
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JULY 2017 VOL 32 NO 7

Machine
Learning.............18, 22, 30, 34

 0717msdn_CoverTip_8x10.75.indd 1 0717msdn_CoverTip_8x10.75.indd 1 6/6/17 12:21 PM6/6/17 12:21 PM

www.devexpress.com/try

 0717msdn_CoverTip_8x10.75.indd 2 0717msdn_CoverTip_8x10.75.indd 2 6/6/17 12:21 PM6/6/17 12:21 PM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS JULY 2017 VOL 32 NO 7

Cognition at Scale with U-SQL on ADLA
Hiren Patel and Shravan Matthur Narayanamurthy.. 18

Introduction to the
Microsoft CNTK v2.0 Library
James McCaffrey.. 22

Doing Data Science and AI with SQL Server
Wee Hyong Tok.. 30

Scale Applications with Microsoft Azure Redis
and Machine Learning
Stefano Tempesta.. 34

ASP.NET Core with Angular, Web API
and Azure DocumentDB
Chander Dhall. 48

COLUMNS
UPSTART
The First Quarter
Krishnan Rangachari, page 6

CUTTING EDGE
Finding the Cheese
in ASP.NET Core
Dino Esposito, page 8

DATA POINTS
On-the-Fly SQL Servers
with Docker
Julie Lerman, page 12

THE WORKING
PROGRAMMER
How To Be MEAN:
Angular Ins and Outs
Ted Neward, page 56

MODERN APPS
Launch Other Applications
from Your UWP App
Frank La Vigne, page 64

DON’T GET ME STARTED
Live and in Concert
David Platt, page 72

Machine
Learning.............18, 22, 30, 34

0717msdn_C1_v2.indd 1 6/6/17 2:52 PM

Get started today with a free trial,
reference apps, tutorials, and eBooks at
Infragistics.com/Ultimate

To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588

� JavaScript/HTML5 and ASP.NET MVC components, with support for:

Also includes controls for WPF, Windows Forms, and ASP.NET,
plus prototyping, remote usability testing, and more.

Write Fast, Run Fast
with Infragistics Ultimate Developer Toolkit
Includes 100+ beautiful, fast grids, charts, and other UI controls, plus
productivity tools for quickly building high-performing web, mobile,
and desktop apps

� Xamarin UI controls with innovative, code-generating productivity tools

New Release Featuring

Untitled-4 2 6/7/17 12:37 PM

www.Infragistics.com/Ultimate

Get started today with a free trial,
reference apps, tutorials, and eBooks at
Infragistics.com/Ultimate

To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588

� JavaScript/HTML5 and ASP.NET MVC components, with support for:

Also includes controls for WPF, Windows Forms, and ASP.NET,
plus prototyping, remote usability testing, and more.

Write Fast, Run Fast
with Infragistics Ultimate Developer Toolkit
Includes 100+ beautiful, fast grids, charts, and other UI controls, plus
productivity tools for quickly building high-performing web, mobile,
and desktop apps

� Xamarin UI controls with innovative, code-generating productivity tools

New Release Featuring

Untitled-4 3 6/7/17 12:37 PM

www.Infragistics.com/Ultimate

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Art Director Chris Main
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF

Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES

Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bastionell
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos

MARKETING

Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Marketing & Editorial Assistant Megan Burpo

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Financial Officer
Craig Rucker

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Features Editor Ed Zintel
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

JULY 2017 VOLUME 32 NUMBER 7

magazine

0717msdn_Masthead_v2_2.indd 2 6/6/17 12:01 PM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
www.Redmondmag.com

Untitled-9 1 6/2/17 4:34 PM

www.leadtools.com

msdn magazine4

At the Microsoft Build 2017 conference in Seattle in May, Microsoft
detailed its deep investments in artificial intelligence (AI), showing
how solutions like Cognitive Services and Azure Machine Learning
can be leveraged to change the way people work, live and interact. At
the core of this push is machine learning—the science of applying data
to enable systems to make increasingly better decisions over time.

Machine learning is addressing prominent challenges, from
financial fraud detection to manufacturing quality control to
autonomous cars. This month in MSDN Magazine, we dedicate
four articles to the topic of machine learning and explore how
developers can employ it in their software development.

Hiren Patel leads off the coverage with “Cognition at Scale with
U-SQL on ADLA,” which dives into the U-SQL Studio IDE to show
how the Microsoft Azure Data Lake Analytics distributed engine
can be used to train and score models at scale.

James McCaffrey then provides a look at the Microsoft Cognitive
Toolkit (CNTK) v2.0 Library, which lets developers create machine
learning prediction models based on deep neural networks—
technology that’s at the forefront of AI efforts such as Cortana and
self-driving automobiles.

“Doing Data Science and AI with SQL Server” by Wee Hyong Tok
shows how SQL Server 2016 is bursting with intelligence capabilities
that allow developers to run R code right where the data is. Tok walks
through building an intelligent application and shows how the R code
developed by data scientists can be used in database projects.

Finally, “Scale Applications with Azure Redis and Machine
Learning” presents design best practices and code examples for
implementing the Azure Redis Cache and tuning the performance
of ASP.NET MVC applications to optimize cache hit ratio. Stefano
Tempesta shows how smart algorithms processed by machine
learning can help reduce cache “miss rate.”

‘A Must-Have Skill’
Our coverage this month reflects the growing importance of machine
learning in software development—and not just in specialized

environments. As McCaffrey notes, machine learning is at the foun-
dation of deep learning techniques and AI development. It’s also
coupled tightly with Big Data and Internet of Things development.

“There’s a general consensus among my senior dev colleagues
that having at least basic machine learning knowledge is quickly
becoming a must-have skill with regard to career growth,” McCaffrey
says, adding, “Our HR people at Microsoft say that developers
with machine learning skills are among the most requested, and
most difficult to find.”

That value is reflected in the growing membership of Microsoft’s
internal machine learning community, which stands at more than
5,500 developers, data scientists, architects, consultants and others
since its formation in 2014. Alex Blanton is a senior program man-
ager in the Data Group at Microsoft and community manager of
the internal machine learning community at Microsoft. He says
that more than 3,000 people attended the group’s latest Machine
Learning, Analytics and Data Science (MLADS) conference in
Redmond, which had presentations covering topics like Azure
Data Lake, deep learning tools and techniques, Microsoft Bot
Framework, security analytics, and more.

The group also hosts frequent online and in-person talks and
events, semi-annual machine learning competitions, and an active
discussion list used by the community to pose questions and
share knowledge across the company. These engagements offer an
opportunity to “discover pockets of excellence” in the community,
Blanton says, and explore topics as they emerge in the fast-moving
machine learning space.

“We pay some attention to connecting machine learning to other
domains—for example, an upcoming talk is from a designer talking
about how AI and machine learning can impact design,” Blanton says.

This issue is just scratching the surface of what developers can
expect from Microsoft in the realm of machine learning and AI. I
expect we’ll see a lot more on these topics in the months and years
to come.

Machine Learning Goes Mainstream

© 2017 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEditor’s Note

0717msdn_DesmondEdNote_v2_4.indd 4 6/6/17 11:50 AM

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-5 1 9/28/15 4:25 PM

www.amyuni.com

msdn magazine6

I’ve noticed that if I do well in my first three months in a new
engineering job, I can build an enduring reputation and foundation
for success. Here are six strategies I use in those initial months that
help win the trust of my coworkers and put me on the right track.

Delayed Start
I push back my official start date, and use the extra time to build
connections. So, instead of starting in two weeks, I may start in six
weeks. In that one extra month, I meet up with people on the new
team, one-on-one. I introduce myself, and just learn more about
them. My goal: Establish personal rapport.

I start with the people who interviewed me, because I already
know that these people like me. I treat them to coffee or lunch.
I ask them open-ended questions like, “What was your process
of getting on-boarded onto the team?” and, “How is being an
engineer here different from other places you’ve worked at?”

As I go through this process, I’ll discover some people will go
out of their way to help me. They’ll share insider tips and tricks,
and secret knowledge. I remember those people, and I go back to
them for more advice once I’m at the job.

I also ask them, “Who else would you recommend I chat with,
so I can learn more about the company?”

There are two major advantages to having these chats before I
start the job. First, once I’m on the clock I won’t have this kind of
free time. Second, engineers are more frank when I’m not yet on the
job. They’ll give me the scoop on things like toxic projects to avoid
and the company’s priorities in ways they can’t after I’m in my role.

Managed Intro
My new team will introduce me to everyone, either in person or
via e-mail. During these introductions, developers artificially puff
up their chests. They try to look more confident and secure than
they feel. A side effect: The developers come off boastful.

It’s normal to feel insecure when starting any new job. Instead
of trying to kill the insecurity with pride and boasting about my
great credentials, I embrace it with humility. If I boast about my
background, I convey that I think more highly of myself than my
new team. It’s better to let my performance speak for itself.

Manager Maximization
I start to meet both engineering and non-engineering managers,
one-on-one. This includes team leads for other dev teams. This
also includes managers in product marketing, technical sales, IT,
product support, operations and more. When I do this, I stand
apart immediately.

Through these meetings, I get a more holistic perspective of the
company. I’ll know what projects are actually most pressing to the
whole company, allowing me to select more meaningful projects.
I also can start to build a pipeline of project ideas of my own and,
ultimately, accelerate my career growth.

Three Projects
I identify three projects—or, more realistically, parts of three
projects—that I can get started on and finish within the first three
months. These projects should allow me to learn the ropes of my
new role without overwhelming me.

Instead of doing whatever projects land on my desk, I cultivate
the courage to say no and exercise discrimination. In fact, as a
new employee, I’m actually in the best position to say no. For
example, I may say, “I don’t feel ready to take on that project,” “I’m
a little overwhelmed at the moment,” or even, “I don’t think that
project will work for me.”

Start Delivering
Once I select projects, I don’t wait until they’re done for some grand
reveal. I am the grand reveal. The crucial part isn’t the project itself,
it’s how I execute on the project.

For example, in stand-up meetings, instead of vaguely saying, “I’m
working on this project,” I may instead state three or four actions
I did for the project yesterday. This publicizes my effort without
boastfulness, and promotes the hundred baby steps that take me
to the end goal. The upside: Even if the end result isn’t as grand as
I expected it to be, it’s OK. I’ve made the most of the journey there.

Cultivate Champions
As I execute on a project, I’ll often go to others for help. If some-
one was particularly helpful, I follow up later and tell them what
I did. This way, I signal that not only do I ask for advice, but I also
follow it. When I show this kind of gratitude, these people take
me under their wing. They’re more likely to give me good advice
in the future, too.

Some new developers make the mistake of asking others to be
their mentors. In reality, mentorship is cultivated over time. Some-
times, asking someone to be a mentor is the surest way to not have
it happen. It burdens them with an artificial, inflated title that they
feel they must live up to. It’s more effective to have someone become
my champion over time, without either of us realizing it.	 n

Krishnan Rangachari helps brilliant developers have amazing careers. Visit
RadicalShifts.com for his free courses.

The First Quarter

Upstart KRISHNAN RANGACHARI

0717msdn_RangaUpstart_v3_6.indd 6 6/6/17 11:49 AM

www.RadicalShifts.com

Untitled-6 1 3/6/17 2:32 PM

www.nsoftware.com

msdn magazine8

Do you know the fable of two mice, two little boys and their cheese?
It’s not an Aesop’s classic fable, but it’s a modern account full of
motivational points written some 20 years ago by Spencer Johnson
under the title, “Who Moved My Cheese?” The story is a metaphor
for change and the way we should cope with and adapt to it. I dare
say that the first, perhaps unconfessed, sentiment that some devel-
opers feel about ASP.NET Core is dismay—like in this fable when
the characters reach out to the cheese station only to find it empty.

Who moved my cheese, then? The good news is that there’s still a
lot of cheese around for every ASP.NET Core developer—probably
more cheese than ever—but some of it’s no longer in the corridor
of the development maze where it was before. Out of metaphor,
that means that some common ASP.NET MVC tasks require dif-
ferent programming skills and sometimes a different approach.
This month, I’ll pick up on actions such as registering the Model-
View-Controller (MVC) framework, defining core routes and
controllers, and passing global data around.

It’s No Longer MVC By Default
A new empty ASP.NET Core project you create in Visual Studio
2015 or Visual Studio 2017 is primarily a Web project, meaning that
it produces a server front end for an HTTP-enabled client to call.
As pointed out in my May 2017 column (msdn.com/magazine/mt808498),
ASP.NET Core is now great at setting up mini-Web servers devoid
of the overhead and sophistication of a full Web site. However,
ASP.NET Core isn’t limited to that and still provides plenty of oppor-
tunities to arrange full Web sites through the familiar programming
pattern of routes, controllers and views. ASP.NET Core, though,
requires an extra initial step before you can start adding routes and
creating controllers and lets you register routes through a slightly dif-
ferent approach than in classic ASP.NET MVC. Let’s see how it works.

As mentioned, ASP.NET Core is a plain Web front end based on
two main segments of code: routing and application model. The
transition between segments isn’t particularly visible to developers
and takes place in the MvcRouteHandler service (see bit.ly/2osQOcs).
Once the control leaves the routing repository, the MVC application
model can be enabled explicitly. If not, any requests end up being
processed in the terminating method of the ASP.NET Core middle-
ware. To add the MVC service to the ASP.NET container, you add
a line of code to the ConfigureService method of the startup class:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
}

Note that the code requires a reference to an additional package
that the IDE of choice (Visual Studio) typically offers to restore
for you. The parameter-less version of the AddMvc method uses
all default settings for the MVC route handler service. Most of
the time, you don’t need to change any of those default settings,
but surely situations might occur where you just need to make
changes. A second overload of the AddMvc method lets you select
ad hoc options. The second overload receives an instance of the
MvcOptions class as an argument. Here’s an example:

services.AddMvc(options =>
{
 options.ModelBinderProviders.Add(new MyDateBinderProvider());

 options.SslPort = 345;
});

The MvcOptions class is a container of configuration parameters
for features you might want to customize in the MVC framework.
For example, the previous code snippet adds a new model binder
that changes the standard way in which posted dates are mapped to
.NET date objects. You can assume that the MyDateBinderProvider
class here adds the ability to parse ad hoc strings into valid DateTime
objects. In addition, the example specifies the SSL port to be sniffed
when any controller class is decorated with the RequireHttps
Attribute. The list of options you can configure isn’t limited to
the three examples here. The full list can be found at bit.ly/2oK7ETs.

It’s worth noting that the AddMvc method is an umbrella method
under which a lot of finer-grained services are initialized and added
to the pipeline. Because of this, the effect of AddMvc on the memory
footprint of the whole application might need some forethought.
Not that AddMvc bloats the runtime, but it does quite a few things
internally and atomically enables quite a few services. In addition
to the core services of the MVC application model, such as routes
and controllers, it also enables authentication and authorization,
tag helpers, URL resolution helpers, default media type mappings,
data annotations, and cross-origin resource sharing (CORS).
Furthermore, AddMvc sets up the service to process action results
as HTML views and JSON streams and registers the Razor view
engine into the MVC system.

Cutting Down the List of Default MVC Services
Especially if you’re hosting the application in some sort of cloud
configuration, you might want to be very stingy about resources
and have the application reference nothing but the bare metal
of the ASP.NET framework. Calling AddMvc might give much
more than you need sometimes. Let’s see how to make the list of

Finding the Cheese in ASP.NET Core

Cutting Edge DINO ESPOSITO

0717msdn_EspositoCEdge_v4_8-10.indd 8 6/6/17 11:51 AM

http://msdn.com/magazine/mt808498
http://bit.ly/2osQOcs
www.bit.ly/2oK7ETs

9July 2017msdnmagazine.com

references shorter. The following code is enough to serve plain
HTML views to browsers. It should be noted, though, that it doesn’t
support some more advanced features, including data annotations
for form validation and tag helpers:

public void ConfigureServices(IServiceCollection services)
{
 var builder = services.AddMvcCore();
 builder.AddViews();
 builder.AddRazorViewEngine();
}

Likewise, this configuration won’t let your controller methods
return formatted JSON data. However, you need one extra line to
add that capability, as well:

builder.AddJsonFormatters();

It’s worth noting that some of the services the call to AddMvc auto-
matically enables are useful to have, though not strictly necessary, only
if you’re exposing a Web API. The services you might want to get rid of
are API Explorer and Formatter Mappings and, to some extent, CORS.

Enabling the MVC Service
Adding a service to the pipeline isn’t enough: You also have to con-
figure it. This typically happens in the Configure method of the
startup class via a method that conventionally takes the name of
UseXxx where Xxx is the nickname of the service:

public void Configure(IApplicationBuilder app)
{
 app.UseMvc();
}

At this point, everything in MVC is completely set up and ready
to go except conventional routing. If you decide to go with attri-
bute routing, then you’re done. Otherwise, for the MVC service to
be effective, you must list the routes the application will recognize
and handle. A route is a URL template mapped to a pair made of
controller and action names. You can add as many routes as you
wish and of nearly any shape you like them to be. ASP.NET MVC,

however, provides a default route that serves most of the common
scenarios. To enable the default route, you can proceed like this:

public void Configure(IApplicationBuilder app)
{
 app.UseMvcWithDefaultRoute();
}

The default route is defined as follows and, as you can see, it’s nothing
more than the old familiar route configuration of classic ASP.NET MVC:

routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

In classic ASP.NET MVC, a routeless application makes little sense
as it would be quite problematic to invoke any behavior from the out-
side. In ASP.NET MVC Core, instead, routes work side-by-side with
the terminating middleware—the Run method of IApplicationBuilder:

public void Configure(IApplicationBuilder app)
{
 app.UseMvc(routes => { });

 // Terminating middleware
 app.Run(async (context) =>
 {
 await context.Response.WriteAsync(
 "No configured routes here.");
 })
}

Given the preceding code, the application has no configured routes.
However, it still reacts to any call by displaying a message through the
terminating middleware. In other words, you can list your routes first
and then use the terminating middleware as a sort of catch-all route
that gently informs about any mistyped or misunderstood URLs.

MVC Controllers
Routing is the first step of the longer process that takes an HTTP
request to produce a response. The ultimate result of routing is
identifying the controller/action pair that will process any requests
not mapped to a physical static file. In ASP.NET Core a controller
is the same as it was in classic ASP.NET, namely a class that encap
sulates the HTTP context of the request and takes action. The work
of a controller is governed by a system component known as the
action invoker (see Figure 1). The action invoker isn’t a new item
in the overall architecture of ASP.NET MVC as it was part of the
architecture since the early days of classic ASP.NET MVC.

The action invoker injects the HTTP context into the controller’s
space and the code running within the controller can access it through
the handy HttpContext property. To facilitate the process in classic
ASP.NET MVC, any controller class must inherit from a base class
that contains all the necessary plumbing. In ASP.NET Core, inherit-
ing a controller from a common base class is no longer necessary. A
controller class can be a plain old C# object (POCO), as simple as this:

public class HomeController
{
 // Some code here
}

A POCO controller is a class that can map incoming requests
to HTML views, but has no dependency on the HTTP context.
In particular, this means that you can’t inspect the raw data being
posted, including query string and route parameters. The context
information, however, is available as a separate plug-in that you
attach only to the controllers where you need it. Ultimately, this is
another good example of the extreme granularity of the ASP.NET
Core framework. As an example, let’s see what’s required to access Figure 1 A Request Flowing Through the ASP.NET Environment

Result

Action

Action Invoker

Authorization Filters

Resource Filters

Model Binding

Action Filters

Exception Filters

Result Filters

RoutingRequested URL

Response

0717msdn_EspositoCEdge_v4_8-10.indd 9 6/6/17 11:51 AM

http://www.msdnmagazine.com

msdn magazine10 Cutting Edge

route information from within a POCO controller. Interestingly,
the feature to leverage is quite general and applicable and recom-
mended for a number of other common programming activities:

public class HomeController
{
 private IActionContextAccessor _accessor;
 public HomeController(IActionContextAccessor accessor)
 {
 _accessor = accessor;
 }
 ...
}

The constructor of the controller class can declare a parameter
of type IActionContextAccessor. The interface is the key to have
context information injected into the controller’s space. All that’s
required to do from within the controller is to save the received
instance of the interface type for later use. The following code snip-
pet shows how to access the RouteData object that contains any
data tokenized into the handled route URL:

public IActionResult Index()
{
 var controller =
 _accessor.ActionContext.RouteData.Values["controller"];
 ...
}

Though possible, injecting the IActionContextAccessor service
isn’t recommended because it performs poorly and is rarely needed.
Another way to access route data from within a POCO controller is
using the FromRoute attribute to decorate a parameter in the action:

public IActionResult Index([FromRoute] string controller)
{
 ...
}

However, regardless of effectiveness, who injected a reference to
IActionContextAccessor into the controller? That’s where another
relevant addition to the ASP.NET Core framework fits in—the
internal Inversion of Control (IoC) pattern.

Sharing Global Data
Nearly every Web application holds some data to share globally. In clas-
sic ASP.NET, a common practice was to load global data at startup and
save it (net of possible threading issues) into some global static variables
exposed from the application object. It’s not the perfect solution for
everyone, but quite functional if you’re aware of what you were doing.
ASP.NET Core provides a better way to do it that guarantees that every
application context receives just what it needs, thus reducing the risk of
accessing unwanted data in unwanted contexts. Any chunk of global
data must be added to the IoC subsystem in the ConfigureServices
method. Here’s how you would add the action context, for example:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddSingleton<IActionContextAccessor, ActionContextAccessor>();
}

The AddSingleton<TInterface, T> method registers that any
requests for an object assignable to the TInterface type must be resolved
through an instance of the concrete type T. Once the association has
been mapped in the application startup, controllers will gain access
to it by simply declaring a parameter of the type in their constructor.

Global information can then be read at the application startup
from a variety of sources, including JSON and text files, databases,
and remote services and packaged into a custom type. To make

the object globally available you just add it to the IoC system via
AddSingleton. The operation takes place only once.

An Ad Hoc Framework for Application Options
As far as global data is concerned, ASP.NET Core isn’t limited to
basic IoC functions, it also supports options. Options are a feature
specifically designed to deal with the initial configuration of the
application, namely mostly read-only data to be shared globally:

var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("MyAppSettings.json", optional: true, reloadOnChange: true);
Configuration = builder.Build();

In the constructor of the startup class, the previous code sets a
given JSON file as the provider of configuration data. The builder
uses the provided information to prepare and return an IConfig-
urationRoot object to be used to access data. You also declare the
following in the startup class:

public IConfigurationRoot Configuration { get; }

Global data must be retrieved piece by piece through a query
API. The options framework, instead, lets you load it into an aptly
defined C# class to be passed around through the IoC system. Add
the following code to the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 services.AddOptions();
 services.Configure<GlobalConfig>(Configuration.GetSection("Globals"));
 ...
}

In the example, GlobalConfig is a custom class you define to be
1:1 with the content of the JSON initial data. The Configure method
does a good job of reflection to read the specified segment of JSON
into the C# class. As a pleasant side effect of the code, any controller
now can be injected options through the following pattern:

public class HomeController : Controller
{
 private GlobalConfig Globals { get; }
 public HomeController(IOptions<GlobalConfig> config)
 {
 Globals = config.Value;
 }
 ...
}

Any global data can now be accessed via the Globals custom property.

Wrapping Up
As in the Johnson fable, with ASP.NET Core the problem isn’t the
cheese and its lack thereof. There’s plenty of cheese in ASP.NET Core.
The problem is the attitude to find it. Apparently, many things are dif-
ferent and not easily figuring out how to do basic things such as loading
global data might be frustrating at first. Some ASP.NET MVC cheese
has been definitely moved to a different location, but is now even tastier
and more abundant. Next month, I’ll touch on another relevant piece
of cheese that’s not where you always get it: forms authentication.	 n

Dino Esposito is the author of “Microsoft .NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2014) and “Modern Web Applications with ASP.NET”
(Microsoft Press, 2016). A technical evangelist for the .NET and Android platforms
at JetBrains, and frequent speaker at industry events worldwide, Esposito shares
his vision of software at software2cents@wordpress.com and on Twitter: @despos.

Thanks to the following Microsoft technical expert for reviewing this article:
Doug Bunting

0717msdn_EspositoCEdge_v4_8-10.indd 10 6/6/17 11:51 AM

mailto:software2cents@wordpress.com
www.twitter.com/despos

Data Quality Made Easy.
Your Data, Your Way.

Start Your Free Trial
www.melissa.com/msft-pd

@

NAME

Our data quality solutions are available
on-premises and in the Cloud – fast,
easy to use, and powerful developer
tools and plugins for the Microsoft®
Product Ecosystem.

Melissa provides the full spectrum of data

quality to ensure you have data you can trust.

We pro�le, standardize, verify, match and

enrich global People Data – name, address,

email, phone, and more.

Melissa Data is now Melissa.
See What’s New at www.Melissa.com 1-800-MELISSA

Untitled-9 1 6/2/17 4:41 PM

http://www.melissa.com/msft-pd
http://www.Melissa.com

msdn magazine12

In last month’s column (msdn.com/magazine/mt809115), I used the
Visual Studio Code mssql extension to interact with an Azure SQL
Database—from my MacBook Pro! I love the cross-platform capa-
bility of Visual Studio Code, but I was still depending on Azure to
provide me with some flavor of SQL Server. I also mentioned that
it is indeed possible to run SQL Server without depending on the
cloud or Windows, thanks to SQL Server for Linux and a Docker
image that’s readily available to drop onto your machine. I’ll pause
if the existence of SQL Server for Linux is new information for you
and you just need a moment.

OK, I hope you’ve recovered. The Linux version of SQL Server
is able to run in a Linux-based Docker container and you can use
that container anywhere that Docker is supported.

Running SQL Server in a container is really useful for devel-
opers because it makes it easy and quick to spin up a SQL Server
instance. You can run different instances of SQL Server that are
different versions side by side. You can easily run the container for
a while and then when you stop/delete the container, the data all
goes away and you can start another clean one. If you want, you
can also choose to persist the database files, but still start/stop the
container only as you actually need SQL Server to be running.

There are two flavors of SQL Server container images—
Linux-based images and Windows-based images. Microsoft
provides a Linux-based image for SQL Server 2017 Developer
Edition and three Windows-based images: SQL Server 2016 SP1
Express Edition, SQL Server 2016 SP1 Developer Edition and SQL
Server 2017 Evaluation Edition. All of these images are available
on Docker Hub for free (dockr.ly/2rmSiWs). You can pull and run the
Linux-based SQL Server image to create Linux-based containers
wherever there’s a Docker Engine running, which could be on
Linux, Windows or macOS. But you can run Windows-based
containers only on Windows 10 Anniversary Edition or higher or
Windows Server 2016—they can’t run on Linux or macOS. Keep in
mind that Docker also runs on Azure and AWS, so you can move
from development to production in the cloud, as well.

Although I’ve written a blog post about my first experiments with
running SQL Server for Linux in Docker on a Mac (bit.ly/2pZ7dDb), I
want to approach this from a different angle—the scenario where
you want to share a pre-configured image along with a database.
This can allow developers to very quickly get SQL Server and the
needed databases on their machines, or even to be used as part of

an automated testing environment. I knew it could be done, but
I was curious as to how, so I’ve worked through the basic process
and will share it with you here.

I’ll begin by explaining how to get the base image of SQL Server
for Linux up and running on your computer under Docker. My
example will use Docker for Mac, but you can do the same with
the other versions of Docker, as well. Be sure you have the correct
version of Docker already installed and running on your computer,
and that you set it to use at least 4GB of RAM from the host system.
You can find more detailed setup information on my blog post
referenced earlier.

In the command or terminal window, you can get the official
image by executing:

Mac: sudo docker pull microsoft/mssql-server-linux
Windows: docker pull microsoft/mssql-server-windows

Once it’s installed, you can run the docker images command to
see that Docker is aware of this image:

REPOSITORY TAG IMAGE ID CREATED SIZE
microsoft/mssql-server-linux late 7b1c26822d 13 days a 1.35 GB

Note that if you already have the base image, you can visit dockr.ly/
2qTavYr to see if a newer one has been released. If so, you should
pull it again. Next, I’ll use the docker run command to spin up this
image as a container in order to interact with it:

docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=Passw0rd' -p 1433:1433 -d
--name juliesqllinux microsoft/mssql-server-linux

When starting up an mssql-server-linux container the first time,
you’re required to accept its license agreement, which you do using
an environment variable:

-e 'ACCEPT_EULA=Y'

You also must include an environment variable for a password
to accompany the default sa user. The password you create must
consist of “at least 8 characters including uppercase, lowercase let-
ters, base-10 digits and/or non-alphanumeric symbols.” Optionally,

On-the-Fly SQL Servers with Docker

Data Points JULIE LERMAN

Code download available at msdn.com/magazine/0717magcode.

Running SQL Server in a
container is really useful for

developers because it makes it
easy and quick to spin up a SQL

Server instance.

0717msdn_LermanDPts_v5_12-16.indd 12 6/6/17 11:57 AM

http://msdn.com/magazine/0717magcode
http://msdn.com/magazine/mt809115
www.dockr.ly/2rmSiWs
www.bit.ly/2pZ7dDb
www.dockr.ly/2qTavYr
www.dockr.ly/2qTavYr

Untitled-2 1 6/6/17 10:36 AM

www.devexpress.com/spreadsheet

msdn magazine14 Data Points

you can name the container instance. I’ll call mine juliesqllinux.
I’ll also specify the port mapping for the host port to container
port with -p, as well as a parameter to run this in the background:
-d (for detach). If you don’t use the -d parameter, the instance will
run in the foreground and you won’t get a prompt back at your
terminal in order to continue executing commands. As usual, I
learned this the hard way.

In response to the run command, Docker returns a unique
container ID and returns your terminal back to a prompt. It does
this in about one second. Think about how long it takes to install
SQL Server onto your computer and get it configured. Then let me
repeat: Spinning up the container took about one second.

Interacting Directly with the
SQL Server from the Command Line
While my last column focused on using the mssql extension for
Visual Studio Code to interact with the database, here I’ll use a
command-line tool to quickly create a simple database, a table
and some data, and then run a query to prove it’s all working.
Although the Microsoft sqlcmd command-line utility is part of the
image, I find it easy enough to use it directly from my OS. Sqlcmd
is available for Windows (bit.ly/2qKnrmh) and macOS (bit.ly/2qZBS6G).
The macOS version is new. While I’ll use it in this article, I’m also
a fan of the cross-platform sql-cli (bit.ly/2pYOzey).

When starting up sqlcmd, you need to specify the server name,
user name and password as part of the command. Additionally,
you can specify a particular database, although the utility will use
master by default. See the sqlcmd for Windows link mentioned
earlier for details on all of the command-line options.

From the command prompt, I’ll start up a sqlcmd command
with the required parameters. This returns a numbered prompt
so I can use it interactively:

→ ~ sqlcmd -S localhost -U sa -P Passw0rd
1>

At the prompt I can start entering lines of TSQL, then a final
line, Go, to execute. For example, I’ll retrieve a list of databases that
already exist on the server:

1> select name from sys.databases
2> go
name

master
tempdb
model
msdb

(4 rows affected)
1>

Now, I’ll create a new database and execute that. Then I’ll use
that new database, create a new table and add some data using the
commands in Figure 1.

I find it a little clunky to work interactively with sqlcmd. Definitely
have a look at the new cross-platform mssql-scripter tool (bit.ly/2pSNhoF)
that was recently released as a preview.

The final command, select * from people, is there to perform
a simple validation that the table and the data do indeed exist
after running the other commands. Note that when you remove a
Docker container, it’s gone completely and this database and data
will disappear, as well. However, it’s possible to create separate data

volumes that can persist the data files even if you destroy the con-
tainer that’s running your SQL Server instance. I walked through
the first baby steps of creating persistent data containers in the blog
post I mentioned earlier, so I won’t repeat that here.

Create a Custom Image
That Creates Its Own Database
What I’m more interested in is the idea of creating an image that
includes not only a running instance of SQL Server, but also a
pre-created database for development and testing, something
developers can grab and use quickly. Of particular interest to testers
is the ability to have this image accessible for automated testing,
where the server and database can be instantly available for a test
run, then destroyed and recreated on the fly as needed.

Consider that when I first created the container from the
Docker image, the master database was created for me. If you don’t
include the -d (detach) parameter in the docker run command,
you can see the many steps that were performed on the container
as it starts up. Creating the master database is only one of those
steps. So what you can do is create your own image based on the
base mssql-server-linux image (or any base image), then pro-
vide additional commands to perform any steps you need in the
dockerfile file that goes along with your image.

I’ll demonstrate by creating an image that will duplicate the steps
I just ran in the terminal. These were the commands to create the
new database and a new table and to insert a few rows of data.

I’ll need a folder to house the files I’ll be creating for my image.
There will be a total of four because I’m going to separate specific
tasks into different files to keep things organized:

1. �SqlCmdScript.Sql: This file will hold the TSQL script with
the commands for creating the new database, table and data.

2. �SqlCmdStartup.sh: This is a bash file (like a batch file for
Linux). It starts up the sqlcmd command-line tool and,
as part of the command, runs the SqlCmdScript.Sql file.
Remember that sqlcmd is also part of the base image.

3. �Entrypoint.sh: This is another bash file. It lists the non-Docker
tasks that need to run, and its first task is to execute the Sql-
CmdStartup.sh file. Then it will start the SQL Server process.

4. �Dockerfile: This file (there’s no extension) is the definition of how
to build the image and how to run containers from the image.

1> create database juliedb
2> go
1> create table dbo.people (PersonId int Primary Key, Name nvarchar(50))
2> insert into people values (1,'julie')
3> insert into people values (2,'giantpuppy')
4> select * from people
5> go

(1 rows affected)

(1 rows affected)
PersonId Name
----------- --
 1 julie
 2 giantpuppy

(2 rows affected)
1>

Figure 1 Adding Data to a New Table

0717msdn_LermanDPts_v5_12-16.indd 14 6/6/17 11:57 AM

www.bit.ly/2qKnrmh
www.bit.ly/2qZBS6G
www.bit.ly/2pYOzey
www.bit.ly/2pSNhoF

15July 2017msdnmagazine.com

Here’s the file listing for SqlCmdScript.sql, the same commands
I used earlier when I was working directly from the command line:

create database juliedb;
GO
use juliedb;
create table people (PersonId int Primary Key, Name nvarchar(50));
insert into people values (1,'julie');
insert into people values (2,'giantpuppy');
select * from people

Next is the SqlCmdStartup.sh. Again, this is where I start up the
sqlcmd utility and tell it to run the script I just listed:

#wait for the SQL Server to come up
sleep 20s

#run the setup script to create the DB and the schema in the DB
/opt/mssql-tools/bin/sqlcmd -S localhost -U sa -P Passw0rd -d master -i
SqlCmdScript.sql

The next file is entrypoint.sh, where I tell Docker what external
processes to run. This is where I trigger the SqlCmdStartup bash
script that runs sqlcmd, as well as the bash script inside the base
image that starts up the SQL Server database. I combine the two
commands using the & character:

#start the script to create the DB and data then start the sqlserver
./SqlCmdStartup.sh & /opt/mssql/bin/sqlservr

Notice that I’m running sqlcmd first. This is important and I strug-
gled with this for a long time because of a misunderstanding. When
Docker encounters a command that then completes, it stops the con-
tainer. Originally, I ran the server startup first, then the sqlcmd. But

when Docker finished the sqlcmd, it decided it had finished its job
and shut down. In contrast, when I run the server startup second,
the server is just a long-running process, therefore, Docker keeps
the container running until something else tells it to stop.

If, like me, you’re curious what’s in the sqlservr.sh script, take a
look at bit.ly/2qJ9mGe, where I blogged about the file listing.

Finally, here’s the Dockerfile, which does a number of things:
FROM microsoft/mssql-server-linux

ENV SA_PASSWORD=Passw0rd
ENV ACCEPT_EULA=Y

COPY entrypoint.sh entrypoint.sh
COPY SqlCmdStartup.sh SqlCmdStartup.sh
COPY SqlCmdScript.sql SqlCmdScript.sql

RUN chmod +x ./SqlCmdStartup.sh

CMD /bin/bash ./entrypoint.sh

It first identifies the base image (mssql-server-linux), which, if not
found on your machine, will be automatically pulled from Docker
Hub. Then, it sets the environment variables so I don’t have to do
that in the docker run command. Dockerfile then copies my two
bash files and the SQL script file into the image. Next, it runs the
chmod command, which permits my bash file to run inside the
container. Finally, I instruct Docker what to do at the time that a
new container is created from my image by specifying the CMD
command to call the entrypoint bash script, which will in turn run
sqlcmd with my TSQL and then start up SQL Server.

Build the New Image
With all of this in place, it’s time to build my new image with the
docker build command:

docker build -t julielinuximage .

I’m using just a simple set of parameters, although there’s a lot that
you can control when building images. I’m using only the -t param-
eter here, which will force a default tag on the image, though you can
also specify tags for versioning and other purposes. Then I specify the

name of the image and, finally, with
the period at the end, I let Docker
know that the Dockerfile I want to
build from is in the current folder.

At this point, I have the image
that I can publish somewhere to
share with my team. Doing so
requires a registry, but you don’t
have to store your images on the
Docker Hub. You can create a reg-
istry on your own network, use a
public or private registry on Azure,
or choose one of the other myriad
options for hosting Docker images.
However, for this article, I’ll con-
tinue to just work locally.

My next step is to run a con-
tainer from my new image.
Remember that because I put
my environment variables in the
Dockerfile, I don’t need to include

Figure 2 The Final Lines of the Log Captured in Kitematic After Instantiating the Container
with the Docker Run Command

I’m using just a simple set of
parameters, although there’s a
lot that you can control when

building images.

0717msdn_LermanDPts_v5_12-16.indd 15 6/6/17 11:57 AM

www.bit.ly/2qJ9mGe
http://www.msdnmagazine.com

msdn magazine16 Data Points

them in the docker run command. I’ll again use the -d parameter
so the container will run in the background and I can continue to
use the same terminal window to work with the container:

docker run -d -p 1433:1433 --name juliesqllinux julielinuximage

This command specifies the port to run this on, the name to
apply to the running container (--name juliesqllinux) and the name
of the image to use (julielinuximage).

The docker ps command lets me confirm that it’s now running.
I’m also running the Kitematic UI (included with the Docker
client application installer), which shows the state of Docker con-
tainers and also displays logs. This means I can see not only all of
the tasks accomplished by the sqlservr.sh script, but evidence of
my juliedb database, tables and data being inserted. I can even see
the results of the query at the end of my sql script to display the
data from the people table.

Figure 2 shows the end of the logs after running this container.
Now, just like before, I can interact with the container using the

command-line tools installed directly on my computer.
I have to start sqlcmd again, then I call a few commands to check

that I have access to the juliedb database my image created. Figure
3 shows my entire interaction, with my commands in bold and the
response in standard font. The commands shown are starting up
the sqlcmd utility and connecting to the database server, listing
the databases, using juliedb, listing its tables, querying the people
table and then quitting out of the sqlcmd utility.

Skip the Script, Just Provide the Database File
If you have a large database (or multiple databases) to share, you
might prefer not to include all of the scripts for the schema and
data. Another approach is to pre-create the database files, include

those mdf files with the image, and in the Dockerfile be sure to
copy the files into the container and then run TSQL to attach the
files to the server. SQL Server DBA Andrew Pruski wrote a great
blog post about this approach, which you can find at bit.ly/2pUxQdP.
I’ve also done this myself in the Pluralsight course I’m currently
building about the mssql extension.

For Devs or DevOps
With these two approaches, you now have a simple means of shar-
ing a pre-configured database along with a SQL Server across your
team, allowing everyone to have a locally running server and a local
copy of the database. But thanks to the container, nobody needs to
install SQL Server on their computer or execute any scripts to get
the necessary database set up for use. It’s frighteningly easy and fast.

I also mentioned using this for DevOps scenarios, perhaps with
automated tests that require a database. I hope it’s not a big leap from
what you’ve seen here to imagine having your build or test process
spin up a container that has everything needed for your operation to
quickly and easily interact with a SQL Server database. One exam-
ple of this is in the MSSQL-Node-Docker demo app (bit.ly/2qT6RgK)
created by Travis Wright, a program manager on the SQL Server
engineering team. The demo was “created to show how SQL Server
can operate in a DevOps scenario where an application developer
can check in code to GitHub and then trigger a build in Red Hat
OpenShift to deploy the changes automatically as pods (containers).”

There’s certainly a lot more to learn and benefit from providing
SQL Server in Linux and Windows containers. It’s amazing to me
that you can now “install” SQL Server almost anywhere and you
don’t have to be a Microsoft platform developer to benefit from
what is one of the most powerful relational databases on the planet.
As somewhat of a newbie to Docker, I was curious about the
ability to create an image that included my own database. And I’m
always happy to share the results of my explorations. I learned a
lot and hope that your curiosity isn’t just sated, but piqued enough
to explore the possibilities even further.	 n

Julie Lerman is a Microsoft Regional Director, Microsoft MVP, software team men-
tor and consultant who lives in the hills of Vermont. You can find her presenting
on data access and other topics at user groups and conferences around the world.
She blogs at thedatafarm.com/blog and is the author of “Programming Entity
Framework,” as well as a Code First and a DbContext edition, all from O’Reilly
Media. Follow her on Twitter: @julielerman and see her Pluralsight courses at
juliel.me/PS-Videos.

Thanks to the following Microsoft technical experts for reviewing this article:
Sanjay Nagamangalam and Travis Wright

→ sqlcmd -S localhost -U sa -P Passw0rd
1> select name from sys.databases
2> go
name

master
tempdb
model
msdb
juliedb

(5 rows affected)
1> use juliedb
2> go
Changed database context to 'juliedb'.
1> select name from sys.tables
2> go
name

people

(1 rows affected)
1> select * from people
2> go
PersonId Name
----------- ----------------
 1 julie
 2 giantpuppy

(2 rows affected)
1> quit
→

Figure 3 Interacting with Data in the
Container That Pre-Created a Database

There’s certainly a lot more to
learn and benefit from providing

SQL Server in Linux and
Windows containers.

0717msdn_LermanDPts_v5_12-16.indd 16 6/6/17 11:57 AM

www.bit.ly/2pUxQdP
www.bit.ly/2qT6RgK
www.thedatafarm.com/blog
www.twitter.com/julielerman
http://juliel.me/PS-Videos

CONTACT US

US: +1 903 306 1676
EU: +44 141 628 8900
AU: +61 2 8006 6987

sales@asposeptyltd.com

Try for FREE at
www.aspose.com

File Format APIs
Working with Files?

FR
EE

 T
R

IA
L

Manipulate Word, Excel, PDF, PowerPoint, Outlook and more than 100 other
file formats in your applications without installing Microsoft Office.

DOC, XLS, PDF, PPT, MSG, BMP, PNG, XML and many more!

Platforms supported: .NET, Java, Cloud, Android, SharePoint, Reporting
Services, and JasperReports

COMBINEMODIFY
PRINTCONVERTCREATE

Untitled-8 1 1/5/17 2:05 PM

http://www.aspose.com
mailto:sales@asposeptyltd.com

msdn magazine18

Companies providing cloud-scale services have an
ever-growing need to store and analyze massive data sets. Such
analysis to transform data into insight is becoming increasingly
valuable. For instance, analyzing telemetry from a service to
derive insights into the investments that most improve service qual-
ity, analyzing usage patterns over time to detect changes in user
behavior (engagement/churn), analyzing sensor data to perform
preventative maintenance—all these are extremely important, as
has become very apparent to us while running massive services
like Bing and Cosmos. Most of these analyses involve feature engi-
neering and modeling. With storage getting cheaper, there are no
longer any constraints on the amount of data we can collect, which
means we soon reach the limits of traditional single-node data
processing engines and require a distributed processing platform
to do machine learning tasks on massive datasets. Furthermore,
machine learning models are usually built or used in applications
or pipelines that involve processing raw data—deserializing data,
filtering out unnecessary rows and columns, extracting features,
and transforming them to a form amenable for modeling. To
express such operations easily, users need a programming model
that offers a degree of compositional freedom that’s typical of
declarative languages.

U-SQL is a declarative language that provides the expressibil-
ity necessary for advanced analytics tasks, like machine learning
and operating seamlessly on cloud-scale data. It also offers the
following advantages:

• �The resemblance of U-SQL to SQL reduces the learning curve
for users. It offers easy extensibility with user-defined oper-
ators, the ability to reuse existing libraries and the flexibility
to choose different languages (C#, Python or R) to develop
custom algorithms.

• �Users can focus on business logic while the system takes care
of data distribution and task parallelism, along with execu-
tion plan complexities.

• �U-SQL has built-in support for machine learning.

Machine Learning Using U-SQL in ADLA
Building intelligent features into applications requires some form
of prediction capability. There are two ways to go:

Build your own model: You first preprocess the telemetry or
any kind of raw data into a shape suitable for modeling, then train
a model on the pre-processed data and use this trained model for
prediction in applications. The Azure Data Lake Analytics (ADLA)
engine makes all the preprocessing possible in an efficient man-
ner. It allows you to build machine learning models that cover
a wide variety of scenarios, from building regression models to
image classification via R and Python extensions, and enables you
to build models using built-in, efficient, massively parallelable
distributed machine learning algorithms. (We’ll discuss how to
train a model using U-SQL in a future article.)

Using a pre-trained model for scoring: Suppose you have
a pre-trained model but want to score large amounts of data effi-
ciently. U-SQL can handle this pleasingly parallel task very well.
U-SQL allows user-defined operators (UDOs) where you provide

MACH INE L E AR NING

Cognition at Scale with
U-SQL on ADLA
Hiren Patel and Shravan Matthur Narayanamurthy

This article discusses:
•	Machine learning using U-SQL in ADLA

•	Cognition with U-SQL

•	Using a pre-trained model

Technologies discussed:
U-SQL, Azure Data Lake Analytics,
U-SQL Extension-Cognitive/R/Python

0717msdn_PatelUSQL_v3_18-21.indd 18 6/6/17 2:58 PM

19July 2017msdnmagazine.com

only a per-partition or per-row function and the system takes care
of distributing the data and the tasks in the most efficient manner
within given resource constraints.

Training a good model requires a lot of data and machine
learning expertise—both of which are rare commodities. To help,
U-SQL packages many of the machine learning models that power
the Microsoft Cognitive Services. Built by some of the leading
minds in the industry, these models are trained against massive
data sets, and are highly performant and accurate. This integration
of the cognitive models in U-SQL lets you easily add intelligent
features—such as emotion detection, face and speech recognition;
language understanding and sentiment analysis—to applications
that work on massive amounts of data.

In this article, we’ll concentrate on how to use these pre-trained
models to build intelligent applications using U-SQL, using either
a pre-trained model or a built-in cognitive model.

Cognition with U-SQL
U-SQL provides built-in support for the following cognitive
models, allowing you to build applications with powerful algo-
rithms using just a few lines of code:

Face detects one or more human faces in an image, along with
face attributes that contain machine learning-based predictions
based on features such as age, emotion and gender.

Emotion analyzes facial expressions in an image to detect a
range of emotions, currently including anger, contempt, disgust,
fear, happiness, neutrality, sadness and surprise.

Image tagging returns information about visual content found in
an image. It can be used along with descriptions and domain-specific
models to identify content in an image.

Optical character recognition (OCR) detects and extracts
handwritten text from images of notes, letters, whiteboards and so
forth, and returns a machine-readable character stream.

Sentiment analysis detects sentiment using classification tech-
niques based on the input text.

Key phrases extraction identifies key phrases, topics and
language from the input text.

Landmark detection finds landmarks in an image. This model rec-
ognizes 9,000 natural and man-made landmarks from around the world.

Cognition at Scale with U-SQL
Suppose you want to find out if the human population, in general,
is happy when there are animals around them. One way to do this
is to examine pictures posted by people who have animals with
them and analyze the emotion of those people. In Microsoft, the
set of Bing-crawled images would represent a valid dataset for this
task, but the sheer scale of the data set would make this simple task
cumbersome without an intelligent data-processing engine. Let’s see
how U-SQL makes this easy. First, however, you’ll have to manually
enable cognitive capabilities in your Azure Data Lake account.

Registering Cognitive Capabilities in U-SQL To get started
with the Python, R, and Cognitive extensions, open your Data Lake
Analytics account in the Azure Portal and click on Sample Scripts.

If you haven’t installed them already, you’ll see a notification at
the top of the Sample Scripts blade for U-SQL Advanced Analytics.

Click it to begin the installation process.
Once you’ve chosen to install the extensions, the system will copy

U-SQL extension-related files into the default Azure Data Lake
Store (ADLS) associated with your ADLA account. A notification
that files are being copied will appear near the Notification icon in
the upper right of the page. When the files are copied, you’ll see an
updated notification that the file copying was successful and that
a special U-SQL Job was submitted to finish the registration. You
can find the special job and its status by using View All Jobs in the
upper-left corner of the Azure Portal. The Job normally will take a
few minutes to complete.

At that point, you can discover what the job did by browsing the
catalog for the master database. The job simply registers advanced
analytic cognitive assemblies in the master database, which you
can see by using the Data Explorer.

Seeing these assemblies in the master database is evidence that your
ADLA account is setup correctly and you can now write a U-SQL
script that uses cognitive functions to build intelligent applications.

REFERENCE ASSEMBLY ImageCommon;
REFERENCE ASSEMBLY ImageEmotion;
REFERENCE ASSEMBLY ImageTagging;

// Load in images
@imgs =
 EXTRACT FileName string, ImgData byte[]
 FROM @"/usqlext/samples/cognition/{FileName:*}.jpg"
 USING new Cognition.Vision.ImageExtractor();

// Extract the number of objects and tags from each image
@objects =
 PROCESS @imgs
 PRODUCE	FileName,
 NumObjects int,
 Tags string
 READONLY FileName
 USING new Cognition.Vision.ImageTagger();

// Extract all the images with dog and cat
@pets =
 SELECT FileName, T.Tag
 FROM @objects
 CROSS APPLY
 EXPLODE(SqlArray.Create(Tags.Split(';'))) AS T(Tag)
 WHERE T.Tag.ToString().Contains("dog") OR T.Tag.ToString().Contains("cat");

// Detect emotions from human face
@emotions =
 PROCESS @imgs
 PRODUCE	FileName string,
 NumFaces int,
 Emotion string
 READONLY FileName
 USING new Cognition.Vision.EmotionAnalyzer();

// Correlation to find all the images which has both human and animals
@preres =
 SELECT @pets.FileName, Emotion
 FROM @pets
 JOIN @emotions
 ON @pets.FileName == @emotions.FileName;

// Distribution of human emotions when animals are in the image
@result =
 SELECT Emotion, COUNT(FileName) AS frequency
 FROM @preres
 GROUP BY Emotion;

OUTPUT @result
 TO @"/my/cognition/output/sample_dog_cat.csv"
 USING Outputters.Csv();

Figure 1 Cognition at Scale Example

0717msdn_PatelUSQL_v3_18-21.indd 19 6/6/17 2:58 PM

http://www.msdnmagazine.com

msdn magazine20 Machine Learning

Using Cognitive Functions in U-SQL As described
earlier, the assemblies and models that power the
Cognitive Services have been integrated with U-SQL,
allowing you to run simple query statements over millions
of images and process them using cognitive functions.
The overall method for using these cognitive capabilities
at scale in U-SQL is simply:

• �Use the REFERENCE ASSEMBLY statement to
include the cognitive functions in the U-SQL script.

• �Use the EXTRACT operation to load data into a rowset.
• �Use the PROCESS operation to apply various

Cognitive functions.
• �Use the SELECT operation to apply transforma-

tions to the predictions.
• �Use the OUTPUT operation to store the result into

persistent store.
Let’s continue with the scenario described earlier, which

involves processing a large number of images and analyz-
ing the emotion of people when there are animals in the
image. Figure 1 shows an example script for completing
this scenario. In the example, we use the Vision cognitive
functions, which enables us to understand what’s in an
image and returns a set of tags that identify objects. For
the sample script in Figure 1, we’re using a subset of the
images from the team’s 1 million images dataset.

In this simple U-SQL query, we’re doing some very pow-
erful things. First, we’re extracting images into the byte array
column using the system-provided ImageExtractor, and
then loading them into rowsets. Next, we extract all the tags
from those images using the built-in ImageTagger. Then we
filter the images, finding those that have “cat” or “dog” tags.
Using the system-provided EmotionAnalyzer, we next
extract the faces and associated emotions from these
images, then find all the images that have a human along
with a dog or a cat. Finally, we output the distribution of
human emotions in those images.

To demonstrate the scalability of U-SQL, we executed
the same script on the full data set with 1 million images.
As soon as we submit the script, in a matter of seconds,
thousands of containers in ADLA spring to action to start
processing these images, as shown in the Figure 2.

You can easily extend this example to get other inter-
esting insights, like the most frequently occurring pairs
of tags, objects that appear together most often and so on.
Furthermore, you can also detect age, gender, and landmarks from
these images using other cognitive functions. For your reference,
we’ve added the code snippets in Figure 3 to describe how to use
other built-in cognitive functions in U-SQL applications.

Using a Pre-Trained Model
Most traditional machine learning algorithms assume that the data
processed to train a model isn’t too large to store in the RAM of
one computer. Thus, most of the time users need only a single-box
environment to train their models. Furthermore, it’s relatively
common to have only a small amount of label data on which a

model is trained. The R and Python languages have emerged as the
industry standard for open source, as well as proprietary predic-
tive analytics. R and Python together provide many capabilities,
such as flexibility, rich graphics and statistics-oriented features,
along with an ecosystem of freely available packages that account
for much of its growing popularity. Thus, many developers uses R
and Python to do single-box predictive analytics.

Once trained, a model is applied to massive data sets that frequently
eclipse the size of the training data by orders of magnitude. In the
following section, we’ll describe how to use an existing model that
was trained to do prediction using a local R/Python environment
on a massive amount of data, using the U-SQL extension on ADLA.

Figure 2 Job Execution Graph

41.58 MB 41.58 MB

41.58 MB41.58 MB

41.58 MB

100.44 KB

100.44 KB

66.35 KB

134.81 KB

326 bytes

UsqlML.dbo.MegaFace

sample_dog_cat.csv

SV4 PodAggregate...
 4 vertices
 7.32 s
 1,028,061 rows

R 41.58 MB W 41.58 MB

SV2 AggregateInte...
 3 vertices
 10.34 s
 2,936 rows

R 100.44 KB W 100.44 KB

SV4 PodAggregate...
 1 vertex
 0.77 s
 1,028,061 rows

R 41.58 MB W 41.58 MB

SV2 Aggregate
 1 vertex
 11.52 s
 3,940 rows

R 134.81 KB W 134.81 KB

SV5 Aggregate
 2 vertices
 5.19 s
 1,028,061 rows

R 41.58 MB W 41.58 MB

SV6 Cross
 2 vertices
 1.99 s
 14 rows

R 41.85 MB W 326 bytes

SV7 PodAggregate
 1 vertex
 0.20 s
 14 rows

R 326 bytes W 280 bytes

SV3 Extract
 1,000 vertices
 1.10 min
 1,028,061 rows

R 27.67 GB W 41.58 MB

SV1 Extract
 1,000 vertices
 3.84 min
 3,940 rows

R 27.67 GB W 134.81 KB

0717msdn_PatelUSQL_v3_18-21.indd 20 6/6/17 2:58 PM

21July 2017msdnmagazine.com

Consider an arboretum that has an inventory of many species of
flowers from all around the world. Now the organization wants to
find and classify types of iris flowers in its inventory. The arboretum’s
data scientist trained a model to label types of iris flowers using R
on a single machine, but they have a great many species of flowers
from all over the world and the pre-trained model can’t complete
this simple task of identifying an iris flower. What’s needed is an
intelligent, scalable data processing engine. The overall process to
use these U-SQL R extensions to do prediction at scale is simply:

• �Use the REFERENCE ASSEMBLY statement to include
the R U-SQL extension to run R code in the U-SQL script.

• �Use the DEPLOY RESOURCE operation to upload the
pre-trained model as a resource on executing nodes.

• �Use DECLARE to inline the R script in the U-SQL script.
• �Use the EXTRACT operation to load data into a rowset.
• �Use the Extension.R.Reduce function to run the R script to

score each row in rowset using the uploaded pre-trained model.
• �Use the OUTPUT operation to store the result into a

persistent store.
Figure 4 shows the U-SQL script that carries out this process.
In this simple U-SQL query, we’re using the U-SQL R extension

to do scoring at scale. The R and Python U-SQL extensions get au-
tomatically installed and registered with ADLA account database
when you install the U-SQL Advance Analytics Extension. In the
U-SQL script, we first deploy the pre-existing model, which was
trained using R on a single machine. This highlights the fact that it
wasn’t trained using ADLA/U-SQL framework. Next, we extract and
de-serialize the iris dataset into columns using the system-provided
.csv format extractor, Extractors.cvs, and load the data into rowsets.
Next, we generate a random number that will be used later to par-
tition data to enable parallel processing. Then, we use the U-SQL R
extension UDO Extension.R.Reducer and pass the R script that

does the prediction, along with the model. Finally, we output the
confidence interval for each flower from the inventory.

We started with a simple U-SQL script to understand the content of
images, which is typically considered opaque. The script automatical-
ly scales across hundreds of machines to transform images efficient-
ly into actionable insights that can power intelligent applications. We
also showcase how you can reuse an existing model that was trained
using the popular R/Python environment and apply the model to do
prediction on a massive amount of data using U-SQL R Extension.
This is what can power the intelligence revolution.	 n

Hiren Patel is a senior technical program manager at Microsoft. He has been
part of the Big Data group since 2011 and worked on designing and developing
various aspect of the Cosmos/ADLA distributed execution engine, including lan-
guage, optimizer, runtime and scheduling.

Shravan Matthur Narayanamurthy is a senior engineering manager at Microsoft
leading the Big Data Machine Learning team. He has several years of experience
researching and developing machine learning algorithms that operate at cloud
scale and distributed systems.

Thanks to the following Microsoft technical experts who reviewed this article:
Saveen Reddy and Michael Rys

// Estimate age and gender for human faces
@faces =
 PROCESS @imgs
 PRODUCE FileName,
 NumFaces int,
 FaceAge string,
 FaceGender string
 READONLY FileName
 USING new Cognition.Vision.FaceDetector();

// Apply OCR
@ocrs =
 PROCESS @imgs
 PRODUCE FileName,
 Text string
 READONLY FileName
 USING new Cognition.Vision.OcrExtractor();

// Sentiment Analysis on War and Peace
@sentiment =
 PROCESS @WarAndPeace
 PRODUCE No, Year, Book, Chapter,
 Text, Sentiment string,
 Conf double
 READONLY No,
 Year,
 Book,
 Chapter,
 Text
 USING new Cognition.Text.SentimentAnalyzer(true)

Figure 3 Code Snippets for Other
Cognitive APIs Supported in U-SQL

REFERENCE ASSEMBLY [ExtR];

DEPLOY RESOURCE @"/usqlext/samples/R/my_model_LM_Iris.rda";

// R script to score using pre trained R model
DECLARE @MyRScript =
 @"
 load(""my_model_LM_Iris.rda"")
 outputToUSQL=data.frame(predict(lm.fit, inputFromUSQL, interval=""confidence""))
 ";

DECLARE @PartitionCount int = 10;

@InputData =
 EXTRACT SepalLength double,
 SepalWidth double,
 PetalLength double,
 PetalWidth double,
 Species string
 FROM @"/usqlext/samples/R/iris.csv";
 USING Extractors.Csv();

@ExtendedData =
 SELECT Extension.R.RandomNumberGenerator.GetRandomNumber(@PartitionCount) AS Par,
 SepalLength,
 SepalWidth,
 PetalLength,
 PetalWidth
 FROM @InputData;

// Predict Species
@RScriptOutput= REDUCE @ExtendedData
 ON Par
 PRODUCE Par,
 fit double,
 lwr double,
 upr double
 READONLY Par
 USING
 new Extension.R.Reducer(command:@MyRScript , rReturnType:"dataframe",
 stringsAsFactors:false);

OUTPUT @RScriptOutput
 TO @"/Output/LMPredictionsIris.txt"
 USING Outputters.Tsv();

Figure 4 Using Pre-Existing Model in U-SQL Script

0717msdn_PatelUSQL_v3_18-21.indd 21 6/6/17 2:58 PM

http://www.msdnmagazine.com

msdn magazine22

The Microsoft Cognitive Toolkit (CNTK) is a powerful,
open source library that can be used to create machine learning
prediction models. In particular, CNTK can create deep neural
networks, which are at the forefront of artificial intelligence efforts
such as Cortana and self-driving automobiles.

CNTK version 2.0 is much, much different from version 1. At
the time I’m writing this article, version 2.0 is in Release Candidate
mode. By the time you read this, there will likely be some minor
changes to the code base, but I’m confident they won’t affect the
demo code presented here very much.

In this article, I’ll explain how to install CNTK v2.0, and how to
create, train and make predictions with a simple neural network.
A good way to see where this article is headed is to take a look at
the screenshot in Figure 1.

The CNTK library is written in C++ for performance reasons,
but v2.0 has a new Python language API, which is now the pre-
ferred way to use the library. I invoke the iris_demo.py program by
typing the following in an ordinary Windows 10 command shell:

> python iris_demo.py 2>nul

The second argument suppresses error messages. I do this only
to avoid displaying the approximately 12 lines of CNTK build
information that would otherwise be shown.

The goal of the demo program is to create a neural network that
can predict the species of an iris flower, using the well-known Iris
Data Set. The raw data items look like this:

5.0 3.5 1.3 0.3 setosa
5.5 2.6 4.4 1.2 versicolor
6.7 3.1 5.6 2.4 virginica

There are 150 data items, 50 of each of three species: setosa, versi-
color and virginica. The first four values on each line are the predictor
values, often called attributes or features. The item-to-predict is often
called the class or the label. The first two feature values are a flower’s
sepal length and width (a sepal is a leaf-like structure). The next two
values are the petal length and width.

Neural networks work only with numeric values, so the data files
used by the demo encode species as setosa = (1,0,0), versicolor =
(0,1,0) and virginica = (0,0,1).

The demo program creates a 4-2-3 neural network; that is, a
network with four input nodes for the feature values, two hidden
processing nodes and three output nodes for the label values. The
number of input and output nodes for a neural network classifier
are determined by the structure of your data, but the number of
hidden processing nodes is a free parameter and must be deter-
mined by trial and error.

You can think of a neural network as a complex mathematical
prediction equation. Neural network training is the process of

MACH INE L E AR NING

Introduction to the
Microsoft CNTK v2.0
Library
James McCaffrey

Disclaimer: CNTK version 2.0 is in Release Candidate mode.
All information is subject to change.

This article discusses:
•	Installing CNTK v2.0

•	Understanding neural networks

•	The structure of the demo program

•	Creating, training and testing a neural network

•	Measuring error and accuracy

•	Making predictions

Technologies discussed:
Microsoft Cognitive Toolkit, Python, NumPy

Code download available at:
msdn.com/magazine/0717magcode

0717msdn_McCaffreyCNTK_v4_22-28.indd 22 6/6/17 11:58 AM

http://msdn.com/magazine/0717magcode

23July 2017msdnmagazine.com

determining the constants that define the equation. Training is an
iterative process and the demo performs 5,000 training iterations,
using 120 of the 150 iris data items.

After training, the prediction model is applied to the 30 iris data
items that were held out of the training process. The model had a
classification error of 0.0667, which means that the model incorrectly
predicted the species of 0.0667 * 30 = 2 flower items and, therefore,
correctly predicted 28 items. The classification error on a holdout
test set is a very rough estimate of how well you’d expect the model to
do when presented with a set of new, previously unseen data items.

Next, the demo program uses the trained neural network to
predict the species of a flower with features (6.9, 3.1, 4.6, 1.3). The
prediction is computed and displayed in terms of probabilities:
(0.263, 0.682, 0.055). Notice that the three values sum to 1.0.
Because the middle value, 0.682, is the largest, the prediction maps
to (0,1,0), which in turn maps to versicolor.

The remainder of the output shown in Figure 1 displays the
values of the constants that define the neural network prediction

model. I’ll explain where those values come from, and what they
can be used for, shortly.

This article makes no particular assumptions about your knowledge
of neural networks, or CNTK or Python. Regardless of your back-
ground, you should be able to follow along without too much trouble.
The complete source code for the iris_demo.py program is presented
in this article, and is also available in the accompanying download.

Installing CNTK v2.0
There are several ways to install CNTK, but I’ll describe the sim-
plest approach. The first step is to install a CNTK-compatible
version of Anaconda onto your Windows machine.

At the time I wrote this article, CNTK v2.0 RC1 required
Anaconda (with Python 3), version 4.1.1, 64-bit, which contains
Python version 3.5.2 and NumPy 1.11.1. So I went to the Anaconda
Download site (which you can easily find with an Internet search),
then to the archives page and found a self-extracting executable
installer file named Anaconda3-4.1.1-Windows-x86_64.exe and
double-clicked on it.

The CNTK library and documentation is hosted on GitHub at
github.com/Microsoft/CNTK. I strongly advise you to review the current
CNTK system requirements, especially the version of Anaconda,
before trying to install CNTK.

The Anaconda install process is very slick and I accepted all the
default installation options. You might want to take note of the
Anaconda installation location because CNTK will go there, too.

By far the easiest way to install CNTK is indirectly, by using the
Python pip utility program. In other words, you don’t need to go to
the CNTK site to install it, though you do need to go to the CNTK
installation directions to determine the correct installation URL.
In my case that URL was:

https://cntk.ai.PythonWheel/CPU-Only/cntk-2.0rc1-cp35-
cp35m-win_amd64.whl

The URL you’ll want to use will definitely be different by the time
you read this article. If you’re new to Python, you can think of a
.WHL file (pronounced “wheel”) as somewhat similar to a Windows
.MSI installer file. Notice the CPU-Only part of the URL. If you
have a machine with a supported GPU, you can use it with a dual
CPU-GPU version of CNTK.

Once you determine the correct URL, all you have to do is launch
an ordinary Windows command shell and type:

> pip install <url>

Installation is very quick, and files are placed in the Anaconda direc-
tory tree. Any install errors will be immediately and painfully obvious,
but you can check a successful installation by typing the following at a
command prompt and you should see the CNTK version displayed:

> python -c "import cntk; print(cntk.__version__)"

Understanding Neural Networks
CNTK operates at a relatively low level. To understand how to use
CNTK to create a neural network prediction model, you have to
understand the basic mechanics of neural networks. The diagram
in Figure 2 corresponds to the demo program.

The network input layer has four nodes and holds the sepal length
and width (6.9, 3.1) and the petal length and width (4.6, 1.3) of a Figure 1 CNTK v2.0 in Action

0717msdn_McCaffreyCNTK_v4_22-28.indd 23 6/6/17 11:58 AM

http://github.com/Microsoft/CNTK
http://www.msdnmagazine.com

msdn magazine24 Machine Learning

flower of an unknown species. The eight arrows connecting each
of the four input nodes to the two hidden processing nodes repre-
sent numeric constants called weights. If nodes are 0-base indexed
with [0] at the top, then the input-to-hidden weight from input[0]
to hidden[0] is 0.6100 and so on.

Similarly, the six arrows connecting the two hidden nodes to the
three output nodes are hidden-to-output weights. The two small
arrows pointing into the two hidden nodes are special weights called
biases. Similarly, the three output nodes each have a bias value.

The first step in the neural network input-output mechanism
is to compute the values of the hidden nodes. The value in each
hidden node is the hyperbolic tangent of the sum of products of
input values and associated weights, plus the bias. For example:

hidden[0] = tanh((6.9)(0.6100) +
 (3.1)(0.7152) +
 (4.6)(-1.0855) +
 (1.3)(-1.0687) + 0.1468)

 = tanh(0.1903)
 = 0.1882

The value of the hidden[1] node is calculated in the same way.
The hyperbolic tangent function, abbreviated tanh, is called the
hidden layer activation function. The tanh function accepts any
value, from negative infinity to positive infinity, and returns a
value between -1.0 and +1.0. There are several choices of activation
functions supported by CNTK. The three most common are tanh,
logistic sigmoid and rectified linear unit (ReLU).

Computing the output node values is similar to the process used
to compute hidden nodes, but a different activation function, called
softmax, is used. The first step is to compute the sum of products
plus bias for all three output nodes:

pre-output[0] = (0.1882)(3.2200) + (0.9999)(-0.8545) + 0.1859
 = -0.0625

pre-output[1] = (0.1882)(-0.7311) + (0.9999)(0.3553) + 0.6735
 = 0.8912

pre-output[2] = (0.1882)(-4.1944) + (0.9999)(0.0244) + (-0.8595)
 = -1.6246

The softmax value of one of a set of three values is the exp function
applied to the value, divided by the sum of the exp function applied
to all three values. So the final output node values are computed as:

output[0] = exp(-0.0625) / exp(-0.0625) + exp(0.8912) + exp(-1.6246)
 = 0.263

output[1] = exp(0.8912) / exp(-0.0625) + exp(0.8912) + exp(-1.6246)
 = 0.682

output[2] = exp(-1.6246) / exp(-0.0625) + exp(0.8912) + exp(-1.6246)
 = 0.055

The purpose of softmax is to coerce the preliminary output
values so they sum to 1.0 and can be interpreted as probabilities.

OK, but where do the values of the weights and biases come from?
To get the values of the weights and biases, you must train the network
using a set of data that has known input values and known, correct,
output values. The idea is to use an optimization algorithm that finds
the values for the weights and biases that minimizes the difference
between the computed output values and the correct output values.

Demo Program Structure
The overall structure of the demo program is shown in Figure 3.

The demo program has a function named main that acts as an
entry point. The main function sets the seed of the global random
number generator to 0 so that results will be reproducible, and then
calls function do_demo that does all the work.

Helper function my_print displays a numeric vector using a
specified number of decimals. The point here is that CNTK is
just a library, and you must mix program-defined Python code
with calls to the various CNTK functions. Helper function
create_reader returns a special CNTK object that can be used to
read data from a data file that uses the special CTF (CNTK text
format) formatting protocol.

Helper function save_weights accepts a filename, a matrix of
input-to-hidden weights, an array of hidden node biases, a matrix of
hidden-to-output weights, and an array of output node biases, and
writes those values to a text file so they can be used by other systems.

The complete listing for the demo program, with a few minor
edits, is presented in Figure 4. I use an indent of two-space char-
acters instead of the more common four, to save space. Also, all
normal error-checking code has been removed.

The demo program begins by importing the required Python
packages and modules. I’ll describe the modules as they’re used
in the demo code.

Setting Up the Data
There are two basic ways to read data for use by CNTK functions.
You can format your files using the special CTF format and then use

iris_demo.py
import cntk as C
...
def my_print(arr, dec):
def create_reader(path, is_training, input_dim,
 output_dim):
def save_weights(fn, ihWeights, hBiases,
 hoWeights, oBiases):
def do_demo():
def main():
 print("\nBegin Iris demo (CNTK 2.0) \n")
 np.random.seed(0)
 do_demo() # all the work is done in do_demo()
if __name__ == "__main__":
 main()

Figure 3 Demo Program Structure

Figure 2 Neural Network Input-Output Mechanism

0.6100 3.2200

-0.7311

-4.1944

-0.8545

0.3553

0.0244

0.9274

0.7152

0.9519

-0.5259

-1.0687
-0.7244

hidden layerinput layer

6.9

1.3

4.6

3.1

output layer

0.263

0.682

0.055

-0.0625

0.8912

-1.6246

0.1468

0.1882

0.9999

0.0360

0.1859

0.6735

-0.8595

0.6100 3.2200

-0.7311

-4.1944

-0.8545

0.3553

0.0244

0.9274

0.7152

0.9519

-0.5259

-1.0687
-0.7244

-1.0855-1.0855

0717msdn_McCaffreyCNTK_v4_22-28.indd 24 6/6/17 11:58 AM

(888) 850-9911
Sales Hotline - US & Canada:

/update/2017/07

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2017 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Experience the brand new look at www.componentsource.com

Aspose.Total for .NET from $2,939.02
Every Aspose .NET API in one package.

• Programmatically manage popular � le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR, Visio, OneNote, 3D
and CAD � les alongside many more document management features in your .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the � y and extracting text from most document types

BEST SELLER

DevExpress DXperience 17.1 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

LEADTOOLS Document Imaging SDKs V19 from $2,995.00 SRP

Add powerful document imaging functionality to desktop, tablet, mobile & web applications.

• Universal document viewer & conversion framework for PDF, O� ce, CAD, TIFF & more

• OCR, MICR, OMR, ICR and Forms Recognition supporting structured & unstructured forms

• PDF SDK with text edit, hyperlinks, bookmarks, digital signature, forms, metadata

• Barcode Detect, Read, Write for UPC, EAN, Code 128, Data Matrix, QR Code, PDF417

• Zero-footprint HTML5/JavaScript UI Controls & Web Services

BEST SELLER

Untitled-2 1 6/6/17 10:35 AM

http://www.componentsource.com

msdn magazine26 Machine Learning

Figure 4 Complete Demo Program

iris_demo.py
Anaconda 4.1.1 (Python 3.5, NumPy 1.11.1)
CNTK 2.0 RC1

Use a one-hidden layer simple NN with 2 hidden nodes
to classify the Iris Dataset.
This version uses the built-in Reader functions and
data files that use the CTF format.
trainData_cntk.txt - 120 items (40 each class)
testData_cntk.txt - remaining 30 items

import numpy as np
import cntk as C
from cntk import Trainer # to train the NN
from cntk.learners import sgd, learning_rate_schedule, \
 UnitType
from cntk.ops import * # input_variable() def
from cntk.logging import ProgressPrinter
from cntk.initializer import glorot_uniform
from cntk.layers import default_options, Dense
from cntk.io import CTFDeserializer, MinibatchSource, \
 StreamDef, StreamDefs, INFINITELY_REPEAT

=====

def my_print(arr, dec):
 # print an array of float/double with dec decimals
 fmt = "%." + str(dec) + "f" # like %.4f
 for i in range(0, len(arr)):
 print(fmt % arr[i] + ' ', end='')
 print("\n")

def create_reader(path, is_training, input_dim, output_dim):
 return MinibatchSource(CTFDeserializer(path, StreamDefs(
 features = StreamDef(field='attribs', shape=input_dim,
 is_sparse=False),
 labels = StreamDef(field='species', shape=output_dim,
 is_sparse=False)
)), randomize = is_training,
 max_sweeps = INFINITELY_REPEAT if is_training else 1)

def save_weights(fn, ihWeights, hBiases,
 hoWeights, oBiases):
 f = open(fn, 'w')
 for vals in ihWeights:
 for v in vals:
 f.write("%s\n" % v)
 for v in hBiases:
 f.write("%s\n" % v)
 for vals in hoWeights:
 for v in vals:
 f.write("%s\n" % v)
 for v in oBiases:
 f.write("%s\n" % v)
 f.close()
	
def do_demo():
 # create NN, train, test, predict
 input_dim = 4
 hidden_dim = 2
 output_dim = 3

 train_file = "trainData_cntk.txt"
 test_file = "testData_cntk.txt"

 input_Var = C.ops.input(input_dim, np.float32)
 label_Var = C.ops.input(output_dim, np.float32)

 print("Creating a 4-2-3 tanh softmax NN for Iris data ")
 with default_options(init = glorot_uniform()):
 hLayer = Dense(hidden_dim, activation=C.ops.tanh,
 name='hidLayer')(input_Var)
 oLayer = Dense(output_dim, activation=C.ops.softmax,
 name='outLayer')(hLayer)
 nnet = oLayer

 # ----------------------------------

 print("Creating a cross entropy mini-batch Trainer \n")
 ce = C.cross_entropy_with_softmax(nnet, label_Var)
 pe = C.classification_error(nnet, label_Var)

 fixed_lr = 0.05
 lr_per_batch = learning_rate_schedule(fixed_lr,
 UnitType.minibatch)
 learner = C.sgd(nnet.parameters, lr_per_batch)
 trainer = C.Trainer(nnet, (ce, pe), [learner])

 max_iter = 5000 # 5000 maximum training iterations
 batch_size = 5 # mini-batch size 5
 progress_freq = 1000 # print error every n minibatches

 reader_train = create_reader(train_file, True, input_dim,
 output_dim)
 my_input_map = {
 input_Var : reader_train.streams.features,
 label_Var : reader_train.streams.labels
 }
 pp = ProgressPrinter(progress_freq)

 print("Starting training \n")
 for i in range(0, max_iter):
 currBatch = reader_train.next_minibatch(batch_size,
 input_map = my_input_map)
 trainer.train_minibatch(currBatch)
 pp.update_with_trainer(trainer)
 print("\nTraining complete")

 # ----------------------------------

 print("\nEvaluating test data \n")
 reader_test = create_reader(test_file, False, input_dim,
 output_dim)
 numTestItems = 30
 allTest = reader_test.next_minibatch(numTestItems,
 input_map = my_input_map)
 test_error = trainer.test_minibatch(allTest)
 print("Classification error on the 30 test items = %f"
 % test_error)

 # ----------------------------------

 # make a prediction for an unknown flower
 # first train versicolor = 7.0,3.2,4.7,1.4,0,1,0
 unknown = np.array([[6.9, 3.1, 4.6, 1.3]],
 dtype=np.float32)
 print("\nPredicting Iris species for input features: ")
 my_print(unknown[0], 1) # 1 decimal

 predicted = nnet.eval({input_Var: unknown})
 print("Prediction is: ")
 my_print(predicted[0], 3) # 3 decimals

 # ---------------------------------

 print("\nTrained model input-to-hidden weights: \n")
 print(hLayer.hidLayer.W.value)
 print("\nTrained model hidden node biases: \n")
 print(hLayer.hidLayer.b.value)

 print("\nTrained model hidden-to-output weights: \n")
 print(oLayer.outLayer.W.value)
 print("\nTrained model output node biases: \n")
 print(oLayer.outLayer.b.value)

 save_weights("weights.txt", hLayer.hidLayer.W.value,
 hLayer.hidLayer.b.value, oLayer.outLayer.W.value,
 oLayer.outLayer.b.value)

 return 0 # success

def main():
 print("\nBegin Iris demo (CNTK 2.0) \n")
 np.random.seed(0)
 do_demo() # all the work is done in do_demo()

if __name__ == "__main__":
 main()

end script

0717msdn_McCaffreyCNTK_v4_22-28.indd 26 6/6/17 11:58 AM

27July 2017msdnmagazine.com

built-in CNTK reader functions, or you can use data in non-CTF
format and write a custom reader function. The demo program uses
the CTF data format approach. File trainData_cntk.txt looks like:

|attribs 5.1 3.5 1.4 0.2 |species 1 0 0
...
|attribs 7.0 3.2 4.7 1.4 |species 0 1 0
...
|attribs 6.9 3.1 5.4 2.1 |species 0 0 1

You specify the feature (predictor) values by using the “|” character
followed by a string identifier, and the label values in the same way.
You can use whatever you like for identifiers.

To create the training data, I go to the Wikipedia entry for Fisher’s
Iris Data, copy and paste all 150 items into Notepad, select the first
40 of each species, and then do a bit of edit-replace. I use the leftover
10 of each species in the same way to create the testData_cntk.txt
file. The create_reader function that uses the data files is defined as:

def create_reader(path, is_training, input_dim, output_dim):
 return MinibatchSource(CTFDeserializer(path, StreamDefs(
 features = StreamDef(field='attribs', shape=input_dim,
 is_sparse=False),
 labels = StreamDef(field='species', shape=output_dim,
 is_sparse=False)
)), randomize = is_training,
 max_sweeps = INFINITELY_REPEAT if is_training else 1)

You can think of this function as boilerplate for CTF files. The
only thing you’ll need to edit is the string identifiers (“attribs” and
“species” here) used to identify features and labels.

Creating a Neural Network
The definition of function do_demo begins with:

def do_demo():
 input_dim = 4
 hidden_dim = 2
 output_dim = 3

 train_file = "trainData_cntk.txt"
 test_file = "testData_cntk.txt"

 input_Var = C.ops.input(input_dim, np.float32)
 label_Var = C.ops.input(output_dim, np.float32)
...

The meanings and values of the first five variables should be
clear to you. Variables input_Var and label_Var are created using
the built-in function named input, located in the cntk.ops package.
You can think of these variables as numeric matrices, plus some
special properties needed by CNTK.

The neural network is created with these statements:
print("Creating a 4-2-3 tanh softmax NN for Iris data ")
with default_options(init = glorot_uniform()):
 hLayer = Dense(hidden_dim, activation=C.ops.tanh,
 name='hidLayer')(input_Var)
 oLayer = Dense(output_dim, activation=C.ops.softmax,
 name='outLayer')(hLayer)
nnet = oLayer

The Dense function creates a fully connected layer of nodes.
You pass in the number of nodes and an activation function. The
name parameter is optional in general, but is needed if you want
to extract the weights and biases associated with a layer. Notice
that instead of passing an array of input values for a layer into the
Dense function, you append an object holding those values to the
function call.

When creating a neural network layer, you should specify how the
values for the associated weights and biases are initialized, using the
init parameter to the Dense function. The demo initializes weights

and biases using the Glorot (also called Xavier initialization) mini-
algorithm implemented in function glorot_uniform. There are several
alternative initialization functions in the cntk.initializer module.

The statement nnet = oLayer creates an alias for the output layer
named oLayer. The idea is that the output layer represents a single
layer, but also the output of the entire neural network.

Training the Neural Network
After training and test data have been set up, and a neural network
has been created, the next step is to train the network. The demo
program creates a trainer with these statements:

print("Creating a cross entropy mini-batch Trainer \n")
ce = C.cross_entropy_with_softmax(nnet, label_Var)
pe = C.classification_error(nnet, label_Var)

fixed_lr = 0.05
lr_per_batch = learning_rate_schedule(fixed_lr,
 UnitType.minibatch)
learner = C.sgd(nnet.parameters, lr_per_batch)
trainer = C.Trainer(nnet, (ce, pe), [learner])

The most common approach for measuring training error is to
use what’s called cross-entropy error, also known as log loss. The
main alternative to cross-entropy error for numeric problems
similar to the Iris demo is the squared_error function.

After training has completed, you’re more interested in classi-
fication accuracy than in cross-entropy error—you want to know
how many correct predictions the model makes. The demo uses
the built-in classification_error function.

There are several optimization algorithms that can be used to
minimize error during training. The most basic is called stochastic
gradient descent (SGD), which is often called back-propagation.
Alternative algorithms supported by CNTK include SGD with
momentum, Nesterov and Adam (adaptive moment estimation).

The mini-batch form of SGD reads in one subset of the training
items at a time, calculates the calculus gradients, and then updates
all weights and bias values by a small increment called the learning
rate. Training is often highly sensitive to the values used for the
learning rate. After a CNTK trainer object has been created, the
demo prepares training with these statements:

max_iter = 5000
batch_size = 5
progress_freq = 1000

reader_train = create_reader(train_file, True,
 input_dim, output_dim)
my_input_map = {
 input_Var : reader_train.streams.features,
 label_Var : reader_train.streams.labels
}
pp = ProgressPrinter(progress_freq)

The SGD algorithm is iterative, so you must specify a maximum
number of iterations. Note that the value for the mini-batch size
should be between 1 and the number of items in the training data.

The reader object for the trainer object is created by a call to
create_reader. The True argument that’s passed to create_reader tells
the function that the reader is going to be used for training data rather
than test data and, therefore, that the data items should be processed
in random order, which is important to avoid training stagnation.

The my_input_map object is a Python two-item collection. It’s
used to tell the reader object where the feature data resides (input_
Var) and where the label data resides (label_Var). Although you

0717msdn_McCaffreyCNTK_v4_22-28.indd 27 6/6/17 11:58 AM

http://www.msdnmagazine.com

msdn magazine28 Machine Learning

can print whatever information you wish inside the main training
loop, the built-in ProgressPrinter object is a very convenient way
to monitor training. Training is performed with these statements:

print("Starting training \n")
for i in range(0, max_iter):
 currBatch = reader_train.next_minibatch(batch_size,
 input_map = my_input_map)
 trainer.train_minibatch(currBatch)
 pp.update_with_trainer(trainer)
print("\nTraining complete")

In each training iteration, the next_minibatch function pulls a
batch (5 in the demo) of training items, and uses SGD to update
the current values of weights and biases.

Testing the Network
After a neural network has been trained, you should use the trained
model on the holdout test data. The idea is that given enough train-
ing time and combinations of learning rate and batch size, you can
eventually get close to 100 percent accuracy on your training data.
However, excessive training can over-fit and lead to a model that
predicts very poorly on new data.

print("\nEvaluating test data \n")
reader_test = create_reader(test_file, False, input_dim,
 output_dim)
numTestItems = 30
allTest = reader_test.next_minibatch(numTestItems,
 input_map = my_input_map)
test_error = trainer.test_minibatch(allTest)
print("Classification error on the 30 test items = %f"
 % test_error)

The next_minibatch function examines all 30 test items at once.
Notice that you can reuse the my_input_map object for the test
data because the mapping to input_Var and label_Var is the same
as to the training data.

Making Predictions
Ultimately, the purpose of a neural network model is to make
predictions for new, previously unseen data.

unknown = np.array([[6.9, 3.1, 4.6, 1.3]],
 dtype=np.float32)
print("\nPredicting Iris species for features: ")
my_print(unknown[0], 1) # 1 decimal
predicted = nnet.eval({input_Var: unknown})
print("Prediction is: ")
my_print(predicted[0], 3) # 3 decimals

The variable named unknown is an array-of-array-style numpy
matrix, which is required by a CNTK neural network. The eval func-
tion accepts input values, runs them through the trained model
using the neural network input-output process and the resulting
three probabilities (0.263, 0.682, 0.055) are displayed.

In some situations it’s useful to iterate through all test items and
use the eval function to see exactly which items were incorrectly
predicted. You can also write code that uses the numpy.argmax
function to determine the largest value in the output probabilities
and explicitly print “correct” or “wrong.”

Exporting Weights and Biases
The demo program concludes by fetching the trained model’s
weights and biases, and then displays them to the shell, as well as
saves them to a text file. The idea is that you can train a neural net-
work using CNTK, then use the trained model weights and biases
in another system, such as a C# program, to make predictions.

The weights and bias values for the hidden layer are displayed
like this:

print("\nTrained model input-to-hidden weights: \n")
print(hLayer.hidLayer.W.value)
print("\nTrained model hidden node biases: \n")
print(hLayer.hidLayer.b.value)

Recall that a CNTK network layer is a named object (hLayer),
but that an optional name property was passed in when the layer
was created (hidLayer). The tersely named W property of a
named layer returns an array-of-arrays-style matrix holding the
input-to-hidden weights. Similarly, the b property gives you the
biases. The weights and biases for the output layer are obtained
in the same way:

print("\nTrained model hidden-to-output weights: \n")
print(oLayer.outLayer.W.value)
print("\nTrained model output node biases: \n")
print(oLayer.outLayer.b.value)

The values of the (4 * 2) + (2 * 3) = 14 weights, and the (2 + 3) = 5
biases, are saved to text file, and function do_demo concludes, like so:

...
 save_weights("weights.txt", hLayer.hidLayer.W.value,
 hLayer.hidLayer.b.value, oLayer.outLayer.W.value,
 oLayer.outLayer.b.value)
 return 0 # success

The program-defined save_weights function writes one value
per line. The order in which the values are written (input-to-hidden
weights, then hidden biases, then hidden-to-output weights, then
output biases) is arbitrary, so any system that uses the values from
the weights file must use the same order.

Wrapping Up
If you’re new to neural networks, the number of decisions you have
to make when using CNTK might seem a bit overwhelming. You
need to decide how many hidden nodes to use, pick a hidden layer
activation function, a learning optimization algorithm, a training
error function, a training weight-initialization algorithm, a batch
size, a learning rate and a maximum number of iterations.

However, in most cases, you can use the demo program pre-
sented in this article as a template, and experiment mostly with the
number of hidden nodes, the maximum number of iterations, and
the learning rate. In other words, you can safely use tanh hidden
layer activation, cross-entropy for training error, Glorot initializa-
tion for weights and biases, and a training mini-batch size that is
roughly 5 percent to 10 percent of the number of training items.
The one exception to this is that instead of using the SGD training
optimization algorithm, even though it’s the most commonly used,
I suggest using the Adam algorithm.

Once you become familiar with CNTK basics, you can use the
library to build very powerful, advanced, deep neural network archi-
tectures such as convolutional neural networks (CNNs) for image
recognition and long short-term memory recurrent neural networks
(LSTM RNNs) for the analysis of natural language data.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products, including Internet Explorer and Bing. Dr.
McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Chris Lee and Sayan Pathak

0717msdn_McCaffreyCNTK_v4_22-28.indd 28 6/6/17 11:58 AM

mailto:jamccaff@microsoft.com

Untitled-6 1 2/8/16 11:12 AM

www.xceed.com

msdn magazine30

Data is an important asset for every business. Whether you’re
in the retail, health care, telecommunications, utilities or financial
businesses, you’re familiar with the following two use cases:

• �In an online transaction processing (OLTP) scenario, trans-
actional data is stored in a database. The transaction data is
produced by various line-of-business (LOB) applications.

• �In a data warehousing scenario, data is acquired from various
heterogeneous data sources, transformed and cleansed, and
loaded into data warehouses. The consolidated data provides
the single source of truth for business reporting and dash-
boards. At the same time, it also enables interactive analysis
via multi-dimensional online analytical processing (OLAP)
cubes, and tabular models.

Getting from raw data to insights empowers business decision
makers to gain a deeper understanding into each aspect of the
business and helps them react to new business situations quickly.
For example, consider a retail scenario. The business analyst
notices that sales are dropping for specific retail stores. The busi-
ness analyst wants to drill down to understand the details on
what’s causing the drop in sales. By being able to run the analysis
(aggregating, joining of data from multiple data sources, filtering

and so on) on a large amount of data, it enables deep analysis of
customer behavior and trends in the retail stores. Microsoft SQL
Server powers these mission-critical applications.

Many companies have started on digital transformation to mod
ernize their data platform to keep pace with the ever-growing
requirements on the type of data that needs to be stored and the
volume in which the data is being acquired.

As part of this digital transformation, advanced analytics plays
an important role. Specifically, companies have been either build-
ing up data science teams within their companies or leveraging
external resources to do data science. They use data science to
distill data assets into nuggets of gold that can help them proac-
tively deliver personalized customer experiences (personalized
Web sites, product recommendations, customer lifetime value and
so on), reduce downtime for equipment (predicting remaining
useful lifetime) and more. The potential use of data science and
how it can literally change businesses is exciting.

Some common use cases (non-exhaustive) of data science
include the following:

Identifying Loan Credit Risk: A lending institution (a credit
bureau) might want to leverage loan credit risk models to determine
the borrowers that are likely to default and reduce the number of
loans given to these high-risk borrowers.

Managing Customer Churn: Customer churn models have
been used extensively (in retail and by telecommunication provid-
ers). For example, customers leveraging mobile services offered by
telecommunication providers have a rich variety of choices and
can easily switch between service providers. Managing customer
churn is important to reduce customer acquisition costs and main-
tain a high-quality service. In addition, retail companies are using

MACH INE L E AR NING

Doing Data Science and
AI with SQL Server
Wee Hyong Tok

This article discusses:
•	Serving AI with data
•	Built-in AI capabilities of SQL Server
•	How to develop R/Python AI stored procedures

Technologies discussed:
SQL Server, R and Python Tools for Visual Studio, Data Science,
Artificial Intelligence, R and Python

0717msdn_TokR_v5_30-33.indd 30 6/7/17 8:12 AM

31July 2017msdnmagazine.com

churn models to predict customers that are most likely to churn
and to understand the key factors that lead to those churns.

Reducing Hospital Readmission: Reducing readmission rates
for various medical conditions (heart attack, pneumonia, coronary
artery bypass surgery, to name a few) is important to hospitals. In
the United States, hospitals face penalties if the readmission rate
is too high. Hospitals leverage predictive models for predicting
patients that are more susceptible to being readmitted within 30
days. This helps them understand the root causes for the 30-day
readmission, and helps them work toward addressing them.

This presents an exciting opportunity for database professionals
and developers to either work with data scientists, or put on a data
scientist hat to build predictive models that can help to assess credit
loan risk, manage customer churn, reduce hospital admissions and
more. The possibilities for developers to turn all these raw data
assets sitting in the database to golden, strategic insights is exciting.

This article shows how you can work with data science and
artificial intelligence (AI) with SQL Server. You’ll also learn how to
jump-start your journey of using R and Python with SQL Server.

Why Doing Data Science with SQL Server Matters
What does doing data science mean and why does it matter to the
database person? Today, most data scientists first figure out how
to connect to many data sources (databases included), bring the
data out from the database, and use the historical data to train and
subsequently test the machine learning models that they’ve built.

A typical approach used by data scientists is to read the data from
the database into the client that they’re using for building the model.
Once the data is read, they combine the data with other data sources.
For data scientists developing the models using R, packages like
dplyr are commonly used for performing aggregation, joins and
for filtering. With the data transformed into the right shape, data
scientists continue the data modeling process, and start doing fea-
ture engineering. As part of feature engineering, new features (such
as adding new columns in a SQL Server table) might get created,
existing features might get transformed (scaling it to -1 to 1, or 0
to 1, applying logarithmic transformation, computing the z-score,
binnning the data, and so on) or removed. Feature engineering
plays a very important role in laying the groundwork needed for
a good predictive model. Once all these steps are completed, the
data scientist develops the models and validates it using test data
before figuring out an operationalization plan for the model to be
deployed to production so that applications can consume them.

At this point, as a database person, you might ask, “Why do I
need to move the data out from the database to do data science?
Should we push the processing of joins and aggregations (Sum,
Min, Max and so on) into the database?”

Why does it make sense to do this in the database? First, data move-
ment is expensive. If the machine learning models can run where the
data is stored, this removes the need to move data between the database
and the client application. Second, a new working copy of the data is
extracted from the database and stored external to the database. The
implication is that many of the security policies and audits that apply
to data stored in the database can no longer be enforced. Third, if the
computation of joins and aggregations can be done where the data is

located, you can leverage decades of database innovations (leverag-
ing indexes—clustered and non-clustered, in-memory tables, column
stores, high-availability and so on). If training the model can be done
where the data is stored, it can lead to performance improvements.

In addition, if the data science project involves working with spa-
tial data, temporal data or semi-structured data, you can leverage SQL
Server capabilities that let you do this efficiently. For example, if you’re
working on a data science project (say a land-use classification problem)
where you must manipulate spatial data, the geography and geometry
data types in SQL Server will provide a good way to store the spatial
data. Once it’s stored as spatial data in SQL Server, you can leverage
SQL Server spatial functions to query for nearest neighbors, compute
the spatial distance using different spatial reference systems and more.
The spatial data can be indexed to facilitate efficient query processing.

As a database professional and developer, you have tremen-
dous knowledge and value to bring to a data science project. By
doing data science and AI where the data resides, there are many
benefits. These include being able to take advantage of the enterprise-
grade performance, scale, security and reliability that you’ve come
to expect from SQL Server over the years. More important, you
eliminate the need for expensive data movement.

Figure 1 illustrates the difference between doing data science
and AI outside of the database. From the application perspective,
a developer doesn’t need to learn new methods to tap the power of
AI teeming in SQL Server. It connects to it the same way it connects
to a database today, and invokes SQL Server-stored procedures,
which encapsulates the R or Python code. The stored procedure
has just become an intelligent AI stored procedure.

Another important consideration in data science projects is
operationalization. The predictive model that has been developed
by data scientists needs to be deployed into a production envi-
ronment for it to be used by applications. With the release of SQL
Server 2016 R Services, you can wrap R code as part of the stored
procedures. After training is done, the predictive models are stored
as varbinary(max) in a database table.

An application (.NET, Java, Node.js and more) would connect to SQL
Server and invoke the stored procedures to use the predictive model for
making predictions on new instances of data. Continuing the momen-
tum, SQL Server 2017 CTP2 added Python support. You now have the
best of multiple worlds: the ability to write code in R or Python, lever-
age the rich set of R and Python libraries for machine learning and
deep learning, and consume the predictive models in any application.

Figure 1 Doing Data Science and AI Where the Data Is Stored

Application + AI Application

Regular DB + App AI DB + App

Database AI in the
Database

vs.

0717msdn_TokR_v5_30-33.indd 31 6/7/17 8:12 AM

http://www.msdnmagazine.com

msdn magazine32 Machine Learning

Using Stored Procedures
for Machine Learning and AI
By encapsulating the machine learning and AI models as part of
the SQL Server stored procedure, it lets SQL Server serve AI with
the data. There are other advantages for using stored procedures for
operationalizing machine learning and AI (ML/AI). These include:

Applications can leverage existing database drivers to con-
nect to SQL Server: Many programming languages have database
drivers that enable them to connect to SQL Server. These database
drivers (OLEDB, ODBC, JDBC, MSPHPSQL and Node.js Driver
for SQL Server) are used by application developers to develop
cutting-edge applications that “talk” to SQL Server.

In addition, companies might have existing LOB applications that
are already operational. By leveraging ML/AI-stored procedures in
SQL Server, these LOB applications can easily evolve into intelli-
gent applications. With the R or Python code needed to work with
the ML/AI models encapsulated in stored procedures, application
developers can now leverage their ML/AI stored procedures as is
(without requiring new libraries or learning new database access
patterns). To the application layer, the intelligent ML/AI stored
procedure behaves just like any SQL Server stored procedure.

Being backed by the full spectrum of SQL Server enterprise-
ready capabilities: Some considerations include ...

• �Where can I host the model for doing inference?
• �Which users can access the ML/AI model?
• �When the model is used for prediction (aka “inference”), it

might need to access specific data in the database. In what
security context should the model and associated R/Python
code execute?

• �How can I ensure the R/Python code doesn’t use up all the
SQL Server resources?

SQL Server provides enterprise-
ready capabilities from using
row-level security to limit the data
that can be accessed, to providing
database admins with both server
and database scoped database
audits, to enabling ownership-
chaining for SQL Server secur-
able, to being able to sign stored
procedures with a certificate or asym-
metric key, resource governance
and more. These enterprise-ready
SQL Server capabilities can be
used by the ML/AI stored pro-
cedures as is, without requiring
the data scientist to reinvent the
wheel for serving data at scale.
Most important, the DBAs today
can leverage their existing skills
to secure and manage the ML/AI
stored procedures.

Mature development tools to
develop the ML/AI stored proce-
dure: As a database developer, you

can develop the stored procedure and the R and Python code in one
place: Visual Studio. With the availability of SQL Server Data Tools
for Visual Studio, R Tools for Visual Studio, and Python Tools for
Visual Studio, you can do development of the T-SQL, R, or Python
code, check it into a source control system, write unit tests, automate
testing, and perform code review, and more. Database developers and
data scientists can now work together to develop the ML/AI stored
procedures, each focusing on their respective areas of expertise.

Steps to Get Started with
SQL Server, Data Science and AI
There has never been a more exciting time and better opportunity
for us as database professionals and developers to work with data sci-
ence and AI with SQL Server. You can get started in three easy steps:

Install SQL Server 2016 or SQL Server 2017 CTP2.
When installing SQL Server 2017 CTP2, you select the type of
in-database machine learning services that you want to install.
You can choose to use R, Python or both. Once SQL Server
completes setup, you’ll be able to start using R or Python code as
part of stored procedures, as shown in Figure 2.

Note: If you’re using SQL Server 2016, only R-Services (In-
Database) will be shown at setup.

You can refer to bit.ly/2qXoyyC for more information on setting up
R and Python with SQL Server.

Enable external script. To use R or Python code in the stored
procedure, you’ll need to configure SQL Server to allow external
scripts. To enable external scripts, you’ll need to run the sp_config-
ure and reconfigure commands (after the T-SQL code is successfully
executed, you’ll need to restart the SQL Server service):

exec sp_configure 'external scripts enabled', 1
reconfigure with override

Figure 2 Using SQL Server 2017 CTP2 Setup to Install Machine Learning Services (In-Database)

0717msdn_TokR_v5_30-33.indd 32 6/7/17 8:12 AM

www.bit.ly/2qXoyyC

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!

Development Topics include:
REDMOND
AUGUST 14-18, 2017
MICROSOFT HEADQUARTERS

Register by July 14
and Save $300!
Use Promo Code VSLJULTI

vslive.com/redmond

➤ AngularJS
➤ ASP.NET Core
➤ Azure
➤ Analytics
➤ DevOps
➤ .NET Framework

➤ Software Practices
➤ SQL Server
➤ Visual Studio 2017
➤ Web API
➤ UWP
➤ Xamarin

MICROSOFT-LED SESSIONS: With all of the
announcements that came out of Build, we’ll
be fi nalizing the FULL Track of Microsoft-led
sessions shortly. Be sure to check vslive.com/
redmond for session updates.

SPACE IS LIMITED

SUNDAY, AUG 13: PRE-CON
HANDS-ON LABS
Choose From:
➤ Angular
➤ Dev Ops with

ASP.NET Core/EF Core
➤ SQL Server 2016

NEW!
Only
$645!

Scott Hanselman
to Keynote

Tuesday,
August 15!

0717msdn_VSLive_Insert.indd 1 6/5/17 10:32 AM

MSDN_Insert_placement_7.625x5.indd 1 6/22/17 4:53 PM

www.vslive.com/redmond

vslive.com/redmond

REDMOND
AUGUST 14-18, 2017
MICROSOFT HEADQUARTERS

➤ Rub elbows with blue badges

➤ Experience life on campus

➤ Enjoy lunch in the Commons and
visit the Company Store

➤ Networking event on Lake Washington,
Wednesday, August 16

➤ And so much more!

JOIN US AT MICROSOFT HEADQUARTERS THIS SUMMER

CONNECT WITH US twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

PRODUCED BYSUPPORTED BY

magazine

EVENT PARTNER GOLD SPONSORS

0717msdn_VSLive_Insert.indd 2 6/5/17 10:33 AM

MSDN_Insert_placement_7.625x5.indd 2 6/22/17 4:53 PM

www.vslive.com/redmond
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

33July 2017msdnmagazine.com

After running the commands, you’ll see the following output:
Configuration option 'external scripts enabled' changed from 1 to 1. Run
the RECONFIGURE statement to install.

Hello, AI! You’re now ready to do data science and AI with SQL
Server. Using either Visual Studio, Visual Studio Code or SQL Server
Management Studio, you can connect to the SQL Server instance with
R or Python. You can run the code provided in Figure 3 to make sure
that R and Python are installed correctly. The code will output “Hello AI.”

If you need to install additional R libraries, you should set
lib.SQL as the location of the SQL Server library. Similarly, if
you need to install additional Python libraries, you can do a pip
install of the relevant Python libraries and set the PYTHONPATH
to point to where Python has been installed.

You can find the default locations of the R library files at
<Drive>:\Program Files\Microsoft SQL Server\MSSQL14.MS-
SQLSERVER\R_SERVICES\library and Python library files at
<Drive>:\Program Files\Microsoft SQL Server\MSSQL14.MS-
SQLSERVER\PYTHON_SERVICES\library.

Let’s dive deeper into what’s in a stored procedure (with R code)
that’s used for training a customer churn classification model.
Figure 4 shows a stored procedure that trains a customer churn
classification model by building an ensemble of decision trees using
R. Figure 5 shows a similar stored procedure that trains a similar
churn model using Python. Database developers leverage familiar
skills of using T-SQL queries to select data from SQL server tables.
The data is used as inputs to the R or Python code.

Once the model is trained, it’s serialized and returned as varbi-
nary(max). The model can then be stored in a SQL Server table.

The complete sample code for a customer churn model can be
found at aka.ms/telcochurnsamples.

With SQL Server 2017 CTP2, you can run Python code in the
stored procedures. By supporting Python in SQL Server, it opens
up new opportunities for you to use many of the deep learning
toolkits (CNTK, TensorFlow and more), which provide Python
APIs. In addition, the deep-learning toolkits enable you to specify
the use of GPUs when training your model. You can now use SQL
Server 2017 to perform intensive deep-learning jobs on text, images,
and unstructured data that are stored in SQL Server, and then
operationalize and do inference with SQL Server. Very exciting!

Wrapping Up
SQL Server has evolved over the years into a top-notch, enterprise-
ready, scalable and hybrid data platform. This lets companies build
intelligent, mission-critical applications, backed by decades of
database innovations from indexes, spatial indexes, in-memory,
column stores, high availability, resource governance and more.
With the SQL Server 2017 release, with built-in R and Python
support, SQL Server is in a unique position to fuel innovations
that database professionals and developers can co-create with the
data science and AI communities. The possibilities are endless.	n

Wee Hyong has worn many hats in his career: developer, program/product man-
ager, data scientist, researcher and strategist. His gamut of experience spanning
industry and research has given him unique abilities to help organizations accel-
erate their digital transformations using data science and artificial intelligence.
You can follow him on Twitter: @weehyong.

Thanks to the following Microsoft technical expert for reviewing this article:
Joy Qiao

Code for R
exec sp_execute_external_script @language =N'R',
	 @script=N'OutputDataSet<-InputDataSet',
	 @input_data_1 =N'select ''Hello AI'' as txt'
	 with result sets (([txt] nvarchar(8)));
go

Code for Python
exec sp_execute_external_script @language =N'Python',
	 @script=N'OutputDataSet = InputDataSet',
	 @input_data_1 =N'select ''Hello AI'' as txt'
	 with result sets (([txt] nvarchar(8)));

Figure 3 Code to Ensure R and Python Are Installed Correctly

CREATE PROCEDURE trainRDecisionForestModel AS
 BEGIN
 execute sp_execute_external_script @language = N'R',
 @script = N'
 require("RevoScaleR");
 labelVar = "churn"
 trainVars <- rxGetVarNames(telcoCDR_Data_train)
 trainVars <- trainVars[!trainVars %in% c(labelVar)]

 temp <- paste(c(labelVar, paste(trainVars, collapse = "+")), collapse = "~")
 formula <- as.formula(temp)
 rx_forest_model <- rxDForest(formula = formula,
 data = telcoCDR_Data_train,
 nTree = 8, maxDepth = 32, mTry = 2,
 minBucket=1, replace = TRUE, importance = TRUE,
 seed=8, parms=list(loss=c(0,4,1,0)))

 rxDForest_model <- data.frame(
 payload = as.raw(serialize(rx_forest_model, connection=NULL))); '
 @input_data_1 = N'select * from telcoCDR_Data_train'
 @input_data_1_name = N'telcoCDR_Data_train'
 @output_data_1_name = N'rxDForest_model'
 with result sets ((model varbinary(max)));
end;

Figure 4 Creating a Stored Procedure
to Train a Decision Forest Model Using R

CREATE PROCEDURE trainPythonRandomForestModel (@trained_model
varbinary(max) OUTPUT) AS
 BEGIN
 execute sp_execute_external_script @language = N'Python',
 @script = N'
 df = churn_train_data

 # Get all the columns
 columns = df.columns.tolist()

 # Specify the label column
 target = "churn"
		
 import numpy as np
 from sklearn.ensemble import RandomForestClassifier

 churn_model = RandomForestClassifier(n_estimators=20, max-depth=5)
 churn_model.fit(df[columns], df[target])

 import pickle

 #Serialize the model as a binary object
 trained_model = pickle.dumps(lin_model)

 @input_data_1 = N'select "TotalMinutesUsedLastMonth", "State",
 "CallDropRate", "UnPaidBalance", "TotalCallDuration", "TotalDataUsageMB"
 from dbo.telco_churn_data where Year = 2017'
 @input_data_1_name = N'churn_train_data'
 @params = N'@trained_model varbinary(max) OUTPUT'
 @trained_model = @trained_model OUTPUT;
END;

Figure 5 Creating a Stored Procedure to
Train a Random Forest Model Using Python

0717msdn_TokR_v5_30-33.indd 33 6/7/17 8:12 AM

http://aka.ms/telcochurnsamples
www.twitter.com/weehyong
http://www.msdnmagazine.com

msdn magazine34

In a multi-tier application, bottlenecks can occur at any
of the connection points between two tiers: at business logic and
data access layers, client and service layers, presentation and storage
layers, and so on. Large-scale applications can implement various
levels of caching of information for improving performance and
increasing scalability. Caching can be configured in memory or
on some more permanent form of storage, in different sizes, and
in diverse geographic locations. The open source Redis engine, as
implemented in Azure, lets you intuitively configure and manage
all these aspects, and use a variety of programming languages.

This article presents design best practices and code examples
for implementing the Azure Redis Cache and tuning the per-
formance of ASP.NET MVC applications, optimizing cache hit
ratio and reducing “miss rate” with smart algorithms processed by
Azure Machine Learning.

Azure Redis Cache
Let’s start by saying that Redis is not a Microsoft product. Redis is
an open source project freely available for download from the Web
site redis.io. Everyone can download the cache engine and install it on
their servers. But Microsoft offers this, and much more, as a service
in Azure. You can create a new Redis Cache instance in Azure in a
few minutes and be ready to connect to it from your application.

What makes Redis different from other caching frameworks is
its support for specialized data types, besides the typical key-value
string pair, common in other cache engine implementations. You
can run atomic operations on these types, such as appending to a
string, incrementing the value in a hash, pushing an element to a
list, computing set intersection, union and difference, or getting
the member with highest ranking in a sorted set.

From an operational perspective, the Redis implementation in Azure
lets you replicate cache instances in a two-node primary/secondary
configuration, entirely managed by Microsoft. Redis also supports
master-subordinate replication, with fast non-blocking first synchro-
nization, auto-reconnection on net split, and so forth. Just to expand
on the replication feature, which, for me, is a differentiation point:

• �Redis replication is non-blocking on the master side. This
means that the master will continue to handle queries when
one or more slaves perform the initial synchronization.

• �Replication is non-blocking on the slave side. While the
slave is performing the initial synchronization, it can handle
queries using the old version of the dataset.

Optionally, Redis supports persistence. Redis persistence lets
you save data stored in Redis cache permanently to an allocated

MACH INE L E AR NING

Scale Applications
with Microsoft Azure
Redis Cache and
Machine Learning
Stefano Tempesta

This article discusses:
•	Connecting to an instance of Redis Cache in Azure
•	Typical Cache Design Patterns
•	Demand Estimation in Azure Machine Learning
•	Consuming an Azure Machine Learning Web service

Technologies discussed:
Microsoft Azure Redis Cache and Machine Learning,
ASP.NET MVC, Linear Regression

Code download available at:
bit.ly/2qkV65u

0717msdn_TempestaRedis_v3_34-42.indd 34 6/6/17 11:49 AM

www.bit.ly/2qkV65u

35July 2017msdnmagazine.com

storage in Azure. You can also take snapshots and back up the data,
which you can reload in case of a failure.

Last, Azure Redis Cache comes with important monitoring
capabilities that, when enabled, provide insights on the utilization
of the cache, in terms of cache hits and misses, used storage, and
so on, as shown in Figure 1.

Connecting to Redis Cache in .NET
Once Redis Cache is configured in Azure, you define a unique
URL to access it from a software application and obtain a key for
authentication. These two pieces of information are necessary
to establish a connection to the Redis Cache engine from your
application. Let’s build an ASP.NET MVC application then, which
stores objects in Redis Cache.

A common option for storing the cache access credentials
is the Web.config file of the ASP.NET MVC application. In the
<appSettings> section, you can simply add a key:

<add key="CacheConnection" value="<instance-
 name>.redis.cache.windows.net,abortConnect=true,ssl=false,password=<instance-key>"/>

Parameter abortConnect is set to true, which means that the call
won’t succeed if a connection to the Azure Redis Cache can’t be
established. You might opt for a secured connection over HTTPS
by setting the ssl parameter to true.

You also need to add one of the following NuGet packages to
your projects:

• �StackExchange.Redis: A .NET implementation of a Redis
Cache client, which provides an easy-to-use interface to
Redis commands.

• �Newtonsoft.Json: The popular JSON framework for dese-
rializing objects to JSON and allowing storage in a Redis
Cache database.

In its simplified implementation, the MVC application stores
and retrieves contact details from the Redis Cache by defining
CRUD actions in a Controller. If the object isn’t found in the cache,
it will be restored from the database and then stored in the cache
for future access.

Your Contact model is defined as follows, with a few properties
to enter name, e-mail address and
country of origin:

public class Contact
{
 public Guid Id { get; set; }

 [DisplayName("Contact Name")]
 public string Name { get; set; }

 [DataType(DataType.EmailAddress)]
 public string Email { get; set; }

 public string Country { get; set; }
}

You now add a new Contacts
Controller to the application,
choosing to add views using Entity
Framework. As you’ll see, however,
you’ll add a layer of fetching data
from the cache first, before hitting
the database.

Connecting to the Redis Cache,
then, is purely a matter of defining

a connection using the connection string stored in the Web.config
file. Your ContactsController class will look something like this:

public class ContactsController : Controller
{
 static string cacheConnectionString =
 ConfigurationManager.AppSettings["CacheConnection"].ToString();

 ConnectionMultiplexer connection =
 ConnectionMultiplexer.Connect(cacheConnectionString);

Now, this is far from being a good practice for defining a connec-
tion to any storage system, as hardcoding the ConnectionMultiplexer
class inside the Controller’s code clearly creates a highly coupled
dependency. Ideally, you’d inject this dependency using an Inversion
of Control library. However, for the sake of keeping things simple and
straight in this example, the ConnectionMultiplexer class is all you
need to obtain a connection to an instance of Redis Cache. The Con-
nectionMultiplexer, defined in the StackExchange.Redis namespace,
works as a factory by exposing a static Connect method, and returning
an instance of itself as a live connection to the defined Redis Cache.

A different approach to sharing a ConnectionMultiplexer instance
in your application is to have a static property that returns a con-
nected instance. This provides a thread-safe way to initialize only
a single connected ConnectionMultiplexer instance, which can be
shared in a singleton class. By masking the ConnectionMultiplexer
behind a Lazy object, you also obtain just-in-time (JIT) allocation
of the connection when actually used by a Controller’s action:

static Lazy<ConnectionMultiplexer> lazyConnection =
 new Lazy<ConnectionMultiplexer>(() =>
{
 return ConnectionMultiplexer.Connect(cacheConnectionString);
});

static ConnectionMultiplexer Connection => lazyConnection.Value;

Reading from and Writing to a Redis Cache Instance
Now that you’ve established a connection to a Redis Cache
instance, you can access it in the read-and-write actions of the MVC
Controller. The Get method of a ContactManager class checks for
an instance of the object identified by its ID in cache, and if not
found, will retrieve it from the database and allocate it in Redis for
future access, as shown in Figure 2.

Figure 1 Redis Insights in Microsoft Azure

0717msdn_TempestaRedis_v3_34-42.indd 35 6/6/17 11:49 AM

http://www.msdnmagazine.com

Untitled-7 2 6/5/17 1:38 PM

www.textcontrol.com
www.reporting.cloud

Untitled-7 3 6/5/17 1:38 PM

www.textcontrol.com

msdn magazine38 Machine Learning

From the cache context, which identifies a connection to Redis
Cache, you’ll obtain a reference to the data storage inside Redis
itself, through the GetDatabase method. The returned IDatabase
object is a wrapper around the Redis cache commands. Specifically,
the HashGet method executes the HGET command (bit.ly/2pM0O00)
to retrieve an object stored against the specified key (the object ID).
The HGET command returns the value identified by a unique key
in a named hash collection, if existing, or a null value otherwise.
As key in the cache, you can use the object’s ID (a GUID),
consistently with the same ID stored at database level, and
managed by Entity Framework.

If an object is found at the indicated key, it’s deserial-
ized from JSON into an instance of the Contact model.
Otherwise, the object is loaded from the database, using
the Entity Framework Find by ID, and then stored in cache
for future use. The HashSet method, and more precisely
its async variant, is used for storing a JSON serialized ver-
sion of the Contact object.

Similar to this approach, the other CRUD methods are
implemented around the HashSet method for creating
and updating objects in Redis Cache, and the HashDelete
method for removing them.

The complete source code is available in the associated
code download at bit.ly/2qkV65u.

Cache Design Patterns
A cache typically contains objects that are used most fre-
quently, in order to serve them back to the client without
the typical overhead of retrieving information from a
persistent storage, like a database. A typical workflow for
reading objects from a cache consists of three steps, and
is shown in Figure 3:

1. �A request to the object is initiated by the client
application to the server.

2. �The server checks whether the object is already available in
cache, and if so, returns the object immediately to the client
as part of its response.

3. �If not, the object is retrieved from the persistent storage,
and then returned to the client as in Step 2.

In both cases, the object is serialized for submission over the
network. At cache level, this object might already be stored in
serialized format, to optimize the retrieval process.

You should note that this is an intentionally simplified process.
You might see additional complexity if you check for cache expi-
ration based on time, dependent resources and so on.

This configuration is typically called a Level 1 (L1) cache, as it
contains one level of cache only. L1 caches are normally used for
Session and Application state management. Although effective, this
approach isn’t optimal when dealing with applications that move
large quantities of data over multiple geographies, which is the
scenario that we want to optimize. First of all, large data requires
large caches to be effective, which in turn are memory-intensive,
thus requiring expensive servers with a big allocation of volatile
memory. In addition, syncing nodes across regions implies large
data transfers, which, again, is expensive and introduces delays in
availability of the information in the subordinate nodes.

A more efficient approach to caching objects in data-intensive
applications is to introduce a Level 2 (L2) cache architecture, with a
first cache smaller in size that contains the most frequently accessed
objects in the larger dataset, and a second cache, larger in size, con-
taining the remaining objects. When the object isn’t found in the
first-level cache, it’s retrieved from the second level, and eventually
refreshed periodically from the persistent storage. In a geographically

public async Task<Contact> Get(Guid id)
{
 IDatabase cache = cacheContext.GetDatabase();

 var value = cache.HashGet(cacheKeyName, id.ToString());

 // Return the entry found in cache, if any
 // HashGetAsync returns a null RedisValue if no entry is found
 if (!value.IsNull)
 {
 return JsonConvert.DeserializeObject<Contact>(value.ToString());
 }

 // Nothing found in cache, read from database
 Contact contact = databaseContext.Contacts.Find(id);

 // Store in cache for next use
 if (contact != null)
 {
 HashEntry entry = new HashEntry(
 name: id.ToString(),
 value: JsonConvert.SerializeObject(contact));
 await cache.HashSetAsync(cacheKeyName, new[] { entry });
 }

 return contact;
}

Figure 2 Get Method in the ContactManager Class

Figure 3 Level 1 Cache Workflow

Request ResponseSerialized
Object

YES

NO

Object in
Cache?

Database

Figure 4 Level 2 Cache Workflow

Request ResponseSerialized
Object

YES

YES

NO

Object in
L1 Cache?

Object in
L2 Cache?

NO

Database

0717msdn_TempestaRedis_v3_34-42.indd 38 6/6/17 11:49 AM

www.bit.ly/2pM0O00
www.bit.ly/2qkV65u

39July 2017msdnmagazine.com

distributed environment, the L2 caches are synced
across datacenters, and the L1 cache resides on
the master server, as shown in Figure 4.

The challenge, then, is to define what goes in
the L1 cache, what goes in the L2 cache, and with
what frequency the regional nodes should be synced to optimize
performance and storage of the cache instances. Performance of a
cache is measured as “hit ratio” and “miss ratio.” The hit ratio is the
fraction of accesses that are a hit (object found in cache) over all of the
requests. The miss ratio is the fraction of accesses that are a miss (object
not found in cache), or the remaining of the hit ratio to 100 percent.

With a mathematical formula, you can express the hit ratio as
that shown in Figure 5.

The miss ratio is expressed as “1 - hit ratio.”
To optimize the performance of a cache instance, you want to

increase the hit ratio and decrease the miss ratio. Irrespective of
adopting an L1 or L2 cache architecture, there are different
techniques for improving a cache performance, by pre-fetching
data in cache on a regular basis to JIT caching, or allocation of the
most used objects based on counters.

A prediction technique based on a machine learning algo-
rithm is called Demand Estimation. Based on patterns of usage of
objects, the Demand Estimation algorithm predicts the likelihood
that an object will be used and, therefore, it can be allocated in
cache before a request is submitted to increase the chance of a hit.

I’ll focus on the implementation of the Demand Estimation machine
learning algorithm in the context of a data-oriented application,
observing what objects are typically accessed, and populating the cache
with the most used ones, as predicted by the algorithm’s outcome.

Machine Learning
Machine learning is a technique of data science that helps computers
learn from existing data in order to forecast future behaviors, out-
comes and trends. A machine learning system is one that uses data to
make a prediction of some sort. Common techniques include logistic
regression and neural network classification. Note that artificial intel-
ligence (AI) is closely related, but generally refers to predictions that
are associated with human behavior such as vision and speech. These
predictions can make applications look
smarter. For example, when you shop
online, machine learning services might
recommend other products you’d like
based on what you’ve already purchased.
When your credit card is swiped, another
machine learning service compares your
transaction against a database of millions
of transactions for an anomaly of behav-
iors and helps detect a potential fraud.

In the context of a data-oriented
application, you start from analyzing the
hit ratio in the implemented cache and
easily identify some patterns of regular
access to specific objects over a period
of time, as shown in Figure 6. For each
object type (Contact, Interest, Brochure

and so on), you can also drill down to the indi-
vidual objects allocated over time and have better
insights on the elapsing data flow of your appli-
cation. But say your business is very seasonal
and seasons change according to geography, and

specific campaigns might influence traffic, too. So how do you scale
your cache hit estimation and create a cache of objects that are most
commonly accessed under certain conditions? You implement pre-
dictive analysis and demand estimation in Azure Machine Learning.

Predictive analytics uses math formulas that analyze historical
data to identify patterns of use to forecast future demand. For
your machine learning model to provide predictions, the model
must first learn from known data in a process known as “training.”
During training, data is evaluated by the machine learning algo-
rithm, which analyzes the distribution and type of data, looking
for rules and patterns that can be used in later prediction.

Once the training phase is completed, “scoring” is the process of
applying a trained model to new data to generate predictions. Making
predictions, though, might be error-prone, also for machines. Would
the predicted data have a good proportion of true results to total cases,
or have high accuracy (a characteristic called “generalization”)? Or
would it be consistent with the patterns identified in the historical
data and give consistent results (“precision”)? You need to quality
check your prediction. “Evaluation” is the QA of the scoring process.

Demand Estimation in
Azure Machine Learning Studio
Azure Machine Learning Studio is a cloud predictive analytics service
that makes it possible to quickly create and deploy predictive mod-
els as analytics solutions. It’s possible to work from a ready-to-use
library of algorithms or start with a blank experiment, use them to
create models, and deploy the predictive solution as a REST ser-
vice. Azure Machine Learning Studio is available at studio.azureml.net.

The entire process, or “project” in Azure Machine Learning
Studio, consists of the following:

• �Importing your initial dataset; that is, the data on which
the training process will be based. For our example, it’s page
views over time and by region.

Figure 6 Cache Hits by Object Type

Figure 5 Hit Ratio

0717msdn_TempestaRedis_v3_34-42.indd 39 6/6/17 11:49 AM

http://studio.azureml.net
http://www.msdnmagazine.com

msdn magazine40 Machine Learning

• �Defining the Machine Learning “experiment” that will gen-
erate the estimated outcome by choosing the appropriate
algorithm for the process.

• �Executing the Training, Scoring and Evaluation processes
to build the predictive model.

• �Deploying a REST service that external applications can con-
sume to obtain the predicted outcome “as a service.” This is
pure Machine Learning as a Service (MLaaS).

Let’s go through these steps in detail.

Dataset
To develop and train a predictive analytics solution in Azure
Machine Learning Studio, it’s necessary to import a dataset to
analyze. There are several options for importing data and using it
in a machine learning experiment:

1. �Upload a local file. This is a manual task. Azure Machine
Learning Studio, at the time of this writing, supports the
upload of .csv and .tsv files, plain text (.txt), SVM Light
(.svmlight), Attribute Relation File Format (.arff), R Object
or Workspace (.RData), and .zip files.

2. �Access data from an existing data source. The currently
supported data sources are a Web URL using HTTP,
Hadoop using HiveQL, Azure Blob or Table storage, Azure
SQL Database or SQL Server on Azure Virtual Machine,
on-premises SQL Server database, and any OData feed.

3. �From another Azure Machine Learning experiment saved
as a dataset.

More information about importing training data into Azure
Machine Learning Studio from various data sources is available
at bit.ly/2pXhgus.

Experiment
Once the dataset is available, and assuming you
call it “cache hits,” it’s possible to build the machine
learning experiment that will analyze data, identify
patterns of usage of objects in cache and forecast
the future demand. This estimation, expressed as
a number of hits under certain conditions, will be
used for populating the L2 cache in Redis.

Building a new experiment consists of defining a
flow of tasks that are executed by the machine learning
engine. In its more linear representation, a demand
estimation experiment includes the following steps:

• �Add the dataset as the starting point of the
experiment. On the left-hand panel, existing
datasets are available under Saved Datasets |
My Datasets.

• �Optionally, apply a transformation to the
existing dataset. This can be done for several
reasons, including data cleansing or improv
ing data accuracy. You’ll use the Select
Columns in Dataset (bit.ly/2qTUQZ3) and the
Split Data (bit.ly/2povZKP) modules to reduce
the number of columns to analyze, and
divide your dataset into two distinct sets.

This is a necessary step when you want to separate data into
training and testing sets, so that you can evaluate a model
on a holdout dataset. The two modules are available under
the Data Transformation section.

• �You can now train the model on the first split of the dataset
by adding the Train Model (bit.ly/2qU2J0N) module as a next
step in the experiment flow, and connect it to the left-hand
side connection point of the Split Data module (the fraction
of rows to consider for training). The Train Model module
can be found under Machine Learning | Train. In the Column
Set option, select the label column in the training dataset.
The column should contain the known values for the class or
outcome you want to predict. This is a numeric data type, in
the example project the cache hits by object, on a given day.

• �Training a model requires to connect and configure one of
the classifications or regression models provided in Azure
Machine Learning Studio. You’ll use the Linear Regression
(bit.ly/2qj01ol) module available in the Machine Learning |
Initialize Model | Regression section.

Linear Regression
When a value is predicted, as with cache hits, the learning process
is called “regression.” Training a regression model is a form of
supervised machine learning (bit.ly/2qj01ol). That means you must
provide a dataset that contains historical data from which to learn
patterns. The data should contain both the outcome you’re trying
to predict, and related factors (variables). The machine learning
model uses the data to extract statistical patterns and build a model.

Regression algorithms (bit.ly/2qj6uiX) are algorithms that learn
to predict the value of a real function for a single instance of data.

Figure 7 Cache Hits Estimation Experiment

0717msdn_TempestaRedis_v3_34-42.indd 40 6/6/17 11:49 AM

www.bit.ly/2pXhgus
www.bit.ly/2qTUQZ3
www.bit.ly/2povZKP
www.bit.ly/2qU2J0N
www.bit.ly/2qj01ol
www.bit.ly/2qj01ol
www.bit.ly/2qj6uiX

US: +1 903 306 1676
EU: +44 141 628 8900
AU: +61 2 8006 6987

Contact Us:

sales@asposeptyltd.com

GroupDocs.Total

.NET Libraries Java Libraries Cloud APIs

APIs to view, export, annotate, compare, sign,
automate and search documents in your
applications.

Manipulating Files?

Visit us at www.groupdocs.com

Try for Free

Untitled-8 1 1/5/17 2:06 PM

http://www.groupdocs.com
mailto:sales@asposeptyltd.com

msdn magazine42 Machine Learning

These algorithms can incorpo-
rate input from multiple features
by determining the contribution
of each feature of the data to the regression function. Once the
regression algorithm has trained a function based on already
labeled data, the function can be used to predict the label of a new
(unlabeled) instance. More information on how to choose algo-
rithms for Azure Machine Learning is available at bit.ly/2gsO6PE.

Scoring and Evaluation
“Scoring” is the process of applying a trained model to new data
to generate predictions and other values. The Score Model mod-
ule (bit.ly/1lpX2Ed), available in the Machine Learning | Score | Score
Model section, will predict the number of cache hits according to
the selected features, as shown in Figure 7.

After the Scoring step, you can now connect the scored dataset to
the Evaluate Model module (bit.ly/1SL05By) to generate a set of metrics
used for evaluating the model’s accuracy (performance). Consider the
Evaluation step as your QA process: You want to make sure that the
predicted values are as accurate as possible by reducing the amount
of error. A model is considered to fit the data well if the difference
between observed and predicted values is small. The Evaluate Model
module is available in the Machine Learning | Evaluate section.

Service
A prediction of cache hits would be pointless if you couldn’t access
this information and use it to optimize the pre-allocation of
objects in cache. Access to the outcome of the predictive experi
ment is via a Web service that Azure Machine Learning generates
and hosts at a public URL. It’s a REST endpoint that accepts a POST
request, with an authorization bearer in the header, and a JSON
input message in the body.

The authorization bearer is a key that authorizes a client appli
cation to the consumer service. The request body contains the
input parameters to pass to the service, as specified in the predic-
tive experiment. The format looks like that shown in Figure 8.

The service’s response is a JSON message containing the scored
label, as shown in Figure 9.

Using HttpClient for establishing an HTTP connection to the service,
it’s trivial to access the Web service and read the predicted outcome:

• �Input parameters are passed as a collection of strings.
• �The API key is assigned a bearer value in the request’s header.
• �The message is sent to the endpoint as a POST in JSON format.
• �The response is read as a string, again in JSON format.

Figure 10 shows the code input for consuming the Machine
Learning Service in the Microsoft .NET Framework.

The full source code is available at bit.ly/2qz4gtm.

Wrapping Up
Observing cache hits for objects over several weeks generated a
dataset that could be used in a machine learning project to iden-
tify access patterns and predict future demand. By exposing a Web
service that can be consumed by an external integration workflow
(running on Azure Logic Apps, for example), it’s possible to obtain
predictions of demand on specific objects and pre-allocate them
in Redis cache before they’re requested in order to minimize miss
ratio. The observed improvement was of nearly 20 percent better
hit ratio, passing from about 60 percent to almost 80 percent in
the L2 cache. This has helped sizing the L2 cache accordingly, and
by using the regional syncing capability of Azure Redis Cache,
its minimized sync time between distributed nodes by a similar
proportion (20 percent shorter duration).	 n

Stefano Tempesta is a Microsoft MVP and technology ambassador, as well as a
chapter leader of CRMUG for Italy and Switzerland. A regular speaker at inter-
national conferences, including Microsoft Ignite, NDC, API World and Developer
Week, Tempesta’s interests span across cloud, mobile and Internet of Things. He
can be reached via his personal Web site at tempesta.space.

Thanks to the following Microsoft technical expert for reviewing this article:
James McCaffrey

{
 "Inputs": {
 "inputData": {
 "ColumnNames": [
 ...
],
 "Values": [
 [
 ...
],
 [
 ...
]
]
 }
 },
 "GlobalParameters": {}
}

Figure 8 Request Body of the
Machine Learning Service

{
 "Results": {
 "outputData": {
 "type": "DataTable",
 "value": {
 "ColumnNames": [
 "Scored Labels"
],
 "ColumnTypes": [
 "Numeric"
],
 "Values": [
 [
 "0"
],
 [
 "0"
]
]
 }
 }
 }
}

Figure 9 Response Body of
the Machine Learning Service

using (var client = new HttpClient())
{
 var scoreRequest = new
 {
 Inputs = new Dictionary<string, StringTable>() {
 {
 "inputData",
 new StringTable()
 {
 ColumnNames = new string[] { "Date", "Object", "Hits" },
 Values = new string[,] { { "YYYY/MM/DD", "GUID", "#" } }
 }
 },
 },
 GlobalParameters = new Dictionary<string, string>()
 {
 }
 };

 client.DefaultRequestHeaders.Authorization =
 new AuthenticationHeaderValue("Bearer", apiKey);
 client.BaseAddress = new Uri(serviceEndpoint);

 HttpResponseMessage response =
 await client.PostAsJsonAsync(string.Empty, scoreRequest);

 if (response.IsSuccessStatusCode)
 {
 string result = await response.Content.ReadAsStringAsync();
 }
}

Figure 10 Consuming the Machine Learning
Service in the Microsoft .NET Framework

0717msdn_TempestaRedis_v3_34-42.indd 42 6/6/17 11:49 AM

www.bit.ly/2gsO6PE
www.bit.ly/1lpX2Ed
www.bit.ly/1SL05By
www.bit.ly/2qz4gtm
www.tempesta.space

Untitled-4 1 6/7/17 4:44 PM

www.nevron.com
mailto:email@nevron.com

REDMOND
AUGUST 14-18, 2017
MICROSOFT HEADQUARTERS

Rub elbows with blue badges
Experience life on campus
Enjoy lunch in the Commons and visit the Company Store
Networking event on Lake Washington, Wednesday,
August 16
And so much more!

JOIN US AT MICROSOFT HEADQUARTERS
THIS SUMMER

SPACE IS LIMITED

SUNDAY, AUG 13: PRE-CON
HANDS-ON LABS
Choose From:

 Angular
 Dev Ops with
ASP.NET Core/EF Core
 SQL Server 2016

NEW!
Only
$645!

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BYGOLD SPONSORS

Untitled-9 2Untitled-9 2 6/8/17 4:28 PM6/8/17 4:28 PM

www.vslive.com/redmondmsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!

“I liked that there was representation of Android and iOS, as well as, Microsoft.
I prefer working with Microsoft tech/code but can’t ignore Android and iOS.”
 – Chris Nacey, Site Crafting

– David Campbell, G3 Software

Development Topics include:
AngularJS
ASP.NET Core
Azure
Analytics
DevOps
.NET Framework

Software Practices
SQL Server
Visual Studio 2017
Web API
UWP
Xamarin TURN THE PAGE FOR FULL AGENDA DETAILS

vslive.com/redmondmsdn

Register by July 14
and Save $300*
Use promo code VSLRED2
*Savings based on 5 day packages only.

Untitled-9 3Untitled-9 3 6/8/17 4:29 PM6/8/17 4:29 PM

www.vslive.com/redmondmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

REDMOND
AUGUST 14-18, 2017
MICROSOFT HEADQUARTERS

START TIME END TIME

8:00 AM 9:00 AM

9:00 AM 6:00 PM

START TIME END TIME

7:00 AM 8:00 AM

8:00 AM 12:00 PM

12:00 PM 2:00 PM

2:00 PM 5:30 PM

7:00 PM 9:00 PM

START TIME END TIME

7:30 AM 8:00 AM

8:00 AM 9:15 AM

9:30 AM 10:45 AM

10:45 AM 11:15 AM

11:15 AM 12:15 PM

12:15 PM 1:30 PM

1:30 PM 2:45 PM

3:00 PM 4:15 PM

4:15 PM 5:45 PM

START TIME END TIME

7:30 AM 8:00 AM

8:00 AM 9:15 AM

9:30 AM 10:45 AM

11:00 AM 12:00 PM

12:00 PM 1:30 PM

1:30 PM 2:45 PM

2:45 PM 3:15 PM

3:15 PM 4:30 PM

6:15 PM 8:30 PM

START TIME END TIME

7:30 AM 8:00 AM

8:00 AM 9:15 AM

9:30 AM 10:45 AM

11:00 AM 12:15 PM

12:15 PM 2:15 PM

2:15 PM 3:30 PM

3:45 PM 5:00 PM

START TIME END TIME

7:30 AM 8:00 AM

8:00 AM 5:00 PM

MICROSOFT SET LIST: DETAILS
DROPPING SOON!
With all of the announcements sure to come

of Microsoft-led sessions shortly.

Microsoft Speakers are noted with a

Be sure to check vslive.com/redmondmsdn
for session updates!

Register by July 14
and Save $300*
Use promo code VSLRED2

Explore the Microsoft Campus
during Visual Studio Live!
Redmond 2017!

Scott Hanselman,
Keynote Speaker

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BYGOLD SPONSORS

*Savings based on 5 day packages only.

Untitled-9 4Untitled-9 4 6/8/17 4:29 PM6/8/17 4:29 PM

www.vslive.com/redmondmsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/redmondmsdn

REDMOND AGENDA AT-A-GLANCE
Microsoft

Set List
ALM /

DevOps
Cloud

Computing
Database and

Analytics
Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

Full Day Hands-On Labs: Sunday, August 13, 2017 (Separate entry fee required)

Pre-Conference HOL Workshop Registration - Coffee and Morning Pastries

HOL01 Full Day Hands-On Lab: Busy Developer’s
HOL on Angular - Ted Neward

HOL02 Full Day Hands-On Lab: DevOps with ASP.NET Core
and EF Core - Benjamin Day & Brian Randell

HOL03 Full Day Hands-On Lab: Developer Dive
into SQL Server 2016 - Leonard Lobel

Visual Studio Live! Pre-Conference Workshops: Monday, August 14, 2017 (Separate entry fee required)

Pre-Conference Workshop Registration - Coffee and Morning Pastries

M01 Workshop: Modern Security Architecture
for ASP.NET Core - Brock Allen

M02 Workshop: Distributed Cross-Platform Application
Architecture - Jason Bock & Rockford Lhotka

M03 Workshop: Big Data, BI and Analytics
on The Microsoft Stack - Andrew Brust

Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

M01 Workshop Continues - Brock Allen M02 Workshop Continues - Jason Bock & Rockford Lhotka M03 Workshop Continues - Andrew Brust

Dine-A-Round Dinner

Visual Studio Live! Day 1: Tuesday, August 15, 2017
Registration - Coffee and Morning Pastries

T01 Go Mobile With C#,
Visual Studio, and Xamarin

- James Montemagno

T02 Angular 101: Part 1
- Deborah Kurata

T03 New SQL Server 2016
Security Features for

Developers - Leonard Lobel

T04 What’s New in
Visual Studio 2017

- Robert Green

T05 Microsoft Set List:
Details Dropping Soon

T06 Building Connected and
Disconnected Mobile Apps

- James Montemagno

T07 Angular 101: Part 2
- Deborah Kurata

T08 No Schema, No Problem!
Introduction to Azure

DocumentDB - Leonard Lobel

T09 Getting to the Core of
.NET Core - Adam Tuliper

T10 Microsoft Set List:
Details Dropping Soon

Sponsored Break - Visit Exhibitors

KEYNOTE: Microsoft’s Open Source Developer Journey – , Principal Community Architect for Web Platform and Tools, Microsoft

Lunch - Visit Exhibitors

T11 Take the Tests: Can You Evaluate
Good and Bad Designs? - Billy Hollis

T12 Assembling the Web - A Tour of
WebAssembly - Jason Bock

T13 Unit Testing & Test-Driven
Development (TDD) for Mere Mortals

- Benjamin Day
T14 To Be Announced T15 Microsoft Set List:

Details Dropping Soon

T16 A Developers Introduction to
HoloLens - Billy Hollis & Brian Randell T17 To Be Announced T18 Spans, Memory, and Channels -

Making .NET Code Fast - Jason Bock
T19 Entity Framework Core for

Enterprise Applications - Benjamin Day
T20 Microsoft Set List:
Details Dropping Soon

Microsoft Ask the Experts & Exhibitor Reception—Attend Exhibitor Demos, Sponsored by

Visual Studio Live! Day 2: Wednesday, August 16, 2017
Registration - Coffee and Morning Pastries

W01 Roll Your Own Dashboard
in XAML - Billy Hollis

W02 Migrating to
ASP.NET Core - A True Story

- Adam Tuliper

W03 Hacker Trix - Learning from
OWASP Top 10 - Mike Benkovich

W04 Distributed Architecture:
Microservices and Messaging

- Rockford Lhotka

W05 Microsoft Set List:
Details Dropping Soon

W06 Customizing Your UI for Mobile
Devices: Techniques to Create a Great

User Experience - Laurent Bugnion

W07 User Authentication for
ASP.NET Core MVC Applications

- Brock Allen

W08 From Containers to Data in Motion,
Tour d’Azure 2017 - Mike Benkovich

W09 Agile: You Keep Using
That Word... - Philip Japikse

W10 Microsoft Set List:
Details Dropping Soon

General Session: To Be Announced

Birds-of-a-Feather Lunch - Visit Exhibitors

W11 Building Cross-platform App. Dev.
with CLSA.NET - Rockford Lhotka

W12 Securing Web APIs in
ASP.NET Core - Brock Allen

W13 Tactical DevOps with VSTS
- Brian Randell

W14 Agile Failures: Stories from The
Trenches - Philip Japikse

W15 TypeScript and the
Future of JavaScript - Jordan
Matthiesen & Bowden Kelly

W16 Building Truly Universal
Applications with Windows, Xamarin

and MVVM - Laurent Bugnion

W17 Integrating AngularJS &
ASP.NET MVC - Miguel Castro

W18 Get Started with Git
and GitHub - Robert Green

W19 SOLID – The Five Commandments
of Good Software - Chris Klug

W20 Using Angular 2,
JavaScript, and TypeScript
to Build Fast and Secure

Mobile Apps - Jordan Matthiesen

Set Sail! VSLive!’s Seattle Sunset Cruise - Advanced Reservation & $10 Fee Required

Visual Studio Live! Day 3: Thursday, August 17, 2017
Registration - Coffee and Morning Pastries

TH01 Lessons Learned from
Real World Xamarin.Forms

Projects - Nick Landry

TH02 Build Real-Time
Websites and Apps with
SignalR - Rachel Appel

TH03 “Aurelia vs “Just Angular” a.k.a
“The Framework Formerly Known as

Angular 2” - Chris Klug

TH04 Go Serverless with Azure
Functions - Eric D. Boyd

TH05 Microsoft Set List:
Details Dropping Soon

TH06 Creating Great Looking Android
Applications Using Material Design

- Kevin Ford

TH07 Hard Core ASP.NET
Core - Rachel Appel

TH08 Database Lifecycle Management
and the SQL Server Database

- Brian Randell

TH09 Breaking Down Walls with Modern
Identity - Eric D. Boyd

TH10 Microsoft Set List:
Details Dropping Soon

TH11 Software Engineering in an Agile
Environment - David Corbin

TH12 Enriching MVC Sites with
Knockout JS - Miguel Castro

TH13 Power BI: Analytics for Desktop,
Mobile and Cloud - Andrew Brust

TH14 Bots are the New Apps:
Building Bots with ASP.NET

WebAPI & Language
Understanding - Nick Landry

TH15 Microsoft Set List:
Details Dropping Soon

Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

TH16 Classic Software Design Principles
and Why They Are Still Important

- David Corbin

TH17 Getting Started with Aurelia
- Brian Noyes

TH18 Big Data with Hadoop, Spark and
Azure HDInsight - Andrew Brust

TH19 Extend and Customize the Visual
Studio Environment - Walt Ritscher

TH20 Microsoft Set List:
Details Dropping Soon

TH21 End-to-End Dependency Injection
& Testable Code - Miguel Castro

TH22 Securing Client Apps with
IdentityServer - Brian Noyes

TH23 Continuous Integration and
Deployment for Mobile using Azure

Services - Kevin Ford

TH24 Windows Package Management
with NuGet and Chocolatey

- Walt Ritscher

TH25 Microsoft Set List:
Details Dropping Soon

Visual Studio Live! Post-Conference Workshops: Friday, August 18, 2017 (Separate entry fee required)

Post-Conference Workshop Registration - Coffee and Morning Pastries

F01 Workshop: Building Modern Web Apps with Azure - Eric D. Boyd F02 Workshop: Data-Centric Single Page Apps with Aurelia, Breeze, and Web API - Brian Noyes

Speakers and sessions subject to change

NEW

Untitled-9 5Untitled-9 5 6/8/17 4:30 PM6/8/17 4:30 PM

www.vslive.com/redmondmsdn
www.vslive.com/redmondmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine48

With more people migrating to .NET Core and from
AngularJS 1.x to Angular 2+, these technologies have become
essential, along with other Microsoft technologies in Web API and
Azure DocumentDB.

The Yeoman generator aspnetcore-spa (bit.ly/2q10dFn) supports
JavaScript frameworks such as Angular, React, and VueJS, as well
as other features such as Webpack (bit.ly/2osyQXJ) and Hot module
replacement (bit.ly/2oKsKNs). Yeoman was used to start the project
I’ll be discussing in this article. Note that the current generator
defaults to a Visual Studio 2017 project.

The code discussed in this article can be found at bit.ly/2q1aSzR.
There, you’ll find a basic shopping cart implemented using
ASP.NET Core, Angular, Web API and Azure DocumentDB.

Web API
A solution that tends to get overlooked but plays a crucial role is the
Web API. Using Visual Studio, I created an empty API Controller.
You’ll notice upon creation inheriting from the Controller and a
Route attribute is decorating the API Controller class:

[Route("api/Carts")]
public class CartsController : Controller {}

API Controllers no longer inherit from APIController, but from
Controller, just like an MVC Controller. The differences between
the old API Controller and MVC Controller are minimal. In fact, in
previous versions of MVC, some people used MVC Controllers as
Web API Controllers by simply returning a JsonResult in their action.

Attribute Routing has been supported in the past. Scaffolding
has it now and is called Route instead of RoutePrefix.

Utilizing Attributes
In your empty controller, you only have the need for some simple
CRUD operations, so you’ll create a simple GetById action method:

public Cart GetById(int id){ return _carts.FirstOrDefault(x => x.Id == id); }

Using default Web API routing conventions, you can get Cart
with Id=5 by making a call to the route api/Carts/5. This is a com-
monly used route template constructed by the route prefix defined
earlier in your class; this action method took an int only as a param
eter. One way you can identify which HTTP verbs are needed
to call this method is to look at the prefix of the action method

AS P. N E T COR E

ASP.NET Core with
Angular, Web API and
Azure DocumentDB
Chander Dhall

This article discusses:
•	Brief overview of Azure DocumentDB and its features
•	Building block technologies that when used together can create

enterprise-level applications
•	Detailed look into constructing a Web API Controller
•	Detailed look into the Angular JavaScript Framework, its core

foundation and syntatical features

Technologies discussed:
Web API, Angular, Azure DocumentDB, ASP.NET Core

0717msdn_DhallCore_v3_48-55.indd 48 6/6/17 11:39 AM

www.bit.ly/2q10dFn
www.bit.ly/2osyQXJ
www.bit.ly/2oKsKNs
www.bit.ly/2q1aSzR

49July 2017msdnmagazine.com

itself (GetById). Here, the prefix is identified to use a GET call, for
the same applies to PutCartItem, PatchCartItemQuantity, Delete-
CartItem and PostCheckout.

Those last few action methods could work, but even if they
did, how readable would they be? And more important, if a new
person on your team looked only at PostCheckout, he might not
know it refers to a POST call to submit your cart for checkout, or
if he would interpret the method as called after (or post) you had
already checked out. For readability and to make your method more
developer-friendly, you’ll decorate your method with attributes.

Verb attributes give developers the ability to decorate action
methods to specify what HTTP actions can be performed. With
the GetById method, you can make it so that only GET calls can
access it:

[HttpGet]
public Cart GetById(int id){ return _carts.FirstOrDefault(x => x.Id == id); }

Attribute Routing takes precedence over naming by conven-
tion. For example, if you decide to change the name of the method
from GetById to PutById, it would still only allow the HTTP GET
verb. Additionally, more than one verb can be applied on a method.
In the following example you can see two different ways of doing
that. Other than personal preference on how you want to code it,
there’s no difference between those two implementations:

[HttpGet]
[HttpPost]
public Cart FunctionName(int id){ //Implementation }

[HttpGet, HttpPost]
public Cart FunctionName (int id){ //Implementation }

Route Attributes help when Web API Methods start to become
more complex. It’s also good practice to use them on the simple
methods, as well, because they’ll continue the process of making
methods more readable and, at the same time, create more con-
strained protection from adverse calls.

As a reminder, because the controller is already decorated with
a route prefix, you don’t need to repeat that at the method level.
This information makes the route attribute on your current method
simple. The curly brackets in your template identify that a parameter
is to be passed into your route. Previously, this was the number 5:

[HttpGet]
[Route("{id}")]
public Cart GetById(int id){ return _carts.FirstOrDefault(x => x.Id == id); }

The name of the template parameter is important because that
tells you that you need to have a parameter on your method with
the same name. The following API method is a valid call from “api/
Carts/5.” The only problem is that cartId will be 0 and not 5 because
the value 5 is in a parameter with the name “id”:

[HttpGet]
[Route("{id}")]
public Cart GetById(int cartId){ return _carts.FirstOrDefault(x => x.Id == id); }

API route template parameter constraints help filter which calls
get made in a particular method. These constraints are import-
ant because you don’t want your method doing too much. Web
API methods should be simple and bring back specific data, not
a bunch of data that the client will then have to filter and dig out
for information. By specifying the int constraint “{id: int}” on the
template parameter, you specify that this method will only be called
by a route that has an integer in this template position. Now, if you
decide to create a GetByName method, you know which method

will be called for each, and more important, you don’t have to put
logic into your method to determine if the parameter passed in
was an integer or string value.

Route templates can be attached to a method in a few different
ways. All of the following code examples will perform the same way:

[HttpGet]
[Route("{id: int}")]
public Cart GetById(int cartId){ return _carts.FirstOrDefault(x => x.Id == id); }

[HttpGet, Route("{id: int}")]
public Cart GetById(int cartId){ return _carts.FirstOrDefault(x => x.Id == id); }

[HttpGet("{id: int}")]
public Cart GetById(int cartId){ return _carts.FirstOrDefault(x => x.Id == id); }

The Return Type specified doesn’t always have to be the actual
class/value type you’re returning. In many cases, your method will
have more flexibility if you return IActionResult.

Your GetById method would actually benefit from this return
type. When a cart can’t be found, currently null is passed back to
the client, but as a success. You don’t want your client to have to
perform that check, nor do you want your clients to have to deter
mine in their ajax catch if this call had a data problem or a code
problem, which could affect any messaging relayed to the user.
You pass back built-in result objects, which automatically create
the appropriate response message and status code:

[HttpGet, Route("{id: int}")]
public IActionResult GetById(int cartId){
 var cart = _carts.FirstOrDefault(x => x.Id == id);
 if (cart != null) return Ok(cart);
 return BadRequest();
}

Another added benefit of passing back IActionResult is that
it doesn’t care what data type you pass back within the result
object. If you had a method GetItem, you could return Ok(new
ObjectA()) or Ok(new ObjectB()). The type returned within the
OkObjectResult here is of different types.

Waiting … Waiting … Waiting …
Your current Web API method is now in good shape, but it isn’t
streamlined. It’s synchronous and still holding onto threads. You
need to not only use async/await, but make sure you take in a
CancellationToken parameter, as well. Using an asynchronous
call lets you have more throughput come into your application,
but if a process starts taking a long time and a user refreshes the
page, navigates away, or closes the browser, that process still runs
and occupies resources that could be allocated for another user.
That’s why you always should implement a CancellationToken for
every asynchronous GET method at a minimum. Adding in a

Web API methods should be
simple and bring back specific

data, not a bunch of data that the
client will then have to filter and

dig out the information.

0717msdn_DhallCore_v3_48-55.indd 49 6/6/17 11:39 AM

http://www.msdnmagazine.com

msdn magazine50 ASP.NET Core

CancellationToken parameter to an API method won’t affect your
route template. It will give you a token that you can pass down to
an appropriate async call to handle:

[HttpGet, Route("{id: int}")]
public async Task<IActionResult> GetByIdAsync(int cartId, CancellationToken token){
 var cart = _cartService.GetByIdAsync(cartId, token);
 if (await cart != null) return Ok(cart);
 return BadRequest();
}

Tools
Now that you have the Web API in place, you don’t have to build
out the UI or your own tool to test the Web API functionality.
Along with your unit tests, two tools stand out as great utilities
to support your API development: Postman (bit.ly/19MnN02) and
Swagger (bit.ly/2p1GeYH).

Web API has other features to make Web API robust and help
keep your API methods down to as few lines of code as possible.
In your empty controller, you had only the need for some simple
CRUD operations, but other APIs you’ve created have put a
message on an Azure Queue, kicked off a back-end process, or
fired and forgotten as part of CQRS. The application of using API
Controllers is vast and extensive.

Angular
Today’s Web APIs are utilized frequently by one of the many
JavaScript frameworks that companies
use. One of the more popular frame-
works is AngularJS. AngularJS provides
some great features and lets a develop-
ment team get up and running quickly.
AngularJS was completely rewritten
from version 1.x (called AngularJS) to
version 2.x (all versions starting from
version 2 are now called Angular), and
the Angular team recently released ver-
sion 4.0, which is not a rewrite and is
backward-compatible to version 2.x (for
the most part it’s a seamless upgrade).
From a Visual Studio perspective,
Angular can be intimidating because
the setup isn’t as easy as it once was with
just JavaScript files. Other technologies
it helps to be familiar with are Webpack

(bit.ly/2p1Jfs5), TypeScript (bit.ly/2p1LBXN), npm (bit.ly/2pfw316) and
Reactive Extensions for JavaScript (rxjs) (bit.ly/2piytxU).

Modules
The building blocks of all Angular applications are Modules. You
can compare Modules to an MVC Area. For the most part, it’s seg-
regated from the rest of the application, and different developers
can work on different modules at the same time with barely any
overlap. In the code provided on GitHub, there are three modules
of importance: AppModule, ProductsModule and CartsModule.
ProductsModule and CartsModule are the two that are isolated-like
areas. AppModule is the connector as it puts everything together.

Components
A module itself is typically made up of other modules, components
and services. The components declared in each module are where
the data and HTML come together.

Through Visual Studio, you create a simple component (prod-
ucts.component.ts) under your Web project (MainSite/ClientApp/
app). The initial creation of this component can be seen in Figure 1.

Component Decorator
Other than the @Component decorator, this TypeScript looks
similar to a C# class with the references at the top and class being
declared. The @Component decorator has a required object,
which tells Angular how to use this class and lets the component
be self-contained.

The selector informs Angular that in any HTML if this CSS
selector is used, it should create this component and insert its gen-
erated HTML at that location. This also means that if you have
HTML code like the following, you’ll have three separate instances
of each component and three separate classes will be created:

<products></products>
<products></products>
<products></products>

The template allows HTML to be inside a single file rather than
always having to generate an HTML file for every view. As the cur-
rent template wraps lines, single quotes aren’t used. Instead, tick

marks are created and it’s a good habit
to use even if the template is just a single
line where single quotes could be used.

If your HTML gets a little messy, you
can always pull your template out into
its own file and reference it, but tem-
plate now becomes templateUrl. The
same can be said for styles, except that
it’s an array of styles or it’s an array of
references to styleUrls.

Providers is an array where Injectable
Services for your component class can
be declared. Singleton services would
not be declared at the component level.
Each time a component gets created,
Angular does an inside-out search for
the injected services. Looking at Figure
2, you’d never realistically create this

import { Component } from '@AngularJS/core';
@Component({
 selector: 'products'
 template: `
 <h2 class="intro-header">List of Products</h2>

 I am a product
 I am another product
 	
 `,
 styles: ['.intro-header { color: blue }', 'p {font-size: 10px;}'],
 providers: []
})
export class ProductsComponent {}

Figure 1 Simple Angular Component: ProductsComponent

Figure 2 Hypothetical Layout of Parent Modules,
Child Modules and Their Components

Parent.Module { providers: [WidgetService] }

Child.Module_D

Child.Module_A { providers: [WidgetService] }

Component_A
providers: [
 WidgetService
]

Component_B

Component_C

0717msdn_DhallCore_v3_48-55.indd 50 6/6/17 11:39 AM

www.bit.ly/19MnN02
www.bit.ly/2p1GeYH
www.bit.ly/2p1Jfs5
www.bit.ly/2p1LBXN
www.bit.ly/2pfw316
www.bit.ly/2piytxU

Untitled-9 1Untitled-9 1 6/2/17 4:27 PM6/2/17 4:27 PM

www.gdpicture.com

msdn magazine52 ASP.NET Core

scenario because re-registering providers is typically not a good
thing, but this scenario illustrates the point. If Component_A has
a WidgetService injected into it, Angular first looks inside Compo-
nent_A. Identifying that the WidgetService is there, Component_A
will get a new instance of WidgetService every time it’s created.
You could have two Component_A classes each with their own
WidgetService in which those two services know nothing about
each other. Moving on from there, Angular would find a Widget-
Service for Component_B at Child.Module_A. This service is a
singleton for all components under Child.Module_A, which do
not provide their own WidgetService. Last, a WidgetService for
Component_C is found at the Parent.Module. A service placed out
at the Parent.Module (or AppModule) level is traditionally used
as a singleton for the entire Single Page Application.

Component Class
As mentioned, component classes are very similar to the C# classes
with which most developers are familiar. They have constructors
where services can be injected, as well as parameters declared inside
and outside of methods. One added benefit that Angular provides

is lifecycle hooks. Figure 3 shows a list of all the lifecycle hooks
that are able to be tied into. Two of the most popular are ngOnInit
and ngOnDestroy.

ngOnInit tends to be the place where initial service calls are
made to obtain initial data. This hook is only called once and,
more important, any @Input variables have been set at this time.

ngOnDestroy is a great place to unsubscribe from subscriptions
that don’t self-terminate. If you don’t unsubscribe from these sub-
scriptions, it could potentially cause memory leaks.

Template Syntax
HTML Template Syntax provides a way for components to not only
affect the look and feel of its own content, but also for components to
talk to each other. Following is some of the most commonly used syntax.

Interpolation uses curly braces ({{}}) to extract the content of
the object property:

@Component({
 template: `
 <div class="row">
 <div class="col-md-12 form-group">
 <label>Product Name:</label>
 {{product.name}}
 </div>
 </div>
 `
})
export class ProductComponent { product: Product = new Product("Computer ABC"); }

One-way binding lets you set values from a component object/
property as an attribute of an HTML element. Here, you desig-
nate the value as being one way bound by enclosing that attribute
with brackets ([]):

@Component({
 template: `
 <div class="row">
 <div class="col-md-12 form-group">
 <label>Product Name:</label>
 <input type="text" class="form-control" disabled=""
 [value]="product.name" />
 </div>
 </div>
 `
})
export class ProductComponent { product: Product = new Product("Computer ABC"); }

Two-way binding is similar to one-way binding except that as
the value of the HTML element changes, the value in the compo-
nent changes, as well. In Figure 4, two-way binding by specifying
(ngModel) is designated. In this case, ngModel is used because
it’s an internal Angular directive for form elements. Because all
(boundName) does is comb both one-way binding [] and event
binding (), you can use this syntax on any element as long as it
supports both the ability to have a value set on boundName and
a boundNameChange event.

Singleton services wouldn’t
be declared at the component
level. Each time a component
gets created AngularJS does
an inside-out search for the

injected services.

Figure 3 Angular Lifecycle Hooks Provided by
Angular Documentation

ngAfterContentInit

constructor

ngAfterContentChecked

ngAfterViewInit

ngAfterViewChecked

ngOnInit

ngDoCheck

ngOnChanges

ngOnDestroy

@Component({
 template: `
 <div class="row">
 <div class="col-md-12 form-group">
 <label>Product Name:</label>
 <input type="text" class="form-control" [(ngModel)]="product.name" />
 {{product.name}}
 </div>
 </div>
 `
})
export class ProductComponent { product: Product = new Product(); }

Figure 4 Example of Two-Way Binding

0717msdn_DhallCore_v3_48-55.indd 52 6/6/17 11:39 AM

53July 2017msdnmagazine.com

Event binding binds a particular action to an HTML element
and designates the action upon this event happening. Figure 5
shows an example of event binding where a (click) event calls
handleButtonClick.

*ngIf lets you display content conditionally:
@Component({
 template: `
 <p *ngIf="product.name === 'Computer ABC'">Computer name is "Computer ABC"</p>
 <p *ngIf="product.name === 'Computer XYZ'">Computer name is "Computer XYZ"</p>
 `
})
export class ProductComponent { product: Product = new Product("Computer ABC"); }

*ngFor provides you the ability to look over an array of objects,
as shown in Figure 6.

Pipes take your data and manipulates it. Some Angular pipes are
| date, | currency, | uppercase. Custom pipes can be created, too. In

Figure 7, | async is used. This pipe is useful when handling data
from an Observable. Products is an Observable, and you don’t have
to call subscribe on getProducts because that’s handled by Angular.

Communication between parent components and child com-
ponents is interesting in Angular. To help ease that burden,
Angular provides @Input and @Output decorators.

@Output decorator provides the opportunity to emit events up
a level to the parent, as shown in Figure 8.

Likewise, @Input decorators are used to populate a child com-
ponent from a parent component, as shown in Figure 9.

If a more robust notification is needed, you can build an inter-
nal notification system where other components can subscribe to
Observables defined by this internal system.

Other IDEs
Angular completely separated from the Visual Studio build process is
advantageous because the code itself can be pulled out and used in other
editors such as WebStorm (bit.ly/2oxkUeX) and Sublime (bit.ly/1SuiMgd).

@Component({
 template: `
 <div class="row">
 <div class="col-md-12 form-group">
 <label>Button Action:</label>
 {{buttonAction}}
 </div>
 </div>
 <buttons (buttonClicked)="handleButtonClicked($event)"></buttons>
 `
})
export class ProductsComponent {
 buttonAction: string = "No Button Pressed";
 handleButtonClicked(actionTaken: string): void { this.buttonAction =
 actionTaken; }
}

@Component({
 selector: 'buttons',
 template: `
 <div class="row">
 <div class="col-md-12 form-group">
 <button type="button" class="btn btn-primary"
 (click)="save()">Save</button>
 <button type="button" class="btn btn-default"
 (click)="remove()">Remove</button>
 </div>
 </div>
 `
})
export class ButtonsComponent {
 @Output() buttonClicked = new EventEmitter();
 save() { this.buttonClicked.emit('Save Clicked'); }
 remove() { this.buttonClicked.emit('Delete Clicked'); }
}

Figure 8 Example of @Output Decorator

@Component({
 template: `
 <div class="row" *ngFor="let product of products; let i = index;">
 <div class="col-md-12 form-group">
 <label>Product Name:</label>
 {{product.name}}
 with Index: {{i}}
 </div>
 </div>
 `
})
export class ProductsComponent {
 products: Product[] = [new Product("Computer ABC"),
 new Product("Computer XYX")];
}

Figure 6 Example of *ngFor

@Component({
 template: `
 <div class="row" *ngFor="let product of products | async; let i = index;">
 <div class="col-md-12 form-group">
 <label>Product Name:</label>
 {{product.name}} with Index: {{i}}
 </div>
 </div>
 `
})
export class ProductsComponent implements OnInit {
 products: Observable<Product[]>;
 constructor(private productService: ProductService) { }
 ngOnInit() { this.products = this.productService.getProducts(); }
}

Figure 7 Example of | async

@Component({
 template: `
 <div class="row">
 <div class="col-md-12 form-group">
 <label>Product Name:</label>
 {{product.name}}
 </div>
 </div>
 <div class="row">
 <div class="col-md-12">
 <button type="button" class="btn btn-primary"
 (click)="handleButtonClick();">Click Me</button>
 </div>
 </div>
 `
})
export class ProductComponent {
 product: Product = new Product("Computer ABC");
 handleButtonClick(): void { this.product.name = "Comptuer XYZ"; }
}

Figure 5 Example of Event Binding

Communication between parent
components and

child components is interesting
in Angular.

0717msdn_DhallCore_v3_48-55.indd 53 6/6/17 11:39 AM

www.bit.ly/2oxkUeX
www.bit.ly/1SuiMgd
http://www.msdnmagazine.com

msdn magazine54 ASP.NET Core

database industry. DocumentDB provides these guarantees to help
alleviate the challenges faced by developers who need to develop
low latency, distributed, highly available applications.

Even though it may not be related to the application you’ve built,
it’s good to know that DocumentDB provides four consistency levels:

Strong: This is an RDBMS-like consistency. With every request,
the client is always guaranteed to read the latest acknowledge write.
However, this is slow and in order to use this, the DocumentDB
account cannot be associated with more than one region.

Bounded staleness: This level guarantees that the reads may
lag behind by at most x versions of the document or a certain time
interval by the client. So, if the client sets x=2, the user will be guar-
anteed to get a document no later than the last two versions. This
functions the same with time. If the time is set to five seconds,
every five seconds the resource will be guaranteed to have been

DocumentDB
DocumentDB is a fully managed NoSQL database service built for
fast and predictable performance, high availability, elastic scaling,
global distribution and ease of development. As a schema-free
NoSQL database, DocumentDB provides rich and familiar SQL
query capabilities with consistent low latencies on JSON data,
ensuring that 99 percent of your reads are served in less than 10
ms and 99 percent of your writes are served in less than 15 ms.

DocumentDB transparently replicates your data to all regions
you’ve associated with your DocumentDB account, enabling you
to develop applications that require global access to data while
providing tradeoffs between consistency, availability and perfor-
mance, all with corresponding guarantees. DocumentDB provides
transparent regional failover with multi-homing APIs, and the
ability to elastically scale throughput and storage across the globe.

The core promise of DocumentDB is its service-level agreements
(SLAs), which are highly rated in the industry for throughput,
latency, availability and consistency. This is a unique offering in the

DocumentDB provides rich and
familiar SQL query capabilities
with consistent low latencies

on JSON data, ensuring that 99
percent of your reads are served
in less than 10 ms and 99 percent

of your writes are served
in less than 15 ms.

Figure 10 Representation of the Index for JSON Documents

Index Entry

...

0/city/Moscow

...

1

0/dealers/0
...

2
...

locations/0/country/

locations/0/city/

1, 2

1, 2

Term

$/locations/0/

Postings

1, 2

0/country/Germany

1/country/France

1, 2

1

{1,2}

{2} Hans

{1,2} country {1,2} country{1,2} city {1,2} city {1,2} city {1,2} city{1,2} revenue {2} dealers

{1,2} locations {1,2} headquarters {1,2} exports

{2} 0

{1,2} Germany {2} Athens{2} Bonn {2} 200 {2} name{1} Berlin {2} Berlin{1} France {1} Moscow{1} Paris

{1,2} 0 {1,2} 0 {1,2} 11{1} {1} Belgium {2} Italy

@Component({
 template: '<product-info [productDetails]="product"></product-info>'
})
export class ProductsComponent { product: Product = new Product("Computer ABC"); }

@Component({
 selector: 'product-info',
 template: `
 <div class='row'>
 <div class="col-md-12 form-group">
 <label>Product Name:</label>
 {{productDetails.name}}
 </div>
 </div>
 `
})
export class ProductComponent { @Input() productDetails: Product; }

Figure 9 Example of @Input Decorator

0717msdn_DhallCore_v3_48-55.indd 54 6/6/17 11:39 AM

55July 2017msdnmagazine.com

written to all replicas to make sure that subsequent requests can
see the latest version.

Session: This is the most popular of all, and as the name suggests,
is scoped to a client session. Imagine someone added a comment on
a product on an eCommerce Web site. The user who commented
should be able to see it; however, it will take some time before
other users on the Web site can see it, too.

Eventual: As the name suggests, the replicas will eventually
converge in absence of any additional writes. Eventual consis-
tency provides the weakest read consistency, but offers the lowest
latency for both reads and writes.

Architecture
DocumentDB Account has multiple databases. The database can
be reached via the Uri [AccountUri]/ dbs/{id}, where AccountUri
is of the pattern https://[account].documents.azure.net and whose
database has the following collections (collections can be reached
with the Uri [AccountUri]/dbs/{id}/colls/{id}):

• �Documents—can be reached with the Uri [AccountUri]/
dbs/{id}/colls/{id}/docs/{id}

• �Attachments—can be reached with the Uri [AccountUri]/
dbs/{id}/colls/{id}/docs/{id}/attachments/{id}

• �Stored Procedures—can be reached with the Uri [Account
Uri]/ dbs/{id}/colls/{id}/sprocs/{id}

• �Triggers—can be reached with the Uri [AccountUri]/ dbs/
{id}/colls/{id}/triggers/{id}

• �User Defined Functions—can be reached with the Uri
[AccountUri]/ dbs/{id}/colls/{id}/functions/{id}

• �Users—can be reached with the Uri [AccountUri]/ dbs/{id}/
users/{id}. Users have permissions that can be reached with
the Uri [AccountUri]/ dbs/{id}/users/{id}/permissions/{id}

The unit of record is a Document, and a collection is just as the

name sounds: a collection of doc-
uments. Because documents are
flat, it’s better to think of them as
flat objects and not like rows in a
table. Coming from the SQL world,
there’s a tendency to think of a col-
lection as a table and documents
like rows. However, that analogy
has more problems than you might
realize, especially when it comes
to designing the architecture and
later implementing it.

DocumentDB automatically
handles all aspects of indexing.
DocumentDB also supports speci-
fying a custom indexing policy for
collections during creation. Index-
ing policies in DocumentDB are
more flexible and powerful than
secondary indexes offered in
other database platforms because
they let you design and customize
the shape of the index without sac-

rificing schema flexibility.
DocumentDB models JSON documents and the indexes as

trees, and lets you tune to policies for paths within the tree. You can
find more details in an introduction to DocumentDB indexing at
bit.ly/2qg2Nqa. Within documents, you can choose which paths must
be included or excluded from indexing. This results in improved
write performance and lower index storage for scenarios when the
query patterns are known beforehand.

In Figure 10, you see logical representation of the index for
JSON documents.

Additional Info
Testing your query in DocumentDB is sometimes the hardest
part of implementing it. Azure provides some ability to run que-
ries through its portal, but I particularly like using DocumentDB
Studio (studiodocumentdb.codeplex.com). Also, if you’re interested in
checking out DocumentDB in more depth, checkout my Channel
9 Video on DocumentDB (bit.ly/2pJ6A2c).

Overall, Angular, Web API and Azure DocumentDB are each a
great technology to have in your development arsenal, but com-
bining them together, applications from as simple as hosting blog
entries to as complex as an eCommerce Web site can be created.
Figure 11 shows what can quickly be constructed when these three
flexible and easy-to-implement technologies are used together.	n

Chander Dhall is a Microsoft MVP, Azure Advisor, ASP.NET Insider and Web
API Advisor, as well as CEO of Cazton Inc. (cazton.com). He’s been active in speak-
ing at top technical conferences around the world. Dhall also conducts workshops
internationally to train top developers on ASP.NET Core, Angular, TypeScript,
databases (both NoSQL and SQL) and many other technologies.

Thanks to the following Microsoft technical experts who reviewed this article:
Govind Kanshi, Daniel Roth and Steve Sanderson

Figure 11 Output of the GitHub Code, Built Using ASP.NET Core, Angular and DocumentDB

0717msdn_DhallCore_v3_48-55.indd 55 6/6/17 11:39 AM

www.bit.ly/2qg2Nqa
http://studiodocumentdb.codeplex.com
www.bit.ly/2pJ6A2c
www.cazton.com
http://www.msdnmagazine.com

msdn magazine56

Welcome back, MEANers.
Last month I talked briefly about how to create components

that can synthesize data (such as the current year) and display it
as part of the component’s view. I also briefly experimented with
the Angular Command-Line Interface (CLI) tool, “ng,” and used
that to generate a new application. In this month’s column, I’ll go
further down the Web component path and talk about how to
pass information into—and out of—a given Angular component.

In this particular case, as part of my ongoing loose example
around tracking speakers and their talks, I’m going to build a
small component to track the “upvotes” from users/attendees so
that people can rate speakers’ talks and offer feedback. I’ll call this
component the UpvoteComponent; you want the component to
obey the following (highly simplified) set of specs:

• �The Upvote should initialize the “Upvote” property from the
“votes” attribute. Default to 0 if no votes attribute is provided.

• �The Upvote should let text between the tags act as the label.
• �The Upvote should display an up-arrow character and

when the user clicks on the up-arrow, it should increment
the vote count.

• �The Upvote should, when clicked, also notify interested parties
(such as other Angular components) of the new vote count.

In addition, you’re going to deliberately structure this Upvote
Component to use a simplified, miniaturized Model-View-
Controller (MVC) approach because this will help structure the
application as a whole later.

UpvoteComponent
The first step in any component is to generate the basic scaffolding
of the component and the Angular CLI gives you that with a single

command-line command: “ng generate component upvote.” This will
create a series of four files (the same four-part .ts/.cs”/.html/.spec.ts
split you got before) in an upvote subdirectory.

Upvote
If the UpvoteComponent is actually going to use a full MVC
approach, then you also need a “model” class, which we’ll call
Upvote. This can be scaffolded out using the Angular CLI, as well,
by running “ng generate class upvote --spec true.” (The parameter
at the end asks the CLI to generate a unit-test file for the Upvote
class, and we all like to write unit tests, right?) This will create
src/app/upvote.ts and src/app/upvote.spec.ts files. The first will be
effectively an empty class, waiting for a more intelligent/feature-
driven class definition, which you’ll promptly provide:

export class Upvote {
 constructor(private votes : number) { }

 public get count() { return this.votes; }
 public increment() { this.votes++; }
}

(Note: We could call this a “Vote” model, because that’s what it’s
really tracking, but it’s common in Angular components for the
model to directly reflect the component itself, so if we’re calling
this an “UpvoteComponent,” consistency suggests we call it an
“Upvote.” This is, of course, entirely aesthetic, and teams can—and
should—come up with their own naming conventions that make
sense to them, at least until the Angular community as a whole
has locked some in stone.)

And again, because you’re a good, unit-test-loving developer,
you’ll also set up a quick set of unit tests in the upvote.spec.ts file

How To Be MEAN: Angular Ins and Outs

The Working Programmer TED NEWARD

import {Upvote} from './upvote';

describe('Upvote', () => {
 it('should create an instance', () => {
 expect(new Upvote(0)).toBeTruthy();
 });

 it('should remember the votes passed in via the constructor', () => {
 let v = new Upvote(12);
 expect(v.count).toEqual(12);
 });

 it('should increment the vote count by one when incremented', () => {
 let v = new Upvote(12);
 v.increment();
 expect(v.count).toBe(13);
 });
});

Figure 1 Verifying the Upvote Class

If the UpvoteComponent
is actually going to use a full

MVC approach, then you also
need a “model” class, which

we’ll call Upvote.

0717msdn_NewardWProg_v4_56-59.indd 56 6/6/17 11:39 AM

0

5

25

75

95

100

Alachisoft-MSDN-Magazine-Ad-Feb-2017-Ver-1.0

Tuesday, February 14, 2017 3:56:01 PM

Untitled-6 1 3/6/17 2:20 PM

www.alachisoft.com
mailto:sales@alachisoft.com

msdn magazine58 The Working Programmer

to verify that the Upvote class behaves the way it’s supposed to, as
shown in Figure 1.

There’s obviously more you can do to test this (Can an Upvote
have negative values? Can an Upvote be initialized with non-integer
values?), but this covers the basics.

By the way, if you’re not already, you can run the Angular test-
runner by (again) using the CLI to kick it off in a long-running
process by running “ng test.” This will fire up a browser window,
execute the tests and provide interactive feedback by running the
tests every time the source code files change. In many respects, it’s
even better than a compiler, so long as you’re good about writing tests.

Now that you have a model to work with, let’s work on the
UpvoteComponent itself.

UpvoteComponent Use
It often helps to start from the perspective of how you want to use
the component, so let’s take a moment and rewrite the AppCom-
ponent’s view to think about how we’ll use the UpvoteComponent:

<upvote votes="10" (onIncrement)="upvoted($event)">Current upvotes:</upvote>

You have a little bit of everything here: some content between the
tags you want to use as part of the UpvoteComponent rendering,
an attribute (votes) to initialize the UpvoteComponent internal
state and an event that you want to expose to the caller/user of the
UpvoteComponent so that they can bind in a local (to the calling
component) function that will receive an update every time the
user clicks on the UpvoteComponent up-arrow.

It’s easiest first to provide the votes attribute syntax; this simply
requires that you provide a field in the UpvoteComponent and
decorate it using the @Input decorator, so that Angular can dis-
cover it and wire up the necessary code to pull the value of votes
and store it in that field. However, you’re going to do something
simultaneously tricky and cool with TypeScript along the way, as
shown in Figure 2.

Notice that “model” is declared as a private field that uses the Type-
Script “intersection type” syntax; this means that the field model can
be either a number or an Upvote object. You then test to see if it’s an
Upvote. If it isn’t, then you test whether it’s a number, so that regard-
less of what was passed in, you ultimately end up with an Upvote
object holding the data in question. The truly mind-bending part
of this code is in the “else” block—we assign “votes” a new Upvote
object, initialized with votes. Because TypeScript is doing some
deep code analysis on this block, it knows—thanks to the earlier

“if ” test that determines that votes is not an Upvote type—that it
must be a number and, therefore, “this.votes” (temporarily) satisfies
the condition that the Upvote constructor requires a number.

Next, notice how we would like to provide a label to the content
of the UpvoteComponent, so that it can display the text along with
a number (and an up-arrow). To do that, Angular lets you project
content using the ng-content tag, essentially picking up the con-
tent inside the app-upvote tag and dropping it somewhere in the
view (defined, remember, in upvote.component.html), like so:

<p><ng-content></ng-content> {{votes.count}} ▲</p>

The Unicode character at the end is the Unicode code point
for the up-arrow glyph, and recall that the double-curly-bracket
syntax is string interpolation of the enclosed expression. The
ng-content tag will then be replaced by whatever the user of the
UpvoteComponent specified in the body of the tag, which in this
case will be the text Current upvotes.

Last, you want to provide a “push” sort of notification system, so
that when the user clicks on the up-arrow, the count will increment
and then notify interested parties. This is going to require three
steps: knowing when the user clicks on the up-arrow (which will
require trapping the event in the UpvoteComponent’s view), doing
the Upvote increment and then pushing that out to the world.

In the first step, you need to trap when the user clicks on the
up-arrow, so in the UpvoteComponent view, surround the up-arrow
character in a span tag and attach a local method, clicked, to the
click event using the Angular event-binding syntax, like so:

<p><!-- as before --> ▲</p>

This will call a method, clicked, that needs to be defined on the
UpvoteComponent class, like so:

clicked() {
 (this.votes as Upvote).increment();
 this.onIncrement.emit((this.votes as Upvote).count);
}

Notice that because the “votes” field is an intersection type of
Upvote or number, you need to explicitly cast it as an Upvote
object in order to call the Upvote object’s increment method.

The third part is already wired in the clicked method—you use
an EventEmitter object to send out a message to any interested
parties. You pass the current vote count as the sole event param-
eter to any parties that subscribe to this event. The EventEmitter
is also declared as a field of the UpvoteComponent, but marked
with the @Output decorator, like so:

export class UpvoteComponent implements OnInit {

 @Output() onIncrement = new EventEmitter<number>();

 // ... as before
}

export class UpvoteComponent implements OnInit {
 @Input() votes : number | Upvote;

 ngOnInit() {
 if (this.votes instanceof Upvote) {
 // It's already an Upvote
 }
 else if (this.votes == undefined) {
 this.votes = new Upvote(0);
 }
 else {
 this.votes = new Upvote(this.votes);
 }
 }
}

Figure 2 Initializing UpvoteComponent Using TypeScript
“Intersection Type” Syntax

The truly mind-bending part of
this code is in the “else” block—
we assign “votes” a new Upvote

object, initialized with votes.

0717msdn_NewardWProg_v4_56-59.indd 58 6/6/17 11:39 AM

msdnmagazine.com

dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support
popular file types, emails with multilevel
attachments, databases, web data

Developers:
• APIs for .NET, Java and C++
• SDKs for Windows, UWP, Linux,

Mac and Android
• See dtSearch.com for articles on

faceted search, advanced data
classification, working with SQL,
NoSQL & other DBs, MS Azure, etc.

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional evaluations

Instantly Search
Terabytes of Data
across a desktop, network, Internet or
Intranet site with dtSearch enterprise
and developer products

®

Over 25 search features, with easy
multicolor hit-highlighting options

Marking it with @Output means that it’s now accessible to inter-
ested parties, just as @Input does, but as the names imply, one is for
incoming values declared as attributes (“property-binding”) and
the other as events (“event-binding”). Notice that the field name
(“onIncrement”) is the name used for the event in the <app-upvote>
tag when used. Assuming the AppComponent (which is the root
component, the one using the <app-upvote> component) has a
method on its class called “upvoted,” every time the user clicks the
up-arrow, the vote count will increment, and the AppComponent
will have its upvoted method called with the parameter value set
to the current vote count (after incrementing).

Wrapping Up
Now, permit yourself a moment of congratulations; I’ve covered a
fair amount of ground in this one, so it might take a while to settle
in. Take a moment to experiment with the code and make sure the
property-binding and event-binding syntaxes make sense, both
from the “outside” as well as from the “inside.”

It might seem odd that you didn’t just use a number for the votes
field in the UpvoteComponent; it certainly would be simpler to
just track a number, but then a crucial part of the “model” concept
gets lost, because now data (the vote count) would be duplicated,
once in the UpvoteComponent and once wherever the vote count
is tracked outside of the UpvoteComponent. Using the slightly
more complicated syntax you saw previously, a user can provide
an Upvote object as the parameter to the votes attribute, and the
UpvoteComponent can increment it directly without requiring
any additional work. In exchange for that bit of complexity bur-
ied away inside the component, clients will get a better degree of
simplicity (which you’ll see as you build out the example further).

There’s still some more to do, but hopefully the component con-
cept is starting to take clearer shape now. You still need to define
a SpeakerComponent (and a Speaker model that holds the data
for a given speaker), but you can well imagine what it’ll look like
already, given what’s shown here. (I encourage you to take a shot at
defining one before my next column comes out, to test yourself.)
For now, however, happy coding!	 n

Ted Neward is a Seattle-based polytechnology consultant, speaker and mentor,
currently working as the director of developer relations at Smartsheet.com. He
has written more than 100 articles, authored and coauthored a dozen books,
and works all over the world. Reach him at ted@tedneward.com or read his blog
at blogs.tedneward.com.

Thanks to the following technical expert for reviewing this article:
Ward Bell

There’s still some more to do,
but hopefully the component

concept is starting to take
clearer shape now.

0717msdn_NewardWProg_v4_56-59.indd 59 6/6/17 11:39 AM

mailto:ted@tedneward.com
www.dtSearch.com
http://blogs.tedneward.com
http://www.msdnmagazine.com

PRODUCED BYSUPPORTED BY

magazine

GOLD SPONSOR

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics Include:

➤ Visual Studio / .NET Framework
➤ JavaScript / HTML5 Client
➤ Native Client
➤ Software Practices
➤ Database and Analytics
➤ Angular JS

➤ ASP.NET / Web Server
➤ Agile
➤ ALM / DevOps
➤ Cloud Computing
➤ Windows Client
➤ Xamarin

Register By July 21 and Save $300!*
Use promo code VSLCH12

REGISTER
NOW

Untitled-3 2 6/7/17 1:01 PM

www.vslive.com/chicagomsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/chicagomsdn

ALM /
DevOps

Cloud
Computing

Database and
Analytics

Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

CHICAGO AGENDA AT-A-GLANCE

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, September 18, 2017 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM
M01 Workshop: Distributed Cross-Platform

Application Architecture
- Jason Bock & Rockford Lhotka

M02 Workshop: Practical ASP.NET DevOps
with VSTS or TFS - Brian Randell

M03 Workshop: SQL Server 2016 for
Developers - Andrew Brust & Leonard Lobel

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Visual Studio Live! Day 1: Tuesday, September 19, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM KEYNOTE: To Be Announced

9:15 AM 10:30 AM T01 JavaScript for the C# Developer
- Philip Japikse T02 Storyboarding 101 - Billy Hollis T03 Build Cross-Platform Apps in C#

using CSLA .NET - Rockford Lhotka
T04 What’s New in Visual Studio

2017 - Robert Green

10:45 AM 12:00 PM
T05 TypeScript: The Future of Front

End Web Development
- Ben Hoelting

T06 Better, Faster, Automated!
Windows App Deployment in Visual
Studio Mobile Center - Ela Malani &

Piyush Joshi

T07 Roll Your Own Dashboard in
XAML - Billy Hollis

T08 What’s New in C#7
- Jason Bock

12:00 PM 1:00 PM Lunch - Visit Exhibitors

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T09 ASP.NET Core MVC - What You
Need to Know - Philip Japikse

T10 Professional Scrum
Development Using Visual Studio

2017 - Richard Hundhausen
T11 What’s New for Developers in

SQL Server 2016 - Leonard Lobel T12 To Be Announced

3:00 PM 4:15 PM
T13 User Authentication for

ASP.NET Core MVC Applications
- Brock Allen

T14 PowerShell for Developers
- Brian Randel

T15 What’s New in Azure IaaS v2
- Eric D. Boyd T16 To Be Announced

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, September 20, 2017

7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM W01 Securing Web APIs in ASP.NET
Core - Brock Allen

W02 Professional Software
Testing Using Visual Studio 2017

- Richard Hundhausen
W03 Cloud Oriented Programming

- Vishwas Lele
W04 Database Development

with SQL Server Data Tools
- Leonard Lobel

9:30 AM 10:45 AM W05 Assembling the Web - A Tour
of WebAssembly - Jason Bock

W06 Get Started with Git and
GitHub - Robert Green

W07 Building Modern Web Apps
with Azure - Eric D. Boyd

W08 Tactical DevOps for SQL Server
- Brian Randell

11:00 AM 12:00 PM General Session: To Be Announced

12:00 PM 1:00 PM Birds-of-a-Feather Lunch - Visit Exhibitors

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors - Exhibitor Raffle @ 1:15pm (Must be present to win)

1:30 PM 2:45 PM
W09 Tools for Modern

Web Development Dev Ops
- Ben Hoelting

W10 Go Mobile with C#,
Visual Studio, and Xamarin

- James Montemagno
W11 Build Awesome AF Apps!

- Rachel Appel
W12 Power BI: Analytics for
Desktop, Mobile and Cloud

- Andrew Brust

3:00 PM 4:15 PM
W13 Get Rid of HTML Tables for
Better Mobile Web Applications

- Paul Sheriff

W14 Continuous Integration &
Deployment for Mobile Apps

- James Montemagno

W15 Microservices with Azure
Container Service & Service Fabric

- Vishwas Lele
W16 Power BI: Beyond the Basics

- Andrew Brust

4:30 PM 5:45 PM W17 Use HTML5/Bootstrap to Build
Business UI - Paul Sheriff

W18 Mobilizing your Existing
Enterprise Applications

- Nick Landry

W19 Busy Developer’s Guide to the
Google Cloud Platform

- Ted Neward
W20 Big Data Solutions in Azure

- David Giard

7:00 PM 9:00 PM Visual Studio Live! Evening Event

START TIME END TIME Visual Studio Live! Day 3: Thursday, September 21, 2017

7:30 AM 8:00 AM Web Client

8:00 AM 9:15 AM
TH01 I Just Met You, and “This”
is Crazy, But Here’s My NaN, So
Call(Me), Maybe? - Rachel Appel

TH02 PowerApps, Flow, and
Common Data Service: Empowering

Businesses with the Microsoft
Business Application Platform

- Archana Nair

TH03 Lessons Learned from Real
World Xamarin.Forms Projects

- Nick Landry
TH04 Busy Developer’s Guide to

NoSQL - Ted Neward

9:30 AM 10:45 AM
TH05 Build Object-Oriented

Enterprise Apps in JavaScript with
TypeScript - Rachel Appel

TH06 PowerApps and Flow Part II:
Package, Embed, and Extend Your
Applications - Anousha Mesbah &

Pratap Ladhani

TH07 Improve Your Retrospective
Outcomes with Agile Kaizen

- Angela Dugan

TH08 Building Applications with
DocumentDb - New Features and

Best Practices - Raj Krishnan

11:00 AM 12:15 PM TH09 What’s New in TypeScript?
- Doris Chen

TH10 Getting Started with Entity
Framework Core - Jim Wooley

TH11 Open Source for Microsoft
Developers - Rockford Lhotka

TH12 Introduction to Machine
Learning with R - Raj Krishnan

12:15 PM 1:15 PM Lunch

1:15 PM 2:30 PM
TH13 Practical Performance Tips
and Tricks to Make Your HTML/
JavaScript Faster - Doris Chen

TH14 Getting Your Agile Team
Unstuck! Tips and Tricks for Blasting

Through Common Setbacks
- Angela Dugan

TH15 DI Why? Getting a Grip on
Dependency Injection - Jeremy Clark

TH16 The Rise of the Machines -
Machine Learning for Developers

- Adam Tuliper

2:45 PM 4:00 PM
TH17 Building Powerful

Applications with AngularJS 2 and
TypeScript - David Giard

TH18 Improving Code Quality with
Roslyn Code Analyzers - Jim Wooley

TH19 Unit Testing Makes Me Faster:
Convincing Your Boss, Your Co-

Workers, and Yourself
- Jeremy Clark

TH20 I’m Emotional - Using
Microsoft Cognitive Services to

Understand the World Around You
- Adam Tuliper

Speakers and sessions subject to change

Untitled-3 3 6/7/17 1:01 PM

www.vslive.com/chicagomsdn
www.vslive.com/chicagomsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BY

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics include:

➤ Visual Studio / .NET
➤ JavaScript / HTML5
➤ Angular
➤ Native Mobile & Xamarin
➤ Software Practices
➤ Database and Analytics

➤ ASP.NET Core
➤ Web API
➤ ALM / DevOps
➤ Cloud Computing
➤ UWP
➤ Unit Testing

ANAHEIM, CA
OCT 16-19, 2017
HYATT REGENCY
A Disneyland® Good Neighbor Hotel

Register Now and Save $300!*
Use promo code VSLAN1 *SAVINGS BASED ON 4-DAY PACKAGES ONLY.

REGISTER
NOW

Untitled-3 4 6/7/17 1:02 PM

www.vslive.com/anaheimmsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/anaheimmsdn

ANAHEIM AGENDA AT-A-GLANCE
ALM /

DevOps
Cloud

Computing
Database and

Analytics
Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, October 16, 2017 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM
M01 Workshop: Distributed Cross-Platform

Application Architecture
- Jason Bock & Rockford Lhotka

M02 Workshop: Practical ASP.NET DevOps
with VSTS or TFS - Brian Randell

M03 Workshop: Developer Dive into
SQL Server 2016 - Leonard Lobel

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Visual Studio Live! Day 1: Tuesday, October 17, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM KEYNOTE: To Be Announced

9:15 AM 10:30 AM T01 What’s New in TypeScript?
- Doris Chen

T02 Go Mobile with C#,
Visual Studio, and Xamarin

- James Montemagno
T03 To Be Announced T04 What’s New in Visual Studio

2017 - Robert Green

10:45 AM 12:00 PM
T05 Build Object-Oriented

Enterprise Apps in JavaScript with
TypeScript - Rachel Appel

T06 Optimizing and Extending
Xamarin.Forms Mobile Apps

- James Montemagno
T07 What’s New for Developers in

SQL Server 2016 - Leonard Lobel T08 To Be Announced

12:00 PM 1:30 PM Lunch

1:30 PM 2:45 PM T09 Angular 101: Part 1
- Deborah Kurata

T10 Get Started with Git and
GitHub - Robert Green

T11 Exploring T-SQL Enhancements:
Windowing and More

- Leonard Lobel
T12 Microsoft Teams - More Than

Just Chat! - Nedra Allmond

3:00 PM 4:15 PM T13 Angular 101: Part 2
- Deborah Kurata

T14 Do It Again, Faster! Automate
Your Windows Deployment Pipeline

- Ela Malani
T15 What’s New in Azure IaaS v2

- Eric D. Boyd
T16 Open Source for the Microsoft

Developer - Rockford Lhotka

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, October 18, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
W01 I Just Met You, and “This”
is Crazy, But Here’s My NaN, So
Call(Me), Maybe? - Rachel Appel

W02 Tactical DevOps with VSTS
- Brian Randell

W03 Go Serverless with Azure
Functions - Eric D. Boyd

W04 What’s New in C#7
- Jason Bock

9:30 AM 10:45 AM
W05 Practical Performance Tips
and Tricks to Make Your HTML/
JavaScript Faster - Doris Chen

W06 Real World VSTS Usage for the
Enterprise - Jim Szubryt

W07 Cloud Oriented Programming
- Vishwas Lele

W08 I’ll Get Back to You:
Understanding Task, Await,
and Asynchronous Methods

- Jeremy Clark

11:00 AM 12:00 PM General Session: To Be Announced

12:00 PM 1:30 PM Birds-of-a-Feather Lunch

1:30 PM 2:45 PM W09 Assembling the Web - A Tour
of WebAssembly - Jason Bock

W10 Database Lifecycle
Management and the SQL Server

Database - Brian Randell

W11 Microservices with Azure
Container Service & Service Fabric

- Vishwas Lele
W12 Getting Started with Entity

Framework Core - Jim Wooley

3:00 PM 4:15 PM
W13 Building Single Page Web

Applications Using Aurelia.js and the
MVVM Pattern - Ben Hoelting

W14 Getting to SAFe in the
Enterprise - Jim Szubryt

W15 Busy Developer’s Guide to the
Clouds - Ted Neward

W16 Improving Code Quality with
Roslyn Code Analyzers - Jim Wooley

4:30 PM 05:45 PM W17 Securing Angular Apps
- Brian Noyes

W17 Building Applications with
DocumentDb - New Features and

Best Practices - Raj Krishnan

W18 Busy Developer’s Guide
to the Google Cloud Platform

- Ted Neward
W19 Learn to Love Lambdas (and

LINQ, Too) - Jeremy Clark

7:00 PM 9:00 PM Visual Studio Live! Evening Event

START TIME END TIME Visual Studio Live! Day 3: Thursday, October 19, 2017

7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 ASP.NET Core MVC - What
You Need to Know - Philip Japikse

TH02 Tools for Modern
Web Development Dev Ops

- Ben Hoelting

TH03 The Rise of the Machines -
Machine Learning for developers

- Adam Tuliper
TH04 Storyboarding 101

- Billy Hollis

9:30 AM 10:45 AM
TH05 Role-Based Security

Stinks: How to Implement Better
Authorization in ASP.NET and ASP.

NET Core - Benjamin Day

TH06 Building Cross-Platform Apps
in C# using CSLA .NET

- Rockford Lhotka
TH07 Introduction to Machine
Learning with R - Raj Krishnan

TH08 Agile: You Keep Using
That Word... - Philip Japikse

11:00 AM 12:15 PM TH09 From Zero to the Web API
- Paul Sheriff

TH10 Programming with the
Model-View-ViewModel Pattern

- Miguel Castro

TH11 I’m Emotional - Using
Microsoft Cognitive Services to

Understand the World Around You
- Adam Tuliper

TH12 Top 10 Ways to Go from
Good to Great Scrum Master

- Benjamin Day

12:15 PM 1:15 PM Lunch

1:15 PM 2:30 PM
TH13 Cortana Everywhere: Speech,
Conversation & Skills Development

- Nick Landry
TH14 Roll Your Own Dashboard

in XAML - Billy Hollis
TH15 Unit Testing T-SQL Code

- Steve Jones
TH16 Exposing an Extensibility API

for your Applications
- Miguel Castro

2:45 PM 4:00 PM TH17 Securing Web Apps and APIs
with IdentityServer - Brian Noyes

TH18 Windows 10 for Developers:
Building Universal Apps for 1B

Devices - Nick Landry
TH19 A Tour of SQL Server Security

Features - Steve Jones
TH20 Real World Applications for
Dependency Injection - Paul Sheriff

Speakers and sessions subject to change

Untitled-3 5 6/7/17 1:02 PM

www.vslive.com/anaheimmsdn
www.vslive.com/anaheimmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine64

Windows has long provided the
capability to programmatically
launch applications from within
another application. Indeed, it’s
a feature common to practically
any OS. The Universal Windows
Platform (UWP) is no exception.
In fact, the UWP adds a few new
features. In this month’s column, I’ll
explore the Launcher class and how
to put it to use in your UWP apps.

In my last two columns, I wrote
about exploring the rich function-
ality of the Bing Maps Control for
UWP apps. There might be cases
where you don’t need or wish to
embed a rich mapping solution
inside your UWP app. For those
scenarios, you can leverage the
built-in Maps app. This solution
is ideal if you want to provide your users with mapping tools, but
don’t wish to add complexity to your code base. Accomplishing
this is easy with the Launcher class.

Use a Map Without Using a Map Control
Create a new blank UWP project in Visual Studio by choosing
New Project from the File menu. Expand the Installed Templates
| Windows | Blank App (Universal Windows). Name the project
MapLauncher and then click OK. Immediately afterward, a dialog
box will appear asking you which version of Windows the app
should target. For this project, the default options will be fine, so
you can just click OK. In the MainPage.xaml file, add the following
XAML to create a button control:

<Button Name="btnLaunchMap" Click="btnLaunchMap_Click">Launch Map</Button>

In the MainPage.xaml.cs file, add the following code for the
event handler:

private async void btnLaunchMap_Click(object sender, RoutedEventArgs e)
{
 Uri uri = new Uri("bingmaps:?rtp=adr.Washington,%20DC~adr.New%20York,
 %20NY&mode=d&trfc=1");
 await Launcher.LaunchUriAsync(uri);
}

Run the solution and click on the button. The Maps app should
launch and display driving directions between Washington, D.C.,
and New York City along with traffic information, as shown
in Figure 1.

It’s quite impressive what can be done in so few lines of code.
What, exactly, is going on here that made this so simple and why
did the default Maps app automatically launch?

Protocol Launching
Protocol launching enabled launching the Maps app pre-
populated with a route. Windows has always relied on file
extensions and file-type associations to determine what applica-
tions should launch when a file is run. Starting with Windows 8,
protocol launching was added to help facilitate launching apps
with the option of passing along parameters.

Launching Apps via URI
Taking a closer look at the code in the previous sample, there’s
something familiar about the line of code that creates a URI. The
string passed to the URI constructor method follows a pattern
familiar to Web developers, yet with a few differences.

Web addresses or, specifically, URIs, follow a pattern of [proto-
col]:[host address]?[parameter1]=[value1]& [parameter2]=[value2].

Launch Other Applications
from Your UWP App

Modern Apps FRANK LA VIGNE

Code download available at bit.ly/2qkp2hz.

Figure 1 Driving Directions Between New York City and Washington, D.C., in the Maps App

0717msdn_LaVigneModApps_v4_64-69.indd 64 6/6/17 11:52 AM

www.bit.ly/2qkp2hz

Untitled-1 1Untitled-1 1 4/1/14 10:47 AM4/1/14 10:47 AM

www.spreadsheetgear.com

msdn magazine66 Modern Apps

For instance, for the URI http://bing.com/search?q=franksworld,
the protocol is HTTP, the host address is bing.com, and the value
of “franksworld” is passed to the parameter “q.” The same holds true
for the following URI, but with a few differences:

bingmaps:?rtp=adr.Washington,%20DC~adr.New%20York,%20NY&mode=d&trfc=1

Unlike HTTP or HTTPS, the protocol “bingmaps” is probably
unfamiliar to most readers. Also, there’s no address for the resource.
Interestingly, typing the this URI into the Edge browser will have
the same effect, launching the Bing Maps app with the route
between Washington, D.C., and New York City pre-populated.
Additionally, the Run dialog, accessed by Windows key+R, will
do the same if that URI is entered. Protocol activation is part of

Windows 10 and may be leveraged outside of the UWP. In fact,
Windows comes with a series of protocols already defined. The
entire list can be found in Figure 2. Note that some of the pro-
tocols, like ms-call, may only be available on Windows Mobile.

Passing Parameters
As for the Maps app, there’s any number of parameters to pass and
the Maps app can be controlled to fit any app’s specific scenario. For
instance, if the app needs to find pizza places in the Bronx, you’d
simply use the following URI:

bingmaps:?q=pizza&where=Bronx,NY

Food Finder App
To demonstrate how to put parameters and protocol launching to
practical use, create a new blank UWP project in Visual Studio.
Name the project FoodFinder and click OK to create the app.

Add the XAML shown in Figure 3 to the MainPage.xaml file.

In the MainPage.xaml.cs file add the following code for the
btnLaunchMap_Click event handler:

private async void btnLaunchMap_Click(object sender, RoutedEventArgs e)
{
 string genre = (cbxGenre.SelectedItem as ComboBoxItem).Content.ToString();
 string trafficValue = (ckbTraffic.IsChecked.Value) ? "1" : "0";

 string uriString = string.Format(
 $"bingmaps:?q={genre}&where={txtLocation.Text}&lvl=15&trfc={trafficValue}");
 Uri uri = new Uri(uriString);
 await Launcher.LaunchUriAsync(uri);
}

Run the project now. The interface should look similar to what’s
shown in Figure 4. Pick a genre of food, enter a city into the
Location textbox, and click Launch Map. The Maps app will launch
and display a result set based on the inputs. Naturally, search
results will vary based on the genre chosen and location entered.
The final result should look something like Figure 5.

Figure 2 Default Protocols in Windows

URI Scheme Launches
bingmaps:, ms-drive-to:, and ms-walk-to: Maps app
http: Default Web browser
mailto: Default e-mail app
ms-call: Call app
ms-chat: Messaging app
ms-people: People app
ms-settings: Settings app
ms-store: Store app
ms-tonepicker: Tone picker
ms-yellowpage: Nearby Numbers app

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="43*"/>
 <ColumnDefinition Width="137*"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="45*"/>
 <RowDefinition Height="44*"/>
 <RowDefinition Height="45*"/>
 <RowDefinition Height="45*"/>
 <RowDefinition Height="461*"/>
 </Grid.RowDefinitions>

 <TextBlock Margin="10" FontSize="24" Grid.RowSpan="5"
 Grid.ColumnSpan="2">Food Finder</TextBlock>
 <TextBlock Grid.Row="1" HorizontalAlignment="Right"
 VerticalAlignment="Center">Genre</TextBlock>
 <TextBlock Grid.Row="2" HorizontalAlignment="Right"
 VerticalAlignment="Center">Location</TextBlock>
 <ComboBox Name="cbxGenre" Grid.Row="1" Grid.Column="1"
 VerticalAlignment="Center" Margin="5" Width="212" SelectedIndex="0">
 <ComboBoxItem>Pizza</ComboBoxItem>
 <ComboBoxItem>BBQ</ComboBoxItem>
 <ComboBoxItem>Coffee</ComboBoxItem>
 </ComboBox>
 <TextBox Name="txtLocation" Grid.Row="2" Grid.Column="1"
 Margin="5"></TextBox>
 <CheckBox Name="ckbTraffic" Grid.Row="3" Grid.Column="1"
 Margin="5">Show Traffic</CheckBox>
 <StackPanel Orientation="Horizontal" Grid.Row="4"
 Grid.ColumnSpan="2" HorizontalAlignment="Center"
 VerticalAlignment="Top">
 <Button Name="btnLaunchMap" Click="btnLaunchMap_Click"
 Margin="5">Launch Map</Button>
 <Button Name="btnSearchMusic" Click="btnSearchMusic_Click"
 Margin="5">Search Music</Button>
 </StackPanel>
</Grid>

Figure 3 XAML Code to Create the UI

Figure 4 FoodFinder Interface

As for the Maps app, there’s
any number of parameters

to pass and the Map app can
be controlled to fit any app’s

specific scenario.

0717msdn_LaVigneModApps_v4_64-69.indd 66 6/6/17 11:52 AM

YOU OWE IT TO YOURSELF, YOUR COMPANY AND

YOUR CAREER TO BE AT TECHMENTOR REDMOND 2017!

PLUG IN TO NEW KNOWLEDGE
@ THE SOURCE

+++

IN-DEPTH TRAINING FOR IT PROS

AUGUST 7 – 11, 2017

MICROSOFT HEADQUARTERS

REDMOND, WA

WHAT SETS TECHMENTOR APART?
+ Immediately usable IT education

+ Training you need today, while preparing you for tomorrow

+ Zero marketing-speak, a strong emphasis on doing more with
the technology you already own, and solid coverage of what’s
just around the corner

+ Intimate setting, where your voice is heard, making it a viable
alternative to huge, first-party conferences

+ Experience life @ Microsoft Headquarters for a full week

HOT TRAINING TOPICS INCLUDE:
+ Windows Server + Hyper-V + Windows PowerShell + DSC
+ DevOps + Azure + Security + And More! +

REGISTER NOW SAVE $300 THROUGH AUGUST 7
MUST USE DISCOUNT CODE TMEB01
 TECHMENTOREVENTS.COM/REDMOND

SUPPORTED BY:

EVENT SPONSOR: GOLD SPONSOR:

PRODUCED BY:

Untitled-2 1 6/6/17 10:37 AM

www.techmentorevents.com/redmond

msdn magazine68 Modern Apps

Close the Maps app and go back to the FoodFinder app. This
time, make sure that the Show Traffic checkbox is checked. Click
Launch Map again to see that
traffic data is rendered onto the
map. If not, then Bing might
not have traffic data for that
particular location.

Much more can be done with the
Maps app. In fact, the full function-
ality exposed by the Web version
of Bing Maps is also accessible to
the Maps app and, as a rule, follows
the same parameter name and val-
ue format. For more information
on how to build a Bing Maps URL,
see bit.ly/1MIoJ5K.

More Than Maps
While mapping adds significant
value to this app, there are many
food-finding apps available in the
Windows Store. It would be ben-
eficial to differentiate this app by
adding a unique feature: music
search. For example, if St. Louis
were in the Location textbox,
users could search for songs about
St. Louis and listen to music about
their destination. The app will offer
users a chance to search for songs
with the name of the location in the
title. Protocol activation makes it
easy to incorporate searches from
the Windows Store into apps.

To accomplish this, add the fol-
lowing code to the event handler for
the btnSearchMusic_Click event:

private async void btnSearchMusic_
Click(object sender, RoutedEventArgs e)
{
 string uriString = string.Format(
 $"ms-windows-store://
 search/?query={txtLocation.
 Text}&type=Songs");
 Uri uri = new Uri(uriString);
 await Launcher.LaunchUriAsync(uri);
}

Run the app once again, enter
a city name in the Location text-
box, and click Search Music. The
Windows Store app should launch
and display a search of songs
with the city name in the title. For
instance, if a user entered “St. Louis”
as the location, the results would
look like what’s shown in Figure 6.

For more information about the
parameters that can be passed to

the Windows Store app, refer to the documentation on Windows
Dev Center at bit.ly/2pPJvaA.

Figure 6 Windows Store App Music Section with St. Louis in Titles of Songs

Figure 5 Results for Pizza in Bronx, N.Y.

0717msdn_LaVigneModApps_v4_64-69.indd 68 6/6/17 11:52 AM

www.bit.ly/1MIoJ5K
www.bit.ly/2pPJvaA

69July 2017msdnmagazine.com

Advanced Launch Features
Thus far, the examples in the FoodFinder
app had specific outcomes in mind. I had
intended to launch the default Maps app
and the Windows Store app. In cases where
developers want to customize the launch-
ing experience or give the user a choice in
which app launches, the Launcher class
exposes additional features through the
use of the LauncherOptions class.

Choosing an Application
to Launch
From time to time, users will be present-
ed an option to pick which app to launch
when there are multiple apps registered to
handle a specific file extension or protocol.
For example, it’s very common for users to
have multiple browsers installed on their systems. In fact, Windows
10 comes with Edge and Internet Explorer. Giving users a choice in
which application to launch would be ideal in particular use cases.
Fortunately, the LauncherOptions class in the Windows.System
namespace makes it easy to customize how the Launcher class acts.

In the MainPage.xaml file for the FoodFinder app, add the following
XAML in the StackPanel to add a new button to perform Web searches:

<Button Name="btnSearchWeb" Click="btnSearchWeb_Click" Margin="5">Search Web</Button>

Now, add the following event handler code in the
MainPage.xaml.cs file:

private async void btnSearchWeb_Click(object sender, RoutedEventArgs e)
{
 string genre = (cbxGenre.SelectedItem as ComboBoxItem).Content.ToString();
 string queryString = Uri.EscapeDataString($"{genre} in {txtLocation.Text}");
 var searchUri = $"https://www.bing.com/search?q={queryString}";
 var uriBing = new Uri(searchUri);
 var promptOptions = new Windows.System.LauncherOptions();
 promptOptions.DisplayApplicationPicker = true;
 var success = await Windows.System.Launcher.LaunchUriAsync(uriBing, promptOptions);

}

Just as before, this code constructs a URI based on the choice in
the combo box and value entered into the textbox. The addition
of the LauncherOptions class and setting the DisplayApplication-
Picker property to true will trigger a prompt similar to Figure 7.
Run the app now, enter some values and click Search Web to see
the Application Picker Prompt.

By default, the DisplayApplicationPicker is set to false, which
launches the default browser on the system.

Confirming Launch
It’s important to point out that, in certain
situations, Windows will display a prompt
to confirm if the user actually wishes to
switch apps, as shown in Figure 8. How-
ever, UWP developers cannot suppress
this dialog. This is an important security
precaution to prevent users from running
malicious code.

There might be times when it’s advanta-
geous to confirm with the user that the app
intends to switch apps. For these cases, set
the TreatAsUntrusted property to “true.”

Remove the line where the Display
ApplicationPicker property is set to true
and add this line to the btnSearchWeb_
Click event handler immediately after the
declaration of the promptOptions variable:

promptOptions.TreatAsUntrusted = true;

Run the solution again, enter a value in the Location textbox,
and click the Search Web button. You’ll see a prompt prior to
the browser launching. If the DisplayApplicationPicker and the
TreatAsUnstrusted properties are both set to true, then only the
application picker prompt will display. This streamlines the pro-
cess for the user, who would likely get frustrated at the process of
clicking through multiple dialog boxes to perform a task.

The LauncherOptions class exposes much more functionality
and provides flexibility for any number of use-case scenarios. You
can find out more at bit.ly/2qoW8LN.

Wrapping Up
In this column, I demonstrated how to use protocol activation in
UWP apps to leverage the power of other apps available on the
user’s device. This lets you add rich features and conveniences
without inserting complexity to its code base. The UWP offers

great flexibility via the LauncherOptions class,
which lets developers customize the UX. 	 n

Frank La Vigne is chief evangelist at DataLeader.io, where
he helps customers leverage technology in order to create a
better world. He is co-host of the DataDriven podcast and
blogs regularly at FranksWorld.com. He has a YouTube
channel called Frank’s World TV (FranksWorld.TV).

Thanks to the following technical expert for
reviewing this article: Jose Luis MannersFigure 8 Prompt Confirming Desire to Switch Apps

Figure 7 Application Picker Prompt

The LauncherOptions class
exposes much more functionality

and provides flexibility for any
number of use-case scenarios.

0717msdn_LaVigneModApps_v4_64-69.indd 69 6/6/17 11:52 AM

www.bit.ly/2qoW8LN
www.FranksWorld.com
www.FranksWorld.TV
http://www.msdnmagazine.com

Live! 360: A Unique Conference
for the IT and Developer Community

 • 6 FULL Days of Training
 • 5 Co-Located Conferences
 • 1 Low Price
 • Create Your Own Agenda from Hundreds of Sessions
 • Expert Education and Training
 • Knowledge Share and Networking

CONNECT WITH LIVE! 360

twitter.com/live360
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

NOVEMBER 12-17
ROYAL PACIFIC RESORT AT UNIVERSAL ORLANDO

EVENT PARTNERS PLATINUM SPONSOR SUPPORTED BY

Untitled-9 2Untitled-9 2 4/10/17 4:28 PM4/10/17 4:28 PM

www.live360events.com
https://twitter.com/live360events
https://facebook.com/live360events
https://www.linkedin.com/

PRODUCED BY

5 GREAT CONFERENCES,
1 GREAT PRICE

LIVE360EVENTS.COM

Visual Studio Live!: Code in Paradise at
VSLive!TM, featuring unbiased and

practical development training on the
Microsoft Platform.

SQL Server Live! will leave you with the
skills needed to drive your data to
succeed, whether you are a DBA,

developer, IT Pro, or Analyst.

TechMentor: This is where IT training meets
sunshine, with zero marketing speak on

topics you need training on now, and solid
coverage on what's around the corner.

Office & SharePoint Live!: Today,
organizations expect people to work from
anywhere at any time. Office & SharePoint

Live! provides leading-edge knowledge
and training to work through your most

pressing projects.

Modern Apps Live!: Presented in partnership
with Magenic, this unique conference

delivers how to architect, design and build a
complete Modern App.

NEW: HANDS-ON LABS
Join us for full-day,
pre-conference hands-on
labs Sunday, November 12.

Only $595 through August 11

REGISTER
NOW

REGISTER BY
AUGUST 11 AND
SAVE $500!*

Use promo code L360MAY2

* Savings based on 5-day packages only.
See website for details.

Untitled-9 3Untitled-9 3 4/10/17 4:36 PM4/10/17 4:36 PM

www.live360events.com

msdn magazine72

I just got back from Build 2017 in Seattle. The live convention busi-
ness took some serious knocks during the recession, but Build sells
out within minutes, even though all of its content is available online.
There’s just something special about direct human-to-human interac-
tion with the people who build the software that drives our professional
lives, something that no telepresence can ever duplicate. It’s the ultimate
geek contact high. In no particular order, here are my impressions:

Microsoft should build an automated buzzword bingo game
into the conference’s smartphone app. For example:

Keynote speaker (droning): “We proactively empower
your strategic cyber-aggregation …”
Attendee (leaping to feet, waving phone): “BINGO!”

That would be an impressive demonstration of Microsoft’s new
Cognitive Services, especially discerning among the differing voices
and accents of the various speakers. Is it smart enough to deduce
new buzzwords from context? Just make sure you give away a killer
prize like a HoloLens, instead of a leftover Lumia phone.

Speaking of which, I was glad not to see Microsoft wasting time
on another me-too phone. The conference’s scheduling app ran on
Android and iPhone, but not on whatever Windows phones still
survive, which shows that Microsoft has accepted the market’s judg-
ment. To paraphrase John Prine’s classic song: “Microsoft, Microsoft,
you have no complaint. You are what you are and you ain’t what
you ain’t.” To which I add, the company is wise to finally realize it.

Microsoft highlighted its augmented/mixed/virtual reality (A/M/
VR) solutions, which I found fascinating. The price of hardware
is falling, and support is now built into the OS. I think A/M/VR
is about to break out of its gaming niche market. But after I tried
a few demos, I can confidently report that it hasn’t yet reached the
level of improving the looks of an ugly blind date (of any gender
or preference). You still need alcohol for that.

Microsoft is once again trying to launch pen computing with
gestures, this time with the Ink Interface in the Windows 10 Fall

Creators Update. The company has been trying this since at least
the 1991 Professional Developers Conference (held just down the
hill at the 5th Avenue Theatre), at which it released the beta of
Windows 3.1. I remember drinking with some programmers from
the United States Navy, who said, “Does Microsoft seriously think
the admiral is going to learn gestures? The admiral already knows
the only gesture he needs, which is (crooking finger), ‘Come here,
ensign, and fix this crap.’”

One Microsoft booth featured a whiteboard asking for attendees’
comments: “If we could fix just one thing immediately, what would
it be?” I wrote, “My hemorrhoids.” I wonder how that did in triage.

As always, I interviewed as many attendees as I could, getting
their take on today’s industry. A few recognized my name from my
badge. Many recognized this column when I mentioned it: “Oh,
you’re that genius/idiot?” But not one attendee recognized me by
my picture on the page. I have less hair in person, and more of it’s
gray. I think I need a new one.

I always enjoy hearing Harry Shum, director of Microsoft
Research (MSR). MSR has now developed artificial intelligence
(AI) to the point where it’s easier to use than not. You don’t have
to be an AI programmer. Just hand it some data sets.

I find this more than a little scary. One keynote demonstration
showed cameras surveying a mock construction site, automatically
recognizing people and tools, and objecting when the wrong guy
picked up a jackhammer. Satya said in his keynote, “We have to use
this power for good and not evil.” True that. But even stipulating
that Microsoft will be universally good, will everyone to whom it
gives the toolset be good? I have a hard time imagining that. As I
wrote in my January column (msdn.com/magazine/mt793276), “… men
turned their thinking over to machines in the hope that this would
set them free. But that only permitted other men with machines
to enslave them.” Skynet, anyone?

Our new AI will keep getting better and better, without any
additional coding, as it gains experience. That means that we’ve
crossed a fundamental watershed. I’m not sure we recognize this,
as an industry or as a society. Where is this going to take us? I can
only defer to Arthur C. Clarke, who wrote in his introduction to
“2001: A Space Odyssey”: “It is important to remember that this is
a work of fiction. The truth, as always, will be far stranger.”	 n

David S. Platt teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books,
including “Why Software Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Software
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fingers so she learns how to count in octal. You can contact him at rollthunder.com.

Live and in Concert

Don’t Get Me Started DAVID S. PLATT

I always enjoy hearing Harry
Shum, director of Microsoft

Research (MSR). MSR has now
developed AI to the point where

it’s easier to use than not.

0717msdn_PlattDGMS_v3_72.indd 72 6/6/17 11:49 AM

http://msdn.com/magazine/mt793276
www.rollthunder.com

Untitled-6 1 3/6/17 2:22 PM

www.jetbrains.com/rider

Untitled-7 1 6/6/17 2:48 PM

www.syncfusion.com/MSDNebook

	Back
	Print
	MSDN Magazine, July 2017
	Cover Tip
	Front
	Back

	Contents
	FEATURES
	Cognition at Scale with U-SQL on ADLA
	Introduction to the Microsoft CNTK v2.0 Library
	Doing Data Science and AI with SQL Server
	Scale Applications with Microsoft Azure Redis and Machine Learning
	ASP.NET Core with Angular, Web API and Azure DocumentDB

	COLUMNS
	UPSTART: The First Quarter
	CUTTING EDGE: Finding the Cheese in ASP.NET Core
	DATA POINTS: On-the-Fly SQL Servers with Docker
	THE WORKING PROGRAMMER: How To Be MEAN: Angular Ins and Outs
	MODERN APPS: Launch Other Applications from Your UWP App
	DON’T GET ME STARTED: Live and in Concert

	Visual Studio Live!, Redmond - Insert

