
Windows apps concept mapping
for Android and iOS developers

Version 1.0
04 / 20 / 16

MICROSOFT CORPORATION

1Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Introduction
This document defines how fundamental software development concepts map across to Android, iOS and Windows.
Developers new to Windows and familiar with Android or iOS will be able to use this reference guide to understand
how to work with Windows. The guide will include a master table which draws out the relationship between each pair.

The table rows will look like this:

Links to additional resources:
Developing apps for Windows
Windows apps concept mapping guide on MSDN
Downloadable PDF of this whitepaper
Windows developer Virtual Machines (VM)

As found in Android. As found in iOS. As found in Windows.Fundamental software concept.

Introduction

https://developer.microsoft.com/
https://msdn.microsoft.com/en-us/windows/uwp/porting/android-ios-uwp-map
http://aka.ms/UWPPortingGuidancePDF
https://dev.windows.com/downloads/virtual-machines

2Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

UI

UI

3Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Android Material Design guidelines
provide a visual language for Android
designers and developers to follow.

XML layouts, edited using Android
Studio or Eclipse.

Prebuilt view and view group classes
referred to as widgets, layouts, text
fields, containers, date/time controls
and expert controls.

Event handlers and event listeners are
added in XML or programmatically.

Design language.
A set of conventions that prescribe
how apps on the platform should look
and behave.

User interface markup language.
A markup language that renders and
describes a UI and its components.
Each platform provides an editor for
both visual and markup editing.

Built-in user interface controls.
Reusable UI elements provided by the
platform such as buttons, list controls,
and text controls.

Control event-handling.
Defining the logic that runs when
events are triggered within UI controls.

Human Interface Guidelines provide
advice for iOS designers and developers.

XIB and Storyboards edited using
Interface Builder inside Xcode.

Views and controls found in the Xcode
object library and listed in the UIKit user
interface catalog. Views include image
views, picker views and scroll views.
Controls include buttons, date pickers
and text fields.

Controls send action messages
to targets.

UWP Windows Apps Design shows
you how to create an app that looks
fantastic on all Windows 10 devices.
You will find UI design fundamentals,
responsive design techniques, and a full
list of detailed guidelines.

XAML, edited using Microsoft Visual
Studio and Blend for Visual Studio.

XAML platform

Create a UI with XAML

Define Layouts with XAML

The XAML platform provides you with
a generous set of built-in controls such
as buttons, list controls, panels, text
controls, command bars, pickers, media,
and inking.

Add controls and handle events

You can define methods to handle the
events of a XAML control in a code-
behind file attached to the XAML page.
Event handlers are always written in
code. But you can hook those handlers
to events either in XAML or in code.

Add controls and handle events

Events and routed events overview

UI

https://dev.windows.com/design
https://msdn.microsoft.com/library/windows/apps/xaml/mt185595.aspx
https://www.visualstudio.com/
https://www.visualstudio.com/
https://msdn.microsoft.com/library/jj171012.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt228259.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt228349.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt228350.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt228345.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt228345.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt185584.aspx

4Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

There is a Data Binding Library
provided, although it is still in beta.

Text labels, contentDescription and
hint values help ensure UI elements
can be found by automation. Android
Studio allows you to write UI tests
using the UI Automator and Espresso
testing frameworks.

Data binding.
A software design pattern that allows
your app UI to render data and
optionally stay in sync with that data.

UI Automation.
Programmatic access to UI elements,
making apps accessible to assistive
technology products and enabling
automated test scripts to interact with
your UI.

Changing the appearance of a control.
Editing size, color and other attributes. 	

No built-in bindings system exists on
iOS. Key-value observing can be built
upon to perform data binding, either
with the use of a third-party library,
or writing additional code. Controls
use a delegate/callback approach for
obtaining data.

The Automation instrument allows you
to write automated UI test scripts which
identify elements using the accessibility
settings or the element’s position in the
element hierarchy.

The UWP platform handles data binding
for you. You use the {x:Bind} markup
extension to take advantage of high
performance binding or {Binding} to
take advantage of more features. It’s
then just a case of configuring your
binding to choose whether the platform
uses one-way binding to display
values from a data source in your UI, or
whether it also observes those values
and updates your UI when they change
with two-way binding.

Data Binding

You get programmatic access to built-in
UI elements in UWP out-of-box with
UI Automation.

Custom Automation Peers allow you
to provide automation support for your
own custom UI classes. The Coded UI
Test Project in Visual Studio allows
you to automatically test your whole
application through the UI, or to test
the UI in isolation.

Controls have properties which can be
edited using the designer tool, in XML
markup or programmatically. 	

Controls have attributes which you can
edit using the Attributes Inspector in
Interface Builder or programmatically. 	

You can edit the properties of
controls in the XAML markup or
programmatically, using Visual Studio
and Blend for Visual Studio.

Add controls and handle events

UI

https://msdn.microsoft.com/library/windows/apps/mt204783.aspx
https://msdn.microsoft.com/library/windows/apps/mt204782.aspx
https://msdn.microsoft.com/library/windows/apps/mt210947.aspx
https://msdn.microsoft.com/library/windows/apps/ee684076.aspx
https://msdn.microsoft.com/library/windows/apps/mt297667.aspx
https://msdn.microsoft.com/library/dd286726.aspx#VerifyingCodeUsingCUITCreate
https://msdn.microsoft.com/library/dd286726.aspx#VerifyingCodeUsingCUITCreate
https://msdn.microsoft.com/library/windows/apps/xaml/mt228345.aspx

5Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Editing the visual structure of controls.
Customize the visual structure of a
control beyond just modifying properties
or attributes, e.g. moving the checkbox
text underneath the checkbox. 	

Built-in touch gestures.
Provide customized touch support by
handling high level abstracted gesture
events such as tap and double tap in
views and controls. 	

No simple method of editing the visual
structure of controls exists in Android. 	

No simple method of editing the visual
structure of controls exists in iOS. 	

To customize the visual structure of
a control, you can copy and edit its
control template in XAML markup.

Quickstart: Control Templates

Gesture detectors detect common
touch gestures including scrolling, long-
press, tap, double-tap and fling. 	

UIKit framework provides built-in
gesture recognizers which detect touch
gestures including tap, pinch, pan,
swipe, rotate and long-press. 	

UI elements allow you to handle static
gesture events including tap, double-
tap, right-tap and holding, as well as
manipulation gesture events including
slide, swipe, turn, pinch and stretch.
Gesture events are routed events
and can be handled by parent objects
containing the child UIElement.

Touch interactions

Custom user interactions - gestures,
manipulations, and interactions

Reusable visual styles.
Apply visual changes to a number of
controls, in a reusable format.

XML styles are sets of properties that
are applied to one or more controls. 	

iOS does not support reusable visual
styles out-of-box, but the UIAppearance
protocol allows multiple controls to
share common attributes. 	

You can create reusable styles, which
can be applied to multiple controls
and stored in a ResourceDictionary
for easy reuse.

Quickstart: Styling Controls

UI

https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.controltemplate.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/hh465374.aspx
https://msdn.microsoft.com/library/windows/apps/mt185617.aspx
https://msdn.microsoft.com/library/windows/apps/mt185599.aspx#gestures__manipulations__and_interactions
https://msdn.microsoft.com/library/windows/apps/mt185599.aspx#gestures__manipulations__and_interactions
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.style.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.resourcedictionary.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/hh465381.aspx

6Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Navigation and
app structure

Navigation and
app structure

7Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Layout is composed of view groups
such as the LinearLayout and the
RelativeLayout which can nest other
view groups or views. 	

Tabs, swipe views and navigation
drawers provide lateral navigation. 	

Layouts.
The layout defines the structure of the
user interface. 	

Peer-to-peer navigation.
Presenting the user with methods of
navigating between pages of equal
hierarchical importance. 	

Hierarchical navigation.
Navigating between parent and
child pages of a hierarchy. 	

Layout is composed of a
UIViewController containing
UIView’s which can be nested. 	

Tab bar controllers, split view
controllers and page view controllers
allow navigation between views of
equal hierarchy. 	

XAML which provides a flexible
layout system composed of layout
panel classes such as Canvas, Grid,
RelativePanel and StackPanel for static
and responsive layouts. Properties are
used to control the size and position of
the elements.

Define layouts with XAML

You can display a persistent list of
links/tabs above the content using
tabs/pivots. The navigation pane/
split view lets you display a list of links
alongside the content.

Navigation

Peer to peer navigation
between two pages

Lists, and grid lists, buttons and
other controls provide descendent
navigation when used with intents to
load other activities. 	

Navigation controllers allow users to
navigate between levels of a hierarchy. 	

Hubs let you show the user a preview
of content which can be selected
to navigate to child pages. Master/
details let users pick from a list of item
summaries which display next to the
corresponding detail section.

Navigation

Navigation and
app structure

https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.canvas.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.grid.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.relativepanel.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.stackpanel.aspx
https://msdn.microsoft.com/library/ms171352.aspx
https://msdn.microsoft.com/library/windows/apps/mt228350.aspx
https://msdn.microsoft.com/library/windows/apps/dn997788.aspx
https://msdn.microsoft.com/library/windows/apps/dn997787.aspx
https://msdn.microsoft.com/library/windows/apps/dn997787.aspx
https://msdn.microsoft.com/library/windows/apps/mt187344.aspx
https://msdn.microsoft.com/library/windows/apps/mt465735.aspx
https://msdn.microsoft.com/library/windows/apps/mt465735.aspx
https://msdn.microsoft.com/library/windows/apps/dn449149.aspx
https://msdn.microsoft.com/library/windows/apps/dn997765.aspx
https://msdn.microsoft.com/library/windows/apps/dn997765.aspx
https://msdn.microsoft.com/library/windows/apps/mt187344.aspx

8Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

The back and up buttons inside the
action bar provide ancestral and
temporal navigation using the
back stack. 	

Splash screens are not provided
by default, and are implemented
by editing the first activities
theme background. 	

Back button navigation.
Navigating back through an application. 	

Splash screen.
Showing an image on app launch, used
primarily for branding.

The navigation controller can have a
back button added to it.	

Apps must either have a static launch
image or XIB/storyboard launch file. 	

You can handle software or hardware
back button presses easily using the
back stack property which allows your
users to traverse the navigation history.

Back button navigation

You create a splash screen using an
image and a colored background.
Splash screen time can be extended.

Add a splash screen

Guidelines for splash screens

Navigation and
app structure

https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.frame.backstack.aspx
https://msdn.microsoft.com/library/windows/apps/mt465734.aspx
https://msdn.microsoft.com/library/windows/apps/mt187309.aspx
https://msdn.microsoft.com/library/windows/apps/mt187306.aspx
https://msdn.microsoft.com/library/windows/apps/hh465338.aspx

9Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Custom inputs

Custom
inputs

10Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Speech input can be provided
by any app which implements a
RecognizerIntent, such as Google Voice
Search. The SpeechRecognizer class
allows apps to use Google’s speech
recognition API. 	

Support for interactions includes touch,
touchpad, stylus, mouse and keyboard.
Movements and inputs are reported in
the same way as touch, but it is possible
to detect more information about the
input device. 	

Voice.
Speech recognition for speech
input, and additional voice capabilities. 	

Custom user inputs.
Handling keyboard, mouse, stylus and
other inputs. 	

No built-in speech recognition or
speech input APIs exist. 	

Support for touch, the Apple Pencil and
hardware keyboards are provided. 	

You can use the speech recognition
API to interact with your app in the
foreground. You can use speech-based
Cortana interactions to launch apps in
the foreground or background, and to
interact with background apps.

Speech interactions

You will find support for a wide range of
interactions including touch, touchpad,
pen/stylus with digital ink, mouse and
keyboard. Your apps can handle the
data without needing to know which
input device was used, and raw input
device data can be accessed if needed.

Handle pointer input

Custom user interactions

Custom
inputs

https://msdn.microsoft.com/library/windows/apps/mt185615.aspx
https://msdn.microsoft.com/library/windows/apps/mt185598.aspx
https://msdn.microsoft.com/library/windows/apps/mt185614.aspx
https://msdn.microsoft.com/library/windows/apps/mt185617.aspx
https://msdn.microsoft.com/library/windows/apps/mt187313.aspx
https://msdn.microsoft.com/library/windows/apps/mt187311.aspx
https://msdn.microsoft.com/library/windows/apps/mt187308.aspx
https://msdn.microsoft.com/library/windows/apps/mt185607.aspx
https://msdn.microsoft.com/library/windows/apps/mt404610.aspx
https://msdn.microsoft.com/library/windows/apps/mt185599.aspx

11Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Data

Data

12Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Local files can be saved using
openFileOutput and openFileInput.
Settings in a shared preferences
file can be accessed using
getSharedPreferences. 	

The SQLite database is provided. No
ORM is built-in. SQL queries are run
using the SQLiteDatabase class. 	

HTTP libraries HttpURLConnection
and Volley. 	

Local app data.
Storing settings and files related to
your app locally. 	

Local database storage.
Storing app data in a relational
database, with object-relational
mappers (ORM) if applicable. 	

HTTP libraries for REST access.
Built-in libraries that let you
communicate with web services and
web servers using HTTP(S).	

Local files can be stored in the
application support directory,
accessed via the NSFileManager
class. Settings in preferences
files can be accessed by the
NSUserDefaults class. 	

The SQLite database is provided.
CoreData is the built-in object graph
framework which can be used with
SQLite and provide functionality
comparable with an ORM. 	

NSURLSession, NSURLConnection and
NSURLDownload. 	

The Windows.Storage classes
handle local data storage for you in
a unified way. You store settings as
an ApplicationDataContainer object,
accessed via the ApplicationData.
LocalSettings property. You store files in
a StorageFolder object accessed via the
ApplicationData.LocalFolder property.

Store and retrieve settings and
other app data

You can store data using SQLite. Entity
Framework is a built-in ORM which
eliminates the need to write lots of data
access code and enables you to easily
query the database without writing SQL.
You can run SQL queries directly with
the SQLite library.

Data Access

You can use the built-in HttpClient API
to access common HTTP functionality
including GET, DELETE, PUT, POST,
common authentication patterns, SSL,
cookies and progress info.

Data

https://msdn.microsoft.com/library/windows/apps/xaml/br230562.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.storage.applicationdatacontainer.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.storage.applicationdata.localsettings.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.storage.applicationdata.localsettings.aspx
https://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.storage.applicationdata.localfolder.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt299098.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt299098.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt592863.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt592863.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt592864.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt592862.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.web.http.httpclient

13Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Android’s backup manager handles
the backing up of application data in
Google’s Android Backup Service. 	

URLConnection and
HTTPURLConnection are used
to download over HTTP and FTP,
it is also possible to make use of
the system download manager to
download in the background. 	

Cloud backup services.
Platform-provided backup services
for app data. 	

HTTP file downloads.
Downloading large and small files
over HTTP. 	

iCloud Backup can be configured
by a user to handle their backups,
including app data. Apps which use
iCloud compatible Core Data, the
iCloud key-value store and iCloud
document storage. 	

NSURLSession and NSURLConnection
can be used to download files over
HTTP and FTP. 	

Any app data that you store using
the roaming ApplicationData APIs
(including RoamingFolder and
RoamingSettings) will be automatically
synced to the cloud and to the user’s
other devices, too. The syncing is done
by way of the user’s Microsoft account.

Guidelines for roaming app data

The background transfer API lets you
reliably transfer files over HTTP(S)
and FTP, taking into account app
suspension, connectivity loss and
adjusting based on connectivity and
battery life. You can also use HttpClient
which is ideal for smaller files.

Which networking technology?

Background transfers

Socket class provides TCP sockets,
DatagramSocket class provides a
UDP socket. 	

Sockets.
Creating low level UDP datagram and
TCP sockets to communicate with other
devices using your own protocol. 	

NSStream and CFStream provide
TCP sockets, CFSocket provides
UDP sockets. 	

You can use the DatagramSocket class
to communicate using a UDP datagram
socket and the StreamSocket class to
communicate over TCP or Bluetooth
RFCOMM.

Networking basics

Which networking technology?

Sockets overview

Data

https://msdn.microsoft.com/library/windows/apps/hh465094.aspx
https://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.aspx
https://msdn.microsoft.com/library/windows/apps/windows.web.http.httpclient.aspx
https://msdn.microsoft.com/library/windows/apps/mt280235.aspx
https://msdn.microsoft.com/library/windows/apps/mt280377.aspx
https://msdn.microsoft.com/library/windows/apps/br241319
https://msdn.microsoft.com/library/windows/apps/br226882
https://msdn.microsoft.com/library/windows/apps/mt280233.aspx
https://msdn.microsoft.com/library/windows/apps/mt280235.aspx
https://msdn.microsoft.com/library/windows/apps/mt280234.aspx

14Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

No built-in WebSockets libraries exist
on Android. 	

WebSockets.
Provide two-way communication
between a client and server, enabling
real-time data transfer. 	

No built-in WebSockets libraries exist
on iOS. 	

Secure connections to servers
supporting WebSockets can be made
with the MessageWebSocket class
for smaller messages with receipt
notifications and StreamWebSocket for
larger binary file transfers which can be
read in sections.

Networking basics

Which networking technology?

WebSockets overview

No generic OAuth library is provided.
The GoogleAuthUtil class is provided
for OAuth authentication with Google
Play Services.	

OAuth libraries.
OAuth libraries allowing access to third
party OAuth providers, and any account
management built into the platform. 	

No generic OAuth library is provided.
The accounts framework provides
access to user accounts already
stored on the device such as
Facebook and Twitter. 	

The generic OAuth library Web
authentication broker lets you connect
to third-party identity provider services.
The Credential locker allows your users
to save their login and use it on multiple
devices. The Microsoft.Live namespace
lets you easily access Live SDK OAuth
for access to Microsoft services.

Authentication and user identity

Windows.Security.Authentication.Web
API documentation

WebAuthenticationBroker
code example

Data

https://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.messagewebsocket.aspx
https://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamwebsocket.aspx
https://msdn.microsoft.com/library/windows/apps/mt280233.aspx
https://msdn.microsoft.com/library/windows/apps/mt280235.aspx
https://msdn.microsoft.com/library/windows/apps/mt186447.aspx
https://msdn.microsoft.com/library/windows/apps/mt270196.aspx
https://msdn.microsoft.com/library/windows/apps/mt270196.aspx
https://msdn.microsoft.com/library/windows/apps/mt270189.aspx
https://msdn.microsoft.com/library/windows/apps/dn896755.aspx
https://msdn.microsoft.com/library/windows/apps/mt270184.aspx
https://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.aspx
https://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.aspx
https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/WebAuthenticationBroker
https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/WebAuthenticationBroker

15Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Tooling

Tooling

16Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Android Studio and Eclipse, with
Google pushing developers toward the
use of Android Studio. 	

AndroidManifest file, java folder
containing source files, res folder with
resources including layouts and values,
Gradle build scripts in Android Studio
and Ant build scripts in Eclipse. 	

IDE.
The toolset used to create your app. 	

Code organization.
The basic folder structure of an app,
often created from an initial template. 	

Xcode 	

Source files and Supporting Files,
Info.plist file, Main.storyboard and
LaunchScreen.storyboard. Images are
stored in Asset libraries. 	

Visual Studio and Blend for Visual
Studio has all the tools you need
to code, design, connect, debug,
analyze, optimize and test UWP apps.
Visual Studio also provides you with
emulators for Windows 10 devices, so
you can test your app across a range of
emulated devices.

Downloads and tools for UWP

Your UWP app contains XAML and
code files for your app, various
images in the Assets folder, a start
page such as MainPage.xaml and
MainPage.xaml.cs and a manifest.

Create a hello world app

Tooling

https://www.visualstudio.com/features/universal-windows-platform-vs.aspx
https://msdn.microsoft.com/library/jj171012.aspx
https://msdn.microsoft.com/library/jj171012.aspx
https://msdn.microsoft.com/library/windows/apps/mt188754.aspx
https://dev.windows.com/downloads
https://msdn.microsoft.com/library/windows/apps/dn765018.aspx

17Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

App lifecycle

App
lifecycle

18Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Each activity has its own activity
lifecycle with states such as
resumed. Lifecycle callbacks such
as onResume are implemented in in
your activity classes. 	

Apps can launch services which
perform background operations when
the app is no longer in the foreground.
Services have their own lifecycle and
are registered in the manifest.	

App lifecycle.
Handling events on app launch,
suspension, resume and close,
providing an opportunity to save/
restore application state and run
other tasks. 	

Background tasks.
Tasks that perform background
operations and continue to run when
the app is no longer in the foreground.	

The application lifecycle has states
such as suspended. Methods such as
applicationDidEnterBackground: are
implemented in the application delegate
object to run code on state changes. 	

Background execution is only
permitted for specific task types.

Apps declare supported background
tasks in the Info.plist file using the
UIBackgroundModes.

The system controls when background
tasks are run and for how long.	

Your application has the app execution
states NotRunning, Activated, Running,
Suspending, Suspended and Resuming.

You can implement the Application class
methods OnLaunched, OnActivated,
Suspending or Resuming in your app to
run code when the state changes.

App lifecycle

You can create a background task by
implementing the IBackgroundTask
interface and registering the task in the
application manifest. You can set a task
to be triggered with a timer, system
trigger, or maintenance trigger.

Support your app
with background tasks

Create and register a background task

Guidelines for background tasks

App
lifecycle

https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.application.aspx
https://msdn.microsoft.com/library/windows/apps/mt243287.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.ibackgroundtask.aspx
https://msdn.microsoft.com/library/windows/apps/mt186458.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtriggertype.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtriggertype.aspx
https://msdn.microsoft.com/library/windows/apps/mt185632.aspx
https://msdn.microsoft.com/library/windows/apps/mt299103.aspx
https://msdn.microsoft.com/library/windows/apps/mt299103.aspx
https://msdn.microsoft.com/library/windows/apps/mt299100.aspx
https://msdn.microsoft.com/library/windows/apps/mt187310.aspx

19Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Performance

Performance

20Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Android provides the Best Practices
for Performance training guide.	

Optimizing layout hierarchies using the
Hierarchy Viewer tool, reusing layouts
and loading views on demand are all
techniques to help keep the UI thread
responsive and avoid “Application Not
Responding” dialogs (ANR’s).

Threading is achieved using
the classes Runnable, Handler,
ThreadPoolExecutor, and the higher
level AsyncTask.	

Performance best practices.
Guidelines for building apps that
are fast, responsive, considerate of
battery life with a fast startup time.	

View optimization for a responsive UI.
Improving performance by optimizing
views.	

Threading.
Use of threading to maintain a
responsive UI and run multiple tasks
in parallel.	

iOS provides the Performance Overview
document.	

Fixing UI issues with offscreen
rendering, blended layers, rasterization
using the Core Animation tool help
keep the UI thread responsive.	

Threading is achieved using NSThread,
Grand Central Dispatch, and the higher
level NSOperation.	

You can read the detailed Performance
guide with sections covering topics
such as: setting performance goals,
measuring performance, memory
management, smooth animations,
efficient file system access and the tools
available for profiling and performance.

You can easily optimize XAML
markup and layouts by following a
few simple steps. Techniques include
reducing layout structure, minimizing
the element count and minimizing
overdrawing.

Keep the UI thread responsive

Optimize your XAML markup

Optimize your XAML layout

You can work with threads by
submitting work items to the
threadpool with RunAsync. You can
use a timer to submit a work item with
CreateTimer and create a repeating
work item with CreatePeriodicTimer.

Submit a work item to the thread pool

Use a timer to submit a work item

Create a periodic work item

Best practices for using the thread pool

Performance

https://msdn.microsoft.com/library/windows/apps/mt270266.aspx
https://msdn.microsoft.com/library/windows/apps/mt270266.aspx
https://msdn.microsoft.com/library/windows/apps/mt185403.aspx
https://msdn.microsoft.com/library/windows/apps/mt204779.aspx
https://msdn.microsoft.com/library/windows/apps/mt404609.aspx
https://msdn.microsoft.com/library/windows/apps/windows.system.threading.threadpool.runasync.aspx
https://msdn.microsoft.com/library/windows/apps/br230590.aspx
https://msdn.microsoft.com/library/windows/apps/br230589.aspx
https://msdn.microsoft.com/library/windows/apps/mt187339.aspx
https://msdn.microsoft.com/library/windows/apps/mt187341.aspx
https://msdn.microsoft.com/library/windows/apps/mt187338.aspx
https://msdn.microsoft.com/library/windows/apps/mt187336.aspx

21Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

The use of threading is required to create
your own asynchronous classes. Some
built-in classes are asynchronous.	

The ViewHolder design pattern is used to
avoid multiple view lookups, which allows
you to use reusable UI elements.	

Asynchronous programming.
Avoid threading complexity by
taking advantage of asynchronous
programming patterns to keep the UI
thread responsive.	

List view optimization.
Built-in patterns to aid with optimizing
lists of data, which often have poor
performance when large amounts of
data need to be shown.	

The use of threading is required to create
your own asynchronous classes. Some
built-in classes are asynchronous.	

A range of optimizations can be
made to improve the performance of
UITableView, nothing is built-in.	

You can use asynchronous patterns to
avoid blocking the main thread when
you create your own APIs, e.g. using
async and await in C# and Visual Basic.
You can use the asynchronous built-in
APIs which end in the word Async.

Asynchronous programming

Call asynchronous APIs in C# or
Visual Basic

You can use the ListView and
GridView controls which provide UI
virtualization out-of-box, providing
a smooth panning and scrolling
experience and a faster startup time.
You can also implement IList and
INotifyCollectionChanged in your data
source, providing data virtualization
and further improving performance.

ListView and GridView UI optimization

ListView and GridView
data virtualization

Performance

https://msdn.microsoft.com/library/windows/apps/mt187335.aspx
https://msdn.microsoft.com/library/windows/apps/mt187337.aspx
https://msdn.microsoft.com/library/windows/apps/mt187337.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.listview.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
https://msdn.microsoft.com/library/windows/apps/system.collections.ilist.aspx
https://msdn.microsoft.com/library/windows/apps/system.collections.specialized.inotifycollectionchanged.aspx
https://msdn.microsoft.com/library/windows/apps/mt204776.aspx
https://msdn.microsoft.com/library/windows/apps/mt574120.aspx
https://msdn.microsoft.com/library/windows/apps/mt574120.aspx

22Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Monetization

Monetization

23Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

In-app billing is provided by Google
Services. Products are added to the
Google Play Developer Console. In-app
purchases are implemented with the
Google Play Billing Library.	

Consumable purchases are enabled by
making a regular purchase and then
consuming it with consumePurchase,
enabling it to be purchased, used, and
then purchased again.	

In-app purchases.
Platform features that allow users to
make purchases in your apps.	

Consumable in-app purchases.
In-app products which can be purchased,
used and then purchased again.

Products are added to iTunes Connect.
In-app purchases are implemented
using the StoreKit framework.

Products are purchased using
SKMutablePayment and
SKPaymentQueue.	

Consumable products are defined as
consumable products in iTunes Connect.	

You create in-app product purchases for
your app by adding them to your app
and submitting them to the Store.

You use the CurrentApp class to define
in-app purchases.

You use CurrentApp.
RequestProductPurchaseAsync to
display the UI that allows customers to
purchase the product.

Enable in-app product purchases

You can support consumables
by defining their product type as
Consumable when you submit them to
the Store. You then call CurrentApp.
ReportConsumableFulfillmentAsync
after a consumable purchase has been
made to allow the customer to access it.

Enable consumable in-app purchases

Monetization

https://msdn.microsoft.com/library/windows/apps/mt148551.aspx
https://msdn.microsoft.com/library/windows/apps/mt148551.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.requestproductpurchaseasync.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.requestproductpurchaseasync.aspx
https://msdn.microsoft.com/library/windows/apps/mt219684.aspx
https://msdn.microsoft.com/library/windows/apps/mt148534.aspx
https://msdn.microsoft.com/library/windows/apps/mt148534.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.reportconsumablefulfillmentasync.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.reportconsumablefulfillmentasync.aspx
https://msdn.microsoft.com/library/windows/apps/mt219683.aspx

24Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Google Play doesn’t officially support
app trials. Trials or including advertising
is achieved by creating an in-app
purchase and taking the appropriate
code path when confirming the
purchase was successful.	

Trials.
Enabling you to easily limit content or
include advertising based on a trial
version of an app.	

The App Store doesn’t officially
support app trials. Trials or including
advertising is achieved by creating
an in-app purchase and taking the
appropriate code path when confirming
the purchase was successful.	

You can offer a free trial version of your
app by using the ‘Free Trial’ option
when submitting your app to the Store.
You can then use LicenseInformation.
IsTrial to check the trial status of the
app and present different code paths
accordingly. You can register for the
LicenseChanged event to be notified
when the user changes the trial status
while the app is running.

Exclude or limit features
in a trial version

The in-app billing sandbox is used
for testing.	

Testing in-app purchases.
Enabling you to test your in-app
purchase code without putting your
app in the Store.	

Sandbox tester accounts are used
for testing.	

You can test in-app purchases by simply
using the CurrentAppSimulator class in
place of CurrentApp.

Monetization

https://msdn.microsoft.com/library/windows/apps/mt148548.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.licenseinformation.istrial.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.licenseinformation.istrial.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.licenseinformation.licensechanged
https://msdn.microsoft.com/library/windows/apps/mt219685.aspx
https://msdn.microsoft.com/library/windows/apps/mt219685.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.aspx

25Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Building for diversity

Building
for diversity

26Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Flexible layouts can be achieved using
the wrap_content and match_parent
values in LinearLayout objects, or by
making use of RelativeLayout objects
for alignment.	

Providing alternative layout files
for different screen configurations
in the resources directory using
configuration qualifiers such as
small, large, ldpi, and hdpi allows you
to target custom layouts to screens of
varying size and density.	

Use of flexible layouts with
LinearLayout and RelativeLayout,
or providing alternative layout files
for different orientations enable
responsive layouts.	

Adaptive UI: flexible layouts.
Supporting different screen sizes with
a flexible height and width.	

Adaptive UI: tailored layouts.
Supporting different screen sizes with
separate targeted layouts.	

Adaptive UI: responsive layouts.
Responding to changes in screen size,
such as rotation, or a change in the size
of a window.	

Flexible layouts can be achieved
using the adaptive model with
universal Storyboards, making use
of Auto Layout with constraints and
traits such as horizontalSizeClass and
displayScale which are applied to
view controllers.	

Define a separate iPhone and iPad
Storyboard to tailor layouts to different
device families in a universal app.	

When the size or traits of a view
change, the constraints specified in
storyboards are applied.	

You can create a fluid layout using
layout properties and panels with a
combination of fixed and dynamic sizing.

Define layouts with XAML - layout
properties and panels

Responsive design 101

You can build a tailored layout by
defining different XAML markup files
per device family.

Define layouts with XAML -
tailored layouts

You can easily reflow, reposition,
resize, reveal, or replace sections of
your UI at runtime in response to
window size changes using VisualState,
the VisualStateManager and
AdaptiveTrigger.

Define layouts with XAML - visual states
and state triggers

Responsive design 101

Building
for diversity

https://msdn.microsoft.com/library/windows/apps/mt228350.aspx#layout_overview
https://msdn.microsoft.com/library/windows/apps/mt228350.aspx#layout_overview
https://msdn.microsoft.com/library/windows/apps/dn958435.aspx
https://msdn.microsoft.com/library/windows/apps/mt228350.aspx#tailored_layouts
https://msdn.microsoft.com/library/windows/apps/mt228350.aspx#tailored_layouts
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.visualstate.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.adaptivetrigger.aspx
https://msdn.microsoft.com/library/windows/apps/mt228350.aspx#visual_states_and_state_triggers
https://msdn.microsoft.com/library/windows/apps/mt228350.aspx#visual_states_and_state_triggers
https://msdn.microsoft.com/library/windows/apps/dn958435.aspx

27Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Testing for device features at
runtime using PackageManager.
hasSystemFeature enables you to decide
if hardware specific code can run.	

The Android Support Library can be
packaged with your app to make some
newer APIs available to those with older
versions of Android. Testing for the
API level at runtime can be done using
Build.Version.SDK_INT.	

Supporting different device capabilities.
Take advantage of advanced hardware
features while still supporting devices
without them.	

Supporting different device capabilities.
Take advantage of advanced hardware
features while still supporting devices
without them.	

There is no single check you can
perform at runtime to test for device
features, you test for each feature in
a specific way to decide if hardware
specific code can be run.	

Standard runtime checks are used to
find out if APIs are available, such as the
class method to check if a class exists
and respondsToSelector: to check for
methods on classes.	

You can add platform extension
SDKs to your package to target
additional functionality found in
different device families including
phone, desktop, and IoT. You use the
ApiInformation API to test for the
presence of types and members at
runtime, and can call those types and
members only if they’re present.

You can use ApiInformation.
IsApiContractPresent to identify if an
API contract with a specified major
and minor number is present. You also
use the ApiInformation API to test for
the presence of types and members at
runtime, and can call those types and
members only if they’re present.

Building
for diversity

https://msdn.microsoft.com/library/windows/apps/windows.foundation.metadata.apiinformation.aspx
https://msdn.microsoft.com/library/windows/apps/dn949005.aspx
https://msdn.microsoft.com/library/windows/apps/dn949005.aspx
https://msdn.microsoft.com/library/windows/apps/windows.foundation.metadata.apiinformation.aspx

28Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Notifications

Notifications

29Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

App Widgets are views on your
application that can be embedded
into the home screen and can receive
periodic updates. No badge system
exists on Android. No identical system
to tiles exists.	

Notifications can be shown in the
notification area and notification
drawer, heads-up notifications present
a notification in a small floating window.
Notifications can have actions added
to them by defining a PendingIntent.	

Tiles and badges.
Present updates to users on the
home screen.	

Displaying notifications.
Types of notifications that can
be displayed.	

No tiles or widgets exist on iOS. You
can add a badge to your icon with a
number which can change in response
to local or remote notifications.	

Pop-up notifications appear as
banners or alerts. You can add
custom action buttons to actionable
notifications which are defined with
UIMutableUserNotificationAction.	

Your app has a tile which can be
pinned to the start screen and is used
to display your choice of text, images,
and a badge with glyphs and numbers.
You can update the content of tiles
from the app via push notifications or
at predefined schedules. Tiles can be
adaptive, and can change according to
where they are being displayed.

Create tiles

Create adaptive tiles

Choose a notification delivery method

Guidelines for tiles and badges

You can create adaptive pop-up
notifications called toast notifications.
You can define toasts in XML with visual
content, actions which can be buttons,
or inputs and audio.

Adaptive and interactive
toast notifications

Choose a notification delivery method

Guidelines for toast notifications

Notifications

https://msdn.microsoft.com/library/windows/apps/xaml/mt185605.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt590880.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt187193.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/hh465403.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt631604.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt631604.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt187193.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/hh465391.aspx

30Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Notifications and actions are defined
using a NotificationCompat.Builder
and can be scheduled and handled
in-app using AlarmManager and
BroadcastReceiver.	

Google Cloud Messaging provides
push notification support for Android.	

Scheduling local notifications.
Local notifications sent by your app
at a scheduled time.	

Sending push notifications.
A notification sent from a push
notification server and optionally
handled in-app.	

Local notifications are created using
UILocalNotification, and can be
scheduled with UILocalNotification:
scheduleLocalNotification.	

Remote or push notifications
are provided by the Apple Push
Notification service (APNs).	

You can schedule a toast notification
using ScheduledToastNotification.
You can send a tile notification from
your app using the TileNotification
class, or schedule a tile notification with
ScheduledTileNotification.

Adaptive and interactive
toast notifications

Send a local tile notification

You receive push notifications sent from
Windows Push Notification Services
(WNS) which can be of type tile, toast,
badge, or raw notification. You can
use the PushNotificationReceived
notification delivery event to receive
notifications while the app is running.

Windows Push Notification Services
(WNS) overview

Raw notification overview

Notifications

https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.notifications.scheduledtoastnotification.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.notifications.tilenotification.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.notifications.scheduledtilenotification.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt631604.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt631604.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt593299.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.networking.pushnotifications.pushnotificationchannel.pushnotificationreceived.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt187203.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt187203.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt187200.aspx

31Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Media capture
and rendering

Media capture
and rendering

32Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Using an intent such as MediaStore.
ACTION_VIDEO_CAPTURE allows media
to be captured with an existing camera
app. Using the android.hardware.
camera2 or camera library enables the
implementation of a custom camera
interface. MediaRecorder APIs can be
used to capture audio.	

The MediaPlayer and AudioManager
classes are used to play audio and
video files.	

Low level classes such as MediaCodec,
MediaMuxer, and android.media.effect
can be used for content editing.	

Capturing media.
Recording audio and visual content.	

Media playback.
Playing audio and video files.	

Editing media.
Composing new media files from
existing recordings and applying
special effects.	

The UIImagePickerController allows
for the capture of video and photos
with the system UI. The AVFoundation
classes such as AVCaptureSession
enable direct access to the camera.
The AVAudioRecorder class enables
audio recording.	

The AVKit framework, AVAudioPlayer,
and Media Player Framework are used
to play audio and video files.	

Classes in the AV Foundation framework
such as AVMutableComposition,
AVMutableVideoComposition, and
AVMutableAudioMix can be used for
content editing.	

You can capture photos and video
while using the built-in camera UI
with the CameraCaptureUI class. You
can interact with the camera at a low
level, and capture audio with classes in
Windows.Media.Capture such as the
MediaCapture API.

Capture photos and video with
CameraCaptureUI

Capture photos and video with
MediaCapture

You can use the MediaSource class,
MediaElement, and MediaPlayer classes
to play back audio and video from
sources such as local and remote files.

Media playback with MediaSource

You can use the Windows.Media.
Editing APIs such as MediaComposition
and MediaClip to create media
compositions from audio and video
files. You are able to add video and
image overlays, combine video clips,
add background audio, and apply audio
and video effects.

Media compositions and editing

Media capture
and rendering

https://msdn.microsoft.com/library/windows/apps/xaml/windows.media.capture.cameracaptureui.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.media.capture.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.media.capture.mediacapture.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt282142.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt282142.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt243896.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt243896.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.media.core.mediasource.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.mediaelement.aspx
https://msdn.microsoft.com/library/windows/apps/windows.media.playback.mediaplayer.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt592657.aspx
https://msdn.microsoft.com/library/windows/apps/windows.media.editing.aspx
https://msdn.microsoft.com/library/windows/apps/windows.media.editing.aspx
https://msdn.microsoft.com/library/windows/apps/windows.media.editing.mediacomposition.aspx
https://msdn.microsoft.com/library/windows/apps/windows.media.editing.mediaclip.aspx
https://msdn.microsoft.com/library/windows/apps/mt204792.aspx

33Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Sensors

Sensors

34Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

The sensor framework is used to
access hardware and software sensors
with classes such as SensorManager
and SensorEvent.	

Sensors.
Detect device movement, position and
environmental properties.	

The Core Motion framework is used to
access raw and processed sensor data.	

You can use classes in Windows.Devices.
Sensors to access sensor readings and
events triggered when new reading data
is received from the sensor.

Sensors

Sensors

https://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.aspx
https://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt187358.aspx

35Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Location and mapping

Location and
mapping

36Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

The Google Play services location APIs
provide high-level access to the last
known location with the fused location
provider using the getLastLocation and
requestLocationUpdates methods. Low-
level access is provided in the Android
libraries with the LocationManager.	

The GoogleMap, MapFragment, and
MapView classes within the Google
Maps Android API allow maps to be
embedded in apps. Points of interest
can be displayed using markers and
the customizable Marker class.	

Geofences are monitored using the
Location Services in the Google Play
Services SDK.	

Location.
Finding the device’s current location
and tracking changes.	

Displaying maps.
Displaying an interactive built-in map
and adding points of interest.	

Geofencing.
Monitor the entering and leaving of a
particular geographic region.	

The Core Location CLLocationManager
class is used to monitor a device’s
location, with startUpdatingLocation
for the standard location service and
startMonitoringSignificantLocation
Changes	for the significant-change
location service.

Maps are embedded into iOS apps
with the MKMapView class in the
MapKit framework. Annotations can
be added to apps to display points of
interest using object classes such as
MKPointAnnotation and view classes
such as MKPinAnnotationView.	

Regions are monitored with the
CLCircularRegion class and registered
with the CLLocationManager.
startMonitoringForRegion:.

You can track device location
with classes in Windows.Devices.
Geolocation. Use Geolocator.
GetGeopositionAsync for a one-
time reading. Use Geolocator.
PositionChanged to obtain the location
regularly using a timer, or be informed
when the location has changed.

Get the user’s location

You can embed maps in your apps
using the built-in MapControl XAML
control which provides 2D, 3D, and
streetside views. You can add points
of interest with a pushpin, image, or
shape using classes such as MapIcon,
MapPolygon and MapPolyline.

Display maps with 2D, 3D, and
Streetside views

Display points of interest (POI)
on a map

You can create a geofence with the
Geofence class and define your
monitored states such as entering
or leaving a region. Handle geofence
events in the foreground with the
GeofenceMonitor class, and in the
background with the LocationTrigger
background class.

Set up a geofence

Location and
mapping

https://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.aspx
https://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.aspx
https://msdn.microsoft.com/library/windows/apps/br225537.aspx
https://msdn.microsoft.com/library/windows/apps/br225537.aspx
https://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geolocator.positionchanged.aspx
https://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geolocator.positionchanged.aspx
https://msdn.microsoft.com/library/windows/apps/mt219698.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.maps.mapcontrol.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.maps.mapicon.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.maps.mappolygon.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.controls.maps.mappolyline.aspx
https://msdn.microsoft.com/library/windows/apps/mt219695.aspx
https://msdn.microsoft.com/library/windows/apps/mt219695.aspx
https://msdn.microsoft.com/library/windows/apps/mt219696.aspx
https://msdn.microsoft.com/library/windows/apps/mt219696.aspx
https://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geofencing.geofence.aspx
https://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geofencing.geofencemonitor.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.locationtrigger.aspx
https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.locationtrigger.aspx
https://msdn.microsoft.com/library/windows/apps/mt219702.aspx

37Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

The Geocoder class is used for
geocoding and reverse geocoding.	

Google provides the web service
Google Maps Directions API which
can be used on Android although no
SDK is provided.	

Geocoding and reverse geocoding.
Converting addresses to geographic
locations (geocoding) and converting
geographic locations to addresses
(reverse geocoding).

Routes and directions.
Providing routes, distances, and
directions between two geographical
locations.	

The CLGeocoder class is used for
geocoding.	

Map Kit provides the MKDirections API
which can be used to fetch information
about a route and directions.	

You can perform geocoding using
the MapLocationFinder class in
Windows.Services.Maps. You use
FindLocationsAsync for geocoding
and FindLocationsAtAsync for
reverse geocoding.

Perform geocoding and
reverse geocoding

You can request a walking or driving
route with the MapRouteFinder class
in Windows.Services.Maps. Routes are
returned as a MapRoute instance which
can be easily shown on a MapControl.
Directions are returned inside the
MapRouteManeuver object.

Display routes and directions on a map

Location and
mapping

https://msdn.microsoft.com/library/windows/apps/windows.services.maps.maplocationfinder.aspx
https://msdn.microsoft.com/library/windows/apps/windows.services.maps.aspx
https://msdn.microsoft.com/library/windows/apps/windows.services.maps.maplocationfinder.findlocationsasync.aspx
https://msdn.microsoft.com/library/windows/apps/windows.services.maps.maplocationfinder.findlocationsatasync.aspx
https://msdn.microsoft.com/library/windows/apps/mt219697.aspx
https://msdn.microsoft.com/library/windows/apps/mt219697.aspx
https://msdn.microsoft.com/library/windows/apps/windows.services.maps.maproutefinder.aspx
https://msdn.microsoft.com/library/windows/apps/windows.services.maps.aspx
https://msdn.microsoft.com/library/windows/apps/windows.services.maps.maproute.aspx
https://msdn.microsoft.com/library/windows/apps/windows.services.maps.maproutemaneuver.aspx
https://msdn.microsoft.com/library/windows/apps/mt219701.aspx

38Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

App-to-app
communication

App-to-app
communication

39Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

An implicit intent is used to launch
another app, by defining an action and
optional data in an Intent and calling it
with startActivityForResult.

Invoking another app.
Launching another app, and optionally
sharing data such as links, text, photos,
videos, and files.	

App extensions can be used to provide
access to app data to another app. URL
schemes enable a URL to be passed to
another app.	

You can launch another app which has
registered for a URI with Launcher.
LaunchUriAsync, or Launcher.
LaunchUriForResultsAsync to launch
for results and get data back from the
launched app. You can use Launcher.
LaunchFileAsync to pass a file to
another app to handle.

You can use a share contract to easily
share data between apps.

Launch the default app for a URI

Launch an app for results

Launch the default app for a file

Share data

App-to-app
communication

https://msdn.microsoft.com/library/windows/apps/windows.system.launcher.launchuriasync.aspx
https://msdn.microsoft.com/library/windows/apps/windows.system.launcher.launchuriasync.aspx
https://msdn.microsoft.com/library/windows/apps/windows.system.launcher.launchuriforresultsasync.aspx
https://msdn.microsoft.com/library/windows/apps/windows.system.launcher.launchuriforresultsasync.aspx
https://msdn.microsoft.com/library/windows/apps/hh701471.aspx
https://msdn.microsoft.com/library/windows/apps/hh701471.aspx
https://msdn.microsoft.com/library/windows/apps/mt228340.aspx
https://msdn.microsoft.com/library/windows/apps/mt269386.aspx
https://msdn.microsoft.com/library/windows/apps/mt299102.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt243293.aspx

40Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Apps register an intent handling activity
with an intent filter to respond to an
implicit intent from another app.	

Allowing your app to be invoked.
Allow your app to respond to a request
from another app.	

Packaging an app extension enables
data to be shared with other apps. Apps
can register a custom URL scheme
using the CFBundleURLTypes key in
Info.plist.	

You can register your app to be the
default handler for a URI scheme
name by registering a protocol in
the package manifest and updating
the Application.OnActivated event
handler, optionally returning results.
In the same way you can register
your app to be the default handler
for certain file types by adding a
declaration in the package manifest
and handling the Application.
OnFileActivated event.

You can handle share contract
requests by registering your app
as a share target in the manifest
and handling the Application.
OnShareTargetActivated event.

Launch an app for results

Handle file activation

Receive data

App-to-app
communication

https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.activationkind.aspx#Protocol
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.application.onactivated.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.application.onfileactivated.aspx
https://msdn.microsoft.com/library/windows/apps/windows.ui.xaml.application.onfileactivated.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.application.onsharetargetactivated.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.application.onsharetargetactivated.aspx
https://msdn.microsoft.com/library/windows/apps/mt269386.aspx
https://msdn.microsoft.com/library/windows/apps/mt269385.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt243292.aspx

41Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

The clipboard framework can be
used to implement copy and paste
with the ClipboardManager and
ClipData classes.	

Drag and drop can be implemented
within a single application by using the
Android drag/drop framework.	

Copy and paste.
Copy and pasting text and other
content between apps.	

Drag and drop.
Dragging and dropping content
between apps.	

The UIPasteboard, UIMenuController,
and UIResponderStandardEditActions
can be used to implement copy and
paste.	

No high-level drag and drop APIs are
provided by iOS.	

Many default XAML controls already
support copy and paste. You can
implement copy and paste yourself
using the DataPackage and Clipboard
classes in Windows.ApplicationModel.
DataTransfer.

Copy and paste

You can implement dragging and
dropping in your app to enable app-
to-app, desktop-to-app, and app-to-
desktop drag and drop capabilities. You
implement drag and drop support in
the UIElement class with the AllowDrop,
and CanDrag properties, and the
DragOver, and Drop events.

Drag and drop

App-to-app
communication

https://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.applicationmodel.datatransfer.clipboard.aspx
https://msdn.microsoft.com/library/windows/apps/br205967
https://msdn.microsoft.com/library/windows/apps/br205967
https://msdn.microsoft.com/library/windows/apps/xaml/mt243291.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.uielement.allowdrop.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.uielement.candrag.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.uielement.dragover.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.uielement.drop.aspx
https://msdn.microsoft.com/library/windows/apps/xaml/mt227651.aspx

42Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

Software design

Software
design

43Windows apps concept mapping for Android and iOS developers (v1.0)

Introduction
Media capture
and renderingNotificationsMonetizationPerformance

App
lifecycleToolingDataUI

Navigation and
app structure

Custom
inputs Sensors

Location and
mapping

App-to-app
communication

Building
for diversity

Software
design

No formal pattern has been
recommended or provided for Android
development, although the beta Data
Binding Framework may enable more
widespread use of the Model-View-
ViewModel (MVVM) pattern. A number
of third party articles and frameworks
recommend the Model-View-Presenter
(MVP) and MVVM approaches.	

Software design patterns.
Recommended or well-used patterns
for the platform.	

Model-View-Controller (MVC) is a
common pattern used with iOS and is
integrated into the platform.

You are not limited to a specific pattern
when building for UWP.

You can use the built-in data binding
pattern to ensure clean separation of
data concerns and UI concerns, and avoid
having to code up UI event handlers
which then update property values.

You can extend data binding to follow
the Model-View-ViewModel (MVVM)
pattern, either by making use of third-
party MVVM libraries such as MVVM Light
Toolkit, or rolling your own and keeping
logic out of code-behind.

The MVVM Pattern

Template 10 Visual Studio
project templates

Software
design

https://msdn.microsoft.com/library/windows/apps/mt210947.aspx
https://mvvmlight.codeplex.com/
https://mvvmlight.codeplex.com/
https://msdn.microsoft.com/library/hh848246.aspx
https://github.com/Windows-XAML/Template10/wiki
https://github.com/Windows-XAML/Template10/wiki

© 2016 Microsoft Corporation. All rights reserved. Microsoft, Windows and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes
only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and
Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

