

Simply Stunning.
Today’s users expect beautiful apps in every part of their lives, from work to home. Now, with

controls into your designs. DXv2 delivers the tools you need to inspire and be inspired.

productivity tools at www.DevExpress.com

Untitled-14 1 12/9/11 4:18 PM

http://www.DevExpress.com

THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
THE CUTTING EDGE
Enhancing the Context-Sensitive
ASP.NET MVC Progress Bar
Dino Esposito, page 6

DATA POINTS
Making Do with
Absent Foreign Keys
Julie Lerman, page 14

FORECAST: CLOUDY
Windows Azure Caching Strategies
Joseph Fultz, page 20

TEST RUN
Simulated Annealing and Testing
James McCaffrey, page 76

THE WORKING
PROGRAMMER
Building Combinators
Ted Neward, page 82

TOUCH AND GO
Playing Audio Files
in Windows Phone
Charles Petzold, page 85

DON’T GET ME STARTED
Lowering Higher Education
David Platt, page 88

JANUARY 2012 VOL 27 NO 1

WINDOWS PHONE
Your First Windows Phone Application
Jesse Liberty . 24

Using Cameras in Windows Phone 7.5
Matt Stroshane . 30

Design Your Windows Phone Apps to Sell
Mark Hopkins . 40

PLUS:
Using HTML5 Canvas for Data Visualization
Brandon Satrom . 46

Becoming a NuGet Author
Clark Sell . 52

Orchard Extensibility
Bertrand Le Roy . 56

Securing Your ASP.NET Applications
Adam Tuliper . 62

Customized On-Screen Keyboards
with the .NET Framework
Christopher M. Frenz . 68

Extending SSRS: Developing Custom Charting
Components and Rendering Extensions
Manpreet Singh . 72

Write Once, Experience Many

NetAdvantage®

for jQuery

check out infragistics.com/jquery

BUSINESS CHARTING
Combine interactive

Outlook style grids with

rich business charting to

deliver a complete

portable solution.

TREE
Simplify the look of

hierarchical data,

while offering the

experience, design

and functionality

your users will love!

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics
Copyright 1996-2011 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

Untitled-5 2 10/12/11 1:24 PM

www.infragistics.com/jquery

COMBO
The fully featured

combo box control

offers intuitive

auto-suggest,

auto-complete and

auto-filtering built in.

HTML EDITOR
Give your users a

powerful HTML

editing experience

by incorporating the

jQuery WYSIWYG

editing tool.

HIERARCHICAL GRID
An expandable data grid

that presents multiple

parent-child relationships

is the backbone of your

data application.

VIDEO PLAYER
When a user finds

what they want to

watch, our HTML5

video player adds

streaming video

right into your

own apps.

Untitled-5 3 10/12/11 1:24 PM

www.infragistics.com/jquery

magazine

Printed in the USA

LUCINDA ROWLEY Director
KIT GEORGE Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

CONTRIBUTING EDITORS Dino Esposito, Joseph Fultz,
Kenny Kerr, Julie Lerman, Dr. James McCaffrey, Ted Neward,
Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

JANUARY 2012 VOLUME 27 NUMBER 1

Ask about fully-functional evaluations!

Desktop with Spider Web with Spider

Network with Spider Engine for Win & .NET

Publish (portable media) Engine for Linux

The Smart Choice for Text Retrieval® since 1991

Highlights hits in a wide range of data, using
dtSearch’s own file parsers and converters
• Supports MS Office through 2010 (Word, Excel,

PowerPoint, Access), OpenOffice, ZIP, HTML,
XML/XSL, PDF and more

• Supports Exchange, Outlook, Thunderbird and
other popular email types, including nested and
ZIP attachments

• Spider supports static and dynamic web data
like ASP.NET, MS SharePoint, CMS, PHP, etc.

• API for SQL-type data, including BLOB data

25+ full-text & fielded data search options
• Federated searching

• Special forensics search options

• Advanced data classification objects

APIs for C++, Java and .NET through 4.x
• Native 64-bit and 32-bit Win / Linux APIs;
.NET Spider API

• Content extraction only licenses available

“Bottom line: dtSearch manages a terabyte of text in a
single index and returns results in less than a second”
 InfoWorld

“Covers all data sources … powerful Web-based engines”
 eWEEK

“Lightning fast ... performance was unmatched by any
other product” Redmond Magazine

For hundreds more reviews and developer case studies,
see www.dtSearch.com

www.dtSearch.com • 1-800-IT-FINDS

®

Instantly Search
Terabytes of Text

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

Untitled-1 1 12/6/11 11:40 AM

www.leadtools.com

msdn magazine4

“Th at social connection continued for years: PC Magazine people
and MSJ people would frequently hang out together at industry
events such as Comdex, and get together for parties and dinners in
New York City,” Petzold says, adding, “And sometimes editors would
hop from one of the magazines to the other. Tony Rizzo went from
MSJ to PC Magazine, and Sharon Terdeman, who works for MSDN
Magazine now, I originally knew when she was at PC Magazine.”

By the mid-1990s, Petzold says, that social interaction had “pretty
much disintegrated. Or maybe these dinners are still happening
and they just stopped inviting me!”

A lot more than dinner has changed since Petzold came on board.
“Gosh, in 1986 there were still people arguing that the personal
computer didn’t need graphics,” Petzold says. “Twenty-fi ve rows
of 80 characters of text were just fi ne for those folks.”

How times change. Today, Petzold describes the emergence
of hand-held touch devices as “a third revolution” of personal
computing (aft er the GUI and the Internet). It’s an area Petzold has
dedicated himself to in his UI Frontiers column, which has focused
largely on Windows Phone development since the mobile platform
debuted. In fact, this month his column gets a new name—Touch
and Go—refl ecting the unique challenges and opportunities of
these emergent devices.

But even as he heralds a new revolution, Petzold worries that devel-
opers, increasingly, have less and less in common with one another.

“Everybody seems to be working on something diff erent, and
it’s impossible for any one person to be familiar with all these
diff erent technologies,” Petzold says. “We’ve all become specialists.
There’s no longer an industry event like Comdex that virtually
everybody attends, no longer books that everybody reads, no
longer languages that everyone speaks.

“It’s a problem, and it doesn’t seem to be getting any better,”
Petzold continues. “But the extreme biodiversity that exists now
is perhaps an indication that the art and engineering of computer
programming is still in its infancy. And that suggests we need to
keep our minds open—to evaluate new frameworks and program-
ming languages, with the thought that they may actually be better
than what we’re using now.”

A Quarter Century and Counting
Twenty-fi ve years is a long time, especially in the soft ware devel-
opment business. So it’s hard to believe that Charles Petzold,
author of the UI Frontiers column, has been contributing to MSDN
Magazine and its predecessor Microsoft Systems Journal (MSJ) since
this publication launched in 1986.

Petzold’s contributions to the magazine stretch back to the inau-
gural issue of MSJ in October 1986, and in December of that year he
wrote the fi rst-ever magazine article on Windows programming, “A
Step-by-Step Guide to Building Your First Windows Application.”
He then wrote one of the fi rst books on Windows development—
“Programming Windows” (Microsoft Press, 1988)—which became
a defi nitive resource for Windows programmers. Yeah, you could
say Petzold got in on the ground fl oor of that whole Windows thing.

What’s truly remarkable is that, aft er all these years, Petzold is
still here. From Win16 to Win32, through four-plus iterations of
the Microsoft .NET Framework, and most recently the emergence
of the Windows Runtime, the two constants at MSDN Magazine
have been: change and Charles Petzold.

Th e success of MSDN Magazine might seem obvious today, but
at the time it was hardly a sure thing. No one had ever published a
magazine quite like this before. Th e whole thing got rolling when
Jon Lazarus, a former executive at Ziff -Davis, left the company
to publish MSJ under contract. As Petzold tells it, Lazarus knew
him as a writer at PC Magazine who was “doing silly stuff with
Windows.” And despite a late change of strategy, that was exactly
what the fl edgling publication needed.

“Originally the magazine was supposed to be exclusively about
Windows programming, but they chickened out because there was
no indication that Windows would be successful,” Petzold recalls.
“Th ey took a safer route that it would be about programming for
all Microsoft operating systems. And because Microsoft was always
rather enamored of IBM, and IBM published IBM Systems Journal,
they called it Microsoft Systems Journal.”

Th e fi rst issues were produced in the Manhattan offi ce that Lazarus
shared with a TV talent agent. Th e space, Petzold says, was “fi lled with
stacks of videotapes,” and was located not too far from the offi ces of Ziff -
Davis’ PC Magazine. Th at proximity enabled a robust back-and-forth
between PC Magazine and MSJ that helped keep the publication vital.

EDITOR’S NOTE MICHAEL DESMOND

© 2012 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Everything You Need to

Powerful bug tracking.
Manage bugs, defects, & issues

Customize the tracker to match your

and requirements, too—with drag and

best A beautiful & fast UI.

Plus:

Team up. Collaborate. Build great software.

Visit axosoft.com to learn more.

800.653.0024

Ship Software

Free 2-user Forever. know?

Find us on:

@axosoft /axosoft

Untitled-2 1 12/1/11 2:04 PM

www.axosoft.com

msdn magazine6

 Enhancing the Context-Sensitive
ASP.NET MVC Progress Bar

In the Web world, the term “progress bar” means too many diff erent
things to different people. Sometimes it refers to static text that
simply shows that some operation is taking place somewhere. Th e
text provides basic feedback to the user and essentially invites her
to just relax and wait. Sometimes, the progress bar displays a simple
animation while sending the same message to the user—please
wait—which at least focuses the user’s attention because users tend
to follow the moving elements. A typical animation shows a graphic
element that moves around a circular or linear path indefi nitely.
When the moving element reaches the end of the path, the anima-
tion starts over and keeps running until the underlying operation
terminates and the animation is stopped programmatically. Th is
is a fairly common pattern on, for example, most airline Web sites.

Last month, I introduced a basic version of an ASP.NET MVC
framework—the SimpleProgress Framework—that allows you to
quickly and eff ectively set up a truly context-sensitive progress bar
(msdn.microsoft.com/magazine/hh580729). Context-sensitive is probably
just what a progress bar should be. Th at is, it should be an element
of the UI that progressively describes the status of an ongoing
operation. Th e progressive display can be as simple as a sequence
of messages or it can be more compelling—for example, a gauge.

In this article, I’ll show how to enhance the progress bar by add-
ing cancel capabilities. In other words, if the user interacts with the
interface and cancels the operation, the framework will direct the
manager of the ongoing operation to interrupt any work being done.

Canceling Ongoing Tasks
Canceling an ongoing server-side task from within a client browser
is not a trivial operation. Don’t be fooled by the very basic exam-
ples you’ll fi nd that just abort the client request and pretend that
everything is also cleared on the server.

When you trigger a server operation via AJAX, a socket is opened
that connects your browser to a remote endpoint. Th is connection
remains open, waiting for the request to complete and return a
response. Th e trick I discussed last month for setting up a context-
sensitive progress bar used a parallel fl ow of requests to check a second
controller method responsible for returning the status of the opera-
tion—sort of a mailbox that client and server can use to communicate.

Now suppose there’s an Abort button that lets the user cancel the
current server operation. What kind of code is that going to require? At
the very least, you want to abort the AJAX request. If the server opera-
tion was started using the jQuery AJAX API, you can do the following:

xhr.abort();

CUTTING EDGE DINO ESPOSITO

Code download available at code.msdn.microsoft.com/mag201201CuttingEdge.

var ProgressBar = function () {
 var that = {};

 // Store the XHR object being used.
that._xhr = null;

// Get the user-defined callback that runs after
// aborting the call.
that._taskAbortedCallback = null;

...

// Set progress callbacks.
that.callback = function (userCallback, completedCallback,
 abortedCallback) {
 that._userDefinedProgressCallback = userCallback;
 that._taskCompletedCallback = completedCallback;
 that._taskAbortedCallback = abortedCallback;
 return this;
};

// Abort function.
that.abort = function () {
 if (_xhr !== null)
 xhr.abort();

};

...

// Invoke the URL and monitor its progress.
that.start = function (url, progressUrl) {
 that._taskId = that.createTaskId();
 that._progressUrl = progressUrl;

 // Place the AJAX call.
 xhr = $.ajax({
 url: url,
 cache: false,
 headers: { 'X-ProgressBar-TaskId': that._taskId },
 complete: function () {
 if (_xhr.status != 0) return;
 if (that._taskAbortedCallback != null)
 that._taskAbortedCallback();
 that.end();
 },
 success: function (data) {
 if (that._taskCompletedCallback != null)
 that._taskCompletedCallback(data);
 that.end();
 }
 });

 // Start the progress callback (if any set).
 if (that._userDefinedProgressCallback == null)
 return this;
 that._timerId = window.setTimeout(
 that._internalProgressCallback,
 that._interval);
};

 return that;
}

Figure 1 Adding Abort Functionality to the
Progress Framework

http://msdn.microsoft.com/magazine/hh580729
http://code.msdn.microsoft.com/mag201201CuttingEdge

© 2011 ComponentOne LLC. All rights reserved. All other product and brand names are
trademarks and/or registered trademarks of their respective holders.

ComponentOne Ultimate™ delivers
the tools and resources to build
everything …everywhere. Whether
you're a Windows, Web, or XAML
developer, this ultimate dev tool
collection delivers. Inside you’ll
find: 100s of .NET controls, OLAP
data analysis controls, SharePoint
Web Parts, documentation tools,
LightSwitch extensions, and tools
for ADO.NET Entity Framework and

RIA Services. No job is too big. Bring
speed, style, and functionality to your

all your applications ...it is your destiny.

Untitled-3 1 11/2/11 2:16 PM

http://www.componentone.com/SuperProducts/Ultimate/?utm_source=MSDNDec2011&utm_medium=Galaxy&utm_campaign=ComponentOneUltimate

msdn magazine8 Cutting Edge

Th e xhr variable is the reference to the XmlHttpRequest object used in
the call. In jQuery, this reference is returned directly by the $.ajax func-
tion. Figure 1 shows an excerpt from the progress framework (renamed
ProgressBar) from last month’s code that adds a new abort method.

As you can see, the new abort method doesn’t do much beyond
calling abort on the internal XmlHttpRequest object. Aborting an
ongoing AJAX call still triggers the complete event on the AJAX man-
ager, however, though not any success or error functions. To detect
whether an operation was aborted by the user, you attach a handler
for complete and check the status property of the XmlHttpRequest
object—it will be 0 if the operation was aborted. Th e complete handler

then performs whatever cleanup operation
is required—stopping timers, for example.
Figure 2 shows a nice interface from which
users can stop remote operations at will.

Notifying the Server
Th e nice UI in Figure 2 doesn’t necessarily
guarantee that the server-side operation has
been stopped as the user requested and as the
application’s feedback seems to prove. Call-
ing abort on XmlHttpRequest simply closes
the socket that connects the browser to the
server. Put another way, by calling abort on
XmlHttpRequest, you simply say you’re no
longer interested in receiving any response
the server method might generate. Nothing

really guarantees the server received and acknowledged the abort
request; more likely, the server will continue to process the request
regardless of whether a browser is listening for a response. While this
particular aspect may vary on diff erent platforms and servers, there’s
another aspect to consider that depends strictly on your applica-
tion. If the request triggered either an asynchronous operation or
a long-running operation, can you stop it? Th e truth is, there is no
reliable and automatic way to stop the processing of a request; you
have to build your own framework and write your server methods
to be interruptible. Let’s extend the progress framework, then.

Figure 2 Cancelable AJAX Operations

public class ProgressBarController : Controller
{
 protected readonly ProgressManager ProgressManager;
 public ProgressBarController()
 {
 ProgressManager = new ProgressManager();
 }

 public String GetTaskId()
 {
 // Get the header with the task ID.
 var id = Request.Headers[ProgressManager.HeaderNameTaskId];
 return id ?? String.Empty;
 }

 public String Status()
 {
 var taskId = GetTaskId();
 return ProgressManager.GetStatus(taskId);
 }

 public void Abort()
 {
 var taskId = GetTaskId();
 ProgressManager.RequestTermination(taskId);
 }
}

Figure 3 The ProgressBar Super Class

public String BookFlight(String from, String to)
{
 var taskId = GetTaskId();

 // Book first leg
 ProgressManager.SetCompleted(taskId,
 "Booking flight: {0}-{1} ...", from, to);
 Thread.Sleep(4000);
 if (ProgressManager.ShouldTerminate(taskId))
 {
 // Compensate here
 //
 return String.Format("One flight booked and then canceled");
 }

 // Book return flight
 ProgressManager.SetCompleted(taskId,
 "Booking flight: {0}-{1} ...", to, from));
 Thread.Sleep(4000);
 if (ProgressManager.ShouldTerminate(taskId))
 {
 // Compensate here
 //
 return String.Format("Two flights booked and then canceled");
 }

 // Book return
 ProgressManager.SetCompleted(taskId,
 "Paying for the flight ...", taskId));
 Thread.Sleep(5000);
 if (ProgressManager.ShouldTerminate(taskId))
 {
 // Compensate here
 //
 return String.Format("Payment canceled. No flights booked.");
 }

 // Some return value
 return "Flight booked successfully";
}

Figure 4 A Monitorable Controller Method Using
the Progress Framework

The truth is, there is no reliable
and automatic way to stop the

processing of a request.

Untitled-1 1 10/11/11 11:06 AM

www.kendoui.com

msdn magazine10 Cutting Edge

Extending the Progress Framework
Th e server-side manager component is the part of the framework
that controllers work with. Controller methods call methods on
the following interface to post messages for the client progress bar
and to receive notifi cations from the UI to stop processing:

public interface IProgressManager
{
 void SetCompleted(String taskId, String format, params Object[] args);
 void SetCompleted(String taskId, Int32 percentage);
 void SetCompleted(String taskId, String step);
 String GetStatus(String taskId);
 void RequestTermination(String taskId);
 Boolean ShouldTerminate(String taskId);
}

Compared with the code I presented last month, there are a
couple of extra methods—RequestTermination, which clients will
call to request termination, and ShouldTerminate, which action
methods will invoke to see if they’re supposed to stop and roll back.

Each progress manager works on top of a data provider that holds
the status of pending tasks, each identifi ed with a client-generated
ID. Th e default data provider in the source code uses the ASP.NET
cache to store the status of tasks. It creates an entry for each task
and stores the entry inside an object of type TaskStatus, like so:

public class TaskStatus
{
 public TaskStatus(String status) : this (status, false)
 {
 }
 public TaskStatus(String status, Boolean aborted)
 {
 Aborted = aborted;
 Status = status;
 }

 public String Status { get; set; }
 public Boolean Aborted { get; set; }
}

When the controller method calls SetCompleted, it ends
up saving a status message for the task in the underlying store.
Before proceeding with the next step, the controller method checks
whether it has to abort.

Putting It All Together: The Server
Let’s see what it takes to create a controller method for a multistep,
monitorable and interruptible operation. You start with a sample
controller class that inherits from ProgressBarController:

public class TaskController : ProgressBarController
{
 public String BookFlight(String from, String to)
 {
 ...
 }
}

Th e sample method returns a String for simplicity; it can be a
partial view or JSON or whatever else you need it to be.

Th e base class, shown in Figure 3, is a simple way to endow the
fi nal controller with a bunch of common methods.

Note, in particular, the Status and Abort methods that defi ne a
public and standard API for jQuery clients to call to query for the
current status and to request termination. By using a base class, you
avoid having to rewrite that code over and over again.

Figure 4 shows the pattern for a controller method that needs
to be monitored from the client.

The task ID is generated on the client and transmitted to
the server through an HTTP header. The GetTaskId method
shields controller developers from having to know these details.
The controller method does its work piecemeal and invokes
SetCompleted each time it accomplishes a signifi cant part of the
work. It indicates the work done using a string, which could be a
percentage as well as a status message. Periodically, the controller
method checks whether a request for termination has been
received. If this is the case, it does whatever is possible to roll back
or compensate, and then returns.

Putting It All Together: The Client
On the client side, you need to link the Progress Framework Java-
Script API and the jQuery library:

<script src="@Url.Content("~/Scripts/progressbar-fx.js")"
 type="text/javascript"></script>

function buttonStartHandler() {
 updateStatusProgressBar ();

 progressbar = new ProgressBar();
 progressbar.setInterval(600)
 .callback(function (status) {
 $("#progressbar").text(status); },
 function (response) {
 $("#progressbar").text(response);
 updateStatusProgressBar(); },
 function () {
 $("#progressbar").text("");
 updateStatusProgressBar(); })
 .start("/task/bookflight?from=Rome&to=NewYork",
 "/task/status",
 "/task/abort");
}

function buttonAbortHandler() {
 progressbar.abort();
}

function updateStatusProgressBar () {
 $("#buttonStart").toggleDisabled();
 $("#buttonAbort").toggleDisabled();
}

Figure 6 JavaScript Code for the Sample View

<fieldset>
 <legend>Book a flight...</legend>
 <input id="buttonStart" type="button" value="Book a flight..." />

 <hr />
 <div id="progressbar_container">

 <input id="buttonAbort" type="button"
 value="Abort flight booking"
 disabled="disabled" />
 </div>
</fieldset>

Figure 5 Markup for Triggering a Monitorable
and Interruptible Action

Each progress manager
works on top of a data provider

that holds the status of
pending tasks.

11January 2012msdnmagazine.com

Each monitorable method will be invoked via AJAX and will
therefore be triggered by a client-side event—for example, a
button click, created with markup as shown in Figure 5.

Click handlers are attached unobtrusively when the page is loaded:
<script type="text/javascript">
 var progressbar;

 $(document).ready(function () {
 $("#buttonStart").bind("click", buttonStartHandler);
 $("#buttonAbort").bind("click", buttonAbortHandler);
 });
</script>

Figure 6 shows the JavaScript for starting
and aborting a remote operation and updat-
ing the UI accordingly.

Th e ProgressBar JavaScript object consists
of three main methods. The setInterval
method specifi es the interval between two
successive checks for state updates. The
value to pass is in milliseconds. Th e callback
method sets a bunch of callback functions
for updating the status and for updating the
UI when the operation is successfully com-
pleted or when the operation is aborted by
the user. And the start method begins the
operation. It takes three URLs: the endpoint
of the method to run and endpoints for the
methods to be called back to catch state
updates and to abort the pending operation.

As you can see, the URLs are relative and
expressed in the form /controller/method.
Of course, you can change the names of the
method status and abort to whatever you
like—as long as such methods exist as pub-
lic endpoints. Th e status and abort methods
are guaranteed to exist if you inherit your
controller class from ProgressBarController.
Figure 7 shows the sample application in
action. Though the UIs in Figure 2 and
Figure 7 look the same, the underlying code
and behavior are really diff erent.

Making Progress
AJAX supplies the tools to poll the server
and ask what’s going on. You have to build
your own framework if you want it to
provide monitorable and interruptible
methods. It should be noted that in a real
example, the action method itself might be
calling other asynchronous services. Such
code can be complicated. Luckily, writing
asynchronous code should get simpler in
the upcoming ASP.NET MVC 4. And in
my next column, I’ll show another approach
to implementing and monitoring remote
tasks based on a new client-side library that
could also make it to the ASP.NET MVC 4
bundle—the SignalR library. For now, get
the source code from code.msdn.microsoft.com/

mag201201CuttingEdge and let me know your thoughts!

DINO ESPOSITO is the author of “Programming Microsoft ASP.NET MVC3”
(Microsoft Press, 2011) and coauthor of “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker
at industry events worldwide. You can follow him on Twitter at twitter.com/despos.

THANKS to the following technical expert for reviewing this column: Phil Haack

Figure 7 The Framework in Action

http://code.msdn.microsoft.com/mag201201CuttingEdge
http://code.msdn.microsoft.com/mag201201CuttingEdge
www.twitter.com/despos
www.cozyroc.com
www.msdnmagazine.com

Untitled-1 2 12/1/11 1:58 PM

www.componentart.com

Untitled-1 3 12/1/11 1:58 PM

www.componentart.com

msdn magazine14

often encounter issues creating new leaves in a typically archi-
tected MVC app. I used the template from the MVCScaff olding
NuGet package (mvcscaffolding.codeplex.com) to let Visual Studio
auto matically build my controllers, views and simple repositories
by selecting “MvcScaff olding: Controller with read/write action and
views, using repositories.” Note that because there’s no foreign key
property in the Leaf class, the scaff olding templates won’t recognize
the one-to-many relationship. I made some minor changes to the
views and controllers to allow a user to navigate from a tree to its
leaves, which you can see in the sample download.

Th e Create postback action for Leaf takes the Leaf returned from
the Create view and tells the repository to add it and then save it,
as shown in Figure 2.

Th e repository takes the leaf, checks to see if it’s new and if so, adds
it to the context instance that was created as a result of the postback:

public void InsertOrUpdate(Leaf leaf,int treeId)
{
 if (leaf.LeafId == default(int)) {
 // New entity
 context.Leaves.Add(leaf);
 } else {
 // Existing entity
 context.Entry(leaf).State = EntityState.Modified;
 }
}

When Save is called, EF creates an Insert command, which adds
the new leaf to the database:

exec sp_executesql N'insert [dbo].[Leaves]([FellFromTreeDate], [FellFromTreeColor],
[Tree_TreeId]) values (@0, @1, null)
select [LeafId]
from [dbo].[Leaves]
where @@ROWCOUNT > 0 and [LeafId] = scope_identity()',
N'@0 datetime2(7),@1 nvarchar(max) ',
@0='2011-10-11 00:00:00',@1=N'Pale Yellow'

Making Do with Absent Foreign Keys

Th is month I’m writing about an issue I’ve found myself helping
people with frequently of late: problems with related classes
defi ned in Code First and then, in most cases, used in the Model-
View-Controller (MVC) framework. The problems developers
have been experiencing aren’t specifi c to Code First. Th ey’re the
result of underlying Entity Framework (EF) behavior and, in fact,
common to most object-relational mappers (ORMs). But it seems
the problem is surfacing because developers are coming to Code
First with certain expectations. MVC is causing them pain because
of its highly disconnected nature.

Rather than only showing you the proper code, I’ll use this column
to help you understand the EF behavior so you can apply this knowl-
edge to the many scenarios you may encounter when designing your
classes or writing your data access code with EF APIs.

Code First convention is able to detect and correctly infer
various relationships with varying combinations of properties in
your classes. In this example, which I’m writing as the leaves are
turning spectacular colors on trees near my home in Vermont, I’ll
use Tree and Leaf as my related classes. For a one-to-many rela-
tionship, the simplest way you could describe that in your classes
and have Code First recognize your intent is to have a navigation
property in the Tree class that represents some type of collection
of Leaf types. Th e Leaf class needs no properties pointing back to
Tree. Figure 1 shows the Tree and Leaf classes.

By convention, Code First will know that a foreign key is required
in the database in the Leaf table. It will presume a foreign key fi eld
name to be “Tree_TreeId,” and with this information provided in
the metadata created by Code First at run time, EF will understand
how to work out queries and updates using that foreign key. EF
leverages this behavior by relying on the same process it uses with
“independent associations”—the only type of association we could
use prior to the Microsoft .NET Framework 4—which don’t require
a foreign key property in the dependent class.

This is a nice, clean way to define the classes when you’re
confi dent that you have no need to ever navigate from a Leaf back
to its Tree in your application. However, without direct access to
the foreign key, you’ll need to be extra diligent when coding.

Creating New Dependent Types Without
Foreign Key or Navigation Properties
Although you can easily use these classes to display a tree and its
leaves in your ASP.NET MVC application and edit leaves, developers

DATA POINTS JULIE LERMAN

Code download available at code.msdn.microsoft.com/mag201201DataPoints.

public class Tree
{
 public Tree()
 {
 Leaves = new List<Leaf>();
 }

 public int TreeId { get; set; }
 public string Type { get; set; }
 public double Lat { get; set; }
 public double Long { get; set; }
 public string Notes { get; set; }
 public ICollection<Leaf> Leaves { get; set; }
}
public class Leaf
{
 public int LeafId { get; set; }
 public DateTime FellFromTreeDate { get; set; }
 public string FellFromTreeColor { get; set; }
}

Figure 1 Related Tree and Leaf Classes

http://code.msdn.microsoft.com/mag201201DataPoints
http://mvcscaffolding.codeplex.com

Untitled-1 1 12/9/11 11:31 AM

www.perforce.com/trial

msdn magazine16 Data Points

Notice the values passed in on the second line of the command:
@0 (for the date); @1 (for the modifi ed color); and null. Th e null value
is destined for the Tree_TreeId fi eld. Remember that the nice, clean
Leaf class has no foreign key property to represent the TreeId, so
there’s no way to pass that value in when creating a standalone leaf.

When the dependent type (in this case, Leaf) has no knowledge
of its principal type (Tree), there’s only one way to do an insert: Th e
Leaf instance and the Tree instance must be added to the context
together as part of the same graph. Th is will provide EF with all the
information it needs to work out the correct value to insert into the
database foreign key (for example, Tree_TreeId). But in this case,
where you’re working only with the Leaf, there’s no information in
memory for EF to determine the value of the Tree’s key property.

If you had a foreign key property in the Leaf class, life would be
so much simpler. It’s not too diffi cult to keep a single value at hand
when moving between controllers and views. In fact, if you look
at the Create action in Figure 2, you can see that the method has
access to the value of the TreeId for which the Leaf is being created.

There are a number of ways to pass data around in MVC
applications. I chose the simplest for this demo: stuffing the
TreeId into the MVC ViewBag and leveraging Html.Hidden fi elds
where necessary. Th is makes the value available as one of the view’s
Request.Form items.

Because I have access to the TreeId, I’m able to build the Tree/Leaf
graph that will provide the TreeId for the Insert command. A quick
modifi cation to the repository class lets the
InsertOrUpdate method accept that TreeId
variable from the view and retrieves the Tree in-
stance from the database using the DbSet.Find
method. Here’s the aff ected part of the method:

public void InsertOrUpdate(Leaf leaf,int treeId)
{
 if (leaf.LeafId == default(int)) {
 var tree=context.Trees.Find(treeId);
 tree.Leaves.Add(leaf);
 }
...

Th e context is now tracking the tree and
is aware that I’m adding the leaf to the tree.
This time, when context.SaveChanges is
called, EF is able to navigate from the Leaf
to the Tree to discover the key value and use
it in the Insert command.

Figure 3 shows the modifi ed controller
code using the new version of InsertOrUpdate.

With these changes, the insert method fi nally has the value for
the foreign key, which you can see in the parameter called “@2”:

exec sp_executesql N'insert [dbo].[Leaves]([FellFromTreeDate],
[FellFromTreeColor], [Tree_TreeId])
values (@0, @1, @2)
select [LeafId]
from [dbo].[Leaves]
where @@ROWCOUNT > 0 and [LeafId] = scope_identity()',
N'@0 datetime2(7),@1 nvarchar(max) ,
@2 int',@0='2011-10-12 00:00:00',@1=N'Orange-Red',@2=1

In the end, this workaround forces me to make another trip to
the database. Th is is the price I’ll choose to pay in this scenario
where I don’t want the foreign key property in my dependent class.

Problems with Updates When There’s No Foreign Key
Th ere are other ways you can paint yourself into a corner when
you’re bound and determined not to have foreign key properties
in your classes. Here’s another example.

I’ll add a new domain class named TreePhoto. Because I don’t want to
navigate from this class back to Tree, there’s no navigation property, and
again, I’m following the pattern where I don’t use a foreign key property:

[Table("TreePhotos")]
public class TreePhoto
{
 public int Id { get; set; }
 public Byte[] Photo { get; set; }
 public string Caption { get; set; }
}

Th e Tree class provides the only connection between the two
classes, and I specify that every Tree must
have a Photo. Here’s the new property that
I added to the Tree class:
 [Required]
 public TreePhoto Photo { get; set; }

Th is does leave the possibility of orphaned
photos, but I use this example because I’ve
seen it a number of times—along with pleas
for help—so I wanted to address it.

Once again, Code First convention deter-
mined that a foreign key property would
be needed in the database and created one,
Photo_Id, on my behalf. Notice that it’s
non-nullable. Th at’s because the Leaf.Photo
property is required (see Figure 4).

Your app might let you create trees before
the photos have been taken, but the tree still
needs that Photo property to be populated.

[HttpPost]
public ActionResult Create(Leaf leaf)
{
 if (ModelState.IsValid)
 {
 leafRepository.InsertOrUpdate(leaf);
 leafRepository.Save();
 return RedirectToAction("Index",
 new { treeId = Request.Form["TreeId"] });
 }
 else
 {
 return View();
 }
}

Figure 2 Adding and Saving Leaf to the Repository

 [HttpPost]
public ActionResult Create(Leaf leaf)
{
 if (ModelState.IsValid)
 {
 var _treeId = Request.Form["TreeId"] as int;
 leafRepository.InsertOrUpdate(leaf, _treeId);
 leafRepository.Save();
 return RedirectToAction("Index", new { treeId = _treeId });
 }
 else
 {
 return View();
 }
}

Figure 3 The New Version of InsertOrUpdate

Figure 4 Using Code First Convention,
Tree Gets a Non-Nullable Foreign Key
to TreePhotos

www.DevExpress.com

declaration, powerfull templates, smart selection tools, intelligent code analysis, innnovative
navigation and an unrivalled collection of refactorings all work together to increease your

Download the 30-day free trial to experience the next generation of
developer productivity tools at

Copyright © 1998-2011 Developer Express Inc. ALL RIGHTS RESERVED. All trademarks or registered trademarks are property of their respective owners.

Duplicate Detection & Consolidation
with CodeRush

Untitled-13 1 12/9/11 3:47 PM

http://www.DevExpress.com

msdn magazine18 Data Points

I’ll add logic into the Tree repository’s Insert OrUpdate method to
create a default, empty Photo for new Trees when one isn’t supplied:

public void InsertOrUpdate(Tree tree)
{
 if (tree.TreeId == default(int)) {
 if (tree.Photo == null)
 {
 tree.Photo = new TreePhoto { Photo = new Byte[] { 0 },
 Caption = "No Photo Yet" };
 }
 context.Trees.Add(tree);
}
...

The bigger problem I want to focus on here is how this issue
aff ects updates. Imagine you have a Tree and its required Photo
already stored in the database. You want to be able to edit a Tree and
have no need to interact with the Photo. You’ll retrieve the Tree,
perhaps with code such as “context.Tre es.Find(someId).” When it’s
time to save, you’ll get a validation error because Tree requires a
Photo. But Tree has a photo! It’s in the database! What’s going on?

Here’s the problem: When you fi rst execute a query to retrieve the
table, ignoring the related Photo, only the scalar values of the Tree will
be returned from the database and Photo will be null (see Figure 5).

Both the MVC Model Binder and EF have the ability to validate the
Required annotation. When it’s time to save the edited Tree, its Photo
will still be null. If you’re letting MVC perform its ModelState.IsValid
check in the controller code, it will recognize that Photo is missing.
IsValid will be false and the controller won’t even bother calling the
repository. In my app, I’ve removed the Model Binder validation
so I can let my repository code be responsible for any server-side
validation. When the repository calls SaveChanges, EF validation
will detect the missing Photo and throw an exception. But in the
repository, we have an opportunity to handle the problem.

If the Tree class had a foreign key property—for example, int
PhotoId—that was required (allowing you to remove the require-
ment on the Photo navigation property), the foreign key value from
the database would’ve been used to populate the PhotoId property
of the Tree instance. Th e tree would be valid, and SaveChanges
would be able to send the Update command to the database. In
other words, if there were a foreign key property, the Tree would
have been valid even without the Photo instance.

But without the foreign key, you’ll again need some mechanism
for providing the Photo before saving changes. If you have your
Code First classes and context set up to perform lazy loading, any
mention of Photo in your code will cause EF to load the instance
from the database. I’m still somewhat old-fashioned when it comes

to lazy loading, so my personal choice would probably be to
perform an explicit load from the database. Th e new line of code
(the last line in the following example, where I’m calling Load) uses
the DbContext method for loading related data:

public void InsertOrUpdate(Tree tree)
{
 if (tree.TreeId == default(int)) {
 ...
 } else {
 context.Entry(tree).State = EntityState.Modified;
 context.Entry(tree).Reference(t => t.Photo).Load();
 }
}

Th is makes EF happy. Tree will validate because Photo is there,
and EF will send an Update to the database for the modifi ed Tree.
Th e key here is that you need to ensure the Photo isn’t null; I’ve
shown you one way to satisfy that constraint.

A Point of Comparison
If the Tree class simply had a PhotoId property, none of this would
be necessary. A direct eff ect of the PhotoId int property is that the
Photo property no longer needs the Required annotation. As a
value type, it must always have a value, satisfying the requirement
that a Tree must have a Photo even if it isn’t represented as an
instance. As long as there’s a value in PhotoId, the requirement will
be satisfi ed, so the following code works:

public class Tree
{
 // ... Other properties
 public int PhotoId { get; set; }
 public TreePhoto Photo { get; set; }
}

When the controller’s Edit method retrieves a Tree from the
database, the PhotoId scalar property will be fi lled. As long as you
force MVC (or whatever application framework you’re using) to
round-trip that value, when it’s time to update the Tree, EF will be
unconcerned about the null Photo property.

Easier, but Not Magic
Although the EF team has provided more API logic to help with
disconnected scenarios, it’s still your job to understand how EF works
and what its expectations are when you’re moving data around. Yes,
coding is much simpler if you include foreign keys in your classes,
but they’re your classes and you’re the best judge of what should and
shouldn’t be in them. Nevertheless, if your code was my responsi-
bility, I would surely force you to convince me that your reasons
for excluding foreign key properties outweighed the benefits of
including them. EF will do some of the work for you if the foreign
keys are there. But if they’re absent, as long as you understand what
EF expects and how to satisfy those expectations, you should be able
to get your disconnected applications to behave the way you want.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives
in the hills of Vermont. You can fi nd her presenting on data access and other
Microsoft .NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework” (2010) and
“Programming Entity Framework: Code First” (2011), both from O’Reilly Media.
Follow her on Twitter at twitter.com/julielerman.

THANKS to the following technical experts for reviewing this article:
Jeff Derstadt and Rick Strahl

Figure 5 A Tree Instance Retrieved from the Database
Without Its Photo

www.thedatafarm.com/blog
www.twitter.com/julielerman

www.DevExpress.com

DXv2 is the next generation of tools that can take your applications to a
whole new level. Your users are ready—what will you build for them?

Download your free 30-day trial at www.DevExpress.com

devvelopment skkills to tap into the groowingg ddemand for stunning tablet & touuch--enabled apps
acrooss all platforrms, including WinForms, WWPF annd ASP.NET. Build for todaay ass you begin to

re-imagine busineess applications for thhe Winddows 88 Metro design aesthetic. DXXvv2 delivers the
gestures, themes,, andd ccontrolss to put Touch within yourr reeaach, right now.

Copyright © 1998-2011 Developer Express Inc. ALL RIGHTS RESERVED. All trademarks or registered trademarks are property of their respective owners.

Untitled-13 1 12/9/11 3:47 PM

http://www.DevExpress.com

msdn magazine20

Windows Azure, Microsoft provides the Windows Azure Content
Delivery Network (CDN). Although a valid strategy for caching
content and moving it closer to the consumer, the reality is that
CDN is more typically used by Web sites that have one or both
conditions of high-scale and large quantities, or sizes of resources,
to serve. A good post about using the Windows Azure CDN can
be found on Steve Marx’s blog (bit.ly/fvapd7)—he works on the Win-
dows Azure team.

In most cases when deploying a Web site, it seems fairly obvi-
ous that the fi les need to be placed on the servers for the site. In a
Windows Azure Web Role, the site contents get deployed in the
package—so, check, I’m done. Wait, the latest images from market-
ing didn’t get pushed with the package; time to redeploy. Updating
that content currently—realistically—means redeploying the pack-
age. Sure, it can be deployed to stage and switched, but that won’t
be without delay or a possible hiccup for the user.

A straightforward way to provide an updatable front-end Web
cache of content is to store most of the content in Windows Azure
Storage and point all of the URIs to the Windows Azure Storage
containers. However, for various reasons, it might be preferable
to keep the content with the Web Roles. One way to ensure that
the Web Role content can be refreshed or that new content can be
added is to keep fi les in Windows Azure Storage and move them
to a Local Resource storage container on the Web Roles as needed.
There are a couple of variations on that theme available, and I
discussed one in a blog post from March 2010 (bit.ly/u08DkV).

In-Memory Caching
While the previous caching discussion really focused on the move-
ment of file-based resources, I’ll focus next on all the data and
dynamically rendered content of the site. I’ve done tons of perfor-
mance testing and optimization focused on the performance of

Windows Azure Caching Strategies

My two-step with caching started back during the dot-com boom.
Sure, I had to cache bits of data at the client or in memory here and
there to make things easier or faster for applications I had built up
until that point. But it wasn’t until the Internet—and in particular,
Internet commerce—exploded that my thinking really evolved
when it came to the caching strategies I was employing in my
applications, both Web and desktop alike.

In this column, I’ll map various Windows Azure caching capa-
bilities to caching strategies for output, in-memory data and fi le
resources, and I’ll attempt to balance the desire for fresh data
versus the desire for the best performance. Finally, I’ll cover a little
bit of indirection as a means to intelligent caching.

Resource Caching
When referring to resource caching, I’m referring to anything
serialized into a fi le format that’s consumed at the endpoint. Th is
includes everything from serialized objects (for example, XML and
JSON) to images and videos. You can try using headers and meta
tags to infl uence the cache behavior of the browser, but too oft en
the suggestions won’t be properly honored, and it’s almost a fore-
gone conclusion that service interfaces will ignore the headers. So,
giving up the hope that we can successfully cache slowly changing
resource content at the Web client—at least as a guarantee of
performance and behavior under load—we have to move back a
step. However, instead of moving it back to the Web server, for most
resources we can use a content delivery network.

Th inking about the path back from the client, there’s an oppor-
tunity between the front-end Web servers and the client where a
waypoint of sorts can be leveraged, especially across broad geogra-
phies, to put the content closer to the consumers. Th e content is not
only cached at those points, but more important, it’s closer to the
fi nal consumers. Th e servers used for distribution are known col-
lectively as a content delivery/distribution
network. In the early days of the Internet
explosion, the idea and implementations
of distributed resource caching for the
Web were fairly new, and companies such
as Akami Technologies found a great
opportunity in selling services to help
Web sites scale. Fast-forward a decade and
the strategy is more important than ever in
a world where the Web brings us together
while we remain physically apart. For

FORECAST: CLOUDY JOSEPH FULTZ

Add to Cache AppFabric Cache Add to Cache System.Web.Caching
DataCacheFactory cacheFactory=
 new DataCacheFactory(configuration);

DataCache appFabCache =
 cacheFactory.GetDefaultCache();

string value =
 "This string is to be cached locally.";

appFabCache.Put("SharedCacheString", value);

System.Web.Caching.Cache LocalCache =
 new System.Web.Caching.Cache();

string value =
 "This string is to be cached locally.";
LocalCache.Insert("localCacheString", value);

Figure 1 Add Content by Cache API

www.bit.ly/fvapd7
www.bit.ly/u08DkV

21January 2012msdnmagazine.com

the site and the database behind it. Without exception, having a
solid caching plan and implementation that covers output caching
(rendered HTML that doesn’t have to be rendered again and can
just be sent to the client) and data (usually cache-aside style) will get
you very far in improving both scale and performance—assuming
the database implementation isn’t inherently broken.

Th e heavy lift ing in implementing a caching strategy within
a site is in determining what gets cached and how frequently it’s
refreshed versus what remains dynamically rendered on each request.
Beyond the standard capabilities provided by the Microsoft .NET
Framework for output cache and System.Web.Caching, Windows
Azure provides a distributed cache named Windows Azure App-
Fabric Cache (AppFabric Cache).

Distributed Cache
A distributed cache helps solve several problems. For example,
although caching is always recommended for site performance,
using session state is typically contraindicated even though it pro-
vides a contextual cache. Th e reason is that getting session state
requires that a client is tied to a server, which negatively aff ects scal-
ability, or that it’s synchronized across the servers in a farm, which
is generally acknowledged—for good reason—to have issues and
limitations. Th e session-state problem is solved by using a capable
and stable distributed cache to back it up. Th is allows the servers to
have the data without continually reaching off the box to get it, and
at the same time provides a mechanism to write to the data and have
it seamlessly propagated across the cache clients. Th is gives the de-
veloper a rich contextual cache while maintaining the scale quali-
ties of a Web farm.

The best news about AppFabric Cache is that you can use it
without doing much more than changing some configuration
settings when it comes to session state, and it has an easy-to-use
API for programmatic use. Take a look at Karandeep Anand’s and
Wade Wegner’s article in the April 2011 issue for some good details
on using the cache (msdn.microsoft.com/magazine/gg983488).

Unfortunately, if you’re working with an existing site that
directly calls System.Web.Caching in the code, weaving AppFabric
Cache in will be a bit more work. There are two reasons for this:

1. Th e diff erence in APIs (see Figure 1)
2. Th e strategy of what to cache and where

Figure 1 illustrates clearly that when you look at even the
basic elements of the APIs, there’s definitely a difference.
Creating a layer of indirection to broker the calls will help with the
agility of the code in your application. Obviously, some work will be
required to easily provide the ability to use the advanced features
of the three cache types, but the benefi ts will outweigh the eff ort
to implement the functionality needed.

Although the distributed cache does solve some generally
diffi cult problems, it shouldn’t be used as the snake oil that cures
all or it will likely have about the same effi cacy as snake oil. First,
depending on how things are balanced and the data that goes into the
cache, it’s possible that more off -machine fetches will be required
to get data into the local cache client, which would negatively
aff ect performance. More important is the cost of deployment. As
of this writing, the cost of 4GB of AppFabric shared cache is $325

per month. Although this isn’t a large amount of money by itself,
and 4GB does seem like a good bit of cache space, on a high-traffi c
site, especially one backing session state with AppFabric Cache and
a lot of rich targeted content, it would be easy to fi ll multiple caches
of that size. Consider product catalogs that have price diff erences
based on customer tiers or custom contract pricing.

Cache-Aside Indirection
Like many things in the technology industry—and I would guess many
others—design is some mix of the ideal technical implementations
modifi ed by fi scal reality. Th us, even when you’re just using Windows
Server 2008 R2 AppFabric Caching, there are reasons to still use the
local caching provided by System.Web.Caching. At a fi rst pass of indi-
rection, I might have wrapped the calls to each of the caching librar-
ies and provided a function for each, such as AddtoLocalCache(key,
object) and AddtoSharedCache(key, object). However, that means
each time a cache operation is needed, the developer makes a rather
opaque and personal decision on where the caching should happen.
Such logic breaks down quickly under maintenance and on larger
teams and will inevitably lead to unforeseen errors because the
developer could choose to add an object to an inappropriate cache
or add to one cache and accidentally fetch from another. Th us a lot
of extra data fetching would be needed because data won’t be in the
cache or will be in the wrong cache when it’s fetched. Th is leads to
scenarios such as noticing unexpectedly poor performance only to
fi nd on examination that the add operations were done in one cache
and the get operations were inexplicably done in the other for no
better reason than that the developer forgot or mistyped. Moreover,
when planning a system properly, those data types (entities) will be
identifi ed ahead of time and with that defi nition should also be the
ideas of where each entity is used, consistency requirements (espe-
cially across load-balanced servers) and how fresh it must be. So,
it follows that decisions about where to cache (shared or not) and
expiry could be made ahead of time and made part of the declaration.

As I mentioned previously, there should be a plan for caching.
Too many times it’s haphazardly added to the end of a project, but
it should be given the same weight of consideration and design as
any other aspect of the application. Th is is especially important
when dealing with the cloud, because decisions that aren’t well
considered oft en lead to extra cost in addition to the app behavior

public enum CacheLocationEnum
{
 None=0,
 Local=1,
 Shared=2
}

public class CacheLocation:Attribute
{
 private CacheLocationEnum _location = CacheLocationEnum.None;

 public CacheLocation(CacheLocationEnum location)
 {
 _location = location;
 }

 public CacheLocationEnum Location { get { return _location; } }
}

Figure 2 Declaring an Enum to Implement a Custom Attribute

http://msdn.microsoft.com/magazine/gg983488
www.msdnmagazine.com

msdn magazine22 Forecast: Cloudy

defi cits. When considering the types of data that should be cached,
one option is to identify the entities (data types) involved and their
lifecycle within the application and user session. Looking at it this
way reveals quickly that it would be nice if the entity itself could
just intelligently cache based on its type. Luckily, this is an easy task
with some assistance from a custom Attribute.

I’m skipping the setup for either cache because the previously ref-
erenced material covers that well enough. For my caching library, I’ve
simply created a static class with static methods for my sample. In
other implementations, there are good reasons to do this with instance
objects, but for the simplicity of this example, I’m making it static.

I’ll declare an enum to indicate location and class that inherits
Attribute to implement my custom attribute, as shown in Figure 2.

Passing the location in the constructor makes it easy to use in
the code later, but I’ll also provide a read-only method to fetch
the value because I’ll need this for a case statement. Within my
CacheManager library, I’ve created a couple of private methods for
adding to the two caches:

private static bool AddToLocalCache(string key, object newItem)
{...}
private static bool AddToSharedCache(string key, object newItem)
{...}

For a real implementation, I’ll likely need some other info (for
example, cache name, dependencies, expiry and so on), but for
now this will do. Th e main public function for adding content to
the cache is a template method, making it easy for me to determine
cache from the type, as shown in Figure 3.

I’ll simply use the passed-in type to get the custom
attribute and ask for my custom attribute type via the
GetCustomAttribute(type, type) method. Once I have that, it’s
a simple call to the read-only property and a case statement

and I’ve successfully routed the call to the appropriate cache
provider. To ensure that it works properly, I need to adorn my class
declarations appropriately:

[CacheLocation(CacheLocationEnum.Local)]
public class WebSiteData
{
 public int IntegerValue { get; set; }
 public string StringValue { get; set; }
}

[CacheLocation(CacheLocationEnum.Shared)]
public class WebSiteSharedData
{
 public int IntegerValue { get; set; }
 public string StringValue { get; set; }
}

With all of my application infrastructure set up, it’s ready for me
to consume within the application code. I crack open the default.
aspx.cs fi le to create the sample calls and add code to create the
types, assign some values and add them to the cache:

WebSiteData data = new WebSiteData();
data.IntegerValue = 10;
data.StringValue = "ten";

WebSiteSharedData sharedData = new WebSiteSharedData();
sharedData.IntegerValue = 50;
sharedData.StringValue = "fifty";

CachingLibrary.CacheManager.AddToCache<WebSiteData>("localData", data);
CachingLibrary.CacheManager.AddToCache<WebSiteSharedData>(
 "sharedData", sharedData);

My names for types make it obvious where the data will be cached.
However, I could change the type names and it would be less obvious
with the caching controlled by inspection of the custom Attribute.
Using this pattern will hide from the page developer the details of
where the data gets cached and other details related to the cache
item confi guration. Th us, those decisions are left to the part of the
team that’s creating the data dictionaries and prescribing the over-
all lifecycle of said data. Note the type being passed into the calls to
AddToCache<t>(string, t). Implementing the rest of the methods
for the CacheManager class (that is, GetFromCache) would take
on the same pattern as used here for the AddToCache method.

Balancing Cost with Performance and Scale
Windows Azure provides the necessary soft ware infrastructure to
help you with any aspect of your implementation, including cach-
ing and whether the caching is for resources such as those distrib-
uted via CDN or data that might be kept in the AppFabric Cache.
Th e key to a great design and subsequently great implementation
is to balance cost with performance and scale. One last note: If
you’re working on a new application right now and are planning
on building caching into it, go ahead and put that layer of indi-
rection in now. It’s a little extra work, but as new features such as
AppFabric Caching come online, this practice will make it easier
to thoughtfully and eff ectively incorporate the new features into
your application.

JOSEPH FULTZ is a software architect at Hewlett-Packard Co., working as
part of the HP.com Global IT group. Previously he was a soft ware architect for
Microsoft , working with its top-tier enterprise and ISV customers defi ning archi-
tecture and designing solutions.

THANKS to the following technical expert for reviewing this article:
Wade Wegner

public static bool AddToCache<T> (string key, T newItem)
{
 bool retval = false;

 Type curType = newItem.GetType();
 CacheLocation cacheLocationAttribute =
 (CacheLocation) System.Attribute.GetCustomAttribute(typeof(T),
 typeof(CacheLocation));

 switch (cacheLocationAttribute.Location)
 {
 case CacheLocationEnum.None:
 break;
 case CacheLocationEnum.Local:
 retval = AddToLocalCache(key, newItem);
 break;
 case CacheLocationEnum.Shared:
 retval = AddToSharedCache(key, newItem);
 break;
 }

 return retval;
}

Figure 3 Adding Content to the Cache

My names for types make
it obvious where the data will

be cached.

Untitled-1 1 11/3/11 12:04 PM

http://www.aspose.com

msdn magazine24

W IN DOWS PHONE

Your First Windows
Phone Application

The trick in writing a fi rst Windows Phone application is to
build something interesting enough to be meaningful, yet simple
enough to actually get underway. Toward that end, I’ll walk you
through creating a simple utility that I use every day: NoteToMe.
Th e idea is that you can enter a message and send it to yourself by
pressing one button, as shown in Figure 1.

Note that this article will touch on a number of topics, each of
which will be expanded upon at some length in subsequent articles.
Th ese topics include:

• Creating the layout of the application
• Storing and retrieving data from Isolated Storage
• Events and event handling
• Creating and running tasks (launchers and choosers)

Before you can begin, you’ll need to download the tools from
create.msdn.com. If you’ve already unlocked your phone but not yet
upgraded to Windows Phone 7.5 (“Mango”), now is the time to do so;
Mango brings hundreds of new features to the Windows Phone OS.

Getting Started
Like many Windows Phone developers, I’ve come to believe that
the best tool for creating Windows Phone applications is a com-
bination of Visual Studio (for code) and Expression Blend (for
everything else). Thus, we’ll begin by opening Expression Blend

Jesse Liberty

and creating a new application named NoteToMe, based on the
Windows Phone SDK 7.1.

Let’s start by changing the application title. Click on the title,
and in the Properties window find the Text property for that
control. The Metro design guidelines (the design guidelines for
Windows Phone) call for the title to be in all caps, so change the
title to NOTE TO ME.

Click on the page title and hit Delete to remove it.
To create the layout, you’ll need a small row near the top of the

page. Click in the margin to bring up a guideline that helps you
visually select where to place the row, as shown in Figure 2.

Of course, you can set the row size by hand directly in the XAML:
<Grid.RowDefinitions>
 <RowDefinition Height="1*"/>
 <RowDefinition Height="9*"/>
</Grid.RowDefinitions>

Th e asterisk aft er the value indicates relative sizing—in this case 1:9.
Th at is, the fi rst row will be one-ninth of the size of the second row.

Adding Three Controls to the StackPanel
Th e top row will have three controls in it, side by side:

• A TextBlock acting as a label
• A TextBlock to hold the e-mail address
• A Button to send the message

Th is design is shown in Figure 3.
You can’t put three controls into a single column of a row without

putting them inside some sort of organizing container. I’ll use a Stack-
Panel whose orientation has been set to horizontal—StackPanels stack
on top of each other or next to each other.

To create a StackPanel, click on the tiny white arrow next to the
Layout control on the toolbar as shown in Figure 4.

Click on the StackPanel to select the control. Now drag a StackPanel
into the row and set its vertical and horizontal alignment to stretch
and its margins to zero in the Layout window as shown in Figure 5.

This article discusses:
• Creating the layout of the application

• Storing and retrieving data from Isolated Storage

• Events and event handling

• Creating and running tasks (launchers and choosers)

Technologies discussed:
Windows Phone, Visual Studio, Expression Blend

http://create.msdn.com

25January 2012msdnmagazine.com

Add the TextBlock, setting its font size to
32, and its text to To. Now drag a TextBox
onto the StackPanel. (Note the important
but subtle difference between a TextBlock,
for displaying text, and a TextBox, for text
input.) Name this TextBox Address. Finally,
add a button to the StackPanel, name it Send
and set its Content to Send.

Th e XAML this produces is shown in Figure 6.
Notice the Send button has a Click=“Send_

Click” property. You create this by clicking on
the button, then in the Properties window,
you click on the Events button, as shown
in Figure 7.

Th is opens all the events for the button.
Find the click event and double-click. Th e
button is updated with the event, and you’re
placed in the code editor (either in Blend or
in Visual Studio, depending on how you have
Blend set up) for that event handler. For now,
you can leave this event handler as is:

private void Send_Click(object sender,
RoutedEventArgs e)
{
}

Adding the Message Control
Click on the TextBox control in the toolbar and then drag a TextBox
out to fi ll half of the remaining page (we’re leaving the other half
for the keyboard, which will appear when it’s time to enter some-
thing in the TextBox). Set the HorizontalAlignment to Stretch,
the VerticalAlignment to Top, the margins to 0. Set the Width to
Automatic and the height to 244. You can do all this by eye as you
resize the TextBox, or you can draw the TextBox roughly in place and
set the properties in the Properties window as shown in Figure 8.

Writing the Code
With the controls in place, you’re ready to work
on the logic of the program. You should see a
tab called Projects in the upper left corner. Aft er
saving all your changes, click the Projects tab,
then right-click on MainPage.xaml.cs and select
Edit In Visual Studio, as shown in Figure 9.

The Specifi cation
My (self-imposed) specification says you
shouldn’t have to fi ll in the To fi eld each time
you use the program; the To fi eld should be
prepopulated with whatever was in the To
fi eld the previous use.

Moreover, when you click Send, a new e-mail
message should be prepared for your e-mail
program, with all the fi elds prepopulated so
that you can just press Send or, optionally, edit
the message and then press Send.

Using Isolated Storage
To preserve the contents of the To fi eld across
usages of the application, you need to store the
contents somewhere on the phone. Th is is what
Isolated Storage is for: persisting data when the

application is closed. As its name implies, Isolated Storage allows your
application to store data isolated and protected from data stored by
other applications. Using Isolated Storage is fairly straightforward.

First, add the using statement:
using System.IO.IsolatedStorage;

Declare a member variable of type IsolatedStorageSettings and
a constant string to act as a key into the Isolated Storage dictionary
so you can store and retrieve the e-mail address:

private IsolatedStorageSettings _isoSettings;
const string IsoKey = "EmailAddress";

Initialize the _isoSettings member in the constructor:
 _isoSettings = IsolatedStorageSettings.ApplicationSettings;

Storing and Retrieving the E-mail Address
Th e two tasks related to Isolated Storage are storing the string and
retrieving it. Storing it is best done as you leave the page. When you
leave any Windows Phone page, the method OnNavigatedFrom is
called. You’re free to override it, and one good reason to do so is to
store data in Isolated Storage, like this:

protected override void OnNavigatedFrom(
 System.Windows.Navigation.NavigationEventArgs e)
{
 _isoSettings[IsoKey] = Address.Text;
 base.OnNavigatedFrom(e);
}

Now you have the e-mail address stored in the _isoSettings
dictionary under the IsoKey key. When you return to the page,
you can restore this setting. I do this by calling the private helper
method RestoreEmailAddress from the constructor:

private void RestoreEmailAddress()
 {
 if (_isoSettings.Contains(IsoKey))
 Address.Text = _isoSettings[IsoKey].ToString();
 }Figure 3 Three Controls in the Top Row

Figure 2 Placing the Top Row of the Layout

Figure 1 The NoteToMe Interface

www.msdnmagazine.com

msdn magazine26 Windows Phone

Notice that I test for the existence of the key in
Isolated Storage before trying to restore it—this
averts a KeyNotFound exception the fi rst time I
run the program. Remember, the fi rst time you
run the program you haven’t yet stored anything
in Isolated Storage.

When the program is fi rst started, there’s nothing
in the Address fi eld. Once the user puts an e-mail
address in the address fi eld, that address is stored
in Isolated Storage and restored the next time the
program is run. If the user changes the address,
that new address is the one restored.

Tasks
Windows Phone 7.5 supports a number of tasks for interacting
with built-in phone applications (mail, contact list, the camera and
so forth). Th ere are two types of tasks: Launchers and Choosers.
Choosers are used to select information and return it to your pro-
gram (to obtain an e-mail address from the contact list, for example).
Launchers are used to launch a program that doesn’t return data.

In this case, you have everything you need to send the message,
so you can call the e-mail Launcher and supply the required fi elds.
When you call Show on the e-mail Launcher, the e-mail application
will be launched with your data, but you won’t get any data back
(which is fi ne; you don’t need any).

Aft er the e-mail is sent, you’re returned to the program in case
you want to send another message.

All of the work of creating the Launcher is encapsulated within
the click event handler for the Send button. Let’s begin by creating
an instance of the EmailComposeTask (the Launcher). Fill in the
fi elds and call Show. Th at’s all there is to it:

private void Send_Click(object sender, RoutedEventArgs e)
{
 EmailComposeTask emailComposeTask = new EmailComposeTask();
 emailComposeTask.Subject = "Send To Me";
 emailComposeTask.To = Address.Text;
 emailComposeTask.Body = Message.Text;
 Message.Text = String.Empty;
 emailComposeTask.Show();
}

When you call Show, the subject, address and body of the message
are passed to your e-mail application. If you have more than one
e-mail application, you’re asked which one you’d like to use. A properly
addressed and formatted e-mail message is created, ready for you to send.

The Application Lifecycle
If users could be relied on to never interrupt their use of your appli-
cation until they sent the message, you’d be done. In reality, though,
users will stop right in the middle of composing a message and

launch a diff erent application. When they return,
they won't be happy if the work they did is gone.

To know how to protect against this, you need
to understand a bit about the lifecycle of an
application, and how you can preserve state while
still supporting one of the most powerful features
of Mango: Fast Application Switching.

When your application is launched (say from
the Start menu), the Application Launching
event is fi red. Once the application is started, and
every time the user navigates to your page, the
OnNavigatedTo method is called, aft er which your
page will be in the Running state. If the user starts
a new application, your application receives the

Application Deactivated event and is put in the dormant state. If the
phone runs low on memory, your application may be tombstoned.

From either tombstoned or dormant, your application may be
terminated or it may be restored. What we care about right now is
what happens when your application is restored.

If your application is dormant, you not only don’t have to take any
action when it’s restored, but you also don’t want to take any action; the
state was preserved when the application was dormant, and it’s ready to go.

If your application was tombstoned, though, then you do want
to restore your page state when the application returns so that it
appears to the user that the application was running (or at least
dormant) while it was switched away.

You therefore face two tasks:
1. Save state when the page’s OnNavigatedFrom method is called.
2. Potentially restore state when the page’s OnNavigatedTo

method is called—restoring state if the app was tombstoned
but not if it was dormant.

Saving State When the Page Is Going Away
Because you can’t know, when the page receives the OnNavigated-
From, what state it will be in when it’s restored, you must store the
state in case it will be needed. Th is is very easy to do: you use a State
dictionary that’s very much like the Isolated Storage dictionary in

<StackPanel
 Margin="0"
 Orientation="Horizontal">
 <TextBlock
 Margin="0,8"
 TextWrapping="Wrap"
 Text="To"
 Width="42"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 FontSize="32" />
 <TextBox
 x:Name="Address"
 Margin="0,0,0,-7"
 TextWrapping="Wrap"
 Text="foo@bar.com"
 Width="293" />
 <Button
 x:Name="Send"
 Content="Send"
 Margin="0,4,0,0"
 Width="124"
 Click="Send_Click" />
</StackPanel>

Figure 6 Designing the StackPanel with XAML

Figure 4 Adding a StackPanel

Figure 5 Placing the StackPanel

27January 2012msdnmagazine.com

its syntax, though you want to remember that the State dictionary
is not written to permanent storage and is in fact destroyed when
you exit the program or turn off the phone.

Let’s start by creating a constant string StateKey, which you’ll use
as the off set into the State dictionary:

const string StateKey = "MessageState";

In the OnNavigatedFrom method, you’ll store the state (in this
case, the contents of the MessageBox) into the State dictionary:

protected override void OnNavigatedFrom(
 System.Windows.Navigation.NavigationEventArgs e)
{
 _isoSettings[IsoKey] = Address.Text;
 State[StateKey] = Message.Text;
 base.OnNavigatedFrom(e);
}

Restoring State When the Page Is Created
When the OnNavigatedTo method is called, you don’t want to take
any action to restore State if the app was dormant, but you do want
to take action if it was tombstoned.

You can distinguish between the dormant or tombstoned state by
setting a fl ag to false, and then setting it to true in the constructor.
If the app is dormant, the constructor will not be called; if it was
tombstoned, the constructor will be called (because it will be the
fi rst time it’s constructed), like so:

bool isNew = false;
 public MainPage()
 {
 InitializeComponent();
 isNew = true;

You can check that fl ag in OnNavigatedTo:
protected override void OnNavigatedTo(
 System.Windows.Navigation.NavigationEventArgs e)
{
 if (isNew)
 {
 if (State.ContainsKey(StateKey))
 {
 Message.Text = State[StateKey].ToString();
 }
 }
 isNew = false;
 base.OnNavigatedTo(e);
}

Th is test saves the time it would otherwise take to restore the value
from the State dictionary. You can test this by fi rst running your pro-
gram normally (in which case when you switch to another application
your program will go dormant) and then forcing the program to be
tombstoned. You can force your program to be tombstoned by right-
clicking on the project, choosing Properties, choosing the Debug tab
and checking the checkbox Tombstone upon deactivation while debugging.

When you run with this checked, you’ll see a noticeable pause
when returning to the page because the state must be restored.

Final Overview
In this brief article, I’ve shown you how to write your fi rst non-trivial
Windows Phone application. I began by creating the application
in Expression Blend, where I created a row and used a StackPanel
to lay out the controls.

I then switched to Visual Studio to write the logic for the
button’s event handler, and used Isolated Storage to persist the
e-mail address. I used State memory to ensure that the application
would restart properly aft er being tombstoned.

As noted, there’s much more to say on each of these topics, and
they’ll be covered in detail in future articles.

JESSE LIBERTY is a senior developer-community evangelist on the Windows Phone
team. Liberty hosts the popular Yet Another Podcast (jesseliberty.com/podcast),
and his blog (jesseliberty.com/) is required reading. He’s the author of numer-
ous best-selling books, including “Programming Reactive Extensions and LINQ”
(Apress, 2011) and “Migrating to Windows Phone,” (Apress, 2011). You can follow
Liberty on Twitter at twitter.com/JesseLiberty.

THANKS to the following technical experts for reviewing this article:
Drew Batchelor and Cheryl Simmons

Figure 7 The Events Button

Figure 8 Adding the TextBox

Figure 9 Getting Ready to Write the Code

www.jesseliberty.com/podcast
www.jesseliberty.com/
www.twitter.com/JesseLiberty
www.msdnmagazine.com

WHAT YOU LEARN
IN VEGAS WON’T
STAY IN VEGAS

Intense Take-Home Training for Developers,
Soft ware Architects and Designers

PRODUCED BYSUPPORTED BY

YOUR MAP TO THE .NET DEVELOPMENT PLATFORM

Las Vegas | March 26-30 | Mirage Resort and Casino

Untitled-2 2 12/2/11 1:24 PM

www.vslive.com/lasvegas

vslive.com/lasvegas

Las Vegas
March 26-30
Mirage Resort and Casino

Use Promo Code JANAD

Register Before February 1st
and Save $400!

Coding, Casinos and More!
If you’re looking for unbiased, hard-hitting and
practical .NET Developer training, look no
further than Visual Studio Live! Las Vegas.

Check out the hot track topics and a sampling of the
sessions that will make YOU a more valuable part of
your company’s development team:

 Windows 8 / WinRT: Windows 8 Metro-style
Application Contracts and Extensibility
 Silverlight / WPF: Top 7 Lessons Learned On My
First Big Silverlight Project
 Web: MVC For WebForms Developers: Comparing
and Contrasting
 Visual Studio 2010+ / .NET 4.0+: What's New in the
.NET 4.5 BCL
 Cloud Computing: Architecture Best Practices on
Windows Azure
 Data Management: Entity Framework Code First—
Beyond the Basics
 HTML5: Building Windows 8 Applications with
HTML5 and jQuery
 Windows Phone 7: XNA Games for Windows Phone
 Cross Platform Mobile: Building Mobile Apps with
CSLA .NET
 Full-Day Workshops: Full Application Lifecycle
with TFS and CSLA .NET

Scan this code to register and learn
more about what Visual Studio
Live! Las Vegas has to offer.

Untitled-2 3 12/2/11 1:24 PM

www.vslive.com/lasvegas

msdn magazine30

W IN DOWS PHONE

Using Cameras in
Windows Phone 7.5

Pictures can communicate with an effi ciency and
elegance that can’t be matched by words alone. You’ve heard that
“a picture is worth a thousand words”; imagine the types of prob-
lems you could solve if your Windows Phone application had
direct access to a camera. Well, starting with Windows Phone 7.5,
you can begin solving those “thousand-word” problems using the
on-device cameras.

In this article, I’ll introduce the front and back cameras, the cam-
era APIs and the associated manifest capabilities, plus I’ll discuss
a few diff erent ways you can use a camera in your next Windows
Phone 7.5 application. I’ll cover:

• Capturing photos: I’ll create a very simple photo app.
• Accessing the camera preview buff er: I’ll introduce the

Camera Grayscale Sample.
• Recording video: I’ll review the Video Recorder Sample.

You’ll need the Windows Phone SDK 7.1 to create a Windows
Phone 7.5 application. The SDK includes code examples that
demonstrate each of these scenarios in great detail. For more infor-
mation, see the Basic Camera Sample, Camera Grayscale Sample,

Matt Stroshane

and the Video Recorder Sample on the Code Samples page in the
SDK at wpdev.ms/offi cialsamples.

Note that this article won’t cover the camera capture task,
which has been available since Windows Phone 7. Though this
task is a simple way to acquire photos for your application, it
doesn’t let you capture photos programmatically or access the
camera preview buffer.

A Windows Phone 7.5 device can include up to two cameras,
designated as primary and front-facing. Th e primary camera is
on the back of the device and typically off ers a higher resolution
and more features than the front-facing camera. Neither of these
cameras is required on a Windows Phone 7.5 device, so be sure
to check for their presence in your code before you create your
camera objects. Later on, I’ll demonstrate how to use the static
IsCameraTypeSupported method for this purpose.

Many of the Windows Phone devices available in the United
States include a primary camera with a 5MP or greater sensor,
auto-focus and a flash. The front-facing camera is a new feature
for Windows Phone 7.5.

For more information about device specifi cations, see the Buy
tab at windowsphone.com.

Capturing Photos
You can use the same classes to access both the primary camera and
the front-facing camera. As you’ll see, selecting the camera type is
simply a matter of specifying a single parameter in the constructor
of the PhotoCamera object. From a design perspective, however,
you might want to handle interaction with the front-facing

This article discusses:
• Capturing photos

• Accessing the camera preview buffer

• Recording video

Technologies discussed:
Windows Phone SDK 7.1, Windows Phone 7.5, C#

http://wpdev.ms/officialsamples
www.windowsphone.com

31January 2012msdnmagazine.com

camera diff erently. For example, you might want to fl ip images
from the front-facing camera to give the user a more natural
“mirror-like” experience.

When capturing photos in a Windows Phone 7.5 app, you’ll work
primarily with the PhotoCamera class from the Microsoft .Devices
namespace. Th is class off ers a great deal of control over the camera
settings and behavior. For example, you can:

• Activate the camera shutter with the PhotoCamera.Cap-
tureImage method

• Trigger auto focus with the PhotoCamera.Focus method
• Specify picture resolution by setting the Photo-

Camera.Resolution property
• Specify the fl ash settings by setting the Photo-

Camera.FlashMode property
• Incorporate the hardware shutter button with events

from the static CameraButtons class
• Implement touch focus with the PhotoCamera.Focus-

AtPoint method
In this article, I’ll demonstrate only the fi rst point. For an exam-

ple that shows how to do all of these, see the Basic Camera Sample
from the Windows Phone SDK code samples page.

Note that even when a camera is available, it might not support
all of these APIs. Th e following approaches can help determine
what is available:

• Camera: Use the PhotoCamera.IsCameraTypeSupported
static method.

• Auto focus: Use the PhotoCamera.IsFocus -
Supported method.

• Picture resolution settings: Check the Photo -
Camera.AvailableResolutions collection.

• Flash settings: Use the PhotoCamera.IsFlashMode-
Supported method.

• Point-specifi c focus: Use the PhotoCamera.IsFocus-
AtPointSupported method.

To give you an idea of how to capture photos in your app, let’s walk
through a simple app that captures a photo when you touch the view-
fi nder and then saves it to the Camera Roll folder in the Pictures Hub.

Start with a standard Windows Phone project, using the
Windows Phone Application template. You can write Windows
Phone 7.5 apps in C# or Visual Basic. Th is example will use C#.

I’ll simplify this example by limiting the app to a landscape-only
orientation and using just the primary camera. Managing
orientation for the device and two cameras, each pointed in
diff erent directions, can become confusing pretty quickly; I
recommend testing with a physical device to ensure you achieve
the desired behavior. I’ll cover orientation in more detail later.

On MainPage.xaml, update the PhoneApplicationPage
attributes as follows:

SupportedOrientations="Landscape" Orientation="LandscapeLeft"

Th en, replace the contents of the LayoutRoot grid with
Canvas and TextBlock as shown in Figure 1.

Th e XAML in Figure 1 uses a VideoBrush in a Canvas
to display the viewfinder and provides a TextBlock for
communicating with the user. Th e camera sensor has a
4:3 aspect ratio, and the screen aspect ratio is 15:9. If you

don’t specify a canvas size with the same 4:3 ratio (640x480), the
image will appear stretched across the screen.

In the Canvas element, the Tap attribute specifi es the method to
call when the user taps the screen—the viewfi nder_Tapped method.
To display the image stream from the camera preview buff er, a Video-
Brush named viewfi nderBrush is specifi ed as the background of the
canvas. Like a viewfi nder from a single-lens refl ex (SLR) camera, view-
fi nderBrush lets you see the camera preview frames. Th e transform in
viewfi nderBrush essentially “pins” the viewfi nder to the center of the
canvas as it’s rotated. I’ll discuss the code behind this XAML in the fol-
lowing sections. Figure 2 shows the Simple Photo App UI.

Initializing and Releasing the Camera To capture photos and
save them to the Camera Roll folder in the Pictures Hub, you’ll need
the PhotoCamera and MediaLibrary classes, respectively. Start by
adding a reference to the Microsoft .Xna.Framework assembly. You
don’t need to know XNA programming for this example; you do
need types in this assembly, though, to access the media library.

At the top of the MainPage.xaml.cs fi le, add directives for the
camera and media library:

using Microsoft.Devices;
using Microsoft.Xna.Framework.Media;

In the MainPage class, add the following class-level variables:
private int photoCounter = 0;
PhotoCamera cam;
MediaLibrary library = new MediaLibrary();

<Canvas x:Name="viewfinderCanvas" Width="640" Height="480" Tap="viewfinder_Tapped">
 <Canvas.Background>
 <VideoBrush x:Name="viewfinderBrush">
 <VideoBrush.RelativeTransform>
 <CompositeTransform
 x:Name="viewfinderTransform"
 CenterX="0.5"
 CenterY="0.5"/>
 </VideoBrush.RelativeTransform>
 </VideoBrush>
 </Canvas.Background>
</Canvas>

<TextBlock Width="626" Height="40"
 HorizontalAlignment="Left"
 Margin="8,428,0,0"
 Name="txtMessage"
 VerticalAlignment="Top"
 FontSize="24"
 FontWeight="ExtraBold"
 Text="Tap the screen to capture a photo."/>

Figure 1 Adding a Canvas and a TextBlock

Figure 2 The Simple Photo App UI

www.msdnmagazine.com

msdn magazine32 Windows Phone

Th e camera can take a few seconds to initialize. By declaring the
PhotoCamera object at the class level, you can create it when you
navigate to the page and remove it from memory when you navi-
gate away. We’ll use the OnNavigatedTo and OnNavigatingFrom
methods for this purpose.

In the OnNavigatedTo method, create the camera object, register
for the camera events that will be used, and set the camera preview
as the source of the viewfi nder, viewfi nderBrush. Although com-
mon, cameras are optional in Windows Phone 7.5; it’s important to
check for them before you create the camera object. If the primary
camera isn’t available, the method writes a message to the user.

Add the methods shown in Figure 3 to the MainPage class.
When navigating away from the page, use the OnNavigating-

From method to dispose of the camera object and unregister any
camera events. This helps minimize power consumption,
expedite shutdown and release memory.

Capturing a Photo As shown in the XAML, when the user taps
on the viewfi nder, the viewfi nder_Tapped method is called. Th is
method initiates the image capture when the camera is ready. If the
camera hasn’t initialized or is currently in the process of capturing
another image, an exception will be thrown. To help mitigate

exceptions, consider disabling the mechanisms that trigger photo
capture until the Initialized event fi res. To keep things simple in
this example, we’ll skip that step.

Figure 4 shows the code you need to add to the MainPage class.
Capturing a photo and saving it are asynchronous endeavors.

When the CaptureImage method is called, a chain of events
initiates and control is passed back to the UI. As shown in the event
sequence diagram in Figure 5, there are two stages to each image
capture. First, the camera sensor captures the photo, and then
images are created based on the sensor data.

Saving a Photo Aft er the sensor captures the photo, two image
fi les are created in parallel, a full-size image fi le and a thumbnail.
You’re under no obligation to use both of them. Each is available
as a JPG image stream from the e.ImageStream property in the
arguments of the corresponding events.

Th e media library automatically creates its own thumbnails for
display in the Pictures Hub of the device, so this example doesn’t need
the thumbnail version of the image. However, if you want to display
a thumbnail in your own app, the e.ImageStream from the Capture-
Th umbnailAvailable event handler would be an effi cient choice.

When the stream is available, you can use it to save the image to
several locations. For example:

• Camera Roll folder: Use the MediaLibrary.SavePicture-
ToCameraRoll method.

• Saved Pictures folder: Use the MediaLibary.Save -
Picture method.

• Isolated Storage: Use the IsolatedStorageFile -
Stream.Write method.

In this example, we’ll save the image to the camera roll folder.
For an example of how to save an image to Isolated Storage, see the
Basic Camera Sample in the Windows Phone SDK. Add the code
in Figure 6 to the MainPage class.

In the code in Figure 6, messages are sent to the UI before and
aft er the image is saved to the Camera Roll folder. Th ese messages are
simply to help you understand what’s going on; they’re not required.
Th e BeginInvoke method is needed to pass the message to the UI
thread. If you didn’t use BeginInvoke, a cross-threading exception
would be thrown. For brevity, this method lacks error-handling code.

Handling Rotation When you save a picture to the media library,
the correct orientation of the image will be noted in the fi le’s EXIF
information. Th e main concern of your app is how the preview from
the camera is oriented in the UI. To keep the preview appearing in the

void viewfinder_Tapped(object sender, GestureEventArgs e)
{
 if (cam != null)
 {
 try
 {
 cam.CaptureImage();
 }
 catch (Exception ex)
 {
 this.Dispatcher.BeginInvoke(delegate()
 {
 txtMessage.Text = ex.Message;
 });
 }
 }
}

Figure 4 The viewfi nder_Tapped Method

Figure 5 The Image-Capture Event Sequence of the
PhotoCamera Class

e.ImageStream e.ImageStream

cam.CaptureImage(); CaptureStarted

CaptureCompleted

CaptureImageAvailable CaptureThumbnailAvailable

protected override void OnNavigatedTo
 (System.Windows.Navigation.NavigationEventArgs e)
{
 if (PhotoCamera.IsCameraTypeSupported(CameraType.Primary) == true)
 {
 cam = new PhotoCamera(CameraType.Primary);
 cam.CaptureImageAvailable +=
 new EventHandler<Microsoft.Devices.ContentReadyEventArgs>
 (cam_CaptureImageAvailable);
 viewfinderBrush.SetSource(cam);
 }
 else
 {
 txtMessage.Text = "A Camera is not available on this device.";
 }
}

protected override void OnNavigatingFrom
 (System.Windows.Navigation.NavigatingCancelEventArgs e)
{
 if (cam != null)
 {
 cam.Dispose();
 }
}

Figure 3 The OnNavigatedTo and OnNavigatingFrom Methods

Untitled-1 1 10/11/11 1:58 PM

www.xceed.com

msdn magazine34 Windows Phone

correct orientation, rotate the viewfi nder (the VideoBrush) as appli-
cable. Rotation is achieved by overriding the OnOrientationChanged
virtual method. Add the code in Figure 7 to the MainPage class.

Without any adjustment to the viewfinder orientation, the
viewfinder for a typical primary camera will appear oriented
correctly only when the hardware shutter button is pointing up
(LandscapeLeft). If you rotate the device such that the hardware
shutter button is pointing down (LandscapeRight), the viewfi nder
must be rotated 180 degrees to display correctly in the UI. The
PhotoCamera Orientation property is used here in case the physi-
cal orientation of the primary camera is atypical.

Declaring Application Capabilities Finally, when your appli-
cation uses a camera, you must declare that it does so in the
application manifest fi le, WMAppManifest.xml. No matter which
camera is used, you’ll need the ID_CAP_ISV_CAMERA capability.
Optionally, you can use the ID_HW_FRONTCAMERA to desig-
nate that your app requires a front-facing camera:

<Capability Name="ID_CAP_ISV_CAMERA"/>
<Capability Name="ID_HW_FRONTCAMERA"/>

Your camera app won’t run without the ID_CAP_ISV_CAMERA
capability. If you haven’t had a problem running it so far, it’s
because this capability is added to new Windows Phone projects
automatically. If you’re upgrading your app, though, you’ll need
to add it manually. ID_HW_FRONTCAMERA must always be
added manually, but its lack won’t prevent your app from running.

Th ese capabilities help warn users who don’t have a camera on
their device, but nothing stops them from downloading
and purchasing your app. For that reason, it’s a good idea
to make a trial version of your app available. Th en, if users
miss the warnings, they won’t spend money only to learn
that your app won’t work as expected on their device. Your
app ratings will thank you later.

If you haven’t done so yet, press F5 and debug this simple
camera app on your device. You can debug the app on the
emulator, but you’ll see only a black box moving around
the screen because the emulator doesn’t have a physical
camera. When debugging with a device, keep in mind that
you can’t view your new images in the Picture Hub until
you untether the device from your PC.

To go deeper, take a look at the Basic Camera Sample in
the Windows Phone SDK. Th at sample demonstrates the full

API for capturing photos: from adjusting fl ash and resolution set-
tings to incorporating touch focus and the hardware shutter button.

Accessing the Camera Preview Buffer
In the previous example, the frames from the camera preview buff er
were streamed to the viewfinder. The PhotoCamera class also
exposes the current frame of the preview buff er to allow pixel-by-pixel
manipulation of each frame. Let’s take a look at a sample from the
Windows Phone SDK to see how we can manipulate frames from
the preview buff er and display them on a writable bitmap in the UI.

Th e PhotoCamera class exposes the current frame of the preview
buff er with the following “get preview” methods:

• GetPreviewBuff erArgb32: Integer array of the current
frame in ARGB format

• GetPreviewBuff erYCbCr: Byte array of the current
frame in YCbCr format

• GetPreviewBuff erY: Byte array of the luminance plane
only, in a similar format

ARGB is the format used to describe color in Silverlight for
Windows Phone applications. YCbCr enables effi cient image pro-
cessing, but Silverlight can’t use YCbCr. If you want to manipulate
a YCbCr frame in your application, you have to convert the frame

void cam_CaptureImageAvailable(object sender,
 Microsoft.Devices.ContentReadyEventArgs e)
{
 photoCounter++;
 string fileName = photoCounter + ".jpg";

 Deployment.Current.Dispatcher.BeginInvoke(delegate()
 {
 txtMessage.Text = "Captured image available, saving picture.";
 });

 library.SavePictureToCameraRoll(fileName, e.ImageStream);

 Deployment.Current.Dispatcher.BeginInvoke(delegate()
 {
 txtMessage.Text = "Picture has been saved to camera roll.";
 });
}

Figure 6 Saving an Image to the Camera Roll Folder

protected override void OnOrientationChanged
 (OrientationChangedEventArgs e)
{
 if (cam != null)
 {
 Dispatcher.BeginInvoke(() =>
 {
 double rotation = cam.Orientation;

 switch (this.Orientation)
 {
 case PageOrientation.LandscapeLeft:
 rotation = cam.Orientation - 90;
 break;
 case PageOrientation.LandscapeRight:
 rotation = cam.Orientation + 90;
 break;
 }

 viewfinderTransform.Rotation = rotation;
 });
 }
 base.OnOrientationChanged(e);
}

Figure 7 Overriding the OnOrientationChanged Virtual Method

Figure 8 The Camera Grayscale Sample UI

DESIGN INTERFACE
Optimize your data

presentation and build

attractive reports with

an integrated and

easy-to-use design-time

experience.

EXPORT TO EXCEL,

WORD AND PDF
Export reports from

the client and server

side in the popular

format of your choice!

DATA ACCESS SUPPORT
Create MVVM-friendly reports

with data accessed from an

SQL Server, Oracle or any

Object Data Source.

Less Pain, More Gain

NetAdvantage®

for Reporting

check out infragistics.com/reporting

REPORT VIEWER
View pixel-perfect

reports with vector

graphics in our

Silverlight, ASP.NET,

WPF and Windows

Forms report viewer.

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics
Copyright 1996-2011 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

Untitled-4 1 10/12/11 1:25 PM

www.infragistics.com/reporting

msdn magazine36 Windows Phone

to ARGB before it can be displayed. For more information about
these formats and color conversion, see the MSDN Library page,
“Camera Color Conversion (YCbCr to ARGB) for Windows Phone,”
at wpdev.ms/colorconversion.

Th e Camera Grayscale Sample from the Windows Phone SDK
(see Figure 8) demonstrates how to manipulate ARGB frames
from the preview buff er and write them to a writable bitmap image
in almost real time. In this sample, each frame is converted from
color to grayscale. Note that the goal of this sample is to dem-
onstrate ARGB manipulation; if your app needs only grayscale,
consider using the GetPreviewBuff erY method instead.

In the XAML fi le, an image tag is used to host the correspond-
ing writable bitmap (the black-and-white image in the lower-left
corner of the UI), like so:

<Image x:Name="MainImage"
 Width="320" Height="240"
 HorizontalAlignment="Left" VerticalAlignment="Bottom"
 Margin="16,0,0,16"
 Stretch="Uniform"/>

When a button is pressed to enable the grayscale conversion, a
new thread is created to perform the processing; a writable bitmap,
having the same dimensions of the preview buff er, is created and
assigned as the source of the Image control:

wb = new WriteableBitmap(
 (int)cam.PreviewResolution.Width,
 (int)cam.PreviewResolution.Height);

this.MainImage.Source = wb;

Th e thread performs its work in the PumpARGBFrames method.
Th ere, an integer array named ARGBPx is used to hold a snapshot
of the current preview buff er. Each integer in the array represents
one pixel of the frame, in ARGB format. Th is array is also created
with the same dimensions as the preview buff er:

int[] ARGBPx = new int[
 (int)cam.PreviewResolution.Width *
 (int)cam.PreviewResolution.Height];

While the “grayscale” feature of the sample is enabled, the thread
copies the current frame in the preview buffer to the ARGBPx
array. Here, phCam is the camera object:

phCam.GetPreviewBufferArgb32(ARGBPx);

Once the buff er has been copied to the array, the thread loops
through each pixel and converts it to grayscale (see the sample for
more details about how that’s accomplished):

for (int i = 0; i < ARGBPx.Length; i++)
{
 ARGBPx[i] = ColorToGray(ARGBPx[i]);
}

Finally, before processing the next frame, the thread uses
the BeginInvoke method to update the WriteableBitmap
in the UI. Th e CopyTo method overwrites the Writeable-
Bitmap pixels with the ARGBPx array, and the Invalidate
method forces the WriteableBitmap to redraw, like so:

Deployment.Current.Dispatcher.BeginInvoke(delegate()
{
 // Copy to WriteableBitmap.
 ARGBPx.CopyTo(wb.Pixels, 0);
 wb.Invalidate();

 pauseFramesEvent.Set();
});

Th e WriteableBitmap class enables a wide range of cre-
ative possibilities. Now you can incorporate the camera
preview buff er into your repertoire of visuals for the UI.

Recording Video
Although you can use the PhotoCamera class to stream the preview
buff er to the UI, you can’t use it to record video. For that, you’ll need
some classes from the System.Windows.Media namespace. In the
fi nal part of this article, we’ll look at the Video Recorder Sample
from the Windows Phone SDK (see Figure 9) to see how to record
video to an MP4 fi le in Isolated Storage. You can fi nd this sample
on the SDK code samples page.

Th e primary classes for video recording are:
• CaptureDeviceConfi guration: Use to check availability

of a video capture device
• CaptureSource: Use to start and stop video

recording/preview
• VideoBrush: Use to fi ll Silverlight UI controls with a

CaptureSource or PhotoCamera object
• FileSink: Use to record video to Isolated Storage when a

CaptureSource object is running
In the XAML file, a Rectangle control is used to display the

camera viewfi nder:
<Rectangle
 x:Name="viewfinderRectangle"
 Width="640"
 Height="480"
 HorizontalAlignment="Left"
 Canvas.Left="80"/>

A Rectangle control isn’t required to display video, however. You
could use the Canvas control, as shown in the fi rst example. Th e Rect-
angle control is used simply to show another way to display video.

At the page level, the following variables are declared:
// Viewfinder for capturing video.
private VideoBrush videoRecorderBrush;

// Source and device for capturing video.
private CaptureSource captureSource;
private VideoCaptureDevice videoCaptureDevice;

// File details for storing the recording.
private IsolatedStorageFileStream isoVideoFile;
private FileSink fileSink;
private string isoVideoFileName = "CameraMovie.mp4";

When a user navigates to the page, the InitializeVideoRecorder
method starts the camera and sends the camera preview to the
rectangle. Aft er creating the captureSource and fi leSink objects,
the InitializeVideoRecorder method uses the static Capture-
DeviceConfi guration object to fi nd a video device. If no camera
is available, videoCaptureDevice will be null:

videoCaptureDevice = CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();

Figure 9 The Video Recorder Sample UI

http://wpdev.ms/colorconversion

MOTION FRAMEWORK

Create data visualizations

that deliver an animated

user experience that tells

the whole story.

MAP
Ensure your geospatial

data really goes places

with a feature-laden,

interactive Map Control

for your applications.

XAML-IFY YOUR APPS
check out infragistics.com/xaml

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics
Copyright 1996-2011 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

XAMTRADER
Build high-performance

applications using ultra-

fast grids and charts.

NETWORK NODE
Help your users make

the connection with

visual representations

of simple or complex

network relationships.

NetAdvantage®

for Silverlight Data Visualization

NetAdvantage®

for WPF Data Visualization

NetAdvantage®

for Silverlight

NetAdvantage®

for WPF

Untitled-4 1 10/12/11 1:25 PM

www.infragistics.com/xaml

msdn magazine38 Windows Phone

In Windows Phone 7.5, cameras are optional. Although they’re
common on today’s devices, it’s a best practice to check for them
in your code. As Figure 10 shows, videoCaptureDevice is used to
check for the presence of a camera. If one is available, captureSource
is set as the source of a VideoBrush named videoRecorderBrush,
and videoRecorderBrush is used as the fi ll for the Rectangle control
named viewfi nderRectangle. When the Start method of capture-
Source is called, the camera begins sending video to the rectangle.

In this example, a helper method named UpdateUI manages
button states and writes messages to the user. See the Video
Recorder Sample for more details.

Although the fi leSink object has been created, no video is being
recorded at this point. Th is state of the application is referred to as
video “preview.” To record video, fi leSink needs to be connected
to captureSource before it’s started. In other words, before you can
record video, you need to stop captureSource.

When the user taps the record button in the video recorder
sample, the StartVideoRecorder method starts the transition from
preview to recording. Th e fi rst step in the transition is stopping
captureSource and reconfi guring the fi leSink:

// Connect fileSink to captureSource.
if (captureSource.VideoCaptureDevice != null
 && captureSource.State == CaptureState.Started)
{
 captureSource.Stop();

 // Connect the input and output of fileSink.
 fileSink.CaptureSource = captureSource;
 fileSink.IsolatedStorageFileName = isoVideoFileName;
}

Although the CaptureSource and VideoBrush classes might
sound familiar if you’ve developed applications for the Silverlight
plug-in, the FileSink class is all new. Exclusive to Windows Phone
applications, the FileSink class knows all about writing to Isolated
Storage; all you need to do is provide the name of the fi le.

Aft er fi leSink has been reconfi gured, the StartVideoRecorder
method restarts captureSource and updates the UI:

captureSource.Start();

// Set the button states and the message.
UpdateUI(ButtonState.Ready, "Ready to record.");

When the user stops recording, to transition from recording
to preview, captureSource needs to be stopped again before the
fi leSink is reconfi gured, as shown in Figure 11.

Th e start-video-preview logic was isolated in another method
to enable transition to preview from the video playback state (not
covered in this article). Th ough I won’t cover playback here, it’s
important to note that in Windows Phone, only one video stream
can be running at a time.

Th e Video Recorder Sample features two separate video streams:
1. captureSource videoRecorderBrush

viewfi nderRectangle (Rectangle control)
2. isoVideoFile VideoPlayer (MediaElement control)

Because only one stream can run at a time, this sample features
a “dispose” method for each stream that can be called prior to the
other stream running. In the DisposeVideoPlayer and Dispose-
VideoRecorder methods, the stream is stopped by calling the
Stop method on the respective object (and setting the source of

MediaElement to null). The CaptureSource and MediaElement
objects don’t actually implement the IDisposable interface.

At this point, you might be thinking that the Camera Grayscale
Sample seemed to have two videos going at the same time. In
reality, there was only one video stream in that application: the
stream from the PhotoCamera object to the VideoBrush control.
Th e grayscale “video” was actually just a bitmap that was redrawn
at a high rate of speed, based on individually manipulated frames
from the camera preview buff er.

Wrapping Up
Th e camera API, new for Windows Phone 7.5, opens the door
for a new breed of applications that solve problems and entertain
in ways not possible with earlier versions of the OS. Th is article
touched on only a few aspects of the API. For the complete refer-
ence, see the Camera and Photos section in the Windows Phone
SDK documentation at wpdev.ms/cameraandphotos.

MATT STROSHANE writes developer documentation for the Windows Phone team.
His other contributions to MSDN Library feature products such as SQL Server,
SQL Azure and Visual Studio. When he’s not writing, you might fi nd him out on
the streets of Seattle, training for his next marathon. Follow him on Twitter at
twitter.com/mattstroshane.

THANKS to the following technical experts for reviewing this article:
Eric Bennett, Nikhil Deore, Adam Lydick and Jon Sheller

// Stop recording.
if (captureSource.VideoCaptureDevice != null
&& captureSource.State == CaptureState.Started)
{
 captureSource.Stop();

 // Disconnect fileSink.
 fileSink.CaptureSource = null;
 fileSink.IsolatedStorageFileName = null;

 // Set the button states and the message.
 UpdateUI(ButtonState.NoChange, "Preparing viewfinder...");
 StartVideoPreview();
}

Figure 11 Transitioning from Recording to Preview

 // Initialize the camera if it exists on the device.
if (videoCaptureDevice != null)
{
 // Create the VideoBrush for the viewfinder.
 videoRecorderBrush = new VideoBrush();
 videoRecorderBrush.SetSource(captureSource);

 // Display the viewfinder image on the rectangle.
 viewfinderRectangle.Fill = videoRecorderBrush;

 // Start video capture and display it on the viewfinder.
 captureSource.Start();

 // Set the button state and the message.
 UpdateUI(ButtonState.Initialized, "Tap record to start recording...");
}
else
{
 // Disable buttons when the camera is not supported by the device.
 UpdateUI(ButtonState.CameraNotSupported, "A camera is not supported on
this device.");
}

Figure 10 Displaying the Video Preview

http://wpdev.ms/cameraandphotos
www.twitter.com/mattstroshane

OLAP AXIS CHART
Take your data to new

depths with the

seemingly endless

drilldown capability of

the OLAP Axis Chart.

FINANCIAL

CHARTING
With support for

multiple chart

styles, and technical

indicators built in,

financial charting

capabilities are on

the money.

TREEMAP
Communicate the relative

differences in data weight

more effectively, with

customizable color and

flexible layouts.

Deliver the Ultimate User Experience

NetAdvantage®

check out infragistics.com/ultimate

OLAP GRID

Provide highly-interactive

pivot grid functionality in

all of your applications.

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics
Copyright 1996-2011 Infragistics, Inc. All rights reserved. Infragistics and NetAdvantage are registered trademarks of Infragistics, Inc. The Infragistics logo is a trademark of Infragistics, Inc.

Untitled-4 1 10/12/11 1:26 PM

www.infragistics.com/ultimate

msdn magazine40

W IN DOWS PHONE

Design Your Windows
Phone Apps to Sell

Good design is more than just adding pretty visuals to your
application aft er you’ve implemented all the functionality. It’s the
process of deciding how users will interact with your app, as well
as how it will look and function. User experience plays a huge part
in determining how happy people will be with your app, so you
shouldn’t skimp on this step. Design should not be an aft erthought.

I might be showing my age, but I remember almost every com-
puter science class I took, starting with a lecture about the impor-
tance of planning your programs before beginning to code. We
used tools such as fl ow charts drawn on actual paper with a real
pencil (and usually a big eraser nearby). Th is was because computer
time was expensive on that old hardware. You wanted to be sure
you made the most of the time you had. Computer time is pretty
cheap nowadays and there are amazing tools, such as Visual Studio
and Expression Blend, that make it very easy to get something that
looks pretty good up and running very quickly. Consequently,

Mark Hopkins

there’s a tendency to sit down and just start coding. In this article,
I’ll talk about spending time up front designing your application
so you can save time in the coding process and reap rewards in the
Windows Phone Marketplace (windowsphone.com/marketplace).

I’ll discuss what it means to intentionally design your Windows
Phone app, which includes brainstorming, information architec-
ture, prototyping, user research and iteration, all before you write
a single line of code. I’ll also note some of the tools available for
these activities.

Why Design?
Look through the ratings and reviews on the Windows Phone
Marketplace. One of the consistent complaints I fi nd in reviews
is when an app doesn’t do what users expect. I’ve seen dismissive
two-word reviews such as, “Doesn’t work,” or, oft en, much worse.
Some of these complaints are valid and some are not. It might be
that the reviewer doesn’t understand how an application is intended
to work. Is that the user’s fault or the application’s? Here’s a review
directly from the Marketplace:

“Th e UI is terrible and it runs really slow. It’s unusable.”
That review might be ambiguous, but I think it reflects the

fact that people aren’t willing to put a lot of effort into learning
complicated applications on a phone. Nor are they willing to spend
much time giving detailed feedback. Who can blame them? A phone
is a casual-use device. Your app needs to be obvious and easy to
use. With tens of thousands of apps available, users are unlikely to

This article discusses:
• The importance of design

• Metro Design principles

• The design process

• Prototyping and user research

Technologies discussed:
Visual Studio, Expression Blend, Windows Phone SDK 7.1, SketchFlow

http://windowsphone.com/marketplace

41January 2012msdnmagazine.com

spend much time with one that doesn’t give them the payoff they’re
seeking, whether that’s solving a problem or being entertained while
they wait in line at the bank.

Because there isn’t much room for UI elements on a phone
screen, you need to really think through how users will interact
with your app. A well-designed, complete and easy-to-use appli-
cation will generate sales. As people download and review your
app in the Windows Phone Marketplace, those great reviews will
fuel further downloads.

Metro Design Principles
Metro is the name of the design philosophy that goes into Windows
Phone and into Windows 8. Much has been written about Metro,
but I’d like to go over the Metro design principles briefl y before I
get into the actual process of designing an application.

• Clean, Light, Open and Fast Applications should be easy
to understand at a glance. Th ey should be highly responsive
to user input. They should have a clean, open look with
lots of white space.

• Celebrate Typography Words are common across all UI
designs, and how they appear makes a diff erence. Type is
beautiful. Not only is it pleasing to the eye, but it can also
be functional. Th e right balance of weight and positioning
can create a visual hierarchy. Moreover, well-placed type
can direct users to more content.

• Alive in Motion Motion is life, and motion brings Windows
Phone to life. Live Tiles, transitions and response to user

input tie everything together.
Transitions are an important part
of user experience design. A good
transition gives the user clues
about context in your application.
• Content, Not Chrome Users

are interested in content. Con-
tent should be elevated and
everything else minimized. By
removing as much chrome as
possible, you bring the content
into focus. Th is is particularly
important on a small screen.
The content is the UI and the
user should be able to interact
with it directly. The ability to
resize an image using a pinch
gesture is an example of this
direct interaction.

• Authentically Digital Design
explicitly for hand-held devices
that use touch, a high-resolution
screen, and simplified forms
of interaction. In other words,
be “authentically digital.” Don’t
try to simulate analog controls
such as knobs.

The Design Process
If you’re lucky enough to work at a company that has a design
department, get designers involved at the beginning. Your apps
will reap the benefi ts of working with people who understand user
experience design. Many of you probably work in small companies,
though, or even develop phone apps as a side occupation on your
own, so you’ll have to handle the design yourself. Let’s discuss the
design process so you can include these practices as you create your
Windows Phone masterpiece.

Figure 1 Information Architecture Planning

Figure 2 Paper Prototype

www.msdnmagazine.com

msdn magazine42 Windows Phone

Brainstorm Be creative. You may already
have an idea about an application you want
to build or you might be trying to come
up with one. In either case, brainstorming
helps you explore ideas you might not have
considered. And it’s fun!

Try to brainstorm with others, if possible.
If you’re a lone developer creating apps by
yourself, ask your family or a group of friends
to do this with you. But be mindful of legal
issues that could arise if you use someone
else’s idea. Th e point of brainstorming is to
generate as many ideas as possible.

I’m going to assume you’re familiar with
the mechanics of brainstorming. But just
to review, here are some guidelines for
the process:

• Write down everything.
• No idea is too outrageous at this stage.
• Set a time limit to keep

things moving.
• Don’t deep dive on anything yet.

Your app could help people accomplish
a task, or its purpose might be to entertain
them. In any case, you are the storyteller.
Consider these questions to help seed
your brainstorming:

• What will your application do?
• Who is your application for?
• How does your application fi t into

the Marketplace?
• Where and when will your

application be used?
• What kind of content will

you display?
• How can your application leverage

the hardware?
• How does your app idea compare

with similar apps in the Windows
Phone Marketplace and other smart-
phone application stores?

Aft er you’ve come up with a great list
of ideas, fi lter them through a list of con-
straints to help you narrow them down
to something you’ll actually create. Your questions might include:

• Do I have, or can I gain, the skills to realize the vision
of this app?

• Can I develop this app in a reasonable time frame?
• Can I aff ord to develop this app?
• Can I leverage additional assets like online services?
• Can I partner with someone to make this app even better?
• Is there a lot of infrastructure needed for this app? For

example, a streaming media service might be an awesome
idea, but can I aff ord the server resources needed to get
such a service off the ground?

If you’ve done a good job on brainstorm-
ing, you should have a great list of ideas,
so you’ll probably have to be very critical
to get your list down to two or three ideas
you really want to move forward on.

Sketch and Wireframe Designing a
prototype involves pulling together your
brainstorming ideas. You might want to
start by evaluating some similar apps that
are already in the Marketplace. You’ll prob-
ably discover both good and bad designs.
Each off ers good opportunities for learning.

Use a whiteboard or pencil and paper
to move quickly. Lay out the navigation
architecture for your app. Designers call
this the information architecture, although
that means something completely diff er-
ent to those of us in the content publish-
ing world. No matter what you call it, this
step can uncover inconsistencies in your
design. It can also inspire ideas for mak-
ing your app easier to use. I did a quick
exercise with some sticky notes and my
whiteboard (see Figure 1). Th is example
is really simple, but it shows how this step
might look. Each sticky note represents a
page in an online shopping application.

Th e detail here isn’t important; I drew up
each of these pages in less than a minute.
Th e point is to really think through the fl ow
and navigation of your app. Sticky notes are
great tools to quickly mock up the pages of
an application. And because they’re similar
in size to an actual phone screen, they can
impart the feel of an actual app.

Using a whiteboard to lay out the navi-
gation makes it easy to move pages around
and draw connections without investing
too much time. Th is exercise quickly and
obviously shows where there are holes in
your planned interface. It also helps you
estimate how much coding work you’ll be
undertaking to implement your vision.

Try to bring in other people and get their
feedback on your information architecture, perhaps coworkers, or
friends and family members if you’re working on your own. Walk
them through the design, but try not to overexplain. Th e purpose and
navigation of your app should be obvious; keep refi ning until it is.

Prototyping and User Research Once you’re happy with the
pages and navigation of your design, it’s time to create a prototype
and start getting some feedback from users.

Th e prototype doesn’t have to be a working application. Paper
prototypes are excellent tools for quickly creating the look and
feel of your app to present to users for usability testing (see Figure
2). Of course, if you’re using paper, you’ll need to help the user

Figure 3 The Design Process

Brainstorm

Filter

Sketch/
Wireframe

Prototype and
User Research

Mockups

No

Yes

Yes

No

Design
Process

Start
Coding!

2-3 Good
Ideas Left? Refine Criteria

Users
Successfully
Completing

Tasks

Refine/Merge
Prototype(s)

43January 2012msdnmagazine.com

understand how the application works. Do a YouTube search for
“paper prototype” and you’ll fi nd many videos showing this process.

Once you have a couple of prototypes, invite users in to try them
out. Ask users to state their goals within an application rather than
to make specifi c suggestions about UI or interaction.

Try to answer the following questions about the functional
elements of your app:

• Is it clear what your application does?
• Is it clear how to operate it?
• Are tasks intuitive in both purpose and operation?

This can be an incredibly powerful and rewarding process. I
once watched a design team quickly create new designs on the fl y,
before the next group of usability test subjects even showed up.
Th ey could test out several designs in a single day. Talk about agile!

Iterate and Refi ne Continue to refi ne your prototype based on
user feedback. Be careful not to get caught up in user requests for
more and more features. While some user feedback might alert you
to UI problems, most should be absorbed holistically. Keep your
application focused and minimal.

Once you’ve refi ned your design to something you’d like to imple-
ment, move to the computer. Consider using a prototyping tool
such as SketchFlow (microsoft.com/expression/products/Sketchfl ow_Overview)
to start creating mockups of the actual page designs. Include enough
detail so you won’t need to make decisions during coding about:

• Visual elements: Are typography and content presented
clearly, legibly and concisely? Is the display visually appeal-
ing? Th eme Resources for Windows Phone (msdn.microsoft.com/
 library/ff769552(VS.92)) make it easier to adhere to Metro
design principles, as well as user preferences, by providing
predefi ned values for properties such as brushes, colors
and fonts.

• Control elements: Are controls sized and spaced for easy
touch operation? Note that in Visual Studio, the tools in
the toolbox are already Metro-themed.

• Branding elements: Have you accurately reproduced colors
and logos? Is all art compliant with copyrights?

Make sure you implement all the elements necessary to recreate
the interactions you mapped out during prototyping. Confi rm that
the tasks and operations look and fl ow correctly based on your
earlier usability testing.

Th e simple workfl ow chart in Figure 3 visually represents the
design process I’ve described.

Design Tools
It should now be obvious that you don’t need to invest in a lot of
expensive tools to do a good job of designing your app. Chances
are you have some of these tools available right now.

• Paper and pencil: Th e original design tools, still powerful.
• Sticky notes: Th ese are great “canvases” for phone

page designs.
• Video camera: For recording usability tests and creating

stop-motion animations of your designs to share with
coworkers, friends, family.

• Windows Phone SDK 7.1: A free download (bit.ly/snlph6) that
includes Visual Studio 2010 Express for Windows Phone,

the Windows Phone Emulator and Expression Blend for
Windows Phone.

• SketchFlow: Lets you quickly sketch up functional designs
in Expression Blend.

Resources
Th ere are many online resources that can help as you design your
Windows Phone apps. Th e following documentation resources dive
into the topics discussed here in much greater detail:

• User Experience Design Guidelines for Windows
Phone (wpdev.ms/wpuxguide)

• Design Resources for Windows Phone (wpdev.ms/dsnrsrcs)
• Microsoft .toolbox (wpdev.ms/designtb)
• Alfred Astort’s blog posts (wpdev.ms/alfreddesign)
• PhotoShop Design Templates for Windows

Phone (wpdev.ms/dsntemplates)
You never know where inspiration might come from, so input

is important. Th e following Twitter users oft en tweet about useful
and interesting design and user research topics:

• @WPDesignTeam
• @corrinab
• @SusanToddUX
• @mkruzeniski
• @arturot
• @augustdlr

Wrapping Up
Once your design is fi nalized, it’s time to start coding. Because all
the design work has been done up front, you’ll be free to concen-
trate on the logic needed to implement the functionality you’ve
already verifi ed through usability testing. Th is process will save you
time because you won’t have to re-architect your app in the middle
of implementation. And because you’ll have already tested your
application with actual users, you’ll be more likely to end up with
good reviews in the Windows Phone Marketplace.

Th e Windows Phone SDK tries to set you up for success with
themed controls and Visual Studio templates that include headers,
theme resources and so on. You still need to do the intellectual
work up front, but the tools will help you create a nice Metro app
once you move to the implementation phase.

Th is article is just the tip of the iceberg when it comes to design. I hope
I’ve piqued your interest and helped you consider how this process can
raise the quality of your next Windows Phone app. A well-designed
app creates a feedback loop in the Windows Phone Marketplace that
leads to more downloads and more sales. Invest more thought in the
design of your apps and may they be wildly successful.

MARK HOPKINS is a senior programming writer on the Windows Phone
Developer Documentation Team. He has been employed at Microsoft since 1992
working on developer-focused products including developer support, Visual C++,
MFC, Windows Platform SDK, Internet Explorer SDK, Tablet PC SDK, Surface
SDK and Windows Phone SDK.

THANKS to the following technical experts for reviewing this article:
Robert Lyon, Cheryl Simmons and Matt Stroshane

http://microsoft.com/expression/products/Sketchflow_Overview
http://msdn.microsoft.com/library/ff769552(VS.92)
http://msdn.microsoft.com/library/ff769552(VS.92)
www.bit.ly/snlph6
http://wpdev.ms/wpuxguide
http://wpdev.ms/dsnrsrcs
http://wpdev.ms/designtb
http://wpdev.ms/alfreddesign
http://wpdev.ms/dsntemplates
www.msdnmagazine.com

SUPPORTED BY: PRODUCED BY:

Visual Studio Live! is
Coming to a City Near You
Visual Studio Live! features code- lled days, networking
nights and unbiased training for developers, software
architects and designers. Led by both independent industry
experts and Microsoft insiders, these multi-track events
include focused, cutting-edge education on the Microsoft
Platform that you’ll be ready to implement as soon as
you get back to the of ce.

Learn more about Visual Studio Live! Events vslive.com

CODE
ON THE
ROAD

20
12

We now have FOUR awesome locations to choose from: Las Vegas,
New York, Microsoft Headquarters (Redmond, WA) and
Orlando. Pick your favorites and save the dates for 2012!

Untitled-2 2 12/2/11 1:21 PM

www.vslive.com

Visual Studio Live!
Las Vegas
March 26-30, 2012
Mirage Resort and Casino, Las Vegas, NV

YO U R M A P T O T H E . N E T D E V E L O P M E N T P L AT F O R M

Visual Studio Live!
New York
May 14-17, 2012
New York Marriott at the Brooklyn Bridge

Visual Studio Live!
Redmond
August 6-10, 2012
Microsoft Headquarters in Redmond, WA

Visual Studio Live!
Orlando TBD—Fall 2012

Registration now open!
vslive.com/lasvegas

Registration now open!
vslive.com/newyork

Registration now open!
vslive.com/redmond

Untitled-2 3 12/2/11 1:21 PM

www.vslive.com

msdn magazine46

B U I LD ING HT ML 5 APPL IC AT I ONS

Using HTML5 Canvas
for Data Visualization

In the early days online, when the Web was little more
than a collection of static text and links, there was growing interest
in supporting other types of content. In 1993, Marc Andreessen,
creator of the Mosaic browser, which would evolve into Netscape
Navigator, proposed the IMG tag as a standard for embedding
images inline with the text on a page. Soon after, the IMG tag
became the de facto standard for adding graphical resources to
Web pages—a standard that’s still in use today. You could even
argue that, as we’ve moved from the Web of documents to the Web
of applications, the IMG tag is more important than ever.

Media, in general, is certainly more important than ever, and
though the need for media on the Web has evolved over the past 18

Brandon Satrom

years, the image has remained static. Web authors have increasingly
sought to use dynamic media such as audio, video, and interactive
animations in their sites and applications and, until recently, the
primary solution was a plug-in like Flash or Silverlight.

Now, with HTML5, media elements in the browser get a nice
kick in the pants. You’ve probably heard of the new Audio and
Video tags, both of which allow these types of content to function
as fi rst-class citizens in the browser, no plug-ins required. Next
month’s article will cover both of these elements and their APIs in
depth. You’ve probably also heard of the canvas element, a drawing
surface with a rich set of JavaScript APIs that give you the power
to create and manipulate images and animations on the fl y. What
IMG did for static graphical content, canvas has the potential to
do for dynamic and scriptable content.

As exciting as the canvas element is, though, it suff ers from a bit
of a perception problem. Because of its power, canvas is usually
demonstrated via complex animations or games, and while these
do convey what’s possible, they can also lead you to believe that
working with canvas is complicated and diffi cult, something that
should be attempted only for complex cases, like animation or games.

In this month’s article, I’d like to take a step back from the glitz
and complexity of canvas and show you some simple, basic uses
of it, all with the goal of positioning the canvas as a powerful
option for data visualization in your Web applications. With that
in mind, I’ll focus on how you can get started with canvas, and how
to draw simple lines, shapes and text. Th en I’ll talk about how you

This article discusses:
• The HTML5 canvas

• Drawing lines, shapes and text

• Working with colors and gradients

• Working with images

• Using a canvas polyfi ll

Technologies discussed:
HTML5, Internet Explorer, Modernizr

Code download available at:
code.msdn.microsoft.com/mag201201HTML5

http://code.msdn.microsoft.com/mag201201HTML5

47January 2012msdnmagazine.com

can work with gradients in your shapes, as
well as how to add external images to a can-
vas. Finally, and as I’ve done throughout this
series, I’ll wrap up with a brief discussion on
polyfi lling canvas support for older browsers.

Introducing the HTML5 Canvas
According to the W3C HTML5 specifi ca-
tion (w3.org/TR/html5/the-canvas-element.html),
the canvas element “provides scripts with a
resolution-dependent bitmap canvas, which
can be used for rendering graphs, game
graphics or other visual images on the fl y.”
Canvas is actually defi ned across two W3C
specifications. The first is as a part of the
HTML5 core specifi cation, where the ele-
ment itself is defi ned in detail. Th is specifi -
cation covers how to use the canvas element,
how to obtain its drawing context, APIs for
exporting canvas content and security con-
siderations for browser vendors. Th e second
is the HTML Canvas 2D Context (w3.org/
TR/2dcontext), which I’ll get to in a moment.

Getting started with canvas is as simple as
adding a <canvas> element to HTML5 markup, like so:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>My Canvas Demo </title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <canvas id="chart" width="600" height="450"></canvas>
 </body>
</html>

Th ough I now have a canvas eleme nt in the DOM, placing this
markup on the page does nothing, as the canvas element has no
content until you add it. Th at’s where the drawing context comes
in. To show you where my blank canvas is located, I can use CSS
to style it, so I’ll add a dotted blue line around the blank element.

canvas {
 border-width: 5px;
 border-style: dashed;
 border-color: rgba(20, 126, 239, 0.50)
}

Th e result, when my page is opened in Internet Explorer 9+,
Chrome, Firefox, Opera or Safari, is depicted in Figure 1.

When using canvas, you’ll do most of your work in JavaScript,
where the exposed APIs of a canvas drawing context can be lever-
aged to manipulate each pixel of the surface. To obtain the canvas
drawing context, you need to get your canvas element from the
DOM and then call the getContext method of that element.

var _canvas = document.getElementById('chart');
var _ctx = _canvas.getContext("2d");

GetContext returns an object with an API that you can use to
draw on the canvas in question. Th e fi rst argument to that method
(in this case, “2d”) specifi es the drawing API that we want to use
for the canvas. “2d” refers to the HTML Canvas 2D Context I
mentioned earlier. As you might guess, 2D means that this is a

two-dimensional drawing context. As of
this writing, the 2D Context is the only
widely supported drawing context, and
it’s what we’ll use for this article. There’s
ongoing work and experimentation
around a 3D drawing context, so canvas
should provide even more power for our
applications in the future.

Drawing Lines, Shapes, and Text
Now that we have a canvas element on our
page and we’ve obtained its drawing context
in JavaScript, we can begin to add content.
Because I want to focus on data visualiza-
tion, I’m going to use the canvas to draw a
bar chart to represent the current month’s
sales data for a fi ctional sporting goods store.
Th is exercise will require drawing lines for
the axes; shapes and fi lls for the bars; and text
for the labels on each axis and bar.

Let’s start with the lines for the x- and
y-axes. Drawing lines (or paths) with the
canvas context is a two-step process. First,
you “trace” the lines on the surface using a

series of lineTo(x, y) and moveTo(x, y) calls. Each method takes
x- and y-coordinates on the canvas object (starting from the top-
left corner) to use when performing the operation (as opposed to
coordinates on the screen itself). Th e moveTo method will move
to the coordinates you specify, and lineTo will trace a line from the
current coordinates to the coordinates you specify. For example,
the following code will trace our y-axis on the surface:

// Draw y axis.
_ctx.moveTo(110, 5);
_ctx.lineTo(110, 375);

If you add this code to your script and run it in the browser,
you’ll notice that nothing happens. Because this fi rst step is merely
a tracing step, nothing is drawn on the screen. Tracing merely
instructs the browser to take note of a path operation that will
be flushed to the screen at some point in the future. When I’m
ready to draw paths to the screen, I optionally set the strokeStyle
property of my context, and then call the stroke method, which
will fi ll in the invisible lines. Th e result is depicted in Figure 2.

// Define Style and stroke lines.
_ctx.strokeStyle = "#000";
_ctx.stroke();

Because defi ning lines (lineTo, moveTo) and drawing lines
(stroke) are decoupled, you can actually batch a series of lineTo
and moveTo operations and then output those to the screen all at
once. I’ll do this for both the x- and y-axes and the operations that
draw arrows as the end of each axis. Th e complete function for
drawing the axes is shown in Figure 3 and the result in Figure 4.

Figure 1 A Blank, Styled Canvas Element

Figure 2 A Single Line on the Canvas

When using canvas, you’ll do
most of your work in JavaScript.

http://w3.org/TR/html5/the-canvas-element.html
http://w3.org/TR/2dcontext
http://w3.org/TR/2dcontext
www.msdnmagazine.com

msdn magazine48 Building HTML5 Applications

We have our axes, but we should probably label them to make
them more useful. Th e 2D canvas context specifi es APIs for adding
text to canvas elements, so you don’t need to fiddle with messy
hacks like fl oating text over the canvas element. Th at said, canvas
text doesn’t provide a box model, nor does it accept CSS styles
defi ned for page-wide text, and so forth. Th e API does provide a
font attribute that works the same as a CSS font rule—as well as
textAlign and textBaseline properties to give you some control over
position relative to the provided coordinates—but other than that,
drawing text on the canvas is a matter of picking an exact point on
the canvas for the text you supply.

Th e x-axis represents products in our fi ctional sporting goods
store, so we should label that axis accordingly:

var height, widthOffset;
height = _ctx.canvas.height;
widthOffset = _ctx.canvas.width/2;

_ctx.font = "bold 18px sans-serif";
_ctx.fillText("Product", widthOffset, height - 20);

In this code snippet, I’m setting the optional font property and
providing a string to draw on the surface, along with the x- and
y-coordinates to use as the start position of the string. In this
example, I’ll draw the word “Product” in the middle of my canvas,

20 pixels up from the bottom, which leaves room for the labels for
each product on my bar chart. I’ll do something similar for the
y-axis label, which contains the sales data for each product. Th e
result is depicted in Figure 5.

Now that we have a framework for our chart, we can add the
bars. Let’s create some dummy sales data for the bar chart, which
I’ll defi ne as a JavaScript array of object literals.

var salesData = [{
 category: "Basketballs",
 sales: 150
}, {
 category: "Baseballs",
 sales: 125
}, {
 category: "Footballs",
 sales: 300
}];

With this data in hand, we can use fi llRect and fi llStyle to draw
our bars on the chart.

fi llRect(x, y, width, height) will draw a rectangle on the canvas
at the x- and y-coordinates, with the width and height you specify.
It’s important to note that fi llRect draws shapes starting from the
top-left radiating outward, unless you specify negative width and
height values, in which case the fi ll will radiate in the opposite di-
rection. For drawing tasks like charting, that means we’ll be drawing
the bars from the top down, as opposed to the bottom up.

To draw the bars, we can loop through the array of sales data
and call fi llRect with the appropriate coordinates:

var i, length, category, sales;
var barWidth = 80;
var xPos = baseX + 30;
var baseY = 375;

for (i = 0, length = salesData.length; i < length; i++) {
 category = salesData[i].category;
 sales = salesData[i].sales;

 _ctx.fillRect(xPos, baseY - sales-1, barWidth, sales);
 xPos += 125;
}

In this code, the width of each bar is standard, while the height
is taken from the sales property for each product in the array. Th e
result of this code is seen in Figure 6.

Now, we have a chart that’s technically accurate, but those solid
black bars leave something to be desired. Let’s spruce them up with
some color, and then add a gradient eff ect.

Working with Colors and Gradients
When the fi llRect method of a drawing context is called, the context
will use the current fi llStyle property to style the rectangle as its being

Figure 6 Rectangles as Bar Chart DataFigure 5 Canvas with TextFigure 4 Completed X- and Y-Axes

function drawAxes(baseX, baseY, chartWidth) {
 var leftY, rightX;
 leftY = 5;
 rightX = baseX + chartWidth;

 // Draw y axis.
 _ctx.moveTo(baseX, leftY);
 _ctx.lineTo(baseX, baseY);

 // Draw arrow for y axis.
 _ctx.moveTo(baseX, leftY);
 _ctx.lineTo(baseX + 5, leftY + 5);
 _ctx.moveTo(baseX, leftY);
 _ctx.lineTo(baseX - 5, leftY + 5);

 // Draw x axis.
 _ctx.moveTo(baseX, baseY);
 _ctx.lineTo(rightX, baseY);

 // Draw arrow for x axis.
 _ctx.moveTo(rightX, baseY);
 _ctx.lineTo(rightX - 5, baseY + 5);
 _ctx.moveTo(rightX, baseY);
 _ctx.lineTo(rightX - 5, baseY - 5);

 // Define style and stroke lines.
 _ctx.strokeStyle = "#000";
 _ctx.stroke();
}

Figure 3 The drawAxes Function

49January 2012msdnmagazine.com

drawn. Th e default style is a solid black, which is why our chart looks
as it does in Figure 6. fi llStyle accepts named, hexadecimal and RGB
colors, so let’s add some functionality to style each bar before it is drawn:

// Colors can be named hex or RGB.
colors = ["orange", "#0092bf", "rgba(240, 101, 41, 0.90)"];
...
_ctx.fillStyle = colors[i % length];
_ctx.fillRect(xPos, baseY - sales-1, barWidth, sales);

First, we create an array of colors. Then, as we loop through
each product, we’ll use one of these colors as the fi ll style for that
element. Th e result is depicted in Figure 7.

Th is looks better, but fi llStyle is very fl exible and lets you use
linear and radial gradients instead of just solid colors. Th e 2D draw-
ing context specifi es two gradient functions, createLinerGradient
and createRadialGradient, both of which can enhance the style of
your shapes through smooth color transitions.

For this example, I’m going to defi ne a createGradient function
that will accept the x- and y-coordinates for the gradient, a width
and the primary color to use:

function createGradient(x, y, width, color) {
 var gradient;

 gradient = _ctx.createLinearGradient(x, y, x+width, y);
 gradient.addColorStop(0, color);
 gradient.addColorStop(1, "#efe3e3");

 return gradient;
}

Aft er calling createLinearGradient with my start and end coor-
dinates, I’ll add two color stops to the gradient object returned by
the drawing context. Th e addColorStop method will add color
transitions along the gradient; it can be called any number of times
with fi rst parameter values between 0 and 1. Once I’ve set up my
gradient, I’ll return it from the function.

Th e gradient object can then be set as the fi llStyle property on
my context, in place of the hex and RGB strings I specifi ed in the
previous example. I’ll use those same colors as my starting point,
and then fade them into a light gray.

colors = ["orange", "#0092bf", "rgba(240, 101, 41, 0.90)"];
_ctx.fillStyle = createGradient(xPos, baseY - sales-1, barWidth,
colors[i % length]);
_ctx.fillRect(xPos, baseY - sales-1, barWidth, sales);

The result of the gradient option can be seen in Figure 8.

Working with Images
At this point, we have a pretty good-looking chart, which we’ve
been able to render in the browser using a few dozen lines of
JavaScript. I could stop here, but there’s still one basic canvas API
related to working with images I want to cover. Not only does
canvas let you replace static images with
script-based and interactive content, but
you can also use static images to enhance
your canvas visualizations.

For this demo, I’d like to use images as
the bars on the bar chart. And not just any
images, but pictures of the items themselves.
With that in goal in mind, my Web site has
a folder that contains JPG images for each
product—in this case, basketballs.jpg, base-
balls.jpg and footballs.jpg. All I need to do is
position and size each image appropriately.

The 2D drawing context defines a drawImage method with
three overloads, accepting three, fi ve or nine parameters. Th e fi rst
parameter is always the DOM element image to draw. Th e simplest
version of drawImage also accepts x- and y-coordinates on the
canvas and draws the image as is in that location. You can also
provide width and height values as the last two parameters, which
will scale the image to that size prior to drawing it on the surface.
Finally, the most complex use of drawImage allows you to crop an
image down to a defi ned rectangle, scale it to a given set of dimen-
sions and, fi nally, draw it on the canvas at the specifi ed coordinates.

Because the source images I have are large-scale images used
elsewhere on my site, I’m going to take the latter approach. In this
example, rather than calling fi llRect for each item as I loop through
the salesData array, I’ll create an Image DOM element, set its source
to one of my product images, and render a cropped version of that
image onto my chart, as Figure 9 shows.

Because I’m creating these images dynamically, as opposed to
adding them manually to my markup at design time, I shouldn’t
assume that I can set the image source, then immediately draw that
image to my canvas. To ensure that I draw each image only when it’s
fully loaded, I’ll add my drawing logic to the onload event for the
image, then wrap that code in a self-invoking function, which cre-
ates a closure with variables pointing to the correct product category,
sales and positioning variables. You can see the result in Figure 10.

Using a Canvas Polyfi ll
As you may know, versions of Internet Explorer prior to 9, as well
as older versions of other browsers, do not support the canvas
element. You can see this for yourself by opening the demo project
in Internet Explorer and hitting F12 to open the developer tools.
From the F12 tools, you can change the Browser Mode to Internet

Figure 7 Using fi llStyle to Style Shapes Figure 8 Using Gradients in a Canvas

The simplest course of action
you can take for users whose

browsers don’t support canvas is
to use a fallback element such as

image or text.

www.msdnmagazine.com

msdn magazine50 Building HTML5 Applications

Explorer 8 or Internet Explorer 7 and refresh the page. What you’re
likely to see is a JavaScript exception with the message “Object doesn’t
support property of method getContext.” Th e 2D drawing context
isn’t available, nor is the canvas element itself. It’s also important to
know that, even in Internet Explorer 9, canvas isn’t available unless
you specify a DOCTYPE. As I mentioned in the fi rst article of this
series (msdn.microsoft.com/magazine/hh335062), it’s always a good idea
to use <!DOCTYPE html> at the top of all your HTML pages to
ensure that the latest features in the browser are available.

The simplest course of action you can take for users whose
browsers don’t support canvas is to use a fallback element such
as image or text. For instance, to display a fallback image to users, you
can use markup that looks like this:

<canvas id=”chart”>

</canvas>

Any content you place inside of the <canvas> tag will be
rendered only if the user’s browser doesn’t support canvas. Th at
means that you can place images or text inside of your canvas as
a simple, zero-checks fallback for your users.

If you want to take fallback support further, the good news is that
a variety of polyfi lling solutions exist for canvas, so you can feel com-
fortable using it with older browsers as long as you carefully vet po-
tential solutions and stay aware of the limitations of a given polyfi ll.
As I’ve stated in other articles in this series, your starting point for
fi nding a polyfi ll for any HTML5 technology should be the HTML5
Cross Browser Polyfi lls page in the Modernizr wiki on GitHub (bit.ly/
nZW85d). As of this writing, there are several canvas polyfi lls available,
including two that fall back to Flash and Silverlight.

 In the downloadable demo project for this article, I use explorer-
canvas (code.google.com/p/explorercanvas), which
uses Internet Explorer-supported Vector
Markup Language (VML) to create close
approximations of canvas functionality,
and canvas-text (code.google.com/p/canvas-text),
which adds additional support for render-
ing text in older browsers.

As illustrated in previous articles, you
can use Modernizr to feature-detect
support for canvas (and canvastext) in
a browser by calling Modernizr.canvas
and then use Modernizr.load to asyn-

chronously load explorercanvas when needed. For more
information, see modernizr.com.

If you don’t want to use Modenrizr, there’s another way to condition-
ally add explorercanvas for older versions of IE: conditional comments:

<!--[if lt IE 9]>
 <script src="js/excanvas.js"></script>
 <script src="js/canvas.text.js"></script>
<![endif]-->

When Internet Explorer 8 or older versions encounter a
comment formatted as such, they will execute the block as an if
statement and include the explorercanvas and canvas-text script
fi les. Other browsers, including Internet Explorer 10, will treat the
entire block as a comment and ignore it altogether.

When evaluating a potential polyfi ll for your application, be sure
to look into how much of the 2D drawing context a given polyfi ll
supports. Few of them provide full support for every use, though
nearly all can handle the basic cases we looked at in this article.

Th ough I couldn’t cover everything here, there’s a lot more you
can do with canvas, from responding to click (and other) events
and changing canvas data, to animating the drawing surface,
rendering and manipulating images pixel-by-pixel, saving state,
and exporting the entire surface as its own image. In fact, there
are entire books on canvas out there. You don’t have to be a game
developer to experience the power of canvas, and I hope I con-
vinced you of that as I walked through the basics in this article. I
encourage you to read the specifi cations for yourself, and jump in
to this exciting new graphics technology with both feet.

If you’re looking for more information on canvas support in
Internet Explorer 9, check out the IE9 Developer Guide online
(msdn.microsoft.com/ie/ff468705). Also, be sure to check out the Canvas
Pad demos available at the IE Test Drive site (bit.ly/9v2zv5). For a
list of a few other cross-browser polyfi lls for canvas, check out the
complete polyfi lling list at (hbit.ly/eBMoLW).

Finally, all of the demos for this article—which are available
online—were built using WebMatrix, a free,
lightweight Web development tool from
Microsoft . You can try WebMatrix out for
yourself at aka.ms/webm.

BRANDON SATROM works as a developer evan-
gelist for Microsoft outside of Austin. He blogs at
userinexperience.com and you can follow him on
Twitter at twitter.com/BrandonSatrom.

THANKS to the following technical experts for
reviewing this article: Jatinder Mann and Clark Sell

// Set outside of my loop.
xPos = 110 + 30;
// Create an image DOM element.
img = new Image();
img.onload = (function(height, base, currentImage, currentCategory) {
 return function() {
 var yPos, barWidth, xPos;
 barWidth = 80;
 yPos = base - height - 1;

 _ctx.drawImage(currentImage, 30, 30, barWidth, height, xPos, yPos,
 barWidth, height);
 xPos += 125;
 }
})(salesData[i].sales, baseY, img, salesData[i].category);
img.src = "images/" + salesData[i].category + ".jpg";

Figure 9 Drawing images on a Canvas

Figure 10 Using Images on a Canvas

You can place images
or text inside of your canvas as
a simple, zero-checks fallback

for your users.

http://msdn.microsoft.com/magazine/hh335062
www.bit.ly/nZW85d
www.bit.ly/nZW85d
http://code.google.com/p/explorercanvas
http://code.google.com/p/canvas-text
www.modernizr.com
http://msdn.microsoft.com/ie/ff468705
www.bit.ly/9v2zv5
www.hbit.ly/eBMoLW
http://aka.ms/webm
www.twitter.com/BrandonSatrom

(888) 850-9911
Sales Hotline - US & Canada:

/update/2012/01

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2012 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

FusionCharts from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

Spread for .NET Professional from $1,439.04
Includes MultiRow, Stand-Alone Chart, Formula Provider and Runtime Spread Designer.

BEST SELLER TX Text Control .NET for Windows Forms/WPF from $1,045.59
Word processing components for Visual Studio .NET.

NEW RELEASE

Janus WinForms Controls Suite V4.0 from $889.00
Add powerful Outlook style interfaces to your .NET applications.

BEST SELLER

BEST SELLER

Untitled-2 1 12/1/11 2:06 PM

http://www.componentsource.com

msdn magazine52

N U GE T

Becoming a
NuGet Author

In the November issue, Phil Haack introduced NuGet,
a new package management ecosystem for developers (msdn.micro-
soft.com/magazine/hh547106). NuGet is a project of the Outercurve
Foundation, whose goal is to become a fi rst-class package manage-
ment system for the Microsoft .NET Framework. Th e project team
consists mostly of Microsoft developers working in collaboration
with the developer community. Th e introduction of NuGet to our
development ecosystem gives .NET developers a way to consume,
author and publish packages.

At fi rst glance, NuGet might appear to be a tool just for the open
source community, but that’s only part of a larger story. NuGet was
specifi cally designed not only to help distribute packages within
the open source community, but also to deliver internal packages
behind the fi rewall in an enterprise. Th is means you can use NuGet
in a multifaceted way to install and update packages both from
Microsoft and from the open source community at large, as well
as your own internal servers.

In this article, I’ll explore what it takes to become a NuGet pack-
age author. Incorporating NuGet into your development lifecycle
isn’t complicated, and it will yield substantial awesomeness. Once
you’ve done this, your package consumption, creation and distribu-

Clark Sell

tion problems will fade to a distant memory. Next month, I’ll delve
into what it takes to host your own packages.

Ecosystem Defi ned
Before starting on the journey to become a package author, let’s
briefl y recap the larger ecosystem. NuGet, from the point of view
of the package distributor, consists of a few essential components,
mainly a command-line utility called NuGet.exe (nuget.codeplex.com/
releases/view/58939) and a server to host the packages, such as the
offi cial NuGet Gallery, nuget.org. As last month’s article demon-
strated, you can interact with NuGet in three ways: using NuGet.exe,
using NuGet inside of Visual Studio (the Package Manager Console
window (View | Other Windows), and using the NuGet Package
Explorer (npe.codeplex.com). Th ose utilities interact with one or more
NuGet repositories. On the fl ip side, nuget.org is a public gallery you
can use to store, host and publish NuGet packages. Nuget.org is built
using another open source project known as NuGetGallery, which
you can fi nd at github.com/nuget/nugetgallery. I will talk more about how
to host your own NuGet Gallery in the next issue.

As a package author, you can publish many diff erent packages to
a NuGet repository, and each package can have multiple versions.
Nuget.org gives its customers a chance to read details about a pack-
age, install the package, contact the package owner and, in what
should be rare cases, report abuse.

As the package author, you can control items such as version
numbers, dependencies and how your package will be installed.

Getting Set Up
To publish a package, assuming you’ll be using nuget.org as the reposi-
tory, you need to sign up for an account on the NuGet Gallery. Becom-
ing an author is easy: Just browse to the Contribute to NuGet Gallery
section at nuget.org/contribute/index and select Get Started. Th en, click on

This article discusses:
• The NuGet ecosystem
• The anatomy of a package
• The nuspec package manifest
• Publishing to NuGet.org
• Automating the build process with TFS NuGetter

Technologies discussed:
NuGet, Visual Studio, TFS NuGetter

http://msdn.microsoft.com/magazine/hh547106
http://msdn.microsoft.com/magazine/hh547106
http://nuget.codeplex.com/releases/view/58939
http://nuget.codeplex.com/releases/view/58939
www.nuget.org
www.nuget.org
www.nuget.org
www.nuget.org
www.nuget.org
http://npe.codeplex.com
www.github.com/nuget/nugetgallery
www.nuget.org/contribute/index

53January 2012msdnmagazine.com

Register now to get to the registration form and fi ll out the necessary
information to create a new account. Nuget.org will send an e-mail with
a URL where you can confi rm your e-mail address and account.

Aft er confi rming your account, you can log on to the site and
get your access key, a unique token that identifies you to the
nuget.org repository and enables you to automate various package
management tasks, such as pushing an update to your package.

For this article, I’ll demonstrate both the NuGet.exe command
line and the NuGet Package Explorer. One point to note: Once you
download the command-line version, you’ll probably want to update
your system’s path Environment variable to include its location.
Th is makes it easy to use NuGet from anywhere on your system.

Anatomy of a Package
As noted in the last article, a NuGet package is an Open Packaging
Convention (OPC) container fi le with the .nupkg fi le extension.
Th e format for the package relies heavily on conventions, with a
manifest fi le at the root known as the nuspec fi le. A sample directory
structure initially might look like this:

Root Folder
| package.manifest
+---lib
+---content
+---tools

As you can see, there are three folders at the root:
• lib contains all of the assemblies to be referenced
• content contains fi les and directories that are copied to

the root of your target project
• tools is a place for custom Windows PowerShell scripts

that might be run on installation of your package or
every time the target project is loaded in Visual Studio

Of these, the lib folder is the most complex. It contains subfolders
that correspond to framework dependencies, as shown here:

Root
| package.manifest
\---lib
 | MyFirstAssembly.dll
 \---net11
 | MySecondAssembly.dll
 \---net20
 | MySecondAssembly.dll
 \---sl
 | MySecondAssembly.dll
 \---netmf
 | MySecondAssembly.dll
+---content
+---tools

If your assembly works in all versions of the .NET Framework
(rare indeed!), you need to include it only at the root of your lib
folder, as with MyFirstAssembly.dll.

Given how rare that scenario is, the NuGet team strongly discour-
ages the practice. It’s better to make your assembly dependent on a
specifi c framework version. To do so, add a folder for that framework
version and include the correct version of the assembly in that folder.
As you can see in the example folder, MySecondAssembly.dll has a
diff erent version for the .NET Framework 1.1, 2.0, Silverlight and the
.NET MicroFramework. Th is ensures NuGet installs your package
properly for the target frameworks.

When your customer installs your package, NuGet will install the
correct assemblies based on the target framework for the project.
In the previous example, let’s assume your customer is trying to

install your package into a project that targets version 4 of the .NET
Framework. Because it’s not listed as a framework in the sample
lib folder, NuGet will take the closest framework version available
and use that. In this example, it would take the assemblies found
in the net20 folder and use those.

Th e content folder is a clone of the target project’s root folder.
Anything found in that folder will be copied as is into the target
project. For example, if you wanted to copy some images into
the target’s /images folder, you’d need to include those images in
the /content/images folder.

Th e tools folder includes any Windows PowerShell scripts that
NuGet will invoke during package installation or when the project
is opened, or that are used later by the customer. Once the folder is
copied to the target project, it’s added to the ̀ $env:Path (PATH) envi-
ronment variable within the Visual Studio Package Manager Console.

NuGet has a built-in facility to automate the populating of your
package—the fi les node. Th e fi les node is a way to explicitly list the
files you want copied into your package structure when creating
the .nupkg file. This helps automate the overall packing process.
Th e fi le element is straightforward, defi ning src, target and exclude
attributes. As you might guess, src defi nes the fi le you want copied;
target defi nes the destination you want it copied to; and exclude
defi nes what you don’t want copied:

<files>
 <file src="bin\Debug*.dll" target="lib" />
 <file src="bin\Debug*.pdb" target="lib" />
 <file src="tools***.*" exclude="*.log" />
</files>

If you have another process in place to create your package, you
can ignore the fi les node in the .nuspec fi le.

The .nuspec File
The nuspec file is your package manifest. It’s a simple XML file
that defines your overall package and includes things like name,
version number, package references and so on. To create your new
manifest, NuGet.exe has a command called spec that you can use
as a starting point:

> NuGet.exe spec

Th e spec command creates a new fi le called package.nuspec, a
valid fi le that contains sample data. Figure 1 shows an example
fi le created by spec.

<?xml version="1.0"?>
 <package >
 <metadata>
 <id>Package</id>
 <version>1.0</version>
 <authors>csell5</authors>
 <owners>csell5</owners>
 <licenseUrl>http://LICENSE_URL_HERE_OR_DELETE_THIS_LINE</licenseUrl>
 <projectUrl>http://PROJECT_URL_HERE_OR_DELETE_THIS_LINE</projectUrl>
 <iconUrl>http://ICON_URL_HERE_OR_DELETE_THIS_LINE</iconUrl>
 <requireLicenseAcceptance>false</requireLicenseAcceptance>
 <description>Package description</description>
 <copyright>Copyright 2011</copyright>
 <tags>Tag1 Tag2</tags>
 <dependencies>
 <dependency id="SampleDependency" version="1.0" />
 </dependencies>
 </metadata>
 </package>

Figure 1 Sample .nuspec File

www.nuget.org
www.nuget.org
www.msdnmagazine.com

msdn magazine54 NuGet

Aft er this fi le is created, you replace the sample values. For most
of the values, you only do this once, though some will change more
oft en. For example, the id of your package shouldn’t change aft er it’s
published, but the version number will change with every release.

You can also run nuget.exe spec against a Visual Studio project
fi le (such as .csproj or .vbproj). In this case, the default values are
already populated based on metadata in the project fi le. Here are
some of the simpler elements of the .nuspec fi le:

• id unique identifi er for the package
• title human-friendly title of the package
• description long description of the package
• summary short description of the package
• licenseURl a link to the license
• copyrights copyright details for the package

There are currently 28 different top-level elements. While
the .nuspec fi le is pretty self-explanatory, you can fi nd all of the
details at bit.ly/lgQ4J4. Now let’s take a look at a few of the more
complex .nuspec elements.

Dependencies and References
We all know that managing dependencies can be diffi cult, espe-
cially when the chain of dependencies becomes long and inter-
mingled. Let’s say you’ve built PackageA. Your package happens
to use PackageB, which can also be found in NuGet. Rather than
including PackageB within your package, you just need to create a
“dependency” on it. When someone starts to install your package,
NuGet fi rst inspects your nuspec fi le for its dependencies. It then
looks at each dependency package and examines its dependencies
and so on until it builds up a graph of every package it needs to
download in order to fulfi ll all of the dependencies. It then down-
loads the entire graph of packages and installs them. Th is feature
of NuGet drastically simplifi es package creation and installation.

Let’s look at some package dependencies defi ned as shown in
the dependency node here:

<package>
<metadata>
<dependencies>
<dependency id="SampleDependency" version="1.0" />
 <dependency id="AnotherSampleDependency" version="[1.2,2.5)" />
</dependencies>
</metadata>
</package>

You can list as many dependencies as you need. In each case,
the id attribute indicates the package you have a dependency on,
and the version attribute represents the version range you require.
My example here shows a dependency on the SampleDependency
project equal to version 1.0 or higher.

Th e NuGet version range specifi cation gives you the ability to set
the particular range of versions you allow. Th is looks something like
version="[1.2, 2.5)", where the square bracket defi nes inclusion and
the parenthesis defi nes exclusion. Th is example indicates that any
package equal to or greater than 1.2 and less than 2.5 is allowed. NuGet
will take the latest version found in that range. For detailed informa-
tion about the version range specifi cation, please visit bit.ly/qVXWxs.

In some cases, the person installing your package might need
to program against types in a .NET Framework assembly. To
add the appropriate reference, add the frameworkAssemblies
node to the .nuspec fi le, detailing the list of required framework
assemblies, like so:

<package>
 <metadata>
 <frameworkAssemblies>
 <frameworkAssembly assemblyName="System.Something"
targetFramework="net40" />
 <frameworkAssembly assemblyName="System.SomethingElse" />
 </frameworkAssemblies>
 </metadata>
</package>

Transformations
Many projects require more than just an assembly reference to
work correctly. Th ey may need a .confi g fi le change, or even some
source code modifi ed—and NuGet supports both of these scenarios
natively. I’ll focus on .confi g fi le transformations here. For more
information about transformations, please see bit.ly/jqzry2.

During installation of your NuGet package, NuGet will run the
transformation to add your new .confi g values. To make this happen,
you need to add a transformation fi le to the content folder of your
package. Th is is a valid XML fi le with the extension “transformation,”
whose fi lename matches the fi le to which you want to apply the trans-
form. For example, to apply a transformation to a web.confi g fi le, you’d
include a fi le named web.confi g.transformation.

Your transformation fi le should include only the sections of the
confi guration fi le you want added to target fi le. Let’s say you want to
add a new module to your customer’s system.webServer section. Sim-
ply add that section in its entirety to the transformation fi le, like this:

<configuration>
 <system.webServer>
 <modules>
 <add name="NewModule" type="My.NewModule" />
 </modules>
 <system.webServer>
</configuration>

NuGet will not replace existing sections with the sections you
add but rather merge them together. So if your target already had
a modules section with its own module listed, the result of the two
fi les being merged aft er installation would look something like this:

<configuration>
 <system.webServer>
 <modules>
 <add name="ExistingModule" type="Their.ExistingModule" />
 <add name="NewModule" type="My.NewModule" />
 </modules>
 <system.webServer>
</configuration>Figure 2 Publishing with the NuGet Package Explorer

www.bit.ly/lgQ4J4
www.bit.ly/qVXWxs
www.bit.ly/jqzry2

55January 2012msdnmagazine.com

As you can see, your module is added to the end of the existing
stack of modules. If a user wanted to remove your package, just
your changes would be removed (assuming you didn’t make any
changes to those sections), leaving the rest as it was in the fi rst place.

Versioning
Versioning is at the core of anything we build. Th e NuGet package
version refers to the package and not necessarily the assemblies
contained inside (though it’s customary to keep these in sync).
You defi ne the package version number in the .nuspec fi le, with a
format of N.N.N.N, like so.

<package>
 <metadata>
 <version>1.2.3.4</version>
 </metadata>
</package>

Th ere are a few properties in the .nuspec fi le where you can use
a replacement token rather than just a static string. Th e version
element is one of these. So instead of defi ning a static string like
1.2.3.4, you can insert a token, [$version$], which will later be
replaced by NuGet.exe. With that token present, the version
specified in the assembly’s AssemblyVersionAttribute will be
carried through to the .nuspec fi le:

<package>
 <metadata>
 <version>$version$</version>
 </metadata>
</package>

This is a great option if you want to keep the packages and
version in sync, though there are plenty of reasons why you may
not choose to do this.

Packing the Package
As mentioned earlier, a NuGet package is an OPC fi le with a .nupkg
fi le extension. To create a package from the command line you simply
call NuGet.exe with the pack command, passing it your .nuspec fi le:

> NuGet.exe Pack YourPackage.nuspec

As with spec, you can run pack against your project fi le as well.
NuGet will build a complete NuGet package (.nupkg fi le) based
solely on the metadata found within your .csproj or .vbproj fi le. If
you’ve already created a .nuspec fi le, pack would use that .nuspec fi le:

> NuGet.exe pack [path]\MyProject.csproj

You’ve just created your fi rst NuGet package, congratulations!

Symbol Support
Visual Studio has a great feature that lets developers step through
source code on demand. NuGet supports this by giving package
authors the ability to create and publish a symbol package. To create
a symbol package, use the –symbols option when using pack:

> NuGet.exe pack MyProject.nuspec -symbols
> NuGet.exe pack MyProject.csproj –symbols

Pack will generate two .nupkg packages, MyProject.nupkg and
MyProject.Symbols.nupkg. Th e .symbols.nupkg can later be pushed
to SymbolSource.org using the command NuGet.exe push. For more
information about creating symbol packages with NuGet, see bit.ly/jqzry2.

Publishing to NuGet.org
With your package created, it’s now time to push it. Push is the
NuGet command to publish your package to the server and it’s used

like most modern source control systems. Unlike the commands
I’ve previously mentioned, push takes a number of arguments:

> NuGet.exe push <package path> [API key] [options]

• Package path Th e path to your package
 • Example c:\MyPackge\MyPackage.1.0.nupkg
• API key Your unique access token
 • Example: ABFC2E12-40B3-41A1-A7CC-8FC9AB3A71E0
 • Optional, could be set using the NuGet.exe setApiKey

command
• -source (src) Th e server where the package is going.
 • Example: -source http://packages.nuget.org/v1/
 • Optional, unless you’re pushing to an alternative place
• -CreateOnly (co) Pushes package to gallery but doesn’t publish
 • Optional, default = false

Th e following sample command pushes the MyPackage package
to NuGet:

> NuGet.exe push MyPackage.1.0.nupkg ABFC2E12-40B3-41A1-A7CC-8FC9AB3A71E0

You could also use NuGet Package Explorer, as shown in Figure 2.
If you built a symbol package, NuGet would automatically fi nd

it and push it to both repositories, nuget.org and symbolsource.org. If the
target machine is set up to use symbolsource.org as a symbol source,
the developer can now step into your package source files on
demand from within Visual Studio.

You’re published! If this is your second version of your package,
that version will now become the default version. As explained in
last month’s article, when someone looks for package updates, your
package will now be listed as one with an update.

Wrapping Up
Chances are your development team has some kind of build and
deploy process in place. If you’re like me, you’re now starting to
think about ways to integrate NuGet into that process. Clearly
you could wrap all the commands I’ve shown here into your build
process, but if you’re already using Team Foundation Server (TFS),
there’s an easier way.

TFS NuGetter (nugetter.codeplex.com) is an open source project
that extends the build process for TFS 2010, performing all of the
necessary versioning, packaging and deployment functions in a
customizable and repeatable way, with NuGet at its core. Regardless
of your package’s destination, TFS NuGetter will save you a great
deal of time.

NuGet isn’t a new concept to our industry, but for the .NET
developer it may well seem groundbreaking. NuGet provides a
much-needed package management facility, useful to everyone
from garage developer to large enterprises. It gives you not only a
place to publish your packages, but also a place for customers to
discover your work. Publish your packages to NuGet and get found!

You can find all of the links used in this article and more at
on.csell.net/BeANuGetAuthor.

CLARK SELL works as a senior Web evangelist for Microsoft outside of Chicago.
He blogs at csell.net, podcasts at DeveloperSmackdown.com and can be found
on Twitter at twitter.com/csell5.

THANKS to the following technical experts for reviewing this article:
David Ebbo, Phil Haack, Mark Nichols and Brandon Satrom

www.bit.ly/jqzry2
www.nuget.org
www.symbolsource.org
www.symbolsource.org
http://nugetter.codeplex.com
http://on.csell.net/BeANuGetAuthor
www.twitter.com/csell5
www.msdnmagazine.com

msdn magazine56

ORCH A R D C MS

Orchard Extensibility

Most Web applications have a lot in common but at the
same time exhibit a lot of diff erences. Th ey all have static pages
(“Terms of Use,” “About Us” and so on). Th ey present contents
within a common layout. Th ey have navigation menus. Th ey might
have search, comments, ratings and social network integration.
But some are blogs, some sell books, some keep friends in touch
and some contain hundreds of thousands of reference articles on
your favorite technologies.

A Content Management System (CMS) aims at providing the
common pieces while imposing no constraints on the type of site
being built. It’s a delicate exercise in extensibility.

Bertrand Le Roy

Th e creators of the Orchard CMS (orchardproject.net)—that includes
me—have opted for an approach that relies massively on compo-
sition and convention. In this article, I’ll present a few examples
of simple extensions to the system that should be a good starting
point for your own modules.

A Dynamic Type System
No matter what CMS you use to build your site, there will be a
central content entity that goes by diff erent names. In Drupal, it’s
called a node, and in Orchard, it’s a content item. Content items
are atoms of content such as blog posts, pages, products, widgets
or status updates. Some of them correspond to a URL, and some
don’t. Th eir schemas vary greatly, but what they have in common
is they’re the smallest content units on the site. Or are they?

Splitting the Atom
As developers, our fi rst reaction is to identify content items as instances
of classes (post, page, product or widget), which is correct to an extent.
In the same way that classes are composed of members (fi elds, prop-
erties and methods), content types (the “classes” of content items) are
themselves composite objects. Instead of being composed of simple
properties with types that are themselves classes, they’re composed
of content parts, which are the atoms of behavior of your content.
Th is is an important distinction, which I’ll illustrate with an example.

A blog post typically is composed of a URL, title, date, rich text
body, a list of tags and a list of user comments. None of those parts
is specifi c to a blog post. What makes a blog post is the specifi c
composition of the parts, not just any one of the parts.

This article discusses:
• Types and content items
• Building a part
• Database records
• The Part class
• Content part drivers
• Rendering shapes
• Packaging extensions
• Extensibility interfaces

Technologies discussed:
Orchard CMS

Code download available at:
bit.ly/u92283

www.bit.ly/u92283
www.orchardproject.net

57January 2012msdnmagazine.com

Most blog posts have comments, but comments could also be
used in a commerce site to implement reviews. Similarly, tags are
potentially useful as a way to classify any content item, not just blog
posts. Th e rich text body of a post is no diff erent from the body
of a page. Th e list goes on. It should be clear at this point that the
unit of behavior on a Web site is smaller than the unit of content.

Another fact about CMSes is that content types aren’t fi xed in
advance. Blog posts used to be simple text, but they quickly became
a lot more. Th ey now routinely contain videos, podcasts or image
galleries. If you blog about your travels around the world, maybe
you’ll want to add geolocation to your posts.

Again, content parts come to the rescue. You need a longitude and
latitude? Extend the blog post type by adding a mapping part (we
have several available in our mod-
ule gallery: gallery.orchardproject.net).
It quickly becomes obvious when
you think about it that this oper-
ation of adding a part to an exist-
ing type will be performed most
oft en by the owner of the site, not
by a developer. Hence, it shouldn’t
be possible only by adding a
complex property to a Microsoft
.NET Framework type. It has to be
metadata-driven and happen at
run time so that we can build an
admin UI to do it (see Figure 1).

This is the first way to extend
Orchard: You can create and extend
content types at will from the
admin UI. Of course, anything that
you can do from the admin UI,
you can do from code, such as this:

item.Weld(part);

This code welds a part onto a
content item dynamically. Th at’s an
interesting possibility, as it allows
instances of types to be extended
dynamically at run time. In
dynamic languages, this is called
a mix-in, but it’s a concept that’s
almost unheard of in statically
typed languages such as C#. Th is
opens up new possibilities, but it

isn’t exactly the same thing as what we were doing from the admin
UI. We also want to be able to add the part to the type once and for
all instead of adding it to each instance, as shown here:

ContentDefinitionManager.AlterTypeDefinition(
 "BlogPost", ctb => ctb.WithPart("MapPart")
);

Th is is actually exactly how the blog post content type is defi ned
in the fi rst place:

ContentDefinitionManager.AlterTypeDefinition("BlogPost",
 cfg => cfg
 .WithPart("BlogPostPart")
 .WithPart("CommonPart", p => p
 .WithSetting("CommonTypePartSettings.ShowCreatedUtcEditor", "true"))
 .WithPart("PublishLaterPart")
 .WithPart("RoutePart")
 .WithPart("BodyPart")
);

You may notice in this code snippet that tags and com-
ments seem to be missing from blog posts. This is one more
example of careful separation of concerns. The blog module
actually knows nothing of tags and comments, no more than
the tags and comments modules do about blogs. A third party is
responsible for putting them together.

Yummy Recipes
At setup, a recipe is executed that’s responsible for this type of
task. It’s an XML description of the initial confi guration of the site.
Orchard comes with three default recipes: blog, default and core.

Figure 1 The Orchard Content Type Editor

No matter what CMS you use
to build your site, there will be a
central content entity that goes

by different names.

http://gallery.orchardproject.net
www.msdnmagazine.com

msdn magazine58 Orchard CMS

Th e following code shows the part of the blog recipe that adds the
tags and comments to blog posts:

<BlogPost ContentTypeSettings.Draftable="True" TypeIndexing.Included="true">
 <CommentsPart />
 <TagsPart />
 <LocalizationPart />
</BlogPost>

I’ve shown so far the various ways in which content parts can be
composed into content items. My next step will be to explain how
you can build your own parts.

Building a Part
To illustrate the process of building a new part, I’m going to rely
on the example of the Meta feature from my Vandelay Industries
module (download it from bit.ly/u92283). Th e Meta feature adds key-
words and description properties for Search Engine Optimization
(SEO) purposes (see Figure 2).

Th ese properties will be rendered into the head section of the
page as standard metatags that search engines understand:

<meta content="Orchard is an open source Web CMS built on ASP.NET MVC."
 name="description" />
<meta content="Orchard, CMS, Open source" name="keywords" />

The Record
Th e fi rst piece of the puzzle will be a description of the way in which
the data is going to be persisted into the database. Strictly speaking,
not all parts need a record, because not all parts store their data in
the Orchard database, but most do. A record is just a regular object:

public class MetaRecord : ContentPartRecord {
 public virtual string Keywords { get; set; }
 public virtual string Description { get; set; }
}

Th e MetaRecord class derives from ContentPartRecord. Th is isn’t
absolutely necessary, but it’s defi nitely convenient as it gets some of
the plumbing out of the way. Th e class has two string properties,
for keywords and description. Th ese properties must be marked
virtual so the framework can “mix-in” its own logic to build the
concrete class that will be used at run time.

Th e record’s sole responsibility
is database persistence, with the
help of a declaration for the stor-
age mechanism that can be found
in the MetaHandler:
public class MetaHandler : ContentHandler
{
 public MetaHandler(
 IRepository<MetaRecord> repository) {
 Filters.Add(
 StorageFilter.For(repository));
 }
}

Th e storage also has to be ini-
tialized. Early versions of Orchard
were inferring the database schema
from the record classes, but guess-
ing can only take you so far, and this
has since been replaced with a more
accurate migration system where
schema modifi cations are explic-
itly defi ned, as shown in Figure 3.

Th e MetaRecord table is created
with a name that the system will
be able to map by convention to
the MetaRecord class. It has the
system columns for a content
part record added by the call to
the ContentPartRecord method,
plus the Keywords and Descrip-
tion string columns that will
automatically map by convention
to the corresponding properties
of the record class.

Th e second part of the migration
method says that the new part will
be attachable from the admin UI to
any existing content type.

Th e Create method always rep-
resents the initial migration and Figure 2 The SEO Meta Data Editor

www.bit.ly/u92283

59January 2012msdnmagazine.com

usually returns 1, which is the migration number. Th e convention
is that in future versions of the module, the developer can add
UpdateFromX methods, where X is replaced by the migration num-
ber from which the method operates. Th e method should return
a new migration number that corresponds to the new migration
number of the schema. Th is system allows for smooth, independent
and fl exible upgrades of all components in the system.

To represent the actual part, a separate class is used, which I’ll
look at now.

The Part Class
Th e representation of the part itself is another class that derives
from ContentPart<TRecord>:

public class MetaPart : ContentPart<MetaRecord> {
 public string Keywords {
 get { return Record.Keywords; }
 set { Record.Keywords = value; }
 }

 public string Description {
 get { return Record.Description; }
 set { Record.Description = value; }
 }
}

Th e part acts as a proxy to the record’s Keywords and Descrip-
tion properties as a convenience, but if it didn’t, the record and
its properties would still be available through the public Record
property of the base ContentPart class.

Any code that has a reference to a content item that has the MetaPart
part will be able to gain strongly typed access to the Keywords and

Description properties by calling the As method, which is the analog
in the Orchard type system of a CLR cast operation:

var metaKeywords = item.As<MetaPart>().Keywords;

The part class is also where you’d implement any specific
behavior of the part’s data. For example, a composite product
could expose methods or properties to access its subproducts or
compute a total price.

Behavior that pertains to user interaction (the orchestration
code that would in a regular ASP.NET MVC application be found
in the controller) is another matter. Th is is where drivers come in.

The Driver
Each part in a content item has to get an opportunity to partic-
ipate in the request lifecycle and eff ectively do the work of an
ASP.NET MVC controller, but it needs to do it at the scale of the
part instead of doing it at the scale of the full request. A content
part driver plays the role of a scaled-down controller. It doesn’t
have the full richness of a controller in that there’s no mapping to
its methods from routes. Instead, it’s made of methods handling
well-defi ned events, such as Display or Editor. A driver is just a
class that derives from ContentPartDriver.

Th e Display method is what gets called when Orchard needs to
render the part in read-only form (see Figure 4).

Th is driver is in fact a little atypical, because most drivers result
in simple in-place rendering (more on that in a moment), whereas
the Meta part needs to render its metatags in the head. Th e head
section of an HTML document is a shared resource, so special
precautions are necessary. Orchard provides APIs to access those
shared resources, which is what you’re seeing here: I’m going through
the resource manager to set the metatags. Th e resource manager
will take care of the rendering of the actual tags.

public class MetaMigrations : DataMigrationImpl {

 public int Create() {
 SchemaBuilder.CreateTable("MetaRecord",
 table => table
 .ContentPartRecord()
 .Column("Keywords", DbType.String)
 .Column("Description", DbType.String)
);

 ContentDefinitionManager.AlterPartDefinition(
 "MetaPart", cfg => cfg.Attachable());

 return 1;
 }
}

Figure 3 Explicitly Defi ned Schema Modifi cations

protected override DriverResult Display(
 MetaPart part, string displayType, dynamic shapeHelper) {
 var resourceManager = _wca.GetContext().Resolve<IResourceManager>();
 if (!String.IsNullOrWhiteSpace(part.Description)) {
 resourceManager.SetMeta(new MetaEntry {
 Name = "description",
 Content = part.Description
 });
 }
 if (!String.IsNullOrWhiteSpace(part.Keywords)) {
 resourceManager.SetMeta(new MetaEntry {
 Name = "keywords",
 Content = part.Keywords
 });
 }
 return null;
}

Figure 4 The Driver’s Display Method Prepares
the Rendering of the Part

A content part driver plays the
role of a scaled-down controller.

@using Vandelay.Industries.Models
@model MetaPart

<fieldset>
 <legend>SEO Meta Data</legend>

 <div class="editor-label">
 @Html.LabelFor(model => model.Keywords)
 </div>
 <div class="editor-field">
 @Html.TextBoxFor(model => model.Keywords, new { @class = "large text" })
 @Html.ValidationMessageFor(model => model.Keywords)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Description)
 </div>
 <div class="editor-field">
 @Html.TextAreaFor(model => model.Description)
 @Html.ValidationMessageFor(model => model.Description)
 </div>

</fieldset>

Fi gure 5 The Editor Template for the MetaPart

www.msdnmagazine.com

msdn magazine60 Orchard CMS

The method returns null because there’s nothing to render
in-place in this specifi c scenario. Most driver methods will instead
return a dynamic object called a shape, which is analogous to a view
model in ASP.NET MVC. I’ll come back to shapes in a moment
when the time comes to render them into HTML, but for the
moment, suffi ce it to say they’re very fl exible objects where you can
stick everything that’s going to be relevant to the template that will
render it, without having to create a special class, as shown here:

protected override DriverResult Editor(MetaPart part, dynamic shapeHelper) {
 return ContentShape("Parts_Meta_Edit",
 () => shapeHelper.EditorTemplate(
 TemplateName: "Parts/Meta",
 Model: part,
 Prefix: Prefix));
}

Th e Editor method is responsible for preparing the rendering of
the editor UI for the part. It typically returns a special kind of shape
that’s appropriate for building composite edition UIs.

Th e last thing on the driver is the method that will handle posts
from the editor:

protected override DriverResult Editor(MetaPart part,
 IUpdateModel updater, dynamic shapeHelper) {
 updater.TryUpdateModel(part, Prefix, null, null);
 return Editor(part, shapeHelper);
}

Th e code in this method calls TryUpdateModel to automatically
update the part with data that was posted back. Once it’s done with
this task, it calls in to the fi rst Editor method in order to return the
same editor shape it was producing.

Rendering Shapes
By calling in to all the drivers for all the parts, Orchard is able
to build a tree of shapes—a large composite and dynamic

view model for the whole request. Its next task is to fi gure out
how to resolve each of the shapes into templates that will be
able to render them. It does so by looking at the name of each
shape (Parts_Meta_Edit in the case of the Editor method) and
attempting to map that to files in well-defined places of the
system, such as the current theme’s and the module’s Views folders.
Th is is an important extensibility point because it enables you to
override the default rendering of anything in the system by just
dropping a fi le with the right name into your local theme.

In the Views\EditorTemplates\Parts folder of my module, I
dropped a fi le called Meta.cshtml (see Figure 5).

Everything’s Content
Before I move on to other extensibility topics, I’d like to mention
that once you understand the content item type system, you under-
stand the most important concept in Orchard. Many important
entities of the system are defi ned as content items. For example, a

user is a content item, which enables profi le modules to add arbi-
trary properties to them. We also have widget content items, which
can get rendered into zones that a theme defi nes. Th is is how the
search forms, blog archives, tag clouds and other sidebar UI get
created in Orchard. But the most surprising use of content items
might be the site itself. Site settings are eff ectively content items
in Orchard, which makes a lot of sense once you understand how
multitenancy is managed in Orchard. If you want to add your own
site settings, all you have to do is add a part to the Site content type,
and you can build an admin edition UI for it following the exact
same steps that I outlined earlier. A unifi ed extensible content type
system is an extremely rich concept.

Packaging Extensions
I’ve shown how to build your own parts for Orchard, and I’ve
alluded to the concepts of modules and themes without defi ning
these terms. In a nutshell, they’re the units of deployment in the
system. Extensions are distributed as modules, and the visual look
and feel is distributed as themes.

A theme is typically a bunch of images, stylesheets and template
overrides, packaged into a directory under the Th emes directory.
It also has a theme.txt manifest fi le at its root to defi ne metadata
such as the author of the theme.

Similarly, a module is a directory under the Modules directory.
It’s also an ASP.NET MVC area, with a few twists. For example, it

private readonly IRepository<ContentTagRecord> _contentTagRepository;
private readonly IContentManager _contentManager;
private readonly ICacheManager _cacheManager;
private readonly ISignals _signals;

public TagCloudService(
 IRepository<ContentTagRecord> contentTagRepository,
 IContentManager contentManager,
 ICacheManager cacheManager,
 ISignals signals)
 _contentTagRepository = contentTagRepository;
 _contentManager = contentManager;
 _cacheManager = cacheManager;
 _signals = signals;
}

Figure 6 In jecting Dependencies through Constructor Parameters

A theme is typically a bunch
of images, stylesheets and

template overrides, packaged
into a directory under the

Themes directory.

Site settings are effectively
content items in Orchard, which
makes a lot of sense once you

understand how multitenancy is
managed in Orchard.

61January 2012msdnmagazine.com

needs an additional module.txt manifest fi le that declares some
metadata for the module, such as its author, Web site, feature names,
dependencies or version number.

Being only one area of a larger site, a module needs to play nice
with a few shared resources. For example, the routes that it uses must
be defi ned by a class implementing IRouteProvider. Orchard will
build the full route table from what was contributed by all modules.
Similarly, modules can contribute to building the admin menu by
implementing the INavigationProvider interface.

Interestingly, the code for the modules isn’t usually delivered as
compiled binaries (although this is technically possible). Th is was
a conscious decision that we made to encourage module hack-
ing, where you start from a module that you download from the
gallery and tweak it to address your specifi c needs. Being able to
tweak the code for anything is one of the strengths of a PHP CMS
such as Drupal or WordPress, and we wanted to provide that same
kind of fl exibility in Orchard. When you download a module, you
download source code, and that code gets dynamically compiled.
If you make a change in a source fi le, the change gets picked up and
the module is recompiled.

Dependency Injection
So far, I’ve focused on one type of extensibility, the type system,
because that represents the majority of Orchard modules, but
there are many other extensibility points—far too many, in fact,
for me to list here. I still want to add a few things about the general
principles that are at work throughout the framework.

One key thing to get right in a highly modular system is loose
coupling. In Orchard, almost everything above low-level plumb-
ing is a module. Even modules are managed by a module! If you
want these modules to work as independently from one another
as possible—if you want one implementation of a feature to be
swappable with another—you can’t have hard dependencies.

A key way to reach this goal is to use dependency injection.
When you need to use the services from another class, you don’t
just instantiate it, as that would establish a hard dependency on that
class. Instead, you inject an interface that this class implements, as
a constructor parameter (see Figure 6).

Th is way your dependency is on the interface, not the class, and
the implementation can be swapped without having to change your
code. Th e specifi c implementation of the interface that gets injected
is no longer the decision of the consumer of the interface. Control
is inverse here, and it’s the framework that makes that decision.

Of course, this isn’t limited to the interfaces that Orchard defi nes.
Any module can provide its own extensibility points by just declaring
an interface that derives from IDependency. It really is that simple.

Some Other Extensibility Points
I’ve only scratched the surface of extensibility here. There are
many interfaces that can be used in Orchard to extend the system
in creative ways. One could even say that Orchard is essentially
nothing but an extensibility engine. All pieces in the system are
swappable and extensible.

Before I conclude this article, I’ll mention some of the most
useful interfaces in the system that you might want to check out. I

don’t have nearly enough room here to go into these in depth, but
I can give you pointers, and you can go into the code and follow
usage of the interfaces. Th is is a really great way to learn, by the way.

• IWorkContextAccessor enables your code to access the
work context for the current request. Th e work context, in
turn, provides access to the HttpContext, current Layout,
site confi guration, user, theme and culture. It also provides
facilities to get an implementation of an interface, from those
places where you can’t do dependency injection or where
you need to delay it until aft er construction.

• IContentManager provides everything you need to query
and manage content items.

• IRepository<T> gives access to lower-level data access meth-
ods, for those times when IContentManager isn’t enough.

• IShapeTableProvider enables a boatload of on-the-fl y
shape manipulation scenarios. Basically, you hook up
to events about shapes, and from them you can create
alternate shapes to be used in certain situations, transform
shapes, add members to them, move them around in the
layout and so on.

• IBackgroundTask, IScheduledTask and IScheduled-
TaskHandler are the interfaces to use if you need delayed
or repeated tasks to be executed in the background.

• IPermissionsProvider enables your modules to expose
their own permissions.

Learn More
Orchard is an extensibility powerhouse, and presenting all it has
to off er in this limited space is a challenge. My hope is that I gave
you the will to learn more about it and dive deep into it. We have
a friendly and lively community on orchard.codeplex.com/discussions
that will be happy to guide you and answer your questions. With
so much to implement, and so many ideas to explore, here’s a great
chance to provide a signifi cant contribution.

BERTRAND LE ROY started his professional developer career in 1982 when he pub-
lished his fi rst video game. He released in 2002 what was probably the fi rst CMS
to run on ASP.NET. A year later, he was hired by the Microsoft ASP.NET team
and moved to the United States. He has worked on ASP.NET versions 2.0 to 4 and
ASP.NET AJAX; contributed to making jQuery an offi cial part of the .NET develop-
er’s tool chest; and represents Microsoft in the OpenAjax Alliance steering committee.

THANKS to the following technical expert for reviewing this article:
Sebastien Ros

One could even say that Orchard
is essentially nothing but an

extensibility engine. All pieces in
the system are swappable and

extensible.

http://orchard.codeplex.com/discussions
www.msdnmagazine.com

msdn magazine62

A S P. N E T SEC UR IT Y

Securing Your
ASP.NET Applications

In the previous issue, I discussed the importance of build-
ing security into your Web applications and looked at some types
of attacks, including SQL injection and parameter tampering, and
how to prevent them (msdn.microsoft.com/magazine/hh580736). In this
article, I’ll delve into two more common attacks to help round out
our arsenal of application protections—cross-site scripting (XSS)
and cross-site request forgery (CSRF).

You might be wondering: Why not just use a production
security scanner? Scanners are great tools for fi nding low-hanging
fruit, and they’re especially good at fi nding application and system
confi guration issues, but they can’t know your application the way
you do. Th erefore, it’s imperative that you become familiar with
potential security issues and take the time to check your applica-
tions and build security into your soft ware development lifecycle.

Cross-Site Scripting
What Is It? XSS is an attack in which script is maliciously injected
into a user’s browsing session, generally without the user’s knowledge.

Adam Tuliper

Th ese types of attacks have become quite familiar to many people
because of incidents in which a large social networking site was
struck and its users had messages posted they didn’t authorize. If
an attacker posts malicious script that he can cause the browser to
execute, this script is executed in the context of the victim’s session,
essentially enabling the attacker to do anything he wants to the
DOM—including showing fake login dialogs or stealing cookies.
Such an attack could even install an HTML key logger on the current
page to continually send input from that window to a remote site.

How Is It Exploited? XSS is exploited via several methods, all
of which rely on having unescaped or improperly escaped output.
Let’s take the case of an application that needs to display a simple
status message to the end user. Typically this message is passed on
the query string as shown in Figure 1.

Th is technique is commonly used aft er a redirect to show the
user some sort of status, such as the Profi le Saved message in Fig-
ure 1. Th e message is read from the query string and written right

This article discusses a beta version of the Microsoft Anti-Cross Site
Scripting Library (AntiXSS).

This article discusses:
• Cross-site scripting

• Cross-site request forgery

Technologies discussed:
ASP.NET, SQL Server, Microsoft Anti-Cross Site Scripting Library

XSS is exploited via several
methods that all rely on having

unescaped or improperly
escaped output.

http://msdn.microsoft.com/magazine/hh580736

63January 2012msdnmagazine.com

out to the page. If the output is not HTML-encoded, anyone can
easily inject JavaScript in place of the status message. Th is type of
attack is considered a refl ected XSS attack, because whatever is on
the query string gets rendered right back to the page. In a persistent
attack the malicious script is stored, usually in a database or cookie.

In Figure 1 you can see this URI takes a msg parameter. Th e Web
page for this URI would contain code such as the following to sim-
ply write the variable to the page with no encoding:

<div class="messages"> <%=Request.QueryString["msg"]%></div>

If you replace “Profile Saved”
with the script shown in Figure 2,
the alert function will pop up in the
browser from the script included
on the query string. Th e key to the
exploit here is that the results are
not HTML-encoded and therefore
the <script> tag is actually parsed as
valid JavaScript by the browser and
executed. Th is is clearly not what
the developer here had in mind.

So an alert pops up—what’s the
big deal? Let’s take this example a
bit further, as shown in Figure 3.
Note that I’ve shortened the attack
here to make the point; this syn-
tax isn’t exactly correct but a slight
modifi cation would turn this into
a real attack.

An attack like this would cause
a fake login dialog to be shown
to users, where upon they would
blithely enter their credentials. In
this case, a remote script is down-
loaded, which is generally allowed
by the default browser security

settings. Th is type of attack can in
theory happen anywhere a string
that hasn’t been encoded or sani-
tized can be echoed back to a user.

Figure 4 shows an attack using
similar script on a development
site that allows users to leave com-
ments about its products. Instead
of leaving a real product review,
however, someone entered mali-
cious JavaScript as a comment. Th is

script now displays a login dialog to every single user reaching the
Web page and collects and sends the credentials to a remote site.
Th is is a persistent XSS attack; the script is stored in the database
and repeated for everyone who visits the page.

Another way XSS is exploited is by using HTML elements, as
when dynamic text is allowed in HTML tags, like so:

If an attacker injects text such as “onmouseout=alert(docu-
ment.cookie),” this creates the following tag in the browser that
accesses the cookie:

Th ere’s no “<script>” tag to potentially fi lter input on and nothing
to escape, but this is a completely valid piece of JavaScript that can
read a cookie—potentially an authentication cookie. Th ere are case-
specifi c ways to make this safer, but because of the risk, it’s best not
to allow any user input from reaching this inline code here.

How Do You Prevent XSS? Following these rules strictly will
help prevent most if not all XSS attacks in your application:

Figure 1 Query String Message

Figure 2 Injecting Script into the URI

Figure 3 Creating a Malicious Attack

Figure 4 A Persistent XSS Attack Showing a Fake Dialog

The key to the exploit
here is that the results are not

HTML-encoded.

www.msdnmagazine.com

msdn magazine64 ASP.NET Security

1. Ensure all of your output is HTML-encoded.
2. Don’t allow user-supplied text to end up in any HTML

element attribute string.
3. Prevent the use of Internet Explorer 6 by your

application by checking Request.Browser as outlined
at msdn.microsoft.com/library/3yekbd5b.

4. Know your control’s behavior and whether it HTML
encodes its output. If it doesn’t, encode the data going to
the control.

5. Use the Microsoft Anti-Cross Site Scripting Library
(AntiXSS) and set it as your default HTML encoder.

6. Use the AntiXSS Sanitizer object (this library is a separate
download and is addressed later in this article) to call Get-
SafeHtml or GetSafeHtmlFragment before saving HTML
data to the database; don’t encode the data before saving.

7. For Web Forms, don’t set EnableRequestValidation=false in
your Web pages. Unfortunately, most user group postings
on the Web advise disabling this setting if there’s an error.
Th e setting is there for a reason and will stop the request
if the character combination “<X,” for example, is posted
back to the server. If your controls are posting HTML back
to the server and receiving the error shown in Figure 5,
you should ideally encode the data before you post it to
the server. This is a common scenario with WYSIWYG
controls, and most modern versions will properly encode
their HTML data before posting back to the server.

8. For ASP.NET MVC 3 applications, when you need to post
HTML back to your model, don’t use ValidateInput(false)
to turn off Request Validation. Simply add [AllowHtml]
to your model property, like so:

 public class BlogEntry
 {
 public int UserId {get;set;}
 [AllowHtml]
 public string BlogText {get;set;}
 }

Some products try to detect <script> and other word combi-
nations or regular expression patterns in a string to try to detect

XSS. Th ese products can provide
additional checks but aren’t com-
pletely reliable because of the many
variants attackers have creat-
ed. Take a look at the XSS Cheat
Sheet at ha.ckers.org/xss.html to see

how diffi cult detection can be.
To understand the fi xes, let’s suppose an attacker has injected

some script that ended up in a variable in our application from
either the query string or a form fi eld as shown here:

string message = Request.QueryString["msg"];

or:
string message = txtMessage.Text;

Note that even though a TextBox control HTML encodes its
output, it doesn’t encode its Text property when you read it in
from code. With either of these lines of code, you’re left with the
following string in the message variable:

message = "<script>alert('bip')</script>"

In a Web page containing code similar to the following, the
JavaScript will be executed in the user’s browser simply because
this text was written to the page:

<%=message %>

HTML encoding the output stops this attack in its tracks. Figure
6 shows the main options for encoding the dangerous data.

Th ese options prevent the kind of attack shown in the example
and should be used in your applications.

It’s important to know your controls. Which controls HTML
encode your data for you and which controls don’t? For example,
a TextBox control does HTML encode the rendered output, but
a LiteralControl doesn’t. Th is is an important distinction. A text-
box assigned:

yourTextBoxControl.Text = "Test <script>alert('bip')</script>";

correctly renders the text to the page as:
Test <script>alert('bip')</script>

In contrast:
yourLiteralControl.Text = "Test <script>alert('bip')</script>";

causes a JavaScript alert to be displayed on the page,
confi rming XSS vulnerability. Th e fi x here is simply:
 yourLiteralControl.Text = Server.HtmlEncode(
 "Test <script>alert('bip')</script>");

Th is is a bit trickier when using data binding in Web
Forms. Look at the following example:
 <asp:Repeater ID="Repeater1" runat="server">
 <ItemTemplate>
 <asp:TextBox ID="txtYourField" Text='<%# Bind("YourField") %>'
 runat="server"></asp:TextBox>
 </ItemTemplate>
 </asp:Repeater>

Is this vulnerable? No, it’s not. Even though the inline
code seems as if it could write out the script or break out
of the control quotes, it’s indeed encoded.

ASP.NET (Either MVC or Web Forms) <%=Server.HtmlEncode(message) %>

Web Forms (ASP.NET 4 syntax) <%: message %>

ASP.NET MVC 3 Razor @message

Data Binding Unfortunately, the data-binding syntax
doesn’t yet contain a built-in encoding syntax;
it’s coming in the next version of ASP.NET as
<%#: %>. Until then, use:
<%# Server.HtmlEncode(Eval("PropertyName")) %>

Better Encoding From the AntiXSS Library in the
Microsoft.Security.Application namespace:
Encoder.HtmlEncode(message)

Figure 6 HTML-Encoding Options

Figure 5 Server Error from Unencoded HTML

The AntiXSS Library has gone
through a very nice rewrite.

http://msdn.microsoft.com/library/3yekbd5b
http://ha.ckers.org/xss.html

65January 2012msdnmagazine.com

What about this:
<asp:Repeater ID="Repeater2" runat="server">
 <ItemTemplate>
 <%# Eval("YourField") %>
 </ItemTemplate>
</asp:Repeater>

Is it vulnerable? Yes, it is. Th e data-binding syntax <%# %> doesn’t
HTML encode. Here’s the fi x:

<asp:Repeater ID="Repeater2" runat="server">
 <ItemTemplate>
 <%#Server.HtmlEncode((string)Eval("YourText"))%>
 </ItemTemplate>
</asp:Repeater>

Be aware that if you use Bind in this scenario you can’t wrap
a Server.HtmlEncode around it because of how Bind compiles
behind the scenes as two separate calls. Th is will fail:

<asp:Repeater ID="Repeater2" runat="server">
 <ItemTemplate>
 <%#Server.HtmlEncode((string)Bind("YourText"))%>
 </ItemTemplate>
</asp:Repeater>

If you use Bind and aren’t assigning the text to a control that
HTML encodes (such as the TextBox control), consider using Eval
instead so you can wrap the call to Server.HtmlEncode as in the
previous example.

Th e same concept of data binding doesn’t exist in ASP.NET MVC,
so you need to know if the HTML helpers will encode. Th e helpers
for labels and textboxes do HTML encode. For example, this code:

@Html.TextBox("customerName", "<script>alert('bip')</script>")
@Html.Label("<script>alert('bip')</script>")

renders as:
<input id="customerName" name="customerName" type="text"
 value="<script>alert('bip')</script>" />
<label for=""><script>alert('bip')</script></label>

I mentioned the AntiXSS earlier. Currently at version 4.1 beta
1, the AntiXSS Library has gone through a very nice rewrite and,
as far as security is concerned, provides a better HTML encoder
than the one that comes with ASP.NET. It’s not that there’s anything
wrong with Server.HtmlEncode, but its focus is compatibility, not
security. AntiXSS uses a diff erent approach to encode. You can read
more about it at msdn.microsoft.com/security/aa973814.

Th e beta is available at bit.ly/gMcB5K. Do check to see if AntiXSS
is out of beta yet. If not, you’ll need to download the code and
compile it. Jon Galloway has an excellent post on this at bit.ly/lGpKWX.

To use the AntiXSS encoder, you can simply make the following call:
<%@ Import Namespace="Microsoft.Security.Application" %>
...
...
<%= Encoder.HtmlEncode(plainText)%>

ASP.NET MVC 4 added a great new feature that lets you override
the default ASP HTML encoder, and you can use the AntiXSS
encoder in its place. As of this writing, you need version 4.1; because
it’s currently in beta, you must download the code, compile it and
add the library as a reference to your application—which takes all
of fi ve minutes. Th en, in your web.confi g, add the following line
in the <system.web> section:

<httpRuntime encoderType=
 "Microsoft.Security.Application.AntiXssEncoder, AntiXssLibrary"/>

Now, any HTML-encoding call
made through any of the syntaxes
listed in Figure 6, including the
ASP.NET MVC 3 Razor syntax, will

get encoded by the AntiXSS library. How’s that for a pluggable feature?
Th is library also includes a Sanitizer object that can be used to

cleanse HTML before storing it to a database, which is very useful
if you provide a WYSIWYG editor to the user for editing HTML.
Th is call attempts to remove script from the string:

using Microsoft.Security.Application;
...
...
string wysiwygData = "before <script>alert('bip ')</script> after ";
string cleanData = Sanitizer.GetSafeHtmlFragment(wysiwygData);

Th is results in the following cleaned string that can then be saved
to the database:

cleanData = "before after ";

Cross-Site Request Forgery (CSRF)
What Is It? Cross-site request forgery, or CSRF (pronounced
sea-surf), is an attack that occurs when someone takes advantage of
the trust between your browser and a Web site to execute a com-
mand using the innocent user’s session. Th is attack is a bit more
diffi cult to imagine without seeing the details, so let’s get right to it.

How Is It Exploited? Suppose John is authenticated as an admin-
istrator on the PureShoppingHeaven site. PureShoppingHeaven has
a URL that’s restricted to admin access and allows information to
be passed on the URL to execute an action, such as creating a new
user, as shown in Figure 7.

void Page_Init(object sender, EventArgs e)
{
 if (Session.IsNewSession)
 {
 // Force session to be created;
 // otherwise the session ID changes on every request.
 Session["ForceSession"] = DateTime.Now;
 }

 // 'Sign' the viewstate with the current session.
 this.ViewStateUserKey = Session.SessionID;

 if (Page.EnableViewState)
 {
 // Make sure ViewState wasn't passed on the querystring.
 // This helps prevent one-click attacks.
 if (!string.IsNullOrEmpty(Request.Params["__VIEWSTATE"]) &&
 string.IsNullOrEmpty(Request.Form["__VIEWSTATE"]))
 {
 throw new Exception("Viewstate existed, but not on the form.");
 }
 }

}

Figure 8 Preventing a One-Click Attack

Figure 7 Passing Information on the URL

ASP.NET MVC 4 added a great
new feature that lets you override
the default ASP HTML encoder.

http://msdn.microsoft.com/security/aa973814
http://bit.ly/gMcB5K
http://bit.ly/lGpKWX
www.msdnmagazine.com

msdn magazine66 ASP.NET Security

If an attacker can get John to request this URL through any of a
variety of methods, his browser will request it from the server and
send over whatever authentication information might already be
cached or in use in John’s browser, such as authentication cookies
or other authentication tokens, including Windows Authentication.

Th is is a simple example, but CSRF attacks can be far more sophis-
ticated and can incorporate form POSTs in addition to GET requests
and can take advantage of other attacks such as XSS at the same time.

Suppose John visits a vulnerable social networking site that
has been exploited. Perhaps an attacker has placed a bit of
JavaScript on the page via an XSS vulnerability that now requests the
AddUser.aspx URL under John’s session. Th is dump from Fiddler
(fi ddler2.com) aft er John visits the Web page shows the browser also
is sending over a custom site-authentication cookie:

GET http://pureshoppingheaven/AddUser.aspx?userName=hacked&pwd=secret HTTP/1.1
Host: pureshoppingheaven
User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)
Cookie: CUSTOMERAUTHCOOKIE=a465bc0b-e1e2-4052-8292-484d884229ab

Th is all happens without John knowing it. What’s important to
understand is that by design the browser will send over any valid
cookies or authentication information. Have you ever noticed that
your e-mail client generally doesn’t load images by default? One
reason is to prevent CSRF. If you received an HTML-formatted
e-mail with an embedded image tag such as the following, that
URL would be requested and the server would execute that action
if you’re authenticated to that Web site:

If you happened to be an admin on “yoursite” who’s already
authenticated, the browser would happily send over that GET
request along with any credentials. Th e server sees this as a valid
request by an authenticated user, and it will execute that request
without you ever knowing, because there’s no valid image response
to be rendered in your e-mail client.

How Do You Prevent CSRF? To prevent CSRF, you start by
following certain rules:

1. Ensure that a request can’t be replayed by simply clicking
on a link for a GET request. The HTTP spec for GET
requests implies GET requests should only be used for
retrieval, not state modifi cation.

2. Ensure that a request can’t be replayed if an attacker has
used JavaScript to mimic a form POST request.

3. Prevent any actions via GET. For example, don’t allow
records to be created or deleted via a URL. Ideally, these should
require some user interaction. While this doesn’t prevent a
smarter form-based attack, it limits a host of easier attacks,
such as the kind described in the e-mail image example as
well as basic links embedded in XSS-compromised sites.

Preventing attacks via Web Forms is handled a bit diff erently
from ASP.NET MVC. With Web Forms, the ViewState MAC
attribute can be signed, which helps protect against forgery as long
as you don’t set EnableViewStateMac=false. You also want to sign
your ViewState with the current user session and prevent the View-
State from being passed in on the query string to block what some
refer to as a one-click attack (see Figure 8).

Th e reason I assign a random session value here is to make sure
the session is established. You could use any temporary session
identifi er, but the ASP.NET session ID will change on every single
request until you actually create a session. You can’t have the session
ID changing with every request here, so you have to pin it down
by creating the new session.

ASP.NET MVC contains its own set of built-in helpers that pro-
tect against CSRF using unique tokens passed in with the request.
Th e helpers use not only a required hidden form fi eld but also a
cookie value, making it quite a bit more diffi cult to forge a request.
Th ese protections are easy to implement and absolutely essential
to incorporate into your applications. To add @Html.AntiForgery-
Token() inside <form> in your view, do this:

@using (Html.BeginForm())
{
 @Html.AntiForgeryToken();
 @Html.EditorForModel();
 <input type="submit" value="Submit" />
}

Decorate any controllers that accept post data with the [Validate-
AntiForgeryToken], like so:

[HttpPost]
[ValidateAntiForgeryToken()]
public ActionResult Index(User user)
{
 ...
}

Understanding Vulnerability
Th is article looked at cross-site scripting and cross-site request forgery,
two common ways Web applications are hacked. Added to the two
covered last month, SQL injection and parameter tampering, you now
have a good understanding of how applications can be vulnerable.

You’ve also seen how easy it is to build security into your
applications to protect against some of the most common attacks.
If you’ve already been building security into your soft ware devel-
opment lifecycle, great! If you haven’t, there’s no better time to start
than now. You can audit your existing applications on a per-page/
per-module basis and in most cases refactor them very easily. And
protect your applications with SSL to prevent sniffing of your
credentials. Remember to think about security before, during and
aft er development.

ADAM TULIPER is a soft ware architect with Cegedim and has been developing
soft ware for more than 20 years. He’s a national INETA Community Speaker, and
regularly speaks at conferences and .NET user groups. Check him out on Twitter at
twitter.com/AdamTuliper, on his blog at completedevelopment.blogspot.com or
at the new secure-coding.com Web site. For more in-depth information on hack-
proofi ng your ASP.NET applications, see his upcoming Pluralsight video series.

THANKS to the following technical expert for reviewing this article:
Barry Dorrans

By design the browser will
send over any valid cookies or
authentication information.

www.fiddler2.com
www.twitter.com/AdamTuliper
http://completedevelopment.blogspot.com

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine68

S CRE E N -BASED INPUT

Customized On-Screen
Keyboards with the
.NET Framework

The need to develop applications that require screen-
based inputs has grown steadily in recent years. Developers have
traditionally used on-screen data input to let individuals who
couldn’t use a computer keyboard enter data or make choices, es-
pecially in kiosk applications.

Th e rapid growth of tablet and mobile computing devices makes
on-screen input more pervasive and useful than ever. One need not
look past a local coff ee shop or mode of public transportation to
find people engrossed in the latest “app” for their mobile phone
or tablet device. Given the expectations for continued growth in
the mobile computing market, it’s not hard to imagine that an
understanding of on-screen input methodologies would be of great
benefi t to any developer.

Moreover, in addition to the mobile market, on-screen keyboards
are also getting more popular in applications where security is
critical, because screen-based input devices can help to prevent
user information from being stolen using hardware-based key-
loggers. For example, online stock brokerages such as TradeKing

Christopher M. Frenz

require users to enter all passwords using an on-screen keyboard
to help boost security. But even though on-screen keyboards can
help to improve security, they do have their own potential risks
to consider. While on-screen keyboards mitigate the risk of any
hardware-based keyloggers, they’re still potentially susceptible to
soft ware-based input logging approaches as well as the much more
common technique of “shoulder surfi ng” to view the input buttons
a user presses. For example, one application uses captured video
of a person typing into an iPad to identify which keys were typed
by aligning the location of the pressed keys with an image of the
iPad keyboard (see onforb.es/oobLp2).

Some techniques mitigate the eff ectiveness of shoulder surfi ng. One
of the most common is a constant randomization of keys to prevent
the mapping of captured keypress coordinates to any particular key.
In this article, I’ll create an on-screen keyboard that uses key random-
ization using the Microsoft .NET Framework. Th e application will
allow the on-screen keyboard to be linked to the particular appli-
cation for which on-screen input is desirable. However, this article
describes the techniques needed to build an on-screen keyboard, and
the sample application is designed to illustrate these techniques, not
to provide a fully featured keyboard application.

This article discusses:
• Laying out the GUI

• Using labels instead of buttons to avoid OS focus

• Adding keyboard functionality

Technologies discussed:
Microsoft .NET Framework, Visual Basic .NET

Code download available at:
code.msdn.microsoft.com/mag201201Keyboard

Figure 1 The Design View of the On-Screen Keyboard GUI

http://code.msdn.microsoft.com/mag201201Keyboard
http://onforb.es/oobLp2

69January 2012msdnmagazine.com

The On-Screen Keyboard GUI
Th e fi rst step is laying out the GUI, which includes a “key” for each
letter of the alphabet and each number (see Figure 1). Before you
start dragging controls onto your form, however, there are a few
issues to consider. In most .NET applications (and other applications
as well), whenever you want the user to submit input by clicking
on something, the standard control to use would be a button. But
you can’t use a button control in an on-screen keyboard because on
being clicked, a button control automatically gains the focus of the
Windows OS. Because keyboard input is meant to go to the active
foreground application (that is, the application with the focus), an
on-screen keyboard should never gain the focus of the OS. Rather
than use button controls for keys, I’ll use label controls instead,
because they support a Click event as buttons do, but unlike but-
tons aren’t allowed to gain focus. Labels therefore make an ideal
choice, being able to respond to clicks without initiating a change
in application focus—with a bit of extra coding that you’ll see in the
next section. For purposes of the sample application, these labels
will be named Label1 through Label36. A textbox, TextBox1, is also
created to compare user inputs entered into the on-screen keyboard
with those that appear in the external application (see Figure 1).

Staying Out of Focus
Although using a control such as a label is necessary to avoid
causing the application to receive the focus of the OS, it’s not
enough in itself because the on-screen keyboard application can
also receive the focus when the form itself is loaded and when
the form or any control on the form is clicked by the mouse. To
rectify this situation, I need to add some additional code to the
keyboard application.

First, to prevent the form from gaining the focus when it’s fi rst
loaded, I’ll add the following code (I’m using Visual Basic .NET)
to the application:

Private Const WS_EX_NOACTIVATE As Integer = &H8000000

Protected Overrides ReadOnly Property CreateParams() As CreateParams
 Get
 CreateParams = MyBase.CreateParams
 CreateParams.ExStyle = CreateParams.ExStyle And WS_EX_NOACTIVATE
 Return CreateParams
 End Get
End Property

Th is code overrides the form’s CreateParams property, which is
used in the creation of the form object. By overriding this prop-
erty with the WS_EX_NOACTIVATE window style, I prevent the
form from coming to the foreground upon loading, which means
that loading the on-screen keyboard won’t take the focus away
from whatever other application was active at the time of launch.
Once this code is put in place, it’s important to next ensure that
the application can’t achieve focus via a mouse click. Adding this
code accomplishes that:

Private Const WM_MOUSEACTIVATE As Integer = &H21
Private Const MA_NOACTIVATE As Integer = &H3
Protected Overrides Sub WndProc(ByRef m As Message)
 If (m.Msg = WM_MOUSEACTIVATE) Then
 m.Result = MA_NOACTIVATE
 Else
 MyBase.WndProc(m)
 End If
End Sub

This code overrides the form’s WndProc function, which the
form uses to receive all user input. Th e overriding function inter-
cepts WM_MOUSEACTIVATE messages, which are sent when an
inactive window is clicked on. It also ensures that the on-screen
keyboard application doesn’t gain the focus as a result of the mouse
click by setting the function return value to MA_NOACTIVATE.

Private Sub AssignKeys()
 Dim Character() As Char =
 {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", _
 "Q", "W", "E", "R", "T", "Y", "U", "I", "O", "P", _
 "A", "S", "D", "F", "G", "H", "J", "K", "L", "Z", _
 "X", "C", "V", "B", "N", "M"}
 Dim Keys(36) As Char
 Dim I, X As Integer
 Dim Rand As New Random()
 Dim Used(36) As Integer
 Dim Unique As Boolean = False
 Used(0) = -1
 For I = 0 To 35
 Unique = False
 X = Rand.Next(0, 36)
 If Character(X) <> " " Then
 Keys(I) = Character(X)
 Character(X) = " "
 Else
 Do Until Unique = True
 X = Rand.Next(0, 36)
 If Character(X) <> " " Then
 Keys(I) = Character(X)
 Character(X) = " "
 Unique = True
 End If
 Loop
 End If
 Next
 Label1.Text = Keys(0)
 Label2.Text = Keys(1)
 Label3.Text = Keys(2)
 Label4.Text = Keys(3)

 Label5.Text = Keys(4)
 Label6.Text = Keys(5)
 Label7.Text = Keys(6)
 Label8.Text = Keys(7)
 Label9.Text = Keys(8)
 Label10.Text = Keys(9)
 Label11.Text = Keys(10)
 Label12.Text = Keys(11)
 Label13.Text = Keys(12)
 Label14.Text = Keys(13)
 Label15.Text = Keys(14)
 Label16.Text = Keys(15)
 Label17.Text = Keys(16)
 Label18.Text = Keys(17)
 Label19.Text = Keys(18)
 Label20.Text = Keys(19)
 Label21.Text = Keys(20)
 Label22.Text = Keys(21)
 Label23.Text = Keys(22)
 Label24.Text = Keys(23)
 Label25.Text = Keys(24)
 Label26.Text = Keys(25)
 Label27.Text = Keys(26)
 Label28.Text = Keys(27)
 Label29.Text = Keys(28)
 Label30.Text = Keys(29)
 Label31.Text = Keys(30)
 Label32.Text = Keys(31)
 Label33.Text = Keys(32)
 Label34.Text = Keys(33)
 Label35.Text = Keys(34)
 Label36.Text = Keys(35)
 End Sub

Figure 2 Assigning Random, Unique Keys to Each Label Control

www.msdnmagazine.com

msdn magazine70 Screen-Based Input

Th e “Else” condition of this code ensures that all other mouse input
messages are passed through, thereby allowing the on-screen key-
board application to detect label clicks without ever gaining focus.

Adding the Keyboard Functionality
At this point, I have a GUI for the application and code to ensure
that it remains focus-free. It’s now time to add the actual key-
board functionality. Th e fi rst bit of this functionality will create a
subroutine (AssignKeys) to assign random but unique keys to each
label (see Figure 2).

Th e routine in Figure 2 creates an array (Character) that con-
tains all of the alphanumeric characters selected to appear on the
keyboard and then applies the random number generator to select
a random element from this array. As long as the element hasn't
been previously selected, the character stored in that particular
element of the array is copied to an array called Keys. Th is process
repeats until all 36 characters are assigned to the Keys array, which

randomizes the location of each character in the array. Once the
array is randomized, the elements of the Keys array are assigned to
the Text property of each Label to allow their assigned characters to
be displayed on the screen. Th is AssignKeys subroutine is initially
called on the execution of the Form_Load event.

Now that the characters have been assigned to their respective
keys, I need to add code that handles converting the mouse clicks
on the on-screen keyboard application into the equivalent of send-
ing a keypress to the target application. To do this, I need to make
use of the user32.dll API, which Windows uses to handle many
UI-related functions such as window handling and other window
management functions. To set the application up to properly make
use of this API functionality, I’ll add the following DLL Import
statements to the Form class:

<DllImport("user32.dll", SetLastError:=True)> Private Shared Function
FindWindow(ByVal lpClassName As String, ByVal lpWindowName As String) As IntPtr
 End Function
<DllImport("user32.dll", SetLastError:=True)> Private Shared Function
SetForegroundWindow(ByVal hWnd As IntPtr) As Boolean
 End Function

Th e user32.dll API will be used every time a Label_Click event is
launched, because each such event will resemble the code in Figure 3.

When a label click event arises, the variable “theHandle” is used
to store the application handle for the application to which the
on-screen keyboard is going to send its input. In this case, the appli-
cation handle was set to a freshly loaded copy of Notepad because
it’s universally available on all Windows systems. If the application
handle is currently present on the system, the application bearing
that handle (Notepad) moves to the foreground and the character
assigned to that label is sent to the application. Th e character is also
appended to any text found within the keyboard application’s text-
box to demonstrate that the characters that appear in Notepad are
the same characters received by the keyboard application itself. As a
last step, the AssignKeys subroutine is called again to re-randomize
the key positions and make shoulder surfi ng even more diffi cult.
This procedure is illustrated in Figure 4 and Figure 5, where
Figure 4 shows a newly loaded version of the application and
Figure 5 demonstrates the on-screen keyboard and Notepad aft er
several keypresses on the on-screen keyboard.

Enhanced Security and
Mobile Porting
Th is article demonstrated the development of
an on-screen keyboard using the .NET Frame-
work. I hope it provided some insight into
how on-screen keyboards can be developed
for use in improving the security of certain
elements of data entry or for use in porting
.NET applications to mobile platforms.

CHRISTOPHER M. FRENZ is the author of the pro-
gramming books, “Visual Basic and Visual Basic
.NET for Scientists and Engineers” (Apress, 2002) and
“Pro Perl Parsing” (Apress, 2005). He can be reached
at cfrenz@gmail.com.

THANKS to the following technical expert for
reviewing this article: Robert Green

Figure 4 A New Instance of the On-Screen Keyboard

Figure 5: The On-Screen Keyboard Sending Input to Notepad

Private Sub Label1_Click(ByVal sender As System.Object,_
 ByVal e As System.EventArgs) Handles Label1.Click
 Dim X As Char
 X = CChar(Label1.Text)
 Dim theHandle As IntPtr
 theHandle = FindWindow(Nothing, "Untitled - Notepad")
 If theHandle <> IntPtr.Zero Then
 SetForegroundWindow(theHandle)
 SendKeys.Send(X)
 End If
 TextBox1.Text = TextBox1.Text & Label1.Text
 AssignKeys()
End Sub

Figure 3 Using the user32.dll API for Label_Click Events

mailto:cfrenz@gmail.com

Untitled-1 1 10/11/11 11:41 AM

www.installaware.com/landing/msdn.asp

msdn magazine72

S QL S E RVER R EPOR T ING SER V I CES

Extending SSRS:
Developing Custom
Charting Components
and Rendering Extensions

SQL Server Reporting Services (SSRS) provides excellent
charting capabilities that allow you to represent data and statistics
visually in the form of both conventional and unconventional charts,
and a variety of report-rendering extensions let you save a report in a
variety of diff erent formats such as PDF, CSV, XML, Word and Excel.
Still, the native options may not always satisfy your business require-
ments or render a report exactly the way you want. Fortunately, you
can extend the reporting services to create your own custom charting
components and rendering extensions using the various extensibility

Manpreet Singh

features SSRS provides. In this article, I’ll give you an overview of the
process of creating a custom charting component and the various
ways to integrate it with an SSRS report. I’ll also describe how you
can develop a custom report renderer (by extending a native one)
to render a report just as you’d like. To try this yourself, download
the complete code at code.msdn.microsoft.com/mag201201SSRS and use it
as your starting point. Note that the process of creating a rendering
extension and report items hasn’t changed much since SQL Server
2005. Although I built the code samples using a SQL Server 2008 R2
environment, the concepts discussed in this article are very much
applicable to SQL Server 2005 and 2008 as well. If you’re developing
for SQL Server 2008 R2 Reporting Services, you can build custom
components using the Microsoft .NET Framework 4 as well. For
SQL Server 2008 Reporting Services, however, the .NET Frame-
work 3.5 is the highest version of the .NET Framework supported.

The Web Site Users Report
To appreciate the process of developing a custom charting
component and rendering extension, consider a scenario where an
organization wants to generate a monthly Web Site Usage Report
to illustrate the popularity of its, say, e-commerce Web site in
diff erent regions. Th e heart of the report is a Web Site Users Chart,
which graphically represents the geographic distribution of users
per region, as depicted in Figure 1.

This article discusses:
• Extensibility in SQL Server Reporting Services

• Creating custom charting components

• Creating a custom report-rendering extension by extending a
native one

• The WebSite Users Report and the WebSite Users
Charting Component

Technologies discussed:
SQL Server, Microsoft .NET Framework 3.5

Code download available at:
code.msdn.microsoft.com/mag201201SSRS

http://code.msdn.microsoft.com/mag201201SSRS
http://code.msdn.microsoft.com/mag201201SSRS

73January 2012msdnmagazine.com

Although the chart is quite similar to a bar graph, none of the
native charting components fi t the bill because you can’t replace
the bars of the chart with a custom image representing a person,
like the one in Figure 1.

Such a scenario definitely calls for creating your own custom
charting component. Using the GDI+ base class libraries (part of
the .NET Framework) and a little mathematics, it’s easy to draw the
chart using basic shapes like circles and rectangles and generate
the chart in the form of a regular bitmap image. Th e output from
such a component, which generates an image by using the .NET
Framework graphics libraries, can be integrated with the SSRS
report in a number of ways:

• Using Custom Report Items: SSRS supports the creation
of custom report items, such as built-in charting compo-
nents, that can be integrated into a report. The custom
report items are rendered as images. Th e article, “Jazz Up
Your Data Using Custom Report Items in SQL Server
Reporting Services” (msdn.microsoft.com/magazine/cc188686),
demonstrates how to create a custom report item.

• Using a SQL CLR Function: You can also use a SQL CLR
user-defi ned function to integrate a GDI+ based charting
component with SSRS. Th is requires loading system.draw-
ing.dll into SQL Server. Once the core assembly for chart
generation is loaded into SQL Server, you can create a user-
defi ned function based on it. Th e image reporting item can
then be confi gured to render the chart image from a database.

• Using an ASP.NET Handler: You can use an ASP.NET
handler to integrate the charting component with both an
SSRS report and a Web application. An ASP.NET handler can
return the charting component as a downloadable bitmap
image, with any parameters being passed to it using a query
string. To integrate the handler output with SSRS, all you
need to do is set the image source of the picture box to
external and provide the URL of the handler as an expression.

Th e code samples accompanying this article demonstrate the
process of creating the Web Site Users Chart and integrating it
with the Web Site Usage Report using a SQL CLR function. Th e
WebSiteUsersChartCore project contains the WebSiteUsersChart
class, which renders the chart in the form of a JPEG image based
on the monthly usage data returned by the dbo.usp_GetUsageData
stored procedure. Th e WebSiteUsersReportDB.bak fi le contains a

backup of the WebSiteUsersReportDB database with the necessary
back-end tables and stored procedures. The SQL CLR function
GetUsersChart is responsible for providing the necessary param-
eters to the charting component and getting the image output. Th e
dataset DataSetWebSiteUsageChart of the RegionWiseReport gets
the image from the SQL CLR function using the following SQL
query, by passing in the required parameters:

SELECT dbo.usp_GetUsersChart(500, 300, N'Website Users', @RegionName,
 @DateID % 100, @DateID / 100) AS Chart

Finally, the image control ImageChart renders the image
coming from the database.

The main advantage of using the SQL CLR function or the
ASP.NET handler approach instead of developing a custom report
item is that you can then use the same charting component outside
of SSRS, say in a Web application, without the need for any further
development eff ort or customization.

Custom Word Rendering Extension
Although the native Word rendering extension renders the Web
Site Usage Report perfectly, some features, such as a table of
contents or having some pages in portrait and others in landscape
orientation, are not supported.

Writing a custom rendering extension from scratch isn’t a trivial
task; you want it to be capable of taking various combinations of report
elements and converting them to the corresponding formatting and
data elements supported by the target format. Moreover, extending
the native SSRS rendering extensions is not supported directly. Luck-
ily, the output from the native Word rendering extension meets most
of my needs for the report, so all I really want is a way to add a table of
contents to it and to be able to control the orientation at the page level.

To accomplish my goals, I can write a custom rendering exten-
sion, which gets the report output rendered by the native Word
extension, then use Word automation to modify the report output
in the desired way and stream the fi nal output to the user.

Th e class CustomWordRenderer in the project CustomWord-
RenderingExtension in the source code highlights the important
steps involved in achieving the desired eff ect. Th e output from the
native Word rendering extension is merged with a standard header
template that contains a title page and a table of contents, and can
also contain items such as a copyright note, a disclaimer and so forth.
Th e document map labels, which are rendered as Table Entries by
the native extensions, have appropriate heading styles applied to
make them appear in the table of contents. Finally, the table of con-
tents is updated and the merged document is streamed to the user.

All the reporting services extensions must implement the IRen-
deringExtension and IExtension interfaces. Th ese interfaces require you
to provide implementation for the following methods and properties:

Members from the IExtension interface:
• LocalizedName property
• SetConfi guration function

Members from the IRenderingExtension interface:
• GetRenderingResource function
• Render function
• RenderStream function

Of all these members, the Render method is most important and
contains the core implementation for the Custom Word Renderer.

Figure 1 Web Site Users Chart

419

China

512

India

881

Pakistan

450

Singapore

430 430

Web Site Users (Asia) July 2010

http://msdn.microsoft.com/magazine/cc188686
www.msdnmagazine.com

msdn magazine74 SQL Server Reporting Services

Because I already get the formatted report output from the native
Word rendering extension, I don’t have to parse the various report
elements, and hence the render method won’t contain any code to
deal directly with report data or formatting elements. All I need
to do is get the report from the native Word rendering extension,
open it with Microsoft Word (using Word automation), perform the
required modifi cations and stream modifi ed document to the user.

For more information on the process of developing custom rendering
extensions, see the article, “Display Your Data Your Way with Custom
Renderers for Reporting Services,” at msdn.microsoft.com/magazine/cc163840.

An important point to note before you decide to make use of
concepts discussed here is that Microsoft doesn’t support server-
side automation of Microsoft Offi ce. If you do consider developing
a custom rendering extension based on the approach I discussed,
first take a look at the article, “Considerations for Server-Side
Automation of Offi ce,” at support.microsoft.com/kb/257757.

If you don’t want to use Offi ce automation, there’s another in-
teresting approach you can consider—rendering the report as an
XML fi le using the native XML rendering extension and applying
a custom XSLT stylesheet to generate a WordML document. Th e
disadvantage of this approach is that you’ll end up storing report
formatting in two places: one in the XSLT stylesheet and other in
the report RDL fi le.

Using the Sample Code
Th e source code for this article contains the following artifacts:

• WebSiteUsersChartCore project
• TestHarness project
• CustomWordRenderingExtension project
• WebSiteUsersReport RDL fi le
• RegionWiseReport RDL fi le
• WebSiteUsersReportDB database backup fi le
• Report header template fi le

Th e WebSiteUsersChartCore project demonstrates the process
of creating the WebSite Users Charting component from region-
wise usage statistics. Th e TestHarness project is used to test and
verify the output of WebSiteUsersChartCore assembly by rendering
the image generated by the charting component using a Windows
Form application. Th e CustomWordRenderingExtension project
contains the implementation for the custom Word rendering
extension, based on the Word automation approach. Th e WebSite-
UsersReport is the primary report that calls the RegionWiseReport
subreport for every region, to render the region-wise contents. Th e
RegionWiseReport report also calls the WebSite Users Charting
component to render the WebSite Users Chart. It does so using
the image control via a call to the usp_GetUsersChart SQL CLR
scalar-valued function by passing in the appropriate parameters.
Th e WebsiteUsersReportDB.bak fi le contains the backup for the
WebSiteUsersReportDB database. Th e reports and the charting
components are based on the data from this database. Th e header
template fi le contains a title page and a table of contents, in portrait
format. Th is fi le is appended to the beginning of the native Word
document report, using the Word automation.

To deploy the sample code, build the WebSiteUsersChart
solution containing the WebSiteUsersChartCore and Custom-

WordRenderingExtension projects. Copy the CustomWordRen-
deringExtension.dll assembly to the report server’s bin directory.
Make the following entry in your report server’s rssrvpolicy.confi g
fi le to grant full trust to the custom rendering extension:

<CodeGroup
class="UnionCodeGroup" version="1"
PermissionSetName="FullTrust"
Name="CUSTOM WORD"
Description="This code group grants Custom Word Renderer code full trust.">
 <IMembershipCondition
 class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSRS10_50.MSSQLSERVER\Reporting
 Services\ReportServer\bin\CustomWordRenderingExtension.dll" />
</CodeGroup>

Next, make the following entry in the rsreportserver.confi g fi le
to register the rendering extension with the report server:

<Extension Name="Custom WORD" Type=
 "CustomWordRenderingExtension.CustomWordRenderer,
 CustomWordRenderingExtension">
 <Configuration>
 <DeviceInfo>
 <SourceHeaderFileName>C:\WorkingDirectory\
 Header.doc</SourceHeaderFileName>
 <SourceBodyFileName>C:\WorkingDirectory\Body.doc</SourceBodyFileName>
 <MergedFileName>C:\WorkingDirectory\MergedOutput.doc</MergedFileName>
 </DeviceInfo>
 </Configuration>
</Extension>

Create a working directory on the C: drive for the rendering
extension and copy Header.doc to it. If you want to use a diff er-
ent directory, don’t forget to make the appropriate changes in the
rsreportserver.confi g fi le as well; these confi guration entries are
picked up by the custom Word renderer. Of course, you must have
Microsoft Word installed for the rendering extension to work.

Next, deploy the WebSiteUsersReport and RegionWiseReport
reports on the report server. Run the WebSiteUsersReport report.
Click on the Export menu and examine the contents of the
drop-down—you should see the “CUSTOM WORD” rendering
extension in the list. Go ahead and do an export. If you end up
getting an empty document, examine the event log for errors.

Wrapping Up
Whenever native charting components don’t fi t the bill, you should
consider implementing a custom component. You can develop
complex charts by leveraging your GDI+ development skill. Keep
in mind that you can write custom renderers without having to
write everything from scratch, by modifying the output of the
native ones.

While it’s always possible to go completely custom and build new
applications for report generation, it’s oft en very easy to achieve the
same eff ect using SSRS with a few pieces of custom code plugged
in at the right places. So go ahead and build your own charting
components and report renderers without fear.

MANPREET SINGH is a consultant with Microsoft Services Global Delivery, where
he’s a part of the Business Intelligence and Integration Engineering group. He
works primarily on design and development of .NET-centric Business Intelligence
solutions based on the Microsoft Business Intelligence stack.

THANKS to the following technical expert for reviewing this article:
Yaswant Vishwakarma

http://msdn.microsoft.com/magazine/cc163840
http://support.microsoft.com/kb/257757

Word Processing Components
for Windows Forms, WPF & ASP.NET

US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

VERSION 17.0 RELEASED

WORD PROCESSING
COMPONENTS

WINDOWS FORMS | WPF | ASP.NET | ACTIVEX

NEW SPELL CHECK COMPONENT

CELL MERGING, COL SELECTION PAGE BORDERS DIGITAL SIGNATURES IN PDF

Untitled-1 1 12/5/11 11:43 AM

www.textcontrol.com

msdn magazine76

suffi ciently close to zero. Th e program concludes by displaying the
best solution found.

Th is example is artifi cially simple because with six tasks where
each task can be performed by one of three workers, there are
only 36 possible combinations, which equals 729, so you could
just evaluate every one. But suppose you had a problem with 20
tasks where each task can be performed by one of 12 workers.
There would be 1220 combinations, which equals a whopping
3,833,759,992,447,475,122,176. Even if you could evaluate 1 million
possible solutions per second, you’d need about 121 million years
to evaluate every possibility.

SA is a metaheuristic—that is, a general conceptual framework
that can be used to create a specifi c algorithm to solve a specifi c
problem. It’s best used for combinatorial optimization problems
where there’s no practical deterministic solution algorithm. First
described in a 1983 paper by S. Kirkpatrick, C. Gelatt and M. Vecchi,
SA is loosely based on the annealing behavior of cooling metal.
When some metals are heated to a high temperature, the atoms
and molecules break their bonds. When the metal is slowly cooled,
the atoms and molecules reform their bonds in such a way that the
energy of the system is minimized.

Th is column assumes you have intermediate-level programming
skills. I implement the SA program using C#, but you shouldn’t have
too much trouble refactoring my code to a diff erent language such
as Visual Basic or Python. In the sections that follow, I’ll walk you
through the program that generated Figure 2. All of the code is
available as a download from code.msdn.microsoft.com/mag201201TestRun. I
think you’ll fi nd the ability to understand and use SA an interesting
and possibly useful addition to your personal skill set.

Program Structure
I implemented the SA demo program as a single C# console appli-
cation. Th e overall structure of the program is shown in Figure 3.

I used Visual Studio to create a console application program
named SimulatedAnnealing. In the Solution Explorer window,

Simulated Annealing and Testing

In this month’s column I present C# code that implements a
Simulated Annealing (SA) algorithm to solve a scheduling prob-
lem. An SA algorithm is an artifi cial intelligence technique based
on the behavior of cooling metal. It can be used to fi nd solutions
to diffi cult or impossible combinatorial optimization problems.

Th e best way to see where I’m headed is to take a look at Figure 1
and Figure 2. Th e table in Figure 1 describes a scheduling problem:
fi ve workers and six tasks. Each entry in the table represents how
long it takes for a worker to complete a task. For example, worker
w2 needs 5.5 hours to complete task t3. An empty entry in a row
indicates that the corresponding worker can’t perform a task. Th e
problem is to assign each of the six tasks to one of the workers in
such a way that the total time to complete all tasks is minimized.
Additionally, we assume that every time a worker switches to a new
task, there’s a 3.5-hour retooling penalty.

Figure 2 shows a program that uses an SA algorithm to fi nd a
solution to the scheduling problem. Th e program begins by gen-
erating a random solution. In SA terminology, a potential solu-
tion is called the state of the system. Th e initial state is [4 0 0 2 2 3],
which means task 0 has been assigned to worker 4, task 1 has been
assigned to worker 0, task 2 has been assigned to worker 0, task 3
has been assigned to worker 2, task 4 has been assigned to worker
2 and task 5 has been assigned to worker 3. Th e total time for the
initial random state is 2.5 + 3.5 + 2.5 + 5.5 + 3.5 + 4.5 = 22 hours
plus a 3.5-hour retooling penalty for worker 0 and a 3.5-hour
penalty for worker 2, for a total of 29 hours. In SA terminology, the
quantity you’re trying to minimize (or less frequently maximize)
is called the energy of the state.

Th e program enters a loop. In each iteration of the loop, the SA
algorithm generates an adjacent state and evaluates that adjacent
state to see if it’s better than the current state. Behind the scenes,
the SA algorithm uses a temperature variable that slowly decreases,
as I’ll explain shortly. Th e SA loop ends when the temperature cools

TEST RUN JAMES MCCAFFREY

Code download available at code.msdn.microsoft.com/mag201201TestRun.

t0 t1 t2 t3 t4 t5

w0 7.5 3.5 2.5
w1 1.5 4.5 3.5
w2 3.5 5.5 3.5
w3 6.5 1.5 4.5
w4 2.5 2.5 2.5

Figure 1 Time for Worker to Complete Task

An SA algorithm is an artifi cial
intelligence technique based on
the behavior of cooling metal.

http://code.msdn.microsoft.com/mag201201TestRun
http://code.msdn.microsoft.com/mag201201TestRun

77January 2012msdnmagazine.com

I renamed the default Program.cs file to
SimulatedAnnealingProgram.cs, which
automatically renamed the single class in the
project. I deleted all the template-generated
using statements except for the System
namespace—SA is quite simple and typi-
cally doesn’t need much library support. I
declared a class-scope Random object named
random. SA algorithms are probabilistic, as
you’ll see shortly.

Th e heart of the SA algorithm processing is
a while loop. Th e loop is controlled by a loop
counter variable named “iteration” and by a
variable that represents the temperature of the
system. In practice, the temperature variable
almost always reaches near-zero and termi-
nates the loop before the loop counter reaches
its maximum value and terminates the loop.

SA algorithms must have three problem-
specific methods as suggested in Figure
3. The SA algorithm must have a method
that generates an initial (usually random)
state/solution. Th e SA algorithm must have
a method that generates an adjacent state
relative to a given state. And the SA algo-
rithm must have a method that computes
the energy/cost of a state—the value you’re
trying to minimize or maximize. In Figure 3
these are methods RandomState, Adjacent-
State and Energy, respectively. Method
AcceptanceProb generates a value used to
determine if the current state of the system
transitions to the adjacent state even when
the adjacent state is worse than the current
state. Method MakeProblemData is a helper
and creates a data structure matrix that
corresponds with Figure 1. Th e overloaded Display methods and
the Interpret method are just helpers to display information.

Program Initialization
Th e Main method begins like so:

try
{
 Console.WriteLine("\nBegin Simulated Annealing demo\n");
 Console.WriteLine("Worker 0 can do Task 0 (7.5) Task 1 (3.5) Task 2 (2.5)");
 Console.WriteLine("Worker 1 can do Task 1 (1.5) Task 2 (4.5) Task 3 (3.5)");
 Console.WriteLine("Worker 2 can do Task 2 (3.5) Task 3 (5.5) Task 4 (3.5)");
 Console.WriteLine("Worker 3 can do Task 3 (6.5) Task 4 (1.5) Task 5 (4.5)");
 Console.WriteLine("Worker 4 can do Task 0 (2.5) Task 4 (2.5) Task 5 (2.5)");
 ...

I wrap all SA code in a single, high-level try-catch block and
display the dummy problem that I intend to set up. Here, I’m
using an artifi cially simple example—but one that’s representa-
tive of the kinds of combinatorial problems that are suited for a
solution by SA algorithms. Next comes:

random = new Random(0);
int numWorkers = 5;
int numTasks = 6;
double[][] problemData = MakeProblemData(numWorkers, numTasks);

I initialize the Random object using an arbitrary seed value of
0. Th en I call helper method MakeProblemData to construct the
data structure shown in Figure 1. I’ll present MakeProblemData
and the other helper methods aft er I fi nish presenting all the code
in the Main method. Next comes:

int[] state = RandomState(problemData);
double energy = Energy(state, problemData);
int[] bestState = state;
double bestEnergy = energy;
int[] adjState;
double adjEnergy;

I call helper method RandomState to generate a random state/
solution for the problem. State is represented as an int array where the
array index represents a task and the value in the array at the index
represents the worker assigned to the task. Helper method Energy

Figure 2 SimulatedAnnealing in Action

The heart of the SA algorithm
processing is a while loop.

www.msdnmagazine.com

msdn magazine78 Test Run

computes the total time required by its state parameter, taking into
account the 3.5-hour penalty for retooling every time a worker does
an additional task. I’ll track the best state found and its correspond-
ing energy, so I declare variables bestState and bestEngery. Variables
adjState and adjEnergy are used to hold a state that’s adjacent to the
current state, and the corresponding energy. Next comes:

int iteration = 0;
int maxIteration = 1000000;
double currTemp = 10000.0;
double alpha = 0.995;

The primary SA processing loop terminates on one of two
conditions: when a counter exceeds a maximum value or when the
temperature variable decreases to a value close to zero. I name the
loop counter “iteration,” but I could’ve called it “counter” or “time”
or “tick” or something similar. I name the temperature variable
currTemp rather than temp so there’s less chance someone review-
ing the code might interpret it as a temporary variable. Variable
alpha represents the cooling rate, or a factor that determines how
the temperature variable decreases, or cools, each time through
the processing loop. Next comes:

Console.WriteLine("\nInitial state:");
Display(state);
Console.WriteLine("Initial energy: " + energy.ToString("F2"));
Console.WriteLine("\nEntering main Simulated Annealing loop");
Console.WriteLine("Initial temperature = " + currTemp.ToString("F1") + "\n");

Before entering the main processing loop, I display some
informational messages about the initial state, energy and tem-
perature. You might want to display additional information such
as the cooling rate. Here’s the loop:

while (iteration < maxIteration && currTemp > 0.0001)
{
 adjState = AdjacentState(state, problemData);
 adjEnergy = Energy(adjState, problemData);

 if (adjEnergy < bestEnergy)
 {
 bestState = adjState;
 bestEnergy = adjEnergy;

 Console.WriteLine("New best state found:");
 Display(bestState);
 Console.WriteLine("Energy = " + bestEnergy.ToString("F2") + "\n");
 }
...

Notice the loop control exits when the temperature variable
drops below 0.0001 rather than when it hits 0.0. You might want
to parameterize that minimum temperature value. Aft er creating
an adjacent state and computing its energy, I check to see if that
adjacent state is a new global best solution, and if so I save that
information. I can copy the best state by reference because method
AdjacentState allocates a new array, but I could’ve made an explicit
copy. Whenever a new global best state is found, I display it and its
energy. Th e main processing loop ends like this:

 double p = random.NextDouble();
 if (AcceptanceProb(energy, adjEnergy, currTemp) > p)
 {
 state = adjState;
 energy = adjEnergy;
 }

 currTemp = currTemp * alpha;
 ++iteration;
} // While

Th e loop fi nishes up by fi rst generating a random value p greater
than or equal to 0.0 and strictly less than 1.0 and comparing that
value against the return from helper method AcceptanceProb. If
the acceptance probability exceeds the random value, the current
state transitions to the adjacent state. Next, the current temperature
is decreased slightly by multiplying by the cooling factor, and the
loop counter variable is incremented. Next comes:

using System;
namespace SimulatedAnnealing
{
 class SimulatedAnnealingProgram
 {
 static Random random;

 static void Main(string[] args)
 {
 try
 {
 // Set up problem data.
 // Create random state.
 // Set up SA variables for temperature and cooling rate.

 while (iteration < maxIteration && currTemp > 0.0001)
 {
 // Create adjacent state.
 // Compute energy of adjacent state.
 // Check if adjacent state is new best.
 // If adjacent state better, accept state with varying probability.
 // Decrease temperature and increase iteration counter.
 }
 // Display best state found.
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
 } // Main

 static double[][] MakeProblemData(int numWorkers, int numTasks) { ... }

 static int[] RandomState(double[][] problemData) { ... }

 static int[] AdjacentState(int[] currState,
 double[][] problemData) { ... }

 static double Energy(int[] state, double[][] problemData) { ... }

 static double AcceptanceProb(double energy, double adjEnergy,
 double currTemp) { ... }

 static void Display(double[][] matrix) { ... }

 static void Display(int[] vector) { ... }

 static void Interpret(int[] state, double[][] problemData) { ... }

 } // Program
} // ns

Figure 3 SimulatedAnnealing Program Structure

I’m using an artifi cially simple
example—but one that’s

representative of the kinds of
combinatorial problems that are

suited for a solution by
SA algorithms.

79January 2012msdnmagazine.com

Console.Write("Temperature has cooled to (almost) zero ");
Console.WriteLine("at iteration " + iteration);
Console.WriteLine("Simulated Annealing loop complete");
Console.WriteLine("\nBest state found:");
Display(bestState);
Console.WriteLine("Best energy = " + bestEnergy.ToString("F2") + "\n");
Interpret(bestState, problemData);
Console.WriteLine("\nEnd Simulated Annealing demo\n");
Console.ReadLine();

Aft er the main SA processing loop completes, I display the best
state (solution) found and its corresponding energy (hours). Th e
Main method ends like this:

...
 } // Try
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
} // Main

The method wraps up by handling any exceptions simply by
displaying the exception’s message.

The Helper Methods
Th e code for helper method MakeProblemData is:

static double[][] MakeProblemData(int numWorkers, int numTasks)
{
 double[][] result = new double[numWorkers][];
 for (int w = 0; w < result.Length; ++w)
 result[w] = new double[numTasks];

 result[0][0] = 7.5; result[0][1] = 3.5; result[0][2] = 2.5;
 result[1][1] = 1.5; result[1][2] = 4.5; result[1][3] = 3.5;
 result[2][2] = 3.5; result[2][3] = 5.5; result[2][4] = 3.5;
 result[3][3] = 6.5; result[3][4] = 1.5; result[3][5] = 4.5;
 result[4][0] = 2.5; result[4][4] = 2.5; result[4][5] = 2.5;
 return result;
}

I decided to use type double[][]—that is, an array of arrays—to
hold my scheduling problem defi niti on. Th e C# language, unlike
many C-family languages, does support a built-in two-dimensional
array, so I could’ve used type double[,] but an array of arrays is
easier to refactor if you want to recode my example to a language
that doesn’t support two-dimensional arrays. In this example I
arbitrarily put the worker index first and the task index second
(so result[1][3] is the time required by worker 1 to perform task
3), but I could’ve reversed the order. Notice that C# automatically
initializes type double array cells to 0.0, so I don’t have to explicitly
do so. I could’ve used some other value, such as -1.0 to indicate that
a worker can’t perform a particular task.

Helper method RandomState is:
static int[] RandomState(double[][] problemData)
{
 int numWorkers = problemData.Length;
 int numTasks = problemData[0].Length;
 int[] state = new int[numTasks];
 for (int t = 0; t < numTasks; ++t) {
 int w = random.Next(0, numWorkers);
 while (problemData[w][t] == 0.0) {
 ++w; if (w > numWorkers - 1) w = 0;
 }
 state[t] = w;
 }
 return state;
}

Recall that a state represents a solution and that a state is an int
array where the index is the task and the value is the worker. For each
cell in state, I generate a random worker w. But that worker might
not be able to perform the task, so I check to see if the corresponding
value in the problem data matrix is 0.0 (meaning the worker can’t do
the task), and if so I try the next worker, being careful to wrap back
to worker 0 if I exceed the index of the last worker.

Helper method AdjacentState is:
static int[] AdjacentState(int[] currState, double[][] problemData)
{
 int numWorkers = problemData.Length;
 int numTasks = problemData[0].Length;
 int[] state = new int[numTasks];
 int task = random.Next(0, numTasks);
 int worker = random.Next(0, numWorkers);
 while (problemData[worker][task] == 0.0) {
 ++worker; if (worker > numWorkers - 1) worker = 0;
 }
 currState.CopyTo(state, 0);
 state[task] = worker;
 return state;
}

static double Energy(int[] state, double[][] problemData)
{
 double result = 0.0;
 for (int t = 0; t < state.Length; ++t) {
 int worker = state[t];
 double time = problemData[worker][t];
 result += time;
 }
 int numWorkers = problemData.Length;
 int[] numJobs = new int[numWorkers];
 for (int t = 0; t < state.Length; ++t) {
 int worker = state[t];
 ++numJobs[worker];
 if (numJobs[worker] > 1) result += 3.50;
 }
 return result;
}

Figure 4 The Energy Method

static void Display(double[][] matrix)
{
 for (int i = 0; i < matrix.Length; ++i) {
 for (int j = 0; j < matrix[i].Length; ++j)
 Console.Write(matrix[i][j].ToString("F2") + " ");
 Console.WriteLine("");
 }
}

static void Display(int[] vector)
{
 for (int i = 0; i < vector.Length; ++i)
 Console.Write(vector[i] + " ");
 Console.WriteLine("");
}

static void Interpret(int[] state, double[][] problemData)
{
 for (int t = 0; t < state.Length; ++t) { // task
 int w = state[t]; // worker
 Console.Write("Task [" + t + "] assigned to worker ");
 Console.WriteLine(w + ", " + problemData[w][t].ToString("F2"));
 }
}

Figure 5 The Display and Interpret Helper Methods

By sometimes going to a
worse state, you can escape

non-optimal dead-end states.

www.msdnmagazine.com

msdn magazine80 Test Run

Method AdjacentState starts with a given state, then selects a
random task and then selects a random worker who can do that
task. Note that this is a pretty crude approach; it doesn’t check
to see if the randomly generated new worker is the same as the
current worker, so the return state might be the same as the current
state. Depending on the nature of the problem being targeted by
an SA algorithm, you might want to insert code logic that ensures
an adjacent state is diff erent from the current state.

Th e Energy method is shown in Figure 4.

Th e Energy method fi rst walks through each task in the state array,
grabs the assigned worker value, looks up the time required in the
problem data matrix, and accumulates the result. Next, the method
counts the number of times a worker does more than one task and
adds a 3.5-hour retooling penalty for every additional task. In this
example, computing the energy of a state is quick; however, in most
realistic SA algorithms, the Energy method dominates the running
time, so you’ll want to make sure the method is as effi cient as possible.

Helper method AcceptanceProb is:
static double AcceptanceProb(double energy, double adjEnergy,
 double currTemp)
{
 if (adjEnergy < energy)
 return 1.0;
 else
 return Math.Exp((energy - adjEnergy) / currTemp);
}

If the energy of the adjacent state is less than (or more than, in
the case of a maximization problem) the energy of the current state,
the method returns 1.0, so the current state will always transition to
the new, better adjacent state. But if the energy of the adjacent state
is the same as or worse than the current state, the method returns
a value less than 1.0, which depends on the current temperature.
For high values of temperature early in the algorithm, the return
value is close to 1.0, so the current state will oft en transition to the
new, worse adjacent state. But as the temperature cools, the return
value from AcceptanceProb becomes smaller and smaller, so there’s
less chance of transitioning to a worse state.

The idea here is that you sometimes—especially early in the
algorithm—want to go to a worse state so you don’t converge on a
non-optimal local solution. By sometimes going to a worse state,
you can escape non-optimal dead-end states. Notice that because
the function performs arithmetic division by the value of the
current temperature, the temperature can’t be allowed to reach 0.
Th e acceptance function used here is the most common function
and is based on some underlying math assumptions, but there’s no
reason you can’t use other acceptance functions.

Th e Display and Interpret Helper methods are extremely simple,
as shown in Figure 5.

Some Weaknesses
SA algorithms are simple to implement and can be powerful tools,
but they do have weaknesses. Because these algorithms are most
oft en used in situations where there’s no good deterministic solving
algorithm, in general you won’t know when, or even if, you hit an
optimal solution. For example, in Figure 1, the best solution found
had an energy of 20.5 hours, but by running the algorithm a bit
longer you can fi nd a state that has energy of 19.5 hours. So, when
using SAs, you must be willing to accept a good but not necessarily
optimal solution. A related weakness with SA algorithms and other
algorithms based on the behavior of natural systems is that they
require the specifi cation of free parameters such as the initial tem-
perature and the cooling rate. Th e eff ectiveness and performance
of these algorithms, including SAs, are oft en quite sensitive to the
values you select for the free parameters.

SA algorithms are closely related to Simulated Bee Colony (SBC)
algorithms, which I described in the April 2011 issue (msdn.microsoft.com/
magazine/gg983491). Both techniques are well suited for solving com-
binatorial, non-numeric optimization problems. In general, SAs
are faster than SBCs, but SBCs tend to produce better solutions at
the expense of performance.

Th e use of artifi cial intelligence techniques in soft ware testing
is an area that’s almost entirely unexplored. One example where
SAs might be used in soft ware testing is as algorithm validation.
Suppose you have some combinatorial problem that can in fact be
solved using a deterministic algorithm. One example is the graph
shortest-path problem, which can be solved by several effi cient but
relatively complicated algorithms such as Dijkstra’s algorithm. If
you’ve coded a shortest-path algorithm, you could test it by quickly
coding up a simple SA algorithm and comparing results. If the SA
result is better than the deterministic algorithm, you know you
have a bug in your deterministic algorithm.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he man-
ages technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He’s worked on several Microsoft products, including Internet
Explorer and MSN Search. Dr. McCaff rey is the author of “.NET Test Automation
Recipes” (Apress, 2006), and can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Paul Koch, Dan Liebling, Ann Loomis Th ompson and Shane Williams

The use of artifi cial
intelligence techniques in

software testing is an area that’s
almost entirely unexplored.

SA algorithms are simple
to implement and can be

powerful tools, but they do
have weaknesses.

http://msdn.microsoft.com/magazine/gg983491
http://msdn.microsoft.com/magazine/gg983491
mailto:jammc@microsoft.com

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BarCoa C de bbarCoarCCode =de = newn EEanEan113SuS pp5(“12234556789001212345”, x, y + 21); barCode.X += (204 - barCodee.Get

ddUPCVersionA(GrouGroup elemenem ts, float x, floatfloa y) { AddCaptionAndRectangle(elemente s, “UPC Version A Bar Code”, x, y, 2y, 204, 99);9)99);9) Bar BarB rBa CodeC barbarCCode = neew UpcVepcVersionAA(“12345678901”, x, y + 21); barCode.X += (204 - baarCo

ddUPCVersionASSup2(up2 Grououpp elements,, floatoa xx, float y) { AddCaptionAndRectangle(ele(ments, “UPC Version E Bar Code, 2 digit git supsuppsuppup lement”nt”, x,x, x y, 204, 999); BaarCodde barCCode = new UpcVersionASup2(“123456787 90112”, xx, yx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup5(Group elements, float x, floato y) { AddCaptionAndRectangle(eleementmmentm s, “s, “UPC UPC VerVersion EE Bar Code, 5 diggit suupplemment”, x, y, 204, 99); BarCode barCode = n ew UpcVeeersio

ode.GetSymbolWWidth(dth)) / 2; 2 elements.AddAdd(bar(ba Code); } privatee voi v d AddEANEAN8(Group p elements, float x, float y) { AddCddCaptitionAnonAn dRecReccecttaangle(elemments, “EANN/JANN 8 BBar Codde”, x, y, 204, 99); BarCode barCode == newn Ean8(“123434

g(); fileDialog.Title =le = “Op “Open Fen File Dialogg”; filfi eDialog.Filter = “AdAdobe PDFF fileses (*.pdf)f)|*.pdf|All Files (*.*)|*.*”; if (fileDieDialog.log.ShSSShowwDDiallog()og == DialoggResult.OK) { pdfVieweewer.OppenFile(fileDialog.FileName, “”); } SaveSav FileF Diallog saavaveFa

File Dialog”; s saveFveFileDialoal gg.Filter = “AdoAdobee PDF files (*.pdf)f)|*.pdf|All Files (**.*)|*.*”; if (saveFileDialog.ShowDowDialoialoa g()=g()==DiaDi=DiaDi logResulsule t .OOK) {{ pdfVfVieweewerr.SaveAs(saveFileDiaDialog.FileNamee);); } } if (p(dfVidfV ewewer.PPagP e

WithDialog(); } e else se { MessMe aageBox.SShow(w “PPlease open a fifile tto printt”); } OOpenFileF Dialog fileDiD aloglog = n = nnnew Oew Oe pepenpenFileDDialog(); fifile Dialog.Tiitle = “Open File Dialoog”; filleDialog.InitialDirecectoory = @”c:\”:\ ; fi fileDleDialoglo .Filterter = “= “All F

) == DialogResules t.Ot.OK) { Dy D nnamicPDFFViewewerrClass test = new Dew DynammicPDFVieewerCr lass(); PDFDFPrinPrintter prinprinninterter er = = test.OpenFpe ileForPorPrinnter (file(fileDiaalog.FileName); pprinnter.PrintQuieQuiet();() } bytbybytby ee[] contcontentst =

pServices; GCHGC andandle gcchh = GCHandled .AllAl occ(contents, GCHHandndleTypType.Pinnedd); IntIntPtr contcontentsentsIntPtr ===gcch.ch.h.AAAddrOfPinnednn Objeect()ct ;ppdf Viewer.O.OpenBpepe ufffefeuff r(cor(r(cor(ntentsIntPtrt ,

kmark Page Elemelement:”, x,x, y); y); p pageEleementen s.AAdd(new Bookkmarrk(“(BBookB marked Text”x , x , x + 5,+ 5, y + 20,0 parpareenenttOe utline)); pageElg emennts.Ats.Add (new Label(“This tes texxt is bookmaokmaokmarkedrked ”, .”, xx + 5, y + 20, 2

ageElements, fls, float a x, float at y) {{ // Addsdss a circltt to the pageEllemeents AddCaptioonnAndRAndRectaectangle(paggpagpaggeEleeEl mentmen s, “Circle PPaage Elemment:ent:”, x, y); pageElgeElements.As.Add(ndddd(ndd ew CCircle(x (x + 112.5f2 ,

shLarge)); } pprivavate te void AddFAd orormattedteede TextArrea(Group pp ageeEg lemennts, float x,x, floafloat yt y)t { /{ / AdA dsds ads a for forfofoo matttedd text area too tthepageEeElle ments strring formattm edHtedHtml = “<p“<p><<i>Dynamic</i>PDb>P F</bb>&tm>&tmmtm; Generaeraaator oro v6.0 foror .NE

matting suppoort for or text thath t aappears s in the ddocument. Yt. Youuu havve “ + “comcompletetple e cooontrorol ovovovovver 8r 8e parar agraph pph properties: ssppacing befoeforee, spacingg after, firfirst liine “ + “indentantation, left indentatitation, righr t ininndentdentdentntatiotionn, a, aaliignment, alalllowi

fontt fac f e, </fonnt>t>><f> ont ppoino tSizSize=’6’>fffont “ + “““size, </</fonfonntn ><fo<f nt ct coolorloolorlol =’FF000000 ’>>coloor, >b old, </b<<i>italic aannd </i><<u>uunderline</u>>; “ + “and 2 line proopertrties: leaeadingng, anndd leleeeaadinaad g type. Text

extArea = neew FoFormatrm tedTdTextAArea(fororrmmattedHHtmtml, x + 5, y +++ 20,, 21555, 60, F, FontontFamilmmi y.HeHeelvvelveteticaica, 9, ffalse)e); // SSets the the indent properoperty foformatteatt ddTextAreeaa.Styyle.PParagrapph.Inndent = 18; AddCCapttionAndRectRectanglgle(pae(papa(paapae geEgeElements, ts, “F

ageElemem ntts, “Fo“FormmattedTdTextAtArea OOvvverflow flow TText:”, x + 27999, y); pagpaggeEleeEleementmen ss.AdAdAdd(fod(foodd ormrrmatrmatmatatttedTextAtArea)); // CCreate e an oa verflow formatteded t text art a ea for tr the ooverflflow textt FoormattedTextArea ova oveerflowForFormattma edTeTTeextArxtArxtArtxttArea =ea =e formatte

a(x + 284, y + 20)20); pap geEElemenements.Adddd(o(overflverflowwFowFoow rmatarm tedTeextAe rrea); } privprivate ate vvooidov AddAddA dA Imagmagmagmage(Group up paggeElememeents, float x, float y) { // A/ dds an in magee tto thhe paageElemmenents AddCaptionAndRedRectangle((pagpageElemmmentsenntstsnts, “Imagegee Pag

es/DPDFLoogo.pn.png”), x ++ 1112.55f, y ++ 550f,50f, 0.20.244f);4f // Image is sizeed annnd centeenteredd in tn tthe rrrrectataec nglengle imam ge.SetBoB unds(215, 60); image.VAlign = VAlign.Cenenterr; imaage.Alignn = Align.Center; paggeEeElements.Ad.Addd(imaggee)g ;; } } privvate ate vvoidv A

pageElemennts AdAddCapdC tiononAndRectaannglengle(pag(paggeeEleeElements, “LLabell & PPagePageNumbeerinerine gLgLabg bel PPage ElememE entts:”, x, y); string labelText = “Labels can be rottaated”; strring numbermbe Text = “PageNummbeeringLabelsels contcontaiain ppage nummbeerib ngTT

xt, x + 5, y + 12+ 12, 22220, 80, F0 ontt.TimemessRomRoman,an, 12, TextAlign..Cennter);; l lababel.AngAngglle = 8; 8; 8; PagePageeNNumNumbN erinri gLagLabel pageNumLabel = new PageNumberb ingLabelab (nnumbberText, x +x + 5, y + 55, 220, 880, FFont.TimesResRoman, 1212, TextAltAligignign.n Ce

mem nts.Add(labeabel); l); } private voe id AAddLdLinne(Gne(Groupp pageElemennts, flflfloat x, floaoat y) {{{) { / // Addss a l a lla inne to the phe pageEag lements AddCaptionAndRectangle(p(ageElemee nnts, ““Line Paage Element:”, x, y); ppageeElemennts.As.Add(neew Lw ine(x +x + + x 5, y5 +

w Liw ne(xx + 2+ 220, y + 20, x + + 5, yy + 8 + 0,0, 30, 3, Rg, RgbCoolor.Green)); } prprivivaate vvoid Ad AddLiinknk(Groupup p pagpap eElementments, float x, float y) { // Adds a link to the ppageElemeem ntts Foont font == Foont.TimesRoman;; st string text = “TThisT iss s a lia nk tnk tk o o Dynaamic

mentm :”, x, y); Label label == newne LaLabbbel(textt, x + 5, y + 20, 2155,5, 800, fonnnnt, 1t, 2, R2, RgbbColor.or.BBluelu); l; abel.UndUndererline = true; Link link = new Link(x + 5, y + 20, font.on GGetTeextWidthh(texxt, 12), 12 - font.GGetDDescendder(1r(12), neeww ee UrlUrlAlAction(“n(“hhttp

EleE mennts.Add(li(nk);; } p } privavate ve voidd AAddPath(ath Grroup pageElemmentts, floatoatfl x, floatt y) y) {{ // AddAd s a s pathh to the pageElements ceTe.DynamicPDF.PageElementen s.Pathh path = nneww ceTe.DynamicPDPDF.PF.PageElemenmennnts.Ps.Paaath(h(x + x + 55, y, y + + 2+ 20, R

PathP s.AAdd(new LineeSubPatPa h(xx ++ 2215, y + 4+ 0))); path.Suh.S bPatths.Ahs.AAAdddd((new CurvurveeToSubPatPa h(x h(x + 1008, y + 80, x + 160, y + 80)); path.SubPaths.Add(neww CCurvveSuubPath(x + 55, y + 40, x + 65, 6 y + y + 80, x + 5, y5, yy + + 60))); AddAddCCaCaptC ionAAnd

AAdd(ppaaath); } privatee void AAddRReccttaangle(GrG oupp pageeEElemennnts, flflflofloatat x, float yat y)) oorderee dLisdL t = t = ordderedList.GetOverFlowList(x + 5, y + 20); AddCaptionAnAndRRectaanggle(pagge.Elements, “Orderr ed Led List Pagegee Ele EleEl mentttn OOOve Ovev rflowrfl :”, x, y, 2

88; /8; // C/ Create an unoordereedd list UUnnornorderede List uunorderere edListt =t =stt neeew UUnonorderrderedLLied st(xx + 55, yy + 20+ 20, 400, 90, Font.Helvetica, 10); unorderedList.Items.Add(Add(“Fruits””); uunorderedere List.Items.Add(“d “VegeVegeg tablees””); UnU U ordeeer redSreedSd ubbList unord

tt((); (); unorderedSubList.Items.ms.Add(“dd((““ Citrus”); unordorderededederedSuSubLiist.Iteeemss.AdAddd(“ Nonn-Citrt us”)s” ; AdAddCCaptionAndRectangle(page.Elemennts, “Unordered Lisst Pagee Elemmente :”, x, yx, y, 225, 110); Unonn rddereedSubLisbLisst ununnu ordederedSredSdredSdd ubLiub st2 = uno

rederer SubbbList2.Items.Add((“PoPotato”); unorderedSSubLiiubLisstt2.Itemmms.Addddd(“BBeans”); Unorno derederedSubdSubLisst subUnorderedSubList = unorderede SubLS ist.Items[0]].SuubLists.AAddddUnorderrde edSubList(); subs bUnorUnorderedSubdSSubbLListLLL .Iteteeems.Ams.Am Addd(“Lime”); s

LList subbbUnorderedSSubList2st = unorderedSubLbLS iist.ist.Itemss[1].SuubLissts.AAddUnordeeredSuedS bLisbL t();t() suubUnorderedSubList2.Items.Add(“Mana go”); subUnorrdereedSSubList2.It2 temms.AAdd(“Banana”);); UnUnordderedSSuSubdS ListLissLis sububUnorn derede dSubList

tt(()(); subUUnordereddSSubList3.Items.Add(“SweSweew t PoPotato””); Unoorderred dSSubList subbUnorUno dereer dSubdSubListList44 = unorrderedSubList2.It2 ems[1].S].SubLists.AddUnoordeereddSubbList(s); subUnubU orderedSubLibubListst4.s Iteems.AdAdAdA d(“Sd(“S“Strining BeeBeean”)an” ; subUnoU rde

AAdddd(“Kiddney Beanean”); x += 279; paga e.Elemeements.Addd(ud nnordereedLisst); uunorderedListLis == unordnorderedere List.GetOvere FlowList(x + 5, y + 20);) AddA CaptionAndRecctanngle(ppageag .Elemeents, “UnorUnorderederer d Lid st PPage e ElemElemmmeent ee Oveverve flow:flow:flo ”, x, y, 225

ooiddd AdddTedTextFxtField(Group pageElemenme ts, , flofloat x,, flooat y)) { TexxtField txtt = new TextFixtF eeld(“txt“t fnafname”, x + 20, y + 40, 120, 20); txt.Defaulu tValue = “This iis s a Scrrollabble Te extFFieldd”; txt.BordederColrColC or =o RgbRgbCColoor.Br.Br.Br.Black; txtxttxtxt.BacackgrokgroundCun o

(td(d xt); TTexTextField txt1 = new TextFiField(ld “txxtf1naf1 me”,me” x + 175, yy + 440, 120, 20); txtt1.DefDe aultu Valualue = “TextField”; txt1.Password = true; ttxt1.MaxLength = = 99; txtt1.BoordderColor = RgbCollor.BBor.Black; txt1.B1.Backgckgrounou dCololor =oror =or = RgbRgbR ColoColor Alr.Al

eree ies(); pieSeries.DataLabel == da;a;da plop tAreAreaa.Sea riesrie .Add(pieSSeriess); ppieSeries.Elemelementss.Add(Add(27,27, “Website A”); pieSeries.Elements.Addd (19, “Website BB”)); pieSerrieses.Elementmen s.Add(21d(21, “WWWebsiseb te Cee ”); ”);); pieSpieSp eries.ElElemenmeements[0ts[0s[0s[0].Co].C lor or == a

esess.Elements[2].Color = aututograog diendientt3;”RgbCRgbColoor.AliceeBlue; txt2.Too.ToolTip = “Multilinnee”; pagepageElElements.Add(txt2); AddCaptionAndRectangle(pageElememennts, “TexxtFiField Formorm PagPage Ele Elemenemenemennnt:”,:”, x, y, 5, 5y 0404, 85);5) } p} rivaate ve ve ooid oid AddCdCombomb

CombCCC ooBox(“cmmbnambna e”, e”, x + x + 51, 51, y + y + 40,40, 150,15 220); cb.BBorderColoor = RgbColor.BlacBlack; ccb.Bab.BackckgroundColor = RgbColor.AliceBlue; cb.Font = Font.Helveelveticaa; cbb.FonFo tSizzSizze = e 12; cb.Icb.Itemsstemsstems.AddA (“Item 1eme ”);); cb.cb.Itemstems.AddAdAd.Add(“It(“It(“It(Item 2em ”); ”); cbcb

didd table””)”); cb.Itemms[s[“[“Editaabble”].Selectcteded = true; c; cb.Editable = truue; ccb.ToolTip == “Edi“Ed tablab e CoC mmbo Box”; pageElements.Add(cb); ComboBox cb1 = new Cew omboombbb Box(B x(“cmbmb1nammee”, x + 303,3303, y + y + 40, 150, 20 20); c); cb1.BBb1 ordedederderrColor == R

= F== ont.HHHelveticca;a; ca; cbb1.FontSnt ize = 122; cb1.Itemss.AAdd(“IItem 1”); ccb1.Ittems.Add(“It“Item 2em ”); ”) cb1.cb1.ItItems.Add(“Item 3”); cb1.Items.Add(“Item 4”); cb1.Itemss.AAddd(“Noon-Ediditabtablee”);); c cb1.Items[““[“Non-Non-EditEditableable”].S”].Seelected = tr= ue; ue; cb1.1 Edita

ntnntts.Ads dd(cb(cb(cb1); Converter.CoC nvert(“http://www.gogoogogle.ccom”, “Outputt.pdf”);Convertve er.Cer.Conveonvert(GetDocPath(“DocumentA.rtf”), “Output.pdf”);System.Diaiagnooosticscss.ProoPP cesssess.SStart(“Outptput.pput.pdf”)df”); As; AsyncCncConverterrt aCooCoonnvenverteer = new A

errr((aC(aCo(nverrter_Converted); aConverter.ConversionErroor += nnew ConnversionErrorEvventHtHandler(aConverter_ConversionError); aConverter.Convert(@”C:\tC:\ emmp\mpmm DDocummenmenttAA.rtf”, @”C:\tememmmp\Oup\OutputtputA.pdA.pdf”);f”);) aConverv rter.ter.Coonvert(@”C

verve t(@”C:\temp\DocumentC.rtf”, @”C:\temp\OutputCC.pdf”)); aCoonveerter.Convert(e “hhttp://p://www.yahoo.com”, @”C:\Temp\yahoo.pdf”); ConversionOptionsoni ooptop ionnsnsns = = new CConversiosionOptnOpttionsions(720(720, 72, 720, 72, ttrue); ceeTe.DTe. yynamicPDF

tempte \\ooutput.pdf”, options); ceTe.DynamicPDF.Conveersion.Connvertter.Convert(“C:\\\teemp\\Document2.docx”, “C:\\temp\\output.pdf”, options); string sg ammmpamplmpam eHtmH ml = l “<hth ml><ml><bodybody><p>><p>pp TThis is a very ssimplm e HTML ML strring includ

<tab<t le bborder=\”1\”>1 <tr><td>100</td><td>200</td>”” + “<ttd>3300<</td></tr><tr><<td>>400</td><td>500</td><td>600</t< d></tr></table><></bod/body><y><//</</hhthtmhtmlhtmhtm >”;Conveveo rsion.Con.CoCC nvernverter.ter.CConvvertHtmlString(saamplempleHtmll, “C“C:\\\temp\emp\\Sam\Sam

ererNamee”, Path.Combo ine(GetPath(), “LetterPortrait.pdff”)); prrintJoob.DDocumentNamee = “LettLetter Pe ortrait”; if (printJob.Pob. rinter.Color) prinprinprinprinpri tJobtJob P.PrintOpntOn tions.Cos. lor o = trtrue; ue; if (if (prinprinri tJobtJo .Printer.ColC late) printJob.Pb.P.PPrrintr OOptiOptip ons.ons.onons CoCoollollate at = tr= tr= uurr

innt

;ppd

t:: ,

Untitled-1 1 9/8/11 12:41 PM

www.dynamicpdf.com

msdn magazine82

Speaking in code, then, a parser looks like the following:
T Parse<T>(string input);

In other words, a parser is a generic function, taking strings and
returning an instance of something.

As simple as that is, though, it’s not entirely accurate. Were that
the sum total of the story, we’d be back to writing a complete parser
per function, which doesn’t really allow for much in the way of reuse.
But if we look at parsing as a series of functions—in other words, a
parser is made up of a bunch of little parsers, each of which knows
how to parse just a piece of the input and return just a piece of the
resulting object—it’s clear we need to return not only the resulting
object, but also the remaining text that requires parsing. And that
means the “T” from the previous declaration has to be made slightly
more complicated by wrapping it in a “Parser Result” type that con-
tains both “T” and a string with the remaining parse text, like so:

public class ParseResult<T>
{
 public readonly T Result;
 public readonly string Rest;
 public ParseResult(T r, string i) { this.Result = r; this.Rest = i; }
}

And given that C# naturally manages functions as delegate types
and instances, declaring a parser now becomes a delegate declaration:

public delegate ParseResult<T> ParseFn<T>(string input);

Now, we can imagine writing a series of small parsers that know how
to parse text into some useful other type, such as a ParseFn<int> that
takes a string and returns an int (see Figure 2), or a ParseFn<string>
that parses up to the fi rst whitespace character, and so on.

Note that the parser implementation here is actually one that’s
pretty repeatable: to write a parser that parses text up to a whitespace
character, all you’d need to do is change the IsDigit call to an

Building Combinators

In my December column (msdn.microsoft.com/magazine/hh580742), I looked
at parser combinators, text parsers that are created by combining small,
atomic parsing functions into larger functions, and those in turn into
even larger functions, suitable for parsing non-trivial text fi les and
streams. Th is is an interesting technique, one that builds on some core
functional concepts, and it deserves deeper exploration.

Readers of the earlier column will recall that the parser we
constructed to handle U.S.-style phone numbers worked, but the
implementation was a bit … shall we say … quirky in places. In par-
ticular, the syntax for parsing three- and four-digit combinations—
well, to be honest, it clunked. It worked, but it was hardly pretty,
elegant or in any way scalable.

As a refresher, here’s the Phone Number parser code:
public static Parser<PhoneNumber> phoneParser =
 (from areaCode in areaCodeParser
 from _1 in Parse.WhiteSpace.Many().Text()
 from prefix in threeNumberParser
 from _2 in (Parse.WhiteSpace.Many().Text()).
 Or(Parse.Char('-').Many())
 from line in fourNumberParser
 select new PhoneNumber() { AreaCode=areaCode, Prefix=prefix, Line=line });

Th e PhoneNumber type is pretty guessable. Figure 1 shows the
threeNumberParser and fourNumberParser, which, in particular,
are what “clunk” with all the grace of a pro football defensive lineman
attempting ballet for the fi rst time on a stage greased with duck fat.

Th is is hardly the kind of inspirational coding practice that I
hope to convey within these pages. Th ere’s a more elegant way to
construct these, but to describe it, we need to dive a bit deeper
into how parser combinators work. And that’s the subject of this
month’s column. Not just because we need a more elegant way to
construct parsers, mind you, but because the general technique
helps describe how they work, and more important, how you might
construct something like this in the future.

From Functions to Functions
Th e important point to realize about parser combinators is that a parser
is really “just” a function: Th e function parses the text and may then
transform the characters into something else. What that something
else turns out to be is, of course, up to the person implementing the
parser. It could be an abstract syntax tree (AST) for validation and
verifi cation of the text passed in (and later conversion into execut-
able code or perhaps interpreted directly, as in some languages), or
it could be a simple domain object, or even just values plugged into
an existing class, like a dictionary of name-value pairs.

THE WORKING PROGRAMMER TED NEWARD

public static Parser<string> threeNumParser =
 Parse.Numeric.Then(first =>
 Parse.Numeric.Then(second =>
 Parse.Numeric.Then(third =>
 Parse.Return("" + first.ToString() +
 second.ToString() + third.ToString()))));
public static Parser<string> fourNumParser =
 Parse.Numeric.Then(first =>
 Parse.Numeric.Then(second =>
 Parse.Numeric.Then(third =>
 Parse.Numeric.Then(fourth =>
 Parse.Return("" + first.ToString() +
 second.ToString() + third.ToString() +
 fourth.ToString())))));

Figure 1 Clunky Parsers

http://msdn.microsoft.com/magazine/hh580742

83January 2012msdnmagazine.com

IsLetter call. Th is screams for a refactoring to use the Predicate<T>
type to create an even more fundamental parser, but that’s an
optimization we won’t attempt here.

This implementation is great for parsing little things such as
integers and single words, but so far it doesn’t seem like too much
of an improvement over the earlier version. Th is is more powerful,
however, because you can combine functions by creating functions
that take functions and return functions. Th ese are called higher-
order functions; while the theory is beyond the scope of this article,
showing how they apply in this particular case isn’t. Th e starting
point is when you create functions that know how to take two parser
functions and combine them in a Boolean “AND” and “OR” fashion:

public static class ParseFnExtensions
{
 public static ParseFn<T> OR<T>(this ParseFn<T> parser1, ParseFn<T> parser2)
 {
 return input => parser1(input) ?? parser2(input);
 }
 public static ParseFn<T2> AND<T1, T2>(this ParseFn<T1> p1, ParseFn<T2> p2)
 {
 return input => p2(p1(input).Rest);
 }
}

Both of these are provided as extension methods on the ParseFn
delegate type to allow for an “infix” or “fluent interface” style of
coding, to make it more readable in the end, on the theory that
“parserA.OR(parserB)” reads better than “OR(parserA, parserB).”

From Functions to LINQ
Before we leave this set of small examples, let’s take one more step
and create three methods, as shown in Figure 3, that will essen-
tially give the parser the ability to hook into LINQ, to provide
a unique experience when writing code (this is one of Sprache’s
features as well). Th e LINQ libraries and syntax are in close sync
with one another, in that the LINQ syntax (“from foo in bar select
quux q …”) is closely tied to the expectation that several method
signatures are present and available for use. Specifi cally, if a class
provides the Select, SelectMany and Where methods, then LINQ
syntax can be used with them.

Th is gives LINQ the necessary methods to parse LINQ expres-
sions, such as what you saw in the previous article.

I don’t want to go through the exercise of (re)designing a parser
combinator library here; both Luke Hoban and Brian McNamara
have excellent blog posts on the subject (bit.ly/ctWfU0 and bit.ly/f2geNy,
respectively), which, I must point out, serve as the standard against
which this column is being written. I want only to demonstrate the
mechanism by which these kinds of parsers are constructed in a parser
combinator library like Sprache, because that provides the core of the
solution to the earlier problem of the three- and four-digit parsers in
the phone number parser. In short, we need one parser combinator that
reads exactly three digits, and another that reads exactly four digits.

ParseFn<int> parseInt = delegate(string str)
 {
 // Peel off just numbers
 int numCount = 0;
 foreach (char ch in str)
 {
 if (Char.IsDigit(ch))
 numCount++;
 else
 break;
 }

 // If the string contains no numbers, bail
 if (numCount == 0)
 return null;
 else
 {
 string toBeParsed = str.Substring(0, numCount);
 return new ParseResult<int>(
 Int32.Parse(toBeParsed), str.Substring(numCount));
 }
 };
Assert.AreEqual(12, parseInt("12").Result);

Figure 2 Parsing a String and Returning an Int

public static class ParseFnExtensions {
 public static ParseFn<T> Where<T>(
 this ParseFn<T> parser,
 Func<T, bool> pred)
 {
 return input => {
 var res = parser(input);
 if (res == null || !pred(res.Result)) return null;
 return res;
 };
 }
 public static ParseFn<T2> Select<T, T2>(
 this ParseFn<T> parser,
 Func<T, T2> selector)
 {
 return input => {
 var res = parser(input);
 if (res == null) return null;
 return new ParseResult<T2>(selector(res.Result),res.Rest);
 };
 }
 public static ParseFn<T2> SelectMany<T, TIntermediate, T2>(
 this ParseFn<T> parser,
 Func<T, ParseFn<TIntermediate>> selector,
 Func<T, TIntermediate, T2> projector)
 {
 return input => {
 var res = parser(input);
 if (res == null) return null;
 var val = res.Result;
 var res2 = selector(val)(res.Rest);
 if (res2 == null) return null;
 return new ParseResult<T2>(projector(val, res2.Result),res2.Rest);
 };
 }
}

Figure 3 Where, Select and SelectMany Methods

public static Parser<IEnumerable<T>> Many<T>(this Parser<T> parser)
{
 if (parser == null) throw new ArgumentNullException("parser");

 return i =>
 {
 var remainder = i;
 var result = new List<T>();
 var r = parser(i);
 while (r is ISuccess<T>)
 {
 var s = r as ISuccess<T>;
 if (remainder == s.Remainder)
 break;

 result.Add(s.Result);
 remainder = s.Remainder;
 r = parser(remainder);
 }

 return new Success<IEnumerable<T>>(result, remainder);
 };
}

Figure 4 Defi nition of the Many Combinator

http://bit.ly/ctWfU0
http://bit.ly/f2geNy
www.msdnmagazine.com

msdn magazine84 The Working Programmer

Specifi ce
Given that the problem is to read precisely three digits and precisely
four digits, it stands to reason that we want a function that reads exactly
that number of characters from the input stream. Th e Sprache library
doesn’t give us that kind of combinator—there’s a combinator that will
read a repeating sequence of whatever-kind-of-character until it runs
out of that-kind-of-character, but that’s a “zero-to-many” (hence its
name, Many) production rule, not a specifi c-number-of-characters
rule, and thus unhelpful. Looking at its defi nition can be interesting
and insightful, however, as Figure 4 shows.

For most developers, the hardest part of this method (and, indeed,
the entire Sprache library) is that the return value from this function is
a function—specifi cally, a lambda method (always a Parser<> of some
form, remember) that takes the string and returns an IEnumerable<T>
in its result structure; the meat of the actual parser is buried inside
that returned function, which means it will be executed later, not now.
Th is is a long way from merely returning a T!

Once that oddity is dealt with, the rest of the function is pretty
clear: imperatively, we step through and call the passed-in Parser<T>
to parse each “whatever”; and so long as the parser keeps returning
successfully, we keep looping and adding the parsed results to
a List<T> that gets returned when everything completes. This
serves as the template for my extension to the library, which I’ll call
Twice for now, essentially executing a given Parser<T> twice (and
yielding an error if either parse fails), as shown in Figure 5.

In fact, while it would have been a bit easier to write this code
by unrolling the loop-of-two into just two sets of imperative state-
ments, remember, Twice isn’t specifi cally what we’re looking for. We
need Th rice and Quadrice, and those are just special-case versions
of Twice, with “3” and “4” instead of “2” in the code, which sounds
as though we can extract them into a single method that takes the
number of times to parse. I choose to call this method “Specifi ce,”
because we’re parsing a specifi c number of times (see Figure 6).

Th us, we have now extended Sprache to parse exactly “ct” number
of parses (characters, digits, whatever kind of Parser<T> we pass in),
which opens up Sprache for use in fi xed-length parsing scenarios,
such as the ubiquitous fi xed-length record text fi le, aka the fl at fi le.

A Functional Approach
Sprache is a parser library for midsize parsing projects, for which
regular expressions are too complex and a full-blown parser
generator (such as ANTLR or lex/yacc) is overkill. It’s not perfect,
in that parser failures generate error messages that can be diffi cult
to understand, but once you’ve gotten through the initial com-
plexities, Sprache can be a useful tool in your developer toolbox.

More than that, though, Sprache demonstrates some of the
power and capability off ered by a diff erent approach to program-
ming than what we’re used to—in this case, from the functional
world. So next time somebody asks you, “What good comes from
learning about other languages if you aren’t going to use them on
the job?” there’s an easy response: “Even if you aren’t using a lan-
guage directly, it can teach you techniques and ideas you can use.”

But that’s it for now. Next month, we’ll take a stab at something
entirely diff erent. Because there’s only so much concept and theory
a language columnist’s audience can take at once.

Happy coding!

TED NEWARD is an architectural consultant with Neudesic LLC. He’s written
more than 100 articles, is a C# MVP and INETA speaker and has authored and
coauthored a dozen books, including the recently released “Professional F# 2.0”
(Wrox). He consults and mentors regularly. Reach him at ted@tedneward.com
if you’re interested in having him come work with your team, or read his blog
at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Nicholas Blumhardt

public static Parser<IEnumerable<T>> Twice<T>(this Parser<T> parser) {
 return Specifice(parser, 2); }
public static Parser<IEnumerable<T>> Thrice<T>(this Parser<T> parser) {
 return Specifice(parser, 3); }
public static Parser<IEnumerable<T>> Quadrice<T>(this Parser<T> parser) {
 return Specifice(parser, 4);
}
public static Parser<IEnumerable<T>> Quince<T>(this Parser<T> parser) {
 return Specifice(parser, 5);
}
public static Parser<IEnumerable<T>> Specifice<T>(this Parser<T> parser, int ct)
{
 if (parser == null) throw new ArgumentNullException("parser");

 return i =>
 {
 var remainder = i;
 var result = new List<T>();
 var r = parser(i);
 var c = 0;
 while (c < ct && r is ISuccess<T>)
 {
 var s = r as ISuccess<T>;
 if (remainder == s.Remainder)
 break;

 result.Add(s.Result);
 remainder = s.Remainder;
 r = parser(remainder);

 c++;
 }

 return new Success<IEnumerable<T>>(result, remainder);
 };
}

Figure 6 The Specifi ce Method

public static Parser<IEnumerable<T>> Twice<T>(this Parser<T> parser)
{
 if (parser == null) throw new ArgumentNullException("parser");

 return i =>
 {
 var remainder = i;
 var result = new List<T>();
 var r = parser(i);
 var c = 0;
 while (c < 2 && r is ISuccess<T>)
 {
 var s = r as ISuccess<T>;
 if (remainder == s.Remainder)
 break;

 result.Add(s.Result);
 remainder = s.Remainder;
 r = parser(remainder);

 c++;
 }

 return new Success<IEnumerable<T>>(result, remainder);
 };
}

Figure 5 The Twice Function

mailto:ted@tedneward.com
http://blogs.tedneward.com

85January 2012

audio fi le at run time, as I did in the MediaElementDemo program,
which is part of the downloadable code for this article.

In this program, the MediaElement is still in the visual tree, but
the Source property isn’t set, and AutoPlay is set to False. Media-
ElementDemo lets you play the three movements of the Brahms
Violin Concerto. (Th e fi les are from the Internet Archive at archive.org/
details/BrahmsViolinConcerto-Heifetz. It’s a 1939 performance with violin-
ist Jascha Heifetz and Serge Koussevitzky conducting, originally

Playing Audio Files in Windows Phone
When I fi rst read that the enhancements in Windows Phone OS
7.1 included a way for applications to play sound and music fi les in
the background, I thought, “Don’t we have that already?”

It turns out I was correct, but only a little. It’s indeed possible
for a Windows Phone OS 7.0 application to play a music fi le in the
background, but only in a very special case. In all the other cases,
any music fi le that your Windows Phone OS 7.0 application plays
will stop when your application is moved to the background. Of
course, for most applications, this behavior is entirely appropriate
and probably exactly what you want.

But consider an application that delivers music to your phone
apart from the phone’s normal music library. For such an appli-
cation, it’s extremely desirable to continue playing while other
applications occupy the foreground or when the screen times out
and goes into a locked state. And even for those of us who don’t
have a need to write such an application, this facility provides a fun
entry point into exploring the new world of “background agents”
introduced in Windows Phone OS 7.1.

In the next issue, I’ll show you how to write a Windows Phone
program that plays music fi les in the background. But to provide
a broader picture of audio facilities on Windows Phone, I want to
begin in this column with the more standard ways to play audio
fi les supported in Windows Phone OS 7.0 as well as version 7.1.

MediaElement and Its Sources
Th e most common way for a Silverlight program to play a music or
sound fi le is with MediaElement. Nothing is simpler: MediaElement
derives from FrameworkElement, so you can put it in the visual tree
of a XAML fi le and just set the Source property to a URL:

<MediaElement Source="http://www.SomeWebSite.com/CoolSong.mp3" />

When the XAML file is loaded, the music file automatically
starts playing. MediaElement supports MP3, WMA and WAV fi les.
Details are documented at msdn.microsoft.com/library/ff462087(VS.92).

As an alternative to referencing a fi le over the Internet, you can
embed a sound or music fi le in your application executable. Add
the fi le to the program in Visual Studio and fl ag the Build Action
as either Content or Resource. (Content is preferred and embeds
the fi le in the XAP executable; with Resource, the fi le is embedded
in the DLL for the program.) Set the Source property to a URL
referencing the fi le name with a folder name if applicable:

<MediaElement Source="Music/LocalSong.wma" />

Although MediaElement can be very simple, there are numer-
ous ways to make it more complicated. One way is to specify the

TOUCH AND GO CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201201TouchAndGo

public MainPage()
{
 InitializeComponent();
 // ...

 // Check if file is in Isolated Storage; otherwise start downloading it
 using (IsolatedStorageFile isoStore =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (isoStore.FileExists(isoStoreRadioButton.Tag as string))
 {
 isoStoreRadioButton.IsEnabled = true;
 }
 else
 {
 WebClient webClient = new WebClient();
 webClient.OpenReadCompleted += OnWebClientOpenReadCompleted;
 webClient.OpenReadAsync(new Uri("http://www.archive.org/....mp3"));
 }
 }
 // ...
}

// When the music file is downloaded, save it to Isolated Storage
void OnWebClientOpenReadCompleted(object sender,
 OpenReadCompletedEventArgs args)
{
 if (!args.Cancelled && args.Error == null)
 {
 Stream inpStream = args.Result;
 byte[] buffer = new byte[inpStream.Length];
 inpStream.Read(buffer, 0, buffer.Length);

 using (IsolatedStorageFile isoStore =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 string isoPathName = isoStoreRadioButton.Tag as string;
 string isoDirName = Path.GetDirectoryName(isoPathName);

 if (!isoStore.DirectoryExists(isoDirName))
 {
 isoStore.CreateDirectory(isoDirName);
 }

 using (IsolatedStorageFileStream isoStream =
 isoStore.CreateFile(isoPathName))
 {
 isoStream.Write(buffer, 0, buffer.Length);
 isoStoreRadioButton.IsEnabled = true;
 }
 }
 }
}

Figure 1 Downloading a Web File to Isolated Storage

http://msdn.microsoft.com/library/ff462087(VS.92)
http://code.msdn.microsoft.com/mag201201TouchAndGo

msdn magazine86 Touch and Go

available on Victor 78-rpm disks.) Th ree RadioButton elements
have their Tag properties set to the sources of the three music fi les.
For the fi rst RadioButton, that’s the full URL of the music fi le on the
Internet Archive Web site. For the second movement, I downloaded
the music fi le (named 02Ii.Adagio.mp3) to my PC, created a folder
named Music in the project in Visual Studio and added that fi le to
the folder. Th e second RadioButton references that fi le with the name
“Music/02Ii.Adagio.mp3.” When either of
these two buttons is checked, the event han-
dler obtains the Tag property and creates a Uri
object out of it (specifying UriKind.Absolute
for the Web reference and UriKind.Relative
for the content) and sets that to the Source
property of the MediaElement.

Th e second movement is a fi le of about
4.5MB, and obviously it increases the size
of the executable by a considerable bulk.
Adding fi les of this size to your executable
is not recommended and done here only
for demonstration!

If your application needs fi les of that size, a
possible compromise is available: Th e appli-
cation could download the fi le once over the
Internet and save it to Isolated Storage. Th at’s
what I’ve done for the third movement of
the Violin Concerto. Th e third RadioButton
(which is assigned a name of “isoStoreRadio-
Button”) has its IsEnabled property initially
set to false. Figure 1 shows the download
process. In the page’s constructor, if the fi le
isn’t in Isolated Storage, WebClient initiates
a background transfer. When the transfer
completes, the fi le is saved to Isolated Stor-
age and the RadioButton is enabled.

In some contexts on Windows Phone OS 7.1, you can defi ne a
URI with a prefi x of “isostore” to reference a fi le in Isolated Storage,
but this doesn’t work for MediaElement. Fortunately, Media-
Element has a SetSource property that accepts a Stream object.
Figure 2 shows how the Checked handler for the RadioButton
elements handles these diff erences.

Transports and Tombstones
Another way you can make MediaElement more diffi cult for your-
self is by adding controls to pause and to move to the beginning
or end of the fi le. Even more fun is a Slider control that lets you
move to a particular point in the fi le, as shown in Figure 3.

Th e four ApplicationBar buttons are implemented very simply.
Respectively, they set the Position property of MediaElement to zero,
call the Play method of MediaElement, call the Pause method and
set the Position property to the NaturalDuration property.

Th e tricky part is enabling and disabling the buttons. For that
job, the CurrentStateChanged event of MediaElement is handled.
When working out MediaElement logic, it’s helpful fi rst to use
Debug.WriteLine in the event handler to get a feel for how the
CurrentState property changes as a music fi le is loaded, buff ered,
played, paused and ended.

On the phone, all music and sound fi les are played through a single
piece of soft ware and hardware called the Zune Media Queue. If you
use the standard Music+Videos application on the phone to play a
song or album from your music collection, that music will continue
to play in the background when you leave that application and start
up other applications—and even when you start the MediaElement-

Demo program. However, if you start one of
the movements of the Brahms Violin Concerto
playing, the background music will stop. Now
MediaElementDemo is in control.

But if MediaElementDemo leaves the fore-
ground—whether by the user pressing the Start
button or letting the screen time out—the Brahms
will stop, even if the program is not tombstoned.

In such a circumstance, what do you want
to happen when the user returns to the pro-
gram? If the answer is “Nothing,” you’re in luck!
But if you want the music to start up again
from where it left off , MediaElementDemo
demonstrates how this can be done. In its On-
NavigatedFrom override, the program saves
the index of the movement currently playing,
the state (probably Playing or Paused) and the
position. In OnNavigatedTo, the program
checks the RadioButton and sets the state
and position in the MediaOpened handler.

MediaLibrary and MediaPlayer
I mentioned that prior to Windows Phone OS
7.1, a facility already existed to play certain
music fi les on the phone in the background.
Th e catch is that these music fi les must be part
of the phone’s music library. Your program can

void OnRadioButtonChecked(object sender, RoutedEventArgs args)
{
 RadioButton radioButton = sender as RadioButton;
 string uriString = radioButton.Tag as string;

 // Save index for tombstoning
 radioButtonIndex = radioButtonPanel.Children.IndexOf(radioButton);

 if (radioButton == isoStoreRadioButton)
 {
 // Call SetSource on MediaElement using Isolated Storage stream.
 using (IsolatedStorageFile storage =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (Stream isoStream = storage.OpenFile(uriString, FileMode.Open))
 {
 mediaElement.SetSource(isoStream);
 }
 }
 }
 else
 {
 // Set Source property on MediaElement using URI
 Uri uri = new Uri(uriString, uriString.Contains(':')
 ? UriKind.Absolute : UriKind.Relative);
 mediaElement.Source = uri;
 }
}

Figure 2 Setting the Source on MediaElement

Figure 3 The MediaElementDemo
Program

87January 2012msdnmagazine.com

play one of these songs, or it can play all the songs on an album or all
the songs of a particular artist or genre, or all the songs in a playlist.

Th e classes to do this are members of the Microsoft .Xna.Frame-
work.Media namespace. To use these XNA classes in a Silverlight
project for the phone, you first need to add a reference to the
Microsoft .Xna.Framework library. With Windows Phone OS 7.0,
Visual Studio gave you a warning about doing this. Th at warning
is gone with Windows Phone OS 7.1.

Any Silverlight program that uses XNA classes to play music
must include a special class that implements IApplicationService
and calls FrameworkDispatcher.Update every 30th of a second.
You can give that class any name you want, but you’ll reference it
in the App.xaml fi le in the ApplicationLifetimeObjects section:

<local:XnaFrameworkDispatcherService />

To play a song from the user’s music library, start by instantiating
the MusicLibrary class. Properties named Artists, Albums, Genres
and Playlists provide collections of objects of type Artist, Album,
Genre and Playlist, and all these classes include a Songs property
of type SongCollection that’s a collection of Song objects. (Th ese
collections are read-only; your application can’t add anything to
the user’s music library or modify it in any way.)

To start playing something, use members of the static Media-
Player class. Th e MediaPlayer.Play method accepts a Song object,
a SongCollection or a SongCollection with an index to indicate
the song to begin.

Th e PlayRandomSong program contains a button labeled “Play
Random Song,” and when you tap that, the following code executes:

void OnButtonClick(object sender, RoutedEventArgs args)
{
 MediaLibrary mediaLib = new MediaLibrary();
 AlbumCollection albums = mediaLib.Albums;
 Album album = albums[random.Next(albums.Count)];
 SongCollection songs = mediaLib.Songs;
 Song song = songs[random.Next(songs.Count)];
 MediaPlayer.Play(song);
}

Th is code extracts a random album from your collection, a ran-
dom song from that album and starts playing it. (Th e Windows
Phone emulator contains an album with a few tiny song fi les, so
this program runs on the emulator just fi ne.)

If you start a song playing with PlayRandomSong, you’ll fi nd that
you can navigate away from the program or even terminate the pro-
gram and the song will continue playing. It’s exactly as if you played
that song from the phone’s regular Music+Videos application—and
if you start that application, you’ll see the album cover and the song’s
title. Moreover, if you press the volume control button on the phone,
you’ll see the song at the top of the screen and get access to buttons
to pause or go to the beginning or end of the song.

Just as the phone’s Music+Videos application knows what song
you’ve played with MediaPlayer.Play, your application can deter-
mine which song the phone’s Music+Videos application is currently
playing. Th is information is available from the Queue property of
MediaPlayer, which provides a MediaQueue object that indicates
the song currently playing and a collection of songs if an album
or playlist is playing. Th e PlayRandomSong program uses a timer
to check the ActiveSong property of the queue and displays infor-
mation about that song. Alternatively, you can set handlers for the
ActiveSongChanged event of MediaPlayer.

Creating Song Objects
Th e PlayRandomSong program obtains a Song object from one of
the properties or collections of MediaLibrary, but Song also has a
static property named FromUri that creates a Song property based
on a fi le not in your music library. Th is URI can reference a music fi le
over the Internet or that’s part of the program’s XAP fi le. (It can’t refer-
ence a fi le in Isolated Storage.) You can then use MediaPlayer to play
this Song object. (You can’t create your own SongCollection objects.)

The MediaPlayerDemo program shows how it’s done. This
program let you play the Brahms Double Concerto (another
1939 recording from archive.org/details/BrahmsDoubleConcerto_339) with
Heifetz again, Emanuel Feuermann on cello and Eugene Ormandy
conducting. Because you can’t use MediaPlayer with Isolated
Storage, both the fi rst and last movements are Web references.

Another diff erence is that the Position property of MediaElement
is both gettable and settable, while the PlayPosition property of
MediaPlayer is only gettable. Consequently, the two ApplicationBar
buttons that go to the beginning and end of the track aren’t appli-
cable. Also, there’s apparently no way to get the duration of a Song
object created in this way, so the Slider is irrelevant as well. I’ve also
removed all the tombstoning logic from this program because it’s
not possible to start up a track where you left off .

Because MediaPlayer plays a Song object obtained from the
phone’s music library in the background, you might expect it also
to play any Song object in the background. It does not. In this
respect, MediaPlayer is just like MediaElement. Th e music stops
as soon as you navigate away from the application. However, if
you navigate away from the MediaPlayerDemo program and it’s
not tombstoned—which oft en happens with Windows Phone OS
7.1—the music is only suspended. When you navigate back to the
application, it picks up where it left off .

I think when you chalk up the pluses and minuses, the Silverlight
MediaElement is a little ahead of the XNA MediaPlayer, but the auto-
matic resumption of playback is a very nice MediaPlayer feature.

Streaming and Beyond
I’ve been discussing playing common audio and music fi les in WMA
and MP3 formats. Windows Phone also allows a program to gen-
erate sound dynamically within the application. In the context of
Windows Phone programming, this is known as “streaming.” I dem-
onstrated one approach in the SpeakMemo program in my February
2011 UI Frontiers column (msdn.microsoft.com/magazine/gg598930) using
the XNA DyanamicSoundEff ectInstance class. You can also use the
MediaStreamSource class in Silverlight to do something similar.
Th is is how to implement electronic music synthesis on the phone.
Again, however, these are only usable by foreground applications.

Beginning in Windows Phone OS 7.1, the concept of a
“background agent” has been introduced, and you can use this for
playing either music fi les or streaming audio while your program
is suspended in the background.

In the next issue, I’ll discuss how this is done.

CHARLES PETZOLD is a long time contributing editor to MSDN Magazine. His
Web site is charlespetzold.com.

THANKS to the following technical expert for reviewing this article: Mark Hopkins

http://archive.org/details/BrahmsDoubleConcerto_339
http://msdn.microsoft.com/magazine/gg598930
www.charlespetzold.com
www.msdnmagazine.com

msdn magazine88

Wouldn’t students prefer that to paying $12,500 (one-fourth
of their yearly bill at a private university) to suffer through an
apathetic graduate student boring everyone in a 500-seat lecture
hall? Wouldn’t they rather enjoy a far better instructor, watch on
their own schedules, re-run confusing sections until they under-
stood them, progress at their own paces, for less than 1 percent of
the price? Not just yes, but hell, yes!

Now expand this idea to any large lecture class where the material
seldom changes: freshman economics, organic chemistry, English
literature, even introductory computer science. It won’t cover
everything, but looking back at my own college transcript (painful),
it could have replaced about three-quarters of my classes. Quality
way, way up; price way, way down.

Th is leveraged approach can work even for hot current topics.
Stanford University announced that its class on artifi cial intelligence
will be available for free online, and 58,000 students registered to
take it. I might sign up myself.

Th is model has some hurdles, but with such huge cost advan-
tages, they’ll get solved. For example, the Stanford online attendees
won’t get grades or credit. How long until an enterprising com-
munity college off ers an exam on the content and credit for suc-
cessful completion, priced at perhaps $500? Students connecting
to other students? Some entrepreneur will open an academic bar,
like a sports bar, serving beer with your calculus videos. Asking
the instructor questions? We’ll think of something.

Th e biggest loss would be those few extraordinary teachers who
show you the world in a new light. I was lucky to study under Vic
Mansfi eld, who infl uences my teaching and even my basic thinking to
this day. I pay him the supreme compliment, not of imitation, which
he would consider a lower form, but of adaptation, taking what he
taught me and making it mine before passing it on. (And so do my
classmates. See Vic’s obituary at bit.ly/k3qK4A, particularly the comments.)
Perhaps we’ll develop some form of mentor classes to fi ll this gap.

As with all technological advances since fi re and the wheel, those
who cling blindly to the old ways get trampled. Th e faculty and
institutions that prosper will be those that recognize the coming
changes and adapt to them early (see my May and June columns
from last year), instead of struggling, futilely, to hold back the tide.
I expect to fi nd the landscape radically diff erent when my daugh-
ters start college, nine years from now.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming books,
including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Soft ware
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fi ngers so she learns how to count in octal. You can contact him at rollthunder.com.

Lowering Higher Education
I have a front-row seat to the coming revolution. One of the main
services I provide to Microsoft and the developer community is
bridging the divide between them and academia. As with newspa-
pers, I expect the existing order in academia will be redefi ned over
the next decade, posing enormous challenges and huge new market
opportunities for the institutions and people who can grab them.

At the source of the coming revolution is this simple fact: Th e
infl ation-adjusted price of college has quadrupled since 1982 (source:
cnnmon.ie/bApHLC). Has the value of that education quadrupled, or even
doubled? Not that I can see. Th at artifi cial price increase has created an
academic bubble like the stock and real estate bubbles we’ve encoun-
tered recently. Now combine disruptive technology (ubiquitous fast
Internet) with the worst economy in living memory and you spark off
cataclysmic structural change. Th e bubble is about to burst.

Some academic institutions are already adapting to this new reality,
such as the Harvard University Extension School (extension.harvard.edu),
where I have the honor of teaching. We admit everyone, and an
undergraduate course costs about $1,000. Many of our courses,
including mine on .NET, are available over the Web. You won’t play
as much Frisbee or drink as much beer (probably) as in a classic
residential college, but how many parents and students today
wouldn’t fi nd those economics compelling? And I’ll stake our teach-
ing quality against any challenger, anywhere, any time.

But this model still relies on human instructors delivering live
lectures, increasing cost. Th at’s about to change.

Th ink back to your freshman calculus class. Was your instructor
any good? Every person that I interviewed for this column swore
that he’d gotten the world’s worst. I know I did. (Yes, Sue Esch and
Robert Nelson, I mean you.)

Imagine taking the world’s 10 best teachers of freshman calculus
and paying them each a million dollars for a video. Put them all
online at $100 a pop, including exams and problem sets. Capture just
3 percent of the roughly 4 million college freshmen in the United
States, and you’ve recouped your investment in the fi rst year.

DON’T GET ME STARTED DAVID PLATT

Think back to your freshman
calculus class. Was your instructor

any good? Every person that I
interviewed for this column swore
that he’d gotten the world’s worst.

http://cnnmon.ie/bApHLC
http://extension.harvard.edu
http://bit.ly/k3qK4A
www.rollthunder.com

Untitled-2 1 11/7/11 4:23 PM

www.GCPowerTools.com
http://GvTv.GCPowerTools.com

Untitled-7 1 12/8/11 3:03 PM

www.syncfusion.com/evaluation

	Back
	Print
	MSDN Magazine, January 2012
	Cover Tip
	Contents
	THE CUTTING EDGE: Enhancing the Context-SensitiveASP.NET MVC Progress Bar
	DATA POINTS: Making Do withAbsent Foreign Keys
	FORECAST: CLOUDY: Windows Azure Caching Strategies
	WINDOWS PHONE:
	Your First Windows Phone Application
	Using Cameras in Windows Phone 7.5
	Design Your Windows Phone Apps to Sell

	Using HTML5 Canvas for Data Visualization
	Becoming a NuGet Author
	Orchard Extensibility
	Securing Your ASP.NET Applications
	Customized On-Screen Keyboards with the .NET Framework
	Extending SSRS: Developing Custom Charting Components and Rendering Extensions
	TEST RUN: Simulated Annealing and Testing
	THE WORKING PROGRAMMER: Building Combinators
	TOUCH AND GO: Playing Audio Filesin Windows Phone
	DON’T GET ME STARTED: Lowering Higher Education

