

Supplemental Readings
For the Express Edition Videos

To Be Used With

“Beginning Visual Basic 2005 Express Edition Video
Series”

&

“Beginning Visual C# 2005 Express Edition Video Series”

Which you can download from:

http://lab.msdn.microsoft.com/express/beginner/

The videos and this document are presented by:

Bob Tabor, Visual C# MVP, LearnVisualStudio.NET

http://www.LearnVisualStudio.NET

Document Version 1.0
7/27/2005

Copyright © 2005 LearnVisualStudio.NET

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

2

About This Document

This document is a collection of articles I've written and compiled
that should introduce the absolute beginner to basic concepts
and help them more fully understand some of the complex ideas
that are discussed in the Express Edition videos. After reading
the first chapter "What is Computer Programming?" you should
start watching the videos that accompany this document and
from that point on, use this document as a reference when asked
in a particular video to read more about a given topic.

I hope you enjoy the videos and this document. When you get a
chance, please visit http://www.learnvisualstudio.net for more
great content like this to help you get the most out of the new
Express Edition tools.

Since you're reading this document, I'll assume you know
absolutely nothing about programming. If that is the case, then
you are in the right spot. So let's start from the beginning.

Sincerely,
Bob Tabor
LearnVisualStudio.NET

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

3

Table of Contents

What is Computer Programming?

4

Object Oriented Programming using Visual Basic 2005

15

Object Oriented Programming using C# 2005

35

What is the .NET Framework?

56

Creating and Obtaining Data from a Database

64

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

4

What is Computer Programming?

Introduction

A computer, by itself, knows absolutely nothing. It doesn’t even
know how to display information on a screen or access a hard
drive for data. It doesn’t know how to access the Internet nor
does it know how to play a sound. Despite popular belief,
computers know absolutely nothing.

But computers are very good at following and repeating
instructions flawlessly and very quickly. This is what makes these
machines so powerful.

Someone had to write the instructions, called code, to make the
computer do everything that we take for granted. Your ability to
view this document and my ability to compose it alone took
millions of instructions.

Computer programming is the act of writing code that is
interpreted by the computer to carry out some repeatable task.

Despite popular belief, computers do not make mistakes (at least,
not unless there is a physical problem with the computer.)
Computers always do exactly what they are told to do. However,
programmers don’t always instruct the computer correctly. When
this occurs, it is referred to as a bug. A bug can have varying
degrees of severity. Some bugs can cause the computer to
become unresponsive and others are mere annoyances.

There are many reasons why bugs are introduced into software,
such as laziness on the part of the programmer, a
misunderstanding of a particular feature of a programming
language, or just not enough time to test every feature
thoroughly. One way to write solid code is to understand the
fundamentals and follow “best practices” – which are conclusions
that other programmers have come to after years of experience.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

5

Purpose of Computer Languages

Amazingly, everything that happens within a computer is a result
of tens of thousands of tiny on and off switches.

• The color of every dot on your screen is a result of the
processor determining what color should be there …

• Copying text to the Windows clipboard ...
• Opening a music file and listening to it ...

Tens of thousands of little switches have to turn on and off to
route information to memory, to send signals to the video card or
sound card, or to retrieve every bit of data from the hard drive.
Fortunately, you don't have to code in 1's and 0’s or rather, ON’s
and OFF’s.

A computer programming language provides a more human-
friendly means of communication with the computer. In some
cases, while not exactly English-like, the syntax of a programming
language is still a marked improvement over speaking to a
computer in its native language!

The job of the computer programmer is to feed instructions to the
computer using a computer language.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

6

Compiling Code

Once a programmer finishes writing code, it must be compiled.
Compiling is the process of converting the lines of code written in
a computer language into the native language of a computer
program – something it can understand. To compile the code,
you need a compiler, which is a special piece of software that
converts the source code you create into code that the computer
can understand. It also performs other operations, such as
checking to make sure there are no logic errors in your code, or
syntax errors (which means you may have spelled something
incorrectly.)

In modern programming language such as Visual Basic or C#,
there are actually a few steps in between writing code and the
physical computer receiving instructions. These languages are
called “interpreted languages” because they are compiled into an
intermediate language that is then interpreted by each type of
computer they reside on. They are interpreted by a program
called a Virtual Machine which takes the compiled intermediate
code and executes it on a particular computer. For example,
Java’s claim to fame is the slogan: “Write once, run anywhere.”
Java has a separate Virtual Machine that runs on Windows, on
Mac, Unix and Linux. This allows a developer to create code
once and be assured that the Virtual Machine will determine how
to work with the idiosyncrasies of each operating system and
computer hardware. Since we are working with Visual Basic and
C#, the Virtual Machine is actually called the .NET Runtime.

When you compile your Visual Basic or C# code, it is compiled
into a different language called the MSIL, or rather Microsoft
Intermediate Language. The compiled code will then reside in a
file called an Assembly. Assemblies have an .exe or a .dll file
extension. If you were to execute your assembly, it immediately
attempts to load the .NET Runtime and the .NET Runtime then
becomes responsible for executing the MSIL code.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

7

Software Layers

A software layer is existing code created by other software
developers that provide functionality that you, when you sit down
to write applications, can use. Imagine how much code you
would have to write to ensure that your application runs correctly
on Windows 98, Windows ME, Windows NT, Windows 2000,
Windows XP (both Home and Professional)! In Visual Basic and
C#, you can use a library of code called the .NET Framework
Class Library, or just the .NET Framework for short. This contains
thousands of methods for easily performing thousands of tasks,
such as:

• Working with Date or Time information
• Writing information to a file
• Reading from a database
• Connecting to the internet
• Displaying a window on the screen

The following is a very simplified illustration, but consider just a
few of the layers that you will be building on top of:

Your Code

.NET Framework Class Library

Windows APIs

Many layers that comprise Windows internally

Binary Instructions (Again, the ON’s and the OFF’s)

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

8

Modern Programming Languages

Visual Basic and C# examples of languages you can use to create
software for the Windows operating system. Other languages
include: C, C++, Java, Delphi … and I’m probably forgetting a
few.

Why, then, focus on Visual Basic or C# when there are so many
other choices?

Some of the benefits of Visual Basic include:

• It is a very English-like programming language – more so
than the other programming languages, its easy to learn
for someone who has never used a programming
language before.

• It is a “.NET Language”, meaning that you can take

advantage of all the benefits of the .NET Framework Class
Library, the .NET Runtime, etc. We’ve only reviewed a few
of those benefits above, but there are many more and
we’ll discuss them throughout this series of video lessons.

• There are plenty of community resources on the World

Wide Web for Visual Basic. There are also many books on
Visual Basic topics, and many developers who you can
find who know it if you have questions.

• Lots of opportunities for Visual Basic programmers as

businesses seek to convert Visual Basic 6 code into .NET
applications using Visual Basic 2005.

The downside to Visual Basic is:

• Its less C-Style Syntax than C#, which means that learning
additional programming languages such as Java, C#, C++
and others might be more difficult since there are fewer
similarities between VB and the others.

If you are committed to learning a programming language, Visual
Basic is a good place to start if you have no prior programming
background. C# resembles so many other languages that if you
have some experience in C, Perl, Java, etc. you may prefer it.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

9

Personally, I use them both just to keep my programming skills
sharp in both languages.

Some benefits of C# include:

• It uses a C-style syntax, which means that learning
additional programming languages such as Java,
JavaScript, C++ -- or even C itself – becomes a little
easier. Very few programmers today know just one
programming language, so by learning C# as your first
language gives you an advantage when getting started.

• It is a “.NET Language”, meaning that you can take
advantage of all the benefits of the .NET Framework
Class Library, the .NET Runtime, etc. We’ve only
reviewed a few of those benefits above, but there are
many more and we’ll discuss them throughout this series
of video lessons.

• There are plenty of community resources on the World
Wide Web for C#. There are also many books on C#
topics, and many developers who you can find who know
it if you have questions. In fact, many of the better books
are written originally in C#, and at a later point are
translated into Visual Basic.NET.

• Lots of opportunities for C# programmers as businesses
seek to convert Visual Basic 6 code into .NET
applications using C#. In many cases, Visual Basic
programmers are “jumping ship” to learn this new
language because of the benefits listed above.

The downside to C# is:

• It is NOT a very English-like programming language – this
is why so many people start with Visual Basic instead of
C or C++ or Java. The C style syntax is not as easy as
the BASIC syntax (IMHO) to learn for someone who has
never used a programming language before.

If you are committed to learning a programming language, C# is
a good place to start. In my personal opinion, if you are
considering whether to start with Visual Basic or C#, C# is the
better language. The main reason I say this is because it doesn’t
have to support “legacy” code, meaning that the C# language is
more streamlined than Visual Basic, which was forced to support
many of the older features of the language due to the outcry of
some programmers who did not want to re-write large amounts
of code in order to take advantage of the .NET Framework.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

10

Additionally, if you review the job listings on Dice.com,
Hotjobs.com, etc. C# developers (especially experienced C#
developers) are in high demand and a survey by Visual
Studio.NET Magazine found that C# developers have higher
incomes than Visual Basic developers, all things being equal (i.e.,
job description, experience, education, etc.)

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

11

Software Development Goals

Having made the decision to learn Visual Basic or C#, there are
some principles and goals that each developer must be
absolutely committed to. These goals permeate each project
you’ll ever work on, and will distinguish you as a developer who
takes pride in his workmanship. They are as follows:

Create software that fulfills requirements and is accurate – If
you are building software for someone else, you must make sure
that you give them exactly what they have specified, despite how
you may feel about their requests. It is not your job to demand
that software operate a certain way, or that the business changes
how they work to accommodate your application. This is not to
say that you can not present alternatives based on your
experience and how you feel the application could be improved.
Too many times lazy developers have tried to talk managers or
clients out of a particular feature because they knew it would be
too hard to develop in the manner the customer requested. My
advice: “Get over it!” Force yourself to learn something new if
necessary. Deliver software that fulfills the requirements that
were handed you and ensure that what you’ve created accurately
performs the requested functionality.

Write software that has virtually no bugs – There is a concept
in programming called “Good Enough Software”. This means
that you build software the best you can knowing full well that it
has problems, but it’s the best you can do in the time allotted. I
have mixed feelings about this. On the one hand, I sympathize
with developers who are under a tight timeframe and may not
have enough time or resources to develop completely bug free
applications. On the other hand, I know the headaches that
come from being “haunted” by code that I’ve written just “good
enough” to be sent to a client, only to have the client express
their dismay at the problems they experience with the software. I
speak from experience: this is NOT a good feeling. Obviously a
balance much be reached (there has never in the history of
programming been a completely bug free application), however I
would err on the side of perfection. If nothing else, you can gain
a reputation of building solid software rather than a reputation of
shoddy work. Ideally, you could develop solid software AND
meet deadlines, and the way you accomplish that is by knowing
well the fundamentals of application architecture and abiding by
best practices.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

12

Create software that is usable – Usability has become a focal
point of software and web site development because the impact
of a bad user interface design can cripple the effectiveness of the
software. The way you create usable software is by learning the
fundamentals of interface design and by staying true to best
practices.

Create software that performs well – Commit yourself to
learning how to write code that is efficient, learning how to
optimize the code you’ve created. Writing optimized code is a
lifelong quest, researching the impact of each feature of a
programming language, but by adopting best practices and
knowing the fundamentals of writing and structuring your code,
you can create applications that perform well.

There are two themes that I’ve highlighted throughout this
section:

1. Knowing the fundamentals
2. Following Best Practices

Throughout this series of video lessons, I’ll be focusing in on
these two concepts to ensure that you learn correctly from the
start. I personally feel that too many developers want to use the
latest complex features or techniques of a programming language
before they are intimately familiar with the basics of that
language. The result is predictable, as the old saying goes “A
little knowledge is a dangerous thing.” Studying and getting the
fundamentals right is a basic truism of life, of football, and of
programming.

Also, too many people try to pave their own way. I’ve been on
multiple projects where people tried to use a non-standard
approach to a particular problem. It wasn’t always easy for me to
articulate exactly why I was uncomfortable with that approach,
but what I did know was that it simply “didn’t feel right.” Sure
enough, about two months into development on a software
project and the developer would realize that the decisions he
made earlier now has hemmed him into a corner. He would have
to re-write the code he created, or worse, just try to “hack” a
solution, which forces him to sacrifice his ability to deliver an
accurate, bug-free, usable, well performing application to the
customer. This is why following best practices is so important –
why make your own mistakes when you can learn from the
mistakes of others?

Decide now that you will commit to coding correctly from day
one.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

13

Learning Visual Basic or C#

Here are some tips on learning Visual Basic or C#:

You learn by doing. As you watch the videos in these lessons,
try to follow what I’ve done and re-create the project and the
code. Pause the video. Rewind it and watch it over. Don’t just
mindlessly copy source code from a website or from these
videos. If something is not completely clear, take the time to use
the Help feature to do some extra research.

Be patient. I began to teach myself Visual Basic 3 back in June
1993. I didn’t get my first real job using Visual Basic until
February 1995. It took a lot of nights and weekends to learn it
well enough to get a job. It probably won’t take you quite as long
… after all, I didn’t have videos like these to get me started. ☺

How long will it take you to learn? That depends on your level of
commitment and your background in software development.
However, after going through these lessons and watching the
videos in this series, as well as all the videos on
LearnVisualStudio.NET, you should have a pretty rich
understanding of how to develop software using Visual Basic and
C# and the Visual Studio.NET environment.

Find a project to do for a friend, your church, a small local
business or a department within your company. If you have a
project in mind as you begin to learn, it will force you to learn
things you otherwise might overlook. Once you are finished, you
will inevitably feel ambivalent: you’ll be so proud of what you’ve
accomplished, and at the same time you will look back and
realize how utterly pathetic that first attempt at programming was.
Although I’m not a golfer, I understand there are similarities. If
you are competitive and passionate, you’ll constantly seek ways
to improve your game. But even Tiger Woods is never
completely satisfied, although he may be one of the best who has
ever played the game.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

14

Obtaining the Tools You'll Need

If you haven't done so already, download Visual C# 2005 Express
Edition or Visual Basic 2005 Express Edition from:

http://msdn.microsoft.com/express/

The installation process is fairly straight forward ... if you
encounter something you don't understand (which I doubt will
happen) just accept the defaults for the installer.

Once installed you'll be ready to continue reading in this
document, but a better idea might be to start viewing the videos
lessons that you have downloaded from:

http://lab.msdn.microsoft.com/express/beginner/

At various points during the videos you’ll be instructed to read
more about a given topic in this document.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

15

Object Oriented Programming
Using Visual Basic 2005

Introduction

This chapter accompanies video 6, “Object Oriented
Programming Fundamentals”.

Object Oriented Programming seeks to reduce the complexity of
creating large applications by breaking the application down into
smaller, manageable classes of code. Each class represents an
idea, whether tangible and concrete (such as a Product or
Employee) or conceptual (such as Inventory or Order).

In the past, most programmers wrote procedural code, which
was characterized by global variables (variables that could be
used at any time anywhere in your application), many modules
that contained inter-dependencies, and long code passages that
contained many “goto” statements that jumped all over the place
(often referred to as “Spaghetti code”). While procedural code is
not inherently evil, carelessness caused problems as developers
tried to fix bugs … changing a single line of code would have
major devastating consequences in other parts of the application
because the entire application was so interdependent. To make
changes, programmers had to re-write entire applications
because it was less work than trying to untangle the mess of
code that they were left with.

Object Oriented Analysis, Design and Programming sought to
improve on the entire software development process by taking a
simplified approach to application design that more closely
resembled everyday life.

You won't get very far in modern software development before
hearing about Object Oriented Programming. It’s also known as
OO for Object Oriented, and the purpose of OO programming is
to reduce the complexity involved with writing and maintaining
applications.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

16

In real life, everything around us has properties and methods,
although we generally don't think about life in these terms. For
example, a Pencil has a color, a length, a lead quality (“bring your
#2 pencils”) ... and it also has methods, or things it can do like
Write and Erase.

The basic idea behind object oriented programming is that if we
can write code that mimics real world objects, like pencils, cars,
customers, payments, etc. then it will make programming a lot
easier. This is a gross over-simplification however it’s a starting
point.

Consider a car as an example of a real-world object oriented
system that is comprised of many discrete parts. The car itself is
an object. The engine inside the car is an object. The exhaust
system is an object that contains even more objects. The engine
depends on the exhaust system, but it has no idea how the
exhaust system works. Even though the car parts don’t know
much about each other – except how to connect to each other –
amazingly the parts all do their individual jobs and the end result
is a working machine. If one part goes bad, it can be replaced
without adversely affecting the rest of the car.

Additionally, you don’t have to know anything about how a car
works in order to drive it. You sit down in a comfortable seat,
turn on the ignition key, and operate the steering wheel, the gas
pedal, the brake and occasionally a turn signal. However, your
instructions trigger hundreds of individual parts without you
having to worry about them. This focuses on a major OO
concept called Encapsulation. All of the powerful engine and
navigation components are encapsulated behind two or three
controls that you (the user) work with.

To extend this example further, there are specifications that
define what a car is in general – if not in reality, then at least in our
minds -- and each automaker inherits and extends those
specifications to give their car a unique look, performance benefit
or price benefit. In other words, each automaker inherits from the
ideal “car” to create a more specialized car. Still, from a
programmer’s perspective, the Hyundai and the Mercedes have
more in common than they have differences. The same general
engine design, exhaust system design, number of tires, operation
of the steering wheel, seats, pedals, turning signal, etc. exist in
both cars. They both borrow from the design and mechanics of
how a car works. In software terms, this is referred to as
Inheritance, another important concept in Object Oriented
Programming.

Also, all cars can go to the same gas stations and fill up using the
same gas pumps, despite the fact that a Mercedes may cost

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

17

$60,000 more than a Hyundai. This is known as Polymorphism,
meaning that even though there are different objects, you can
interact with them the same way because they both derive from
the ideal car.

So, when defined in this way, I hope you can begin to see the
value of looking at software the way we analyze the world around
us.

For this lesson, we'll focus on the most basic building block of
OO programming, and that is the Class. A class is simply a
blueprint. The Class defines the fields, properties, methods and
events that an object will have.

Fields? Properties? Methods? Don’t worry … we’ll talk about
what these are in a moment.

A class is a blueprint only; its only job is to define what data it
should store (the variables, or rather Fields) and what actions the
object should take (the procedures, or rather the Properties and
Methods). But since a class is just a blueprint, it is not the
ACTUAL object … just a definition of the object’s appearance,
behaviors, etc.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

18

Just like in the real world, you take a blueprint to a contractor, or
take the blueprint to a baker and they create an instance of that
blueprint, resulting in a house or a cookie respectively. In our
case, we'll create an instance of the class. The instance is a
manifestation of that class, which we then call an Object. So let’s
define a class:

Visual Basic:

Class Car

End Class

This class does almost nothing. So let’s add some properties
and methods.

Visual Basic:

Public Class Car
 Private m_make as string
 Private m_model as string

 Public Property Make() as string
 Get() as string
 return m_make
 End Get
 Set(ByVal Value as string)
 m_make = Value
 End Set
 End Property

 Public Function Drive() as string
 if make = "Oldsmobile" then
 return "Chicago"
 else
 return "Toledo"
 end if
 End Sub
End Class

Admittedly, this class doesn’t do much but will allow us to see
what a real Class looks like. First, it has two private fields and a
public function. We talked briefly about scope in the videos, and
the words "Private" and "Public" have special meaning in terms

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

19

of Scope. I'll have more to say about it in later in this chapter
when we look at Properties, Fields and Methods.

Before we can interact with the Make property or the Drive
function, we must create an instance of the Car class; or rather,
we must instantiate the Car object.

Visual Basic

Dim myCar as Car
myCar = New Car
Dim location as string
myCar.Make = "Oldsmobile"
myLocation = myCar.Drive()

The most important part of this example is the first two lines of
code. First of all we dimension a variable myCar that is of type
Car. If you remember back to video lesson 4 we worked with
Primitive Types like strings and integers. Now we are working
with a Complex Type, one that we created ourselves. Its
“complex” because it can contain multiple values (Make and
Model) and perform actions (like the Drive method). So when we
talk about “types” we are talking about “classes”… as we learn
more about .NET, we’ll see that even Primitive Types are defined
as classes which have methods and properties.

The second line of code is where the magic actually happens. In
line 1 we created a variable of type Car, but as of yet it is not
actually a Car. At the moment we use the “New” keyword, a Car
object is created in memory and we store a reference to that new
Car in the myCar variable. Let me clarify this. All the information
about the newly created Car object is stored in your computer’s
memory. The variable myCar is given the address of that memory
space, which is called a “reference”. Now, whenever you use the
word “myCar” in code, it just refers the compiler to the memory
address that represents that instance of the Car object.

There's a subtle difference between dimensioning a variable as a
type (or class) and actually creating an instance of that type (or
class). This will become more apparent as we talk about Class
Constructors near the end of this chapter.

Almost everything you work with in VB, whether you know it or
not, is a Class. Just take a look back at all the forms we’ve
created in the previous video lessons.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

20

Fields

Let’s look at the Car class we created:

Visual Basic:

Public Class Car
 Private m_make as string
 Private m_model as string

 Public Property Make() as string
 Get()
 return m_make
 End Get
 Set(ByVal Value as string)
 m_make = Value
 End Set
 End Property

 Public Function Drive() as string
 if m_make = "Oldsmobile" then
 return "Chicago"
 else
 return "Toledo"
 end if
 End Function
End Class

First lines of code are fields. Fields are simply variables defined
within a class. They can be private like we have in the Car
example, or they can be public.

Ideally, you should never use Public Fields, but rather use Public
Properties instead. We'll talk about that more in a moment, but
let’s add three more BEST PRACTICEs to our ongoing list:

BEST PRACTICE: Instead of Public Fields, use Public Properties.
As a general rule, keep as many fields and methods private, and
make them public only if there is a reason to do so.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

21

BEST PRACTICE: use an m_ to denote a private field. If the field
or method is private, use camel case.

BEST PRACTICE: Public fields, properties or methods should be
in Pascal Case.

Camel Case == engineSize or elapsedMileage
Pascal Case == EngineSize or ElapsedMileage

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

22

Properties

Let’s add a public field for a moment just to show how we would
reference that class variable in our code:

(This is just a re-cap of the Car class … all we’re doing is adding
a Public field)

Visual Basic:

Public Class Car

 Public ElapsedMileage As Integer

End Class

(This code would be used to create an instance of the Car object
and use the new Public field we just added)

Visual Basic:

Dim myCar As Car

If myCar.ElapsedMileage = 0 Then
 myCar.ElapsedMileage = 10000000
End If

This illustrates two ideas. First, it shows how to use the . (dot)
syntax to access public fields and set or retrieve their values.
Second, it shows the problem with Public Fields. You could set
their values to nonsensical values. Very few cars have traveled
10 million miles. We would obviously like to limit that to a sane
amount. We can do validation (also known as "sanity checks") on
values, or filter the value of a Field by using a Property instead.
Let’s change the ElapsedMileage from a Public Field to a private
field:

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

23

Visual Basic:

Private m_elapsedMileage as integer

And then create a public property called ElapsedMileage:

Visual Basic:

Public Property ElapsedMileage() as integer
 Get () as integer
 return 5
 End Get
 Set (ByVal Value as integer)
 ' Do nothing
 End Set
End Property

First, did you notice how the IDE completed the structure of the
Property statement for us? We can still modify it, but it is a nice
convenience that the IDE gives us.

Second, notice that there are two distinct parts of the Property
statement ... a Get and a Set. The Get retrieves and returns a
value to the code that calls it. The Set assigns a Value. Note that
the Property statement does nothing by itself; we have to decide
which value to return when the Get statement is called and what
to do with the Value that is passed into the parameter of the Set
statement. We could ignore these values, "hard code" them, or
whatever we like. Typically, we'll do this:

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

24

Visual Basic:

Public Property ElapsedMileage() as integer
 Get ()
 ' You could do some validation
 ' or modification here
 return m_ElapsedMileage
 End Get

 Set (ByVal Value as integer)
 ' You could do some validation
 ' or modification here
 if Value > 1000000 then
 m_ElapsedMileage = 1000000
 else
 m_ElapsedMileage = Value
 end if
 End Set
End Property

In this example, we chose to use a private field
m_ElapsedMileage to store the parameter of the Set statement.
However, we do a little due dilligence to make sure that someone
didn't enter a bogus amount of miles. Then we use the
m_ElapsedMileage again when someone calls the Property Get
statement.

So now let’s see how these are used in code:

Visual Basic:

Dim myCar As Car

If myCar.ElapsedMileage = 0 Then
 myCar.ElapsedMileage = 10000000
End If

Yes, this code is correct. It is identical to the code we used to
talk about Public Fields. You may wonder WHERE the call to the
Get and Set statements is located. Actually, the calls are implied
by the fact that we are reading the value in the “if ... then”
statement, and the fact that we are assigning it a value in the
myCar.ElapsedMileage = 10000000 statement.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

25

If we add one more statement:

Visual Basic:

MessageBox.Show(myCar.ElapsedMileage.toString())

… what value do you think will be displayed? If you said 1 million
you'd be correct. That is because of the way that we wrote our
Property Set statement to filter out insane numbers like 10 million.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

26

 Methods (for those learning Visual Basic)

The last thing we'll talk about in this lesson is Methods, which is
an object oriented way to refer to procedures (or functions).
These terms are synonymous, but you'll sound cooler if you say
Methods from now on rather than procedures or functions. There
are still two different types of procedures -- I mean -- methods:
there are Sub Procedures and Functions.

Visual Basic:

Public Function Drive() as string

 if m_make = "Oldsmobile" then
 return "Chicago"
 else
 return "Toledo"
 end if

End Function

Methods can be either Private or Public scope. Many times,
you'll want Private methods to be used as helper functions or
utilities that hide how the class does its work. Ideally, classes are
like mysterious "black boxes" to the code that calls them. You
know nothing about how the object works except for the Public
properties and methods, and that is good. This is known as
"Encapsulation" in Object Oriented programming terminology.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

27

Overloaded Methods

Consider the following two Drive methods closely:

Visual Basic:

Public Function Drive() As String
 If m_make = "Oldsmobile" then
 Return "Chicago"
 Else
 Return "Toledo"
 End If
End Function

Public Function Drive(ByVal make As String) As String
 If make = "Oldsmobile" Then
 Return "Chicago"
 Else
 Return "Toledo"
 End If
End Function

This is called Overloading the Method. We've overloaded it with
two different ways of calling the function. We can either call it
passing in no parameters, or call it passing in the make. Each
method returns a string, but the parameters and how the method
works internally can be different. In order to overload a method,
the method signature must be different. "Method Signature" is
just a technical term that means each one must have a different
set of parameters. Why would you overload a method? When
you create classes, you don't always know how they might be
used up front in your application. Sometimes you don't have all
the data readily available to you that you would need to call a
method, so you need options on how to call the method.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

28

Introducing Constructors

First of all, classes have Constructors, which is a special method
that allows you to initialize your fields, or whatever else you may
want to do when your object is first created. In Visual Basic.NET,
you create a Constructor using the New statement:

Visual Basic:

Public Sub New()
 m_make = "Unknown"
 m_model = "Unknown"
 m_elapsedMileage = 0
End Sub

Here we've set our private fields to default values. The
Constructor gets called whenever the New keyword is used in
association with our class, like so:

Visual Basic:

myCar = New Car

Also, the constructor is ALWAYS the first code to execute within
your class, however having a Constructor in your class is
optional. While Constructors are not required, it is a good idea to
use constructors to initialize the private property (private member)
values of your new object.

I’ve used the term “initialize” several times; let me explain what I
mean. Initialization is the process of taking steps to ensure that
your object will function properly by the time the object is used in
an application. That means different things based on how you
design your object. For example, you may choose to create a
connection to a database, or create instances of child objects, or
set variables (like private fields) to default values, etc. The

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

29

constructor is the perfect place to execute code that MUST RUN
in order for your object to perform correctly.

BEST PRACTICE: Use Constructors to initialize values for a
newly created object.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

30

Overloading Constructors

Since a Constructor is simply a method, you can overload the
Constructor. Recall from earlier in this chapter that overloading a
method means that you can have different implementations of
your method based on a different method signature.
I could create another Constructor that allows me to initialize the
values as soon as I create an instance of the class:

Visual Basic:

Public Sub New(ByVal make As String, _
 ByVal model As String, _
 ByVal elapsedMileage As Integer)
 m_make = make
 m_model = model
 m_elapsedMileage = elapsedMileage
End Sub

Then, this is how I would use that constructor when I create a
new instance of the class:

Visual Basic:

myCar = New Car("Nissan", "Altima", 31000)

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

31

Death of an Object

So we understand what happens when we create an object, but
what happens when we are finished using an object? This isn't
an easy answer, so try to understand what I'm about to say
involves some concepts that are rather advanced and I'm not
telling you everything.

We sometimes talk about things being in a plastic bubble, maybe
you've seen the movie "The Boy in the Plastic Bubble" or
watched the Sienfeld episode with the "Bubble Boy". The bubble
protects people with weakened immune systems from the outside
world. The Bubble is a totally controlled environment. In a like
manner, that is what the .NET Runtime does for your applications.
It protects your application from the outside world, so that other
programs can't corrupt its memory space, and it cleans up after
your program when it’s finished. Protecting an application's
allocated memory prevents memory leaks or other bugs from
shutting down your application immediately. To guard against
this, the .NET Runtime has a Garbage Collector, which is a
process within the .NET Runtime that searches for object
references in your code that are no longer needed. When it finds
an unused object it disposes of it, or rather, it removes the object
from memory.

As your code is executing, the .NET Runtime will flag those
objects that it knows it won't need again, and after a while the
Garbage Collector comes through and disposes of all the objects
that are flagged for destruction. Right before the Garbage
Collector destroys your object, you will get a last second chance
to execute some code, which is called a Destructor … I’ll cover
that in the next section.

Many developers try to help the .NET Runtime by doing the
following:

Visual Basic:

myCar = Nothing

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

32

However this is not necessary. Older versions of Visual Basic
required you to do this, but you don’t have to anymore. When a
given procedure finishes processing, the variables that were
defined in that procedure go "out of scope" which means that
their values are no longer available -- the task is complete and the
variables are no longer needed. As the .NET Runtime executes, it
looks ahead and decides when it needs to destroy an object,
based on whether or not the object’s reference is used in future
code.

So, by waiting until the very end of the procedure to add this
code (as is a common practice in previous versions of Visual
Basic):

myCar = Nothing

… you might actually be hindering rather than helping the .NET
Runtime to clean up memory sooner. Although, lets be honest, it
really won't make that big of a difference in smaller programs.
However, in large memory-intensive applications or applications
where there are a lot of simultaneous users such as a high-traffic
web site, you might need to pay attention to this.
But this leads us to a best practice:

BEST PRACTICE: Don't attempt to help out the process of
Garbage Collection by setting objects you are finished with equal
to nothing.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

33

Introducing Destructors

Before the object is destroyed, you can write code to clean up
your application, which might include closing any open
references to files or databases. This is called a Destructor in
Object Oriented terminology, and to create a Destructor in Visual
Basic, use the Finalize method in your class like so:

Visual Basic:

Protected Sub Finalize()

End Sub

How do you call this method from your application? You don’t. If
this method is present, the .NET Runtime will automatically
execute the code in this method for you right before the object is
being destroyed.

Why use a Destructor? In many classes you will create, you
won’t need to. You may choose to use a destructor if:

• Your class is responsible for opening files. If the class is
to be destroyed, then you need to close the files it current
has opened. Not doing so may corrupt the file, or prevent
other parts of your application from accessing the file at a
later time.

• Your class keeps a connection to a database open as long
as an instance of the class is being used. This is not a
good idea for many reasons, but I’ve seen it done this way
and you could use a destructor for this purpose.

• You want to save the current state of the object to a
database or a file for later use within your application.

• Your class is responsible for working directly with the
Windows Application Programming Interface (API) and
must carefully “disconnect” from Windows so that the
application or Windows (or both) do not become disabled.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

34

All of the above reasons are more advanced topics and you’ll
learn more about them as you continue to learn about
programming in .NET.

Before I close, there is another, more advanced type of
Destructor called Dispose. I won’t cover this now, but it’s a more
deterministic way of destroying an object. By “deterministic” I
mean that your application can be more proactive about
destroying objects rather than just letting their reference go out of
scope and allowing the Garbage Collector to find them. It’s
analogous to calling the garbage collector in your home town and
requesting them to pickup that old refrigerator that’s been in your
garage for the last six months. Sure, they would find it as they
routinely troll around the neighborhood on Monday, but you need
to get rid of it NOW.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

35

Object Oriented Programming
Using C# 2005

Introduction

This chapter accompanies video 6, “Object Oriented
Programming Fundamentals”.

Object Oriented Programming seeks to reduce the complexity of
creating large applications by breaking the application down into
smaller, manageable classes of code. Each class represents an
idea, whether tangible and concrete (such as a Product or
Employee) or conceptual (such as Inventory or Order).

In the past, most programmers wrote their programs in a coding
style called Procedural Programming. As programmers used this
style (or philosophy) of how to structure entire applications, its
flaws become more glaring. One problem with procedural
programming was the over-use of global variables (variables that
could be used at any time anywhere in your application). Also,
this style lent itself to coding practices that made the code hard
to read and debug, and hard to maintain over a number of years.
While procedural code is not inherently evil, carelessness caused
problems as developers tried to fix bugs … changing a single line
of code would have major devastating consequences in other
parts of the application because the entire application was so
interdependent. To make changes, programmers had to re-write
entire applications because it was less work than trying to
untangle the mess of code that they were left with.

Object Oriented Analysis, Design and Programming sought to
improve on the entire software development process by taking a
simplified approach to application design that more closely
resembled everyday life.

You won't get very far in modern software development before
hearing about Object Oriented Programming. It’s also known as
“OO” for Object Oriented, and the purpose of OO programming is
to reduce the complexity involved with writing and maintaining
applications.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

36

In real life, everything around us has properties and methods,
although we generally don't think about life in these terms. For
example, a Pencil has a color, a length, a lead quality (“bring your
#2 pencils”) ... and it also has methods, or things it can do like
Write and Erase.

The basic idea behind object oriented programming is that if we
can write code that mimics real world objects, like pencils, cars,
customers, payments, etc. then it will make programming a lot
easier. This is a gross over-simplification however it’s a starting
point.

Consider a car as an example of a real-world object oriented
system that is comprised of many discrete parts. The car itself is
an object. The engine inside the car is an object. The exhaust
system is an object that contains even more objects. The engine
depends on the exhaust system, but it has no idea how the
exhaust system works. Even though the car parts don’t know
much about each other – except how to connect to each other –
amazingly the parts all do their individual jobs and the end result
is a working machine. If one part goes bad, it can be replaced
without adversely affecting the rest of the car.

Additionally, you don’t have to know anything about how a car
works in order to drive it. You sit down in a comfortable seat,
turn on the ignition key, and operate the steering wheel, the gas
pedal, the brake and occasionally a turn signal. However, your
instructions trigger hundreds of individual parts without you
having to worry about them. This focuses on a major OO
concept called Encapsulation. All of the powerful engine and
navigation components are encapsulated behind two or three
controls that you (the user) work with.

To extend this example further, there are specifications that
define what a car is in general – if not in reality, then at least in our
minds -- and each automaker inherits and extends those
specifications to give their car a unique look, performance benefit
or price benefit. In other words, each automaker inherits from the
ideal “car” to create a more specialized car. Still, from a
programmer’s perspective, the Hyundai and the Mercedes have
more in common than they have differences. The same general
engine design, exhaust system design, number of tires, operation
of the steering wheel, seats, pedals, turning signal, etc. exist in
both cars. They both borrow from the design and mechanics of
how a car works. In software terms, this is referred to as
Inheritance, another important concept in Object Oriented
Programming.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

37

Also, all cars can go to the same gas stations and fill up using the
same gas pumps, despite the fact that a Mercedes may cost
$60,000 more than a Hyundai. This is known as Polymorphism,
meaning that even though there are different objects, you can
interact with them the same way because they both derive from
the ideal car.

So, when defined in this way, I hope you can begin to see the
value of looking at software the way we analyze the world around
us.

For this lesson, we'll focus on the most basic building block of
OO programming, and that is the Class. A class is simply a
blueprint. The Class defines the fields, properties, methods and
events that an object will have.

A class is a blueprint only; its only job is to define what data it
should store (the variables, or rather Fields) and what actions the
object should take (the procedures, or rather the Properties and
Methods). But since a class is just a blueprint, it is not the
ACTUAL object … just a definition of the object’s appearance,
behaviors, etc.

Just like in the real world, you take a blueprint to a contractor, or
take the recipe to a baker and they create an instance of that
blueprint, resulting in a house or a cookie respectively. In our
case, we'll create an instance of the class. The instance is a
manifestation of that class, which we then call an Object. So lets
define a class:

C#:

class Car
{

}

This class does nothing. So let’s add some fields, properties and
methods.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

38

C#:

public class Car
{
 private string make;
 private string model;

 public string Make
 {
 get { return make; }
 set { make = value; }
 }

 public string Drive()
 {
 if (make == “Oldsmobile”)
 {
 return “Chicago”;
 }
 else
 {
 return “Toledo”;
 }
}

Admittedly, this particular class still doesn’t do much but will
allow us to see what a real class looks like. First, it has two
private fields and a public function. We talked very briefly about
scope in video lesson 4 and 5, and the words private and public
have special meaning in terms of scope (visibility). I'll have more
to say about it later in this chapter as we look at Properties,
Fields and Methods.

Before we can interact with the Make property or the Drive
function, we must create an instance of the Car class; or rather,
we must instantiate the Car object.

C#:

Car myCar;
myCar = new Car();
string location;
myCar.Make = "Oldsmobile";
myLocation = myCar.Drive();

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

39

The most important part of this example is the first two lines of
code. First of all we dimension a variable myCar that is of type
Car. If you remember back to video lesson 4 we worked with
simple value types like strings and integers. Now we are working
with more complex reference types, AND we are creating our own
custom types!

The second line of code is where the magic actually happens. In
line 1 we created a variable of type Car, but as of yet it is not
actually a Car. At the moment we use the new keyword, a Car
object is created in memory and we store a reference to that new
Car in the myCar variable. Let me clarify this. All the information
about the newly created Car object is stored in your computer’s
memory. The variable myCar is given the address of that memory
space, which is called a “reference”. Now, whenever you use the
word “myCar” in code, it just refers the compiler to the memory
address that represents that instance of the Car object.

There's a subtle difference between dimensioning a variable as a
type (or class) and actually creating an instance of that type (or
class). This will become more apparent as we talk about Class
Constructors a little bit later on.

Almost everything you work with in C#, whether you know it or
not, is a Class. For example, look at the code examples from the
previous lessons.

There is a lot more to learn, but in this lesson we've introduced
Object Oriented Programming and have shown some
fundamentals about classes.

Let’s now look at what goes inside of Classes, namely Fields,
Properties and Methods.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

40

Fields

Let’s look at the Car class we created earlier in this chapter:

C#:

public class Car
{

 private string _make;
 private string _model;

 public string Make
 {
 get { return _make; }
 set { _make = value; }
 }

 public string Drive()
 {
 if (_make=="Oldsmobile")
 {
 return "Chicago";
 }
 else
 {
 return "Toledo";
 }
 }
}

First lines of code are fields. Fields are simply variables defined
within a class, outside the scope of a method (a variable, but with
scope that extends outside of a given method). They can be
private like we have in the Car example, or they can be public.

Ideally, you should never use Public Fields, but rather use Public
Properties instead. We'll talk about that more in a moment, but
let’s add three more BEST PRACTICEs to our ongoing list:

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

41

BEST PRACTICE: Instead of public fields, use public properties
and use private fields as the container for the value and
properties as mutators and accessors to the hidden value.

BEST PRACTICE: Use an underscore as an prefix to your
private field, then use camel casing for the rest of the name.
Example:

_engineSize or _elapsedMileage

BEST PRACTICE: use camel case when naming private
methods. Use pascal case when naming public methods and
properties.

Camel Case == engineSize or elapsedMileage
Pascal Case == EngineSize or ElapsedMileage

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

42

Properties

Lets add a public field for a moment just to show how we would
reference that class variable in our code:

(This is just a re-cap of the Car class … all we’re doing is adding
a Public field)

C#:

public class Car
{

 public int ElapsedMileage;

}

(This code would be used to create an instance of the Car object
and use the new Public field we just added)

C#:

Car myCar = new Car();

if (myCar.ElapsedMileage == 0)
{
 myCar.ElapsedMileage = 10000000;
}

This illustrates two ideas. First, it shows how to use the . (dot)
syntax to access public fields and set or retrieve their values.
Second, it shows the problem with public fields. You could set
their values to nonsensical values. Very few cars have traveled
10 million miles. We would obviously like to limit that to a sane
amount. We can do validation (also known as "sanity checks") on
values, or filter the value of a field by using a property instead.
Lets change the ElapsedMileage from a public field to a private
field:

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

43

C#:

private int _elapsedMileage;

Notice that I changed the underscore and capitalization of
_elapsedMileage in keeping with our Best Practices (defined
above). Private member variables should be camel cased and be
prefixed with an underscore.
And then create a public property called ElapsedMileage:

C#:

public int ElapsedMileage
{
 get
 {
 return 5;
 }
 set
 {
 // Do nothing
 }
}

Notice that there are two distinct parts of the property statement
... a get and a set. The get retrieves and returns a value to the
code that calls it. The set assigns a value (more about this in a
moment). Note that the first line of the property statement does
nothing by itself; we have to decide which value to return when
the get statement is called and what to do with the value that is
passed into the parameter of the set statement. We could ignore
these values, "hard code" them, or whatever we like. Typically,
we'll do this:

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

44

C#:

public int ElapsedMileage
{
 get
 {
 // You could do some validation
 // or modification here
 return _elapsedMileage;
 }
 set
 {
 // You could do some validation
 // or modification here
 if (value > 1000000)
 {
 _elapsedValue = 1000000;
 }
 else
 {
 _elapsedValue = value;
 }
 }
}

In this example, we chose to use a private field elapsedMileage to
store the parameter of the set statement. However, we do a little
due diligence to make sure that someone didn't enter a bogus
amount of miles. Then we use the elapsedMileage field again
when someone calls the get statement.

So now lets see how these are used in code:

C#:

Car myCar = new Car();
if (myCar.ElapsedMileage == 0)
{
 myCar.ElapsedMileage = 10000000;
}

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

45

Yes, this code is correct. It is identical to the code we used when
explaining public fields. You may wonder WHERE the call to the
get and set statements is located. Actually, the calls are implied
by the fact that we are reading the value in the ‘if’ statement
(implied a call to the get method), and the fact that we are
assigning it a value in the myCar.ElapsedMileage = 10000000
statement (implies a call to the set method).
If we add one more statement:

C#:

MessageBox.Show(myCar.ElapsedMileage.ToString());

… what value do you think will be displayed? If you said 1 million
you'd be correct. That is because of the way that we wrote our
set statement to filter out insane numbers like 10 million.
One final point of clarification about the set; consider this line of
code that was in the set statement above:

C#:

_elapsedValue = value;

Where did the “value” identifier come from? In this case, C# uses
this token (“value”) to represent the data that the property is
being assigned to. It’s similar to an input parameter, but it’s built
in and you can’t change the name of the identifier to anything else
(like “mySetValue”, for example).

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

46

Methods

We’ve already discussed methods earlier in this lesson, and
stated that you must enclose a method in a class, but at that
point it probably didn’t mean a lot. Let’s continue our discussion
of Methods by considering the method used in our Car class
example:

C#:

public string Drive()
{
 if (make=="Oldsmobile")
 {
 return "Chicago";
 }
 else
 {
 return "Toledo";
 }
}

Methods can have either Private or Public visibility. (Actually
there are a few other types of visibility, but let’s just focus on
these two for the time being.) Many times, you'll want Private
methods to be used as “helper” functions or utilities that hide
how the class does its work internally. Ideally, classes are like
mysterious "black boxes" to the code that calls them. You know
nothing about how the object works except for the Public
properties and methods, and that is good. This is known as
"Encapsulation" in Object Oriented programming terminology.
So, suppose that we were to change the Drive method from a
public method to a private one. Then suppose we were to
attempt to call the private Drive method from our Form1_Load
event … what do you think would happen? We would get an
error that says:

‘Car.Drive()’ is inaccessible due to its protection level
In other words, because the method is private, it is protected
from other classes attempting to call that particular method.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

47

Overloading Methods

Consider the following two Drive methods closely:

C#:

public string Drive()
{
 if (make=="Oldsmobile")
 {
 return "Chicago";
 }
 else
 {
 return "Toledo";
 }
}

public string Drive(string _make)
{
 if (_make=="Oldsmobile")
 {
 return "Chicago";
 }
 else
 {
 return "Toledo";
 }
}

This is called Overloading the Method. We've overloaded it with
two different ways of calling the function. We can either call it
passing in no parameters, or call it passing in the _make. Each
method returns a string, but the parameters and how the method
works internally can be different. In order to overload a method,
the method signature must be different. "Method Signature" is
just a technical term that means for the unique set of input
parameters in a method. Why would you overload a method?
When you create classes, you don't always know how they might
be used up front in your application. Sometimes you don't have
all the data readily available to you that you would need to call a
method, so you need options on how to call the method. Also,

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

48

overloaded methods with additional parameters can offer and
extended set of functionality, much like the MessageBox.Show()
method which allows you to just pass a message to be displayed,
or other overloaded versions which allow you to pass in the title
for the message box, icons, which buttons are available, and
much more.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

49

Object Lifetime

Like many living objects in the real world, code objects have a
birth, a life and a death. You can write code that executes when
an object is born and when it is about to die.

We've talked about instantiating an object from its class
definition, which means we take the Class and create an object
from it. But we haven't told the entire story. Let’s look at what
happens when we create an instance of a class, and we'll talk
about what happens after we finish using it.

Introducing Constructors

First of all, classes have Constructors, which is a special method
that allows you to initialize your fields, or whatever else you may
want to do when your object is first created. In C#, you create a
Constructor using the same name as the class in the form of a
method. For example, this is what the constructor for the Car
class would look like:

C#:

public class Car
{

 public Car()
 {
 make = "Unknown";
 model = "Unknown";
 elapsedMileage =0;
 }

}

Here we've set our private fields to default values. The
Constructor gets called whenever the new keyword is used in
association with our class. Here’s an example of code you might

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

50

see in the Form1_Load method, or some method that would need
to create an instance of the Car class:

C#:

myCar = new Car();

Also, the constructor is ALWAYS the first code to execute within
your class, however having a Constructor in your class is
optional. While Constructors are not required, it is a good idea to
use constructors to initialize the private property (private member)
values of your new object.

I’ve used the term “initialize” several times; let me explain what I
mean. Initialization is the process of taking steps to ensure that
your object will function properly by the time the object is used in
an application. That means different things based on how you
design your object. For example, you may choose to create a
connection to a database, or create instances of child objects, or
set variables (like private fields) to default values, etc. The
constructor is the perfect place to execute code that MUST RUN
in order for your object to perform correctly.

BEST PRACTICE: Use Constructors to initialize values for a
newly created object.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

51

Overloading Constructors

Since a Constructor is simply a method, you can overload the
Constructor. Recall from earlier in this chapter that overloading a
method means that you can have different implementations of
your method based on a different method signature.

I could create another Constructor that allows me to initialize the
values as soon as I create an instance of the class:

C#:

public Car(string make, string model, int elapsedMileage)
{
 make = _make;
 model = _model;
 elapsedMileage = _elapsedMileage;
}

Then, this is how I would use that constructor when I create a
new instance of the class:

C#:

myCar = new Car("Nissan", "Altima", 31000);

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

52

Death of an Object

So we understand what happens when we create an object, but
what happens when we are finished using an object? This isn't
an easy answer, so try to understand what I'm about to say
involves some concepts that are rather advanced and I'm not
telling you everything.

We sometimes talk about things being in a plastic bubble, maybe
you've seen the movie "The Boy in the Plastic Bubble" or
watched the Sienfeld episode with the "Bubble Boy". The bubble
protects people with weakened immune systems from the outside
world. The Bubble is a totally controlled environment. In a like
manner, that is what the .NET Runtime does for your applications.
It protects your application from the outside world, so that other
programs can't corrupt its memory space, and it cleans up after
your program when it’s finished. Protecting an application's
allocated memory prevents memory leaks or other bugs from
shutting down your application immediately. To guard against
this, the .NET Runtime has a Garbage Collector, which is a
process within the .NET Runtime that searches for object
references in your code that are no longer needed. When it finds
an unused object it disposes of it, or rather, it removes the object
from memory.

As your code is executing, the .NET Runtime will flag those
objects that it knows it won't need again, and after a while the
Garbage Collector comes through and disposes of all the objects
that are flagged for destruction. Right before the Garbage
Collector destroys your object, you will get a last second chance
to execute some code, which is called a Destructor … I’ll cover
that in the next section.

Many developers try to help the .NET Runtime by doing the
following:

C#:

myCar = null;

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

53

However this is not necessary. When a given procedure finishes
processing, the variables that were defined in that procedure go
"out of scope" which means that their values are no longer
available -- the task is complete and the variables are no longer
needed. As the .NET Runtime executes, it looks ahead and
decides when it needs to destroy an object, based on whether or
not the object’s reference is used in future code.
So, by waiting until the very end of the procedure to add this
code:

C#:

myCar = null;

… you might actually be hindering rather than helping the .NET
Runtime to clean up memory sooner. Although, lets be honest, it
really won't make that big of a difference in smaller programs.
However, in large memory-intensive applications or applications
where there are a lot of simultaneous users such as a high-traffic
web site, you might need to pay attention to this.

But this leads us to a best practice:

BEST PRACTICE: Don't attempt to help out the process of
Garbage Collection by setting objects you are finished with equal
to null.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

54

Introducing Destructors

Before the object is destroyed, you can write code to clean up
your application, which might include closing any open
references to files or databases. This is called a Destructor in
Object Oriented terminology, and to create a Destructor in C#,
create a method that is named the same as the class preceded
by the tilde character (~):

C#:

~Car()
{

}

How do you call this method from your application? You don’t. If
this method is present, the .NET Runtime will automatically
execute the code in this method for you right before the object is
being destroyed.

Why use a Destructor? In many classes you will create, you
won’t need to. You may choose to use a destructor if:

• Your class is responsible for opening files. If the class is
to be destroyed, then you need to close the files it current
has opened. Not doing so may corrupt the file, or prevent
other parts of your application from accessing the file at a
later time.

• Your class keeps a connection to a database open as long
as an instance of the class is being used. This is not a
good idea for many reasons, but I’ve seen it done this way
and you could use a destructor for this purpose

• You want to save the current state of the object to a
database or a file for later use within your application.

• Your class is responsible for working directly with the
Windows Application Programming Interface (API) and
must carefully “disconnect” from Windows so that the
application or Windows (or both) do not become disabled.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

55

All of the above reasons are more advanced topics and you’ll
learn more about them as you continue to learn about
programming in .NET.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

56

What is the .NET Framework?

Introduction

This chapter is an overview of the purpose and the parts of the
.NET Framework. It is provided as a supplement to video lesson
7, “Getting to know the .NET Framework”.

Like many geeks, my favorite movie is the Matrix. As the movie
starts, you can't quite understand what this mysterious term
means to Neo and the others who are trapped inside of it. Then
Morpheous explains what the Matrix is, and while you don't
understand it all, your mind just expanded to understand the
events that have been happening to Neo. To loosely quote
Morpheous, who in turn references Alice in Wonderland: "we're
about to fall deeper into the rabbit hole."

What is .NET?

.NET by itself is simply a marketing term that describes many
different software products (and services) from Microsoft. The
idea is that these products all work seamlessly together and allow
businesses to create eCommerce web sites and allow partners to
exchange data almost effortlessly. However, this caused a lot of
confusion among Microsoft’s customers, so Microsoft is working
on renaming their server products (Windows 2003, Biztalk,
Commerce Server, etc.) to more clearly define what .NET is.
From a software development perspective, the heart of .NET is
the .NET Framework, which is a collection of tools to allow
developers to create applications.

Tools include:

.NET Runtime - this is the core component. It is also known as
the “Common Language Runtime” or just “CLR”. The runtime is
a type of software known as a “virtual machine” that acts as a
mediator between the Windows operating system and the code
the programmers write. It protects end-users from malicious
code and protects developers from managing the intricacies of
dealing with memory (like we learned the Garbage Collector does
in the previous lesson), the file system, and other lower level
functionality. Also, a huge benefit is that it doesn’t require that

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

57

the programmer write different code for each version of Windows.
The Runtime handles those complexities and allows software
developers to focus on the functionality of their application
instead. In theory, the Runtime could be ported to other
operating systems such as Linux so that an application you
create for Windows will run on Macs or Linux machines. This is
what Java attempted to do with their virtual machine, which .NET
was heavily influenced by. When your programs run, they run
"inside" or are controlled by the .NET Runtime. When an end-
user clicks an icon to open your program on their computer, the
first thing your program will automatically do is “ask” the .NET
Runtime to “host” it. Therefore, any computer you want to use
your application on must have the .NET Framework installed or
else it will not work on that computer. We do not cover how to
distribute your application in the BEGIN01 series, however there
are other videos on LearnVisualStudio.NET that cover this topic
(see video “3550 - Introduction to Deploying .NET Apps” for more
information.)

.NET Framework Class Library – also known as the “FCL”. This
is what you will become intimately familiar with. It contains
hundreds of classes, each with dozens of properties and
methods that allow you to do almost anything you would want to
within your program. You won't get very far without using the
Class Library -- database access, sending emails, accessing files
on a hard drive, creating dynamic web pages -- everything you
want to do is made possible through this set of code that you
reference within your applications.

.NET Language Compilers - These are a set of programs that
take the source code you write in a particular language (such as
Visual Basic.NET, C#, J# or managed C++), and compile them
into the Microsoft Intermediate Language (MSIL, or just IL) which
is then run by the .NET Runtime. The compiler for Visual
Basic.NET is vb.exe. Each programming language has its own
compiler that knows how to interpret source code you write into
MSIL and store that MSIL in an Assembly file. The compiler also
alerts you to problems compilation errors in your code due to
mistakes in typing, incorrect logic, etc.

Other utilities - There are over a dozen other tools that come
with the .NET Framework for various purposes. Many of these
you may never need, and some are used behind the scenes by
Visual Studio.NET.

There are MANY other features of .NET, such as a common type
system that allows cross-language interoperability, the inner
workings of Assemblies (what your application gets compiled
into), application domains for isolation of applications and their
processes, and many complex topics. If you want to really dig in

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

58

deep and understand the .NET Framework, you must purchase
and read this book at least twice:

This is the VB version:

Applied Microsoft .NET Framework Programming
in Visual Basic .NET

By Jeffery Richter and Francesco Balena
Published by Microsoft Press
ISBN: 0735617872
http://www.bookpool.com/.x/symeao4zer/sm/0735617872

And this is the C# version:

Applied Microsoft .NET Framework Programming

By Jeffery Richter
Published by Microsoft Press
ISBN: 0735614229
http://www.bookpool.com/.x/io36m6jzo4/sm/0735614229

Caution: it is NOT a book designed for beginners.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

59

Namespaces in the .NET Framework Class Library

The .NET Framework Class library has hundreds, if not
thousands, of classes. In order to find the classes you are
looking for, and as a result of good Object Oriented design, the
classes are divided up into Namespaces. A namespace is a way
of segregating classes into common functionality and also allows
two classes with the same name to be unique. For example, I'm
not the only Robert in Texas, but I'm one of only a couple of
Robert Tabors in Texas. Furthermore, I'm the only Robert Theron
Tabor in Texas, and probably the world, so by adding names that
makes my otherwise common name unique. In a like manner, it
would be very difficult for 3000+ classes to have different names,
especially when some of them have similar functionality that is
used at different times or for slightly different purposes.

There are dozens of important namespaces ... here are a few that
you'll get to know over the next few video lessons:

System
System.Data
System.Data.SqlClient
System.IO
System.Exception
System.Web

While the system Namespace is one of the most important, it’s
not the only namespace root. If we wanted to create a
connection to a database, we would have to write the following
code:

Visual Basic:

Dim con As System.Data.SqlClient.SqlConnection

C#:

System.Data.SqlClient.SqlConnection con;

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

60

Wow, that is a long name! Furthermore, if I wanted to create a
command object and a data reader from that same namespace,
I'd have to add the next two lines of code:

Visual Basic:

Dim cmd As System.Data.SqlClient.SqlCommand
Dim dr As System.Data.SqlClient.SqlDataReader

C#:

System.Data.SqlClient.SqlCommand cmd;
System.Data.SqlClient.SqlDataReader dr;

To reduce the amount of carpel tunnel, Microsoft allows us to use
an Imports statement which makes all the classes in a given
namespace available without having to type its full name each
time.

Visual Basic:

Imports System.Data.SqlClient
...

Dim con As SqlConnection
Dim cmd As SqlCommand
Dim dr As SqlDataReader

C#:

using System.Data.SqlClient;
...

SqlConnection con;
SqlCommand cmd;
SqlDataReader dr;

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

61

Namespaces in your Applications

When you create an applications using Visual Studio.NET, a
default namespace will be automatically created. Suppose you
create a new project and you name it “MyProgram”. The root
namespace for your application is called “MyProgram” and if you
add a class to your application called “MyClass”, the fully-
qualified name of the class would be “MyProgram.MyClass”.
Why do you need namespaces in your applications? This
prevents a naming conflict between the names of your classes
and the names of classes in the .NET Framework Class Library.
Suppose you create a class in your application called Format.
You may not realize it, but there is a class called Format in the
.NET Framework class library, too! Without providing a “middle
name and a surname” (just like people have to distinguish them
from one another) for our class, the compiler would have no idea
which class to create an instance of. That is why your Format
class is automatically assigned the name “MyProgram.Format”
which differentiates it from the
“System.Windows.Forms.DataFormats.Format” class.

Also, if you or your company are responsible for creating a re-
usable class library (a .DLL file, or rather, Assembly that can be
shared across one or more applications), a namespace will
prevent a naming conflict between your class library and one
created by someone else that is used within the same
application.

You can change the root namespace for your project in the
Project Properties dialog in the Common Properties tab.
You also can define as many namespaces in code as you want to
using the following structure:

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

62

Visual Basic:

Namespace YourNamespaceName

. . .

End Namespace

C#:

namespace YourNamespaceName
{

. . .

}

However, your root namespace will always be at the beginning.
Consider this case where your project name is MyProject and you
have a class file with the following code:

Visual Basic:

Namespace MyNamespace

 Public Class MyClass
 . . .
 End Class

End Namespace

C#:

namespace MyNamespace {
 public class MyClass {
 …
 }
}

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

63

The fully qualified name for this class would then be:

 MyProgram.MyNamespace.MyClass

Confused? Don’t worry. While this information will ultimately
affect you as you build larger and larger applications, it won’t get
in the way of creating usable applications today. I wanted to
introduce this thought to you because it will pop up everywhere
and is central to developing .NET applications.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

64

 Creating and Obtaining Data from a Database

Introduction

This chapter is to be read with video lessons 8 and 9, “Obtaining
Data from a SQL Server 2005 Express Edition Database” and
“Databinding Data to User Interface Controls”, respectively.

Databases are files or systems that organize data for easy
storage and retrieval. Working with Databases will probably
become the single most important use for your coding skills if you
plan to work for a typical IT department as a programmer.

There are many different types of databases from different
vendors. Each database shares a common structure and
terminology. This is known as a Relational Database. You will
need to use a sub-set of the .NET Framework called ADO.NET,
which stands for ActiveX Data Objects. Don’t worry … there’s
nothing about the history of ADO that is pertinent right now.
What IS important is that it contains a series of classes that allow
you to interact with all types of different databases very easily.

Understanding Databases

Most of the applications I write involve accessing information in a
database, whether I just select records to display on screen, or
insert, update or delete records.

A database is a file that has data structured in such a way that
the data is organized and easily searched for, or modified. A
database can be created by Microsoft Access for simple
applications … or better yet, you can take advantage of Sql
Server 2005 Express Edition which is installed with Visual C#
2005 Express Edition and Visual Basic 2005 Express Edition and
is integrated directly into the IDE via the Database Explorer
window. Or in larger companies or for high-volume web site, you
may want to use a Database Management System like SQL
Server 2000 or 20005 or Oracle 9i Database. These larger
systems don't allow you to access the data file yourself, but have
a program (called a Database Server) that accepts your request,
performs the request and delivers the results (if any). The benefit
is that it can accommodate more computers that try to access

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

65

the data at the same time (i.e., better performance for multiple
concurrent users).

Regardless of the database, data is organized into Tables.
Tables have columns, which are properties of the table. So, for
example, there is a database called Northwind that ships with
Microsoft Access as an example. One of the tables looks like
this:

Note: while we are looking at a Microsoft Access database, these
similar styles of views are available from within the Express
Edition tools for databases created and managed by Sql Server
2005 Express Edition, as well as other database management
tools from Microsoft.

We are looking at a common way that the structure of a table is
represented – in the form of a picture. Here’s a picture of ALL the
tables in the Northwind database:

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

66

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

67

The lines that connect each of the tables are called Relationships.
We’ll talk about them more in a bit. There’s another way to view
the structure of a table in a database:

 This is called a Design View. A table has columns and rows. It
might be easy at this point to think of a table as a spreadsheet,
like the type you use in Microsoft Excel. The columns are the
structure of the table. The columns define WHAT type of
information will be saved in that table. In this case, the
Customers table has a structure of 11 columns (CustomerID,
CompanyName … Fax) A single customer in the Northwind
database will have one row of data in this table. A row represents
a collection of fields of information that are related together
conceptually. The Design View (above) allows you as the
database designer to add or remove columns from a table.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

68

If you want to add or remove rows from a table, you’ll need yet
ANOTHER different view:

This is known as the Datasheet View. Look at the very top of this
view … each column has a header in light gray. That represents
the name of each column. This will coincide with each column in
the database table.

The each record is represented in the rows below the first row
(the header row). Each row has a set of data values that
correspond to each column in the table. Again, this looks a lot
like an Excel spreadsheet. We can add a new row by typing into
the last row of the table, and moving to the next line. OR we can
create a program that allows a user (or many users) to add new
records into our database without having to use Microsoft
Access. The reason we would want to do that is to provide a
more user-friendly interface to the end user, or to prevent the
user from modifying the data in a way that violates our business’
practices or policies. These are called “Business Rules” … we
use that term often, since that is the reason why many of us are
gainfully employed as programmers … to create programs that
enforce business rules.

Each column can have several properties associated with it. For
example, each column will have a name, a data type (just like
variables have), and depending on the data type, a size.

Additionally, columns can be used to AutoNumber so they make
good columns for identifiers (or IDs … special columns used in
primary/foreign key relationships.)

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

69

Relationships

In a Relational Database, there might be many tables, each one
linked to other tables by a relationship. A relationship means that
for one row in one table, there might be one or more rows related
to it in another table. For example, one table might contain
companies, and another table called employees. One column in
the Companies table is CompanyID, which would be the Primary
Key. In this case, the CompanyID is just a number that uniquely
identifies this row in the table ... there can't be two Companies
with the same CompanyID. Each row in the Employee table will
have a corresponding CompanyID field, which makes it related to
the Company table. This CompanyID field is called the Foreign
Key.

SQL Statements

You can retrieve values from the database using SQL statements,
which stands for Structured Query Language. SQL is like a
programming language for databases. For example, this
statement would retrieve all the rows from the Company table
where their headquarters were based in Texas:

SELECT * FROM Customers WHERE State = 'TX'

And here is a statement that might update one Company's city,
state and zipcode:

UPDATE Customers SET City = 'Burbank', State =
'IL' and Zipcode = 60459

While this might seem like a lot of information, it’s actually just the
tip of the ice burg. We may want to create our own database to
store information collected from a Guest Form on a web site, or
to store our company's products and pricing information, or any
thing else we can imagine.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

70

ADO.NET

The .NET Framework allows us to work with all types of different
databases, including Access, SQL Server 2005 Express Edition,
Sql Server 2000, Sql Server 2005, Oracle and others through the
user of a special set of .NET Framework classes called ADO.NET.
ADO.NET provides two ways to work with data in a database.

Connected Database Access - In this first strategy, a
connection to the database is opened and all the database
operations such as selecting records, modifying records, deleting
records, etc. is performed. Once you are finished making your
changes, you can close the connection to the database.

Disconnected - In this strategy, a connection to the database is
opened just long enough to get a set of records. Once the
records are retrieved, the connection is closed. Then your code
modifies the records, inserts new ones or deletes records and
ADO.NET keeps track of all the changes. Then you command
ADO.NET to connect back to the database and make those
changes permanent by updating the actual database. The benefit
of working with disconnected data is that you can free up system
resources, such as database connections (in the case of SQL
Server or Oracle) or reduce the amount of time the database is
locked (when using Access).

In order to accomplish both of these approaches to data access,
there are a series of classes in the System.Data namespace. I’ll
overview them at a high level. For more information, use the Help
system or view additional videos on LearnVisualStudio.NET.

Connection object – This object manages the “handshake”
between your application and the external data source
(database).

Command object – This object manages the request your
application will make to retrieve or change data in the data
source. Typically this will take the form of a SQL statement. It
also manages any parameters that are sent to the data source in
addition to the SQL statement. A command object must be
associated with a connection, and then executed in order for it to
perform its duty.

DataReader object – This object is used in a connected data
scenario. Once the command object sends a request to retrieve

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

71

data from the data source, the data has to be retrieved into either
a DataReader or a dataset (described below). Think of the
DataReader as a straw that you use to deliver your Slurpee from
the cup to your mouth. The DataReader retrieves the results from
the query and allows your application to look at each individual
row of data. Once your application is ready, you use the Read
method of the DataReader to retrieve the next row of data until all
rows have been retrieved. At that point, the connection to the
database can be closed.

DataSet object – The dataset is a container for disconnected
data. The dataset can hold data in multiple data tables, each
data table representing one or more tables from one or more data
sources, such as databases, XML files, text files and more. So,
one dataset could contain a table from a SQL Server 2005
Express Edition database and an Access database. The data
tables and their relations are defined in an XML Schema
document called an XSD. Or, developers can define the structure
of the data tables (including their columns names and data types,
etc.) programmatically.

To extend the Slurpee analogy from the previous section about
the DataReader … a DataReader is a straw. A DataSet is another
cup that you transfer the Slurpee into. Once your application is
finished with the Slurpee, you transfer it back into the original
cup. So as you can see, the scope of the DataSet is much larger
than that of the DataReader.

Changes to the dataset are recorded in a series of diffgrams,
which essentially is a list of changes that your program makes to
the dataset – data rows added, edited and deleted from the
dataset. These diffgrams are kept until the changes are resolved
back into the original data source through the use of the Update
method of the associated DataAdapter (more about that object
below).

The dataset and its contents are stored in memory for as long as
the program keeps a reference to the dataset’s instance.
However, it has a unique ability to be persisted (saved) to XML
and that XML can be stored into a file or sent over the network
through the use of a Web Service. While it might not be apparent
why you would want to do that right now, eventually you may
face a situation where you need to store (or send the data to
another computer for processing) for a prolonged period of time
… even when the application that originally created the dataset is
not running. This is a bit advanced, however it provides a great
deal of utility for your application design.

DataAdapter object – As briefly noted in the paragraphs about
the dataset, the DataAdapter contains a series of command

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

72

objects. Each command has a particular function … a command
object to perform a selection of the data from the original data
source (so that the data can be stored for processing in the
dataset), and command objects to add, edit and delete rows back
to the original data source. It performs these operations using
the diffgrams that were mentioned when discussing the dataset.
Think of the DataAdapter as the conduit between the original data
source (such as a database, file, etc.) and the in-memory
representation of the data for use in your application (the
dataset).

There are many others, however this should get you started.

By the way, with the exception of the DataSet, specific versions
of the Connection, Command, DataReader and DataAdapters are
provided for each specific type of data source you choose to use.
So, for example, there is the SqlConnection, the SqlCommand,
the SqlDataReader and the SqlDataAdapter, which are part of the
System.Data.SqlClient namespace. Why do this? To optimize
these objects and specialize them for the peculiarities that make
each data source different.

Supplemental Readings for the Express Edition Videos
Copyright © 2005 LearnVisualStudio.NET

73

ADO.NET 2.0

In ADO.NET 2.0, the original data objects (described above) do
not go away, however much of their functionality has been
encapsulated and made more easily usable, especially in those
scenarios when you want to bind the data that has been retrieved
from the original data source.

Here are a couple of those objects that are highlighted in video 9.

TableAdapter object – Combines the Connection, Command
and DataAdapter functions into one easy to configure and use
object. Its purpose is to retrieve data and put it in a dataset.

TableAdapters are available for specific types of data sources,
such as databases (like SQL Server 2005 Express Edition), ODBC
data sources, XML files, custom business objects and more.

BindingSource object – Manages the relationship between
Windows user interface controls on your form to the associated
dataset’s datatable’s columns as the user/application navigates
from row to row.

There’s also a new object that is available when creating web
applications in ASP.NET 2.0

DataSource object – Similar to the table adapter, this ASP.NET
2.0 scriptable object makes it easy to connect to, select, modify
and bind to data without writing any C# or Visual Basic code.
This can simplify the integration of external data into your web
sites for those who are more familiar with scripting (using an
HTML-like syntax) rather than programming.

See the Visual Web Developer 2005 Express Edition for
Beginners series (video number 8) for more details.

http://lab.msdn.microsoft.com/express/vwd/videos/

The DataSource also comes in a variety of flavors based on the
underlying data source that you will be using, including Sql
Server, Access, a custom business object, XML and more.

As a beginner, you might find that you can get very quick results
by using the TableAdapter or DataSource object. However it’s
important to understand that they are built on top of other objects
and learning about those as well can help you develop more
robust applications.

