
input for better outcomes

Learn the discipline, pursue the art, and contribute ideas at
www.architecturejournal.net

23

UML or DSL: Which Bear Is Best?

Modeling in an Agile Context

Software Architecture in the Agile
Life Cycle

Driving Efficiency and
Innovation by Consistently
Managing Complexity and
Change

Architecture Modeling
and Processes

Keeping Architectures
Relevant: Using Domain-
Driven Design and Emergent
Architecture to Manage
Complexity and Enable Change

Evaluating Application
Architecture, Quantitatively

Multiple-Context Systems:
A New Frontier in Architecture

http://www.architecturejournal.net

Contents 23

Foreword	 1
by Diego Dagum

Keeping Architectures Relevant: Using Domain-Driven Design and
Emergent Architecture to Manage Complexity and Enable Change	 2
by Brandon Satrom and Paul Rayner
Sound advice on how to keep architecture relevant, and not forgotten, after a solution’s
implementation.

Evaluating Application Architecture, Quantitatively	 7
by V. Gnanasekaran
An explanation of ways to confirm that a given approach meets specific criteria before going
to the next level.

Software Architecture in the Agile Life Cycle	 13
by Diego Fontdevila and Martín Salías
A set of techniques and practices for leveraging the agile approach to software architecture.

Driving Efficiency and Innovation
by Consistently Managing Complexity and Change	 18
by Samuel B. (Sam) Holcman
A detailed description of the four pillars of holistic enterprise architecture that will help
ensure success.

Multiple-Context Systems: A New Frontier in Architecture	 26
by Charlie Alfred
Identification and illustration of the implications and trade-offs of adaptable solutions for
different deployment contexts.

UML or DSL: Which Bear Is Best?	 32
by Len Fenster and Brooke Hamilton
An exploration of the pros and cons of both UML and DSLs showing that they can eventually
be combined.

Modeling in an Agile Context	 38
by Alan Cameron Wills
An illustration of how to help the architecture emerge as a consequence of an agile process,
instead of a big design upfront.

Sign up for your free subscription to The Architecture Journal www.architecturejournal.net

http://www.architecturejournal.net

1The Architecture Journal #23

Foreword

Dear Architect,
Exploring our space—partly science, partly art—is always a fascinating and complex
task. We could take the contextual approach and address a context-specific subject,
as we did recently (BI, SOA, and so on), or we could take the introspective approach of
analyzing the role that we play (how we communicate, how we negotiate, and so on).
We covered our role two years ago, during the days of Simon Guest as editor. Yet we
could take a third approach that is neither context-specific nor introspective, when we
review what we produce.

This 23rd issue of The Architecture Journal is on Architecture Modeling and
Processes. The articles that were selected for this occasion deal with aspects such as:

•	 Change-enabled architectures. Brandon Satrom and Paul Rayner advise us on
how to keep architecture relevant, and not forgotten, after the solution has been
implemented.

•	 Architecture verification. V. Gnanasekaran explains ways to confirm that a given
approach meets specific criteria prior to going to the next level.

•	 Enterprise architecture. Sam Holcman details the four pillars of success.
•	 Adaptable solutions for different deployment contexts. Charlie Alfred

identifies the implications and trade-offs, with illustrative examples.
•	 Unified Modeling Language (UML) vs. Domain-Specific Languages (DSLs).

Lenny Fenster and Brooke Hamilton dive in to the pros and cons of both
alternatives, and show that these can eventually be combined.

•	 Maturing architectures in agile processes. I wish that I had read articles like
Alan Wills’s or Diego Fontdevila and Martín Salías’s before starting my first agile
process last decade—when I couldn’t deal with the fact that the next release was
in three weeks, and I felt unable to complete my architecture in less than two-and-
a-half months.

The latest articles in this issue show specific examples that use the upcoming
Microsoft Visual Studio 2010 suite. We are less than a month away from the launch of
this Microsoft tool for .NET development, which—since its 2005 version—has been
incorporating aspects of application life-cycle management (ALM) that span way
beyond developer boundaries to include project managers, testers, user leads, and
architects. For these latter stakeholders, the incorporation of UML support plus an
extra layer diagram will serve later to avoid improper cross-layer references in code.
The newly added Architecture Explorer allows matching architecture components
easily with their respective implementation source code. It’s remarkable that our
prime development tool has been consistently awarded as the best IDE for several
years now.

On that note, I’ll finish my intro by thanking my guest editor-in-chief for this
occasion, Peter Provost, Microsoft Sr. Program Manager for Visual Studio 2010
Architect Edition. Peter helped me understand the IDE landscape and its crossovers
with the architect’s job, in order to select for you the most relevant information about
how much Microsoft addresses those issues in Visual Studio 2010. I must extend the
acknowledgement to the editorial board that helped Peter and me review the papers
during the authoring phases.

We hope that you enjoy this issue. Don’t forget to review the 10-minute videos
that we’ve made as companion material. As usual, you can send us your comments at
archjrnl@microsoft.com.

Founder
Arvindra Sehmi

Director
Cyra Richardson

Editor-in-Chief
Diego Dagum , Peter Provost (Guest editor)

Editorial Board
David Throwbridge, Nidhish Dhru, Mike Cramer,
Lalo Steinmann, Gustavo Gattass Ayub,
Denny Dayton, Eliaz Tobias

Editorial and Production Services
WASSER Studios
Dionne Malatesta, Program Manager
Ismael Marrero, Editor
Dennis Thompson, Design Director
Cover image, ©iStockphoto.com/Alex Slobodkin

®

The information contained in The Architecture Journal
(“Journal”) is for information purposes only. The material
in the Journal does not constitute the opinion of Microsoft
Corporation (“Microsoft”) or Microsoft’s advice and you
should not rely on any material in this Journal without seeking
independent advice. Microsoft does not make any warranty or
representation as to the accuracy or fitness for purpose of any
material in this Journal and in no event does Microsoft accept
liability of any description, including liability for negligence
(except for personal injury or death), for any damages or losses
(including, without limitation, loss of business, revenue, profits,
or consequential loss) whatsoever resulting from use of this
Journal. The Journal may contain technical inaccuracies and
typographical errors. The Journal may be updated from time
to time and may at times be out of date. Microsoft accepts
no responsibility for keeping the information in this Journal
up to date or liability for any failure to do so. This Journal
contains material submitted and created by third parties. To
the maximum extent permitted by applicable law, Microsoft
excludes all liability for any illegality arising from or error,
omission or inaccuracy in this Journal and Microsoft takes no
responsibility for such third party material.

A list of Microsoft Corporation trademarks can be found at
http://www.microsoft.com/library/toolbar/3.0/trademarks
/en-us.mspx. Other trademarks or trade names mentioned
herein are the property of their respective owners.

All copyright and other intellectual property rights in the
material contained in the Journal belong, or are licensed to,
Microsoft Corporation. You may not copy, reproduce, transmit,
store, adapt or modify the layout or content of this Journal
without the prior written consent of Microsoft Corporation and
the individual authors.

Copyright © 2010 Microsoft Corporation. All rights reserved.

Diego Dagum
Editor-in-Chief

http://msdn.microsoft.com/en-us/architecture/aa699395.aspx
http://msdn.microsoft.com/en-us/architecture/aa699437.aspx
http://msdn.microsoft.com/en-us/architecture/cc505966.aspx
http://go.microsoft.com/?linkid=9708422
http://go.microsoft.com/?linkid=9708422
http://msdn.microsoft.com/en-us/dd409436(VS.100).aspx
http://msdn.microsoft.com/en-us/dd409436(VS.100).aspx
http://msdn.microsoft.com/en-us/dd409431(VS.100).aspx
http://infoworld.com/node/62960
http://channel9.msdn.com/pdc2008/TL15/
http://msdn.microsoft.com/architecture/aa699412.aspx
mailto:archjrnl%40microsoft.com?subject=
http://www.wasserstudios.com
http://www.microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx
http://www.microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx

2 The Architecture Journal 23

Summary

Sustainable and successful software development is
all about managing complexity and enabling change.
Successful software architects create designs that
clearly address both concerns. For businesses that have
complex domains, designing with evolution in mind
and using techniques from Domain-Driven Design will
result in systems whose architectures deliver a strong,
sustainable competitive advantage.

Introduction
Too many systems become legacy upon release, while some never
have a chance to move into production before they are undermined
by the calcification of unmet expectations and mismatched domain
needs. Regardless of the design effort early in the life cycle, neglecting
the domain model and producing inflexible design results in the
increasing irrelevance of the architecture of a system. The accidental
complexity of that system rises, and communication between
developers and customers deteriorates. Changes and new features
become more difficult to accommodate, as the richness and value of
the system’s essential complexity is eroded. Sustainable and successful
software development is all about managing complexity and enabling
change. Successful architects create designs that address both.

Architects, domain experts, and developers collaborate to mitigate
complexity through strategic modeling and design. This requires a
focus on the core business domain and the continuous application of
appropriate design patterns. Ongoing effort should be expended on
defining and refining the domain model through the establishment
and exercise of a language that everyone shares. The development
of this Ubiquitous Language, along with the use of Domain-Driven
Design techniques, enables business problems and their solutions to
be expressed through rich domain models that are both meaningful
to business experts and executable by the development team.

Keeping our architectures relevant also means enabling change.
As architecture is allowed to emerge, evolve, and mature, it becomes a
true reflection of the deep understanding of both domain experts and
developers. Combining a strong domain-model focus with continuous
attention to growing the software architecture can be a potent
way to enable change while managing complexity. This does not
guarantee success; still, architects who distill the business domain into
a rich model, incorporate it deeply into the system, and design with
evolution in mind are on the path to creating architectures that can
deliver a strong, sustainable competitive advantage to the business.

Ubiquitous Language
The (Hidden) Cost of Translation
According to Eric Evans, Ubiquitous Language is “...a language
structured around the domain model and used by all team members
to connect all the activities of the team with the software.”1 Ubiquitous
Language should drive every piece of communication between a
development team and the business domain—from spoken and
written communication to models, system documentation, automated
tests, diagrams, and the code itself. Nothing should be allowed to
bypass the requirement that the shared and codified language of the
domain permeate through all aspects of a software project.

Consider the following conversation between a domain expert and
a development team:

Expert: We need to make sure that our support staff can change the
rules that we use to create policies for customers.

Architect: Okay, so, we’ll use a strategy pattern and make that
config‑driven...

Developer: We could just use IoC, build strategies for each
implementation, and let the users swap out implementations
whenever they need to change them.

Architect: That’s an option, too. We’ll figure it out offline.
Expert: (confused) So, will the support staff be able to change those?
Architect: Sure. They’ll change config, and it’ll just work.
Developer: Or swap out an implementation for the container

in config.
Expert: What’s IoC?
Architect: Well...

Now, consider the following alternate take on the same conversation:

Expert: We need to make sure that our support staff can change the
rules that we use to create policies for customers.

Architect: Okay, so, the POLICY BUILDER will need to be able to
support the addition and/or replacement of POLICY RULES by a
POLICY ANALYST?

Expert: Yeah, exactly. We call it the Policy Wizard, but I like your
term better.

Architect: Can we agree to globally replace Policy Wizard with
POLICY BUILDER in all of our discussions and usage? We want to
make sure that everyone understands these terms and uses them
consistently.

Expert: Sure. If you can help me write up an e-mail, we can inform
people of the change today.

Developer: So, what kinds of things do POLICY ANALYSTS change in
a POLICY RULE?

Expert: Effective dates, amount limits—minor details, really.

Keeping Architectures Relevant:
Using Domain-Driven Design and
Emergent Architecture to Manage
Complexity and Enable Change
by Brandon Satrom and Paul Rayner

3

Keeping Architectures Relevant: Using Domain-Driven Design and Emergent Architecture to Manage Complexity and Enable Change

The Architecture Journal 23

Developer: So, only attributes about the policy. Is there any swapping
in and out of policies?

Expert: No. We don’t do that often. When we do, it requires executive
approval and process changes.

Architect: Okay, so, POLICY RULE changes performed by a POLICY
ANALYST will be minor; otherwise, we’ll need to perform system
changes as a part of those process changes.

Expert: That makes sense.

In the first conversation, the architect and developer muddled the
dialogue with the domain expert by introducing technical detail that
was essentially irrelevant to the business domain. If a strategy pattern
is to be used to solve a business problem, it is important to discuss
how such a pattern should be implemented in one’s framework of
choice. However, it is not useful to do so in a conversation that is
designed to scope the domain and the software that is being created
to add value to that domain. In the first example, the architect and
developer spent far too little time understanding the expert’s domain.
The mention of rules and runtime modifications of the system resulted
in an immediate jump to patterns and framework details.

On the other hand, the business domain is also not well-served if
the developer and architect sit idly by and allow the domain expert
to define all project knowledge in terms of the business. Business
domains typically suffer from inconsistencies and ambiguities that
experts either are not aware of or allow to exist for various reasons.
The jargon that invariably grows around a business domain is usually
a mix of well-defined terminology, inexact analogies, muddled
and overlapping ideas, and contentious concepts that never reach
resolution. Whereas the technical jargon is precise but mostly
irrelevant to the business domain, the business domain is imprecise
and lacks the stability that a model and software require to be
successful.

As illustrated in Figure 1, the typical tactic of translation
adds overhead and process without enhancing the long-term
understanding of either party.

Figure 2 illustrates an alternative model—one in which the
knowledge of both the business and technical domains are combined,
along with new information, to create a richer, shared understanding
of the domain.

Creating a robust Ubiquitous Language requires time and effort,
but leads to far more accurate communication than translation alone.
This is just as true in the realm of business and technical jargon as it is
in the realm of spoken languages. Communication is the art of using
language to convey meaning consistently and clearly. Jargon is the
practice of using certain words and phrases in a way that assumes a
known context and, thus, can serve as a shortcut in communication.
However, when domain experts and development teams get around
the table without a Ubiquitous Language, the jargon that each brings
to the table necessitates translation and guarantees that confusion
will propagate into software. So, while deep domain knowledge
and development of a Ubiquitous Language take time to acquire
and require collaborative learning for both domain experts and the
development team, the end result is a stable and rich model that more
accurately represents the core needs of the business and supports
future growth.

Architects typically work across a variety of business contexts in a
company—in the process, acquiring significant domain knowledge—
and are responsible for understanding both business-domain and
technology concerns. Translation between domain experts and
development teams often becomes an unofficial job responsibility.
However, translation is not enough. The adoption of a Ubiquitous

Language by everyone who is involved in developing the software
involves a commitment to take the business domain seriously and
focus on incorporating it as much as possible into both conversation
and code. This means using the domain to develop the model
in code, and leveraging the model to bring accuracy, clarity, and
stability to the domain and Ubiquitous Language. With respect to
the development team, many architects are also in leadership roles
and, thus, in an ideal position to champion this effort. By moving
from translator to advocate of a Ubiquitous Language, the architect
facilitates more effective communication between all parties and
enables software that can better express a deep domain model.

Relevant Models
What Is a Model?
A model can be defined as “a simplified version of something complex
used in analyzing and solving problems or making predictions.”2 It
is a representation, simplification, and interpretation of reality. For
example, a model airplane represents the shape and form of an actual
airplane, yet it is simplified (it is smaller and cannot fly) and copies

Figure 1: Cost of translation

Jargon

Domain
expert

Technical
expert

Jargon

Translate

Refine

Agree

Figure 2: Creation of new Ubiquitous Language

Domain
expert

Technical
expert

Ubiquitous
Language

Bounded
context

Bounded
context

Bounded
context

Bounded
context

Keeping Architectures Relevant: Using Domain-Driven Design and Emergent Architecture to Manage Complexity and Enable Change

The Architecture Journal 234

only those aspects of the original that the designer found important
to imitate (it has doors and wheels, but no engine or complex
machinery).

Beyond being a simplified representation of a thing, a model must
have a purpose—that of “solving problems or making predictions.”3
When it is used for scientific or engineering purposes, a model
exists to enable the model-makers to express something nebulous
and complex in a manner that can be understood, communicated,
and manipulated. Thus, a model, while simplified, must remain
meaningfully connected to the thing that it represents in order to
be useful in solving problems.

A domain model is no different. It is a widely accepted fact in
software that domain models are intended to represent a business
domain or “problem space.” What seems to be less accepted is the
idea that these models first and foremost must express the business
domain clearly, and not be an expression of technical jargon or
framework limitations. The establishment of a Ubiquitous Language
enables emphasis of a domain model that represents the domain
accurately and deeply, instead of one that is filled with inexact
terminology or obfuscating technical detail.

It is important to note here that a model is not merely a UML
diagram or a database schema. As illustrated in Figure 3, diagrams,
documents, wikis, automated tests, domain-specific languages, and
(especially) code all instantiate aspects of the domain model for a
system; each provides clarity to the business or technology side of
the domain, with varying levels of abstraction. However, for such a
domain model to be valuable, it must be relevant both to domain
experts and development teams. There is no substitute for ensuring
that the production code and associated automated test code reflect
the domain accurately when it comes to describing the entities
and interactions of a domain model. Incorporating story-testing
into the development process is one particularly effective way of
saturating feature discussions and executable documentation with the
Ubiquitous Language, which naturally leads to incorporating it into
the subsequent automated tests and the production code.4 “Writing
concrete examples as tests explores ways in which to use and evolve
the Ubiquitous Language for expressing business objects, constraints,
and rules.”5

A model that is expressed in code provides relevance to
architecture, but it also aids greatly in minimizing complexity that is
often found in both software and the domain.

Managing Complexity
The most important job of the model is dealing with complexity, both
in the domain and in software itself. To remain relevant, a domain
model must address three different types of complexity:

1.	 Essential complexity—This is core to the success of the business
domain (a strategic advantage, even) and should be a primary
focus of the model.

2.	 Orthogonal complexity—This type of complexity is embedded in
the business domain, but is not core to the problem that is being
addressed, or is a commodity that can be brought into the system.
This should be purged from the domain model, as it is distilled
over time.

3.	 Accidental complexity—This type of complexity is introduced by
designs, frameworks, and code that bleed into the domain model
and create coupling between concerns. This bleeding should be
prevented through isolation of the infrastructure from the domain
model.

Part IV of Domain-Driven Design7 is a collection of principles and

strategies that are targeted at dealing with domain complexity.
Evans summarizes those under the heading of “Strategic Design,”
and they are meant to be leveraged as a system grows and evolves
over time. The architect should hold the role of strategic designer
on a team; and, while management of complexity in the software
is the responsibility of all team members, it should be a success
criterion for the architect. By assuming responsibility for driving
strategic design, the architect ensures that the architecture enables
essential complexity, while walling-off the accidental and orthogonal
complexities that tend to creep into systems over time. The architect
also enables that architecture to evolve and mature as the system
changes, to accommodate future shifts in business needs.

Emergent Architecture
Don’t Coddle, Encapsulate
Many architects prefer to detail architecture up front, before the
development team is fully engaged on a project. While the intent is
to reduce uncertainty and thrashing before too many costly resources
are involved, this action is often seen by the development team as an
attempt to reduce its role on a project to that of an automaton that
churns out predefined modules with little-to-no creative thought.
Too much upfront architecture is a form of over-specification,
and over-specification of design details to developers is a form of
coddling. Over-specification of internal component details creates
inflexible boundaries and results in brittle software—something with
which, as an architect, you are likely tasked. The development team
will be inappropriately constrained, perhaps even insulted, by this
approach.

However, a blank slate is no better. It is also dangerous to under-
specify a system. With no boundaries and no intentional architecture,
a design is destined to suffer from the implementation of suboptimal
and localized decisions by both domain experts and developers.
Keeping development-team members all moving in the same
direction as they seek to distill the model and code itself is not easy.

Figure 3: Model artifact matrix6

Technology-facing Business-facing

A
bs

tr
ac

tio
n

Business process
& workflow

Logical-process
model

Data examples

Story tests

Prototypes

Domain-specific
languages (DSLs)

Class & sequence
diagrams

Unit tests

OO code
Database
schema

Deployment
diagram

Layer diagrams

5

Keeping Architectures Relevant: Using Domain-Driven Design and Emergent Architecture to Manage Complexity and Enable Change

The Architecture Journal 23

One way to connect the domain model to business drivers and ensure
that the team is aware of the value of what it is delivering is for the
architect to lead in the creation and communication of a domain-
vision statement that elucidates the core domain and its value.8

The balance between over- and under-specification can be
achieved through engagement and encapsulation. Architects should
spend at least part of their time as active members of a development
team—not only creating architecture models, diagrams, and
deliverables, but also writing code, as the code is the design.9 An
architect should be involved in the development of the model
through conversation, modeling, documentation, prototyping, and
coding.10 By being actively engaged with a development team, the
architect is less likely to make decisions that would be perceived
as coddling. Architects will not only learn to value accurately the
contributions of the rest of the development team, but will also be
forced to keep their skills current, live with their own dictates, and
avoid over-constraining themselves or the team.

Where constraints are needed, an architect should use
encapsulation as a guide for specification. Simply put, architects
should focus their efforts in the domain by clearly defining what
a given capability provides, and not how that capability should
be implemented down to the precise details. The architect should
collaborate with the development team to define and code higher-
level contexts, responsibilities, interfaces, and interactions, as needed,
and leave the details to the team. The development team, through
the rigorous use of automated unit and story tests via continuous
integration, is then able to improve the system design incrementally
and continually—both within and across model-context boundaries—
without compromising system functionality. Gartner uses the term
“Emergent Architecture” to describe this practice.11

When you use architectural specifications and models as a
replacement for engagement with a development team, you are
coddling. On the other hand, when you are focused on creating
a loose boundary that exposes domain knowledge, you are
encapsulating. Focusing on the latter allows the architecture to
emerge, evolve, and—more importantly to the architect—remain
relevant to both the domain and the development team.

Design with Evolution in Mind
“Design for change” is a mantra that we have often heard as architects
and developers; but, what does it mean? When a team assumes that it
must design for everything to change, it quickly finds itself in a death
spiral of over-engineering that is based on speculative requirements,
instead of actual ones. In reality, design for change requires managing
dependencies carefully by ordering and isolating cohesive areas of
the system from each other. For the architect, designing for change
implies selecting an architecture or design that complements this
ordering and isolation.

Layered architectures are typically employed to achieve the
kind of ordering and isolation that is described here, but they often
violate the Dependency Inversion Principle and, thus, enable—if not
encourage—the kind of accidental coupling that works against the
original purpose. As an alternative, consider the “Onion Architecture”
approach.12 Originally described by Jeffrey Palermo, the “Onion
Architecture” approach focuses on isolating layers through interfaces;
leveraging inversion of control to minimize coupling; and, more
importantly, making the domain model the star of the show.

For Domain-Driven Design and Emergent Architecture to be truly
effective partners, the domain model should be both core to the
application and isolated as much as possible from all concerns that
are not relevant to the business domain. In practical terms, this means

that orthogonal concerns such as logging, security, and persistence
should be implemented elsewhere—leaving the domain free to
do what it does best: express the fundamental value of a business
application through clean models that are accessible to developers
and domain experts alike.

When you have achieved this kind of isolation, you have a
structure that enables independent layers to evolve and change at
different rates, and with little friction between and internal to those
layers. The domain model can then be distilled as deeper insights
into the domain become apparent and, thus, can evolve even as
infrastructure concerns such as data access are implemented and
tested. This applies to more than just vertical layering, as the architect
can also provide strategic value by explicitly defining a context for
each model and maintaining model integrity within and across
bounded contexts.13 The architect should also help articulate the value
of core domain distillation to stakeholders.

In some ways, the kind of independence that is described here is
exactly what the phrase “architect the lines, not the boxes” is intended
to convey. By leveraging clean interfaces, inversion of control, and a
rich domain model, architects can maximize their value to the domain
and development teams by delivering an architecture that is flexible
and change-absorbent without being too prescriptive.

Conclusion
To remain valued and valuable, the architecture of a system must
be relevant—that is, intimately connected to both the core business
domain and the development team. An architect can establish
this relevance by advocating the development of a Ubiquitous
Language—eliminating the need for translation, and fostering
collaboration between domain experts and developers. That relevance
will grow as the domain model is established as core to the software
effort, is refined over time to express the core business domain
deeply, and remains free from orthogonal concerns. Finally, the
architect solidifies relevance by creating an architecture that emerges
and evolves with the deeper understanding of domain experts and
developers.

All of these steps require an architect who is deeply engaged
with the development team and fully invested in the success of the
software solution. A commitment to the principles, patterns, and
practices of Domain-Driven Design and Emergent Architecture can
provide the simplest yet most powerful result of all: software that
solves a core business problem, adapts to new business needs, and
continues to delight users for years to come.

Acknowledgements
Thank you to Eoin Woods, Vaughn Vernon, Jeffrey Palermo,
and Dan Haywood for providing valuable feedback on the draft
manuscript.

References
1	 Evans, Eric. Domain-Driven Design: Tackling Complexity in

the Heart of Software. Boston, MA: Addison-Wesley, 2004.
(For more resources on domain-driven design,
see http://bit.ly/ddd_resources.)

2	 Microsoft Corporation. “Model” (definition). Encarta World English
Dictionary, 2009.

3	 Ibid.
4	 For more on story tests, see http://bit.ly/storytesting.
5	 Mugridge, Rick, and Ward Cunningham. Fit for Developing

Software: Framework for Integrated Tests. Upper Saddle River, NJ:
Prentice Hall PTR, 2005; 336.

http://bit.ly/ddd_resources
http://encarta.msn.com/dictionary_1861630702/model.html
http://bit.ly/storytesting

Keeping Architectures Relevant: Using Domain-Driven Design and Emergent Architecture to Manage Complexity and Enable Change

The Architecture Journal 236

6	 Adapted from “Agile Testing Matrix,” by Brian Marick, in
Implementing Lean Software Development: From Concept to Cash,
by Mary Poppendieck and Thomas D. Poppendieck (Upper Saddle
River, NJ: Addison-Wesley, 2007), 199.

7	 Evans, 327.
8	 Evans, 415.
9	 Jack Reeves’s seminal article “What Is Software Design?” is

available at http://www.developerdotstar.com/mag/articles
/reeves_design_main.html.

10	 See Grady Booch’s comments at http://www.informit.com/articles
/article.aspx?p=1405569.

11	 http://www.gartner.com/it/page.jsp?id=1124112.
12	 http://jeffreypalermo.com/blog/the-onion-architecture-part-1/.

Alistair Cockburn’s idea of hexagonal architecture
(http://alistair.cockburn.us/Hexagonal+architecture) is similar
and predates Palermo’s work.

13	 Evans, 335 and 344.

About the Authors
Brandon Satrom is the Chief Architect with Thought Ascent, Inc., a
Microsoft Gold Partner. He blogs at www.userinexperience.com and
can be reached at bsatrom@gmail.com.

Paul Rayner is a Solutions Architect and Principal for Virtual Genius,
LLC. He blogs at www.virtual-genius.com/blog and can be reached at
paul@virtual-genius.com.

Spiral Architecture Driven Development
by Andrey Pererva

The main idea of Spiral Architecture Driven Development (SADD)
is to produce a system architecture to cope with architectural and
technological risks in the early iterations of the project life cycle.
SADD is based on the spiral-development model of Boehm and uses
the best practices of RUP, Iconix, AGILE, and PMBOK:

•	 Develop iteratively.
•	 Produce the executable architectural prototypes to mitigate

risks that are related to nonfunctional requirements, such as
performance, reliability, and throughput.

•	 Produce the architectural prototypes that gradually evolve to
become the final system in the later iterations.

Let us take a glance at the iterations of SADD.

Conception Creation
The purpose of this iteration is to create a system conception.

Quality attributes are identified, and architecturally significant
stakeholder requests are analyzed for their use as the basis of system-
architecture conception. The architectural prototype is validated to
satisfy quality attributes, particular performance, and loading.

The result of this iteration is that an executable architectural
prototype implements the basic use-case flows.

Architecture Design
The purpose of this iteration is to develop a system architecture.

The technological and quality-attribute achievement risks are
identified, and a risk-mitigation plan is created.

Architecturally significant stakeholder requests are analyzed to
identify new assumptions that have an effect on the system-
architecture design.

The result of this iteration is that an executable architectural
prototype implements 20 to 30 percent of alternative use-case flows.

Implementation
The purpose of this iteration is to implement the functionality of the
system.

The risks that are related to satisfying system functions and user
requirements are identified and mitigated in a new version of the
architectural prototype. All assumptions and constraints are analyzed.
Functional testing and integration testing are performed.

The result of this iteration is that an executable architectural
prototype implements 40 to 60 percent of alternative use-case flows.

Production
The purpose of this iteration is to stabilize code.

The deployment requirements are developed and met during this
iteration. The system is validated by tests.

This iteration is intended to plan the development of the next
version of the system, create system requirements and architecture
specifications, and prepare the system for deployment. The Statement
of Work for the next version of the system is created.

The result of this iteration is a fully functional and documented
version of the system.

For a detailed description of SADD, please go to
http://sadd.codeplex.com.

Andrey Pererva (andrpere@mail.ru) is the Head of business
automation and information program at 360D Interactive Agency.

http://www.developerdotstar.com/mag/articles/reeves_design_main.html
http://www.developerdotstar.com/mag/articles/reeves_design_main.html
http://www.informit.com/articles/article.aspx?p=1405569
http://www.informit.com/articles/article.aspx?p=1405569
http://www.gartner.com/it/page.jsp?id=1124112
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://alistair.cockburn.us/Hexagonal+architecture
http://www.userinexperience.com
mailto:bsatrom%40gmail.com?subject=
http://www.virtual-genius.com/blog
mailto:paul%40virtual-genius.com?subject=
http://sadd.codeplex.com
mailto:andrpere%40mail.ru?subject=

7The Architecture Journal 23

Summary

This article describes how quantitative treatment can
be applied to an application’s architecture-evaluation
process and shows how a quantitative output with
intuitive reports will provide more clarity than a
qualitative output on the quality of an application
architecture.

“You cannot control what you cannot measure.”
—BILL HEWITT

Introduction
Evaluation of an application architecture is an important step in any
architecture-definition process. Its level of significance varies from
organization to organization, based on a variety of factors (such as
application size and business criticality). In some IT organizations, it is
a part of a formal process; in others, it is performed only upon special
requests that stakeholders might raise. Enterprises sometimes have
a dedicated “Architectural Review Board” (or ARB) that is made up of
a team of experienced architects who are earmarked for performing
periodic architectural evaluations.

Scenarios that drive the architecture-evaluation process include:

•	 When a business must validate an application architecture to see
whether it can support new business models.

•	 An expansion to new geographies and regions—resulting in the
need to check whether an existing application architecture can
scale to new levels.

•	 Impaired application performance and user concerns that lead to
an assessment, to see whether it can be reengineered with minimal
effort to ensure optimum performance.

•	 Stakeholders having to ensure that a proposed application
architecture will meet all technical and business goals—ensuring
that key architectural decisions were made with key use cases/
architectural scenarios in mind and will meet the nonfunctional
requirements of the application.

In the context of the new application development, the key objectives
of carrying out an architecture-evaluation process are:

•	 Avoiding costly redevelopment later in the software-development
life-cycle (SDLC) process by detecting and correcting architectural
flaws earlier.

•	 Eliminating surprises and last-minute rework that is due to the
suboptimal usage of technology options that are provided by
platform vendors such as Microsoft.

Architectural reviews are also performed based on only a particular
quality-of-service attribute—such as “Performance” or “Security”—for
example, how secure the architecture is, whether an architecture has
the potential to support a certain number of transactions per second,
or whether an architecture will support such a specified time.

The application architectural-evaluation process involves
a preliminary review, based on a checklist that is provided by
the platform vendor and subsequent presentations, debates,
brainstorming sessions, and whiteboard discussions among the
architects. Key aspects of brainstorming sessions also include the
outputs of the scenario-based evaluation exercises that are performed
by using industry-standard methods such as the Architecture Trade-
Off Analysis Method (ATAM), Software Architecture Analysis Method
(SAAM), and Architecture Reviews for Intermediate Designs (ARID).
There are also different methods that are available in the industry
to assess the architectures, based exclusively on factors such as cost,
modifiability, and interoperability.

The checklist that is provided by a platform vendor ensures
the adoption of the right architectural patterns and appropriate
design patterns. With its patterns & practices initiative, Microsoft
provides a set of checklists/questionnaires across various crosscutting
concerns for the evaluation of application architectures that are built
on Microsoft’s platform and products. An architecture-evaluation
process usually results in an evaluation report that contains qualitative
statements such as, “The application has too many layers” or “The
application cannot be scaled out, because the layers are tightly
coupled.”

Instead of having qualitative statements, if the evaluation process
ends up providing some metrics—such as a kidney-diagnosis process
that ends with a “kidney number” or a lipid-profile analysis that
ends with numerical figures for HDL and LDL—it will be easier for
stakeholders to get a clear picture of the quality of the architecture.

This article outlines a framework for applying quantitative
treatment to the architecture-evaluation process that results in more
intuitive and quantitative output. This output will throw more light
on areas of the application architecture that need refactoring or
reengineering and will be more useful for further discussions and
strategic decision making.

Background
Evaluation of an application architecture is equal to evaluation of the
different architectural decisions that are taken as part of the definition
of that application architecture. The objectives of architectural

Evaluating Application Architecture,
Quantitatively
by V. Gnanasekaran

Evaluating Application Architecture, Quantitatively

The Architecture Journal 238

decisions can be viewed from multiple perspectives.
An architectural decision is taken for any of the objectives that are

explained in the following list:

•	 To adopt a best practice that suits a specific context—Take,
for example, a banking application that has been architected for
Internet customers. In that context, to protect the application
from hackers and malicious users, it is a best practice to keep the
presentation layer in a separate tier in a DMZ, the business-logic
layer in a separate tier, and the DB layer in another separate tier.

An architectural decision to distribute multiple layers across
different tiers is the adoption of this best practice.

•	 To achieve a particular business goal—Say that a publishing
company has a business goal of increasing its sales volume by
having an online order-acceptance facility, to allow customers
worldwide to place an order.

In this case, to achieve the business goal, the system should be
built to make it highly available through an architectural decision
of having a distributed architecture.

•	 To achieve a desired level of a particular quality-of-service
attribute—In some scenarios, stakeholders might directly demand
“Reliability” for a mission-critical application.

In such cases, an architectural decision might be taken to have
message queues and asynchronous communications as part of
the architecture, so as to achieve a desired level in the “Reliability”
quality-of-service attribute.

When an architecture decision is taken either to achieve a business
goal or to adopt a best practice, it is implicit that it might have
an impact on one or more quality-of-service attributes. In typical
scenarios, the key quality-of-service attributes that will be in focus
are “Scalability,” “Security,” “High availability,” “Reliability,” and
“Performance”—also known as SHARP qualities.

Microsoft’s patterns & practices resources that are specific to
application architecture provide checklists/questions across these
quality-of-service attributes and span multiple subcategories. These
questions make the evaluation process simpler. Because these
questions are the result of the collective experience of various experts
from Microsoft, the performance of an architectural review that is
based on these questions will definitely ensure that our application
architecture is based on proven best practices, as well as architectural
and design principles and standards.

While these review checklists/questions make our life easier,
architects have to put effort into using them when they perform an
application-architecture evaluation. Architects have to take printouts
of these checklists/questions and conduct interview sessions with
respective application architects, based on these checklists. Then, they
have to perform some manual analysis/due-diligence process and
arrive at an output.

Like medical reports that have clearly defined metrics that all
doctors understand, if we want to have a clear quantitative output
for an architecture-evaluation process, this will not be possible unless
we have a framework that will help architects apply a quantitative
treatment that is based on the checklists and generate outputs that
will help architects and stakeholders immediately get a sense of the
state of an application architecture.

Given this background, this article will outline a simple framework
that can be used to carry out an architecture-evaluation process,
based on the perspectives of adopting best practices and achieving a
desired level in quality-of-service attributes.

Architecture-Evaluation Methods
by Amit Unde

“Good architecture” has always been a subjective term. The
architecture must cater to functional requirements; satisfy
common quality attributes, such as scalability, availability,
maintainability, and modifiability; and enable timely,
on-budget project completion. The interdependencies of
quality attributes and project constraints often call for trade-
offs and the acceptance of certain risks—which, naturally,
leads to subjectivity about the quality of the architecture. It is
important to evaluate the architecture to analyze the trade-
offs and risks, measure the quality attributes, and bring all
stakeholders to the same page with regard to architectural
decisions.

Motivated by this need, the Carnegie Mellon Institute (SEI)
created a scenario-based software-architecture evaluation
method that is known as the Software Architecture Analysis
Method (SAAM). This method was later modified to address
the evaluation of risks, trade-offs, and opportunities among
different qualities. The modified method is known as the
Architecture Trade-Off Analysis Method (ATAM). This method
has been further extended for analyzing cost-benefit and
schedule implications. The extended method is known as the
Cost Benefit Analysis Method (CBAM).

The combination of ATAM and CBAM provides a
comprehensive evaluation methodology for the architecture.
These methods should be tailored to keep the evaluation
overhead to a minimum. I recommend the following
evaluation steps:

Step 1: Prioritize functional scenarios, and identify
architectural approaches and alternatives.

Step 2: Generate a quality-attribute utility tree, and specify
stimuli-response for each scenario.

Step 3: Analyze architectural approaches, and identify all
possible:
a)	 Risks.
b)	 Non-risks.
c)	 Sensitivity points (interdependencies).
d)	 Trade-off points.

Step 4: Quantify the benefits of different architectural
strategies and their corresponding cost and schedule
implications.

Step 5: Calculate desirability (benefit divided by cost),
and rank the alternatives.

Step 6: Make decisions, and document.

To learn more about these methods, go to
http://www.sei.cmu.edu/architecture/tools/.

For tips on the agile adaption of these methodologies,
visit my blog at http://amitunde.blogspot.com/search/label
/Architecture-Evaluations.

Amit Unde (Amit.Unde@lntinfotech.com) is a Microsoft
Certified Solutions Architect and currently leads the
Architecture Practice for Insurance Business Unit at L&T
Infotech.

http://www.sei.cmu.edu/architecture/tools/
http://amitunde.blogspot.com/search/label/Architecture-Evaluations
http://amitunde.blogspot.com/search/label/Architecture-Evaluations
mailto:Amit.Unde%40lntinfotech.com?subject=

9

Evaluating Application Architecture, Quantitatively

The Architecture Journal 23

Approach
There are two types of quality-of-service attributes: those that
result in the runtime behavior of the system (such as “Performance,”
“Security,” and “Scalability”—also known as runtime qualities), and
those that can be evaluated only over the life cycle of an application
(such as “Maintainability” and “Flexibility”—also known as design
qualities). Usually, architectural evaluations focus more on runtime-
quality attributes. The significance of the quality-of-service attributes
that are considered for the architectural evaluation will vary, based
on the context. For example, in line-of-business (LOB) applications,
performance and scalability will gain more importance, while
interoperability will become more important in heterogeneous
environments.

The questions that are available from the Microsoft patterns &
practices resources are the key input for this framework. They are
elaborate and exhaustive, and they include questions that pertain to
crosscutting concerns and platform-specific issues. These questions
can be tweaked, so that the resulting repository can be used only for
architectural evaluation. In the scenarios in which there is a need to
evaluate application architectures in a heterogeneous environment,
some platform-specific questions can be selectively dropped or
replaced.

In fact, the questions and checklists that
are available from the patterns & practices
resources also include things that are
applicable in technology-agnostic scenarios.
More categories and subcategories of
questions can be added to the existing set,
based on your experience; the greater the
number of quality-of-service attributes that
are covered by the repository, the wider the
variety of applications on which evaluations
can be performed. In the age of rich Internet
applications (RIAs) and mashups, “Usability”
is also gaining high importance on par
with other key quality-of-service attributes.
Figure 1 illustrates the quantification
framework.

The resulting repository will be a set of
checklists that are based on the required
quality-of-service attributes. These checklists
can be used by reviewing architects
to question the respective application
architects. Also, answers for these checklists/
questions can be extracted from documents
such as a system-architecture definition and
a solution-architecture definition. For every
positive answer, a value of 1 can be assigned
to each question, and a value of 0 can be
assigned to a negative response.

After the completion of this probing
process, and based on the number of
positive responses, scores will be computed
for all the quality-of-service attributes that
are considered for evaluation. These scores
are the summation of the scores that are
available for each subcategory. The scores
at the subcategory level are the summation
of the ones that are allotted to each item/
question in the checklist, as a positive
response. Say, for example, that under

the “Performance” attribute, we might have subcategories such as
caching, data access, state management, resource management, and
concurrency. Then, the result will be as shown in Table 1.

Based on the actual number of questions that are available in the
repository in each subcategory under the “Performance” attribute, we
can arrive at a percentage that is scored against the “Performance”
attribute for the application that is under review.

The same method can also be applied to arrive at percentage
scores for other required quality-of-service attributes.

Figure 1: Quantification framework for architecture-evaluation process

Reviewing architect Application architect

+ + Ø1
A1

Intuitive reports Architecture index

Interview output

Quantification framework

Prioritized quality
attributes

Best-practices
checklists/questions

Table 1: Score for “Performance” quality-of-service attribute

Performance 29

Caching   4

Data access   8

State management   5

Resource management   5

Concurrency   7

Evaluating Application Architecture, Quantitatively

The Architecture Journal 2310

Now, you might think that the average of the scores across the
different quality-of-service attributes will give an overall score that
indicates the quality of an application architecture. However, that
might not be the actual case.

Let us see why.

Architectural Trade-Offs
An application cannot score 100 percent across all quality-of-service
attributes. Architectural definition is the result of the trade-off
decisions that are taken across various quality-of-service attributes.
These trade-offs are arrived at, based on the architecturally significant
scenarios and nature of the business domain for which the application
is developed. Also, one quality-of-service attribute can have either a
positive or negative impact on other quality-of-service attributes.

Table 2 provides an idea on the mutual impact that exists across
different quality-of-service attributes. Because of an architectural
decision to achieve a desired level in a particular quality-of-service
attribute, another quality-of-service attribute could be adversely
affected.

For example, in a banking application, security is considered to be
more important than performance. The “Security” quality-of-service
attribute will have a negative impact on the “Performance” quality-
of-service attribute. So, any architectural decision to achieve a high
degree of security will affect the performance of said application.
This is a known trade-off decision that is intentionally taken; hence,
the application that is under evaluation will score less under the
“Performance” quality-of-service attribute.

To accommodate the trade-off decisions without affecting the
final score and resulting in a misguided outcome, we have the concept
of the prioritization of quality-of service attributes. No application
can have two mutually exclusive quality-of-service attributes at the
same level of priority. For example, an application cannot have both
“Performance” and “Security” as equal priorities. If “Performance” is
the top priority for an application, “Security” automatically assumes
a position in the next-available priority levels. If the evaluation of an
application architecture is based on the SHARP quality-of-service
attributes, and if the application is architected for a domain in which
“Performance” is most critical and other attributes are of lower
priority, the reviewing architect might assign priority numbers, as
shown in Table 3.

Prioritization should be based on the business goals and input
from stakeholders. It can also be achieved through the ATAM method.
Use of ATAM ensures that business goals and stakeholder interests
are taken into consideration. As a rule of thumb, the highest priority
number should not exceed the number of quality-of-service attributes
that is considered for the architectural evaluation. Also, no two

quality-of-service attributes should have the
same priority number.

As shown in Table 4, an architect can
also assign threshold numbers against each
quality-of-service attribute to indicate
whether an application architecture scores
below that number; before proceeding
to the next stage, it is important to revisit
the decisions under that quality-of-service
attribute. These threshold numbers are
subjective and should be based on a
consensus that is agreed upon by a team
of architects in the enterprise-architecture
group.

Table 2: Mutual impact of quality-of-service attributes

Av
ai

la
bi

lit
y

Ef
fic

ie
nc

y

Fl
ex

ib
ili

ty

In
te

gr
ity

In
te

ro
pe

ra
bi

lit
y

M
ai

nt
ai

na
bi

lit
y

Po
rt

ab
ili

ty

Re
lia

bi
lit

y

Re
us

ab
ili

ty

Ro
bu

st
ne

ss

Te
st

ab
ili

ty

U
sa

bi
lit

y

Availability + +

Efficiency - - - - - - - -

Flexibility - - + + + +

Integrity - - - - -

Interoperability - + - +

Maintainability + - + + +

Portability - + + - + + -

Reliability + - + + + + +

Reusability - + - - +

Robustness + - + +

Testability + - + + + +

Usability - + -

Table 3: Prioritization of quality-of-service attributes

Quality-of-service attribute Priority number

Performance 5

Security 4

Scalability 2

High availability 1

Reliability 3

Table 4: Threshold numbers for quality-of-service attributes

Quality-of-service attribute Priority number Threshold (%)

Performance 5 100

Security 4   90

Scalability 2   70

High availability 1   80

Reliability 3   50

Table 5: Architecture index through weighted-average formula

Architecture index =

% score for Performance × Performance priority number
+ % score for Security × Security priority number
+ % score for Scalability × Scalability priority number
+ % score for High availability × High-availability priority number
+ % score for Reliability × Reliability priority number

Performance priority number
+ Security priority number
+ Scalability priority number
+ High-availability priority number
+ Reliability priority number

11

Evaluating Application Architecture, Quantitatively

The Architecture Journal 23

If an application scores below the threshold values, it is a clear
indication of the level at which the application architecture is below
the mark.

This will also be especially helpful in mergers and acquisitions
(M&As). Say that when Company A acquires Company B and carries
out an assessment process, Company A might retire the applications
that score well below the threshold values.

Architecture Index
After consideration of the scores for all quality-of-service attributes
and prioritization of those attributes, the final quality of the
application architecture can be arrived at by using the weighted-
average formula, as shown in Table 5 on page 10.

This weighted-average formula will result in a single number, which
can be called the “Architecture index.” Table 6 shows an architecture-
index value that is based on the application of the weighted-average
formula to the sample scores of different quality-of-service attributes,
and their respective priority numbers.

The architecture index will be between 0 and 100. This number
gives an immediate sense of where that application architecture
stands. Because the resulting number is based on the best practices
and guidelines that are provided by platform vendors, it will reflect
how best the application can be architected. For instance, an
evaluation that is performed based on the checklists/questions that
are provided by the Microsoft patterns & practices and results in a
lower architecture index will indicate that the application architecture
does not adhere to the proven best practices.

Because a positive or negative response to a question directly
contributes to a score of a particular quality-of-service attribute, we
can easily identify the impact of a particular architectural decision on
a particular quality-of-service attribute and, hence, the overall quality
of the application architecture.

Intuitive Reports
Although a single architecture index gives a clear view of the strength
or quality of an application architecture, it must have some intuitive
reports that highlight the weak areas of an application architecture,
so that they can be used to carry out an effective reengineering or
refactoring process.

It makes sense to have a tool or to build small software to
automate the entire process and generate reports. Microsoft Office
Excel can perform wonders, with few scripts
and limited effort. For an application
architect to know immediately what went
wrong (based on the architecture index) and
react immediately, these intuitive reports
play a significant role.

Figure 2, and Figures 3 and 4 on page 12,
show screen shots of some of the reports
that are generated by the tool and that
resulted in our past successful architectural-
consulting engagements.

Say, for example, after an evaluation
process, that an application architecture
scores 49 percent. The application architect
can immediately identify under which
quality-of-service attribute it is scoring low. If
it scored low in “Performance,” the architect
could go to the performance-analysis report,
which will show the scores across different
subcategories (such as caching and state

management). If it scored less under a particular subcategory—
for example, caching—the architect could trace back from that
point to see why the architecture scored so many zeros under that
subcategory. The architect could also get a handle on how a particular
decision might affect a particular quality-of-service attribute and,
hence, the overall architecture.

In scenarios in which the existing application architectures are
evaluated, application architects can use these reports in meetings
with stakeholders to convey why application architecture is considered
inferior, as well as to highlight areas that need refocus. This will
drive corrective actions that must be taken to revamp respective
applications.

Conclusion
A quantitative architecture-evaluation process provides a crystal-
clear picture of the quality of an application architecture. The
output of this process helps in taking concrete, corrective decisions.
While the quantitative evaluation of application architecture is
more promising and results in a clearer picture of the state of the
architecture of existing applications or the proposed architecture of
new applications that are to be built, it cannot replace an application-
architecture process that is based on a scenario-based method such
as ATAM. ATAM involves a more elaborate exercise that is based on
architecturally significant scenarios and could be supplemented by a
quantitative evaluation. While the output of a method such as ATAM
is qualitative and based on scenario-based analysis, this framework-

Figure 2: Overall-architecture quality of application

Table 6: Scores of quality-of-service attributes & corresponding
architecture index

Quality-of-service attribute Priority number
Percentage
gained (%)

Performance 5 86.30

Security 4 82.00

Scalability 2 77.00

High availability 1 59.00

Reliability 3 46.00

Architecture index 74.03

Evaluating Application Architecture, Quantitatively

The Architecture Journal 2312

based evaluation output is quantitative and based on best practices
and guidelines.

Let us go back to our inspiration: the “kidney number” or lipid-
profile analysis. That is the key driver behind the conceptualization of
this idea in applying a quantification treatment to the architectural-
evaluation process. They have industry-standard benchmarks and
ranges that are used as the basis to classify a particular patient.

Similarly, if platform vendors, service organizations, and enterprise
IT teams work together to publish benchmark architectural indexes
for applications, based on various factors—such as business domain,
architectural style and pattern, SLA requirements, and various
combinations of quality-of-service attributes—they can be leading
lights for building well-architected applications.

Acknowledgements
Special thanks to Bala Variyam, CTO, Chander
Damodaran, Senior Architect, and Sohail from
Collabera for their reviews.

Resources
Morgan, Gabriel. “Implementing System-Quality
Attributes.” Microsoft Developer Network (MSDN)
Architecture Center, March 2007.

Turner, Michael S. V. Microsoft Solutions Framework
Essentials: Building Successful Technology Solutions.
Redmond, WA: Microsoft Press, 2006.

Gorton, Ian. Essential Software Architecture. Berlin;
New York: Springer, 2006.

Bass, Len, Paul Clements, and Rick Kazman. Software
Architecture in Practice. Second ed. Boston, MA:
Addison-Wesley, 2003.

Malcolm, Graeme, and Lin Joyner. Application
Architecture for .NET: Designing Applications and
Services. Microsoft patterns & practices Series.
Redmond, WA: Microsoft Corp., 2002.

Meier, J.D., et al. Improving .NET Application
Performance and Scalability. Microsoft patterns &
practices Series. Redmond, WA: Microsoft Corp., 2004.

Microsoft patterns & practices Team. Microsoft
Application Architecture Guide. Second ed. Microsoft
patterns & practices Series. Redmond, WA: Microsoft
Press, 2009.

Esposito, Dino, and Andrea Saltarello. Microsoft .NET:
Architecting Applications for the Enterprise. Redmond,
WA: Microsoft Press, 2009.

Other online resources from Microsoft patterns &
practices.

About the Author
V. Gnanasekaran is a Senior Architect at Collabera in Bangalore,
India. His areas of specialization include SOA/BPM, Integration,
and Enterprise Architecture. He spends most of his time on
Solution Architecture consulting, R&Ds on the latest technologies,
and technology evangelism. Currently, he is focusing more on
Cloud Computing and Enterprise Mobility. You can reach him at
gnana.sekaran@collabera.com or vgnanasekaran@gmail.com, or visit
his blog at www.gnanasekaran.com.

Figure 3: Quality of application architecture from perspective of “Performance”

Figure 4: Quality of application architecture from perspective of “Security”

http://msdn.microsoft.com/en-us/library/bb402962.aspx
http://msdn.microsoft.com/en-us/library/bb402962.aspx
http://www.collabera.com
mailto:gnana.sekaran%40collabera.com?subject=
mailto:vgnanasekaran%40gmail.com?subject=
http://www.gnanasekaran.com

13The Architecture Journal 23

Summary

This article proposes a set of techniques and
practices to leverage the agile approach to software
architecture—increasing overall quality, streamlining
development practices, and providing business value
as a constant flow.

The article describes issues that are related to
component API design and behavior-driven design,
continuous measurement of complexity, automated
quality-attribute evaluation, and design rationale
recording. The reader should take away from the
article several techniques to research and try, a basic
development life cycle, and some leads for further
investigation (starting with the provided bibliography).

Introduction
Even while agile methodologies are getting widely accepted in the
development world, there is still a lot of debate about how to apply
them to the architectural space. One of the most conflictive issues
stems around “big design upfront,” which is strongly discouraged
by agile practitioners, and the traditional approach to architectural
design.

This article proposes a set of team dynamics, conceptual practices,
and specific technologies to embed software architecture within the
agile approach—keeping up the shared goals of technical excellence,
streamlined development practices, and a constant and ever-
increasing flow of business.

It is the hope of the authors that readers can later compare our
experiences with their own and provide further discussion, so as to
keep improving our professional corpus.

Architectural Dynamics in Agile Teams
One of the 12 principles of the Agile Manifesto states that “the best
architectures, requirements, and designs emerge from self-organizing
teams.”1 We take this to heart—especially, the reference to our shared
specialization.

While architecture is an activity that is historically performed
with an emphasis on the early stages of a project, the main focus of
agile development is on emergent design and iterative production—
creating a series of interesting challenges down the road.

First of all, agile makes a big push toward shared responsibility
and, thus, dilutes the traditional role of the architect as the one who

“defines” the higher-level design of a solution. In this new approach,
architecture (as most other development activities) is something that
is performed by the whole team—preserving its multidisciplinary
nature. This does not imply that the architect profile goes away, as
with all the other roles; it means that while someone contributes
with a broader and probably more experienced perspective (usually
leading in this aspect), the whole team participates and understands
the implications of the design decisions that it makes, and
continuously evaluates them.

In our experience, key considerations—such as the modularity
strategy, how communication is handled within and outside
the application, and how data and services are accessed and
abstracted—are successfully defined and implemented when the
whole development team establishes a consensus about these issues.
In this way, team members fully understand the consequences of
the selected alternatives, remain aware of their initial assumptions
thorough the solution life cycle, and quickly raise concerns when their
validity is affected.

Most of these challenges are usually tackled by folding
architectural discussion and revision into the regular meetings that
take place over the course of an iteration—such as planning and
review meetings, and frequent sync-ups and design meetings with
plenty of white boarding and open talk. It is also worthwhile to have
the most important guidelines permanently exposed in an informative
space, including diagrams, checklists or reference charts around the
walls, and semipermanent flip charts that are used as posters.

This article does not cover in detail specific techniques that
apply to coordinating several subteams; mainly, it mirrors the
standard guidelines about the “Scrum of Scrums”.2 The addition to
such activities is a stronger focus on the preservation of conceptual
integrity—thus, planning frequent high-level design meetings
between teams. Again, these meetings should avoid becoming
architect meetings; while the contribution of team members who have
a stronger architectural background is obviously important, it is very
important for other members to participate. Even the less experienced
team members can provide a somewhat naïve perspective to some
discussion—promptly flagging complexity excesses that are a
professional malady among us architects.

To close on the team dynamics, as the agile perspective goes
over the standard view of the development team and extends to
customers, operations personnel, and other stakeholders, expectation
management is a big deal also for the solution architecture. As the
next section shows, there is a strong emphasis on mapping the
needs and goals of these actors to the architectural constraints and
converting the most important into strong metrics to be evaluated.

Software Architecture in the
Agile Life Cycle
by Diego Fontdevila and Martín Salías

Software Architecture in the Agile Life Cycle

The Architecture Journal 2314

Agile Architecture Patterns and Practices
Sashimi
There are several common approaches to support the previously
described dynamics and keep the agile principles of high customer
involvement and feedback, continuous delivery of working software,
and attention to technical quality, among others.

One of the most common patterns that we use to avoid the perils
of big design up front is the “sashimi” approach to the architectural
definition. In this approach, instead of spending a lot of time
designing and implementing the different moving parts around layers
and tiers, crosscutting concerns, and so on, we build the minimal
amount of code that is needed to connect all of the pieces and start
building the actual functionality on top—providing an early end-to-
end experience of the results. Indeed, the focus is more on the API
level of the infrastructure, and not the actual implementation, which is
usually mocked up for the first few iterations.

The main purpose is to avoid building architecture components
that are hard to use or tying the business logic and other high-level
abstractions to the underlying implementation. As iterations progress,
the actual implementation is incrementally completed, following the
needs of the functional part of the application. At some point, such
things as load or stress testing that is performed over the functional
side of the solution will even require fine-tuning of these components
for robustness, increased performance, resource consumption, and
so on.

To be able to support this emergent implementation over
architectural pieces, definition of a highly decoupled API is the
most critical factor. Whenever implementation details permeate
outside the API—hence, coupling with its consumers—refactoring
the architectural components becomes a nightmare. That is why API
design becomes a key activity in the earlier stages, and why starting
with no implementation at all is a better approach.

This practice applies even when using third-party components,
which is both common and generally advisable, for the most part.
In such cases, existing default implementations for those third-
party components provide early support modules; and, many times,
configuration is needed instead of coding in the early stages.

Table 1 shows an example of how this works in practice, as
iterations go by. Note that at the end of the first iteration, the
application goes throughout all of the proposed layers, and how the
most important nonfunctional requirement (home-page response
time) starts to be under control from then on, across the whole
project.

Of course, this first test can be done with a single concurrent
user, and it measures mainly static content; but the thresholds will
be in place as back-end generation goes, and testing will involve
many concurrent connections in future iterations. However, no one

can change functionality or infrastructure and affect response time
without being noticed immediately, then reducing the fixing effort.

Architectural Patterns
Another common practice in the agile development of software
architecture is the concentric approach, in which the starting point
is a high-level technical vision of the solution, which the team can
shape collaboratively, as previously described. This technical vision
will provide the conceptual baseline that will serve as both a reference
point to focus future work and a sanity check for refactoring (more on
this later, when conceptual integrity is discussed).

The second level is the module decomposition, which consists of
a set of modules with services that provide actual value to users or
other modules and allow for a coherent separation of responsibility.
These modules work as placeholders to which specific functionality
can be added incrementally through the design and construction
process. This decomposition provides a high-level grouping of
components that make the design more manageable for both
architects and other stakeholders, and the modules work sometimes
as namespaces to help identify stakeholder concerns.

The third level is a decomposition that is usually described in terms
of architectural styles or patterns—layers and tiers, in particular—
for enterprise or business-information applications. At this level, the
usually most significant definitions are the layers, which are varying
levels of abstraction, in terms of user-level value (in this case, the
lower level of abstraction is what the end user knows the least)—in
particular their API, as previously described—and tiers, which describe
a structure for separating responsibilities according to their volatility
and allowing for distribution. This level is the first that has well-
defined interfaces and is usually considered good for work allocation
among teams. That kind of allocation must be handled carefully to
avoid architectural mismatch between the parts, as well as to keep
from losing the advantages of collaboration to the hard separation of
work pieces.3

The fourth level is that of components, which are packaged pieces
of software whose very specific responsibilities are defined by their
interfaces and, possibly, with multiple implementations that can
be selected dynamically. These are usually the highest-level pieces
that software-development platforms recognize conceptually (in
other words, those that are seen by the platform, which, in terms of
syntax, means that the platform has the terms that correspond to that
component or component type). At this point, our agile teams start
to gain the capacity to use directly the language that they share with
their users in the software that they produce.

The fifth level is the class level—finally, the object-oriented level of
decomposition. At this level, programming languages are at their best,
and developers can fully use the language that they share with the

Table 1: Example of how actual functionality and architecture grow iteratively on common three-tiered Web application. Note how the load
time for the home page (a very important metric, in this case) is measured since the first iteration.

Iteration 1 2 3 5 10 15

UI layer Home, with login Custom areas User contacts … … …

Business layer None, really Layout validation Social graph … … …

Data layer User name Profile Social data … … …

Crosscutting
concerns

Authentication
(mocked)

Authentication
(basic)

Logging (mocked)

15

Software Architecture in the Agile Life Cycle

The Architecture Journal 23

stakeholders in the software that they write
(programming-language code and software
configuration). Figure 1 illustrates a quick
review of the concentric approach.

Note also that we can use to our
advantage domain-specific languages4—
providing a higher-level abstraction to how
components orchestrate between them at
the fourth level, or getting the domain closer
to the object modeling at the fifth level. This
latter approach can be leveraged by using an
external DSL or an internal one, which often
can be built by following domain-driven
design.5

All of these levels (which, in architecture
literature, are also called structures6) can also
be considered independently, according to
the specific needs and scope of each project.

Quality Attributes and Architecture
One of the most common discussions
about architecture is about what aspects
of a system’s design are architectural in
nature. In particular, quality-attribute-
related requirements are most often
determined by the architecture. From an
agile perspective, it is very important to keep
in mind that quality-attribute requirements
must be managed as part of the product backlog and implemented
incrementally. Specifically, that means managing the prioritization
of a heterogeneous mix of requirements, both features and quality-
attribute requirements. Another aspect of interest is the fact that
multiple quality attributes tend to require trade-off analysis and
decisions, where standard prioritization might not be enough.

To manage quality-attribute requirements effectively, the authors
recommend considering the quality attribute as a user goal, with
specific requirements built into user stories that support that goal.
The stories must have measurable acceptance criteria defined clearly,
so that tests can be written for the components that are implemented.
Examples of these requirements (with metrics in parentheses) are
flexibility (complexity, dependencies, coupling, layering), performance
(response time, resource usage), and scalability (load and response
time). These metrics should be integrated with the continuous build
process, as the next section will show.

Architecture Validation
To finish this section, the authors present the key practices for testing
and validation that are related to architecture. From our perspective,
these are test-driven development, automated integration testing,
automated quality-attribute requirements testing, automated
deployment, environment-configuration management, and
application-configuration management.

As described in the first part of this section, the authors believe in
the early definition of interfaces. These definitions, wherever possible,
must be created in terms of executable unit tests (or supported
in some other way by the language or testing harness, such as
language-syntax pre- and post-condition specifications.7 Not only
will these specifications be the safeguards in place for local and
multicomponent refactoring, but they will also provide the entry point
for finding defects when an incident is reported. The idea is that any
incident that is reported will require finding the applicable test, so

that if it is not there, it can be created; otherwise, it must be modified
to catch the defect, and then the implementation can be corrected.
It must be kept in mind that many architecturally significant changes
will escape notice by unit tests.

To manage changes that exceed the unit-test contracts, automated
tests are required for integration and quality attributes. The latter
tend to be harder to create, but they pay off when quality-attribute
requirements that are hard to implement are affected. These tests
usually need to be scheduled with lower frequency than unit tests,
depending on their resource usage.

Examples of these are:

•	 Scalability. Acceptable response times when system load
is increased to a certain level. Implementation of such tests
requires not only tool support, but also careful capacity planning
for the testing environment—both client side and server side,
when applicable—and automated deployment to the testing
environment.

•	 Flexibility. Instantiation of the layers pattern. Implementation
of supporting tests includes dependency metrics matching
the structure of the pattern implementation. As described in
the following section on model base evaluation, it requires the
configuration of tests to accept upper-layer to adjacent lower-layer
dependency, and not the reverse.

For all of this to be possible, it is necessary to manage configuration
in two levels: environment-dependent and environment-independent.
Managing environment-dependent configuration will enable
automated deployment, and will focus on physical and logical
resource configuration. For the rest of the configuration, the issue will
be defining variability of available functionality (usually, dependent on
the customer).

Figure 1: Concentric approach, which starts with overall vision and keeps growing as we get
closer to final implementation. (All levels are refactored over time but kept in sync, although
the inner levels usually stabilize faster.)

Classes,
functions

Components,
services

Layers & tiers

Module

decomposition

Technical

vision

Design levels Validation strategies

Quality attributes, life-cycle metrics

Acceptance, load & performance testing

Model validation, dependencies

Integration testing

Unit testing, static analysis

Software Architecture in the Agile Life Cycle

The Architecture Journal 2316

The next section discusses the use of available technologies for the
implementation of these practices.

Specific Techniques and Technologies
To implement reasonably the techniques that the previous section
described, it is necessary to use appropriate tools and technologies,
not only because of the expense that is incurred, but also to provide
the necessary discipline through automation.

As the agile mindset stated in its manifesto, individuals and
interactions are more important than processes and tools; from
there, however, the agile world has derived a helpful set of tools that
take tedious manual tasks away from people and make them easy to
execute fast and frequently—providing a lot of feedback upon which
individuals can act. For our architectural quest, the authors follow
the same principles and basic ideas and extend them to cover the
concepts that have been discussed.

The first level of technologies that are used can comprise regular
testing tools and frameworks, such as unit-testing tools—from the
traditional xUnit (such as jUnit, NUnit, cppUnit, and MS Test) to the
ones that come from behavior-driven development8 (such as RSpec,
xUnit.net, JBehave, and Cucumber, among others). Included also
are user-acceptance or functional testing tools (such as Fit/Fitnesse,
Selenium, and Watir, among others) and a host of technologies that
are needed for performance and stress testing. All of these, of course,
run at an individual level, as well as on the build server, and with
different frequencies (unit tests in every check-in, functional a few
times a day, load and stress usually over the night, and so on).

In short, we build up from the basics of the appropriate
development practices—adding some specific test at the unit,
acceptance, or stress level to validate some architectural concerns.

To this standard tooling, a second level is added—with more
specific checks over quality attributes, such as lines of code per
class/module, code-coverage statistics, static analysis, style analysis,
cyclomatic complexity, afferent and efferent coupling, dependencies,
and more. Some of the tools that are used in this space are (for .NET)
FXCop, StyleCop, NDepend, and built-in tools in Microsoft Visual
Studio Team System; and (for Java) FindBugs, JDepend, Checkstyle,
Lattix, and built-in features on IntelliJ IDEA. Within the realm of
dynamic languages such as Ruby, JavaScript, and Python, this is a less
developed area, because of the inherent difficulty of performing static
analysis on them. However, there is strong evidence that shows that
as the runtime engines are going increasingly the way of just-in-time
compilers, this gap will be filled soon.

Then, there is a third level of metrics about flexibility and
maintainability that has to do with the project life cycle itself—
metrics such as code-churn, volatility, correlations, and adherence to
the architectural models. In this space, Visual Studio Team System is
making great strides, while there are many people who implement
part of this by using build-tool plug-ins or custom scripts that crunch
data and produce reports or alarms, based on data that comes from
the source repository, build server, issue tracker, testing environments,
and modeling tools.

Indeed, to be able to perform validation against an architectural
model, such a model has to be in place. To do so, we can pick among
myriad tools—from Enterprise Architect (or some of the Rational
suite of tools) to Visual Studio Team System. What is important here
is to take the time to automate the process to extract the relevant
metadata that is needed to validate the code, references between
packages or services, or module composition.

Additionally, it is very important to distinguish the code or module
view of the system from the runtime view of the system during
evaluation. Runtime characteristics are usually harder to perceive,
but their high implementation costs make early analysis and testing
worthwhile. Finally, it is very useful to learn also how to perform some
level of reverse-engineering—allowing to grab some information
from the actual implementation into the model, and automating part
of the documentation chores.

The final step of this methodology involves the deployment
and configuration of the different staging environments, in which
virtualization becomes an incredible enabler—allowing for quick
turn-on and turn-off of all the needed environments (with baseline
configuration), where we can use remote scripting to perform the
deployment of the latest build and configuration to any of these
environments, and then perform all sorts of testing. The current
power of virtualization platforms such as VMWare, Hyper-V, and
others makes it really easy to manage multiple basic images—taking
and reverting to snapshots, even across distributed physical machines.

Of course, all of this is not something that the authors encourage
anyone to try setting up from day one. Instead, you should
increasingly add over each iteration, but have all of the appropriate
(and project-relevant) techniques folded into the main plan, to ensure
that these controls are getting into place as the project goes on.

Conclusion
The authors of this article believe that architectural considerations are
fundamental for delivering value in most software projects—also, that
agile teams have much to offer in terms of mechanics, techniques, and
tools for the software-architecture community. These contributions
are best considered in terms of the development of a language that
is shared by all stakeholders and spans the spectrum from the user’s
view of the system to the actual code. This language consists of the
set of both user requirements and design decisions that are made
during the life of the product. Its final purpose is to allow users and
teams to create excellent results that will provide value, according
to the expectations of stakeholders, throughout the lifetime of the
product.

References
1	 Fowler, Martin, et al. “Principles Behind the Agile Manifesto.”

Manifesto for Agile Software Development Web site, 2001.
2	 Cohn, Mike. “Advice on Conducting the Scrum of Scrums

Meetings.” Mountain Goat Software Web site, May 2007.
(Originally published in Scrum Alliance Web site.)

3	 Austin, Robert D., and Lee Devin. Artful Making: What Managers
Need to Know About How Artists Work. New York: Prentice Hall,
2003. (Page 144.)

4	 Martin Fowler is currently writing a whole book on DSL, but the
work in progress is available at http://martinfowler.com/dslwip/.

5	 Evans, Eric. Domain-Driven Design: Tackling Complexity in the
Heart of Software. Boston: MA, Addison-Wesley, 2004.

6	 Bass, Len, Paul Clements, and Rick Kazman. Software Architecture
in Practice. Second ed. Boston, MA: Addison-Wesley, 2003.

7	 Mandrioli, Dino, and Bertrand Meyer. Advances in Object-Oriented
Software Engineering. New York: Prentice Hall, 1991. (Chapter 1,
“Design by Contract.”)

8	 North, Dan. “Introducing BDD.” http://dannorth.net/introducing
-bdd. DanNorth.net Web site, September 20, 2006. (Originally
published in Better Software Magazine Web site.)

http://agilemanifesto.org/principles.html
http://www.mountaingoatsoftware.com/articles/35-advice-on-conducting-the-scrum-of-scrums-meeting
http://www.mountaingoatsoftware.com/articles/35-advice-on-conducting-the-scrum-of-scrums-meeting
http://martinfowler.com/dslwip/
http://dannorth.net/introducing-bdd
http://dannorth.net/introducing-bdd

17

Software Architecture in the Agile Life Cycle

The Architecture Journal 23

About the Authors
Diego Fontdevila (dfontde@gmail.com), Professional Services
Director at Grupo Esfera, specializes in software architecture and
agile methodologies. He has 13 years of experience as both software
developer and university teacher. Currently, Diego is a Master of
Software Engineering Management student at Carnegie Mellon
University. You can view his published articles (in Spanish) at
http://diegofontdevila.wordpress.com/articulos.

Martín Salías (v-masal@microsoft.com), Senior Architect at
Southworks, has more than 25 years in the software industry, working
on different industries for customers around the world, and covering
many platforms and languages. He is a member of the Agile Alliance
and has been awarded as a Microsoft MVP since 2002. You can view
his published articles at http://salias.com.ar/articles.asp.

Blogs
In English: http://blogs.southworks.net/msalias/
In Spanish: http://blog.salias.com.ar

Modeling Just Enough and Right
by Mohana Krishna and S.V. Subrahmanya

Architecture modeling is an increasingly key component of
the software-development life cycle (SDLC)—serving such
important needs as stakeholder communication, architecture
comprehension, analysis, and verification. However, it is
often the case that it does not materially contribute to the
end product: the deployed code. For this specific reason, it
becomes important to be focused on the purpose and value,
so as to optimize the effort that is expended on it.

It is important to decide at the outset the drivers to
carry out modeling and the right level of detail and rigor.
Certain considerations—such as who are the stakeholders,
the aspects of the architecture that are modeled and their
relative importance, and the available tool support for
transformation to downstream artifacts—typically influence
these decisions. In this regard, it is important to note that
effort is spent not just in creation of the model, but also
in maintenance, so that it remains aligned to subsequent
artifacts and stays relevant to the original purpose for which
it was intended.

A key consideration in modeling—and a key determinant
of how efficiently and optimally the objectives of modeling
are met—is the partitioning and representation of the
content. Partitioning of content is necessary to isolate
aspects that represent different concerns and enable an
overall better grasp of the architecture. This is typically
achieved through viewpoints and views that together make
up the model. Clear focus and careful analysis are required to
determine and prioritize the essential structural and dynamic
aspects of the system that are appropriate to a given context,
as well as to avoid the pitfalls of coming up with “ivory-
tower” architectures and over-engineering.

The representation of content often poses a challenge in
being amenable to both human- and machine-processing
of the model. The choice of notation and availability of tool
support play a key role in providing the ability to derive one
representation from another. The wide adoption of UML
notation as a de facto standard, and its systematic evolution,
has encouraged tool vendors to put their weight behind
it. However, choosing the right subset of UML diagrams to
represent the chosen aspects can prove tricky and, again,
requires clear focus and a mindset of thrift.

While there exists no fixed silver-bullet prescription for
just the right amount of modeling (besides the points that
have been previously mentioned), the agile approach of a
brief architecture-envisioning phase to generate a blueprint,
followed by a strictly need-driven incremental refinement
along the way, seems to offer reasonable hope.

Mohana Krishna (mohanakrishna_bg@infosys.com) has
been a practicing architect for over 15 years and is presently
engaged in architecture-competency development at Infosys
Technologies.

S.V. Subrahmanya (subrahmanyasv@infosys.com) heads
the E-COM Research Labs in the Education & Research
Department at Infosys Technologies.

mailto:dfontde%40gmail.com?subject=
http://diegofontdevila.wordpress.com/articulos
mailto:v-masal%40microsoft.com?subject=
http://salias.com.ar/articles.asp
http://blogs.southworks.net/msalias/
http://blog.salias.com.ar
mailto:mohanakrishna_bg%40infosys.com?subject=
mailto:subrahmanyasv%40infosys.com?subject=

18 The Architecture Journal 23

Summary

This article describes the four pillars of a holistic
enterprise architecture: architectural models,
framework, methodology, and solution models. It
also explains the business and technology gains and
demystifies the practice of implementing a successful
holistic enterprise architecture.

Introduction
It is only within the past 20 years that we have begun to develop
an art and science for identifying and defining the graphical and
textual descriptions of whole enterprises. Until this time, any art or
science that we had related to this endeavor pertained to parts of
enterprises—for example, organizational design and/or systems
development. Because the focus of this article is on enterprise
architecture, have there been successful enterprises that were never
architected?

Yes. However, they were successful in relation to other non-
architected enterprises. Moreover, the pace of change was slower
in the industrial age, compared with the information age of
today. Contemporary enterprises have to be able to adjust much
more rapidly to meet changing demands in the face of global
competition. This makes it critical to have readily available descriptive
representations of one’s enterprise to use as a basis for making
change.

The age-old question now arises in enterprises: How can one
change something that one cannot “see”? How does one “see” an
enterprise?

Benefits of a Holistic Enterprise Architecture
There are many benefits for both the business and technology areas
of holistic enterprise architecture, but the following are a few of the
greatest gains that have been observed.

Business Benefits
•	 Developing and communicating a broad understanding of your

business—a confirming enterprise-self realization that is clear and
concise.

•	 Identifying and mitigating potential risk in your selected
paths of action or investment—thereby, reducing unintended
consequences.

•	 Clarifying your business priorities and identifying your core
competencies—enabling you to assign key resources to projects
confidently, and leveraging top talent for critical needs.

Technology Benefits
•	 Creating a practical and efficient means to manage your

information-technology portfolios, rationalizing your existing
systems and projects to gain significant cost reductions, and
helping you remove waste and redundancy in your information-
system deployments.

•	 Aligning your technology investments and assets to project
initiatives that demonstrate direct support of priority business
goals, competencies, and needs.

•	 Identifying, classifying, representing, developing, and
accumulating in an accessible portfolio your architected, highly
reusable technology assets.

•	 Identifying and mitigating potential impacts of your proposed
solutions, services, or changes—thereby, addressing all areas that
are affected in the design and negotiation of new or updated
solutions, and reducing your exposure to the risk of unintended
impacts and degradation.

There is much confusion today in the terminology that surrounds
enterprise architecture. Let us attempt to demystify these terms and
concepts.

Demystifying Enterprise
An enterprise is any purposeful undertaking, commonly used in
connection with undertakings that have ongoing operations. Mowing
your personal lawn is an undertaking, but you probably would not
refer to it as an enterprise. A company that mows lawns for profit is
an enterprise.

All enterprises have architecture simply by virtue of their existence,
whether they are explicitly represented or not. Unfortunately, this
does not mean that all enterprises have been explicitly architected, for
that would imply that deliberate and disciplined thinking went into
their design and implementation. Most enterprises “evolve” and grow
or shrink over time, without much attention being given to identifying
and defining their fundamental components; so that (among other
things) decisions can be made to reuse existing components to satisfy
new requirements, eliminate redundancies, or eliminate activities that
do not align with strategic business planning.

Enterprises are complicated, because they are composed of not
only fixed, physical components, but also behavioral components such
as people and business processes.

Demystifying Architecture
The architecture of anything is:

•	 Its fundamental organization—embodied in its components and
their relationships to each other and their environment.

•	 The principles that govern its design and evolution.

Driving Efficiency and Innovation
by Consistently Managing
Complexity and Change
by Samuel B. (Sam) Holcman

19

Driving Efficiency and Innovation by Consistently Managing Complexity and Change

The Architecture Journal 23

Everything that exists has architecture, whether it has been written
down or not. That is the fundamental problem: Each person in an
enterprise has an implicit representation of what they think the
enterprise is all about. Architecture is an attribute and cannot exist by
itself. A blueprint of a house is not its architecture; instead, it is one
description of its architecture.

People built things for thousands of years without needing to
be concerned about describing the architecture of the things they
were building. As civilization evolved, however, large and complex
construction projects—for example, temples, palaces, aqueducts,
coliseums, and fortresses—that involved tradespeople of many skills,
huge quantities of building materials of different kinds, and many
years to complete, required a much more disciplined approach to
building things.

Consequently, “building things” evolved into the art and science
that we call architecture. As things get more complex, architecture
becomes an imperative. When things are simple, you generally
do not need architecture. Our complex enterprises of today need
architecture.

Observations on Architecture
Architecture of Queen Anne Furniture
Architecture’s value is in its consistency across years of reuse.
Queen Anne furniture is a particular architecture of centuries
ago; the architecture has not changed since the early 1700s,
and many items of antiquity and reproduction have been built
to that design point (the Queen Anne furniture architecture).
Furniture makers do not redesign the Queen Anne architecture;
they build a Queen Anne desk. The design was done over 300
years ago, yet today it continues to communicate accurately
the architects’ intent!

That is the beauty of architecture: When the initial
investments have been made to articulate the business intent
and direction within a holistic enterprise architecture, the
follow-on changes and maintenance are much less costly,
and the impact can be centuries of successful solution
implementations!

LEGO® Blocks
Another effective analogy involves LEGO blocks. Imagine two
individuals being given the task of building a play house. One
has a set of LEGO blocks, and the other has to figure out what
materials they are going to use and how they are going to be
produced. Which one is likely to finish first? Which finished
product is more likely to be changed faster to meet new
requirements?

The architecture models in this example include the
descriptive representations of the set of LEGO blocks, without
any reference to any implementation.

The solution models include the descriptive representations
of the various combinations of LEGO blocks.

Demystifying Enterprise Architecture
Enterprise architecture, as a discipline, is the art and science of
building enterprises.

Enterprise-architecture products are the graphical and textual
descriptions that are used in the planning, design and implementation
of, and ongoing changes to enterprises.

Architecture is the object—the end “product” that is to be achieved
via an enterprise-architecture planning-and-design methodology
(represented as a set of up-to-date, consistent, artifacts [written,

drawn, recorded—communicated in persistent fashion]). Artifacts are
statements of the enterprise’s intended state of being—its essence.

Holistic Enterprise Architecture
A holistic enterprise architecture is an invaluable communications
vehicle that consistently conveys in a precise, accurate fashion,
business items of importance, including assets, direction, and intent,
to all stakeholders of the enterprise. Holistic enterprise architecture is
“consumable” (usable) by both business and technology stakeholders.
Successfully capturing the value of a holistic enterprise architecture
is very achievable, if you approach the task in a thoughtful, guided
fashion. This article shares the four significant components, or four
“pillars,” of any successful holistic enterprise-architecture effort.
(See Figure 1.)

Your Goal: To Realize and Deliver Consistent Value
Survive. Grow. Thrive. Exceed expectations. Enjoy your efforts!

Successful leaders must prepare for opportunities and risks.
They must endure difficult economies, surviving to seize emerging
opportunities in the economic recovery, growing their business.
These forward thinking leaders will exceed expectations by linking
productive initiatives to desired goals and results; they will foster
working conditions that are consistent and predictable in delivering
true value. Workers enjoy their efforts when they know that there is
a reasonable, thoughtful plan that the organization is following, and
that their input is valued and recognized in defining and achieving the
next level of success.

A tall order? Bold optimism? No, not at all! This is attainable,
if the leaders recognize the need for, support, and advocate the
consistent use of a practical, tailored, holistic enterprise architecture
as a competitive differentiator. Holistic enterprise architecture is about
understanding your enterprise. Writing more computer code just will
not get you there. Holistic enterprise architecture—a concept that is
about two decades old—is the linchpin to delivering consistent value
every time.

We have begun to discover through thoughtful practice, the
process of successfully achieving a practical holistic enterprise
architecture. Through many real-world holistic enterprise-architecture
engagements, our experience reveals several consistent and key
“pillars” of success in achieving usable architecture—the design for
your enterprise. Your architecture will become the business solution
engine.

Note the Difficulties in Achieving a Successful Enterprise
Architecture
There are unfortunate cases of enterprise-architecture efforts that
stall or fail to deliver the envisioned value. At the core of such
experiences lie confusion, expensive investments, and unbounded,

Figure 1: Four pillars, generic model

Ar
ch
ite
ct
ur
al

M
od
el
s

m
ew
or
k

th
od
ol
og

Ar
ch
ite
ct
ur
al

M
od
el
s

Fr
am
ew
or
k

M
et
ho
do
lo
gy

Driving Efficiency and Innovation by Consistently Managing Complexity and Change

The Architecture Journal 2320

unmet expectations. Some experts, vendors, approaches, and authors
hype beyond reason, and they overuse and misuse the “enterprise
architecture” phrase itself. Some improper uses include that it engulfs
many business skills such as planning, forecasting, budgeting, and
project selection; these are separate, important skills that benefit
from an enterprise architecture, but they themselves are not part of
an enterprise architecture. The enterprise-architecture participants
become confused (“architecture paralysis” sets in) and may set
misdirected expectations on the value and scope of an enterprise
architecture.

Designing an enterprise architecture is a people-oriented analysis
and solution, not one of technology only. The business knowledge of
people forms your enterprise foundation.

Where to Begin?
We recognized in many actual holistic enterprise-architecture
engagements, a consistent set of required components for success;
these four “pillars” are:

•	 Architectural models.
•	 Framework.
•	 Methodology.
•	 Solution models.

The outputs of the holistic enterprise-architecture effort are the
architectural and solution models. Why both architectural models and
solution models? Simply stated, beginning with architectural models
simplifies the effort, while beginning with solution models leads to
undue complexity, as will be elaborated.

Defining Key Terms
It is very important to define accurately and consistently use terms in
order for them to be meaningful or useful in any context. This article
strives to use accepted grammatical forms, to avoid later confusion
and miscommunication.

Refer to the “Key Term Definitions” section for definitions.

The Four Pillars of Success
Pillar 1: Architectural Models
Architecture is about identifying and understanding the
“independent” artifacts (architectural elements); therefore, an
architectural model is a representation of one artifact from the
perspective of one business view.

In total, there are 30 possible architectural models: six artifact
classifications, across five perspectives; two business-role perspectives;
and three technology-role perspectives.

Software Architecting and CMMI
by Eltjo Poort, Herman Postema, and Robert L. Nord

Even though architecture modeling is an established practice for
the realization of high-quality software, Capability Maturity Model
Integration (CMMI) is silent on architecting practices. This limits
the effectiveness of CMMI, because a high-quality architecture is a
prerequisite for successful software-development projects.

There is some implicit architecting guidance in CMMI version 1.2—
specifically, in the following process areas:

•	 Requirements management (REQM) is where the role of
architecting focuses on the impact of requirements and their
traceability to the architecture.

•	 Requirements development (RD) is where the functional
architecture of a system is defined, and where the requirements
are analyzed and developed. Architecting is important here as
both a source of new requirements and a means to structure
requirements.

•	 Technical solution (TS) covers the core of architecting:
development of a solution that fulfills the requirements.

•	 Verification (VER) of the architecture is necessary to ensure that
it meets the specified requirements.

•	 Validation (VAL) is a variant on verification; its objective is to
demonstrate that a product such as the architecture model fulfills
its intended use.

•	 Decision analysis and resolution (DAR) prescribes a formal
evaluation process for decisions, which is very much applicable
to architectural decisions.

•	 Risk management (RSKM) is one of the goals of architecting
practices; by addressing the most risky requirements early in an
architectural model, architecting mitigates risks.

Apart from the preceding, however, there are some serious gaps in
CMMI version 1.2 with respect to architecture:

•	 Architecture is not a well-defined concept in CMMI; as it is used,
the word has many meanings, most of which are not defined at all.

•	 The current CMMI models do not sufficiently emphasize current
engineering processes that address quality attributes, product
lines, system of systems, architecture-centric practices, allocation
of product capabilities to release increments, and technology
maturation.

•	 In product-development contexts, there are two activities that are
generally associated with architecting and that are insufficiently
supported by the CMMI: architectural road-mapping and the
exploitation of reusable assets.

The authors have proposed a number of enhancements to make
architecting more explicit in CMMI, such as a more prominent role for
quality attributes. These enhancements for the new CMMI version 1.3
are under consideration by the CMMI Product Development Team,
which includes members from government, industry, and the Carnegie
Mellon Software Engineering Institute (SEI).

Eltjo Poort is currently Lead Architecture Expert at Logica in the
Netherlands, where he is responsible for assessing feasibility of
solutions and improving architecting practices. Eltjo is also a member
of Working Group 42 “Architecture” of ISO/IEC JTC1/SC7, as well as
IFIP working group 2.10 “Software Architecture.”

Herman Postema is a Principal Management Consultant at Logica
Management Consulting. He has an extensive track record in CMMI-
based (software) process improvement. Herman has been a lead
appraiser in many CMMI appraisals and has participated in a large
number of SCAMPI appraisals.

Robert L. Nord is a senior member of the technical staff in the
Research, Technology, and System Solutions Program at the Software
Engineering Institute, where he works to develop and communicate
effective methods and practices for software architecture. Robert is a
published author, as well as a member of the ACM and International
Federation for Information Processing Working Group 2.10 Software
Architecture.

21

Driving Efficiency and Innovation by Consistently Managing Complexity and Change

The Architecture Journal 23

Observations on Architectural Models
From a business perspective, tremendous value has been
obtained by providing graphical representations and textual
descriptions of the six architectural artifact types. If no
more than this amount of holistic enterprise architecture is
completed, never-before-realized understandings and insights
will be obtained. We call this “quick-strike” architecture—a
common way of beginning holistic enterprise architecture.

Six Artifact-Classification Types: The Classic Language
Interrogative Abstractions
•	 Why—Classifies goals and motivations of the enterprise
•	 How—Classifies processes and functions that are

important to the enterprise
•	 What—Classifies things and data groups that are

important to the enterprise
•	 Who—Classifies people and organizations that are

important to the enterprise
•	 Where—Classifies locations and networks that are

important to the enterprise
•	 When—Classifies events and times that are important to

the enterprise

Assign each architectural artifact to one interrogative
classification type, which will result in a nonredundant
understanding.

Five Business Views of an Enterprise
We recognize two primary “types” of people who must
understand the holistic enterprise architecture: business
people and technology people. Each of these types has
multiple views of how they understand the enterprise; each
view covers the entire enterprise, yet describes it from a
differing perspective or value understanding. Moving from
one perspective to the next represents a transformation of
understanding of the enterprise—from business understanding
to potential solutions.

Business people (and some technology people) will want to
have at least a view of the:

•	 Business-understanding view.
•	 Business-interactions view (between business artifacts).

Technology people (and some business people) will want to
understand at least three other views of the enterprise—
specifically, the:

•	 Technology-neutral view.
•	 Technology-oriented view.
•	 Selected-technology view.

Assign each architectural artifact to one business view, which
will result in a nonredundant understanding.

Pillar 2: Framework
A framework is a logical structure that organizes for a specific subject,
a set of related artifacts, shows the relationships of the artifacts of the
chosen subject area, and brings a totality perspective to otherwise
individual ideas. A framework, therefore, makes the unorganized both
organized and coherent.

Three requirements of a complete framework are:

1.	 Consistent naming of the components and artifacts of the
framework.

2.	 Fully defined and consistently templated terms for the components
and artifacts of a framework.

3.	 A consistent and expressive set of graphical representations for
each component and artifact.

If we look at chemistry, music, language, electrical engineering, civil
engineering, and chemical engineering, all of their unique frameworks
have these requirements and characteristics.

Observations on Frameworks
Classic examples of a “framework” are the following:

•	 The periodic table of the chemical elements
•	 Musical notes and “structures”
•	 The 26 letters of the English alphabet

These are all “architectural frameworks,” as they contain
only “elements” (architecture) and not “compounds”
(implementations).

There is nothing in these frameworks that tell you how to
build anything, whether top-down, bottom-up, or middle-out.

Pillar 3: Methodology
A methodology consists of practices and procedures applied to a
specific branch of knowledge. A methodology tells you how to build
a particular type of thing. The methodology is, therefore, dependent
on the selected framework. For example, the methodology to “make
music”, is much different than that to “make water” (chemistry
framework), and is much different than that to “make words or
sentences” (alphabet framework).

A methodology has proven processes that can be followed in
planning, defining, analyzing, designing, building, testing, and
implementing the chosen artifacts.

A successful methodology:

•	 Guides a process.
•	 Simplifies a process.
•	 Standardizes a process.
•	 Can be customized to meet specific standards and practices of the

organization that is using it.
•	 Is accurate, as demonstrated through repeated practice.
•	 Is up to date.
•	 Is complete.
•	 Is concise.
•	 Defines deliverables and metrics.
•	 Has methods, techniques, standards, practices, roles, deliverables,

and associated education.

Driving Efficiency and Innovation by Consistently Managing Complexity and Change

The Architecture Journal 2322

Observations on Methodology
The concept of a methodology that is “framework-neutral”
would be so abstract and arbitrary that it would have limited
value. A “framework-neutral” methodology would look
something like the following:

Plan, analyze, design, construct, implement

This “methodology” could be used in any domain to do
anything (of questionable quality).

Test your enterprise-architecture methodology to see if it
can be used to bake a cake (seriously!).

The author suggests that we can all agree that this
“methodology” would have limited value.

Pillar 4: Solution Models
Solution models are about understanding and combining
“independent” architectural elements to begin to build something.
Each solution model focuses on a single solution description, and each
is chosen to perform or contribute a given thing of value.

Solution models and their implementations achieve the realization,
application, or execution of a plan, idea, model, design, specification,
standard, algorithm, or policy.

Examples of typical solution models would include the following:

•	 “Object model”—Relates data (what) to methods (how) to
actors (who)

•	 “Dataflow diagram”—Relates data (what) to processes (how)

Solution-Model Interrelations
There are 57 interrelations between the six artifact-
classification types that can be defined, for each business view:

•	 15 possible two-dimensional interactions
•	 20 possible three-dimensional interactions
•	 15 possible four-dimensional interactions
•	 6 possible five-dimensional interactions
•	 1 possible six-dimensional interaction

Thus, there are 285 possible solution models: five business-
view perspectives, each of which holds the set of 57 artifact
interactions.

You certainly need not build all of these models. It is
suggested only that these are all of the possibilities, and
our “profession” has been looking at only a very few of the
possible solution models, without understanding all of the
possibilities for solution models. Furthermore, this could be
why all of the desirable features of any specific technique
have not led to the consistent benefits that we are seeking:
portability, interoperability, reusability, scalability, reduced
time to market, reuse, simplification, and so on.

This fundamentally incomplete model might be leading
us to believe that we are designing our “architecture,”
when actually we are performing the design phase of
our “implementation.”

Architecture models are engineering models; solution models are
manufacturing models. Both are required in the “physical world”;
both are required in the “information world.”

This article does not suggest that solution models are bad, but
that architecture models are different from solution models. It also
suggests that architecture (engineering) models come first (as in any
profession that is know to humankind, to date), and we should derive
the required solution (manufacturing) models from the architecture
models.

Implementation of the definitions of these solution models consists
of two primary parts: construction and delivery.

For a technology solution, construction includes the:

•	 Selection of hardware, software, and vendors for the
implementation.

•	 Planning and preparation of risk mitigation (disaster recovery,
data backup, distributed and clustered processing, hot-swap,
and so on).

•	 Building and testing of the network-communication systems.
•	 Building and testing of the data stores.
•	 Writing and testing of the new program modifications, including

iterative business-user test feedback.
•	 Installing and testing of the total system from a technical

standpoint, and so on.
•	 Planning, preparing, documenting self-service helpdesk resources,

and training staff for providing warm-body helpdesk services.

For a technology solution, delivery is the process of:

•	 Conducting final system and user-acceptance testing.
•	 Preparing the conversion plan.
•	 Installing the production data stores.
•	 Providing training or training materials to new users, including

helpdesk services.
•	 Converting all relevant operations to the new services.

Meta-Methodology to a Holistic Enterprise Architecture
We can demonstrate the context of the pillars through a “meta-
methodology.” While some of the described steps might be one-time,
initial preparation, most are applicable to each phase or pass through
the holistic enterprise-architecture activities. (See Figure 1 on page 19.)

Briefly, we could simply define our required meta-methodology to
be the following:

•	 Develop architectural (engineering) models.
•	 Develop solution (manufacturing) models by drawing upon

architecture models and architecture elements.
•	 Assemble implementations from these solution models.

This is too brief to be really useful, so let us elaborate with more detail.

Partition the Scope: Establish Bounds of Coverage
Set clear and attainable bounds upon the area of the enterprise to be
investigated as the area of interest to be architected and designed.
For example, boundaries could be corporate strategic planning,
human resources, a subsidiary, or a large department. Of course,
the whole enterprise (or more than just one enterprise) could be the
bounds of coverage. (See Figure 2 on page 23.)

Select a Dedicated Team of Key Individuals
It is desirable to have the business area of the enterprise being
exercised dedicated to discovering and defining the key business
artifacts for their scope of influence. However, proven techniques
are available to begin holistic enterprise architecture without strong

23

Driving Efficiency and Innovation by Consistently Managing Complexity and Change

The Architecture Journal 23

business support (of course, not as desirable). It is
better to represent the best understanding available
than to move directly to implementation.

Define and Represent Your Architecture
You will place the initial focus on the architecture
“designers’” domain for understanding, and later
focus on the “builders’” domain of implementation.
(See Figure 3.)

•	 Step 1: Select and prioritize architectural models
that are of value to the enterprise.

•	 Step 2: Organize the architectural models,
as defined in the architectural framework.
(See Figure 4.)

•	 Step 3: Follow a lean and proven methodology
that supports the framework to develop
architectural models. (See Figure 5.)

•	 Step 4: Describe and represent the enterprise
within the architectural models.

Execute Your Architecture Design
The “builders’” domain hopefully will contain an
ever-accumulating and reusable set of solution
models. Here, you use the architectural models to
derive and develop solution models. (See Figure 6
on page 24.)

•	 Step 1: Select an implementation domain team
of key individuals from both business- and
technology-perspective groups.

•	 Step 2: Educate the Implementation domain
team on the architectural models, framework, and
methodology.

•	 Step 3: Select and prioritize solution models that
are of value to the enterprise.

•	 Step 4: Describe and represent the solution
models to exercise the architecture in defining
viable candidate solutions and services.

•	 Step 5: Educate the architectural-domain,
business-project, and information-technology
project teams on the solution models. Share the
wealth!

Expand Your Holistic Enterprise-Architecture
Coverage
•	 Step 1: Select the next “slice” of the enterprise to

address, expanding upon the work that is already
completed. Adjust the coverage of the models to
reflect discovered value. (See Figure 7 on page 24.)

•	 Step 2: At this time, both the business- and
information-technology project teams can begin
to implement priority candidate solutions and
services, based upon the solution models.

Demystifying the Practice of Holistic
Enterprise Architecture
We are now at a point in the maturity of holistic
enterprise architecture where all of the required
“pillars” are becoming consistently achievable.
All of them—architectural models, framework,
methodology, and solution models—are required
for success. “Best of breed” will not work; it has not
worked in other disciplines outside of information
technology, and it is doubtful whether it will work

Figure 2: Potential architectural coverage

Pass 1

Potential architectural coverage
Areas of interest to the enterprise

Figure 3: Pillar 1: Architectural models

Areas of interest to the enterprise

Pass 1

A
rc

hi
te

ct
ur

al
m

od
el

s

Designers’ domain

Figure 4: Pillar 2: Framework

Areas of interest to the enterprise

Designers’ domain

Ar
ch

ite
ct

ur
al

m
od

el
s

Pass 1

Fr
am

ew
or
k

Figure 5: Pillar 3: Methodology

Areas of interest to the enterprise

Designers’ domain

Ar
ch

ite
ct

ur
al

m
od

el
s

Fr
am

ew
or

k

Pass 1

M
et
ho
do
lo
gy

Driving Efficiency and Innovation by Consistently Managing Complexity and Change

The Architecture Journal 2324

for enterprise understanding and information
technology.

When your enterprise has a consistent body
of knowledge through these pillars, the resulting
intellectual capital will define a complete and
executable set of consistent practices and designs
that will provide measurable (and immeasurable)
value to your enterprise. Your enterprise will
dramatically increase its success rate for delivery
of valued business solutions, as all parties will
understand your enterprise through its up-to-date
holistic enterprise architecture, and all implemented
solutions will derive from your architecture. That day
is very near in some organizations.

Conclusion
Any article of this length can just provide an
overview for understanding these pillars. It is hoped
the reading audience will understand that this is
just a high-level summary. At least four years (and
many books!) are required to get a bachelor’s
degree (a substantial but not exhaustive level of
understanding) in all of the fields of precision, such
as electrical engineering, music, and chemistry.

It is hoped also that this article provides a
beginning for those in our profession pursuing their
“bachelor’s degree in holistic enterprise architecture,”
an understanding for those who are responsible for
enterprise-architecture activities, an understanding
of the enterprise architecture for the “receiving”
community, and a wider understanding of these
pillars for holistic enterprise-architecture success!

It is time to move from the hype stage of
enterprise architecture to holistic enterprise
architecture. It is time to move from theory into
practice and action. Holistic enterprise architecture
drives enterprise efficiently and innovation by
consistently managing complexity and change.

Key Term Definitions
Architectural elements: Each instance of an architectural model is an
architectural element of the architecture. Note that this is a subset of
“artifact,” in that not all artifacts are architectural elements.

Architectural models: Each model is a representation of one artifact
from the perspective of one view.

Architecture: The art and science of building something, and the
manner in which its components and artifacts are organized and
related. The Greek root of architecture means “master builder.”

Artifact: Each artifact uniquely and nonredundantly defines a “thing”
of interest to the enterprise, and each can be classified with one
artifact-classification type, and with one view.

Artifact-classification types: Classify each architectural artifact as
answering one of the six classic language interrogatives: Why? How?
What? Who? Where? When?

This classification helps organize ideas and concepts into logically
common groups. This classification helps discover overlaps, gaps, and
opportunities.

Business views of an enterprise: Five views that gather artifacts
across all six artifact-classification types, where all such grouped
artifacts help to define the enterprise perspectives. Each view

represents a transformation of understanding of the same
architectural artifacts:

1.	 Business-understanding view:
This view represents models of the architectural elements.

2.	 Business-interactions view:
This view represents models of interactions between each artifact,
models of their relations, and constraints.

3.	 Technology-neutral view:
This view represents architectural models to reflect an architectural
element in a robust yet non-technology-dependent manner.

4.	 Technology-oriented view:
This view represents the manner in which architectural models
reflect existing or proposed technologies, including alternatives.

5.	 Selected-technology view:
This view identifies choices of technology, and the manner in
which architectural models are to take advantage of those selected
technologies.

Enterprise: Any collection of organization-related or people-related
things, all of which have a common set of interests (such as goals,
principles, or a single bottom line). In this sense, an enterprise can
be a whole corporation, a division of a corporation, a government
organization, a government agency, a single department, or a
network of geographically distant organizations that are linked
together by common objectives, a project, a team, and so on.

Figure 6: Pillar 4: Solution models

Areas of interest to the enterprise

Designers’ domain

Ar
ch

ite
ct

ur
al

m
od

el
s

Fr
am

ew
or

k

M
et

ho
do

lo
gy

Pass 1

So
lu

tio
n

m
od

el
s

Builders’ domain

Figure 7: Four pillars, complete model

Areas of interest to the enterprise

Ar
ch

ite
ct

ur
al

M
od

el
s

Fr
am

ew
or

k

M
et

ho
do

lo
g

Builders’ domainDesigners’ domain

Ar
ch

ite
ct

ur
al

M
od

el
s

Fr
am

ew
or

k

M
et

ho
do

lo
gy

Ar
ch

ite
ct

ur
al

m
od

el
s

Fr
am

ew
or

k

M
et

ho
do

lo
gy

So
lu

tio
n

m
od

el
s

Architecturally aligned components, solutions, and services

Pass 1
Pass 2

Pass 3

25

Driving Efficiency and Innovation by Consistently Managing Complexity and Change

The Architecture Journal 23

Enterprise architecture: Enterprise architecture is about
understanding the enterprise through:

•	 A set of independent and nonredundant artifacts.
•	 The interrelations between these artifacts.
•	 Communicating these understandings to the numerous people

who make up the enterprise.

Framework: A logical structure that organizes, for a specific subject,
a set of related artifacts, shows the relationships of the artifacts of the
chosen subject area, and brings a totality perspective to otherwise
individual ideas. A comprehensive framework has a consistent naming
of the components and elements of the framework, all terms for
the components and elements fully defined, and a consistent and
expressive set of graphical representations for each component and
element.

Holistic enterprise architecture: An enterprise architecture that is
developed and maintained by using the full complement of the four
pillars of successful architectures: architecture models, framework,
methodology, and solution models.

Interrelations: These are the relationships, interactions, and
constraints that individual elements and artifacts have to each other.
A reflective relationship is an artifact of one classification type being
related to other artifacts of that same type.

Examples of architectural-model reflective interrelations
would be a:

•	 Process (how) relates to another process (how).
•	 Data group (what) relates to another data group (what).

Examples of solution-model nonreflective interrelations would be a(n):

•	 “Object model”—Data (what) relates to a method (how) relates to
an actor (who).

•	 “Dataflow diagram”—Data (what) relates to a process (how).

Methodology: Consists of practices and procedures that are applied
to a specific branch of knowledge.

People: We recognize two primary “types” of people who need to
understand the holistic enterprise architecture: business-focused
people and technology-focused people.

Solution models: Each solution model is about being able to
understand and combine “independent” architectural elements. Each
focuses on a single solution description; each is chosen to contribute a
given specific entity of business value.

About the Author
Samuel B. (Sam) Holcman is the Managing Director of the Enterprise
Architecture Center of Excellence (EACOE), the Chairman of Pinnacle
Business Group, Inc., and the President of the Zachman Institute for
Framework Advancement (ZIFA). He is considered the practitioners’
practitioner in enterprise architecture, and a leading implementer of
and worldwide educator in enterprise-architecture methodologies
and techniques. Sam can be reached via e-mail at Sam@EACOE.org,
or via telephone at (810) 231-0531.

Implementation of Microsoft Solution Framework in
Distributed Extreme Programming
by Ridi Ferdiana

Microsoft Solution Framework (MSF) is a practical, flexible, and proven
approach to delivering software solutions through various artifacts.
Frankly speaking, there are two main models in MSF: CMM models
and agile models. People will choose the CMM model to provide an
enterprise-class software blueprint and the agile model to provide
rapid software development. The problem is that many clients
want rapid software and need sufficient artifacts. The happy fact
is that more than 60 percent of developed software is separated
geographically and has limitations in speed and agility.

Distributed extreme programming provides (DXP) a set of
methods, process discipline, and certain tools to improve the
agility in distributed software development. DXP works by creating
a set of mechanisms to implement extreme programming in
remote or geographically distributed software development.
The key phenomenon of DXP is the way in which communication,
coordination, and control happen in distributed software
development. The phenomenon is initially solved through various live
document artifacts that provide sufficient understanding about the
project in distributed software development.

The idea behind this column is to construct an artifact model that
mimics how MSF uses artifacts as an indirect communication tool in
its phases. DXP has requirements phases, architectural phases, project
phases, and product-development phases:

•	 The artifact in the requirement phase is a user-story artifact, which
is just like the persona- and scenario-description artifact in MSF.

•	 The architectural phase captures solution delivery through a
spike‑solution artifact, which is just like the functional specification
in MSF.

•	 The project phase captures the planning through an iteration-
release planning artifact, which is just like the master project
schedule and master project plan in the MSF planning phase.

•	 The development phase provides development activities through
code that comments a lively, test-specification artifact that
describes how the testing is done, and a backlog artifact which
describes defects in the development system.

Those artifacts work as live documents and work great if they are
stored in a collaboration portal such as Windows SharePoint Services
(WSS) or Visual Studio Team System (VSTS). The former provides
a lightweight portal that is sufficient for small- to medium-size
distributed projects, while the latter is great for working in enterprise-
class software development.

How sufficient artifacts are composed, what kind of base template
is needed, and how it will be implemented is a cool discussion that we
can share together at http://ridilabs.net/blog.

Ridi Ferdiana (b-riferd@microsoft.com), Microsoft MVP, Gadjah
Mada University Lecturer, Indonesia.

mailto:Sam%40EACOE.org?subject=
http://ridilabs.net/blog
mailto:b-riferd%40microsoft.com?subject=

26 The Architecture Journal 23

Summary

Multiple-context systems are those in
which a single architecture and core
assets must function well in several
different environments. Examples
include product-line architectures, as
well as certain elements of enterprise
architectures—especially those that
have integration and infrastructure
responsibilities. Unlike single-context
systems, which resolve one set of forces,
multiple-context systems must resolve
the forces in each individual context.

Introduction
A context is a collection of stakeholders
who share a similar set of perceptions,
priorities, and desired outcomes and are
subjected to a similar set of conditions and
forces.1 Marketing professionals call them
“market segments” and use them to target
advertising and other forms of marketing
campaigns. Architects can use contexts to
define and create effective solutions for a
related set of deployment environments.2

Table 1 shows a simple example of
contexts at work. Consider a Thinsulate ski
parka, which is temperature-rated to –40°F.
You would expect this parka to be as shown
in Table 1.

While these generalizations might not
hold true over every context member who
matches the criteria, it is reasonable to
expect that they will hold true in a large percentage of cases. Well-
defined contexts are powerful, because conditions and forces tend to
be linked to perceptions and priorities, and the combination of these
drives desired outcomes.

Real-World Examples of Multiple-Context Systems
Before exploring the proposed approach to multiple-context systems,
let us first consider two real-world examples:

•	 Local-area pickup and delivery routing and scheduling
•	 Semiconductor-fabrication tools

A third example, which is based on medical reporting, will be
presented later and used to illustrate how to apply the multiple-
context approach.

Transportation Routing and Scheduling
Several organizations coordinate a set of drivers who pick up
and deliver shipments within a local geographical area. These
organizations have several important commonalities:

•	 Service effectiveness, measured by completion percentage of
scheduled stops

Multiple-Context Systems:
A New Frontier in Architecture
by Charlie Alfred

Table 1: Context example

More valuable to: Less valuable to: Reason

Resident of Calgary, AB,
in January

Resident of Calgary, AB, in July Condition (seasonal)

Senior in Calgary, AB Youth in Calgary, AB Perception (tolerance of
extreme temperatures)

Someone in Calgary, AB Someone in Miami, FL Force (climate)

Avid skier in Miami, FL Avid golfer in Virginia Beach, VA Priority (hobby) over force
(climate)

Table 2: Local-area-transportation contexts

Context Description Contextual drivers

Parcel UPS, Federal
Express, DHL

•	 ~80 drivers per terminal.
•	 Small (< 200 lb) shipments.
•	 5,000–8,000 stops daily.
•	 Very high stop density (~2/sq mi).
•	 High % of urban stops (travel constraints).
•	 On-time service is critical.

Less than
truckload

Roadway,
Yellow Freight

•	 ~30 drivers per terminal.
•	 Large (500–10,000 lb) shipments.
•	 600–800 stops daily.
•	 Sparse stop density (~0.1/sq mi).
•	 Mostly industrial and suburban locations.
•	 Shipment position in truck is critical.

Private fleet Bottled water,
food service

•	 No. of drivers, no. of stops, shipment size vary by product.
•	 Stops planned/loaded in advance.
•	 Delivery routes only, no on-route pickup.
•	 Multi-day driver routes.
•	 Some location variation (new customers).

27

Multiple-Context Systems: A New Frontier in Architecture

The Architecture Journal 23

•	 Reduction of travel time (drivers get paid
to pick up/deliver, not to drive)

•	 Management of vehicle-weight and
vehicle-capacity constraints

•	 Observance of customer-service windows
and other physical constraints

Table 2 on page 26 summarizes three common
local-area-transportation contexts.

Semiconductor Fabrication
Semiconductor fabrication is a process
that creates hundreds of microprocessor or
memory chips on a 300mm silicon wafer.
Complex circuits might require several
hundred processing steps, using a variety of
tools.

Each of these tools shares a set of important
commonalities:

•	 Conformance to the SEMI standards, to
enable semiconductor-fabrication plants
to implement factory-automation systems to control each tool in
the line

•	 Automated wafer cassette robots that move wafers between tools
•	 Electromagnetic control of pumps, vents, material handlers, and

other devices
•	 Tracking of process outcomes by batch, lot, and wafer

As Table 3 shows, there are four general classes of semiconductor-
fabrication tools, and the drivers for each tool have important
differences.

On the surface, each of these examples appears to have enough
commonality to motivate the creation of
a single solution to span the domain. Yet,
consider this advice, which was given a few
years ago by an anonymous participant at a
software-product-line conference session:

The primary motivation for companies
to embark on product-line architecture is
to gain ROI by exploiting commonalities
among products. Unfortunately, the only
way to reliably realize the increased ROI
is by comprehending and managing the
differences among the products.

Architectural Implications
Suppose that you are trying to raise several
million dollars to design and build a general-
purpose medical-reporting-system solution.
You expect that the venture capitalists will
want to know, “For which parts of the medical
industry will your system be an effective
solution?” (This is a fictionalized example that
is based on the author’s prior experiences
with medical-reporting challenges in
healthcare institutions.)

The multiple-context approach provides
a useful framework for addressing this

question. Three high-level steps are required:

1.	 Identify contexts and characteristics.
2.	 Analyze contexts by using comparisons of challenges.
3.	 Synthesize compatible contexts.

Anatomy of a Context
Before we drill into the medical-reporting example, let us take a few
moments to explore the anatomy of a context. Figure 1 illustrates a
general pattern that represents the goodness of fit between a context
and solution.

Figure 1: Solution fit, with context

Challenges

Features &
capabilities

Desired future
stateCurrent state

Solution architecture
• Series of approaches
• Alternatives
• Trade-offs

Desired
outcomes

Perceptions &
priorities

Forces &
conditions

FuturePresent

Co
nt

ex
tu

al
So

lu
tio

n

Table 3: Semiconductor-fabrication-tools contexts

Tool type Description Contextual drivers

Deposition Adds thin film of material, with a
thickness of a few nanometers on the
wafer surface

•	 Sub-nanometer thickness
•	 Precise depth of film across wafer
•	 Recover process from point of

error

Patterning Uses an XY stepper to position at
each die; creates the desired negative
on photoresist by using a laser beam
and photomask

•	 Precise X/Y origin for each chip,
with high positional accuracy
across layers

•	 Precise energy dosage per chip

Removal Removes unneeded material from
a wafer’s surface (for example,
photoresist after patterning or
doping)

•	 Completely strip unused material
•	 High (200 wafers/hr) throughput
•	 Rerun process for error recovery

Doping Uses ion beam and photomask
to implant ions to alter electrical
properties of circuits and gates

•	 Precise X/Y origin for each chip,
with high positional accuracy
across layers

•	 Precise dose delivered across mask
surface

Multiple-Context Systems: A New Frontier in Architecture

The Architecture Journal 2328

As previously mentioned, members of
the context share similar desired outcomes
and face similar challenges. This is due to
the fact that they share similar perceptions
and priorities and are subject to similar
environmental forces and conditions.

When challenges block desired outcomes,
a gap is created between the current and
future states. Painful or desirable gaps
motivate solutions that overcome the gap’s
unmet challenges. A solution is successful
if the prioritized challenges of its contexts
are addressed well by the features and
capabilities of the solution architecture.

Step 1: Identify contexts and challenges.
Identifying contexts seems like a simple-
enough proposition. However, doing this
well relies heavily on systems-thinking skills,
which provide the ability to abstract and
understand arbitrary systems in context.
Several authors (such as Ackoff,3 Senge,4
Goldratt,5 Weinberg,6 and Taleb7) have
written excellent texts that address various
aspects of systems thinking

For example, we might consider
organizing contexts by institution size: physician practice, outpatient
clinic, community hospital, urban medical center, and university
hospital. However, this is not as useful a segmentation tool as it
might appear. The boundaries do a useful job of organizing by size,
but there is too much diversity within some contexts and too much
overlap among them.

A better set of segmentation criteria can be found by examining
behaviors around the intended function: medical reporting. Whenever
a patient sees a clinician, a medical report must be created and stored
in the patient’s file. These requirements apply from small physician
practices up to large hospitals; methods vary from paper files to
electronic records. Some common requirements for all contexts
include:
•	 Capturing the following information:

•	 Identity of the patient and medical provider.
•	 Date and time of the encounter.
•	 Physician’s observations and findings.
•	 Physician’s diagnosis of the condition (or possible diagnoses).
•	 Physician’s recommendations for treatment (if any).

•	 Storing patient medical records in a database, from where they
can be efficiently queried by patient, diagnosis, time period, and
several other criteria.

•	 Producing accurate medical reports quickly. Medical-report
generation is just as necessary to healthcare as driving is to a
transportation business, and just as unprofitable.

One important insight is that there are some important patterns in
the reasons that medical reports are created. These patterns identify
clusters of behavior and form initial hypotheses for contexts, as
summarized in Table 4.

Cross-context commonalities are often apparent, as the three
preceding examples show. However, below the surface, important
context-specific variations exist.

Step 2: Analyze contexts by using comparisons of challenges.
Our initial context descriptions in Table 4 are a useful start. However,
in order to better understand their desired outcomes and challenges,
we must pop-up a level. We must better understand how medical
reporting fits into the overall scheme of healthcare institutions in each
context.

A critical caution should be made here. Naïveté is the cause
of a large percentage of poor architecture and design decisions.
Sometimes, the naïveté is about a poor understanding of contexts in
which a system will be used; at other times, it is about constraints that
are inherent in the solution technologies or how two technologies
might interact. Subject-matter expertise is tightly coupled with
systems thinking. The skill of recognizing central organizing principles
and using them to reason about other areas can greatly increase the
velocity of learning.

Additional research—such as interviews with industry experts or
published market-research reports—is needed to increase the depth
of our understanding. Table 5 on page 29 shows an example output
from this activity.

Two conclusions are readily apparent from this analysis:

1.	 The Treatment-centric and Patient-centric contexts are rather
similar. The top-five priority challenges for Treatment-centric are
numbers 3–7 in Patient-centric and are ranked in the same order.
Both contexts have direct interaction with patients and must
collect medical-record data for use in future encounters. The
primary difference between the two is driven by the size of the
institution and the fact that several providers interact with each
patient.

2.	 While the Order-centric context performs medical reporting like
the others, it has very little similarity in its high-priority challenges.
Participants in the Order-centric context are high-throughput
factories, which are driven to make continual improvements in
throughput and turnaround time for completing orders.

Table 4: Medical-reporting contexts

Process Description Contextual drivers

Order-
centric

Physician orders
images or lab tests to
gather data about a
patient’s condition.

•	 Provider does not interact with patient
•	 Very low provider-patient recurrence
•	 Provider is usually a specialist in specific image or

lab procedures
•	 Emphasis on this encounter, not history
•	 Provider cannot type while performing
•	 Transcription turnaround is 6–10 hours

Treatment-
centric

On-going treatment
for a specific medical
condition for a
patient (for example,
chemotherapy).

•	 Provider is typically a specialist
•	 Provider has recurring patient interaction
•	 Patient and family history are essential
•	 Moderate interaction frequency
•	 Routine urgency for exchange of patient medical

data with other providers

Patient-
centric

Ongoing treatment
for several
interrelated medical
conditions, often as
an in-patient.

•	 Many providers collaborating, with frequent (daily
or more) encounters

•	 Patient history and family history are essential
•	 Urgent need to exchange information
•	 Need to order and coordinate images and lab tests
•	 Need to coordinate pharmaceuticals

29

Multiple-Context Systems: A New Frontier in Architecture

The Architecture Journal 23

Step 3: Synthesize compatible contexts.
The analysis of prioritized challenges is a litmus test. It is useful for
making educated guesses to rule out obvious mismatches and identify
affinity among other contexts. However, by itself, it usually is not
precise enough to make definitive decisions.

To get more precise, we must consider
important aspects of the solution
architecture. In some cases, you begin with
an existing architecture; at other times, you
do not. For the medical-reporting example,
we assume that we are starting with a clean
slate. Figure 2 illustrates a way to approach
this problem, which can be adapted to cases
in which the solution architecture exists or is
hypothetical.

Figure 2 shows five aspects that are
important for multiple-context analysis.
Each of these is discussed in the following
subsections. Space limitations do not permit
an in-depth exploration of a multiple-
context architecture of the medical-
reporting example. However, examples from
this problem will be used to embellish these
aspects.

Context Analysis
Step 2 of the process elaborated three contexts
that are relevant to the medical-reporting
problem. In Table 4, we identified these contexts
and captured their drivers (for example, forces,
conditions, and perceptions). In Table 5, we
prioritized the challenges for each context.

Architecture Approaches
An architectural approach is a small set of
related decisions that are intended to attack one
or two specific challenges.8 An ordered list of
architectural approaches (plus the rationale for
each) is the nucleus of an architectural strategy.
Earlier architectural approaches tend to constrain
later ones. For this reason, it is good practice for
earlier architectural approaches to focus on the
challenges of highest priority.

In the medical-reporting example, the Patient-
centric context has a high-priority need to enable
communication among clinicians. However,
this is not a pressing priority for the Treatment-
centric context. Assume that we want to preserve
the opportunity to address both contexts with a
single platform. To do so, we must find a suitable
approach for this problem that minimizes the
constraints that it imposed on other challenges.

One way to accomplish this might be to
provide a message-based communication
subsystem that:

•	 Tracks communications with a collection of
messages, where each message is managed
like an e-mail message (text with optional
multimedia attachments).

•	 Links messages to senders and recipients using

Figure 2: Multiple-context assessment

? X

• Forces/Conditions
• Perceptions
• Desired outcomes
• Prioritized challenges

Features/Capabilities

• Forces/Conditions
• Perceptions
• Desired outcomes
• Similar prioritized
challenges

• Forces/Conditions
• Perceptions
• Desired outcomes
• Conflicting prioritized
challenges

Context Compatible context Incompatible context

Solution architectureApproach
A B C D E F … Z

Challenge
A B C D E F … Z

Usage
Interaction
coupling

} Per cell +
++

+++

Impact on
Per
cell

–
– –
– – –

Rigid—Approach 1
Modify—Approach 2
Config—Approach 3
Extend—Approach 4

…
Plug-in—Approach N

Table 5: Cross-context challenges for medical reporting

Challenge
Order-
centric

Treatment-
centric

Patient-
centric

Massive scalability (patients, physicians,
reports, and so forth)

1

Efficient exchange of information among
providers

2

Efficient use of patient-history/family-history
medical reports

1 3

Quick access to prior medical reports of a
patient

2 4

Reuse of diagnoses from prior medical
reports of a patient

3 5

Integrated symptom/diagnosis DB 4 8

Updating of medical reports, prescriptions,
image/lab data from external sources

5 7

Updating of family history from external
sources

8 9

Integration with hospital and departmental
information systems

2 6 6

Reduction of time for each order to improve
throughput

1

Automated assignment of order to provider 3

Immediate completion of medical reports
(> 1-day turnaround for transcription)

4

Provider does not recall report details when
review not immediate

5

Providers cannot type while performing
analyses

6

status records. Each record holds a foreign key to a clinician and
the most recent access time and status.

•	 Stores clinician communication in a separate database (or set of
tables), with foreign key relationships to patient records.

The Architecture Journal 2330

•	 Supports multiple response (discussion) chains for each message.
•	 Permits certain medical actions (for example, submission of a

radiology or lab request) to trigger a notification message when
the action has been completed.

•	 Provides Web-based clients, who are running on desktop/laptop
computers and smart phones, the ability to read and initiate
messages.

Approach Adaptability
In addition to attacking challenges, each architectural approach also
offers a certain level of flexibility. In Figure 2, this is represented by
a label that appears to the left of the approach. These labels can be
extended, as needed. The following is one possible set:

•	 Rigid—Approach is fixed at compile time, no mechanism to alter
•	 Modify—Source code for approach exists, can be altered and

recompiled
•	 Config—Rigid or modify, but with parameters that can be set at

runtime
•	 Extend—Can use subclassing to inherit/override behavior
•	 Plug-in—Uses Strategy design pattern9 to enable load/unload of

components

An approach like the one that was previously described can be
designed in a modular way. Runtime configuration and plug-in
components can be used to customize the needs of different contexts.
These features could be one of the following:

•	 Excluded entirely for Order-centric contexts
•	 Supported entirely for large Patient-centric contexts
•	 Supported partially (for example, omit multimedia attachments or

discussion threads) for other contexts

Approach Suitability
The Software Engineering Institute (SEI) wrote about a technique
for assessing software-architecture suitability.10 In this approach,
architectural decisions are scrutinized for how well they support
quality-attribute scenarios. In our model, architectural approaches
are equivalent to SEI architectural decisions, and quality-attribute
scenarios are equivalent to desired outcomes and challenges in a
context.

To assess the suitability of an approach, form a matrix that has
challenges as the columns and approaches as the rows. The challenges
might be from one specific context or might be blended from two
or more. The list of approaches might be extracted from an existing
architecture or might have been formulated as part of a hypothetical
architecture.

Each cell in this matrix represents the impact of one approach on
one challenge. Possible values include the following:

•	 Neutral—Approach does not address the challenge or affect it in
any way

•	 Positive—Approach helps to overcome the challenge. The
magnitude of the impact might be high (+++), medium (++),
or low (+).

•	 Negative—Approach exacerbates the challenge. The magnitude
of the impact might be high (– – –), medium (– –), or low (–).

Another approach is to color the cell by using three shades of green
to represent positive impacts and three shades of red to represent
the negative impacts. The visual presentation helps identify trade-

Goals and Aspects
by André Gil

In goal-oriented approaches:

•	 Specification can be used to validate all requirements.
•	 Communication to stakeholders is made easy.
•	 Goals are divided into subgoals.

When we use goal-oriented approaches, some of the goals
repeat themselves all over the system. This implies that when
the system is being modeled, the model will have the same
goals spread all over the model. This, in turn, will boost the
complexity of the model and will make the evolution of the
model over time more difficult than necessary.

One way to overcome these problems is to use a hybrid
approach, which means that goals are still used to model
the system, and aspects are added to modularize scattered
goals. Then, the goal (an aspect in reality) will be represented
only once in the entire model; as such, the complexity of the
model will be reduced, and the readability of it will be greatly
improved. In the end, the evolution of the model over time
will be easier.

In goal-oriented approaches, goals are always being
refined; as such, one important question arises: “What is the
timing at which we know that we should incorporate aspects
into the model?” Actually, there is no fixed timing for it. It
should be done as soon as we are happy with the overall
model and the overall refinement of the existing goals.

To identify aspects, we should find crosscutting goals
(and obstacles) and identify and reuse patterns. Doing this in
parallel provides a new opportunity to find refinements on
existing parts of the current model. When the aspects have
been identified, the next step will be to build the aspects
model and then compose them back into the original model.
One other thing that is possible to incorporate into aspects
is relations (such as “at,” “before,” and “after”) to provide
temporal feedback between aspects and goals.

Finally, to incorporate aspects into the model, we should
use roles. Roles will enable us to perform pattern matching
on our model, so as to switch some goals for our aspects.
When aspects have been put in place—and because we are
using roles—we must bind them. This means that we have to
instantiate roles to current model elements.

The big advantage of this approach is in identifying
earlier in the development life cycle the parts of the system
that should be made generic, as aspects are the scattered
goals that we have on our system.

André Gil holds a degree in Computer Science and an MSc
in Software Engineering. A developer who has many years
of experience in .NET, he is currently involved in a project
with Indra for the biggest telecommunications operator in
Portugal. André can be reached at atgil@netcabo.pt.

mailto:atgil%40netcabo.pt?subject=

31

Multiple-Context Systems: A New Frontier in Architecture

The Architecture Journal 23

offs (negative impact) and coverage (limited or no approaches to a
challenge).

In the medical-reporting example, suitability can be assessed in
two ways:

1.	 Partial suitability assesses the impact of an approach to all
challenges, including the challenge that the approach was
intended to address. Negative impacts on other challenges can
stimulate consideration of alternative approaches.

2.	 Full suitability requires a full set of approaches and challenges,
and provides additional insight into how other approaches might
have side effects that reduce the impact on the primary challenge.

Approach Dependencies
A similar matrix, which is illustrated in Table 6, is useful for identifying
the dependencies among approaches. This is critical for any analysis
that attempts to reuse software across two contexts that are not
highly compatible. Any software that is being reused must be loosely
coupled to the things on which it depends.

Each cell in this matrix represents how the approach in the column
depends on the approach in the row.11 There are several types of
cross-dependencies that can be represented in each cell.

In the medical-reporting example, this analysis might highlight
that the messaging approach depends on a special mechanism to
deliver asynchronous notifications from the server to Web clients. The
solution architectures for the Treatment-centric and Patient-centric
contexts can already include such a mechanism, but the Order-centric
architecture might not. This realization forces us to either:

•	 Consider the viability of including this approach (and all of the
approaches on which it depends) in the Order-centric context.

•	 Determine if there is an abstract strategy that permits the Order-
centric approach to use a different mechanism from the others, or

•	 Figure out a way to factor out the asynchronous notification, so
that it can be excluded from the Order-centric solution.

Conclusion
Multiple-context systems occur when one solution seeks to resolve
several sets of stakeholder needs and environmental forces. The
approaches to architecting single-context and multiple-context
systems, while similar, have some critical differences. The latter
require you to discern the contexts, identify and prioritize the key
challenges in each, and compare these lists to determine whether

the challenges are compatible. As soon as this determination has
been made, the compatible contexts must be prioritized according
to business value, and their weighted challenges must be merged
into a blended list. Then, the process of considering the challenges in
order of descending priority and formulating effective approaches is
essentially the same.

References
1	 (In this use, forces typically are environmental factors that are

uncontrollable, while conditions are situational factors that might
or might not be controllable. A technological breakthrough from
another industry is a force. A competitor’s new product that is
based on that technology is a condition.)

2	 Alfred, Charlie. “Value-Driven Architecture: Linking Product
Strategy with Architecture.” The Architecture Journal. Issue 5,
July 2005.

3	 Ackoff, Russell L., and Fred E. Emery. On Purposeful Systems:
An Interdisciplinary Analysis of Individual and Social Behavior
as a System of Purposeful Events. New Brunswick, NJ: Aldine
Transaction, 2006. (Discusses the importance of synthesis and
analysis, and the key distinctions between multi-goal-seeking
systems and purposeful systems.)

4	 Senge, Peter. The Fifth Discipline: The Art and Practice of the
Learning Organization. Rev. ed. New York: Doubleday/Currency,
2006. (Contains an excellent discussion of systems dynamics and
ways in which to model and communicate this.)

5	 Goldratt, Eliyahu M., and Jeff Cox. The Goal: A Process of Ongoing
Improvement. Third rev. ed. Great Barrington, MA: North
River Press, 2004. (Presents the theory of constraints and the
requirement to identify and attack the dominant constraint.)

6	 Weinberg, Gerald M. Rethinking Systems Analysis & Design. New
York: Dorsett House Publishing Co., 1988. (Discusses systems
thinking as a learning accelerator and the importance of context.)

7	 Taleb, Nassim Nicholas. The Black Swan: The Impact of the Highly
Improbable. New York: Random House, 2007. (Discusses the
powerful role of uncertainty and human vulnerability to the
improbable event.)

8	 (Fixed-time-period task scheduling is an architectural approach
of a real-time OS; and atomicity, consistency, isolation, durability
(ACID) transactions are an architectural approach of a relational
database-management system (DBMS).)

9	 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley Professional, 1994.

10	 Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software
Architectures: Methods and Case Studies. Boston, MA; London:
Addison-Wesley Professional, 2001.

11	 (This permits bidirectional dependencies; that is, Approach A is
highly dependent on Approach B, while Approach B has little or no
dependency on Approach A.)

About the Author
Charlie Alfred (charliealfred@comcast.net)has 30 years of experience
in software development, including the last 10 years as a software
architect. During this time, he has worked on several types of systems,
including real-time control, transaction processing, optimization, and
software-product lines. Charlie lives with his family in Nashua, NH.

Table 6: Types of inter-approach dependencies

Type Description Dependency-level examples

Usage Nature of the
dependency

•	 Functional (invoke an
operation)

•	 Information (exchange data)
•	 Control (sequence, timing,

start, stop)

Interaction Role (played by the
approach in the
column)

•	 Requestor
•	 Provider
•	 Collaboration (protocol/

callbacks)

Coupling Reliance (of
column) on internal
details (of row)

•	 Loose (strict encapsulation)
•	 Medium (limited use)
•	 Tight (significant reliance)

http://msdn.microsoft.com/en-us/library/aa480060.aspx
http://msdn.microsoft.com/en-us/library/aa480060.aspx
mailto:charliealfred%40comcast.net?subject=

32 The Architecture Journal 23

Summary

This article describes the scenarios in which UML or
DSLs should be used, and how each can be effectively
integrated with the other.

Introduction
The release of Microsoft Visual Studio 2010 Ultimate marks the first
time that architects will have a set of UML and DSL modeling tools in
the same development environment. While the concepts of UML and
DSL modeling have been around for a long time, this is the first tool
release that effectively combines them in one product and enables
rich integration among multiple models.

Yet, it was not long after the new UML capabilities were
announced that a debate ensued over which modeling tool is superior.
This debate, however, is perhaps as meaningful as a humorous scene
from the US television program The Office:

Jim Halpert: “Question. What kind of bear is best?”
Dwight Schrute: “That’s a ridiculous question.”
JH: “False. Black bear.”
DS: “That’s debatable. There are basically two schools of thought...”
JH: “Fact. Bears eat beets. Bears. Beets. Battlestar Galactica.”
DS: “Bears do not... What is going on?! What are you doing?!”

A debate about what is the “best bear” is meaningless. Along the
same lines, this article will show that there is no “best” between UML
and DSL. Just as the polar bear and the black bear are both best-
suited for their particular environments, so, too, do UML and DSL have
their unique strengths towards a particular problem space.

This article will not try to state which tool is “best”; instead, it will
describe the scenarios in which UML or DSLs should be used, and how
each can be effectively integrated with the other.

Where Is UML at Microsoft?
Just about every software architect and developer has at least some
familiarity with the Unified Modeling Language (UML). Created by
Rumbaugh, Booch, and Jacobsen as a means to hasten the adoption
for object-oriented technologies, UML 1.1 was proposed to and
accepted by the OMG in 1997. Since that time, UML has evolved
into its current form of version 2.2. Yet, for these past 12 to 13 years,
developers and architects who work within the Microsoft suite of tools
were resigned to call upon Microsoft Visio or third-party software
to try to reap the rewards that the uniformity of UML promised. The
lack of UML tooling and support in Microsoft’s main development

environment, Visual Studio, has been a void that many architects and
developers have long wished was filled.

Instead, Microsoft provided a rich authoring environment for
graphical domain-specific languages when it released the Domain-
Specific Language (DSL) Tools capability with Visual Studio 2005. The
Visual Studio 2010 Ultimate release adds—among other things—
the ability to have DSL diagrams interact with each other and with
UML diagrams. It also adds UML 2.x–compliant (or “logical”) class,
component, activity, sequence, and use-case diagrams.

Keen observers might be quick to point out that this is not a
complete list of UML 2.x diagrams. UML 2.2 defines 14 types of
diagrams, 7 of which are a type of structure diagram (such as the
class and component diagrams) and 7 of which are a type of behavior
diagram (such as the activity, sequence, and use-case diagrams).
However, the included diagrams cover the most used features of
UML, and the underlying modeling framework allows for the dynamic
addition of more diagrams with a later release, service pack, or power
tool.

Which Modeling Technique Should I Use?
Using Visual Studio, architects have been creating custom visual
designers that are specific to particular domains and generating
code and other artifacts from them since DSL Tools was introduced.
Until now, however, if a custom designer were needed to help model
a particular domain, there was not much choice; DSL Tools was the
only way to go. Even if they just wanted a state diagram with a code
generator, they had to create a custom DSL. Some customers were
reinventing UML-like designers by using DSL Tools.

Now, however, with the introduction of the UML diagrams—and
the flexibility to not only extend the design surface for them, but
also to generate artifacts from them—should we infer that Microsoft
will no longer be encouraging development of custom DSLs? Should
focus be moved from developing custom DSLs to extending the
UML diagrams that ship with Visual Studio? After all, the great thing
about the introduction of these new UML features is that it opens
up new possibilities; it allows for the creation of models and artifacts
that were, at best, nontrivial to create in the past. But with these
new possibilities comes the need to make a choice. When should we
extend the capabilities that are provided with the UML designers, and
when should we look to create entirely new DSLs?

For architects, Table 1 on page 33 describes the essential differences
between the two approaches.

If architects want to specify the usage of their modeling tools by
development teams, the comparison is different. This might happen if
the architect has defined a standard architecture that is to be followed
by development teams and the architect wants them to create models

UML or DSL: Which Bear Is Best?
by Len Fenster and Brooke Hamilton

33

UML or DSL: Which Bear Is Best?

The Architecture Journal 23

of each instance of the architecture. For
example, an architect might define a pattern
for creating Web services, and then give
development teams a set of modeling tools
for creating each individual Web service.

Tables 1 and 2 highlight important
distinctions between the two approaches.
When we consider UML, we know that it:

•	 Has been a standard since 1997. With
more than a decade of broad use, UML is
a more standard (but less specific) way to
communicate ideas than a DSL.

•	 Was not created to satisfy the needs
of a particular development language
or platform. UML can describe object-
oriented concepts just as easily for a
system that is written in Java and runs on
Linux as for one that is written in C# and
runs on Windows.

•	 Has implementation costs that are lower
than DSLs at first, because the UML tools
are included in Visual Studio, while DSLs
must first be developed.

•	 Can be used to create approximate
descriptions of real systems when
the domain in question is not well
understood. As such, it is often used for
documentation.

DSLs, on the other hand have some
advantages over UML. For example:

•	 They do not contain unnecessary aspects
of what they are modeling. If you look at a UML model you might
find many diagrams—and many aspects of each diagram—that
have not been used for that particular model. DSLs tend to be
much more focused on the details of the domain in question and
use the terminology of that domain.

•	 The long-term cost of using a DSL can be much lower than with
UML, because DSLs are created to fit a specific domain, as opposed
to the work that a user has to do to apply general-purpose UML to
a specific purpose.

Scenarios
UML and DSL are both useful modeling techniques. However, it
is important to understand which scenarios make sense for which
technique.

Scenario 1: Using UML to Model a Problem Domain
The sweet spot for UML is modeling problem domains. In other
words, it is great for defining objects, their relationships, and their
interactions. These models do not have to be platform-specific, or
they can have platform-specific information applied via UML profiles.
This scenario, however, is certainly not a new concept for most
architects and developers, as they are used to seeing (and ignoring)
UML models that are used for documentation.

The fresh aspect of UML for modeling domains is that Visual Studio
2010 now puts UML models in the same solution as the code that
implements the models. Consider the difference between a model

that has been pasted into a document and a model that lives with the
code and defines the structure—the objects and their relationships—
of that code. It is true that previous UML tools (for example, UML
designers in Visio) allowed for the generation of code stubs, but the
key difference is that we can now connect the models directly to the
code. This allows changes in the model to be immediately reflected in
the code. Consequently, this changes a model from a documentation
annoyance to a useful abstraction that can be used for productive
discussions between architects and developers, and UML becomes a
forward-engineering tool instead of only a sketching surface.

However, for forward-engineering to work with UML, we have to
extend the model from the pure UML language specification to make
it more specific to the desired implementation. Choices are available
here. We can:

•	 Make assumptions in the code generators that translate the
nonspecific notation of UML into specific platform code.

•	 Apply a platform-specific profile, so that we can mark-up UML
diagrams with information about how we want the code to be
generated.

•	 Create additional platform-specific models that instruct the code
generators on how to apply the model to rendered code.

The simplest approach is to make assumptions in the code generator.
In the simplest cases, this will work fine. However, it falls apart when
the models get more complex, because you might need to specify

Table 1: Comparison of UML and DSL for modeling applications, from point of view of
architects

UML DSL

•	 Cost of initial implementation is lower:
•	 Five standard UML diagrams are

included in the box.
•	 Profiles must be authored.

•	 UML diagrams interoperate in known
ways (for example, class diagrams and
sequence diagrams).

•	 All valid UML notations are allowed, even
if they do not apply to the domain that is
being modeled.

•	 Cost of initial implementation is higher:
•	 A DSL language (meta-model and

notation) must be determined and
evolved.

•	 A designer (graphical, forms-based,
or textual) must be implemented with
the toolkit.

•	 Interoperability between DSLs must
be discovered and implemented.

•	 Language is constrained to the domain
that is being modeled.

Table 2: Comparison of UML and DSL for modeling applications, from point of view of
developers

UML DSL

•	 Models have standardized notation,
but rely on profiles, stereotypes, and
comments to add domain-specific
information.

•	 There is a variety of off-the-shelf tools.
•	 Design communication and

documentation is often the goal.
•	 Code-stub generation is commonplace.
•	 Over time, cost of use is higher.

•	 Models have domain-specific notation.
•	 DSLs are custom-built and custom-

tailored.
•	 Forward-engineering of working software

is usually the goal.
•	 Platform-specific code generation is

commonplace.
•	 Over time, cost of use is lower.

UML or DSL: Which Bear Is Best?

The Architecture Journal 2334

certain platform-specific attributes that do not exist in other cases.
Applying a profile is a simple, inexpensive way to add more platform
granularity to your UML models.

Figure 1 illustrates an example of this—a UML class diagram with a
C# profile. Of special note is how the C# stereotype extends the UML
with the Is Partial and Package Visibility properties, which helps us
to forward-engineer.

The third approach—creating additional platform-specific
models—makes sense when you need to keep the UML strictly
platform-independent. This is not a concern for most Windows
development, but is often needed for embedded systems or software
that is expected to have a long lifespan and will have to run on many
different platforms.

Scenario 2: Using a DSL to Model Variability in a Well-Known
Problem Domain
We use frameworks every day; and, often, the code that we write
against those frameworks is repetitive, with only minor variations.
This is the sweet spot for DSLs: abstracting the variability in boilerplate
code, and exposing that variability to the developer through simple
configuration in designers. A good example of this type of DSL is the
Microsoft Entity Framework. You can either write code directly against
the framework or use the DSL designer that is built into Visual Studio.
The designers are linked to code generators that inject the developer’s
configuration into boilerplate code to configure the APIs.

Scenario 3: Using a DSL to Configure a Domain
that Is Modeled in UML
This scenario is more complex than the previous two, but is a more
powerful and productive use of UML and DSLs together. Some
problem domains that you model in UML could be executed in a
variety of ways by using additional code at run time. For example,
you could use UML to describe a domain or framework for pricing
insurance policies. The domain might require configuration data
at run time, or it could be an API that is used by multiple insurance
programs that need to price policies. In addition, you decide to
provide tooling in the form of a DSL that makes configuring or
programming against your insurance-pricing domain easier. (A more
detailed example of this scenario appears at the end of this article.)

Another way to look at this scenario is that it combines Scenario 1
and Scenario 2, because you can create a framework by modeling
it in UML, and then create a DSL to improve the experience and
productivity of working with that framework. (See Figure 2.)

An important note is that the people who author the framework
and DSL are usually not the same as the people who are using the
DSL. In the insurance-pricing example, one group would likely be
responsible for the pricing API and DSL, and other groups would use
the DSL for creating pricing applications. The group that is using the
DSL would not need to interact with the UML models, because the
domain concepts that they need will be represented in the DSL.

Scenario 4: Using UML as a DSL
In fact, UML can sometimes be used as a DSL. For example, the Web
Service Software Factory Modeling Edition (also known as the Service
Factory) that was created by the Microsoft patterns & practices team
provides a set of commonly used DSLs with which many people are
familiar. For those who are not familiar with it, the Service Factory
provides a modeling environment that makes it easier for architects
to model Web services in a consistent way, independent of a
particular implementation (for example, ASMX and WCF). The Service
Factory then lets you configure specific implementation details (for
example, so that it can generate code that is specific to whether the
implementation is ASMX or WCF.)

Figure 3 shows the service-contract model DSL within the Service
Factory. The shapes in the DSLs of the Service Factory describe the
logical components of a Web service and generate multiple instances
of classes and interfaces that complete the desired technology
implementation (WCF or ASMX).

Figure 1: UML class diagram with C# profile Figure 2: UML and DSL within the same system

DSL

UML

Generated code or
configuration data

Partially
generated

code

Hand-
typed code

Figure 3: Service Factory service-contract model example

http://msdn.microsoft.com/en-us/library/bb931187.aspx
http://msdn.microsoft.com/en-us/library/bb931187.aspx

35

UML or DSL: Which Bear Is Best?

The Architecture Journal 23

Interestingly, this model looks very much like a UML class diagram—
which raises the question, “Could the new UML capabilities within
Visual Studio 2010 be extended to provide the same capabilities
as this DSL?” The answer is, “Yes.” Figure 4 illustrates how we have
extended the UML class diagram with a custom profile, to provide
some of the same functionality as that which is provided with the
Service Factory.

So, we know that we can create DSL-like capabilities by extending
the UML models in Visual Studio 2010. However, should we? This is
definitely the tougher question to answer; and, unfortunately, like all
difficult questions, the answer is, “It depends.”

Recall from Table 1 on page 33 that DSLs typically have a higher
cost associated with them for the creation of initial implementations.
One advantage for using UML like a DSL is that modeling with UML
can be used to prototype a DSL. Extending the UML models might
provide a lower-cost alternative for you. Later, when it is clear what
elements must go into a DSL, a DSL can be created by harvesting the
knowledge that is gained while using the UML model. In other words,
a general-purpose UML model that is applied to a specific purpose
can be used as the basis for creating a DSL at a later time.

If you do not need to expend a lot of effort to mold the UML to
fit your modeling needs, you might even be able to get away with
not having to create a DSL at all. Tread carefully here, however. We
all know that what starts out as a “little utility program” to serve only
a small purpose often grows into something much larger. The point
is that when you see that the cost of extending the UML models
to fit your needs exceeds or equals the cost of creating the same
capabilities by using a DSL, you should switch to the DSL.

Although the initial costs of using UML are lower than creating a
DSL, there are some other points that you should know:

•	 Users of the models have to understand how the UML elements
map to the domain concepts—making the models less clear in
how they describe their domain.

•	 Users of the models also might not be aware of which parts of the
UML apply to the domain and which are unnecessary.

Figure 4: Extended UML class diagram as service-contract model DSL
From Problem to Solution:
The Continuum Between Requirements and Design
by Christopher Brandt

Requirements do not describe a problem that is to be solved;
instead, they specify constraints on the design of a solution.
A solution is one answer to the question, “How do we do
this?”, where this refers to the problem that is to be solved.
Normally, there is more than one solution to a problem,
which means that requirements cannot be captured until
the nature of the solution is known. However, the nature of
the solution cannot be known without understanding the
problem. Therefore, identification of the problem must be
the first step when we are faced with a new challenge—be
it a new development project or an undesigned aspect of a
solution. Next, the nature of the solution can be determined;
then, requirements can be specified, so that finally the
solution can be designed.

Starting with requirements before understanding the
problem will bias the form of the solution, which kills
creativity and innovation by forcing the solution in a
particular direction. When this happens, other possibilities
cannot be investigated. This is a mistake that can be made,
regardless of the process that is being used. Unfortunately,
describing the root problem in an unbiased, abstract
statement is not an easy task; it requires all members of the
team to step back from their own biases of the solution’s
form. Each person must challenge the constraints that
are implied by the statement of the problem that is being
crafted. This is done by simply asking questions about what is
really needed.

The endgame is a set of statements—each of which
has just enough constraints to describe a problem, but not
enough to bias the solution unnecessarily. From here, the
best form of the solution can be determined by the right
people.

From this point on, the requirements and design can
be advanced in sync—with the requirements feeding the
design and the design bringing out more questions about
the solution and its requirements. A development process
can be viewed as a knowledge-transfer process. The product
owner transfers knowledge of the problem to a design
team. In response, the design team transfers knowledge of
the solution back to the product owner. Each iteration is a
cycle of knowledge transfer, where the entire design team
advances its understanding of the solution and how it got
there. The product owner and designers must have a good
working relationship, because they are all designing the
solution.

A full version of this article is online and available at
http://xb-log.blogspot.com/2010/01/problem-to-solution-
continuum-between.html.

Christopher Brandt (xtopher.brandt@gmail.com) is the
Systems Architect at Moneris Solutions. He has been working
on loyalty-transaction processing for 11 years.

http://xb-log.blogspot.com/2010/01/problem-to-solution-continuum-between.html
http://xb-log.blogspot.com/2010/01/problem-to-solution-continuum-between.html
mailto:xtopher.brandt%40gmail.com?subject=

UML or DSL: Which Bear Is Best?

The Architecture Journal 2336

•	 Code generators are more complex to write, because they have to
traverse the standard UML model to get to the profile elements.

For example, in our conversion of the service-contract DSL, we
must search for classes that match specific stereotypes to obtain
the specific instance that we want, instead of just using the domain
model that a DSL provides.

•	 With UML, code generators bear the primary responsibility for
validating the model by throwing exceptions back to the user
when they create models that are invalid for the domain.

Model validation should be the responsibility of the model
itself. In a simple DSL, the relationships that are defined take care
of a lot of this for you. In a more complex DSL, you can create
validation rules that run in the model to help the user transition
from invalid to valid states.

Practical Example of DSL and UML Working Together
Recently, the authors of this article have been working with the ASPEN
Program (Advanced Software Productivity Environments) at Raytheon
Company, an American defense contractor, to implement a software
factory for creating message-exchange services. A message-exchange
service is a component that receives external messages, transforms
the messages into internal message formats, and then publishes
the messages to internal receivers. For the purposes of this article,
let us simplify the example a little, so that you can focus more on

understanding how UML and DSL can work together and less on the
specific problem domain.

Raytheon creates message-exchange services with many of its
systems; until now, however, each service was hand-coded to deal
with different message formats, transport protocols, and platforms.
However, the fundamental design of the services is common to all of
them; therefore, there is an opportunity to create an abstraction, if we
can remove the dependency of each message-exchange services on a
particular platform and a particular set of messages.

The development process started with analysis of the execution
domain, using platform-independent UML models. The behavior of
the model was implemented in action language. (Action language is
an implementation of UML standard action semantics for specifying
behavior in models.) Platform-specific models were used to map UML
and action-language concepts to the target language. A set of code
generators was used to transform the models into both Java and C++
code. More target platforms will be added when the need arises.

An executable message-exchange service requires configuration
information to specify which messages are being mapped and which
transport protocols to use. The configuration is supplied in XML. To
facilitate the creation and consistency of this XML configuration, the
factory authors created DSLs to represent it. One DSL was created to
import or create messages; another was written for message mapping,
and to specify transport protocols and message publish/receive

Architecture Modeling:
Necessity, Connectivity, and Simplicity
by Neelesh Wadke and Mayank Talwar

Simply defined, software architecture is a blueprint of the complete
system—depicting the subsystems and/or components, along
with their intense coordinated interactions. An architecture model
should not be just a relic that would be created during the design
phase and then lose the sync with the implemented system. The
ever-changing present demands continuous synchronization of the
requirements, design, and its implementations. It is essential that this
happen at every stage of the software-development life cycle (SDLC),
starting from requirements gathering and interaction with various
stakeholders.

With many intelligent and sophisticated development
environments being released for better management of software
development, the industry has realized the need for facilitating an
architect with more powerful tools. It is essential that an architecture
model should connect effectively all of the interdependent SDLC
phases and act as a focal point in application life-cycle management
(ALM). The Ultimate Edition of Microsoft Visual Studio Team System
2010 can make software-architecture modeling more simple,
structured, and reliable.

In Visual Studio Team System 2010, the requirements of a software
system can be well documented by using the newly supported UML
diagrams. Various diagram entities can be linked to work item(s) in
Team Foundation Server (TFS) and further tracked to proper closure.
This helps in achieving requirement traceability throughout the life
cycle. The UML use-case diagram provides a feature to add links to
relevant artifacts. The UML component diagram allows you to create
components/subcomponents with appropriate dependencies and

expose both Provided and Required interfaces. The UML class diagram
can be used to further design these interfaces and classes. The UML
sequence diagram can be generated by using the entities from the
use-case, component, and class diagrams.

In addition to all of these diagrams, Visual Studio Team System
2010 also supports the activity diagrams. Using the layer diagram,
the components of an architecture can be categorized and grouped
into application layers. By using reflection and analyzing the call
stack, the layer diagram can identify the dependencies between these
layers intelligently. Furthermore, one can also use the layer diagram
to validate the architecture and ensure that the dependencies are not
violated by any calls that are against the proposed design.

Model Explorer helps an architect view all the modeling projects
and the entities that are present in a solution. The Generate
Dependency Graph feature of Visual Studio Team System 2010
Ultimate Edition is like a boon to the community, as it will allow
checking of the intensity of the dependency between classes,
namespaces, and assemblies.

Thus, innovation and technology together have played a vital role
in bringing in a lot of sophistication and simplicity in modeling.

Neelesh Wadke (Neelesh_Wadke@infosys.com) is a Principal with
the Education and Research group of Infosys Technologies, Ltd. He
has worked in the field of Software Education for almost 10 years and
gathers an overall experience of over 14 years.

Mayank Talwar (Mayank_Talwar@infosys.com) is an Associate with
the Education and Research group of Infosys Technologies, Ltd. He
is an MCTS: Microsoft Team Foundation Server Configuration and
Development.

mailto:Neelesh_Wadke%40infosys.com?subject=
mailto:Mayank_Talwar%40infosys.com?subject=

37

UML or DSL: Which Bear Is Best?

The Architecture Journal 23

information. Developers do not interact with the UML models when
they are using the factory.

The following steps summarize the process that is used to create
the factory:

1.	 Platform-independent models were created by using UML and
action semantics.

2.	 Platform-specific models and code generators were used to
generate executable code on chosen platforms.

3.	 DSLs were created to allow a developer to describe the desired
message-handler configuration.

From the perspective of the developer who is using the factory to
create a message-exchange service:

1.	 Create a new instance of the message-exchange service factory.
2.	 Use a set of DSLs for configuring messages, message mapping, and

transport protocols.
3.	 Execute a build, which triggers the generation of configuration files

and the packaging of an executable message-exchange service.

According to Peter DeRosa, program manager for Raytheon’s ASPEN
effort, “Working with Microsoft and the Visual Studio team, ASPEN
has set aside the ideological modeling debates in pursuit of concrete
production solutions that incorporate the benefits of both approaches
to deliver high-quality solutions and dramatically lower life-cycle
costs. Building on our existing strength with UML-based software-
production techniques, we are additionally applying DSLs to extend
the same rigor and results to domains and viewpoints that are not
easily represented with UML.”

Conclusion
Although the black bear is a generalist animal and can adapt to
numerous habitats, it would not do as well as the polar bear in the
arctic. The polar bear is specialized to thrive in the arctic. Each bear
has its own unique set of strengths that are specially purposed for its
needs. Such is the case with DSLs and UML. UML is a generalist; it can
be used for various purposes, from describing system requirements
to modeling a set of object-oriented domains and classes. DSLs have
the advantage of being very specific to their purpose—much more
specific than the general-purpose UML.

This article has tried to provide evidence as to why there is no
“best” modeling choice between UML and DSL, as each toolset has
its unique strengths. It has also illustrated how Visual Studio 2010
Ultimate can help combine these modeling techniques to create an
even more powerful modeling environment. Platform-independent
UML models, UML with platform-specific profiles, and DSLs can all
exchange data in order to provide a complete model of a system.
While UML and DSL are both models that allow us to raise the level
of abstraction, each lets us model different aspects of an application.
There is no “best.” And, if someone tries to debate you over the
subject, you should just reply with:

“Fact. Bears eat beets. Bears. Beets. Battlestar Galactica.”

Acknowledgements
The authors would like to thank Mike Cramer, Peter DeRosa,
Terri Potts, Jezz Santos, John Slaby, and Christof Sprenger for their
help in shaping and refining this article.

About the Authors
Len Fenster (lfenster@microsoft.com) is the lead solution architect
for .NET Development for Microsoft Consulting Service’s U.S. East
Region. During his 13 years at Microsoft, he has focused on helping
enterprises create robust applications that are based on Microsoft
technology. Most recently, Len has worked with the Microsoft patterns
& practices team on Microsoft Enterprise Library, and the Visual Studio
team on an integration solution between Microsoft Office Project
Server and Visual Studio Team System Team Foundation Server. Even
before his career with Microsoft, he led a global team of developers
and architects that built distributed applications that are based on
Microsoft technologies. Since the advent of .NET, Len has served as a
solution architect for Microsoft Consulting Services and has leveraged
his considerable experience to help enterprises incorporate .NET into
their own technology strategies and solution-development life cycles.

Len is the author of several technical articles, as well as Effective
Use of Enterprise Library: Building Blocks for Creating Enterprise
Applications and Services (Addison-Wesley Professional, 2006). He
speaks regularly to companies and at architecture forums about how
to architect solutions that are based on .NET and incorporate this
solution development into an overall SDLC.

Brooke Hamilton (brhamilt@microsoft.com) is a senior consultant for
the Civilian Federal Services Group of Microsoft Consulting Services.
He has over 15 years of experience designing and implementing
systems for several industry sectors, including petroleum, financial
services, nonprofit, healthcare, insurance, and government. Brooke
specializes in raising abstraction levels through model-driven
development and using models to connect business customers to
their software. His current project involves implementing software
factories and lean development practices for Raytheon.

mailto:lfenster%40microsoft.com?subject=
mailto:brhamilt%40microsoft.com?subject=

38 The Architecture Journal 23

Summary

Models can help you explore existing code and discuss
new designs; clarify users’ needs and define tests; and
be used to generate some of the code. This article
shows how working with models will help you in an
agile project.

Introduction
Modeling is a valuable tool for an agile team. A model is a view
of a chosen aspect of your application, such as the sequence of
interactions among components; the business activities of users; the
language of user concepts and relationships that is ubiquitous in the
design; or the dependencies among different parts of the code.

Models are developed along with your stories and code
throughout your project. You use modeling as an additional tool
to complement good practice in agile
development.

Models can help you:

•	 Explore existing code. Generated
diagrams of the interactions and
dependencies in the existing code help you
understand its structure, discuss proposed
changes, estimate costs, and create tests to
drive the development.

•	 Understand users’ needs more clearly.
Agile practice requires early and frequent
demonstration of working software to
ensure that the actual needs of users are
met. In addition, models of activities and
concepts in the user world help you raise
important questions at an early stage in
each iteration.

•	 Refactor code frequently without loss
of structure. A well-planned incremental
product backlog results in the code being
repeatedly refactored and extended. Unit
tests protect against the introduction of
bugs, but not against misplaced methods
and dependencies that gradually make the
code difficult to change. Using layer models,
you can define the expected dependencies
in your code and validate the code against
the model at every check-in.

•	 Discuss and communicate about your code. Models make it
easy to visualize and discuss the components, interactions, and
design patterns in the code. This is especially important in a
geographically dispersed team.

•	 Define tests. Models provide a reliable framework for a
comprehensive set of acceptance or component tests.

•	 Generate code. You can respond very rapidly and reliably
to changes in user requirements by generating code from a
model. This is particularly important for product lines of similar
applications, as well as for generating frequently used patterns.

This article illustrates each of these uses. The tools that are discussed
are available in Microsoft Visual Studio 2010 Ultimate.

Exploring Existing Applications
Many—perhaps most—software projects update an existing
application. Often, the original developers have moved on, so that

Modeling in an Agile Context
by Alan Cameron Wills

Figure 1: Dependency graph of code, in which each node can be expanded

39

Modeling in an Agile Context

The Architecture Journal 23

the first task is to find your way around the
code. You will want to identify the places in
which changes are required, and then find
out how far the consequences of the changes
will propagate, so that you can estimate costs.
As an agile developer, you will also want to
construct unit tests for the existing code to
keep it stable through your updates. To do so,
you will need to identify the functions of each
object and understand how they interact.

Visual Studio’s Architecture Explorer is
a versatile browser that can navigate many
relationships, such as containment, calling,
and dependency among elements of your
code. You can build up diagrams of the areas
in which you are most interested. On the
diagram, you can group elements together,
filter what is visible by various criteria, and
highlight “bad smells” such as dependency
loops. You can also double-click a node to
see its code (see Figure 1 on page 38).

After a succession of hurried changes by
different developers, the structure might be
somewhat obscure. Even well-written code
can be difficult to follow, as control bounces
among different objects with well-separated
responsibilities.

However, a clear overview is easy to
obtain. Place the cursor on a method, and
select Generate Sequence Diagram. The
method’s calls and their calls will be laid out in
a diagram, to whatever depth you desire. Now,
you can see what is happening and can edit
the diagram to discuss different proposals for
improvement (see Figure 2).

Stabilizing Architecture Through Many
Increments
Agile projects minimize risk by developing
in many small increments, integrating and
testing the application after each increment.

Automated unit tests are very important to avoid building up bugs.
However, although these tests catch functional errors, they do not
verify the structure of the application.

A well-structured graph of dependencies among the parts of
an application is essential to an agile development, as it allows the
program to be changed easily when the users’ needs change. Through
multiple increments, however, it is easy for developers to lose sight of
the original design. A method that is placed in an inappropriate class
will often work, but at the same time introduce dependencies that
make it more difficult to adapt the application at a later date. Over
time, this architectural debt reduces the adaptability of an application
to requirements that have changed and can shorten the lifetime of the
product. Validation against layer diagrams helps the team avoid this
kind of mistake.

A layer diagram shows the major parts of the application and the
dependencies among them. It leaves out the details of how the parts
work and how they interact, and it shows the same information as the
traditional software-block diagram (see Figure 3).

Layer diagrams are also a powerful tool for ensuring that the
code actually conforms to the architecture—and that it stays that

Figure 2: Sequence diagram, generated from code

Figure 3: Application structure in layer diagram

Modeling in an Agile Context

The Architecture Journal 2340

way. When you draw a layer diagram in Visual Studio, you can assign
groups of classes from your code to each layer. You can then run a
validation tool that verifies that the dependencies in the code actually
follow the arrows that you have drawn in the model.

Layer validation can be added to your check-in tests and
continuous integration build. This means that you can ensure that
future changes always conform to the architecture; no one can
inadvertently introduce new dependencies among the major parts,
without first updating the layer model.

Models of Users’ Needs
Agile teams work closely with business stakeholders throughout
the project to ensure that their needs are correctly understood and
that changes during the project can be taken into account. Working
software is demonstrated at the end of each iteration. Part of the
motivation for this practice is that user stories are usually ambiguous
and inconsistent, especially if the customer’s business domain
is unfamiliar to the development team. Nothing disambiguates
requirements like working code.

Working with a model of users’ needs can also help expose
important issues—often, within the first day of discussion. Models can
be very effective at describing complex relationships and behaviors—
clarifying ambiguities and revealing inconsistencies. Therefore, they
are a very effective complement to user stories.

A domain class diagram is a central part of a requirements model.
It describes the principal concepts and relationships in the world of
the users (see Figure 4).

Notice that the example in Figure 4 is not directly a class diagram
of the software solution, which might represent these relationships in
different ways. Instead, it presents a vocabulary with which you can
write user stories:

The customer chooses a Menu from which to construct an Order,
and then creates Order Items in the Order by selecting Menu
Items from the Menu.

Misunderstandings about user requirements can frequently be traced
to misunderstandings about the detailed meanings of words. For
example, the difference between an item on an order and an item on
a menu can be unclear without the diagram. When requirements are
being discussed with business stakeholders, it is important to expose
those differences.

Creation of the model helps you ask questions of your business
customers that you might not otherwise have asked until much
later in development. Standard techniques include asking about the
cardinalities (“Can a Menu Item appear on more than one Menu?”)
and about loops in the diagram (“In any Order, are all the Items from
the same Menu?”). The answers to this type of question can be added
as annotations to the diagram.

Dynamic View
Another useful aspect of a business model is the activity diagram.
Once again, the objective here is to describe what users see, instead
of anything that happens inside your software (see Figure 5).

Activity and class diagrams are two views of one model, describing
dynamic and static aspects of user stories. One can be described in
terms of the other: The Choose Menu action represents what the user
does in creating an Order against a chosen Menu; the Select Menu
Item action represents the user creating an Order Item that specifies a
quantity of a selected Menu Item; and the Pay action reminds us that
we have not yet described the concept of prices and, thus, prompts
further questions to business customers.

Conversely, asking what instantiates or changes each class and
relationship on the class diagram prompts further questions to clarify
the requirements (for example: “How do Menus and Menu Items come
into existence? Do restaurants have their own user interface to update
these items?”).

Spike or Asset?
Is a requirements model just a sketch that you throw away after the
first iteration? We recommend not, for several reasons:

•	 At the start of each iteration, you revisit and elaborate the stories
that will be developed in that iteration. To help with this, you can
add more detail to the corresponding aspects of the requirements
model.

In fact the model that you create at the start of the project
should not be large or detailed. Remember that requirements
can change during the project. The time to add detail is when the
iteration for implementing a particular story arrives, and you want
to clarify that requirement.

•	 Much of the value of a business model is in its role as a glossary
of terms. The value is lost if the document is discarded. It is useful
to build it up through the project—relating new or more detailed
concepts to the basic ones.

Figure 4: Concepts and relationships in language of users

Menu Order

Menu Item Order Item

Menu

Contents

Chosen Menu Orders

Order Items

1

1 *

1 *

Order 1

* *Items

Menu Item

Attributes
+ quality : Integer

Operations

Figure 5: Workflow in activity diagram

act Order a Meal

Choose Menu

Pay

Select Menu Item

41

Modeling in an Agile Context

The Architecture Journal 23

•	 Requirements models are the basis of system tests and, in some
cases, can be used to generate part of the code.

Requirements Models and System Tests
You can use a requirements model as a basis for system tests—making
a clear relationship between the tests and the requirements.

When the requirements change, the relationship helps you update
the tests quickly and correctly. This ensures that the system meets the
new requirements. In Visual Studio Team System, tests are represented
as “work items”—that is, records in the shared project-management
system. Furthermore, you can link any element in a UML model to any
work item, such as a test. When any part of the model changes, the
model will help you locate the tests that are related to it.

The structure of the model helps you ensure that you have written
tests for each important aspect. You should write tests to cover each
user story. However, you can verify that all aspects have been covered
by crosschecking with the model:

•	 There should be at least one test that involves the construction of
each type or association (such as Menu Item and Order Item) and
at least one test that involves their destruction.

•	 There should be at least one test for each action in the business-
activity diagrams.

•	 There are some tools such as Microsoft Spec Explorer that can
accept a state model and produce tests from it automatically.

•	 Tests should verify that the static constraints of the model are
always satisfied—for example, that the items on an order are all
from the same menu.

•	 You should base test definitions—whether manual or automated—
on the requirement types (such as Order and Menu).

This last practice helps you keep the tests more accurately in step with
requirements changes. For manual tests, adhere to the vocabulary of
the requirements model in your test scripts.

For automated tests, use the requirements class diagrams as the
basis for your test code, and create accessor and updater functions
to link the requirement model to the implementation code. For
example, in your requirements model, you might have LibraryDVD
and LibraryMember classes, an optional onHireTo association between
them, and a HireDVD use case whose definition simply states that an
onHireTo link must be established between the DVD and the library
member. However, the implementation is much more complex;
this information is represented in several database relations; and
performing the use case requires several steps in the Web site, as
well as the warehousing and accounting subsystems.

To test the use case in terms of the requirements model,
implement an API that retrieves the onHireTo relation from its
complex internal representation and can simulate the steps of the use
case on the various subsystems. Then, you can run a test of the use
case by checking that a DVD does not have the onHireTo link, invoking

Clash of the Illuminati
by Michael G. Miller

Enterprise-architecture and system-development groups often act
as Illuminati (that is, groups that claiming to have received special
enlightenment) and believe that their particular approach to systems
development is the only correct one. Often, these groups clash
because their views toward development are polar opposites.

Enterprise architecture takes a long-term view towards software
development—concentrating on operations stability and ensuring
that software development adheres to enterprise architectures and
standards. Software-development project groups take a short-
term view—with a focus on speedy software completion and
implementation.

These groups clash by using gates that are placed at the end of
software-development steps, to curtail their variance from existing
architectures and standards. However, a better approach to software
can be applied that benefits both parties.

Instead of gates at the end of each development step, perhaps an
“accelerator” can be placed at the beginning of each step by reviewing
the system-development efforts with existing enterprise architectures
to accelerate development through the reuse of existing architecture
components, such as existing process and data models, or entity
definitions and data formats. In this approach, software development
avoids “reinventing the wheel” through the development process; and
enterprise architecture enters at the beginning of each step, instead of
at the end.

This “enlightened approach” puts enterprise architecture in
the position of a “swim coach” who provides techniques to speed
development efforts, instead of a “border guard” who inhibits
development efforts from moving to the next step. This approach
provides a “win-win” for architects, developers, and (ultimately)

the end customer by reducing costs, speeding development, and
enhancing the quality of final deliverables that are more efficiently
and effectively aligned to existing enterprise architectures.

In his book Out of the Crisis: Quality, Productivity, and Competitive
Position (Cambridge, MA: MIT Press, 1982), W. Edwards Deming states
that we should “cease dependence on inspection to achieve quality.
Eliminate the need for inspection on a mass basis by building quality
into the product in the first place.” We can build quality into the
systems-development process by introducing enterprise architecture
at the start of each step, instead of at the end.

This approach provides a:

•	 Better way to manage the relationship between enterprise
architects and software developers.

•	 Pain reliever to development-step walkthroughs and gates—
speeding passage to the next development step.

•	 “Win-win” approach to accelerate deliverables through each
software-development life-cycle step and enhance overall system
quality.

For more information on this approach, see the author’s enterprise-
architecture blog at http://1enterprisearchitect.wordpress.com/.

Michael G. Miller (1enterprisearchitect@gmail.com) is an Enterprise
Architect consultant who is now concentrating on Mobile Enterprise
Architecture. He has over 30 years IT experience and holds
Master’s Degrees in Business Administration, Project Management,
Telecommunication Management, and Information Systems
Management.

http://1enterprisearchitect.wordpress.com/
mailto:1enterprisearchitect%40gmail.com?subject=

Modeling in an Agile Context

The Architecture Journal 2342

the HireDVD use-case
simulation, and checking
that the DVD and library
member are now linked by
the onHireTo relation.

In this way, the
requirements model is the
central definition of the
tests. Visual Studio allows
you to generate code from
models, so that you can use
the model to generate the
skeleton of the tests.

Design Models
In a large project, several
different parts of the
application are generated
in parallel. Continuous
integration verifies that
they work together. To
help bring this about, it is
important for the developers
to understand the interfaces
of each component and how
they fit together. For this
purpose, use:

•	 Component diagrams to show the components and their
interfaces, and how they are wired together to make larger
components.

A component can be anything from an individual object to
a substantial system, and the connectors between them can
represent method calls, event signals, Web service calls, or even
motorcycle couriers.

•	 Activity diagrams, divided into swim lanes for each component
part and external actor—showing how the components share
the work.

•	 Interaction diagrams, with a lifeline for each component part.
•	 Class diagrams to describe the types that are visible at the

interfaces of the components and that are transmitted among
components.

In UML component diagrams, you can show required interfaces
as well as provided interfaces (see Figure 6). This allows you to
represent a component that is separable from the components that
use it as well as the components that it uses. A clear understanding
of this separation is important for the developers to be able to test
the component in isolation—using mock objects to plug-in to the
required interfaces.

Just as with the requirements models, models of the components
should be no more detailed than what is useful at each iteration.

Models are also useful to help describe recurrent patterns. Just
as the Observer pattern (for example) is applicable to a wide variety
of applications, many projects find configurations of objects that are
useful for their particular purposes.

Product Planning
In agile parlance, the product backlog is the list of stories that
will be implemented in each iteration. Each iteration delivers a
working (although limited) system—representing a slice through

the functionality of the system and touching on more than one
user action. A user action (such as selecting from the menu) can be
introduced in a basic form in one iteration, and then extended in
successive iterations. Each iteration can introduce several new actions
or extensions. This approach assures us at an early stage that the
design fits together, and allows time for stakeholder feedback to be
accommodated.

Using Visual Studio Team System, you can record stories and other
work items. Developers update work-item states as development
progresses, and you can obtain burn-down charts and other progress
reports.

You can also link work items to elements on the model—for
example use cases or activities—so that you can keep track of the
state of development of each story.

A use-case diagram is useful to help envisage and discuss the
product backlog. In this interpretation, rectangular subsystem shapes
are used to represent successive iterations in the plan. The use-
case ellipses represent user actions or their extensions that are to be
implemented in each iteration (see Figure 7 on page 43).

The diagram in Figure 7 shows clearly the dependencies between
user stories, so that you can see easily whether moving a story to a
different iteration will mean that you have to move another story
that is dependent on it. The plan shows clearly how the stories are
grouped and when they will be delivered.

You can also link sets of tests to the appropriate use-case shapes.
These tests effectively define the meaning of each use case: The use
case has been implemented when its tests pass.

Generating Code from Models
From a model, you can generate program code, schemas, documents,
resources, and other artifacts of any kind. In the basic method, you
write text templates that interrogate the model by using the UML
API. A more specialized toolkit is available in the Visual Studio 2010
Architecture Power Tools. Models usually generate only parts of your

Figure 6: Component diagram showing parts and their wiring

Web Browser

«component»

Customer Website

PaymentAuthorization MealOrdering KitchenWorkQueue

MealOrdering

Kitchen Website

Payment Authorization

HTTP

Sales

DinnerNow Web Service

«component»

Customer Web Server :...

Kitchen Server :...

43

Modeling in an Agile Context

The Architecture Journal 23

code, so that it is essential to use techniques such as partial classes
that allow you to mix handwritten code with code that is generated
from one or more models. (Never edit generated code! You want to
be able to update the model and, thereby, update the code.)

Code generation allows you to respond to requirements changes
rapidly, because the model is closer to how the requirements are
expressed.

Here are some examples:

•	 Product lines—Fabrikam, Inc., builds and installs airport
baggage-handling systems. Much of the software is very
similar between one installation and the next, but the software
configuration depends on what bag-handling machinery is
installed and how these parts are interconnected by conveyor
belts. At the beginning of a contract, Fabrikam’s team discusses
the requirements with the airport management and captures the
conveyor-belt plan by using a UML activity diagram. From this
model, the team generates configuration files, program code, and
user guides. They complete the work by manual additions and
adjustments to the code. As they gain experience from one job to
the next, they extend the scope of the generated material.

•	 Patterns—The developers in Contoso, Ltd., often build Web sites.
They design the navigation scheme by using UML class diagrams,
in which classes and associations represent Web pages and

navigation links. Much of the Web-site code can be generated.
Each Web page corresponds to several classes and resource-
file entries—conforming to a uniform pattern. The result is more
reliable and flexible than handwritten code.

•	 Schemas—Humongous Insurance has thousands of systems
worldwide. These systems use different databases, languages,
and interfaces. The central architecture team publishes models
of business concepts and processes internally. The diagrams
make it easy to discuss the designs. From these models, local
teams can generate parts of their database and XML schemas,
C# declarations, and so on.

Custom Modeling Languages
In the preceding examples, each company has a very specialized use
for its models. Although a baggage track can be represented by using
an activity diagram, a proper baggage-track notation would be much
better. Visual Studio supports two alternative approaches:

•	 Customize a UML diagram by using stereotypes. Stereotypes
allow you to differentiate different types of element—for example,
to distinguish check-in desks from X-ray stations—and allow you
to record additional attribute values in each element.

•	 Design your own domain-specific language (DSL). If you do a
lot of work in the target domain, the additional effort might well
be worth the more specific adaptation to your needs.

Figure 7: Using use-case diagram to plan iterations

View menus

«extend»

«extend»

«include»

«include»

«include»

«include»

Provide menu and restaurant details

Release 3 - multiple restaurants

Customer

Restaurant

Provide location and delivery range

View menus of local restaurants

Release 4 - local restaurants

Choose menu

Order meal

Confirm order

Select menu item

«subsystem»

Release 2 - one menu
«subsystem»

«subsystem»

Modeling in an Agile Context

The Architecture Journal 2344

The Visual Studio SDK also allows you to design menu commands,
validation tests, and toolbox items for both of these types of model.
You can also build Visual Studio extensions that integrate diagrams
together and couple them to external resources such as databases.

Conclusion
Models work well in an agile context. They are not about big upfront
design, but are developed along with your stories and code. Models
can help you explore and refactor an existing system, clarify users’
needs at an early stage, and discuss and communicate many aspects
of your code. They can act as a solid framework for tests to help
ensure that everything is covered. You can specialize the Visual Studio
modeling tools to your own needs, including the ability to generate
code from them—which can make your response to requirements
changes very agile, indeed.

Acknowledgments
Thanks to David Trowbridge, Jamie Cool, Steve Cook, Peter Provost,
Stuart Kent, and Cameron Skinner.

Further Reading
Visual Studio Team System. “Modeling the Application.” Microsoft
Developer Network (MSDN).

Visual Studio Team System. “MSF for Agile Software
Development v5.0.” MSDN.

Evans, Eric. Domain Driven Design: Tackling Complexity in the Heart of
Software. Boston, MA: Addison-Wesley, 2004.

Ambler, Scott W. “Agile Modeling.” Agile Modeling (AM) Home Page.

About the Author
Alan Cameron Wills (alan.wills@microsoft.com) is a programming
writer in Microsoft, who works on modeling and process-support
tools. He has been a developer on the Domain-Specific Language
and process-guidance teams. Before joining Microsoft, Alan was a
consultant in UML and agile development.

Combining Client and Provider Methodologies
in Custom Software Development
by Henry Rosales-Parra

The situation: You are part of a custom software-development
company that is using a certain methodology to deliver your projects.
On the other hand, your client has its own in-house software-
development methodology that is tightly coupled with a project-
management discipline, and without a chance of being overlooked.
How can you cope with this situation?

Here are some useful tips:

•	 Try to negotiate adjustments to make certain methodology
components flexible on both ends. Sit down with your client,
and conduct a review of the procedures. Sometimes, you can gain
additional know-how from your client and introduce new elements
or changes into your methodology. Be sure that the resultant set of
parts of the methodology is known and approved by both parties.

•	 Follow a simple right-hand rule. Allow changes in your
methodology if they make the requirements clearer, ease technical
decisions, decrease development times, or increase the quality
of the software. Take into account how changes in methodology
affect your budget.

•	 Involve the client in architectural decisions, but only if
necessary. First, be sure that you have all functional requirements
and technical information; then, make the appropriate decisions.
If the client is required to be part of the architectural decisions,
anyway, do not forget that your mission is to provide solutions;
therefore, come up with well-studied options.

•	 Do not fall into the excessive-documentation trap. Avoid
allowing your project to become a “documentation project.”
Allow documents to be a foundation, instead of an objective.

•	 Do not allow any quality process to be removed. These are
not optional. Allow the client to take part in testing procedures,
but preferably with the purpose of checking that all requirements
are covered. Usually, allowing the client to be involved in “bug
hunting” is counterproductive if the process is not well-understood
as part of a stabilization phase.

•	 Do you use an agile methodology, but your client counts
on a more formal approach? Let the formal envisioning and
design-phase deliverables be the input of your agile-development
sessions. In the development phase, introduce the concept of
“requirements micro-segmentation”: Convert groups of formal
requirements into mini agile projects—for example, creating
a chain of fully built components/modules and conducting
additional testing sessions at the end of one or more blocks of
requirements. Performance of one or more deployment sessions
would depend on the completeness of each developed block.

For more information, please visit my blog.

Henry Rosales-Parra (herosp@msn.com) is the Technology Manager
for Integra Tecnología, a Colombia-based software-development
company.

http://msdn.microsoft.com/en-us/library/57b85fsc(VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd380647(VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd380647(VS.100).aspx
http://domaindrivendesign.org/books#DDD
http://domaindrivendesign.org/books#DDD
http://agilemodeling.com/
mailto:alan.wills%40microsoft.com?subject=
http://www.rate10.com/blog/
mailto:herosp%40msn.com?subject=

subscribe at

www.architecturejournal.net23

http://www.architecturejournal.net
http://www.architecturejournal.net

	The Architecture Journal, #23, "Architecture Modeling and Processes"
	Contents
	Foreword

	Keeping Architectures Relevant: Using Domain-Driven Design and Emergent Architecture to Manage Complexity and Enable Change
	Evaluating Application Architecture, Quantitatively

	Software Architecture in the Agile Life Cycle
	Driving Efficiency and Innovation by Consistently Managing Complexity and Change
	Multiple-Contenxt Systems: A New Frontier in Architecture
	UML or DSL: Which Bear Is Best?
	Modeling in an Agile Context

