life in the app host! 

Such content must be placed in an iframe or a webview. Similarly, navigating from a web context page 

to a local context page is not allowed by default but can be enabled, as we’ll see shortly. 

In the meantime, let’s see a few simpler iframe examples. Again, in the Here My Am! app we’ve 

already seen how to load an in-package HTML page in the web context and communicate with the 

parent page through postMessage (We’ll change this to a webview in a later section.) Very similar and 

153



more isolated examples can also be found in scenarios 2 and 4 of the Integrating content and controls 

from web services sample. 

Scenario 3 of that same sample demonstrates how calls to WinRT APIs are allowed in the local 

context but blocked in the web context. It loads the same page, callWinRT.html, into a separate iframe 

in each context, which also means the same JavaScript is loaded (and isolated) in both. When running 

this scenario you can see that WinRT calls will fail in the web context. 

A good tip to pick up from this sample is that you can use the document.location.protocol 

property to check which context you’re running in, as done in js/callWinRT.js: 

var isWebContext = (document.location.protocol === "ms-appx-web:"); 

Checking against the string “ms-appx:” will, of course, tell you if you’re running in the local context. 

Scenarios 5 and 6 of the sample are very interesting because they help us explore matters around 

inserting HTML into the DOM and navigating from the web to the local context. Each of these subjects, 

however, needs a little more context of their own (forgive the pun!), as discussed in the next two 

sections. 

Tip To prevent selection of content in an iframe, style the iframe with –ms-user-select: none or 

set its style.msUserSelect property to "none" in JavaScript. This does not, however, work for the 

webview control; its internal content would need to be styled instead. 

Dynamic Content 

As we’ve seen, the ms-appx and ms-appx-web schema allow an app to navigate iframe and webview 

elements to pages that exist inside the app package. This begs a question: can an app point to content 

on the local file system that exists outside its package, such as a dynamically created file in an appdata 

folder? Can, perchance, an app use the file:// protocol to navigate to and/or access that content? 

Well, as much as I’d love to tell you that this just works, the answer is somewhat mixed. First, the 

file protocol—along with custom protocols—are wholly blocked by design for various security 

reasons, even for your appdata folders to which you otherwise have full access. Fortunately, there is a 

substitute, ms-appdata:///, that fulfills part of the need (the third /again allows you to omit the 

specific package name). Within the local context of an app, ms-appdata is a shortcut to your appdata 

folder wherein exist local, roaming, and temp folders. So, if you created a picture called image65.png in 

your appdata local folder, you can refer to it by using ms-appdata:///local/image65.png. Similar 

forms work with roaming and temp and work wherever a URI can be used, including within a CSS style 

like background. 

Within iframes, ms-appdata can be used only for resources, namely with the src attribute of img, 

video, and audio elements. It cannot be used to load HTML pages, CSS stylesheets, or JavaScript, nor 

can it be used for navigation purposes (iframe, hyperlinks, etc.). This is because it wasn’t feasible to 

create a sub-sandbox environment for such pages, without which it would be possible for a page 

loaded with ms-appdata to access everything in your app. Fortunately, you can navigate a webview to 

154

http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://msdn.microsoft.com/library/windows/apps/hh779846.aspx


app data content, as we’ll see shortly, thereby allowing you to generate and display HTML pages 

dynamically without having to write your own rendering engine (whew!). 

You can also load bits of HTML, as we’ve seen with page controls, and insert that markup into the 

DOM through innerHTML, outerHTML, adjacentHTML and related properties, as well as 

document.write and DOMParser.parseFromString. But remember that automatic filtering is applied 

in the local context to prevent injection of script and other risky markup (and if you try, the app host 

will throw exceptions). This is not a concern in the web context, of course. 

This brings us to whether you can generate and execute script on the fly in the local context at all. 

The answer is again qualified. Yes, you can take a JavaScript string and pass it to the eval or 

execScript functions, even inject script through properties like innerHTML. But be mindful again of 

Windows Store certification requirement 3.9 that specifically disallows dynamic script that changes your 

app logic or its interaction with WinRT. 

That said, there are situations where you, the developer, really know what you’re doing and enjoy 

juggling chainsaws and flaming swords (or maybe you’re just trying to use a third-party library; see the 

sidebar below). Acknowledging that, Microsoft provides a mechanism to consciously circumvent script 

filtering: MSApp.execUnsafeLocalFunction. For all the details regarding this, refer to Developing 

secure apps, which covers this along with a few other obscure topics that I’m not including here (like 

the numerous variations of the sandbox attribute for iframes, which is also demonstrated in the 

JavaScript iframe sandbox attribute sample). 

And curiously enough, WinJS actually makes it easier for you to juggle chainsaws and flaming 

swords! WinJS.Utilities.setInnerHTMLUnsafe, setOuterHTMLUnsafe, and 

insertAdjacentHTMLUnsafe are wrappers for calling DOM methods that would otherwise strip out 

risky content. Alternately, if you want to sanitize HTML before attempting to inject it into an element 

(and thereby avoid exceptions), you can use the toStaticHTML method, as demonstrated in scenario 5 

of the Integrating content and controls from web services sample. 

Sidebar: Third-Party Libraries and the Hosted Environment 

In general, Windows Store apps can employ libraries like jQuery, Prototype, Dojo, and so forth, as 

noted in Chapter 1. However, there are some limitations and caveats. 

First, because local context pages in an app cannot load script from remote sources, apps 

typically need to include such libraries in their packages unless they’re only being used from the 

web context. WinJS, mind you, doesn’t need bundling because it’s provided by the Windows 

Store, but such “framework packages” are not enabled for third parties. 

Second, DOM API changes and app container restrictions might affect the library. For 

example, using window.alert won’t work. One library also cannot load another library from a 

remote source in the local context. Crucially, anything in the library that assumes a higher level of 

trust than the app container provides (such as open file system access) will have issues. 

155

http://msdn.microsoft.com/library/windows/apps/hh849625.aspx
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx
http://code.msdn.microsoft.com/windowsapps/JavaScript-iframe-sandbox-0f077ece
http://msdn.microsoft.com/library/windows/apps/hh466094.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b


The most common problem comes up when libraries inject elements or script into the DOM 

(as through innerHTML), a widespread practice for web applications that is not automatically 

allowed within the app container. You can get around this on the app level by wrapping code 

within MSApp.execUnsafeLocalFunction, but that doesn’t solve injections coming from deeper 

inside the library. In these cases you really need to work with the library author. 

In short, you’re free to use third-party libraries so long as you’re aware that they might have 

been written with assumptions that don’t always apply within the app container. Over time, of 

course, fully Windows-compatible versions of such libraries, like jQuery 2.0, will emerge. Note 

also that for any libraries that include binary components, those must be targeted to Windows 

8.1 Preview for use with a Windows 8.1 Preview app. 

App Content URIs 

When drawing on a variety of web content, it’s important to understand the degree to which you trust 

that content. That is, there’s a huge difference between web content that you control and that which 

you do not, because by bringing that content into the app, the app essentially takes responsibility for it. 

This means that you want to be careful about what privileges you extend to that web content. In an 

iframe, those privileges include cross-context navigation, geolocation, IndexedDB, HTML5 AppCache, 

clipboard access, and navigating to web content with an https URI. In a webview, it means the ability 

for remote content to raise an event to the app.2 

If you ask nicely, in other words, Windows will let you enable such privileges to web pages that the 

app knows about. All it takes is an affidavit signed by you and sixteen witnesses, and…OK, I’m only 

joking! You simply need to add what are called application content URI rules to your manifest in the 

Content Uri tab. Each rule—composed of an exact https URI or one with wildcards (*)—says that 

content from some URI is known and trusted by your app and can thus act on the app’s behalf. You 

can also exclude URIs, which is typically done to exclude specific pages that would otherwise be 

allowed by another rule. 

For instance, the very simple ContentUri example in this chapter’s companion content has an 

iframe pointing to https://www.bing.com/maps/ (Bing allows an https:// connection), and this URI is 

included in the in the content URI rules. This allows the app to host the remote content as partially 

shown belowNow click or tap the geolocation crosshair circle on the upper left of the map next to 

World. Because the rules say we trust this content (and trust that it won’t try to trick the user), a 

geolocation request invokes a consent dialog (as shown below) just as if the request came from the 

app. (Note: When run inside the debugger, the ContentUri example will probably show exceptions on 

startup. If so, press Continue within Visual Studio; this doesn’t affect the app running outside the 

debugger.) 

                                                           
2 At whatever point the webview supports IndexedDB or AppCache, these features will likely require such permissions as 

well. 

156

http://blogs.msdn.com/b/windowsappdev/archive/2013/04/01/windows-store-app-support-in-jquery-version-2-0.aspx
https://www.bing.com/maps/


 

Such brokered capabilities require a content URI rule because web content loaded into an iframe 

can easily provide the means to navigate to other arbitrary pages that could potentially be malicious. 

Lacking a content URI rule for that target page, the iframe will not navigate there at all. 

In some app designs you might have occasion to navigate from a web context page in the app to a 

local context page. For example, you might host a page on a server where it can keep other server-side 

content fully secure (that is, not bring it onto the client). You can host the page in an iframe, of course, 

but if for some reason you need to directly navigate to it, you’ll probably need to navigate back to a 

local context page. You can enable this by calling the super-secret function 

MSApp.addPublicLocalApplicationUri from code in a local page (and it actually is well-

documented) for each specific URI you need. Scenario 6 of the Integrating content and controls from 

web services sample gives an example of this. First it has an iframe in the web context 

(html/addPublicLocalUri.html): 

<iframe src="ms-appx-web:///navigateToLocal.html"></iframe> 

That page then has an <a href> to navigate to a local context page that calls a WinRT API for good 

measure; see navigateToLocal.html in the project root: 

<a href="ms-appx:///callWinRT.html">Navigate to ms-appx:///callWinRT.html</a> 

To allow this to work, we then have to call addPublicLocalApplicationUri from a local context 

page and specify the trusted target (js/addPublicLocalUri.js): 

MSApp.addPublicLocalApplicationUri("callWinRT.html"); 

Typically it’s a good practice to include the ms-appx:/// prefix in the call for clarity: 

MSApp.addPublicLocalApplicationUri("ms-appx:///callWinRT.html"); 

Be aware that this method is very powerful without giving the appearance of such. Because the web 

context can host any remote page, be especially careful when the URI contains query parameters. For 

example, you don’t want to allow a website to navigate to something like ms-appx:///delete.html? 

file=superimportant.doc and just accept those parameters blindly! In short, always consider such 

URI parameters (and any information in headers) to be untrusted content. 

 

 

 

157

http://msdn.microsoft.com/library/windows/apps/hh465759.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b


The <x-ms-webview> Element 

Whenever you want to display some arbitrary HTML page within the context of your app—specifically 

pages that exists outside of your app package—then the x-ms-webview element is your best friend.3 

This is a native HTML element that’s recognized by the rendering engine and basically works like the 

core of a web browser (without the surrounding business of navigation, favorites, and so forth). 

Anything loaded into a webview runs in the web context, so it can be used for arbitrary URIs except 

those using the ms-appx schema. It also supports ms-appdata URIs and rendering string literals, which 

means you can easily display HTML/CSS/JavaScript that you generate dynamically as well as content 

that’s downloaded and stored locally. This includes the ability to do your own link resolution, as when 

images are stored in a database rather than as separate files. Webview content again always runs in the 

web context (without WinRT access), there aren’t restrictions as to what you can do with script and such 

so far as Store certification is concerned. And the webview even supports additional features like 

rendering its contents to a stream from which you can create a bitmap. So let’s see how all that works! 

What’s with the crazy name? You’re probably wondering already why the webview has this oddball 

x-ms-webview tag. This is to avoid any future conflict with emerging standards, at which point a 

vendor-prefixed implementation could become ms-webview. 

Because the webview is an HTML element like any other, you can style it with CSS however you 

want, animate the element around, and so forth. Its JavaScript object also has the full set of properties, 

methods, and events that are shared with other HTML elements, along with a few unique ones of its 

own. Note, however, that the webview does not have or support any child content of its own, so 

properties like innerHTML and childNodes are empty and have no effect if you set them. 

The simplest use case for the webview (and I call it this because it’s tiresome to type out the funky 

element name every time) is to just point it to a URI through its src attribute. One example is in 

scenario 1 of the Integrating content and controls from web services sample (html/webContent.html), 

with the results shown in Figure 4-2: 

<x-ms-webview id="webContentHolder" 

src="http://www.microsoft.com/presspass/press/NewsArchive.mspx?cmbContentType=PressRelease"> 

</x-ms-webview> 

The sample lets you choose different links, which are then rendered in the webview by again simply 

setting its src attribute. 

                                                           
3 The inclusion of the webview element is one of the significant improvements for Windows 8.1. In Windows 8, apps written 

in HTML, CSS, and JavaScript have only iframe elements at their disposal. However, iframes don’t work with web pages 

that contain frame-busting code, can’t load local (appdata) pages, and have some subtle security issues. For this reason, 

Windows 8.1 has the native x-ms-webview HTML element for most uses and limits iframe to in-package ms-appx[-web] 

and https URIs exclusively. 

158

http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b


 

FIGURE 4-2 Displaying a webview, which is an HTML element like any others within an app layout. The webview 

runs within the web context and allows navigation within its own content. 

Clicking links inside a webview will navigate to those pages. In many cases with live web pages, 

you’ll see JavaScript exceptions if you’re running the app in the debugger. Such exceptions will not 

terminate the app as a whole, so they can be safely ignored or left unhandled. Outside of the 

debugger, in fact, a user will never see these—the webview ignores them. 

As we see in this example, setting the src attribute is one way to load content into the webview. The 

webview object also supports three other methods: 

 navigate Navigates the webview to a supported URI (http[s], ms-appx-web, and ms-

appdata). That page can contain references to other URIs except for ms-appx. 

 navigateToString Renders an HTML string literal into the webview. References can again 

refer to supported URIs except for ms-appx. 

 navigateToLocalStreamUri Navigates to a page in local appdata using an app-provided 

object to resolve relative URIs and possibly decrypt the page content. 

Examples of all three can be found in the HTML Webview control sample. Scenario 1 shows 

navigate, starting with an empty webview and then calling navigate with a URI string 

(js/1_NavToUrl.js): 

var webviewControl = document.getElementById("webview"); 

webviewControl.navigate("http://go.microsoft.com/fwlink/?LinkId=294155"); 

 

159

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-752fc578


Scenario 2 shows navigateToString by loading an in-package HTML file into a string variable, 

which is equivalent to calling navigate with the same ms-appx-web URI. Of course, if you have the 

content in an HTML file already, you would just use navigate! It’s more common, then, to use 

navigateToString with content that’s being generated dynamically. For example, let’s say I create a 

string as follows, which you’ll notice includes a reference to an in-package stylesheet. You can find this 

in scenario 1 of the WebviewExtras example in this chapter’s companion content (js/scenario1.js): 

var baseURI = "http://www.kraigbrockschmidt.com/images/"; 

 

var content = "<!doctype HTML><head><style>"; 

//Refer to an in-package stylesheet (or one in ms-appdata:/// or http[s]://) 

content += 

    "<head><link rel='stylesheet' href='ms-appx-web:///css/localstyles.css' /></head>"; 

content += "<html><body><h1>Dynamically-created page</h1>"; 

content += "<p>This document contains its own styles as well as a remote image references.</p>" 

content += "<img src='" + baseURI + "Cover_ProgrammingWin8.jpg' />" + space; 

content += "<img src='" + baseURI + "Cover_MysticMicrosoft.jpg' />" + space; 

content += "<img src='" + baseURI + "Cover_FindingFocus.jpg' />" + space; 

content += "<img src='" + baseURI + "Cover_HarmoniumHandbook2.jpg' />" 

content += "</body></html>"; 

With this we can then just load this string directly: 

var webview = document.getElementById("webview"); 

webview.navigateToString(content); 

We could just as easily write this text to a file in our appdata and use navigate with an ms-appdata 

URI (also in js/scenario1.js): 

var local = Windows.Storage.ApplicationData.current.localFolder; 

 

local.createFolderAsync("pages", 

        Windows.Storage.CreationCollisionOption.openIfExists).then(function (folder) { 

    return folder.createFileAsync("dynamicPage.html", 

        Windows.Storage.CreationCollisionOption.replaceExisting); 

}).then(function (file) { 

    return Windows.Storage.FileIO.writeTextAsync(file, content); 

}).then(function () { 

    var webview = document.getElementById("webview"); 

    webview.navigate("ms-appdata:///local/pages/dynamicPage.html"); 

}).done(null, function (e) { 

    WinJS.log && WinJS.log("failed to create dynamicPage.html, err = " + e.message, "app"); 

}); 

In both of these examples, the output (styled with the in-package stylesheet) is the following 

shameless display of my current written works: 

160



 

Take careful note of the fact that I create this dynamic page in a subfolder within local appdata. The 

webview specifically disallows navigation to pages in a root local, roaming, or temp appdata folder to 

protect the security of other appdata files and folders. That is, because the webview runs in the web 

context and can contain any untrusted content you might have downloaded from the web, and 

because the webview allows that content to exec script and so forth, you don’t want to risk exposing 

potentially sensitive information elsewhere within your appdata. By forcing you to place appdata 

content in a subfolder, you would have to consciously store other appdata in that same folder to allow 

the webview to access it. It’s a small barrier, in other words, to give you pause to think clearly about 

exactly what you’re doing! 

Scenario 3 of the SDK’s HTML WebView control sample (js/scenario3.js) also shows an example of 

using ms-appdata URIs, in this case copying an in-package file to local appdata and navigating to that. 

Another likely scenario is that you’ll download content from an online service via an HTTP request, 

store that in an appdata file, and navigate to it. In such cases you’re just building the necessary file 

structure in a folder and navigating to the appropriate page. So, for example, you might make an HTTP 

request to a service to obtain multimedia content in a single compressed file. You can then expand that 

file into your appdata and, assuming that the root HTML page has relative references to other files, the 

webview can load and render it. 

But what if you want to download a single file in a private format (like an ebook) or perhaps acquire 

a potentially encrypted HTML page along with a single database file for media resources? This is the 

purpose of navigateToLocalStream, which lets you inject your own content handlers and link 

resolvers into the rendering process. This method takes two arguments: 

 A content URI that’s created by calling the webview’s buildLocalStreamUri method with an 

app-defined content identifier and the relative reference to resolve.  

 A resolver object that implements an interface called IUriToStreamResolver, whose single 

method UriToStreamAsync takes a relative URI and produces a WinRT IInputStream through 

which the rendering engine can then load the media. 

Scenario 4 of the HTML WebView control sample demonstrates this with resolver objects 

implemented via WinRT components in C# and C++. (See Chapter 17, “An Introduction to WinRT 

Components” for how these are structured.) Here’s how one is invoked: 

161

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-752fc578


var contentUri = document.getElementById("webview").buildLocalStreamUri("NavigateToStream", 

    "simple_example.html"); 

var uriResolver = new SDK.WebViewSampleCS.StreamUriResolver(); 

document.getElementById("webview").navigateToLocalStreamUri(contentUri, uriResolver); 

In this code, contentUri will be an ms-local-stream URI, such as ms-local-

stream://microsoft.sdksamples.controlswebview.js_4e61766967617465546f53747265616d/simple_examp

le.html. Because this starts with ms-local-stream, the webview will immediately call the resolver 

object’s UriToStreamAsync to generate a stream for this page as a whole. So if you had a URI to an 

encrypted file, the resolver object could perform the necessary decryption to get the first stream of 

straight HTML for the webview, perhaps applying DRM in the process. 

As the webview renders that HTML and encounters other relative URIs, it will call upon the resolver 

object for each one of those in turn, allowing that resolver to stream media from a database or perform 

any other necessary steps in the process. 

The details of doing all this are beyond the scope of this chapter, so do refer again to the HTML 

WebView control sample. 

Webview Navigation Events 

The idea of navigating to a URI is one that certainly conjures up thoughts of a general purpose web 

browser and, in fact, the web view can serve reasonably well in such a capacity because it both 

maintains an internal navigation history and fires events when navigation happens. 

Although the contents of the navigation history are not exposed, two properties and methods give 

you enough to implement forward/back UI buttons to control the webview: 

 canGoBack and canGoForward Boolean properties that indicate the current position of the 

web view within its navigation history. 

 goBack and goForward Methods that navigate the webview backwards or forwards in its 

history. 

When you navigate the webview in any way, it will fire the following events: 

 MSWebViewNavigationStarting Navigation has started. 

 MSWebViewContentLoading The HTML content stream has been provided to the webview 

(e.g., a file is loaded or a resolver object has provided the stream). 

 MSWebViewDOMContentLoaded The webview’s DOM has been constructed. 

 MSWebViewNavigationCompleted The webview’s content has been fully loaded, including any 

referenced resources. 

If a problem occurs along the way, the webview will raise an 

MSWebViewUnviewableContentIdentified event instead. It’s also worth mentioning that the standard 

change event will also fire when navigation happens, but this also happens when setting other 

162

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-752fc578
http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-752fc578


properties, so it’s not as useful for navigation purposes. 

Scenario 1 of the HTML WebView control sample, which we saw earlier for navigate, essentially 

gives you a simple web browser by wiring these methods and events to a couple of buttons. Note that 

any popups from websites you visit will open in the browser alongside the app. 

Tip You’ll find when working with the webview in JavaScript that the object does not provide 

equivalent on* properties for these events. This omission was a conscious choice to avoid potential 

naming conflicts with emerging standards. At present, then, you must use addEventListener to wire 

up these events. 

Calling Functions and Receiving Events from Webview Content 

The other event that can come from the webview is MSWebViewScriptNotify. This is how JavaScript 

code in the webview can raise a custom event to its host, similar to how we’ve used postMessage from 

an iframe in the Here My Am! app to notify the app of a location change. On the flip side of the 

equation, the webview’s invokeScriptAsync method provides a means for the app to call a function 

within the webview. 

Invoking script in a webview is demonstrated in Scenario 5 of the HTML WebView control sample, 

where the following content of html/script_example.html (condensed here) is loaded into the webview: 

<!DOCTYPE html><html><head> 

    <title>Script Example</title> 

    <script type="text/javascript"> 

        function changeText(text) { 

            document.getElementById("myDiv").innerText = text; 

        } 

    </script> 

</head><body> 

    <div id="myDiv">Call the changeText function to change this text</div> 

</body></html> 

The app calls changeText as follows: 

document.getElementById("webview").invokeScriptAsync("changeText", 

    document.getElementById("textInput").value).start(); 

The second parameter to invokeScriptAsync method is always a string (or will be converted to a 

string). If you want to pass multiple arguments, use JSON.stringify on an object with suitably named 

properties and JSON.parse it on the other end. 

Notice the all-important start() tacked onto the end of the invokeScriptAsync call. This is 

necessary to actually run the async calling operation. Without it, you’ll be left wondering just why 

exactly the call didn’t happen! We’ll talk more of this in a moment with another example. 

Receiving an event from a webview is demonstrated in Scenario 6 of the sample. An event is raised 

using the window.external.notify method, whose single argument is again a string. In the sample, 

the html/scriptnotify_example.html page contains this bit of JavaScript: 

163



window.external.notify("The current time is " + new Date()); 

which is picked up in the app as follows, where the event arg’s value property contains the arguments 

from window.external.notify: 

document.getElementById("webview").addEventListener("MSWebViewScriptNotify", scriptNotify); 

 

function scriptNotify(e) { 

    var outputArea = document.getElementById("outputArea"); 

    outputArea.value += ("ScriptNotify event received with data:\n" + e.value + "\n\n"); 

    outputArea.scrollTop = outputArea.scrollHeight; 

} 

Requirement If you’re loading a webview from an http[s] URI, you must add a content URI rule to 

your manifest to allow it to raise an event from script, otherwise that event will be blocked. This is not 

required for in-package or local content, or for a webview loaded with navigateToString or 

navigateToLocalStreamUri. 

As another demonstration of this call/event mechanism with webview, I’ve made some changes to 

the HereMyAm4 example in this chapter’s companion content. First, I’ve replaced the iframe we’ve 

been using to load the map page with a webview. Then I replaced the postMessage interactions to set 

a location and pick up the movement of a pin with invokeScriptAsync and MSWebViewScriptNotify. 

The code structure is essentially the same, as it’s still useful to have some generic helper functions with 

all this (though we don’t need to worry about setting the right origin strings as we do with 

postMessage). 

One piece of code we can wholly eliminate is the handler in html/map.html that converted the 

contents of a message event into a function call. Such code is unnecessary as invokeScriptAsync goes 

straight to the function; just note again that the arguments are passed as a single string so the invoked 

function (like our pinLocation in html/map.html) needs to account for that. 

The piece of code we want to look at specifically is the new callWebviewScript helper, which 

replaces the previous callFrameScript function. Here’s the core code: 

var op = webview.invokeScriptAsync(targetFunction, args); 

op.oncomplete = function (args) { /* console output */ }; 

op.onerror = function (e) { /* console output */ }; 

 

//Don't forget this, or the script function won't be called! 

op.start(); 

What might strike you as odd as you look at this code is that the return value of 

invokeScriptAsync is not a promise, but rather a DOM-ish object that has complete and error 

events. In addition, the operation does not actually start until you call this object’s start method. What 

gives? Well, remember that the webview is not part of WinRT: it’s a native HTML element supported by 

the app host. So it behaves like other HTML elements and APIs (like XMLHttpRequest) rather than 

WinRT objects. Ah sweet inconsistencies of life! 

164



Fortunately, it’s not too difficult to wrap such an operation within a promise. Just place the same 

code structure above within the initialization function passed to new WinJS.Promise, and call the 

complete and error dispatchers within the operation’s complete and error events (refer to Appendix A 

on using WinJS.Promise): 

return new WinJS.Promise(function (completeDispatch, errorDispatch) { 

    var op = webview.invokeScriptAsync(targetFunction, args); 

 

    op.oncomplete = function (args) {); 

       //Return value from the invoked function (always a string) is in args.target.result 

        completeDispatch(args.target.result); 

    }; 

 

    op.onerror = function (e) { 

        errorDispatch(e); 

    }; 

 

    op.start(); 

}); 

For errors that occur outside this operation (such having an invalid targetFunction), be sure to 

create an error object with WinJS.ErrorFromName and return a promise in the error state by using 

WinJS.Promise.wrapError. You can see the complete code in HereMyAm4 (pages/home/home.js). 

Capturing Webview Content 

The other very useful feature of the webview that really sets it apart is the ability to capture its content, 

something that you simply cannot do with an iframe. There are three ways this can happen. 

First is the src attribute. Once MSWebViewNavigationCompleted has fired, src will contain a URI to 

the content as the webview sees it. For web content, this will be an http[s] URI, which can be opened 

in a browser. Local content (loaded from strings or app data files) will start with ms-local-web, which 

can be rendered into another webview using navigateToLocalStream. Be aware that while navigation 

is happening prior to MSWebViewNavigationCompleted, the state of the src property is indeterminate; 

use the uri property in those handlers instead. 

Second is the webview’s captureSelectedContentToDataPackageAsync method, which reflects 

whatever selection the user has made in the webview directly. The fact that a data package is part of 

this API suggests its primary use: the share contract. From a user’s perspective, any web content you’re 

displaying in the app is really part of the app. So if they make a selection there and invoke the Share 

charm, they’ll expect that their selected data is what gets shared, and this method lets you obtain the 

HTML for that selection. Of course, you can use this anytime you want the selected content—the Share 

charm is just one of the potential scenarios. 

As with invokeScriptAsync, the return value from 

captureSelectedContentToDataPackageAsync is again a DOM-ish object with a start method 

(don’t forget to call this!) along with complete and error events. If you want to wrap this in a promise, 

you can use the same structure as shown in the last section for invokeScriptAsync. In this case, the 

165



result you care about within your complete handler, within it’s args.target.result, is a 

Windows.ApplicationModel.DataTransfer.DataPackage object, the same as what we encountered 

in Chapter 2 with the Share charm. Calling its getView method will produce a DataPackageView whose 

availableFormats object tells you what it contains. You can then use the appropriate get* methods 

like getHtmlFormatAsync to retrieve the selection data itself. Note that if there is no selection, 

args.target.result will be null, so you’ll need to guard against that. Here, then, is code from 

scenario 2 of the WebviewExtras example in this chapter’s companion content that copies the selection 

from one webview into another, showing also how to wrap the operation in a promise (js/scenario2.js): 

function captureSelection() {     

    var source = document.getElementById("webviewSource"); 

 

    //Wrap the capture method in a promise 

    var promise = new WinJS.Promise(function (cd, ed) { 

        var op = source.captureSelectedContentToDataPackageAsync(); 

        op.oncomplete = function (args) { cd(args.target.result); }; 

        op.onerror = function (e) { ed(e); }; 

        op.start(); 

    }); 

 

    //Navigate the output webview to the selection, or show an error 

    var output = document.getElementById("webviewOutput"); 

 

    promise.then(function (dataPackage) { 

        if (dataPackage == null) { throw "No selection"; } 

 

        var view = dataPackage.getView(); 

        return view.getHtmlFormatAsync(); 

    }).done(function (text) { 

        output.navigateToString(text); 

    }, function (e) { 

        output.navigateToString("Error: " + e.message); 

    }); 

} 

The output of this example is shown in Figure 4-3. On the left is a webview-hosted page (my blog), 

and on the right is the captured selection. Note that the captured selection is an HTML clipboard 

format that includes the extra information at the top before the HTML from the webview. 

Generally speaking, captureSelectedContentToDataPackageAsync will produce the formats 

AnsiText, Text, HTML Format, Rich Text Format, and msSourceUrl, but not a bitmap. For this you need to 

use the third method, capturePreviewToBlobAsync, which again has a start method and 

complete/error events. The results of this capture (in args.target.result within the complete 

handler) is a blob object for whatever content is contained within the webview’s display area.  

 

166

http://msdn.microsoft.com/library/windows/apps/br205873.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.getview.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.gethtmlformatasync.aspx


 

FIGURE 4-3 Example output from the WebviewExtras example, showing that the captured selection from a webview 

includes information about the selection as well as the HTML itself. 

You can do a variety of things with this blob. If you want to display it in an img element, you can use 

URL.createObjectURL on this blob directly. This means you can easily load some chunk of HTML in an 

offscreen webview (make sure the display style is not “none”) and then capture a blob and display the 

results in an img. Besides preventing interactivity, you can also animate that image much more 

efficiently than a full webview, applying 3D CSS transforms, for instance. Scenario 3 of my 

WebviewExtras example demonstrates this. 

For other purposes, like the Share charm, you can call this blob’s msDetachStream method, which 

conveniently produces exactly what you need to provide to a data package’s setBitmap method. This 

is demonstrated in scenario 7 of the SDK’s HTML Webview control sample. 

HTTP Requests 

Rendering web content directly into your layout with the webview element, as we saw in the previous 

section, is fabulous provided that, well, you want such content directly in your layout! In many cases 

you instead want to retrieve data from the web via HTTP requests. Then you can further manipulate, 

combine, and process it either for display in other controls or to simply drive the app’s experience. 

You’ll also have many situations where you need to send information to the web via HTTP requests as 

well, where one-way elements like the webview aren’t of much use. 

Windows gives you a number of ways to exchange data with the web. In this section we’ll look at 

the APIs for HTTP requests, which generally require that the app is running. One exception is that 

Windows lets you indicate web content that it might automatically cache, such that requests you make 

the next time the app starts (or resumes) can be fulfilled without having to hit the web at all. This takes 

advantage of the fact that the app host caches web content very much like a browser to reduce 

network traffic and improve performance. This pre-caching capability simply takes advantage of that 

but is subject to some conditions and is not guaranteed. 

Another exception is what we’ll talk about in the next section, “Background Transfers.” Windows can 

do background uploads and downloads on your behalf, which continue to work even when the app is 

167



suspended or terminated. So, if your scenarios involve data transfers that might test the user’s patience 

for staring at lovely but oh-so-tiresome progress indicators, and which tempt them to switch to 

another app, use the background transfer API instead of doing it yourself through HTTP requests. 

HTTP requests, of course, are the foundation of the RESTful web and many web APIs through which 

you can get to an enormous amount of interesting data, including web pages and RSS feeds, of course. 

And because other protocols like SOAP are essentially built on HTTP requests, we’ll be focused on the 

latter here. There are separate WinRT APIs for RSS and AtomPub as well, details for which you can find 

in Appendix B. 

Right! So I said that there are a number of ways to do HTTP requests. Here they are: 

 XMLHttpRequest This intrinsic JavaScript object works just fine in Windows Store apps, which 

is very helpful for third-party libraries. Results from this async function come through its 

readystatechanged event. 

 WinJS.xhr This wrapper provides a promise structure around  XMLHttpRequest, as we did in 

the last section with the webview’s async methods. WinJS.xhr provides quite a bit of flexibility 

in setting headers and so forth, and by returning a promise it makes it easy to chain XHR with 

other async operations like WinRT file I/O. You can see a simple example in scenario 1 of the 

HTML Webview control sample we worked with earlier. 

 HttpClient The most powerful, high-performance, and flexible API for HTTP requests is 

found in WinRT in the Windows.Web.Http namespace, which is recommended for new code. Its 

primary advantages are that it performs better, works with the same cache as the browser, 

serves a wider spectrum of HTTP scenarios, and allows for cookie management, filtering, and 

flexible transports. 

We’ll be focusing here primarily on HttpClient here. For the sake of contrast, however, let’s take a 

quick look at WinJS.xhr in case you encounter it in other code. 

Note If you have some experience with the .NET framework, be aware that the HttpClient API in 

Windows.Web.Http is different from .NET’s System.Net.Http.HttpClient API.  

Using WinJS.xhr 

Making a WinJS.xhr call is quite easy, as demonstrated in the SimpleXhr1 example for this chapter. 

Here we use WinJS.xhr to retrieve the RSS feed from the Windows 8 developer blog, noting that the 

default HTTP verb is GET, so we don’t have to specify it explicitly: 

WinJS.xhr({ url: "http://blogs.msdn.com/b/windowsappdev/rss.aspx" }) 

    .done(processPosts, processError, showProgress); 

That is, give WinJS.xhr a URI and it gives back a promise that delivers its results to your completed 

handler (in this case processPosts) and will even call a progress handler if provided. With the former, 

the result contains a responseXML property, which is a DomParser object. With the latter, the event 

168

http://msdn.microsoft.com/library/windows/apps/br229787.aspx
http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-752fc578


object contains the current XML in its response property, which we can easily use to display a 

download count: 

function showProgress(e) { 

    var bytes = Math.floor(e.response.length / 1024); 

    document.getElementById("status").innerText = "Downloaded " + bytes + " KB"; 

} 

The rest of the app just chews on the response text looking for item elements and displaying the 

title, pubDate, and link fields. With a little styling (see default.css), and utilizing the WinJS 

typography style classes of win-type-x-large (for title), win-type-medium (for pubDate), and win-

type-small (for link), we get a quick app that looks like Figure 4-4. You can look at the code to see 

the details.4 

 

FIGURE 4-4 The output of the SimpleXhr1 and SimpleXhr2 apps. 

In SimpleXhr1 too, I made sure to provide an error handler to the WinJS.xhr promise so that I 

could at least display a simple message. 

For a fuller demonstration of XMLHttpRequest/WinJS.xhr and related matters, refer to the XHR, 

handling navigation errors, and URL schemes sample along with the tutorial called How to create a 

                                                           
4 Again, WinRT has a specific API for dealing with RSS feeds in Windows.Web.Syndication, as described in Appendix B. You 

can use this if you want a more structured means of dealing with such data sources. As it is, JavaScript has intrinsic APIs to 

work with XML, so it’s really your choice. In a case like this, the syndication API along with Windows.Web.AtomPub and 

Windows.Data.Xml are very much needed by Windows Store apps written in other languages that don’t have the same 

built-in features as JavaScript. 

169

http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://msdn.microsoft.com/library/windows/apps/hh452745.aspx


mashup in the docs. Additional notes on XMLHttpRequest and WinJS.xhr can be found in Appendix B. 

Using Windows.Web.Http.HttpClient 

Let’s now see the same app implemented with Windows.Web.Http.HttpClient, which you’ll find in 

SimpleXhr2 in the companion content. For our purposes, the HttpClient.getStringAsync method is 

sufficient: 

var htc = new Windows.Web.Http.HttpClient(); 

htc.getStringAsync(new Windows.Foundation.Uri("http://blogs.msdn.com/b/windowsappdev/rss.aspx")) 

    .done(processPosts, processError, showProgress); 

This function delivers the response body text to our completed handler (processPosts), so we just 

need to create a DOMParser object to talk to the XML document. After that we have the same thing as 

we received from WinJS.xhr: 

var parser = new window.DOMParser(); 

var xml = parser.parseFromString(bodyText, "text/xml"); 

The HttpClient object provides a number of other methods to initiate various HTTP interactions 

with a web resource, as illustrated in Figure 4-5. 

 

FIGURE 4-5 The methods in the HttpClient object and their associated HTTP traffic. Note how all traffic is routed 

through an app-supplied filter (or a default), which allows fine-grained control on a level underneath the API. 

In all cases, the URI is represented by a Windows.Foundation.Uri object, as we saw in the earlier 

code snippet. All of the specific get* methods fire off an HTTP GET and deliver results in a particular 

170

http://msdn.microsoft.com/library/windows/apps/hh452745.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.getstringasync.aspx


form: a string, a buffer, and an input stream. All of these methods (as well as sendRequestAsync) 

support progress, and the progress handler receives an instance of Windows.Web.Http.HttpProgress 

that contains various properties like bytesReceived. 

Working with strings are easy enough, but what are these buffer and input streams? These are 

specific WinRT constructs that can then be fed into other APIs such as file I/O (see 

Windows.Storage.Streams and Windows.Storage.StorageFile), encryption/decryption (see 

Windows.Security.Cryptography), and also the HTML blob APIs. For example, an IInputStream can 

be given to MSApp.createStreamFromInputStream, which results in an HTML MSStream object. This 

can then be given to URL.createObjectURL, the result of which can be assigned directly to an 

img.src attribute. This is how you can easily fire off an HTTP request for an image resource and show 

the results in your layout without having to create an intermediate file in your appdata. 

The getAsync method creates a generic HTTP GET request. Its message argument is an 

HttpRequestMessage object, where you can construct whatever type of request you need, setting the 

requestUri, headers, transportInformation,5 and other arbitrary properties that you want to 

communicate to the filter and possibly the server. The completed handler for getAsync will receive an 

HttpResponseMessage object, as we’ll see in a moment. 

Handle exceptions! It’s very important with HTTP requests that you handle exceptions, that is, provide 

an error handler for methods like getAsync. Unhandled exceptions arising from HTTP requests has 

been found to be one of the leading causes of abrupt app termination! 

For other HTTP operations, you can see in Figure 4-5 that we have putAsync, postAsync, and 

deleteAsync, along with the wholly generic sendRequestAsync. With the latter, its message argument 

is again an HttpRequestMessage as used with getAsync, only here you can also set the HTTP method 

that will be used (this is an HttpMethod object that also allows for additional options). deleteAsync, 

for its part, works completely from the URI parameters. 

In the cases of put and post, the arguments to the methods are the URI and content, which is an 

object that provides the relevant data through methods and properties of the IHttpContent interface 

(see the lower left of Figure 4-5). It’s not expected that you create such objects from scratch (though 

you can)—WinRT provides built-in implementations called HttpBufferContent, HttpStringContent, 

HttpStreamContent, HttpMultipartContent, HttpMultipartFormDataContent, and 

HttpFormUrlEncodedContent. 

What you then get back from getAsync, sendRequestAsync, and the delete, put, and post methods 

is an HttpResponseMessage object. Here you’ll find all that bits you would expect: 

 statusCode, reasonPhrase, and some helper methods for handling errors—namely, 

ensureSuccessStatusCode (to throw an exception if a certain code is not received) and 

                                                           
5 This read-only property works with certificates for SSL connections and contains the results of SSL negotiations; see 

HttpTransportInformation. To set a client certificate, there’s a property on the HttpBaseProtocolFilter. 

171

http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httprequestmessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmethod.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.ihttpcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpbuffercontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpstringcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpstreamcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmultipartcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpmultipartformdatacontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpformurlencodedcontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpresponsemessage.aspx


isSuccessStatusCode (to check for the range of 200–299). 

 A collection of headers. 

 The original requestMessage (an HttpRequestMessage). 

 The source, a value from HttpResponseMessageSource that tells you whether the data was 

received over the network or loaded from the cache. 

 The response content, an object with the IHttpContent interface as before. Through this you 

can obtain the response data as a string, buffer, input stream, and an in-memory array 

(bufferAllAsync). 

It’s clear, then, that the HttpClient object really gives you complete control over whatever kind of 

HTTP requests you need to make to a service, including additional capabilities like cache control and 

cookie management as described in the following two sections. It’s also clear that HttpClient is still 

somewhat of a low-level API. For any given web service that you’ll be working with, then, I very much 

recommend creating a layer or library that encapsulates requests to that API and the process of 

converting responses into the data that the rest of the app wants to work with. This way you can also 

isolate the rest of the app from the details of your backend, allowing that backend to change as 

necessary without breaking the app. It’s also helpful if you want to incorporate additional features of 

the Windows.Web.Http API, such as filtering, cache control, and cookie management. 

I’d love to talk about cookies first (it’s always nice to eat dessert before the main meal!) but it’s all 

part of filtering. Filtering is a mechanism through which you can control how the HttpClient manages 

its requests and responses. A filter is either an instance of the default HttpBaseProtocolFilter class 

(see the Windows.Web.Http.Filters namespace) or an instance of a derived class. You pass this filter 

object to the HttpClient constructor, which will use HttpBaseProtocolFilter as a default. To do 

things like cache control, though, you create an instance of HttpBaseProtocolFilter directly, set 

properties, and then create the HttpClient with it. 

The filter is essentially a black box that takes an HTTP request and produces an HTTP response—

refer to Figure 4-5 again for its place in the whole process. Within the filter you can handle details like 

credentials, proxies, certificates, and redirects, as well as implement retry mechanisms, caching, logging, 

and so forth. This keeps all those details in a central place underneath the HttpClient APIs such that 

you don’t have to bother with them in the code surrounding HttpClient calls. 

With cache control, a filter contains a cacheControl property that can be set to an instance of the 

HttpCacheControl class. This object has two properties, readBehavior and writeBehavior, which 

determine how caching is applied to requests going through this filter. For reading, readBehavior is 

set to a value from the HttpCacheReadBehavior enumeration: default, mostRecent, and 

onlyFromCache (for offline use). For writing, writeBehavior can be a value from 

HttpCacheWriteBehavior, which supports default and noCache. 

Managing cookies happens on the level of the filter as well. By default—through the 

HttpBaseProtocolFilter—the HttpClient automatically reads incoming set-cookie headers, saves 

172

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.filters.httpbaseprotocolfilter.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/bg161170.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.filters.httpcachereadbehavior.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.http.filters.httpcachewritebehavior.aspx


the resulting cookies as needed, and then adds cookies to outgoing headers as appropriate. To access 

these cookies, create the HttpClient with an instance of HttpBaseProtocolFilter. Then you can 

access the filter’s cookieManager property (that sounds like a nice job!). This property is an instance of 

HttpCookieManager and has three methods: getCookies, setCookie, and deleteCookie. These allow 

you to examine specific cookies to be sent for a request or to delete specific cookies for privacy 

concerns. 

For full demonstrations of the API, including filtering refer to the HttpClient sample in the Windows 

SDK. Here’s a quick run-down of what its scenarios demonstrate: 

 Scenarios 1–3 GET requests for text (with cache control), stream, and an XML list. 

 Scenarios 4–7 POST requests for text, stream, multipart MIME form, and a stream with 

progress. 

 Scenarios 8–10 Getting, setting, and deleting cookies. 

 Scenario 11 A metered connection filter that implements cost awareness on the level of the 

filter. 

 Scenario 12 A retry filter that automatically handles 503 errors with Reply-After headers. 

To run this sample you must first set up a localhost server along with a data file and an upload 

target page. To do this, make sure you have Internet Information Services installed on your machine, as 

described below in “Sidebar: Using the Localhost.” Then, from an administrator command prompt, 

navigate to the sample’s Server folder and run the command powershell –file setupserver.ps1. This 

will install the necessary server-side files for the sample on the localhost (c:\inetpub\wwwroot) 

Sidebar: Using the Localhost 

The localhost is a server process that runs on your local machine, making it possible to debug 

both sides of client-server interactions. For this you can use a server like Apache or you can use 

the solution that’s built into Windows and integrated with the Visual Studio tools: Internet 

Information Services (IIS). 

To turn on IIS in Windows, go to Control Panel > Programs and Features > Turn Windows 

Features On Or Off. Check the Internet Information Services box at the top level, as shown below, 

to install the core features: 

173

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-752fc578


 

Once IIS is installed, the local site addressed by http://localhost/ is found in the folder 

c:\inetpub\wwwroot. That’s where you drop any server-side page you need to work with.  

With that page running on the local machine, you can hook it into whatever tools you have 

available for server-side debugging. Here it’s good to know that access to localhost URIs—also 

known as local loopback—is normally blocked for Windows Store apps unless you’re on a 

machine with a developer license, which you are if you’re been running Visual Studio or Blend. 

This won’t be true for your customer’s machines, though! In fact, the Windows Store will reject 

apps that attempt to do so.6 

To install other server-side features on IIS, like PHP or Visual Studio Express for Web (which 

allows you to debug web pages), use Microsoft’s Web platform installer. We’ll make use of these 

when we work with live tiles in Chapter 14. 

Suspend and Resume with Online Content 

Now that we’ve seen the methods for making HTTP requests to any URI, you really have the doors of 

the web wide open to you. As many web APIs provide REST interfaces, interacting with them is just a 

matter of putting together the proper HTTP requests as defined by the API documentation. So really, 

I’ll leave such details up to you because it’s primarily a matter of retrieving and processing data that has 

little to do with the Windows platform (except for creating UI with collection controls, but that’s for a 

later chapter). 

Instead, what concerns us here are the implications of suspend and resume. In particular, an app 

cannot predict how long it will stay suspended before being resumed or before being terminated and 

restarted. 

In the first case, an app that gets resumed will have all its previous data still in memory. It very much 

needs to decide, then, whether that data has become stale since the app was suspended and whether 

                                                           
6 Visual Studio enables local loopback by default for a project. To change it, right-click the project in Solution Explorer, 

select Properties, select Configuration Properties > Debugging on the left side of the dialog, and set Allow Local Network 

Loopback to No. For more on the subject of loopback, see How to enable loopback and troubleshoot network isolation. 

174

http://www.microsoft.com/web/downloads/platform.aspx
http://msdn.microsoft.com/library/windows/apps/Hh780593.aspx


sessions with other servers have exceeded their timeout periods. You can also think of it this way: after 

what period of time will users not remember nor care what was happening the last time they saw your 

app? If it’s a week or longer, it might be reasonable to resume or restart in a default state. Then again, 

if you pick up right back where they were, users gain increasing confidence that they can leave apps 

running for a long time and not lose anything. Or you can compromise and give the user options to 

choose from. You’ll have to think through your scenario, of course, but if there’s any doubt, resume 

where the app left off. 

To check elapsed time, save a timestamp on suspend (from new Date().getTime()), get another 

timestamp in the resuming event, take the difference, and compare that against your desired refresh 

period. A Stock app, for example, might have a very short period. With the Windows 8 developer blog, 

on the other hand, new posts don’t show up more than once a day, so a much longer period on the 

order of hours is sufficient to keep up-to-date and to catch new posts within a reasonable timeframe. 

This is implemented in SimpleXhr2 by first placing the getStringAsync call into a separate function 

called downloadPosts, which is called on startup. Then we register for the resuming event with WinRT: 

Windows.UI.WebUI.WebUIApplication.onresuming = function () { 

    app.queueEvent({ type: "resuming" }); 

} 

Remember how I said in Chapter 3 we could use WinJS.Application.queueEvent to raise our own 

events to the app object? Here’s a great example. WinJS.Application doesn’t automatically wrap the 

resuming event because it has nothing to add to that process. But the code above accomplishes 

exactly the same thing, allowing us to register an event listener right alongside other events like 

checkpoint: 

app.oncheckpoint = function (args) { 

    //Save in sessionState in case we want to use it with caching 

    app.sessionState.suspendTime = new Date().getTime(); 

}; 

 

app.addEventListener("resuming", function (args) { 

    //This is a typical shortcut to either get a variable value or a default 

    var suspendTime = app.sessionState.suspendTime || 0; 

 

    //Determine how much time has elapsed in seconds 

    var elapsed = ((new Date().getTime()) - suspendTime) / 1000; 

 

    //Refresh the feed if > 1 hour (or use a small number for testing) 

    if (elapsed > 3600) { 

        downloadPosts(); 

    } 

}); 

To test this code, run it in Visual Studio’s debugger and set breakpoints within these events. Then 

click the suspend button in the toolbar, and you should enter the checkpoint handler. Wait a few 

seconds and click the resume button (play icon), and you should be in the resuming handler. You can 

then step through the code and see that the elapsed variable will have the number of seconds that 

175



have passed, and if you modify that value (or change 3600 to a smaller number), you can see it call 

downloadPosts again to perform a refresh. 

What about launching from the previously terminated state? Well, if you didn’t cache any data from 

before, you’ll need to refresh it again anyway. If you do cache some of it, your saved state (such as the 

timestamp) helps you decide whether to use the cache or load data anew. 

Prefetching Content 

HTTP requests made through the XMLHttpRequest, WinJX.xhr, and HttpClient APIs all interoperate 

with the internet cache, such that repeated requests for the same remote resource can be fulfilled from 

the cache. (Of these APIs, only HttpClient specifically gives you control over how the cache is used.) 

Caching works great, of course, for offline scenarios and improving performance generally. One of the 

first things that many connected apps do upon launch is to make HTTP requests for their home page 

content, which typically forces the user to stare at a progress indicator for some time. If that content is 

already in the cache, those apps will start up and navigate between their pages more quickly. 

To improve this performance even further, apps can ask Windows to prefetch online content (any 

kind of data) into the cache, which will take place even when the app itself isn’t running. Of course, 

Windows won’t just fulfill such requests indiscriminately, so it applies these limits: 

 Prefetching happens only when power and network conditions are met (Windows won’t 

prefetch on metered networks). 

 Prefetching is prioritized for apps that the user runs most often. 

 Prefetching is prioritized for content that apps actually request later on. That is, if an app makes 

a prefetch request but seldom asks for it, the likelihood of the prefetch actually happening 

decreases. 

 Windows limits the overall number of requests to 40. 

 Resources are cached only for the length of time indicated in the response headers. 

In other words, apps don’t have control over whether their prefetching requests are fulfilled—

Windows optimizes the process so that users see increased performance for the apps they use and the 

content they access most frequently. Apps, for their part, simply continue to make HTTP requests, and 

if prefetching has taken place, those requests will just be fulfilled right away without hitting the 

network. 

There are two ways to make prefetching requests. The first is to insert URIs into the 

Windows.Networking.BackgroundTransfer.ContentPrefetcher.contentUris collection. This is a 

vector object, so you’d use methods like append to add URIs, each of which is an instance of 

Windows.Foundation.Uri. Note that you can modify this list both from the running app and from a 

background task; use the latter to periodically refresh the list without having the user run the app. 

The second means is to give the prefetcher the URI of an XML file (local or remote) that contains 

176

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.contentprefetcher.contenturis.aspx
http://msdn.microsoft.com/library/windows/apps/br206631.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.uri.aspx


your list. This allows a service to maintain a dynamic list of URIs (like those of a news feed) such that 

your prefetching can stay very current. The XML in this case should be structured as follows, with as 

many URIs as are needed: 

<?xml version="1.0" encoding="utf-8"?> 

<prefetchUris> 

  <uri>http://example.com/2013-02-28-headlines.json</uri> 

  <uri>http://example.com/2013-02-28-img1295.jpg</uri> 

  <uri>http://example.com/2013-02-28-img1296.jpg</uri> 

  <uri>http://example.com/2013-02-28-ad_config.xml</uri> 

</prefetchUris> 

Note Prefetch requests will include X-MS-RequestType: Prefetch in the headers if services need to 

differentiate the request from others. Existing cookies will also be included in the request, but beyond 

that there are no provisions for authentication. 

Background Transfer 

A common use of HTTP requests is to transfer potentially large files to and from an online repository. 

For even moderately sized files, however, this presents a challenge: very few users typically want to 

stare at their screen to watch file transfer progress, so it’s highly likely that they’ll switch to another app 

to do something far more interesting while the transfer is taking place. In doing so, the app that’s 

doing the transfer will be suspended and possibly even terminated. This does not bode well for trying 

to complete such operations using a mechanism like HttpClient! 

One solution would be to provide a background task for this purpose, which was a common request 

with early previews of Windows 8. However, there’s little need to run app code for this common 

purpose, so WinRT provides a specific background transfer API, 

Windows.Networking.BackgroundTransfer (which includes the prefetcher, as we just saw). This API 

supports up to 500 scheduled transfers systemwide and typically runs five transfers in parallel. It offers 

built-in cost awareness and resiliency to changes in connectivity (switching seamlessly to the user’s 

preferred network), relieving apps from needing to worry about such concerns themselves. Transfers 

continue when an app is suspended and will be paused if the app is terminated. When the app is 

resumed or launched again, it can then check the status of background transfers it previously initiated 

and take further action as necessary—processing downloaded information, noting successful uploads in 

its UI, and enumerating pending transfers, which will restart any that were paused or otherwise 

interrupted. (On the other hand, if the user directly closes the app through a gesture, Alt+F4, or Task 

Manager, all pending transfers for that app are canceled. This is also true if you stop debugging an app 

in Visual Studio.) 

Generally speaking, then, it’s highly recommended that you use the background transfer API 

whenever you expect the operation to exceed your customer’s tolerance for waiting. This clearly 

depends on the network’s connection speed and whether you think the user will switch away from your 

app while such a transfer is taking place. For example, if you initiate a transfer operation but the user 

177

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.aspx


can continue to be productive (or entertained) in your app while that’s happening, using HTTP requests 

directly might be a possibility, though you’ll still be responsible for cost awareness and handling 

connectivity. If, on the other hand, the user cannot do anything more until the transfer is complete, you 

might choose to use background transfer for perhaps any data larger than 500K or some other amount 

based on the current network speed. 

In any case, when you’re ready to employ background transfer in your app, the 

BackgroundDownloader and BackgroundUploader objects will become your fast friends. Both objects 

have methods and properties through which you can enumerate pending transfers as well as perform 

general configuration of credentials, HTTP request headers, transfer method, cost policy (for metered 

networks), and grouping. Each individual operation is then represented by a DownloadOperation or 

UploadOperation object, through which you can control the operation (pause, cancel, etc.) and 

retrieve status. With each operation you can also set priority, credentials, cost policy, and so forth, 

overriding the general settings in the BackgroundDownloader and BackgroundUploader classes. 

Note In both download and upload cases, the connection request will be aborted if a new connection 

is not established within five minutes. After that, any other HTTP request involved with the transfer 

times out after two minutes. Background transfer will retry an operation up to three times if there’s 

connectivity. 

One of the primary reasons why we have the background transfer API is to allow Windows to 

automatically manage transfers according to systemwide considerations. Changes in network cost, for 

example, can cause some transfers to be paused until the device returns to an unlimited network. To 

save battery power, long-running transfers can be slowed (throttled) or paused altogether, as when the 

system goes into standby. In the latter case, apps can keep the process going by requesting an 

unconstrained transfer. This way a user can let a very large download run all day, if desired, rather than 

coming back some hours later only to find that the transfer was paused. (Note that a user consent 

prompt appears if the device is on battery power.) 

To see the background transfer API in action, let’s start by looking at the Background transfer 

sample. Note that this sample depends on having the localhost set up on your machine as we did with 

the HttpClient sample earlier. Refer back to “Sidebar: Using the localhost” for instructions, and be sure 

to run powershell –file setupserver.ps1 in the sample’s Server folder to set up the necessary files. 

Basic Downloads 

Scenario 1 (js/downloadFile.js) of the Background transfer sample lets you download any file from the 

localhost server and save it to the Pictures library. By default the URI entry field is set to a specific 

localhost URI and the control is disabled. This is because the sample doesn’t perform any validation on 

the URI, a process that you should always perform in your own app. If you’d like to enter other URIs in 

the sample, of course, just remove disabled="disabled" from the serverAddressField element in 

html/downloadFile.html. 

By default, scenario 1 here makes a request to http://localhost/BackgroundTransferSample/ 

178

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.aspx
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61


download.aspx, which serves up a stream of 5 million ‘a’ characters. The sample saves this content by 

default in a text file, so you won’t see any image showing up on the display, but you will see progress. 

Change the URI to an image file7 and you’ll see that image appear on the display. (You can also copy 

an image file to c:\inetpub\wwwroot and point to it there.) Note that you can kick off multiple transfers 

to observe how they are all managed simultaneously; the cancel, pause, and resume buttons help with 

this. 

Three flavors of download are supported in the WinRT API and reflected in the sample: 

 A normal download at normal priority. Such a transfer continues to run when the app is 

suspended, but if it’s a long transfer it could be slowed (throttled) or paused depending on 

system conditions like battery life and network type. 

 A normal download at high priority. Typically an app will set its most important download at a 

higher priority than others it starts at the same time. 

 An unconstrained download at either priority. As noted before, an unconstrained download will 

continue to run (subject to user consent) even in modes like connected standby. You use this 

feature in scenarios where you know the user would want a transfer to continue possibly for a 

long period of time and not have it interrupted or paused. 

Starting a download happens as follows. First create a StorageFile to receive the data (though this 

is not required, as we’ll see later in this section). Then create a DownloadOperation object for the 

transfer using BackgroundDownloader.createDownload. In the operation object you can then set its 

priority, method, costPolicy, and transferGroup properties to override the defaults supplied by 

the BackgroundDownloader. The priority is a BackgroundTransferPriority value (default or high), 

and method is a string that identifies the type transfer being used (normally GET for HTTP or RETR for 

FTP). We’ll come back to the other two properties later in the “Setting Cost Policy” and “Grouping 

Transfers” sections. 

Once the operation is configured as needed, the last step is to call its startAsync method, which 

returns a promise for the operation. You attach your completed, error, and progress handlers with a call 

to the promise’s then or done. Here’s code from js/downloadFile.js:8 

// Asynchronously create the file in the pictures folder (capability declaration required). 

Windows.Storage.KnownFolders.picturesLibrary.createFileAsync(fileName, 

    Windows.Storage.CreationCollisionOption.generateUniqueName) 

    .done(function (newFile) { 

        // Assume uriString is the text URI of the file to download 

        var uri = Windows.Foundation.Uri(uriString); 

        var downloader = new Windows.Networking.BackgroundTransfer.BackgroundDownloader(); 

 

        // Create a new download operation. 

        var download = downloader.createDownload(uri, newFile); 

                                                           
7 Might I suggest http://kraigbrockschmidt.com/images/photos/kraigbrockschmidt-dot-com-122-10-S.jpg? 

8 The code in the sample has more structure than shown here. It defines its own DownloadOperation class that unfortunately 

has the same name as the WinRT class, so I’m electing to omit mention of it.  

179

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.downloadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferpriority.aspx
http://kraigbrockschmidt.com/images/photos/kraigbrockschmidt-dot-com-122-10-S.jpg


 

        // Start the download 

        var promise = download.startAsync().done(complete, error, progress); 

    } 

While the operation underway, the following properties provide additional information on the 

transfer: 

 requestedUri and resultFile The same as those passed to createDownload. 

 guid A unique identifier assigned to the operation. 

 progress A BackgroundDownloadProgress structure with bytesReceived, 

totalBytesToReceive, hasResponseChanged (a Boolean, see the getResponseInformation 

method below), hasRestarted (a Boolean set to true if the download had to be restarted), and 

status (a BackgroundTransferStatus value: idle, running, pausedByApplication, 

pausedCostedNetwork, pausedNoNetwork, canceled, error, and completed). 

A few methods of DownloadOperation can also be used with the transfer: 

 pause and resume Control the download in progress. We’ll talk more of these in the “Suspend, 

Resume, and Restart with Background Transfers” section below. 

 getResponseInformation Returns a ResponseInformation object with properties named 

headers (a collection of response headers from the server), actualUri, isResumable, and 

statusCode (from the server). Repeated calls to this method will return the same information 

until the hasResponseChanged property is set to true. 

 getResultStreamAt Returns an IInputStream for the content downloaded so far or the 

whole of the data once the operation is complete. 

In Scenario 1 of the sample, the progress function—which is given to the promise returned by 

startAsync—uses getResponseInformation and getResultStreamAt to show a partially 

downloaded image: 

var currentProgress = download.progress; 

 

// ... 

 

// Get Content-Type response header. 

var contentType = download.getResponseInformation().headers.lookup("Content-Type"); 

 

// Check the stream is an image. 

if (contentType.indexOf("image/") === 0) { 

    // Get the stream starting from byte 0. 

    imageStream = download.getResultStreamAt(0); 

 

    // Convert the stream to a WinRT type 

    var msStream = MSApp.createStreamFromInputStream(contentType, imageStream); 

    var imageUrl = URL.createObjectURL(msStream); 

 

180

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloadprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.responseinformation.aspx


    // Pass the stream URL to the HTML image tag. 

    id("imageHolder").src = imageUrl; 

 

    // Close the stream once the image is displayed. 

    id("imageHolder").onload = function () { 

        if (imageStream) { 

            imageStream.close(); 

            imageStream = null; 

        } 

    }; 

} 

All of this works because the background transfer API is saving the downloaded data into a 

temporary file and providing a stream on top of that, hence a function like URL.createObjectURL 

does the same job as if we provided it with a StorageFile object directly. Once the 

DownloadOperation object goes out of scope and is garbage collected, however, that temporary file 

will be deleted. 

The existence of this temporary file is also why, as I noted earlier, it’s not actually necessary to 

provide a StorageFile object in which to place the downloaded data. That is, you can pass null as 

the second argument to createDownload and work with the data through 

DownloadOperation.getResultStreamAt. This is entirely appropriate if the ultimate destination of 

the data in your app isn’t a separate file. 

There is also a variation of createDownload that takes a second StorageFile argument whose 

contents provide the body of the HTTP GET or FTP RETR request that will be sent to the server URI before 

the download is started. This accommodates some websites that require you to fill out a form to start the 

download. Similarly, createDownloadAsync supplies the request body through an IInputStream 

instead of a file. 

Sidebar: Where Is Cancel? 

You might have already noticed that neither DownloadOperation nor UploadOperation have 

cancellation methods. So how is this accomplished? You cancel the transfer by canceling the 

startAsync operation—that is, call the cancel method of the promise returned by startAsync. 

This means that you need to hold onto the promises for each transfer you initiate. 

Requesting an Unconstrained Download 

To request an unconstrained download, you use pretty much the same code as in the previous section 

except for one additional step. With the DownloadOperation from 

BackgroundDownloader.createDownload, don’t call startAsync right away. Instead, place that 

operation object (and others, if desired) into an array, then pass that array to 

BackgroundDownloader.requestUnconstrainedDownloadsAsync. This async function will complete 

with an UnconstrainedTransferRequestResult object, whose single isContrained member will tell 

you whether the request was granted. Here’s the code from the sample for that case 

181

http://msdn.microsoft.com/library/windows/apps/hh943065.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloader.createdownloadasync.aspx


(js/downloadFile.js): 

Windows.Networking.BackgroundTransfer.BackgroundDownloader 

    .requestUnconstrainedDownloadsAsync(requestOperations) 

.done(function (result) { 

    printLog("Request for unconstrained downloads has been " + 

        (result.isUnconstrained ? "granted" : "denied") + "<br/>"); 

 

    promise = download.startAsync().then(complete, error, progress); 

}, error); 

As you can see, you still call startAsync after making the request, which the sample here does 

regardless of the request result. In your own app, however, you can make other decisions, such as 

setting a higher priority for the download even if the request was denied. 

Basic Uploads 

Scenario 2 (js/uploadFile.js) of the Background transfer sample exercises the background upload 

capability, specifically sending some file (chosen through the file picker) to a URI that can receive it. By 

default the URI points to http://localhost/BackgroundTransferSample/upload.aspx, a page installed with 

the PowerShell script that sets up the server. As with Scenario 1, the URI entry control is disabled 

because the sample performs no validation, as you would again always want to do if you accepted any 

URI from an untrusted source (user input in this case). For testing purposes, of course, you can remove 

disabled="disabled" from the serverAddressField element in html/uploadFile.html and enter other 

URIs that will exercise your own upload services. This is especially handy if you run the server part of 

the sample in Visual Studio Express for Web where the URI will need a localhost port number as 

assigned by the debugger. 

In addition to a button to start an upload and to cancel it, the sample provides another button to 

start a multipart upload. For a discussion of breaking up large files and multipart uploads, see Appendix 

B. 

In code, an upload happens very much like a download. Assuming you have a StorageFile with 

the contents to upload, create an UploadOperation object for the transfer with 

BackgroundUploader.createUpload. If, on the other hand, you have data in a stream 

(IInputStream), create the operation object with 

BackgroundUploader.createUploadFromStreamAsync instead. This can also be used to break up a 

large file into discrete chunks, if the server can accommodate it; see “Breaking Up Large Files” in 

Appendix B. 

With the operation object in hand, you can customize a few properties of the transfer, overriding 

the defaults provided by the BackgroundUploader. These are the same as for downloads: priority, 

method (HTTP POST or PUT, or FTP STOR), costPolicy, and transferGroup. For the latter two, again 

see “Setting Cost Policy” and “Grouping Transfers” below. 

182

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.uploadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/hh701127.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadfromstreamasync.aspx


Once you’re ready, the operation’s startAsync starts the upload:9 

// Assume uri is a Windows.Foundation.Uri object and file is the StorageFile to upload  

var uploader = new Windows.Networking.BackgroundTransfer.BackgroundUploader(); 

var upload = uploader.createUpload(uri, file); 

promise = upload.startAsync().then(complete, error, progress); 

While the operation is underway, the following properties provide additional information on the 

transfer: 

 requestedUri and sourceFile The same as those passed to createUpload (an operation 

created with createUploadFromStreamAsync supports only requestedUri). 

 guid A unique identifier assigned to the operation. 

 progress A BackgroundUploadProgress structure with bytesReceived, 

totalBytesToReceive, bytesSent, totalBytesToSend, hasResponseChanged (a Boolean, see 

the getResponseInformation method below), hasRestarted (a Boolean set to true if the 

upload had to be restarted), and status (a BackgroundTransferStatus value, again with 

values of idle, running, pausedByApplication, pausedCostedNetwork, pausedNoNetwork, 

canceled, error, and completed). 

Unlike a download, an UploadOperation does not have pause or resume methods but does have 

the same getResponseInformation and getResultStreamAt methods. In the upload case, the 

response from the server is less interesting because it doesn’t contain the transferred data, just headers, 

status, and whatever body contents the upload page cares to return. If that page returns some 

interesting HTML, though, you might use the results as part of your app’s output for the upload. 

As noted before, to cancel an UploadOperation, call the cancel method of the promise returned 

from startAsync. You can also see that the BackgroundUploader also has a 

requestUnconstrainedUploadsAsync method like that of the downloader, to which you can pass an 

array of UploadOperation objects for the request. Again, the result of the request tells you whether or 

not the request was granted, allowing you to decide what you might want to change before calling 

each operation’s startAsync. 

Completion and Error Notifications 

With long transfer operations, users typically want to know when those transfers are complete or if an 

error occurred along the way. However, those transfers might finish or fail while the app is suspended, 

so the app itself cannot directly issue such notifications. For this purpose, the app can instead supply 

toast notifications and tile updates to the BackgroundDownloader and BackgroundUploader classes. 

Notice how you’re not setting notifications on individual operation objects, which means that the 

content of these notifications should describe all active transfers as a whole. If you have only a single 

transfer, then of course your language can reflect that, but otherwise you’ll want to be more generic 

                                                           
9 As with downloads, the code in the sample has more structure than shown here and again defines its own 

UploadOperation class with the same name as the one in WinRT, so I’m omitting mention of it. 

183

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploadprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx


with messages like “Your new photo gallery of 108 images has finished uploading.” 

The downloader and uploader objects each have four different notification objects you can set: 

 successToastNotification and failureToastNotification Instances of the 

Windows.UI.Notifications.ToastNotification class. 

 successTileNotification and failureTileNotification Instances of the 

Windows.UI.Notification.TileNotification class. 

For details on using these classes, including all the different templates you can use, refer to Chapter 

14. Basically you create these instances as if you intend to issue notifications directly from the app, but 

hand them off to the downloader and uploader objects so that they can do it on your behalf. 

Providing Headers and Credentials 

Within the BackgroundDownloader and BackgroundUploader you have the ability to set values for 

individual HTTP headers by using their setRequestHeader methods. Both take a header name and a 

value, and you call them multiple times if you have more than one header to set. 

Similarly, both the downloader and uploader objects have two properties for credentials: 

serverCredential and proxyCredential, depending on the needs of your server URI. Both 

properties are Windows.Security.Credentials.PasswordCredential objects. As the purpose in a 

background transfer operation is to provide credentials to the server, you’d typically create a 

PasswordCredential as follows: 

var cred = new Windows.Security.Credentials.PasswordCredential(resource, userName, password); 

where the resource in this case is just a string that identifies the resource to which the credentials 

applies. This is used to manage credentials in the credential locker, as we’ll see in the “Authentication, 

the Microsoft Account, and the User Profile” section later. For now, just creating a credential in this way 

is all you need to authenticate with your server when doing a transfer. 

Note At present, setting the serverCredential property doesn’t work with URIs that specify an FTP 

server. To work around this, include the credentials directly in the URI with the form ftp://<user>: 

<password>@server.com/file.ext (for example, ftp://admin:password1@server.com/file.bin). 

Setting Cost Policy 

As mentioned earlier in the “Cost Awareness” section, the Windows Store policy requires that apps are 

careful about performing large data transfers on metered networks. The Background Transfer API takes 

this into account, based on values from the BackgroundTransferCostPolicy enumeration: 

 default Allow transfers on costed networks. 

 unrestrictedOnly Do not allow transfers on costed networks. 

184

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordcredential.aspx


 always Always download regardless of network cost. 

To apply a policy to subsequent transfers, set the value of BackgroundDownloader.costPolicy 

and/or BackgroundUploader.costPolicy. The policy for individual operations can be set through the 

DownloadOperation.costPolicy and UploadOperation.costPolicy properties. 

Basically, you would change the policy if you’ve prompted the user accordingly or allow them to set 

behavior through your settings. For example, if you have a setting to disallow downloads or uploads on 

a metered network, you’d set the general costPolicy to unrestrictedOnly. If you know you’re on a 

network where roaming charges would apply and the user has consented to a transfer, you’d want to 

change the costPolicy of that individual operation to always. Otherwise the API would not perform 

the transfer because doing so on a roaming network is disallowed by default. 

When a transfer is blocked by policy, the operation’s progress.status property will contain 

BackgroundTransferStatus.pausedCostedNetwork. 

Grouping Transfers 

Grouping multiple transfers together lets you enumerate and control related transfers. For example, a 

photo app that organizes pictures into albums or album pages can present a UI through which the user 

can pause, resume, or cancel the transfer of an entire album, rather than working on the level of 

individual files. The grouping features of the background transfer API makes the implementation of this 

kind of experience much easier, as the app doesn’t need to maintain its own grouping structures. 

Note  Grouping has bearing on the individual transfers themselves, nor is grouping information 

communicated to servers. Grouping is simply a client-side management mechanism. 

Grouping is set through the transferGroup property that’s found in the BackgroundDownloader, 

BackgroundUploader, DownloadOperation, and UploadOperation objects. This property is a 

BackgroundTransferGroup object created through the static 

BackgroundTransferGroup.createGroup method using whatever name you want to use for that 

group. Note that the transferGroup property can be set only through BackgroundDownloader and 

BackgroundUploader; you would assign this prior to creating a series of individual operations in that 

group. Each individual operation object will then have that same transferGroup as a read-only 

property. 

In addition to its assigned name, a transferGroup object has a transferBehavior property, which 

is a value from the BackgroundTransferBehavior enumeration. This allows you to control whether 

the operations in the group happen serially or in parallel. A video player for a TV series, for example, 

could place all the episodes in the same group and then set the behavior to 

BackgroundTransferBehavior.serialized. This ensures that the group’s operations are done one at 

a time, reflecting how the user is likely to consume that content. A photo gallery app that download a 

composite page of large images, on the other hand, might use 

BackgroundTransferBehavior.parallel (the default). As for pausing, resuming, and cancelling 

185



groups, that’s best discussed in the context of app lifecycle events, which is the subject of the next 

section. 

Suspend, Resume, and Restart with Background Transfers 

Earlier I mentioned that background transfers will continue while an app is suspended, and paused if 

the app is terminated by the system. Because apps will be terminated only in low-memory conditions, 

it’s appropriate to also pause background transfers in that case. 

When an app is resumed from the suspended state, it can check on the status of pending transfers 

by using the BackgroundDownloader.getCurrentDownloadsAsync and 

BackgroundUploader.getCurrentUploadsAsync methods. To limit that list to a specific 

transferGroup, use the getCurrentDownloadsForTransferGroupAsync and 

getCurrentUploadsForTransferGroupAsync methods instead.10 

The list that comes back from these methods is a vector of DownloadOperation and 

UploadOperation objects, which can be iterated like an array: 

Windows.Networking.BackgroundTransfer.BackgroundDownloader.getCurrentDownloadsAsync() 

    .done(function (downloads) { 

        for (var i = 0; i < downloads.size; i++) { 

            var download = downloads[i]; 

        } 

    }); 

 

Windows.Networking.BackgroundTransfer.BackgroundUploader.getCurrentUploadsAsync() 

    .done(function (uploads) { 

         for (var i = 0; i < uploads.size; i++) { 

             var upload = uploads[i]; 

         } 

    }); 

In each case, the progress property of each operation will tell you how far the transfer has come 

along. The progress.status property is especially important. Again, status is a 

BackgroundTransferStatus value and will be one of idle, running, pausedByApplication, 

pausedCostedNetwork, pausedNoNetwork, canceled, error, and completed). These are clearly 

necessary to inform users, as appropriate, and to give them the ability to restart transfers that are 

paused or experienced an error, to pause running transfers, and to act on completed transfers. 

Speaking of which, when using the background transfer API, an app should always give the user 

control over pending transfers. Downloads can be paused through the DownloadOperation.pause 

method and resumed through DownloadOperation.resume. (There are no equivalents for uploads.) 

Download and upload operations are canceled by canceling the promises returned from startAsync. 

Again, if you requested a list of transfers for a particular group, iterate over the results to affect the 

                                                           
10 The optional group argument for the other methods is obsolete and replaced with these that work with a transferGroup 

argument. 

186

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx


operations in that group. 

This brings up an interesting situation: if your app has been terminated and later restarted, how do 

you restart transfers that were paused? The answer is quite simple. By enumerating transfers through 

getCurrentDownloads[ForTransferGroup]Async and 

getCurrentUploads[ForTransferGroup]Async, incomplete transfers are automatically restarted. But 

then how do you retrieve the promises originally returned by the startAsync methods? Those are not 

values that you can save in your app state and reload on startup, and yet you need them to be able to 

cancel those operations, if necessary, and also to attach your completed, error, and progress handlers. 

For this reason, both DownloadOperation and UploadOperation objects provide a method called 

attachAsync, which returns a promise for the operation just like startAsync did originally. You can 

then call the promise’s then or done methods to provide your handlers: 

promise = download.attachAsync().then(complete, error, progress); 

and call promise.cancel if needed. In short, when Windows restarts a background transfer and 

essentially calls startAsync on your app’s behalf, it holds that promise internally. The attachAsync 

methods simply return that new promise. 

Authentication, the Microsoft Account, and the User Profile 

If you think about it, just about every online resource in the world has some kind of credentials or 

authentication associated with it. Sure, we can read many of those resources without credentials, but 

having permission to upload data to a website is more tightly controlled, as is access to one’s account 

or profile in a database managed by a website. In many scenarios, then, apps need authenticate with 

services in some way, using service-specific credentials or perhaps using accounts from other providers 

like Facebook, Twitter, Microsoft, and so on. 

There are two approaches for dealing with credentials. First, you can collect credentials directly 

through your own UI, which means the app is fully responsible for protecting those credentials. For this 

there are a number of design guidelines for different login scenarios, such as when an app requires a 

login to be useful and when a login is simply optional. These topics, as well as where to place login and 

account/profile management UI, are discussed in Guidelines and checklist for login controls. 

For storage purposes, the Credential Locker API in WinRT will help you out here—you can securely 

save credentials when you collect them and retrieve them in later sessions so that you don’t have to 

pester the user again. Transmitting those credentials to a server, on the other hand, will require 

encryption work on your part, and there are many subtleties that can get complicated. For a few notes 

on encryption APIs in WinRT, as well as a few other security matters, see Appendix B. 

The simpler and more secure approach—one that we highly recommend—is to use the Web 

Authentication Broker API. This lets the user authenticate directly with a server in the broker’s UI, 

keeping credentials entirely on the server, after which the app receives back a token to use with later 

187

http://msdn.microsoft.com/library/windows/apps/hh965453.aspx


calls to the service. The Web Authentication Broker works with any service that’s been set up as a 

provider. This can be your own service, as we’ll see, or an OAuth/OpenID provider.  

Tip When thinking about providers that you might use for authentication, remember that non-

domain-joined users sign into Windows with a Microsoft account to begin with. If you can leverage 

that Microsoft account with your own services, signing into Windows means they won’t have to enter 

any additional credentials, providing a delightfully transparent experience. The Microsoft account also 

provides access to other features, as we’ll see in “Using the Microsoft Account” later on. 

One of the significant benefits of the Web Authentication Broker is that authentication for any given 

service transfers across apps as well as websites, providing a very powerful single sign-on experience for 

users. That is, once a user signs in to a service—either in the browser or in an app that uses the 

broker—they’re already signed into other apps and sites that use that same service (again, signing into 

Windows with a Microsoft account also applies here). To make the story even better, those credentials 

also roam across the user’s trusted devices (unless they opt out) so that they won’t even have to 

authenticate again when they switch machines. Personally I’ve found this marvelously satisfying—when 

setting up a brand new device, for example, all those credentials are immediately in effect! 

The Credential Locker 

One of the reasons that apps might repeatedly ask a user for credentials is simply because they don’t 

have a truly secure place to store and retrieve those credentials that’s also isolated from all other apps. 

This is entirely the purpose of the credential locker, a function that’s also immediately clear from the 

name of this particular API: Windows.Security.Credentials.PasswordVault. It’s designed to store 

credentials, of course, but you can use it to store other things like tokens as well. 

With the locker, any given credential itself is represented by a PasswordCredential object, as we 

saw briefly with the background transfer API. You can create an initialized credential as follows: 

var cred = new Windows.Security.Credentials.PasswordCredential(resource, userName, password); 

Another option is to create an uninitialized credential and set its properties individually: 

var cred = new Windows.Security.Credentials.PasswordCredential(); 

cred.resource = "userLogin" 

cred.userName = "username"; 

cred.password = "password"; 

A credential object also contains an IPropertySet value named properties, through which the 

same information can be managed. 

In any case, when you collect credentials from a user and want to save them, create a 

PasswordCredential and pass it to PasswordVault.add: 

var vault = new Windows.Security.Credentials.PasswordVault(); 

vault.add(cred); 

188

http://msdn.microsoft.com/library/windows/apps/br227081.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordcredential.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.collections.ipropertyset.aspx


Note that if you add a credential to the locker with a resource and userName that already exist, the 

new credential will replace the old. And if at any point you want to delete a credential from the locker, 

call the PasswordVault.remove method with that credential. 

Furthermore, even though a PasswordCredential object sees the world in terms of usernames and 

passwords, that password can be anything else you need to store securely, such as an access token. As 

we’ll see in the next section, authentication through OAuth providers might return such a token, in 

which case you might store something like “Facebook_Token” in the credential’s resource property, 

your app name in userName, and the token in password. This is a perfectly legitimate and expected 

use. 

Once a credential is in the locker, it will remain there for subsequent launches of the app until you 

call the remove method or the user explicitly deletes it through Control Panel > User Accounts and 

Family Safety >Credential Manager. On a trusted PC (which requires sign-in with a Microsoft account), 

Windows will also automatically and securely roam the contents of the locker to the user’s other 

devices (which can be turned off in PC Settings > Sync Your Settings > Passwords). This help to create a 

seamless experience with your app as the user moves between devices.11 

So, when you launch an app—even when launching it for the first time—always check if the locker 

contains saved credentials. There are several methods in the PasswordVault class for doing this: 

 findAllByResource Returns an array (vector) of credential objects for a given resource 

identifier. This is how you can obtain the username and password that’s been roamed from 

another device, because the app would have stored those credentials in the locker on the other 

machine under the same resource. 

 findAllByUserName Returns an array (vector) of credential objects for a given username. This 

is useful if you know the username and want to retrieve all the credentials for multiple resources 

that the app connects to. 

 retrieve Returns a single credential given a resource identifier and a username. Again, there 

will only ever be a single credential in the locker for any given resource and username. 

 retrieveAll Returns a vector of all credentials in the locker for this app. The vector contains 

a snapshot of the locker and will not be updated with later changes to credentials in the locker. 

There is one subtle difference between the findAll and retrieve methods in the list above. The 

retrieve method will provide you with fully populated credentials objects. The findAll methods, on 

the other hand, will give you objects in which the password properties are still empty. This avoids 

performing password decryption on what is potentially a large number of credentials. To populate that 

property for any individual credential, call the PasswordCredential.retievePassword method. 

For further demonstrations of the credential locker—the code is very straightforward—refer to the 

                                                           
11 Such roaming will not happen, however, if a credential is first stored in the locker on a domain joined machine. This 

protects domain credentials from leaking to the cloud. 

189



Credential locker sample. This shows variations for single user/single resource (Scenario 1), single 

user/multiple resources (Scenario 2), multiple users/multiple resources (Scenario 3), and clearing out 

the locker entirely (Scenario 4). 

The Web Authentication Broker 

As described earlier, keeping the whole authentication process on a server is the most secure and 

trusted way to authenticate with a service, whether you’re using a service-specific account or 

leveraging one from any number of other OAuth providers. The Web Authentication Broker provides a 

means of doing this authentication within the context of an app while yet keeping the authentication 

process completely isolated from the app. 

It works like this. An app provides the URI of the authenticating page of the external site (which 

must use the https:// URI scheme; otherwise you get an invalid parameter error). The broker then 

creates a new web host process in its own app container, into which it loads the indicated web page. 

The UI for that process is displayed as an overlay dialog on the app, as shown in Figure 4-6, for which 

I’m using Scenario 1 of the Web authentication broker sample. 

Provider guidance  To create authentication pages for your own service to work with the web 

authentication broker, see Web authentication broker for online providers on the dev center. 

 

FIGURE 4-6 The Web authentication broker sample using a Facebook login page. 

Note To run the sample you’ll need an app ID for each of the authentication providers in the various 

scenarios. For Facebook in Scenario 1, visit http://developers.facebook.com/setup and create an App 

ID/API Key for a test app. 

In the case of Facebook, the authentication process involves more than just checking the user’s 

credentials. It also needs to obtain permission for other capabilities that the app wants to use (which 

190

http://code.msdn.microsoft.com/windowsapps/PasswordVault-f01be74a
http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122
http://msdn.microsoft.com/library/windows/apps/jj856911.aspx
http://developers.facebook.com/setup


the user might have independently revoked directly through Facebook). As a result, the authentication 

process might navigate to additional pages, each of which still appears within the web authentication 

broker, as shown in Figure 4-7. In this case the app identity, ProgrammingWin8_AuthTest, is just one 

that I created through the Facebook developer setup page for the purposes of this demonstration. 

     

FIGURE 4-7 Additional authentication steps for Facebook within the web authentication broker. 

Within the broker UI—the branding of which is under the control of the provider—the user might 

be taken through multiple pages on the provider’s site (but note that the back button next to the 

“Connecting to a service” title dismisses the dialog entirely). But this begs a question: how does the 

broker know when authentication is actually complete? In the second page of Figure 4-7, clicking the 

Allow button is the last step in the process, after which Facebook would normally show a login success 

page. In the context of an app, however, we don’t need that page to appear—we want the broker’s UI 

taken down so that we return to the app with the results of the authentication. What’s more, many 

providers don’t even have such a page—so what do we do? 

Fortunately, the broker takes this into account: the app simply provides the URI of that final page of 

the provider’s process. When the broker detects that it’s navigated to that page, it removes its UI and 

gives the response to the app, where that response contains the appropriate token with which the app 

can access the service API. 

As part of this process, Facebook saves these various permissions in its own back end for each 

particular user and token, so even if the app started the authentication process again, the user would 

not see the same pages shown in Figure 4-7. The user can, of course, manage these permissions when 

visiting Facebook through a web browser. If the user deletes the app information there, these 

additional authentication steps would reappear (a good way to test the process, in fact). 

The overall authentication flow, showing how the broker serves as an intermediary between the app 

and a service, is illustrated in Figure 4-8. The broker itself creates a separate app container in which to 

load the service’s pages to ensure complete isolation from the app. But then note how the broker is 

191



only an intermediary for authentication: once the service provides a token, which the broker returns to 

the app, the app can talk directly with the service. Oftentimes a service will also provide for renewing 

the token as needed. 

 

FIGURE 4-8 The authentication flow with the web authentication broker. 

In WinRT, the broker is represented by the 

Windows.Security.Authentication.Web.WebAuthenticationBroker class. Authentication happens 

through its authenticateAsync methods. I say “methods” here because there are two variations. We’ll 

look at one here and return to the second in the next section, “Single Sign-On.” 

This first variant of authenticateAsync method takes three arguments: 

 options Any combination of values from the WebAuthenticationOptions enumeration 

(combined with bitwise OR). Values are none (the default), silentMode (no UI is shown), 

useTitle (returns the window title of the webpage in the results), useHttpPost (returns the 

body of the page with the results), and useCorporateNetwork (to render the web page in an 

app container with the Private Networks (Client & Server), Enterprise Authentication, and Shared 

User Certificates capabilities; the app must have also declared these). 

 requestUri The URI (Windows.Foundation.Uri) for the provider’s authentication page 

along with the parameters required by the service; again, this must use the https:// URI 

scheme. 

 callbackUri The URI (Windows.Foundation.Uri) of the provider’s final page in its 

192

http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationbroker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationoptions.aspx


authentication process. The broker uses this to determine when to take down its UI.12 

The results given to the completed handler for authenticateAsync is a 

WebAuthenticationResult object. This contains properties named responseStatus (a 

WebAuthenticationStatus with either success, userCancel, or errorHttp), responseData (a string 

that will contain the page title and body if the useTitle and useHttpPost options are set, 

respectively), and responseErrorDetail (an HTTP response number). 

Tip Web authentication events are visible in the Event Viewer under Application and Services Logs > 

Microsoft > Windows > WebAuth > Operational. This can be helpful for debugging because it brings 

out information that is otherwise hidden behind the opaque layer of the broker. The Fiddler tool is also 

very helpful for debugging. For more details, see Troubleshooting web authentication broker. 

Generally speaking, the app is most interested in the contents of responseData, because it will 

contain whatever tokens or other keys that might be necessary later on. Let’s look at this again in the 

context of Scenario 1 of the Web authentication broker sample. Set a breakpoint within the completed 

handler for authenticateAsync (line 59 or thereabouts), and then run the sample, enter an app ID you 

created earlier, and click Launch. (Note that the callbackUri parameter is set to https:// 

www.facebook.com/connect/login_success.html, which is where the authentication process finishes up.) 

In the case of Facebook, the responseData contains a string in this format: 

https://www.facebook.com/connect/login_success.html#access_token=<token>&expires_in=<timeout> 

where <token> is a bunch of alphanumeric gobbledygook and <timeout> is some period defined by 

Facebook. If you’re calling any Facebook APIs—which is likely because that’s why you’re authenticating 

through Facebook in the first place—the <token> is the real treasure you’re after because it’s how you 

authenticate the user when making later calls to that API. 

This token is what you then save in the credential locker for later use when the app is relaunched 

after being closed or terminated. With Facebook, you don’t need to worry about the expiration of that 

token because the API generally reports that as an error and has a built-in renewal process. You’d do 

something similar with other services, referring, of course, to their particular documentation on what 

information you’ll receive with the response and how to use and/or renew keys or tokens. The Web 

authentication broker sample, for its part, shows how to also work with Twitter (Scenario 2), Flickr 

(Scenario 3), and Google/Picasa (Scenario 4), and it also provides a generic interface for any other 

service (Scenario 5). The sample also shows the recommended UI for managing accounts (Scenario 6) 

and how to use an OAuth filter with the HttpClient API to separate authentication concerns from the 

rest of your app logic. 

It’s instructive to look through these various scenarios. Because Facebook and Google use the 

                                                           
12 As described on How the web authentication broker works, requestUri and callbackUri “correspond to an Authorization 

Endpoint URI and Redirection URI in the OAuth 2.0 protocol. The OpenID protocol and earlier versions of OAuth have 

similar concepts.” 

193

http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationresult.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationstatus.aspx
http://msdn.microsoft.com/library/windows/apps/jj856910.aspx
http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122
http://msdn.microsoft.com/library/windows/apps/Hh750286.aspx


OAuth 2.0 protocol, the requestUri for each is relatively simple (ignore the word wrapping): 

https://www.facebook.com/dialog/oauth?client_id=<client_id>&redirect_uri=<redirectUri>& 

scope-read_stream&display=popup&response_type=token 

 

https://accounts.google.com/o/oauth2/auth?client_id=<client_id>&redirect_uri=<redirectUri>& 

response_type=code&scope=http://picasaweb.google.com/data 

where <client_id> and <redirectUri> are replaced with whatever is specific to the app. Twitter and 

Flickr, for their parts, use OAuth 1.0a protocol instead, so much more ceremony goes into creating the 

lengthy OAuth token to include with the requestUri argument to authenticateAsync. I’ll leave it to 

the sample code to show those details. 

Single Sign-On 

What we’ve seen so far with the credential locker and the web authentication broker works very well to 

minimize how often the app needs to pester the user for credentials. Where a single app is concerned, 

it would ideally only ask for credentials once until such time as the user explicitly logs out. But what 

about multiple apps? Imagine over time that you acquire some dozens, or even hundreds, of apps from 

the Windows Store that use services that all require authentication. Even if those services exclusively use 

well-known OAuth providers, it’d still mean that you’d have to enter your Facebook, Twitter, Google, 

LinkedIn, Tumblr, Yahoo, or Yammer credentials in each and every app. At that point, the fact that you 

only need to authenticate each app once gets lost in the overall tedium! 

From the user’s point of view, once they’ve authenticated through a given provider in one app, it 

makes sense that other apps should benefit from that authentication if possible. Yes, some apps might 

need to prompt for additional permissions and some providers may not support the process, but the 

ideal is again to minimize the fuss and bother where we can. 

The concept of single sign-on is exactly this: authenticating the user in one app (or the system in the 

case of a Microsoft account) effectively logs the user in to other apps that use the same provider. To 

make this work, the web authentication broker keep persisted logon cookies for each service in a 

special app container that’s completely isolated from apps but yet allows those cookies to be shared 

between apps (like cookies are shared between websites in a browser). At the same time, each app 

must often acquire its own access keys or tokens, because these should not be shared between apps. 

So the real trick is to effectively perform the same kind of authentication we’ve already seen, only to do 

it without showing any UI unless it’s really necessary. 

This is the purpose of the variation of authenticateAsync that takes only the options and 

requestUri arguments (and not an explicit callbackUri). In this case options is often set to 

WebAuthenticationOptions.silentMode to prevent the broker’s UI from appearing (this isn’t 

required). But then how does the broker know when authentication is complete? That is, what 

callbackUri does it use for comparison, and how does the provider know that itself? It sounds like a 

situation where the broker would just sit there, forever hidden, while the provider patiently waits for 

input to a web page that’s equally invisible! 

194



What actually happens is that authenticateAsync watches for the provider to navigate to a special 

callbackUri in the form of ms-app://<SID>, where <SID> is a security identifier that uniquely identifies 

the calling app. This SID URI, as we’ll call it, is obtained in two ways. In code, call the static method 

WebAuthenticationBroker.getCurrentApplicationCallbackUri. This returns a 

Windows.Foundation.Uri object whose absoluteUri property is the string you need. The second 

means is through the Windows Store Dashboard. When viewing info for the app in question, go to the 

“Services” section. There you’ll see a link to the “Live Services site” (rooted at https://account.live.com). 

On that site, click the link “Authenticating your service” and you’ll see the URI listed here under 

Package Security Identifier (SID). 

To understand how it’s used, let’s follow the entire flow of the silent authentication process: 

1. The app registers its SID URI with the service. From code, this could be done through some 

service API or other endpoint that’s been set up for this purpose. A service could have a page 

(like Facebook) where you, the developer, registers your app directly and provides the SID URI 

as part of the process. 

2. When constructing the requestUri argument for authenticateAsync, the app inserts its SID 

URI as the value of the &redirect_uri= parameter. The SID URI will need to be appropriately 

encoded as other URI parameters, of course, using encodeURIComponent. 

3. The app calls authenticateAsync with the silentMode option. 

4. When the provider processes the requestUri parameters, it checks whether the redirect_uri 

value has been registered, responding with a failure if it hasn’t. 

5. Having validated the app, the provider then silently authenticates (if possible) and navigates to 

the redirect_uri, making sure to include things like access keys and tokens in the response data. 

6. The web authentication broker will detect this navigation and match it to the app’s SID URI. 

Finding a match, the broker can complete the async operation and provide the response data to 

the app. 

With all of this, it’s still possible that the authentication might fail for some other reason. For 

example, if the user has not set up permissions for the app in question (as with Facebook), it’s not 

possible to silently authenticate. So, an app attempting to use single sign-on would call this form of 

authenticateAsync first and, failing that, would then revert to calling its longer form (with UI), as 

described in the previous section. 

Using the Microsoft Account 

Because various Microsoft services are OAuth providers, it is possible to use the web authentication 

broker with a Microsoft account such as Hotmail, Live, and MSN. (I still have the same @msn.com email 

account I’ve had since 1996!) Details can be found on the OAuth 2.0 page on the Live Connect 

Developer Center. 

195

https://account.live.com/
http://msdn.microsoft.com/library/ie/aeh9cef7(v=vs.94).aspx
http://msdn.microsoft.com/library/live/hh243647.aspx


Live Connect accounts—also known as Microsoft accounts—are in a somewhat more privileged 

position because they can also be used to sign in to Windows or can be connected to a domain 

account used for the same purpose. Many of the built-in apps such as Mail, Calendar, SkyDrive, People, 

and the Windows Store itself work with this same account. Thus, it’s something that many other apps 

might want to take advantage of. Such apps automatically benefit from single sign-on and have access 

to the same Live Services that the built-in apps draw from themselves (including Skype, which has 

taken the place of Live Messenger). 

The whole gamut of what’s available can be found on the Live Connect documentation.13 You can 

access Live Connect features directly through its REST API as well as through the client side libraries of 

the Live SDK. When you install the SDK and add the appropriate references to your project, you’ll have 

a WL namespace available in JavaScript. Signing in, for example, is accomplished through the WL.login 

method.  

To explore Live Services a little, we’ll first walk through the user experience that applies here and 

then we’ll turn to the LiveConnect example in this chapter’s companion content, which demonstrates 

using the Live SDK library. Note that when using Live Services, the app’s package information in its 

manifest must match what exists in the Windows Store dashboard for your app. To ensure this, create 

the app profile in the dashboard (to what extent you can), go to Visual Studio, select the Store > 

Associate App with the Store menu command, sign in to the Store, and select your app. 

The OnlineId API in WinRT The Windows.Security.Authentication.OnlineId namespace contains 

an API that has some redundancy with the Live SDK, providing another route to log in and obtain an 

access token. The Windows account authorization sample demonstrates this, using the token when 

making HTTP requests directly to the Live REST API. Although the sample includes a JavaScript version, 

the API is primarily meant for apps written in C++ where there isn’t another option like the Live SDK. 

However, the API is also useful when the user logs into Windows with something other than a 

Microsoft account, such as a domain account. The OnlineIdAuthenticator.canSignOut property, for 

example, is set to true if the Microsoft account is not the primary login, and thus apps that use it 

should provide a means to sign out. The OnlineId API also provides for authenticating multiple 

accounts together (e.g., multiple SkyDrive accounts) and can also work with provider like Windows 

Azure Active Directory and SkyDrive Pro. 

The Live Connect User Experience 

Whenever an app attempts to log in to Live Connect for the first time, a consent dialog such as that in 

Figure 4-9 will automatically appear to make sure the user understands the kinds of information the 

app might access. If the user denies consent, then of course the login will fail. For this reason the app 

should provide a means through which the user can sign in again. (Also see Guidelines for the 

                                                           
13 Additional helpful references include Live Connect (Windows Store apps), Single sign-on for apps and websites, Using Live 

Connect to personalize apps, and Guidelines for the Microsoft account sign-in experience. Also see Bring single sign-on 

and SkyDrive to your Windows 8 apps with the Live SDK and Best Practices when adding single sign-on to your app with 

the Live SDK on the Windows 8 Developer Blog. 

196

http://msdn.microsoft.com/library/live/ff621314.aspx
http://msdn.microsoft.com/live/ff621310
http://msdn.microsoft.com/library/windows/apps/Hh701371
http://code.msdn.microsoft.com/windowsapps/Windows-account-authorizati-7c95e284
http://msdn.microsoft.com/library/live/hh968443.aspx
http://msdn.microsoft.com/library/live/hh826551.aspx
http://msdn.microsoft.com/en-us/library/live/hh826544.aspx
http://msdn.microsoft.com/library/windows/apps/hh770853.aspx
http://msdn.microsoft.com/library/windows/apps/hh770853.aspx
http://msdn.microsoft.com/library/windows/apps/hh968443.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/14/bring-single-sign-on-and-skydrive-to-your-windows-8-apps-with-the-live-sdk.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/14/bring-single-sign-on-and-skydrive-to-your-windows-8-apps-with-the-live-sdk.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/26/best-practices-when-adding-single-sign-on-to-your-app-with-the-live-sdk.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/26/best-practices-when-adding-single-sign-on-to-your-app-with-the-live-sdk.aspx


Microsoft account sign-in experience for additional requirements.) 

 

FIGURE 4-9  The Live Connect consent dialog that appears when you first attempt to log in. 

With this Live Connect login, the information that appears here (and in the other UI described 

below) comes through a configuration that’s specific to Live Connect. You can do this in two ways, 

assuming you’ve created a profile for the app in the Windows Store dashboard. One way is to visit 

https://account.live.com/Developers/Applications/ and find your app there. The other is to go to the 

Windows Store dashboard, open your app’s profile, and click Services. There you should see a Live 

Services Site link. Click that, and then find the link that reads Representing Your App to Live Connect 

Users. Click that one (talk about runaround!) and you’ll finally arrive at a page where you can set your 

app’s name, provide URIs for your terms of service and privacy statement, and upload a logo. All of this 

is independent of other info that exists in your app or in the Store dashboard, though you’ll probably 

use the same URIs for your terms and privacy policy. 

Note that if the user signed in to Windows with a domain account that has not been connected to a 

Microsoft account (through PC Settings > Accounts), the first login attempt will prompt the user for 

those account credentials, as shown in Figure 4-10. Fortunately, the user will have to do this only once 

for all apps that use the Microsoft account, thanks to single sign-on. 

197

http://msdn.microsoft.com/library/live/hh968443.aspx
https://account.live.com/Developers/Applications/


 

FIGURE 4-10 The Microsoft account login dialog if the user logged in to Windows with a domain account. 

Once you’ve consented to any request from an app, those permissions can be managed through the 

Microsoft Account portal, https://account.live.com. You can also get there from http://www.live.com by 

clicking your name on the upper right. This will pop up some options (as shown below), where Account 

Settings takes you to the account management page. 

  

On the management page, select Permissions on the left side, and then click the Manage Apps And 

Services link: 

  

198

https://account.live.com/
http://www.live.com/


Now you’ll see what permissions you’ve granted to all apps that use the Microsoft account, and 

clicking an app name (or the Edit link shown under it) takes you to a page where you can manage 

permissions, including revoking those to which you’ve consented earlier: 

 

If permissions are revoked, the consent dialog will appear again when the app is next run. It does 

not appear (from my tests) to affect an app that is already running; those permissions are likely cached 

for the duration of the app session. 

Live SDK Library Basics 

Assuming that your app has been defined in Windows Store dashboard and that you’ve associated 

your Visual Studio project to it as mentioned before (the Store > Associate App with the Store menu 

command), the first thing you do in code is call WL.init. This can accept various configuration 

properties, if desired. After this you can subscribe to various events using WL.Event.subscribe; the 

LiveConnect example watches the login, sessionChange, and statusChange events: 

WL.init(); 

WL.Event.subscribe("auth.login", onLoginComplete); 

WL.Event.subscribe("auth.sessionChange", onSessionChange); 

WL.Event.subscribe("auth.statusChange", onStatusChange); 

Signing in with the Microsoft account, which provides a token, is then done with the WL.login 

method (js/default.js): 

WL.login({ scope: ["wl.signin", "wl.basic"] }).then( 

    function (response) { 

        WinJS.log && WinJS.log("Authorization response: " + JSON.stringify(response), "app"); 

    }, 

    function (response) { 

        WinJS.log && WinJS.log("Authorization error: " + JSON.stringify(response), "app"); 

    } 

); 

199

http://msdn.microsoft.com/library/live/hh550844.aspx
http://msdn.microsoft.com/library/live/hh550840.aspx
http://msdn.microsoft.com/library/live/hh550845.aspx


WL.login takes an object argument with a scope property that provides the list of scopes—features, 

essentially—that we want to use in the app (these can also be given to WL.init). WL.login returns a 

promise to which we then attach completed and error handlers that log the response. (Note that 

promises from WL methods support only a then method; they don’t have done.)  

Again, when you run the app the first time, you’ll see the consent dialog shown earlier in Figure 4-9. 

Assuming that consent is given and the login succeeds, the response that’s delivered to the completed 

handler for WL.login will contain status and session properties, the latter of which contains the 

access token. In the LiveConnect example, the response is output to the JavaScript console: 

Authorization response: {"status":"connected","session":{"access_token":"<token_string>"}} 

The token itself is easily accessed through the login result. Assuming we call that variable response, 

as in the code above, the token would be in response.session.access_token. 

Note that there really isn’t any need to save the token into persistent storage like the Credential 

Locker because you’ll always attempt to login when the app starts. If that succeeds, you’ll get the token 

again; if it fails, you wouldn’t be able to get to the service anyway. If the login fails, by the way, the 

response object given to your error handler will contain error and error_description properties: 

{ "error": "access_denied", 

    "error_description": "The authentication process failed with error: Canceled" } 

Note also that attempting to log out of the Microsoft account with WL.logout, if that’s how the user 

logged in to Windows, will generate an error to this effect. 

Anyway, a successful login will also trigger sessionChange events as well as the login event. In the 

LiveConnect example, the login handler (a function called onLoginComplete) retrieves the user’s 

name and profile picture by using the Live API as follows (js/default.js, code condensed and error 

handlers omitted): 

var loginImage = document.getElementById("loginImage"); 

var loginName = document.getElementById("loginName"); 

 

WL.api({ path: "me/picture?type=small", method: "get" }).then( 

    function (response) { 

        if (response.location) { img.src = response.location; } 

    }, 

); 

 

WL.api({ path: "me", method: "get" }).then( 

    function (response) { name.innerText = response.name; }, 

); 

Methods in the Live API are invoked, as you can see, with the WL.api function. The first argument to 

WL.api is an object that specifies the path (the data or API object we want to talk to), an optional 

method (specifying what to do with it, with “get” as the default), and an optional body (a JSON object 

with the request body for “post” and “put” methods). It’s not too hard to think of WL.api as essentially 

generating an HTTP request using method and body to https://apis.live.net/v5.0/<path> 

200

http://msdn.microsoft.com/library/live/hh243646.aspx
http://msdn.microsoft.com/library/live/hh550838.aspx


?access_token=<token>, automatically using the token that came back from WL.login. But of course 

you don’t have to deal with those details. 

In any case, if all goes well, the app shows your username and image in the upper right, similar to 

what you see in various apps: 

 

The User Profile (and the Lock Screen Image) 

Any discussion about user credentials brings up the question of accessing additional user information 

that Windows itself maintains (this is separate from anything associated with the Microsoft account). 

What is available to Windows Store apps is provided through the Windows.System.UserProfile API. 

Here we find three classes of interest. 

The first is the LockScreen class, through which you can get or set the lock screen image or 

configure an image feed. The image is available through the originalImageFile property (returning a 

StorageFile) and the getImageStream method (returning an IRandomAccessStream). Setting the 

image can be accomplished through setImageFileAsync (using a StorageFile) and 

setImageStreamAsync (using an IRandomAccessStream). This would be utilized in a photo app that 

has a command to use a picture for the lock screen. See the Lock screen personalization sample for a 

demonstration. 

The second is the GlobalizationPreferences object, which contains the user’s specific choices for 

language and cultural settings. We’ll return to this in Chapter 18, “Apps for Everyone.” 

Third is the UserInformation class, whose capabilities are clearly exercised within PC Settings > 

Account > Account picture: 

 User name If the nameAccessAllowed property is true, an app can then call 

getDisplayNameAsync, getFirstNameAsync, and getLastNameAsync, all of which provide a 

string to your completed handler. If nameAccessAllowed is false, these methods will complete 

but provide an empty result. Also note that the first and last names are available only from a 

Microsoft account. 

 User picture Retrieved through getAccountPicture, which returns a StorageFile for the 

image. The method takes a value from AccountPictureKind:  smallImage, largeImage, and 

video. 

 If the accountPictureChangeEnabled property is true, you can use one of four methods to 

set the image(s): setAccountPictureAsync (for providing one image from a StorageFile), 

setAccountPicturesAsync (for providing small and large images as well as a video from 

StorageFile objects), and setAccountPictureFromStreamAsync and 

201

http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.lockscreen.aspx
http://code.msdn.microsoft.com/windowsapps/Personalization-App-sample-9ebfe147
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.globalizationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.userinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.accountpicturekind.aspx


setAccountPicturesFromStreamAsync (which do the same given IRandomAccessStream 

objects instead). In each case the async result is a SetAccountPictureResult value: success, 

failure, changeDisabled (accountPictureChangeEnabled is false), largeOrDynamicError 

(the picture is too large), fileSizeError (file is too large), or videorameSizeError (video 

frame size is too large),  

 The accountpicturechanged event signals when the user picture(s) have been altered. 

Remember that because this event originates within WinRT, you should call 

removeEventListener if you aren’t listening for this event for the lifetime of the app. 

These features are demonstrated in the Account picture name sample. Scenario 1 retrieves the 

display name, Scenario 2 retrieves the first and last name (if available), Scenario 3 retrieves the account 

pictures and video, and Scenario 4 changes the account pictures and video and listens for picture 

changes. 

One other bit that this sample demonstrates is the Account Picture Provider declaration in its 

manifest, which causes the app to appear within PC Settings > Personalize under Create an Account 

Picture: 

 

In this case the sample doesn’t actually provide a picture directly but launches into Scenario 4. A real 

app, like the Camera app that’s also in PC Settings by default, will automatically set the account picture 

when one is acquired through its UI. How does it know to do this? The answer lies in a special URI 

scheme through which the app is activated. That is, when you declare the Account Picture Provider 

declaration in the manifest, the app will be activated with the activation kind of protocol (see Chapter 

13, “Contracts”), where the URI scheme specifically starts with ms-accountpictureprovider. You can 

see how this is handled in the sample’s js/default.js file: 

if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.protocol) { 

    // Check if the protocol matches the "ms-accountpictureprovider" scheme 

    if (eventObject.detail.uri.schemeName === "ms-accountpictureprovider") { 

        // This app was activated via the Account picture apps section in PC Settings. 

        // Here you would do app-specific logic for providing the user with account  

        // picture selection UX 

    } 

Returning to the UserInformation class, it also provides a few more details for domain accounts 

provided that the app has declared the Enterprise Authentication capability in its manifest: 

 

202

http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.setaccountpictureresult.aspx
http://code.msdn.microsoft.com/windowsapps/Account-picture-name-sample-912baff1


 getDomainNameAsync Provides the user’s fully qualified domain name as a string in the form 

of <domain>\<user> where <domain> is the full name of the domain controller, such as 

mydomain.corp.ourcompany.com. 

 getPrincipalNameAsync Provides the principal name as a string. In Active Directory parlance, 

this is an Internet-style login name (known as a user principal name or UPN) that is shorter and 

simpler than the domain name, consolidating the email and login namespaces. Typically, this is 

an email address like user@ourcompany.com. 

 getSessionInitiationProtocolUriAsync Provides a session initiation protocol URI that will 

connect with this user; for background, see Session Initiation Protocol (Wikipedia). 

The use of these methods is demonstrated in the User domain name sample. 

What We’ve Just Learned 

 Networks come in a number of different forms, and separate capabilities in the manifest 

specifically call out Internet (Client), Internet (Client & Server), and Private Networks (Client & 

Server). Local loopback within these is normally blocked for apps but may be used for 

debugging purposes on machines with a developer license. 

 Rich network information is available through the 

Windows.Networking.Connectivity.NetworkInformation API, including the ability to track 

connectivity, be aware of network costs, and obtain connection profile details. 

 Connectivity can be monitored from a background task by using the networkStateChange 

trigger and conditions such as internetAvailable and internetNotAvailable. 

 The ability to run offline can be an important consideration that can make an app much more 

attractive to customers. Apps need to design and implement such features themselves, using 

local or temporary app data folders to store the necessary caches. 

 Web content can be hosted in an app both in webview and iframe elements, depending on 

requirements. The local and web contexts for use with iframe elements provide different 

capabilities for hosted content, whereas the webview can host local dynamically-generated 

content (using ms-appdata URIs) and untrusted web content. 

 To make HTTP requests, you can choose between XMLHttpRequest, WinJS.xhr, and 

Windows.Web.Http.HttpClient, the latter of which is the most powerful. In all cases, the 

resuming event if often used to refresh online content as appropriate. 

 Windows.Networking.BackgroundTransfer provides for prefetching online content as well as 

managing transfers while an app isn’t running. It include cost-awareness, credentials, grouping, 

and muItipart uploads, and is recommended over using your own HTTP requests for larger 

transfers. 

203

http://en.wikipedia.org/wiki/Session_Initiation_Protocol
http://code.msdn.microsoft.com/windowsapps/User-domain-name-sample-85ce3e49


 The Credential Locker is the place to securely store any credentials or sensitive tokens that an 

app might collect. 

 To ideally keep credentials off the client device entirely, apps can log into services through the 

Web Authentication Broker API, which also provides for single sign-on across apps that use the 

same identity provider. 

 Though the user’s Microsoft account and the Live SDK, apps can access all the information 

available in Live Services, including SkyDrive, contacts, and calendar. 

 Apps can obtain and manage some of the user’s profile data, including the user image and the 

lock screen image. 

204



Appendix A 

Demystifying Promises 

In Chapter 3, “App Anatomy, Page Navigation, and Promises,” we looked at promises that an app 

typically encounters in the course of working with WinJS and the WinRT APIs. This included working 

with the then/done methods (and their differences), joining parallel promises, chaining and nesting 

sequential promises, error handling, and few other features of WinJS promises like the various timeout 

methods. 

Because promises pop up as often as dandelions in a lawn (without being a noxious weed, of 

course!), it helps to study them more deeply. Otherwise, they and certain code patterns that use them 

can seem quite mysterious! In this Appendix, then, we’ll first look at the whole backstory, if you will, 

about what promises are and what they really accomplish, going so far as to implement some promise 

classes from scratch. We’ll then look at WinJS promises specifically and some of the features we didn’t 

see in Chapter 3, such as creating a new instance of WinJS.Promise to encapsulate an async operation 

of your own. Together, all of this should give you enough knowledge to understand some interesting 

promises code, as we’ll see at the end of this Appendix. This will also enable you to understand item 

rendering optimizations with the ListView control, as explained in Chapter 6, “Collections and 

Collection Controls.” 

Demonstrations of what we’ll cover here can be found in the WinJS Promise sample of the Windows 

SDK, which we won’t draw from directly, along with the Promises example in the Appendices’ 

companion content, which we’ll use as our source for code snippets. If you also want the fuller 

backstory on async APIs, read Keeping apps fast and fluid with asynchrony in the Windows Runtime on 

the Windows 8 developer blog. You can also find a combined and condensed version of this material 

and that from Chapter 3 in my post, All about promises (for Windows Store apps written in JavaScript) 

on that same blog. 

What Is a Promise, Exactly? The Promise Relationships 

As noted in the “Using Promises” section of Chapter 3, a promise is just a code construct or a calling 

convention with no inherent relationship to async operations. Always keep that in mind, because it’s 

easy to think that promises in and of themselves create async behavior. They do not: that’s still 

something you have to do yourself, as we’ll see. In other words, as a code construct, a promise is just a 

combination of functions, statements, and variables that define a specific way to accomplish a task. A 

for loop, for instance, is a programming construct whose purpose is to iterate over a collection. It’s a 

way of saying, “For each item in this collection, perform these actions” (hence the creation of forEach!). 

You use such a construct anytime you need to accomplish this particular purpose, and you know it well 

because you’ve practiced it so often! 

205

http://msdn.microsoft.com/library/windows/apps/br211867.aspx
http://code.msdn.microsoft.com/windowsapps/Promise-e1571015
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2013/06/11/all-about-promises-for-windows-store-apps-written-in-javascript.aspx


 

A promise is really nothing different. It’s a particular code structure for a specific purpose: namely, 

the delivery of some value that might not yet be available future. This is why a promise as we see it in 

code is essentially the same as we find in human relationships: an agreement, in a sense, between the 

originator of the promise and the consumer or recipient. 

In this relationship between originator and consumer there are actually two distinct stages. I call 

these creation and fulfillment, which are illustrated in Figure A-1. 

 

FIGURE A-1 The core relationship encapsulated in a promise. 

Having two stages of the relationship is what bring up the asynchronous business. Let’s see how by 

following the flow of the numbers in Figure A-1: 

1. The relationship begins when the consumer asks an originator for something, “Can 

you give me…?” This is what happens when an app calls some API that provides a 

promise rather than an immediate value. 

2. The originator creates a promise for the goods in question and delivers that promise 

to the consumer. 

3. The consumer acknowledges receipt of the promise, telling it how the promise 

should let the consumer know when the goods are ready. It’s like saying, “OK, just 

call this number when you’ve got them,” after which the consumer simply goes on 

with its life (asynchronously) instead of waiting (synchronously). 

4. Meanwhile, the originator works to acquire the promised goods. Perhaps it has to 

manufacture the goods or acquire them from somewhere else; thus, the relationship 

here assumes that those goods aren’t necessarily sitting around (even though they 

could be). This is the other place where asynchronous behavior arises, because 

206



 

acquisition can take an indeterminate amount of time. 

5. Once the originator has the goods, it brings them to the consumer. 

6. The consumer now has what it originally asked for and can consume the goods as 

desired. 

Now if you’re clever enough, you might have noticed that by eliminating a part of the diagram—the 

stuff around (3) and the arrow that says “Yes, I promise…”—you are left with a simple synchronous 

delivery model. This brings us to this point: receiving a promise gives the consumer a chance to do 

something with its time (like being responsive to other requests), while it waits for the originator to get 

its act together and deliver the promised goods. 

And that, of course, is also the whole point of asynchronous APIs in the first place, which is why we 

use promises for those APIs. It’s like the difference (to repeat my example from Chapter 3) between 

waiting in line at a restaurant’s drive-through for a potentially very long time (the synchronous model) 

and calling out for pizza delivery (the asynchronous model): the latter gives you the freedom to do 

other things while you’re waiting for the delivery of your munchies. 

Of course, there’s a bit more to the relationship that we have to consider. You’ve certainly made 

promises in your life, and you’ve had promises made to you. Although many of those promises have 

been fulfilled, the reality is that many promises are broken—it is possible for the pizza delivery person 

to have an accident on the way to your home! Broken promises are just a fact of life, one that we have 

to accept, both in our personal lives and in asynchronous programming. 

Within the promise relationship, then, this means that originator of a promise first needs a way to 

say, “Well, I’m sorry, but I can’t make good on this promise.” Likewise, the recipient needs a way to 

know that this is the case. Secondly, as consumers, we can sometimes be rather impatient about 

promises made to us. When a shipping company makes a promise to deliver a package by a certain 

date, we want to be able to look up the tracking number and see where that package is! So, if the 

originator can track its progress in fulfilling its promise, the consumer also needs a way to receive that 

information. And third, the consumer can also tell the originator that it no longer needs whatever it 

asked for earlier. That is, the consumer needs the ability to cancel the order or request. 

This complete relationship is illustrated in Figure A-2. Here we’ve added the following: 

7. While the originator is attempting to acquire the goods, it can let the consumer 

know what’s happening with periodic updates. The consumer can also let the 

originator know that it no longer needs the promise fulfilled (cancellation). 

8. If the originator fails to acquire the goods, it has to apologize with the 

understanding that there’s really nothing more it could have done. (“The Internet is 

down, you know?”) 

9. If the promise is broken, the consumer has to deal with it as best it can! 

With all this in mind, let’s see in the next section how these relationships manifest in code. 

207



 

 

 

FIGURE A-2 The full promise relationship. 

The Promise Construct (Core Relationship) 

To fulfill the core relationship of a promise between originator and consumer, we need the following: 

 A means to create a promise and attach it to whatever results are involved. 

 A means to tell the consumer when the goods are available, which means some kind of callback 

function into the consumer. 

The first requirement generally means that the originator defines an object class of some kind that 

internally wraps whatever process is needed to obtain the result. An instance of such a class would be 

created by an asynchronous API and returned to the caller. 

For the second requirement, there are two approaches we can take. One way is to have a simple 

property on the promise object to which the consumer assigns the callback function. The other way is 

to have a method on the promise to which the consumer passes its callback. Of the two, the latter 

(using a method) gives the originator more flexibility in how it fulfills that promise, because until a 

consumer assigns a callback—which is also called subscribing to the promise—the originator can hold 

off on starting the underlying work. You know how it is—there’s work you know you need to do, but 

208



 

you just don’t get around to it until someone actually gives you a deadline! Using a method call thus 

tells the originator that the consumer is now truly wanting the results.1 Until that time, the promise 

object can simply wait in stasis. 

In the definition of a promise that’s evolved within the JavaScript community known as Common 

JS/Promises A (the specification that WinJS and WinRT follow), the method for this second requirement 

is called then. In fact, this is the very definition of a promise: an object that has a property named ‘then’ 

whose value is a function. 

That’s it. In fact, the static WinJS function WinJS.Promise.is, which tests whether a given object is 

a promise, is implemented as follows: 

is: function Promise_is(value) { 
    return value && typeof value === "object" && typeof value.then === "function"; 

} 

Note In Chapter 3 we also saw a very similar function called done that WinJS and WinRT promises use 

for error handler purposes. This is not part of the Promises A specification, but it’s employed within 

Windows Store apps. 

Within the core relationship, then takes one argument: a consumer-implemented callback function 

known as the completed handler. (This is also called a fulfilled handler, but I prefer the first term.) Here’s 

how it fits into the core relationship diagram shown earlier (using the same number labels): 

1. The consumer calls some API that returns a promise. The specific API in question 

typically defines the type of object being asked for. In WinRT, for example, the 

Geolocator.getGeolocationAsync method returns a promise whose result is a 

Geoposition object. 

2. The originator creates a promise by instantiating an instance of whatever class it 

employs for its work. So long as that object has a then method, it can contain 

whatever other methods and properties it wants. Again, by definition a promise must 

have a method called then, and this neither requires nor prohibits any other 

methods and properties. 

3. Once the consumer receives the promise and wants to know about fulfillment, it calls 

then to subscribe to the promise, passing a completed handler as the first argument. 

The promise must internally retain this function (unless the value is already 

                                                           

1 The method could be a property setter, of course; the point here is that a method of some kind is necessary for the object 

to have a trigger for additional action, something that a passive (non-setter) property lacks.  

 

In this context I’ll also share a trick that Chris Sells, who was my manager at Microsoft for a short time, used on me 

repeatedly. For some given deliverable I owed him, he’d ask, “When will you have it done?” If I said I didn’t know, he’d 

ask, “When will you know when you’ll have it done?” If I still couldn’t answer that, he’d ask, “When will you know when 

you’ll know when you’ll have it done?” ad infinitum until he extracted some kind of solid commitment from me! 

209

http://wiki.commonjs.org/wiki/Promises/A
http://wiki.commonjs.org/wiki/Promises/A
http://msdn.microsoft.com/en-us/library/windows/apps/br211765.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.geolocation.geolocator.getgeopositionasync.aspx


 

available—see below). Note again that then can be called multiple times, by any 

number of consumers, and the promise must maintain a list of all those completed 

handlers. 

4. Meanwhile, the originator works to fulfill the promise. For example, the WinRT 

getGeolocationAsync API will be busy retrieving information from the device’s 

sensors or using an IP address–based method to approximate the user’s location. 

5. When the originator has the result, it has the promise object call all its completed 

handlers (received through then) with the result. 

6. Inside its completed handler, the consumer works with the data however it wants. 

As you can see, a promise is again just a programming construct that manages the relationship 

between consumer and originator. Nothing more. In fact, it’s not necessary that any asynchronous 

work is involved: a promise can be used with results that are already known. In such cases, the promise 

just adds the layer of the completed handler, which typically gets called as soon as it’s provided to the 

promise through then in step 3 rather than in step 5. While this adds overhead for known values, it 

allows both synchronous and asynchronous results to be treated identically, which is very beneficial 

with async programming in general. 

To make the core promise construct clear and to also illustrate an asynchronous operation, let’s look 

at a few examples using a simple promise class of our own as found in the Promises example in the 

companion content. 

Don’t do what I’m about to show you Implementing a fully functional promise class on your own 

gets rather complex when you start addressing all the details, such as the need for then to return 

another promise of its own. For this reason, always use the WinJS.Promise class or one from another 

library that fully implements Promises A and allows you to easily create robust promises for your own 

asynchronous operations. The examples I’m showing here are strictly for education purposes as they 

do not implement the full specification. 

Example #1: An Empty Promise! 

Let’s say we have a function, doSomethingForNothing, whose results are an empty object, { }, 

delivered through a promise: 

//Originator code 

function doSomethingForNothing() { 

    return new EmptyPromise(); 

} 

We’ll get to the EmptyPromise class in a moment. First, assume that EmptyPromise follows the 

definition and has a then method that accepts a completed handler. Hre’s how we would use the API 

in the consumer: 

 

210

http://msdn.microsoft.com/en-us/library/windows/apps/br211867.aspx


 

//Consumer code 

var promise = doSomethingForNothing(); 

 

promise.then(function (results) { 

    console.log(JSON.stringify(results)); 

}); 

The output of this would be as follows: 

{} 

App.log in the example Although I’m showing console.log in the code snippets here, the Promises 

sample uses a function App.log that ties into the WinJS.log mechanism and directs output to the app 

canvas directly. This is just done so that there’s meaningful output in the running example app. 

The consumer code could be shortened to just doSomethingForNothing().then(function 

(results) { ... }); but we’ll keep the promise explicitly visible for clarity. Also note that you can 

name the argument passed to the completed handler (results above) whatever you want. It’s your code, 

and you’re in control. 

Stepping through the consumer code above, we call promise.then, and sometime later the 

anonymous completed handler is called. How long that “sometime later” is, exactly, depends on the 

nature of the operation in question. 

Let’s say that doSomethingForNothing already knows that it’s going to return an empty object for 

results. In that case, EmptyPromise can be implemented as follows (and please, no comments about 

the best way to do object-oriented JavaScript): 

//Originator code 

var EmptyPromise = function () { 

    this._value = {}; 

    this.then = function (completedHandler) { 

        completedHandler(this._value); 

    } 

} 

When the originator does a new on this constructor, we get back an object that has a then method 

that accepts a completed handler. Because this promise already knows its result, its implementation of 

then just turns around and calls the given completed handler. This works no matter how many times 

then is called, even if the consumer passed that promise to another consumer.2 

Here’s how the code executes, identifying the steps in the core relationship: 

                                                           

2 The specification for then, again, stipulates that its return value is a promise that’s fulfilled when the completed handler 

returns, which is one of the bits that makes the implementation of a promise quite complicated. Clearly, we’re ignoring 

that part of the definition here! 

211



 

 

Again, when a promise already knows its results, it can synchronously pass them to whatever 

completed handler it received through then. Here a promise is nothing more than an extra layer that 

delivers results through a callback rather than directly from a function. For pre-existing results, in other 

words, a promise is pure overhead. You can see this by placing another console.log call after 

promise.then, and you’ll see that the {} result is logged before promise.then returns. 

All this is implemented in scenario 1 of the Promises example. 

Example #2: An Empty Async Promise 

While using promises with known values seems like a way to waste memory and CPU cycles for the 

sheer joy of it, promises become much more interesting when those values are obtained 

asynchronously. 

Let’s change the earlier EmptyPromise class to do this. Instead of calling the completed handler 

right away, we’ll do that after a timeout: 

var EmptyPromise = function () { 

    this._value = { }; 

    this.then = function (completedHandler) { 

        //Simulate async work with a timeout so that we return before calling completedHandler 

        setTimeout(completedHandler, 100, this._value); 

    } 

} 

With the same consumer code as before, and suitable console.log calls, we’ll see that 

promise.then returns before the completed handler is called. Here’s the output: 

promise created 

returned from promise.then 

{} 

Indeed, all the synchronous code that follows promise.then will execute before the completed 

handler is called. This is because setTimeout has to wait for the app to yield the UI thread, even if 

that’s much longer than the timeout period itself. So, if I do something synchronously obnoxious in the 

consumer code like the following, as in scenario 2 of the Promises example: 

var promise = doSomethingForNothing(); 

console.log("promise created"); 

212



 

 

promise.then(function (results) { 

    console.log(JSON.stringify(results)); 

}); 

 

console.log("returned from promise.then"); 

 

//Block UI thread for a longer period than the timeout 

var sum = 0; 

for (var i = 0; i < 500000; i++) { 

    sum += i; 

} 

 

console.log("calculated sum = " + sum); 

the output will be: 

promise created 

returned from promise.then 

calculated sum = 1249999750000 

{} 

This tells us that for async operation we don’t have to worry about completed handlers being called 

before the current function is done executing. At the same time, if we have multiple completed 

handlers for different async operations, there’s no guarantee about the order in which they’ll complete. 

This is where you need to either nest or chain the operations, as we saw in Chapter 3. There is also a 

way to use WinJS.Promise.join to execute parallel promises but have their results delivered 

sequentially, as we’ll see later. 

Note Always keep in mind that while async operations typically spawn additional threads apart from 

the UI thread, all those results must eventually make their way back to the UI thread. If you have a 

large number of async operations running in parallel, the callbacks to the completed handlers on the 

UI thread can cause the app to become somewhat unresponsive. If this is the case, implement 

strategies to stagger those operations in time (e.g., using setTimeout or setInterval to separate 

them into batches). 

Example #3: Retrieving Data from a URI 

As a more realistic example, let’s do some asynchronous work with meaningful results from 

XMLHttpRequest, as demonstrated in scenario 3 of the Promises example: 

//Originator code 

function doXhrGet(uri) { 

    return new XhrPromise(uri); 

} 

 

var XhrPromise = function (uri) { 

    this.then = function (completedHandler) { 

        var req = new XMLHttpRequest(); 

        req.onreadystatechange = function () { 

213



 

            if (req.readyState === 4) { 

                if (req.status >= 200 && req.status < 300) { 

                    completedHandler(req); 

                } 

 

                req.onreadystatechange = function () { }; 

            } 

        }; 

 

        req.open("GET", uri, true); 

        req.responseType = ""; 

        req.send(); 

    } 

} 

 

 

//Consumer code (note that the promise isn't explicit) 

doXhrGet("http://kraigbrockschmidt.com/blog/?feed=rss2").then(function (results) { 

    console.log(results.responseText); 

}); 

 

console.log("returned from promise.then"); 

The key feature in this code is that the asynchronous API we’re using within the promise does not 

itself involve promises, just like our use of setTimeout in the second example. XMLHttpRequest.send 

does its work asynchronously but reports status through its readystatechange event. So what we’re 

really doing here is wrapping that API-specific async structure inside the more generalized structure of 

a promise. 

It should be fairly obvious that this XhrPromise as I’ve defined it has some limitations—a real 

wrapper would be much more flexible for HTTP requests. Another problem is that if then is called 

more than once, this implementation will kick off additional HTTP requests rather than sharing the 

results among multiple consumers. So don’t use a class like this—use WinJS.xhr instead, from which I 

shamelessly plagiarized this code in the first place, or the API in Windows.Web.Http.HttpClient (see 

Chapter 4). 

Benefits of Promises 

Why wrap async operations within promises, as we did in the previous section? Why not just use 

functions like XMLHttpRequest straight up without all the added complexity? And why would we ever 

want to wrap known values into a promise that ultimately acts synchronously? 

There are a number of reasons. First, by wrapping async operations within promises, the consuming 

code no longer has to know the specific callback structure for each API. Just in the examples we’ve 

written so far, methods like setImmediate, setTimeout, and setInterval take a callback function as 

an argument. XMLHttpRequest raises an event instead, so you have to add a callback separately 

through its onreadystatechange property or addEventListener. Web workers, similarly, raise a 

214

http://msdn.microsoft.com/en-us/library/windows/apps/br229787.aspx


 

generic message event, and other async APIs can pretty much do what they want. By wrapping every 

such operation with the promise structure, the consuming code becomes much more consistent. 

A second reason is that when all async operations are represented by promises—and thus match 

async operations in the Windows Runtime API and WinJS—we can start combining and composing 

them in interesting ways. These scenarios are covered in Chapter 3: chaining dependent operations 

sequentially, joining promises (WinJS.Promise.join) to create a single promise that’s fulfilled when all 

the others are fulfilled, or wrapping promises together into a promise that’s fulfilled when the first one 

is fulfilled (WinJS.Promise.any). 

This is where using WinJS.Promise.as to wrap potentially known or existing values within promises 

becomes useful: they can then be combined with other asynchronous promises. In other words, 

promises provide a unified way to deal with values whether they’re delivered synchronously or 

asynchronously. 

Promises also keep everything much simpler when we start working with the full promise 

relationship, as described earlier. For one, promises provide a structure wherein multiple consumers can 

each have their own completed handlers attached to the same promise. A real promise class—unlike 

the simple ones we’ve been working with—internally maintains a list of completed handlers and calls 

all of them when the value is available. 

Furthermore, when error and progress handlers enter into the picture, as well as the ability to cancel 

an async operation through its promise, managing the differences between various async APIs 

becomes exceptionally cumbersome. Promises standardize all that, including the ability to manage 

multiple completed/error/progress callbacks along with a consistent cancel method. 

Let’s now look at a more complete promise construct, which will help us understand and appreciate 

what WinJS provides in its WinJS.Promise class! 

The Full Promise Construct 

Supporting the full promise relationship means that whatever class we use to implement a promise 

must provide additional capabilities beyond what we’ve seen so far: 

 Support for error and (if appropriate) progress handlers. 

 Support for multiple calls to then—that is, the promise must maintain an arbitrary number of 

handlers and share results between multiple consumers. 

 Support for cancellation. 

 Support for the ability to chain promises. 

As an example, let’s expand the XhrPromise class from Example #3 to support error and progress 

handlers through its then method, as well as multiple calls to then. This implementation is also a little 

215



 

more robust (allowing null handlers), and supports a cancel method. It can be found in scenario 4 of 

the Promises example: 

var XhrPromise = function (uri) { 

    this._req = null; 

 

    //Handler lists 

    this._cList = []; 

    this._eList = []; 

    this._pList = []; 

 

    this.then = function (completedHandler, errorHandler, progressHandler) { 

        var firstTime = false; 

        var that = this; 

 

        //Only create one operation for this promise 

        if (!this._req) { 

            this._req = new XMLHttpRequest(); 

            firstTime = true; 

        } 

 

        //Save handlers in their respective arrays 

        completedHandler && this._cList.push(completedHandler); 

        errorHandler && this._eList.push(errorHandler); 

        progressHandler && this._pList.push(progressHandler); 

             

        this._req.onreadystatechange = function () { 

            var req = that._req; 

            if (req._canceled) { return; } 

 

            if (req.readyState === 4) {  //Complete 

                if (req.status >= 200 && req.status < 300) { 

                    that._cList.forEach(function (handler) { 

                        handler(req); 

                    }); 

                } else { 

                    that._eList.forEach(function (handler) { 

                        handler(req); 

                    }); 

                } 

 

                req.onreadystatechange = function () { }; 

            } else { 

                if (req.readyState === 3) {  //Some data received 

                    that._pList.forEach(function (handler) { 

                        handler(req); 

                    }); 

                } 

            } 

        }; 

 

        //Only start the operation on the first call to then 

        if (firstTime) { 

            this._req.open("GET", uri, true); 

216



 

            this._req.responseType = ""; 

            this._req.send(); 

        } 

    }; 

 

    this.cancel = function () { 

        if (this._req != null) { 

            this._req._canceled = true; 

            this._req.abort; 

        } 

    } 

} 

The consumer of this promise can now attach multiple handlers, including error and progress as 

desired: 

//Consumer code 

var promise = doXhrGet("http://kraigbrockschmidt.com/blog/?feed=rss2"); 

console.log("promise created"); 

 

//Listen to promise with all the handlers (as separate functions for clarity) 

promise.then(completedHandler, errorHandler, progressHandler); 

console.log("returned from first promise.then call"); 

 

//Listen again with a second anonymous completed handler, the same error 

//handler, and a null progress handler to test then's reentrancy. 

promise.then(function (results) { 

    console.log("second completed handler called, response length = " + results.response.length); 

}, errorHandler, null); 

 

console.log("returned from second promise.then call"); 

 

 

function completedHandler (results) { 

    console.log("operation complete, response length = " + results.response.length); 

} 

 

function errorHandler (err) { 

    console.log("error in request"); 

} 

 

function progressHandler (partialResult) { 

    console.log("progress, response length = " + partialResult.response.length); 

} 

As you can see, the first call to then uses distinct functions; the second call just uses an inline 

anonymous complete handler and passes null as the progress handler. 

Running this code, you’ll see that we pass through all the consumer code first and the first call to 

then starts the operation. The progress handler will be called a number of times and then the 

completed handlers. The resulting output is as follows (the numbers might change depending on the 

current blog posts): 

217



 

promise created 

returned from first promise.then call 

returned from second promise.then call 

progress, response length = 4092 

progress, response length = 8188 

progress, response length = 12284 

progress, response length = 16380 

progress, response length = 20476 

progress, response length = 24572 

progress, response length = 28668 

progress, response length = 32764 

progress, response length = 36860 

progress, response length = 40956 

progress, response length = 45052 

progress, response length = 49148 

progress, response length = 53244 

progress, response length = 57340 

progress, response length = 61436 

progress, response length = 65532 

progress, response length = 69628 

progress, response length = 73724 

progress, response length = 73763 

operation complete, response length = 73763 

second completed handler called, response length = 73763 

In the promise, you can see that we’re using three arrays to track all the handlers sent to then and 

iterate through those lists when making the necessary callbacks. Note that because there can be 

multiple consumers of the same promise and the same results must be delivered to each, results are 

considered immutable. That is, consumers cannot change those results. 

As you can imagine, the code to handle lists of handlers is going to look pretty much the same in 

just about every promise class, so it makes sense to have some kind of standard implementation into 

which we can plug the specifics of the operation. As you probably expect by now, WinJS.Promise 

provides exactly this, as well as cancellation, as we’ll see later. 

Our last concern is supporting the ability to chain promises. Although any number of asynchronous 

operations can run simultaneously, it’s a common need that results from one operation must be 

obtained before the next operation can begin—namely, when those results are the inputs to the next 

operation. As we saw in Chapter 2, this is frequently encountered when doing file I/O in WinRT, where 

you need obtain a StorageFile object, open it, act on the resulting stream, and then flush and close 

the stream, all of which are async operations. The flow of such operations can be illustrated as follows: 

218



 

 

 

The nesting and chaining constructs that we saw in Chapter 3 can accommodate this need equally, 

but let’s take a closer look at both. 

Nesting Promises 

One way to perform sequential async operations is to nest the calls that start each operation within the 

completed handler of the previous one. This actually doesn’t require anything special where the 

promises are concerned. 

To see this, let’s expand upon that bit of UI-thread-blocking code from Example #2 that did a bunch 

of counting and turn it into an async operation—see scenario 5 of the Promises example: 

function calculateIntegerSum(max, step) {  

    return new IntegerSummationPromise(max, step); 

} 

 

var IntegerSummationPromise = function (max, step) {  

    this._sum = null;  //null means we haven't started the operation 

    this._cancel = false; 

 

    //Error conditions 

    if (max < 1 || step < 1) {  

        return null; 

    } 

 

    //Handler lists 

    this._cList = []; 

    this._eList = []; 

    this._pList = []; 

         

    this.then = function (completedHandler, errorHandler, progressHandler) { 

        //Save handlers in their respective arrays 

        completedHandler && this._cList.push(completedHandler); 

219



 

        errorHandler && this._eList.push(errorHandler); 

        progressHandler && this._pList.push(progressHandler); 

        var that = this; 

 

        function iterate(args) { 

            for (var i = args.start; i < args.end; i++) { 

                that._sum += i; 

            }; 

 

            if (i >= max) { 

                //Complete--dispatch results to completed handlers 

                that._cList.forEach(function (handler) { 

                    handler(that._sum); 

                }); 

            } else { 

                //Dispatch intermediate results to progress handlers 

                that._pList.forEach(function (handler) { 

                    handler(that._sum); 

                }); 

                     

                //Do the next cycle 

                setImmediate(iterate, { start: args.end, end: Math.min(args.end + step, max) }); 

            } 

        } 

 

        //Only start the operation on the first call to then 

        if (this._sum === null) { 

            this._sum = 0; 

            setImmediate(iterate, { start: 0, end: Math.min(step, max) }); 

        } 

    }; 

 

    this.cancel = function () {  

        this._cancel = true; 

    } 

} 

The IntegerSummationPromise class here is structurally similar to the XhrPromise class in scenario 

4 to support multiple handlers and cancellation. Its asynchronous nature comes from using 

setImmediate to break up its computational cycles (meaning that it’s still running on the UI thread; 

we’d have to use a web worker to run on a separate thread). 

To make sequential async operations interesting, let’s say we get our inputs for 

calculateIntegerSum from the following function (completely contrived, of course, with a promise 

that doesn’t support multiple handlers): 

function getDesiredCount() { 

    return new NumberPromise(); 

} 

 

var NumberPromise = function () { 

    this._value = 5000; 

    this.then = function (completedHandler) { 

220



 

        setTimeout(completedHandler, 100, this._value); 

    } 

} 

The calling (consumer) code looks like this, where I’ve eliminated any intermediate variables and 

named functions: 

getDesiredCount().then(function (count) { 

    console.log("getDesiredCount produced " + count); 

 

    calculateIntegerSum(count, 500).then(function (sum) { 

        console.log("calculated sum = " + sum); 

    }, 

 

    null,  //No error handler 

 

    //Progress handler 

    function (partialSum) { 

        console.log("partial sum = " + partialSum); 

    }); 

}); 

 

console.log("getDesiredCount.then returned"); 

The output of all this is as follows, where we can see that the consumer code first executes straight 

through. Then the completed handler for the first promise is called, in which we start the second 

operation. That computation reports progress before delivering its final results: 

getDesiredCount.then returned 

getDesiredCount produced 5000 

partial sum = 124750 

partial sum = 499500 

partial sum = 1124250 

partial sum = 1999000 

partial sum = 3123750 

partial sum = 4498500 

partial sum = 6123250 

partial sum = 7998000 

partial sum = 10122750 

calculated sum = 12497500 

Although the consumer code above is manageable with one nested operation, nesting gets messy 

when more operations are involved: 

operation1().then(function (result1) { 

    operation2(result1).then(function (result2) { 

        operation3(result2).then(function (result3) { 

            operation4(result3).then(function (result4) { 

                operation5(result4).then(function (result5) { 

                    //And so on 

                }); 

            }); 

        }); 

221



 

    }); 

}); 

Imagine what this would look like if all the completed handlers did other work between each call! 

It’s very easy to get lost amongst all the braces and indents. 

For this reason, real promises can also be chained in a way that makes sequential operations cleaner 

and easier to manage. When more than two operations are involved, chaining is typically the preferred 

approach. 

Chaining Promises 

Chaining is made possible by a couple of requirements that part of the Promises/A spec places on the 

then function: 

This function [then] should return a new promise that is fulfilled when the given [completedHandler] or 

errorHandler callback is finished. The value returned from the callback handler is the fulfillment value for 

the returned promise. 

Parsing this out, it means that any implementation of then must return a promise whose result is 

the return value of the completed handler given to then. With this characteristic, we can write 

consumer code in a chained manner that avoids indentation nightmares:  

operation1().then(function (result1) { 

    return operation2(result1) 

}).then(function (result2) { 

    return operation3(result2); 

}).then(function (result3) { 

    return operation4(result3); 

}).then(function (result4) { 

    return operation5(result4) 

}).then(function (result5) { 

    //And so on 

}); 

This structure makes it easier to read the sequence and is generally easier to work with. There’s a 

somewhat obvious flow from one operation to the next, where the return for each promise in the 

chain is essential. Applying this to the nesting example in the previous section (dropping all but the 

completed hander), we have the following: 

getDesiredCount().then(function (count) { 

    return calculateIntegerSum(count, 500); 

}).then(function (sum) { 

    console.log("calculated sum = " + sum); 

}); 

Conceptually, when we write chained promises like this we can conveniently think of the return 

value from one completed handler as the promise that’s involved with the next then in the chain: the 

result from calculateIntegerSum shows up as the argument sum in the next completed handler. We 

222

http://wiki.commonjs.org/wiki/Promises/A


 

went over this concept in detail in Chapter 2. 

However, at the point that getDesiredCount.then returns, we haven’t even started 

calculateIntegerSum yet. This means that whatever promise is returned from 

getDesiredCount.then is some other intermediary promise. This intermediary has its own then 

method and can receive its own completed, error, and progress handlers. But instead of waiting directly 

for some arbitrary asynchronous operation to finish, this intermediate promise is instead waiting on the 

results of the completed handler given to getDesiredCount.then. That is, the intermediate promise is 

a child or subsidiary of the promise that created it, such that it can manage its relationship on the 

parent’s completed handler. 

Looking back at the code from scenario 5 in the last section, you’ll see that none of our then 

implementations return anything (and are thus incomplete according to the spec). So what would it 

take to make it right?  

Simplifying the matter for the moment by not supporting multiple calls to then, a promise class 

such as NumberPromise would look something like this: 

var NumberPromise = function () { 

    this._value = 1000; 

    this.then = function (completedHandler) {  

        setTimeout(valueAvailable, 100, this._value); 

        var that = this; 

 

        function valueAvailable(value) { 

            var retVal = completedHandler(value); 

            that._innerPromise.complete(retVal); 

        } 

 

        var retVal = new InnerPromise(); 

        this._innerPromise = retVal; 

        return retVal; 

    } 

} 

Here, then creates an instance of a promise to which we pass whatever our completed handler gives 

us. That extra InnerPromise.complete method is the private communication channel through which 

we tell that inner promise that it can fulfill itself now, which means it calls whatever completed handlers 

it received in its own then. 

So InnerPromise might start to look something like this (this is not complete): 

var InnerPromise = function (value) { 

    this._value = value; 

    this._completedHandler = null; 

    var that = this; 

 

    //Internal helper 

    this._callComplete = function (value) { 

        that._completedHandler && that._completedHandler(value); 

223



 

    } 

 

    this.then = function (completedHandler) { 

        if (that._value) { 

            that._callComplete(that._value); 

        } else { 

            that._completedHandler = completedHandler; 

        } 

    }; 

 

    //This tells us we have our fulfillment value 

    this.complete = function (value) { 

        that._value = value; 

        that._callComplete(value); 

    } 

} 

That is, we provide a then of our own (still incomplete), which will call its given handler if the value 

is already known; otherwise it saves the completed handler away (supporting only one such handler). 

We then assume that our parent promise calls the complete method when it gets a return value from 

whatever completed handler it’s holding. When that happens, this InnerPromise object can then fulfill 

itself. 

So far so good. However, what happens when the parameter given to complete is itself a promise? 

That means this InnerPromise must wait for that other promise to finish, using yet another completed 

handler. Only then can it fulfill itself. Thus we need to do something like this within InnerPromise: 

    //Test if a value is a promise 

    function isPromise(p) { 

        return (p && typeof p === "object" && typeof p.then === "function"); 

    } 

 

    //This tells us we have our fulfillment value 

    this.complete = function (value) { 

        that._value = value; 

 

        if (isPromise(value)) { 

            value.then(function (finalValue) { 

                that._callComplete(value); 

            }) 

        } else { 

            that._callComplete(value);  

        } 

    } 

We’re on a roll now. With this implementation, the consumer code that chains getDesiredCount 

and calculateIntegerSum works just fine, where the value of sum passed to the second completed 

handler is exactly what comes back from the computation. 

But we still have a problem: InnerPromise.then does not itself return a promise, as it should, 

meaning that the chain dies right here. As such, we cannot chain another operation onto the sequence. 

224



 

What should InnerPromise.then return? Well, in the case where we already have the fulfillment 

value, we can just return ourselves (which is in the variable that). Otherwise we need to create yet 

another InnerPromise that’s wired up just as we did inside NumberPromise. 

    this._callComplete = function (value) { 

        if (that._completedHandler) { 

            var retVal = that._completedHandler(value); 

            that._innerPromise.complete(retVal);  

        } 

    } 

 

    this.then = function (completedHandler) { 

        if (that._value) { 

            var retVal = that._callComplete(that._value); 

            that._innerPromise.complete(retVal); 

            return that; 

        } else { 

            that._completedHandler = completedHandler; 

 

            //Create yet another inner promise for our return value 

            var retVal = new InnerPromise(); 

            this._innerPromise = retVal; 

            return retVal; 

        } 

    }; 

With this in place, InnerPromise supports the kind of chaining we’re looking for. You can see this in 

scenario 6 of the Promises example. In this scenario you’ll find two buttons on the page. The first runs 

this condensed consumer code: 

getDesiredCount().then(function (count) { 

    return calculateIntegerSum(count, 500); 

}).then(function (sum1) { 

    console.log("calculated first sum = " + sum1); 

    return calculateIntegerSum(sum1, 500); 

}).then(function (sum2) { 

    console.log("calculated second sum = " + sum2); 

}); 

where the output is: 

calculated first sum = 499500 

calculated second sum = 124749875250 

The second button runs the same consumer code but with explicit variables for the promises. It also 

turns on noisy logging from within the promise classes so that we can see everything that’s going on. 

For this purpose, each promise class is tagged with an identifier so that we can keep track of which is 

which. I won’t show the code, but the output is as follows: 

p1 obtained, type = NumberPromise 

InnerPromise1 created 

p1.then returned, p2 obtained, type = InnerPromise1 

InnerPromise1.then called 

225



 

InnerPromise1.then creating new promise 

InnerPromise2 created 

p2.then returned, p3 obtained, type = InnerPromise2 

InnerPromise2.then called 

InnerPromise2.then creating new promise 

InnerPromise3 created 

p3.then returned (end of chain), returned promise type = InnerPromise3 

NumberPromise completed. 

p1 fulfilled, count = 1000 

InnerPromise1.complete method called 

InnerPromise1 calling IntegerSummationPromise.then 

IntegerSummationPromise started 

IntegerSummationPromise completed 

IntegerSummationPromise fulfilled 

InnerPromise1 calling completed handler 

p2 fulfilled, sum1 = 499500 

InnerPromise2.complete method called 

InnerPromise2 calling IntegerSummationPromise.then 

IntegerSummationPromise started 

IntegerSummationPromise completed 

IntegerSummationPromise fulfilled 

InnerPromise2 calling completed handler 

p3 fulfilled, sum2 = 124749875250 

InnerPromise3.complete method called 

InnerPromise3 calling completed handler 

This log reveals what’s going on in the chain. Because each operation in the sequence is 

asynchronous, we don’t have any solid values to pass to any of the completed handlers yet. But to 

execute the chain of then calls—which all happens a synchronous sequence—there has to be some 

promise in there to do the wiring. That’s the purpose of each InnerPromise instance. So, in the first 

part of this log you can see that we’re basically creating a stack of these InnerPromise instances, each 

of which is waiting on another. 

Once all the then methods return and we yield the UI thread, the async operations can start to fulfill 

themselves. You can see that the NumberPromise gets fulfilled, which means that InnerPromise1 can 

be fulfilled with the return value from our first completed handler. That happens to be an 

IntegerSummartionPromise, so InnerPromise1 attaches its own completed handler. When that 

handler is called, InnerPromise1 can then call the second completed handler in the consumer code. 

The same thing then happens again with InnerPromise2, and so on, until the stack of inner promises 

are all fulfilled. It’s at this point that we run out of completed handlers to call, so the chain finally 

comes to an end. 

In short, having then methods return another promise to allow chaining basically means that a 

chain of async operations builds a stack of intermediate promises to manage the connections between 

as-yet-unfulfilled promises and their completed handlers. As results start to come in, that stack is 

unwound such that the intermediate results are passed to the appropriate handler so that the next 

async operation can begin. 

 

226



 

Now let me be very clear about what we’ve done so far: the code above shows how chaining really 

works in the guts of promises, and yet there are still a number of unsolved problems, a few of which 

include: 

 InnerPromise.then can handle only a single completed handler and doesn’t provide for error 

and progress handlers. 

 There’s no provision for handling exceptions in a completed handler, as specified by Promises A. 

 There’s no provision for cancellation of the chain—namely, that canceling the promise 

produced by the chain as a whole should also cancel all the other promises involved. 

 There are some repeated code structures, which beg for some kind of consolidation. 

 This code hasn’t been fully tested! 

I will openly admit that I’m not right kind of developer to solve such problems—I’m primarily a 

writer! There are a number of subtle issues that start to arise when you put this kind of thing into 

practice. 

Fortunately, there are software engineers who adore this kind of a challenge, and fortunately a 

number of them work in the WinJS team. As a result, they’ve done all the hard work for us already 

within the WinJS.Promise class. And we’re now ready to see—and fully appreciate!—what that library 

provides. 

Promises in WinJS (Thank You, Microsoft!) 

When writing Windows Store apps in JavaScript, promises pop up anywhere an asynchronous API is 

involved and even at other times. Those promises all meet the necessary specifications, as their 

underlying classes are supplied by the operating system, which is to say, WinJS. From the consumer’s 

point of view, then, these promises can be used to their fullest extent possible: nested, chained, joined, 

and so forth. These promises can also be trusted to handle any number of handlers, correctly process 

errors, and basically handle any other subtleties that might arise. 

I say all this because the authors of WinJS have gone to great effort to provide highly robust and 

complete promise implementations, and this means there is really no need to implement custom 

promise classes of your own. WinJS provides an extensible means to wrap any kind of async operation 

within a standardized and well-tested promise structure, so you can focus on the operation and not on 

the surrounding construct. 

Now we’ve already covered most of the consumer-side WinJS surface area for promises in Chapter 

3, including all the static methods of the WinJS.Promise object: is, theneach, as, timeout, join, and 

any. The latter of these are basically shortcuts to create promises for common scenarios. Scenario 7 of 

the Promises example gives a short demonstration of many of these. 

227



 

In Chapter 4 we also saw the WinJS.xhr function that wraps XMLHttpRequest operations in a 

promise, which is a much better choice than the wrapper we have in scenario 4 of the Promises 

example. Here, in fact, is the equivalent (and condensed) consumer code from scenario 7 that matches 

that of scenario 4: 

var promise = WinJS.xhr("http://kraigbrockschmidt.com/blog/?feed=rss2"); 
promise.then(function (results) { 
    console.log("complete, response length = " + results.response.length); 
}, 
function (err) { 
    console.log("error in request: " + JSON.stringify(err)); 
}, 
function (partialResult) { 
    console.log("progress, response length = " + partialResult.response.length); 
}); 

What’s left for us to discuss, then, is the instantiable WinJS.Promise class itself, with which you can, 

as an originator, easily wrap any async operation of your own in a full promise construct. 

Note The entire source code for WinJS promises can be found in its base.js file, accessible through any 

app project that has a reference to WinJS. (In Visual Studio’s solution explorer, expand References > 

Windows Library For JavaScript > js under a project, and you’ll see base.js.) 

The WinJS.Promise Class 

Simply said, WinJS.Promise is a generalized promise class that allows you to focus on the nature of a 

custom async operation, leaving WinJS.Promise to deal with the promise construct itself, including 

implementations of then and cancel methods, management of handlers, and handling complex 

cancellation processes involved with promise chains. 

As a comparison, in scenario 6 of the Promises example we created distinct promise classes that the 

getDesiredCount and calculateIntegerSum functions use to implement their async behavior. All 

that code got to be rather intricate, which means it will be hard to debug and maintain! With 

WinJS.Promise, we can dispense with those separate promise classes altogether. Instead, we just 

implement the operations directly within a function like calculateIntegerSum. This is how it now 

looks in scenario 8 (omitting bits of code to handle errors and cancellation, and pulling in the code 

from default.js where the implementation is shared with other scenarios): 

function calculateIntegerSum(max, step) { 

    //The WinJS.Promise constructor's argument is a function that receives  

    //dispatchers for completed, error, and progress cases. 

    return new WinJS.Promise(function (completeDispatch, errorDispatch, progressDispatch) { 

        var sum = 0; 

 

        function iterate(args) { 

            for (var i = args.start; i < args.end; i++) { 

                sum += i; 

            }; 

228

http://msdn.microsoft.com/en-us/library/windows/apps/br229787.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211866.aspx


 

 

            if (i >= max) { 

                //Complete--dispatch results to completed handlers 

                completeDispatch(sum); 

            } else { 

                //Dispatch intermediate results to progress handlers 

                progressDispatch(sum); 

                setImmediate(iterate, { start: args.end, end: Math.min(args.end + step, max) }); 

            } 

        } 

             

        setImmediate(iterate, { start: 0, end: Math.min(step, max) }); 

    }); 

} 

Clearly, this function still returns a promise, but it’s an instance of WinJS.Promise that’s essentially 

been configured to perform a specific operation. That “configuration,” if you will, is supplied by the 

function we passed to the WinJS.Promise constructor, referred to as the initializer. The core of this 

initializer function does exactly what we did with IntegerSummationPromise.then in scenario 6. The 

great thing is that we don’t need to manage all the handlers nor the details of returning another 

promise from then. That’s all taken care of for us. Whew! 

All we need is a way to tell WinJS.Promise when to invoke the completed, error, and progress 

handlers it’s managing on our behalf. That’s exactly what’s provided by the three dispatcher arguments 

given to the initializer function. Calling these dispatchers will invoke whatever handlers the promise has 

received through then, just like we did manually in scenario 6. And again, we no longer need to worry 

about the structure details of creating a proper promise—we can simply concentrate on the core 

functionality that’s unique to our app. 

By the way, a helper function like WinJS.Promise.timeout also lets us eliminate a custom promise 

class like the NumberPromise we used in scenario 6 to implement the getDesiredCount. We can now 

just do the following (taken from scenario 8, which matches the quiet output of scenario 6 with a lot 

less code!): 

function getDesiredCount() { 

    return WinJS.Promise.timeout(100).then(function () { return 1000; }); 

} 

To wrap up, a couple of other notes on WinJS.Promise: 

 Doing new WinJS.Promise() (with no parameters) will throw an exception: an initializer 

function is required. 

 If you don’t need the errorDispatcher and progressDispatcher methods, you don’t need to 

declare them as arguments in your function. JavaScript is nice that way! 

 Any promise you get from WinJS (or WinRT for that matter) has a standard cancel method that 

cancels any pending async operation within the promise, if cancellation is supported. It has no 

effect on promises that contain already-known values. 

229



 

 To support cancellation, the WinJS.Promise constructor also takes an optional second 

argument: a function to call if the promise’s cancel method is called. Here you halt whatever 

operation is underway. The full calculateIntegerSum function of scenario 8, for example 

(again, it’s in default.js), has a simple function to set a _cancel variable that the iteration loop 

checks before calling its next setImmediate. 

Originating Errors with WinJS.Promise.WrapError 

In Chapter 3 we learned about handling async errors as a consumer of promises and the role of the 

done method vs. then. When originating a promise, we need to make sure that we cooperate with how 

all that works. 

When implementing an async function, you must handle two error different error conditions. One is 

obvious: you encounter something within the operation that causes it to fail, such as a network 

timeout, a buffer overrun, the inability to access a resource, and so on. In these cases you call the error 

dispatcher (the second argument given to your initialization function by the WinJS.Promise 

constructor), passing an error object that describes the problem. That error object is typically created 

with WinJS.ErrorFromName (using new), using an error name and a message, but this is not a strict 

requirement. WinJS.xhr, for example, passes the request object directly to the error handler as that 

object contains much richer information already. 

To contrive an example, if calculateIntegerSum (from default.js) encountered some error while 

processing its operation, it would do the following: 

if (false /* replace with any necessary error check -- we don't have any here*/) { 

    errorDispatch(new WinJS.ErrorFromName("calculateIntegerSum (scenario 7)", "error occurred")); 

} 

The other error condition is more interesting. What happens when a function that normally returns 

a promise encounters a problem such that it cannot create its usual promise? It can’t just return null, 

because that would make it very difficult to chain promises together. What it needs to do instead is 

return a promise that already contains an error, meaning that it will immediately call any error handlers 

give to its then. 

For this purpose, WinJS has a special function WinJS.Promise.wrapError whose argument is an 

error object (again typically a WinJS.ErrorFromName). wrapError creates a promise that has no 

fulfillment value and will never call a completed handler. It will only pass its error to any error handler if 

you call then. Still, this then function must yet return a promise itself; in this case it returns a promise 

whose fulfillment value is the error object. 

For example, if calculateIntegerSum receives max or step arguments that are less than 1, it has to 

fail and can just return a promise from wrapError (see default.js): 

if (max < 1 || step < 1) { 

    var err = new WinJS.ErrorFromName("calculateIntegerSum (scenario 7)" 

        , "max and step must be 1 or greater"); 

    return WinJS.Promise.wrapError(err); 

230

http://msdn.microsoft.com/en-us/library/windows/apps/br211689.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229784.aspx


 

} 

The consumer code looks like this, as found in scenario 8: 

calculateIntegerSum(0, 1).then(function (sum) { 
    console.log("calculateIntegerSum(0, 1) fulfilled with " + sum); 
}, function (err) { 
    console.log("calculateIntegerSum(0, 1) failed with error: '" + err.message +"'"); 
    return "value returned from error handler"; 
}).then(function (value) { 
    console.log("calculateIntegerSum(0, 1).then fulfilled with: '" + value + "'"); 

}); 

Some tests in scenario 8 show this output: 

calculateIntegerSum(0, 1) failed with error: 'max and step must be 1 or greater' 

calculateIntegerSum(0, 1).then fulfilled with: 'value returned from error handler' 

Another way that an asynchronous operation can fail is by throwing an exception rather than calling 

the error dispatcher directly. This is important with async WinRT APIs, as those exceptions can occur 

deep down in the operating system. WinJS accommodates this by wrapping the exception itself into a 

promise that can then be involved in chaining. The exception just shows up in the consumer’s error 

handler. 

Speaking of chaining, WinJS makes sure that errors are propagated through the chain to the error 

handler given to the last then in the chain, allowing you to consolidate your handling there. This is why 

promises from wrapError are themselves fulfilled with the error value, which they send to their 

completed handlers instead of the error handlers. 

However, because of some subtleties in the JavaScript projection layer for the WinRT APIs, 

exceptions thrown from async operations within a promise chain will get swallowed and will not surface 

in that last error handler. Mind you, this doesn’t happen with a single promise and a single call to then, 

nor with nested promises, but most of the time the consumer is chaining multiple operations. Such is 

why we have the done method alongside then. By using this in the consumer at the end of a promise 

chain, you ensure that any error in the chain is propagated to the error handler given to done. 

Some Interesting Promise Code 

Finally, now that we’ve thoroughly explored promises both in and out of WinJS, we’re ready to dissect 

various pieces of code involving promises and understand exactly what they do, beyond the basics of 

chaining as we’ve seen. 

Delivering a Value in the Future: WinJS.Promise.timeout 

To start with a bit of review, the simple WinJS.Promise.timeout(<n>).then(function () { 

<value> }); pattern again delivers a known value at some time in the future: 

231



 

var p = WinJS.Promise.timeout(1000).then(function () { return 12345; }); 

Of course, you can return another promise inside the first completed handler and chain more then 

calls, which is just an example of standard chaining. 

Internals of WinJS.Promise.timeout 

The first two cases of WinJS.Promise.timeout, timeout() and timeout(n) are implemented as 

follows, using a new instance of WinJS.Promise where the initializer calls either setImmediate or 

setTimeout(n): 

// Used for WinJS.Promise.timeout() and timeout(n) 

function timeout(timeoutMS) { 

    var id; 

    return new WinJS.Promise( 

        function (c) { 

            if (timeoutMS) { 

                id = setTimeout(c, timeoutMS); 

            } else { 

                setImmediate(c); 

            } 

        }, 

        function () { 

            if (id) { 

                clearTimeout(id); 

            } 

        } 

    ); 

} 

The WinJS.Promise.timeout(n, p) form is more interesting. As before, it fulfills p if it happens 

within n milliseconds; otherwise p is canceled. Here’s the core of its implementation: 

function timeoutWithPromise(timeout, promise) { 

    var cancelPromise = function () { promise.cancel(); } 

    var cancelTimeout = function () { timeout.cancel(); } 

    timeout.then(cancelPromise); 

    promise.then(cancelTimeout, cancelTimeout); 

    return promise; 

} 

The timeout argument comes from calling WinJS.Promise.timeout(n), and promise is the p 

from WinJS.Promise.timeout(n, p). As you can see, promise is just returned directly. However, see 

how the promise and the timeout are wired together. If the timeout promise is fulfilled first, it calls 

cancelPromise to cancel promise. On the flipside, if promise is fulfilled first or encounters an error, it 

calls cancelTimeout to cancel the timer. 

 

232



 

Parallel Requests to a List of URIs 

If you need to retrieve information from multiple URIs in parallel, here’s a little snippet that gets a 

WinJS.xhr promise for each and joins them together: 

// uris is an array of URI strings 

WinJS.Promise.join( 

    uris.map(function (uri) { return WinJS.xhr({ url: uri }); }) 

).then(function (results) { 

    results.forEach(function (result, i) { 

        console.log("uri: " + uris[i] + ", " + result); 

    }); 

}); 

The array map method simply generates a new array with the results of the function you give it 

applied to each item in the original array. This new array becomes the argument to join, which is 

fulfilled with an array of results. 

Parallel Promises with Sequential Results 

WinJS.Promise.join and WinJS.Promise.any work with parallel promises—that is, with parallel 

async operations. The promise returned by join will be fulfilled when all the promises in an array are 

fulfilled. However, those individual promises can themselves be fulfilled in any given order. What if you 

have a set of operations that can execute in parallel but you want to process their results in a well-

defined order—namely, the order that their promises appear in an array? 

The trick is to basically join each subsequent promise to all of those that come before it, and the 

following bit of code does exactly that. Here, list is an array of values of some sort that are used as 

arguments for some promise-producing async call that I call doOperation: 

list.reduce(function callback (prev, item, i) { 

    var result = doOperation(item); 

    return WinJS.Promise.join({ prev: prev, result: result}).then(function (v) { 

        console.log(i + ", item: " + item+ ", " + v.result); 

    }); 

}) 

To understand this code, we have to first understand how the array’s reduce method works, 

because it’s slightly tricky. For each item in the array, reduce calls the function you provide as its 

argument, which I’ve named callback for clarity. This callback receives four arguments (only three of 

which are used in the code): 

 prev The value that’s returned from the previous call to callback. For the first item, prev is 

null. 

 item The current value from the array. 

 i The index of item in the list. 

233

http://msdn.microsoft.com/en-us/library/ie/ff679975(v=vs.94).aspx


 

 source The original array. 

It’s also important to remember that WinJS.Promise.join can accept a list in the form of an 

object, as shown here, as well as an array (it uses Object.keys(list).forEach to iterate). 

To make this code clearer, it helps to write it out with explicit promises: 

list.reduce(function callback (prev, item, i) { 

    var opPromise = doOperation(item); 

    var join = WinJS.Promise.join({ prev: prev, result: opPromise}); 

 

    return join.then(function completed (v) { 

        console.log(i + ", item: " + item+ ", " + v.result); 

    }); 

}) 

By tracing through this code for a few items in list, we’ll see how we build the sequential 

dependencies. 

For the first item in the list, we get its opPromise and then join it with whatever is contained in 

prev. For this first item prev is null, so we’re essentially joining, to express it in terms of an array, 

[WinJS.Promise.as(null), opPromise]. But notice that we’re not returning join itself. Instead, 

we’re attaching a completed handler (which I’ve called completed) to that join and returning the 

promise from its then. 

Remember that the promise returned from then will be fulfilled when the completed handler 

returns. This means that what we’re returning from callback is a promise that’s not completed until 

the first item’s completed handler has processed the results from opPromise. And if you look back at 

the result of a join, it’s fulfilled with an object that contains the results from the promises in the original 

list. That means that the fulfillment value v will contain both a prev property and a result property, 

the values of which will be the values from prev (which is null) and opPromise. Therefore v.result is 

the result of opPromise. 

Now see what happens for the next item in list. When callback is invoked this time, prev will 

now contain the promise from the previous join.then. So, in the second pass through callback we 

create a new join of opPromise2 and opPromise1.then. As a result, this join will not complete until 

both opPromise2 is fullfilled and the completed handler for opPromise1 returns. Voila! The completed2 

handler we now attach to this join will not be called until after completed1 has returned. 

In short, the same dependencies continue to be built up for each item in list—the promise from 

join.then for item n will not be fulfilled until completedn returns, and we’ve guaranteed that the 

completed handlers will be called in the same sequence as list. 

A working example of this construct using calculateIntegerSum and an array of numbers can be 

found in scenario 9 of the Promises example. The numbers are intentionally set so that some of the 

calculations will finish before others, but you can see that the results are delivered in order. 

234



 

Constructing a Sequential Promise Chain from an Array 

A similar construct to the one in the previous section is to use the array’s reduce method to build up a 

promise chain from an array of input arguments such that each async operation doesn’t start before 

the previous one is complete. Scenario 10 demonstrates this: 

//This just avoids having the prefix everywhere 

var calculateIntegerSum = App.calculateIntegerSum; 

 

//This op function attached other arguments to each call 

var op = function (arg) { return calculateIntegerSum(arg, 100); }; 

 

//The arguments we want to process 

var args = [1000000, 500000, 300000, 150000, 50000, 10000]; 

 

//This code creates a parameterized promise chain from the array of args and the async call 

//in op. By using WinJS.Promise.as for the initializer we can just call p.then inside 

//the callback. 

var endPromise = args.reduce(function (p, arg) { 

    return p.then(function (r) { 

        //The first result from WinJS.Promise.as will be undefined, so skip logging 

        if (r !== undefined) { App.log("operation completed with results = " + r) }; 

 

        return op(arg);  

    }); 

}, WinJS.Promise.as()); 

 

//endPromise is fulfilled with the last operation's results when the whole chain is complete. 

endPromise.done(function (r) { 

    App.log("Final promise complete with results = " + r); 

}); 

PageControlNavigator._navigating (Page Control Rendering) 

The final piece of code we’ll look at in this appendix comes from the navigator.js file that’s included 

with the Visual Studio templates that employ WinJS page controls. This is an event handler for the 

WinJS.Navigation.onnavigating event, and it performs the actual loading of the target page (using 

WinJS.UI.Pages.render to load it into a newly created div, which is then appended to the DOM) and 

unloading of the current page (by removing it from the DOM): 

_navigating: function (args) { 

    var newElement = this._createPageElement(); 

    var parentedComplete; 

    var parented = new WinJS.Promise(function (c) { parentedComplete = c; }); 

 

    this._lastNavigationPromise.cancel(); 

 

    this._lastNavigationPromise = WinJS.Promise.timeout().then(function () { 

        return WinJS.UI.Pages.render(args.detail.location, newElement, 

            args.detail.state, parented); 

    }).then(function parentElement(control) { 

        var oldElement = this.pageElement; 

235



 

        if (oldElement.winControl && oldElement.winControl.unload) { 

            oldElement.winControl.unload(); 

        } 

        WinJS.Utilities.disposeSubTree(this._element); 

        this._element.appendChild(newElement); 

        this._element.removeChild(oldElement); 

        oldElement.innerText = ""; 

        parentedComplete(); 

    }.bind(this)); 

 

    args.detail.setPromise(this._lastNavigationPromise); 

}, 

First of all, this code cancels any previous navigation that might be happening, then creates a new 

one for the current navigation. The args.detail.setPromise call at the end is the WinJS deferral 

mechanism that’s used in a number of places. It tells WinJS.Navigation.onnavigating to defer its 

default process until the given promise is fulfilled. In this case, WinJS waits for this promise to be 

fulfilled before raising the subsequent navigated event. 

Anyway, the promise in question here is what’s produced by a 

WinJS.Promise.timeout().then().then() sequence. Starting with a timeout promise means that 

the process of rendering a page control first yields the UI thread via setImmediate, allowing other 

work to complete before we start the rendering process. 

After such yielding, we then enter into the first completed handler that starts rendering the new 

page control into newElement with WinJS.UI.Pages.render. Rendering is an async operation itself (it 

involves a file loading operation, for one thing), so render returns a promise. Note that at this point, 

newElement is an orphan—it’s not yet part of the DOM, just an object in memory—so all this rendering 

is just a matter of loading up the page control’s contents and building that stand-alone chunk of DOM. 

When render completes, the next completed handler in the chain, which is actually named 

parentElement (“parent” in this case being a verb), receives the newly loaded page control object. 

This code doesn’t make use of this argument, however, because it knows that it’s the contents of 

newElement (newElement.winControl, to be precise). So we now unload any page control that’s 

currently loaded (that.pageElement.winControl), calling its unload method, if available, and also 

making sure to free up event listeners and whatnot with WinJS.Utilities.disposeSubtree. Then we 

can attach the new page’s contents to the DOM and remove the previous page’s contents. This means 

that the new page contents will appear in place of the old the next time the rendering engine gets a 

chance to do its thing. 

Finally, we call this function parentedComplete. This last bit is really a wiring job so that WinJS will 

not invoke the new page’s ready method until it’s been actually added to the DOM. This means that 

we need a way for WinJS to hold off making that call until parenting has finished. 

Earlier in _navigating, we created a parentedPromise variable, which was then given as the fourth 

parameter to WinJS.UI.Pages.render. This parentedPromise is very simple: we’re just calling new 

WinJS.Promise and doing nothing more than saving its completed dispatcher in the 

236



 

parentedComplete variable, which is what we call at the end of the process.  

For this to serve any purpose, of course, someone needs to call parentedPromise.then and attach 

a completed handler. A WinJS page control does this, and all its completed handler does is call ready. 

Here’s how it looks in base.js:  

this.renderComplete.then(function () { 
    return parentedPromise; 
}).then(function Pages_ready() { 
    that.ready(element, options); 

}) 

In the end, this whole _navigating code is just saying, “After yielding the UI thread, asynchronously 

load up the new page’s HTML, add it to the DOM, clean out and remove the old page from the DOM, 

and tell WinJS that it can call the new page’s ready method, because we’re not calling it directly 

ourselves.” 

237



Appendix B 

Additional Networking Topics 

In this appendix: 

 XMLHttpRequest and WinJS.xhr 

 Breaking up large files (background transfer API) 

 Multipart uploads (background transfer API) 

 Notes on Encryption, Decryption, Data Protection, and Certificates 

 Syndication: RSS and AtomPub APIs in WinRT 

 The Credential Picker UI 

 Other Networking SDK Samples 

XMLHttpRequest and WinJS.xhr 

Transferring data to and from web services through HTTP requests is a common activity for Windows 

Store apps, especially those written in JavaScript for which handling XML and/or JSON is simple and 

straightforward. For this purpose there is the Windows.Web.Http.HttpClient API, but apps can also 

use the XMLHttpRequest object as well as the WinJS.xhr wrapper that turns the XMLHttpRequest 

structure into a simple promise. For the purposes of this section I’ll refer to both of these together as 

just XHR. 

To build on what we already covered in Chapter 4, in the section “Data from Services and HTTP 

Requests,” there are a few other points to make where XHR is concerned, most of which come from the 

section in the documentation entitled Connecting to a web service. 

First, Downloading different types of content provides the details of the different content types 

supported by XHR for Windows Store apps. These are summarized here: 

Type Use responseText responseXML 

arraybuffer Binary content as an array of Int8 or Int64, or another integer or 

float type. 

undefined undefined 

Blob Binary content represented as a single entity. undefined undefined 

document An XML DOM object representing XML content (MIME type of 

text/XML). 

undefined The XML 

content 

json JSON strings. The JSON string undefined 

ms-stream Streaming data; see XMLHttpRequest enhancements. undefined undefined 

Text Text (the default). The text string undefined 

 

 

238

http://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/library/windows/apps/hh453379.aspx
http://msdn.microsoft.com/library/windows/apps/br229787.aspx
http://msdn.microsoft.com/library/windows/apps/hh761502.aspx
http://msdn.microsoft.com/library/windows/apps/hh868280.aspx
http://msdn.microsoft.com/library/windows/apps/hh673569.aspx


 

Second, know that XHR responses can be automatically cached, meaning that later requests to the 

same URI might return old data. To resend the request despite the cache, add an If-Modified-Since 

HTTP header, as shown on How to ensure that WinJS.xhr resends requests. 

Along similar lines, you can wrap a WinJS.xhr operation in another promise to encapsulate 

automatic retries if there is an error in any given request. That is, build your retry logic around the core 

XHR operation, with the result stored in some variable. Then place that whole block of code within 

WinJS.Promise.as (or a new WinJS.Promise) and use that elsewhere in the app. 

In each XHR attempt, remember that you can also use WinJS.Promise.timeout in conjunction with 

WinJS.Xhr as described on Setting timeout values with WinJS.xhr., because WinJS.xhr doesn’t have a 

timeout notion directly. You can, of course, set a timeout in the raw XMLHttpRequest object, but that 

would mean rebuilding everything that WinJS.xhr already does or copying it from the WinJS source 

code and making modifications. 

Generally speaking, XHR headers are accessible to the app with the exception of cookies (the set-

cookie and set-cookie2 headers)—these are filtered out by design for XHR done from a local context. 

They are not filtered for XHR from the web context. Of course, access to cookies is one of the benefits 

of Windows.Web.Http.HttpClient. 

Finally, avoid using XHR for large file transfers because such operations will be suspended when the 

app is suspended. Use the Background Transfer API instead (see Chapter 4), which uses HTTP requests 

under the covers, so your web services won’t know the difference anyway! 

Tips and Tricks for WinJS.xhr 

Without opening the whole can of worms that is XMLHttpRequest, it’s useful to look at just a couple of 

additional points around WinJS.xhr. This section is primarily provided for developers who might still 

be targeting Windows 8.0 where the preferred WinRT HttpClient API is not available. 

First, notice that the single argument to WinJS.xhr is an object that can contain a number of 

properties. The url property is the most common, of course, but you can also set the type (defaults to 

“GET”) and the responseType for other sorts of transactions, supply user and password credentials, 

set headers (such as If-Modified-Since with a date to control caching), and provide whatever other 

additional data is needed for the request (such as query parameters for XHR to a database). You can 

also supply a customRequestInitializer function that will be called with the XMLHttpRequest 

object just before it’s sent, allowing you to perform anything else you need at that moment. 

The second tip is setting a timeout on the request. You can use the customRequestInitializer for 

this purpose, setting the XMLHttpRequest.timeout property and possibly handling the ontimeout 

event. Alternately, use the WinJS.Promise.timeout function to set a timeout period after which the 

WinJS.xhr promise (and the async operation connected to it) will be canceled. Canceling is 

accomplished by simply calling a promise’s cancel method. Refer to the section “Creating Promises” in 

Chapter 3 for details on timeout. 

239

http://msdn.microsoft.com/library/windows/apps/hh868281.aspx
http://msdn.microsoft.com/library/windows/apps/hh868283.aspx


 

You might have need to wrap WinJS.xhr in another promise, perhaps to encapsulate other 

intermediate processing with the request while the rest of your code just uses the returned promise as 

usual. In conjunction with a timeout, this can also be used to implement a multiple retry mechanism. 

Next, if you need to coordinate multiple requests together, you can use WinJS.Promise.join, 

which is again covered in Chapter 3 in the section “Joining Parallel Promises.” 

Finally, for Windows Store apps, using XHR with localhost: URI’s (local loopback) is blocked by 

design. During development, however, this is very useful to debug a service without deploying it. You 

can enable local loopback in Visual Studio by opening the project properties dialog (Project menu > 

<project> Properties…), selecting Debugging on the left side, and setting Allow Local Network 

Loopback to yes. Using the localhost is discussed also in Chapter 4. 

Breaking Up Large Files (Background Transfer API) 

Because the outbound (upload) transfer rates of most broadband connections are significantly slower 

than the inbound (download) rates and might have other limitations, uploading a large file to a server 

(generally using the background transfer API) is typically a riskier business than a large download. If an 

error occurs during the upload, it can invalidate the entire transfer—a very frustrating occurrence if 

you’ve already been waiting an hour for that upload to complete! 

For this reason, a cloud service might allow a large file to be transferred in discrete chunks, each of 

which is sent as a separate HTTP request with the server reassembling the single file from those 

requests. This minimizes or at least reduces the overall impact of connectivity hiccups. 

From the client’s point of view, each piece would be transferred with an individual 

UploadOperation; that much is obvious. The tricky part is breaking up a large file in the first place. 

With a lot of elbow grease—and what would likely end up being a complex chain of nested async 

operations—it is possible to create a bunch of temporary files from the single source. If you’re up to a 

challenge, I invite to you write such a routine and post it somewhere for the rest of us to see! 

But there is an easier path using BackgroundUploader.createUploadFromStreamAsync, through 

which you can create separate UploadOperation objects for different segments of the stream. Given a 

StorageFile for the source, start by calling its openReadAsync method, the result of which is an 

IRandomAccessStreamWithContentType object. Through its getInputStreamAt method you then 

obtain an IInputStream for each starting point in the stream (that is, at each offset depending on your 

segment size). You then create an UploadOperation with each input stream by using 

createUploadFromStreamAsync. The last requirement is to tell that operation to consume only some 

portion of that stream. You do this by calling its setRequestHeader("content-length", <length>) 

where <length> is the size of the segment plus the size of other data in the request; you’ll also want to 

add a header to identify the segment for that particular upload. After all this, call each operation’s 

startAsync method to begin its transfer. 

240

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.uploadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadfromstreamasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.irandomaccessstreamwithcontenttype.aspx


 

Multipart Uploads (Background Transfer API) 

In addition to the createUpload and createUploadFromStreamAsync methods, the 

BackgroundUploader provides another method called createUploadAsync (with three variants) that 

handles what are called multipart uploads. 

From the server’s point of view, a multipart upload is a single HTTP request that contains various 

pieces of information (the parts), such as app identifiers, authorization tokens, and so forth, along with 

file content, where each part is possibly separated by a specific boundary string. Such uploads are used 

by online services like Flickr and YouTube, each of which accepts a request with a multipart Content-

Type. (See Content-type: multipart for a reference.) For example, as shown on Uploading Photos – 

POST Example, Flickr wants a request with the content type of multipart/form-data, followed by 

parts for api_key, auth_token, api_sig, photo, and finally the file contents. With YouTube, as 

described on YouTube API v2.0 – Direct Uploading, it wants a content type of multipart/related 

with parts containing the XML request data, the video content type, and then the binary file data. 

The background uploader supports all this through the BackgroundUploader.createUploadAsync 

method. (Note the Async suffix that separates this from the synchronous createUpload.) There are 

three variants of this method. The first takes the server URI to receive the upload and an array of 

BackgroundTransferContentPart objects, each of which represents one part of the upload. The 

resulting operation will send a request with a content type of multipart/form-data with a random 

GUID for a boundary string. The second variation of createUploadAsync allows you to specify the 

content type directly (through the sub-type, such as related), and the third variation then adds the 

boundary string. That is, assuming parts is the array of parts, the methods look like this: 

var uploadOpPromise1 = uploader.createUploadAsync(uri, parts); 

var uploadOpPromise2 = uploader.createUploadAsync(uri, parts, "related"); 

var uploadOpPromise3 = uploader.createUploadAsync(uri, parts, "form-data", "-------123456"); 

To create each part, first create a BackgroundTransferContentPart using one of its three 

constructors: 

 new BackgroundContentPart() Creates a default part. 

 new BackgroundContentPart(<name>) Creates a part with a given name. 

 new BackgroundContentPart(<name>, <file>) Creates a part with a given name and a 

local filename. 

In each case you further initialize the part with a call to its setText, setHeader, and setFile 

methods. The first, setText, assigns a value to that part. The second, setHeader, can be called multiple 

times to supply header values for the part. The third, setFile, is how you provide the StorageFile to 

a part created with the third variant above. 

 

241

http://msdn.microsoft.com/library/windows/apps/br207140.aspx
http://msdn.microsoft.com/library/ms527355.aspx
http://www.flickr.com/services/api/upload.example.html
http://www.flickr.com/services/api/upload.example.html
https://developers.google.com/youtube/2.0/developers_guide_protocol_direct_uploading
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransfercontentpart.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransfercontentpart.backgroundtransfercontentpart.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransfercontentpart.backgroundtransfercontentpart.aspx


 

Now, Scenario 2 of the Background transfer sample shows the latter using an array of random files 

that you choose from the file picker, but probably few services would accept a request of this nature. 

Let’s instead look at how we’d create the multipart request for Flickr shown on Uploading Photos – 

POST Example. For this purpose I’ve created the MultipartUpload example in the Appendices’ 

companion content. Here’s the code from js/uploadMultipart.js that creates all the necessary parts for 

the tinyimage.jpg file in the app package: 

// The file and uri variables are already set by this time. bt is a namespace shortcut 

var bt = Windows.Networking.BackgroundTransfer; 

var uploader = new bt.BackgroundUploader(); 

var contentParts = []; 

 

// Instead of sending multiple files (as in the original sample), we'll create those parts that 

// match the POST example for Flickr on http://www.flickr.com/services/api/upload.example.html 

var part; 

 

part = new bt.BackgroundTransferContentPart(); 

part.setHeader("Content-Disposition", "form-data; name=\"api_key\""); 

part.setText("3632623532453245"); 

contentParts.push(part); 

 

part = new bt.BackgroundTransferContentPart(); 

part.setHeader("Content-Disposition", "form-data; name=\"auth_token\""); 

part.setText("436436545"); 

contentParts.push(part); 

 

part = new bt.BackgroundTransferContentPart(); 

part.setHeader("Content-Disposition", "form-data; name=\"api_sig\""); 

part.setText("43732850932746573245"); 

contentParts.push(part); 

 

part = new bt.BackgroundTransferContentPart(); 

part.setHeader("Content-Disposition", "form-data; name=\"photo\"; filename=\"" + file.name + 

"\""); 

part.setHeader("Content-Type", "image/jpeg"); 

part.setFile(file); 

contentParts.push(part); 

 

// Create a new upload operation specifying a boundary string. 

uploader.createUploadAsync(uri, contentParts, 

     "form-data", "-----------------------------7d44e178b0434") 

    .then(function (uploadOperation) { 

        // Start the upload and persist the promise  

        upload = uploadOperation; 

        promise = uploadOperation.startAsync().then(complete, error, progress);  

    } 

); 

The resulting request will look like this, very similar to what’s shown on the Flickr page (just with 

some extra headers): 

 

242

http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://www.flickr.com/services/api/upload.example.html
http://www.flickr.com/services/api/upload.example.html


 

POST /website/multipartupload.aspx HTTP/1.1 

Cache-Control=no-cache 

Connection=Keep-Alive 

Content-Length=1328 

Content-Type=multipart/form-data; boundary="-----------------------------7d44e178b0434" 

Accept=*/* 

Accept-Encoding=gzip, deflate 

Host=localhost:60355 

User-Agent=Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Win64; x64; Trident/6.0; Touch) 

UA-CPU=AMD64 

-------------------------------7d44e178b0434 

Content-Disposition: form-data; name="api_key" 

 

3632623532453245 

-------------------------------7d44e178b0434 

Content-Disposition: form-data; name="auth_token" 

 

436436545 

-------------------------------7d44e178b0434 

Content-Disposition: form-data; name="api_sig" 

 

43732850932746573245 

-------------------------------7d44e178b0434 

Content-Disposition: form-data; name="photo"; filename="tinysquare.jpg" 

Content-Type: image/jpeg 

 

{RAW JFIF DATA} 

-------------------------------7d44e178b0434-- 

To run the sample and also see how this request is received, you’ll need two things. First, set up your 

localhost server as described in “Sidebar: Using the Localhost” in Chapter 4. Then install Visual Studio 

Express for Web (which is free) through the Web Platform Installer. Now you can go to the 

MultipartUploadServer folder in Appendices’ companion content, load website.sln into Visual Studio 

Express for Web, open MultipartUploadServer.aspx, and set a breakpoint on the first if statement 

inside the Page_Load method. Then start the site in the debugger (which runs it in Internet Explorer), 

which opens that page on a localhost debugging port (and click Continue in Visual Studio when you 

hit the breakpoint). Copy that page’s URI from IE for the next step. 

Switch to the MultipartUpload example running in Visual Studio for Windows, paste that URI into 

the URI field, and click the Start Multipart Transfer. When the upload operation’s startAsync is called, 

you should hit the server page breakpoint in Visual Studio for Web. You can step through that code if 

you want and examine the Request object; in the end, the code will copy the request into a file named 

multipart-request.txt on that server. This will contain the request contents as above, where you can see 

the relationship between how you set up the parts in the client and how they are received by the 

server. 

243

http://www.microsoft.com/web/downloads/platform.aspx


 

Notes on Encryption, Decryption, Data Protection, and 

Certificates 

The documentation on the Windows Developer Center along with APIs in the Windows.Security 

namespace are helpful to know about where protecting user credentials and other data is concerned. 

One key resource is the How to secure connections and authenticate requests topic; another is the 

Banking with strong authentication sample, which demonstrates secure authentication and 

communication over the Internet. A full writeup on this sample is found on Tailored banking app code 

walkthrough. 

As for WinRT APIs, first is Windows.Security.Cryptography. Here you’ll find the 

CryptographicBuffer class that can encode and decode strings in hexadecimal and base64 (UTF-8 or 

UTF-16) and also provide random numbers and a byte array full of such randomness. Refer to Scenario 

1 of the CryptoWinRT sample for some demonstrations, as well as Scenarios 2 and 3 of the Web 

authentication broker sample. WinRT’s base64 encoding is fully compatible with the JavaScript atob 

and btoa functions. 

Next is Windows.Security.Cryptography.Core, which is truly about encryption and decryption 

according to various algorithms. See the Encryption topic, Scenarios 2–8 of the CryptoWinRT sample, 

and again Scenarios 2 and 3 of the Web authentication broker sample. 

Third is Windows.Security.Cryptography.DataProtection, whose single class, 

DataProtectionProvider, deals with protecting and unprotecting both static data and a data stream. 

This applies only to apps that declare the Enterprise Authentication capability. For details, refer to Data 

protection API along with Scenarios 9 and 10 of the CryptoWinRT sample. 

Fourth, Windows.Security.Cryptography.Certificates provides several classes through which 

you can create certificate requests and install certificate responses. Refer to Working with certificates 

and the Certificate enrollment sample for more. 

And lastly it’s worth at least listing the API under 

Windows.Security.ExchangeActiveSyncProvisioning for which there is the EAS policies for mail 

clients sample. I’m assuming that if you know why you’d want to look into this, well, you’ll know! 

Syndication: RSS and AtomPub APIs in WinRT 

When we first looked at doing HTTP requests in Chapter 4, we grabbed the RSS feed from the 

Windows 8 Developer Blog with the URI http://blogs.msdn.com/b/windowsappdev/rss.aspx. We 

learned then that WinJS.xhr returned a promise, the result of which contained a responseXML 

property, which is itself a DomParser through which you can traverse the DOM structure and so forth. 

 

244

http://msdn.microsoft.com/library/windows/apps/hh986970.aspx
http://code.msdn.microsoft.com/windowsapps/Metro-style-banking-app-7d963c00
http://msdn.microsoft.com/library/windows/apps/Hh464943
http://msdn.microsoft.com/library/windows/apps/Hh464943
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.core.aspx
http://msdn.microsoft.com/library/windows/apps/hh464976.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.dataprotection.aspx
http://msdn.microsoft.com/library/windows/apps/hh464970.aspx
http://msdn.microsoft.com/library/windows/apps/hh464970.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.certificates.aspx
http://msdn.microsoft.com/library/windows/apps/hh465044.aspx
http://code.msdn.microsoft.com/windowsapps/Certificate-Enrollment-SDK-7ecf4976
http://msdn.microsoft.com/library/windows/apps/windows.security.exchangeactivesyncprovisioning.aspx
http://code.msdn.microsoft.com/windowsapps/Web-authentication-for-b9b8ed1a
http://code.msdn.microsoft.com/windowsapps/Web-authentication-for-b9b8ed1a
http://blogs.msdn.com/b/windowsappdev/rss.aspx


 

Working with syndicated feeds using straight HTTP requests is completely supported for Windows 

Store apps. In fact, the How to create a mashup topic in the documentation describes exactly this 

process, components of which are demonstrated in the Integrating content and controls from web 

services sample. 

That said, WinRT offers additional APIs for dealing with syndicated content in a more structured 

manner, which could be better suited for some programming languages. One, 

Windows.Web.Syndication, offers a more structured way to work with RSS feeds. The other, 

Windows.Web.AtomPub, provides a means to publish and manage feed entries. 

Reading RSS Feeds 

The primary class within Windows.Web.Syndication is the SyndicationClient. To work with any 

given feed, you create an instance of this class and set any necessary properties. These are 

serverCredential (a PasswordCredential), proxyCredential (another PasswordCredential), 

timeout (in milliseconds; default is 30000 or 30 seconds), maxResponseBufferSize (a means to 

protect from potentially malicious servers), and bypassCacheOnRetrieve (a Boolean to indicate 

whether to always obtain new data from the server). You can also make as many calls to its 

setRequestHeader method (passing a name and value) to configure the HTTP request header. 

The final step is to then call the SyndicationClient.retrieveFeedAsync method with the URI of 

the desired RSS feed (a Windows.Foundation.Uri). Here’s an example derived from the Syndication 

sample, which retrieves the RSS feed for the Building Windows 8 blog: 

uri = new Windows.Foundation.Uri("http://blogs.msdn.com/b/b8/rss.aspx"); 

var client = new Windows.Web.Syndication.SyndicationClient(); 

client.bypassCacheOnRetrieve = true; 

client.setRequestHeader("User-Agent",  

    "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0)"); 

 

client.retrieveFeedAsync(uri).done(function (feed) { 

    // feed is a SyndicationFeed object 

 

} 

The result of retrieveFeedAsync is a Windows.Web.Syndication.SyndicationFeed object; that 

is, the SyndicationClient is what you use to talk to the service, and when you retrieve the feed you 

get an object though which you can then process the feed itself. If you take a look at 

SyndicationFeed by using the link above, you’ll see that it’s wholly stocked with properties that 

represent all the parts of the feed, such as authors, categories, items, title, and so forth. Some of 

these are represented themselves by other classes in Windows.Web.Syndication, or collections of 

them, where simpler types aren’t sufficient: SyndicationAttribute, SyndicationCategory, 

SyndicationContent, SyndicationGenerator, SyndicationItem, SyndicationLink, 

SyndicationNode, SyndicationPerson, and SyndicationText. I’ll leave the many details to the 

documentation. 

245

http://msdn.microsoft.com/library/windows/apps/hh452745.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://msdn.microsoft.com/library/windows/apps/br244529.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.syndication.syndicationclient.aspx
http://code.msdn.microsoft.com/windowsapps/Syndication-sample-07ef6b0d
http://code.msdn.microsoft.com/windowsapps/Syndication-sample-07ef6b0d
http://blogs.msdn.com/b/b8/rss.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.syndication.syndicationfeed.aspx


 

We can see some of this in the sample, picking up from inside the completed handler for 

retrieveFeedAsync. Let me offer a more annotated version of that code: 

client.retrieveFeedAsync(uri).done(function (feed) { 

    currentFeed = feed; 

 

    var title = "(no title)"; 

 

    // currentFeed.title is a SyndicationText object 

    if (currentFeed.title) { 

        title = currentFeed.title.text; 

    } 

 

    // currentFeed.items is a SyndicationItem collection (array) 

    currentItemIndex = 0; 

    if (currentFeed.items.size > 0) { 

        displayCurrentItem(); 

    } 

} 

 

// ... 

 

function displayCurrentItem() { 

    // item will be a SyndicationItem 

 

    var item = currentFeed.items[currentItemIndex]; 

 

    // Display item number. 

    document.getElementById("scenario1Index").innerText = (currentItemIndex + 1) + " of " 

        + currentFeed.items.size; 

 

    // Display title (item.title is another SyndicationText). 

    var title = "(no title)"; 

    if (item.title) { 

        title = item.title.text; 

    } 

    document.getElementById("scenario1ItemTitle").innerText = title; 

 

    // Display the main link (item.links is a collection of SyndicationLink objects). 

    var link = ""; 

    if (item.links.size > 0) { 

        link = item.links[0].uri.absoluteUri; 

    } 

 

    var scenario1Link = document.getElementById("scenario1Link"); 

    scenario1Link.innerText = link; 

    scenario1Link.href = link; 

 

    // Display the body as HTML (item.content is a SyndicationContent object, item.summary is  

    // a SyndicationText object). 

    var content = "(no content)"; 

    if (item.content) { 

        content = item.content.text; 

    } 

246



 

    else if (item.summary) { 

        content = item.summary.text; 

    } 

    document.getElementById("scenario1WebView").innerHTML = window.toStaticHTML(content); 

 

    // Display element extensions. The elementExtensions collection contains all the additional 

    // child elements within the current element that do not belong to the Atom or RSS standards 

    // (e.g., Dublin Core extension elements). By creating an array of these, we can create a 

    // WinJS.Binding.List that's easily displayed in a ListView. 

    var bindableNodes = []; 

    for (var i = 0; i < item.elementExtensions.size; i++) { 

        var bindableNode = { 

            nodeName: item.elementExtensions[i].nodeName, 

            nodeNamespace: item.elementExtensions[i].nodeNamespace, 

            nodeValue: item.elementExtensions[i].nodeValue, 

        }; 

        bindableNodes.push(bindableNode); 

    } 

    var dataList = new WinJS.Binding.List(bindableNodes); 

    var listView = document.getElementById("extensionsListView").winControl; 

    WinJS.UI.setOptions(listView, { itemDataSource: dataList.dataSource }); 

} 

It’s probably obvious that the API, under the covers, is probably just using the XmlDocument API to 

retrieve all these properties. In fact, its getXmlDocument returns that XmlDocument if you want to 

access it yourself. 

You can also create a SyndicationFeed object around the XML for a feed you might already have. 

For example, if you obtain the feed contents by using WinJS.xhr, you can create a new 

SyndicationFeed object and call its load method with the request’s responseXML. Then you can work 

with the feed through the class hierarchy. When using the Windows.Web.AtomPub API to manage a 

feed, you also create a new or updated SyndicationItem to send across the wire, settings its values 

through the other objects in its hierarchy. We’ll see this in the next section. 

One last note: if retrieveFeedAsync throws an exception, which would be picked up by an error 

handler you provide to the promise’s done method, you can turn the error code into a 

SyndicationErrorStatus value. Here’s how it’s used in the sample’s error handler: 

function onError(err) { 

    // Match error number with a SyndicationErrorStatus value. Use 

    // Windows.Web.WebErrorStatus.getStatus() to retrieve HTTP error status codes. 

    var errorStatus = Windows.Web.Syndication.SyndicationError.getStatus(err.number); 

    if (errorStatus === Windows.Web.Syndication.SyndicationErrorStatus.invalidXml) { 

        displayLog("An invalid XML exception was thrown. Please make sure to use a URI that" 

            + "points to a RSS or Atom feed."); 

    } 

} 

247



 

 

Using AtomPub 

On the flip side of reading an RSS feed, as we’ve just seen, is the need to possibly add, remove, and edit 

entries on a feed, as with an app that lets the user actively manage a specific blog or site. 

The API for this is found in Windows.Web.AtomPub and demonstrated in the AtomPub sample. The 

main class is the AtomPubClient that encapsulates all the operations of the AtomPub protocol. It has 

methods like createResourceAsync, retrieveResourceAsync, updateResourceAsync, and 

deleteResourceAsync for working with those entries, where each resource is identified with a URI and 

a SyndicationItem object, as appropriate. Media resources for entries are managed through 

createMediaResourceAsync and similarly named methods, where the resource is provided as an 

IInputStream. 

The AtomPubClient also has retrieveFeedAsync and setRequestHeader methods that do the 

same as the SyndicationClient methods of the same names, along with a few similar properties like 

serverCredential, timeout, and bypassCacheOnRetrieve. Another method, 

retrieveServiceDocumentAsync, provides the workspaces/service documents for the feed (in the 

form of a Windows.Web.AtomPub.ServiceDocument object). 

Again, the AtomPub sample demonstrates the different operations: retrieve (Scenario 1), create 

(Scenario 2), delete (Scenario 3), and update (Scenario 4). Here’s how it first creates the AtomPubClient 

object (see js/common.js), assuming there are credentials: 

function createClient() { 

    client = new Windows.Web.AtomPub.AtomPubClient(); 

    client.bypassCacheOnRetrieve = true; 

 

    var credential = new Windows.Security.Credentials.PasswordCredential(); 

    credential.userName = document.getElementById("userNameField").value; 

    credential.password = document.getElementById("passwordField").value; 

    client.serverCredential = credential; 

} 

Updating an entry (js/update.js) then looks like this, where the update is represented by a newly 

created SyndicationItem: 

function getCurrentItem() { 

    if (currentFeed) { 

        return currentFeed.items[currentItemIndex]; 

    } 

    return null; 

} 

 

var resourceUri = new Windows.Foundation.Uri( /* service address */ );  

createClient(); 

 

var currentItem = getCurrentItem(); 

248

http://msdn.microsoft.com/library/windows/apps/windows.web.atompub.aspx
http://code.msdn.microsoft.com/windowsapps/AtomPub-sample-c1fcdc8e
http://msdn.microsoft.com/library/windows/apps/br243412.aspx
http://code.msdn.microsoft.com/windowsapps/AtomPub-sample-c1fcdc8e


 

 

if (!currentItem) { 

    return; 

} 

 

// Update the item 

var updatedItem = new Windows.Web.Syndication.SyndicationItem(); 

var title = document.getElementById("titleField").value; 

updatedItem.title = new Windows.Web.Syndication.SyndicationText(title, 

    Windows.Web.Syndication.SyndicationTextType.text); 

var content = document.getElementById("bodyField").value; 

updatedItem.content = new Windows.Web.Syndication.SyndicationContent(content,  

    Windows.Web.Syndication.SyndicationTextType.html); 

 

client.updateResourceAsync(currentItem.editUri, updatedItem).done(function () { 

    displayStatus("Updating item completed."); 

}, onError); 

Error handling in this case works with the Window.Web.WebError class (see js/common.js): 

function onError(err) { 

    displayError(err); 

 

    // Match error number with a WebErrorStatus value, in order to deal with a specific error. 

    var errorStatus = Windows.Web.WebError.getStatus(err.number); 

    if (errorStatus === Windows.Web.WebErrorStatus.unauthorized) { 

        displayLog("Wrong username or password!"); 

    } 

} 

The Credential Picker UI 

For enterprise scenarios where the Web Authentication Broker won’t suffice for authentication needs, 

WinRT provides a built-in, enterprise-ready UI for entering credentials: Windows.Security.-

Credentials.UI.CredentialsPicker. When you instantiate this object and call its pickAsync 

method, as does the Credential Picker sample, you’ll see the UI shown below. This UI provides for 

domain logins, supports, and smart cards (I have two smart card readers on my machine as you can 

see), and it allows for various options such as authentication protocols and automatic saving of the 

credential. 

249

http://msdn.microsoft.com/library/windows/apps/windows.web.weberror.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpicker.aspx
http://code.msdn.microsoft.com/windowsapps/Credential-picker-sample-30fcba2e


 

 

The result from pickAsync, as given to your completed handler, is a CredentialPickerResults 

object with the following properties (when you enter some credentials in the sample, you’ll see these 

values reflected in the sample’s output): 

 credentialuserName A string containing the entered username. 

 credentialPassword A string containing the password (typically encrypted depending on 

the authentication protocol option). 

 credentialDomainName A string containing a domain if entered with the username (as in 

<domain>\<username>). 

 credentialSaved A Boolean indicating whether the credential was saved automatically; this 

depends on picker options, as discussed below. 

 credentialSavedOption A CredentialSavedOption value indicating the state of the 

Remember My Credentials check box: unselected, selected, or hidden. 

 errorCode Contains zero if there is no error, otherwise an error code. 

 credential An IBuffer containing the credential as an opaque byte array. This is what you 

can save in your own persistent state if need be and pass back to the picker at a later time. We’ll 

see how at the end of this section. 

The three scenarios in the sample demonstrate the different options you can use to invoke the 

credential picker. For this there are three separate variants of pickAsync. The first variant accepts a 

target name (which is ignored) and a message string that appears in the place of “Please enter your 

credentials” shown in the previous screen shot: 

250

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpickerresults.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialsaveoption.aspx


 

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(targetName, message) 

    .done(function (results) { 

    } 

The second variant accepts the same arguments plus a caption string that appears in the place of 

“Credential Picker Sample” in the screen shot: 

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(targetName, message, caption) 

    .done(function (results) { 

    } 

The third variant accepts a CredentialPickerOptions object that has properties for the same 

targetName, message, and caption strings along with the following: 

 previousCredential An IBuffer with the opaque credential information as provided by a 

previous invocation of the picker (see CredentialPickerResults.credential above). 

 alwaysDisplayDialog A Boolean indicating whether the picker is displayed. The default is 

false, but this applies only if you also populate previousCredential (with an exception for 

domain-joined machines—see table below). The purpose here is to show the dialog when a 

stored credential might be incorrect and the user is expected to provide a new one. 

 errorCode The numerical value of a Win32 error code (default is ERROR_SUCCESS) that will be 

formatted and displayed in the dialog box. You would use this when you obtain credentials 

from the picker initially but find that those credentials don’t work and need to invoke the picker 

again. Instead of providing your own message, you just choose an error code and let the system 

do the rest. The most common values for this are 1326 (login failure), 1330 (password expired), 

2202 (bad username), 1907 or 1938 (password must change/password change required), 1351 

(can’t access domain info), and 1355 (no such domain). There are, in fact, over 15,000 Win32 

error codes, but that means you’ll have to search the reference linked above (or search within 

the winerror.h file typically found in your Program Files (x86)\Windows Kits\8.0\Include\shared 

folder). Happy hunting! 

 callerSavesCredential A Boolean indicating that the app will save the credential and that 

the picker should not. The default value is false. When set to true, credentials are saved to a 

secure system location (not the credential locker) if the app has the Enterprise Authentication 

capability (see below). 

 credentialSaveOption A CredentialSaveOption value indicating the initial state of the 

Remember My Credentials check box: unselected, selected, or hidden. 

 authenticationProtocol A value from the AuthenticationProtocol enumeration: basic, 

digest, ntlm, kerberos, negotiate (the default), credSsp, and custom (in which case you 

must supply a string in the customAuthenticationProcotol property). Note that with basic 

and digest, the CredentialPickerResults.credentialPassword will not be encrypted and 

is subject to the same security needs as a plain text password you collect from your own UI. 

251

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpickeroptions.aspx
http://msdn.microsoft.com/library/windows/desktop/ms681381(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialsaveoption.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.authenticationprotocol.aspx


 

Here’s an example of invoking the picker with an errorCode indicating a previous failed login: 

var options = new Windows.Security.Credentials.UI.CredentialPickerOptions(); 

options.message = "Please enter your credentials"; 

options.caption = "Sample App"; 

options.targetName = "Target"; 

options.alwaysDisplayDialog = true; 

options.errorCode = 1326;  // Shows "The username or password is incorrect." 

options.callerSavesCredential = true; 

options.authenticationProtocol =  

    Windows.Security.Credentials.UI.AuthenticationProtocol.negotiate; 

options.credentialSaveOption = Windows.Security.Credentials.UI.CredentialSaveOption.selected; 

 

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(options) 

    .done(function (results) { 

    } 

To clarify the relationship between the callerSavesCredential, credentialSaveOption, and the 

credentialSaved properties, the following table lists the possibilities: 

Enterprise 

Auth 

capability 

callerSavesCredential credentialSaveOption Credential Picker saves 

credentials 

Apps saves 

credentials to 

credential locker 

No true Selected No Yes 

unselected or hidden No No 

false Selected No Yes 

unselected or hidden No No 

Yes true Selected No Yes 

unselected or hidden No No 

false Selected Yes (credentialSaved will 

be true) 

Optional 

unselected or hidden No No 

 

The first column refers to the Enterprise Authentication capability in the app’s manifest, which 

indicates that the app can work with Intranet resources that require domain credentials (and assumes 

that the app is also running on the Enterprise Edition of Windows). In such cases the credential picker 

has a separate secure location (apart from the credential locker) in which to store credentials, so the 

app need not save them itself. Furthermore, if the picker saves a credential and the app invokes the 

picker with alwaysDisplayDialog set to false, previousCredential can be empty because the 

credential will be loaded automatically. But without a domain-joined machine and this capability, the 

app must supply a previousCredential to avoid having the picker appear. 

This brings us to the question about how, exactly, to persist a CredentialPickerResults.-

credential and load it back into CredentialPickerOptions.previousCredential at another time. 

The credential is an IBuffer, and if you look at the IBuffer documentation you’ll see that it doesn’t 

in itself offer any useful methods for this purpose (in fact, you’ll really wonder just what the heck it’s 

good for!). Fortunately, other APIs understand buffers. To save a buffer’s content, pass it to the 

writeBufferAsync method in either Windows.Storage.FileIO or Windows.Storage.PathIO. To 

252

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileio.writebufferasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pathio.writebufferasync.aspx


 

load it later, use the readBufferAsync methods of the FileIO and PathIO objects. 

This is demonstrated in the modified Credential Picker sample in the Appendices’ companion 

content. In js/scenario3.js we save credential within the completed handler for 

CredentiaPicker.pickAsync: 

//results.credential will be null if the user cancels 

if (results.credential != null) { 

    //Having retrieved a credential, write the opaque buffer to a file 

    var option = Windows.Storage.CreationCollisionOption.replaceExisting; 

 

    Windows.Storage.ApplicationData.current.localFolder.createFileAsync("credbuffer.dat", 

        option).then(function (file) { 

        return Windows.Storage.FileIO.writeBufferAsync(file, results.credential); 

    }).done(function () { 

        //No results for this operation 

        console.log("credbuffer.dat written."); 

    }, function (e) { 

        console.log("Could not create credbuffer.dat file."); 

    }); 

} 

I’m using the local appdata folder here; you could also use the roaming folder if you want the 

credential to roam (securely) to other devices as if it were saved in the Credential Locker. 

To reload, we modify the launchCredPicker function to accept a buffer and use that for 

previousCredential if given: 

function launchCredPicker(prevCredBuffer) { 

    try { 

        var options = new Windows.Security.Credentials.UI.CredentialPickerOptions(); 

 

        //Set the previous credential if provided 

        if (prevCredBuffer != null) { 

            options.previousCredential = prevCredBuffer; 

        } 

We then point the click handler for button1 to a new function that looks for and loads the 

credbuffer.dat file and calls launchCredPicker accordingly: 

function readPrevCredentialAndLaunch() { 

    Windows.Storage.ApplicationData.current.localFolder.getFileAsync("credbuffer.dat") 

        .then(function (file) { 

        return Windows.Storage.FileIO.readBufferAsync(file); 

    }).done(function (buffer) { 

        console.log("Read from credbuffer.dat"); 

        launchCredPicker(buffer); 

    }, function (e) { 

        console.log("Could not reopen credbuffer.dat; launching default"); 

        launchCredPicker(null); 

    }); 

} 

253



 

Other Networking SDK Samples 

Sample Description (from the Windows Developer Center) 

Check if current session is 

remote sample 

This sample demonstrates the use of Windows.System.RemoteDesktop API. Specifically, this 

sample demonstrates how to use the InteractiveSession.IsRemote property to determine if 

the current session is a remote session. 

HomeGroup app sample Demonstrates how to use a HomeGroup to open, search, and share files. This sample uses some of 

the HomeGroup options. In particular, it uses Windows.Storage.Pickers.PickerLocationId 

enumeration and the Windows.Storage.KnownFolders.homeGroup property to select files 

contained in a HomeGroup. 

Remote desktop app 

container client sample 

Demonstrates how to use the Remote Desktop app container client objects in an app. 

RemoteApp and desktop 

connections workspace API 

sample 

Demonstrates how to use the WorkspaceBrokerAx object in a Windows Store app. 

SMS message send, 

receive, and SIM 

management sample 

Demonstrates how to use the Mobile Broadband SMS API (Windows.Devices.Sms). This API can 

be used only from mobile broadband device apps and is not available to apps generally. 

SMS background task 

sample 

Demonstrates how to use the Mobile Broadband SMS API (Windows.Devices.Sms) with the 

Background Task API (Windows.ApplicationModel.Background) to send and receive SMS text 

messages. This API can be used only from mobile broadband device apps and is not available to 

apps generally. 

USSD message 

management sample 

Demonstrates network account management using the USSD protocol with GSM-capable mobile 

broadband devices. USSD is typically used for account management of a mobile broadband 

profile by the Mobile Network Operator (MNO). USSD messages are specific to the MNO and 

must be chosen accordingly when used on a live network. (That sample is applicable only to those 

building mobile broadband device apps; it draws on the API in 

Windows.Networking.NetworkOperators.)  

 

254

http://code.msdn.microsoft.com/windowsapps/Check-if-current-session-7cd31c4e
http://code.msdn.microsoft.com/windowsapps/Check-if-current-session-7cd31c4e
http://msdn.microsoft.com/library/windows/apps/Hh770630
http://msdn.microsoft.com/library/windows/apps/Hh770629
http://code.msdn.microsoft.com/windowsapps/HomeGroup-App-sample-d4da5cb2
http://msdn.microsoft.com/library/windows/apps/BR207890
http://msdn.microsoft.com/library/windows/apps/BR207890
http://msdn.microsoft.com/library/windows/apps/BR227153
http://code.msdn.microsoft.com/windowsapps/Remote-Desktop-app-461567af
http://code.msdn.microsoft.com/windowsapps/Remote-Desktop-app-461567af
http://msdn.microsoft.com/library/windows/apps/Hh994983
http://code.msdn.microsoft.com/windowsapps/RemoteApp-and-Desktop-cb639443
http://code.msdn.microsoft.com/windowsapps/RemoteApp-and-Desktop-cb639443
http://code.msdn.microsoft.com/windowsapps/RemoteApp-and-Desktop-cb639443
http://msdn.microsoft.com/library/windows/apps/Hh974747
http://code.msdn.microsoft.com/windowsapps/Sms-SendReceive-fa02e55e
http://code.msdn.microsoft.com/windowsapps/Sms-SendReceive-fa02e55e
http://code.msdn.microsoft.com/windowsapps/Sms-SendReceive-fa02e55e
http://msdn.microsoft.com/library/windows/apps/BR206567
http://code.msdn.microsoft.com/windowsapps/SMS-background-task-sample-513576cb
http://code.msdn.microsoft.com/windowsapps/SMS-background-task-sample-513576cb
http://msdn.microsoft.com/library/windows/apps/BR206567
http://msdn.microsoft.com/library/windows/apps/BR224847
http://code.msdn.microsoft.com/windowsapps/USSD-API-SDK-Sample-b0259f6c
http://code.msdn.microsoft.com/windowsapps/USSD-API-SDK-Sample-b0259f6c
http://msdn.microsoft.com/library/windows/apps/BR241148


About the Author  

Kraig Brockschmidt has worked with Microsoft since 1988, 

focusing primarily on helping developers through writing, 

education, public speaking, and direct engagement. Kraig is 

currently a Senior Program Manager in the Windows Ecosystem 

team working directly with the developer community as well as 

key partners on building apps for Windows. Through work like 

Programming Windows Store Apps in HTML, CSS, and JavaScript, 

he brings the knowledge gained through that direct experience 

to the worldwide developer audience. His other books include 

Inside OLE (two editions), Mystic Microsoft, The Harmonium 

Handbook, and Finding Focus. His website is 

www.kraigbrockschmidt.com. 
 

255

http://www.kraigbrockschmidt.com/

	Brockschmidt_first preview
	LOCPage
	6xxxxx_Introduction
	6xxxxx_Chapter01
	6xxxxx_Chapter02
	6xxxxx_Chapter03
	6xxxxx_Chapter04
	6xxxxx_AppendixA
	6xxxxx_AppendixB
	AuthorBio



