
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JANUARY 2017 VOL 32 NO 1

C++ Language
Projection for WinRT..........12

 0117msdn_CoverTip_8x10.75.indd 1 0117msdn_CoverTip_8x10.75.indd 1 12/12/16 10:51 AM12/12/16 10:51 AM

www.devexpress.com/dashboard

 1216msdn_CoverTip_8x10.75.indd 2 1216msdn_CoverTip_8x10.75.indd 2 11/7/16 11:47 AM11/7/16 11:47 AM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JANUARY 2017 VOL 32 NO 1

Introducing C++/WinRT
Kenny Kerr.. 12

Enable Natural Language Interaction
With LUIS
Ashish Sahu. 18

Introduction to the HoloLens, Part 2:
Spatial Mapping
Adam Tuliper. 26

Automate Complex Deployments
with Release Management
Kraig Brockschmidt.. 32

Exploring the Microsoft CNTK
Machine Learning Tool
James McCaffrey.. 46

COLUMNS
UPSTART
You’re Hired: 11 Things to
Consider with Side Projects
Krishnan Rangachari, page 6

DATA POINTS
EF Core 1.1: A Few of
My Favorite Things
Julie Lerman, page 8

THE WORKING
PROGRAMMER
How To Be MEAN:
Type Script with TypeScript
Ted Neward, page 56

ESSENTIAL .NET
Essential MSBuild:
A Build Engine Overview
for .NET Tooling
Mark Michaelis, page 60

MODERN APPS
Exploring the UWP
Community Toolkit
Frank La Vigne, page 64

DON’T GET ME STARTED
For the Defense
David Platt, page 72

C++ Language
Projection for WinRT..........12

0117msdn_C1_v2.indd 1 12/12/16 9:49 AM

www.textcontrol.com www.reporting.cloud

Untitled-1 2Untitled-1 2 10/20/16 11:37 AM10/20/16 11:37 AM

http://www.textcontrol.com
http://www.reporting.cloud

Untitled-1 3Untitled-1 3 10/20/16 11:37 AM10/20/16 11:37 AM

http://www.reporting.cloud
www.textcontrol.com

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader ’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF
Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Assistant Art Director Dragutin Cvijanovic
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES
Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Account Executive Caroline Stover
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA
Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Site Administrator Biswarup Bhattacharjee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES
Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bundy
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos

MARKETING
Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Marketing & Editorial Assistant Megan Burpo

ENTERPRISE COMPUTING GROUP EVENTS
Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Financial Officer
Craig Rucker

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Features Editor Ed Zintel
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

JANUARY 2017 VOLUME 32 NUMBER 1

magazine

0117msdn_Masthead_v3_2.indd 2 12/12/16 9:52 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

Untitled-7 1 12/5/16 3:17 PM

www.leadtools.com

msdn magazine4

C++ developers hoping to get in on the action with the Windows Runtime
(WinRT) have faced a high barrier to entry. Either work with the Windows
Runtime C++ Template Library (WRL) originally developed to boot-
strap internal development of APIs by Microsoft, or turn to Microsoft’s
C++ Component Extensions (C++/CX) to streamline access to
WRL capabilities, at the cost of having to learn a new dialect of C++.

Kenny Kerr, a longtime C++ columnist at MSDN Magazine and
now an engineer on the Windows team at Microsoft, believed there
had to be a better way. He started work early in 2014 on a Windows
Runtime projection for standard C++ that would make the lan-
guage a first-class citizen in the WinRT space.

“I had some previous experience projecting COM APIs into
modern C++, so I decided to see whether I could apply those same
techniques to the Windows Runtime,” Kerr says. “I was invited to
Redmond on two different occasions and it certainly seemed as if
they were warming up to the idea. Finally, I was offered a job and
joined the Windows team to complete the project with their help.”

The result of that effort is C++/WinRT, a standard C++ language
projection for WinRT that is implemented entirely in header files
and enables developers to both consume and author Windows
Runtime APIs using any standards compliant C++ compiler. This
is exciting stuff, and Kerr explores it all in detail in his feature
article this month, “Introducing C++/WinRT.”

Kerr explains that there are really two parts to C++/WinRT—the
base library and projection that can be downloaded from GitHub
(URL), and the cppwinrt.exe compiler that bridges the gap
between standard C++ and WinRT. While most of the effort to date
has focused on the library and projection, Kerr says the cppwinrt
compiler deserves attention. “Developers really need to get their
hands on this tool as it solves a lot of problems, from generating
projections for different platforms or components, to playing a key
role in developing WinRT components entirely with C++/WinRT.”

One of the biggest challenges Kerr faced in developing C++/
WinRT was managing the trade-offs that WinRT makes to support
projections for JavaScript and managed .NET languages out of the

box. He singles out the complexity in how generic collections work
across language projections.

“One of the biggest challenges I faced early on was coming up with an
efficient way for standard C++ to handle WinRT’s interface-versioning
model. I mention this briefly in this month’s article, but I don’t touch
on how those ‘required’ interfaces are actually aggregated together
at compile time in C++,” Kerr says. “It really pushed my under-
standing of C++ at that time and has since pushed the Visual C++
compiler to more efficiently handle such techniques at this scale.”

Microsoft for years has been emphasizing openness and cross-
platform support in its dev tools (see my Editor’s Note column in
the recent MSDN Magazine Connect(); special issue at msdn.com/
magazine/mt790179). The C++/WinRT project is a great example of
these values at work, as Microsoft welcomes the best efforts of the
community in an effort to improve its platforms. Still, the question
begs: How does a guy outside of Microsoft end up creating vital
tooling for a mainline Microsoft programming language? Kerr says
it comes down to fresh eyes.

“There are a lot of very experienced C++ developers at Microsoft
who have spent decades-long careers working with C++ and COM,”
Kerr says. “I think it took someone who didn’t realize that it was
impossible to just try it any-
way and show that it works.”

Outside in: How Kenny Kerr Brought
C++/WinRT to Microsoft

© 2017 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEditor’s Note

Kenny Kerr, a longtime C++
columnist at MSDN Magazine and
now an engineer on the Windows
team at Microsoft, believed there

had to be a better way.

0117msdn_DesmondEdNote_v2_4.indd 4 12/12/16 9:51 AM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-5 1 9/28/15 4:25 PM

www.amyuni.com

msdn magazine6

Developers make crucial mistakes when listing technical “side proj-
ects” on their resumes. I see it all the time. Here are 11 questions to
ask yourself before touting your side projects:

1. Why mention it? Most side projects are tiny hobby proj-
ects that simply aren’t worth being listed on a resume. They’ll get
ignored. To stand out, position a side project so that it startles the
interviewer into thinking, “Wow, this person really enjoys software
engineering and is good at it.”

2. Does it fulfill relevant experience? If you have little experi-
ence relevant to a job, a side project can be a powerful conversational
pivot during interviews. Just be sure to list it under your work his-
tory if you can, rather than in a special Projects section. When you
list something in Projects, you unintentionally discount its value by
75 percent to interviewers. You’re telling them, “Don’t pay attention
to this section; it’s just something little I did on the side.”

3. Is it strong? An ideal project is as strong as your strongest
“work” project, with similar characteristics: worked in a team, dealt
with clients or customers, hit massive success metrics via downloads
or financial gain, achieved press recognition, or overcame obstacles.

4. What’s the story? No matter what side project I put on the re-
sume, I’d craft four to five stories to handle almost any question about it.
With every story, I’d make the side project the glorious, heroic solution
that solved a crisis problem. I’d repurpose the stories when interviewers
asked for my greatest strength, greatest weakness or obstacles overcome.

5. What was superlative about it? Figure out ways to describe
your projects in terms of “bests.” In what tiny way was your proj-
ect the biggest, the most popular, the most downloaded, the most
viewed, the fastest, or the most praised?

Almost any side project can be described superlatively yet truth-
fully in at least one way. Mastering this delicate, hyper-creative
dance adds weight to your projects’ value.

6. Is the right aspect emphasized? If I have to choose among
many side projects, I pick one that shows me in the most outrageously

positive light, be it in technical complexity, success achieved, scale,
reach, results or relevance to the company for which I’m applying.

7. Did it help anyone? I recommend listing side projects under
Work Experience when you solve at least one other person’s problem
with your project. This approach worked for my client Felicia, who
used to list her side projects in a Projects section. After she moved
them to her Work Experience section, and described them as “Cli-
ent Engagements” (because she’d created all her side projects for at
least one other person’s benefit), she got an offer within a few weeks.

8. Is a Web site even necessary? Most recruiters barely take
time to read your resume before an interview, much less find time
to visit your Web sites. And if they do visit your Web site, they are
unlikely to dig into your side projects; they’ll just look for glaring
red flags (like inappropriate content).

Candidates tend to over-share on their sites, in ways that can
sabotage their candidacies. For most candidates, the risks of a per-
sonal Web site outweigh the rewards. If you have a personal site on
your resume, make it 100 percent professional.

9. Where do you host side projects? It’s not necessary to host
projects online, but if you do, choose a site that gives you the most
“street cred” for the role. For a UI developer, a gorgeous, profes-
sional portfolio site built on your own domain is the way to go. For
other developers, GitHub is the best choice.

10. How does this project help the company? Sometimes, it’s
best to create a side project specific to the employer to which you’re
applying. For example, I may look into issues a company’s customers
are reporting, and create a project or mock-up that addresses some
top concerns. I’d then share this with my interviewers, via my
recruiter. This lets me set the agenda for the interview before I even
have the interview. I can come off as an “internal” candidate even
while coming from the outside.

11. Is this a cover-up? Side projects can even become an excuse
for avoiding the discomfort of a job search. Many candidates busy
themselves with side projects that do zero to advance their candidacy.

It’s OK to list no side projects on a resume, especially if you’ve
been working as a software engineer already. Some developers
mistakenly think that one more side project (or the “right” side
project) will produce more job offers. That’s not the case, usually.
That time is often better spent reaching out to the right hiring managers,
preparing for interviews or sharpening the resume.	 n

Krishnan Rangachari is a career coach for software engineers. Visit RadicalShifts.
com for his free courses and ByteshiftResumes.com for his resume makeovers.

You’re Hired:
11 Things to Consider with Side Projects

Upstart KRISHNAN RANGACHARI

If you have little experience
relevant to a job, a side project

can be a powerful conversational
pivot during interviews.

0117msdn_RangachariUpstart_v2_6.indd 6 12/12/16 9:55 AM

www.ByteshiftResumes.com
www.RadicalShifts.com
www.RadicalShifts.com

Untitled-1 1Untitled-1 1 10/13/11 11:25 AM10/13/11 11:25 AM

www.nsoftware.com

msdn magazine8

As I’m writing this column (in November 2016), Entity
Framework (EF) Core 1.1 was just released. Between the 1.0 release
and 1.1, a few significant things happened. In particular, the 1.0.1
patch fixed some critical bugs that were discovered just as 1.0 was
being released. For a detailed list of those fixes, you can read the
release notes at bit.ly/2fl5xNE. While most of these fixes relate to how
LINQ queries are transformed to SQL, there are also fixes to the
model builder, persistence via SaveChanges and migrations.

EF Core 1.1 brings additional bug fixes, many more improve­
ments to how LINQ queries are interpreted, and big performance
gains. But there are also new features—some that existed in EF6 but
hadn’t made it to EF Core 1.0, keeping many developers from even
looking at EF Core—and others that are completely new. What I
want to do in this article is present a quick list of these changes and
then highlight some that are of great interest to me. I’ll also provide
links to the many valuable resources I use in my effort to keep up
with EF Core as it evolves. To begin with, plenty of this informa­
tion is covered in the docs (docs.microsoft.com/ef) and in the team blog
posts (bit.ly/2ehZBUB).

In particular, you should be aware of Arthur Vickers’ blog. Arthur is
a senior dev who has been on the team since the inception of POCO
support in EF and has been instrumental in the modernization of
EF. He has a great series of posts on EF Core 1.1 at blog.oneunicorn.com.

Microsoft plans to bring many EF6 features to EF Core, but not all
of them. And there are a number of new features planned that will
come in future versions. Right now, EF Core 1.1 focuses on upgrades
that would make EF Core more satisfactory to a greater number of
developers. Here are the most important of these features.

EF6 Features Now in EF 1.1
The DbSet.Find method, which became available with the intro­
duction of the DbContext API in EF 4.1, didn’t make it onto the hit
list for the first iteration of EF Core, upsetting a lot of developers.
Find is more than a convenient way to efficiently query for an entity
based on its key value. It first checks to see if that entity is already in
memory and is being tracked by EF. If the entity can’t be found in
the DbContext cache, EF executes a FirstOrDefault query on the
database to retrieve the entity. This used to be a SingleOrDefault
query in EF6 and earlier. Find’s design to avoid an unnecessary
trip to the database is also a performance benefit. If you’re like

me and want to see the plumbing, you can find the code in the
EntityFinder class on GitHub (bit.ly/2e9V0Uu).

The other big difference is that Find is now in an EntityFinder
service; it’s not just a method implemented directly in an inter­
nal DbSet class as it was in EF6. EF Core is made up of hundreds
of services to encapsulate particular tasks. In his demos in the
Channel 9 video on EF Core 1.1 (bit.ly/2fHOCsN), Rowan Miller shows
how to use services directly, as well as how to replace them.

Also becoming part of EF Core with the 1.1 update is the EF6
feature referred to as connection resiliency, which provides support
for easily handling transient connection problems that can happen
when working against a remote database such as Azure SQL
Database. The EnableRetryOnFailure extension method of the
SQL Database provider can be set in DbContext.OnConfiguring or
the AddDbcontext call in Startup.cs if you’re using ASP.NET Core
dependency injection. EnableRetryOnFailure calls SqlServer­
RetryingExecutionStrategy, which inherits from the Execution­
Strategy type. You can create and set your own ExcecutionStrategy
and other providers can predefine their own ExecutionStrategy
configurations, as well. If you’re not familiar with this feature, it’s
similar to the EF6 DbExecutionStrategy, which I covered in depth
in my Pluralsight course, “EF6 Ninja Edition” (bit.ly/PS_EF6).

EF has always provided three ways of loading related data. One, eager
loading, is enabled by the DbSet.Include method to retrieve graphs of
data in a single query. Two others, in contrast, load related data after
the main objects are already in memory and while the DbContext
that’s tracking them is still in scope. Lazy loading automatically pulls
in related data on-demand, while with explicit loading you explicitly
tell EF to load the related data. Include was the first of these to be
implemented in EF Core and became available with EF Core 1.0. It
even has some nice improvements over versions from EF6 and earlier.
Explicit loading with the Load method has now been added into EF
Core 1.1. Lazy loading is not yet supported but will be at some point.

DbContext’s change tracker APIs let you access change tracker
information directly, for example getting or setting the state of an
entity with the DbContext.Entry(someObject).State method. EF6

EF Core 1.1: A Few of My Favorite Things

Data Points JULIE LERMAN

Code download available at msdn.com/magazine/0117magcode.

EF has always provided three
ways of loading related data.

0117msdn_LermanDPts_v4_8-11.indd 8 12/12/16 9:46 AM

http://msdn.com/magazine/0117magcode
www.bit.ly/2fl5xNE
http://docs.microsoft.com/ef
www.bit.ly/2ehZBUB
www.bit.ly/2e9V0Uu
www.bit.ly/2fHOCsN
http://blog.oneunicorn.com
www.bit.ly/PS_EF6

Untitled-3 1 12/5/16 10:57 AM

www.devexpress.com/office

msdn magazine10 Data Points

brought additional control with new methods like GetDatabase­
Values, CurrentValues and OriginalValues. These methods are now
available in EF Core 1.1.

New Capabilities in EF 1.1
EF Core is filled with features that never existed in earlier versions.
Here’s a short list of examples: batching during SaveChanges, unique
foreign keys, the wonderful InMemory provider for testing, smarter
LINQ query processing, and smarter and simpler fluent mappings.

EF 1.1 brings some additional new features and there’s one in par­
ticular that, as someone who’s a big fan of Domain-Driven Design
(DDD), I’m quite fond of—support for encapsulated collections.

Mapped Fields and Encapsulated Collections EF Code First
has only ever supported mapping to properties that have both a
getter and a setter, even if the setter is private. And for collection
navigations, the property was required to be an ICollection. If you
want to constrain how the values of properties are populated, the
ability to encapsulate the property is crucial—that way you can force
anyone using your class to use a public method to ensure that the
business rules around that property are honored. EF6 and earlier
allow you to encapsulate scalar properties by making the setter pri­
vate. But there’s no way to truly encapsulate collections and prevent
anyone from modifying the collection directly.

With EF 1.1, you gain the ability to map directly to fields, as well as
to map to IEnumerable properties. The new ability to map to fields,
not just properties, allows you to use a more direct approach than
hiding the setter and it also supports some additional ways of encap­
sulating scalar values. Here’s a property, DueDate, that has a getter but
no setter, along with the field, _dueDate, which is tied to the property:

private DateTime _dueDate;
public DateTime DueDate {
 get { return _dueDate;
 }
}

The only way to set the DueDate is by calling the CalculateDue­
Date method, which modifies the field:

private void CalculateDueDate() {
 _dueDate=Start.AddDays(DaysLoaned);
}

EF Core 1.1 requires an explicit mapping in the DbContext to
inform EF that it can use the _dueDate field to map to the data­
base, for example when returning the results of a query. You
must use the Property (and optionally HasField) API methods to
specify that the _dueDate field is a stand-in for the DueDate prop­
erty. In this case, because the field name, _dueDate, follows an
EF convention, I don’t have to use the HasField method, but I’ve
added it in so you can see it:

protected override void OnModelCreating(ModelBuilder modelBuilder) {
 modelBuilder.Entity<BookLoan>().Property(bl => bl.DueDate)
 .HasField(“_dueDate”);
}

While you could use private setters before the field mapping
was available, there was no way to encapsulate collections, to pre­
vent anyone from directly manipulating a collection via its Add
or Remove methods. It isn’t a matter of hiding the setter; what’s
needed is to hide the collection methods. A common approach
in DDD is to make the property an IEnumerable. However, with
EF6 and earlier, you can only map to a flavor of an ICollection; but
IEnumerable isn’t an ICollection.

At first I looked to see if you could use the field-mapping capa­
bility, but with EF 1.1 that isn’t possible as it only supports mapping
to scalar properties. This is targeted to change in the next release of
EF Core, which will allow mapping to navigation properties. But
when I pointed this out one day on Twitter, Arthur Vickers let me
know that in fact you can map to IEnumerables—something I’d
somehow missed about EF Core. So I’m now able to encapsulate
and protect a collection completely, forcing users of my API to
go through a method to modify the collection. Here’s an example
where I can add new BookLoan instances to a book every time it’s
loaned, ensuring that the period of the loan is included:

private List<BookLoan> _bookLoans;
public IEnumerable<BookLoan> BookLoans {
 get { return _bookLoans; }
}
public void BookWasLoaned(int daysLoaned){
 _bookLoans.Add(new BookLoan(DateTime.Today, 14));
}

This is one pattern for achieving encapsulation by leveraging
the IEnumerable mapping. But I recommend you read Arthur’s
blog post (bit.ly/2fVzIfN) for more details, including how to do this
without a backing field (a la my _bookLoans field), plans for
enhancements and some gotchas to watch out for.

Support for Database-Specific Features EF Core is designed
to allow providers to more easily support specific features of the
data store. One example is that the SQL Server provider for EF Core
supports SQL Server Memory-Optimized Tables for applications
where you have incredibly high throughput. To specify that an
entity maps to this special type of table, the SQL Server pro­
vider has an extension method you can use when configuring
your model with the Fluent API:

modelBuilder.Entity<Book>().ForSqlServerIsMemoryOptimized();

Not only will this affect how code first generates table creation
script, but it will also affect how EF generates commands to push
data into the database. You can see an interesting demo of this in
the previously mentioned Channel 9 video where Rowan Miller
demos EF 1.1 features.

Shay Rojansky, who built the PostgreSQL provider for EF Core,
wrote an article about how EF Core allowed him to support special
features of PosgreSQL such as array types. Read it at bit.ly/2focZKQ.

Easier Access to Services
As I highlighted earlier with the EntityFinder service, EF Core is
made up of hundreds of services. In the Channel 9 video, Rowan
demonstrates how to access and use these services directly in your
code. In addition, you can override a service with your own customi­

With EF 1.1, you gain
the ability to map directly to
fields, as well as to map to
IEnumerable properties.

0117msdn_LermanDPts_v4_8-11.indd 10 12/12/16 9:46 AM

www.bit.ly/2fVzIfN
www.bit.ly/2focZKQ

msdnmagazine.com

Instantly Search
Terabytes of Text

dtSearch.com 1-800-IT-FINDS

dtSearch’s document filters
support popular file types, emails
with multilevel attachments,
databases, web data

Highlights hits in all data types;
25+ search options

 The Smart Choice for Text Retrieval®

since 1991

Visit dtSearch.com for
• hundreds of reviews and

case studies
• fully-functional enterprise and

developer evaluations

With APIs for .NET, Java and C++.
SDKs for multiple platforms.
(See site for articles on faceted
search, SQL, MS Azure, etc.)

®

zation. EF 1.1 makes it easier to do that with a simple replace method
that can be used in OnConfiguring. You can replace a service with
another that either inherits from that service or implements the
same interface. There’s no particular list of services—these are just
classes throughout the various APIs of EntityFrameworkCore.
A simple-to-grasp example is to create a class that inherits from
a database type mapper, such as SqlLiteTypeMapper from the
Sqlite provider, and add in a new type-mapping rule. Be sure that
rule is one the database is able to cast. (Some cleverer type con­
versions will be coming in a future version of EF Core.) Then, in
OnConfiguring, set up the replacement rule:

optionsBuilder.ReplaceService<SqliteTypeMapper,MySqliteTypeMapper>();

Why did I not replace the EntityFinder service? First, because I
like the way it works. But second, because it’s a generic class, which
makes creating a new version of it more complicated and I chose to
set that chore aside for the time being. While ReplaceService was
created to make it easier to replace internal services, you do need
to keep in mind that EF Core internals could change and, there­
fore, your replacement might be problematic down the road. You
can identify these easily enough because they’re in namespaces
that end with the word Internal. From Microsoft: “We generally
avoid breaking changes in non .Internal namespaces in minor and
patch releases.”

Worth highlighting (because it caused a bit of a stir at the time)
is a fix to a performance problem related to asynchronous queries
that used the Include method, which was discovered just as 1.0 was
about to be released. It was addressed quickly (see bit.ly/2faItD1 if
you’re interested in the details) with a reported 70 percent increase
in performance and is also part of the 1.1 release.

Wrapping Up
EF Core has a lot of sophisticated features. It’s incredibly important
to be aware of what’s in, what’s not in, what’s coming and what’s never
going to be part of EF Core. The EF Core documentation about
its relationship to EF6 (bit.ly/2fxbVVj) is a useful resource, as well.
The point is, you decide when EF Core is right for you and for
your apps.

For most of the work I do, EF Core 1.1 has the APIs and features I
need. As a DDD practitioner, the ability to encapsulate collections is a
winner for me, though I’m still waiting for the complex type mappings
to be included so I can also use value objects in my models. This feature
is slated for the next release of EF Core. I was also excited to recently
discover that EF Core has fulfilled a wish of mine—to define a
read-only (non-tracking) DbContext. I had completely missed that
this was added early on and was part of the 1.0 release of EF Core.
You can read more about that in my blog post at bit.ly/2f75l8m.	 n

Julie Lerman is a Microsoft MVP, .NET mentor and consultant who lives
in the hills of Vermont. You can find her presenting on data access and other
.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework,” as
well as a Code First and a DbContext edition, all from O’Reilly Media. Follow her
on Twitter: @julielerman and see her Pluralsight courses at juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for reviewing this article:
Rowan Miller

0117msdn_LermanDPts_v4_8-11.indd 11 12/12/16 9:46 AM

www.dtSearch.com
www.bit.ly/2faItD1
www.bit.ly/2fxbVVj
www.bit.ly/2f75l8m
http://thedatafarm.com/blog
www.twitter.com/julielerman
http://juliel.me/PS-Videos
http://www.msdnmagazine.com

msdn magazine12

The Windows Runtime (WinRT) is the technology behind
the modern Windows API, and the core of the Universal Windows
Platform (UWP). The same API can be used across all Windows
devices, whether it’s a PC, tablet, HoloLens, phone, Xbox or any-
thing else that runs Windows.

WinRT is based on the Component Object Model (COM), but
its COM APIs aren’t designed to be used directly, as you might use
classic COM APIs such as those in DirectX. Rather, it’s designed to
be used through what are called “language projections.” A language
projection encapsulates the unpleasant details of working with the
COM APIs and provides a more natural programming experience
for a particular programming language. For example, the WinRT
APIs can be used from both JavaScript and .NET quite naturally,
without having to worry too much about the COM underpinnings.

Until recently, there hasn’t been a good language projection for
use by C++ developers: You had to choose between the clunky
C++/CX language extensions or the verbose, tedious and complex
WinRT C++ Template Library (WRL).

This is where C++/WinRT comes in. C++/WinRT is a standard
C++ language projection for WinRT implemented entirely in
header files—the best kind of C++ library. It’s designed to support
the authoring and consumption of WinRT APIs using any stan-
dards-compliant C++ compiler. C++/WinRT finally provides C++
developers with first-class access to the modern Windows API.

Windows Metadata Files to the Rescue
C++/WinRT is based on the Modern C++ for the Windows Runtime
project (moderncpp.com), a project I started prior to joining Microsoft.
It was in turn based on another project I created in an attempt to
modernize DirectX programming (dx.codeplex.com). When WinRT
came along, it solved the No. 1 problem of modernizing COM

APIs by providing a canonical way of describing the API surface,
via what are called Windows Metadata (.winmd) files. Given a set
of Windows Metadata files, the C++/WinRT compiler (cppwinrt.exe)
can generate a standard C++ library that fully describes or proj-
ects the Windows API, or any other WinRT components, so that
developers can both consume and produce implementations of that
API. The latter is significant because it means that C++/WinRT is
not only for calling or using WinRT APIs, but it’s also ideally suited
to implementing WinRT components. Teams within Microsoft
are already starting to use C++/WinRT to build WinRT compo-
nents for the OS itself.

C++/WinRT had its first public release on GitHub in October
2016, so you can try it today. Perhaps the simplest option is to clone
the git repository, although you can also download it as a .zip file.
Simply issue the following command:

git clone https://github.com/Microsoft/cppwinrt.git

Cloning into 'cppwinrt'...

You should now have a folder called “cppwinrt” that contains
your own local copy of the repository. This folder contains the
C++/WinRT library, as well as some documentation and a get-
ting started guide. The library itself is contained within a folder
reflecting the version of the Windows SDK against which it was
built. As of this writing, the latest version is 10.0.14393.0, which is
the build of the Windows SDK that supports development for the
Windows 10 Anniversary Update (RS1). Your local folder might
look something like this:

dir /b cppwinrt

10.0.14393.0
Docs
Getting Started.md
license.txt
media
README.md

The versioned folder itself contains two folders:
dir /b cppwinrt\10.0.14393.0

Samples
winrt

The winrt folder is all you need. If you simply want to copy that
folder into your own project or source control system, that’s perfectly
fine. It contains all the required headers, so you can quickly start
writing code. What does that code look like? Well, let’s start with a
console app that you can simply compile using the Visual C++ tools
command prompt. No need for Visual Studio or those complicated

C++

Introducing C++/WinRT
Kenny Kerr

This article discusses:
•	A new Windows Runtime language projection

for standard C++

•	How C++ can be used to modernize
COM programming

•	The effectiveness of coroutines in simplifying concurrency

Technologies discussed:
Windows Runtime, Standard C++, Windows Metadata, Coroutines

0117msdn_KerrCPlus_v5_12-16.indd 12 12/12/16 9:57 AM

www.moderncpp.com
http://dx.codeplex.com
www.cppwinrt.exe

13January 2017msdnmagazine.com

.msbuild or .appx files that are staples of your typical UWP app.
Copy the code from Figure 1 into a source file and call it Feed.cpp.

I’ll talk in a moment about what the code means. For now, you can
make sure it builds using the following Visual C++ compiler options:

cl Feed.cpp /I cppwinrt\10.0.14393.0 /EHsc /std:c++latest

Microsoft (R) C/C++ Optimizing Compiler...

The /std:c++latest compiler flag is the clue that you’ll need Visual
C++ 2015 Update 3 or later to use C++/WinRT. Notice, however, that
there’s no Microsoft-specific extension being requested. In fact, you
might also want to include the /permissive- option that further con-
strains your code to be more standards-compliant. If all goes well,
the compiler will call the linker and together produce an execut-
able called Feed.exe that prints out the titles of my recent blog posts:

Feed.exe

C++/WinRT: Consumption and Production
C++/WinRT: Getting Started
Getting Started with Modules in C++
...

On with the Show
Congratulations! You’ve built your first app with C++/WinRT. So,
what’s going on here? Take another look at Figure 1. The first line
tells the linker where to find a handful of WinRT functions used by
any language projection. These aren’t specific to C++/WinRT. They’re
merely the Windows APIs that let an app or component initialize
the apartment context for a thread, manipulate WinRT strings,
activate factory objects, propagate error information and so on.

Next up is a set of #include directives to include the types from
the namespaces that the program intends to use. Originally, C++/
WinRT defined everything within a single header file, but, given
the sheer size of the Windows API, this proved to be detrimental
to build throughput. In the future, we might switch to using C++
modules as I described in my April 2016 MSDN Magazine article,
“Microsoft Pushes C++ into the Future” (msdn.com/magazine/mt694085).
When that day comes, having to first include these headers might
no longer be necessary because the module format is so much more
efficient and early trials have indicated that the build throughput
issues might largely disappear.

The using namespace directives are optional, but given that the
Windows API uses namespaces quite heavily, they do come in
rather handy. All the types along with their enclosing namespaces
are housed within the C++/WinRT root namespace called winrt.
This is somewhat unfortunate but required for interoperability
with existing code: Both C++/CX and the Windows SDK declare
types in a root namespace named “Windows.” Having a separate
namespace lets developers slowly migrate away from C++/CX while
preserving their existing investment in these older technologies.

The app in Figure 1 simply creates a Uri object to indi
cate the RSS feed to download. The Uri object is defined in the
Windows.Foundation namespace. This Uri object is then passed
to a method of the SyndicationClient object to retrieve the feed.
SyndicationClient is defined in the Windows.Web.Syndication name-
space. As you’ll see in a moment, WinRT relies heavily on async, so
the app needs to wait for the result of the RetrieveFeedAsync method
and that’s the job of the trailing get method. With the Syndication
Feed object in hand, the feed’s items may be enumerated via a

collection returned by the Items method. Each resulting Syndication
Item may then be unpacked to retrieve the text from the post’s
title. The result is of type hstring, which encapsulates the WinRT
HSTRING type, but provides an interface similar to that of
std::wstring, to provide a familiar experience to the C++ developer.

As you can see, WinRT aims to present a classy type system over
the tried-and-tested COM plumbing at the heart of so much of the
Windows OS. C++/WinRT faithfully honors that ideal. There’s no
need to call arcane functions like CoCreateInstanceEx or deal with
COM pointers or HRESULT error codes. Of course, the moral equiv-
alent of these COM-style primitives still exists behind the scenes.
For example, the initialize function called at the start of the main
function in Figure 1 internally calls the RoInitialize function, which
is the WinRT equivalent of the traditional CoInitializeEx function
from classic COM. The C++/WinRT library also takes care of con-
verting between HRESULTs and exceptions to provide a natural
and productive programming model for the developer. This is done
in a manner so as to avoid code bloat and improve inlineability.

I alluded to the fact that WinRT has a deep architectural invest-
ment in async and you saw this already in the example in Figure 1.
The RetrieveFeedAsync function might naturally take some time
to complete and the API designers didn’t want the method call to
block, so rather than returning a SyndicationFeed directly it instead
returns an IAsyncOperationWithProgress type that represents the
operation that might eventually result in a SyndicationFeed when
those results are finally available.

Concurrency
WinRT provides four types to represent different kinds of async
objects and C++/WinRT provides a few ways to both create and
consume such objects. Figure 1 shows how you can block the
calling thread until the results are available, but C++/WinRT also
integrates C++ coroutines very deeply into the programming model
to provide a natural way to cooperatively wait for the result without
holding up OS threads from other useful work. Instead of using
the get method, you can write a co_await statement to await the
result of the operation as follows:

SyndicationFeed feed = co_await client.RetrieveFeedAsync(uri);

#pragma comment(lib, "windowsapp")
#include "winrt/Windows.Foundation.h"
#include "winrt/Windows.Web.Syndication.h"

using namespace winrt;
using namespace Windows::Foundation;
using namespace Windows::Web::Syndication;

int main()
{
 initialize();

 Uri uri(L"http://kennykerr.ca/feed");
 SyndicationClient client;
 SyndicationFeed feed = client.RetrieveFeedAsync(uri).get();

 for (SyndicationItem item : feed.Items())
 {
 hstring title = item.Title().Text();
 printf("%ls\n", title.c_str());
 }
}

Figure 1 Your First C++/WinRT App

0117msdn_KerrCPlus_v5_12-16.indd 13 12/12/16 9:57 AM

http://www.msdnmagazine.com
http://msdn.com/magazine/mt694085

msdn magazine14 C++

You can also produce your own WinRT async object simply by
writing a coroutine as illustrated in Figure 2. The resulting IAsync
Action, another WinRT async type found in the Windows.Foundation
namespace, may then be aggregated into other coroutines, a caller
might decide to use the get method to block and wait for the
result, or it can even be passed to another programming language
that supports WinRT.

As I’ve mentioned, C++/WinRT is not just about calling WinRT
APIs. It’s just as easy to implement WinRT interfaces and produce
implementations that others might call. A good example of this is
in the way the WinRT application model is structured. A minimal
app might look something like this:

using namespace Windows::ApplicationModel::Core;

int __stdcall wWinMain(HINSTANCE, HINSTANCE, PWSTR, int)
{
 IFrameworkViewSource source = ...

 CoreApplication::Run(source);
}

That’s just the traditional WinMain entry point function reminding
you that even though you can now write in standard C++, you’re still

in the business of writing apps that shine on specific platforms. The
CoreApplication’s static Run method expects an IFrameworkView-
Source object to create the app’s first view. IFrameworkViewSource
is just an interface with a single method and looks, at least concep-
tually, like this:

struct IFrameworkViewSource : IInspectable
{
 IFrameworkView CreateView();
};

So, given an IFrameworkViewSource, you might call it as follows:
IFrameworkViewSource source = ...
IFrameworkView view = source.CreateView();

Of course, it’s not the app developer who calls it but the operating
system. And you, the app developer, are expected to implement this
interface, along with the IFrameworkView interface that CreateView
returns. C++/WinRT makes it very simple to do so. Again, there’s
no need for COM-style programming. You don’t need to resort to
scary WRL or ATL templates and macros. You can simply use the
C++/WinRT library to implement interfaces as follows:

struct Source : implements<Source, IFrameworkViewSource>
{
 IFrameworkView CreateView()
 {
 return ...
 }
};

The implements class template is loosely based on the variadic
template approach to implementing WinRT interfaces. I described
this in my 2014 Special Connect(); article, “Visual C++ 2015 Brings
Modern C++ to the Windows API” (msdn.com/magazine/dn879346).

The first type parameter is the name of the derived class that
intends to implement the interfaces listed as subsequent type
parameters. How do you implement the IFrameworkView interface?
Well, it’s another interface that’s only slightly more complicated. It
looks something like this:

struct IFrameworkView : IInspectable
{
 void Initialize(CoreApplicationView const & applicationView);
 void SetWindow(Windows::UI::Core::CoreWindow const & window);
 void Load(hstring_ref entryPoint);
 void Run();
 void Uninitialize();
};

Given an instance of IFrameworkView, you can freely call those
methods just as they’re described here, but again you’re talking about
an interface that the app is expected to implement and the OS will
call. Again, you can simply use C++/WinRT to implement this
interface as illustrated in Figure 3. This represents a minimal app
that will get a window up and running on the desktop even while
it may not do anything exciting. I’m showing you all of this not to
illustrate how to write the next great app, but to show how you can
use natural C++ code to both consume and produce WinRT types.

You can then update the IFrameworkViewSource implementa-
tion to make and return this implementation:

struct Source : implements<Source, IFrameworkViewSource>
{
 IFrameworkView CreateView()
 {
 return make<View>();
 }
};

You can likewise update your WinMain function to make use of
your IFrameworkViewSource implementation as follows:

IAsyncAction PrintFeedAsync()
{
 Uri uri(L"http://kennykerr.ca/feed");
 SyndicationClient client;
 SyndicationFeed feed = co_await client.RetrieveFeedAsync(uri);

 for (SyndicationItem item : feed.Items())
 {
 hstring title = item.Title().Text();
 printf("%ls\n", title.c_str());
 }
}

int main()
{
 initialize();
 PrintFeedAsync().get();
}

Figure 2 Coroutines with C++/WinRT

struct View : implements<View, IFrameworkView>
{
 void Initialize(CoreApplicationView const & view)
 {
 }

 void Load(hstring_ref entryPoint)
 {
 }

 void Uninitialize()
 {
 }

 void Run()
 {
 CoreWindow window = CoreWindow::GetForCurrentThread();
 window.Activate();

 CoreDispatcher dispatcher = window.Dispatcher();
 dispatcher.ProcessEvents(CoreProcessEventsOption::ProcessUntilQuit);
 }

 void SetWindow(CoreWindow const & window)
 {
 // Prepare app visuals here
 }
};

Figure 3 Implementing IFrameworkView

0117msdn_KerrCPlus_v5_12-16.indd 14 12/12/16 9:57 AM

http://msdn.com/magazine/dn879346

(888) 850-9911
Sales Hotline - US & Canada:

/update/2017/01

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2017 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Experience the brand new look at www.componentsource.com

Aspose.Total for .NET from $2,939.02
Every Aspose .NET component in one package.

• Programmatically manage popular � le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote � les
alongside many more document management features in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the � y and extracting text from most document types

BEST SELLER

DevExpress DXperience 16.1 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

ActiveReports 11 from $1,567.02
Award-winning .NET reporting platform for HTML5, WPF, WinForms, ASP.NET & Windows Azure.

• Visual Studio-integrated report designer

• Extensible optional report server with built-in scalability

• Responsive HTML5 Report Portal

• Royalty-free redistribution

• Source data from JSON � les, Web services and REST API using the built in JSON data provider

BEST SELLER

Untitled-2 1 12/7/16 10:49 AM

http://www.componentsource.com

msdn magazine16 C++

int __stdcall wWinMain(HINSTANCE, HINSTANCE, PWSTR, int)
{
 CoreApplication::Run(make<Source>());
}

Given that the implements class template is designed as a variadic
template, it can be used to implement multiple interfaces quite eas-
ily. You might decide to implement both IFrameworkViewSource
and IFrameworkView inside one class, as shown in Figure 4.

If you’ve spent any time implementing COM objects with librar-
ies such as ATL or WRL, this should be a welcome improvement.
And it’s not only more convenient, productive and enjoyable to use,
but it will in fact give you the smallest binaries and the best possible
performance of any WinRT language projection. It will even out-
perform handwritten code using the ABI interfaces directly. That’s
because the abstractions are designed to take advantage of modern
C++ idioms that the Visual C++ compiler is designed to optimize.
This includes magic statics, empty base classes, strlen elision, as well
as many newer optimizations in the latest version of Visual C++
targeted specifically at improving the performance of C++/WinRT.

As an example, WinRT introduces the concept of required
interfaces. A given runtime class or interface might be expected
to additionally implement some other set of interfaces. This lets
WinRT, which is based on COM interfaces that cannot ever change,
support versioning. For example, the Uri class I illustrated earlier
requires the IStringable interface with its single ToString method.
A typical app developer isn’t aware that the methods of the IString-
able interface are in fact provided by a distinct COM interface and
vtable and can simply make use of it as follows:

Uri uri(L"http://kennykerr.ca/feed");
hstring value = uri.ToString();

Behind the scenes, C++/WinRT must first query the Uri object
for the IStringable interface using the IUnknown QueryInterface
method. This is all fine and well until you happen to call such a
required interface method in a loop:

Uri uri(L"http://kennykerr.ca/feed");

for (unsigned i = 0; i != 10'000'000; ++i)
{
 uri.ToString();
}

What you don’t see is that this code results in something like
this happening:

Uri uri(L"http://kennykerr.ca/feed");

for (unsigned i = 0; i != 10'000'000; ++i)
{
 uri.as<IStringable>().ToString();
}

C++/WinRT injects the necessary call to the as method, which
in turn calls QueryInterface. Now, from the perspective of COM,
QueryInterface is a pure call. If it succeeds once, it must always
success for a given object. Fortunately, the Visual C++ compiler
is now optimized to detect this pattern and in collaboration with
C++/WinRT it will hoist this call out of the loop so that the code
ends up looking like this:

Uri uri(L"http://host/path");
IStringable temp = uri.as<IStringable>();

for (unsigned i = 0; i != 10'000'000; ++i)
{
 temp.ToString();
}

This ends up being quite an important optimization as the num-
ber of required interfaces in the Windows API is quite significant,
especially in areas such as XAML development. This is just one
example of some of the incredible optimizations that are available
to you as you adopt C++/WinRT for your app and component
development. There are further optimizations that amortize the cost
of accessing activation factories, resulting in significant improve-
ments to the performance of instance activation (constructors)
and static method calls that give you as much as 40x performance
improvement over C++/CX.

Standard C++ presents some unique challenges to anyone
attempting to produce a WinRT language projection, which is partly
why the Visual C++ team at Microsoft originally came up with a
non-standard solution. The work is not yet done, but we continue
to work very hard on C++/WinRT with the goal of providing a
first-class and no-compromise language projection for the systems
programmer, the app developer—really any developer interested
in writing beautiful and fast code for Windows.

Wrapping Up
James McNellis and I gave two talks at CppCon in 2016 where we
officially unveiled C++/WinRT. You can find videos of those two
talks here:

• �“Embracing Standard C++ for the Windows Runtime”
(bit.ly/2ePwbyz)

• �“Putting Coroutines to Work with the Windows Runtime”
(bit.ly/2fMLZqy)

These are rather technical “under the hood” presentations. For
a high-level introduction, you can hear my CppCast interview at
bit.ly/2fwF6bx.

Finally, you can download and give C++/WinRT a try today:
github.com/microsoft/cppwinrt.

A lot of work remains to be done and there might yet be some
changes to come in following the evolution of standard C++ and
looking for additional ways to improve and simplify the program-
ming model. Let me know what you think. I’d love your feedback.	n

Kenny Kerr is a C++ systems programmer, creator of C++/WinRT, an author
for Pluralsight, and an engineer on the Windows team at Microsoft. He blogs at
kennykerr.ca and you can follow him on Twitter: @kennykerr.

Thanks to the following Microsoft technical expert for reviewing this article:
James McNellis

struct App : implements<App, IFrameworkViewSource, IFrameworkView>
{
 // IFrameworkViewSource method...
 IFrameworkView CreateView()
 {
 return *this;
 }

 // IFrameworkView methods...
 void Initialize(CoreApplicationView const & view);
 void Load(hstring_ref entryPoint);
 void Uninitialize();
 void Run();
 void SetWindow(CoreWindow const & window);
};

Figure 4 Implementing Multiple Interfaces with C++/WinRT

0117msdn_KerrCPlus_v5_12-16.indd 16 12/12/16 9:57 AM

www.bit.ly/2ePwbyz
www.bit.ly/2fMLZqy
www.bit.ly/2fwF6bx
www.github.com/microsoft/cppwinrt
www.kennykerr.ca
www.twitter.com/kennykerr

Where you need us most.

magazine

MSDN.microsoft.com

Untitled-5 1Untitled-5 1 12/10/15 2:34 PM12/10/15 2:34 PM

http://MSDN.microsoft.com

msdn magazine18

The technological landscape has changed quite radi-
cally in recent years. Computing capabilities moved from PCs to
smartphones and wearables, while adding even more power to
these devices. This advancement in technology has also changed the
way we interact with our devices. Physical keyboards have been
replaced with software implementations and the input methods
changed from stylus to a mere tap of the fingers. It was only a matter
of time before we started looking for even more effortless ways to
interact with our computing devices.

Speech is how we interact with each other and now we’re at the
verge of using speech to also interact with all our smart devices.
The recent launch of Bot Framework and Cognitive Services at the

Build 2016 conference is a step toward that vision. Among these
amazing cognitive services, Language Understanding Intelligence
Service (LUIS) provides you with the capabilities to understand the
natural language queries and return actionable information that
you can wire up in your code to improve the UX.

In this article, I’ll explore the capabilities of LUIS and look at
different ways you can use it in your apps and services.

How Does LUIS Work?
LUIS is built on the interactive machine learning and language
understanding research from Microsoft Research. The book
“Machine Learning” (McGraw Hill, 1997) by Tom Mitchell defines
machine learning as:

“A computer program is said to learn to perform a task T from
experience E, if its performance at task T, as measured by a per-
formance metric P, improves with experience E over time.”

Like any other machine learning paradigm, LUIS is an iteration
of this concept. It uses a language model and set of training exam-
ples to parse spoken language and return only the interesting parts
that you, as developers, can use to delight your users.

With LUIS, apart from using your own purpose-specific language
model, you can also leverage the same pre-existing and pre-built
language models used by Bing and Cortana.

LUIS has a very specific use case—you can leverage LUIS any-
where you have a need to let users interact with your apps using
speech. Most digital assistants, voice-enabled apps/devices, and
bots fall into this category, but you’re free to use your imagination.

CO GN IT IVE SER V IC ES

Enable Natural Language
Interaction with LUIS
Ashish Sahu

This article discusses:
•	Conversational intelligence is poised to power the next wave of

computing where users just need to ask for services and tasks

•	LUIS provides the much talked about and needed technology block
to enable conversational intelligence to your apps and services

•	The SDKs and the RESTful API interface provide easier integration
with apps regardless of programming language being used

Technologies discussed:
Microsoft Cognitive Services, Universal Windows Platform Apps,
Bot Framework, Machine Learning

Code download available at:
bit.ly/2eEmPsy

0117msdn_SahuLUIS_v3_18-24.indd 18 12/12/16 10:07 AM

www.bit.ly/2eEmPsy

19January 2017msdnmagazine.com

Where Can I Use LUIS?
Using LUIS with your apps and services requires initial setup. The
homework you need to complete consists of understanding the sce-
nario and anticipating the interaction that’ll take place between the
apps and the users. Understanding and anticipating the interaction
will help you build the language model to use with LUIS and to come
up with the basic natural utterance to train LUIS to parse them.

Language Models
Language models are specific to your LUIS applications. They form
the basis of understanding what the users mean when they talk
to your apps and services. There are two core parts of a language
model–“intents” and “entities.” LUIS application uses the intents
and entities to process the natural language queries and derive the
intention and the topics of interest to the users with help from the
training examples, also called “utterances.” LUIS applications always
contain a default intent called “None.” This intent gets mapped to
all the utterances that couldn’t be mapped to any other intents. In
the context of an app, intents are actions that the users intend to
perform while the entities get filtered to the topics that your apps
and services are designed to handle.

An example to understand this would be to imagine a shopping
app and the following model:

"intents": [
 {
 "name": "ShowItems"
 }
 {
 "name": "BuyItems"
 }
],
"entities": [
 {
 "name": "Item"
 }
]

The majority of time spent in a shopping app might be with sale
items and when someone says, “Show me red scarves,” the model
will map this utterance to ShowItems as the intent and red scarves
to the entity item. At the same time, you can map an utterance to
the BuyItems intent and thus initiate the checkout process when
someone says, “I would like to pay now.”

Intents
LUIS intents also support action binding, which lets you bind
parameters to your intents. Actionable intents fire only when
these parameters are provided, as well. In particular, when you use
action binding with bots, LUIS can query the parameters from the
users interactively.

Based on the examples and active learning, LUIS starts detecting
the intents in the queries posted to it. However, because the lan-
guage queries are tricky for the computer applications, LUIS also
scores them between 0 and 1 to denote its confidence; higher scope
denotes higher confidence.

Entities
LUIS entities, as explained here, are the topics of interest to your
users. If you’re building a news app, entities will map to the news
topics, and in case of weather apps, they map to locations in their
very basic iterations.

LUIS active learning also starts showing up when you add a new
utterance and you can see the appropriate entities color-coded to
show the mappings visually.

Entities can have child elements and you can independently map
each of them to individual parts of the utterances. You also have
support for composite entities, which are a collection of charac-
teristics that collectively build up to a single entity.

For better understanding, an entity called “Vehicles” can have
child entities called “Cars” and “SUVs,” among other names. This
relationship can help you map multiple entities into a larger cat-
egory. In case of “Composite Entities,” the individual parts would
denote one single entity with various properties of it. An example
for a composite entity called Car is 2016 Black Ford Mustang, made
up of year, color, make and model information.

Pre-Built Entities
Similar to data types in any programming language, the LUIS
service includes a set of entities for a number of common entities,
so you don’t have to go out and think about every possible term that
your users may throw at you. Some examples include most com-
mon variations of date, time, numbers and geographical entities.
You can include the pre-built entities in your application and use
them in your labeling activities. Keep in mind that the behavior of
pre-built entities cannot be changed.

An exhaustive list of pre-built entities can be found in the
LUIS documentation.

While it’s possible to add numerous intents and entities (and pre-
built entities) in your model, a word of caution is to keep it simple
and precise. You can start with the most obvious utterances and add
more of them to make it more natural for your users. But keep in mind
that thinking ahead of the experience you want to build goes a long
way in enhancing the UX and evolving the experience further. If you
don’t plan ahead and change intents or entities in your models, you’ll
have to label all the utterance and train your model all over again.

Let’s Go Build Something!
It’s time to build something and take a ride with LUIS. In this arti-
cle, I’ll look at an inventory application. I’ll build a language model
using the intents and entities, train the model, and then use this in
a bot powered by the Bot Framework and a Universal Windows
Platform (UWP) app using the REST endpoint that LUIS exposes
for me to use all its capabilities.

To keep it simple, we’re going to deal with an inventory of clothes.
First, log on to the LUIS portal at luis.ai and create a new application.

Based on the examples and
active learning, LUIS starts
detecting the intents in the

queries posted to it.

0117msdn_SahuLUIS_v3_18-24.indd 19 12/12/16 10:07 AM

http://www.msdnmagazine.com
www.luis.ai

msdn magazine20 Cognitive Services

This being an inventory application, you’ll use it to track inven-
tory of stocks and for that purpose, the first intent that you’re going
to add is ListItems. You’ll map this intent to all the utterances where
the user’s intent is to query the inventory as a whole or for an item.

When you’re creating an intent, the LUIS application will also
ask for an example utterance. This utterance is the first natural lan-
guage query to trigger this intent. Click on the “+” button next to
“Intents” and add the name of the intent as “ListItems.” You’ll keep
the example utterance simple: “Show me the inventory.”

Saving this intent takes you to the “new utterance” screen. Figure 1
shows the example utterance along with the ListItems intent mapped
to it within the dropdown menu next to it.

Click on the Submit button to add this utterance to your LUIS
application. Before LUIS can start working its magic for you, you
must add more such utterances to help LUIS understand the intents
more accurately. Keep in mind that the utterances must project
the same intent as the one in Figure 1, but at the same time, they
should be something that users will say naturally when asking for
stocks: “Show me the stocks” comes to mind.

Now that you’ve added two utterances to your application, click
on the Train button in the lower-left corner to see if the LUIS appli-
cation has enough information to understand when to trigger the
ListItems intent. The framework triggers the training periodically on
its own, as well. Training your model after adding a few examples can
help you identify any problem with the model early and take correc-
tive actions. Because LUIS framework also features active learning,
you’ll benefit from training as the example utterance will be scored
automatically for you as you add them.

Moving forward with your application, it’s also natural to ask
about the inventory of certain items you’re stocking, so also think

about examples such as “Show me the stocks of red scarves” and
“How many shirts do we have in stock?”

However, these queries are different from the ones you’ve added
so far. These queries contain the terms “red scarves” and “shirts.” This
means you need more than your intent, ListItems, to return the right
results back to your users. You need an entity called “Item,” which you’ll
map to these terms to add more intelligence in your language model.

You can add these utterances to your LUIS application and label the
entities later, but in this case, you’ll add entity first and then the utter-
ances. Click on the “+” button next to Entities and name this entity Item.

Now, you can add those queries mentioned earlier and label
them with the intent and entity at the same time. To do that, just
add your utterance and if the intent hasn’t already been mapped
with a score, select the relevant intent and then click on the term
“shirts” to map it with the Item entity.

Select Item from the list to label it an item. Add the other exam-
ple already mentioned—“Show me the stocks of red scarves”—and
instead of mapping just “scarves,” select “red” and “scarves,” both
as the entity Item. Note: A favorite browser, Edge, doesn’t let you
select multiple words in the LUIS portal. Use any other browser
of your choice to do this.

Also note that the term “red scarves” falls in the category of Com-
posite Entities because they denote one single entity together—scarves,
which have red in them. As explained earlier, Composite Entities
are made up of multiple parts but represent one unit of object such
as “black shoes” and “2016 Ford Mustang.” However, for the sake of
simplicity, you’re going to treat them as a single entity.

Train the model again and see if the active learning in LUIS kicks
in. Now try adding an utterance such as, “How many wallets do we
have in stock,” or, “Show me the stocks of trousers.”

You might find the result inter
esting. Notice that the term
“wallets” gets mapped to Item
entity but “trousers” doesn’t. Don’t
panic, it just means that LUIS needs
a few more examples to make sense
of utterances that follow the same
pattern. To do that, map “trousers”
to Item entity and train your model
one more time.

To test this, try adding “Show
me the stocks of red shirts” or
“Show me the stocks of pants” and
verify that red shirts and pants
get mapped to the right intents
and entities. I hope your mileage
doesn’t vary from mine so far.

Using the Suggest section in the
portal, you can also get suggestions
from the Cortana logs for individ-
ual intents and entities.

Once your intents and entities
are getting mapped correctly, you
can move on to the next phases of
your journey on LUIS.Figure 1 Example of Utterance and Intent

0117msdn_SahuLUIS_v3_18-24.indd 20 12/12/16 10:07 AM

Untitled-2 1 7/11/16 3:30 PM

www.aspose.com

msdn magazine22 Cognitive Services

Using LUIS with Real Apps
This LUIS application isn’t useful for your users now; you need
to connect to this application from your apps and services.
Because the LUIS application is exposed via REST endpoints and the
responses are returned in JSON format, you can use LUIS services
from any platform or programming language that can connect
using HTTPS protocol and parse JSON responses.

Note: The LUIS portal also exposes the export functionality from
the “My Application” portion, which exports your LUIS applica-
tion as a JSON document to make changes offline and import it
back. In combination with the LUIS APIs and the C# SDK, you can
integrate LUIS in your DevOps processes, as well.

You also need to publish your LUIS app before you can start call-
ing it from your apps, which is as simple as it gets: Just click on the
Publish button and click again on the Publish Web service button.

Notice that the REST endpoint URI also includes your LUIS
application ID and the subscription key. Protect this information
as much as you would any other credentials as it can otherwise lead
to disruption of the service and have a financial impact.

Once the application has been published, you should be able
to test it by typing any other example in the Query input box and

test the accuracy of your model. Try that by entering “how many
ties do we have in the stock?” and press Enter on your keyboard.

This will open a new browser window and you should get a
response in the JSON format as shown in Figure 2.

The response includes the query string passed to the LUIS app,
along with the intents and entities detected in the query. Also
included is the individual scoring information for each of them.
These scores are important because they’re direct indicators of how
your language model and the training are performing. As you add
more utterance and make any changes to your model, this dialog
box also provides you with an option to publish your updates.
Updating your LUIS application after every training session is
important because it’ll keep using the older training model and the
response from the HTTP endpoint will defer from your expectations.

Analyzing Performance of Language Model
Adding too many variations of the language can result in errors
and might force you to change your language model. To address
these issues, the LUIS portal features a Performance Analysis sec-
tion. You can use this section to understand how your LUIS app
is performing when it comes to detecting intents and entities. You
can get a color-coded performance overview of all of your intents
and entities in this section.

Depending on the training, examples, and language model
used, your LUIS app might also run into issues where it’s unable to
map intents or entities correctly. There might also be cases where
adding multiple types of utterance confuses the LUIS service.
These issues can be easily tracked with the performance drill-down
using Performance Analysis. The dropdown menu also lets you
drill down on analysis to individual intent and entities.

You can also get similar information for the entities in your
language model.

This information, along with the Review Labels section of the portal,
can help you look at and analyze any errors with your language model.

Calling LUIS From C# UWP/ASP.NET Apps
If you’re building a UWP app or ASP.NET Web app using C#, you can
use the classes denoted in Figure 3 to deserialize the JSON response.

The code in Figure 4 in your C# UWP or ASP.NET app can use
these classes to get the intent and entities information.

Based on your requirements, you can run the response through
a loop to extract multiple entities of different types, as well as score
information about the intents detected in the query string.

Using LUIS with Bot Framework
If you’re using Bot Framework to build a bot and are looking to use
LUIS to add natural language intelligence, you’ll be pleased to know
that the Microsoft.Bot.Builder namespace in the Bot SDK makes
it extremely easy to connect with your LUIS application and filter
out the intents and entities. In the MessageController of your Bot
Framework solution, add the following line to route all incoming
messages to the class called LuisConnect:

await Microsoft.Bot.Builder.Dialogs.Conversation.SendAsync(activity,
 () => new LuisConnect());

Now add a class file called LuisConnect.cs in your project and
change the code, as shown in Figure 5.

public class LUISResponse
{
 public string query { get; set; }
 public 1Intent[] intents { get; set; }
 public 1Entity[] entities { get; set; }
}

public class 1Intent
{
 public string intent { get; set; }
 public float score { get; set; }
}
public class 1Entity
{
 public string entity { get; set; }
 public string type { get; set; }
 public int startIndex { get; set; }
 public int endIndex { get; set; }
 public float score { get; set; }
}

Figure 3 Classes to Deserialize the JSON Response

{
 "query": "how many ties do we have in the stock?"
 "intents": [
 {
 "intent": "ListItems",
 "score": 0.9999995
 },
 {
 "intent: "None",
 "score": 0.0582637675
 }
],
 "entities”: [
 {
 "entity”: "ties",
 "type”: "Item",
 "startIndex": 9,
 "endIndex": 12,
 "score": 0.903107
 }
]
}

Figure 2 Testing the LUIS App

0117msdn_SahuLUIS_v3_18-24.indd 22 12/12/16 10:07 AM

India
www.MelissaData.in

Australia
www.MelissaData.com.au

United Kingdom
www.MelissaData.co.uk

Germany
www.MelissaData.de

www.MelissaData.com 1-800-MELISSA

Data Quality Made Easy.
Your Data, Your Way.

Start Your Free Trial
www.MelissaData.com/msft-pd

@

NAME

Our data quality solutions are available
on-premises and in the Cloud – fast,
easy to use, and powerful developer
tools and plugins for the Microsoft®
Product Ecosystem.

Melissa Data provides the full spectrum of data

quality to ensure you have data you can trust.

We profile, standardize, verify, match and

enrich global People Data – name, address,

email & phone.

Untitled-10 1 12/6/16 3:57 PM

http://www.MelissaData.in
http://www.MelissaData.com.au
http://www.MelissaData.de
http://www.MelissaData.co.uk
http://www.MelissaData.com
http://www.MelissaData.com/msft-pd

msdn magazine24 Cognitive Services

Run your bot locally and try asking questions such as, “Show
me the stocks of shirts,” or, “How many belts do we have in stock?”
and you should get the appropriate responses with the intents and
entities back from the bot.

The most interesting part about the code in Figure 5 is that you
just had to label your methods with [LuisIntent] and the SDK takes
care of calling the LUIS application and getting back results from
the LUIS service. This makes it really quick and simple to start
adding the language intelligence in our apps.

Making It Better
The focus of this article is to make you familiar with the workings
of LUIS and integration so I’ve used really simple examples. There
are two more features of LUIS that are bound to make your life
easier: Regex and Phrase List features.

Much like the name suggests, the Regex feature helps in match-
ing a repetitive pattern in your phrases such as product codes. The
Phrase List feature can be used as an interchangeable list of words
or phrases to look for in your utterances. For example, in the appli-
cation we have utterances that started with “Show me the stocks,”
“Find me the stocks,” “How many,” and so on. Adding these phrases
in a Phrase List called InventoryQueries at the start will remove the
need to train your model with more examples for these utterances
separately. I’ll leave that to you to explore and experience.

The Future
The LUIS offering is ready to be used in your apps but it’s still
being improved and new features are being added frequently. There
are some features that aren’t covered in this portal but are avail-
able for public preview. They’re exciting and still in development:

• �Integration with Bot Framework and Slack: You can
try this out when publishing your LUIS app in Preview
Portal. This integration lets you quickly integrate LUIS with
Microsoft Bot Framework and Slack.

• �Dialog Support: Dialog support in LUIS lets you add con-
versational intelligence in your LUIS application so it can ask
for more information from the users on its own if the query
requires more information than provided by the users at
first. For example, a flight app can prompt for a travel date
if the user asks for flight information with just the city name

• �Action Fulfillment: This feature lets you fulfill the user-
triggered actions using the built-in and custom channel right
from your LUIS app.

These features are exciting and enable more natural conversa-
tional interaction in your app with little effort. They need depth
exploration on their own and I hope to do that soon.

Wrapping Up
I hope you now understand what LUIS can do for you and how
effortlessly you can start leveraging it to add a more natural human
interaction element to your apps.

In this article, I went through the basics of the LUIS service. I cre-
ated a LUIS application, built and trained your language model to
help you understand what users mean when they ask something. I
also looked at the ways in which this LUIS application can be used

from your apps, Web services and in your bots. A sample project that
contains the LUIS model, UWP app and the bot sample code men-
tioned in this article can be found on GitHub at bit.ly/2eEmPsy. 	 n

Ashish Sahu is a senior technical evangelist, working with Developer Experience
at Microsoft India, and helping ISVs and startups overcome technical challenges,
adopt latest technologies, and evolve their solutions to the next level. He can be
contacted at ashish.sahu@microsoft.com.

Thanks to the following Microsoft technical expert for reviewing this article:
Srikantan Sankaran

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web.Http;
using Microsoft.Bot.Connector;

namespace BotApp2
{
 [LuisModel("<application-id>", "<subscription-key>")]
 [Serializable]
 public class Luis: LuisDialog<object>
 {
 [LuisIntent("")]
 public async Task None(IDialogContext context, LuisResult result)
 {
 stringmessage =
 "I’m sorry I didn't understand. Try asking about stocks or inventory.";
 await context.PostAsync(message);
 context.Wait(MessageReceived);
 }

 [LuisIntent("ListItems")]
 public async Task ListInventory(IDialogContext context, LuisResult result)
 {
 string message = "";
 if (result.Entities.Count !=0 && result.Intents.Count 0)
 message = $ "detected the intent \ "{result.Intents[0].Intent}\"
 for \"{result.Entities[0].Entity}\". Was that right?";
 await context.PostAsync (message);
 conext.Wait(MessageReceived);
 }

 public async Task Start Async(IDialogContext context)
 {
 context.Wait(MessageReceived);
 }
 }
}

Figure 5 Adding the Class File LuisConnect.cs

Private async Task LUISParse(string queryString)
{
 using (var client = new HttpClient())
 {
string uri =
 https://api.projectoxford.ai/luis/v1/application?id=<application-
id>&subscription-key=<subscription-key>&q= + queryString;
HttpResponseMessage msg = await client.GetAsync(uri);

if (msg.IsSuccessStausCode)
{
 var jsonresponse = await msg.Content.ReadAsStringAsync();
 var _Data =
 JsonConvert.DeserializeObject<LUISResponse>(jsonresponse);

 var entityFound = _Data.entities[0].entity;
 var topIntent = _Data.intents[0].intent;
}

}

Figure 4 Code Used to Get Intent and Entities Information

0117msdn_SahuLUIS_v3_18-24.indd 24 12/12/16 10:07 AM

mailto:ashish.sahu@microsoft.com
www.bit.ly/2eEmPsy

Untitled-9 1 12/12/16 1:08 PM

www.xceed.com

msdn magazine26

In my last article, I talked about the three pillars of input for
the HoloLens—gaze, gesture and voice (msdn.com/magazine/mt788624).
These constructs allow you to physically interact with the HoloLens
and, in turn, the world around you. You’re not constrained to work-
ing only with them, however, because you can access information
about your surroundings through a feature called spatial mapping,
and that’s what I’m going to explore in this article.

If I had to choose a single favorite feature on the HoloLens, it
would be spatial mapping. Spatial mapping allows you to under-
stand the space around you, either explicitly or implicitly. I can
explicitly choose to work with the information taken in, or I can
proceed implicitly by allowing natural physical interactions, like
dropping a virtual ball onto a physical table, to take place. Recently,
with some really neat updates to the HoloToolkit from Asobo
Studio, it’s easy to scan for features in your environment, such as
a chair, walls and more.

What Is a 3D Model?
It might be helpful to understand what a 3D model is before look-
ing at what a spatial map of your area represents. 3D models come
in a number of file formats, such as .ma or .blender, but often you’ll
find them in either of two proprietary Autodesk formats called
.FBX (Filmbox) or .OBJ files. .FBX files can contain not only 3D
model information, but also animation data, though that isn’t
applicable to this discussion.

A 3D model is a fairly simple object, commonly tracked via
face-vertex meshes, which means tracking faces and vertices. For
nearly all modern hardware, triangles are used for faces because tri-
angles are the simplest of polygons. Inside a 3D model you’ll find a
list of all vertices in the model (made up of x,y,z values in space); a
list of the vertex indices that make up each triangle; normals, which
are just descriptive vectors (arrows) coming off each vertex used for
lighting calculations so you know how light should interact with
your model; and, finally, UV coordinates—essentially X,Y coordi-
nates that tell you how to take a 2D image, called a texture, and wrap
it around your model like wrapping paper to make it look like it was
designed. Figure 1 shows virtual Adam, a model that the company
xxArray created for me because, well, I wanted to put myself into a
scene with zombies. This is just a 3D model, but note the legs, which
are made of vertices and triangles, and that the pants texture is, in
simple terms, wrapped around the 3D model of the legs to look like
pants. That’s nearly all the magic behind a 3D model.

H O LO LE NS

Introduction to
the HoloLens, Part 2:
Spatial Mapping
Adam Tuliper

This article discusses:
•	What a 3D model is

•	How spatial mapping works

•	Interacting with the spatial mesh

Technologies discussed:
HoloLens, HoloToolkit, Visual Studio, Unity, C#

0117msdn_TuliperHoloLens_v3_26-31.indd 26 12/12/16 9:48 AM

http://msdn.com/magazine/mt788624

27January 2017msdnmagazine.com

What Does Spatial Mapping Look Like?
Spatial mapping is easier in some ways because you’re not dealing
with the textures of your environment. All you typically care about
is having a fairly accurate mesh created from your environment that
can be discovered. The environment is scanned so you can interact
with it. Figure 2 shows a scenario slightly more like what you’ll actu-
ally get, though contrived. The model on the left shows the vertices,
triangles and normals. You can’t see the normal directly, of course,
but you see its result by how the object is shaded.

What you’ve seen thus far in both 3D model scenarios is purely
for rendering and has absolutely nothing to do (yet) with physics.
The green box outline on the right in Figure 2 is the shape of the
collider I’ve moved off the cube to show a point; this is the compo-
nent that defines the region to the physics system. If you want to
fully interact with the world on the HoloLens, a game or in any 3D
experience, really, you need a collider for the physics system to use.

When you turn the HoloLens on and are in the holographic shell,
it’s always mapping your environment. The HoloLens does this to
understand where to place your windows. If I walk around my house
with the HoloLens, it’s always updating its information about my
environment. This serves two purposes: First, when I walk into a
room I’ve been in previously, the HoloLens should show me the
windows I had open. Second, environments are always changing
and it needs to detect those changes. Think of the following com-
mon scenarios: someone walks in front of me, my kids are running
around in the house, our pet bear walks by and creates a large
occlusion zone I can’t see through. The point is, the environment is
potentially always changing and the HoloLens is looking for these
changes. Before delving into the API, let’s see the spatial mapping
in practice (and, by the way, I don’t have a real pet bear).

To view spatial mapping in action, you can connect to the
Windows Device Portal on a HoloLens, which allows remote man-
agement and viewing of the device, including a live 30 FPS video
stream of what the device sees. The device portal can be run for
nearly any Windows 10 device. It can be accessed by going to the
device IP, or to 127.0.0.1:10080 for devices plugged in over USB once

it’s been enabled on the HoloLens in the Developer Settings. Most
Windows 10 devices can be enabled for a device portal as outlined at
bit.ly/2f0cnfM. Figure 3 and Figure 4 show the spatial mesh retrieved
from the 3D view in the device portal. Figure 3 shows what the
HoloLens sees as soon as I turn it on, while Figure 4 displays the
view after a brief walk through my living room.

How Spatial Mapping Works
Spatial mapping works via a SurfaceObserver object, as you’re
observing surface volumes, watching for new, updated and removed
surfaces. All the types you need to work with come with Unity
out of the box. You don’t need any additional libraries, though the
HoloToolkit-Unity repository on GitHub has lots of functionality
for the HoloLens, including some amazing surface detection I’ll
look at later, so this repository should be considered essential for
hitting the ground running.

First, you tell the SurfaceObserver that you’re observing a volume:
public Vector3 Extents = new Vector3(10, 10, 10);
observer = new SurfaceObserver();
// Start from 0,0,0 and fill in a 10 meter cube volume
// as you explore more of that volume area
observer.SetVolumeAsAxisAlignedBox(Vector3.zero,Extents);

The larger the region, the greater the computational cost that can
occur. According to the documentation, spatial mapping scans in a
70-degree cone a region between 0.8 and 3.1 meters—about 10 feet

Figure 1 UV Mapping of 2D Texture to 3D Object

Figure 2 What’s Needed for Rendering and for the
Physics Engine

Figure 3 HoloLens Spatial Mesh Right After HoloLens Is
Turned on in a New Room

0117msdn_TuliperHoloLens_v3_26-31.indd 27 12/12/16 9:48 AM

http://www.msdnmagazine.com
www.bit.ly/2f0cnfM

msdn magazine28 HoloLens

out (the docs state these values might change in the future). If an
object is further away, it won’t be scanned until the HoloLens gets
closer to it. Keeping to 0.8 meters also ensures the user’s hands won’t
accidentally be included as part of the spatial mesh of the room.

The process to get spatial data into an application is as follows:
1. �Notify the SurfaceObserver to observe a region of size A

and shape B.
2. �At a predefined interval (such as every 3 seconds), ask the

SurfaceObserver for an update if you aren’t waiting on other
results to be processed. (It’s best not to overlap results; let
one mesh finish before the next is processed.)

3. �Surface Observer lets you know if there’s an add, update or
removal of a surface volume.

4. �If there’s an add or update to your known spatial mesh:
 a. �Clean up old surface if one exists for this id.
 b. �Reuse (to save memory, if you have a surface that isn’t

being used) or allocate a new SurfaceObject with mesh,
collider and world anchor components.

 c. �Make an async request to bake the mesh data.
5. �If there’s a removal, remove the volume and make it inactive

so you can reuse its game object later (this prevents addi-
tional allocations and thus fewer garbage collections).

To use spatial mapping, SpatialPerception is a required capability in a
Universal Windows Platform (UWP) app. Because an end user should be
aware that an application can scan the room, this needs to be noted in the
capabilities either in the Unity player settings as shown in Figure 5,

or added manually in your application’s
package.appxmanifest.

The spatial meshes are processed in
surface volumes that are different from
the bounding volume defined for the
SurfaceObserver to observe. The key is
once the SurfaceObserver_OnSurface
delegate is called to note surface vol-
ume changes, you request the changes
in the next frame. The meshes are then
prepared in a process called baking, and
a SurfaceObserver_OnDataReady call-
back is processed when the mesh is ready.

Baking is a standard term in the
3D universe that usually refers to cal-

culating something ahead of time. It’s typically used to talk about
calculating lighting information and transferring it to a special
image called a lightmap in the baking process. Lightmaps help
avoid runtime calculations. Baking a mesh can take several frames
from the time you ask for it in your Update function (see Figure
6). For performance’s sake, request the mesh only from Request-
MeshAsync if you’re actually going to use it, otherwise you’re
doing extra processing when you bake it for no reason.

The Update code is called every frame on any game object deemed
responsible for getting the spatial meshes.

When surface volume baking is requested via RequestMesh
Async, the request is passed a SurfaceData structure in which you
can specify the scanning density (resolution) in triangles per cubic
meter to process. When TrianglesPerCubicMeter is greater than
1000, you get fairly smooth results that more closely match the
surfaces you’re scanning. On the other hand, the lower the triangle
count, the better the performance. A resolution of <100 is very
fast, but you lose surface details, so I recommend trying 500 to
start and adjusting from there. Figure 7 uses about 500 Triangles-
PerCubicMeter. The HoloLens already does some optimizations
on the mesh, so you’ll need to performance test your applications
and make a determination whether you want to scan and fix up
more (use less memory) or just scan at a higher resolution, which is
easier but uses more memory.

Creating the spatial mesh isn’t a super high-resolution process
by design because higher resolution equals significantly more pro-
cessing power and usually isn’t necessary to interact with the world
around you. You won’t be using spatial mapping to capture a highly
detailed small figurine on your countertop—that’s not what it’s
designed for. There are plenty of software solutions for that, though,
via a technique called photogrammetry, which can be used for cre-
ating 3D models from images, such as Microsoft 3D Builder, and
many others listed at bit.ly/2fzcH1z and bit.ly/1UjAt1e. The HoloLens
doesn’t include anything for scanning and capturing a textured
3D model, but you can find applications to create 3D models on
the HoloLens, such as HoloStudio, or you can create them in 3D
Builder (or in any 3D modeling software for that matter) and bring
them into Unity to use on the HoloLens. You can also now live
stream models from Unity to the HoloLens during development
with the new Holographic emulation in Unity 5.5.Figure 5 Adding SpatialPerception in File-Build Settings

Figure 4 HoloLens Spatial Mesh After a Quick Walk-Through a Portion of the Room

0117msdn_TuliperHoloLens_v3_26-31.indd 28 12/12/16 9:48 AM

www.bit.ly/2fzcH1z
www.bit.ly/1UjAt1e

msdn.microsoft.com/flashnewsletter

Sign up to receive MSDN FLASH, which delivers
the latest resources, SDKs, downloads, partner
offers, security news, and updates on national
and local developer events.

Get news from MSDN
in your inbox!

magazine

Untitled-2 1Untitled-2 1 12/11/15 11:06 AM12/11/15 11:06 AM

http://msdn.microsoft.com/flashnewsletter

msdn magazine30 HoloLens

Mesh colliders in Unity are the least-performant colliders, but
they’re necessary for surfaces that don’t fit primitive shapes like
boxes and spheres. As you add more triangles on the surfaces and
add mesh colliders to them, you can impact physics performance.
SurfaceData’s last parameter is whether to bake a collider:

SurfaceData surfaceData = new SurfaceData(id,
 surface.GetComponent<MeshFilter>(),
 surface.GetComponent<WorldAnchor>(),
 surface.GetComponent<MeshCollider>(),
 TrianglesPerCubicMeter,
 bakeCollider);

You may never need a collider on your spatial mesh (and thus pass
in bakeCollider=false) if you only want to detect features in the user’s
space, but not integrate with the physics system. Choose wisely.

There are plenty of considerations for the scanning experience
when using spatial mapping. Applications may opt not to scan, to
scan only part of the environment or to ask users to scan their envi-
ronment looking for certain-size surfaces like a couch. Design guide-
lines are listed on the “Spatial Mapping Design” page of the Windows
Dev Center (bit.ly/2gDqQQi) and are important to consider, especially
because understating scenarios can introduce various imperfections

into your mesh, which fall into three general categories discussed on
the “Spatial Mapping Design” page—bias, hallucinations and holes.
One workflow would be to ask the user to scan everything up front,
such as is done at the beginning of every “RoboRaid” session to find
the appropriate surfaces for the game to work with. Once you’ve found
applicable surfaces to use, the experience starts and uses the meshes
that have been provided. Another workflow is to scan up front, then
scan continually at a smaller interval to find real-world changes.

Working with the Spatial Mesh
Once the mesh has been created, you can interact with it in various
ways. If you use the HoloToolkit, the spatial mesh has been created
with a custom layer attribute. In Unity you can ignore or include
layers in various operations. You can shoot an invisible arrow
out in a common operation called a raycast, and it will return the
colliders that it hit on the optionally specified layer.

Often I’ll want to place holograms in my environment, on a table
or, even like in “Young Conker” (bit.ly/2f4Ci4F), provide a location
for the character to move to by selecting an area in the real world

(via the spatial mesh) to which to go.
You need to understand where you can
intersect with the physical world. The
code in Figure 8 performs a raycast
out to 30 meters, but will report back
only areas hit on the spatial mapping
mesh. Other holograms are ignored if
they aren’t on this layer.

I don’t have to use the spatial mesh, of
course. If I want a hologram to show up
and the user to be able to place it wher-
ever he wants (maybe it always follows
him) and it will never integrate with the
physical environment, I surely don’t
need a raycast or even the mesh collider.

Figure 7 A Virtual Character Detecting and Sitting on a Real-World Item (from the
Fragments Application)

Figure 6 The Update Function

private void Update()
{
 // Only do processing if you should be observing.
 // This is a flag that should be turned on or off.
 if (ObserverState == ObserverStates.Running)
 {
 // If you don't have a mesh creation pending but you could
 // schedule a mesh creation now, do it!
 if (surfaceWorkOutstanding == false && surfaceWorkQueue.Count > 0)
 {
 SurfaceData surfaceData = surfaceWorkQueue.Dequeue();
 // If RequestMeshAsync succeeds, then you've scheduled mesh creation.
 // OnDataReady is left out of this demo code, as it performs
 // some basic cleanup and sets some material/shadow settings.
 surfaceWorkOutstanding = observer.RequestMeshAsync(surfaceData,
 SurfaceObserver_OnDataReady);
 }
 // If you don't have any other work to do, and enough time has passed since
 // previous update request, request updates for the spatial mapping data.
 else if (surfaceWorkOutstanding ==
 false && (Time.time - updateTime) >= TimeBetweenUpdates)
 {
 // You could choose a new origin here if you need to scan
 // a new area extending out from the original or make Extents bigger.
 observer.SetVolumeAsAxisAlignedBox(observerOrigin, Extents);
 observer.Update(SurfaceObserver_OnSurfaceChanged);
 updateTime = Time.time;

 }
 }
}
private void SurfaceObserver_OnSurfaceChanged(
 SurfaceId id, SurfaceChange changeType, Bounds bounds, System.DateTime updateTime)
{
 GameObject surface;
 switch (changeType)
 {
 case SurfaceChange.Added:
 case SurfaceChange.Updated:
 // Create (or get existing if updating) object on a custom layer.
 // This creates the new game object to hold a piece
 // of the spatial mesh.
 surface = GetSurfaceObject(id.handle, transform);

 // Queue the request for mesh data to be handled later.
 QueueSurfaceDataRequest(id, surface);
 break;

 case SurfaceChange.Removed:
 // Remove surface from list.
 // ...
 break;
 }
}

0117msdn_TuliperHoloLens_v3_26-31.indd 30 12/12/16 9:48 AM

www.bit.ly/2gDqQQi
www.bit.ly/2f4Ci4F

31January 2017msdnmagazine.com

Now let’s do something fun with the mesh. I want to try to deter-
mine where in my living room an area exists that a character could sit
down, much like the scene in Figure 7, which is from “Fragments,”
an amazing nearly five-hour mystery-solving experience for the

HoloLens that has virtual characters sitting in your room at times.
Some of the code I’ll walk through is from the HoloToolkit. It came
from Asobo Studio, which worked on “Fragments.” Because this is
mixed reality, it’s just plain awesome to develop experiences that
mix the real world with the virtual world.

The entire code example for this is in the HoloToolkit, but let’s
walk through the process. I’ve trimmed down the code into appli-
cable pieces. (I’ve talked about SurfaceObserver already so that will
be excluded from this section.) SpatialUnderstandingSourceMesh
wraps the SurfaceObserver through a SpatialMappingObserver
class to process meshes and will create the appropriate MeshData
objects to pass to the SpatialUnderstaing DLL. The main force of
this API lies in this DLL in the HoloToolkit.

In order to look for shapes in my spatial mesh using the DLL, I
must define the custom shape I’m looking for. If I want a sittable
surface that’s between 0.2 and 0.6 meters off the floor, made of at
least one discrete flat surface, and a total surface area minimum
of 0.2 meters, I can create a shape definition that will get passed to
the DLL through AddShape (see Figure 9).

Next, I can detect the regions and then visualize or place
game objects there. I’m not limited to asking for a type of shape
and getting all of them. If I want, I can structure my query to
QueryTopology_FindLargePositionsOnWalls or QueryTopology_
FindLargestWall, as shown in Figure 10.

There’s also a solver in the HoloToolkit that allows you to pro-
vide criteria, such as “Create 1.5 meters away from other objects”:

List<ObjectPlacementRule> rules =
new List<ObjectPlacementRule>() {
 ObjectPlacementRule.Create_AwayFromOtherObjects(1.5f),
};
// Simplified api for demo purpose – see LevelSolver.cs in the HoloToolkit.
var queryResults = Solver_PlaceObject(....)

After executing the preceding query to place an object, you get
back a list of results you can use to determine the location, bounds
and directional vectors to find the orientation of the surface:

public class ObjectPlacementResult
{
 public Vector3 Position;
 public Vector3 HalfDims;
 public Vector3 Forward;
 public Vector3 Right;
 public Vector3 Up;
};

Wrapping Up
Spatial mapping lets you truly integrate with the world around you
and engage in mixed-reality experiences. You can guide a user to scan
her environment and then give her feedback about what you’ve found,
as well as smartly determine her environment for your holograms
to interact with her. There’s no other device like the HoloLens for
mixing worlds. Check out HoloLens.com and start developing mind-blowing
experiences today. Next time around, I’ll talk about shared experi-
ences on the HoloLens. Until then, keep developing!	 n

Adam Tuliper is a senior technical evangelist with Microsoft living in sunny
SoCal. He’s a Web dev/game dev Pluralsight.com author and all-around tech
lover. Find him on Twitter: @AdamTuliper or at adamtuliper.com.

Thanks to the following Microsoft technical expert for reviewing this article:
Jackson Fields

ShapeDefinitions.cs
// A "Sittable" space definition.
shapeComponents = new List<SpatialUnderstandingDllShapes.ShapeComponent>()
{
 new SpatialUnderstandingDllShapes.ShapeComponent(
 new List<SpatialUnderstandingDllShapes.ShapeComponentConstraint>()
 {
 SpatialUnderstandingDllShapes.ShapeComponentConstraint.Create_
 SurfaceHeight_Between(0.2f, 0.6f),
 SpatialUnderstandingDllShapes.ShapeComponentConstraint.Create_
 SurfaceCount_Min(1),
 SpatialUnderstandingDllShapes.ShapeComponentConstraint.Create_
 SurfaceArea_Min(0.20f),
 }),
};
// Tell the DLL about this shape is called Sittable.
AddShape("Sittable", shapeComponents);

Figure 9 Creating a Shape Definition

SpaceVisualizer.cs (abbreviated)

const int QueryResultMaxCount = 512;
private ShapeResult[] resultsShape = new ShapeResult[QueryResultMaxCount];
public GameObject Beacon;

public void FindSittableLocations()
{
 // Pin managed object memory going to native code.
 IntPtr resultsShapePtr =
 SpatialUnderstanding.Instance.UnderstandingDLL.
 PinObject(resultsShape);

 // Find the half dimensions of "Sittable" objects via the DLL.
 int shapeCount = SpatialUnderstandingDllShapes.QueryShape_FindShapeHalfDims(
 "Sittable",
 resultsShape.Length, resultsShapePtr);

 // Process found results.
 for(int i=0;i<shapeCount;i++)
 {
 // Create a beacon at each "sittable" location.
 Instantiate(Beacon, resultsShape[i].position, Quaternion.identity);

 // Log the half bounds of our sittable area.
 Console.WriteLine(resultsShape[i].halfDims.sqrMagnitude < 0.01f) ?
 new Vector3(0.25f, 0.025f, 0.25f) : resultsShape[i].halfDims)
 }
}

Figure 10 Querying for a Shape

// Do a raycast into the world that will only hit the Spatial Mapping mesh.
var headPosition = Camera.main.transform.position;
var gazeDirection = Camera.main.transform.forward;

RaycastHit hitInfo;
// Ensure you specify a length as a best practice. Shorter is better as
// performance hit goes up roughly linearly with length.
if (Physics.Raycast(headPosition, gazeDirection, out hitInfo,
 10.0f, SpatialMappingManager.Instance.LayerMask))
{
 // Move this object to where the raycast hit the Spatial Mapping mesh.
 this.transform.position = hitInfo.point;

 // Rotate this object to face the user.
 Quaternion rotation = Camera.main.transform.localRotation;
 rotation.x = 0;
 rotation.z = 0;
 transform.rotation = rotation;
}

Figure 8 Performing a Raycast

0117msdn_TuliperHoloLens_v3_26-31.indd 31 12/12/16 9:48 AM

http://www.msdnmagazine.com
www.HoloLens.com
www.Pluralsight.com
www.twitter.com/AdamTuliper
www.adamtuliper.com

msdn magazine32

The happy phrase, “Ship it,” declares that whatever software
you’re producing, such as mobile apps and their associated back-
end services, is now ready for deployment to customers or, as it’s
said, “into production.” But how, exactly, does software get to that
point? In my last article in this series (msdn.com/magazine/mt742871), I
explored how Build produces the artifacts that feed into the release
pipeline. That bundle of artifacts, called the “release,” is what then
undergoes any number of tests and other processes, as shown in
Figure 1, on its journey to production. The bulk of DevOps activ-
ities, in fact, involve the deployment of a release into any number
of environments where certain tests can be run, and shepherding
that release along to the next stage of the pipeline.

A release process potentially involves a large number of different
tests that don’t necessarily run simultaneously, and which might
also require different machines and devices. It might also involve
direct approvals by human beings who eat lunch and leave their
desks for evenings and weekends. As a result, the time it takes
for a release to get through the entire pipeline could easily be a
matter of days. Meanwhile, your dev team continues to work their
backlog for subsequent releases, committing code to the source
repository, thus triggering more builds that produce artifacts that
feed into the appropriate pipeline.

Managing the flow of all these artifacts through multiple pipe-
lines can easily become a complex and demanding task, thus the
Release Management tools in Visual Studio Team Services (VSTS)
and Team Foundation Server (TFS) are an essential part of the
Microsoft DevOps stack.

On the surface, release management looks mostly like admin-
istrative support, and thus might not be as technically interesting
as other parts of the Microsoft DevOps stack. But like everything
else in DevOps, release management is fundamentally a practice
that begins as a list of steps you can perform manually, in this case
to validate that the artifacts from the Build/CI stage are ready
to deploy to subsequent environments. Once you have those
steps clearly defined—when to deploy artifacts to a particular
environment, which tests to run and the criteria for moving the
artifacts to the next stage—you can then use tools to incrementally
automate those steps.

In many ways, managing a release is a lot like setting up an auto-
mated build, except that the output of release management is the

MO BILE DEVOPS

Automate Complex
Deployments with
Release Management
Kraig Brockschmidt

This article discusses:
•	The need for managing the complexity of deployment and testing

across different environments and multiple release pipelines

•	The notion of a “release” as it relates to build artifacts and the
release pipeline

•	Continuous deployment as a culture

•	Setting up releases for apps and services in Visual Studio
Team Services

•	Pre-launch app distribution with HockeyApp

Technologies discussed:
Visual Studio, Visual Studio Team Services, Team Foundation
Server, Release Management, Release Definitions, Continuous
Deployment, HockeyApp, CodePush

0117msdn_BrockSchmidtDevOps_v3_32-40.indd 32 12/12/16 9:44 AM

http://msdn.com/magazine/mt742871

33January 2017msdnmagazine.com

deployment of build artifacts to places where the right people can
get at them. Ultimately, deployment is how the value contained in
your source code is actually delivered to your customers, which is,
of course, the whole point of the software development process!

Environments, Pipelines and Managing Complexity
Although the diagram in Figure 1 shows only two QA stages—
one internal and one external—there can really be any number of
stages. This is because different forms of testing require deploy-
ment into specific environments where those tests can be carried
out. An environment is simply a particular configuration of hard-
ware, software and data that’s suitable for the desired testing or
usage scenarios. Here are a few that are commonly discussed in
the context of DevOps:

• �Machines that are capable of doing unit tests, integration
tests, and UI tests are typically part of an automated test
environment, usually using mock data, test services, and
servers configured for different load and stress tests.

• �A similarly configured manual test environment is generally
where a dedicated test team does its work.

• �A staging environment is used for deploying apps and services
for full-scale pre-production tests (such as upgrade tests),
and includes deployment to alpha- and beta-test customers.
This environment might draw upon live data and services in
a read-only manner, or use staging versions to fully simulate
live activity. This is also where you can test your crash and
telemetry reporting systems and make sure they’re gener
ating the data you want.

• �Your public production environment, finally, uses live public
data and services, of course, and is where you collect the live
telemetry data that will ultimately feed into subsequent releases.

You can, of course, define whatever environments you want
according to your validation needs. Whatever the case, how build
artifacts travel through these stages and environments—and what
tests are applied where—is again what defines a release pipeline,
and you can have any number of different routes in operation for
different purposes. With mobile apps and back-end services, you’ll
have multiple deployment targets all along the way—different
emulators or device farms, staging servers and so on. You might

also have releases go through only
part of the pipeline just for testing
purposes. With a public release, the
“rollout track” feature of Google
Play (bit.ly/2b7lh8j) also allows you to
release a new version of an app to a
limited percentage of customers—
which is essentially another pro-
duction environment—thus, you
might have a separate release pipe-
line for that track.

What Is a Release?
The term “release management”
clearly implies that a “release” is
being managed in some way. A

release is a specific bundle of build artifacts you intend to move
through a series of validations and deploy to one or more environ-
ments. Those artifacts (along with other information and metadata)
always travel through the pipeline as a unit, regardless of any sub-
sequent changes to the source repository and the builds they might
trigger, because every set of build artifacts is unique and stamped
with a full version number like 1.2.8.12, where the last number is
the build. Such versioning buys you complete end-to-end auditing,
which is the ability to trace everything that happens within the
release pipeline back to the exact build, and thus to an exact set of
changes in the source repository.

In DevOps parlance, then, “starting a release” means feeding a
worthy unit of build artifacts into the release pipeline. Figure 2
illustrates what the process might look like: Using the project backlog
for communication, the team applies a series of validation checks,
irrespective of automation, that either reject the release or allow it
to proceed to the next stage, eventually to reach production.

As noted before, you can certainly have any number of testing
and staging environments, and even multiple production envi-
ronments (as when using the Google rollout feature). Because a
release process can take considerable time, you might choose to
deploy to production only once a week or once a month. In the
meantime, you’ll still want to run other releases through some part
of the pipeline, perhaps deploying to beta testers each week to get
feedback for each monthly production release. You’ll probably also
want daily builds to go to the test manager, and likely want every
build to go through a series of quick, automated tests to provide

Figure 1 Managing a Release Happens Between Build and Public Deployment

Commit to
repository

Post-commit
DevOps
activities

Cost to fix issues

Upload to
store

Telemetry
Analytics

Responding to
ratings/reviews,
issues, feedback

Pre-launch testing
Crowd testing

Localization testing
Diagnostics

Load testing (back end)
Telemetry testing

Approver sign-offs

UI testing (emulators
and/or device farms)

Manual testing
Integration testing

Security testing
Diagnostics

Load testing (back end)
Approver sign-offs

Run builds
Unit testing

Dev Build/CI QA (Internal) QA (External) MonitoringPlan

An environment is simply a
particular configuration of

hardware, software, and data
that’s suitable for the desired
testing or usage scenarios.

0117msdn_BrockSchmidtDevOps_v3_32-40.indd 33 12/12/16 9:44 AM

http://www.msdnmagazine.com
www.bit.ly/2b7lh8j

msdn magazine34 Mobile DevOps

ongoing feedback to the dev team. In short, the frequency of
releases can change as you go up and down the diagram in Figure 2.

Thus, release management is something that can start simple
and grow from there. The simplest form of this practice, in fact, is
something you’ve likely done already: You build an app package,
deploy it to a device (staging), and play with the app to make sure
it works as expected. Then you upload the package to a store, hit
“Publish”—and presto! You’ve just done a manual release process
to put your app into production.

Continuous Deployment as a Culture
As I explained in the first article in this series, (msdn.com/magazine/
mt767694), all DevOps processes begin with being completely clear
about what needs to happen at every stage along the release pipeline,
automated or not. You should be able to describe all your processes
in a simple document, such that every step could be done manually.
Then you’re ready to apply automation to reduce costs, improve
reliability and consistency, and increase fre-
quency of testing and deployment.

A primary goal within DevOps is to have
every new release of an app or service—
including releases with only minor changes—
flow as quickly as possible from the source
repository to customers. A completely auto-
mated flow is called continuous deployment
(CD), which goes hand-in-hand with contin-
uous integration (CI): Every commit to your
repository triggers a new CI build, and every
successful build—which produces a new bundle
of artifacts with a specific version number—
triggers a new automated release process. That
release process then carries out all the neces-
sary validations before deploying that bundle
to production. CD, in short, means contin-
ually delivering value to your customers at
the lowest cost, with minimal (if any) human
intervention along the release pipeline.

Realize, however, that although CD optimizes
the release pipeline between the Build/CI stage
and deployment to production, it still requires
vigilant effort by people to make it work:

• �Your team needs strong code-review pro-
cesses to prevent poor code from being
committed to the repository to begin with.

• �Your team must have high confidence that automated tests—
which people create—are catching most defects and preventing
them from reaching customers.

• �Because no suite of tests is perfect, some defects will get
through to production, so your team must actively monitor
crash reports, telemetry and direct customer feedback in
your production environment.

• �Your team must be committed to quickly triaging and prior-
itizing issues and feeding them into the dev backlog so that
corrections quickly get into subsequent releases.

• �Issues also identify gaps in your code-review process and test
coverage, thus driving improvements in both.

In short, CD isn’t just a matter of automating your release pipe-
line: CD is a culture of using feedback to constantly improve how
you’re delivering value to customers.

As an example, the documentation for Microsoft Azure, found
on azure.microsoft.com/documentation, is managed within an open source
repository on GitHub, github.com/Azure/azure-content. There’s a full
CI/CD system in place such that any changes accepted into the
repository through pull requests quickly get out to production.
Pull requests, however, are carefully scrutinized by the Azure con-
tent team at Microsoft, which prevents incorrect or inappropriate
edits from getting into the repository at all. Accepted changes
then pass through the automated CI/CD pipeline that applies a
variety of validation tests (such as catching incorrect formatting
and broken links), and then publishes the content to the live site.
The team then monitors telemetry reports from Application
Insights along with customer comments, using that information

Figure 2 A Unit of Build Artifacts Flows Through Various Stakeholders on Its Way
to Production

Build Server

Release Unit
1.2.8.12

Production Environments
(App Stores, Web Servers)

Release Unit
1.2.8.12

Tester Devices

Release Unit
1.2.8.12

Release Manager
Checks for Proper Artifacts

Acceptance/Deploy Artifacts

Reject/Assign Bugs

Assign Work Item to Test Manager

Production Customers

Test Environments

Release Unit
1.2.8.12

Test Manager
Runs Various Test Suites

Acceptance/Deploy Artifacts

Reject/Assign Bugs

Assign Work Item to Staging Manager

Deploy to Testers (HockeyApp)

Feedback, Monitoring

Staging Environments

Release Unit
1.2.8.12

Staging Manager
Additional Test, Beta Deployments

Acceptance/Deploy Artifacts

Reject/Assign Bugs

Assign Work Item to Marketing Team for Announcements

Monitoring

Beta Testers

Monitoring

Backlog

A release is a specific bundle
of build artifacts you intend
to move through a series of

validations and deploy to one or
more environments.

0117msdn_BrockSchmidtDevOps_v3_32-40.indd 34 12/12/16 9:44 AM

http://msdn.com/magazine/mt767694
http://msdn.com/magazine/mt767694
http://azure.microsoft.com/documentation
http://github.com/Azure/azure-content

Untitled-6 1 8/10/16 1:58 PM

www.jetbrains.com/msdn

msdn magazine36 Mobile DevOps

to improve the content, improve the validations tests, and improve
the review process itself.

Release Management in VSTS
In my last article, I looked at setting up automated builds with VSTS
by taking a known build process, creating a build definition from
it and feeding that definition to a build agent that’s capable of per-
forming the necessary tasks to produce a bundle of artifacts with
a specific version number.

Release Management in VSTS is a similar process: You create a release
definition that specifies how that bundle is to be deployed to different
environments, and the tests and validations that are to be applied to it.
That release definition is then fed to a release agent—a suitably config-
ured machine—for processing (release agents are managed in the same
way as build agents, see bit.ly/2coBQxx). That said, there are a number
of significant differences between build and release definitions:

• �A build definition produces testable and deployable artifacts;
a release definition guides the actual deployment to an
environment and the running of tests.

• �A build definition always works from a single-source reposi-
tory; a release definition can draw from any number of build
definitions to collect the artifacts for a release.

• �You can often set up a fully automated build in a matter of hours;
a fully automated release pipeline happens over time because
it takes much more effort to create the underlying automated
tests and work out the details for approvals and sign-offs.

• �A typical build completes in a matter of minutes; a full release
process, with multiple environments and manual approval
steps, will take much longer. As a result, you’ll be monitoring
and auditing many releases in your pipeline at different stages.

• �A release definition supports both pre- and post-deployment
approvers, with which you inject manual control at either end
of a release step, as well as explicit manual intervention tasks.
A simple example is using one or more pre-deployment
approvers before going to production. VSTS also lets you
use a group as an approver, such that only one person in that
group needs to sign off. In general, you assign an approver
any time you want a human being to be involved in the
release process, which also results in leaving an audit trail.

As an example, let’s say I have a Xamarin app and back-end code
in a Git repository on VSTS, with four build definitions that pro-
duce the back-end artifacts and app packages for iOS, Android and
Windows. A simple release process—echoing the stages shown in
Figure 2—might be as follows, where a failure at any point in the
pipeline will cancel the release:

1. �Run unit and integration tests on a successful build.
2. �Test environment
 • �Deploy the app to Xamarin Test Cloud to run tests on

physical devices.
 • �Deploy the back end to a local load-test server.
3. �Staging environment
 • �Deploy the app to beta testers using HockeyApp.
 •�Deploy the back end to a staging server (used by beta

testers) running on Azure App Service.

Figure 3 Editing a Release Definition on Visual Studio Team Services

Continuous deployment is a
culture of using feedback to

constantly improve how you’re
delivering value to customers.

0117msdn_BrockSchmidtDevOps_v3_32-40.indd 36 12/12/16 9:44 AM

www.bit.ly/2coBQxx

37January 2017msdnmagazine.com

4. �Require sign-off by an approver who reviews beta-tester
feedback from and evaluates the readiness of the release.

5. �Production environment
 • �Deploy the app to Google Play, Apple App Store and

Windows Store.
 • �Deploy the back end to the production Azure App Service.

Note, once again, that this process says nothing about automation—
it simply describes the steps involved in making a release.
Because of this, I can start building release definitions with simple
steps like deployment and approver sign-offs. Then, as I get various
tests put together, I can incrementally add steps to increase auto
mation. (By the way, this process is essentially what was set up for the
MyDriving project [aka.ms/iotsampleapp], although it ends at step 3
because the app is distributed only through HockeyApp.)

Technically speaking, you can include testing and deployment steps
directly in a VSTS build definition. This is sufficient when deploying to
and testing in only a single environment. When multiple environments,
approvers, and other release-specific steps are involved, however, you’ll
need the fine-grained control of Release Management.

Walk-Through: Deploying to
Successive Azure Environments
Now I’ll do a walk-through of the main process of using Release Man-
agement, for which I’ve created a Xamarin app and a Node.js service
from templates in Visual Studio. In VSTS, I created a Team Project
called MSDN Magazine Dec 2016, and added the projects to its source
repository. I set up four build definitions to generate suitable artifacts
that I can follow through a release pipeline, even if those artifacts don’t
do anything interesting. (To create build definitions for different back-
end project types, see “Build Your App” [bit.ly/2cGbq7W] in the VSTS
documentation, which ensures that you create deployable artifacts
for Azure and demonstrates deployment tasks in build definitions.)

Because I have four distinct bundles of artifacts going to different
targets, I’ll eventually need four release definitions, but here I’ll start
with just the back end. On the Team Services portal, I navigate to the
Team Project, select the Release tab, and click + New definition. As
with Team Foundation Build, this brings up a dialog with (as of this
writing) just a few Azure-related release templates—for any destina-
tion other than Azure, including app stores, just start with an empty
definition. For my back end, I use the Azure Website Deployment
template and click Next. This brings up a configuration dialog in which
I select my back end’s build definition as the source of the artifacts
(you can also use Jenkins as a source). I also select an agent queue and
set an option for continuous deployment, which I’ll return to later.

VSTS then opens the release definition in the editor shown in
Figure 3 (by default there will be just a single environment). The
editor is organized, left to right, into environments, tasks and details
for the task. The general workflow is to create an environment first,
and then populate it with appropriate tasks for that environment.
Because environments often have similar steps, you can create the
tasks for one environment and then clone that environment to save
time. The + Add Environment button gives you this option. (You
can also create meta-tasks, in which you group a sequence of tasks
together to create a new single task, parameterized with variables,
that can be used in build and release definitions. For a full walk-
through, refer to the VSTS documentation at bit.ly/2c1X3fP.)

As with build definitions, any tab that needs attention is high-
lighted in red—in Figure 3, I need to identify the target Azure
App Service for the deployment. In my Azure account, then,
I create App Service instances called kraigb-MSDN1216-test,
kraigb-MSDN1216-staging and kraigb-MSDN1216-prod. I then
return to VSTS and click the Manage link on the right-hand side
next to Azure Subscription (Classic), which takes me to the Ser-
vices tab on the Team Project control panel. I select + New Service

Endpoint, select Azure Classic, and get a dia-
log in which I enter connection information.
The easiest way to work with this is to select
the publish settings file link in the dialog
that goes to the Azure portal and generates
a text file for download, from which you can
copy-paste values into VSTS.

Having established this connection, I
return to the release definition, refresh the
subscription list and select my new con-
nection. From there I can refresh the Web
app location and Web app name controls to
select the App Service instance I want.

Because most of the connection informa-
tion for my Test environment is the same for
my Staging and Production environments, I
can clone Test twice and rename the copies.
When I make the clone for Production,
though, I also set myself as a pre-deployment
approver and check a box so I get an e-mail
when a release is waiting. By doing this, I’ve
injected a pause between the Staging and
Production environments.

Figure 4 Starting a New Release Manually by Selecting a Build and Setting
Deployments

0117msdn_BrockSchmidtDevOps_v3_32-40.indd 37 12/12/16 9:44 AM

http://www.msdnmagazine.com
http://aka.ms/iotsampleapp
www.bit.ly/2cGbq7W
www.bit.ly/2c1X3fP

msdn magazine38 Mobile DevOps

Starting a Release
I now have a basic deployment pipeline between three environments:
test, staging, and production, where the first two deployments hap-
pen automatically and the third is subject to manual approval. To
start a release manually, I click + Release in the release definition and
select Create Release. This prompts me with the dialog in Figure 4 in
which I select the build to use (from any successful build that’s still in
VSTS), and where I can also control the deployment chain between
the environments. Notice how, for the Test environment, deploy-
ment happens automatically upon creation of the release, which is
when I click the Create button. Staging and Production, similarly,
have automatic deployment depending on the previous environ-
ment, subject, of course, to the success of any other release steps in
those environments (such as tests), and any necessary approvals.

Once I’ve clicked Create and the release begins, I can navigate
into that release to check on its progress, as shown in Figure 5.

I’ll share that when I first created this release pipeline, us-
ing a Node.js back end, my build definition didn’t create any
actual artifacts, and so the release failed. I checked this by
navigating to my most recent build
and clicking the Artifacts tab on its
summary page. Once I added the
necessary Gulp task to produce
some real output, as instructed
by the guide on bit.ly/2c1XhTY, those
artifacts were in place.

In my simple release pipeline, I
haven’t set up any automated tests
so deployments to Test and Staging
happen quickly in succession, and
I can go to those Web sites and
see the results. Before anything is
deployed to Production, however,
the release tells me that “A pre-
deployment approval is pending
for ‘Production’ environment.
Approve or Reject,” as you can

see in Figure 6. I also get an e-mail alerting me
to the approval, with a link to that same release
page in VSTS. There I click the Approve or
Reject link to indicate my decision, add comments,
defer the deployment to a later time or reassign
the approval to someone else. In this case I click
Approve, the release completes, and I’m able to go
see the deployment on the kraigb-1216-prod App
Service instance.

Figure 6, as you can see, shows the status for a
single release. By clicking on the name of the release
definition in the upper right, I can see a status sum-
mary page of all releases that are still being retained
within VSTS. This is where you can visually monitor
the progress of every release in your pipeline for this
definition, and a similar view is available by clicking
All Release Definitions in the navigation tree on the
left side of the portal (not shown).

Continuous Deployment
Setting up continuous deployment means automatically starting
a release after a successful build using the artifacts produced by
that build. To do this, I edit the release definition and click on
the Triggers tab, where there are options for Manual, Continuous
Deployment and Scheduled releases. When I click on Continuous
Deployment, I then select the source of the artifacts, which is my
build definition for the back end, and save the release definition.

I can now go all the way out to Visual Studio, make a change in
the back-end code, and commit it to the repository. This triggers a
new build on VSTS because I checked the Continuous Integration
box in the back end’s build definition. Once that build succeeds,
it automatically triggers a new release because I have Continuous
Deployment checked in the release definition. Thus, with both CI
and CD options, I’ve set up the full release pipeline between changes
in the code and deployment to production, subject only to the
manual pre-deployment approval that I specified for the Production
environment in the release definition.

Figure 6 Approving or Rejecting a Manual Approval Step

Figure 5 Examining the Status of a Release in Progress

0117msdn_BrockSchmidtDevOps_v3_32-40.indd 38 12/12/16 9:44 AM

www.bit.ly/2c1XhTY

Untitled-4 1 8/25/16 12:21 PM

www.gnostice.com
www.gnostice.com
mailto:support@gnostice.com
mailto:sales@gnostice.com

msdn magazine40 Mobile DevOps

Although this pipeline is simple, I now have a solid foundation
on which I can build out additional steps, such as running any
number of tests, simply by adding more tasks to the appropriate
environment in the release definition, and setting up any nec
essary pre- and post-deployment approvals. I can also add new
environments to divide the pipeline into even more distinct stages.
But no matter how many tasks or environments you add, the basic
process will be the same as you’ve seen here.

Walk-Through: Releasing the App
With the back-end release definitions in place, I can now create the
three release definitions for the iOS, Android and Windows builds
of the Xamarin app. The process is very much the same as with
the back end, except that I start with a blank release template and
select the platform-specific build definition. In the release defini-
tion editor, I won’t have any tasks by default, so once I set up the
environments I want (such as Test, Pre-Launch and Launch, to
show you can use any names you want), I click on + Add task and
select one from the dialog that appears.

In the case of the Android app, my deployments are as follows:
• �Test: Use a build task to compile any test code, then use a

Xamarin Test Cloud task to deploy the .apk file and test code
to run those tests automatically on devices I’ve selected. (Of
course, a Test Cloud account is necessary to use the service.)

• �Pre-Launch: Use the HockeyApp task from the VSTS Market-
place, which I first install so it appears in the Add task dialog.
I will have also created an account with HockeyApp and used
its services to set up my list of pre-launch customers.

• �Launch: For Android, I install the Google Play task from the
Marketplace and select it from the Add task dialog (where
you’ll see Release, Promote and Increase Rollout tasks
separately). This means, of course, that I’ve set myself up as
a developer with Google.

For my iOS and Windows release definitions, I can still use
Xamarin Test Cloud and HockeyApp, but those platforms don’t

provide for automated deployment to their respective stores. In
these cases, my Launch environment doesn’t have any tasks. Instead,
I’ve simply assigned a pre-deployment approver to that environ-
ment. That person is responsible for evaluating feedback from the
pre-launch testers and can then go out to the appropriate portals
to upload the production app.

Pre-Launch Distribution with HockeyApp
HockeyApp (hockeyapp.net) is a powerful DevOps service for iOS,
Android, and Windows apps both before and after a launch. Post-
launch, HockeyApp provides crash reporting, usage data and user
feedback, as will be covered in a later article. Pre-launch, HockeyApp
provides these same services along with the ability to quickly and
easily deploy test apps to any number of testers, no matter what
devices they’re using and no matter where they are in the world. It
also lets you organize and manage your testers in a variety of ways
so you can easily control which groups get which release, and when.

Pre-launch distribution (bit.ly/2cxruZ8) works through the Hockey
App client that testers install on their devices. When you have
a new test release ready, you upload it to the HockeyApp portal
either manually or through a deployment step in VSTS. Your testers
then receive an e-mail saying that the new release is available, and
the HockeyApp client shows available releases that can be installed
using the side-loading capabilities of the various mobile platforms.

Looking Ahead
In this series of articles, I’ve now looked at source control, build,
and release management, through which you can create a full
release pipeline across any number of environments that will
accommodate whatever additional testing and approval steps you
might require. This completes all the core connections between
your source code and your customers. What remains, now, is to
understand how to listen to those customers through monitoring
of both apps and back-end services, and then to learn more about
the variety of testing options you can employ, including Xamarin
Test Cloud.	 n

Kraig Brockschmidt works as a senior content developer for Microsoft and is
focused on DevOps for mobile apps. He’s the author of “Programming Windows
Store Apps with HTML, CSS and JavaScript” (two editions) from Microsoft Press
and blogs on kraigbrockschmidt.com.

Thanks to the following technical expert for reviewing this article:
Alex Homer

Continuous deployment is most commonly used with
Web applications and services because the deployment process
is simply a matter of uploading new artifacts to the appropriate
server. For mobile applications, automatic deployment is possi-
ble only for apps published to the Google Play store, but not at
present for iOS and Windows because both require some man-
ual steps. Also, approval of app updates can take as long as two
weeks, which makes it difficult to get even simple, much-less-
critical bug fixes out to customers. Fortunately, apps built using
Apache Cordova and React Native can take advantage of the
Microsoft CodePush service (in preview at the time of writing) to
shortcut the process. CodePush enables developers to automati-
cally deploy HTML, CSS, JavaScript and static artifacts like images
directly to customer devices. The service works by having the app
query CodePush for updates that are then applied to the running
app, thereby removing the need to go through the app store
approval process. (This practice is allowed by app store policies,
provided the app’s original purpose doesn’t change.) Learn more
at microsoft.github.io/code-push.

CodePush

HockeyApp lets you organize
and manage your testers in a

variety of ways so you can easily
control which groups get which

release, and when.

0117msdn_BrockSchmidtDevOps_v3_32-40.indd 40 12/12/16 9:44 AM

http://microsoft.github.io/code-push
www.hockeyapp.net
www.bit.ly/2cxruZ8
www.kraigbrockschmidt.com

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com

7 LOCATIONS
TO CHOOSE FROM

JOIN US

TURN THE PAGE FOR MORE EVENT DETAILS

See pages 68-71

See pages 42-43

See pages 44-45

Untitled-6 1Untitled-6 1 12/9/16 3:48 PM12/9/16 3:48 PM

www.vslive.com
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

SUPPORTED BY

magazine

EVENT PARTNER

AUSTIN, TX
MAY 15-18, 2017
HYATT REGENCY

PRODUCED BY

Untitled-6 2Untitled-6 2 12/9/16 3:03 PM12/9/16 3:03 PM

www.vslive.com/austinmsdn

vslive.com/austinmsdn

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics include:

Visual Studio / .NET
JavaScript / HTML5
Angular
Native Mobile & Xamarin
Software Practices
Database and Analytics

ASP.NET Core
Web API
ALM / DevOps
Cloud Computing
UWP
Unit Testing

Register by March 17 and Save $300!
Use promo code VSLJAN2

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

” I felt more capable of creating Web Applications as a result of this
conference. It was empowering and liberating.” – David Pfahler, Dell, Inc.

” The sessions were packed full of extremely valuable info. Austin is a
killer location for conference!!” – Aaron Eversole, Software Solutions Integrated, LLC

REGISTER
NOW

Untitled-6 3Untitled-6 3 12/9/16 3:04 PM12/9/16 3:04 PM

www.vslive.com/austinmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

WASH, DC
JUNE 12-15, 2017
MARRIOTT MARQUIS

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BY

Untitled-6 4Untitled-6 4 12/9/16 3:04 PM12/9/16 3:04 PM

www.vslive.com/dcmsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics include:

Visual Studio / .NET
JavaScript / HTML5
Angular
Native Mobile & Xamarin
Software Practices
Database and Analytics

ASP.NET Core
Web API
ALM / DevOps
Cloud Computing
UWP
Unit Testing

Register by April 21 and Save $300!
Use promo code VSLJAN2 REGISTER

NOW

vslive.com/dcmsdn

” I like that this event is in D.C. so I can actually attend! I learned about
features that we could leverage as well as information about trends
we are seeing in the industry at the cutting edge.” – Jonathan Cogan, Geico

” Very intelligent speakers. I really liked the topics covering
new .NET and C# tools/technology and code.” – Jon Bleichner, NIH

Untitled-6 5Untitled-6 5 12/9/16 3:04 PM12/9/16 3:04 PM

www.vslive.com/dcmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine46

The Microsoft Computational Network Toolkit (CNTK)
is a very powerful command-line system that can create neural net-
work prediction systems. Because CNTK was originally developed
for internal use at Microsoft, the documentation is a bit intimidating.
In this article I walk you through the process of installing CNTK,
setting up a demo prediction problem, creating a neural network
model, making a prediction,and interpreting the results.

Figure 1 gives you an idea of what the CNTK is and a preview
of where this article is headed. Although it’s not visible in the
image, I ran the CNTK tool by entering the command:

> cntk.exe configFile=MakeModel.cntk makeMode=false

The image shows only the last part of the output messages. The
configuration file with a .cntk extension contains information
about input files and about the design of a neural network to use.
A prediction model was created and saved to disk.

After creating the prediction model, I used it to make a predic-
tion. The input values are in file NewData.txt and are (4.0, 7.0).

The CNTK tool was used with a second configuration file named
MakePrediction.cntk to compute a prediction. The prediction
results were saved to file Prediction_txt.pn and are (0.271139,
0.728821, 0.000040), which means that the predicted outcome is
the second of three possible output values.

This article assumes you have familiarity working with
command-line programs and a rough idea of what neural networks
are, but doesn’t assume you’re a machine learning (ML) expert or
know anything about CNTK. You can also get the code and data
from the accompanying download.

Setting up the Problem
Imagine a scenario where you want to predict a person’s political
leaning (conservative, moderate, liberal) from their age and annual
income. This is called a classification problem. The idea is to take
some data with known values and create a prediction model.
Here, you can think of the model as a kind of complex math func-
tion that accepts two numeric input values and then emits a value
indicating one of three classes.

Now take a look at the graph in Figure 2. There are 24 data points.
The two input variables, called features in ML terminology, are
x0 and x1. The three colors indicate three different classes, some-
times called labels in ML terminology. Although a human being
can quickly see a pattern, trying to create a prediction model for
even this simple data set is very challenging for a computer system.

After CNTK uses the data shown in Figure 2 to create a neural
network prediction model, the model will be applied to the nine test
data points shown in Figure 3. As you’ll see, CNTK correctly pre-
dicts eight out of the nine test cases. The test item at (8.0, 8.0), which
is actually class “red,” will be incorrectly predicted to be class “blue.”

MACH INE L EAR NING

Introduction to the
Microsoft CNTK Machine
Learning Tool
James McCaffrey

This article discusses:
•	Installing Microsoft CNTK

•	Setting up a demo prediction problem

•	Creating a neural network model

•	Making a prediction and interpreting the results

Technologies discussed:
Microsoft CNTK

Code download available at:
msdn.com/magazine/0117magcode

0117msdn_McCaffreyCNTK_v4_46-55.indd 46 12/12/16 9:59 AM

http://msdn.com/magazine/0117magcode

47January 2017msdnmagazine.com

Installing CNTK
Installing CNTK is just a matter of downloading a .zip folder from
GitHub and extracting the files. The main CNTK portal site is
located at github.com/Microsoft/CNTK. On that page you’ll find a link to
the current releases (github.com/Microsoft/CNTK/releases). One of the keys
to the power of CNTK is that it can optionally use a GPU instead
of your machine’s CPU. The releases page gives you the choice to
download binaries for a CPU-only version or a GPU+CPU version.

For demonstration purposes, I recommend you select the CPU-only
version, even though you can direct the GPU+CPU version to use only
the CPU. Clicking on the associated link on the releases page brings you

to a page where you’ll need to accept
some licensing terms, and after you
click the Accept button, you’ll get a
dialog where you can save a file with
a name something like CNTK-1-6-
Windows-64bit-CPU-Only.zip (the
version number could be different,
of course) to your machine.

Download the .zip file to your
desktop or any convenient direc-
tory. Then extract all files directly
to the C: drive (most common) or
to the C:\Program Files directory.

The extracted download will
have a single root directory named
cntk. That root directory will con-
tain several directories, including
another directory also named
cntk that contains all the binaries,
including the key cntk.exe file.
To finish the installation process,
add the path to the cntk.exe file to
your system PATH environment
variable (typically C:\cntk\cntk).

Creating the Data Files
To create and run a CNTK project, you need a configuration file with
a .cntk extension, and at least one file that contains training data.
Most CNTK projects will have a file of test data, too. Additionally,
the CNTK tool will create several output files when a project is run.

There are many ways to organize the files used with a CNTK
project. I recommend you create a project root directory that holds
your data files and the .cntk configuration file, and run CNTK
from that directory.

I had an existing C:\Data directory on my machine. For the demo, I
created a new subdirectory in that directory named CNTK_Projects.

Figure 1 CNTK in Action

Figure 2 Training Data

2.0 3.00.0 1.0
0.0

5.0

1.0

6.0 7.0 8.0

2.0

10.09.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

x1

4.0
x0

Training Data

Figure 3 Test Data (Open Circles)

2.0 3.00.0 1.0
0.0

5.0

1.0

6.0 7.0 8.0

2.0

10.09.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

x1

4.0
x0

Test Data

0117msdn_McCaffreyCNTK_v4_46-55.indd 47 12/12/16 9:59 AM

http://www.msdnmagazine.com
http://github.com/Microsoft/CNTK
http://github.com/Microsoft/CNTK/releases

msdn magazine48 Machine Learning

And inside that directory I created a subdirectory named Simple-
NeuralNet to act as the demo project root directory to hold my
.cntk file and a training data file and a test data file.

The CNTK system can work with several different types of data
files. The demo uses simple text files. Open an instance of Notepad
and use the 24 data items from Figure 4, or manually create the
data using the information in Figure 2, then save the file as Train-
Data.txt in the SimpleNeuralNet directory.

The training data looks like:
|features 1.0 5.0 |labels 1 0 0
|features 1.0 2.0 |labels 1 0 0
. . .
|features 7.0 2.0 |labels 0 0 1

The “|features” tag indicates input values and the “|labels” tag indi-
cates output values. Neither “features” nor “labels” are reserved words,
so you could use something like “|predictors” and “|predicteds” if

you prefer. Values can be delimited using a blank space or the tab
character (the demo data uses blank spaces). Neural networks only
understand numeric values so class labels like “red” and “blue” must
be encoded as numbers. Neural network classifier models use what’s
called 1-of-N encoding. For three possible class labels, you’d use 1
0 0 for the first class (“red” in the demo), 0 1 0 for the second class
(“blue”) and 0 0 1 for the third class (“green”). It’s up to you to keep
track of how each label value is encoded.

In a non-demo scenario, you might have to worry about input data
normalization. In situations where the input values differ greatly in
magnitude, you get better results if you scale data so that all mag-
nitudes are roughly the same. For example, suppose the input data
is a person’s age (like 32.0) and annual income (like $48,500.00).
You could preprocess the data by dividing all age values by 10 and
all income values by 10,000, giving normalized input values like
(3.20, 4.85). The three most common forms of input data normal-
ization are called z-score normalization, min-max normalization
and order of magnitude normalization.

After you’ve created and saved the TrainData.txt file, create and
save the following nine items of test data as TestData.txt file in the
SimpleNeuralNet directory:

|features 1.0 1.0 |labels 1 0 0
|features 3.0 9.0 |labels 1 0 0
|features 8.0 8.0 |labels 1 0 0
|features 3.0 4.0 |labels 0 1 0
|features 5.0 6.0 |labels 0 1 0
|features 3.0 6.0 |labels 0 1 0
|features 8.0 3.0 |labels 0 0 1
|features 8.0 1.0 |labels 0 0 1
|features 9.0 2.0 |labels 0 0 1

Understanding Neural Network Input and Output
To understand how to use CNTK you need a basic understanding of
what a neural network is, how it computes output values and how to
interpret those output values. Take a look at Figure 5. The diagram
shows the neural network that corresponds to the demo problem.

There are two input nodes that hold values (8.0, 3.0), and three
output nodes with values (0.3090, 0.0055, 0.6854). The network
also has five hidden processing nodes.

Each input node has lines connecting it to all hidden nodes. And
each hidden node has lines connecting it to all output nodes. These
lines represent numeric constants called weights. Nodes are iden-
tified using 0-based indexing, so the top-most nodes are [0]. So,
the weight from input[0] to hidden[0] is 2.41 and the weight from
hidden[4] to output[2] is -0.85.

Each hidden node and each output node have an additional
arrow. These are called the bias values. The bias for hidden[0] is
-1.42 and the bias for output[2] is -1.03.

The input-output calculations are best explained with an example.
First, hidden node values are computed. The middle hidden node,
hidden[2] has value 0.1054 and is calculated by summing the prod-
ucts of all connected inputs and their associated weights plus the bias
value, and then taking the hyperbolic tangent (tanh) of that sum:

hidden[2] = tanh((8.0)(-0.49) + (3.0)(0.99) + 1.04))
 = tanh(-3.92 + 2.98 + 1.04)
 = tanh(0.1058)
 = 0.1054

The tanh function is called the hidden layer activation function.
Neural networks can use one of several different activation functions.

|features 1.0 5.0 |labels 1 0 0
|features 1.0 2.0 |labels 1 0 0
|features 3.0 8.0 |labels 1 0 0
|features 4.0 1.0 |labels 1 0 0
|features 5.0 8.0 |labels 1 0 0
|features 6.0 3.0 |labels 1 0 0
|features 7.0 5.0 |labels 1 0 0
|features 7.0 6.0 |labels 1 0 0
|features 1.0 4.0 |labels 1 0 0
|features 2.0 7.0 |labels 1 0 0
|features 2.0 1.0 |labels 1 0 0
|features 3.0 1.0 |labels 1 0 0
|features 5.0 2.0 |labels 1 0 0
|features 6.0 7.0 |labels 1 0 0
|features 7.0 4.0 |labels 1 0 0
|features 3.0 5.0 |labels 0 1 0
|features 4.0 4.0 |labels 0 1 0
|features 5.0 5.0 |labels 0 1 0
|features 4.0 6.0 |labels 0 1 0
|features 4.0 5.0 |labels 0 1 0
|features 6.0 1.0 |labels 0 0 1
|features 7.0 1.0 |labels 0 0 1
|features 8.0 2.0 |labels 0 0 1
|features 7.0 2.0 |labels 0 0 1

Figure 4 The Training Data

Figure 5 Neural Network Input and Output

2.41 -2.24

1.18

0.55

1.83
-1.23

0.73
0.81

1.09

0.38

2.12

1.54

-1.95

-1.62

-2.23

-0.85

-0.56

-0.49

-0.74

-2.72

-0.80

0.83

0.99

1.05

2.81

2.41 -2.24

1.18

0.55

1.83
-1.23

0.73
0.81

1.09

0.38

2.12

1.54

-1.95

-1.62

-2.23

-0.85

-0.56

-0.49

-0.74

-2.72

-0.80

0.83

0.99

1.05

2.81

hidden layer

1.0000

-0.1253

0.1054

-0.1905

-1.0000

input layer

8.0

3.0

output layer

0.3090

0.0055

0.6854

1.0653

-2.9547

1.8619

1.84

1.04

2.57

1.65

-1.42

2.51

-1.51

-1.03

0117msdn_McCaffreyCNTK_v4_46-55.indd 48 12/12/16 9:59 AM

Untitled-2 1 7/11/16 3:31 PM

www.groupdocs.com

msdn magazine50 Machine Learning

In addition to tanh, the other two most common are logistic sigmoid
(usually shortened to just “sigmoid”) and rectified linear.

After all the hidden node values are calculated, the next step
is calculating the output nodes. First, the sum of the products of
connected hidden nodes and their associated weights plus the bias
value is computed. For example, output[0] for this step is 1.0653,
calculated as:

output[0] = (1.0000)(-2.24) + (-0.1253)(1.18) +
 (0.1054)(0.55) + (-0.1905)(1.83) +
 (-1.0000)(-1.23) + 2.51

 = (-2.2400) + (-0.1478) +
 (0.0580) + (-0.3486) +
 (1.2300) + 2.51

 = 1.0653

In the same way, output[1] is calculated to be -2.9547 and
output[2] is 1.8619.

Next, the three preliminary output values are scaled so they sum
to 1.0, using what’s called the softmax function:

output[0] = e^1.0653 / (e^1.0653 + e^-2.9547 + e^1.8619)
 = 0.3090

output[1] = e^-2.9547 / (e^1.0653 + e^-2.9547 + e^1.8619)
 = 0.0055

output[2] = e^1.8619 / (e^1.0653 + e^-2.9547 + e^1.8619)
 = 0.6854

These three values are interpreted as probabilities. So, for inputs
of (8.0, 3.0) and the given weights and bias values, the outputs are
(0.3090, 0.0055, 0.6854). The highest probability is the third value
so the prediction is the third class, “green,” in this case.

Another way of interpreting the output values is to map them so
the highest probability is one and all others are zero. For this exam-
ple you’d get (0, 0, 1), which maps to the encoded value of “green.”

The process of determining the values of the weights and the
biases is called training the network, and that’s what CNTK does.

Creating the Configuration File
Figure 1 gives you an idea of how CNTK is used. In an ordinary
command shell, I navigated to the project root directory at C:\
Data\SimpleNeuralNet. The project root directory contains files
TrainData.txt and TestData.txt and a MakeModel.cntk configura-
tion file. The CNTK tool was invoked by executing the command:

> cntk.exe configFile=MakeModel.cntk makeMode=false

Recall that the system PATH variable knows the location of the
cntk.exe program, so it doesn’t have to be fully qualified. The .cntk
configuration file has a lot of information. The makeMode=false
parameter means to run the program and overwrite any previous
results. CNTK command-line arguments are not case-sensitive.

Figure 6 shows the overall structure of the configuration file. The
complete listing for the configuration file is presented in Figure 7.

You can name a CNTK configuration file however you wish,
but using a .cntk extension is standard practice. You can use the
character or // token for comments, which don’t span lines. At
the top of the configuration file you give a colon-delimited list of
modules to run, four in this case:

command=Train:WriteProbs:DumpWeights:Test

Notice that the order in which modules are executed doesn’t have
to match the order in which they’re defined. Module names (in this
example: Train, WriteProbs, DumpWeights, Test) aren’t keywords

so you can name modules as you wish. Notice the Train module
has an instruction action=“train.” Here, both words are keywords.

The Train module uses a training data file to create the prediction
model, so most CNTK configuration files will have a module, usually
named Train, that contains an action=“train” command. The Train mod-
ule will write the resulting model information to disk in a binary format.

The Test module is optional but is usually included when creating
a model. The Test module will use the newly created prediction
model to evaluate the overall prediction accuracy and prediction
error on the training data.

The WriteProbs module is optional. The module will write the
actual prediction values for the test data items to a text file in the
project root directory. This allows you to see exactly which test
cases were correctly predicted and which were not.

The DumpWeights module will write a text file that contains
the neural network weights and biases that define the prediction
model. You can use this information to uncover trouble spots, and
to make predictions on new, previously unseen data.

System Parameters
The MakeModel.cntk configuration file sets up five system parameters:

modelPath = "Model\SimpleNet.snn"
deviceId = -1
dimension = 2
labelDimension = 3
precision = "float"

The modelPath variable specifies where to put the resulting
binary model and what to call the model. Here, “snn” stands for
simple neural network but you can use any extension. The deviceId
variable tells CNTK whether to use the CPU (-1) or the GPU (0).

The dimension variable specifies the number of values in an
input vector. The labelDimension specifies the number of possi-
ble output values. The precision variable can take values of float or
double. In most cases float is preferable because it makes training
much faster than double.

The Training Module
The demo Train module in the configuration file has three major
sub-sections: BrainScriptNetworkBuilder, SGD and reader. These
sub-sections define the neural network architecture, how to train
the network and how to read training data.

MakeModel.cntk

command=Train:WriteProbs:DumpWeights:Test
system parameters go here

Train = [
 action="train"
 BrainScriptNetworkBuilder = [
 # define network here
]
]
Test = [
 # training commands here
]
WriteProbs = [
 # output commands here
]
DumpWeights = [
 # output commands here
]

Figure 6 The Structure of the Configuration File

0117msdn_McCaffreyCNTK_v4_46-55.indd 50 12/12/16 9:59 AM

51January 2017msdnmagazine.com

The training module definition begins as:
Train = [
 action="train"

 BrainScriptNetworkBuilder = [

 FDim = $dimension$
 HDim = 5
 LDim = $labelDimension$
...

The BrainScriptNetworkBuilder section of the Train module uses
a special scripting language called BrainScript. Variables FDim,
HDim, and LDim hold the number of features, hidden nodes, and
label nodes for the neural network. These names aren’t required, so

you could use names like NumInput, NumHidden and NumOutput
if you wish. The number of input and output nodes is determined
by the problem data, but the number of hidden nodes is a free
parameter and must be determined by trial and error. The $ token is
a substitution operator. The Train module definition continues with:

neuralDef (ftrs) = [
 W0 = Parameter (HDim, FDim)
 b0 = Parameter (HDim, 1)
 W1 = Parameter (LDim, HDim)
 b1 = Parameter (LDim, 1)

 hn = Tanh (W0 * ftrs + b0)
 zn = W1 * hn + b1
].zn
...

Figure 7 The Training Configuration File

MakeModel.cntk

command=Train:WriteProbs:DumpWeights:Test

modelPath = "Model\SimpleNet.snn"
deviceId = -1
dimension = 2
labelDimension = 3
precision = "float"

=====
Train = [
 action="train"

 # network description
 BrainScriptNetworkBuilder = [

 FDim = $dimension$
 HDim = 5
 LDim = $labelDimension$

 # define the neural network
 neuralDef (ftrs) = [
 W0 = Parameter (HDim, FDim)
 b0 = Parameter (HDim, 1)
 W1 = Parameter (LDim, HDim)
 b1 = Parameter (LDim, 1)

 hn = Tanh (W0 * ftrs + b0)
 zn = W1 * hn + b1
].zn

 # specify inputs
 features = Input (FDim)
 labels = Input (LDim)

 # create network
 myNet = neuralDef (features)

 # define training criteria and output(s)
 ce = CrossEntropyWithSoftmax (labels, myNet)
 err = ErrorPrediction (labels, myNet)
 pn = Softmax (myNet)

 # connect to the NDL system.
 featureNodes = (features)
 inputNodes = (labels)
 criterionNodes = (ce)
 evaluationNodes = (err)
 outputNodes = (pn)
]

 # stochastic gradient descent
 SGD = [
 epochSize = 0
 minibatchSize = 1
 learningRatesPerSample = 0.04
 maxEpochs = 500
 momentumPerMB = 0.90
]

 # configuration for reading data

 reader = [
 readerType = "CNTKTextFormatReader"
 file = "TrainData.txt"
 input = [
 features = [
 dim = $dimension$
 format = "dense"
]
 labels = [
 dim = $labelDimension$
 format = "dense"
]
]
]
]

test
Test = [
 action = "test"
 reader = [
 readerType = "CNTKTextFormatReader"
 file="TestData.txt"
 randomize = "false"
 input = [
 features = [
 dim = $dimension$
 format = "dense"
]
 labels = [
 dim = $labelDimension$
 format = "dense"
]
]
]
]

log the output node values
WriteProbs = [
 action="write"
 reader=[
 readerType="CNTKTextFormatReader"
 file="TestData.txt"
 input = [
 features = [
 dim = $dimension$
 format = "dense"
]
 labels = [
 dim = $labelDimension$
 format = "dense"
]
]
]
 outputPath = "TestProbs_txt"
]

dump weight and bias values
DumpWeights = [
 action = "dumpNode"
 printValues = "true"
]

0117msdn_McCaffreyCNTK_v4_46-55.indd 51 12/12/16 9:59 AM

http://www.msdnmagazine.com

msdn magazine52 Machine Learning

This is a BrainScript function. Variable W0 is a matrix that
holds the input-to-hidden weights. The Parameter function means
“construct a matrix.” Variable b0 holds the hidden node bias
values. All calculations in BrainScript are performed on matrices,
so b0 is a matrix with one column rather than an array.

Variables W1 and b1 hold the hidden-to-output weights and
the output node bias values. The values of the hidden nodes are
calculated into a variable named hn using a sum of products and
the tanh function, as explained earlier. Variable zn holds the pre-
softmax output values. The closing bracket-dot-variable notation
is how a BrainScript function returns a value. The Train definition
continues with:

features = Input (FDim)
labels = Input (LDim)
myNet = neuralDef (features)
...

Here, the input features and output labels are defined. Variable
names “features” and “labels” aren’t keywords, but they must match
the strings used in the training and test data files. The neural net-
work is created by calling the neuralDef function. Next, the module
defines information that will be used during training:

ce = CrossEntropyWithSoftmax (labels, myNet)
err = ErrorPrediction (labels, myNet)
pn = Softmax (myNet)
...

The CrossEntropyWithSoftmax function specifies that cross-
entropy error should be used when calculating how close calcu-
lated output values are to actual output values in the training data.
Cross-entropy error is the standard metric but squared error is an
alternative.

The ErrorPrediction function instructs CNTK to compute
and display the prediction model accuracy (percentage of cor-
rect predictions on the training data) and cross-entropy error and
perplexity, which are measures of error between calculated out-
puts and actual outputs.

The Softmax function instructs CNTK to normalize computed out-
put values so they sum to 1.0 and can be interpreted as probabilities.
For a neural network classifier, Softmax is used except in extremely
rare situations. The training module definition concludes with:

...
 featureNodes = (features)
 inputNodes = (labels)
 criterionNodes = (ce)
 evaluationNodes = (err)
 outputNodes = (pn)
]

Here, the required system variables of featureNodes, inputNodes,
criterionNodes, and outputNodes, and the optional evaluation-
Nodes, are associated with the user-defined variables.

The stochastic gradient descent (SGD) sub-section defines how
CNTK will train the neural network. In the context of a neural
network, SGD is usually called back-propagation. The sub-section
definition is:

SGD = [
 epochSize = 0
 minibatchSize = 1
 learningRatesPerSample = 0.04
 maxEpochs = 500
 momentumPerMB = 0.90
]

The epochSize variable specifies how much of the training data
to use. A special value of zero means to use all available training

data. The minibatchSize variable specifies how much of the train-
ing data to process in each training iteration. A value of one means
update the weights and biases after each training item is processed.
This is often called “online” or “stochastic” training.

If the value of minibatchSize is set to the number of training items
(24 in the case of the demo), then all 24 items would be processed
and the results aggregated, and only then would the weights and
biases be updated. This is sometimes called “full-batch” or “batch”
training. Using a value between one and the training set size is
called “mini-batch” training.

The learningRatesPerSample variable specifies how much to adjust
the weights and biases on each iteration. The value of the learning
rate, along with the other parameters in the SGD sub-section, must
be determined by trial and error. Neural networks are typically
extremely sensitive to the value of the learning rate—for example,
using 0.04 might give you a very accurate prediction system but
using 0.039 or 0.041 could give you a very poor system.

The maxEpochs variable specifies how many iterations to perform
for training. Too small a value will result in a poor model (“model
under-fit”), but too many iterations will over-fit the training data.
This leads to a model that predicts the training data very well but
predicts new data very poorly.

The momentumPerMB (momentum per mini-batch, not
per megabyte as you might assume) is a factor that increases or
decreases the amount by which weights and biases are updated. Just
like the learning rate, a momentum value must be determined by
trial and error, and neural network training is typically extremely
sensitive to the value of momentum. The value of 0.90 used by the
demo is the default value so the momentumPerMB parameter
could have been omitted.

The training module of the demo configuration file concludes
by setting the values of the parameters of the reader sub-section:

...
 reader = [
 readerType = "CNTKTextFormatReader"
 file = "TrainData.txt"
 input = [
 features = [dim = $dimension$; format = "dense"]
 labels = [dim = $labelDimension$; format = "dense"]
]
]
] # end Train

The CNTK tool has many different types of readers for use with
different types of input data. The meaning of the parameters in the
demo reader sub-section should be clear. Notice that I put multi-
ple statements on a single line by using the semicolon delimiter.

The Softmax function instructs
CNTK to normalize computed

output values so they sum
to 1.0 and can be interpreted

as probabilities.

0117msdn_McCaffreyCNTK_v4_46-55.indd 52 12/12/16 9:59 AM

YOU OWE IT TO YOURSELF, YOUR COMPANY AND

YOUR CAREER TO BE AT TECHMENTOR REDMOND 2017!

PLUG IN TO NEW KNOWLEDGE

+++

IN-DEPTH TRAINING FOR IT PROS

AUGUST 7 – 11, 2017

MICROSOFT HEADQUARTERS

REDMOND, WA

WHAT SETS TECHMENTOR APART?
+ Immediately usable IT education

+ Training you need today, while preparing you for tomorrow

+ Zero marketing-speak, a strong emphasis on doing more with
the technology you already own, and solid coverage of what’s
just around the corner

+ Intimate setting, where your voice is heard, making it a viable
alternative to huge, first-party conferences

+ Experience life @ Microsoft Headquarters for a full week

HOT TRAINING TOPICS INCLUDE:
+ Windows Server + Hyper-V + Windows PowerShell + DSC
+ DevOps + Azure + Security + And More! +

REGISTER NOW SAVE $400
USE PROMO CODE TMJAN1
 TECHMENTOREVENTS.COM/REDMOND

SUPPORTED BY: PRODUCED BY:

Untitled-2 1Untitled-2 1 12/12/16 10:20 AM12/12/16 10:20 AM

www.techmentorevents.com/redmond

msdn magazine54 Machine Learning

The Test Module
To recap to this point, the MakeModel.cntk configuration file has
some global system parameters (such as modelPath) plus four mod-
ules: Train, Test, WriteProbs, DumpWeights. The Train module
has three sub-sections: BrainScriptNetworkBuilder, SGD, reader.

The Test module is mercifully very simple, as you can see in Figure 8.
The reader sub-section of the test module should match the reader

sub-section of the training module except for the file parameter
value and the addition of the randomize parameter. When training
with SGD, it’s extremely important that the data items be processed
in random order, and true is the default value for randomize. But
when walking through the test data there’s no need to randomize
the order of the data items.

The test module emits one accuracy metric and two error
metrics to the shell. If you refer back to Figure 1, just before the
“Action test complete” message, you’ll see:

err = 0.11111111 * 9
ce = 0.33729280 * 9
perplexity = 1.40114927

The err = 0.1111 * 9 means that 11 percent of the nine test data
items were incorrectly predicted using the model. In other words,
eight out of nine test items were correctly predicted. The training
output doesn’t, however, tell you which data items were correctly
and incorrectly predicted.

The ce = 0.3372 * 9 means that the average cross-entropy error is
0.3372. For this introduction to CNTK, just think of cross entropy
as an error term, so smaller values are better.

The perplexity = 1.4011 is a minor metric. You can think of
perplexity as a measure of how strong the predictions are, where
smaller values are better. For example, for three possible output
values as in the demo, if the prediction is (0.33, 0.33, 0.33) ,you don’t
have a strong prediction at all. The perplexity in this case would be
3.0, which is a maximum for three output values.

The WriteProbs Module
The third module in the demo CNTK configuration file is Write
Probs. This module is optional but very useful because it gives you
additional information about the predictions made on the test data.
The module is defined in Figure 9.

The WriteProbs module is the same as the test module except for
three changes. First, the action parameter is set to “write” instead of
“test.” Second, the randomize parameter has been removed (because
false is the default). Third, an outputPath parameter has been added.

When the WriteProbs module executes, it will write the exact
output values for the test data to the specified file. In this case the
file name will have “.pn” appended because that was the variable
name used for the output nodes in the training module.

For the nine demo test items, the contents of file TestProbs_txt.pn are:
0.837386 0.162606 0.000008
0.990331 0.009669 0.000000
0.275697 0.724260 0.000042

0.271172 0.728788 0.000040
0.264680 0.735279 0.000041
0.427661 0.572313 0.000026

0.309024 0.005548 0.685428
0.000134 0.000006 0.999860
0.000190 0.000008 0.999801

The first three probability vectors go with the first three test
items, which map to the correct output of (1, 0, 0), so the first two
test items were predicted correctly. But the third probability vector
of (0.27, 0.74, 0.00) maps to (0, 1, 0), so it’s an incorrect prediction.

The next three probability vectors go with test items that have out-
put (0, 1, 0), so all three predictions are correct. Similarly, the last three
probability vectors go with (0, 0, 1), so they’re also correct predictions.

To recap, the Test module will emit accuracy and error metrics
to the shell, but not tell you which individual test items are correct
or give you their error. The WriteProbs module writes exact output
values to file and you can use them to determine which test items
are incorrectly predicted.

The DumpWeights Module
The last of the four modules in the demo configuration file is Dump-
Weights, which is defined as:

DumpWeights = [
 action = "dumpNode"
 printValues = "true"
]

When executed, this module will save the trained model’s weights
and bias values to file. By default, the filename will be the same as the
binary model (SimpleNet.snn in the demo), with “.__AllNodes__.txt”
appended, and the file will be saved in the directory specified by
the modelPath parameter (“Model” in the demo).

After running the MakeModel.cntk demo, if you open a file
explorer and point it to directory \SimpleNeuralNet\Model, you’ll
see 503 files:

SimpleNet.snn
SimpleNet.snn.__AllNodes__.txt
SimpleNet.snn.0
...
SimpleNet.snn.499
SimpleNet.ckp

Test = [
 action = "test"
 reader = [
 readerType="CNTKTextFormatReader"
 file = "TestData.txt"
 randomize = "false"
 input = [
 features = [dim = $dimension$
 format = "dense"]
 labels = [dim = $labelDimension$
 format = "dense"]
]
]
]

Figure 8 The Test Module

WriteProbs = [
 action="write"
 reader=[
 readerType="CNTKTextFormatReader"
 file="TestData.txt"
 input = [
 features = [dim = $dimension$
 format = "dense"]
 labels = [dim = $labelDimension$
 format = "dense"]
]
]
 outputPath = "TestProbs_txt"
]

Figure 9 The WriteProbs Module

0117msdn_McCaffreyCNTK_v4_46-55.indd 54 12/12/16 9:59 AM

55January 2017msdnmagazine.com

The SimpleNet.snn is the trained model saved in binary format
for use by CNTK. The 500 files that have names that end with a
digit, and the one file that ends with a “.ckp” extension, are binary
checkpoint files. The idea here is that training a complex neural
network can take hours or even days. Recall that the demo set
a maxEpochs parameter to 500. The CNTK tool saves training
information periodically so in case of a system failure, you don’t
have to restart training from scratch.

The first half of the contents of the AllNodes__.txt file for the
demo (with a few lines removed) is:

myNet.b0=LearnableParameter [5,1]
-1.42185283
 1.84464693
 1.04422486
 2.57946277
 1.65035748
 ##
myNet.b1=LearnableParameter [3,1]
 2.51937032
-1.5136646
-1.03768802

These are the values of the hidden node biases (b0) and the output
node biases (b1). If you refer back to the neural network diagram in
Figure 4, you’ll see where these values are truncated to two decimals.
The second half of the AllNodes__.txt file looks like:

myNet.W0=LearnableParameter [5,2]
 2.41520381 -0.806418538
-0.561291218 0.839902222
-0.490522146 0.995252371
-0.740959883 1.05180109
-2.72802472 2.81985259
 ###
myNet.W1=LearnableParameter [3,5]
-2.246624 1.186315 0.557211 1.837152 -1.232379
 0.739416 0.814771 1.095480 0.386835 2.120146
 1.549207 -1.959648 -1.627967 -2.235190 -0.850726

Recall that the demo network has two input values, five hidden
nodes and three output nodes. Therefore, there are 2 * 5 = 10
input-to-hidden weights in W0, and there are 5 * 3 = 15 hidden-
to-output weights in W1.

Making a Prediction
Once you have a trained model, you can use it to make a prediction.
One way to do this is to use the CNTK tool with an “eval” action
module. The demo takes this approach. First, a new set of data with
a single item is created and saved as file NewData.txt:

|features 4.0 7.0 |labels -1 -1 -1

Because this is new data, the output labels use dummy -1 values.
Next, I created a configuration file named MakePrediction.cntk
with two modules named Predict and WriteProbs. The complete
file is presented in Figure 10.

When run, the output probabilities are saved in a file named
Prediction_txt.pn, which contains:

0.271139 0.728821 0.000040

This maps to output (0, 1, 0), which is “blue.” If you look at the
training data in Figure 2, you can see that (4.0, 7.0) could easily
be either “red” (1, 0, 0) or “blue” (0, 1, 0).

Two alternative techniques for using a trained model are to
use a C# program with the CNTK model evaluation library, or
to use a custom Python script that uses the model weights and
bias values directly.

Wrapping Up
To the best of my knowledge, CNTK is the most powerful neural net-
work system for Windows that is generally available to developers. This
article has covered only a very small part of what CNTK can do, but it
should be enough to get you up and running with simple neural net-
works and allow you to understand the documentation. The real power
of CNTK comes from working with deep neural networks—networks
that have two or more hidden layers and possibly complicated
connections between nodes.

The CNTK tool is under active development, so some of the
details may have changed by the time you read this article. How-
ever, the CNTK team tells me that changes will likely be minor
and you should be able to modify the demo presented in this
article without too much difficulty.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products including Internet Explorer and Bing. Dr.
McCaffrey can be reached at jammc@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Adam Eversole, John Krumm, Frank Seide and Adam Shirey

MakePrediction.cntk

stderr = "Log" # write all messages to file
command=Predict:WriteProbs
modelPath = "Model\SimpleNet.snn" # where to find model
deviceId = -1
dimension = 2
labelDimension = 3
precision = "float"

Predict = [
 action = "eval"
 reader = [
 readerType="CNTKTextFormatReader"
 file="NewData.txt"
 input = [
 features = [dim = $dimension$; format = "dense"]
 labels = [dim = $labelDimension$; format = "dense"]
]
]
]

WriteProbs = [
 action="write"
 reader=[
 readerType="CNTKTextFormatReader"
 file="NewData.txt"
 input = [
 features = [dim = $dimension$; format = "dense"]
 labels = [dim = $labelDimension$; format = "dense"]
]
]
 outputPath = "Prediction_txt" # dump with .pn extension
]

Figure 10 Making a Prediction

Once you have a trained
model, you can use it to make

a prediction.

0117msdn_McCaffreyCNTK_v4_46-55.indd 55 12/12/16 9:59 AM

mailto:jammc@microsoft.com
http://www.msdnmagazine.com

msdn magazine56

Welcome back, MEANers.
As this series on MEAN progressed over the last year and a half,

one of the interesting changes to the topic list was to the “A” part of the
series’ name: AngularJS made a major switch by formally releasing
version 2 of its line, and with that came some deep (and breaking)
changes to the framework. One of the most striking changes was the
choice to adopt TypeScript as the AngularJS “language of choice”
for building AngularJS 2 applications, as opposed to plain, vanilla
ECMAScript for the 1.x line.

Many readers are familiar with TypeScript, of course, because it’s
the latest language to emerge from the code mines in Redmond. For
those not familiar with TypeScript, rest easy—TypeScript is actually
similar to the ECMAScript 2015 syntax that you’ve read about earlier
in this series, with a bit more by way of type information. Readers
wanting a full dive into the language are encouraged to read Peter
Vogel’s article, “Understanding TypeScript,” in the January 2015
issue of MSDN Magazine (msdn.com/magazine/dn890374).

However, AngularJS 2 uses a particular subset of features of
TypeScript and, furthermore, not all readers are entirely comfort-
able with the TypeScript syntax yet. In addition, TypeScript has
gone through a few changes since Vogel’s article was written (ver-
sion 2 dropped in late September 2015). Therefore, I want to take
a quick pass through the language to make sure we’re on the same
page before addressing AngularJS 2.

So, let’s talk some TypeScript.

Adding “Type” to “Script”
Conceptually, TypeScript is a straightforward idea: Take the tradi-
tional ECMAScript syntax and add some (optional) type information
in the form of type annotations, similar to how F# and other func-
tional languages provide type declarations. The TypeScript compiler
(technically called a “transpiler” because it goes source-to-source,
producing ECMAScript code out of the process) verifies that all
type information is respected and obeyed; but the result is still
good old, dynamically typed, browser-friendly JavaScript. In other
words, the goal here is to obtain all the benefits of a type-safe
language such as C# (reduction of obvious code errors through
static verification) without either having to change the underlying
JavaScript browser platform (good luck with that!) or build an
expensive platform-on-top-of-another-platform. Because one of
the core tenets of TypeScript is that “any legal ECMAScript pro-
gram is also a legal TypeScript program,” adopting TypeScript can
be an incremental affair. Take small baby steps, getting cozy with
new features only as much as the team feels comfortable in doing

so, as opposed to jumping in entirely with new syntax (such as what
one might need to do with an entirely new transpiled language such
as CoffeeScript, Fantom or ClojureScript).

It’s in that latter spirit that I begin this jaunt into TypeScript.
I’ll focus on the features that AngularJS 2 uses the most or most
obvious and leave the rest for further exploration down the road.

Installing TypeScript
The first thing to note is that like most Node.js-based packages,
TypeScript is an npm package. Thus, you install TypeScript via the
usual “npm install” command:

npm install –g typescript

Because TypeScript will install a global command (“tsc”), it’s
important to use “-g,” the “global” flag, when installing Type-
Script. Take a moment and make sure you’ve fully installed the
command-line tool by running “tsc”:

$ tsc --version
Version 2.0.3

Therefore, with TypeScript installed, the next step is to write
some TypeScript code.

Modules
The starting point for the discussion is that of TypeScript modules.

Presume that I create a file, person.ts, that’s to contain a compo-
nent. (The term “component” isn’t one that TypeScript emphasizes,
but AngularJS 2 does.) The first step is to create a simple function that
can be invoked from another file, so let’s first create that function:

function sayHello(message: string) {
 console.log("Person component says", message);
}

Notice the type annotation to the parameter, ensuring that the
single parameter must be a string; this is the bedrock of TypeScript,
and ensures that only strings can be passed as parameters. Granted,
this function by itself makes a simple component, but complex or
simple, it needs to be used to be useful.

So let’s use it: a TypeScript application can use a component by
using an import statement, like so:

import { sayHello } from './person';

sayHello("Fred");

In essence, the “import” statement declares that you’re using
the element named “sayHello” from the “person” module. (There
are other forms of import syntax that you’ll see later.) So, you run
the two files, the aforementioned person.ts and this code app.ts,
through the tsc compiler:

tsc person.ts app.ts

How To Be MEAN:
Type Script with TypeScript

The Working Programmer TED NEWARD

0117msdn_NewardWProg_v4_56-58.indd 56 12/12/16 10:05 AM

http://msdn.com/magazine/dn890374

57January 2017msdnmagazine.com

Unfortunately, TypeScript will complain, stating that person.ts
is not a module.

Modules are, in TypeScript lingo, the language construct that pro-
vides a “box” around a tightly grouped set of code. As written, person.ts
would be easily usable as a module under older JavaScript scenarios;
simply defining a function in a file and referencing that file puts the
function into the global scope. However, TypeScript requires more
explicit syntax—you have to use the export keyword to declare what’s
part of the external surface area of the component, like so:

export function sayHello(message: string) {
 console.log("Person component says", message);
}

In TypeScript, any file that has a top-level import or export state-
ment is considered a module, so simply declaring that this function
is to be exported implicitly defines all of person.ts to be a module.

Once modified, TypeScript is happy, and two new files, person.js
and app.js, rest on the filesystem, waiting to be used.

Adding Class
TypeScript, like the ECMAScript 2015 language on which it’s based,
understands the core concept of classes, so it makes sense to define
Person as a class to be used, as shown in Figure 1.

This is all relatively easy to figure out, even for those who have
never looked at TypeScript before. The export keyword again indicates
that this class is for use outside of this module. The fields firstName
and lastName use TypeScript annotations to get the compiler to
enforce “string-ness,” the method greet returns a string to callers,
and the fullName method is declared as a synthetic read-only
property accessor, made up of the firstName and lastName fields.
Using the Person type in the app.ts file is also straightforward—
you just need to import the Person type from the person.ts file and
construct one using the keyword new:

import { Person } from './Person';

let ted = new Person("Ted", "Neward");
console.log(ted.greet());

Careful readers will note that the import line has changed—instead
of pulling in sayHello, it pulls in the Person type. While it would cer-
tainly be possible to list all of the symbols exported in Person between
the brackets of the import statement, that would get truly tedious very
quickly. So TypeScript provides a wildcard import facility, but because
you don’t want all of the module’s exported names to just pollute the
global namespace, you need to provide a name under which all of those
names will be visible. Using it would change the application code slightly:

import * as PerMod from './Person';

let ted = new PerMod.Person("Ted", "Neward");
console.log(ted.greet());

Obviously, this isn’t production-quality code, because PerMod
is a terrible name.

Interfacing in TypeScript
Of course, one popular goal for component-based development
(which, remember, AngularJS 2 stresses) is that there should be a
strong separation between how users of a component utilize the
component and how the component provides that utility—in other
words, the “interface vs. implementation” distinction. TypeScript
takes a page from its conceptual sibling C# here, providing the
ability to declare interfaces—which, like in C#, are promises of
behavior that an implementation will provide.

So if the Person component wants to distinguish between dif-
ferent kinds of Persons without requiring any implementation
restrictions, it can define Person as an interface, provide several
different implementations, and maybe a constructor function to
make it easy to construct Persons without having to worry about
the details between them, as shown in Figure 2.

Creating a class that implements Person is straightforward,
using the implements keyword, as shown in Figure 3.

And, as shown in Figure 4, creating subtypes of NormalPerson
(for managers and programmers) is equally straightforward, creating
a constructor that will defer to its parent class and then overriding
the greet method to return messages appropriate to each occupation.

export class Person {
 firstName: string;
 lastName: string;

 constructor(fn: string, ln: string) {
 this.firstName = fn;
 this.lastName = ln;
 }

 greet() : string {
 return this.fullName + " says hello!";
 }

 get fullName() : string {
 return this.firstName + " " + this.lastName;
 }
}

Figure 1 A Simple Person Class

export function createPerson(
 firstName: string, lastName: string, occupation: string) : Person {
 if (occupation == "Programmer")
 return new Programmer(firstName, lastName);
 else if (occupation == "Manager")
 return new Manager(firstName, lastName);
 else
 return new NormalPerson(firstName, lastName);
}

export interface Person {
 firstName: string;
 lastName: string;
 greet() : string;
 fullName: string;
}

Figure 2 Creating a Person

class NormalPerson implements Person {
 firstName: string;
 lastName: string;

 constructor(fn: string, ln: string) {
 this.firstName = fn;
 this.lastName = ln;
 }

 greet() : string {
 return this.fullName + " says hello!";
 }

 get fullName() : string {
 return this.firstName + " " + this.lastName;
 }
}

Figure 3 A Person Implementation

0117msdn_NewardWProg_v4_56-58.indd 57 12/12/16 10:05 AM

http://www.msdnmagazine.com

msdn magazine58 The Working Programmer

Again, aside from the type descriptors (and the interface declara-
tion itself), this is similar to straight-up ECMAScript 2015 syntax,
but thanks to TypeScript type-checking, any attempt to use any-
thing other than a string as the parameters to the constructors will
be firmly rejected. Note, however, that the fact the classes aren’t
exported means that the client code has no idea what the actual
implementation is; all the client knows is that the Person interface
defines three properties—firstName, lastName and fullName—and
one method—greet—that the client can use.

Decorations
The last obvious feature of TypeScript that requires explanation is dec-
orators, an experimental feature for ECMAScript (and TypeScript,
for that matter) that look vaguely like custom attributes, but behave
quite differently. Essentially, by using an @-prefixed notation, you can
define a function that will be invoked whenever different code con-
structs are invoked—when a class is constructed, when a method is
invoked, when properties are accessed (or modified), or even when
parameters are passed as part of a method or function invocation. It’s
an obvious attempt to provide some aspect-oriented programming
approaches to TypeScript, and AngularJS 2 leverages it pretty heavily.

The classic example for an AOP library is that of logging function
calls; you’d like to reuse code that logs to console every time a particular
function or method is called, regardless of from where that call comes.

This, by definition, is a cross-cutting concern, a chunk of code that
defies traditional object-oriented reuse constructs such as inheritance.
Using TypeScript, you can write a log decorator, and apply that decora-
tor to the methods that you want to decorate with the logging behavior.
That behavior is invoked whenever the decorated method is invoked.

In practical terms, this means that if you’ve written a log decora-
tor, the Person implementation returned can use @log on the greet
method, and calls will be logged to console, as shown here:

import log from './log';

// ... Code as before

class Manager extends NormalPerson {
 constructor(fn: string, ln: string) {
 super(fn, ln);
 }

 @log()
 greet() : string {
 return this.fullName + " says let's dialogue about common synergies!";
 }
}

When run, it produces some nice method-level logging:
$ node app.js
Call: greet() => "Ted Neward says Hello, World!"
Ted Neward says Hello, World!
Call: greet() => "Andy Lientz says let's dialogue about common synergies!"
Andy Lientz says let's dialogue about common synergies!
Call: greet() => "Charlotte Neward says hello!"
Charlotte Neward says hello!

The log component itself is a nifty bit of runtime type-mongery,
but a bit beyond the scope of this column. It’s included in Figure 5
for your perusal, but I won’t describe how it works here other than
to say that TypeScript will effectively inject some code into the right
places to make calls to the function that the log decorator returns.

The TypeScript Web site describes decorators at bit.ly/2fh1lzC, for those
who want to know how to create them. Fortunately, knowing how to
create your own decorators isn’t required to use AngularJS 2 effectively;
however, knowing how to use decorators that already exist is definitely
a requirement. For starters, AngularJS 2 uses them for dependency
injection, a core staple of “The Angular Way” since its inception.

Wrapping Up
I’ve taken a quick pass through TypeScript, and while it’s definitely
not an exhaustive treatment, it’ll get you going once you pick up
AngularJS 2 and start hacking on that. Note that some of the features
described here will require particular compiler switches; decorators,
in particular, will require the compiler switch —experimentalDeco-
rators (or its equivalent in tscconfig.json). Most of the time, however,
the Yeoman-generated scaffolding will have the right switches already
in place, and AngularJS 2 developers don’t need to worry about them.

Speaking of which, it’s time to start exploring AngularJS—
components and models and views, oh my!—so that’s next up on
the docket. Until then, happy coding!	 n

Ted Neward is a Seattle-based polytechnology consultant, speaker and mentor. He
has written more than 100 articles, is an F #MVP, has authored and coauthored a
dozen books. Reach him at ted@tedneward.com if you’re interested in having him
come work with your team, or read his blog at blogs.tedneward.com.

Thanks to the following technical expert for reviewing this article:
Shawn Wildermuth

class Programmer extends NormalPerson {
 constructor(fn: string, ln: string) {
 super(fn, ln);
 }

 greet() : string {
 return this.fullName + " says Hello, World!";
 }
}

class Manager extends NormalPerson {
 constructor(fn: string, ln: string) {
 super(fn, ln);
 }

 greet() : string {
 return this.fullName + " says let's dialogue about common synergies!";
 }
}

Figure 4 A Programmer Implementation

export default function log() {
 return function(target: any,
 propertyKey: string,
 descriptor: PropertyDescriptor)
 {
 // Save a reference to the original method
 var originalMethod = descriptor.value;
 descriptor.value = function (...args: any[]) {
 var argsLog = args.map(a => JSON.stringify(a)).join();
 var result = originalMethod.apply(this, args);
 var resultLog = JSON.stringify(result);
 console.log(`Call: ${propertyKey}(${argsLog}) => ${resultLog}`);
 return result;
 }

 // Return edited descriptor instead of overwriting
 // the descriptor by returning a new descriptor
 return descriptor;
 }
}

Figure 5 Defining the Logging Annotation

0117msdn_NewardWProg_v4_56-58.indd 58 12/12/16 10:05 AM

mailto:ted@tedneward.com
www.bit.ly/2fh1lzC
http://blogs.tedneward.com

Untitled-2 1 11/2/16 11:59 AM

www.alachisoft.com
mailto:sales@alachisoft.com

msdn magazine60

Those of you who have been following .NET Core over the past
few years (has it been that long?) know all too well that the “build
system” has experienced a significant amount of flux, whether it be
dropping built-in support for gulp or the demise of Project.json.
For me as a columnist, these changes have been challenging as I
didn’t want you, my dear readers, to spend too much time learning
about features and details that ultimately were only going to be
around for a few months. This is why, for example, all my .NET
Core-related articles were built on Visual Studio .NET 4.6-based
*.CSPROJ files that referenced NuGet packages from .NET Core
rather than actually compiled .NET Core projects.

This month, I’m pleased to report, the project file for .NET Core
projects has stabilized into (would you believe) an MSBuild file.
However, it’s not the same MSBuild file from earlier Visual Studio
generations, but rather an improved—simplified—MSBuild file.
It’s a file that (without getting into religious wars about curly vs.
angle brackets) includes all the features of Project.json but with the
accompanying tool support of the traditional MSBuild file we’ve
come to know (and perhaps love?) since Visual Studio 2005. In
summary, the features include open source, cross-platform com-
patibility, a simplified and human-editable format and, finally, full
modern .NET tool support including wildcard file referencing.

Tooling Support
To be clear, features such as wild cards were always supported in
MSBuild, but now the Visual Studio tooling works with them, as
well. In other words, the most important news about MSBuild is
that it’s tightly integrated as the build system foundation for all the

new .NET Tooling—DotNet.exe, Visual Studio 2017, Visual Studio
Code and Visual Studio for Mac—and with support for both .NET
Core 1.0 and .NET Core 1.1 runtimes.

The big advantage of the strong coupling between .NET Tooling
and MSBuild is that any MSBuild file you create is compatible with
all the .NET Tooling and can be built from any platform.

The .NET Tooling for MSBuild integration is coupled via the
MSBuild API, not just a command-line process. For example, exe-
cuting the .NET CLI command Dotnet.exe Build doesn’t internally
spawn the msbuild.exe process. However, it does call the MSBuild
API in process to execute the work (both the MSBuild.dll and
Microsoft.Build.* assemblies). Even so, the output—regardless of
the tool—is similar across platforms because there’s a shared log-
ging framework with which all the .NET Tools register.

*.CSPROJ/MSBuild File Structure
As I mentioned, the file format itself is simplified down to the bare min-
imum. It supports wildcards, project and NuGet package references,
and multiple frameworks. Furthermore, the project-type GUIDs
found in the Visual Studio-created project files of the past are gone.

Figure 1 shows a sample *.CSPROJ/MSBuild file.
Let’s review the structure and capabilities in detail:
Simplified Header: To begin, notice that the root element is

simply a Project element. Gone is the need for even the namespace
and version attributes:

ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"

(Though, they’re still created in the release candidate version
tooling.) Similarly, even the need for importing the common prop-
erties is merely optional:

<Import Project=
 "$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.props" />

Project References: From the project file, you can add entries
to the item group elements:

• �NuGet Packages:
<PackageReference Include="Microsoft.Extensions.Configuration">
 <Version>1.1.0</Version>
</PackageReference>

• �Project References:
<ProjectReference Include="..\ClassLibrary\ClassLibrary.csproj" />

• �Assembly References:
<Reference Include="MSBuild">
 <HintPath>...</HintPath>
</Reference>

A direct assembly reference should be the exception as a NuGet
reference is generally preferred.

Essential MSBuild:
A Build Engine Overview for .NET Tooling

Essential .NET MARK MICHAELIS

<Project>
 <PropertyGroup>
 <TargetFramework>netcoreapp1.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <Compile Include="***.cs" />
 <EmbeddedResource Include="***.resx" />
 </ItemGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.NETCore.App">
 <Version>1.0.1</Version>
 </PackageReference>
 <PackageReference Include="Microsoft.NET.Sdk">
 <Version>1.0.0-*</Version>
 <PrivateAssets>All</PrivateAssets>
 </PackageReference>
 </ItemGroup>
 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
</Project>

Figure 1 A Basic Sample CSProj/MSBuild File

0117msdn_MichaelisDotNet_v3_60-62.indd 60 12/12/16 10:02 AM

61January 2017msdnmagazine.com

Wildcard Includes: Compiled code files and resource files can
all be included via wildcards.

<Compile Include="***.cs" />
<EmbeddedResource Include="***.resx" />
<Compile Remove="CodeTemplates**" />
<EmbeddedResource Remove="CodeTemplates**" />

However, you can still select specific files to ignore using the
remove attribute. (Note that support for wildcards is frequently
referred to as globbing.)

Multi-Targeting: To identify which platform you’re targeting,
along with the (optional) output type, you can use a property group
with the TargetFramework elements:

<PropertyGroup>
 <TargetFramework>netcoreapp1.0</TargetFramework>
 <TargetFramework>netstandard1.3</TargetFramework>
</PropertyGroup>

Given these entries, the output for each target will be built into
the bin\Debug or bin\Release directory (depending on which con-
figuration you specify). If there’s more than one target, the build
execution will place the output into a folder corresponding to the
target framework name.

No Project Type GUIDs: Note that it’s no longer necessary
to include a project-type GUID that identifies the type of project.

Visual Studio 2017 Integration
When it comes to Visual Studio 2017, Microsoft continues to
provide a rich UI for editing the CSPROJ/MSBuild project file.
Figure 2, for example, shows Visual Studio 2017 loaded with a
CSPROJ file listing, slightly modified from Figure 1, that includes
target framework elements for netcoreapp1.0 and net45, along
with package references for Microsoft.Extensions.Configuration,
Microsoft.NETCore.App, and Microsoft.NET.Sdk, plus an assem-
bly reference to MSBuild, and a project reference to SampleLib.	

Notice how each dependency type—assembly, NuGet package
or project reference—has a corresponding
group node within the Dependencies tree
in Solution Explorer.

Furthermore, Visual Studio 2017 sup-
ports dynamic reloading of the project and
solution. For example, if a new file is added
to the project directory—one that matches
one of the globbing wild cards—Visual
Studio 2017 automatically detects the
changes and displays the files within the
Solution Explorer. Similarly, if you exclude
a file from a Visual Studio project (via the
Visual Studio menu option or the Visual
Studio properties window), Visual Studio
will automatically update the project file
accordingly. (For example, it will add a
<Compile Remove="CommandLine.cs"
/> element to exclude the CommandLine.
cs file from compiling within the project.)

Furthermore, edits to the project file will
be automatically detected and reloaded into
Visual Studio 2017. In fact, the Visual Studio
project node within Solution Explorer now

supports a built-in Edit <Project File> menu option that opens
the project file within the Visual Studio edit window without first
requesting that you unload the project.

There’s built-in migration support within Visual Studio
2017 to convert projects to the new MSBuild format. If you
accept its prompt, your project will automatically upgrade from a
Project.json/*.XPROJ type to an MSBUILD/*.CSPROJ type. Note
that such an upgrade will break backward compatibility with
Visual Studio 2015 .NET Core projects, so you can’t have some
of your team working on the same .NET Core project in Visual
Studio 2017 while others use Visual Studio 2015.

MSBuild
I would be remiss to not point out that back in March 2016, Microsoft
released MSBuild as open source on GitHub (github.com/Microsoft/msbuild)
and contributed it to the .NET Foundation (dotnetfoundation.org).
Establishing MSBuild as open source put it on track for platform
portability to Mac and Linux—ultimately allowing it to become
the underlying build engine for all the .NET Tooling.

Other than the CSPROJ\MSBuild file PackageReference element
identified earlier, MSBuild version 15 doesn’t introduce many
additional features beyond open source and cross platform. In fact,
comparing the command-line help shows the options are identical.
For those not already familiar with it, here’s a list of the most com-
mon options you should be familiar with from the general syntax
MSBuild.exe [options] [project file]:

/target:<target>: Identifies the build target within the project file to
execute along with any dependencies it might have (/t is the abbreviation).

/property:<n>=<v>: Sets or overrides any project properties
(identified in the ProjectGroup element of a project file). For
example, you can use the property to change the configuration or
the output directory, as in /property:Configuration=Release;Out-

Dir=bin\ (/p is the abbreviation).
/maxcpucount[:n]: Specifies the num-

ber of CPUs to use. By default, msbuild runs
on a single CPU (single-threaded). If syn-
chronization isn’t a problem you can increase
that by specifying the level of concurrency.
If you specify the /maxcpucount option
without providing a value, msbuild will use
the number of processors on the computer.

/preprocess[:file]: Generates an aggre-
gated project file by inlining all the included
targets. This can be helpful for debugging
when there’s a problem.

@file: Provides one (or more) response
files that contains options. Such files have
each command-line option on a sepa-
rate line (comments prefixed with “#”). By
default, MSBuild will import a file named
msbuild.rsp from the first project or solution
built. The response file is useful for identifying
different build properties and targets
depending on which environment (Dev, Test,
Production) you’re building, for example.

Figure 2 Solution Explorer is a Rich UI on
Top of a CSProj File

0117msdn_MichaelisDotNet_v3_60-62.indd 61 12/12/16 10:02 AM

http://www.msdnmagazine.com
http://github.com/Microsoft/msbuild

msdn magazine62 Essential .NET

Dotnet.exe
The dotnet.exe command line for .NET was introduced about a
year ago as a cross-platform mechanism for generating, building
and running .NET Core-based projects. As already mentioned, it
has been updated so that it now relies heavily on MSBuild as the
internal engine for the bulk of its work where this makes sense.

Here’s an overview of the various commands:
dotnet new: Creates your initial project. Out of the box this

project generator supports the Console, Web, Lib, MSTest and
XUnitTest project types. However, in the future you can expect it
to allow you to provide custom templates so you can generate your
own project types. (As it happens, the new command doesn’t rely
on MSBuild for generating the project.)

dotnet restore: Reads through the project dependencies speci-
fied in the project file and downloads any missing NuGet packages
and tools identified there. The project file itself can either be spec-
ified as an argument or be implied from the current directory (if
there’s more than one project file in the current directory, specifying
which one to use is required). Note that because restore leverages
the MSBuild engine for its work, the dotnet command allows for
additional MSBuild command-line options.

dotnet build: Calls on the MSBuild engine to execute the build
target (by default) within the project file. Like the restore command,
you can pass MSBuild arguments to the dotnet build command.
For example, a command such as dotnet build /property:configu-
ration=Release will trigger a Release build to be output rather than
a Debug build (the default). Similarly, you can specify the MSBuild
target using /target (or /t). The dotnet build /t:compile command,
for example, will run the compile target.

dotnet clean: Removes all the build output so that a full build
rather than an incremental build will execute.

dotnet migrate: Upgrades a Project.json/*.XPROJ-based proj-
ect into the *.CSPROJ/MSBuild format.

dotnet publish: Combines all the build output along with any
dependencies into a single folder, thereby staging it for deployment to
another machine. This is especially useful for self-contained deploy-
ment that includes not only the compile output and the dependent
packages, but even the .NET Core runtime itself. A self-contained
application doesn’t have any prerequisites that a particular version
of the .NET platform already be installed on the target machine.

dotnet run: Launches the .NET Runtime and hosts the project
and/or the compiled assemblies to execute your program. Note that for
ASP.NET, compilation isn’t necessary as the project itself can be hosted.

There’s a significant overlap between executing msbuild.exe and
dotnet.exe, leaving you with the choice of which one to run. If you’re
building the default msbuild target you can simply execute the com-
mand “msbuild.exe” from within the project directory and it will com-
pile and output the target for you. The equivalent dotnet.exe command
is “dotnet.exe msbuild.” On the other hand, if you’re running a “clean”
target the command is “msbuild.exe /t:clean” with MSBuild, versus
“dotnet.exe clean” with dotnet. Furthermore, both tools support ex-
tensions. MSBuild has a comprehensive extensibility framework both
within the project file itself and via .NET assemblies (see bit.ly/2flUBza).
Similarly, dotnet can be extended but the recommendation for this,
too, essentially involves extending MSBuild plus a little more ceremony.

While I like the idea of dotnet.exe, in the end it doesn’t seem to
offer much advantage over MSBuild except for doing the things that
MSBuild doesn’t support (of which dotnet new and dotnet run are
perhaps the most significant). In the end, I feel that MSBuild allows
you to do the simple things easily while still enabling the complicated
stuff when needed. Furthermore, even the complicated stuff in
MSBuild can be simplified down by providing reasonable defaults.
Ultimately, whether dotnet or MSBuild is preferable comes down
to preference, and time will tell which the development commu-
nity generally settles on for the CLI front end.

global.json
While Project.json functionality has migrated to CSPROJ,
global.json is still fully supported. The file allows specification
of project directories and package directories, and identifies the
version of the SDK to use. Here’s a sample global.json file:

{
 "projects": ["src", "test"],
 "packages": "packages",
 "sdk": {
 "version": "1.0.0-preview3",
 "runtime": "clr",
 "architecture": "x64"
 }
}

The three sections correspond to the main purposes of the
global.json file:

projects: Identifies the root directories in which .NET projects
are located. The projects node is critical for debugging into the .NET
Core source code. After cloning the source code, you can add the
directory into the projects node and Visual Studio will then auto-
matically load it up as a project within the solution.

packages: Indicates the location of your NuGet packages folder.
sdk: Specifies which version of the runtime to use.

Wrapping Up
In this article, I’ve provided a broad overview of all the places that
MSBuild is leveraged within the .NET Tooling suite. Before closing,
let me offer one bit of advice from my experience working on proj-
ects with thousands of lines of MSBuild. Don’t fall into the trap of
scripting too much in a declarative, loosely typed language like the
XML MSBuild schema. That’s not its purpose. Rather, the project
files should be relatively thin wrappers that identify the order and
dependencies among your build targets. If you let your MSBuild
project file get too big, it can become a pain to maintain. Don’t wait
too long before you refactor it into something like C# MSBuild
tasks that can be debugged and easily unit tested. 	 n

Mark Michaelis is founder of IntelliTect, where he serves as its chief technical
architect and trainer. For nearly two decades he has been a Microsoft MVP, and a
Microsoft Regional Director since 2007. Michaelis serves on several Microsoft software
design review teams, including C#, Microsoft Azure, SharePoint and Visual Studio
ALM. He speaks at developer conferences and has written numerous books including
his most recent, “Essential C# 6.0 (5th Edition)” (itl.tc/EssentialCSharp). Contact
him on Facebook at facebook.com/Mark.Michaelis, on his blog at IntelliTect.com/
Mark, on Twitter: @markmichaelis or via e-mail at mark@IntelliTect.com.

Thanks to the following IntelliTect technical experts for reviewing this article:
Kevin Bost, Grant Erickson, Chris Finlayson, Phil Spokas and Michael Stokesbary

0117msdn_MichaelisDotNet_v3_60-62.indd 62 12/12/16 10:02 AM

mailto:mark@IntelliTect.com
www/bit.ly/2flUBza
www.itl.tc/EssentialCSharp
www.facebook.com/Mark.Michaelis
www.IntelliTect.com/Mark
www.IntelliTect.com/Mark
www.twitter.com/markmichaelis

Untitled-1 1Untitled-1 1 4/1/14 10:47 AM4/1/14 10:47 AM

www.spreadsheetgear.com

msdn magazine64

As the Universal Windows Platform (UWP) evolves, common UI
patterns and challenges emerge. While the UWP provides a rich
feature set of controls and APIs out of the box, there are some gaps
in what’s provided and some features require a lot of coding and
effort. To address this gap and make UWP development faster
and more accessible to beginners, Microsoft has created the UWP
Community Toolkit and placed it on GitHub (bit.ly/2b1PAJY).

The goal of the UWP Community Toolkit is to engage the devel-
oper community to create a series of controls and helper functions
to simplify UWP development. The UWP Community Toolkit
has five categories of tools: Controls, Notifications, Animations,
Services and Helpers. In this month’s column, I’ll walk through each
of the categories and demonstrate how to implement the toolkit
into your UWP projects.

UWP Community Toolkit Sample App
The best way to explore the UWP Community Toolkit is to download
the UWP Community Toolkit Sample App from the Windows Store
(bit.ly/2bypOyw). Not only does the app showcase all of the features of
the toolkit (see Figure 1), but it also provides interactive demos of
controls, animations, notifications and more, as shown in Figure 2.

The app will also provide XAML and code representations of
the controls, thereby making it faster to tinker, tweak, and imple-
ment UI elements.

Interface Controls As previously stated, the UWP Community
Toolkit contains a number of UI controls: 13 at press time. Many of
these controls are commonly found in mobile applications or Web

sites optimized for mobile. One
such example is the Hamburger-
Menu control. By convention, the
hamburger menu, which consists
of three horizontal lines, indicates
that there’s a collapsed menu.
Touching or clicking on the con-
trol toggles its state. Figure 3 and
Figure 4 demonstrate what the
control looks like collapsed and
expanded, respectively.

Be sure to explore the features
and settings of every control in the
UWP Community Toolkit. They
have an enormous degree of flex-
ibility and are sure to add value to
every one of your UWP projects.

Notifications Windows 10 pro-
vides a rich API that lets developers
create live tiles and toast notifi-
cations to alert users of timely
events and keep users up-to-date.
For a full exploration of tiles and
toast notifications, I recommend

Exploring the UWP Community Toolkit

Modern Apps FRANK LA VIGNE

Figure 1 Home Screen of the UWP Community Toolkit Sample App

The goal of the UWP
Community Toolkit is to engage

the developer community to
create a series of controls and
helper functions to simplify

UWP development.

0117msdn_LaVigneModApps_v4_64-67.indd 64 12/12/16 9:45 AM

www.bit.ly/2b1PAJY
www.bit.ly/2bypOyw

65January 2017msdnmagazine.com

reading the Tiles and Toasts blog that’s written by the team that
owns the UWP tile and toast APIs (bit.ly/2fzFsv1).

While useful and powerful, creating notifications and live tiles
can prove challenging to developers unfamiliar with XML and
XPath. The UWP Community Toolkit makes this easier by placing
an object model on top of the underlying structure to generate the
UI for toasts notifications and live tiles.

Animations Windows 10 introduced the Composition API, a
rich, declarative, retained-mode API that any UWP app can use to
create composition objects, animations and visual effects directly.
Essentially, it’s a layer between XAML and the underlying DirectX

architecture. The Composition
API is meant to provide a way for
XAML developers to enjoy many
of the performance benefits of
DirectX while writing code in C#.
A full discussion of the Compo-
sition API is beyond the scope of
this column, but you can find out
more at bit.ly/2fzCfeQ.

The UWP Community Toolkit
provides easy access to the power of
this API by providing both XAML
behaviors and extension methods
on top of the Composition API. The
UWP Community Toolkit Sample

App even has a control surface to experiment with different param-
eters on a set of five animations. The toolkit will even generate the
C# code and XAML markup to implement the animation.

Services We live in an era of the cloud and apps are better when
they’re connected to services in the cloud. However, adding these
services to your apps can introduce a lot of complexity: imple-
menting authentication via OAuth, working with REST APIs and
the fluid nature of these APIs. Fortunately, the UWP Community
Toolkit provides an extensive object model that deals with a lot of
this complexity. Currently, the UWP Toolkit provides support for
Bing, LinkedIn, Facebook, Twitter and the Microsoft Graph Service.
This means that developers can easily connect to these online ser-
vices with minimal effort.

Helper Functions The UWP Community Toolkit also includes
various helper functions to make common app development tasks
easier. For instance, before querying a cloud service, apps should

Figure 2 Adjusting the Parameters of the RadialGauge Control

Figure 4 An Expanded
Hamburger Menu

Figure 3 A Collapsed
Hamburger Menu

Be sure to explore the
features and settings of every

control in the UWP Community
Toolkit. They have an enormous
degree of flexibility and are sure

to add value to every one of
your UWP projects.

NuGet Package Name Details
Microsoft.Toolkit.Uwp Main NuGet package includes

code-only helpers such as Colors
conversion tool, Internet Connection
detection, Storage file handling, a
Stream helper class and so on.

Microsoft.Toolkit.Uwp.Notifications Notifications Package—Generate
tile, toast and badge notifications
for Windows 10 via code. Includes
IntelliSense support to avoid
having to use the XML syntax.

Microsoft.Toolkit.Uwp.Notifications.
Javascript

Notification Packages for
JavaScript.

Microsoft.Toolkit.Uwp.Services Services Package—this NuGet
package includes the service helpers
for Bing, Facebook, LinkedIn,
Microsoft Graph and Twitter.

Microsoft.Toolkit.Uwp.UI UI Packages—XAML converters,
Visual tree extensions and helpers
for your XAML UI.

Microsoft.Toolkit.Uwp.UI.Animations Animations and Composition behaviors
such as Blur, Fade, Rotate and so on.

Microsoft.Toolkit.Uwp.UI.Controls XAML Controls such as RadialGauge,
RangeSelector and so on.

Figure 5 UWP Community Toolkit NuGet Packages

0117msdn_LaVigneModApps_v4_64-67.indd 65 12/12/16 9:45 AM

http://www.msdnmagazine.com
www.bit.ly/2fzFsv1
www.bit.ly/2fzCfeQ

msdn magazine66 Modern Apps

check to see if there’s a network connection. While that can be done
without this toolkit, it can be done only in one line of code with the
toolkit. Helpers are also available for printing, background tasks,
obtaining system information and more.

Adding the UWP Community Toolkit to Your Project
The best way to add the UWP Community Toolkit to your project is
through NuGet. Create a new blank UWP project in Visual Studio by
choosing New Project from the File menu. Select Installed | Templates
| Windows | Universal | Blank App (Universal Windows). Name the
project UWPToolKitApp and then click OK.

The easiest way to add the UWP Community Toolkit to your
project is to add the NuGet packages. In Solution Explorer, right-
click on References and choose Manage NuGet Packages from the
context menu to show the NuGet Package Manager.

In the search box, type Microsoft.Toolkit.Uwp to bring up all
the NuGet packages associated with the UWP Community Tool-
kit. You should see a handful of results that include the UWP
Community Toolkit itself, plus other packages and libraries. For a
quick reference chart on which packages contain which function-
ality, refer to Figure 5.

For now, you’ll want to add the main NuGet Package
(Microsoft.Toolkit.Uwp) and the Services package (Microsoft.Tool-
kit.Uwp.Services). Click on the entry for Microsoft.Toolkit.Uwp
and then on the Install button that appears toward the right side

of the NuGet Package Manager. If
prompted with a Review Changes
dialog, review the changes and
then click OK. Clicking Cancel
here will cancel the NuGet Package
install. You might also be shown a
License Acceptance dialog; click I
Accept to accept the license terms.
You have an option to review the
license. You also have the option
to decline the license. Clicking I
Accept will complete the package
install. Repeat the process for the
Microsoft.Toolkit.Uwp.Services
package, which might have multi-
ple license terms to accept.

Once these tasks are completed,
you should see the NuGet packages
in the References section of your
project in Solution Explorer.

Searching with Bing Now,
you’re going to create a sample
app that will check for online con-
nectivity and the device model on
which the app is running. It will
then present you the option to
search Bing for information about
that device. Figure 7 Search Results for Device Model

While useful and powerful,
creating notifications and live
tiles can prove challenging to
developers unfamiliar with

XML and XPath.

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="33*"/>
 <RowDefinition Height="607*"/>
 </Grid.RowDefinitions>
 <Button Name="btnSearch" Click="btnSearch_Click" Grid.Row="0">Search Bing</Button>
 <ListView Name="lvSearchResults" Grid.Row="1">
 <ListView.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="{Binding Title}" FontWeight="Bold"></TextBlock>
 <TextBlock Text="{Binding Published}" FontStyle="Italic" ></TextBlock>
 <TextBlock Text="{Binding Link}" Foreground="Blue"></TextBlock>
 <TextBlock Text="{Binding Summary}"></TextBlock>
 </StackPanel>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
</Grid>

Figure 6 XAML to Create the Sample App’s UI

0117msdn_LaVigneModApps_v4_64-67.indd 66 12/12/16 9:45 AM

67January 2017msdnmagazine.com

Open the MainPage.xaml file and add the XAML in Figure 6
to create a simple UI.

In the MainPage.xaml.cs file, add the following code to the
constructor method:

btnSearch.IsEnabled = ConnectionHelper.IsInternetAvailable;
btnSearch.Content = $"Search Bing for {SystemInformation.DeviceModel}";

And add the following code to the MainPage.xaml.cs file:
private async void btnSearch_Click(object sender, RoutedEventArgs e)
 {
 var searchConfig = new BingSearchConfig
 {
 Country = BingCountry.UnitedStates,
 Language = BingLanguage.English,
 Query = SystemInformation.DeviceModel,
 QueryType = BingQueryType.Search
 };

 lvSearchResults.ItemsSource =
 await BingService.Instance.RequestAsync(searchConfig, 50);
 }

Visual Studio will help you add the appropriate using statements
to your code.

Run the solution now. If your device has Internet connectivity,
then the Search button should be enabled. You’ll also see the device
model in the button text. If the button is enabled, click on it and
you’ll see something similar to Figure 7. Naturally, the specific
results vary based on the device the app runs on.

Toast Notifications Another feature of the UWP Community
Toolkit that simplifies common developer tasks is toast notifications.
Toast notifications are an important part of the UX in UWP apps,
because they keep users informed as to the state of the app. However,

the Toast Notification API requires thorough knowledge of XML.
This can confuse novice-level developers and even frustrate more
seasoned ones. The UWP Community Toolkit really simplifies
creating toast notifications.

For the sample app, you’ll add a simple toast notification to
inform the user that the search results have returned. This might
not add much value to the sample app, as Bing returns results
instantly. However, this would be useful in alerting the user to the
completion of a long-running task.

The first step is to add the Microsoft.Toolkit.Uwp.Notifications
NuGet package to the project. Repeat the steps mentioned earlier
to add it to the project.

Next, add the code in Figure 8 to the MainPage.xaml.cs file
to create the content of the Toast notification. It uses the System
Information helper class to fill in some details about the device on
which the app is running.

Looking at the code more closely, you’ll see that the UWP Com-
munity Toolkit adds an object model around the Toast Notification
API XML format. This simplifies the process of creating content for
the toast notification. Developers can enjoy the power and flexibil-
ity of the open-ended format while getting an object model (and
IntelliSense) to write code against.

Now, add the following method:
private void PopToast()
{
 ToastContent toastContent = CreateDummyToast();
 ToastNotificationManager.CreateToastNotifier()
 .Show(new ToastNotification(toastContent.GetXml()));
}

The first line calls the CreateDummyToast method that builds
the content of the toast notification and assigns it to a ToastCon-
tent object. The second line uses the GetXml method to convert
the object model to the XML format that the Toast Notification
API expects.

All that’s left to do now is call the PopToast method right after
the search results return from Bing in the btnSearch_Click event
handler. Run the solution and, just as before, click on the Search
button. Almost immediately, you’ll see a notification similar to
Figure 9 appear.

Wrapping Up
The UWP Community Toolkit provides essential resources for cre-
ating rich and engaging UWP apps. From new controls to cloud
services API libraries, it enables developers to easily create apps
that are connected to services in the cloud without having to deal
with lower-level plumbing concerns of REST APIs. Best of all,
thanks to the community of developers contributing to it, the UWP
Community Toolkit is getting better all the time. The feature set is
continually growing and the team is accepting contributions. It’s
truly something created for the community by the community. 	n

Frank La Vigne is an independent consultant, where he helps customers leverage tech-
nology in order to create a better community. He blogs regularly at FranksWorld.com
and has a YouTube channel called Frank's World TV (FranksWorld.TV).

Thanks to the following technical experts for reviewing this article:
David Catuhe

private ToastContent CreateDummyToast()
{
 return new ToastContent()
 {
 Launch = "action=viewEvent&eventId=1983",
 Scenario = ToastScenario.Default,

 Visual = new ToastVisual()
 {
 BindingGeneric = new ToastBindingGeneric()
 {
 Children =
 {
 new AdaptiveText()
 {Text = $"Bing search results returned for
 {SystemInformation.DeviceModel}"},
 new AdaptiveText()
 {Text = $"Available Memory {SystemInformation.AvailableMemory}"},
 new AdaptiveText(){Text =
 $"Running {SystemInformation.OperatingSystem}
 {SystemInformation.OperatingSystemVersion}
 ({SystemInformation.OperatingSystemArchitecture})"}
 }
 }
 }
 };
 }

Figure 8 Code to Create Sample Toast Notification Content

Figure 9 Toast Notification Returned

0117msdn_LaVigneModApps_v4_64-67.indd 67 12/12/16 9:45 AM

http://www.msdnmagazine.com
www.FranksWorld.com
www.FranksWorld.TV

Code!
EVENT PARTNERS SUPPORTED BY

magazine

PRODUCED BY

LAS VEGAS
MAR 13-17 2017
BALLY’S, LAS VEGAS, NV

Untitled-6 2Untitled-6 2 12/9/16 12:42 PM12/9/16 12:42 PM

www.vslive.com/lasvegasmsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

Register by January 20 and Save $400!*
Use promo code VSLJAN4

vslive.com/lasvegasmsdn

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Track Topics include:

Visual Studio / .NET Framework
JavaScript / HTML5 Client
Modern App Development
Mobile Client
Software Practices
Database and Analytics

Angular JS
ASP.NET / Web Server
Agile
ALM / DevOps
Cloud Computing
Windows Client

SPACE IS LIMITED

Sunday Pre-Con Hands-On Labs

Choose From:
 Angular
 Azure
 XAML

ONLY $595
NEW!

TURN THE PAGE FOR FULL AGENDA DETAILS

REGISTER
NOW

Untitled-6 3Untitled-6 3 12/9/16 12:42 PM12/9/16 12:42 PM

www.vslive.com/lasvegasmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

AGENDA AT-A-GLANCE

CONNECT WITH
VISUAL STUDIO LIVE!

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

Bally’s Hotel & Casino
will play host to
Visual Studio Live!, and
is offering a special
reduced room rate to
conference attendees.

ALM / DevOps Cloud
Computing

Database and
Analytics

Mobile
Client

Software
Practices

START TIME END TIME Full Day Hands-On Labs: Sunday, March 12, 2017 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Build an Azure App in a Day
- Brian Randell

1:00 PM 2:00 PM Lunch @ Le Village Lunch @ Le Village Buffet, Paris Las Vegas Buffet, Paris Las Vegas

2:00 PM 6:00 PM Workshop Continues

START TIME END TIME Pre-Conference Workshops: Monday, March 13, 2017 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM M01 Workshop: Native Mobile App Development for iOS, Android
and Windows Using C# - Marcel de Vries & Roy Cornelissen

1:00 PM 2:00 PM Lunch @ Le Village Buffet, Paris Las Vegas

2:00 PM 6:00 PM Workshop Continues

7:00 PM 9:00 PM Dine-A-Round

START TIME END TIME Day 1: Tuesday, March 14, 2017
7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM Keynote: To Be Announced Donovan Brown, Senior DevOps Program Manager, US Developer Division Team,

9:15 AM 10:30 AM T01 Essential Web Development with
ASP.NET Core - Mark Michaelis

T02 An Overview of the Xamarin Programming
Platforms - Laurent Bugnion

10:45 AM 12:00 PM T06 Migrating to ASP.NET Core - A True Story
- Adam Tuliper

T07 Building Truly Universal Applications with
Windows, Xamarin and MVVM - Laurent Bugnion

12:00 PM 1:00 PM Lunch

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T11 An Introduction to TypeScript
- Jason Bock

T12 What’s New for Developers in
SQL Server 2016 - Leonard Lobel

3:00 PM 4:15 PM T16 Assembling the Web - A Tour of
WebAssembly - Jason Bock

T17 No Schema, No Problem! Introduction to
Azure DocumentDB - Leonard Lobel

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Day 2: Wednesday, March 15, 2017
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM W01 Angular 101: Part 1
- Deborah Kurata

W02 Customizing Your UI for Mobile Devices:
Techniques to Create a Great User Experience

- Laurent Bugnion

9:30 AM 10:45 AM W06 Angular 101: Part 2
- Deborah Kurata

W07 Busy .NET Developer’s Guide to Native iOS
- Ted Neward

11:00 AM 12:00 AM General Session: To Be Announced

12:00 PM 1:00 PM Birds-of-a-Feather Lunch

1:00 PM 1:30 PM

1:30 PM 2:45 PM W11 User Authentication for ASP.NET
Core MVC applications - Brock Allen

W12 Cloud Enable an Existing WPF LOB App
- Robert Green

3:00 PM 4:15 PM W16 Securing Web APIs in ASP.NET Core
- Brock Allen

W17 Strike Up a Conversation with Cortana
on Windows 10 - Walt Ritscher

4:30 PM 5:45 PM W21 ASP.NET Core 1.0 Tag Helpers
- Robert Boedigheimer

W22 Busy Developer’s Guide to NoSQL
- Ted Neward

7:00 PM 8:30 PM Experience The LINQ Vortex & High Roller Event

START TIME END TIME Day 3: Thursday, March 16, 2017
7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 Debugging Your Website with Fiddler and
Chrome Developer Tools - Robert Boedigheimer

TH02 Windows for Makers: Raspberry Pi,
Arduino & IoT - Nick Landry

9:30 AM 10:45 AM TH06 I Say A ”Front-end Build Pipeline”,
You Say WAT!? - Chris Klug

TH07 Building Cross-Platform Business Apps
with CSLA .NET - Rockford Lhotka

11:00 AM 12:15 PM TH11 JavaScript Patterns for the C# Developer
- Ben Hoelting

TH12 Building Connected and Disconnected
Mobile Apps - James Montemagno

12:15 PM 1:45 PM Lunch

1:45 PM 3:00 PM TH16 Integrating AngularJS & ASP.NET MVC
- Miguel Castro

TH17 Native iOS and Android Development
with C# and Xamarin - James Montemagno

3:15 PM 4:30 PM TH21 Increase Website Performance and
Search with Lucene.Net Indexing - Ben Hoelting

TH22 Building Cross-Platform C# Apps with a
Shared UI Using Xamarin.Forms - Nick Landry

START TIME END TIME Post-Conference Workshops: Friday, March 17, 2017 (Separate entry fee required)

7:30 AM 8:00 AM Post-Conference Workshop Registration - Coffee and Morning Pastries

8:00 AM 5:00 PM F01 Workshop: Service Oriented Technologies - Designing, Developing, &
Implementing WCF and the Web API - Miguel Castro

Speakers and sessions subject to change

REGISTER
NOW

Untitled-6 4Untitled-6 4 12/9/16 12:42 PM12/9/16 12:42 PM

www.vslive.com/lasvegasmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

Visual Studio /
.NET Framework Web Client Web Server Windows

Client Modern Apps Live!

Full Day Hands-On Labs: Sunday, March 12, 2017 (Separate entry fee required)

Pre-Conference Workshop Registration - Coffee and Morning Pastries

HOL02 Full Day Hands-On Lab: AngularJS 2
- Ted Neward

HOL03 Full Day Hands-On Lab: An Introduction to
Building XAML Applications - Billy Hollis

Lunch @ Le Village Buffet, Paris Las Vegas

Workshop Continues Workshop Continues

Pre-Conference Workshops: Monday, March 13, 2017 (Separate entry fee required)

Pre-Conference Workshop Registration - Coffee and Morning Pastries

M02 Workshop: Developer Dive into
SQL Server 2016 - Leonard Lobel

M03 Workshop: Distributed Cross-Platform Application Architecture -
Rockford Lhotka & Jason Bock

M04 Workshop: Building Modern Mobile Apps
- Brent Edwards & Kevin Ford

Lunch @ Le Village Buffet, Paris Las Vegas

Workshop Continues Workshop Continues Workshop Continues

Dine-A-Round

Day 1: Tuesday, March 14, 2017
Registration - Coffee and Morning Pastries

, Microsoft

T03 Developer Productivity in Visual Studio 2017
- Robert Green

T04 Understanding the VR/AR Landscape
- Katherine Harris

T05 Modern App Development: Transform How You Build
Web and Mobile Software - Rockford Lhotka

T08 Roll Your Own Dashboard in XAML
- Billy Hollis

T08 DevOps and Azure with the MS Stack
- Abel Wang

T10 Manage Distributed Teams with Visual Studio
Team Services and Git - Brian Randell

Lunch

Dessert Break - Visit Exhibitors

T13 A Developers Introduction to HoloLens
- Billy Hollis & Brian Randell T14 To Be Announced T15 Architecture: The Key to Modern App Success

- Brent Edwards

T18 Essential C# 7.0 - Mark Michaelis T19 To Be Announced T20 Focus on the User Experience #FTW
- Anthony Handley

Welcome Reception

v Day 2: Wednesday, March 15, 2017
Registration - Coffee and Morning Pastries

W03 What’s New in Azure IaaS v2
- Eric D. Boyd

W04 Application Lifecycle Management (ALM)
- Brian Randell

W05 DevOps, Continuous Integration, the Cloud,
and Docker - Dan Nordquist

W08 Microservices with Azure Container Service
& Service Fabric - Vishwas Lele

W09 Use Visual Studio to Scale Agile in Your Enterprise
- Richard Hundhausen

W10 Mobile Panel - James Montemagno, Ryan J. Salva,
Kevin Ford, Rockford Lhotka

General Session: To Be Announced

Birds-of-a-Feather Lunch

W13 I’m Emotional - Using Microsoft Cognitive Services
to Understand the World Around You - Adam Tuliper

W14 Professional Scrum Development Using
Visual Studio 2017 - Richard Hundhausen

W15 C# Everywhere: How CSLA .NET Enables Amazing
Cross-Platform Code Reuse - Rockford Lhotka

W18 Cloud Oriented Programming
- Vishwas Lele

W19 Introduction to Containers and Docker
- Marcel de Vries

W20 Coding for Quality and Maintainability
- Jason Bock

W23 Practical Internet of Things for the
Microsoft Developer - Eric D. Boyd

W24 Using Docker on Windows in VSTS Build and
Release Management - Marcel de Vries

W25 Modern Mobile Development: Build a Single App
For iOS & Android with Xamarin Forms - Kevin Ford

Experience The LINQ Vortex & High Roller Event

Day 3: Thursday, March 16, 2017
Registration - Coffee and Morning Pastries

TH03 Accelerate Your Mobile App Development with
Azure App Services Mobile Apps - Brian Noyes

TH04 Agile: You Keep Using That Word
- Philip Japikse

TH05 Modern Web Development: ASP.NET MVC
and Web API - Allen Conway

H08 Connect All The Things with Azure Service Bus,
Brain Noyes

TH09 Visualizing the Backlog with User Story Mapping
- Philip Japikse

TH10 Modern Web Development: Building a Smart Web
Client with TypeScript and Angular2 - Allen Conway

TH13 Add A Conversational User Interface to Your App
with the Microsoft Bot Framework - Walt Ritscher

TH14 End-to-End Dependency Injection & Testable Code
- Miguel Castro TH15 Cloud Panel - Rockford Lhotka

Lunch

TH18 Introduction to R and Microsoft R Server
- James McCaffrey

TH19 Open Source Software for Microsoft Developers
- Rockford Lhotka

TH20 Universal Windows Development: UWP
for PC, Tablet & Phone - Nick Landry

TH23 Introduction to Azure Machine Learning
- James McCaffrey

TH24 SOLID - The Five Commandments of Good Software
- Chris Klug

TH25 Using All That Data: Power BI to the Rescue
- Scott Diehl

Post-Conference Workshops: Friday, March 17, 2017 (Separate entry fee required)

Post-Conference Workshop Registration - Coffee and Morning Pastries

F02 Workshop: Application Lifecycle Management (ALM)
- Brian Randell

F03 Workshop: Modern App Deep Dive: Xamarin,
Responsive Web, UWP, CSLA .NET - Kevin Ford, Jason Bock,

Brent Edwards, Allen Conwa

vslive.com/lasvegasmsdn

Presented in partnership with

BONUS CONTENT! Modern Apps Live! is now a part of
Visual Studio Live! Las Vegas at no additional cost!

Untitled-6 5Untitled-6 5 12/9/16 12:43 PM12/9/16 12:43 PM

www.vslive.com/lasvegasmsdn

msdn magazine72

I find that one of the coolest things about teaching is meeting
interesting people and introducing them to you. To Apollo program
computer designer Hugh Blair-Smith (msdn.com/magazine/mt703442)
and rescue leader Gisli Olafsson (msdn.com/magazine/dn818503), I now
add defense attorney Owen Walker.

Owen was a student in one of my earliest classes, back in 1994,
(16-bit Windows SDK in C, with Charles Petzold as a text). Harvard
Extension School is proud of its broad reach, so it didn’t surprise me
that he was a lawyer rather than a programmer. (I’ll save the French
diplomat story for another day.) He joined the class because he
wanted to write an add-in for Microsoft Word to help him fill out
his expense reports. He didn’t know C, but had just enough Pascal
to get confused (:= versus = for assignment, = versus == for com-
parison). He worked so hard I don’t even want to think about it,
even now 20-plus years later, and earned his A.

Owen worked in the Federal Public Defender Office in Boston.
Over beer one night after class, I asked why he spent his professional
life defending bad guys, most of whom are guilty as heck. He said,
“Yes, but some really are innocent, others, perhaps guilty of some
moral infraction, are not technically guilty of a crime. But it’s big-
ger than that: I don’t want the cops just kicking down any door that
they want to and dragging anyone away. I don’t mind seeing bad
guys caught and locked up, but I need to see it done by the book.
If the prosecution can legally find evidence to prove guilt to a jury
beyond reasonable doubt, fine. My job is to make sure they all do
their jobs. Not for the benefit of the defendants, but for all of society.”

Owen later became the Federal Public Defender for Boston, the
constitutional official, paid for by your taxes and mine, responsible
for getting defendants a fair shake. That position is often unpopular,

sometimes quite deeply. In the performance of those constitutional
duties, Owen defended shoe bomber Richard Reid (see nyti.ms/
2fuTv7E). He retired in 2005.

I called him up recently to hear his thoughts on the tussles play-
ing out today between collective security and individual privacy.
For example, after the San Bernardino shootings last spring, the
FBI captured the main shooter’s iPhone and wanted to examine its
contents. Unfortunately, the phone’s internal storage was encrypted
and the FBI couldn’t easily crack it. So they went to court, trying to
force Apple to do so, which Apple strongly resisted (see bit.ly/2eXAvux).

Owen disapproves of Apple’s resistance, writing in a recent
article that, “[Apple’s] refusal to help the government decrypt the
San Bernardino cell phone was, in my view, shocking, in view of
the fact that getting access to the information might have revealed
plans for ongoing violent terrorism.” That particular case became
moot when the FBI finally did manage to crack it with help from
some serious geeks (see bit.ly/2f1IGJJ), but the underlying dilemma
remains unresolved.

Apple and Google are now said to be developing communication
security that even they can’t break, even if they wanted to. That con-
cerns many people, who think that the companies should be required
to incorporate a back door open for lawful government access—
requiring a warrant, issued by a judge, under strict guidelines.

Owen is one of these concerned parties. He writes that “lawful
wiretapping authorized by a judge has been a key element to public
safety, and has resulted in a vast number of serious criminals going
to prison. Apple and Google, by absolute encryption, are making
wiretapping impossible.”

It’s easy to respond with the knee-jerk, “When encryption is out-
lawed, only outlaws will encrypt,” or, “Fear the government that
fears your phone.” And the slippery slope problem is obvious. But
when a guy who puts it on the line to defend bad guys, not for their
sake but for ours and our country’s, thinks otherwise, we should
probably at least give his ideas a good look. 	 n

David S. Platt teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Software Legend in 2002. He wonders whether he should tape down two
of his daughter’s fingers so she learns how to count in octal. You can contact
him at rollthunder.com.

For the Defense

Don’t Get Me Started DAVID S. PLATT

Over beer one night after
class, I asked why he spent his

professional life defending
bad guys, most of whom are

guilty as heck.

0117msdn_PlattDGMS_v3_72.indd 72 12/12/16 9:47 AM

http://msdn.com/magazine/mt703442
http://msdn.com/magazine/dn818503
www.nyti.ms/2fuTv7E
www.nyti.ms/2fuTv7E
www.bit.ly/2eXAvux
www.bit.ly/2f1IGJJ
www.rollthunder.com

Untitled-10 1Untitled-10 1 12/12/16 2:30 PM12/12/16 2:30 PM

www.scaleoutsoftware.com/appfabric
http://www.scaleoutsoftware.com/try-for-free/

Untitled-1 1 12/9/16 10:28 AM

www.syncfusion.com/msdnunlimited

	Back
	Print
	MSDN Magazine, January 2017
	Cover Tip
	Front
	Back

	Contents
	FEATURES
	Introducing C++/WinRT
	Enable Natural Language Interaction With LUIS
	Introduction to the HoloLens, Part 2: Spatial Mapping
	Automate Complex Deployments with Release Management
	Exploring the Microsoft CNTK Machine Learning Tool

	COLUMNS
	UPSTART: You’re Hired: 11 Things to Consider with Side Projects
	DATA POINTS: EF Core 1.1: A Few of My Favorite Things
	THE WORKING PROGRAMMER: How To Be MEAN: Type Script with TypeScript
	ESSENTIAL .NET: Essential MSBuild: A Build Engine Overview for .NET Tooling
	MODERN APPS: Exploring the UWP Community Toolkit
	DON’T GET ME STARTED: For the Defense

