
Untitled-2 1 11/7/12 2:46 PM

www.DevExpress.com

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 2012 VOL 27 NO 12

Windows 8 and the WebSocket Protocol
Kenny Kerr . 32

Speech-Enabling a Windows Phone 8 App,
Part 2: In-App Dialog
F Avery Bishop . 42

Designing Accessibility with HTML5
Rajesh Lal . 48

The C# Memory Model in
Theory and Practice
Igor Ostrovsky . 64

Matrix Decomposition
James McCaffrey . 72

COLUMNS
CUTTING EDGE
Essential Facebook
Programming:
Authentication and Updates
Dino Esposito, page 6

DATA POINTS
Pain-Free Data Access in
JavaScript—Yes, JavaScript
Julie Lerman, page 14

WINDOWS AZURE INSIDER
Windows Azure Service Bus:
Messaging Patterns
Using Sessions
Bruno Terkaly and
Ricardo Villalobos, page 22

TEST RUN
Graph-Based Shortest-Path
Analysis with SQL
James McCaffrey, page 78

TOUCH AND GO
A Touch Interface for
an Orienting Map
Charles Petzold, page84

DON’T GET ME STARTED
Being Fully Digital
David Platt, page 88

Windows 8 and
WebSocket Protocol.........32

At Your Fingertips

Compatible with
Microsoft® Visual Studio® 2012

Untitled-2 2 9/4/12 11:58 AM

www.infragistics.com/experience

Copyright 1996-2012 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.
The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

infragistics.com/

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545

Untitled-2 3 9/4/12 11:58 AM

www.infragistics.com/experience

Printed in the USA

BJÖRN RETTIG Director
MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY HERNANDEZ Group Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt,
Bruno Terkaly, Ricardo Villalobos

Henry Allain President, Redmond Media Group
Doug Barney Vice President, New Content Initiatives
Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP/Group Publisher
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder National Account Manager/Microsoft Account Manager
Jenny Hernandez-Asandas Director, Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published 13 times a year, monthly with a special issue in October
by 1105 Media, Inc., 9201 Oakdale Avenue, Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing offi ces. Annual subscription rates payable in US
funds are: U.S. $35.00, International $60.00. Annual digital subscription rates payable in U.S. funds are:
U.S. $25.00, International $25.00. Single copies/back issues: U.S. $10, all others $12. Send orders
with payment to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.
com or call (847) 763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166,
Skokie, IL 60076. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

magazineDECEMBER 2012 VOLUME 27 NUMBER 12

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

Untitled-2 1 11/5/12 3:57 PM

www.leadtools.com

msdn magazine4

In the Windows 8 special edition of MSDN Magazine in October,
we introduced a new monthly column to our magazine readers.
Windows Azure Insider off ers a reinvigorated look at the rapidly
evolving Microsoft cloud platform, and provides focused and timely
hands-on guidance for developers working with Windows Azure.

In the Windows 8 special edition, authors Bruno Terkaly and
Ricardo Villalobos showed how a Windows Store app can consume
JSON data returned from a Web service deployed to the cloud via
Windows Azure (“Windows 8 and Windows Azure: Convergence in
the Cloud,” msdn.microsoft.com/magazine/jj660302). In the November issue,
Terkaly and Villalobos dove into Windows Azure Mobile Services
(WAMS) and how it can be used to simplify implementation of soft -
ware architectures that must address multiple device/OS types, rely on
async Web services and manage unpredictable traffi c fl ows (“Windows
Azure Mobile Services: A Simple, Scalable and Robust Back End for
Your Device Applications,” msdn.microsoft.com/magazine/jj721590).

In this issue, the column plumbs the Windows Azure Service
Bus. Terkaly and Villalobos show how the publisher/subscriber
messaging pattern can be used to control the way messages are dis-
tributed based on rules and fi lters (“Windows Azure Service Bus:
Messaging Patterns Using Sessions,” p. 22).

Meet the New Bosses
If some of this sounds familiar, it could be you ran across Terkaly and
Villalobos’ work for us over the past year. In our February 2012 issue,
the two wrote the feature titled “Building a Massively Scalable Plat-
form for Consumer Devices on Windows Azure” (msdn.microsoft.com/

magazine/hh781021), and in June they wrote “Democratizing Video
Content with Windows Azure Media Services” (msdn.microsoft.com/

magazine/jj133821). Th ey’ve also been writing the Windows Azure
Insider column for our Web site since March, which they kicked
off with a column titled “Write Scalable, Server-Side JavaScript
Applications with Node.js” (msdn.microsoft.com/magazine/hh875173).

So who are these guys? Both Terkaly and Villalobos are Microsoft
evangelists who are immersed in Windows Azure development.
While both share a passion for working with developers to help
overcome challenges, they come from very diff erent backgrounds.

Villalobos is a lifetime developer who has been in the program-
ming business for nearly three decades. Aft er getting a degree in
electronics and communications technology, Villalobos worked in
supply chain management and logistics. He later went back to get
his MBA in order to, as he says, “better understand the logic and
procedures behind the industry I was working in.”

Terkaly got his start in fi nance and accounting, wrestling Lotus
1-2-3 spreadsheets for a large accounting fi rm. A desire to auto-
mate tasks led him to macro programming, which in turn made
him curious about soft ware development. As he says: “I ended up
quitting the accounting job and began working as a C programmer
for a public utility.” He later worked for years as a Microsoft fi eld
engineer, a role he describes as “deeply technical.”

At Microsoft , Terkaly and Villalobos are in a unique position to
understand and address the technical challenges facing developers
working with the Microsoft cloud platform.

Says Villalobos: “When Microsoft off ered me the opportunity
to become a Windows Azure cloud evangelist two years ago, it felt
like all the eff orts and learning of my life had found a perfect place
to be applied: creating solutions, architecting distributed environ-
ments, mentoring developers through articles and presentations,
and designing new business models with company executives.”

We’ll be learning a lot from Terkaly and Villalobos in the months
to come, but their advice for now is simple. Terkaly urges devel-
opers to avoid thinking of cloud adoption as an all-or-nothing
deal. Dev shops can attack database and Web-app migration in
stages, before moving on to things like content distribution and
identity management. He also says developers don’t need to think
they’re starting over.

“In a general sense, as long as you think of your applications as
being stateless, you can use the same languages, IDEs and tools as
in a non-cloud world,” he says.

Villalobos agrees. “Understand that there are no black boxes in
Windows Azure,” he says. “At the end of the day, it’s about working
with servers and operating sys-
tems that they already know
and understand.”

Welcome Windows Azure Insider

MICHAEL DESMONDEDITOR’S NOTE

© 2012 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine/jj660302
http://msdn.microsoft.com/magazine/jj721590
http://msdn.microsoft.com/magazine/hh781021
http://msdn.microsoft.com/magazine/hh781021
http://msdn.microsoft.com/magazine/jj133821
http://msdn.microsoft.com/magazine/jj133821
http://msdn.microsoft.com/magazine/hh875173
http://msdn.microsoft.com/magazine

Untitled-4 1 11/1/12 11:32 AM

www.OnTimeNow.com/MSDN
www.OnTimeNow.com
www.axosoft.com
www.axosoft.com

msdn magazine6

Facebook is a rich and complex soft ware platform, which exposes
a sophisticated and multifaceted development framework to devel-
opers. At fi rst, the meaning of “Facebook programming” might not
be clear. Th ere are essentially two types of apps related to Facebook.
One type comprises apps that live and thrive within the Facebook
environment. Th ese apps are essentially rich Web pages loaded in
Facebook canvas pages and hosted in the main site. To use the app,
users need to navigate to the Facebook site and log in to their own
account. These apps can implement their own logic— whatever
you can express from within a Web page using JavaScript or
other Web programming technologies—and can gain access to
Facebook goodies such as friends, news feeds, media and more. To
get started on this form of programming, just go to the “Apps on
Facebook.com” page at bit.ly/f5hERV.

Another approach to Facebook programming involves integrating
some core Facebook functionalities into existing apps, such as Web
sites, mobile apps (for example, Android, iOS or Windows Phone)
or desktop applications.

In this article I’ll focus on this aspect of Facebook programming
and discuss how to use the Facebook C# API to authenticate users
and post programmatically on behalf of the currently logged-in user.

Embedding the Like Button
When it comes to popular social networks such as Facebook and
Twitter, the fi rst level of integration with external apps is through
the use of ad hoc buttons to “like” the page or tweet about it. Hardly
any programming is required; it’s purely a matter of inserting some
ad hoc markup into the Web pages.

So the simplest way to make your Web site more popular is
to embed the Facebook Like button in a new iframe so that any
user visiting the page can immediately like it on Facebook. Here’s
the minimal markup you need:

<iframe src="http://www.facebook.com/plugins/like.php?href=XXX">
</iframe>

You replace XXX with the URL of the page to like. In addition, you
might want to add a bit of CSS style to the iframe element to make it
better merge with the rest of the page. Figure 1 shows the fi nal result.

Th e Like button is the simplest (and most popular) of the Facebook
social plug-ins. Most of the time, you can integrate plug-ins in your
Web pages via frames or ad hoc markup. Some plug-ins require the

Facebook JavaScript SDK, and some only work if you have custom
Facebook pages. I’ll discuss scripting Facebook in a future column.

Beyond using social plug-ins, integrating Facebook in apps
(and not just Web sites) means being able to perform two main
tasks: let users authenticate themselves with your app using their
Facebook account, and enable the app to post to the Facebook walls
of particular users. Let’s start with user authentication.

OAuth and the Old Dream of a Single
Authentication Module
User authentication is a core function of just about any signifi cant
Web site. A decade ago, one of the best-selling points of ASP.NET in
comparison to classic ASP was the availability of a highly reusable
membership system that facilitated the development of an authen-
tication layer in a fraction of the time normally required.

Th ese days, however, having a custom authentication layer is
an enticing option. By implementing an ad hoc authentication
layer, developers make themselves responsible for safely storing
passwords and for the costs of managing thousands of accounts
or more. For users, that means yet another username/password
pair to remember.

Years ago, the Microsoft Passport initiative was a smart but
probably too-early attempt to make users’ lives easier when they
moved across a few related sites. The idea behind Passport was
that users just needed a single successful logon to freely navigate
through all of the associated sites.

 Essential Facebook Programming:
Authentication and Updates

CUTTING EDGE DINO ESPOSITO

Code download available at archive.msdn.microsoft.com/
mag201212CuttingEdge.

Figure 1 The Facebook Like Button

The Like button is the simplest
(and most popular) of the
Facebook social plug-ins.

www.bit.ly/f5hERV
http://archive.msdn.microsoft.com/mag201212CuttingEdge

Experience how Altova MissionKit®, the integrated suite
of XML, SQL, and UML tools, can simplify even the
most advanced Web 2.0 development projects.

Uncover
Web development
simplicity with the
complete set of tools
from Altova®

Download a 30 day free trial!

Try before you buy with a free,

fully functional trial from www.altova.com.

Scan to learn more

about Web development

with MissionKit.

XMLSpy® – advanced XML editor

 Intelligent HTML5 & CSS3 editing

 XSLT 1.0/2.0 editing help, plus debugging & profiling

StyleVision® – graphical stylesheet & report designer

 Drag-and-drop XSLT 1.0/2.0 stylesheet and Web page design

 Powerful XML, XBRL, & database report builder

 Advanced CSS and JavaScript functionality

DiffDog® – XML-aware diff / merge utility

 File, folder, directory, DB comparison and merging

 One-click directory syncing; Web and FTP server support

T

Pow

A

DifNew in Version 2013:

Altova MissionKit includes powerful
Web development tools:

Untitled-2 1 10/26/12 12:20 PM

http://www.altova.com

msdn magazine8 Cutting Edge

Bundled with older versions of ASP.NET, the Passport API is
now offi cially gone. Th e problem it was devised to solve, however,
is still present.

Today, OpenID (openid.net) is a great option for Web sites that need
to authenticate their users but don’t want to charge them with yet
another set of credentials. OpenID is a single sign-on (SSO) protocol
that your site uses to connect to a third-party service provider that
will manage the authentication for you. An OpenID-enabled site
manages only the beginning and end of the authentication task.
It redirects the user to the confi gured OpenID provider and gets
identity information back when everything has happened.

While OpenID is a popular buzzword, another one is being
discussed even more: OAuth (oauth.net). What’s the diff erence?

 OpenID is exclusively an SSO protocol. An OpenID provider
only manages the identities of registered users. But social networks
such as Twitter and Facebook need more. One app might simply
want to let users authenticate via Facebook. Another might want
to authenticate via Facebook but also post to the user’s wall. Yet
another app might want to read the user’s timeline and recent
activity. On top of everything, there’s authentication (which can be
managed via the OpenID protocol), but the same user may grant
diff erent permissions to diff erent apps. And this is an aspect that
OpenID was not designed to handle.

OAuth is the protocol that Twitter and Facebook use to handle
authentication and authori-
zation. An OAuth provider
doesn’t simply return iden-
tity information. It asks the
user which permissions he
wants to grant to the app and
then packages everything,
credentials and permissions,
into an access token. The
client app will then pass
the access token to perform
any permitted operation
on behalf of the user. One

benefi t of OAuth (and OpenID, as well) is that the
provider never discloses user credentials to the app.
In addition, when OAuth is used, the end user can
revoke permissions to any app at any time. So, for
example, imagine that at some point you authenti-
cate with app XYZ using Twitter (or Facebook) and
grant XYZ permission to post on your behalf. You
can revoke this permission at any time by simply
going to your Twitter (or Facebook) profile page.
Note that the access token returned by the OAuth
protocol is application- and user-specifi c. Th e user
will need to log in to multiple apps if he intends to
operate on multiple OAuth-based apps. OAuth is an
HTTP-based protocol for authenticating users. You
don’t oft en have to write HTTP requests manually,
even though you could (for example, to learn how
things work “under the covers”). In the Microsoft .NET
Framework, you can use general-purpose libraries

such as DotNetOpenAuth (dotnetopenauth.net) or pick up ready-made
frameworks for a specifi c social network such as TweetSharp for
Twitter and the Facebook C# SDK for Facebook.

When it comes to authentication, take a look at the Windows
Azure Access Control Service. Th is can act as a federated identity
provider and can translate multiple identity provider mappings. It
can host OAuth and Security Assertion Markup Language-based
tokens from Active Directory. It’s also built to work with Facebook
and the new ClaimsPrincipal class in the .NET Framework.

Authenticating Users via Facebook
Let’s start with a basic ASP.NET MVC site and use NuGet to plug in
the Facebook C# SDK (see Figure 2). Th e ASP.NET MVC sample
site is enriched with a brand-new authentication controller with
three methods, which I named F acebookLogin, FacebookAuthen-
ticated and Logoff . Th e fi rst two methods represent the two steps
of an OAuth interaction; the Logoff method just logs the user out
of the host app. Note that the Logoff action isn’t supposed to log
the user out of Facebook. OAuth and the Facebook C# SDK only
manage the authentication logic—persisting authentication infor-
mation via cookies is still up to the ASP.NET MVC site.

Th e homepage of the site provides a link for the user to click
when she wants to log in (see Figure 3). Th e link can simply be an
anchor to an image (or a text) that points to the FacebookLogin
action on the authentication controller:

 <img src="@Url.Content("~/Content/Images/loginfb.png")"
 style="border:0" alt="Sign in with FB" />

In a standard ASP.NET MVC site, this markup belongs to
the _logOnPartial.cshtml page. Let’s have a look at the authenti-
cation controller.

In the FacebookLogin action—the name is arbitrary—you need to
do a couple of things. First, you arrange the URL that, once invoked
from the OAuth provider, will cause your app to complete the authen-
tication step. In the sample app I’m considering, the URL will point
to the FacebookAuthenticated action on the Auth controller. You can
use the handy UriBuilder class for this kind of work:

Figure 3 The Button to
Trigger the Facebook
Authentication Process

Figure 2 Referencing the Facebook C# SDK via NuGet

www.openid.net
www.oauth.net
www.dotnetopenauth.net

Untitled-3 1 11/5/12 11:10 AM

www.devart.com

msdn magazine10 Cutting Edge

var uri = new UriBuilder(Request.Url)
 {
 Path = Url.Action("FacebookAuthenticated", "Auth")
 };

Th e second thing to do in the FacebookLogin action is arrange
the Facebook URL for login. If you use the Facebook C# SDK,
here’s the code you need:

var client = new FacebookClient();
var appId = ConfigurationManager.AppSettings["fb_key"];
var returnUri = uri.Uri.AbsoluteUri;
var fbLoginUri = client.GetLoginUrl(new
 {
 client_id = appId,
 redirect_uri = returnUri,
 response_type = "code",
 scope = "email"
 });

Th e parameters you pass to the GetLoginUrl method help prepare
the URL. Figure 4 describes the parameters in more detail. Th e action
FacebookLogin ends by redirecting the user to the returned login URL.

To authenticate a user via Facebook (or Twitter), you need to register
a Facebook (or Twitter) app fi rst and get some unique codes for that

function. To register a new Facebook app, go to bit.ly/mRw8BK. Upon
successful creation of the app, Facebook gives you an app ID string
and an app secret string displayed in the page shown in Figure 5.

Both the app ID and app secret are required to perform
Facebook operations from within a Web site or any other type of
user app. It’s common to store the app ID and app secret in the
confi guration fi le of the wrapper app:

<appSettings>
 <add key="fb_key" value="xxxxxxxxxxxx"/>
 <add key="fb_secret" value="yyyyyyyyyyyyyyyyyyyyy"/>
</appSettings>

Th e Facebook login URL does what it can to authenticate the
user. In particular, if the user is currently logged in to Facebook,
a request token is prepared and sent immediately to the specifi ed
return URL—in this case, this is the FacebookAuthenticated action.
If no user is currently logged in on the machine, Facebook displays
a classic login page. In doing so, it also lists the permissions that the
app is requesting. At the minimum, permissions concern e-mail
address and display name. However, they might include permission
to post on behalf of the user or access to the media stream, friends,
timeline and more. Th e user is expressly requested to approve or
deny those permissions. Full permissions reference information
can be found at bit.ly/P86tTC.

Finalizing the Authentication Process
To finalize authentication, you need to request and parse the
access token, as shown in Figure 6. The method ParseOAuth-
CallbackUrl allows you to retrieve the access code from Facebook.
Th is code isn’t suffi cient to control the Facebook account; you
need to exchange it for an access token. According to the OAuth
protocol, this requires another step and another HTTP request.
Once your Web site holds the access token for a given user and a
given Facebook app, it gains control of the Facebook account for
the permissions the user explicitly granted. At the very minimum,
you have permission to retrieve information about the user such
as fi rst and last name and, if allowed, e-mail address.

If your only purpose is authenticating users via Facebook, you
create the standard ASP.NET authentication cookie and you’re done.

If your app wants to do more (for
example, post on behalf of the user),
then you need to store the access
token so it can be given the same
lifetime as the authentication
cookie. You can save the access
token to a database or to a cookie.
Better yet, you can create a custom
principal and store the access token
as extra user data in the ASP.NET
authentication cookie. In my sample
app, I’m just creating an additional
cookie that’s managed by the
FbHelpers class (see the accompa-
nying source code for details).

Note, though, that the access
token is subject to some expi-
ration rules. If you authenticate Figure 5 Registering a New Facebook App

Parameter Description
client_id ID of the Facebook app acting as the proxy between

the user app and the Facebook site. You get this unique
string when you register your Facebook app.

redirect_uri URL to return to complete authentication (for example, grab
identity information and create an authentication cookie).

response_type This can be “token” or “code,” and it refers to how
Facebook returns the access token after a successful
authentication. For Web sites, it should be “code,” as
this ensures the access token—a sensitive piece of
information—is not appended to the URL.

Scope Indicates the additional permissions you want to request
for the user. When the scope parameter is blank, the
app has access to the user’s basic information such as
name, picture and gender. Through this parameter, you
can request the e-mail address, as well as the publishing
stream to be able to post. The full list of permissions is
available at bit.ly/NCcAgf.

Figure 4 Login Parameters

www.bit.ly/NCcAgf
www.bit.ly/mRw8BK
www.bit.ly/P86tTC

Untitled-3 1 11/5/12 11:09 AM

www.telerik.com/win8

msdn magazine12 Cutting Edge

using server-side code (that is, send users to authenticate with
the Facebook site, as discussed here), then you get a long-lived token
that lasts for 60 days. If you use the JavaScript SDK and attempt
a client-side authentication, then you get a short-lived token that
expires aft er two hours. You can extend this duration to 60 days

by making a second call to a specifi c endpoint. In any case, once
the access token is expired, users need to authenticate again and
reacquire a valid access token. Here’s a good way of coding that:

try {
 var client = new FacebookClient(...);
 dynamic result = client.Get("me/friends");
} catch (FacebookOAuthException) {
 // Your access token is invalid or expired.
}

Th e whole story is well-summarized at bit.ly/Qfeh5s.

Posting to a User’s Wall
In an OAuth scenario, when you hold the access token for a user/
application pair, you can programmatically execute any of the
interactive operations for which the user granted permissions to the
app. To post a message to the user’s wall you need the following code:

public static void Post(String accessToken, String status)
{
 var client = new FacebookClient(accessToken);
 client.Post("/me/feed", new { message = status });
}

You call this helper method from within a controller action
method. Th e access token string must be retrieved from wherever
you saved it, whether a custom cookie, the authentication cookie
or a persistent store. If you lost the access token, then for the post
operation to be successful the user needs to log out and log in
again. If you intend to perform tasks against Facebook, storing the
access token in a way that survives browser restarts is key. Figure
7 shows the sample app that posts a message, and the user’s wall
properly updated.

Next Up: Windows Presentation Foundation
To summarize, Facebook exposes a fairly rich API through which
developers can integrate Facebook content and logic with their own
apps. Facebook apps are certainly embedded apps living within
the Facebook boundaries, but they’re also classic Web or desktop
applications living externally. In this column I used the Facebook

C# SDK to perform two simple but
quite common operations: authenti-
cating a user of a Web site using her
Facebook account and using the pages
of the site to post to the current user’s
wall. In the next column, I’ll expand the
set of Facebook APIs used and discuss
how to achieve the same operations
from within a Windows Presentation
Foundation application.

DINO ESPOSITO is the author of “Architect-
ing Mobile Solutions for the Enterprise”
(Microsoft Press, 2012) and “Programming
ASP.NET MVC 3” (Microsoft Press, 2011),
and coauthor of “Microsoft .NET: Architecting
Applications for the Enterprise” (Microsoft
Press, 2008). Based in Italy, Esposito is a fre-
quent speaker at industry events worldwide.
Follow him on Twitter at twitter.com/despos.

THANKS to the following technical expert for
reviewing this article: Scott Densmore

public ActionResult FacebookAuthenticated(String returnUrl)
{
 // Prepare the return URL
 var returnUri = new UriBuilder(Request.Url) {
 Path = Url.Action("FacebookAuthenticated", "Auth")
 };

 // Parse response to get the access code
 var client = new FacebookClient();
 var oauthResult = client.ParseOAuthCallbackUrl(Request.Url);

 // Exchange the code for the access token
 dynamic result = client.Get("/oauth/access_token",
 new {
 client_id = ConfigurationManager.AppSettings["fb_key"],
 client_secret = ConfigurationManager.AppSettings["fb_secret"],
 redirect_uri = returnUri.Uri.AbsoluteUri,
 code = oauthResult.Code
 });

 // Saves the token to a cookie for further access
 var token = result.access_token;
 FbHelpers.AccessTokenSave(Response, token);

 // Grab identity information using the access token
 dynamic user = client.Get("/me",
 new {
 fields = "first_name,last_name,email",
 access_token = token
 });

 // Create the ASP.NET authentication cookie
 var userName = String.Format("{0} {1}",
 user.first_name, user.last_name);
 FormsAuthentication.SetAuthCookie(userName, false);

 // Back home
 return Redirect(returnUrl ?? "/");
}

Figure 6 Finalizing the Authentication

Figure 7 Posting to the Wall

www.bit.ly/Qfeh5s
www.twitter.com/despos

Untitled-1 1 10/30/12 3:37 PM

http://www.aspose.com

msdn magazine14

Although I think of myself as a plumber when it comes to soft ware
development, I have to do a fair amount of client-side development
as well. Even in this column, I venture into client apps where they
intersect with data access. But when the client side is JavaScript,
it’s never been pretty—my JavaScript skills, unfortunately, are still
lacking and each learning curve is a world of pain for me (and
for my Twitter followers, who are subjected to my venting). But
it’s always worth it when I push through the brick wall and get to
success. And anything that makes working in JavaScript easier for
me is something I welcome with open arms. So when, during a
Vermont.NET User Group presentation on single-page applications,
Ward Bell from IdeaBlade, gave us a look at an open source data
access API for JavaScript that he and his team were cooking up, I
was very interested. From the perspective of my experience with
the Entity Framework, what I saw was comparable to using EF for
client-side Web development. Th e API is called Breeze and at the
time of this writing is in beta. Bell was generous with his time to
help me learn more about Breeze for the sake of this column. You
can get it at breezejs.com, where you’ll also fi nd an impressive array
of documentation, videos and samples.

My June 2012 Data Points column, “Data Bind OData in Web Apps
with Knockout.js” (msdn.microsoft.com/magazine/jj133816), focused on using
Knockout.js to more easily perform data binding on the client side.
Breeze works seamlessly with Knockout, so I’m going to revisit the
example from the June column. My goal is to see how introducing
Breeze could simplify my coding eff ort in the example’s workfl ow:

• Getting data from the server.
• Binding and presenting that data.
• Pushing changes back to the server.

I’ll walk through the critical parts of an updated solution so you
can see how the puzzle pieces fi t together. If you want to follow along
with a properly set-up solution and test things out, you can down-
load the full solution from archive.msdn.microsoft.com/mag201212DataPoints.

The Original Sample
Here are the key steps of my earlier solution:

• On the client side, I defi ned a person class that Knockout
can use for data binding:

 function PersonViewModel(model) {
 model = model || {};
 var self = this;

 self.FirstName = ko.observable(model.Name || ' ');
 self.LastName = ko.observable(model.Name || ' ');

 }

• My data was provided via an OData data service, so I
accessed the data using datajs, a toolkit for consuming
OData from JavaScript.

• I took the query results (which are returned as JSON) and
created a PersonViewModel instance with the values.

• My app then let Knockout handle the data binding, which
also coordinates changes made by the user.

• I took the modifi ed PersonViewModel instance and
updated my JSON object from its values.

• Finally, I passed the JSON object to datajs to save back to
the server through OData.

Pain-Free Data Access
in JavaScript—Yes, JavaScript

DATA POINTS JULIE LERMAN

This article discusses a beta version of Breeze. All information is subject to change.

Code download available at archive.msdn.microsoft.com/
mag201212DataPoints.

readonly EFContextProvider<PersonModelContext> _contextProvider =
 new EFContextProvider<PersonModelContext>();

[AcceptVerbs("GET")]
public IQueryable<Person> People()
{
 return _contextProvider.Context.People;
}

[AcceptVerbs("GET")]
public IQueryable<Device> Devices()
{
 return _contextProvider.Context.Devices;
}
[AcceptVerbs("POST")]
public SaveResult SaveChanges(JObject saveBundle)
{
 return _contextProvider.SaveChanges(saveBundle);
}

[AcceptVerbs("GET")]
public string Metadata()
{
 return _contextProvider.Metadata();
}

Figure 1 Key Ingredients of My Web API Service

Anything that makes
working in JavaScript easier

for me is something I welcome
with open arms.

www.breezejs.com
http://archive.msdn.microsoft.com/mag201212DataPoints
http://msdn.microsoft.com/magazine/jj133816
http://archive.msdn.microsoft.com/mag201212DataPoints

Untitled-2 1 10/26/12 12:26 PM

www.scaleoutsoftware.com

msdn magazine16 Data Points

I didn’t even bother with related data, as it would have added a
lot more complexity for that small sample.

An Updated Service Using ASP.NET Web API
With Breeze, I can make HTTP calls to my OData service or to a
service defi ned by ASP.NET Web API (asp.net/web-api). I switched
my service to ASP.NET Web API, which works against the same
EF model I used previously—with one addition. My former sample
exposed only Person data. I now have related data in the form of a
Device class, as every developer I know has a small collection of per-
sonal devices. Th e relevant functions exposed by my ASP.NET Web
API are a GET, which returns Person data; another GET for Device
data; and a single POST for saving changes. I’m also using a Meta-
data function to expose the schema of my data, as shown in Figure
1. Breeze will use this Metadata in order to understand my model.

Breeze.NET on the Server
Take note of the _contextProvider variable used in these methods.
I’m not calling methods of my EF DbContext (PersonModelContext)
directly. Instead, I’ve wrapped it with the Breeze EFContextProvider.
This is where the _contextProvider.Metadata method is coming
from, as well as the signature of SaveChanges, which accepts a
saveBundle parameter. With saveBundle, Breeze is going to let me
send a set of data modifi cations from my app, which it will pass on
to my DbContext to persist to the database.

I’ve named my ASP.NET Web API app “BreezyDevices,” so now I
can request schema using http://localhost:19428/api/breezydevices/
metadata. And I can query for data by specifying one of the GET
methods: http://localhost:19428/api/breezydevices/people.

Because Breeze on the client side will query and save to an
ASP.NET Web API remote service, I can remove datajs from
my client app.

How Breeze Will Help My Sample
In the scope of this sample, I’ll use Breeze to focus on three pain points:

1. My service returns and accepts bare JSON, but I need to
work with JavaScript objects with Knockout observable
properties for data binding to the UI.

2. I want to include related data, but this is hard on the client.
3. I need to send multiple changes to the server for saving.

With Breeze, I can data bind directly to my resulting data. I’ll
confi gure Breeze to use Knockout and, in response, it will create
Knockout observable properties for me under the covers. This
means that working with related data is much simpler because I
don’t have to translate it from JSON to bindable objects, and I don’t
have to make the extra eff ort to redefi ne graphs on the client side
using my query results.

There is some server-side configuration involved in using
Breeze. I’ll leave the details of that to the Breeze documentation so
I can focus on the client-side data-access part of the sample. And
because there’s a lot more to Breeze than what I’ll be leveraging in
this sample, once I’ve given you the fl avor of it you’ll want to visit
breezejs.com to learn more.

Figure 2 shows where Breeze fi ts into the workfl ow on the server
side and on the client side.

Querying from Breeze
My experience with OData and with Entity Framework makes que-
rying with Breeze familiar. I’ll work with the Breeze EntityManager
class. Th e EntityManager is able to read the data model supplied
by your service’s metadata and produce JavaScript “entity” objects
on its own; you don’t have to defi ne entity classes or write mappers.

Th ere’s a bit of client-side confi guration to do as well. For example,
the following code snippet creates shortcuts to some Breeze namespaces
and then confi gures Breeze to use Knockout and ASP.NET Web API:

var core = breeze.core,
 entityModel = breeze.entityModel;

core.config.setProperties({
 trackingImplementation: entityModel.entityTracking_ko,
 remoteAccessImplementation: entityModel.remoteAccess_webApi
});

It’s possible to confi gure Breeze to use a number of alternative
binding frameworks (such as Backbone.js or Windows Library for
JavaScript) and data-access technologies (such as OData).

Next, I create an EntityManager that knows the relative uri of my
service. Th e EntityManager is comparable to an Entity Framework
or OData context. It acts as my gateway to Breeze and caches data:

var manager = new entityModel.EntityManager('api/breezydevices');

Now I can defi ne a query and have my EntityManager execute it
for me. Th is code is not too dissimilar to using Entity Framework

Figure 2 The Breeze.NET API Helps on the Server While the
BreezeJS API Helps on the Client

Server

ASP.NET
Web API

Controller

Breeze.NET
API

Entity
Framework
& EF Model

Client

BreezeJS
API Knockout Markup

Figure 3 Using Breeze and Knockout to Easily Consume Data
in JavaScript

With Breeze, I can data bind
directly to my resulting data.

http://asp.net/web-api

© 2012 GrapeCity, inc. All rights reserved. All other product and brand names are trademarks
and/or registered trademarks of their respective holders.

Untitled-1 1 7/12/12 12:59 PM

http://c1.ms/reporting

msdn magazine18 Data Points

and LINQ to Entities, or to working with any of the OData client
APIs, so it was my favorite part of learning how to use Breeze:

function getAllPersons(peopleArray) {
 var query = new entityModel.EntityQuery()
 .from("People")
 .orderBy("FirstName, LastName");

 return manager
 .executeQuery(query)
 .then(function (data) {
 processResults(data,peopleArray); })
 .fail(queryFailed);
 };

I’m doing this on the client side and can perform my query
execution asynchronously, which is why the executeQuery method
lets me defi ne what to do when the query executes successfully
(.then) as well as what to do if it fails (.fail).

Notice that I’m passing an array (which you’ll see shortly is a
Knockout observable array) to getAllPersons. If the query execu-
tion succeeds, I pass that array on to the processResults method,
which will empty the array and then populate it with the data from
the service. Previously I would’ve had to iterate through the results
and create each PersonViewModel instance myself. Using Breeze,
I can use that returned data directly:

function processResults(data, peopleArray) {
 var persons = data.results;
 peopleArray.removeAll();
 persons.forEach(function (person) {
 peopleArray.push(person);
 });
 }

Th is gives me an array of person objects that I’ll present in the view.
The getAllPersons function is inside of an object I’ve called

dataservice. I’ll use dataservice in the next bit of code.

A Self-Populating View Model
In the sample from my June Knockout article, the query and results
were separate from the PersonViewModel class I used for the data
binding in the view. So I executed the query and translated the

results into a PersonViewModel instance with mapping code that
I wrote. As I don’t need mapping code or a PersonViewModel with
Breeze, I’ll make my app a bit smarter this time and have it display an
array of Person objects fetched from the database by my dataservice.
To refl ect this, I now have an object named PeopleViewModel. Th is
exposes a people property that I’ve defi ned as a Knockout observable
array, which I populate using dataservice.getAllPersons:

(function (root) {
 var app = root.app;
 var dataservice = app.dataservice;

 var vm = {
 people: ko.observableArray([]),
 }
 };

 dataservice.getAllPersons(vm.people);
 app.peopleViewModel = vm;

}(window));

In the download sample you’ll fi nd a fi le called main.js, which is
the starting point for the application logic. It contains the following
line of code that calls the Knockout applyBindings method:

ko.applyBindings(app.peopleViewModel, $("content").get(0));

Th e applyBindings method connects the view model properties
and methods to the HTML UI controls via the data bindings
declared in the view.

Th e view in this case is a small chunk of HTML in my index.cshtml.
Notice the Knockout data-bind markup that binds and displays
the fi rst and last name of each person object in the people array:

<ul data-bind="foreach: people">
 <li class="person" >
 <label data-bind="text: FirstName"></label>
 <label data-bind="text: LastName"></label>

When I run my app I get a read-only view of my person data,
as shown in Figure 3.

Tweaking JavaScript and Knockout to Allow Editing
As you may recall from the June column, Knockout makes it easy
to bind data for editing. Together with Breeze, this is a great com-
bination for easily editing data and persisting it back to the server.

First, I add a function to the dataservice object that calls the
Breeze manager.saveChanges method. When called, the Breeze
EntityManager bundles up the pending changes and POSTs them
to the Web API service:

function saveChanges() {
 manager.saveChanges();
 }

<ul data-bind="foreach: people">
 <li class="person" >
 <form>
 <label>First: </label><input data-bind="value: FirstName" />
 <label>Last: </label> <input data-bind="value: LastName" />

 <label>Devices: </label>
 <ul class="device" data-bind="foreach: Devices">

 <input data-bind="value: DeviceName"/>

 </form>

Figure 5 Modifying the View to Display the Device Data

Figure 4 Using Breeze to Save Data via JavaScript

Expand is a term you might
recognize from OData or

NHibernate, and is similar to
Include in the Entity Framework.

© 2012 GrapeCity, inc. All rights reserved. All other product and brand names are trademarks
and/or registered trademarks of their respective holders.

Untitled-1 1 7/12/12 12:59 PM

http://c1.ms/spreadsheets

msdn magazine20 Data Points

Th en I’ll expose the new saveChanges function as a feature of
the dataservice:

var dataservice = {
 getAllPersons: getAllPersons,
 saveChanges: saveChanges,
 };

Now my PeopleViewModel object needs to expose its own save
method for binding to the view; the view model save function dele-
gates to the dataservice saveChanges method. Here I use a JavaScript
“anonymous function” to defi ne the view model save:

var vm = {
 people: ko.observableArray([]),
 save: function () {
 dataservice.saveChanges();
 },
 };

Next, I replace my labels with input elements (text boxes) so the user
can edit the Person objects. I have to switch from “text” to the Knockout
“value” keyword to enable two-way binding to user input. I also add an
image with a click event bound to the PeopleViewModel.save method:

<ul data-bind="foreach: people">
 <li class="person" >
 <form>
 <label>First: </label><input data-bind="value: FirstName" />
 <label>Last: </label> <input data-bind="value: LastName" />
 </form>

Th at’s it. Breeze and Knockout will take care of the rest! You can
see the data displayed for editing in Figure 4.

I can edit any or all of these fi elds and click the save button. Th e
Breeze EntityManager will gather up all of the data changes and
push them up to the server, which in turn will send them to Entity
Framework to update the database. While I won’t be extending this
demo to include inserts and deletes, Breeze can certainly handle
those modifi cations as well.

And for the Big Finish—Adding in Related Data
Th is is the part of any JavaScript application that many developers
dread—and it’s exactly the reason I wanted to write this column.

I’ll make one small change to my script and add a little markup
to the form that will turn each person into an editable master/
detail person.

Th e change in my script will be in dataservice, where I’ll modify
the query by adding in the Breeze expand query method to eager-
load each person’s devices along with the person. Expand is a term
you might recognize from OData or NHibernate, and is similar to
Include in the Entity Framework (Breeze also has support to easily
load related data aft er the fact):

var query = new entityModel.EntityQuery()
 .from("People")
 .expand("Devices")
 .orderBy("FirstName, LastName");

I’ll then modify my view so that it knows how to display the
Device data, as shown in Figure 5.

And there you have it. As you can see in Figure 6, Breeze handles
the eager loading and building of the graphs on the client side. It also
coordinates the data to be sent back to the service for updates. On the
server side, the Breeze EFContextProvider sorts out all of the change
data that it receives and makes sure that the Entity Framework gets
what it needs to persist the data to the database.

While this was simple with a one-to-many relationship, at the
time of this writing the beta version of Breeze doesn’t support
many-to-many relationships.

Pain-Free Client-Side Data Access
Bell tells me it was his own painful experience of working on a proj-
ect that was both JavaScript-intensive and data-access-intensive
that inspired Breeze. His company, IdeaBlade, has always focused
on creating solutions to solve the problems of handling discon-
nected data, and the developers were able to bring a great deal of
experience to this open source project. I’ve always been reluctant
to embark on projects that use a lot of JavaScript because my skills
are lame to begin with, and I know the data-access bits would make
me unhappy. I was very interested in Breeze as soon as I saw it. And
though I’ve only scratched its surface, the last bit of what I showed
you in this article—how easy it was to consume and save related
data—is what really won me over.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework”
(2010) as well as a Code First edition (2011) and a DbContext edition (2012), all
from O’Reilly Media. Follow her on Twitter at twitter.com/julielerman.

THANKS to the following technical expert for reviewing this article: Ward Bell

Figure 6 Consuming and Saving Related Data

While I won’t be extending this
demo to include inserts and
deletes, Breeze can certainly
handle those modifi cations.

www.thedatafarm.com/blog
www.twitter.com/julielerman

Untitled-1 1 11/7/12 2:53 PM

www.DevExpress.com

msdn magazine22

In one of our previous articles, we discussed the importance
of using messaging patterns in the cloud in order to decouple
solutions and promote easy-to-scale soft ware architectures.
(See “Comparing Windows Azure Queues and Service Bus
Queues” at msdn.microsoft.com/magazine/jj159884.) Queuing
is one of these messaging patterns, and the Windows
Azure platform off ers two main options to implement this
approach: Queue storage services and Service Bus Queues,
both of which cover scenarios where multiple consumers
compete to receive and process each of the messages in a
queue. Th is is the canonical model for supporting variable
workloads in the cloud, where receivers can be dynami-
cally added or removed based on the size of the queue,
off ering a load balancing/failover mechanism for the back
end (see Figure 1).

Even though the queuing messaging pattern is a great
solution for simple decoupling, there are situations where
each receiver requires its own copy of the message, with
the option of discarding some messages based on spe-
cific rules. A good example of this type of scenario is
shown in Figure 2, which illustrates a common challenge
that retail companies face when sending information to
multiple branches, such as the latest products catalog or
an updated price list.

For these situations, the publisher/subscriber pattern is
a better fi t, where the receivers simply express an interest
in one or more message categories, connecting to an inde-
pendent subscription that contains a copy of the message
stream. The Windows Azure Service Bus implements
the publisher/subscriber messaging pattern through topics and
subscriptions, which greatly enhances the ability to control how
messages are distributed, based on independent rules and fi lters.
In this article, we’ll explain how to apply these Windows Azure
Service Bus capabilities using a simple real-life scenario, assuming
the following requirements:

1. Products should be received in order, based on the
catalog page.

2. Some of the stores don’t carry specifi c catalog categories,
and products in these categories should be fi ltered out
for each store.

3. New catalog information shouldn’t be applied to the store
system until all the messages have arrived.

All the code samples for this article were created with Visual
Studio 2012, using C# as the programming language. You’ll also
need the Windows Azure SDK version 1.8 for .NET developers
and access to a Windows Azure subscription.

Setting up the Messaging Blueprint for the Project
Before writing any code, you need to defi ne the diff erent entities
(topics and subscriptions) that will become part of the messaging
workfl ow. Th is can be accomplished by accessing the Windows
Azure Portal at manage.windowsazure.com. Log in with your credentials
and follow these steps:

1. Click the Create New icon on the bottom left of the
Management Portal.

Windows Azure Service Bus:
Messaging Patterns Using Sessions

Code download available at archive.msdn.microsoft.com/
mag201212AzureInsider.

WINDOWS AZURE INSIDER
BRUNO TERKALY AND

RICARDO VILLALOBOS

Figure 1 Queuing Messaging Pattern: Each Message Is Consumed
by a Single Receiver

Sender 1

Sender 2

Sender 3

Single Queue

Receiver 1

Receiver 3

Receiver 2

Figure 2 Publisher/Subscriber Messaging Pattern: Each Message Can
Be Consumed More Than Once

Store 1
Subscription 1

Headquarters Store 2
Topic Subscription 2

Store 3
Subscription 3

http://msdn.microsoft.com/magazine/jj159884
http://manage.windowsazure.com
http://archive.msdn.microsoft.com/mag201212AzureInsider

Untitled-1 1 10/30/12 3:37 PM

www.aspose.com

msdn magazine24 Windows Azure Insider

2. Click on the APP SERVICES icon, then on SERVICE BUS
TOPIC and fi nally on CUSTOM CREATE (see Figure 3).

3. On the fi rst dialog screen, enter the topic name and select the
appropriate region and Windows Azure subscription ID. If
this is your fi rst namespace in the selected region, the wizard
will suggest a namespace queue: [your entity name]-ns. You
can change this value.

4. Click on the NEXT mark (right-point-
ing arrow) to insert the remaining
properties. You can keep the default
values. Click on the checkmark to
create the topic.

5. Click on the Service Bus icon on the
left navigation bar to get a list of name-
spaces. Note that you might not see the
namespace listed immediately. It takes
a few seconds to create the namespace
and update the portal interface.

6. Select the Topic that you just created
from the list, and click on ACCESS
KEY, which can be found on the
bottom of the screen. Record the full
connection string for later use.

7. On the top of the Windows Azure Por-
tal screen, click on SUBSCRIPTIONS,
and then on CREATE A NEW SUB-
SCRIPTION. In the popup dialog,
enter a name (in our example, we used
“Store1Sub”), and click on the arrow
to continue.

8. In the next screen, keep the default
values, but make sure to check the
Enable sessions option. Click on
the checkmark to create the sub-
scription. Sessions will be used by
subscribers to retrieve messages in
sequential order.

9. Repeat steps 7 and 8 for each of the
three stores.

Once the topics and subscrip-
tions have been created, you can
also access them directly in Visual
Studio. To do so, open Server
Explorer (View | Server Explorer)
and expand the Windows Azure
Service Bus node (see Figure
4). Right-click on the Windows
Azure Service Bus node and select
Add New Connection. Enter the
Namespace name, Issuer Name
(usually “owner”) and Issuer
Access Key you recorded when the
Windows Azure namespace was
created in the portal.

Keep in mind that it’s possible to
programmatically create and manage these entities using classes in
the Microsoft .ServiceBus.Messaging namespace, including Topic-
Client and SubscriptionClient, which are used later in this article.

Once the basic structure for the messaging workfl ow has been
created, we’ll simulate traffic using two console applications
created in Visual Studio, as shown in Figure 5. Th e fi rst console

application, MSDNSender, will send the
products catalog. The second, MSDN-
Receiver, will receive the information in
each of the stores. We’ll analyze the code
in the following sections. In the Pub/Sub
pattern, the MSDNSender is the publisher
and the MSDNReceiver is the subscriber.

Sending the Products Catalog
from Headquarters
As you can see in Figure 2, Headquarters
(the publisher) sends messages to a topic. Th is
logic is represented by the code in the main
fi le, Program.cs, a part of the MSDNSender
project. Program.cs encapsulates the logic
and code to send a list of products as
individual messages to the topic. Let’s take a
look at the diff erent sections, starting with
the Main method. Notice that fi rst we create
a client for the topic, as follows:
 // Create a topicClient using the
 // Service Bus credentials
 TopicClient topicClient =
 TopicClient.CreateFromConnectionString(
 serviceBusConnectionString, topicName);

Once a topicClient is created, the pub-
lisher can send messages using it. The
list of products to be sent is stored in an
XML file called ProductsCatalog.xml,
which contains a list of 10 product entities
that will be transformed into an array of
objects. Th e products will then get mapped
into the Catalog and Product classes stored
in the Product.cs fi le:

Figure 3 Creating a New Service Bus Topic Using the Windows Azure Portal

Figure 4 Creating a Service Bus Topic and
Subscriptions Using the Visual Studio Tools

Figure 5 Visual Studio Solution to Simulate
the Products Catalog Scenario

Untitled-2 1 9/13/12 12:50 PM

www.componentart.com/windows8

msdn magazine26 Windows Azure Insider

// Deserialize XML file with Products, and store them in an object array
Catalog catalog = null;
string path = "ProductsCatalog.xml";
XmlSerializer serializer = new XmlSerializer(typeof(Catalog));
StreamReader reader = new StreamReader(path);
catalog = (Catalog) serializer.Deserialize(reader);
reader.Close();

Each Product in the catalog array presents the structure shown
in Figure 6.

Inside the array loop, a call to the CreateMessage method extracts
diff erent properties from the Product objects and assigns them
to the message to be sent. Two properties require extra attention:

if (isLastProductInArray)
 message.Properties.Add("IsLastMessageInSession", "true");
message.SessionId = catalogName;

Sessions are extremely important, because they allow the receiver
to determine whether all the messages that belong to a specifi c
logical group have arrived. In this case, by setting the SessionId
message property, we’re specifying that the receiver shouldn’t use
the catalog information until aft er all the messages with the same
catalogName value have arrived. Also, for the last product in
the array, we’re adding a new property: IsLastMessageInSession,
which will allow the receivers to determine if the last message in
the session has arrived, and the catalog can be fully processed.
Figure 7 shows MSDNSender running.

Receiving the Product Catalog
Using Subscriptions at the Stores
Now that the catalog and products have been sent out to the topic
and copied to the diff erent subscriptions, let’s turn our attention
to the MSDNReceiver project, where messages are received and
processed. Note that in the Main method of Program.cs, the code

creates a client for the Subscription based on infor-
mation provided by the user via a Console.Read Line
command. Users are expected to enter their store
number, which reflects the messages they wish to
receive. In short, each branch store is concerned only
with messages that apply to that store:
 Console.WriteLine("Enter Store Number");
 string storeNumber = Console.ReadLine();

 Console.WriteLine("Selecting Subscription for Store...");

 // Create a Subscription Client to the Topic
 SubscriptionClient subscriptionClient =
 SubscriptionClient.CreateFromConnectionString(
 serviceBusConnectionString, topicName,
 "Store" + storeNumber.Trim() + "Sub",
 ReceiveMode.PeekLock);

public class Product
 {
 [System.Xml.Serialization.XmlElement("ProductId")]
 public string ProductId { get; set; }

 [System.Xml.Serialization.XmlElement("ProductName")]
 public string ProductName { get; set; }

 [System.Xml.Serialization.XmlElement("Category")]
 public string Category { get; set; }

 [System.Xml.Serialization.XmlElement("CatalogPage")]
 public int CatalogPage { get; set; }

 [System.Xml.Serialization.XmlElement("MSRP")]
 public double MSRP { get; set; }

 [System.Xml.Serialization.XmlElement("Store")]
 public string Store { get; set; }
 }

Figure 6 Class Representation for Products in the Catalog

static void ReceiveSessionMessages(MessageSession receiver)
 {
 // Read messages from subscription until subscription is empty
 Console.WriteLine("Reading messages from subscription {0}", receiver.Path);
 Console.WriteLine("Receiver Type:" + receiver.GetType().Name);
 Console.WriteLine("Receiver.SessionId = " + receiver.SessionId);

 SequenceState sessionState = GetState(receiver);
 BrokeredMessage receivedMessage;
 while ((receivedMessage = receiver.Receive()) != null)
 {
 string sessionId = receiver.SessionId;
 ProcessMessage(receivedMessage, ref sessionState, receiver);
 while (sessionState.GetNextOutOfSequenceMessage() != -1)
 {
 // Call back deferred messages
 Console.WriteLine("Calling back for deferred message: Category {0},
 Message sequence {1}", receiver.SessionId,
 sessionState.GetNextSequenceId());
 receivedMessage = receiver.Receive(
 sessionState.GetNextOutOfSequenceMessage());
 ProcessMessage(receivedMessage, ref sessionState, receiver);
 }

 if (receivedMessage.Properties.ContainsKey(
 "IsLastMessageInSession"))
 break;

 }

 SetState(receiver, null);
 receiver.Close();
 }

Figure 8 The ReceivedSessionMessages Method in Code

Figure 7 Execution of the MSDNSender Project

Sessions are extremely important,
because they allow the receiver

to determine whether all the
messages that belong to a specifi c

logical group have arrived.

Untitled-2 1 9/13/12 12:51 PM

www.componentart.com/windows8

msdn magazine28 Windows Azure Insider

Because we’re receiving messages from the subscriptions based
on sessions (as explained in the previous section), we need to
request the next one using the following line of code:

MessageSession sessionReceiver =
 subscriptionClient.AcceptMessageSession(TimeSpan.FromSeconds(5));

Basically, what this means is that the client will check for any
to-be-processed messages in the subscription—those whose
SessionId property is not null—and if no such messages are
encountered within a period of fi ve seconds, the request will time
 out, terminating the receiver application. On the other hand, if a
session is found, the ReceivingSessionMessages method will be
called. Before we jump into this piece of code, let’s discuss the
concept of session state, which allows the developer to store infor-
mation that can be used while messages that belong to the same
transaction are received. In this case, we’re using session state to
“remember” the last catalog page that was received, as well as the
messages—products—that arrived out of order.

Based on this, here’s the workfl ow in code:
1. Th e current message is received in the ReceiveSession-

Messages method (see Figure 8), which relies on the
ProcessMessage method (Figure 9) to process it.

2. Inside the ProcessMessage method, if the message is out
of sequence, it’s automatically deferred and its ID stored
in the session state. Otherwise, it’s marked as “complete”
and removed from the subscription. Also, the next
expected sequence—Catalog Page—is stored in the session.

3. Aft er the current received message has been processed,
the subsequent code in ReceiveSessionMessages checks
for deferred message IDs in the session, and tries to pro-
cess them again based on the latest Catalog page.

4. Once all the messages have been received for the session,
the receiver is closed.

Keep in mind that for this project, deferred message IDs are
stored in the session state, and could be potentially lost. In a pro-
duction environment, we recommend using some type of persisted
storage (Windows Azure Tables is one option) for this purpose.
Note that if the message contains the property IsLastMessage-
SessionInSession (set during the sending process), the session loop
is terminated. Th e console output for the MSDNReceiver project
can be seen in Figure 10.

Windows Azure Service Bus subscriptions give you the ability to
create specifi c rules that fi lter out messages before they’re consumed.
In this case, it would be relatively easy to create a rule that segregates
products by category or by store number (which we ignored in this
project). Rules can be created programmatically, directly in the
Windows Azure portal or through Visual Studio tools.

Wrapping Up
Th e Windows Azure Service Bus off ers an amazingly robust and
fl exible implementation of the publish/subscribe pattern. Many
diff erent scenarios can be addressed through the use of topics and
subscriptions. Th e ability to support multiple senders broadcasting
messages to multiple receivers, combined with the ability to logi-
cally group and sort messages, opens up a world of possibilities for
the modern developer. Moreover, being able to leverage a persistent
session to track state makes it straightforward to logically group
messages and control their sequence. In a world where distributed
environments are the norm, understanding how to use messaging
patterns and the tools around them is crucial for today’s soft ware
architects working in the cloud.

BRUNO TERKALY is a developer evangelist for Microsoft . His depth of knowledge
comes from years of experience in the fi eld, writing code using a
multitude of platforms, languages, frameworks, SDKs, libraries
and APIs. He spends time writing code, blogging and giving live
presentations on building cloud-based applications, specifi cally
using the Windows Azure platform.

RICARDO VILLALOBOS is a seasoned soft ware architect with more
than 15 years of experience designing and creating applica-
tions for companies in the supply chain management industry.
Holding different technical certifications, as well as a master’s
degree in business administration from the University of Dallas,
he works as a cloud architect in the Windows Azure CSV
incubation group for Microsoft .

THANKS to the following technical expert for reviewing this
article: Abhishek Lal

static void ProcessMessage(BrokeredMessage message, ref SequenceState sessionState,
 MessageSession session = null)
 {
 if (session != null)
 {
 int messageId = Convert.ToInt32(message.Properties["CatalogPage"]);
 if (sessionState.GetNextSequenceId() == messageId)
 {
 OutputMessageInfo("RECV: ", message, "State: " + "RECEIVED");
 sessionState.SetNextSequenceId(messageId + 1);
 message.Complete();
 SetState(session, sessionState);
 }
 else
 {
 Console.WriteLine("Deferring message: Category {0}, Catalog Page {1}",
 session.SessionId, messageId);
 sessionState.AddOutOfSequenceMessage(messageId, message.SequenceNumber);
 message.Defer();
 SetState(session, sessionState);
 }
 }

 Thread.Sleep(receiverDelay);
 }

Figure 9 The ProcessMessage Method in Code

Figure 10 Execution of the MSDNReceiver project

Untitled-1 1 10/26/12 12:11 PM

www.xceed.com

LET US
HEAR
YOU
CODE

Intense Take-Home
Training for Developers,
Software Architects
and Designers

YOURR BAACKKSTAGGE PAASS TTO TTHHE MICROOSOFFT PLLATFFORMM

PRODUCED BYSUPPORTED BY

magazine

Untitled-16 2 11/1/12 4:18 PM

www.vslive.com/lasvegas

vslive.com/lasvegas

Everyone knows all the *really* cool
stuff happens behind the scenes.
Get an all-access look at the Microsoft
Platform and practical, unbiased,
Developer training at Visual Studio
Live! Las Vegas.

Code with .NET rockstars and learn how to
maximize the development capabilities of
Visual Studio and .NET during 5 action-packed
days of pre- and post-conference workshops,
60+ sessions led by expert instructors and
keynotes by industry heavyweights.

Topics will include:
Cloud Computing
Data Management
HTML5
Mobile
SharePoint
Silverlight / WPF
SQL Server
Visual Studio / .NET
Web
Windows 8
Windows Phone

las vegas MARCH
25-29, 2013

MGM Grand Hotel & Casino

Register before
January 1 and
save $500!
Use Promo Code LVDEC

END-OF-YEAR SPECIAL:

Scan the QR
code to register
or for more
event details.

Untitled-16 3 11/1/12 4:19 PM

www.vslive.com/lasvegas

msdn magazine32

The WebSocket protocol aims to provide bidirectional
communication in a Web-saturated world dominated by clients
solely responsible for establishing connections and initiating
request/response pairs. It fi nally allows applications to enjoy many
more of the benefi ts of TCP, but in a Web-friendly way. Considering
that the WebSocket protocol was only standardized by the Internet
Engineering Task Force in December 2011—and as I write this is
still under consideration by the World Wide Web Consortium—it’s
perhaps surprising just how comprehensively Windows 8 has
embraced this new Internet technology.

In this article I’ll first show you how the WebSocket protocol
works and explain its relationship to the larger TCP/IP suite. I’ll then
explore the various ways in which Windows 8 enables programmers
to easily adopt this new technology from within their applications.

Why WebSocket?
Th e main goal of this protocol is to provide a standard and effi cient
way for browser-based applications to communicate with servers
freely outside of request/response pairs. A few years back, Web
developers were all afl utter talking about Asynchronous JavaScript
and XML (AJAX) and how it enables dynamic and interactive
scenarios—and certainly it did, but the XMLHttpRequest object
that inspired it all still only allowed the browser to make HTTP
requests. What if the server wanted to send a message to the client
out-of-band? Th at’s where the WebSocket protocol comes in. It not
only allows the server to send messages to the client, but it does so
without the overhead of HTTP, providing bidirectional communi-
cation that’s close to the speed of a raw TCP connection. Without
the WebSocket protocol, Web developers have had to abuse HTTP
by polling the server for updates, using Comet-style programming
techniques, and employing many HTTP connections with a great
deal of protocol overhead just to keep applications up-to-date. Servers
are overloaded, bandwidth is wasted and Web applications are overly
complicated. Th e WebSocket protocol solves these problems in a
surprisingly simple and effi cient way, but before I can describe how
it works, I need to provide some foundational and historical context.

WIN DOWS 8 NET W OR K ING

Windows 8 and the
WebSocket Protocol
Kenny Kerr

This article discusses:
• The TCP/IP suite

• TCP and HTTP

• The WebSocket handshake

• WebSocket data transfer

• Windows 8 and the WebSocket protocol

• .NET clients and servers

• Support by the Windows Runtime

• JavaScript and the WebSocket protocol

• The Windows HTTP Services Client for C++

Technologies discussed:
Windows 8, WebSocket Protocol

33December 2012msdnmagazine.com

The TCP/IP Suite
TCP/IP is a protocol suite, or collection of interrelated protocols,
that implements the Internet architecture. It has evolved into its
current form over many years. Th e world has changed dramatically
since the 1960s, when the concept of packet-switching networks fi rst
developed. Computers have become much faster, software has
grown more demanding and the Internet has exploded into an all-
encompassing web of information, communication and interaction,
and is the backbone of so much of the soft ware in popular use today.

Th e TCP/IP suite consists of a number of layers loosely modeled
after the Open System Interconnection (OSI) layering model.
Although the protocols at the diff erent layers aren’t particularly
well delineated, TCP/IP has clearly proven its eff ectiveness, and
the layering problems have been overcome by a clever combina-
tion of hardware and software designs. Separating TCP/IP into
layers, however vague they might be, has helped it evolve over
time as hardware and technology have changed, and has allowed
programmers with different skills to work at different levels of
abstraction, either helping to build the protocol stack itself or to
build applications making use of its various facilities.

At the lowest layers are the physical protocols, including the
likes of wired media access control and Wi-Fi, providing physical
connectivity as well as local addressing and error detection. Most
programmers don’t think too much about these protocols.

Moving up the stack, the Internet Protocol (IP) itself resides in
the networking layer and allows TCP/IP to become interoperable
across different physical layers. It takes care of mapping com-
puter addresses to physical addresses and routing packets from
computer to computer.

Th en there are ancillary protocols, and we could debate about
which layer they reside on, but they really provide a necessary sup-
porting role for things such as auto-confi guration, name resolution,
discovery, routing optimizations and diagnostics.

As we move further up the layering stack, the transport and
application protocols come into view. The transport protocols
take care of multiplexing and de-multiplexing the packets from
the lower layers so that, even though there might only be a single
physical and networking layer, many different applications can
share the communication channel. Th e transport layer also typi-
cally provides further error detection, reliable delivery and even
performance-related features such as congestion and fl ow control.
Th e application layer has traditionally been the home of protocols
such as HTTP (implemented by Web browsers and servers) and
SMTP (implemented by e-mail clients and servers). As the world
has started relying more heavily on protocols such as HTTP,
their implementations have been pushed down into the depths
of the OS, both to improve performance as well as to share the
implementation among diff erent applications.

TCP and HTTP
Of the protocols in the TCP/IP suite, the TCP and User Datagram
Protocol (UDP) found at the transport layer are perhaps the most well
known to the average programmer. Both defi ne a “port” abstraction
that these protocols use in combination with IP addresses to multi-
plex and de-multiplex packets as they arrive and when they’re sent.

Although UDP is used heavily for other TCP/IP protocols such as
Dynamic Host Configuration Protocol and DNS, and has been
adopted widely for private network applications, its adoption in
the Internet at large hasn’t been as far-reaching as that of its sib-
ling. TCP, on the other hand, has seen widespread adoption across
the board, thanks in large part to HTTP. Although TCP is far more
complex than UDP, much of this complexity is hidden from the
application layer where the application enjoys the benefi ts of TCP
without being subject to its complexity.

TCP provides a reliable flow of data between computers, the
implementation of which is hugely complex. It concerns itself
with packet ordering and data reconstruction, error detection
and recovery, congestion control and performance, timeouts,
retransmissions, and much more. Th e application, however, only
sees a bidirectional connection between ports and assumes that
data sent and received will transfer correctly and in order.

Contemporary HTTP presupposes a reliable connection-oriented
protocol, and TCP is clearly the obvious and ubiquitous choice. In
this model, HTTP functions as a client-server protocol. Th e client
opens a TCP connection to a server. It then sends a request, to which
the server evaluates and responds. Th is is repeated countless times
every second of every day around the world.

Of course, this is a simplifi cation or restriction of the function-
ality that TCP provides. TCP allows both parties to send data
simultaneously. One end doesn’t need to wait for the other to send
a request before it can respond. Th is simplifi cation did, however,
allow server-side caching of responses, which has had a huge
impact on the Web’s ability to scale. But the popularity of HTTP
was undoubtedly aided by its initial simplicity. Whereas TCP pro-
vides a bidirectional channel for binary data—a pair of streams, if
you like—HTTP provides a request message preceding a response
message, both consisting of ASCII characters, although the mes-
sage bodies, if any, may be encoded in some other way. A simple
request might look as follows:

GET /resource HTTP/1.1\r\n
host: example.com\r\n
\r\n

Each line concludes with a carriage return (\r) and line feed (\n).
Th e fi rst line, called a request line, specifi es the method by which a
resource is to be accessed (in this case GET), the path of the resource
and fi nally the version of HTTP to be used. Similar to the lower-layer
protocols, HTTP provides multiplexing and de-multiplexing via this
resource path. Following this request line are one or more header lines.
Headers consist of a name and value as illustrated in the preceding
example. Some headers are required, such as host, while most are
not and merely assist browsers and servers in communicating more
effi ciently or to negotiate features and functionality.

A response might look like this:
HTTP/1.1 200 OK\r\n
content-type: text/html\r\n
content-length: 1307\r\n
\r\n
<!DOCTYPE HTML><html> ... </html>

Th e format is basically the same, but instead of a request line,
the response line affi rms the version of HTTP to be used, a status
code (200) and a description of the status code. Th e 200 status code
indicates to the client that the request was processed successfully

www.msdnmagazine.com

msdn magazine34 Windows 8 Networking

and any result is included immediately following any header lines.
Th e server might, for example, indicate that the requested resource
doesn’t exist by returning a 404 status code. Th e headers take the same
form as those in the request. In this case the content-type header
informs the browser that the requested resource in the message
body is to be interpreted as HTML and the content-length header
tells the browser how many bytes the message body contains.
This is important because, as you’ll recall, HTTP messages flow
over TCP, which doesn’t provide message boundaries. Without a
content length, HTTP applications need to use various heuristics
to determine the length of any message body.

This is all pretty simple, a testament to the straightforward
design of HTTP. But HTTP isn’t simple anymore. Today’s Web
browsers and servers are state-of-the-art programs with thousands
of interrelated features, and HTTP is the workhorse that needs to
keep up with it all. Much of the complexity was born out of a need
for speed. Th ere are now headers to negotiate compression of the
message body, caching and expiration headers to avoid transmit-
ting a message body at all, and much more. Techniques have been
developed to reduce the number of HTTP requests by combining
diff erent resources. Content delivery networks (CDNs) have even
been distributed around the world in an attempt to host commonly
accessed resources closer to the Web browsers accessing them.

Despite all of these advances, many Web applications could
achieve greater scalability and even simplicity if there were some
way to occasionally break out of HTTP and return to the streaming
model of TCP. Th is is exactly what the WebSocket protocol delivers.

The WebSocket Handshake
Th e WebSocket protocol fi ts somewhat neatly into the TCP/IP
suite above TCP and alongside HTTP. One of the challenges with
introducing a new protocol to the Internet is in somehow making
the countless routers, proxies and fi rewalls think that nothing has
changed under the sun. Th e WebSocket protocol achieves this goal
by masquerading as HTTP before switching to its own WebSocket
data transfer on the same underlying TCP connection. In this way,
many unsuspecting intermediaries don’t have to be upgraded in
order to allow WebSocket communication to traverse their network
connections. In practice this doesn’t always work quite so smoothly
because some overly zealous routers fi ddle with the HTTP requests
and responses, attempting to rewrite them to suit their own ends,
such as proxy caching or address or resource translation. An
eff ective solution in the short term is to use the WebSocket protocol
over a secure channel—Transport Layer Security (TLS)—because
this tends to keep the tampering to a minimum.

Th e WebSocket protocol borrows ideas from a variety of sources,
including IP, UDP, TCP and HTTP, and makes those concepts
available to Web browsers and other applications in a simpler
form. It all starts with a handshake that’s designed to look and
operate just like an HTTP request/response pair. This isn’t done
so that clients or servers can somehow fool each other into using
WebSockets, but rather to fool the various intermediaries into think-
ing it’s just another TCP connection serving up HTTP. In fact, the
WebSocket protocol is specifi cally designed to prevent any party
from being duped into accepting a connection accidentally. It

begins with a client sending a handshake that is, for all intents and
purposes, an HTTP request, and might look as follows:

GET /resource HTTP/1.1\r\n
host: example.com\r\n
upgrade: websocket\r\n
connection: upgrade\r\n
sec-websocket-version: 13\r\n
sec-websocket-key: E4WSEcseoWr4csPLS2QJHA==\r\n
\r\n

As you can see, nothing precludes this from being a perfectly
valid HTTP request. An unsuspecting intermediary should simply
pass this request along to the server, which may even be an HTTP
server doubling as a WebSocket server. The request line in this
example specifi es a standard GET request. Th is also means that a
WebSocket server might allow multiple endpoints to be serviced
by a single server in the same way that most HTTP servers do.
The host header is required by HTTP 1.1 and serves the same
purpose—to ensure both parties agree on the hosting domain in
shared hosting scenarios. Th e upgrade and connection headers are
also standard HTTP headers used by clients to request an upgrade
of the protocol used in the connection. Th is technique is sometimes
used by HTTP clients to transition to a secure TLS connection,
although that’s rare. Th ese headers are, however, required by the
WebSocket protocol. Specifi cally, the upgrade header indicates that
the connection should be upgraded to the WebSocket protocol
and the connection header specifi es that this upgrade header is
connection-specifi c, meaning that it must not be communicated
by proxies over further connections.

Th e sec-websocket-version header must be included and its value
must be 13. If the server is a WebSocket server but doesn’t support
this version, it will abort the handshake, returning an appropriate
HTTP status code. As you’ll see in a moment, even if the server
knows nothing of the WebSocket protocol and happily returns a
success response, the client is designed to abort the connection.

Th e sec-websocket-key header really is the key to the WebSocket
handshake. Th e designers of the WebSocket protocol wanted to
ensure that a server couldn’t possibly accept a connection from
a client that was not in fact a WebSocket client. Th ey didn’t want
a malicious script to construct a form submission or use the
XMLHttpRequest object to fake a WebSocket connection by adding
the sec-* headers. To prove to both parties that a legitimate connec-
tion is being established, the sec-websocket-key header must also
be present in the client handshake. Th e value must be a randomly
selected—ideally cryptographically random—16-byte number,
known as a nonce in security parlance, which is then base64-
encoded for this header value.

Once the client handshake is sent, the client waits for a response
to validate that the server is indeed willing and able to establish
a WebSocket connection. Assuming the server doesn’t object, it
might send a server handshake as an HTTP response as follows:

HTTP/1.1 101 OK
upgrade: websocket\r\n
connection: upgrade\r\n
sec-websocket-accept: 7eQChgCtQMnVILefJAO6dK5JwPc=\r\n
\r\n

Again, this is a perfectly valid HTTP response. The response
line includes the HTTP version followed by the status code, but
instead of the regular 200 code indicating success, the server must
respond with the standard 101 code indicating that the server

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545

Copyright 1996-2012 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.
The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

Power Up Your

infragistics.com/

Compatible with
Microsoft® Visual Studio® 2012

Untitled-1 1 9/4/12 11:55 AM

www.infragistics.com/experience

msdn magazine36 Windows 8 Networking

understands the upgrade request and is willing to switch protocols.
Th e English description of the status code makes absolutely no
diff erence. It might be “OK” or “Switching to WebSocket” or even
a random Mark Twain quote. Th e important thing is the status
code and the client must ensure that it’s 101. Th e server could, for
example, reject the request and ask the client to authenticate using
a 401 status code before accepting a WebSocket client handshake.
A successful response must, however, include the upgrade and
connection headers to acknowledge that the 101 status code specif-
ically refers to a switch to the WebSocket protocol, again to avoid
anyone being duped.

Finally, to validate the handshake, the client ensures that the
sec-websocket-accept header is present in the response and its
value is correct. Th e server needn’t decode the base64-encoded
value sent by the client. It merely takes this string, concatenates
the string representation of a well-known GUID and hashes the
combination with the SHA-1 algorithm to produce a 20-byte
value that’s then base64-encoded and used as the value for the
sec-websocket-accept header. Th e client can then easily validate
that the server did indeed do as required and there’s then no doubt
that both parties are consenting to a WebSocket connection.

If all goes well, at this point a valid WebSocket connection is
established and both parties can communicate freely and simulta-
neously in both directions using WebSocket data frames. It’s clear
from studying the WebSocket protocol that it was designed aft er
the Web insecurity apocalypse. Unlike most of its predecessors,
the WebSocket protocol was designed with security in mind. Th e
protocol also requires that the client include the origin header if
the client is in fact a Web browser. Th is allows browsers to pro-
vide protection against cross-origin attacks. Of course, this only
makes sense in the context of a trusted hosting environment such
as that of a browser.

WebSocket Data Transfer
Th e WebSocket protocol is all about getting the Web back to the
relatively high-performance, low-overhead model of communica-
tion provided by IP and TCP, not adding further layers of complexity
and overhead. For this reason, once the handshake completes, the
WebSocket overhead is kept to a minimum. It provides a packet-
framing mechanism on top of TCP reminiscent of the IP packetiza-
tion that TCP itself is built on and for which UDP is so popular, but
without the packet size limitations with which those protocols are
encumbered. Whereas TCP provides a stream-based abstraction,
WebSocket provides a message-based abstraction to the application.
And while TCP streams are transmitted via segments, WebSocket
messages are transported as a sequence of frames. These frames
are transmitted over the same TCP connection and thus naturally
assume reliable and sequential delivery. Th e framing protocol is
somewhat elaborate but is specifi cally designed to be extremely
small, requiring in many cases only a few additional bytes of fram-
ing overhead. Data frames may be transmitted by either client or
server at any time aft er the opening handshake has completed.

Each frame includes an opcode describing the frame type as well
the size of the payload. Th is payload represents the actual data the
application may want to communicate as well as any prearranged

extension data. Interestingly, the protocol allows for messages to be
fragmented. If you come from a hardcore networking background,
you might be reminded of the performance implications of IP-level
fragmentation and the pains to which TCP goes to avoid frag-
mentation. But the WebSocket concept of fragmentation is quite
different. The idea here is to allow the WebSocket protocol to
provide the convenience of network packets but without the size
limits. If the sender doesn’t know the exact length of a message
being sent, it may be fragmented, with each frame indicating
how much data it provides and whether or not it’s the last frag-
ment. Beyond that, the frame merely indicates whether it contains
binary data or UTF-8-encoded text.

Control frames are also defi ned and primarily used to close a
connection but can also be used as a heartbeat to ping the other
endpoint to ensure it’s still responsive or to assist in keeping the TCP
connection alive. Finally, I should point out that if you happen to
poke at a WebSocket frame sent by a client using a network protocol
analyzer such as Wireshark, you might notice that the data frames
appear to contain encoded data. Th e WebSocket protocol requires
that all data frames sent from the client to the server be masked.
Masking involves a simple algorithm “XOR’ing” the data bytes with
a masking key. The masking key is contained within the frame,
so this isn’t meant to be some sort of ridiculous security feature,
although it does relate to security. As mentioned, the designers
of the WebSocket protocol spent a great deal of effort working
through various security-related scenarios to try to anticipate the
various ways in which the protocol might be attacked. One such
attack vector that was analyzed involved attacking the WebSocket
protocol indirectly by compromising other parts of the Internet’s
infrastructure, in this case proxy servers. Unsuspecting proxy servers
that may not be aware of the WebSocket handshake’s likeness to
a GET request could be fooled into caching data for a fake GET
request initiated by an attacker, in eff ect poisoning the cache for
some users. Masking each frame with a new key mitigates this par-
ticular threat by ensuring that frames aren’t predictable and thus
can’t be misconstrued on the wire. Th ere’s quite a bit more to this
attack, and undoubtedly researchers will uncover further possible
exploits in time. Still, it’s impressive to see the lengths to which
the designers have gone to try to anticipate many forms of attack.

Windows 8 and the WebSocket Protocol
As helpful as it is to have a deep understanding of the WebSocket
protocol, it also helps a great deal to work on a platform with such
wide-ranging support, and Windows 8 certainly delivers. Let’s take
a look at some of the ways in which you can use the WebSocket pro-
tocol without actually having to implement the protocol yourself.

Windows 8 provides the Microsoft .NET Framework, supports
clients through the Windows Runtime for both native and man-
aged code and lets you create WebSocket clients using the Windows
HTTP Services (WinHTTP) API in C++. Finally, IIS 8 provides
a native WebSocket module, and of course Internet Explorer
provides native support for the WebSocket protocol. Th at’s quite
a mix of different environments, but what might be even more
surprising is that Windows 8 only includes a single WebSocket
implementation, which is shared among all of these. Th e WebSocket

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545

Copyright 1996-2012 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.
The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

Shape up your Windows UI

infragistics.com/

Compatible with
Microsoft® Visual Studio® 2012

Untitled-1 1 9/4/12 11:55 AM

www.infragistics.com/experience

msdn magazine38 Windows 8 Networking

Protocol Component API implements all of the protocol rules for
handshaking and framing without ever actually creating a network
connection of any kind. The different platforms and runtimes
can then use this common implementation and hook it into the
networking stack of their choice.

.NET Clients and Servers
Th e .NET Framework provides extensions to ASP.NET and provides
HttpListener—which is itself based on the native HTTP Server API
used by IIS—to provide server support for the WebSocket protocol.
In the case of ASP.NET, you can simply write an HTTP handler
that calls the new HttpContext.AcceptWebSocketRequest method
to accept a WebSocket request on a particular endpoint. You can
validate that the request is indeed a WebSocket client handshake
using the HttpContext.IsWebSocketRequest property. Outside of
ASP.NET, you can host a WebSocket server by simply using the
HttpListener class. The implementation is also mostly shared
between the two. Figure 1 provides a simple example of such a server.

Here I’m using a C# async method to keep the code sequential
and coherent, but in fact it’s all asynchronous. I start by registering
the endpoint and waiting for an incoming request. I then check
whether the request does in fact qualify as a WebSocket handshake
and return a 400 “bad request” status code if it isn’t. I then call
AcceptWebSocketAsync to accept the client handshake and wait for
the handshake to complete. At this point, I can freely communicate
using the WebSocket object. In this example the server sends 10
UTF-8 frames, each containing the time, aft er a short delay. Each
frame is sent asynchronously using the SendAsync method. Th is
method is quite powerful and can send UTF-8 or binary frames
either as a whole or in fragments. The third parameter—in this

case, true—indicates whether this call to SendAsync represents
the end of the message. Th us, you can use this method repeatedly
to send long messages that will be fragmented for you. Finally, the
CloseAsync method is used to perform a clean closure of the
WebSocket connection, sending a close control frame and waiting
for the client to acknowledge with its own close frame.

On the client side, the new ClientWebSocket class uses an
HttpWebRequest object internally to provide the ability to con-
nect to a WebSocket server. Figure 2 provides a simple example
of a client that can be used to connect to the server in Figure 1.

Here I’m using the ConnectAsync method to establish a con-
nection and perform the WebSocket handshake. Notice that the
URL uses the new “ws” URI scheme to identify this as a WebSocket
endpoint. As with HTTP, the default port for ws is port 80. Th e “wss”
scheme is also defi ned to represent a secure TLS connection and uses
the corresponding port 443. Th e client then calls ReceiveAsync in a
loop to receive as many frames as the server is willing to send. Once
received, the frame is fi rst checked to see whether it represents a close
control frame. In this case the client responds by sending its own
close frame, allowing the server to close the connection promptly.

static async Task Run()
{
 HttpListener s = new HttpListener();
 s.Prefixes.Add("http://localhost:8000/ws/");
 s.Start();

 var hc = await s.GetContextAsync();

 if (!hc.Request.IsWebSocketRequest)
 {
 hc.Response.StatusCode = 400;
 hc.Response.Close();
 return;
 }

 var wsc = await hc.AcceptWebSocketAsync(null);
 var ws = wsc.WebSocket;

 for (int i = 0; i != 10; ++i)
 {
 await Task.Delay(2000);

 var time = DateTime.Now.ToLongTimeString();
 var buffer = Encoding.UTF8.GetBytes(time);
 var segment = new ArraySegment<byte>(buffer);

 await ws.SendAsync(segment, WebSocketMessageType.Text,
 true, CancellationToken.None);
 }

 await ws.CloseAsync(WebSocketCloseStatus.NormalClosure,
 "Done", CancellationToken.None);
}

Figure 1 WebSocket Server Using HttpListener

static async Task Client()
{
 ClientWebSocket ws = new ClientWebSocket();

 var uri = new Uri("ws://localhost:8000/ws/");
 await ws.ConnectAsync(uri, CancellationToken.None);
 var buffer = new byte[1024];

 while (true)
 {
 var segment = new ArraySegment<byte>(buffer);
 var result =
 await ws.ReceiveAsync(segment, CancellationToken.None);

 if (result.MessageType == WebSocketMessageType.Close)
 {
 await ws.CloseAsync(WebSocketCloseStatus.NormalClosure, "OK",
 CancellationToken.None);
 return;
 }

 if (result.MessageType == WebSocketMessageType.Binary)
 {
 await ws.CloseAsync(WebSocketCloseStatus.InvalidMessageType,
 "I don't do binary", CancellationToken.None);
 return;
 }

 int count = result.Count;

 while (!result.EndOfMessage)
 {
 if (count >= buffer.Length)
 {
 await ws.CloseAsync(WebSocketCloseStatus.InvalidPayloadData,
 "That's too long", CancellationToken.None);
 return;
 }

 segment =
 new ArraySegment<byte>(buffer, count, buffer.Length - count);
 result = await ws.ReceiveAsync(segment, CancellationToken.None);
 count += result.Count;
 }

 var message = Encoding.UTF8.GetString(buffer, 0, count);
 Console.WriteLine("> " + message);
 }
}

Figure 2 WebSocket Client Using ClientWebSocket

Infragistics Sales US 800 231 8588 • Europe +44 (0) 800 298 9055 • India +91 80 4151 8042 • APAC (+61) 3 9982 4545

Copyright 1996-2012 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc.
The Infragistics logo is a trademark of Infragistics, Inc. All other trademarks or registered trademarks are the respective property of their owners.

On Mobile Business Intelligence

infragistics.com/

Compatible with
Microsoft® Visual Studio® 2012

Untitled-1 1 9/4/12 11:55 AM

www.infragistics.com/experience

msdn magazine40 Windows 8 Networking

Th e client then checks whether the frame contains binary data, in
which case it closes the connection with an error indicating that this
frame type is unsupported. Finally, the frame data can be read. To
accommodate fragmented messages, a while loop waits until the
fi nal fragment is received. Th e new ArraySegment structure is used to
manage the buff er off set so the fragments are reassembled properly.

The WinRT Client
Th e Windows Runtime support for the WebSocket protocol is a
little more restrictive. Only clients are supported, and fragmented
UTF-8 messages must be completely buffered before they can be
read. Only binary messages can be streamed with this API. Figure 3
provides a simple example of a client that can also be used to
connect to the server in Figure 1.

Th is example, although also written in C#, relies on event han-
dlers for the most part, and the C# async method is of little utility,
merely able to allow the MessageWebSocket object to connect

asynchronously. Th e code is fairly simple, however, if a little quirky.
The MessageReceived event handler is called once the entire
(possibly fragmented) message is received and ready to read. Even
though the entire message has been received and it can only ever
be a UTF-8 string, it’s stored in a stream, and a DataReader object
must be used to read the contents and return a string. Finally, the
Closed event handler lets you know that the server has sent a close
control frame, but as with the .NET ClientWebSocket class, you’re
still responsible for sending a close control frame back to the server.
Th e MessageWebSocket class, however, only sends this frame just
before the object is itself destroyed. To make this happen promptly
in C#, I need to call the Dispose method.

The Prototypical JavaScript Client
There’s little doubt that JavaScript is the environment in which
the WebSocket protocol will make the most impact, and the API
is impressively simple. Here’s all it takes to connect to the server
in Figure 1:

var ws = new WebSocket("ws://localhost:8000/ws/");

ws.onmessage = function (args)
{
 var time = args.data;
 ...
};

Unlike the other APIs on Windows, the browser takes care of
closing the WebSocket connection automatically when it receives
a close control frame. You can, of course, explicitly close a connec-
tion or handle the onclose event, but no further action is required
on your part to complete the closing handshake.

The WinHTTP Client for C++
Of course, the WinRT WebSocket client API can be used from
native C++ as well, but if you’re looking for a bit more control, then
WinHTTP is just the thing for you. Figure 4 provides a simple

static async Task Client()
{
 MessageWebSocket ws = new MessageWebSocket();
 ws.Control.MessageType = SocketMessageType.Utf8;

 ws.MessageReceived += (sender, args) =>
 {
 var reader = args.GetDataReader();
 var message = reader.ReadString(reader.UnconsumedBufferLength);
 Debug.WriteLine(message);
 };

 ws.Closed += (sender, args) =>
 {
 ws.Dispose();
 };

 var uri = new Uri("ws://localhost:8000/ws/");
 await ws.ConnectAsync(uri);
}

Figure 3 WebSocket Client Using the Windows Runtime

Figure 4 WebSocket Client Using WinHTTP

auto s = WinHttpOpen(...);

auto c = WinHttpConnect(s, L"localhost", 8000, 0);

auto r = WinHttpOpenRequest(c, nullptr, L"/ws/", ...);

WinHttpSetOption(r, WINHTTP_OPTION_UPGRADE_TO_WEB_SOCKET, nullptr, 0);

WinHttpSendRequest(r, ...);

VERIFY(WinHttpReceiveResponse(r, nullptr));

DWORD status;
DWORD size = sizeof(DWORD);

WinHttpQueryHeaders(r,
 WINHTTP_QUERY_STATUS_CODE | WINHTTP_QUERY_FLAG_NUMBER,
 WINHTTP_HEADER_NAME_BY_INDEX,
 &status,
 &size,
 WINHTTP_NO_HEADER_INDEX);

ASSERT(HTTP_STATUS_SWITCH_PROTOCOLS == status);

auto ws = WinHttpWebSocketCompleteUpgrade(r, 0);

char buffer[1024];
DWORD count;
WINHTTP_WEB_SOCKET_BUFFER_TYPE type;

while (NO_ERROR ==
 WinHttpWebSocketReceive(ws, buffer, sizeof(buffer), &count, &type))
{
 if (WINHTTP_WEB_SOCKET_CLOSE_BUFFER_TYPE == type)
 {
 WinHttpWebSocketClose(
 ws, WINHTTP_WEB_SOCKET_SUCCESS_CLOSE_STATUS, nullptr, 0);
 break;
 }

 if (WINHTTP_WEB_SOCKET_BINARY_MESSAGE_BUFFER_TYPE == type ||
 WINHTTP_WEB_SOCKET_BINARY_FRAGMENT_BUFFER_TYPE == type)
 {
 WinHttpWebSocketClose(
 ws, WINHTTP_WEB_SOCKET_INVALID_DATA_TYPE_CLOSE_STATUS, nullptr, 0);
 break;
 }

 std::string message(buffer, count);

 while (WINHTTP_WEB_SOCKET_UTF8_FRAGMENT_BUFFER_TYPE == type)
 {
 WinHttpWebSocketReceive(ws, buffer, sizeof(buffer), &count, &type);

 message.append(buffer, count);
 }

 printf("> %s\n", message.c_str());
}

41December 2012msdnmagazine.com

example of using WinHTTP to connect to the server in Figure 1.
Th is example is using the WinHTTP API in synchronous mode
for conciseness, but this would work equally well asynchronously.

As with all WinHTTP clients, you need to create a WinHTTP
session, connection and request object. Th ere’s nothing new here so
I’ve elided some of the details. Before actually sending the request,
you need to set the new WINHTTP_OPTION_UPGRADE_TO_
WEB_SOCKET option on the request to instruct WinHTTP to
perform a WebSocket handshake. Th e request is then ready to be sent
with the WinHttpSendRequest function. Th e
regular WinHttpReceiveResponse function
is then used to wait for the response, which
in this case will include the result of the Web-
Socket handshake. As always, to determine
the result of a request, the WinHttpQuery-
Headers function is called specifi cally to read
the status code returned from the server. At
this point, the WebSocket connection has
been established and you can begin to use
it directly. The WinHTTP API naturally
handles the framing for you, and this func-
tionality is exposed through a new WinHTTP
WebSocket object that’s retrieved by calling
the WinHttpWebSocketCompleteUpgrade
function on the request object.

Receiving the messages from the server
is done, at least conceptually, in much the
same way as the example in Figure 2. Th e
WinHttpWebSocketReceive function waits
to receive the next data frame. It also lets you
read fragments of any kind of WebSocket
message, and the example in Figure 4
illustrates how this might be done in a loop.
If a close control frame is received, then a
matching close frame is sent to the server
using the WinHttpWebSocketClose function.
If a binary data frame is received, then the
connection is similarly closed. Keep in mind
that this only closes the WebSocket connec-
tion. You still need to call WinHttpClose-
Handle to release the WinHTTP WebSocket
object, as you have to do for all WinHTTP
objects in your possession. A handle wrapper
class such as the one I described in my
July 2011 column, “C++ and the Windows
API” (msdn.microsoft.com/magazine/hh288076),
will do the trick.

Th e WebSocket protocol is a major new
innovation in the world of Web applica-
tions and, despite its relative simplicity, is a
welcome addition to the larger TCP/IP
suite of protocols. I’ve little doubt that the
WebSocket protocol will soon be almost as
ubiquitous as HTTP itself, helping appli-
cations and connected systems of all kinds

to communicate more easily and effi ciently. Windows 8 has done
its part to provide a comprehensive set of APIs for building both
WebSocket clients and servers.

KENNY KERR is a software craftsman with a passion for native Windows
development. Reach him at kennykerr.ca.

THANKS to the following technical experts for reviewing this article:
Piotr Kulaga and Henri-Charles Machalani

http://softfluent.com/landings_cfe_msdn
www.softfluent.com
http://msdn.microsoft.com/magazine/hh288076
www.kennykerr.ca
www.msdnmagazine.com

msdn magazine42

Last month, in part 1 (msdn.microsoft.com/magazine/jj721592) of
this two-part series, I discussed enabling voice commands in a
Windows Phone 8 app. Here, I’ll discuss dialog with the user in a
running app using speech input and output.

Once an app has been launched, many scenarios can benefit
from interaction between the user and the phone using speech
input and output. A natural one is in-app dialog. For example, the
user can launch the Magic Memo app (see previous article) to go
to the main page and then use speech recognition to enter a new
memo, receive audio feedback and confi rm the changes. Assum-
ing no misrecognitions, the user can completely enter and save
several memos without touching the phone (other than the fi rst
long push on the Start button).

You can imagine many other scenarios using speech dialog
starting out in the app. For example, once the user has navigated
to a page showing a list of saved favorites such as memos, movies
or memorabilia, she could use recognition to choose one and take
an action: edit, play, order, remove and so on. Speech output would
then read back the selection and ask for confi rmation.

In the following sections I’ll lay out examples using speech for
input and output, starting with simple examples and working up
to more complex examples. I’ll show how easy it is to implement

WIN DOWS PHONE

Speech-Enabling a
Windows Phone 8 App,
Part 2: In-App Dialog
F Avery Bishop

This article discusses a prerelease version of Windows Phone 8.
All related information is subject to change.

This article discusses:
• The speech synthesis API

• The speech recognition API

• Speech recognition grammars

Technologies discussed:
Windows Phone 8

Code download available at:
archive.msdn.microsoft.com/mag201211WP8Speech

private SpeechRecognizerUI speechInput = new SpeechRecognizerUI();

// Set text to display to the user when recognizing
speechInput.Settings.ExampleText = "Example: \"Buy roses\"";
speechInput.Settings.ListenText = "Say your memo";

// ...

// Private method to get a new memo
private async void GetNewMemoByVoice()
{
 await speechOutput.SpeakTextAsync("Say your memo"); // TTS prompt

 var recoResult =
 await speechInput.RecognizeWithUIAsync();
 // Uses default Dictation grammar

 Memo_TB.Text =
 recoResult.RecognitionResult.Text; // Do something with the result
}

Figure 1 Initializing a Recognizer Object, Starting a
Recognition Session and Handling the Result

http://msdn.microsoft.com/magazine/jj721592
http://archive.msdn.microsoft.com/mag201211WP8Speech

43December 2012msdnmagazine.com

the simple cases and show some of the richer functionality avail-
able for advanced scenarios.

Communicating to the User: Speech Synthesis API
Computer-generated speech output is variously called text to
speech (TTS) or speech synthesis (though strictly speaking, TTS
encompasses more than speech synthesis). Common uses include
notification and confirmation, as mentioned earlier, but it’s also
essential to other use cases such as book readers or screen readers.

A Simple Example of Speech Synthesis In its simplest form,
your app can translate a text string to spoken audio in just two lines
of code. Here’s an example using code extracted from the Magic
Memo sample:

// Instantiate a speech synthesizer
private SpeechSynthesizer speechOutput = new SpeechSynthesizer();

// ...

// Private method to get a new memo
private async void GetNewMemoByVoice()
{
 await speechOutput.SpeakTextAsync("Say your memo");
 // Other code for capturing a new memo

}

When the user taps the mic button, she’ll hear “Say your memo”
spoken from the current audio device. In the following sections
I’ll expand on this example by adding code that accepts the user’s
input using speech recognition.

TTS Features for Advanced Scenarios Apps that rely heavily
on speech output might have use cases that require changing vol-
ume, pitch or speaking rate in the course of speech output. To
cover these advanced cases, there are two additional methods:
SpeakSsmlAsync and SpeakSsmlFromUriAsync. Th ese methods
assume the input is in Speech Synthesis Markup Language (SSML)
format, a World Wide Web Consortium (W3C) XML standard for

embedding properties of the audio and the synthesizer engine into
the text to be spoken. I haven’t included sample code for SSML in
this article or the Magic Memo code download, but you can fi nd
out more about SSML in the MSDN Library reference article at
bit.ly/QwWLsu (or the W3C specifi cation at bit.ly/V4DlgG).

Th e synthesizer class also has events for SpeakStarted and Book-
markReached, and there are overloads for each Speak method that
take a generic state object as a second parameter to help you keep
track of which instance of the Speak method generated a particular
event. Using SSML and handling the events, your code can provide
features such as highlighting spoken text or restarting a Speak call
in the middle of a paragraph.

Speech Input: Speech Recognition API
The two broad classes of use cases for speech recognition in an app
are text input and command and control. In the fi rst use case, text
input, the app simply captures the user’s utterance as text; this is
useful when the user could say almost anything, as in the “new
memo” feature of the sample code.

In the second use case, command and control, the user manipu-
lates the app by spoken utterance rather than by tapping buttons or
sliding a fi nger across the face of the phone. Th is use case is especially
useful in hands-free scenarios such as driving or cooking.

A Simple Example of Speech Recognition Before going into
detail about the features of speech recognition in an app, let’s take
a look at the simplest case: text input in a few lines of code.

Figure 1 shows the GetNewMemo ByVoice method shown
earlier, but with lines added to initialize a recognizer object, start
a recognition session and handle the result.

Of course, in real code it’s never as simple as this, and if you look
in the Magic Memo sample, you’ll see a try/catch block and a check
for successful recognition.

If you try this in the sample app by tap-
ping the mic icon, you’ll notice that aft er
you’ve spoken your memo, a “thinking”
screen appears, followed by a confi rma-
tion UI, aft er which the result is inserted
in the memo text box. Behind the scenes
a lot is going on, not the least of which
is the use of a “grammar” on a remote
server to recognize your speech. A gram-
mar is essentially a set of rules specifying
what lexical entries (“words”) the engine
needs to recognize and in what order. In
the next sections I’ll explore the speech
recognition API and how it’s used with
recognition grammars.

Overview of the Speech Recogni-
tion API Before I get into the details of
coding for speech recognition, let’s take
a high-level look at the classes in the API
and their roles. Figure 2 shows the basic
layout of the API. Th e fi rst thing you’ll
notice is that two boxes have Speech-
Recognizer in the name. F igure 2 Speech Recognition API Design Overview

SpeechRecognizerUI

SpeechRecognizer
object

UI Settings object:
UI text, Booleans

to disable features

Recognition method:
RecognizeWithUIAsync

Settings object:
timeout values

and more

Grammars collection
indexed by

grammar name

Methods:
PreLoadGrammarAsync

Get/Set Recognizer
RecognizeAsync

AddGrammar methods:
Predefined
List
SRGS

www.bit.ly/QwWLsu
www.msdnmagazine.com

msdn magazine44 Windows Phone

If your app doesn’t need to display a UI with speech recognition,
or if you want to display your own custom UI, you should instantiate
a copy of the SpeechRecognizer class shown in the middle-left
of Figure 2. Th ink of this object as the base operational unit of
speech recognition within this API. Th is is where the app adds any
grammars it requires. Aft er initialization, you call RecognizeAsync
to do the actual recognition. Because SpeechRecognizer imple-
ments IAsyncOperation<SpeechRecognitionResult>, status and
a result object are available in the Completed callback function.
Th us, there are no separate events for recognition completed or
rejected as in other managed speech APIs.

As the name implies, the top-level SpeechRecognizerUI class
provides speech recognition with a default GUI that’s consistent
with the phone’s global speech UI for feedback, disambiguation
and confirmation. To maintain compatibility with the global speech

UI and simplify coding, most apps should use this class rather than
the non-UI class mentioned earlier. When you instantiate a
SpeechRecognizerUI object, it comes with two important objects:
a Settings object, where you set the UI text to display to the user;
and a SpeechRecognizer object, where you can specify grammars
as described in the following sections. Once initialized, you should
call RecognizeWithUIAsync on the parent SpeechRecognizerUI
object to launch a recognition session. If you use RecognizeAsync
on the child SpeechRecognizer object, it will recognize as if the
SpeechRecognizer object were being used standalone, that is,
without a UI. Hereafter, the terms SpeechRecognizer and Recognize-
Async are understood to be generic references for the objects and
methods with and without a UI, as appropriate.

Steps for Using Speech Recognition Th ere are four basic steps
for using speech recognition in a Windows Phone 8 app:

1. Create grammars to be used in the recognition process
(not needed if using a predefi ned grammar).

2. Initialize the SpeechRecognizer object by setting
properties and adding grammars as needed.

3. Start the recognition session by calling Speech-
Recognizer.RecognizeAsync or SpeechRecognizer -
UI.RecognizeWithUIAsync.

4. Process the recognition result and take the
appropriate action.

Figure 1 shows all of these steps except No. 1, Create grammars.
Th e predefi ned Dictation grammar is the default grammar, so there’s
no need to create or add it to the Grammars collection.

Th e code to implement these steps largely depends on the type of
grammar used in speech recognition. Th e next section describes the
concept and use of speech recognition grammars in Windows Phone 8.

switch (result.RecognitionResult.Text.ToLower())
{
 case "cancel":
 // Cancel code
 break;

 case "save":
 // Save memo code

 break;

 case "quit":

 break;

 default:
 break;
}

Figure 3 Processing the Result of a Recognition Session

F igure 4 Excerpts from ViewMemos.grxml SRGS Grammar

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE grammar PUBLIC "-//W3C//DTD GRAMMAR 1.0//EN"
 "http://www.w3.org/TR/speech-grammar/grammar.dtd">

<!-- the default grammar language is US English -->
<grammar xmlns="http://www.w3.org/2001/06/grammar"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/06/grammar
 http://www.w3.org/TR/speech-grammar/grammar.xsd"
 xml:lang="en-US" version="1.0" tag-format="semantics/1.0"
 root="buttons">

 <rule id="buttons" scope="public">
 <one-of>
 <!--The 'process' semantic can be one of 'clear',
 'save', 'new', or 'select'-->
 <item>
 <!--Reference to the internal rule "scope" below-->
 Clear <ruleref uri="#scope" type="application/srgs+xml"/>
 <tag>out.process="clear";out.num = rules.latest();</tag>
 </item>
 <item>
 Save
 <item repeat="0-1">changes</item>
 <tag>out.process="save";</tag>
 </item>
 <item>
 Enter new
 <tag>out.process="new";</tag>
 </item>
 <item>
 Select
 <item repeat="0-1">memo</item> <!-- Optional words -->

 <item repeat="0-1">number</item>
 <!--Reference to the internal rule "number" below -->
 <ruleref uri="#number" type="application/srgs+xml"/>
 <tag>out.process="select";out.num =
 rules.latest();</tag>
 </item>
 </one-of>
 </rule>

 <rule id="scope" scope="private">
 <one-of> <!-- Can be "all", "selected" or a number from the
 'number' rule -->
 <item>
 all <tag>out.scope="all";</tag>
 </item>
 <item>
 selected <tag>out.scope="selected";</tag>
 </item> <item>
 <item repeat="0-1">memo</item> <!-- Optional words -->
 <item repeat="0-1">number</item>
 <ruleref uri="#number" type="application/srgs+xml"/>
 </item>
 </one-of>
 </rule>

 <rule id="number" scope="public">
 <item>
 1
 </item>
 <!-- See ViewMemos.grxml for the remainder
 of the items in this block -->
 </rule>
</grammar>

(888) 850-9911
Sales Hotline - US & Canada:

/update/2012/12

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2012 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Aspose.Diagram for .NET from $587.02
Work with Visio fi les from within your own applications.

• Work with VSD, VSS, VST, VSX, VTX, VDW and VDX fi les on C#, VB.NET, ASP.NET Web
applications, Web services, Mono and Windows applications

• Export to popular formats including PDF, XPS, BMP, JPEG, PNG, TIFF, SVG and EMF

• Easy to deploy - no external dependencies aside from the .NET Framework

• Access Visio objects like Document, Page, Master, Shape, StyleSheet and Connect etc.

BEST SELLER

BEST SELLER ComponentOne Studio Enterprise from $1,315.60
.NET Tools for the Smart Developer: Windows, Web, and XAML.

• Hundreds of UI controls for all .NET platforms, including grids, charts, reports and schedulers

• Visual Studio 2012 and Windows 8 Support

• Live demos and samples with full source code

• Royalty-free deployment and distribution

• Free, fully-functional trial download available

BEST SELLER

LEADTOOLS Medical Imaging SDKs V17.5 from $4,495.50
Add powerful medical imaging support to desktop, tablet, mobile & web applications.

• Zero footprint HTML5 / JavaScript viewer for any desktop, tablet or mobile device

• 2D / 3D Viewers and 3D Volume Rendering

• Comprehensive DICOM Data Set and metadata

• High level PACS SDK with an OEM-Ready PACS Storage Server & Viewer application

• Advanced 8-16 bit grayscale image processing including Window Level and Signed Data

BEST SELLER

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

Untitled-4 1 11/1/12 11:32 AM

http://www.componentsource.com

msdn magazine46 Windows Phone

Introduction to Speech Recognition Grammars
Modern speech recognition engines all use grammars to restrain the
set of phrases through which the recognition engine must search
(hereafter called the “search space”) to find a match to the user’s
utterance, and thus improve recognition accuracy. Grammar rules
may allow recognition of phrases as simple as a list of numbers or
as complex as general conversational text.

In the Windows Phone 8 speech API you can specify a grammar
in three ways, as described in the following sections. For each
case, you add the grammar to a collection of grammars on the
SpeechRecognizer object.

Simple List Grammar Th e easiest way to specify a custom gram-
mar for an app is to provide a list of all the phrases for which the
recognizer should listen in a simple string array. Th ese list grammars
are handled by the on-device speech recognition engine. Th e code
to create and add a list grammar can be as simple as the following
for a static list of button names to recognize against:

commandReco.Recognizer.Grammars.AddGrammarFromList(
 "mainPageCommands", new string[] { "cancel", "save", "quit" });

The Magic Memo sample does something a little more sophis-
ticated: It builds up the list of phrases by finding the Content
attribute of all the button controls on the page and adding the
content text to a string list. See the InitCommandGrammar
method in MainPage.xaml.cs for details.

To process the result of a recognition session using a list gram-
mar, you read the Text property on SpeechRecognitionUIResult
(or SpeechRecognitionResult if using the version without a UI).
You could do this, for example, in a switch statement, as shown
in Figure 3.

A more detailed example is found in the CommandCompleted
callback in MainPage.xaml.cs.

Predefi ned Grammar Th e Speech API on Windows Phone 8
provides two predefined grammars: Dictation and WebSearch.
Dictation is also called Short Message Dictation and employs the
same grammar as used in the built-in Texting app. In contrast,
WebSearch is optimized to the phrases used to search online. Th e
built-in Find/Search command uses the same WebSearch grammar.

Th e search space for both predefi ned grammars is vast, requiring
the processing power available through remote speech recognition
using the Microsoft speech Web service. In general these grammars
aren’t well suited to command and control because of the possibility
of misrecognition and the wide range of possible results.

A major advantage of predefined grammars is that they’re
easy to implement in an app. For example, to use the WebSearch
grammar rather than the default Dictation grammar in Figure 1,
you simply add this line before the call to RecognizeWithUIAsync:

speechInput.Recognizer.Grammars.AddGrammarFromPredefinedType(
 "webSearch", SpeechPredefinedGrammar.WebSearch);

You process the recognition result from a predefi ned grammar
by accessing the result Text property, as shown in Figure 1.

Grammars in Speech Recognition Grammar Specifi cation
Format Th e Speech Recognition Grammar Specifi cation (SRGS)
is a W3C standard in XML format. For details about the format
and usage, see the MSDN Library article, “SRGS Grammar XML
Reference,” at bit.ly/SYnAu5; the W3C specifi cation at bit.ly/V4DNeS; or
any number of tutorial Web pages that you’ll find by searching

online for “SRGS grammar.” SRGS grammars off er rich functionality
such as the ability to specify optional items and to repeat items,
rules, rule references, special rules and semantics—at the expense
of extra eff ort to author, test and debug the grammar. In Windows
Phone 8, SRGS grammars are used only in the local recognition
engine on the phone, that is, not in the remote service.

To add an SRGS grammar, you reference the URI of the grammar
fi le in the app’s install path, as follows:

commandReco.Recognizer.Grammars.AddGrammarFromUri(
 "srgsCommands", new Uri("ms-appx:///ViewMemos.grxml"));

One major advantage of SRGS grammars is that they allow you to
specify semantic values to simplify the processing of a wide range of
user responses without accessing the recognized utterance (which
is available on the RecognitionResult.Text property, as always).

SRGS semantics are objects (which in practice are oft en strings)
that you assign to variables in your SRGS grammar using a <tag>
element and a subset of ECMAScript. Th ey have two advantages
over using the recognized text directly:

1. Simplifi ed processing: You can determine the user’s intent
without parsing the recognized text, which might take on

// micImage Tap handler, excerpted from ViewMemos.xaml.cs
private async void micImage_Tap(object sender, GestureEventArgs e)
{
 var commandResult = await commandReco.RecognizeWithUIAsync();

 if (commandResult.ResultStatus ==
 SpeechRecognitionUIStatus.Succeeded)
 {
 var commandSemantics = commandResult.RecognitionResult.Semantics;

 SemanticProperty process = null;

 if (commandSemantics.TryGetValue("process", out process))
 {

 // In general a semantic property can be any object,
 // but in this case it's a string
 switch (process.Value as string)
 {
 // For this grammar the "process" semantic more or less
 // corresponds to a button on the page
 case "select":
 // Command was "Select memo number 'num'"

 break;

 case "clear":
 // Command was "Clear memo number 'num,'" "Clear all"
 // or "Clear Selected"

 break;

 case "save":
 // Command was "Save" or "Save Changes"

 break;

 case "new":
 // Command was "Enter new"

 break;

 default:
 break;
 }
 }
 }
}

F igure 5 Handling a Recognition Result
Using Semantic Properties

www.bit.ly/V4DNeS
www.bit.ly/SYnAu5

47December 2012msdnmagazine.com

multiple forms for the same meaning. For example, using
semantics, you can map all utterances that mean affi rma-
tive—“yes,” “yup,” “affi rmative,” “OK” or “ya”—to the single
semantic value “yes.”

2. Ease of localization: You can use the same codebehind to
process utterances in any supported spoken language if you
use a uniform set of semantic values across all languages.

To illustrate these concepts, the Magic Memo sample uses a
simple grammar ViewMemos.grxml for controlling the View-
Memos.xaml page; excerpts from that grammar file with the
semantic tags are shown in Figure 4. Th e function micImage_Tap
in ViewMemos.xaml.cs (excerpted in Figure 5) demonstrates the
use of semantic values in mapping the user’s utterance to an action.

Th is sample just scratches the surface of what’s possible with
semantics. To explore more, start with the MSDN Library article,
“Using the tag Element,” at bit.ly/PA80Wp. The W3C standard for
semantics is at bit.ly/RyqJxc.

You can try out this grammar in the Magic Memo sample by
navigating to the ViewMemos page and tapping the mic icon.
Th e fi le ViewMemos.xaml.cs has the codebehind, including code
under a #defi ne section that you can activate (using #defi ne Seman-
ticsDebug) to display and debug the semantic values returned on
the recognition result.

Using Multiple Grammars on the Same Recognizer Object
A natural question to ask at this point is whether you can use more
than one grammar on a SpeechRecognizer
object. Th e answer is yes, with some restric-
tions. Here are some guidelines and coding
techniques for using multiple grammars:

1. If you add a predefi ned grammar, you
can’t add any other grammars. Also,
you can’t disable a predefi ned gram-
mar; it’s the one and only grammar
associated with that recognizer object
for its lifetime.

2. You can add multiple custom gram-
mars (list grammars and SRGS gram-
mars) to a single recognizer object
and enable or disable the grammars
as needed for diff erent scenarios in
your app:

 a. To access a specifi c grammar, use
the grammar name (the string
parameter passed in the call to
the AddGrammar method) as a
key on the Grammars collection.

 b. To enable or disable a particular
grammar, set its Enabled Boolean
to true or false. For example, the
following will disable the gram-
mar named “buttonNames”:

 myRecognizer.
Grammars["buttonNames"].Enabled =
false;

3. When you call any of the AddGram-
mar methods, the grammar is put

in a queue to await processing but isn’t parsed or loaded.
The grammar is compiled and loaded on the first call
to RecognizeAsync or on an optional call to PreLoad-
GrammarsAsync. Calling this latter method before
actual use can reduce the latency in returning a result
from RecognizeAsync and is therefore recommended for
most use cases.

The Next ‘Killer App’
Th e speech features for apps on Windows Phone 8 represent, among
all smartphone off erings, the fi rst fully functional developer plat-
form for speech featuring both on-device and remote recognition
services. Using voice commands and in-app dialog, you can open
up your app to many compelling scenarios that will delight your
users. With these speech features, your app could catch the buzz
and be the next “killer app” in the marketplace.

F AVERY BISHOP has been working in soft ware development for more than 20
years, with 12 years spent at Microsoft , where he’s a program manager for the
speech platform. He has published numerous articles on natural language sup-
port in applications including topics such as complex script support, multilingual
applications and speech recognition.

THANKS to the following technical experts for reviewing this article:
Eduardo Billo, Rob Chambers, Gabriel Ghizila, Michael Kim and Brian Mouncer

www.cozyroc.com
www.bit.ly/PA80Wp
www.bit.ly/RyqJxc
www.msdnmagazine.com

msdn magazine48

B U I LD ING HT ML 5 APPL IC AT I ONS

Designing Accessibility
with HTML5

If you’re truly interested in reaching a broad audience, you’ll
want to design your Web site for accessibility. Accessibility is about
making Web pages easier to access, easier to use and available to
everyone. In general, using the latest technologies makes acces-
sibility easier to accomplish. Today, that means using HTML5.

To be accessible, your content needs to be available on a broad
range of devices, such as ordinary computers using a keyboard or
mouse, screen readers, audio browsers, devices with limited band-
width, old browsers and computers, and mobile phones and touch
devices. Moreover, it should be reachable by the widest variety of
people, including those with disabilities and senior citizens, as
well as people with low literacy levels or temporary illness, or who
prefer using only a keyboard or mouse.

Rajesh Lal

Th e four key areas disability accessibility seeks to address are:
• Hearing
• Mobility
• Cognitive
• Visual

Hearing issues mean a user may not be able to hear any sound
on the Web site. Th e solution is to make the content perceivable
by using a text alternative for all non-text content, such as sub-
titles and closed captions. Include transcribed speech and sign
languages, if possible.

Mobility problems in this case mean the inability to use the mouse
or keyboard. Th e solution for mobility on the Web is to make the
content operable; that is, to make all functionality accessible from
the keyboard alone, as well as with joysticks, voice recognition and
audio feedback, when possible. Allow navigation with proper use of
headings and anchors and give users the ability to stop time-based
content. Don’t allow any auto-refresh on the page.

Cognitive diffi culties impact the content itself, for example with
the size of text and images or with color contrast. Flashy graphics
and font types can also cause problems for some users. Th e solu-
tion is to make the content understandable. Use easy-to-read sans
serif fonts and allow font resizing. Use high color contrast between
foreground and background. Avoid auto-refresh, fl ickering images
and auto play of media and animation. Use multiple visual cues and
standard icons to make the content easy to grasp.

This article discusses:
• The W3C POUR model for accessibility
• Progressive enhancement and ARIA
• Creating an accessible Web site with HTML5
• Accessibility support in Visual Studio 2012

Technologies discussed:
HTML5, WAI-ARIA, Visual Studio 2012

Code download available at:
archive.msdn.microsoft.com/mag201212HTML5

http://archive.msdn.microsoft.com/mag201212HTML5

49December 2012msdnmagazine.com

Visual problems can range from an inability
to distinguish color to no ability to see the con-
tent at all. Th e solution for such issues is to make
the content robust so that it can be reliably inter-
preted by user agents, and easily accessed with
screen readers. Use semantic HTML and follow
standards. Use syntactically correct HTML and
validate your page. Use lang attribute and abbr
tags wherever applicable.

In short, to be accessible, content for the Web
needs to be made perceivable, operable, under-
standable and robust. Together, these attributes
comprise the World Wide Web Consortium
(W3C) POUR model, which mandates that the
information and UI elements being presented
to users must be perceivable to their senses; that
there must be a way for them to operate the UI;
that they must be able to understand the infor-
mation and how to use the interface elements;
and that the content be robust enough so they
can access it using a variety of user agents,
including assistive technologies (ATs).

Now that you understand the fundamentals
of accessibility, let’s take a look at two very
important concepts related to accessible Web
design: progressive enhancement and accessible
rich Internet applications (ARIAs).

Progressive Enhancement and ARIA
Progressive enhancement is an approach to Web design that promotes
accessibility using semantic HTML, stylesheets and scripting. Th e
idea is to create a Web site where basic content is available to every-
one while more advanced content and functionality are accessible
to those with more capability, more bandwidth or more advanced
tools. When you create a site, you concentrate fi rst on displaying
the content in the simplest manner. You design your page using
semantically structured HTML. All
presentation elements that modify
the visual content (such as bold or
italics) go in an external stylesheet.

Semantic HTML means the
HTML tags in a page should
describe the content in a way that
has to do with its meaning rather
than its presentation. Any infor-
mation about the decoration of the
content should go in a CSS fi le, while
the logic and the client-side behav-
ior of the Web page should be added
via externally linked JavaScript aft er
the page is loaded and the stylesheet
parsed and applied. Progressive
enhancement ensures that if there’s
an error in the JavaScript fi le, the page
still loads with proper styles. And if

the CSS fi le is ignored (for example, by screen
readers), the HTML page still has all the content.

All modern OSes have their own accessibil-
ity APIs, each of which is a set of open methods
and interfaces exposed by the browser for read-
ing and parsing text. Th e Microsoft version is
Microsoft Active Accessibility (MSAA), a part
of UI Automation (UIA) for Windows; Linux
has IAccessible2; and Apple relies on the Mac
OS X Accessibility Protocol—but they all fol-
low the ARIA standard as defi ned by the W3C
(bit.ly/OlD4lX). Figure 1 shows how a user might
interact with an accessible Web page using an
AT device such as a screen reader. Such devices
use the accessibility APIs to access Web pages.

ARIA is part of the W3C Web Accessibility
Initiative (WAI), and it defi nes a way to make
Web content and Web applications more acces-
sible. ARIA is used to improve the accessibility
of dynamic content and advanced UI controls
developed with HTML, CSS, JavaScript, AJAX
and related technologies. ARIA is now offi cially
a part of the HTML5 specifi cation and is also
embedded in popular JavaScript libraries such
as JQuery, Dojo and YUI. See bit.ly/b89BEJ for
more information.

ARIA uses a set of roles, states and properties to
expose a Web page to the accessibility APIs. Th ese

roles, states and properties are assigned on a page’s elements, which are
exposed to the ATs. Most current AT tools—including JAWS, NVDA
and VoiceOver—support ARIA. Let’s take a take a closer look at ARIA.

ARIA Roles
Roles indicate the type of element in a meaningful way. Suppose a
screen reader comes across an HTML element on a page that includes
role=navigation. Th e screen reader will know this HTML element is

Landmark Roles Structural Roles Widget Roles

Standalone Widgets Composite Widgets
application article region alert progressbar combobox
banner columnheader row alertdialog radio grid
complementary defi nition rowheader button scrollbar listbox
contentinfo directory separator checkbox slider menu
form document toolbar dialog spinbutton menubar
main group gridcell status radiogroup
navigation heading link tab tablist
search img log tabpanel tree

list marquee textbox treegrid
listitem menuitem timer
math menuitemcheckbox tooltip
note menuitemradio treeitem
presentation option

Figure 2 ARIA Role Values

Figure 1 How a User Accesses a Web
Page Using Assistive Technology

HTML Web Page

Windows Eye Voice Over

Assistive
Technology

Tools

• Windows
MSAA/UIA

• Linux
IAccessible2

• Mac OS X
Accessibility
Protocol

Platform Accessibility APIs

User

WAI-ARIA

StatesRoles Properties

www.bit.ly/b89BEJ
www.msdnmagazine.com

msdn magazine50 Building HTML5 Applications

for navigation, and the user will be able to access navigation directly
instead of tabbing through all the links.

ARIA role attributes are applied to HTML elements like this:
<div role="XXX"> </div>

Here “XXX” is a value that depends on the type of the HTML
element and its role on the page. It can take a number of values—
such as a form, navigation, search or article—based on the content
it represents. Th ere are three types of roles:

• Landmark roles act as navigational landmarks.
• Structural roles defi ne the document’s structure and help

organize content.
• Widget roles consist of standalone UI widgets as well as

composite widgets that are containers of two or more
standalone widgets.

Figure 2 shows all the role values available in ARIA. Th ere are
eight landmark roles, 18 structural roles, 25 standalone interface
widget roles and nine composite UI widget roles in ARIA. You’ll
fi nd more information at bit.ly/S0HUvi.

Unlike roles, ARIA states and properties are attributes that can
be set for each HTML element.

ARIA States
An ARIA state is a dynamic property of an HTML element that
represents data associated with the object but doesn’t aff ect the
essential nature of the element. Th ere are two types of ARIA states—
global and widget—as shown in Figure 3. Global states can be

Attribute Type Global Widget

ARIA States aria-busy
aria-disabled
aria-grabbed
aria-hidden
aria-invalid

listitem
math
note
presentation
region
row
rowheader
separator
toolbar

ARIA Properties aria-atomic
aria-controls
aria-describedby
aria-dropeffect
aria-fl owto
aria-haspopup
aria-label
aria-labelledby
aria-live
aria-owns
aria-relevant

aria-autocomplete
aria-haspopup
aria-label
aria-level
aria-multiline
aria-multiselectable
aria-orientation
aria-readonly
aria-required
aria-sort
aria-valuemax
aria-valuemin
aria-valuenow
aria-valuetext

Figure 3 ARIA States and Properties

<!doctype html>
<html lang="en">
<head><title>HTML5 Home Page</title></head>
<body>
 <header><!-- header -->

 </header>
<nav><!-- navigation -->

 Home
 Contact
 FAQ
 About

</nav>
<div><!-- main content -->
<section>
 <figure>
 <figcaption>Welcome image. More help on imageHelp</figcaption>
 </figure>
</section>
<section>
 <h2>Subscribe</h2>
 <article>
 <h2>Welcome!</h2>
 <p>Lorem Ipsum is simply dummy text of the printing and … </p>
 </article>
</section>
</div>
<aside><!-- info blocks -->
 <h4>Promotion</h4>items
 <h4>Awards</h4>items
 <h4>News</h4>items
</aside>
<footer><!-- footer -->
 <div>Copyright © 2012</div>
 <div>Privacy Policy</div>
</footer>
</body>
</html>

Figure 6 HTML5 Homepage

Figure 5 Standard Layout for a Homepage

Home Contact FAQ About

Promotion Award News

Footer

Call to
Action

Main
Content

©

WELCOME!

LOREM IPSUM Loren Ipsun is simply
dummy text of the printing and
typesetting industry. Lorem Ipsum
has been the industry’s standard
dummy text ever...

Blocks of
Information

Top Header
with Logo

Navigation

Main
Graphics

SUBSCRIBE!

LOGO

Home

Header
h Logo

gation

LOGO

Figure 4 Sitemap for Web Site Example

Home

FAQContact About

Accessibility is about
making Web pages easier
to access, easier to use and

available to everyone.

www.bit.ly/S0HUvi

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine52 Building HTML5 Applications

applied to any element regardless of whether a role has been
applied to the element. Widget states are attributes of UI widgets
that require user interaction.

Th e following shows the attribute aria-hidden:
<div aria-hidden="true">
 <p>Paragraph text here </p>
</div>

Th is code will hide the paragraph from a screen reader.

ARIA Properties
ARIA properties are similar to ARIA states but are relatively static
on the page and act as additional properties of the HTML element.

Widget properties are analogous to widget states but the value doesn’t
change within the scope of the page. Th ere are 11 global properties
and 14 widget properties (see Figure 3).

Here’s an example of the widget property aria-required:
<label for="username">User name:</label>
<input id="username" type="text" aria-required="true">

Th is makes a form’s input fi eld required.
Figure 3 summarizes all of the ARIA states and properties. Visit

bit.ly/OlbLeh for more information.
Now that you have some familiarity with ARIA and its roles,

states and properties, you’ll be able to use it to create a progressively
enhanced accessible Web site.

Creating an Accessible Web Site
A typical Web site contains a number of components. Let’s take a
look at how to create each of the following, keeping accessibility
in mind and using HTML5 and ARIA:

1. Homepage
 • Header area with logo
 • Navigation menu
 • Main graphics
 • Main content
 • Blocks of information
2. Contact form
3. FAQ page
4. About page with video

Figure 4 shows the basic structure of the site I’ll create.
Figure 5 shows a typical homepage layout for a product- or

service-based site. To create it, I’ll fi rst use HTML5 with progressive
enhancement and then make it accessible to AT devices.

<!doctype html>
<html lang="en">
<head><title> Accessible HTML5 Home Page</title></head>
<body>
 <header role="banner"><!-- header -->

 </header>
<nav role="navigation"><!-- navigation -->

 Home
 Contact
 FAQ
 About

</nav>
<div id="maincontent" role="main"><!-- main content -->
<section>
 <figure>
 <figcaption>Welcome image. More help on imageHelp</figcaption>
 </figure>
</section>
<section role="region">
 <h2>Subscribe</h2>
 <article role="article">
 <h2>Welcome!</h2>
 <p>Lorem Ipsum is simply dummy text of the printing and … </p>
 </article>
</section>
</div>
<aside role="complementary"><!-- info blocks -->
 <h4>Promotion</h4>items
 <h4>Awards</h4>items
 <h4>News</h4>items
</aside>
<footer role="contentinfo"><!-- footer -->
 <div>Copyright © 2012</div>
 <div>Privacy Policy</div>
</footer>
</body>
</html>

Figure 7 Adding Roles

Input Type input type=datetime
input type=datetime-local
input type=date
input type=month
input type=time
input type=week
input type=number

input type=range
input type=email
input type=url
input type=search
input type=tel
input type=color

Attributes autocomplete
autofocus
form
formaction
formenctype
formmethod
formnovalidate

formtarget
list
multiple
pattern
placeholder
required
step

Figure 8 Form Input Types and Attributes

<div id="contact" role="main"><!-- main content -->
 <!-- content -->
 <section id="content">
 <article>
 <h2>Contact Form</h2>
 <form id="contacts-form" action="" method="post">
 <fieldset>
 <div class="field">
 <label for="name" >Name </label>
 <input id="name" placeholder="John Smith" autofocus required
 aria-required="true" type="text" value="" />
 </div>
 <div class="field">
 <label for="email">E-mail</label>
 <input id="email" placeholder="john@msn.com" type="email" required
 aria-required="true" value=""/>
 </div>
 <div class="field">
 <label for="website">Website</label>
 <input id="website" placeholder="http://website.com"
 type="url" />
 </div>
 <div class="field">
 <label for="message">Message</label>
 <textarea id="message"
 placeholder="Write your message Here!" required
 aria-required="true" ></textarea>
 </div>
 <div>Send Your Message!</div>
 </fieldset>
 </form>
 </article>
 </section>
</div>

Figure 9 Creating an HTML5 Contact Form

www.bit.ly/OlbLeh

Untitled-1 1 5/10/12 12:16 PM

www.nevron.com

msdn magazine54 Building HTML5 Applications

As you can see, I’ve identifi ed a number of elements in the page:
header, navigation, call to action, main graphics, welcome message
with brief content, blocks of information and footer.

Following progressive enhancement principles, I create a
sequential HTML5 page to accommodate these elements, using
the elements <header>, <nav>, <figure>, <article>, <section>,
<aside> and <footer>, as shown in Figure 6.

Th is code is supported in most current browsers, and any HTML5
element not supported defaults to a <div> element. For exam-
ple, if the <header> element isn’t supported, the browser would
substitute a <div>, like so:

<header><!-- header -->

</header>

<div><!-- header -->

</div>

To allow AT tools to recognize the navigational landmarks and
structural parts of the document, I add the following roles to each
element, as shown in Figure 7:

• header role=banner
• nav role=navigation
• maincontent role=main
• section role=region
• article role=article
• aside role=complementary
• footer role=contentinfo

To apply styles for all browsers, the fi rst step is to make all of the
HTML5 elements block-level elements in the stylesheet, like this:

<style>
header,footer,nav,article,aside,section,figure,figcaption{display:block;}
</style>

I include the ARIA roles so the styles are applied for each
particular element:

<style>
 header[role="banner"]{/* Styles for banner */}
 header{/* Styles for other headers */}
 #maincontent[role="main"]{ /* Styles for main content */}
 nav[role="navigation"]{/* Styles for navigation */}
 section[role="group"]{/* Styles for section */}
 article[role="article"]{/* Styles for article */}
 aside[role="complementary"]{/* Styles for info blocks */}
 footer[role="contentinfo"]{/* Styles */}
</style>

Because the HTML page is parsed sequentially, the best place to
put the JavaScript fi le is at the bottom of the page, aft er the footer. Th is
lets the site be completely independent of JavaScript—the Java Script
function is instantiated only aft er the document is ready and fully
loaded. Th e following code shows the script fi le inserted in my example:

<footer role="contentinfo"><!-- ><!-- footer -->
 <div>Copyright © 2012</div>
 <div>Privacy Policy</div>
</footer>
 <script type="text/javascript" src="jquery.min.js"></script>
 <script type="text/javascript" src="main.js"></script>
</body>
</html>

Creating an Accessible Contact Form
Forms are an integral part of Web-based interaction, and HTML5
has a number of new input types and attributes that aid accessibility.
Figure 8 lists the ones related to HTML5 forms.

<h1>FAQ</h1>
 <h2>List of frequently asked questions</h2>

 Accessible Text
 Accessible Tables
 Accessible Links
 Accessible Images
 Accessible Titles

 <h2 id="q1">Accessible Text</h2>
 <h3>Semantic HTML</h3>
 <h3>Proper hierarchy</h3>
 <h3>Localized content</h3>
 <h3>Acronym</h3>
 <h3>Font-size</h3>
 <h3>Color</h3>
 <h2 id="q2">Accessible Table</h2>
 <h2 id="q3">Accessible Links</h2>
 <h2 id="q4">Accessible Images</h2>
 <h2 id="q5">Accessible Titles</h2>

Figure 11 Markup for a FAQ Page

<h4>Table with Caption, Summary and Details</h4>
<table>
 <caption>
 Lorem Ipsum.
 <details>
 <summary>Help</summary>
 <p>Lorem Ipsum is simply dummy text of the printing and </p>
 </details>
 </caption>
 <thead>
 <tr>
 <th>Table header column 1</th>
 <th>Table header column 2</th>
 <th>Table header column 3</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td>Table footer column 1</td>
 <td>Table footer column 2</td>
 <td>Table footer column 3</td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Table data column 1</td>
 <td>Table data column 2</td>
 <td>Table data column 3</td>
 </tr>
 </tbody>
</table>

Figure 12 An Accessible Table

Figure 10 The Contact Form Page in the Browser

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine56 Building HTML5 Applications

For accessibility, a form should be restricted to a single purpose.
A contact page should contain only the contact form and no other
distraction. Th is makes it much easier for people using AT devices.

It’s also important to use the proper input type. Th is improves
the UX for devices that support that attribute. For example, input
type=number can show a numeric keypad for mobile devices
while input type=url displays a special “.com” button in the virtual
keyboard of many smartphones.

You use the for attribute in a label along with the id attribute in
the input element, as follows:

<label for="useremail">Your E-mail:</label>
<input id="useremail" name="useremail" type="email" value=""/>

Th is maps the label to the input element in the assistive device.
You could also do this in a more descriptive way using the aria-
describedby attribute. For example, if you have some help text for
each input fi eld, you can wire it up with the input text:

<label for="useremail">Your E-mail:</label>
<input id="useremail" type="email" value="" aria-describedby="helpemail"/>
<p id="helpemail">Your email address will be used for further communication</p>

Th e next step is adding the placeholder and required HTML5
attributes (with aria-required=“true”). Th e placeholder attribute
lets you show what valid input looks like and the required attribute
makes the input box a required fi eld:

<label for="useremail">Your E-mail:</label>
<input id="useremail" type="email" placeholder="john@msn.com" required
aria-required="true" value="" aria-describedby="helpemail"/>
<p id="helpemail">Your email address will be used for further communication</p>

Note that placeholder is not a label. And keep in mind that if you
use an asterisk with the text to indicate a required fi eld, the asterisk

is read by screen readers with every fi eld, providing a poor UX for
the visually impaired. Instead, use the aria-required fi eld attribute,
which tells the AT device the fi eld is required, and use a background
color or image rather than the asterisk to indicate that to the user.

You can also add the autofocus attribute, which helpfully sets
the focus to the fi rst element of the form.

Figure 9 shows code that creates an accessible HTML5 contact
form, and Figure 10 displays the contact form.

Updates can be diffi cult for people with disabilities, but live regions
can make assistive devices aware of updates when you use the aria-
live attribute along with the role attributes of status, log and alert:

• aria-live=“off ”: updates are not announced (the region is not live)
• aria-live=“polite”: updates are announced when the user is idle
• aria-live=“assertive”: higher priority, but updates aren’t

necessarily announced immediately
• role=“log”, role=“status” and role=“alert” for diff erent types

of messages
Here’s a simple way to integrate this into the HTML code:
<div id="liveregion" role="log" aria-live="polite">

Now let’s look at a FAQ page with
accessible content.

Creating an Accessible
FAQ Page with Images
FAQ pages are among the most
visited pages of many Web sites.
Your FAQ may contain text, tables,
links, images and titles, and these
all should be accessible. Let’s see
how you can accomplish this. First,
the HTML content should contain
only semantic HTML tags, and any
decoration elements should go in
the stylesheet. So, instead of:
 <i>italics</i>

you use:
 emphasized
 <cite>citation</cite>

and instead of:
 bold

you use:
 strong

Note that these elements add
meaning to the content and are inter-
preted diff erently by screen readers.
For example, some screen readers
will change the tone for the
element but not for elements.Figure 13 IntelliSense Support for ARIA Roles in Visual Studio 2012

To be accessible, your content
needs to be available on a broad

range of devices.

Word Processing Components
for Windows Forms, WPF & ASP.NET

US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

WORD PROCESSING
COMPONENTS

WINDOWS FORMS | WPF | ASP.NET | ACTIVEX

Rich Text Editing Integrate professional rich text editing
into your .NET based applications.

Spell Checking
Add the fastest spell checking engine
to your Windows Forms, WPF or ASP.
NET applications.

Load, view, modify and convert Adobe PDF documents and reuse formatted text.
Search and analyze documents such as invoices or delivery notes.

Build MS Word compatible mail
merge applications with

Free
License

Download
our 100% free
Express version.

Untitled-1 1 10/30/12 3:40 PM

www.textcontrol.com

msdn magazine58 Building HTML5 Applications

It’s also important to properly use title-related heading elements
such as <h1>, <h2> and so on. Ideally, you should use one <h1>
heading in a page and multiple subheadings as required. Make
sure you have closing tags for each HTML element. Also be sure
to close all the Ordered and Unordered lists correctly. Standard
practice also suggests you lowercase all tags and nest them
correctly. Figure 11 gives an example.

To create localized content, you set the language of the page
using the lang attribute in the global <html> element:

<html lang="en">

For content in a diff erent language, use lang within <p> or
elements, like this:

<p>Carpe diem (seize the day)</p>

And use the abbr tag for abbreviations:
<p>The <abbr title="World Wide Web Consortium">W3C</abbr> was founded in 1994.</p>

The font size of your content
should always be relative. Never
use absolute or fi xed sizes, as this
restricts the browser’s font-scaling
functionality. Use one of the fol-
lowing to increase or decrease the
font size from the browser’s default:
• percentage (%)
• em (relative to the size of the

capital M)
• ex (relative to the size of the

capital X)
• Keywords (small, medium, larger,

smaller, larger and so forth)
Here’s an example:

 font-size:100%;
 line-height:1.125em;

Color should be used as a visual
aid to the content and should not
be used alone for presenting infor-
mation. A high color contrast
between foreground and back-
ground is important to make the
page accessible. Th e W3C recom-
mends a contrast ratio of 4.5 to 1 for
normal text and 3 to 1 for larger text.

For form validation, individual
input elements may show the back-
ground as colored to indicate an

error, which might not be visible to a color-blind user. Make sure
you have multiple cues for the same information, such as a label
to indicate an error.

When you’re using a color in a stylesheet, set the background-
color element to use a complementary color. Some people can read
more easily with a black background, so allow change of page color
to a darker theme. Here’s an example:

body {
..font-family:Arial, Helvetica, sans-serif;
 font-size:100%;
 line-height:1.125em;
 background-color:#212222;
 color:#242424;
}

Standard tables generally have a header row and possibly a footer
row, but distinguishing these isn’t possible with simple table tags.
HTML5, however, brings a number of helpful new tags:

• <caption> is the title of the table
• <details> shows additional details a user can view or hide

on demand
• <summary> is announced before the real table data is read

by a screen reader
• <thead> indicates the table header row
• <tfoot> indicates the table footer row

Figure 12 shows code for a sample HTML table that’s acces-
sible to AT devices.

When creating links, avoid using generic “click here” and “see
more” links. Use the title attribute and meaningful anchor text.
Here’s a correct way to add links:

Figure 14 ARIA Properties Are Supported in IntelliSense

Progressive enhancement
is an approach to Web design

that promotes accessibility
using semantic HTML,

stylesheets and scripting.

www.alachisoft.com 1-800-253-8195

Are your .NET apps slowing down?
Are your .NET apps slowing down as you increase user activity or transaction load on them? If so then consider
using NCache. NCache is an extremely fast and scalable in-memory distributed cache for .NET.

Download a 60-day FREE trial today!

Performance & Scalability thru Data Caching
Cache app data, reduce expensive database trips, and scale your .NET apps.

 Performance: extremely fast in-memory cache

 Linear Scalability: just add servers and keep growing

 100% uptime: self-healing dynamic cache cluster

 Mirrored, Replicated, Partitioned, and Client Cache topologies

Use for Following in Web Farms
 ASP.NET Session Storage: Replicate sessions for reliability

 ASP.NET View State: Cache it to reduce payload sent to the browser

 ASP.NET Output Cache: Cache page output & improve response time

 NHibernate Level-2 Cache: Plug-in without any code change

 Entity Framework Cache: Plug-in without any code change

Fast Runtime Data Sharing between Apps
 Powerful event notifications for pub/sub data sharing

 Continuous Query and group based events

NCache
Distributed Cache for .NET & Java

TM

http://www.alachisoft.com

msdn magazine60 Building HTML5 Applications

<p>Designandmethod.com has an article on accessibility. See the <a
title="click for more information at the Design & Method Web site"
href="http://designandmethod.com">Big picture at Design and Method</p>

Be careful about using ASCII symbols. When you have multiple
pages, avoid using the greater-than and less-than symbols (> and
<) to go forward and back to the next set of items. Instead, use clear
text, such as “Next 10 items” and “Previous 10 items.” Note that it
may seem logical to use the greater-than symbol in breadcrumb
navigation but, unfortunately, the screen reader will read “Next >>”
as “Next, greater than, greater than,” which is not useful. Use a CSS
background image if your design requires a “>.”

Finally, links should be underlined. Th is helps a color-blind user
to determine that the text is a link. You can do this in the stylesheet
using decoration:

{
 text-decoration: underline;
 display:block;
 border-bottom:1px solid #000;
}

To make images accessible, start
with a meaningful alt attribute and
use a blank alt (alt=“”) for decora-
tive images. Be sure to include the
title attribute—it shows up as a tool
tip and is checked by screen readers
if the alt attribute is not available. If
neither the alt nor title attributes are
found, the AT device will announce
the name of the image, so be sure to
give the image a meaningful name.

Use role=presentation for an
image or for any element that’s
not relevant to AT devices. If
you’re including image maps, use
alt for each area. You can also use
the fi gure and fi gcaption tags for
images. Keep animated images to a
minimum; they can cause seizures
for people with epilepsy.

The following example shows
how to make an image accessible:

<figure><img src="images/
maingraphics.png" alt="Example
screen shot" title="main
graphics showing screenshot
example"><figcaption>Image with
caption.</figcaption></figure>

Here’s the code for an image map:
<area shape=rect coords=0,0,10,10 href="example.htm" alt="example">

The last point on creating accessible content is to include
relevant keywords at the beginning of titles. Having concise titles
with relevant keywords at the beginning helps visually impaired
users skim through them faster.

In the following example, having redundant “How to make” in
each title seems more readable, but a screen reader would repeat
those fi rst three words for every title, making it diffi cult for users
to skim the content quickly. Using precise and relevant keywords
at the beginning of the title makes it more accessible:

<!--How to make content Accessible-->Accessible Content
<!--How to make links Accessible-->Accessible Links
<!--How to make images Accessible-->Accessible Image
<!--How to make titles Accessible-->Accessible Titles

Now let’s take a quick look at adding an About page to the
accessible Web site—one that contains audio and video. Let’s see
what I need to make audio and video elements accessible.

An Accessible About Page with Audio and Video
Suppose I want my About page to contain a video that explains the
founding of my Web site. Th e <audio> and <video> tags in HTML5
make it easy to embed multimedia content in a Web page, but doing
so creates challenges with respect to accessing content for those who
are non-native speakers, deaf or hard of hearing, blind, or for anyone
who may have broken speakers or be in a loud environment. Th ere
are specifi c guidelines to follow for each of these challenges. Here are
some ways to make audio and video content accessible:

Figure 15 You Can Check Accessibility of a Web Page in Visual Studio 2012

Semantic HTML means the
HTML tags in a page should
describe the content in a way

that has to do with its meaning
rather than its presentation.

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicpdf.com
www.dynamicpdf.com/eval
www.cete.com

msdn magazine62 Building HTML5 Applications

• Include text transcripts for the audio or video in HTML format.
• Include alternative content for browsers that don’t

support media tags.
• Controls should, at minimum, have an On/Off button.
• Media should not auto-start but should be user-initiated.
• Provide a link to download the media fi le.
• Provide captioning (closed captions or subtitles) using a

video/audio track.
Subtitles are typically a time-aligned transcription of the spoken words

in a video, which can help users to understand the content. For deaf
users, captions are a better solution because they include transcriptions
of noises, sound eff ects, music and the like, along with spoken words.

Right now we have caption and subtitle support using the track
element along with the following formats:

• WebVTT for captioning video content
• SMPTE-TT, a timed-text format for subtitling
• SRT, for subtitle fi les

Note that accessibility support for video is still a work in progress,
but here’s an example:

<video controls>
<source src="video-file.mp4" type="video/mp4"/>
<track src="en.vtt" kind="subtitles" srclang="en"
label="English p subtitles" default/>
<track src="en.ttml" kind="captions" srclang="en"
label="English p captions" default/>
</video>

Although there isn’t granular control over media, HTML5 has
a controls attribute that displays controls for the media element.
Th ese controls are accessible by keyboard:

• Th e space bar toggles between
play and pause.

• Th e left and right arrows wind
the video forward and back by
5 seconds.

• CTRL+left arrow or right
arrow winds the video for-
ward or back by 60 seconds.

• HOME+left arrow or right
arrow jumps to the beginning
or end of the video.

• If the volume button has focus,
the up and down arrows increase
and decrease the volume.

Accessibility Support in
Visual Studio 2012
You’ll be happy to know that
Visual Studio 2012 makes accessibil-
ity easier. Th ere’s now IntelliSense
for ARIA roles, attributes and prop-
erties in HTML elements, as shown
in Figure 13 and Figure 14.

After you create an accessible
Web page, you’ll want to check to
make sure it actually meets acces-
sibility requirements. With Visual
Studio 2012, you can do so easily

by right-clicking on a page and selecting Check Accessibility, as
shown in Figure 15.

You then choose the Web Content Accessibility Guidelines, or
WCAG, level you want to check against: Priority 1 or Priority 2 (see
bit.ly/S0Nb66). You can also check against Access Board Section 508,
which refers to standards defi ned by the United States government
in Section 508 of the Rehabilitation Act (section508.gov). Once
you’ve selected the guidelines, Visual Studio 2012 checks all the
HTML elements and displays a detailed report on any errors or
warnings in the page, as shown in Figure 16.

You’ve now learned how to create an accessible Web site using
HTML5, and you’ve seen how some Visual Studio 2012 accessibility
features can help. Th ese should be useful additions to your toolbox
as you explore the accessible Web.

RAJESH LAL works at Nokia and is passionate about HTML5 and Web technologies.
He has written multiple books on Windows gadgets, Web widgets, the mobile Web and
Silverlight technologies. To discuss accessibility in soft ware design and method, visit
dsgnmthd.com/accessibility. For information about the author, check out iRajLal.com.

THANKS to the following technical experts for reviewing this article:
Art Barstow, Lakshmi C. Chava and Dennis Lembrée

Figure 16 Web Content Accessibility Report in Visual Studio 2012

All modern OSes have their own
accessibility APIs.

www.bit.ly/S0Nb66
www.dsgnmthd.com/accessibility
www.iRajLal.com

expertise worth sharing

sponsored by Microsoft

Register at www.alm-summit.com follow us on

keynote speakers

ALM Summit3January 29-31, 2013 - Microsoft Conference Center, Redmond

sponsors

diamond platinum

aring

m-sum

ALM S
Micro

Registe

keynote speakers

Janu

“Being Agile. Scaling Up. Staying Lean”

Scott Porad

“Lean Startups, Cheezburgers, and You”

Brian Harry

“Building an Engineering Organization
for Continuous Delivery”

Jason Zander
Corporate Vice President, Microsoft

“Continuous Services and Connected
Devices”

Sam Guckenheimer
Product Owner, Microsoft

“Reimagining the Application Lifecycle”

James Whittaker

“Re-inventing the Internet”

conference tracks

Untitled-2 1 11/5/12 3:56 PM

http://www.alm-summit.com

msdn magazine64

Th is is the fi rst of a two-part series that will tell the long story of
the C# memory model. Th e fi rst part explains the guarantees the
C# memory model makes and shows the code patterns that moti-
vate the guarantees; the second part will detail how the guarantees
are achieved on diff erent hardware architectures in the Microsoft
.NET Framework 4.5.

One source of complexity in multithreaded programming is that
the compiler and the hardware can subtly transform a program’s
memory operations in ways that don’t aff ect the single-threaded
behavior, but might aff ect the multithreaded behavior. Consider
the following method:

void Init() {
 _data = 42;
 _initialized = true;
}

If _data and _initialized are ordinary (that is, non-volatile)
fi elds, the compiler and the processor are allowed to reorder the
operations so that Init executes as if it were written like this:

void Init() {
 _initialized = true;
 _data = 42;
}

Th ere are various optimizations in both compilers and processors
that can result in this kind of reordering, as I’ll discuss in Part 2.

In a single-threaded program, the reordering of statements in
Init makes no diff erence in the meaning of the program. As long as
both _initialized and _data are updated before the method returns,
the order of the assignments doesn’t matter. In a single-threaded
program, there’s no second thread that could observe the state in
between the updates.

In a multithreaded program, however, the order of the assignments
may matter because another thread might read the fi elds while Init
is in the middle of execution. Consequently, in the reordered version
of Init, another thread may observe _initialized=true and _data=0.

The C# memory model is a set of rules that describes what
kinds of memory-operation reordering are and are not allowed.
All programs should be written against the guarantees defi ned in
the specifi cation.

C#

The C# Memory Model
in Theory and Practice
Igor Ostrovsky

This article discusses:
• The C# language specifi cation

• Memory operation reordering

• Thread communication patterns

• Interlocked operations and memory barriers

Technologies discussed:
C#

Even if the compiler
and the processor are allowed to

reorder memory operations,
it doesn’t mean they always do

so in practice.

65December 2012msdnmagazine.com

However, even if the compiler and the processor are allowed
to reorder memory operations, it doesn’t mean they always do so
in practice. Many programs that contain a “bug” according to the
abstract C# memory model will still execute correctly on particu-
lar hardware running a particular version of the .NET Framework.
Notably, the x86 and x64 processors reorder operations only in
certain narrow scenarios, and similarly the CLR just-in-time (JIT)
compiler doesn’t perform many of the transformations it’s allowed to.

Although the abstract C# memory model is what you should
have in mind when writing new code, it can be helpful to under-
stand the actual implementation of the memory model on diff erent
architectures, in particular when trying to understand the behavior
of existing code.

C# Memory Model According to ECMA-334
Th e authoritative defi nition of the C# memory model is in the
Standard ECMA-334 C# Language Specification (bit.ly/MXMCrN).
Let’s discuss the C# memory model as defi ned in the specifi cation.

Memory Operation Reordering
According to ECMA-334, when a thread
reads a memory location in C# that
was written to by a diff erent thread, the
reader might see a stale value. Th is prob-
lem is illustrated in Figure 1.

Suppose Init and Print are called in
parallel (that is, on different threads)
on a new instance of DataInit. If you

examine the code of Init and Print, it may seem that Print can only
output “42” or “Not initialized.” However, Print can also output “0.”

Th e C# memory model permits reordering of memory operations
in a method, as long as the behavior of single-threaded execution
doesn’t change. For example, the compiler and the processor are
free to reorder the Init method operations as follows:

void Init() {
 _initialized = true; // Write 2
 _data = 42; // Write 1
}

Th is reordering wouldn’t change the behavior of the Init method
in a single-threaded program. In a multithreaded program, however,
another thread might read _initialized and _data fi elds aft er Init has
modifi ed one fi eld but not the other, and then the reordering could
change the behavior of the program. As a result, the Print method
could end up outputting a “0.”

Th e reordering of Init isn’t the only possible source of trouble in
this code sample. Even if the Init writes don’t end up reordered, the
reads in the Print method could be transformed:

void Print() {
 int d = _data; // Read 2
 if (_initialized) // Read 1
 Console.WriteLine(d);
 else
 Console.WriteLine("Not initialized");
}

Just as with the reordering of writes, this transformation has no
eff ect in a single-threaded program, but might change the behavior
of a multithreaded program. And, just like the reordering of writes,
the reordering of reads can also result in a 0 printed to the output.

In Part 2 of this article, you’ll see how and why these transfor-
mations take place in practice when I look at diff erent hardware
architectures in detail.

Volatile Fields Th e C# programming language provides volatile
fi elds that constrain how memory operations can be reordered.
Th e ECMA specifi cation states that volatile fi elds provide acquire-
release semantics (bit.ly/NArSlt).

A read of a volatile fi eld has acquire semantics, which means
it can’t be reordered with subsequent operations. The volatile
read forms a one-way fence: preceding operations can pass it, but
subsequent operations can’t. Consider this example:

class AcquireSemanticsExample {
 int _a;
 volatile int _b;
 int _c;

 void Foo() {
 int a = _a; // Read 1
 int b = _b; // Read 2 (volatile)
 int c = _c; // Read 3
 ...
 }
}

public class DataInit {
 private int _data = 0;
 private bool _initialized = false;

 void Init() {
 _data = 42; // Write 1
 _initialized = true; // Write 2
 }

 void Print() {
 if (_initialized) // Read 1
 Console.WriteLine(_data); // Read 2
 else
 Console.WriteLine("Not initialized");
 }
}

Figure 1 Code at Risk of Memory Operation Reordering

int a = _a; // Read 1
int b = _b; // Read 2 (volatile)
int c = _c; // Read 3

int b = _b; // Read 2 (volatile)
int a = _a; // Read 1
int c = _c; // Read 3

int b = _b; // Read 2 (volatile)
int c = _c; // Read 3
int a = _a; // Read 1

Figure 2 Valid Reordering of Reads in AcquireSemanticsExample

_a = 1; // Write 1
_b = 1; // Write 2 (volatile)
_c = 1; // Write 3

_a = 1; // Write 1
_c = 1; // Write 3
_b = 1; // Write 2 (volatile)

_c = 1; // Write 3
_a = 1; // Write 1
_b = 1; // Write 2 (volatile)

Figure 3 Valid Reordering of Writes in ReleaseSemanticsExample

The C# memory model
permits reordering of memory

operations in a method, as
long as the behavior of

single-threaded execution
doesn’t change.

www.bit.ly/MXMCrN
www.bit.ly/NArSlt
www.msdnmagazine.com

msdn magazine66 C#

Read 1 and Read 3 are non-volatile, while Read 2 is volatile. Read
2 can’t be reordered with Read 3, but it can be reordered with Read
1. Figure 2 shows the valid reorderings of the Foo body.

A write of a volatile fi eld, on the other hand, has release semantics,
and so it can’t be reordered with prior operations. A volatile write
forms a one-way fence, as this example demonstrates:

class ReleaseSemanticsExample
{
 int _a;
 volatile int _b;
 int _c;

 void Foo()
 {
 _a = 1; // Write 1
 _b = 1; // Write 2 (volatile)
 _c = 1; // Write 3
 ...
 }
}

Write 1 and Write 3 are non-volatile, while Write 2 is volatile.
Write 2 can’t be reordered with Write 1, but it can be reordered
with Write 3. Figure 3 shows the valid reorderings of the Foo body.

I’ll come back to the acquire-release semantics in the “Publication
via Volatile Field” section later in this article.

Atomicity Another issue to be aware of is that in C#, values aren’t
necessarily written atomically into memory. Consider this example:

class AtomicityExample {
 Guid _value;

 void SetValue(Guid value) { _value = value; }
 Guid GetValue() { return _value; }
}

If one thread repeatedly calls SetValue and another thread calls
GetValue, the getter thread might observe a value that was never
written by the setter thread. For example, if the setter thread
alternately calls SetValue with Guid values (0,0,0,0) and (5,5,5,5),
GetValue could observe (0,0,0,5) or (0,0,5,5) or (5,5,0,0), even
though none of those values was ever assigned using SetValue.

Th e reason behind the “tearing” is that the assignment “_value
= value” doesn’t execute atomically at the hardware level. Similarly,
the read of _value also doesn’t execute atomically.

Th e C# ECMA specifi cation guarantees that the following types
will be written atomically: reference types, bool, char, byte, sbyte,
short, ushort, uint, int and fl oat. Values of other types—including

user-defined value types—could be written into memory in
multiple atomic writes. As a result, a reading thread could observe
a torn value consisting of pieces of diff erent values.

One caveat is that even the types that are normally read and written
atomically (such as int) could be read or written non-atomically if
the value is not correctly aligned in memory. Normally, C# will ensure
that values are correctly aligned, but the user is able to override the
alignment using the StructLayoutAttribute class (bit.ly/Tqa0MZ).

Non-Reordering Optimizations Some compiler optimizations
may introduce or eliminate certain memory operations. For
example, the compiler might replace repeated reads of a fi eld with
a single read. Similarly, if code reads a fi eld and stores the value in a
local variable and then repeatedly reads the variable, the compiler
could choose to repeatedly read the fi eld instead.

Because the ECMA C# spec doesn’t rule out the non-reordering
optimizations, they’re presumably allowed. In fact, as I’ll discuss in
Part 2, the JIT compiler does perform these types of optimizations.

Thread Communication Patterns
Th e purpose of a memory model is to enable thread communication.
When one thread writes values to memory and another thread reads
from memory, the memory model dictates what values the reading
thread might see.

Locking Locking is typically the easiest way to share data among
threads. If you use locks correctly, you basically don’t have to worry
about any of the memory model messiness.

Whenever a thread acquires a lock, the CLR ensures that the
thread will see all updates made by the thread that held the lock
earlier. Let’s add locking to the example from the beginning of this
article, as shown in Figure 4.

public class Test {
 private int _a = 0;
 private int _b = 0;
 private object _lock = new object();

 void Set() {
 lock (_lock) {
 _a = 1;
 _b = 1;
 }
 }

 void Print() {
 lock (_lock) {
 int b = _b;
 int a = _a;
 Console.WriteLine("{0} {1}", a, b);
 }
 }
}

Figure 4 Thread Communication with Locking

Figure 5 Sequential Execution with Locking

Thread 1

Print

Thread 2 Thread 3_lock

Print

Set

Print

Print

One caveat is that even the
types that are normally read
and written atomically (such

as int) could be read or written
non-atomically if the value is not

correctly aligned in memory.

www.bit.ly/Tqa0MZ

vslive.com

VISUAL STUDIO LIVE! IS COMING
TO A CITY NEAR YOU

Get an all-access look at the Microsoft Platform and practical,
unbiased Developer training at Visual Studio Live!. Pick your
tour dates and join .NET rockstars for a week of educational sessions,
workshops and networking events.

HTML5 | Windows 8 | Visual Studio/.NET | Mobile | WPF/ Silverlight

There are FOUR tour dates / l ocations to choose from – pick your favorite
and prepare to solve your development challenges in 2013! Scan the QR code

to register or for
more event details.

PRODUCED BYSUPPORTED BY

magazine

YOURR BBACKSTTAGEE PPASS TTO THEE MICCROSOOFTT PPLATFFORM

PICK YOUR TOUR DATES

Untitled-4 1 11/1/12 4:17 PM

www.vslive.com

msdn magazine68 C#

Adding a lock that Print and Set acquire provides a simple solu-
tion. Now, Set and Print execute atomically with respect to each
other. Th e lock statement guarantees that the bodies of Print and
Set will appear to execute in some sequential order, even if they’re
called from multiple threads.

Th e diagram in Figure 5 shows one possible sequential order
that could happen if Th read 1 calls Print three times, Th read 2 calls
Set once and Th read 3 calls Print once.

When a locked block of code executes, it’s guaranteed to see all
writes from blocks that precede the block in the sequential order
of the lock. Also, it’s guaranteed not to see any of the writes from
blocks that follow it in the sequential order of the lock.

In short, locks hide all of the unpredictability and complexity
weirdness of the memory model: You don’t have to worry about the
reordering of memory operations if you use locks correctly. How-
ever, note that the use of locking has to be correct. If only Print or
Set uses the lock—or Print and Set acquire two diff erent locks—
memory operations can become reordered and the complexity of
the memory model comes back.

Publication via Threading API Locking is a very general
and powerful mechanism for sharing state among threads. Pub-
lication via threading API is another frequently used pattern of
concurrent programming.

Th e easiest way to illustrate publication via threading API is by
way of an example:

class Test2 {
 static int s_value;

 static void Run() {
 s_value = 42;
 Task t = Task.Factory.StartNew(() => {
 Console.WriteLine(s_value);
 });
 t.Wait();
 }
}

When you examine the preceding code sample, you’d probably
expect “42” to be printed to the screen. And, in fact, your intuition
would be correct. Th is code sample is guaranteed to print “42.”

It might be surprising that this case even needs to be mentioned,
but in fact there are possible implementations of StartNew that
would allow “0” to be printed instead of “42,” at least in theory.
Aft er all, there are two threads communicating via a non-volatile
field, so memory operations can be reordered. The pattern is
displayed in the diagram in Figure 6.

The StartNew implementation must ensure that the write to
s_value on Th read 1 will not move aft er <start task t>, and the read
from s_value on Th read 2 will not move before <task t starting>.
And, in fact, the StartNew API really does guarantee this.

All other threading APIs in the .NET Framework, such as
Th read.Start and Th readPool.QueueUserWorkItem, also make a
similar guarantee. In fact, nearly every threading API must have
some barrier semantics in order to function correctly. Th ese are
almost never documented, but can usually be deduced simply by
thinking about what the guarantees would have to be in order for
the API to be useful.

Publication via Type Initialization Another way to safely
publish a value to multiple threads is to write the value to a static fi eld
in a static initializer or a static constructor. Consider this example:

class Test3
{
 static int s_value = 42;
 static object s_obj = new object();

 static void PrintValue()
 {
 Console.WriteLine(s_value);
 Console.WriteLine(s_obj == null);
 }
}

If Test3.PrintValue is called from multiple threads concurrently, is
it guaranteed that each PrintValue call will print “42” and “false”? Or,
could one of the calls also print “0” or “true”? Just as in the previous
case, you do get the behavior you’d expect: Each thread is guaranteed
to print “42” and “false.”

Th e patterns discussed so far all behave as you’d expect. Now I’ll
get to cases whose behavior may be surprising.

Publication via Volatile Field Many concurrent programs
can be built using the three simple patterns discussed so far, used
together with concurrency primitives in the .NET System.Th reading
and System.Collections.Concurrent namespaces.

public class DataInit {
 private int _data = 0;
 private volatile bool _initialized = false;

 void Init() {
 _data = 42; // Write 1
 _initialized = true; // Write 2
 }

 void Print() {
 if (_initialized) { // Read 1
 Console.WriteLine(_data); // Read 2
 }
 else {
 Console.WriteLine("Not initialized");
 }
 }
}

Figure 7 Using the Volatile Keyword

Figure 6 Two Threads Communicating via a Non-Volatile Field

int s_value = 0;

Initial State

Thread 2

<task t starting>
int tmp = s_value;
Console.WriteLine(tmp);

Thread 1

s_value = 42;
<start task t>

Locking is a very general and
powerful mechanism for sharing

state among threads.

MSDN Magazine Online

It’s like MSDN Magazine—only better. In addition to all
the great articles from the print edition, you get:

• Code Downloads
• The MSDN Magazine Blog
• Digital Magazine Downloads
• Searchable Content

All of this and more at msdn.microsoft.com/magazine

magazine

Untitled-1 1 11/7/12 11:10 AM

http://msdn.microsoft.com/magazine

msdn magazine70 C#

The pattern I’m about to discuss is so important that the
semantics of the volatile keyword were designed around it. In fact,
the best way to remember the volatile keyword semantics is to
remember this pattern, instead of trying to memorize the abstract
rules explained earlier in this article.

Let’s start with the example code in Figure 7. Th e DataInit class
in Figure 7 has two methods, Init and Print; both may be called
from multiple threads. If no memory operations are reordered,
Print can only print “Not initialized” or “42,” but there are two pos-
sible cases when Print could print a “0”:

• Write 1 and Write 2 were reordered.
• Read 1 and Read 2 were reordered.

If _initialized were not marked as volatile, both reorderings would
be permitted. However, when _initialized is marked as volatile,
neither reordering is allowed! In the case of writes, you have an
ordinary write followed by a volatile write, and a volatile write can’t
be reordered with a prior memory operation. In the case of the reads,
you have a volatile read followed by an ordinary read, and a vola-
tile read can’t be reordered with a subsequent memory operation.

So, Print will never print “0,” even if called concurrently with
Init on a new instance of DataInit.

Note that if the _data fi eld is volatile but _initialized is not, both
reorderings would be permitted. As a result, remembering this
example is a good way to remember the volatile semantics.

Lazy Initialization One common variant of publication via vol-
atile fi eld is lazy initialization. Th e example in Figure 8 illustrates
lazy initialization.

In this example, LazyGet is always guaranteed to return “42.”
However, if the _box field were not volatile, LazyGet would be
allowed to return “0” for two reasons: the reads could get reordered,
or the writes could get reordered.

To further emphasize the point, consider this class:
class BoxedInt2
{
 public readonly int _value = 42;

 void PrintValue()
 {
 Console.WriteLine(_value);
 }
}

Now, it’s possible—at least in theory—that PrintValue will
print “0” due to a memory-model issue. Here’s a usage example of
BoxedInt that allows it:

class Tester
{
 BoxedInt2 _box = null;

 public void Set() {
 _box = new BoxedInt2();
 }

 public void Print() {
 var b = _box;
 if (b != null) b.PrintValue();
 }
}

Because the BoxedInt instance was incorrectly published (through
a non-volatile fi eld, _box), the thread that calls Print may observe a
partially constructed object! Again, making the _box fi eld volatile
would fi x the issue.

Interlocked Operations and Memory Barriers Interlocked
operations are atomic operations that can be used at times to
reduce locking in a multithreaded program. Consider this simple
thread-safe counter class:

class Counter
{
 private int _value = 0;
 private object _lock = new object();

 public int Increment()
 {
 lock (_lock)
 {
 _value++;
 return _value;
 }
 }
}

Using Interlocked.Increment, you can rewrite the program
like this:

class Counter
{
 private int _value = 0;

 public int Increment()
 {
 return Interlocked.Increment(ref _value);
 }
}

class PollingLoopExample
{
 private bool _loop = true;

 public static void Main()
 {
 PollingLoopExample test1 = new PollingLoopExample();

 // Set _loop to false on another thread
 new Thread(() => { test1._loop = false;}).Start();

 // Poll the _loop field until it is set to false
 while (test1._loop) ;

 // The previous loop may never terminate
 }
}

Figure 9 Broken Polling Loop

class BoxedInt
{
 public int Value { get; set; }
}

class LazyInit
{
 volatile BoxedInt _box;

 public int LazyGet()
 {
 var b = _box; // Read 1
 if (b == null)
 {
 lock(this)
 {
 b = new BoxedInt();
 b.Value = 42; // Write 1
 _box = b; // Write 2
 }
 }
 return b.Value; // Read 2
 }
}

Figure 8 Lazy Initialization

71December 2012msdnmagazine.com

As rewritten with Interlocked.Increment, the method should
execute faster, at least on some architectures. In addition to the
increment operations, the Interlocked class (bit.ly/RksCMF) exposes
methods for various atomic operations: adding a value, condition-
ally replacing a value, replacing a value and returning the original
value, and so forth.

All Interlocked methods have one very interesting property: Th ey
can’t be reordered with other memory operations. So no memory
operation, whether before or aft er an Interlocked operation, can
pass an Interlocked operation.

An operation that’s closely related to Interlocked methods is
Th read.MemoryBarrier, which can be thought of as a dummy Inter-
locked operation. Just like an Interlocked method, Th read.Memory-
Barrier can’t be reordered with any prior or subsequent memory
operations. Unlike an Interlocked method, though, Th read.Memory-
Barrier has no side eff ect; it simply constrains memory reorderings.

Polling Loop Polling loop is a pattern that’s generally not recom-
mended but—somewhat unfortunately—frequently used in practice.
Figure 9 shows a broken polling loop.

In this example, the main thread loops, polling a particular
non-volatile fi eld. A helper thread sets the fi eld in the meantime,
but the main thread may never see the updated value.

Now, what if the _loop fi eld was marked volatile? Would that fi x
the program? Th e general expert consensus seems to be that the
compiler isn’t allowed to hoist a volatile fi eld read out of a loop, but it’s
debatable whether the ECMA C# specifi cation makes this guarantee.

On one hand, the specification states only that volatile fields
obey the acquire-release semantics, which doesn’t seem suffi cient
to prevent hoisting of a volatile field. On the other hand, the
example code in the specifi cation does in fact poll a volatile fi eld,
implying that the volatile fi eld read can’t be hoisted out of the loop.

On x86 and x64 architectures, PollingLoopExample.Main will
typically hang. Th e JIT compiler will read test1._loop fi eld just once,
save the value in a register, and then loop until the register value
changes, which will obviously never happen.

If the loop body contains some statements, however, the JIT
compiler will probably need the register for some other purpose,
so each iteration may end up rereading test1._loop. As a result,
you may end up seeing loops in existing programs that poll a non-
volatile fi eld and yet happen to work.

Concurrency Primitives Much concurrent code can benefi t from
high-level concurrency primitives that became available in the .NET
Framework 4. Figure 10 lists some of the .NET concurrency primitives.

By using these primitives, you can oft en avoid low-level code
that depends on the memory model in intricate ways (via volatile
and the like).

Coming Up
So far, I’ve described the C# memory model as defi ned in the ECMA
C# specification, and discussed the most important patterns of
thread communication that defi ne the memory model.

Th e second part of this article will explain how the memory model
is actually implemented on diff erent architectures, which is helpful
for understanding the behavior of programs in the real world.

IGOR OSTROVSKY is a senior software development engineer at Microsoft. He
has worked on Parallel LINQ, the Task Parallel Library, and other parallel
libraries and primitives in the Microsoft .NET Framework. Ostrovsky blogs about
programming topics at igoro.com.

THANKS to the following technical expert for reviewing this article:
Joe Duff y, Eric Eilebrecht, Joe Hoag, Emad Omara, Grant Richins, Jaroslav
Sevcik and Stephen Toub

Type Description
Lazy<>

Lazily initialized values
LazyInitializer
BlockingCollection<>

Thread-safe collections
ConcurrentBag<>
ConcurrentDictionary<,>
ConcurrentQueue<>
ConcurrentStack<>
AutoResetEvent

Primitives to coordinate execution
of different threads

Barrier
CountdownEvent
ManualResetEventSlim
Monitor
SemaphoreSlim
ThreadLocal<> Container that holds a separate value for

every thread

Figure 10 Concurrency Primitives in the .NET Framework 4

• All code you write should rely only on the guarantees made by
the ECMA C# specifi cation, and not on any of the implementation
details explained in this article.

• Avoid unnecessary use of volatile fi elds. Most of the time, locks
or concurrent collections (System.Collections.Concurrent.*) are
more appropriate for exchanging data between threads. In
some cases, volatile fi elds can be used to optimize concurrent
code, but you should use performance measurements to
validate that the benefi t outweighs the extra complexity.

• Instead of implementing the lazy initialization pattern
yourself using a volatile fi eld, use the System.Lazy<T> and
System.Threading.LazyInitializer types.

• Avoid polling loops. Often, you can use a BlockingCollection<T>,
Monitor.Wait/Pulse, events or asynchronous programming
instead of a polling loop.

• Whenever possible, use the standard .NET concurrency primitives
instead of implementing equivalent functionality yourself.

Best Practices

All Interlocked methods have
one very interesting property:
They can’t be reordered with
other memory operations.

www.bit.ly/RksCMF
www.igoro.com
www.msdnmagazine.com

msdn magazine72

C#

Matrix Decomposition

Matrix decomposition, a technique that breaks down a
square numeric matrix into two diff erent square matrices, is the
basis for effi ciently solving a system of equations, which in turn is
the basis for inverting a matrix. And inverting a matrix is a part
of many important algorithms. Th is article presents and explains
C# code that performs matrix decomposition, matrix inversion, a
system of equations solution and related operations.

Admittedly, matrix decomposition isn’t a fl ashy topic, but a collec-
tion of matrix methods can be an important addition to your personal
code library. Th e methods are explained so you can modify the source
code to meet your own needs. Additionally, some of the techniques
used in the matrix methods can be reused in other coding scenarios.

Th e best way for you to get a feel for the kind of information pre-
sented in this article is to take a look at the screenshot in Figure 1.

James McCaffrey

Th e demo program begins by creating a 4 x 4 square matrix and
displaying its values. Next, the matrix is decomposed into what’s
called an LUP matrix. L stands for lower and U stands for upper.
Th e P part (P stands for permutation) is an array with values {3,1,2,0}
and indicates that rows 0 and 3 were exchanged during the decom-
position process. Th e decomposition also generated a toggle value
of -1, indicating that an odd number of row exchanges occurred.
Th e demo program displays the decomposition in two ways: fi rst
as a combined LU matrix and then as separate L and U matrices.
Next, the program computes and displays the inverse of the origi-
nal matrix, using the LUP matrix behind the scenes. Th e demo
program computes the determinant of the original matrix, again
using the decomposition. It then uses the inverse of the matrix to
solve a system of linear equations and concludes by combining the
L and U matrices back into the original matrix.

But why go to all the trouble of creating a custom matrix decom-
position method and a library of related methods? Although there
are many standalone matrix tools available, they can sometimes be
diffi cult to integrate into an application or system. And in spite of
the fundamental importance of matrix decomposition, there are
few free, non-copyrighted .NET code implementations available;
those that do exist are oft en not explained in enough detail for you
to modify the source code to suit your coding scenarios.

Th is article assumes you have intermediate C# programming
skills and at least a basic understanding of matrix operations and
terminology. All of the key C# code is presented in this article.
The code is also available from the MSDN code download site
at code.msdn.microsoft.com/mag201207matrix.

This article discusses:
• Implementing a matrix in C#

• Parallelizing matrix multiplication

• Approaches to matrix decomposition

• Using matrix decomposition to invert a matrix

• Computing the determinant of a matrix

Technologies discussed:
C#, Microsoft .NET Framework

Code download available at:
archive.msdn.microsoft.com/mag201212Matrix

http://archive.msdn.microsoft.com/mag201212Matrix
http://code.msdn.microsoft.com/mag201207matrix

73December 2012msdnmagazine.com

Matrix Defi nition
Th ere are several ways to implement a matrix in
C#. Th e traditional approach, and the one used in
this article, is to use an array of arrays, sometimes
called a jagged array. For example, this code
defi nes a matrix with three rows and two columns:

double[][] m = new double[3][];
m[0] = new double[2];
m[1] = new double[2];
m[2] = new double[2];
m[2][1] = 5.0; // set row 2, col 1

Unlike most programming languages, C# has
a built-in multidimensional array type, which
provides an alternative approach. For example:

double[,] m = new double[3,2];
m[2,1] = 5.0;

A third approach to implementing matrices in
C# is to use a single array combined with array
index manipulation, like this:

int rows = 3;
int cols = 2;
double[] m = new double[rows * cols];
int i = 2;
int j = 1;
m[i * cols + j] = 5.0;

Regardless of the storage scheme used, matrices
can be implemented using either an OOP or a
static-method approach. For example, an OOP
approach could resemble:

public class MyMatrix
{
 int m; // number rows
 int n; // number columns
 data[][]; // the values
 ...
}

There’s no single best choice for matrix
design; the best design depends on the particular
coding scenario you’re operating in and on your
personal coding preferences. Th is article uses a
static-method approach because it’s the easiest
to understand and refactor.

When using an array-of-arrays design for
matrices, because each row must be allocated
separately, it’s often convenient to define a
helper method to perform memory allocation.
For example:

static double[][] MatrixCreate(int rows, int cols)
{
 // creates a matrix initialized to all 0.0s
 // do error checking here?
 double[][] result = new double[rows][];
 for (int i = 0; i < rows; ++i)
 result[i] = new double[cols]; // auto init to 0.0
 return result;
}

Th e method can be called like so:
double[][] m = MatrixCreate(3,2);
m[2][1] = 5.0;

Th is method demonstrates one advantage of creating your own
library of matrix methods: If you want to improve performance,
you can omit error-checking the input parameters—at the expense
of increasing the risk of the calling code causing an exception. (To
keep this article short, most error checking has been removed.)

Another advantage is that you can customize your library to optimize
for your exact scenario. Th e main disadvantage of creating your
own library is that it can take longer than using an existing library.

Another convenient method to add to your matrix library is one
that can be used to display a matrix as a string. Here’s one possibility:

static string MatrixAsString(double[][] matrix)
{
 string s = "";
 for (int i = 0; i < matrix.Length; ++i)
 {
 for (int j = 0; j < matrix[i].Length; ++j)
 s += matrix[i][j].ToString("F3").PadLeft(8) + " ";
 s += Environment.NewLine;
 }
 return s;
}

You may want to parameterize the number of decimals to
display, or the column-width padding, or both.

Figure 1 Matrix Decomposition Demo

www.msdnmagazine.com

msdn magazine74 C#

Matrix Multiplication
Th e Microsoft .NET Framework 4 and later provide a neat way to signifi -
cantly improve the performance of a matrix multiplication method.
Matrix multiplication is illustrated in Figure 2.

Note that the computation of each cell value of the result does
not depend on any other cell values in the result, so each compu-
tation is independent and they can potentially be performed in
parallel on a machine with multiple processors. Here’s a standard
approach to matrix multiplication:

static double[][] MatrixProduct(double[][] matrixA, double[][] matrixB)
{
 int aRows = matrixA.Length; int aCols = matrixA[0].Length;
 int bRows = matrixB.Length; int bCols = matrixB[0].Length;
 if (aCols != bRows)
 throw new Exception("Non-conformable matrices in MatrixProduct");

 double[][] result = MatrixCreate(aRows, bCols);

 for (int i = 0; i < aRows; ++i) // each row of A
 for (int j = 0; j < bCols; ++j) // each col of B
 for (int k = 0; k < aCols; ++k)
 result[i][j] += matrixA[i][k] * matrixB[k][j];

 return result;
}

Because matrix multiplication is an O(n^3) operation, perfor-
mance can be an issue. For example, if matrix A has size 300 x 200
and matrix B has size 200 x 400, computing the product of A and
B requires 300 * 200 * 400 = 24,000,000 multiplications. Th e Task
Parallel Library (TPL) in the System.Th reading.Tasks namespace
in the .NET Framework 4 and later makes it easy to code a simple
parallelized version of matrix multiplication. One possibility is:

static double[][] MatrixProduct(double[][] matrixA, double[][] matrixB)
{
 // error check, compute aRows, aCols, bCols
 double[][] result = MatrixCreate(aRows, bCols);

 Parallel.For(0, aRows, i =>
 {
 for (int j = 0; j < bCols; ++j)
 for (int k = 0; k < aCols; ++k)
 result[i][j] += matrixA[i][k] * matrixB[k][j];
 }
);

 return result;
}

Th is version chops up the computations by rows. Behind the
scenes, the TPL generates all the complex synchronization plumb-
ing code to perform the computations on multiple processors.

Consistency Testing
An interesting aspect of a library of methods that are related to
each other is that it’s oft en possible to test them by checking to see
if they produce consistent results. For example, suppose you have
a method that creates a random matrix:

static double[][] MatrixRandom(int rows, int cols,
 double minVal, double maxVal, int seed)
{
 // return matrix with values between minVal and maxVal
 Random ran = new Random(seed);
 double[][] result = MatrixCreate(rows, cols);
 for (int i = 0; i < rows; ++i)
 for (int j = 0; j < cols; ++j)
 result[i][j] = (maxVal - minVal) * ran.NextDouble() + minVal;
 return result;
}

Additionally, suppose you have a matrix that creates the identity
matrix—that is, a square matrix with 1.0s on the main diagonal,
0.0s elsewhere:

static double[][] MatrixIdentity(int n)
{
 double[][] result = MatrixCreate(n, n);
 for (int i = 0; i < n; ++i)
 result[i][i] = 1.0;
 return result;
}

And suppose you have a method that compares two matrices
for equality:

static bool MatrixAreEqual(double[][] matrixA,
 double[][] matrixB, double epsilon)
{
 // true if all values in A == corresponding values in B
 int aRows = matrixA.Length;
 int bCols = matrixB[0].Length;
 for (int i = 0; i < aRows; ++i) // each row of A and B
 for (int j = 0; j < aCols; ++j) // each col of A and B
 if (Math.Abs(matrixA[i][j] - matrixB[i][j]) > epsilon)
 return false;
 return true;
 }

Notice the MatrixAreEqual method does not compare cell values
for exact equality because the values are type double. Instead, the
method checks to see if all the cell values are very close (within
epsilon) to each other.

Because the product of any square matrix m and the identity
matrix of the same dimension is equal to the original matrix m, you
can test the matrix product method along the lines of this code:

double[][] m = MatrixRandom(4, 4, -9.0, 9.0, 0);
double[][] i = MatrixIdentity(4);
double[][] mi = MatrixProduct(m, i);
if (MatrixAreEqual(m, mi, 0.00000001) == true)
 Console.WriteLine("Consistent result");
else
 Console.WriteLine("Something is wrong");

Consistency checking lends itself well to random input testing.

Matrix Decomposition
Matrix decomposition takes a square matrix M and computes two
new square matrices that when multiplied together give the origi-
nal matrix M. Th e idea is similar to ordinary number factoring: the
number 6 can be factored into 2 and 3 because 2 * 3 = 6. At fi rst it
may seem like there’s little point in decomposing a matrix, but it
turns out that matrix decomposition makes the very diffi cult task

Figure 2 Matrix Multiplication

[0] [1] [2] [3]

[0]
[1]
[2]

7.0
11.0
15.0

8.0
12.0
16.0

9.0
13.0
17.0

10.0
14.0
18.0

[0] [1] [2] [3]

[0]
[1]

74.0
173.0

80.0
188.0

86.0
203.0

92.0
218.0

[0] [1] [2]

[0]
[1]

1.0
4.0

2.0
5.0

3.0
6.0 *

(4.0)(7.0) + (5.0)(11.0) + (6.0)(15.0) = 173.0

The Task Parallel Library
makes it easy to code a simple
parallelized version of matrix

multiplication.

75December 2012msdnmagazine.com

of matrix inversion quite a bit simpler. Th ere are many diff erent
kinds of matrix decomposition, and each kind can be computed
using several diff erent algorithms. Th e technique presented in this
article is called LUP decomposition and uses Doolittle’s method
with partial pivoting.

To understand LUP decomposition, it’s helpful to fi rst under-
stand the simpler LU decomposition, which was introduced by
the famous mathematician Alan Turing. Suppose you have this
4 x 4 matrix M:

 9.000 5.000 3.000 4.000
 4.000 8.000 2.000 5.000
 3.000 5.000 7.000 1.000
 2.000 6.000 0.000 8.000

One possible LU decomposition of M is L =
 1.000 0.000 0.000 0.000
 0.444 1.000 0.000 0.000
 0.333 0.577 1.000 0.000
 0.222 0.846 -0.219 1.000

And U =
 9.000 5.000 3.000 4.000
 0.000 5.778 0.667 3.222
 0.000 0.000 5.615 -2.192
 0.000 0.000 0.000 3.904

Th is works because L * U = M. Notice that the lower L matrix
has 1.0s on the diagonal and 0.0s in the upper right. In other words,
the signifi cant cell values of the lower matrix are in the lower left .
Similarly the signifi cant cell values of the upper matrix are on the
main diagonal and in the upper right.

Notice as well that there’s no overlap of the locations of the
significant cell values in L and U. So, instead of generating two
results matrices, L and U, matrix decomposition usually stores both
the lower and upper results into a single matrix that holds both L
and U to save memory space.

LUP matrix decomposition is a slight but important variation
on LU decomposition. LUP decomposition takes a matrix M and
produces L and U matrices but also a P array. Th e product of L and
U in LUP is not exactly the original matrix M but instead is a ver-
sion of M where some of the rows have been rearranged. Th e way
in which the rows have been rearranged is stored into the P array;
this information can be used to reconstruct the original matrix M.

A close cousin to the Doolittle decomposition presented in
this article is called Crout’s decomposition. The main difference
between Doolittle and Crout is that Doolittle places 1.0s on the
main diagonal of the L matrix and Crout places 1.0s on the main
diagonal of the U matrix.

The reason LUP decomposition is used more often than LU
decomposition is subtle. As you’ll see shortly, matrix decomposi-
tion is used to compute the inverse of a matrix. However, when
matrix decomposition is used as a helper for matrix inversion,
it turns out that the inversion will fail if there’s a 0.0 value on the
main diagonal of the LU matrix. So in LUP decomposition, when
a 0.0 value ends up on the main diagonal, the algorithm exchanges
two rows to move the 0.0 value off the diagonal and keeps track of
which rows were exchanged in the P array.

Figure 3 lists a matrix decomposition method.
Th e method could be called like this:
double[][] m = MatrixRandom(4, 4, -9.0, 9.0, 0);
int[] perm;
int toggle;
double luMatrix = MatrixDecompose(m, out perm, out toggle);

static double[][] MatrixDecompose(double[][] matrix,
 out int[] perm, out int toggle)
{
 // Doolittle LUP decomposition.
 // assumes matrix is square.

 int n = matrix.Length; // convenience
 double[][] result = MatrixDuplicate(matrix);
 perm = new int[n];
 for (int i = 0; i < n; ++i) { perm[i] = i; }

 toggle = 1;

 for (int j = 0; j < n - 1; ++j) // each column
 {
 double colMax = Math.Abs(result[j][j]); // largest val in col j
 int pRow = j;
 for (int i = j + 1; i < n; ++i)
 {
 if (result[i][j] > colMax)
 {
 colMax = result[i][j];
 pRow = i;
 }
 }

 if (pRow != j) // swap rows
 {
 double[] rowPtr = result[pRow];
 result[pRow] = result[j];
 result[j] = rowPtr;

 int tmp = perm[pRow]; // and swap perm info
 perm[pRow] = perm[j];
 perm[j] = tmp;

 toggle = -toggle; // row-swap toggle
 }

 if (Math.Abs(result[j][j]) < 1.0E-20)
 return null; // consider a throw

 for (int i = j + 1; i < n; ++i)
 {
 result[i][j] /= result[j][j];
 for (int k = j + 1; k < n; ++k)
 result[i][k] -= result[i][j] * result[j][k];
 }
 } // main j column loop
 return result;
}

Figure 3 A Matrix Decomposition Method

static double[] HelperSolve(double[][] luMatrix, double[] b)
{
 // solve luMatrix * x = b
 int n = luMatrix.Length;
 double[] x = new double[n];
 b.CopyTo(x, 0);

 for (int i = 1; i < n; ++i)
 {
 double sum = x[i];
 for (int j = 0; j < i; ++j)
 sum -= luMatrix[i][j] * x[j];
 x[i] = sum;
 }

 x[n - 1] /= luMatrix[n - 1][n - 1];
 for (int i = n - 2; i >= 0; --i)
 {
 double sum = x[i];
 for (int j = i + 1; j < n; ++j)
 sum -= luMatrix[i][j] * x[j];
 x[i] = sum / luMatrix[i][i];
 }
 return x;
}

Figure 4 The HelperSolve Method

www.msdnmagazine.com

msdn magazine76 C#

Th e MatrixDecompose method accepts as its input a square
matrix. The method has three return values. The explicit return
is a permuted LU matrix. Th e method returns two values as out
parameters. One is a permutation array that holds information
about how the rows were permuted. Th e second out parameter is a
toggle value that’s either +1 or -1 depending on whether the number
of row exchanges was even (+1) or odd (-1). Th e toggle value is not
used for matrix inversion but is needed if matrix decomposition
is used to compute the determinant of a matrix.

Th e MatrixDecompose method is fairly tricky, but realistically,
there are only a few details you need to understand to modify the
code. Th e version presented here allocates new memory for the LU
return matrix using a helper method MatrixDuplicate:

static double[][] MatrixDuplicate(double[][] matrix)
{
 // assumes matrix is not null.
 double[][] result = MatrixCreate(matrix.Length, matrix[0].Length);
 for (int i = 0; i < matrix.Length; ++i) // copy the values
 for (int j = 0; j < matrix[i].Length; ++j)
 result[i][j] = matrix[i][j];
 return result;
}

An alternative approach is to compute the result into the input
matrix in order to save memory. With C# semantics, this would
make the matrix parameter a ref parameter because it’s used
for both input and output. Using this approach, the method
signature would be:

static void MatrixDecompose(ref double[][] matrix, out int[] perm,
 out int toggle)

Or, because the explicit return value has been eliminated, you
could use it for the permutation array or the exchanges toggle.
For example:

static int[] MatrixDecompose(ref double[][] matrix, out int toggle)

You might want to eliminate the toggle parameter to simplify the
method signature if you don’t intend to use matrix decomposition
to compute a determinant.

Another area of MatrixDecompose you might want to modify
is this statement:

if (Math.Abs(result[j][j]) < 1.0E-20)
 return null;

In words, this code means: “If, even aft er exchanging two rows
because there was a 0.0 value on the main diagonal, there’s still a
0.0 there, then return null.” You may want to modify the arbitrary
epsilon value for the equality of zero check from 1.0E-20 to some
other value based on the precision characteristics of your system.
And instead of returning null, you might want to throw an excep-
tion; if the method were to be called as part of matrix inversion,
the inversion would fail. Finally, if you’re using matrix decomposi-
tion for some purpose other than matrix inversion, you may want
to eliminate this statement altogether.

Matrix Inversion
Th e key to using matrix decomposition to invert a matrix is to write
a helper method that solves a system of equations. Th is key helper
method is presented in Figure 4.

Th e HelperSolve method fi nds an array x that when multiplied
by an LU matrix gives array b. Th e method is quite clever, and you
can only fully understand it by tracing through a few examples.
Th ere are two loops. Th e fi rst loop uses forward substitution on

the lower part of the LU matrix. Th e second loop uses backward
substitution on the upper part of the LU matrix. Some diff erent
matrix decomposition implementations call their analogous
method something like luBackSub.

Although the code is short, it’s tricky, but there shouldn’t be any
scenarios where you’d need to modify the code. Notice that Helper-
Solve accepts an LU matrix from MatrixDecompose but doesn’t
use the perm out-parameter. This implies HelperSolve is in fact
a helper method and needs additional wrapper code to solve a
system of equations. If you refactor the code in this article to an
OOP design, you might want to make HelperSolve a private method.

With the HelperSolve method in place, the matrix inversion
method can be implemented, as shown in Figure 5.

Again, the code is tricky. Th e inversion algorithm is based on
the idea that the product of a matrix M and its inverse is the iden-
tity matrix. Method MatrixInverse essentially solves a system of
equations Ax = b where A is an LU matrix decomposition and
the b constants are either 1.0 or 0.0 and correspond to the identity
matrix. Notice that MatrixInverse uses the perm array from the
call to MatrixDecompose.

Calling the MatrixInverse method could look like this:
double[][] m = MatrixRandom(4, 4, -9.0, 9.0, 0);
double[][] inverse = MatrixInverse(m);
Console.WriteLine(MatrixAsString(inverse));

To summarize, an important matrix operation is matrix
inversion, which is quite diffi cult. One approach is to decompose
the original matrix, write a helper solve method that performs
forward and backward substitution, and then use the decomposi-
tion together with the LU permutation array and the helper solve
method to fi nd the inverse. Th is approach may seem complicated,
but it’s usually more effi cient and easier than computing a matrix
inverse directly.

Matrix Determinant
With a matrix decomposition method in hand, it’s easy to code a
method to compute the determinant of a matrix:

static double MatrixDeterminant(double[][] matrix)
{
 int[] perm;
 int toggle;
 double[][] lum = MatrixDecompose(matrix, out perm, out toggle);
 if (lum == null)
 throw new Exception("Unable to compute MatrixDeterminant");
 double result = toggle;
 for (int i = 0; i < lum.Length; ++i)
 result *= lum[i][i];
 return result;
}

As it turns out, somewhat surprisingly, the determinant of a
matrix is just plus or minus (depending on the toggle value) the
product of the values on the main diagonal of the matrix LUP
decomposition. Notice that there’s an implicit type conversion
of the value of toggle from int to double. In addition to adding
error checking to MatrixDeterminant, you might want to add a
short-circuit return in situations where the input matrix has size 1
(then return the single value) or size 2 x 2 (then return a*d - b*c).
Calling the determinant method could look like this:

double[][] m = MatrixRandom(4, 4, -9.0, 9.0, 0);
double det = MatrixDeterminant(m);
Console.WriteLine("Determinant = " + det.ToString("F2"));

77December 2012msdnmagazine.com

Solving Systems of Equations
Th e HelperSolve method can be easily adapted to solve a system
of linear equations:

static double[] SystemSolve(double[][] A, double[] b)
{
 // Solve Ax = b
 int n = A.Length;
 int[] perm;
 int toggle;
 double[][] luMatrix = MatrixDecompose(A, out perm, out toggle);
 if (luMatrix == null)
 return null; // or throw
 double[] bp = new double[b.Length];
 for (int i = 0; i < n; ++i)
 bp[i] = b[perm[i]];
 double[] x = HelperSolve(luMatrix, bp);
 return x;
}

Here’s the code that produced the screenshot in Figure 1 to solve
the following system:

3x0 + 7x1 + 2x2 + 5x3 = 49
 x0 + 8x1 + 4x2 + 2x3 = 30
2x0 + x1 + 9x2 + 3x3 = 43
5x0 + 4x1 + 7x2 + x3 = 52

double[][] m = MatrixCreate(4, 4);
m[0][0] = 3.0; m[0][1] = 7.0; m[0][2] = 2.0; m[0][3] = 5.0;
m[1][0] = 1.0; m[1][1] = 8.0; m[1][2] = 4.0; m[1][3] = 2.0;
m[2][0] = 2.0; m[2][1] = 1.0; m[2][2] = 9.0; m[2][3] = 3.0;
m[3][0] = 5.0; m[3][1] = 4.0; m[3][2] = 7.0; m[3][3] = 1.0;

double[] b = new double[] { 49.0, 30.0, 43.0, 52.0 };
double[] x = SystemSolve(m, b);
Console.WriteLine("\nSolution is x = \n" + VectorAsString(x));

Notice that SystemSolve rearranges its b input parameter using
the perm array from MatrixDecompose before calling HelperSolve.

Understanding the Permutation Array
Th e last few lines of output in the screenshot in Figure 1 indicate
that it’s possible to multiply the L and U matrices in such a way as to
get the original matrix. Knowing how to do this will not enable you
to solve practical matrix problems, but it will help you understand

the P part of LUP decomposition. Regenerating an original matrix
from its L and U components can also be useful for testing your
matrix library methods for consistency.

One way to regenerate an original matrix aft er LUP decompo-
sition is to multiply L and U, and then permute the rows of the
product using the P array:

// create matrix m
// call MatrixDecompose, returning lu and perm
// extract the lower part of lu as matrix 'lower'
// extract the upper part of lu as matrix 'upper'
double[][] lu = MatrixProduct(lower, upper);
double[][] orig = UnPermute(lu, perm);
if (MatrixAreEqual(orig, m, 0.000000001) == true)
 Console.WriteLine("L and U unpermuted using perm array");

Th e UnPermute method can be coded like this:
static double[][] UnPermute(double[][] luProduct, int[] perm)
{
 double[][] result = MatrixDuplicate(luProduct);
 int[] unperm = new int[perm.Length];
 for (int i = 0; i < perm.Length; ++i)
 unperm[perm[i]] = i; // create un-perm array
 for (int r = 0; r < luProduct.Length; ++r) // each row
 result[r] = luProduct[unperm[r]];
 return result;
}

A second approach for regenerating an original matrix from its
LUP decomposition is to convert the perm array to a perm matrix
and then multiply the perm matrix and the combined LU matrix:

// create matrix m
// call MatrixDecompose, returning lu and perm
// extract the lower part of lu as matrix 'lower'
// extract the upper part of lu as matrix 'upper'
double[][] permMatrix = PermArrayToMatrix(perm);
double[][] orig = MatrixProduct(permMatrix, lu);
if (MatrixAreEqual(orig, m, 0.000000001) == true)
 Console.WriteLine("L and U unpermuted using perm matrix");

A perm matrix is a square matrix with one 1.0 value in each row
and each column. Th e method that creates a perm matrix from a
perm array can be coded like so:

static double[][] PermArrayToMatrix(int[] perm)
{
 // Doolittle perm array to corresponding matrix
 int n = perm.Length;
 double[][] result = MatrixCreate(n, n);
 for (int i = 0; i < n; ++i)
 result[i][perm[i]] = 1.0;
 return result;
}

Wrapping Up
Th ere are many algorithms that require solving a system of linear
equations, fi nding the inverse of a matrix or fi nding the determinant
of a matrix. Using matrix decomposition is an eff ective technique for
performing all these operations. Th e code presented here can be used
in situations where you want no external dependencies in your code
base or you need the ability to customize the operations in order to
improve performance or modify functionality. Take the red pill!

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he manages
technical training for soft ware engineers working at the Microsoft Redmond, Wash.,
campus. He has worked on several Microsoft products including Internet Explorer
and MSN Search. McCaff rey is the author of .NET Test Automation Recipes
(Apress, 2006). He can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Paul Koch and Dan Liebling

static double[][] MatrixInverse(double[][] matrix)
{
 int n = matrix.Length;
 double[][] result = MatrixDuplicate(matrix);

 int[] perm;
 int toggle;
 double[][] lum = MatrixDecompose(matrix, out perm, out toggle);
 if (lum == null)
 throw new Exception("Unable to compute inverse");

 double[] b = new double[n];
 for (int i = 0; i < n; ++i)
 {
 for (int j = 0; j < n; ++j)
 {
 if (i == perm[j])
 b[j] = 1.0;
 else
 b[j] = 0.0;
 }

 double[] x = HelperSolve(lum, b);

 for (int j = 0; j < n; ++j)
 result[j][i] = x[j];
 }
 return result;
}

Figure 5 The MatrixInverse Method

mailto:jammc@microsoft.com
www.msdnmagazine.com

msdn magazine78

In this column I explain how to implement a graph-based shortest-
path analysis in situations where you have graph data stored in a
SQL database and want to use native T-SQL language processing.
Traditional shortest-path approaches assume that the graph rep-
resentation is stored in a data structure in machine memory. But
large graphs, such as those that represent social networks, oft en
won’t fi t into memory, so storing and processing them using SQL
is one option. Th e best way to understand where I’m headed is to
look at the example graph in Figure 1, and the screenshot of a
demo run in Figure 2.

Th e graph shown in Figure 1 is artifi cially small and has eight
nodes (sometimes called vertices or vertexes) with IDs 111 through
888. You can imagine that the nodes represent people or computers.
Th e directional arrows (usually called edges) between nodes are
relationships. You can imagine that an arrow between two nodes
represents an exchange of e-mails. In this example the graph edges
have weights indicated by the values 1.0 or 2.0. Edge weights can
have diff erent meanings depending on your particular problem
scenario. For example, the weights can represent some measure of
social affi nity or an indicator of when a message was sent.

Th e term “shortest path” can have diff erent meanings. Suppose
you’re interested in the shortest path between user 222 and user
444. Th is could mean the smallest number of hops to get from
222 to 444, which would be 4 (222 to 333 to 666 to 777 to 444).
Or, shortest path could mean the smallest sum of weights between
222 and 444, which would be 5.0 (1.0 + 1.0 + 1.0 + 2.0).

In the left window in Figure 2, you can see I’m working with a
database called dbShortPathDemo in SQL Server Management
Studio. In the upper-right window I have a T-SQL script named
ShortestPath.sql that defines and populates the demo database
with information that corresponds to the graph in Figure 1, and
code that defines a stored procedure named usp_ShortestPath.
Th e stored procedure has just been called to analyze the shortest
path between user 222 and user 444. In the bottom-right window
you can see the results. Th e shortest path is given by the string
“444;777;666;333;222.” Th e shortest path in terms of weight is 5.0
(displayed without the decimal). The bottom-right part of the
image shows the fi nal state of a table named tblAlgorithmData,
which is the key to implementing the shortest-path code.

In the sections that follow, I’ll walk you through the T-SQL code
that generated the screenshot in Figure 2 so you’ll be able to adapt
the code to meet your own problem scenarios. I’m assuming you’re
primarily a non-SQL developer (meaning you most oft en use C# or
some other procedural programming language) but have some basic
SQL knowledge. I present all the T-SQL code explained in this article;
the code is also available at archive.msdn.microsoft.com/mag201211TestRun.

Setting up the Demo Database
To create a demo database I launched SQL Server Management
Studio and connected to my server machine. I used SQL Server
2008, but the code presented here, with minor modifi cations, should
work with most earlier and all newer versions of SQL Server. Aft er
connecting, I clicked File | New Query to get an editing window,
then typed T-SQL code to create my dummy database:

use master
go

if exists(select * from sys.sysdatabases where name='dbShortPathDemo')
drop database dbShortPathDemo
go

create database dbShortPathDemo
go

use dbShortPathDemo
go

Here I used all the default parameter values for the create data-
base statement. In many scenarios you’ll be working with an existing
database with real data, but I recommend experimenting with a
small demo database. I prefer to use lowercase T-SQL code for the
most part, which might off end SQL purists. I used the mouse to
select these nine lines of code and then hit the F5 key to execute
them. Aft er verifying the demo database was created, I saved the
script as ShortestPath.sql.

Graph-Based Shortest-Path
Analysis with SQL

TEST RUN JAMES MCCAFFREY

Code download available at archive.msdn.microsoft.com/
mag201212TestRun.

Traditional shortest-path
approaches assume that

the graph representation is
stored in a data structure in

machine memory.

http://archive.msdn.microsoft.com/mag201211TestRun
http://archive.msdn.microsoft.com/mag201212TestRun

79December 2012msdnmagazine.com

Next, I created a table within the demo database to hold the data
that defi nes the graph to be analyzed:

create table tblGraph
(
fromNode bigint not null,
toNode bigint not null,
edgeWeight real not null
)
go

I used the mouse to highlight just these seven lines of code (so
I wouldn’t re-execute the previous lines) and hit F5 to create the
table. I use type bigint for node IDs. Other common node ID types
you might run into include int for a relatively simple employee
ID and varchar(11) for a Social Security number in xxx-xx-xxxx
format. I use type real for column edgeWeight. T-SQL type real
is just a convenient alias for fl oat(24), which is similar to C# type
double. In many scenarios you might not have an explicit edge
weight between nodes, and you can omit the edgeWeight column.

Next, I populated table tblGraph by entering, highlighting and
executing these 15 lines of code:

insert into tblGraph values(111,222,1.0)
insert into tblGraph values(111,555,1.0)
insert into tblGraph values(222,111,2.0)
insert into tblGraph values(222,333,1.0)
insert into tblGraph values(222,555,1.0)
insert into tblGraph values(333,666,1.0)
insert into tblGraph values(333,888,1.0)
insert into tblGraph values(444,888,1.0)
insert into tblGraph values(555,111,2.0)
insert into tblGraph values(555,666,1.0)
insert into tblGraph values(666,333,2.0)
insert into tblGraph values(666,777,1.0)
insert into tblGraph values(777,444,2.0)
insert into tblGraph values(777,888,1.0)
go

If you refer to Figure 1, you’ll see that each insert statement
corresponds to one of the arrows in the graph.

Next, I created indexes on the fromNode and toNode columns
in tblGraph to improve performance when the shortest-path stored
procedure accesses the graph data:

create nonclustered index idxTblGraphFromNode on tblGraph(fromNode)
go
create nonclustered index idxTblGraphToNode on tblGraph(toNode)
go

I then created and populated a table to hold a list of unique node IDs:
create table tblNodes
(
nodeID bigint primary key
)
go

insert into tblNodes
select distinct fromNode from tblGraph
union
select distinct toNode from tblGraph
go

A table of just node IDs isn’t required for shortest-path analysis,
but it’s useful if you want to perform error checking on the start
node and end node input parameters to the shortest-path stored
procedure. By applying the primary key clause to the nodeID col-
umn, I implicitly create a clustered index on that column. Th e SQL
union statement, used with two or more select-distinct statements,
is a convenient way to fetch a list of unique values from a table.

The Algorithm Data Table
Th e key to understanding and modifying the shortest-path stored
procedure presented in this article is understanding a table of
information named tblAlgorithmData. You can create the table by
executing these T-SQL statements:

create table tblAlgorithmData
(
nodeID bigint not null,
dist real not null,
pred bigint not null,
inQueue bit not null
)
go

create index idxTblAlgorithmDataNodeID on tblAlgorithmData(nodeID)
create index idxTblAlgorithmDataDist on tblAlgorithmData(dist)
create index idxTblAlgorithmDataPred on tblAlgorithmData(pred)
create index idxTblAlgorithmDataInQueue on tblAlgorithmData(inQueue)
go

Th e table will have (at most) one row for each unique node in
the graph, so for the example in this article, the table will have (at
most) eight rows. Because nodeID is a unique identifi er, I could’ve
defi ned it as a primary key column. Th e dist column is the current
distance from the start node to the node that has nodeID. Th is dist
value changes as the stored procedure executes but holds the fi nal
distance when the stored procedure fi nishes. If you look at Figure
2, you can see that the dist value for node 444, the end node, is 5.0
units when the stored procedure fi nished.

Th e pred column holds the immediate predecessor to the node
with nodeID of the shortest path from parameter start node
to end node. For example, in Figure 2, the end node is 444. Its
predecessor is 777. Th e predecessor of 777 is 666. Th e predecessor
of 666 is 333. Th e predecessor of 333 is 222, the start node. Putting
these pred values together gives the shortest path from end node
to start node: 444 to 777 to 666 to 333 to 222. Notice that the algo-
rithm I use gives just one shortest path, even in situations where
there are two or more paths with the same shortest total distance;
in this example, the path 444 to 777 to 666 to 555 to 222 also has
a total distance of 5.0 units.Figure 1 Demo Graph for Shortest-Path Analysis

222 333 444

888

2.0

2.0

1.0 1.0

1.0
1.0

2.0
2.0

1.0
1.0

1.0

1.01.01.0

111

666 777555

Large graphs, such as those
that represent social networks,
often won’t fi t into memory, so
storing and processing them

using SQL is one option.

www.msdnmagazine.com

msdn magazine80 Test Run

Th e inQueue column holds a bit value (functionally similar to C#
type Boolean) that indicates whether the associated node should
be reexamined as part of the shortest path. Put another way, if the
value of inQueue is 1, the associated node needs to be examined by
the algorithm as a neighbor to the current node in the algorithm.
If the value of inQueue is 0, the associated node doesn’t need to be
examined as a neighbor. Th e column name inQueue is somewhat
misleading because the algorithm doesn’t really use an explicit queue,
so you might want to consider using a name such as isActive. I use
the name inQueue because in procedural programming language
implementations of shortest-path algorithms, an explicit queue is
oft en used and so the name is somewhat traditional.

The Algorithm
The algorithm I present in this article is a variation of Dijkstra’s
Shortest Path (DSP) algorithm. In non-SQL pseudo-code, the vari-
ation of the DSP algorithm I use is presented in Figure 3.

Th e DSP algorithm is one of the most famous algorithms in com-
puter science and you can fi nd many painfully detailed explanations
on the Internet, but very few complete implementations that use
SQL. Although short, the DSP algo-
rithm is very tricky, and the only
way I was able to fully understand
it was to trace through several
examples using paper and pencil.
Th e essence of the algorithm is that
at a given node u, you’ll know the
current shortest distance from the
start node to u. Th en you fi nd all
neighbors of u. For each neighbor
node, v, you know the current dis-
tance from the start node to v. You
can look up the distance from u to
v. If the distance from start to u plus
the distance from u to v is shorter
than the current distance from
start to v, you know you’ve found
a shorter path from start to v. Th e
inQueue variable prevents the algo-
rithm from revisiting a node once
it’s known that revisiting that node
will not fi nd a shorter path.

The Stored Procedure
I implemented the shortest path
as a T-SQL stored procedure. Th e
stored procedure defi nition begins:

create procedure usp_ShortestPath
 @startNode bigint,
 @endNode bigint,
 @path varchar(5000) output,
 @totDist real output
as
begin
 ...

I prepend the stored procedure
usp_ShortestPath name with “usp”
(user-defi ned stored procedure) to

distinguish it from system stored procedures (“sp”), extended stored
procedures (“xp”) and CLR stored procedures (“csp”). Parameters
@startNode and @endNode are input parameters. Th e stored pro-
cedure has two result output parameters, @path and @totDist. Th e
@path is arbitrarily set to type varchar(5000)—you might need to
increase the 5000 maximum size depending on the type of node
ID you’re using and the maximum path you expect.

Next, I initialize table tblAlgorithmData with information for
the start node:

truncate table tblAlgorithmData
insert into tblAlgorithmData
values (@startNode, 0.0, -1, 1)
...

Th e truncate statement erases the contents of tblAlgorithmData
from any previous call to usp_ShortestPath. Recall the columns
for tblAlgorithmData are nodeID, dist, pred and inQueue. The
distance from the start node to itself is 0.0, the predecessor of the
start node is set to -1 to indicate undefi ned, and the inQueue bit is
set to 1 to indicate true.

This code assumes that tblAlgorithmData has already been
created in the current database as a permanent table. In some

Figure 2 Shortest-Path Analysis with T-SQL

Untitled-1 1 10/13/11 1:15 PM

www.msdnmagazine.com
www.visualstudiomagazine.com
www.vslive.com

msdn magazine82 Test Run

situations you might not have the security permissions needed to
create the table; in these situations you can either ask the appro-
priate database administrator to do so for you, or you can create
tblAgorithmData inside the stored procedure as a temp table or
possibly a table variable.

Th is code also assumes that the values of both @startNode and
@endNode are valid. If you have a table of all node IDs, you could
check for this along the lines of:

if not exists(select nodeID from tblNodes where @startNode = nodeID)
 // Error out in some way //

Next, I prepare the main processing loop:
declare @u bigint
declare @d real = 0.0
declare @done bit = 0

while @done = 0
begin
...

Here @u is the node ID of the current node in the algorithm. Variable
@d is a convenience and holds the distance from @startNode to
node @u (as stored in tblAlgorithmData). Th e @done variable is a
dummy loop control variable. You might want to put other explicit
stopping criteria in the loop such as a maximum number of iterations,
maximum hop count or maximum total path distance.

Inside the main processing loop, the first step is to find the
value of @u—the node ID of the current node. Th is is the node
that has the smallest dist column value in tblAlgorithmData and
also has inQueue = 1:

select top 1 @u = nodeID, @d = dist from tblAlgorithmData
where inQueue = 1
order by dist asc
...

At this point the stored procedure checks for two loop exit conditions:
if @d = 2147483647.0 break
if @u = @endNode break
...

If the distance from the start node to @u (stored in @d) is equal
to the somewhat mysterious-looking value of 2147483647.0, this
means that the end node is not reachable from the start node. Th e
value of 2147483647.0 is a stand-in for infi nity. You can use any large
value that can’t actually appear as a distance. I picked 2147483647.0
because 2147483647 (without the decimal) is the largest value for
SQL type int. Th e other break condition simply checks to see if
the end node has been reached. Because of the way the algorithm
searches the graph using a breadth-fi rst approach, if the end node
is hit, the shortest path has been found.

Next, the stored procedure checks each neighbor of the current
node @u and if a neighbor hasn’t been seen before, the neighbor
is initialized into tblAlgorithmData:

insert into tblAlgorithmData
select toNode, 2147483647.0, -1, 1 from tblGraph where fromNode = @u
and not exists (select * from tblAlgorithmData where nodeID = toNode)
...

Th is SQL code is a bit subtle if you’re a coder who rarely uses
SQL. Th e insert statement is conditional upon the not exists state-
ment, which can be interpreted as, “if the neighbor node ID (value
toNode) is not already in tblAlgorithmData (as nodeID).” For each
neighbor node where the conditional is true, the insert statement
initializes tblAlgorithmData with the neighbor’s nodeID, a dist
value of infi nity (as 2147483647.0), a predecessor of undefi ned (as
-1), and an inQueue of true (as 1). Working with SQL statements

that operate on sets of data, rather than iterating through a collec-
tion using a loop as you would with a procedural programming
language, can be a diffi cult paradigm to master.

In this algorithm, nodes are initialized when they fi rst appear as
neighbor nodes. A signifi cant alternative approach is to initialize all
graph nodes at the very beginning of the algorithm. Th e problem
with this approach is that for large graphs, populating tblAlgorithm-
Data with possibly millions of nodes can take quite a bit of time.

At this point, the stored procedure marks the current node
as processed:

update tblAlgorithmData set inQueue = 0
where nodeID = @u
...

Next, the stored procedure checks each neighbor to the cur-
rent node to see if a new, shorter path to the neighbor has been
found and, if so, updates the entries in tblAlgorithmData for that
neighbor node:

 update tblAlgorithmData
 set dist = @d + tblGraph.edgeWeight, pred = @u
 from tblAlgorithmData inner join tblGraph on tblAlgorithmData.nodeID =
tblGraph.toNode
 where tblGraph.fromNode = @u and tblAlgorithmData.inQueue = 1
 and (@d + tblGraph.edgeWeight) < tblAlgorithmData.dist
end -- loop
...

Th is is by far the trickiest part of the shortest-path implementa-
tion. Table tblGraph is joined to tblAlgorithmData so that all data
can be used in the update statement. Th e current node’s ID is stored
in @u and this value is matched to the fromNode in tblGraph. Th e
neighbors to @u are stored in toNode in tblGraph, which is linked
to the nodeID of tblAlgorithmData. Recall that @d holds the dis-
tance from the start node to the current node @u. Th e value in the
edgeWeight column will hold the distance from @u to the neighbor.

set dist of startNode to 0.0
set pred of startNode to undefined
set inQueue of startNode to true
while there are any nodes with inQueue = true
 set u = node with smallest dist and inQueue = true

 if dist of u is infinity break
 if u = endNode break

 fetch all neighbors of u
 foreach neighbor v that has inQueue = true
 if v has not been seen before then
 set dist of v to infinity
 set pred of v to undefined
 set inQueue of v to true
 end if
 end foreach

 set inQueue of u = false

 foreach neighbor v of u
 if ((dist from startNode to u) + (dist from u to v) <
 curr dist to v) then
 set dist of v to (dist from startNode to u) + (dist from u to v)
 set pred of v to u
 end if
 end foreach
end while

if (u != endNode) then
 path from startNode to endNode is unreachable
else
 retrieve path using pred values
 shortest path distance = dist of endNode
end if

Figure 3 Shortest-Path Algorithm

83December 2012msdnmagazine.com

Th e sum of these two distances is a possible new shorter path from
the current distance from the start node to the neighbor, which is
stored in column dist. If a new shorter distance has been found,
the dist column is updated with that new shorter distance and the
predecessor to the neighbor node is recorded as @u, the current
node. In situations where you define shortest path to mean the
fewest number of hops between start node and end node, you
would replace dist = @d + tblGraph.edgeWeight with dist = @d + 1.

At this point the main processing loop has exited and the cause
of the exit can be checked:

if (@u != @endNode)
 begin
 set @path = 'NOT REACHABLE'
 set @totDist = -1.0
 end
 else
 begin
 set @path = ''
 declare @currNode bigint
 set @currNode = @endNode
 ...

If the value in @u is the ID of the end node, the end node has
been found; if @u is anything other than the ID of end node, the
loop exited before fi nding the end node. In this case I set the path
string to ‘NOT REACHABLE’ and assign an arbitrary shortest-path
total distance of -1.0 to indicate not reachable. If the end node was
in fact found, I initialize the shortest-path string to the empty
string and set up local variable @currNode to iterate through
tblAlgorithmData to construct the shortest-path string.

Th e stored procedure defi nition code concludes by constructing
the shortest-path string and assigning the shortest-path total distance:

 ...
 while @currNode != @startNode
 begin
 set @path = @path + cast(@currNode as varchar(19)) + ';'
 set @currNode = (select pred from tblAlgorithmData where nodeID = @currNode)
 end

 set @path = @path + cast(@startNode as varchar(19))
 select @totDist = dist from tblAlgorithmData where nodeID = @endNode
 end -- else

end -- usp_ShortestPath definition
go

Here I use the T-SQL string concatenation “+” operator. I use
varchar(19) because the largest possible value for my nodeID type
of bigint is 9,223,372,036,854,775,807, which has 19 digits.

With the stored procedure created, I can fi nd the shortest path
between any two nodes; for example:

declare @startNode bigint
declare @endNode bigint
declare @path varchar(5000)
declare @totDist real

set @startNode = 222
set @endNode = 444

exec usp_ShortestPath @startNode, @endNode, @path output, @totDist output

select @path
select @totDist

Wrapping Up
Shortest-path graph analysis is likely to increase in importance as
enterprises gather more data and store that data in a cloud environ-
ment. Th e code and explanation presented in this article should give
you a solid basis for getting started with performing shortest-path

If a new shorter distance has
been found, the dist column

is updated with that new
shorter distance.

analyses on your data. An important alternative to the native
T-SQL language approach described in this article is to use a
CLR stored procedure. Based on my experiences, a shortest-path

analysis using a CLR stored procedure can give you improved
performance at the expense of increased complexity. I’ll present
a CLR stored procedure approach to graph-based shortest-path
analysis in a future article.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he manages
technical training for soft ware engineers working at the Microsoft Redmond, Wash.,
campus. He has worked on several Microsoft products including Internet Explorer
and MSN Search. McCaff rey is the author of “.NET Test Automation Recipes”
(Apress, 2006). He can be reached at jammc@microsoft .com.

THANKS to the following technical expert for reviewing this article:
Shane Williams

www.godiagram.com
mailto:jammc@microsoft.com
www.msdnmagazine.com

msdn magazine84

Whenever I’m a bit lost in a shopping mall or a museum, I search
for a map, but at the same time I oft en feel some anxiety about what
I’ll fi nd. I’m pretty sure the map will feature an arrow labeled, “You
are here,” but how will the map be oriented? If the map is mounted
vertically, does the right side of the map actually correspond to my
right and the bottom correspond to what’s behind me? Or does the
map need to be mentally removed from its mount and twisted in
space to line up with the actual layout?

Maps that are mounted at an angle or parallel with the fl oor are
much better—provided, that is, they’re oriented correctly to begin
with. Regardless of one’s mental agility with spatial relations, maps
are easier to read when they’re parallel to the earth, or can be swiv-
eled forward to align with the earth. Prior to the age of GPS, it was
common to see people grappling with paper road maps by wildly
twisting them to the right, left and upside down in search of the
proper orientation.

Maps that are implemented in soft ware on phones and other
mobile devices have the potential to orient themselves based on a
compass reading. Th is is the impetus behind my quest to display a
map on a Windows Phone device that rotates relative to the phone.
Such a map should be able to align itself with the surrounding
landscape and potentially be more helpful to the lost among us.

Orienting the Map
My initial goal was a bit more ambitious than a rotating map. Th e
program I envisioned would actually float a map in 3D space so
it would always be parallel to the surface of the Earth, as well as
being oriented with the compass.

A little experimentation convinced me that this approach was
somewhat more extravagant than I needed. Although a tilted map
with perspective is fi ne for GPS displays in automobiles, I think
that’s because the map is always tilted the same degree, and it some-
what mimics what you’re seeing out the windshield. With a map on
a mobile device, the tilting has the eff ect of compressing the map
visuals without providing any additional information. A simple
two-dimensional rotation seemed to be suffi cient.

In my November column, I discussed how to use the Bing Maps
SOAP Services to download and assemble 256-pixel square tiles
into a map (“Assembling Bing Map Tiles on Windows Phone,”
msdn.microsoft.com/magazine/tktktktk). Th e tiles available from this Web

service are organized into zoom levels, where each higher level
has double the resolution of the previous level, which means that
each tile covers the same area as four tiles in the next-higher level.

Th e program in last month’s column contained application bar
buttons labeled with plus and minus signs to increase and decrease
the zoom level in discrete jumps. Th at type of interface is adequate
for a map on a Web site, but for a phone, the only description that
seems appropriate is “totally lame.”

Th is means it’s now time to implement a real touch interface that
allows the map to be zoomed continuously.

Once I began adding that touch interface—a single fi nger to pan, two
fi ngers to zoom in and out—I acquired a deep and enduring respect
for the Maps application on Windows Phone, and for the Silverlight
Map control. Th ese maps obviously implement a much more sophis-
ticated touch interface than what I’ve been able to manage.

For example, I don’t think I’ve ever seen a black hole open up in
the Maps app because a tile is missing. It’s my experience that the
screen is always entirely covered—although obviously sometimes
with a tile that has been stretched beyond the point of recognition.
Tiles are replaced with tiles of better resolution with a fade anima-
tion. Inertia is implemented in a very natural way, and the UI never
gets jumpy while tiles are being downloaded.

My OrientingMap program (which you can download) comes
nowhere close to the real Maps application. The panning and
expansion is often jumpy, there’s no inertia and blank areas fre-
quently appear if tiles aren’t downloaded quickly enough.

Despite these defi ciencies, my program does succeed in maintain-
ing an orientation of the map with the world it portrays.

A Touch Interface for an Orienting Map

TOUCH AND GO CHARLES PETZOLD

Code download available at archive.msdn.microsoft.com/
mag201212TouchAndGo.

<UserControl x:Class="OrientingMap.MapTile" ... >
 <Grid>
 <Image Stretch="None">
 <Image.Source>
 <BitmapImage x:Name="bitmapImage"
 ImageOpened="OnBitmapImageOpened" />
 </Image.Source>
 </Image>

 <!-- Display quadkey for debugging purposes -->
 <TextBlock Name="txtblk"
 Visibility="Collapsed"
 Foreground="Red" />
 </Grid>

 <UserControl.RenderTransform>
 <ScaleTransform x:Name="scale" />
 </UserControl.RenderTransform>
</UserControl>

Figure 1 The MapTile.xaml File from OrientingMap

http://archive.msdn.microsoft.com/mag201212TouchAndGo
http://msdn.microsoft.com/magazine/tktktktk

85December 2012msdnmagazine.com

The Basic Issue
Th e Bing Maps SOAP Services give a program access to 256-pixel
square map tiles from which it can construct larger composite maps.
For road and aerial views, Bing Maps makes available 21 levels of zoom,
where level 1 covers the Earth with four tiles, level 2 with 16 tiles, level
3 with 64 and so forth. Each level provides double the horizontal
resolution and double the vertical resolution of the next lower level.

Tiles have a parent-child relationship: Except for tiles in level 21,
every tile has four children in the next-higher level that together
cover the same area as itself but with double the resolution.

When a program sticks to integral zoom levels—as the program
presented in last month’s column does—the individual tiles can be
displayed in their actual pixel sizes. Last month’s program always
displays 25 tiles in a 5 × 5 array, for a total size of 1,280 pixels square.
Th e program always positions this array of tiles so that the center of
the screen corresponds to the phone’s location on the map, which
is a location somewhere in the center tile. Do the math and you’ll
fi nd that even if a corner of the center tile sits in the center of the
screen, this 1,280 pixel square size is adequate for the 480 × 800
screen size of the phone, regardless how it’s rotated.

Because last month’s program supports only discrete zoom
levels and always centers the tiles based on the phone’s location, it

implements an extremely simplistic logic by completely replacing
these 25 tiles whenever a change occurs. Fortunately, the download
cache makes this process fairly fast if tiles are being replaced with
previously downloaded tiles.

With a touch interface, this simple approach is no longer acceptable.
Th e hard part is defi nitely the scaling: For example, suppose the

program begins by displaying map tiles of level 12 in their pixel sizes.
Now the user puts two fi ngers on the screen and moves the fi ngers
apart to expand the screen. Th e program must respond by scaling
the tiles beyond their 256-pixel sizes. It can do this either with a
ScaleTransform on the tiles themselves, or with a ScaleTransform
applied to a Canvas on which the tiles are assembled.

But you don’t want to scale these tiles indefi nitely! At some point you
want to replace each tile with four child tiles of the next-higher level
and half the scaling factor. Th is replacement process would be fairly
trivial if the child tiles were instantly available but, of course, they’re not.
Th ey must be downloaded, which means that child tiles must be posi-
tioned visually on top of the parent, and only when all four child tiles
have been downloaded can the parent be removed from the Canvas.

Th e opposite process must occur in a zoom out. As the user
pinches two fi ngers together, the entire array of tiles can be scaled
down, but at some point each group of four tiles should be replaced

Figure 2 Much of the MainPage.xaml File for OrientingMap

<phone:PhoneApplicationPage x:Class="OrientingMap.MainPage" ... >

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12">
 <TextBlock Name="errorTextBlock"
 HorizontalAlignment="Center"
 VerticalAlignment="Top"
 TextWrapping="Wrap" />

 <!-- Rotating Canvas with origin in center of screen -->
 <Canvas HorizontalAlignment="Center"
 VerticalAlignment="Center">

 <!-- Translating Canvas for panning -->
 <Canvas>

 <!-- Scaled Canvas for images -->
 <Canvas Name="imageCanvas"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Canvas.RenderTransform>
 <ScaleTransform x:Name="imageCanvasScale" />
 </Canvas.RenderTransform>
 </Canvas>

 <!-- Circle to show location -->
 <Ellipse Name="locationDisplay"
 Width="24"
 Height="24"
 Stroke="Red"
 StrokeThickness="3"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Visibility="Collapsed">
 <Ellipse.RenderTransform>
 <TranslateTransform x:Name="locationTranslate" />
 </Ellipse.RenderTransform>
 </Ellipse>

 <Canvas.RenderTransform>
 <TranslateTransform x:Name="imageCanvasTranslate" />
 </Canvas.RenderTransform>
 </Canvas>

 <Canvas.RenderTransform>
 <RotateTransform x:Name="imageCanvasRotate" />

 </Canvas.RenderTransform>
 </Canvas>

 <!-- Arrow to show north -->
 <Border HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Background="Black"
 Width="36"
 Height="36"
 CornerRadius="18">
 <Path Stroke="White"
 StrokeThickness="3"
 Data="M 18 4 L 18 24 M 12 12 L 18 4 24 12">
 <Path.RenderTransform>
 <RotateTransform x:Name="northArrowRotate"
 CenterX="18"
 CenterY="18" />
 </Path.RenderTransform>
 </Path>
 </Border>

 <!-- "powered by bing" display -->
 <Border Background="Black"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom"
 CornerRadius="12"
 Padding="3">

 <StackPanel Name="poweredByDisplay"
 Orientation="Horizontal"
 Visibility="Collapsed">
 <TextBlock Text=" powered by "
 Foreground="White"
 VerticalAlignment="Center" />
 <Image Stretch="None">
 <Image.Source>
 <BitmapImage x:Name="poweredByBitmap" />
 </Image.Source>
 </Image>
 </StackPanel>
 </Border>
 </Grid>
 </Grid>
 ...
</phone:PhoneApplicationPage>

www.msdnmagazine.com

msdn magazine86 Touch and Go

with a parent tile visually underneath the four tiles. Only when that
parent tile has been downloaded can the four children be removed.

Additional Classes
As I discussed in last month’s column, Bing Maps uses a numbering
system called a “quadkey” to uniquely identify map tiles. A quadkey
is a base-4 number: Th e number of digits in the quadkey indicates
the zoom level, and the digits themselves encode an interleaved
longitude and latitude.

To assist the OrientingMap program in working with quadkeys,
the project includes a QuadKey class that defines properties to
obtain parent and child quadkeys.

The OrientingMap project also has a new MapTile class that
derives from UserControl. Th e XAML fi le for this control is shown
in Figure 1. It has an Image element with its Source property set
to a BitmapImage object for displaying the bitmap tile, as well
as a ScaleTransform for scaling the entire tile up or down. (In
practice, individual tiles are only scaled by positive and negative
integral powers of 2.) For debugging, I put a TextBlock in the XAML
fi le that displays the quadkey, and I’ve left that in: Simply change
the Visibility attribute to Visible to see it.

Th e codebehind fi le for MapTile defi nes several handy proper-
ties: Th e QuadKey property allows the MapTile class itself to obtain
the URI for accessing the map tile; a Scale property lets external
code set the scaling factor; an IsImageOpened property indicates
when the bitmap has been downloaded; and an ImageOpened
property provides external access to the ImageOpened event of
the BitmapImage object. Th ese last two properties help the pro-
gram determine when an image has been loaded so the program
can remove any tiles that the image is replacing.

While developing this program, I initially pursued a scheme
where each MapTile object would use its Scale property to deter-
mine when it should be replaced with a group of four child MapTile
objects, or a parent MapTile. Th e MapTile itself would handle the
creation and positioning of these new objects, setting handlers
for the ImageOpened events, and would also be responsible for
removing itself from the Canvas.

But I couldn’t get this scheme to work very well. Consider an
array of 25 map tiles that the user expands through the touch inter-
face. Th ese 25 tiles are replaced with 100 tiles, and then the 100 tiles
are replaced with 400 tiles. Does this make sense? No, it doesn’t,
because the scaling has eff ectively moved many of these potential
new tiles too far off the screen to be visible. Most of them shouldn’t
be created or downloaded at all!

Instead, I shift ed this logic to MainPage. Th is class maintains a cur-
rentMapTiles fi eld of type Dictionary<QuadKey, MapTile>. Th is stores
all the MapTile objects currently on the display, even if they’re still in
the process of being downloaded. A method named RefreshDisplay
uses the current location of the map and a scaling factor to assemble
a validQuadKeys fi eld of type List<QuadKey>. If a QuadKey object
exists in validQuadKeys but not in currentMapTiles, a new MapTile
is created and added to both the Canvas and currentMapTiles.

RefreshDisplay does not remove MapTile objects that are no
longer needed, either because they’ve been panned off the screen
or replaced with parents or children. Th at’s the responsibility of a

second important method named Cleanup. Th is method compares
the validQuadKeys collection with currentMapTiles. If it fi nds an
item in currentMapTiles that’s not in validQuadKeys, it only removes
that MapTile if validQuadKeys has no children, or if the children in
validQuadKeys have all been downloaded, or if validQuadKeys con-
tains a parent of that MapTile and that parent has been downloaded.

Making the RefreshDisplay and Cleanup methods more effi cient—
and invoking them less frequently—is one approach to improving
the performance of OrientingMap.

Nested Canvases
Th e UI for the OrientingMap program requires two types of graph-
ics transforms: translation for single-fi nger panning and scaling for
two-fi nger pinch operations. In addition, orienting the map with
the direction of north requires a rotation transform. To implement
these with effi cient Silverlight transforms, the MainPage.xaml fi le
contains three levels of Canvas panels, as shown in Figure 2.

Th e Grid named ContentPanel contains the outermost Canvas
as well as three elements that are always displayed in fi xed locations
on the screen: a TextBlock to report initialization errors, a Border
containing a rotating arrow to display the direction of north and
another Border to display the Bing logo.

Th e outermost Canvas has its HorizontalAlignment and Vertical-
Alignment properties set to Center, which shrinks the Canvas to a
zero size positioned in the center of the Grid. Th e (0, 0) coordinate
of this Canvas is therefore the center of the display. Th is center-
ing is convenient for positioning tiles, and also allows scaling and
rotation to occur around the origin.

The outermost Canvas is the one that’s rotated based on the
direction of north. Within this outermost Canvas is a second Can-
vas that has a TranslateTransform. Th is is for panning. Whenever a
single fi nger sweeps across the screen, the entire map can be moved
simply by setting the X and Y properties of this TranslateTransform.

Within this second Canvas is an Ellipse used to indicate the
current location of the phone relative to the center of the map.
When the user pans the map, this Ellipse moves as well. But if the
phone’s GPS reports a change in the location, a separate Translate-
Transform on the Ellipse moves it relative to the map.

Th e innermost Canvas is named imageCanvas, and it’s here that
the map tiles are actually assembled. Th e ScaleTransform applied
to this Canvas allows the program to increase or decrease this
entire assemblage of map tiles based on the user zooming in or out
with a pinch manipulation.

To accommodate the continuous zoom, the program maintains
a zoomFactor fi eld of type double. Th is zoomFactor has the same
range as the tile levels—from 1 to 21—which means that it’s actually
the base-2 logarithm of the total map-scaling factor. Whenever the
zoomFactor increases by 1, the scaling of the map doubles.

Th e fi rst time the program is run, zoomFactor is initialized to
12, but the fi rst time the user touches the screen with two fi ngers, it
becomes a non-integral value and very likely remains a non-integral
value thereaft er. Th e program saves zoomFactor as a user setting
and reloads it the next time the program is run. An initial integral
baseLevel is calculated with a simple truncation:

baseLevel = (int)zoomFactor;

87December 2012msdnmagazine.com

Th is baseLevel is always an integer in the range between 1 and
21, and hence it’s directly suitable for retrieving tiles. From these
two numbers, the program calculates a non-logarithmic scaling
factor of type double:

canvasScale = Math.Pow(2, zoomFactor - baseLevel);

Th is is the scaling factor applied to the innermost Canvas. For
example, if the zoomFactor is 10.5, then the baseLevel used to
retrieve tiles is 10, and canvasScale is 1.414.

If the initial zoomFactor is 10.9, it might make more sense to set
baseLevel at 11 and canvasZoom at 0.933. Th e program doesn’t do
that, but it’s obviously a possible refi nement.

One- and Two-Finger Touch Input
For touch input, I felt more comfortable using the XNA TouchPanel
than the Silverlight Manipulation events. Th e MainPage construc-
tor enables four types of XNA gestures: FreeDrag (panning), Drag-
Complete, Pinch and PinchComplete. Th e TouchPanel is checked
for input in a handler for the CompositionTarget.Rendering event,
as shown in Figure 3. Due to its complexity, only a little of the Pinch
processing is shown here.

Th e FreeDrag input is accompanied by Position and Delta values
(both of type Vector2) indicating the current position of the fi nger,
and how the fi nger has moved since the last TouchPanel event. Th e
Pinch input supplements these with Position2 and Delta2 values
for the second fi nger.

However, keep in mind that these Vector2 values are in-screen
coordinates! Because the map is rotated relative to the screen—and
the user expects the map to pan in the same direction as a fi nger
moves—these values must be rotated based on the current map rota-
tion, which occurs in a little method named TransformGestureToMap.

For FreeDrag processing, the delta value is then applied to the
TranslateTransform in the XAML fi le, as well as two fl oating-point
fi elds named centerRelativeLongitude and centerRelativeLatitude.
These values range from 0 to 1 and indicate the longitude and
latitude corresponding to the center of the screen.

At some point, the user might pan the map to a suffi cient degree
that new tiles need to be loaded. To avoid checking for that pos-
sibility with each touch event, the program maintains two fi elds
named accumulatedDeltaX and accumulatedDeltaY, and only
calls RefreshDisplay when either value goes above 256, which is
the pixel size of the map tiles.

Because RefreshDisplay has a big job to do—determining what
tiles should be visible on the screen based on centerRelativeLongitude
and centerRelativeLatitude and the current canvasScale, and creating
new tiles if necessary—it’s best that it not be called for every change in
touch input. One defi nite enhancement to the program would limit
RefreshDisplay calls during Pinch input.

During touch processing, the Cleanup method is only called
when the fi nger or fi ngers have left the screen. Cleanup is also called
whenever a map tile has completed downloading.

The criteria for changing baseLevel—and thereby initiating
a replacement of a parent map tile by children, or children by a
parent—is very relaxed. Th e baseLevel is only incremented when
canvasScale becomes greater than 2, and decremented when
canvasScale drops to less than 0.5. Setting better transition points
is another obvious enhancement.

Th e program now has only two application bar buttons: Th e fi rst
toggles between road and aerial view, and the second positions the
map so that the current location is in the center.

Now I just need to fi gure out how to make the program help me
navigate shopping malls and museums.

CHARLES PETZOLD is a longtime contributor to MSDN Magazine, and the author
of “Programming Windows, 6th edition” (O’Reilly Media, 2012), a book about
writing applications for Windows 8. His Web site is charlespetzold.com.

THANKS to the following technical expert for reviewing this article:
Th omas Petchel

void OnCompositionTargetRendering(object sender, EventArgs args)
{
 while (TouchPanel.IsGestureAvailable)
 {
 GestureSample gesture = TouchPanel.ReadGesture();

 switch (gesture.GestureType)
 {
 case GestureType.FreeDrag:
 // Adjust delta for rotation of canvas
 Vector2 delta = TransformGestureToMap(gesture.Delta);

 // Translate the canvas
 imageCanvasTranslate.X += delta.X;
 imageCanvasTranslate.Y += delta.Y;

 // Adjust the center longitude and latitude
 centerRelativeLongitude -= delta.X / (1 << baseLevel + 8) / canvasScale;
 centerRelativeLatitude -= delta.Y / (1 << baseLevel + 8) / canvasScale;

 // Accumulate the panning distance
 accumulatedDeltaX += delta.X;
 accumulatedDeltaY += delta.Y;

 // Check if that's sufficient to warrant a screen refresh
 if (Math.Abs(accumulatedDeltaX) > 256 ||
 Math.Abs(accumulatedDeltaY) > 256)
 {
 RefreshDisplay();
 accumulatedDeltaX = 0;
 accumulatedDeltaY = 0;
 }
 break;

 case GestureType.DragComplete:
 Cleanup();
 break;

 case GestureType.Pinch:
 // Get the old and new finger positions relative to canvas origin
 Vector2 newPoint1 = gesture.Position - canvasOrigin;
 Vector2 oldPoint1 = newPoint1 - gesture.Delta;

 Vector2 newPoint2 = gesture.Position2 - canvasOrigin;
 Vector2 oldPoint2 = newPoint2 - gesture.Delta2;

 // Rotate in accordance with the current rotation angle
 oldPoint1 = TransformGestureToMap(oldPoint1);
 newPoint1 = TransformGestureToMap(newPoint1);
 oldPoint2 = TransformGestureToMap(oldPoint2);
 newPoint2 = TransformGestureToMap(newPoint2);

 ...

 RefreshDisplay();
 break;

 case GestureType.PinchComplete:
 Cleanup();
 break;
 }
 }
}

Figure 3 Touch Processing in OrientingMap

www.charlespetzold.com
www.msdnmagazine.com

msdn magazine88

Microsoft is providing more UX guidance for developers with
Windows 8 than it did with Windows Presentation Foundation and
Silverlight, a change I welcome. One of the tenets of the new Windows
UI style is to make your content fully digital. By this, Microsoft means
that you should not spend screen space or CPU cycles or user attention
on meatspace analogies, such as a book reader app displaying
pages that look like physical paper. Apple in November announced
it was moving in the same direction.

The design guidance makes sense. Mobile device screens are
small compared to PCs; computing cycles are also more limited,
and so are physical storage and battery power. A pixel spent on the
deckle edge of a simulated book page means one less pixel for the
book text. Th e page-fl ipping motion in a reader app is a PC indul-
gence, unaff ordable on a mobile device.

Will users accept this? I think so. When personal computers fi rst
started catching on 30 years ago, our main UI idiom was making
the computer display picture look like the physical thing it replaced.
For example, the display of the Windows Cardfi le program, shown
in Figure 1, looked like an actual fi le of paper index cards (well, as
close as we could get to it with the graphics of that time). But that
changed as computer usage spread and evolved.

We’ve reached the point where informational content has been
decoupled from its physical storage medium. Our computer rep-
resentations no longer need to simulate their physical origins, such
as page numbers or CD track numbers. Th e fl exibility of digital
presentation renders these useless at best, misleading at worst.

For example, my Kindle reader reformats the text for the larger type
size I prefer, and I read on devices of diff erent sizes (PC, tablet and
phone), so page numbers lose their meaning. In a recent presentation,
I referred my audience to a Kindle location instead of a page number.
And aft er I introduced them to my classic rock music collection, my
daughters now beg me, “Daddy, put on the Beatles’ White Playlist.”

Kids today grow up with ubiquitous computing, and therefore
never learn the connection between digital content and a physical
medium. My 2-year-old grandniece and grandnephew, children of
my 30-year-old geek nephew, are prime examples. When I gave them
music CDs for their fi rst birthday (Raffi singing “Baby Beluga”—
revenge on their father for dropping my laptop years ago), their
mother said, “I don’t think we have a player for those. I’ll have to rip
them to the Apple music format that we use here.” Th ese kids don’t
have movie DVDs—they’re all online, too. Th ey don’t have magazines.
Nor newspapers. Nor paper photo albums. And now that I think of
it, they have darn few paper books, though lots of Kindle editions.

These kids could play music on their dad’s iPad before they
could walk, though I’m surprised he let the little thugs touch his
precious toy. (Perhaps he was hoping they’d break it, so he’d have
an excuse to buy this year’s improved model.) His daughter, then
aged 15 months, got mad and cried when she fi nger-swiped their
big-screen TV and nothing happened.

Th ey consume far more informational content than I did at that
age. But that content has been liberated, set free, decoupled from
its physical representation. It has become, as Frederick Brooks
wrote in “Th e Mythical Man-Month” (Addison-Wesley Professional,
1995), “nearly pure thought-stuff.” The Windows 8 fully digital
tenet catches and accelerates this trend.

Toys“R”Us is now selling an Android tablet aimed at kids (with
a rubber protective frame) for $150. Th e cost of producing digital
books is tiny compared to the color paper-printing process,
although the pricing model hasn’t completely caught up yet.

The last generation of humans who will handle paper books
(other than as a historical oddity, as we enjoy watching a blacksmith
at work) walks the planet today. You tell me: Should we weep, cheer
or shrug?

DAVID S. PLATT teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books,
including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Soft ware
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fi ngers so she learns how to count in octal. You can contact him at rollthunder.com.

Being Fully Digital

DON’T GET ME STARTED DAVID S. PLATT

Figure 1 Remember Cardfi le? The original Windows personal
information manager looked and acted like paper note cards.

www.rollthunder.com

© 2012 GrapeCity, inc. All rights reserved. All other product and brand names are trademarks
and/or registered trademarks of their respective holders.

Untitled-1 1 7/12/12 12:57 PM

http://c1.ms/ultimate

Map control
for visualizing
geographical
summaries
or statistcs.

Blazing fast performance –
100,000 points in less than
1 second.

Untitled-2 1 11/5/12 3:56 PM

www.syncfusion.com/msdnwinrt

	Back
	Print
	MSDN Magazine, December 2012
	Cover Tip
	Contents
	CUTTING EDGE: Essential Facebook Programming: Authentication and Updates
	DATA POINTS: Pain-Free Data Access in JavaScript—Yes, JavaScript
	WINDOWS AZURE INSIDER: Windows Azure Service Bus: Messaging Patterns Using Sessions
	Windows 8 and the WebSocket Protocol
	Speech-Enabling a Windows Phone 8 App, Part 2: In-App Dialog
	Designing Accessibility with HTML5
	The C# Memory Model in Theory and Practice
	Matrix Decomposition
	TEST RUN: Graph-Based Shortest-Path Analysis with SQL
	TOUCH AND GO: A Touch Interface for an Orienting Map
	DON’T GET ME STARTED: Being Fully Digital

