
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS APRIL 2017 VOL 32 NO 4

Container Development
with Docker....................16, 20

 0417msdn_CoverTip_8x10.75.indd 1 0417msdn_CoverTip_8x10.75.indd 1 3/8/17 2:46 PM3/8/17 2:46 PM

www.devexpress.com/try

 0417msdn_CoverTip_8x10.75.indd 2 0417msdn_CoverTip_8x10.75.indd 2 3/8/17 2:46 PM3/8/17 2:46 PM

www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS APRIL 2017 VOL 32 NO 4

Bringing Docker To Windows Developers
with Windows Server Containers
Taylor Brown.. 16

Modernizing Traditional .NET Apps
with Docker
Elton Stoneman.. 20

The New Azure App Service Environment
Christina Compy.. 28

Develop Hosted Web Apps for UWP
Sagar Bhanudas Joshi.. 34

COLUMNS
UPSTART
A Plan for Promotion
Krishnan Rangachari, page 6

CUTTING EDGE
Query JSON Data
in SQL Server 2016
Dino Esposito, page 8

DATA POINTS
Tips for Building Tests with EF
Core and Its InMemory Provider
Julie Lerman, page 12

TEST RUN
Kernel Perceptrons using C#
James McCaffrey, page 42

ESSENTIAL .NET
Understanding C# foreach
Internals and Custom Iterators
with yield
Mark Michaelis, page 54

MODERN APPS
Exploring the Map Control
Frank La Vigne, page 62

DON’T GET ME STARTED
Snaglets
David Platt, page 72

Container Development
with Docker....................16, 20

0417msdn_C1_v1.indd 1 3/13/17 8:36 AM

Write Fast, Run Fast
with Infragistics Ultimate developer toolkit

UI Controls & Productivity Tools For Quickly Building
High-Performing Web, Mobile, and Desktop Apps

New Release
Infragistics Ultimate UI Controls for Xamarin
Lightning-fast controls with a RAD WYSIWYG design-time experience

AppMap
Visually map out the entire fl ow of your app, including
master-detail, tab, and child pages. Automatically
generate all the Views, ViewModels and Navigation
code with the click of a button! Generate a best-
practices Prism architecture in a clean MVVM solution
with iOS and Android projects. Hit F5 and your app is
ready to run!

Download a free trial at
 Infragistics.com/Ultimate

Get the Code! Download the Reference App
Infragistics.com/Xamarin

Control Confi gurators
Visually confi gure rich controls like data grids and
charts right in the XAML editor and shave hours off
your development time. Customize your UI widgets
in a rich, design-time experience with pre-built styles
and themes, built-in databinding, and WYSIWYG
property editing – no coding required!

 Xamarin.Forms Toolbox
Use the world’s fi rst NuGet-powered Toolbox to design
your app views by dragging & dropping widgets directly
from the Toolbox onto the XAML editor – no previous
XAML knowledge required. The Toolbox gives you
automatic namespace referencing, full support for all
Infragistics Ultimate UI for Xamarin widgets, and the
complete set of Xamarin.Forms widgets!

To speak with our sales team or request
a product demo call: 1.800.321.8588

Free Reference

Application &

Tutorials

Untitled-11 2 3/14/17 1:14 PM

www.Infragistics.com/Ultimate

Write Fast, Run Fast
with Infragistics Ultimate developer toolkit

UI Controls & Productivity Tools For Quickly Building
High-Performing Web, Mobile, and Desktop Apps

New Release
Infragistics Ultimate UI Controls for Xamarin
Lightning-fast controls with a RAD WYSIWYG design-time experience

AppMap
Visually map out the entire fl ow of your app, including
master-detail, tab, and child pages. Automatically
generate all the Views, ViewModels and Navigation
code with the click of a button! Generate a best-
practices Prism architecture in a clean MVVM solution
with iOS and Android projects. Hit F5 and your app is
ready to run!

Download a free trial at
 Infragistics.com/Ultimate

Get the Code! Download the Reference App
Infragistics.com/Xamarin

Control Confi gurators
Visually confi gure rich controls like data grids and
charts right in the XAML editor and shave hours off
your development time. Customize your UI widgets
in a rich, design-time experience with pre-built styles
and themes, built-in databinding, and WYSIWYG
property editing – no coding required!

 Xamarin.Forms Toolbox
Use the world’s fi rst NuGet-powered Toolbox to design
your app views by dragging & dropping widgets directly
from the Toolbox onto the XAML editor – no previous
XAML knowledge required. The Toolbox gives you
automatic namespace referencing, full support for all
Infragistics Ultimate UI for Xamarin widgets, and the
complete set of Xamarin.Forms widgets!

To speak with our sales team or request
a product demo call: 1.800.321.8588

Free Reference

Application &

Tutorials

Untitled-11 3 3/14/17 1:14 PM

http://www.Infragistics.com/Xamarin

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader ’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
A list of editors and contact information is also available
online at Redmondmag.com.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF
Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Assistant Art Director Dragutin Cvijanovic
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF
Print Production Coordinator Lee Alexander

ADVERTISING AND SALES
Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Account Executive Caroline Stover
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA
Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Site Administrator Biswarup Bhattacharjee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES
Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bastionell
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos

MARKETING
Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Marketing & Editorial Assistant Megan Burpo

ENTERPRISE COMPUTING GROUP EVENTS
Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Financial Officer
Craig Rucker

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Features Editor Ed Zintel
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

APRIL 2017 VOLUME 32 NUMBER 4

magazine

0417msdn_Masthead_v1_2.indd 2 3/13/17 8:45 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/QuickQuote.asp
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:FirstinitialLastname@1105media.com

Untitled-6 1 3/6/17 3:21 PM

www.leadtools.com

msdn magazine4

In its short history, the Internet of Things (IoT) has produced its
share of drama, from the largest-ever distributed denial of service
(DDoS) attack (msdn.com/magazine/mt790193) to the prospect of zombie
automobiles taking orders from remote hackers (msdn.com/magazine/
mt422336). Now, a recent presentation at the RSA Conference 2017
makes clear that the IoT has an ownership lifecycle problem. And
once again, the auto industry is helping lead the way.

Charles Henderson leads IBM’s rather amazingly named X-Force
Red, a crack team of security pros tasked with challenging and ver-
ifying the security of deployed applications, networks, hardware
and workforces. In that role, Henderson is involved in research,
outreach and vulnerability testing for IBM. At the RSA Conference
2017 in San Francisco, Henderson related his personal experience
trading in a beloved convertible for a new car at an auto dealer-
ship. What started as a simple transaction turned into a journey
of discovery, as Henderson learned that there seemed to be no
straightforward way to fully remove his personal information and
access rights from the connected systems on his old car.

It wasn’t for lack of trying. Henderson detailed the steps he
took in returning his convertible, taking care to clear his personal
information from the car’s infotainment and other systems. He per-
formed a factory reset, wiped the Bluetooth settings and reset the

garage door openers. But when he got home with the new car—a
different model from the same brand and dealership of his old car—
Henderson discovered something odd. The smartphone app used to lo-
cate his car and provide convenience functions like locking doors, starting
the engine and beeping the horn still showed his old car right next
to the new one. Figuring there must be a lag in processing the trans-
fer, Henderson waited. And waited. And waited.

Two years later, the old convertible was still present in his smart-
phone app. Henderson enjoyed as much control over his old car’s
systems as the current, rightful owner. Over the next two years that
followed, he researched the resale of several cars back to authorized
dealers across four different manufacturers, and found that in every
instance the dealer failed to properly control access after the sale.

“Cars are not disposable items,” Henderson said. “Concepts of
access revocation and resetting access only work if they’re intuitive
to that second owner.”

The problem is only getting worse. As home smart hubs and other
consumer-connected devices and appliances proliferate, the question
begs: What happens to data, settings and access after you’re done
with connected hardware? Right now, there’s no easy and obvious
answer. Henderson pointed out that the mobile phone industry
used to have this problem, with personally identifiable informa-
tion (PII) like photos and contacts turning up on phones resold on
the open market. To help boost the resale value of phones, vendors
worked to create a consistent device reset experience.

Automobiles and really the whole universe of consumer IoT
products need something similar. Henderson said the answer lies
in the development and adoption of standards for clearing PII from
devices, and in training users to look for and utilize factory reset
functionality. And even then, it won’t be easy.

“At the B2B level we still screw up access revocation on a daily
basis,” Henderson told the audience. “If we can’t do it in business,
how do we expect to do it in the home? That’s a tough nut to crack.”

It certainly is. But the alternative is to leave a trail of leaky,
exposed and vulnerable con-
nected hardware in our wakes.

The Things We Leave Behind

© 2017 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEditor’s Note

Two years later, the old
convertible was still present in

his smartphone app. Henderson
enjoyed as much control over his
old car’s systems as the current,

rightful owner.

0417msdn_DesmondEdNote_v3_4.indd 4 3/13/17 8:39 AM

mailto:mmeditor@microsoft.com
http://msdn.com/magazine/mt790193
http://msdn.com/magazine/mt422336
http://msdn.com/magazine/mt422336
http://msdn.microsoft.com/magazine

Untitled-5 1 9/28/15 4:25 PM

www.amyuni.com

msdn magazine6

A few months ago, I started helping a software engineer, Suman,
with his career. Suman had been a developer at his company for
four years without a single promotion. Last week, he gave me an
update: He’d just been promoted to senior developer, and earned
a $23,000 raise.

The process of getting a promotion as a developer is simple,
repeatable and universal. This is the process I asked Suman to
follow (and that I’ve followed myself).

First, set a goal in the present tense, with a date attached, and start
reviewing the goal daily. As an example, the goal could be, “As of
June 2018, I am a senior software engineer at my current company.”
Constant review will sink the goal deep into your unconscious
and impel you into action. Then, on a regular basis, take the tiniest
uncomfortable step that would move you one step closer to this goal.
This is because a promotion isn’t a one-time event; it’s a months-
long series of small challenges and opportunities.

Make an Impression, Naturally
Next, when you volunteer for projects, be sure it helps or involves
others on the team! This automatically publicizes your work and
creates a quiet army of supporters. The projects don’t have to be
“sexy,” but they should be high-impact, pressing needs for the team.
The most boring, painful, “grunt work” projects are often the ones
that everybody appreciates most when someone takes them on.
But this is no time to “work on weaknesses”; pick projects in your
comfort zone.

Another developer I know, Jaya, took this approach. As other
developers gravitated to hot, new customer-facing features in the
product, Jaya volunteered to work on the setup and configuration
components. The goal: Demonstrate her skill as a developer, while
showing that she wasn’t high-maintenance or picky.

Jaya’s success convinced her managers that she could do any job
well, even the most terrible ones. Increasingly important projects fol-
lowed, and Jaya received a promotion at her next performance review.

It’s a career mistake to resent being assigned “meaningless” projects.
When you do these projects as if they were meaningful, the rewards are
more outsized. Even mediocre engineers can give their best to “great”
projects; only great engineers can give their best to mediocre projects.

When choosing projects, consider the following:
• �Pick projects based on the pressing business needs and

revenue focus areas of the company. Avoid choosing based
purely on technical beauty or architectural complexity.
Budgets, not beauty, pay the bills.

• �Pick team-based projects, ideally involving other teams’
engineers, rather than projects that are done completely
alone, behind-the-scenes.

Once you identify three to four projects, present your plan to
your manager. Say something like, “I want to have a bigger impact
on the team. So, getting promoted by next year is important to me.
But before I do, I already want to be operating at that level. I think
these projects will help me get there.” Then invite the manager to
provide input on the project ideas.

Usually, managers are so blown away by this proactive approach
that they agree to the project plan. And once they consent to the
plan, they’ll feel more invested in helping you get promoted!

Uncover Strengths, Strategically
So far, you’ve taken steps toward raising your contributions and
brought your manager into the effort. To maintain momentum,
ongoing communication is key. Once a month, check in with your
manager on how she thinks you’re doing in your progress toward
the promotion. Ask her, “What’s one thing I’ve done well over the
last month? What’s one thing I could improve?” This forces the
manager to articulate clearly (to herself) what you’re doing well,
instead of waiting until review time. And it helps you identify your
own blind spots before it’s too late.

In addition to brief monthly conversations, keep a record of your
achievements every week, regardless of whether you share them
with your manager. This isn’t so much for your manager’s benefit
as it is for your own advancement. Each weekly summary is a con-
cise, back-door resume that wraps up your achievements for the
week. This exercise is an effective self-accountability mechanism,
and serves as an important marketing tool at review time.

Finally, seek out an advisor from outside the company who can
suggest more creative and effective ways to achieve the promotion.
These people can also offer a broader, outsider perspective and help
you avoid a bad case of tunnel vision.

Taken together, these efforts can put your promotion efforts in
fast-forward and bend your career arc toward success. 	 n

Krishnan Rangachari is an executive coach for software engineers. Visit
RadicalShifts.com for his career success secrets.

A Plan for Promotion

Upstart KRISHNAN RANGACHARI

Even mediocre engineers can
give their best to “great” projects;

only great engineers can give
their best to mediocre projects.

0417msdn_RangaUpstart_v3_6.indd 6 3/13/17 8:48 AM

www.RadicalShifts.com

Untitled-5 1 3/8/17 12:33 PM

www.devexpress.com/spreadsheet

msdn magazine8

Moving data around independent and autonomous systems is all
that most software does these days and JSON is the ubiquitous lan-
guage behind data transfer. Short for JavaScript Object Notation,
JSON is a text-based way to lay out the state of an object so that it
can be easily serialized and transferred across the wire from one
system to the next, especially in heterogeneous systems.

JSON has become what, in the end, XML failed to be—the lingua
franca of the Web. Personally, I wouldn’t buy into much of the fact
that JSON is easier to read than XML. On the other hand, JSON
is a text format much more compact and lightweight than XML,
editable by humans and quick to parse and understand for com-
puters across a long list of software and hardware platforms.

A JSON string is a plain text string and any versions of any
relational database management system (RDBMS), including SQL
Server, let you store a string regardless of its content layout. SQL
Server 2016, however, is the first version of the Microsoft database
that lets you read existing tabular data as JSON, to save tabular data
as JSON and, more important, to query within JSON strings as if
the JSON content were actually a collection of individual columns.

For a structured and comprehensive overview of the JSON
functions in SQL Server 2016, read the MSDN documentation at
bit.ly/2llab1n. In addition, you can find an excellent executive sum-
mary of JSON in SQL Server 2016 in the Simple Talk article at
bit.ly/26rprwv. The article offers a more business-oriented view of
JSON in SQL Server 2016 and, in general, a scenario-based per-
spective of the use of JSON data in a relational persistence layer.

JSON Data in the Persistence Layer
Two verbs are key to understanding the purpose of JSON: trans-
mit and serialize. Therefore, JSON is the format in which you lay
out the state of a software entity so that it can be transmitted across
process spaces with the certainty it’ll be well understood on both
ends. Great, but this is a column about JSON in SQL Server and,
hence, in the persistence layer. So, let’s start with the base question:
When would you save data in SQL Server as JSON?

A relational database table is articulated on a fixed number of
columns and each column has its own data type, such as strings
of variable or fixed length, dates, numbers, Booleans and the like.
JSON is not a native data type. A SQL Server column that contains
JSON data from the database perspective is a plain string column.
You can write JSON data to a table column as you would write a
regular string and you can do that in any versions of SQL Server,
as well as in any other RDBMS.

Where do you get the JSON strings you eventually store into a
database? There are two main scenarios: First, those strings might

come from a Web service or some other form of an external endpoint
that transmits data (for example, a connected device or sensor).
Second, JSON data might be a convenient way to group together
related pieces of information so that they appear as a single data
item. This typically happens when you deal with semi-structured
data, such as data that represents a business event to store in an
event-sourcing scenario or, more simply, in a business context that’s
inherently event-driven, such as real-time systems for domains
such as finance, trading, scoring, monitoring, industrial automa-
tion and control, and so on. In all these cases, your storage can be
normalized to a structured form serializing related information
variable in length and format in a single data item that would fit
in the string column of a relational table.

As mentioned, the JSON content you might persist can come
from an external source or can be generated through serialization
from instances of C# objects:

foreach (var c in countries)
{
 // Serialize the C# object to JSON
 var json = JsonConvert.SerializeObject(c);

 // Save content to the database
 record.JsonColumn = json;
}

You can use Entity Framework (EF), as well, to save JSON data
into one column of a database table.

SQL Server 2016 takes this one level further and lets you transform
JSON data in table rows. This ability might save a lot of work and
CPU cycles off your code as now you can push the raw JSON text to
the database without first parsing it to C# objects in the application
code and then passing through EF or direct ADO.NET calls. The key
to achieve this goal is the new OPENJSON function:

declare @country nvarchar(max) = '{
 "id" : 101,
 "name": "United States",
 "continent": "North America"
}';
 INSERT INTO Countries
 SELECT * FROM OPENJSON(@country)
 WITH (id int,
 name nvarchar(100),
 continent nvarchar(100))

Query JSON Data in SQL Server 2016

Cutting Edge DINO ESPOSITO

Two verbs are key to
understanding the purpose of
JSON: transmit and serialize.

0417msdn_EspositoCEdge_v3_8-10.indd 8 3/13/17 8:39 AM

www.bit.ly/26rprwv
www.bit.ly/2llab1n

9April 2017msdnmagazine.com

You can use the function to insert or update regular table rows
from plain JSON text. The WITH clause lets you map JSON prop-
erties to existing table columns.

The Event Sourcing Scenario
In my December 2016 column, I discussed Event Sourcing as an
emerging pattern to store the historical state of the application
(msdn.com/magazine/mt790196). Instead of saving the latest-known good
state, with Event Sourcing you save every single business event that
alters the state and rebuild the latest state replaying the past events.

The crucial aspect of an Event Sourcing implementation is how
effectively you can save and retrieve the past events. Every event
is different and might have a different schema, depending on the
type and information available. At the same time, having a distinct
(relational) store for each event type is problematic because events
come asynchronously and might affect different entities and dif-
ferent segments of the state. If you keep them in different tables,
rebuilding the state might become expensive because of cross-table
JOINs. Hence, saving events as objects is the most recommended
option and NoSQL stores do the work very well. Is it possible to do
Event Sourcing with a relational database instead?

Saving the event as JSON is an option possible on any version of
SQL Server, but reading JSON effectively, when large numbers of
events are in store, might be unsustainable. With the native JSON
features in SQL Server 2016, the landscape changes and using SQL

Server in an Event Sourcing scenario becomes realistic. However,
how would you query JSON from a database table?

Querying Data Out of JSON Content
So let’s say you managed to have one or more columns of JSON data
in a canonical relational table. Therefore, columns with primitive
data and columns filled with JSON data live side by side. Unless the
new functions of SQL Server 2016 are used, the JSON columns are
treated as plain text fields and can be queried only with T-SQL string
and text instructions such as LIKE, SUBSTRING and TRIM. For the
purpose of the demo, I built a column called Countries—with a few
tabular columns—and another named Serialized that contains the
entire rest of the record serialized as JSON, as shown in Figure 1.

The JSON object serialized in the sample table looks like this:
{
 "CountryCode":"AD",
 "CountryName":"Andorra",
 "CurrencyCode":"EUR",
 "Population":"84000",
 "Capital":"Andorra la Vella",
 "ContinentName":"Europe",
 "Continent":"EU",
 "AreaInSqKm":"468.0",
 "Languages":"ca",
 "GeonameId":"3041565",
 "Cargo":null

The following T-SQL query shows how to select only the coun-
tries that count more than 100 million inhabitants. The query mixes
regular table columns and JSON properties:

SELECT CountryCode,
 CountryName,
 JSON_VALUE(Serialized, '$.Population') AS People
FROM Countries
WHERE ISJSON(Serialized) > 0 AND
 JSON_VALUE(Serialized, '$.Population') > 100000000
ORDER BY JSON_VALUE(Serialized, '$.AreaInSqKm')

The JSON_VALUE function takes the name of a JSON column
(or a local variable set to a JSON string) and extracts the scalar value
following the specified path. As shown in Figure 2, the $ symbol
refers to the root of the serialized JSON object.

Because the JSON column is configured as a plain NVARCHAR
column, you might want to use the
ISJSON function to check whether
the content of the column is real
JSON. The function returns a pos-
itive value if the content is JSON.

JSON_VALUE always returns a
string of up to 4,000 bytes, regard
less of the selected property. If
you expect a longer return value,
then you should use OPENJSON
instead. At any rate, you might want
to consider a CAST to get a value
of the proper type. Looking back at
the previous example, let’s say you
want the number of people living
in a country formatted with com-
mas. (In general, this might not be a
good idea because formatting data
in the presentation layer gives your
code a lot more flexibility.) The Figure 1 The Sample Countries Database with a JSON Column

With JSON, features enabled
using SQL Server in an

Event Sourcing scenario
become realistic.

0417msdn_EspositoCEdge_v3_8-10.indd 9 3/13/17 8:39 AM

msdn magazine10 Cutting Edge

SQL FORMAT function expects to receive a number and you
receive an error if you pass the direct JSON value. To make it work,
you must resort to an explicit CAST:

SELECT CountryCode,
 CountryName,
 FORMAT(CAST(
 JSON_VALUE(Serialized, '$.Population') AS int), 'N0')
 AS People
FROM Countries
WHERE ISJSON(Serialized) > 0 AND
 JSON_VALUE(Serialized,'$.Population') > 100000000
ORDER BY JSON_VALUE(Serialized, '$.AreaInSqKm')

The JSON_VALUE can only return a single scalar value. If you
have an array of a nested object that you want to extract, then you
must resort to the JSON_QUERY function.

How effective is it to query over JSON data? Let’s do some tests.

Indexing JSON Content in SQL Server 2016
As obvious as it might sound, querying the entire JSON string from
the database and then parsing it in memory through a dedicated
library such as Newtonsoft JSON, albeit always functional, might not
be an effective approach in all cases. Effectiveness mostly depends
on the number of records in the database and how long it might
really take to get the data you need in the format you need. Proba
bly for a query that your application runs occasionally, in-memory
processing of JSON data might still be an option. In general, though,
querying through JSON-dedicated functions and letting SQL Server
do the parsing internally results in slightly faster code. The differ-
ence is even bigger if you add an index on JSON data.

You shouldn’t create the index on the JSON column, however, as it
would index the JSON value as a single string. You’ll hardly be querying
for the entire JSON string or a subset of it. More realistically, instead,
you’ll be querying for the value of a particular property in the serial-
ized JSON object. A more effective approach is creating one or more
computed columns based on the value of one or more JSON proper-
ties and then indexing those columns. Here’s an example in T-SQL:

-- Add a computed column
ALTER TABLE dbo.Countries
ADD JsonPopulation
AS JSON_VALUE(Serialized, '$.Population')

-- Create an index
CREATE INDEX IX_Countries_JsonPopulation
ON dbo.Countries(JsonPopulation)

Again, you should be aware that JSON_VALUE returns NVARCHAR,
so unless you add CAST the index will be created on text.

Interestingly, JSON parsing is faster than the deserialization of
some special types, such as XML and spatial. You can find more
information at bit.ly/2kthrrC. In summary, at least JSON parsing is
better than fetching properties of other types.

JSON and EF
As a general remark, the JSON support in SQL Server 2016 is
primarily exposed through the T-SQL syntax, as tooling is quite
limited now. In particular, EF doesn’t currently provide any facilities
to query JSON data, except for the SqlQuery method in EF6 and
FromSql in EF Core. However, this doesn’t mean you can’t serialize
complex properties of C# classes (say, arrays) into JSON columns.
An excellent tutorial for EF Core can be found at bit.ly/2kVEsam.

Wrapping Up
SQL Server 2016 introduces some native JSON capabilities so that
you can more effectively query stored JSON data as a canonical
rowset. This mostly happens when the JSON data is the serialized
version of some semi-structured aggregate of data. Indexes built out

of computed columns that reflect that value of one or more
JSON properties definitely help improve the performance.

JSON data is stored as plain text and isn’t considered a
special type, such as XML and Spatial. However, this just
enables you to use JSON columns in any SQL Server objects
right away. The same can’t be said for other complex types
such as XML, CLR and Spatial that are still on the waiting list.

In this column, I focused on the JSON-to-rowset
scenario. However, SQL Server 2016 also fully supports the
rowset-to-JSON query scenario when you write a regular
T-SQL query and then map results to JSON objects via the
FOR JSON clause. For more information on this feature,
see bit.ly/2fTKly7.	 n

Dino Esposito is the author of “Microsoft .NET: Architecting Appli-
cations for the Enterprise” (Microsoft Press, 2014) and “Modern Web
Applications with ASP.NET” (Microsoft Press, 2016). A technical evan-
gelist for the .NET and Android platforms at JetBrains, and frequent
speaker at industry events worldwide, Esposito shares his vision of
software at software2cents@wordpress.com and on Twitter: @despos.

Thanks to the following Microsoft technical expert for reviewing
this article: Jovan Popovic

JSON parsing is faster than the
deserialization of some special
types, such as XML and spatial.

Figure 2 Results of a JSON Query

0417msdn_EspositoCEdge_v3_8-10.indd 10 3/13/17 8:39 AM

mailto:software2cents@wordpress.com
www.twitter.com/despos

CONTACT US

US: +1 903 306 1676
EU: +44 141 628 8900
AU: +61 2 8006 6987

sales@asposeptyltd.com

Try for FREE at
www.aspose.com

File Format APIs
Working with Files?

FR
EE

 T
R

IA
L

Manipulate Word, Excel, PDF, PowerPoint, Outlook and more than 100 other
file formats in your applications without installing Microsoft Office.

DOC, XLS, PDF, PPT, MSG, BMP, PNG, XML and many more!

Platforms supported: .NET, Java, Cloud, Android, SharePoint, Reporting
Services, and JasperReports

COMBINEMODIFY
PRINTCONVERTCREATE

Untitled-8 1 1/5/17 2:05 PM

http://www.aspose.com
mailto:sales@asposeptyltd.com

msdn magazine12

When creating automated tests against methods that trigger data-
base interaction, there are times when you truly want to see what’s
happening in the database, and other times when the database
interaction isn’t at all relevant to your test’s assertion. The new EF
Core InMemory provider can prove useful in the latter case. In
this article I’ll provide an introduction to this handy tool and share
some tips and tricks about creating automated tests with EF Core
that I’ve discovered while learning to use it myself.

In cases where the database effort isn’t important to the test
result, unnecessary calls to the database can put a strain on per-
formance or even cause inaccurate test results. For example, the
amount of time it takes to talk to the database—or drop and recreate
a test database—can hold up your tests. Another concern is if there’s
a problem with the database itself. Perhaps network latency or a
momentary hiccup causes a test to fail only because the database
is unavailable, not as a result of a failure in the logic the test is
attempting to assert.

We’ve long sought ways to minimize these side effects. Fakes
and mocking frameworks are common solutions. These patterns
allow you to create in-memory representations of the data store,
but there’s a lot involved in setting up their in-memory data and
behavior. Another approach is to use a lighter-weight database for
testing than you’re targeting in production, such as a PostgreSQL or
SQLite database, rather than, for example, a SQL Server database
you use for your production data store. Entity Framework (EF) has
always allowed for targeting different databases with a single model
thanks to the various providers available. However, nuanced dif-
ferences in database functionality can cause you to hit issues where
this won’t always work (though it’s still a good option to keep in
your toolbox). Alternatively, you could use an external tool, such
as the open source EFFORT extension (github.com/tamasflamich/effort),

which magically provides an in-memory representation of the data
store without the setup needed for fakes or mocking frameworks.
EFFORT works with EF 4.1 through EF6, but not EF Core.

There are already a number of database providers for EF Core.
Microsoft includes the SQL Server and SQLite providers as part of
the family of EntityFrameworkCore APIs. There are also providers
for SQLCE and PostgreSQL, respectively maintained by MVPs Erik
Eilskov Jensen and Shay Rojansky. And there are third-party com-
mercially available providers. But Microsoft has created another
provider—not to persist to a database, but to temporarily persist to
memory. This is the InMemory provider: Microsoft. EntityFrame-
workCore.InMemory, which you can use as a quick way to provide
a stand-in for an actual database in many testing scenarios.

Readying the DbContext
for the InMemory Provider
Because your DbContext will sometimes be used to connect to
a true data store and sometimes to the InMemory provider, you
want to set it up to be flexible with respect to providers, rather than
dependent on any particular provider.

When instantiating a DbContext in EF Core, you have to
include DbContextOptions that specify which provider to use
and, if needed, a connection string. UseSqlServer and UseSqlite,
for example, require that you pass in a connection string, and
each provider gives you access to the relevant extension method.
Here’s how this looks if done directly in the DbContext class
OnConfiguring method, where I’m reading a connection string
from an application config file:

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder) {
 var settings = ConfigurationManager.ConnectionStrings;
 var connectionString = settings["productionDb"].ConnectionString;
 optionsBuilder.UseSqlServer(connectionString);
 }

A more flexible pattern, however, is to pass a pre-configured
DbContextOptions object into the constructor of the DbContext:

public SamuraiContext(DbContextOptions<SamuraiContext> options)
 :base(options) { }

EF Core will pass those pre-configured options into the under-
lying DbContext and apply them for you.

With this constructor in place, you now have a way to specify
different providers (and other options, such as a connection string)
on the fly from the logic that’s using the context.

If you’re using some type of Inversion of Control (IoC) container
in your application, such as StructureMap (structuremap.github.io)
or the services built into ASP.NET Core, you have the ability to

Tips for Building Tests with EF Core and Its
InMemory Provider

Data Points JULIE LERMAN

Code download available at msdn.com/magazine/0417magcode.

Microsoft has created another
provider—not to persist to a
database, but to temporarily

persist to memory.

0417msdn_LermanDPts_v4_12-15.indd 12 3/13/17 8:45 AM

(888) 850-9911
Sales Hotline - US & Canada:

/update/2017/04

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2017 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Experience the brand new look at www.componentsource.com

Aspose.Total for .NET from $2,939.02
Every Aspose .NET API in one package.

• Programmatically manage popular � le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote � les
alongside many more document management features in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the � y and extracting text from most document types

BEST SELLER

DevExpress DXperience 16.2 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

ActiveReports 11 from $1,575.02
Award-winning .NET reporting platform for HTML5, WPF, WinForms, ASP.NET & Windows Azure.

• Visual Studio-integrated report designer

• Extensible optional report server with built-in scalability

• Responsive HTML5 Report Portal

• Royalty-free redistribution

• Source data from JSON � les, Web services and REST API using the built in JSON data provider

BEST SELLER

Untitled-6 1 3/6/17 2:27 PM

http://www.componentsource.com

msdn magazine14 Data Points

configure the provider for the context in the code where you con-
figure other application-wide IoC services. Here’s an example that
uses ASP.NET Core services in a typical startup.cs file:

public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<SamuraiContext>(
 options => options.UseSqlServer(
 Configuration.GetConnectionString("productionDb")));
 services.AddMvc();
}

In this case, SamuraiContext is the name of my class that inher-
its from DbContext. I’m using SQL Server again and I’ve stored the
connection string in the ASP.NET Core appsettings.json file under
the name productionDb. The service has been configured to know
that any time a class constructor requires an instance of Samurai
Context, the runtime should not only instantiate SamuraiContext,
but should pass in the options with the provider and connection
string stated in this method.

When this ASP.NET Core app uses my SamuraiContext, by
default, it will now do so with SQL Server and my connection string.
But thanks to the flexibility I built into the SamuraiContext class,
I can also create tests that use the same SamuraiContext but pass
in a DbContextOptions object that specifies using the InMemory
provider instead—or specifies any other options that are relevant
to a particular test.

In the next section I’ll show two different tests that involve EF
Core. The first, Figure 1, is designed to test that the correct data-
base interaction occurred. This means I truly want the test to hit
the database, so I’ll construct DbContextOptions to use the SQL
Server provider, but with a connection string that targets a test
version of my database I can create and drop on the fly.

I use the EnsureDeleted and EnsureCreated methods to give
me a totally fresh version of the database for the test, and these will
work even if you don’t have migrations. Alternatively, you could
use EnsureDeleted and Migrate to recreate the database if you
have migration files.

Next, I create a new entity (samurai), tell EF to begin tracking
it and then note the temporary key value the SQL Server provider
supplies. After calling SaveChanges, I verify that SQL Server has
applied its own database-generated value for the key, assuring me
that this object was, indeed, inserted into the database correctly.

Deleting and recreating a SQL Server database might affect how
long it takes to run the test. You could use SQLite in this case and
get the same results more quickly while ensuring that the test is
still hitting an actual database. Also, note that, like the SQL Server
provider, SQLite also sets a temporary key value when you add an
entity to the context.

If you have methods that happen to use EF Core but you want to
test them without hitting the database, this is where the InMemory
provider is so handy. But keep in mind that InMemory is not a

database and won’t emulate all flavors of relational database
behavior—for example, referential integrity. When this is important
to your test, you may prefer the SQLite option or, as the EF Core docs
suggest, the SQLite in-memory mode as explained at bit.ly/2l7M71p.

Here’s a method I’ve written in an app that performs a query with
EF Core and returns a list of KeyValuePair objects:

public List<KeyValuePair<int, string>> GetSamuraiReferenceList() {
 var samurais = _context.Samurais.OrderBy(s => s.Name)
 .Select(s => new {s.Id, s.Name})
 .ToDictionary(t => t.Id, t => t.Name).ToList();
 return samurais;
}

I want to test that the method truly returns a KeyValuePair list.
I don’t need it to query the database in order to prove this.

Following is a test to do that using the InMemory provider (which
I’ve already installed into the test project):

[TestMethod]
 public void CanRetrieveListOfSamuraiValues() {
 _options = new DbContextOptionsBuilder<SamuraiContext>()
 .UseInMemoryDatabase().Options;
 var context = new SamuraiContext(_options);
 var repo = new DisconnectedData(context);
 Assert.IsInstanceOfType(repo.GetSamuraiReferenceList(),
 typeof(List<KeyValuePair<int, string>>));
 }

This test doesn’t even require any sample data to be available to
the in-memory representation of the database because it’s enough
to return an empty list of KeyValuePairs. When I run the test, EF
Core will be sure that when the GetSamuraiReferenceList executes
its query, the provider will allocate resources in memory for EF to
execute against. The query is successful and so is the test.

What if I want to test that the correct number of results are
returned? This means I’ll need to provide data to seed the InMemory
provider. Much like a fake or mock, this requires creating the data
and loading it into the provider’s data store. When using fakes and
mocks, you might create a List object and populate that, then query
against the list. The InMemory provider takes care of the container.
You just use EF commands to pre-populate it. The InMemory pro-
vider also takes care of much of the overhead and extra coding that
are needed when using fakes or mocks.

As an example, Figure 2 shows a method I’m using to seed the
InMemory provider before my tests interact with it:

If my in-memory data is empty, this method adds in two new
samurais and then calls SaveChanges. Now it’s ready to be used by a test.

But how would my InMemory data store have data in it if I’ve
just instantiated the context? The context is not the InMemory
data store. Think of the data store as a List object—the context will

[TestMethod]
 public void CanInsertSamuraiIntoDatabase() {
 var optionsBuilder = new DbContextOptionsBuilder();
 optionsBuilder.UseSqlServer
 ("Server = (localdb)\\mssqllocaldb; Database =
 TestDb; Trusted_Connection = True; ");
 using (var context = new SamuraiContext(optionsBuilder.Options)) {
 context.Database.EnsureDeleted();
 context.Database.EnsureCreated();
 var samurai = new Samurai();
 context.Samurais.Add(samurai);
 var efDefaultId = samurai.Id;
 context.SaveChanges();
 Assert.AreNotEqual(efDefaultId, samurai.Id);
 }
 }

Figure 1 Testing That a Database Insert Works as Expected

Deleting and recreating the SQL
Server database might affect

how long it takes to run the test.

0417msdn_LermanDPts_v4_12-15.indd 14 3/13/17 8:45 AM

15April 2017msdnmagazine.com

create it on the fly, if needed. But once it’s been created, it remains
in memory for the lifetime of the application. If I’m running a
single test method, there will be no surprises. But if I’m running a num-
ber of test methods, then every test method will use the same set
of data and you may not want to populate it a second time. There’s
more to understand about this, which I’ll be able to explain after
you see a bit more code.

This next test is a bit contrived, but it’s designed to demonstrate
using a populated InMemory store. Knowing that I’ve just seeded the
memory with two samurais, the test calls that same GetSamuraiRefer-
enceList method and asserts that there are two items in the resulting list:

[TestMethod]
 public void CanRetrieveAllSamuraiValuePairs() {
 var context = new SamuraiContext(_options);
 var repo = new DisconnectedData(context);
 Assert.AreEqual(2, repo.GetSamuraiReferenceList().Count);
 }

You may have noticed that I didn’t call the seed method or cre-
ate the options. I’ve moved that logic to the test class constructor
so I don’t have to repeat it in my tests. The _options variable is
declared for the full scope of the class:

private DbContextOptions<SamuraiContext> _options;

 public TestDisconnectedData() {
 _options =
 new DbContextOptionsBuilder<SamuraiContext>().UseInMemoryDatabase().Options;
 SeedInMemoryStore();
 }

Now that I’ve moved the seed method into the constructor, you
might think (as I did) that it will get called only once. But that’s not
the case. Did you know that a test class constructor gets hit by ev-
ery test method that’s run? In all honesty, I had forgotten this until
I noticed that tests were passing when run on their own, but failing
when I ran them together. That was before I added in the check to
see if the samurai data already existed in memory. Every method
that triggered the seed method to be called would be seeding the
same collection. This would happen whether I was calling the seed
method in each test method or only once in the constructor. The
check for pre-existing data protects me either way.

There’s a nicer way to avoid the problem of conflicting in-memory
data stores. InMemory allows you to provide a name for its data store.

If you want to move the creation of the DbContextOptions
back into the test method, and do so for each method, specifying
a unique name as a parameter of UseInMemory will assure that
each method is using its own data store.

I refactored my test class by removing the class-wide _options
variable and the class constructor. Instead, I use a method for cre-
ating the options for a named data store and seeding the particular
data store that takes in the desired name as a parameter:

private DbContextOptions<SamuraiContext> SetUpInMemory(string uniqueName) {
 var options = new DbContextOptionsBuilder<SamuraiContext>()
 .UseInMemoryDatabase(uniqueName).Options;
 SeedInMemoryStore(options);
 return options;
}

I modified the signature and first line of the SeedInMemoryStore
to use the configured options for the unique data store:

private void SeedInMemoryStore(DbContextOptions<SamuraiContext> options) {
 using (var context = new SamuraiContext(options)) {

And each test method now uses this method along with a unique
name to instantiate the DbContext. Here’s the revised CanRetrieve
AllSamuraiValuePairs. The only change is that I’m now passing in
the new SetUpInMemory method along with the unique data store
name. A nice pattern recommended by the EF team is to use the
test name as the name of the InMemory resource:

[TestMethod]
 public void CanRetrieveListOfSamuraiValues() {
 using (var context = new
SamuraiContext(SetUpInMemory("CanRetrieveListOfSamuraiValues"))) {
 var repo = new DisconnectedData(context);
 Assert.IsInstanceOfType(repo.GetSamuraiReferenceList(),
 typeof(List<KeyValuePair<int, string>>));
 }
 }

Other test methods in my test class have their own unique data
store names. And now you see there are patterns for using a unique
set of data, or sharing a common set of data across test methods.
When your tests are writing data to the in-memory data store, the
unique names allow you to avoid side effects on other tests. Keep
in mind that EF Core 2.0 will always require a name to be supplied,
as opposed to the optional parameter in EF Core 1.1.

There’s one last tip I want to share about the InMemory data store.
In writing about the first test, I pointed out that both the SQL Server
and SQLite providers insert a temporary value to the Samurai’s key
property when the object is added to the context. I didn’t mention that
if you specify the value yourself, the provider won’t overwrite that.
But in either case, because I’m using the default database behavior,
the database overwrites the value with its own generated primary
key value. With the InMemory provider, however, if you supply a
key property value, that will be the value that the data store uses.
If you don’t supply one, the InMemory provider uses a client-side
key generator whose value acts as the data-store assigned value.

The samples I’ve used come from my EF Core: Getting Started
course on Pluralsight (bit.ly/PS_EFCoreStart), where you can learn more
about EF Core, as well as testing with EF Core. The sample code is
also included as a download with this article. 	 n

Julie Lerman is a Microsoft Regional Director, Microsoft MVP, software team mentor
and consultant who lives in the hills of Vermont. You can find her presenting on data
access and other topics at user groups and conferences around the world. She blogs
at thedatafarm.com/blog and is the author of “Programming Entity Framework,” as
well as a Code First and a DbContext edition, all from O’Reilly Media. Follow her
on Twitter: @julielerman and see her Pluralsight courses at juliel.me/PS-Videos.

Thanks to the following Microsoft technical expert for reviewing this article:
Rowan Miller

private void SeedInMemoryStore() {
 using (var context = new SamuraiContext(_options)) {
 if (!context.Samurais.Any()) {
 context.Samurais.AddRange(
 new Samurai {
 Id = 1,
 Name = "Julie",
 },
 new Samurai {
 Id = 2,
 Name = "Giantpuppy",
);
 context.SaveChanges();
 }
 }
 }

Figure 2 Seeding an EF Core InMemory Provider

0417msdn_LermanDPts_v4_12-15.indd 15 3/13/17 8:45 AM

www.twitter.com/julielerman

msdn magazine16

For the last couple of years Docker and containers have been
one of the hottest topics in dev circles, and in enterprises, around
the world. The release of Windows Server 2016 last fall added a lot
to the conversation by opening containers to Windows developers.
How did the world of Windows and Docker come together? It
started during the gorgeous Puget Sound summer of 2014 as
the Windows Base team embarked on a new project that would
ultimately become Windows Server Containers. This is the story
behind the code, and a glimpse into what it was like to build one
of the top new features in Windows Server 2016.

History of Containers and the Root of Docker
In 2013, containers quickly started generating interest at the key-
board of Solomon Hykes, who at the time was the CTO and founder
of a Platform-as-a-Service (PaaS) startup, DotCloud. Hykes took a
set of relatively obscure and difficult-to-use Linux kernel features

and brought them together under an open source tool he called
Docker. He wasn’t intentionally trying to become the king of con-
tainers, but was looking for a solution to a problem that plagued
DotCloud: How could developers provide code that worked the
same way on their servers as it did in their working environment?

A real problem for services like DotCloud stemmed from the
extensive and diverse set of software applications customers wanted
to deploy—software built with different development processes,
different patch cycles and requirements, written in different lan-
guages (both code and spoken), and with different dependencies.
Hardware virtualization—virtual machines (VMs)—was the best
tool available, but it presented challenges in shipping software
from developer laptops to production. Either you had to use fully
configured VMs from the developer, which made scalability and

CO N TA INER S

Bringing Docker to
Windows Developers
with Windows Server
Containers
Taylor Brown

This article discusses:
•	History of containers and the root of Docker

•	Windows Server Containers

•	Hyper-V isolation

•	How Docker and Windows Server Containers came together

Technologies discussed:
Windows Server 2016, Docker, Linux

Hykes took a set of relatively
obscure and difficult-to-use Linux

kernel features and brought
them together under an open
source tool he called Docker.

0417msdn_BrownContainers_v3_16-19.indd 16 3/13/17 8:35 AM

 0417msdn_DevExpress_Insert_for_Emag.indd 1 0417msdn_DevExpress_Insert_for_Emag.indd 1 3/17/17 2:35 PM3/17/17 2:35 PM

www.devexpress.com

 0417msdn_DevExpress_Insert_for_Emag.indd 2 0417msdn_DevExpress_Insert_for_Emag.indd 2 3/17/17 2:35 PM3/17/17 2:35 PM

www.devexpress.com/support
mailto:support@devexpress.com
mailto:info@devexpress.com

 0417msdn_DevExpress_Insert_for_Emag.indd 3 0417msdn_DevExpress_Insert_for_Emag.indd 3 3/17/17 2:36 PM3/17/17 2:36 PM

http://www.devexpress.com/grids

 0417msdn_DevExpress_Insert_for_Emag.indd 4 0417msdn_DevExpress_Insert_for_Emag.indd 4 3/17/17 2:36 PM3/17/17 2:36 PM

http://www.devexpress.com/reports

 0417msdn_DevExpress_Insert_for_Emag.indd 5 0417msdn_DevExpress_Insert_for_Emag.indd 5 3/17/17 2:36 PM3/17/17 2:36 PM

http://www.devexpress.com/spreadsheet

 0417msdn_DevExpress_Insert_for_Emag.indd 6 0417msdn_DevExpress_Insert_for_Emag.indd 6 3/17/17 2:36 PM3/17/17 2:36 PM

http://www.devexpress.com/word

 0417msdn_DevExpress_Insert_for_Emag.indd 7 0417msdn_DevExpress_Insert_for_Emag.indd 7 3/17/17 2:36 PM3/17/17 2:36 PM

http://www.devexpress.com/dashboard

 0417msdn_DevExpress_Insert_for_Emag.indd 8 0417msdn_DevExpress_Insert_for_Emag.indd 8 3/17/17 2:37 PM3/17/17 2:37 PM

http://www.devexpress.com/try

17April 2017msdnmagazine.com

management difficult, or you had to make deployment tools and
scripts to take stock VMs and install the developer’s applications,
which isn’t very flexible and can be fragile.

Hykes believed Docker was the answer to this problem and,
looking back, he was on to something. However, he wasn’t the first
cloud service to look to containers; in fact, it was the needs of a
different cloud service that kick-started the whole idea—Google.
In 2006, a Linux kernel patch submitted by Rohit Seth, an engineer
at Google, added support for grouping processes together under
a common set of resource controls in a feature he called cgroups.
Seth’s description of that patch starts off with: “Commodity HW
is becoming more powerful. This is giving opportunity to run dif-
ferent workloads on the same platform for better HW resource
utilization”(bit.ly/2mhatrp). Although cgroups solved the problem
of resource isolation, they didn’t solve inconsistent distribution,
which is why Docker uses not only cgroups but also another slice
of Linux technology: namespaces.

Namespaces were introduced into the Linux kernel in 2002,
providing a way to control what resources a process can see and
what those resources are called. Namespaces are quite different
from access controls because the process doesn’t even know the
resources exist or that it’s using a version of them. A simple exam-
ple of this is the process list: there could be 20 processes running
on a server, yet a process running within a namespace might
see only five of those processes with the rest hidden from view.
Another example might be for a process to think it’s reading from
the root directory when in fact it’s been virtualized from another
separate location. It’s the combination of cgroups and namespaces
and Copy-on-Write (CoW) file-system technologies into an easy-
to-use open source product that became the foundation of Docker.

By mid-2013, the Docker toolset that Hykes and his team built
began to take off, becoming one of the top trending projects on
GitHub and formally launching the Docker brand. Hykes’ focus
shifted from DotCloud to Docker and he ultimately spun off the
DotCloud business while remaining the CTO of Docker Inc.

Windows Server Containers
During the same period that Docker was gaining notice in Linux
circles, the Windows Base team had been looking at ways to isolate
and increase the efficiency of Microsoft Azure services that executed
customer or third-party code. A Microsoft research prototype
code-named “Drawbridge” provided one avenue of investigation;
the project had built a process isolation container leveraging a

library OS (bit.ly/2aCOQxP). Unfortunately, Drawbridge had limitations
relating to maintainability, performance and application compat-
ibility, making it ill-suited as a general-purpose solution. Another
even earlier prototype technology referred to as server silos ini-
tially seemed worth investigating. Silos expanded on the existing
Windows Job Objects approach, which provides process grouping
and resource controls (similar to cgroups in Linux) (bit.ly/2lK1AbI).
What the server silos prototype added was an isolated execution
environment that included file system, registry and object name-
spaces (similar to namespaces in Linux). The server silos prototype
had been shelved years earlier in favor of VMs but would be
reimagined as the foundation of Windows Server Containers.

The server silo prototype code hadn’t been looked at in years. It
didn’t even compile, let alone function, and it was prototype code
written to prove the technique was viable in Windows, but far from
production-ready. The team had a choice—start over from scratch
or attempt to resurrect the prototype and start from there. We chose
the latter. When the prototype was first developed, it was only a small
team of developers proving that the technology was viable, but now
the full force of the Windows engineering team was behind the proj-
ect. Architects and engineers from across Windows were drafted
to help. The storage team built the file system virtualization; the
networking team built the network isolation; the kernel team built
the memory management and scheduling abstractions; and so on.

Some big architectural questions remained; in particular, how
would we handle system processes? In Linux, a container often runs
just a single process that shares the system services in the kernel
with the host and other containers. However, to improve service-
ability and security, Windows has been moving code out of the
kernel and into user mode processes for many years. This repre-
sented an issue for the team: Either we could share all the system
services, requiring changes to all the system services to make them
aware of containers, or we could start a new copy of the user mode
system services in each container. This was a difficult decision—we
worried about the density and startup time impact of starting new
instances of all the user mode services in each container. On the
other side, we worried about the complexity and ongoing cost of
updating all the system services in Windows, both for us and for
developers outside of Windows. In the end we landed on a mix of
the two approaches—a select set of services was made container-
aware, but most services run in each container.

Namespaces were introduced
into the Linux kernel in 2002,

providing a way to control what
resources a process can see and
what those resources are called.

The server silos prototype
had been shelved years earlier

in favor of virtual machines,
but would be reimagined as
the foundation of Windows

Server Containers.

0417msdn_BrownContainers_v3_16-19.indd 17 3/13/17 8:35 AM

msdn magazine18 Containers

The impact on density was minimal because the containers share
read-only memory with each other and the host, so only the private
memory is per-container. Startup time was a significant challenge,
however, calling this decision into question many times; when we
first demonstrated Windows Server Containers in the keynote of
Build 2015, it took several seconds to start, in large part because of the
startup time of the system services. However, the Windows Server per-
formance team was on the case. They profiled, analyzed and worked
with teams across Windows to make their services faster and reduce
dependencies to improve parallelism. The result of this effort not only
made container startup faster but actually improved Windows startup
time, as well. (If your Xbox or Surface started booting faster last year,
you can thank containers.) Container startup went from about seven
to eight seconds to a sub-second startup time in less than a year, and
this trajectory to reduce startup time continues even today.

Hyper-V Isolation
Often, the first question I get regarding Hyper-V isolation is some-
thing like, “Don’t containers provide isolation already? So why do
I need Hyper-V?” Containers do provide isolation and for most
scenarios that isolation is likely completely sufficient. However, the
risk is that if an attacker is able to compromise the kernel it could
potentially break out of the container and impact other containers
or the host. With kernel exploits being relatively common in
Windows (typically several per year), the risk for services like Azure
Automation or Azure Machine Learning that consume and execute
end-user or third-party code on a shared infrastructure is too high
to rely on just kernel isolation. Teams building and operating these
types of services either had to manage the density and startup cost
of full VMs or build different security
and isolation techniques. What was
needed was a general-purpose isolation
mechanism that was hostile to intruders
yet multi-tenant safe: Windows Server
Containers with Hyper-V isolation.

The team was already hard at work
on Windows Server Containers, and
this provided a great experience and
management model for teams building
the services. By coupling the technology
with the well-tested isolation of Hyper-V,
we could provide the security required.
However, we needed to solve the startup
time and density challenges traditionally
associated with VMs.

Hyper-V, like most virtualization
platforms, was designed to run guests
with a variety of OSes both old and new.
With the goal of behaving as much like
hardware as possible, to achieve these
objectives the solution most virtual-
ization platforms chose was emulating
common hardware. As virtualization
became commonplace, however,
OSes were “enlightened” (specifically

modified to operate well as a guest VM) such that much of the
emulation was no longer required. A good example of this is
Hyper-V Generation 2 VMs, which discard emulation in favor of
improved startup time and performance, but still achieve the same
objective of behaving the same as if the guest was running directly
on hardware (bit.ly/2lPpdAg).

For containers, we had a different need and different goals: We
didn’t need to run any older OSes and we knew exactly what the
workload inside the VM was going to be—a container. So we built
a new type of VM, one that was designed to run a container. To
address the need for a fast startup time we built cloning technol-
ogy. This was always a challenge for traditional VMs because the
OS becomes specialized with things like hostnames and identity,
which can’t easily be changed without a reboot. But because con-
tainers have their own hostname and identity, that was no longer
an issue. Cloning also helped with the density challenge, but we
had to go further: We needed memory sharing.

Figure 1 Comparing the Basic Architecture of Containers and Docker Across
Windows and Linux

Windows

Compute Services

Control Groups
Job objects

Namespaces
Object Namespace,

Process Table, Networking

Layer Capabilities
Registry, Union like

filesystem extensions

Other OS
Functionality

Linux Control Groups
cgroups

Namespaces
Pid, net, ipc, mnt, uts

Other OS
Functionality

Layer Capabilities
Union Filesystems: AUFS,

btrfs, vfs, zfs*, DeviceMapper

Platform
Independent

Platform
Specific

REST Interface

libcontainerd libnetwork graph plugins

Docker Client Docker PowerShell Docker Swarm Docker Registry

Docker Engine

To improve serviceability and
security Windows has been

moving code out of the kernel
and into user mode processes

for many years.

0417msdn_BrownContainers_v3_16-19.indd 18 3/13/17 8:35 AM

19April 2017msdnmagazine.com

There are two approaches to sharing memory. You can look for mem-
ory that’s common across multiple VMs and effectively de-duplicate
(though memory randomization technology in most kernels makes
this difficult). Or you can follow the same approach the kernel does
by separating read-only (public) memory from read-write (private)
memory. The latter typically requires that the memory manager in
guest VMs interact with each other, which is counter to the isolation
requirement. However, by changing the way the VMs boot and access
files, we found a way where the host doesn’t have to trust the guest and
the guests don’t have to trust each other. Instead of the VM booting
from and accessing files from a virtual hard disk, it boots and accesses
its files directly from the host file system. This means that the host can
provide the same sharing of read-only (public) memory. This was the
key to improving density by several orders of magnitude and it put
us on a path to continue improving density for many years to come.

The other value we discovered with Hyper-V isolation is that by
running a different kernel for the container for developers build-
ing containerized applications on their Windows 10 machines, we
could still run the server kernel, ensuring their applications would
work the same way in production as they do on the development
machines. Thus, with the Windows 10 Anniversary Update, we
enabled Windows Server Containers with Hyper-V isolation
and worked with Docker on Docker for Windows to take full
advantage of the new technology for developers.

Docker and Windows Server Containers
One question remained—how would users interact with this new
platform technology? In the Linux world Docker had been gar-
nering praise and was quickly becoming the de facto standard for
container management. Why not enable users to use Windows
Server Containers the same way? That fall I flew down to San Fran-
cisco to meet with Docker, unsure what the company would think
of a Windows-based container and whether it would be interested
in building on top of Windows at all. I was in for a surprise:
Solomon thought the Windows container idea was great! But would

the company build on top of it? That conversation changed the face
of the project completely. Solomon simply said, “You know Docker
is open source, you can add the code to make it work on Windows
and we’ll help,” and we did just that. Since then, John Howard, a soft-
ware engineer on the Hyper-V team, has become a maintainer of
the Docker project and, in fact, has climbed to fourth all-time code
contributor (bit.ly/2lAmaZX). Figure 1 shows the basic architecture of
containers and Docker across Windows and Linux.

Bringing It All Together
Four months ago at Microsoft Ignite, we launched Windows Server
2016 and announced the expansion of our partnership with Docker,
which means it will provide its commercially supported version
of the Docker Engine at no additional charge to Windows Server
customers. Since then, it’s been a whirlwind of activity. Customers
like Tyco have been using Docker and Windows Server Containers
to revolutionize the way they build software and to modernize
existing applications, all with the same platform (bit.ly/2dWqIFM).
Visual Studio 2017 has fully integrated tooling for Windows and

Linux containers, including F5 debugging, and Visual Studio Code
has Dockerfile and compose support baked right in. Both Azure
and Amazon’s container services have added support for Windows
Server Containers and well more than 1 million Windows-based
container images have been pulled from Docker Hub. To achieve
end-to-end security and orchestration, Docker Datacenter is the
platform for developers and sysadmins to build, ship and run dis-
tributed applications anywhere. With Docker, organizations shrink
application delivery from months to minutes, frictionlessly move
workloads between datacenters and the cloud and achieve 20 times
greater efficiency in their use of computing resources.

When I took on containers I knew it was going to be a high-stress
project. I knew it was going to take some long nights, some working
weekends and a lot of effort, but it’s worth it because it helped millions
of developers build more apps faster. I also knew it was going to be
a lot of fun and that it had the opportunity to really change the way
people developed and ran applications on Windows. It’s been more
fun than I could have ever expected and, while it was also more work
than I anticipated, I wouldn’t trade this experience for anything. I
recall one weekend early in the project, looking out the window of
my office as I worked at a gorgeous, sunny summer day and think-
ing to myself, “I sure hope people are gonna use this stuff …”	 n

Taylor Brown is a principal program management lead in the Windows and
Devices Group at Microsoft. As a member of the Base Windows engineering team
he’s responsible for Windows Server Developer strategy, as well as focusing specif-
ically on container technologies, including Windows Server Containers. Brown
started his career in Windows working on the 1394/Firewire stack for Windows
2003, then working on ACPI/power management for Windows Server 2003 SP1
before joining the newly formed virtual machine team. Since then he has contrib-
uted to every VM technology shipped by Microsoft including Virtual PC, Virtual
Server and every version of Hyper-V, making him recognized as an industry expert
in virtualization technologies. Reach him at taylorb@microsoft.com.

Thanks to the following technical expert for reviewing this article:
David Holladay

What was needed was a
general-purpose isolation

mechanism that was hostile to
intruders, yet multi-tenant safe.

In the end we landed on a mix
of the two approaches—a

select set of services was made
container-aware, but most

services run in each container.

0417msdn_BrownContainers_v3_16-19.indd 19 3/13/17 8:35 AM

mailto:taylorb@microsoft.com

msdn magazine20

The Microsoft .NET Framework has been a successful
application platform for 15 years, with countless business-critical
apps running on older versions of the Framework and older versions
of Windows Server. These traditional apps still offer great business
value, but they’re likely to be difficult to maintain, upgrade, extend
and manage. Equally, they may not justify the investment needed
for a full rewrite. With Docker, a platform for running applications
in lightweight containers, and Windows Server 2016, you can give
traditional apps a new lease on life—adding features, increasing
security and performance, and moving toward continuous
deployment—without a lengthy and expensive rebuild project.

In this article I’ll take a monolithic ASP.NET WebForms app
that connects to a SQL Server database, and modernize it by taking
advantage of the Docker platform. I’ll start by moving the whole
app as is to Docker, without any code changes, and run the Web site
and database in lightweight containers. Then I’ll show a feature-
driven approach to extending the app, improving performance
and giving users self-service analytics. With the Docker platform
you’ll see how to iterate with new versions of the app, upgrade the
components quickly and safely, and deploy the complete solution
to Microsoft Azure.

Where Docker Fits in .NET Solutions
Docker is for server applications—Web sites, APIs, messaging
solutions and other components that run in the background. You
can’t run desktop apps in Docker because there’s no UI integration
between the Docker platform and the Windows host. That rules out
running Windows Forms or Windows Presentation Foundation
(WPF) apps in containers (although you could use Docker to
package and distribute those desktop apps), but Windows Com-
munication Foundation (WCF), .NET console apps and all flavors
of ASP.NET are great candidates.

To package an application to run in Docker, you write a small
script called a Dockerfile that automates all the steps for deploying
the app. Typically this includes Windows PowerShell commands for
configuration and instructions to copy application content and set
up any dependencies. You can unzip compressed archives or install

CO N TA INER S

Modernizing Traditional
.NET Apps with Docker
Elton Stoneman

This article discusses:
•	Migrating .NET apps to containers

•	Pulling dependencies from Docker Hub

•	Breaking a monolithic application into smaller services

•	Adding self-service analytics

•	Running Dockerized solutions on Microsoft Azure

Technologies discussed:
Microsoft .NET Framework, Windows Server 2016, Docker,
SQL Server, Elasticsearch, Kibana

Code download available at:
msdn.com/magazine/0417magcode

0417msdn_StonemanDocker_v3_20-26.indd 20 3/13/17 8:48 AM

21April 2017msdnmagazine.com

MSIs, too, but the packaging process is all automated, so you can’t
run an install process that has a Windows UI and needs user input.

When you’re looking at a solution architecture to figure out which
parts can run in Docker containers, keep in mind any component
that can be installed and run without the Windows UI is a good
candidate. This article focuses on .NET Framework apps, but you
can run anything in a Windows container that runs on Windows
Server, including .NET Core, Java, Node.js and Go apps.

Migrating .NET Apps to Containers
How you migrate to Docker depends on how you’re currently
running your app. If you have a fully configured app running in a
Hyper-V VM, the open source Image2Docker tool can automati-
cally generate a Dockerfile from the VM’s disk. If you have a build
process that publishes an MSI or a WebDeploy package, it’s easy
to write your own Dockerfile by using one of Microsoft’s base
images on Docker Hub.

Here’s a complete Dockerfile that scripts the packaging of an
ASP.NET WebForms app into a Docker image:

FROM microsoft/aspnet:windowsservercore-10.0.14393.693
SHELL ["powershell"]

RUN Remove-Website -Name 'Default Web Site'; \
 New-Item -Path 'C:\web-app' -Type Directory; \
 New-Website -Name 'web-app' -PhysicalPath 'C:\web-app' -Port 80 -Force

EXPOSE 80
RUN Set-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Services\
Dnscache\Parameters' \
 -Name ServerPriorityTimeLimit -Value 0 -Type DWord

COPY ProductLaunch.Web /web-app

Nine lines of script are all I need, and there are no application
changes. This could be an ASP.NET 2.0 app, currently running
on Windows Server 2003—with this Dockerfile I can build it into
an image that immediately upgrades the app to Windows Server
2016 and the .NET Framework 4.5. I’ll walk through each of
those instructions:

• �FROM microsoft/aspnet tells Docker which image to use as
the starting point. In this case, it’s a Microsoft image with
IIS and ASP.NET installed on top of a specific version of
Windows Server Core.

• �SHELL ["powershell"] changes to a different shell for the rest
of the Dockerfile, so I can run PowerShell cmdlets.

• �RUN Remove-Website uses PowerShell to set up IIS, removing
the default Web site and creating a new one with a known
location for the application.

• �EXPOSE 80 opens port 80 explicitly to allow network traffic
into the container as Docker containers are locked down
by default.

• �RUN Set-ItemProperty turns off the Windows DNS cache
inside the image, so any DNS requests get served by Docker.

• �COPY ProductLaunch.Web copies the published Web site
project from the ProductLaunch.Web directory on the host
into the image.

The Dockerfile is like a deployment guide for the Web application,
but instead of being a vague human document, it’s a precise and
actionable script. To produce the packaged app I run the docker
build command from the directory that contains the Dockerfile
and the published Web site:

docker build --tag sixeyed/msdn-web-app:v1 .

This command builds a Docker image with the name sixeyed/
msdn-web-app and the tag v1. The name contains my user account
for the Hub (sixeyed), so I can share this image by signing in with
my credentials and pushing it to the Hub. Tags are useful for ver-
sioning images, so when I package a new version of the application,
the image name will stay the same, but the tag will be v2.

Now I can run a container from the image and that will start the
application, but the sample app has a dependency on SQL Server
so I need SQL Server running before I can start the Web site.

Pulling Dependencies from Docker Hub
Docker has a networking stack that lets containers reach each other
over a virtual network, and also lets containers reach external hosts
running on the physical network. If I had a SQL Server instance
running on a machine in the network, the ASP.NET app in the
container could use it—I’d just need to specify the server name in
the connection string. Or I can run SQL Server in a container, and
the Web app will be able to reach it by using the container name
in the connection string.

SQL Server Express is available on Docker Hub in an image
maintained by Microsoft. To start a database container from that
image, I run:

docker run --detach `
 --publish 1433:1433 `
 --env sa_password=MSDNm4g4z!n3 `
 --env ACCEPT_EULA=Y `
 --name sql-server `
 microsoft/mssql-server-windows-express

This starts a container in the background with the detach flag
and publishes port 1433, so I can connect to the SQL instance in the
container from outside, perhaps using SQL Server Management
Studio on the host. The env options are key-value pairs, which
Docker surfaces inside the container as system environment

There are more than half a
million images on Docker Hub,
which have been downloaded

more than 9 billion times.

The Dockerfile is like a
deployment guide for the Web
application, but instead of being
a vague human document, it’s a
precise and actionable script.

0417msdn_StonemanDocker_v3_20-26.indd 21 3/13/17 8:48 AM

msdn magazine22 Containers

variables. The SQL Server image uses these
values to confirm that the license agreement
has been accepted, and to set the password
for the sa user.

To run a container, Docker needs to have
a copy of the image locally. Distribution is
built into the Docker platform, so if you don’t
have the SQL Server Express image locally
when you run this command, Docker will
download it from the Hub. There are more
than half a million images on Docker Hub,
which have been downloaded more than 9
billion times. Docker started in the Linux
world and the majority of those images are
Linux apps, but there are a growing number
of high-quality Windows apps you can down-
load and drop straight into your solution.

SQL Server is running in a Docker con-
tainer now, and my Web app uses sql-server
as the hostname in the connection string so
it will connect to the database running in
Docker. I can start the WebForms applica-
tion in the background and publish port 80
to make the Web site accessible:

docker run --detach `
 --publish 80:80 `
 sixeyed/msdn-web-app:v1

If an external machine sends a request on port 80 to my host,
Docker receives the request and transparently forwards it to the
ASP.NET app running in the container. If I’m working on the host,
I need to use “docker inspect” to get the container’s IP address and
browse to the container to see the site, which is a simple product
launch microsite. You can see the data capture page from the site
running in Docker in Figure 1.

Run “docker ps” and you’ll see a list of all running containers.
One is a database and one is a Web application, but you manage
them both in the same way—“docker top” shows you the processes
running in the container; “docker logs” shows you the log output
from the app; and “docker inspect” shows you which ports are open
and a host of other information about the container. Consistency
is a major benefit of the Docker platform. Apps are packaged,
distributed and managed in the same way, no matter what tech-
nology they use.

Splitting Features from
Monolithic Apps
Now that the application is running on a
modern platform, I can start to modernize
the application itself. Breaking a monolithic
application down into smaller services can
be a significant project of work, but you can
take a more targeted approach by working on
key features, such as those that change regu-
larly, so you can deploy updates to a changed
feature without regression testing the whole
application. Features with non-functional
requirements that can benefit from a different
design without needing a full re-architecture
of the app can also be a good choice.

I’m going to start here by fixing a perfor-
mance issue. In the existing code, the application
makes a synchronous connection to the data
base to save the user’s data. That approach
doesn’t scale well—lots of concurrent users
would make a bottleneck of SQL Server. Asyn-
chronous communication with a message queue
is a much more scalable design. For this feature,
I can publish an event from the Web app to a

message queue and move the data-persistence code into a new com-
ponent that handles that event message.

This design does scale well. If I have a spike of traffic to the Web site
I can run more containers on more hosts to cope with the incoming
requests. Event messages will be held in the queue until the message
handler consumes them. For features that don’t have a specific SLA,
you can have one message handler running in a single container and
rely on the guarantees of the message queue that all the events will
get handled eventually. For SLA-driven features you can scale out
the persistence layer by running more message-handler containers.

The source code that accompanies this article has folders for
version 1, version 2 and version 3 of the application. In version 2,
the SignUp.aspx page publishes an event when the user submits
the details form:

var eventMessage = new ProspectSignedUpEvent
{
 Prospect = prospect,
 SignedUpAt = DateTime.UtcNow
};

MessageQueue.Publish(eventMessage);

Figure 1 A Signup Page for a Site
Running in Docker

Figure 2 The Modernized Application Has Many Working Parts

GET

Consistency is a major benefit
of Docker. Apps are packaged,
distributed and managed in

the same way, no matter what
technology they use.

0417msdn_StonemanDocker_v3_20-26.indd 22 3/13/17 8:48 AM

Untitled-6 1 3/6/17 2:32 PM

www.nsoftware.com

msdn magazine24 Containers

Also in version 2 there’s a shared messaging project that abstracts
the details of the message queue, and a console application that listens
for the event published by the Web app and saves the user’s data to
the database. The persistence code in the console app is directly lifted
from the version 1 code in the Web app, so the implementation is the
same but the design of the feature has been modernized.

The new version of the application is a distributed solution with
many working parts, as shown in Figure 2.

There are dependencies between the components, and they need
to be started in the correct order for the solution to work properly.
This is one of the problems of orchestrating an application running
across many containers, but the Docker platform deals with that by
treating distributed applications as first-class citizens.

Orchestrating Applications with Docker Compose
Docker Compose is the part of the Docker platform that focuses
on distributed applications. You define all the parts of your appli-
cation as services in a simple text file, including the dependencies
between them and any configuration values they need. This is
part of the Docker Compose file for version 2, showing just the
configuration for the Web app:

product-launch-web:
 image: sixeyed/msdn-web-app:v2
 ports:
 - "80:80"
 depends_on:
 - sql-server
 - message-queue
 networks:
 - app-net

Here, I’m specifying the version of the image to use for my Web
application. I publish port 80 and then I explicitly state that the Web
app depends on the SQL Server and message queue containers. To
reach these containers, the Web container needs to be in the same
virtual Docker network, so all the containers in the Docker Compose
file are joined to the same virtual network, called app-net.

Elsewhere in the Docker Compose file I define a service for SQL
Server, using the Microsoft image on Docker Hub, and I’m using
the NATS messaging system for my message queue service, which
is a high-performance open source message queue. NATS is avail-
able as an official image on Docker Hub. The final service is for the
message handler, which is a .NET console application packaged as
a Docker image, using a simple Dockerfile.

Now I can run the application using the Docker Compose
command line:

docker-compose up -d

Then Docker Compose will start containers for each of the
components in the right order, giving me a working solution from
a single command. Anyone with access to the Docker images and
the Docker Compose file can run the application and it will behave

in the same way—on a Windows 10 laptop, or on a Windows Server
2016 machine running in the datacenter or on Azure.

For version 2, I made a small change to the application code to
move a feature implementation from one component to another.
The end-user behavior is the same, but now the solution is easily
scalable, because the Web tier is decoupled from the data tier, and
the message queue takes care of any spikes in traffic. The new
design is easy to extend, as well, as I’ve introduced an event-driven
architecture, so I can trigger new behavior by plugging in to the
existing event messages.

Adding Self-Service Analytics
For my sample app, I’m going to make one more change to show how
much you can do with the Docker platform, with very little effort.
The app currently uses SQL Server as a transactional database, and
I’m going to add a second data store as a reporting database. This
will let me keep reporting concerns separate from transactional
concerns, and also gives me free choice of the technology stack.

In version 3 of the sample code, I’ve added a new .NET console app
that listens for the same event messages published by the Web applica-
tion. When both console apps are running, the NATS message queue
will ensure they both get a copy of all events. The new console app
receives the events and saves the user data in Elasticsearch, an open
source document store you can run in a Windows Docker container.
Elasticsearch is a good choice here because it scales well, so I can clus-
ter it across multiple containers for redundancy, and because it has an
excellent user-facing front end available called Kibana.

I haven’t made any changes to the Web application or the SQL
Server message handler from version 2, so in my Docker Com-
pose file I just add new services for Elasticsearch and Kibana,
and for the new message handler that writes documents to the
Elasticsearch index:

index-prospect-handler:
 image: sixeyed/msdn-index-handler:v3
 depends_on:
 - elasticsearch
 - message-queue
 networks:
 - app-net

Docker Compose can make incremental upgrades to an appli-
cation, and it won’t replace running containers if their definition
matches the service in the Docker Compose file. In version 3 of the
sample application, there are new services but no changes to the
existing services, so when I run docker-compose up –d, Docker
will run new containers for Elasticsearch, Kibana and the index
message handler, but leave the others running as is—which makes
for a very safe upgrade process where you can add features without
taking the application offline.

This application prefers convention over configuration, so the
host names for dependencies like Elasticsearch are set as defaults
in the app, and I just need to make sure the container names match
in the Docker Compose setup.

When the new containers have started, I can use “docker inspect”
to get the IP address of the Kibana container, and browse to port
5601 on that address. Kibana has a very simple interface and in a
few minutes I can build a dashboard that shows the key metrics for
people signing up with their details, as shown in Figure 3.

The Docker platform treats
distributed applications as first-

class citizens.

0417msdn_StonemanDocker_v3_20-26.indd 24 3/13/17 8:48 AM

Data Quality Made Easy.
Your Data, Your Way.

Start Your Free Trial
www.Melissa.com/msft-pd

@

NAME

Our data quality solutions are available
on-premises and in the Cloud – fast,
easy to use, and powerful developer
tools and plugins for the Microsoft®
Product Ecosystem.

Melissa provides the full spectrum of data

quality to ensure you have data you can trust.

We profile, standardize, verify, match and

enrich global People Data – name, address,

email, phone, and more.

 1-800-MELISSA

Melissa Data is Now Melissa.
Why the change?
See for Yourself at the New www.Melissa.com

Untitled-5 1 3/10/17 1:19 PM

http://www.Melissa.com/msft-pd
http://www.Melissa.com

msdn magazine26 Containers

Power users will quickly find their way around Kibana, and
they’ll be able to make their own visualizations and dashboards
without needing to involve IT. Without any downtime I’ve added
self-service analytics to the application. The core of that feature
comes from enterprise-grade open source software I’ve pulled
from Docker Hub into my solution. The custom component to
feed data into the document store is a simple .NET console appli-
cation, with around 100 lines of code. The Docker platform takes
care of plugging the components together.

Running Dockerized Solutions on Azure
Another great benefit of Docker is portability. Applications pack-
aged into Docker images will run the exact same way on any host.
The final application for this article uses the Windows Server and
SQL Server images owned by Microsoft; the NATS image curated
by Docker; and my own custom images. All those images are pub-
lished on the Docker Hub, so any Windows 10 or Windows Server
2016 machine can pull the images and run containers from them.

Now my app is ready for testing, and deploying it to a shared
environment on Azure is simple. I’ve created a virtual machine
(VM) in Azure using the Windows Server 2016 Datacenter with
Containers option. That VM image comes with Docker installed
and configured, and the base Docker images for Windows Server
Core and Nano Server already downloaded. One item not included
in the VM is Docker Compose, which I downloaded from the
GitHub release page.

The images used in my Docker Compose file are all in public
repositories on Docker Hub. For a private software stack, you won’t
want all your images publicly available. You can still use Docker
Hub and keep images in private repositories, or you could use

an alternative hosted registry like Azure Container Registry.
Inside your own datacenter you can use an on-premises option,
such as Docker Trusted Registry.

Because all my images are public, I just need to copy the Docker
Compose file onto the Azure VM and run docker-compose up –d.
Docker will pull all the images from the Hub, and run containers
from them in the correct order. Each component uses conventions
to access the other components, and those conventions are baked
into the Docker Compose file, so even on a completely fresh envi-
ronment, the solution will just start and run as expected.

If you’ve worked on enterprise software releases, where setting
up a new environment is a manual, risky and slow process, you’ll
see how much benefit is to be had from Windows Server 2016 and
the Docker platform. The key artifacts in a Docker solution—the
Dockerfile and the Docker Compose file—are simple, unambiguous
replacements for manual deployment documents. They encourage
automation and they make it straightforward to build, ship and run
a solution in a consistent way on any machine.

Next Steps
If you’re keen to try Docker for yourself, the Image2Docker
PowerShell module is a great place to start; it can build a Dockerfile
for you and jump-start the learning process. There are some great,
free, self-paced courses on training.docker.com, which provisions an
environment for you. Then, when you’re ready to move on, check
out the Docker Labs on GitHub, which has plenty of Windows
container walk-throughs.

There are also Docker MeetUps all over the world where you can
hear practitioners and experts talk about all aspects of Docker. The
big Docker conference is DockerCon, which is always a sell-out; this
year it’s running in Texas in April and in Copenhagen in October.
Last, check out the Docker Captains—they’re the Docker equiva-
lent of Microsoft MVPs. They’re constantly blogging, tweeting and
speaking about all the cool things they’re doing with Docker, and
following them is a great way to keep a pulse on the technology.	n

Elton Stoneman is a seven-time Microsoft MVP and a Pluralsight author who
works as a developer advocate at Docker. He has been architecting and delivering
successful solutions with Microsoft technologies since 2000, most recently API and
Big Data projects in Azure, and distributed applications with Docker.

Thanks to the following technical expert who reviewed this article:
Mark Heath

In a Docker solution the
Dockerfile and the Docker
Compose file are simple,

unambiguous replacements for
manual deployment documents.

Figure 3 A Kibana Dashboard

0417msdn_StonemanDocker_v3_20-26.indd 26 3/13/17 8:48 AM

http://training.docker.com

Untitled-6 1 3/6/17 2:22 PM

www.jetbrains.com/rider

msdn magazine28

The Azure App Service Environment (ASE) is a Premium
feature offering of the Azure App Service. It gives a single-tenant
instance of the Azure App Service that runs right in your own Azure
virtual network (VNet), providing network isolation and improved
scaling capabilities. While the original feature gave customers what
they were looking for in terms of network control and isolation,
it was not as “Platform as a Service (PaaS) like” as the normal App
Service. This caused confusion among customers, who had some
trouble managing the system. With the newly relaunched ASE, how-
ever, things now work the same as the multi-tenant App Service.

History
The Azure App Service is a multi-tenant application hosting
service. If you want to run your HTTP listening applications in a
PaaS service, the App Service is a very quick and easy way to go
and has many developer-supporting features. You can do things
like integrate with continuous integration (CI) systems, scale your
apps out instantly with a flick of the mouse and much more. There
are limits to the service, though, that blocked certain use cases.

The use cases that couldn’t be met in the multi-tenant App Service
largely centered around scale and app isolation. While you can scale
your apps easily in the multi-tenant App Service, there are limits
based on the price plan. The greatest number of instances you can
scale an app to in the multi-tenant App Service is 20.

With respect to isolation, there’s no way to lock down access to your
apps in the multi-tenant App Service at a network level. The App Ser-
vice has two features to access resources in other networks, Azure
Virtual Network (VNet) Integration and Hybrid Connections, but
has nothing that can lock apps down at a network level and no way to
host completely Internet-isolated apps in the App Service. This means
you couldn’t host a line-of-business (LOB) application that you wanted
available only on a private IP address on the multi-tenant App Service.

To resolve the scaling and isolation limitations, we provided the
Premium ASE feature in 2015. It’s an instance of the Azure App
Service that runs in a customer’s VNet, running the same code as
the multi-tenant App Service but with some changes to deploy-
ment to use fewer resources.

With the first version of the ASE you could scale up to 50 instances
and use larger dedicated workers. The ASE is capable of hosting Web
apps, mobile apps, API apps and Functions. Because the ASE runs in
a subnet in the customer’s VNet, the apps in the ASE have easy access
to resources that are available in the VNet itself or across Express-
Route or site-to-site VPN connections. Also, as shown in Figure 1,
because the ASE is in the customer’s subnet, it can restrict access to
its apps at a network level using network security groups (NSGs).

Among the benefits of this deployment model is a static IP
address that can be used for both the inbound and outbound IP

MICRO SOF T A ZUR E

The New Azure App
Service Environment
Christina Compy

This article discusses:
•	Azure App Service and the App Service Environment (ASE)

•	Customer concerns with the first version of the ASE

•	Improvements in the newly relaunched ASE

Technologies discussed:
Microsoft Azure App Services and App Service Environment

0417msdn_CompyASE_v5_28-33.indd 28 3/13/17 8:38 AM

DOMAINS | MAIL | HOSTING | eCOMMERCE | SERVERS

Next Level Performance
n NEW: 2.5 GB RAM
n NEW: Simple scalability with up to 19 GB RAM in

just a few clicks
n Performance monitoring in the 1&1 Control Panel
n Change your performance level with no downtime

Next Level Speed
n NEW: Faster load times with HTTP/2
n NEW: PHP 7.1 + OPcache
n 1&1 CDN
n 24/7 Support

Next Level Security
n Including SSL certificate
n DDoS protection
n Geo-redundancy

* Discount based on 12 month contract for Basic package at $0.99/month, then $7.99/month. © 1&1 Internet Inc. 2017 All rights reserved. 1&1 and the 1&1 logo
are trademarks of 1&1 Internet SE, all other trademarks are the property of their respective owners. 1&1 Internet Inc, 701 Lee Road, Chesterbrook, PA 19087. 1and1.com

®

MONTH
FLEXIBLE PAYMENT
OPTIONS1TRIAL

TRY FOR
30 DAYS1 CALL

SPEAK WITH AN
EXPERT 24/71

1 (844) 296 - 2559

Starting at

$ 0.99
/month*

$7.99

HOSTING!

NEW!

NEXT LEVEL
NEW: Full performance scalability! Customize your web project‘s
performance level yourself, according to your own needs. For example,
with increasing traffic from newsletters, blogs, adding an
online shop or resource intensive applications, you can
easily adjust your site‘s performance level to match.

Untitled-1 1 3/14/17 10:10 AM

www.1and1.com

msdn magazine30 Microsoft Azure

address for the apps in the ASE. The nature of the multi-tenant app
service is that the inbound and outbound addresses are shared by
multiple tenants. While it is possible to set up IP SSL for an app
and get an IP address assigned to that app, there is no way to lock
down the outbound address.

Hosting the ASE in a VNet is a great first start, but it still didn’t
completely solve the isolation problem when the ASE was first
released. The ASE still needed a public virtual IP (VIP) for HTTP/S
and publishing access. It also deployed only in classic VNets, which
was a problem for many customers.
To solve those problems, sup-
port was added in June 2016 for
Resource Manager VNets and also
for internal load balancers (ILBs),
as shown in Figure 2.

The addition of ILB support
meant that customers could now
host intranet sites in the cloud.
You could take an LOB application
that you didn’t want to be Internet-
accessible and deploy it into your
ILB-enabled ASE. The ILB sits on
one of the VNet IP addresses, so
it’s accessible only from within the
VNet or from hosts that have access
to the VNet over a VPN.

The ILB-enabled ASE opened
the door to other possibilities,
such as Web application firewall

(WAF)-fronted applications
and two-tier applications.
For WAF-fronted ASE appli
cations, a customer could
use a WAF virtual device to
act as the Internet endpoint
for its ILB ASE-hosted apps,
which adds an additional
security layer for Internet-
accessible apps. In a two-tier
application, the Web-acces-
sible app could be hosted
in either the multi-tenant
app service or from another
ASE, and the back-end-
secured API apps could then

be hosted in the ILB ASE. If you used the multi-tenant App Service
for such a purpose, you’d then use the VNet Integration feature to
securely access your API apps.

When the ASE was originally designed and planned, the assump
tion was that it would cater to IT professionals who’d want to control
this personal deployment of the App Service as if it was a system
they ran in their own datacenters. With that in mind, ASE was
designed to be flexible. An ASE has two role types to manage: the
front ends that act as the HTTP endpoints for applications and
the workers that host the apps. You can scale out the quantity of
either, as well as change the size of the virtual machine (VM) used
for that role type.

There were certain consequences to thinking this way—the ASE
roles were treated as resources that system administrators would
independently manage, but it turned out that customers didn’t want
to be or have system administrators for their cloud services. They
wanted the ASE to remain as easy to use as the multi-tenant App
Service. Having to manage the resource pools and their apps was
too confusing and affected feature adoption.

Figure 3 Creating an App Service Plan in ASEv1

Figure 1 App Service Environment High-Level
Networking Model

Azure Virtual Network

VIPFront Ends

HTTP/HTTPS

FTP

Workers

subnet

App Service
Environment

Figure 2 App Service Environment High-Level
Networking with an Internal Load Balancer

Azure Virtual Network

ILBFront Ends

HTTP/HTTPS

FTP

Workers

subnet

App Service
Environment

The nature of the multi-tenant
app service is that the inbound
and outbound addresses are
shared by multiple tenants.

0417msdn_CompyASE_v5_28-33.indd 30 3/13/17 8:38 AM

FREE TRIAL

Untitled-7 1 3/6/17 3:06 PM

www.docuvieware.com

msdn magazine32 Microsoft Azure

The New ASE
After the initial version of the ASE (which I’ll refer to as ASEv1) was
released, there was substantial feedback from customers who tried
it out and found that it didn’t fit their business needs for one reason
or another. The primary reasons they gave concerned:

• �The complexity of managing the ASEv1 roles, as well as their
apps, was aggravating and non-intuitive.

• �Adding more capacity to the ASE took too long. Because
ASEv1 was built to be run by system administrators for their
tenants, the concern had not been with how fast the roles
were provisioned. The reality was that when ASEv1 was used,
the person who scaled out the ASE roles and the one who
deployed the app were typically one and the same and the
delay was a problem.

• �The system management model forced customers to be far
more aware of the ASE architecture and behavior than they
wanted to be.

This brings us to the new version of the ASE, which I’ll call ASEv2.
The team took the feedback to heart and for ASEv2 we focused on
making the UX the same as it was in the multi-tenant App Service,
without losing the benefits that ASEv1 provided.

Creating an App Service Plan The App Service plan (ASP)
is the scaling container that holds all apps. All apps are in ASPs
and when you scale the ASP, you’re also scaling all of the apps in
the ASP. This is true for the multi-tenant App Service and for the
ASE. This means that to create an app you need to either choose or
create an ASP. To create an ASP in ASEv1 you needed to pick an
ASE as your location and then select a worker pool, as shown in

Figure 3. If the worker pool you
wanted to deploy into didn’t have
enough capacity, you’d have to add
more workers to it before you could
create your ASP in it.

With ASEv2, when you create an
ASP you still select the ASE as your
location, but instead of picking a
worker pool, you use the pricing
cards just as you do outside of the
ASE. There are no more worker
pools to manage. When you cre-
ate or scale your ASP, the necessary
workers are automatically added.

ASEv2 includes upgraded VMs
that are used to host your apps.
The workers for ASEv2 are built
on the Dv2-series VMs and out-
perform the workers used in the
multi-tenant app service. To dis-
tinguish between ASPs that are
in an ASE and those in the multi-
tenant service, a new pricing SKU
was created. The name of this SKU
is Isolated, as shown in Figure 4.
When you pick an Isolated SKU it
means you want the associated ASP
to be created in an ASEv2.

Creating an ASE One of the
other issues that hindered ASE
adoption was its lack of visibility.
Many customers didn’t even know
that the ASE feature existed. To
create an ASE, you had to look for
the ASE creation flow, which was
completely separate from app cre-
ation. In ASEv1 customers had to
add workers to their worker pools
in order to create ASPs. Now that
workers are added automatically
when ASPs are created or scaled, Figure 5 Creating an App Service Environment from the App Service Plan Creation Flow

Figure 4 Creating an App Service Plan in ASEv2

0417msdn_CompyASE_v5_28-33.indd 32 3/13/17 8:38 AM

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!

Visual Studio / .NET
JavaScript / HTML5
Angular
Native Mobile
& Xamarin
Software Practices
Database and Analytics

ASP.NET Core
Web API
ALM / DevOps
Cloud Computing
UWP
Unit Testing

REGISTER
NOW

Register by April 12
and Save $200!*
Use promo code VSLAPRTI

*Available on 4 day packages; some restrictions apply.

vslive.com/austinEVENT PARTNER GOLD SPONSOR PRODUCED BYSUPPORTED BY

magazine

AUSTIN, TX
MAY 15-18, 2017
HYATT REGENCY

NEW! Post-Con, Hands-On Labs, Friday,
May 19. ONLY $645 through April 12!
SPACE IS LIMITED!

0417msdn_VSLive_Insert.indd 1 3/7/17 4:05 PM

Untitled-4 1Untitled-4 1 3/15/17 2:48 PM3/15/17 2:48 PM

www.vslive.com/austin

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!

Visual Studio / .NET
JavaScript / HTML5
Angular
Native Mobile & Xamarin
Software Practices
Database and Analytics

ASP.NET Core
Web API
ALM / DevOps
Cloud Computing
UWP
Unit Testing

REGISTER
NOW

Register by April 21
and Save $300!*
Use promo code VSLAPRTI
*Available on 4 day packages; some restrictions apply.

vslive.com/dcEVENT PARTNER PRODUCED BYSUPPORTED BY

magazine

WASH, DC
JUNE 12-15, 2017
MARRIOTT MARQUIS

0417msdn_VSLive_Insert.indd 2 3/7/17 3:39 PM

Untitled-4 2Untitled-4 2 3/15/17 2:48 PM3/15/17 2:48 PM

www.vslive.com/dc

33April 2017msdnmagazine.com

the ASEv2 creation experience can be placed squarely in the ASP
creation flow, as shown in Figure 5.

To create a new ASEv2 during the ASP creation experience, you
simply select a non-ASE region and then select one of the new
Isolated SKU cards. When you do this, the ASE creation UI is dis-
played, which enables you to create a brand new ASEv2 in either
a new or pre-existing VNet.

Time to scale The new ASP creation flow became possible only
because the process for provisioning new workers was accelerated.
ASEv2 automatically provisions new workers for your ASPs when
you create or scale an ASP. The only way to make this a reasonable
customer experience was to reduce the time required to create and
scale out. To make this work, as much as possible is preloaded onto
the VHDs used for provisioning the role instances, minimizing
supplementary required reboots. Moving to the Dv2 workers was
also helpful as they have faster cores and use SSDs. Both of those
practices make install and reboots faster.

System Management In ASEv1 the customer had to manage
the front ends, workers and the update domain workers. The front-
end roles handle HTTP traffic and send traffic to the workers. The
workers are the VMs that host your apps. The update domain
workers act as standby hosts in case of upgrades or worker failures.
With ASEv1 the customer had to know how these components all
worked together and scale the resource pools appropriately. When

workers had to be scaled out to handle more ASP instances, users
had to add more front ends and update domain workers.

ASEv2, in contrast, hides away the infrastructure. Now users
simply scale out their App Service plans and the infrastructure is
added as needed. When an ASP needs more workers, the workers
are added. Front ends and update domain workers are added auto
matically as the quantity of workers is scaled out. If customers have
unusual needs that require more aggressive front-end scaling, they
can change the rate at which front ends are added to their ASE.

As you can see in the ASEv2 portal page in Figure 6, things are
far simpler now. There’s no longer a need for the worker pool or
front-end UI pages. With all scaling now automatic, there are no
more scale or autoscale controls. And because the IP addresses
used by the ASE are pretty important to know about, the UI con-
solidates that information.

The release of ASEv2 is by no means the end of the ASE feature
development efforts. There will continue to be a steady stream of
improvements, but they will not impact the UX to the extent the
changes made with ASEv2 did.

Additional Benefits Due to the changes made to the system archi-
tecture, ASEv2 has a few additional benefits over ASEv1. With ASEv1,
the maximum default scale was 50 workers. There were a number of
system-architecture reasons why that limit was set, but these issues
were addressed in creating the new ASEv2 experience. With ASEv2
the maximum default scale is now 100, which means you can have up
to 100 ASP instances hosted in ASEv2. This can be anything from 100
instances of an ASP to 100 individual ASPs, with anything in between.

Moreover, ASEv2 now uses Dv2-based dedicated workers. These
new dedicated workers are much faster than the A series VMs on which
ASEv1 depended. They have faster CPUs, which improves throughput,
and SSDs, which improves file-access performance. As in the multi-
tenant app service, the choices for dedicated workers when creating
an ASP are single core, dual core or quad core. The new ASE dedicated
workers, however, have double the memory of their multi-tenant
counterparts and come with 3.5GB, 7GB or 14GB of RAM, respectively.

Wrapping Up
ASEv1 was a great first step toward enabling customers to have net-
work isolation for their App Service-hosted applications. ASEv2
built on that experience a far more PaaS-like capability that’s not
just easier to use, but is also much more powerful.

All of the changes that have been noted here for the ASE have
been vetted by a large number of MVPs and customers. Even before
development started, the team wanted to validate its approach
with people who had already tried using an ASE. As a result of this
input-heavy approach, we are confident that the new ASE experience
will be considered a substantial improvement and look forward to
its success in the field. 	 n

Christina Compy is originally an aerospace engineer who worked on the Hubble
Space Telescope and has been working in the software industry for more than 20
years. She has been a program manager at Microsoft since 2013 and works on
enterprise-focused capabilities.

Thanks to the following Microsoft technical expert for reviewing this article:
Stefan Shackow

Figure 6 App Service Environment Version 2 Portal Page

The new ASP creation flow
became possible only because

the process for provisioning new
workers was accelerated.

0417msdn_CompyASE_v5_28-33.indd 33 3/13/17 8:38 AM

msdn magazine34

Many developers and companies create Web interfaces
for their products and services for easy discoverability and access.
Another platform is the apps platform. Native apps provide richer
UX and functionality than Web apps. Now, Project Westminster pro-
vides developers a way to convert modern Web sites into native apps.

The Project Westminster bridge enables Web developers to
bring their responsive Web applications to the Universal Windows
Platform (UWP) by leveraging existing code (see the “Project West-
minster in a Nutshell” Windows Developer blog post at bit.ly/2jyhVQo).
The idea of this “bridge” is to help reuse existing Web site code and
add a layer for UWP-specific code to form the integration points
of the Web app with an underlying Windows platform. The blog
post discusses a few coding practices to ensure consistent UX.

How can a Web developer integrate a modern Web application
to work with, let’s say, Cortana? The answer is through the common
denominator, JavaScript. Windows exposes the app framework func-
tionality (Windows Runtime APIs) through JavaScript and the Windows
namespace. The resulting apps are referred to as Hosted Web Apps.

In this article, I’ll share what I’ve learned in working with
Independent Software Vendors (ISVs) and partners to port their
apps to the UWP through the Project Westminster tool. The focus
here is to share details on how to best align Web apps for delivering
the best UX while running as a platform app.

Getting Started
To get started with the Project Westminster tool, you first need to con-
vert your Web site to the UWP (see the Channel 9 video, “Creating
Hosted Web Apps with Project Westminster,” at bit.ly/2jp4srs).

As a preliminary test—to be sure the Web site renders as expected
and the presentation looks consistent—you should test it on the
Microsoft Edge browser. This will help identify and fix any rendering
issues before coding integrations for Windows functionality begin.

Most Web sites have a few common features, which enable users
to either complete a specific task (like filling out forms) or take
away information for their reference (like downloading a manual).
In such scenarios, it’s critical that these functionalities remain
intact and the newly generated hosted Web app’s experience is con-
sistent with the original Web site. Some of these scenarios might

U WP A PPS

Develop Hosted
Web Apps for UWP
Sagar Bhanudas Joshi

This article discusses:
•	File downloads scenario in hosted Web apps

•	Session management and the back button

•	Voice commands and Live Tiles integration

Technologies discussed:
Project Westminster, Windows Runtime, Hosted Web Apps

Code download available at:
bit.ly/2k5FlJh

0417msdn_JoshiHosted_v5_34-41.indd 34 3/13/17 8:42 AM

35April 2017msdnmagazine.com

need to be tested, reviewed and re-factored through code to align
with users’ expectations. A few key scenarios are considered in the
next sections to demonstrate different classes or objects available
to developers while working with the Project Westminster tool and
related code workflows. While porting the app to the UWP, it’s a
good idea to consider integrating a few native features of the plat-
form for a richer UX and an enhanced app experience. Here are
some of the commonly implemented features by app developers:

• Contacts
• Cortana integration
• Live tiles
• Toast notifications
• Camera and microphone
• Photos library
• �Rich graphics and Media Windows Runtime Stack
• �Sharing content with other apps

In this article, the focus is on integrating UWP features, such as
Cortana and Live Tiles, for example, which help with activation of
apps through voice-based commands and information delivery to
the user. Thus, it enhances the overall UX with support of the UWP
apps infrastructure. The latest Windows 10 features for developers
Web page (bit.ly/2iKufs6) provides a quick overview of more integration

opportunities. The Web page, which is being converted to
an app, provides information on the following:
1. Web application functionality features
 a. File downloads
 b. �Session management or single sign-on
 c. �Can go to previous page through back button in a

stately way
2. �UWP integration features
 a. Live Tiles
 b. Cortana

These features need to be considered while porting and refac-
toring to deliver a predictable experience for the app.

File Download Scenario
Most Web applications today enable file downloads for a variety
of content. As shown in Figure 1, the default experience of file
download in the browser is like clicking a button or hyperlink; the
browser begins to download it and also saves the file to (mostly)
rootdir:\users\username\Downloads.

This happens partly because the browser is a native Win32 appli-
cation running with full trust privileges and writes the file directly
to the Downloads folder.

Now, consider the same scenario when the Web site is running
in the context of an app (WWAHost.exe, to be specific) and the
download button is clicked. What next? Most likely, nothing will
happen and it will appear that the code simply doesn’t work. It
might appear that the button isn’t responding or, perhaps, the file
download has started, but where is it being saved?

WWAHost.exe is an app container for Web sites, which has a
subset of features, compared to the browser. This subset of features

Figure 1 Default Download Experience

Figure 2 File Download JavaScript Code (Larger Files)

(function() {

 if (typeof Windows !== 'undefined' &&
 typeof Windows.UI !== 'undefined' &&
 typeof Windows.ApplicationModel !== 'undefined') {

 function WinAppSaveFileBGDownloader() {
 // This condition is only true when running inside an app.
 // The else condition is effective when running inside browsers.

 // This function uses the Background Downloader class to download a file.
 // This is useful when downloading a file more than 50MB.

 // Downloads continue even after the app is suspended/closed.

 if (typeof Windows !== 'undefined' &&
 typeof Windows.UI !== 'undefined' &&
 typeof Windows.ApplicationModel !== 'undefined') {

 var fileSavePicker = new Windows.Storage.Pickers.FileSavePicker();

 // Example: You can replace the words EXTENSION and ext with the word PNG.

 fileSavePicker.fileTypeChoices.insert(
 "EXTENSION file", [".ext"]);
 // Insert appropriate file format through code.
 fileSavePicker.defaultFileExtension = ".ext";
 // Extension of the file being saved.
 fileSavePicker.suggestedFileName = "file.ext";
 // Name of the file to be downloaded.
 fileSavePicker.settingsIdentifier = "fileSavePicker1";

 var fileUri =
 new Windows.Foundation.Uri("<URL of the file being downloaded>");

 fileSavePicker.pickSaveFileAsync().then(function (fileToSave) {
 var downloader =
 new Windows.Networking.BackgroundTransfer.BackgroundDownloader();
 var download = downloader.createDownload(
 fileUri,
 fileToSave);

 download.startAsync().then(function (download) {
 // Any post processing.

 console.log("Done");

 });

 });
 }

 else {
 // Use the normal download functionality already implemented for browsers,
 // something like <a href="<URL>" />.
 }

 }

}

})();

0417msdn_JoshiHosted_v5_34-41.indd 35 3/13/17 8:42 AM

Untitled-8 2Untitled-8 2 3/6/17 3:27 PM3/6/17 3:27 PM

www.textcontrol.com

Untitled-8 3Untitled-8 3 3/6/17 3:27 PM3/6/17 3:27 PM

www.textcontrol.com

msdn magazine38 UWP Apps

includes the rendering capability (mostly presentation through
HTML) and Standard script execution.

What you’re working with now is an app. In the apps world, for
developers, the file download should be explicitly coded for—
otherwise, the remote file is just a URL and it’s unclear what the
app/container would do with a remote file URL (I can discuss
what might be happening under the hood through specialized
debugging tools, however, I won’t go into that for now).

To handle these kinds of scenarios, you need to invoke the
appropriate UWP APIs. These APIs can co-exist with the code that
makes those functionalities work when running the Web site us-
ing a browser. Figure 2 shows the code involved.

You can write the code in Figure 2 on the button click or wher-
ever the file download functionality is expected. The code snippet

uses the BackgroundDownloader class (bit.ly/2jQeuBw), which has
lots of benefits, such as persisting downloads in background post-
app suspension and the ability to download large files.

The code in Figure 2 actually creates the same experience as a
browser would, such as prompting the user to select a file location
(fileSavePicker variable), initiating the download (downloader
variable) and writing it to the selected location.

Alternatively, you can use the code in Figure 3 for smaller file
downloads, which will run as long as the app is running:

The code in Figure 3 uses the Windows.Web.Http.HttpClient to
handle the file download operation (bit.ly/2k5iX2E). If you compare
the code snippets in Figure 2 and Figure 3, you’ll notice that the
latter requires a bit of advanced coding, which gives you more con-
trol over the file download. This way, you’re also able to explore the
multiple ways to save a stream to a file using a UWP app.

Also, in the case where the app also processes the files that were
downloaded, it’s best to use the FutureAccessList property to cache
and access the location where the file was saved (bit.ly/2k5fXn6). This
is important because the user can choose to save the downloaded
files anywhere on the system (such as in D:\files\ or in C:\users\
myuser\myfiles\) and the app container, being a sandbox process,
might not be able to directly access the file system without user-
initiated actions. This class can be useful to avoid extra steps for
the user to open the same file again. To use this class, it’s required
to open the file using the FileOpenPicker at least once.

This should help streamline file download functionality in the
hosted Web apps and deliver an intuitive UX. (Tip: Make sure to add
the file URL domain to the ApplicationContentURI at bit.ly/2jsN1WS
to avoid runtime exceptions.)

Session Management
It’s common for most modern apps today to persist data between
users’ multiple sessions. As an example, imagine having to log into
a frequently used app every time the app is launched. It would be
time-consuming if the app is launched multiple times in a day. There
are classes within the Windows Runtime framework available to
the Web apps, which are converted to UWP apps.

// Use the Windows.Web.Http.HttpClient to download smaller files and
// files are needed to download when the app is running in foreground.

(function() {

 if (typeof Windows !== 'undefined' &&
 typeof Windows.UI !== 'undefined' &&
 typeof Windows.ApplicationModel !== 'undefined') {

 function WinAppSaveFileWinHTTP() {

 var uri = new Windows.Foundation.Uri("<URL of the file being downloaded>");

 var fileSavePicker = new Windows.Storage.Pickers.FileSavePicker();
 fileSavePicker.fileTypeChoices.insert("EXT file",
 [".ext"]); //insert appropriate file format through code.
 fileSavePicker.defaultFileExtension = ".ext";
 // Extension of the file being saved.
 fileSavePicker.suggestedFileName = "file.ext";
 // Name of the file to be downloaded. Needs to be replaced programmatically.
 fileSavePicker.settingsIdentifier = "fileSavePicker1";

 fileSavePicker.pickSaveFileAsync().then(function (fileToSave) {

 console.log(fileToSave);
 var httpClient = new Windows.Web.Http.HttpClient();

 httpClient.getAsync(uri).then(function (remoteFile) {

 remoteFile.content.readAsInputStreamAsync().then(
 function (stream) {

 fileToSave.openAsync(
 Windows.Storage.FileAccessMode.readWrite).then(
 function (outputStream) {

 Windows.Storage.Streams.RandomAccessStream.copyAndCloseAsync(
 stream, outputStream).then(function (progress, progress2) {

 // Monitor file download progress.
 console.log(progress);
 var temp = progress2;
 });
 });

 });
 });

 });

 }
}

})();

Figure 3 File Download JavaScript Code (Smaller Files)

<?xml version="1.0" encoding="utf-8"?>
<VoiceCommands xmlns="http://schemas.microsoft.com/voicecommands/1.1">
 <CommandSet xml:lang="en-us" Name="AdventureWorksCommandSet_en-us">
 <CommandPrefix> Adventure Works, </CommandPrefix>
 <Example> Show trip to London </Example>

 <Command Name="showTripToDestination">
 <Example> Show trip to London </Example>
 <ListenFor RequireAppName=
 "BeforeOrAfterPhrase"> show trip to {destination} </ListenFor>
 <Feedback> Showing trip to {destination} </Feedback>
 <Navigate/>
 </Command>

 <PhraseList Label="destination">
 <Item> London </Item>
 <Item> Dallas </Item>
 </PhraseList>

 </CommandSet>
<!-- Other CommandSets for other languages -->
</VoiceCommands>

Figure 4 Cortana Commands XML

0417msdn_JoshiHosted_v5_34-41.indd 38 3/13/17 8:42 AM

39April 2017msdnmagazine.com

Consider a scenario in which certain parameters need to be per-
sisted between sessions by the same user. For example, consider a
string identifying the user and other miscellaneous information
such as last session time and other cached items.

The right class to use in this scenario is the Windows.Storage.Ap-
plicationData class. This class has many properties and methods,
however, consider the localSettings property for this scenario.

The settings are stored in a key-value pair system. Look at the
following sample code for the implementation:

function getSessionData()
{
var applicationData = Windows.Storage.ApplicationData.current;
var localSettings = applicationData.localSettings;

// Create a simple setting.
localSettings.values["userID"] = "user998-i889-27";

// Read data from a simple setting.
var value = localSettings.values["userID"];

}

Ideally, the code to write data into the settings can be written at
checkpoints within the app where it’s necessary to capture certain

information and then be sent to a remote Web API or service. The
code to read the setting can usually be written in the App_activated
event handler where the app is launching and the information per-
sisted from the previous app session can be accessed. Note that the
name of each setting has a 255-character limit and each setting has
a limit of 8K bytes in size.

Voice (Cortana) Integration Scenario
One of the scenarios that your Web site (now an app) can implement—
post porting to the UWP—is to integrate Cortana, a voice-based
interactive digital assistant on Windows devices.

Consider that the Web site is a travel-based portal and now, ported
to a Windows 10 app, one of the use cases where Cortana can be inte
grated is to show details of a person’s trip. The user can then issue
commands such as, “Show trip to London” (or whatever destination),
which needs to be configured by app developers, as shown in Figure 4.

Cortana can help achieve tasks with a lot of first-party apps
(such as Calendar) and expose APIs to interface with custom apps.
Basically, here’s basically how Cortana works with apps:

1. �Listens to commands as registered in the
voicecommands.xml file.

2. �Activates the relevant app, matching the commands
spoken/typed in the Windows Search bar.

3. �Passes the speech to/text commands to app as variables to
let the app process the input from user.

Note: The file name is indicative. It can be named as desired
with an XML extension. The Windows Developer article, “Using
Cortana to Interact with Your Customers (10 by 10),” at bit.ly/2iGymdE
provides a good overview of configuring commands in the XML
file and its schema.

The XML code in Figure 4 will help Cortana identify that the
Adventure Works app needs to launch when issued commands
such as the following:

'Adventure Works, Show trip to London'
'Adventure Works, Show trip to Dallas'

Now, let’s take a look at how the Web code would handle the
activation and navigation to the relevant page within the app (or

<!-- In HTML page :

<meta name="msapplication-cortanavcd" content="http://<URL>/vcd.xml" />

-->

(function () {

 if (typeof Windows !== 'undefined' &&
 typeof Windows.UI !== 'undefined' &&
 typeof Windows.ApplicationModel !== 'undefined') {

 Windows.UI.WebUI.WebUIApplication.addEventListener("activated", activatedEvent);

 }

 function activatedEvent (args) {

 var activation = Windows.ApplicationModel.Activation;
 // Check to see if the app was activated by a voice command.
 if (args.kind === activation.ActivationKind.voiceCommand) {

 // Get the speech recognition.
 var speechRecognitionResult = args.result;
 var textSpoken = speechRecognitionResult.text;
 // Determine the command type {search} defined in vcd.
 switch (textSpoken) {

 case "London":
 window.location.href =
 'https://<mywebsite.webapp.net>/Pages/Cities.html?value=London';
 break;

 case "Dallas":
 window.location.href =
 'https://<mywebsite.webapp.net>/Pages/Cities.html?value=Dallas';
 break;

	 ...	
 <other cases>
	 ... 	
 }

 }
 }

})();

Figure 5 Voice Commands Handler Code

(function() {

 if (typeof Windows !== 'undefined' &&
 typeof Windows.UI !== 'undefined' &&
 typeof Windows.ApplicationModel !== 'undefined') {

 Windows.UI.Core.SystemNavigationManager.getForCurrentView().
 appViewBackButtonVisibility =
 Windows.UI.Core.AppViewBackButtonVisibility.visible;
 Windows.UI.Core.SystemNavigationManager.getForCurrentView().
 addEventListener("backrequested", onBackRequested);

function onBackRequested(eventArgs) {

 window.history.back();
 eventArgs.handled = true;
 }
 }

 })();

Figure 6 Back-Button Code

0417msdn_JoshiHosted_v5_34-41.indd 39 3/13/17 8:42 AM

msdn magazine40 UWP Apps

Web site) based on the input. You create a sep-
arate JavaScript file for coding this scenario.

The code in Figure 5 should be referred in the
<body> section of the caller page/referencing page
just before the DOMContentLoaded event trig-
gers. Hence, it’s best to add <script src> just before
the <body> element ends in the referencing page.

(Note: Because the app is “activated” by Cortana
using the “activationKind” as “voiceCommand,”
it’s important to register the event handler for
this activation. To register app lifecycle events
where the app isn’t a native WinJS or C# one, the
namespace Windows.UI.WebUI.WebUIAppli-
cation is provided to help subscribe to and handle specific events.)

In the code in Figure 5, Cortana APIs will receive the user
voice input and populate the SpeechRecognition property of the
activation classes. This should help retrieve the converted text in
the code and help the app perform relevant actions. In this snip-
pet, you use a switch-case statement to evaluate the textSpoken
variable and route the user to the Cities.html page with the value
of city appended as querystring.

Clearly, this is just one of the scenarios and, given the routing
configuring of each Web site (MVC, REST and so on), the cases
will change accordingly. The app is now ready to talk to Cortana.

The (Missing) Back Button
After discussing some of the most-advanced functionalities, let’s
look at one of the basic—but important—aspects of the app expe-
rience: navigation. Ease of browsing through the app and intuitive
navigation hierarchy helps users to predictively experience an app.

This scenario is special because when you port the responsive
Web site to a UWP app, the UI behaves as expected. However, you
need to provide the app container with more pointers about han-
dling the navigation within the app. The default UX goes like this:

1. �User launches the app.
2. �The user browses various sections of the app by clicking

hyperlinks or menus on the pages.
3. �At one point, the user wishes to go to the previous page and

clicks the hardware or software back button provided by
the Windows OS (there is no back button in the app yet).

4. �The app exits.

Point No. 4 is an unexpected result and needs
to be fixed. The solution is simple, which includes
instructing the app container window to go back
through regular JavaScript APIs. Figure 6 shows
the code for this scenario.

The initial few lines enable the framework-
provided back button, which appears on the top
of the app and then registers an event handler for
the tap/click event. All that you do in the code is
access the “window” DOM object and instruct it
to go one page back. There’s one thing to remem-
ber: When the app is at the bottom of the naviga-
tion stack, there’s no further pages available in the

history and the app will exit at this point. Additional code needs to
be written if custom experience is required to be baked into the app.

Live Tiles
Live Tiles is a feature of the UWP apps that displays crisp infor-
mation about updates in the app or anything that might be of
interest to the user without having to launching the app. A quick
example can be viewed by hitting the Start menu on a Windows
device. A few Live Tiles would be evident for apps such as News,
Money and Sports.

Here are just a few use-case examples:
• �For an e-commerce app, a tile can display recommendations

or status of your order.
• �In a line-of-business app, a tile can display a mini image of

your organization’s reports.
• �In a gaming app, Live Tiles can display offers, achievements,

new challenges and so on.
Figure 7 shows two examples of tiles from some of the Microsoft

first-party apps.
One of the easiest ways to integrate Live Tiles into your hosted

Web app is to create a Web API and set up the app code (shown
in Figure 8) to poll it every few minutes. The job of the Web API
is to send back XML, which will be used to create the tile content
for the Windows app. (Note: It’s important that the end user pins
the app to the Start menu to experience Live Tiles.)

function enableLiveTile()
 {
 if (typeof Windows !== 'undefined' &&
 typeof Windows.UI !== 'undefined' &&
 typeof Windows.ApplicationModel !== 'undefined') {

 {
 var notification = Windows.UI.Notifications;
 var tileUpdater =
 notification.TileUpdateManager.createTileUpdaterForApplication();
 var recurrence = notification.PeriodicUpdateRecurrence.halfHour;
 var url = new Windows.Foundation.Uri("<URL to receieve the XML for tile>");
 tileUpdater.startPeriodicUpdate(url, recurrence);

 }
 }
 }

Figure 8 Simple Live Tiles Code

Figure 7 Live Tiles Examples

function createLiveTile() /* can contain parameters */
{
	
 var notifications = Windows.UI.Notifications,
 tile = notifications.TileTemplateType.tileSquare310x310ImageAndText01,
 tileContent = notifications.TileUpdateManager.getTemplateContent(tile),
 tileText = tileContent.getElementsByTagName('text'),
 tileImage = tileContent.getElementsByTagName('image');

 // Get the text for live tile here [possibly] from a remote service through xhr.

 tileText[0].appendChild(tileContent.createTextNode('Demo Message')); // Text here.
 tileImage[0].setAttribute('src','<URL of image>');

 var tileNotification = new notifications.TileNotification(tileContent);
 var currentTime = new Date();
 tileNotification.expirationTime = new Date(currentTime.getTime() + 600 * 1000);
 notifications.TileUpdateManager.createTileUpdaterForApplication().
 update(tileNotification);

}

Figure 9: Another Option for Live Tiles Creations

0417msdn_JoshiHosted_v5_34-41.indd 40 3/13/17 8:42 AM

msdnmagazine.com

dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support
popular file types, emails with multilevel
attachments, databases, web data

Developers:
• APIs for .NET, Java and C++
• SDKs for Windows, UWP, Linux,

Mac and Android
• See dtSearch.com for articles on

faceted search, advanced data
classification, working with SQL,
NoSQL & other DBs, MS Azure, etc.

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional evaluations

Instantly Search
Terabytes of Data
across a desktop, network, Internet or
Intranet site with dtSearch enterprise
and developer products

®

Over 25 search features, with easy
multicolor hit-highlighting options

The most important class here is the TileUpdateManager from
the Windows.UI.Notifications namespace. This class not only
creates a template internally to send to the tile, but also polls the
specified URL for tile XML content through startPeriodicUpdate
method. The duration of the poll can be set using the Periodic
UpdateRecurrence enumeration to period pull the XML content
for Tiles. This approach is more server-driven where the Web API
sends the XML code and tile template to the client. This is feasible
when the developer has control over the app and the service layers.

Now consider a scenario in which the app receives information
from third-party Web APIs such as weather or market research
data. In such scenarios, mostly the Web APIs would send standard
HTTP responses in terms of body, headers and so on. Here, you can
parse the Web API response and then form an XML tile of content
in the client-side UWP app code in JavaScript. This gives the app
developer more control over the type of templates to display the
data. You can also mention the expiration time for the tile through
the TileNotification class. The code for this is shown in Figure 9.

Note the TileTemplateType class provides the functionality
of creating a square tile template 310 x 310px in size with an
image and text. Also, the expiration time for the tile is set to 10
minutes through code, which means that after this time, the Live
Tile would revert to the default app tile provided in the app pack-
age, unless a new notification arrives in the app in form of push
notifications. More information about available tile templates can
be found at bit.ly/2k5PDJj.

Wrapping Up
There are a few things to consider while planning the migration
from a Web app to a UWP app:

1. �Test your app for layout and rendering with modern
browsers (Microsoft Edge is an example).

2. �If your Web app is dependent on an ActiveX control or
plug-in, ensure an alternative way to make the functionality
work when running on modern browsers or as a UWP app.

3. �Use the SiteScan tool at bit.ly/1PJBcpi to surface recommen-
dations related to libraries and functionality.

4. �Identify URLs of external resources that your Web site
references. These will be required to be added to the Appli-
cationContentUriRules section of the Appx.manifest file.

Additionally, there are many deeper integrations that can be
achieved through the JavaScript Windows object and help light up
the app functionality through richer experiences. Contacts, Camera,
Microphone, Toast notifications and many features open a window
of opportunity for blending your Web site with the app persona. The
code in this article has been converted into a project template and
made available for developers through GitHub at bit.ly/2k5FlJh. 	 n

Sagar Bhanudas Joshi has worked with developers and ISVs on the Universal
Windows Platform and Microsoft Azure for more than six years. His role includes
working with startups to help them architect, design, and provide on-board solu-
tions and applications to Azure, Windows, and the Office 365 platform. Joshi lives
and works in Mumbai, India. Find him on Twitter: @sagarjms.

Thanks to the following Microsoft technical experts who reviewed this article:
Sandeep Alur and Ashish Sahu

0417msdn_JoshiHosted_v5_34-41.indd 41 3/13/17 8:42 AM

www.dtSearch.com
www.twitter.com/sagarjms

msdn magazine42

A kernel perceptron is a machine learning (ML) clas-
sifier that can be used to make binary predictions.
For example, a kernel perceptron could predict the
sex of a person (male = -1, female = +1) based on age,
income, height and weight. Kernel perceptrons are
an advanced variation of ordinary perceptrons and
can handle more complex data.

A good way to see where this article is headed is
to take a look at the demo program in Figure 1 and
the associated data in Figure 2. The goal of the demo
program is to predict the class, -1 or +1, of dummy
input data that has just two predictor variables, x0
and x1. For example, the first training data item is
(2.0, 3.0, -1), which means that if the input values are
x0 = 2.0 and x1 = 3.0, the correct class is -1.

The 21 training data points have a circular geom-
etry, which means that simple linear classification
techniques, such as ordinary perceptrons or logis-
tic regression, are ineffective. Such data is called
non-linearly separable.

The demo program uses the training data to
create a prediction model using a kernel perceptron.
Unlike many prediction models that consist of a set
of numeric values called weights, a kernel prediction
model creates a set of counter values, one for each training data
item. The demo program displays the counter values for the first
two data items (1 and 2) and the last two data items (0 and 1).

After training, the kernel perceptron model predicts all 21 data
items correctly, which is to be expected. The trained model is applied
to four new test data items that were not used during training. The
first test item has inputs (2.0, 4.0) and a class of -1. The prediction
model correctly predicts that item. Overall, the model correctly
predicts three of the four test items for 0.75 accuracy.

Behind the scenes, the kernel perceptron uses a function called
a radial basis function (RBF) kernel. The kernel function requires
a parameter called sigma. The value of sigma must be determined
by trial and error, and sigma = 1.5 in the demo. Note that by set-
ting sigma to 0.5, the demo program would achieve 100 percent
accuracy. I used sigma = 1.5 to point out that for most data sets you
won’t achieve 100 percent accuracy.

This article assumes you have intermediate or higher program-
ming skills, but doesn’t assume you know anything about kernel
perceptrons. The demo program is coded using C#, but you should
have no trouble refactoring the code to another language such as
Python or JavaScript if you wish. All the key demo code, except
for the hardcoded data and some display statements, is presented
in this article. The complete demo source code, including data, is
available in the accompanying download.

Understanding Kernel Functions
In order to understand kernel perceptrons you must understand
kernel functions in general. There are many kernel functions, but
the most common one, and the type used by the demo program, is
called the RBF kernel. The RBF kernel function accepts two vectors
(that is, arrays) and a parameter named sigma, and returns a single
value between 0.0 and 1.0 that’s a measure of similarity between the
two arrays. A return value of exactly 1.0 means the two arrays are
identical. The less similar the two arrays are, the smaller the value
of RBF is, approaching but never quite reaching 0.0.

Kernel Perceptrons Using C#

Test Run JAMES MCCAFFREY

Code download available at msdn.com/magazine/0417magcode.

Figure 1 Kernel Perceptron Demo

0417msdn_McCaffreyTRun_v4_42-48.indd 42 3/13/17 8:47 AM

43April 2017msdnmagazine.com

The equation for RBF is:
K(x1, x2) = exp(- || x1 - x2 ||^2 / (2 * sigma^2))

Here, K stands for kernel, x1 and x2 are two arrays that have the
same length, sigma is a free parameter with a value like 1.0 or 1.5,
the || indicates Euclidean distance, and exp means Euler’s number
(e) raised to a power.

The RBF is best explained by example. Suppose x1 = (2.0, 1.0,
3.0) and x2 = (0.0, 1.0, 5.0), and sigma is 1.0. First, you compute the
squared Euclidean distance:

|| x1 - x2 ||^2 = (2.0 - 0.0)^2 + (1.0 - 1.0)^2 + (3.0 - 5.0)^2
 = 4.0 + 0.0 + 4.0
 = 8.0

Next, you divide the squared distance by 2 times sigma squared:
8.0 / (2 * (1.0)^2) = 8.0 / 2.0 = 4.0

Last, you take Euler’s number (e = approximately 2.71828) and
raise it to the negative of the previous result:

K = e^(-4.0) = 0.0183

Notice that if x1 equals x2, the squared Euclidean distance will
be 0, and then dividing by 2 times sigma squared will be 0, and e
raised to the 0th power is 1.0. The less similar x1 and x2 are, the
larger the squared difference will be, and e raised to a negative
large value gets very small, approaching 0.0. The larger the value
of sigma is, the larger the value of K is, but K still varies from 1.0
(equal vectors) down to 0.0 exclusive (very dissimilar vectors). The
order of array parameters doesn’t matter, so K(x1, x2) = K(x2, x1).

The demo program defines the RBF kernel function as:
static double Kernel(double[] d1, double[] d2, double sigma) {
 double num = 0.0;
 for (int i = 0; i < d1.Length - 1; ++i)
 num += (d1[i] - d2[i]) * (d1[i] - d2[i]);
 double denom = 2.0 * sigma * sigma;
 double z = num / denom;
 double result = Math.Exp(-z);
 return result;
}

The function assumes that the last cell of each array holds the
class label (+1 or -1), so the last cell isn’t included in the calculation.
There are several other kernel functions that can be used with a
kernel perceptron, including the linear kernel, polynomial kernel,
Fisher kernel, and sigmoid kernel. Calculating kernel functions is
relatively easy. What’s not obvious, however, is that kernel functions
have some remarkable mathematical properties that allow simple
classifiers, like an ordinary perceptron, to be transformed into
classifiers that can handle non-linearly separable data.

Understanding Ordinary Perceptrons
An ordinary perceptron can perform binary classification for simple,
linearly separable data. An ordinary perceptron consists of a set of

weights, where the number of weights equals the number of pre-
dictor values, and an additional special weight called the bias. For
example, suppose you have a binary classification problem where
there are three predictor variables. And suppose the perceptron
weights are w0 = 1.5, w1 = 1.1 and w2 = -3.0, and three predictor
variables have values x0 = 4.0, x1 = 3.0, x2 = 5.0 and the bias is b =
2.5. The prediction is calculated as the sign (positive or negative) of
the sum of the products of weight and input values, plus the bias:

sum = (w0)(x0) + (w1)(x1) +(w2)(x2) + b
 = (1.5)(4.0) + (1.1)(3.0) + (-3.0)(5.0) + 2.5
 = 6.0 + 3.3 + (-15.0) + 2.5
 = -3.2
prediction = sign(sum)
 = -1

It’s that simple. But where do the weights and bias values come
from? You take training data that has known input and correct
class values and then use a mathematical optimization algorithm
to find values for the weights and bias so that the calculated class
values closely match the known correct class values.

Note that in perceptron literature, the bias value is often consid-
ered to be a regular weight associated with a dummy input value of
1.0. Using that scheme, the preceding example would have inputs x
= (1.0, 4.0, 3.0, 5.0) and weights w = (2.5, 1.5, 1.1, -3.0), yielding the
following (which is the same result as before):

sum = (2.5)(1.0) + (1.5)(4.0) + (1.1)(3.0) + (-3.0)(5.0)
 = -3.2

In other words, a perceptron bias value can be explicit or implicit.
You should not underestimate the confusion this can cause.

Now, unfortunately, ordinary perceptrons can classify only linearly
separable data, which makes them very limited in practice. However,
by using a kernel function in conjunction with a perceptron, it’s pos-
sible to create a classifier that can work with non-linearly separable
data, such as the demo data shown in Figure 2.

The Kernel Perceptron Algorithm
At first glance, the kernel perceptron algorithm appears unrelated
to the ordinary perceptron algorithm, but in fact, the two are deeply

Figure 2 Kernel Perceptron Training Data

2.0 3.00.0 1.0
0.0

5.0

1.0

6.0 7.0 8.0

2.0

9.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

x1

4.0
x0

Dummy Classification Training Data

+1-1

A kernel perceptron is a
machine learning (ML) classifier

that can be used to make
binary predictions.

0417msdn_McCaffreyTRun_v4_42-48.indd 43 3/13/17 8:47 AM

msdn magazine44 Test Run

related. Suppose there are just four training data items: td[0] = (2.0,
3.0, -1), td[1] = (3.0, 2.0, +1), td[2] = (3.0, 5.0, +1), td[3] = (4.0, 3.0, -1).
And suppose the trained kernel perceptron model gave you wrong
counter values of a = (1, 2, 3, 4). (I use “a” for the wrong counters
because in research literature they’re usually given the symbol Greek
sigma, which resembles lowercase English “a.”)

To predict the class of new data item x = (3.0, 6.0), you compute
the weighted sum (by a-value and training item correct class) of
the kernel function applied to the new data item and each of the
four training items:

K(td[0], x) = 0.1083
K(td[1], x) = 0.0285
K(td[2], x) = 0.8007
K(td[3], x) = 0.1083

sum = (1)(0.1083)(-1) + (2)(0.0285)(+1) + (3)(0.8007)(+1) +
(4)(0.1083)(-1)
 = +1.9175
prediction = sign(sum)
 = +1

Stated somewhat loosely, the kernel perceptron looks at the sim-
ilarity of the data item to be classified and all training data items,
and aggregates the similarity values—using the wrong counters as
weights—into a single value that indicates predicted class.

So, to make a kernel perceptron prediction you need the training
data and the associated wrong counter values. When you train an
ordinary perceptron, you use an iterative process. In each iteration,
you use the current values of the weights and bias to calculate a pre-
dicted class. If the predicted class is incorrect (doesn’t match the class
in the training data) you adjust the weights a bit so that the predicted
class is closer to the known correct class value.

In a kernel perceptron, you use a similar iterative training pro-
cess, but instead of adjusting weight values when a calculated
class is wrong, you increment the wrong counter for the current
training item. Quite remarkable! The math proof of why this works
is stunningly beautiful and can be found in the Wikipedia entry
for kernel perceptrons.

Expressed in high-level pseudo-code, the kernel perceptron
training algorithm is:

loop a few times
 for each curr training item, i
 for each other training item, j
 sum += a[j] * K(td[i], td[j], sigma) * y[j];
 end-for
 pred = sign(sum)
 if (pred is wrong) increment a[i]
 end-for
end-loop

The two parameters needed in the training algorithm are the
number of times to iterate and the value of sigma for the kernel
function. Both of these values must be determined by a bit of trial
and error. The demo program iterates 10 times and uses 1.5 for sigma.

Note that the ordinary perceptron training algorithm uses training
data to generate the weights and bias values, and then conceptually
discards the training data. The kernel perceptron training algorithm
generates wrong counter values that are mathematically related to
weights, but the algorithm must keep the training data in order to
make predictions.

The Demo Program Structure
The overall structure of the demo program, with a few minor edits
to save space, is presented in Figure 3. I used a static method
style rather than an object-oriented programming style for

using System;
namespace KernelPerceptron
{
 class KernelPerceptronProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin demo ");
 int numFeatures = 2;

 Console.WriteLine("Goal is classification(-1/+1) ");
 Console.WriteLine("Setting up 21 training items ");

 double[][] trainData = new double[21][];
 trainData[0] = new double[] { 2.0, 3.0, -1 };
 trainData[1] = new double[] { 2.0, 5.0, -1 };
 . . .
 trainData[20] = new double[] { 5.0, 6.0, +1 };
 int numTrain = trainData.Length;

 double[][] testData = new double[4][];
 testData[0] = new double[] { 2.0, 4.0, -1 };
 . .
 testData[3] = new double[] { 5.5, 5.5, +1 };

 int[] a = new int[trainData.Length];
 int maxEpoch = 10;
 int epoch = 0;
 double sigma = 1.5; // for the kernel function

 Console.WriteLine("Starting train, sigma = 1.5 ");
 ...
 Console.WriteLine("Training complete ");

 double trainAcc = Accuracy(trainData, a,
 trainData, sigma, false); // silent
 Console.WriteLine("Accuracy = " +
 trainAcc.ToString("F4"));

 Console.WriteLine("Analyzing test data: ");
 double testAcc = Accuracy(testData, a,
 trainData, sigma, true); // verbose

 Console.WriteLine("End kernel perceptron demo ");
 Console.ReadLine();

 } // Main

 static double Kernel(double[] d1, double[] d2,
 double sigma) { . . }

 static double Accuracy(double[][] data, int[] a,
 double[][] trainData, double sigma, bool verbose)
 { . . }
 } // Program
} // ns

Figure 3 Kernel Perceptron Demo Program Structure

Behind the scenes,
the kernel perceptron uses a
function called a radial basis

function (RBF) kernel.

0417msdn_McCaffreyTRun_v4_42-48.indd 44 3/13/17 8:47 AM

US: +1 903 306 1676
EU: +44 141 628 8900
AU: +61 2 8006 6987

Contact Us:

sales@asposeptyltd.com

GroupDocs.Total

.NET Libraries Java Libraries Cloud APIs

APIs to view, export, annotate, compare, sign,
automate and search documents in your
applications.

Manipulating Files?

Visit us at www.groupdocs.com

Try for Free

Untitled-8 1 1/5/17 2:06 PM

http://www.groupdocs.com
mailto:sales@asposeptyltd.com

msdn magazine46 Test Run

simplicity. The Main method has all the control logic. There are
two helper methods, Kernel and Accuracy.

To code the demo program, I launched Visual Studio and
created a new C# console application program and named it
KernelPerceptron. I used Visual Studio 2015, but the demo pro-
gram has no significant .NET Framework dependencies so any
recent version will work.

After the template code loaded into the editor window, I right-
clicked on file Program.cs in the Solution Explorer window and
renamed the file to KernelPerceptronProgram.cs, then allowed
Visual Studio to automatically rename class Program for me. At
the top of the template-generated code, I deleted all unnecessary
using statements, leaving just the one that references the top-level
System namespace.

The Main method sets up the training and test data like so:
int numFeatures = 2;
double[][] trainData = new double[21][];
trainData[0] = new double[] { 2.0, 3.0, -1 };
. .
trainData[20] = new double[] { 5.0, 6.0, +1 };
int numTrain = trainData.Length;
double[][] testData = new double[4][];
testData[0] = new double[] { 2.0, 4.0, -1 };
. .
testData[3] = new double[] { 5.5, 5.5, +1 };

The demo uses two predictor variables (also called features in
ML terminology) for simplicity, but kernel perceptrons can han-
dle any number of predictor variables. The data is hardcoded but
in a non-demo scenario you’d likely load the data from a text file.
The demo uses -1 and +1 to represent the two possible classes. This
encoding is typical for perceptrons, but classes can be encoded as
0 and 1 instead (though this encoding would require some changes
to the code logic).

Training is prepared with these statements:
int[] a = new int[numTrain]; // "Wrong counters"
double sigma = 1.5; // For the kernel function
int maxEpoch = 10;
int epoch = 0;

Array a holds the wrong counters for each training item, and
sigma is the free parameter for the RBF kernel function. The value
of sigma and the maxEpoch loop control were determined by trial
and error. Next, all possible kernel function values are pre-calculated
and stored into a matrix:

double[][] kernelMatrix = new double[numTrain][];
for (int i = 0; i < kernelMatrix.Length; ++i)
 kernelMatrix[i] = new double[numTrain];
for (int i = 0; i < numTrain; ++i) {
 for (int j = 0; j < numTrain; ++j) {
 double k = Kernel(trainData[i], trainData[j], sigma);
 kernelMatrix[i][j] = kernelMatrix[j][i] = k;
 }
}

The idea is that during training, the kernel similarity between
all pairs of training items will have to be used several times so it
makes sense to pre-calculate these values.

The training loop is:
while (epoch < maxEpoch) {
 for (int i = 0; i < numTrain; ++i) {
 // Get "desired" correct class into di
 for (int j = 0; j < numTrain; ++j) {
 // Get "other" desired class into dj
 // Compute y = weighted sum of products
 }

 if ((di == -1 && y >= 0.0) || (di == 1 && y <= 0.0))
 ++a[i]; // increment wrong counter
 }
 ++epoch;
}

The desired, correct class (-1 or +1) is pulled from the current
training item with this code:

int di = (int)trainData[i][numFeatures];

I use di here to stand for desired value. Two other common variable
names are t (for target value) and y (which just stands for general output).

The inner nested for loop that calculates the weighted sum of ker-
nel values is the heart of the kernel perceptron-learning algorithm:

double y = 0.0; // Weighted sum of kernel results
for (int j = 0; j < numTrain;; ++j) {
 int dj = (int)trainData[j][numFeatures];
 double kern = kernelMatrix[i][j];
 y += a[j] * dj * kern;
}

The demo code calculates the kernel for all pairs of training items.
But when an associated wrong counter has value 0, the product
term will be 0. Therefore, an important optional optimization when
the number of training items is large is to skip the calculation of
the kernel when the value of a[i] or a[j] is 0. Equivalently, training
items that have a wrong counter value of 0 can be removed entirely.

I don’t compute an explicit predicted class because it’s easier to
check if the predicted class is wrong directly:

if ((di == -1 && y >= 0.0) || (di == 1 && y <= 0.0))
 ++a[i]; // wrong counter for curr data

You have to be careful to check y >= 0.0 or y <= 0.0 rather than
y > 0.0 or y < 0.0 because the first time through the training loop,
all wrong counter values in the a array are zero and so the weighed
sum of products will be 0.0.

After the training loop terminates, the kernel perceptron is
effectively defined by the training data, the wrong-counter array
and the RBF kernel parameter sigma.

Making Predictions
Helper function Accuracy makes predictions. The method’s defi-
nition starts with:

static double Accuracy(double[][] data, int[] a,
 double[][] trainData, double sigma, bool verbose)
{
 int numFeatures = data[0].Length - 1;
 double[] x = new double[numFeatures];
 int numCorrect = 0;
 int numWrong = 0;
...

The parameter named data holds an array-of-arrays style matrix
of data to evaluate. Parameter array a holds the wrong counter
values generated by training.

Inside the body of the function, the key code is exactly like the
training code, except instead of incrementing a wrong counter for

In order to understand
kernel perceptrons you must
understand kernel functions

in general.

0417msdn_McCaffreyTRun_v4_42-48.indd 46 3/13/17 8:47 AM

0

5

25

75

95

100

Alachisoft-MSDN-Magazine-Ad-Feb-2017-Ver-1.0

Tuesday, February 14, 2017 3:56:01 PM

Untitled-6 1 3/6/17 2:20 PM

www.alachisoft.com

Test Run

Sign up to receive MSDN FLASH,
which delivers the latest resources,
SDKs, downloads, partner offers,

security news, and updates
on national and local

developer events.

Get news
from MSDN

in your inbox!

magazine

the current training data item on an incorrect prediction, a single
numWrong variable or numCorrect variable is incremented:

if ((di == -1 && y >= 0.0) || (di == 1 && y <= 0.0))
 ++numWrong;
else
 ++numCorrect;

After all data items under investigation have been examined, the
percentage of correct predictions is returned:

return (1.0 * numCorrect) / (numCorrect + numWrong);

The Accuracy method has a verbose parameter, which if true,
causes diagnostic information to be displayed:

if (verbose == true)
{
 Console.Write("Input: ");
 for (int j = 0; j < data[i].Length - 1; ++j)
 Console.Write(data[i][j].ToString("F1") + " ");
 // Etc.
}

Using the code from the Accuracy method, you could write
a dedicated Predict method that accepts an array of x values
(without a known correct class), the training data, the wrong-counter
array, and the RBF kernel sigma value, which returns a +1 or -1
prediction value.

Wrapping Up
Kernel perceptrons aren’t used very often. This is due in large part
to the fact that there are more powerful binary classification tech-
niques available, and that there is a lot of mystery surrounding ML
kernel methods in general. If you do an Internet search for kernel
perceptrons, you’ll find many references that show the beautiful
mathematical relationships between ordinary perceptrons and kernel
perceptrons, but very little practical implementation information. In
my opinion, the primary value of understanding kernel perceptrons
is that the knowledge makes it easier to understand more sophisti-
cated ML kernel methods (which I’ll present in a future column).

One of the weaknesses of kernel perceptrons is that to make a
prediction, the entire training data set (except for items that have a
wrong counter value of 0) must be examined. If the training set is huge,
this could make real-time predictions unfeasible in some scenarios.

Kernel perceptrons are arguably the simplest type of kernel
methods. The kernel trick can be applied to other linear classifiers.
In fact, applying the kernel trick to a maximum margin linear clas-
sifier is the basis for support vector machine (SVM) classifiers,
which were popular in the late 1990s. 	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He
has worked on several Microsoft products including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jammc@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Ani Anirudh and Chris Lee

An ordinary perceptron can
perform binary classification for
simple, linearly separable data.

0417msdn_McCaffreyTRun_v4_42-48.indd 48 3/13/17 8:47 AM

mailto:jammc@microsoft.com
http://msdn.microsoft.com/flashnewsletter

Untitled-9 1Untitled-9 1 3/10/17 2:34 PM3/10/17 2:34 PM

www.vslive.com
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BY

WASH, DC
JUNE 12-15, 2017
MARRIOTT MARQUIS

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics include:

Visual Studio / .NET
JavaScript / HTML5
Angular
Native Mobile & Xamarin
Software Practices
Database and Analytics

ASP.NET Core
Web API
ALM / DevOps
Cloud Computing
UWP
Unit Testing

Register by April 21 for Best Savings
Save $300!*
Use Code VSLDC5
*Some restrictions apply. Discount off of 4 day packages only.

REGISTER
NOW

Untitled-9 2Untitled-9 2 3/10/17 2:34 PM3/10/17 2:34 PM

www.vslive.com/dcmsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/dcmsdn

ALM /
DevOps

Cloud
Computing

Database and
Analytics

Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

DC AGENDA AT-A-GLANCE

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, June 12, 2017 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM
M01 Workshop: Distributed Cross-Platform

Application Architecture
- Jason Bock & Rockford Lhotka

M02 Workshop: Practical ASP.NET DevOps
with VSTS or TFS - Brian Randell

M03 Workshop: SQL Server 2016 for Developers
- Andrew Brust & Leonard Lobel

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Visual Studio Live! Day 1: Tuesday, June 13, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM KEYNOTE: To Be Announced - Saurabh Pant, Program Manager, Microsoft

9:15 AM 10:30 AM
T01 Go Mobile With C#,

Visual Studio, and Xamarin
- Kevin Ford

T02 Build Better JavaScript Apps
with TypeScript - Brian Noyes

T03 What's New in Azure IaaS v2
- Eric D. Boyd

T04 Tactical DevOps with VSTS
- Brian Randell

10:45 AM 12:00 PM
T05 Conquer the Network - Making
Resilient and Responsive Connected

Mobile C# Apps - Roy Cornelissen
T06 Getting Started with Aurelia

- Brian Noyes
T07 Cloud Oriented Programming

- Vishwas Lele
T08 PowerShell for Developers

- Brian Randell

12:00 PM 1:30 PM Lunch - Visit Exhibitors

1:30 PM 2:45 PM
T09 Lessons Learned from Real
World Xamarin.Forms Projects

- Nick Landry
T10 Getting to the Core of
.NET Core - Adam Tuliper T11 To Be Announced

T12 New SQL Server 2016 Security
Features for Developers

- Leonard Lobel

3:00 PM 4:15 PM T13 Xamarin vs. Cordova
- Sahil Malik

T14 Assembling the Web - A Tour
of WebAssembly - Jason Bock

T15 Go Serverless with Azure
Functions - Eric D. Boyd

T16 No Schema, No Problem!
Introduction to Azure DocumentDB

- Leonard Lobel

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, June 14, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM W01 To Be Announced
W02 Creating Reactive

Applications With SignalR
- Jason Bock

W03 Bots are the New Apps:
Building Bots with ASP.NET WebAPI

& Language Understanding
- Nick Landry

W04 What's New in Visual Studio
2017 - Robert Green

9:30 AM 10:45 AM
W05 Write Once Run Everywhere,
Cordova, Electron, and Angular2

- Sahil Malik

W06 Explore Web Development
with Microsoft ASP.NET Core 1.0

- Mark Rosenberg
W07 Exploring C# 7 New Features

- Adam Tuliper
W08 Get Started with Git and

GitHub - Robert Green

11:00 AM 12:00 PM General Session: To Be Announced

12:00 PM 1:30 PM Birds-of-a-Feather Lunch - Visit Exhibitors

1:30 PM 2:45 PM
W09 Distributed Architecture:
Microservices and Messaging

- Rockford Lhotka
W10 Angular 101: Part 1

- Deborah Kurata
W11 A Busy Developer’s Intro to

Windows Containers - Vishwas Lele
W12 Continuous Delivery 3.0,
The Next Step - Marcel de Vries

3:00 PM 4:15 PM W13 Agile Failures: Stories From
The Trenches - Philip Japikse

W14 Angular 101: Part 2
- Deborah Kurata

W15 Use Docker to Develop, Build
and Deploy Applications, a Primer

- Mark Rosenberg

W16
with Xamarin, VSTS and HockeyApp

- Roy Cornelissen

4:30 PM 5:45 PM
W17 Top 10 Ways to Go from
Good to Great Scrum Master

- Benjamin Day
W18 SASS and CSS for Developers

- Robert Boedigheimer
W19 Microservices with Azure

Container Service & Service Fabric
- Vishwas Lele

W20 A/B Testing, Canary Releases
and Dark Launching, Implementing

Continuous Delivery on Azure
- Marcel de Vries

6:45 PM 10:30 PM Visual Studio Live! Monuments by Moonlight Tour

START TIME END TIME Visual Studio Live! Day 3: Thursday, June 15, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
TH01 Let's Write a Windows

10 App: A Basic Introduction to
Universal Apps - Billy Hollis

TH02 JavaScript for the C# (and
Java) Developer - Philip Japikse

TH03 Entity Framework Core
for Enterprise Applications

- Benjamin Day

TH04 Overcoming the Challenges
of Mobile Development in the

Enterprise - Roy Cornelissen

9:30 AM 10:45 AM
TH05 Implementing the MvvM

Pattern in Your Xamarin Apps
- Kevin Ford

TH06 Integrating AngularJS & ASP.
NET MVC - Miguel Castro

TH07 Power BI: Analytics for
Desktop, Mobile and Cloud

- Andrew Brust

TH08 Exploring Microservices
in a Microsoft Landscape

- Marcel de Vries

11:00 AM 12:15 PM
TH09 Building Cross-Platform
Business Apps with CSLA. NET

- Rockford Lhotka

TH10 Debugging Your Website
with Fiddler and Chrome Developer

Tools - Robert Boedigheimer
TH11 Big Data with Hadoop, Spark
and Azure HDInsight - Andrew Brust

TH12 End-to-End Dependency
Injection & Testable Code

- Miguel Castro

12:15 PM 1:15 PM Lunch

1:15 PM 2:30 PM
TH13 Creating Great Looking

Android Applications Using Material
Design - Kevin Ford

TH14 Building Single Page Web
Applications Using Aurelia.js and the

MVVM Pattern - Ben Hoelting

TH15 Using Cognitive Services
in Business Applications
- Michael Washington

TH16 Extend and Customize the
Visual Studio Environment

- Walt Ritscher

2:45 PM 4:00 PM
TH17 Take the Tests: Can You

Evaluate Good and Bad Designs?
- Billy Hollis

TH18 Tools for Modern Web
Development - Ben Hoelting

TH19 Introduction to Azure
Machine Learning Studio

(for the Non-Data Scientist)
- Michael Washington

TH20 Windows Package
Management with NuGet and

Chocolatey - Walt Ritscher

Speakers and sessions subject to change

Untitled-9 3Untitled-9 3 3/10/17 2:35 PM3/10/17 2:35 PM

www.vslive.com/dcmsdn
www.vslive.com/dcmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

SUPPORTED BY

magazine

EVENT PARTNER

REDMOND
AUGUST 14-18, 2017
MICROSOFT HEADQUARTERS

Rub elbows with blue badges
Experience life on campus
Enjoy lunch in the Commons and visit the Company Store
Networking event on Lake Washington, Wednesday, August 16
And so much more!

JOIN US AT MICROSOFT HEADQUARTERS
THIS SUMMER

PRODUCED BY

Untitled-9 4Untitled-9 4 3/10/17 2:35 PM3/10/17 2:35 PM

http://www.vslive.com/Redmond

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/redmondmsdn

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!

“I liked that there was representation of Android and iOS, as well as, Microsoft.
I prefer working with Microsoft tech/code but can’t ignore Android and iOS.”
 – Chris Nacey, Site Crafting

– David Campbell, G3 Software

Register NOW
and Save $400!
Use promo code VSLRED2

Development Topics include:
AngularJS
ASP.NET Core
Azure
Analytics
DevOps
.NET Framework

Software Practices
SQL Server
Visual Studio 2017
Web API
UWP
Xamarin

Untitled-9 5Untitled-9 5 3/10/17 2:36 PM3/10/17 2:36 PM

http://www.vslive.com/Redmond
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine54

This month I’m going to explore the internals of a core construct
of C# that we all program with frequently—the foreach statement.
Given an understanding of the foreach internal behavior, you can
then explore implementing the foreach collection interfaces using
the yield statement, as I’ll explain.

Although the foreach statement is easy to code, I’m surprised at
how few developers understand how it works internally. For exam­
ple, are you aware that foreach works differently for arrays than
on IEnumberable<T> collections? How familiar are you with the
relationship between IEnumerable<T> and IEnumerator<T>? And,
if you do understand the enumerable interfaces, are you comfort­
able implementing them using yield?

What Makes a Class a Collection
By definition, a collection within the Microsoft .NET Framework
is a class that, at a minimum, implements IEnumerable<T> (or the
nongeneric type IEnumerable). This interface is critical because
implementing the methods of IEnumerable<T> is the minimum
needed to support iterating over a collection.

The foreach statement syntax is simple and avoids the complica­
tion of having to know how many elements there are. The runtime
doesn’t directly support the foreach statement, however. Instead, the
C# compiler transforms the code as described in the next sections.

foreach with Arrays: The following demonstrates a simple
foreach loop iterating over an array of integers and then printing
out each integer to the console:

int[] array = new int[]{1, 2, 3, 4, 5, 6};

foreach (int item in array)
{
 Console.WriteLine(item);
}

From this code, the C# compiler creates a CIL equivalent of the
for loop:

int[] tempArray;
int[] array = new int[]{1, 2, 3, 4, 5, 6};

tempArray = array;
for (int counter = 0; (counter < tempArray.Length); counter++)
{
 int item = tempArray[counter];

 Console.WriteLine(item);
}

In this example, note that foreach relies on the support for the
Length property and the index operator ([]). With the Length prop­
erty, the C# compiler can use the for statement to iterate through
each element in the array.

Understanding C# foreach Internals and
Custom Iterators with yield

Essential .NET MARK MICHAELIS

Code download available at itl.tc/MSDN.2017.04.

System.Collections.Generic.Stack<int> stack =
 new System.Collections.Generic.Stack<int>();
int number;
System.Collections.Generic.Stack<int>.Enumerator
 enumerator;

// ...

// If IEnumerable<T> is implemented explicitly,
// then a cast is required.
// ((IEnumerable<int>)stack).GetEnumerator();
enumerator = stack.GetEnumerator();
while (enumerator.MoveNext())
{
 number = enumerator.Current;
 Console.WriteLine(number);
}

Figure 2 A Separate Enumerator
Maintaining State During an Iteration

Figure 1 A Class Diagram of the IEnumerator<T>
and IEnumerator Interfaces

The foreach statement syntax
is simple and avoids the

complication of having to know
how many elements there are.

0417msdn_MichaelisDotNET_v3_54-58.indd 54 3/13/17 9:00 AM

http://www.itl.tc/MSDN.2017.04

55April 2017msdnmagazine.com

foreach with IEnumerable<T>: Although the preceding code
works well on arrays where the length is fixed and the index oper­
ator is always supported, not all types of collections have a known
number of elements. Furthermore, many of the collection classes,
including Stack<T>, Queue<T> and Dictionary<TKey and TValue>,
don’t support retrieving elements by index. Therefore, a more gen­
eral approach of iterating over collections of elements is needed.
The iterator pattern provides this capability. Assuming you can
determine the first, next, and last elements, knowing the count and
supporting retrieval of elements by index is unnecessary.

The System.Collections.Generic.IEnumerator<T> and nonge­
neric System.Collections.IEnumerator interfaces are designed to
enable the iterator pattern for iterating over collections of elements,
rather than the length-index pattern shown previously. A class
diagram of their relationships appears in Figure 1.

IEnumerator, which IEnumerator<T> derives from, includes
three members. The first is bool MoveNext. Using this method, you
can move from one element within the collection to the next, while
at the same time detecting when you’ve enumerated through every
item. The second member, a read-only property called Current,
returns the element currently in process. Current is overloaded
in IEnumerator<T>, providing a type-specific implementation of
it. With these two members on the collection class, it’s possible to
iterate over the collection simply using a while loop:

System.Collections.Generic.Stack<int> stack =
 new System.Collections.Generic.Stack<int>();
int number;
// ...

// This code is conceptual, not the actual code.
while (stack.MoveNext())
{
 number = stack.Current;
 Console.WriteLine(number);
}

In this code, the MoveNext method returns false when it moves
past the end of the collection. This replaces the need to count
elements while looping.

(The Reset method usually throws a NotImplementedException,
so it should never be called. If you need to restart an enumeration,
just create a fresh enumerator.)

The preceding example showed the gist of the C# compiler out­
put, but it doesn’t actually compile that way because it omits two
important details concerning the implementation: interleaving
and error handling.

State Is Shared: The problem with an implementation such as
the one in the previous example is that if two such loops interleave

each other—one foreach inside another, both using the same collection—
the collection must maintain a state indicator of the current
element so that when MoveNext is called, the next element can
be determined. In such a case, one interleaving loop can affect the
other. (The same is true of loops executed by multiple threads.)

To overcome this problem, the collection classes don’t support
IEnumerator<T> and IEnumerator interfaces directly. Rather,
there’s a second interface, called IEnumerable<T>, whose only
method is GetEnumerator. The purpose of this method is to return
an object that supports IEnumerator<T>. Instead of the collection
class maintaining the state, a different class—usually a nested class
so that it has access to the internals of the collection—will support
the IEnumerator<T> interface and will keep the state of the iter­
ation loop. The enumerator is like a “cursor” or a “bookmark” in
the sequence. You can have multiple bookmarks, and moving any
one of them enumerates over the collection independently of the
others. Using this pattern, the C# equivalent of a foreach loop will
look like the code shown in Figure 2.

Cleaning up Following Iteration: Given that the classes that im­
plement the IEnumerator<T> interface maintain the state, sometimes

System.Collections.Generic.Stack<int> stack =
 new System.Collections.Generic.Stack<int>();
System.Collections.Generic.Stack<int>.Enumerator
 enumerator;
IDisposable disposable;

enumerator = stack.GetEnumerator();
try
{
 int number;
 while (enumerator.MoveNext())
 {
 number = enumerator.Current;
 Console.WriteLine(number);
 }
}
finally
{
 // Explicit cast used for IEnumerator<T>.
 disposable = (IDisposable) enumerator;
 disposable.Dispose();

 // IEnumerator will use the as operator unless IDisposable
 // support is known at compile time.
 // disposable = (enumerator as IDisposable);
 // if (disposable != null)
 // {
 // disposable.Dispose();
 // }
}

Figure 3 Compiled Result of foreach on Collections

System.Collections.Generic.Stack<int> stack =
 new System.Collections.Generic.Stack<int>();
int number;

using(
 System.Collections.Generic.Stack<int>.Enumerator
 enumerator = stack.GetEnumerator())
{
 while (enumerator.MoveNext())
 {
 number = enumerator.Current;
 Console.WriteLine(number);
 }
}

Figure 4 Error Handling and Resource Cleanup with using

You can have multiple
bookmarks, and moving any
one of them enumerates over
the collection independently

of the others.

0417msdn_MichaelisDotNET_v3_54-58.indd 55 3/13/17 9:00 AM

msdn magazine56 Essential .NET

you need to clean up the state after it exits the loop (because either
all iterations have completed or an exception is thrown). To achieve
this, the IEnumerator<T> interface derives from IDisposable.
Enumerators that implement IEnumerator don’t necessarily imple­
ment IDisposable, but if they do, Dispose will be called, as well.
This enables the calling of Dispose after the foreach loop exits. The
C# equivalent of the final CIL code, therefore, looks like Figure 3.

Notice that because the IDisposable interface is supported by
IEnumerator<T>, the using statement can simplify the code in
Figure 3 to what is shown in Figure 4.

However, recall that the CIL doesn’t directly support the using
keyword. Thus, the code in Figure 3 is actually a more accurate C#
representation of the foreach CIL code.

foreach without IEnumerable: C# doesn’t require that
IEnumerable/IEnumerable<T> be implemented to iterate over a
data type using foreach. Rather, the compiler uses a concept known
as duck typing; it looks for a GetEnumerator method that returns a
type with a Current property and a MoveNext method. Duck typing
involves searching by name rather than relying on an interface

or explicit method call to the method. (The name “duck typing”
comes from the whimsical idea that to be treated as a duck, the
object must merely implement a Quack method; it need not
implement an IDuck interface.) If duck typing fails to find a suitable
implementation of the enumerable pattern, the compiler checks
whether the collection implements the interfaces.

Introducing Iterators
Now that you understand the internals of the foreach implemen­
tation, it’s time to discuss how iterators are used to create custom
implementations of the IEnumerator<T>, IEnumerable<T> and
corresponding nongeneric interfaces for custom collections.
Iterators provide clean syntax for specifying how to iterate over data
in collection classes, especially using the foreach loop, allowing
the end users of a collection to navigate its internal structure with­
out knowledge of that structure.

The problem with the enumeration pattern is that it can be
cumbersome to implement manually because it must maintain all
the state necessary to describe the current position in the collec­
tion. This internal state might be simple for a list collection type
class; the index of the current position suffices. In contrast, for data
structures that require recursive traversal, such as binary trees, the using System;

using System.Collections.Generic;

public class BinaryTree<T>:
 IEnumerable<T>
{
 public BinaryTree (T value)
 {
 Value = value;
 }

 #region IEnumerable<T>
 public IEnumerator<T> GetEnumerator()
 {
 // ...
 }
 #endregion IEnumerable<T>

 public T Value { get; } // C# 6.0 Getter-only Autoproperty
 public Pair<BinaryTree<T>> SubItems { get; set; }
}

public struct Pair<T>: IEnumerable<T>
{
 public Pair(T first, T second) : this()
 {
 First = first;
 Second = second;
 }
 public T First { get; }
 public T Second { get; }

 #region IEnumerable<T>
 public IEnumerator<T> GetEnumerator()
 {
 yield return First;
 yield return Second;
 }
 #endregion IEnumerable<T>

 #region IEnumerable Members
 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
 #endregion

 // ...

}

Figure 5 Iterator Interfaces Pattern

using System;
using System.Collections.Generic;

public class CSharpBuiltInTypes: IEnumerable<string>
{
 public IEnumerator<string> GetEnumerator()
 {
 yield return "object";
 yield return "byte";
 yield return "uint";
 yield return "ulong";
 yield return "float";
 yield return "char";
 yield return "bool";
 yield return "ushort";
 yield return "decimal";
 yield return "int";
 yield return "sbyte";
 yield return "short";
 yield return "long";
 yield return "void";
 yield return "double";
 yield return "string";
 }

 // The IEnumerable.GetEnumerator method is also required
 // because IEnumerable<T> derives from IEnumerable.
 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 // Invoke IEnumerator<string> GetEnumerator() above.
 return GetEnumerator();
 }
}

public class Program
{
 static void Main()
 {
 var keywords = new CSharpBuiltInTypes();
 foreach (string keyword in keywords)
 {
 Console.WriteLine(keyword);
 }
 }
}

Figure 6 Yielding Some C# Keywords Sequentially

0417msdn_MichaelisDotNET_v3_54-58.indd 56 3/13/17 9:00 AM

Untitled-1 1Untitled-1 1 4/1/14 10:47 AM4/1/14 10:47 AM

www.SpreadsheetGear.com

msdn magazine58 Essential .NET

state can be quite complicated. To mitigate the challenges associated
with implementing this pattern, C# 2.0 added the yield contextual
keyword to make it easier for a class to dictate how the foreach loop
iterates over its contents.

Defining an Iterator: Iterators are a means to implement meth­
ods of a class, and they’re syntactic shortcuts for the more complex
enumerator pattern. When the C# compiler encounters an iterator, it
expands its contents into CIL code that implements the enumerator
pattern. As such, there are no runtime dependencies for implementing
iterators. Because the C# compiler handles implementation through
CIL code generation, there’s no real runtime performance benefit
to using iterators. However, there is a substantial programmer pro­
ductivity gain in choosing iterators over manual implementation of
the enumerator pattern. To understand this improvement, I’ll first
consider how an iterator is defined in code.

Iterator Syntax: An iterator provides a shorthand implementa­
tion of iterator interfaces, the combination of the IEnumerable<T>
and IEnumerator<T> interfaces. Figure 5 declares an iterator for
the generic BinaryTree<T> type by creating a GetEnumerator
method (albeit, with no implementation yet).

Yielding Values from an Iterator: The iterator interfaces are
like functions, but instead of returning a single value, they yield a
sequence of values, one at a time. In the case of BinaryTree<T>,
the iterator yields a sequence of values of the type argument pro­
vided for T. If the nongeneric version of IEnumerator is used, the
yielded values will instead be of type object.

To correctly implement the iterator pattern, you need to maintain
some internal state to keep track of where you are while enumer­
ating the collection. In the BinaryTree<T> case, you track which
elements within the tree have already been enumerated and which
are still to come. Iterators are transformed by the compiler into a
“state machine” that keeps track of the current position and knows
how to “move itself ” to the next position.

The yield return statement yields a value each time an itera­
tor encounters it; control immediately returns to the caller that
requested the item. When the caller requests the next item, the code
begins to execute immediately following the previously executed
yield return statement. In Figure 6, the C# built-in data type key­
words are returned sequentially.

The results of Figure 6 appear in Figure 7, which is a listing of
the C# built-in types.

Clearly, more explanation is required but I’m out of space for this
month so I’ll leave you in suspense for another column. Suffice it to
say, with iterators you can magically create collections as properties,
as shown in Figure 8—in this case, relying on C# 7.0 tuples just for the
fun of it. For those of you wanting to look ahead, you can check out the
source code or take a look at Chapter 16 of my “Essential C#” book.

Wrapping Up
In this column, I stepped back to functionality that’s been part of C#
since version 1.0 and hasn’t changed much since the introduction
of generics in C# 2.0. Despite the frequent use of this functionality,
however, many don’t understand the details of what’s taking place
internally. I then scratched the surface of the iterator pattern—
leveraging the yield return construct—and provided an example.

Much of this column was pulled from my “Essential C#” book
(IntelliTect.com/EssentialCSharp), which I’m currently in the midst of
updating to “Essential C# 7.0.” For more information, check out
Chapters 14 and 16.	 n

Mark Michaelis is founder of IntelliTect, where he serves as its chief technical
architect and trainer. For nearly two decades he has been a Microsoft MVP, and
a Microsoft Regional Director since 2007. Michaelis serves on several Micro-
soft software design review teams, including C#, Microsoft Azure, SharePoint
and Visual Studio ALM. He speaks at developer conferences and has written
numerous books including his most recent, “Essential C# 6.0 (5th Edition)”
(itl.tc/EssentialCSharp). Contact him on Facebook at facebook.com/Mark.Mi-
chaelis, on his blog at IntelliTect.com/Mark, on Twitter: @markmichaelis or via
e-mail at mark@IntelliTect.com.

Thanks to the following IntelliTect technical experts for reviewing this article:
Kevin Bost, Grant Erickson, Chris Finlayson, Phil Spokas and Michael Stokesbary

object
byte
uint
ulong
float
char
bool
ushort
decimal
int
sbyte
short
long
void
double
string

Figure 7 A List of Some C# Keywords
Output from the Code in Figure 6

IEnumerable<(string City, string Country)> CountryCapitals
{
 get
 {
 yield return ("Abu Dhabi","United Arab Emirates");
 yield return ("Abuja", "Nigeria");
 yield return ("Accra", "Ghana");
 yield return ("Adamstown", "Pitcairn");
 yield return ("Addis Ababa", "Ethiopia");
 yield return ("Algiers", "Algeria");
 yield return ("Amman", "Jordan");
 yield return ("Amsterdam", "Netherlands");
 // ...
 }
}

Figure 8 Using yield return to Implement
an IEnumerable<T> Property

To correctly implement the
iterator pattern, you need to

maintain some internal state to
keep track of where you are while

enumerating the collection.

0417msdn_MichaelisDotNET_v3_54-58.indd 58 3/13/17 9:00 AM

mailto:mark@IntelliTect.com
www.twitter.com/markmichaelis

MSDN.MICROSOFT.COM

MOBILE.
TABLET.
DESKTOP.
PRINT.

WHERE YOU
NEED US
MOST.

Untitled-3 1Untitled-3 1 2/7/17 11:28 AM2/7/17 11:28 AM

http://msdn.microsoft.com

PRODUCED BYSUPPORTED BY

magazine

GOLD SPONSOR

Untitled-10 2Untitled-10 2 3/10/17 3:09 PM3/10/17 3:09 PM

www.vslive.com/chicagomsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/chicagomsdn

Register Today and Save $300!
Use promo code VSLCHI2

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics Include:

Visual Studio / .NET Framework
JavaScript / HTML5 Client
Native Client
Software Practices
Database and Analytics
Angular JS

ASP.NET / Web Server
Agile
ALM / DevOps
Cloud Computing
Windows Client
Xamarin

I loved that this conference isn’t a sales pitch. It’s actual developers
giving the sessions - I felt the classes were really geared towards me!”

- Jon Plater, Kantar Retail

The speakers were clearly experts. Nice breadth of
topics. Great hotel; great location.”

- Fred Kauber, Tranzact

“
“

Untitled-10 3Untitled-10 3 3/10/17 3:09 PM3/10/17 3:09 PM

www.vslive.com/chicagomsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine62

Maps are truly one of mobile
devices’ great features. With a
smartphone in hand, you can
expertly navigate your way through
a new city, find all the great places
to eat, get real-time updates to
traffic conditions, even find a new
route—if a faster one is available.
Mapping can also help your users
visualize data points or provide a
quick search of local services.

Maps have truly changed the
way users interact with their
devices and their world. Fortu-
nately, the Universal Windows
Platform (UWP) comes equipped
with a fully functional Map con-
trol that leverages the power and
imagery of Bing’s mapping ser-
vices. In this month’s column, I’ll
explore Map control and show just
how easy it is to add to your apps.

Setting Up the Project
Create a new blank UWP project in Visual Studio by choosing
New Project from the File menu. Expand the Installed Templates
| Windows | Blank App (Universal Windows). Name the project
MapControl and then click OK. Immediately afterward, a dialog
box will appear asking you which version of Windows the app
should target. For this project, the default options will be fine, so
you can just click OK.

Open the MainPage.xaml file and add the following namespace
declaration to the Page tag:

xmlns:maps="using:Windows.UI.Xaml.Controls.Maps"

This makes the elements located in the Windows.UI.Xaml.Con-
trols.Maps namespace addressable to the XAML elements contained
in the Page control by using the maps: prefix. For a detailed expla-
nation of XAML Namespaces and Namespace Mapping, Windows
Dev Center has an in-depth article on the matter at bit.ly/2jwcO2D.

Adding the Map Control
To add a map to this app, simply add the following XAML:

 <maps:MapControl x:Name="mapControl" >
 </maps:MapControl>

Run the solution by pressing F5 or choosing Start Debugging
from the Debug menu. Your app should look something like
Figure 1. Note that you can click and drag around the map to
navigate it. Double-clicking will zoom in on a point. Additionally,
touch gestures also manipulate the Map control. You’ll also notice
red text in the lower-left corner of the control stating, “Warning:
MapServiceToken not specified.”

The Map control uses imagery and other services, such as traffic
data, from Bing Maps. Accordingly, the Bing team would like to

Exploring the Map Control

Modern Apps FRANK LA VIGNE

Code download available at bit.ly/MapControl.

Figure 1 Basic Map Control

Maps have truly changed the
way users interact with their

devices and their world.

0417msdn_LaVigneModApps_v3_62-67.indd 62 3/13/17 8:43 AM

www.bit.ly/MapControl

Global support
and community

Industry’s best high-performance
grids, charts, and reports

Small footprint
reduces app bloat

Extensible controls with
easy-to-use universal API

© 2017 GrapeCity, Inc. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

FASTEST WAY TO BUILD
HIGH-PERFORMING,
FEATURE COMPLETE
APPLICATIONS
Easy-to-use UI controls trusted by
developers and enterprises worldwide

Windows, Web, and Mobile UI Controls, Reporting,
and Productivity Tools

Dev Days Partner Extension Sim-Ship Partners

Global
2017

Download your free 30-day trial at

www.ComponentOne.com

Untitled-1 1Untitled-1 1 3/15/17 10:28 AM3/15/17 10:28 AM

http://www.ComponentOne.com

msdn magazine64 Modern Apps

have the ability to audit which
accounts drive usage. This helps
limit abuse and keep costs low for
everyone. To remove the warning
message, you’ll need to obtain
a MapServiceToken from the
Bing Maps Dev Center. In most
instances, usage of Bing Maps ser-
vices will be free. For pricing details,
refer to the pricing chart for Basic
and Enterprise keys at bit.ly/2j6o96x.

Registering for a
Bing Maps Service Token
In a browser, go to bingmapsportal.com,
click sign in, and use your Microsoft
account credentials to log in. On
the landing page, click the My
account menu and choose My
Keys, as shown in Figure 2.

If you’ve registered keys with Bing
Maps before, then they’ll appear in a
list, as shown in Figure 3. To create
a new key, click on the option that
states “Click here to create a new key.”

A form will appear asking for
information about the application
for which the key will be created (see
Figure 4). Name the app, choose Basic for Key type, and Universal
Windows App for Application type. The Application URL is optional.
Click create and you’ll be presented with a new key. Copy it and
return to the MainPage.xaml file. Modify the XAML to add the
MapServiceToken attribute and paste in the key as its value, like so:

<maps:MapControl x:Name="mapControl" MapServiceToken="{Insert Key Here}" >
 </maps:MapControl>

Run the solution again and the warning message is gone.

Controlling the Map with Code
As you can see, adding a Map control to a UWP app is fairly easy.
The control even comes with the ability for users to manipulate
the map’s center point and zoom level with mouse or touch. The
map would be more useful if it could be manipulated in code. For
instance, it would be useful to change the style of the map, so that
it can display aerial imagery or terrain data and not just the default
road view shown in Figure 1.

Changing Map Styles
The Map control has a Style property of type MapStyle, which is an
enumeration. For example, to change the map to show aerial imagery
with roads superimposed on them, all it takes is this line of code:

mapControl.Style = MapStyle.AerialWithRoads;

To implement the option of choosing any available MapStyle, the
app will need some more controls. Add the following Grid defi-
nitions to the Grid on the Page control in the MainPage.xaml file
to create some space for the controls you’re about to add:

<Grid.RowDefinitions>
 <RowDefinition Height="50*"/>
 <RowDefinition Height="50*"/>
 <RowDefinition Height="577*"/>
</Grid.RowDefinitions>

Next, add the Grid.Row attribute to the Map control and set
its value to 2.

Now, add the following Button controls in a StackPanel:
<StackPanel Orientation="Horizontal" Grid.Row="0">
 <Button Content="Roads" Click="Button_Click" Margin="3" />
 <Button Content="Aerial" Click="Button_Click" Margin="3" />
 <Button Content="Aerial With Roads" Click="Button_Click" Margin="3"/>
 <Button Content="Terrain" Click="Button_Click" Margin="3" />
 <Button Content="3D Aerial" Click="Button_Click" Margin="3" />
 <Button Content="3D Aerial With Roads" Click="Button_Click" Margin="3"/>
</StackPanel>

In the MainPage.xaml.cs file, add the event handler code in
Figure 5 to determine which button was clicked and then set the
map to the appropriate style.

Run the app now and explore the map using the different styles
available. Also note that when using one of the 3D views that the con-
trol, once again, handles all mouse and touch functions automatically.

Figure 3 My Keys Page with Listing of Previously Registered Keys

Figure 2 Accessing My Keys on the Bing Maps Dev Center

The Map control uses
imagery and other services

from Bing Maps.

0417msdn_LaVigneModApps_v3_62-67.indd 64 3/13/17 8:43 AM

msdn.microsoft.com/flashnewsletter

Sign up to receive MSDN FLASH, which delivers
the latest resources, SDKs, downloads, partner
offers, security news, and updates on national
and local developer events.

Get news from MSDN
in your inbox!

magazine

Untitled-2 1Untitled-2 1 12/11/15 11:06 AM12/11/15 11:06 AM

http://msdn.microsoft.com/flashnewsletter

msdn magazine66 Modern Apps

Zooming In and Out
By default, the map will be fully
zoomed out, providing a view of the
entire Earth. That might not be useful
for a lot of purposes. The Map control
has a property of type Double called
ZoomLevel to set how far zoomed in
or out the map will appear. The val-
ue ranges from 1 to 20, with 1 being
zoomed in all the way and 20 show-
ing the entire world. Values outside
this range are ignored.

Adding zoom in and zoom out
to the app is quite easy. First, add
the following XAML elements to
the MainPage.xaml file inside the
Grid control:

<StackPanel Orientation="Horizontal" Grid.Row="1">
 <Button x:Name="btnZoomIn" Content="Zoom In" Click="btnZoomIn_Click"
 Margin="3" />
 <Button x:Name="btnZoomOut" Content="Zoom Out" Click="btnZoomOut_Click"
 Margin="3" />
</StackPanel>

Next, add the following two event handlers for the two buttons:
private void btnZoomIn_Click(object sender, RoutedEventArgs e)
{
 mapControl.ZoomLevel = mapControl.ZoomLevel + 1;
}
private void btnZoomOut_Click(object sender, RoutedEventArgs e)
{
 mapControl.ZoomLevel = mapControl.ZoomLevel - 1;
}

Placing Markers on Maps
Another useful feature of mapping software is the ability to place
markers on various points of interest. This could be a great way to
point out local attractions. The Map control makes this easy, as well.
For this example, place a marker on the Washington Monument
in Washington, D.C. The Washington Monument’s geospatial
coordinates are 38.8895 north and 77.0353 west. To do this, add
the following code to the MainPage.xaml.cs file:

private void LoadMapMarkers()
{
 MapIcon landmarkMapIcon = new MapIcon();
 landmarkMapIcon.Location = new Geopoint(
 new BasicGeoposition() { Latitude = 38.8895, Longitude = -77.0353 });
 landmarkMapIcon.Title = "Washington Monument";
 mapControl.MapElements.Add(landmarkMapIcon);
}

Next, call the function from the MainPage constructor method.
Run the app now and you’ll see a marker has been placed on the map

in Washington, D.C., exactly where the Washington Monument sits.

Latitude and Longitude
All points on Earth can be repre-
sented by a coordinate system that
measures the angular distance from
the equator and the Prime Meridian
in Greenwich, England. Degrees
latitude measures north and south
in degrees from -90 at the South
Pole to 90 at the North Pole. Degrees
longitude measures east or west in
degrees from -180 to 180.

Viewing Traffic Data
Bing tracks traffic flow data from
cities around the world and the Map
control can overlay this data onto a
map very easily. To add this feature

to the app, add the following markup to the MainPage.xaml file
right after the Zoom Out button:

<CheckBox Checked="CheckBox_Checked" Unchecked="CheckBox_Unchecked"
 Margin="3">Show Traffic</CheckBox>

Then add the following event handlers to the MainPage.xaml.cs file:
private void CheckBox_Checked(object sender, RoutedEventArgs e)
{
 mapControl.TrafficFlowVisible = true;
}

private void CheckBox_Unchecked(object sender, RoutedEventArgs e)
{
 mapControl.TrafficFlowVisible = false;
}

Run the app, check the Show Traffic CheckBox, and zoom into
any major city. Traffic data will only be displayed when the zoom
level is at 8 or greater.

Geolocation
Now the app has several controls to change the style of the map,
zoom in or out, and even display traffic flow data. It would be

private void Button_Click(object sender, RoutedEventArgs e)
 {
 var senderButton = sender as Button;
 var buttonTest = senderButton.Content.ToString();

 switch (buttonTest)
 {
 case "Aerial":
 mapControl.Style = MapStyle.Aerial;
 break;
 case "Aerial With Roads":
 mapControl.Style = MapStyle.AerialWithRoads;
 break;
 case "Terrain":
 mapControl.Style = MapStyle.Terrain;
 break;
 case "3D Aerial":
 mapControl.Style = MapStyle.Aerial3D;
 break;
 case "3D Aerial With Roads":
 mapControl.Style = MapStyle.Aerial3DWithRoads;
 break;
 default:
 mapControl.Style = MapStyle.Road;
 break;
 }
}

Figure 5 Event Handler Code

Figure 4 Create Key Form

Another useful feature
of mapping software is the ability

to place markers on various
points of interest.

0417msdn_LaVigneModApps_v3_62-67.indd 66 3/13/17 8:43 AM

67April 2017msdnmagazine.com

helpful for the map control to initialize near the user’s current
location. That way, users can quickly get a view of their local sur-
roundings, as well as traffic conditions nearby. To do this, you’ll
need to enable the Location capability in the Package.appxmanifest
file, as shown in Figure 6. In Visual Studio, double-click on the
Package.appxmanifest file in the Solution Explorer pane. In the
editor, make sure the checkbox next to Location is checked. Save
the file. Now, the app has the Location Capability.

In the MainPage.xaml file add the following Button control:
<Button x:Name="btnCurrentLocation" Content="Current Location"
 Click="btnCurrentLocation_Click" Margin="3"/>

And add the following event handler in the MainPage.xaml.cs file:
private async void btnCurrentLocation_Click(object sender, RoutedEventArgs e)
{
 var locationAccessStatus = await Geolocator.RequestAccessAsync();
 if (locationAccessStatus == GeolocationAccessStatus.Allowed)
 {
 Geolocator geolocator = new Geolocator();
 Geoposition currentPosition = await geolocator.GetGeopositionAsync();
 mapControl.Center = new Geopoint(new BasicGeoposition()
 {
 Latitude = currentPosition.Coordinate.Latitude,
 Longitude = currentPosition.Coordinate.Longitude
 });
 mapControl.ZoomLevel = 12;
 }
}

The btnCurrentLocation_Click
method first queries the GeoLoca-
tor object for what the access status
the app has to it. Upon the first time
the app runs on the user’s system,
the system will display a dialog
box similar to the one shown in
Figure 7. If the user clicks on Yes,
the code gets the current position
from the Geolocator. Afterward,
the code centers the map on the
latitude and longitude provided. If
the Location capability hasn’t been
added, the user wouldn’t have even
been prompted with the dialog.

Run the app now, click on the
Current Location button, click on
Yes if prompted. You should see
the map focus in on, or very near,
your current location. Accuracy
will depend on a number of fac-
tors. If your device is connected to
a GPS receiver, then your accuracy
will be very high—likely down to

around 10 meters. If your device lacks a GPS receiver, the Geo
Locator relies on other means to determine location, such as
using Wi-Fi. For more information on how Wi-Fi positioning
works, refer to the Wikipedia entry at bit.ly/2jWvmWM. If Wi-Fi is
unavailable, the GeoLocator will use the client device’s IP address
to determine location, where VPN connections and other factors
can significantly lower accuracy.

Wrapping Up
Maps are truly one of the more essential features of mobile devices.
Many apps could benefit from the addition of a Map control to
visualize data or assist users in finding nearby services. In this
column, you saw just how easy it is to add a map to your applica-
tion and that, in most cases, access to the mapping services comes

at no cost to you, the developer.	 n

Frank La Vigne is an independent consultant, where
he helps customers leverage technology in order to
create a better community. He blogs regularly at
FranksWorld.com and has a YouTube channel called
Frank’s World TV (FranksWorld.TV).

Thanks to the following technical experts for
reviewing this article: Rachel Appel

Figure 6 Enabling the Location Capability for the App

Figure 7 Asking the User for Permission to Access Precise Location Information

Maps are truly one of the
more essential features

of mobile devices.

0417msdn_LaVigneModApps_v3_62-67.indd 67 3/13/17 8:43 AM

AUSTIN, TX
MAY 15-18, 2017
HYATT REGENCY

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BYGOLD SPONSORS

Untitled-11 2Untitled-11 2 3/10/17 2:57 PM3/10/17 2:57 PM

www.vslive.com/austinmsdn

vslive.com/austinmsdn

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics include:

Visual Studio / .NET
JavaScript / HTML5
Angular
Native Mobile & Xamarin
Software Practices
Database and Analytics

ASP.NET Core
Web API
ALM / DevOps
Cloud Computing
UWP
Unit Testing

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

Register by April 12 and Save $200!
Use promo code VSLAPR4

*Available on 4 day packages; some restrictions apply.

REGISTER
NOW

SPACE IS LIMITED

FRIDAY, MAY 19:
POST-CON
HANDS-ON LABS
Choose From:

 Angular
 ASP.NET Core MVC/
Entity Framework

NEW!
Only
$645!

TURN THE PAGE FOR
MORE EVENT DETAILS

Untitled-11 3Untitled-11 3 3/10/17 2:57 PM3/10/17 2:57 PM

www.vslive.com/austinmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

AUSTIN, TX
MAY 15-18, 2017
HYATT REGENCY

” The sessions were packed full of extremely valuable
info. Austin is a killer location for a conference!!”
– Aaron Eversole, Software Solutions Integrated, LLC

Register by April 12 and Save $200!
Use promo code VSLAPR4

*Available on 4 day packages; some restrictions apply.

REGISTER
NOW

Untitled-11 4Untitled-11 4 3/10/17 2:58 PM3/10/17 2:58 PM

www.vslive.com/austinmsdn

vslive.com/austinmsdn

ALM /
DevOps

Cloud
Computing

Database and
Analytics

Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

AUSTIN AGENDA AT-A-GLANCE

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, May 15, 2017 (Separate entry fee required)

9:00 AM 6:00 PM
M01 Workshop: Distributed Cross-Platform

Application Architecture - Jason Bock &
Rockford Lhotka

M02 Workshop: Practical ASP.NET DevOps
with VSTS or TFS - Brian Randell

M03 Workshop: Building for the Internet
of Things: Hardware, Sensors & the Cloud

- Nick Landry

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Visual Studio Live! Day 1: Tuesday, May 16, 2017

8:00 AM 9:00 AM KEYNOTE: To Be Announced - Yochay Kiriaty, Principal Program Manager, Microsoft

9:15 AM 10:30 AM
T01 Go Mobile With C#,

Visual Studio, and Xamarin
- James Montemagno

T02 Angular 2 – The 75-Minute
Crash Course - Chris Klug

T03 What's New in Azure IaaS v2
- Eric D. Boyd

T04 Tour of Visual Studio 2017
- Jason Bock

10:45 AM 12:00 PM
T05 Building Connected and

Disconnected Mobile Apps
- James Montemagno

T06 Enriching MVC Sites with
Knockout JS - Miguel Castro

T07 Bots are the New Apps:
Building Bots with ASP.NET WebAPI

& Language Understanding
- Nick Landry

T08 Getting to the Core of
.NET Core - Adam Tuliper

12:00 PM 1:30 PM Lunch - Visit Exhibitors

1:30 PM 2:45 PM
T09 Lessons Learned from Real
World Xamarin.Forms Projects

- Nick Landry

T10 Explore Web Development
with Microsoft ASP.NET Core 1.0

- Mark Rosenberg
T11 To Be Announced T12 Tactical DevOps with VSTS

- Brian Randell

3:00 PM 4:15 PM T13 Xamarin vs. Cordova
- Sahil Malik

T14 Assembling the Web - A Tour
of WebAssembly - Jason Bock

T15 Cloud Oriented Programming
- Vishwas Lele

T16 Exploring C# 7 New Features
- Adam Tuliper

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, May 17, 2017

8:00 AM 9:15 AM W01 To Be Announced
W02 Introduction to Writing

Custom Angular (Not 2.0) Directives
- Miguel Castro

W03 Microservices with Azure
Container Service & Service Fabric

- Vishwas Lele
W04 Database Continuous

Integration - Steve Jones

9:30 AM 10:45 AM
W05 Write Once, Run Everywhere -

Cordova, Electron, and Angular2
- Sahil Malik

W06 Integrating AngularJS &
ASP.NET MVC - Miguel Castro

W07 Go Serverless with Azure
Functions - Eric D. Boyd

W08 Continuous Integration and
Deployement for Mobile Using

Azure Services - Kevin Ford

11:00 AM 12:00 PM GENERAL SESSION: .NET in 2017 - Jeffrey T. Fritz, Senior Program Manager, Microsoft

12:00 PM 1:30 PM Birds-of-a-Feather Lunch - Visit Exhibitors

1:30 PM 2:45 PM
W09 Building Cross-Platform
Business Apps with CSLA. NET

- Rockford Lhotka

W10 Angular 2, ASP.NET Core and
Gulp – Happily Forever After, or the

Beginning of an Apocalypse?
- Chris Klug

W11 Using Cognitive Services
in Business Applications
- Michael Washington

W12 .NET Deployment Strategies:
The Good, The Bad, The Ugly

- Damian Brady

3:00 PM 4:15 PM
W13 Creating Great Looking

Android Applications Using
Material Design - Kevin Ford

W14 Use Docker to Develop, Build,
and Deploy Applications, A Primer

- Mark Rosenberg
W15 Busy Developer's Guide

to the Clouds - Ted Neward
W16 PowerShell for Developers

- Brian Randell

4:30 PM 5:45 PM
W17 SOLID – The Five

Commandments of Good Software
- Chris Klug

W18 JavaScript for the C# (and
Java) Developer - Philip Japikse

W19 Introduction to Azure
Machine Learning Studio

(for the non-Data Scientist)
- Michael Washington

W20
Practice - Damian Brady

7:00 PM 9:00 PM Rollin' On the River Bat Cruise

START TIME END TIME Visual Studio Live! Day 3: Thursday, May 18, 2017

8:00 AM 9:15 AM TH01 A Developers Introduction
to HoloLens - Billy Hollis

TH02 Extend and Customize
the Visual Studio Environment

- Walt Ritscher

TH03 Entity Framework Core
for Enterprise Applications

- Benjamin Day
TH04 Agile Failures: Stories From

The Trenches - Philip Japikse

9:30 AM 10:45 AM
TH05 Unity for .NET Developers -

The Time is Now!
- John Alexander

TH06 SASS and CSS for Developers
- Robert Boedigheimer

TH07 A Tour of SQL Server 2016
Security Features - Steve Jones

TH08 Distributed Architecture:
Microservices and Messaging

- Rockford Lhotka

11:00 AM 12:15 PM
TH09 Take the Tests: Can You

Evaluate Good and Bad Designs?
- Billy Hollis

TH10 Debugging Your Website
with Fiddler and Chrome Developer

Tools - Robert Boedigheimer
TH11 Busy Developer's Guide to

NoSQL - Ted Neward
TH12 Top 10 Ways to Go from

Good to Great Scrum Master
- Benjamin Day

12:15 PM 1:30 PM Lunch

1:30 PM 2:45 PM
TH13 Using Visual Studio

to Scale your Enterprise
- Richard Hundhausen

TH14 Building Single Page Web
Applications Using Aurelia.js and the

MVVM Pattern - Ben Hoelting
TH15 Azure Data Lake

- Michael Rys
TH16 Care and Feeding of Your
Product Owner - John Alexander

3:00 PM 4:15 PM
TH17 Windows Package

Management with NuGet and
Chocolatey - Walt Ritscher

TH18 Tools for Modern Web
Development - Ben Hoelting

TH19 U-SQL Killer Scenarios:
Performing Advanced Analytics and
Big Cognition at Scale with U-SQL

- Michael Rys

TH20 Stop the Waste and
Get Out of (Technical) Debt

- Richard Hundhausen

START TIME END TIME Full Day Hands-On Labs: Friday, May 19, 2017 (Separate entry fee required)

8:00 AM 5:00 PM HOL01 Full Day Hands-On Lab: Busy Developer’s
HOL on Angular - Ted Neward

HOL02 Full Day Hands-On Lab: Develop an ASP.NET Core
MVC/Entity Framework Core App in a Day - Philip Japikse

Speakers and sessions subject to change

Untitled-11 5Untitled-11 5 3/10/17 2:58 PM3/10/17 2:58 PM

www.vslive.com/austinmsdn
www.vslive.com/austinmsdn

msdn magazine72

I’ve always admired the genius of Rich Hall, who wrote the book
“Sniglets” (Collier Books, 1984) and its successors. In his creation,
a sniglet is: “Any word that doesn’t appear in the dictionary, but
should.” For example: “Chwads: discarded gum found beneath
tables and countertops.”

We geeks are a great source of sniglets, such as “Animousity:
vigorously clicking your pointer device because a page is loading
too slowly, even though it doesn’t do anything to help.” I’ve cre-
ated my share, with coinages of hassle budget, marketingbozo,
and MINFU. (See my April 2013 column, “Coining Currency,” at
msdn.com/magazine/dn166939).

For this April, I will apply the sniglet principle to our software
industry. I do hereby declare and name a new category of thing,
which I’ll call Snaglets. A Snaglet is an app that doesn’t exist, but
should. Of course, geeks being geeks, as soon as I publish a Snaglet
in this column, someone somewhere is going to write it, just to
bust my chops. But herewithin the canonical list of Snaglets at
this instant in time:

Roastissuerie: Buzzes every 60 seconds during a phone call to
remind you to switch your cell phone to your other hand, so that
its microwaves roast both sides of your brain equally. Free version
just buzzes every 60 seconds. Paid version keeps track of actual
phone position, adjusting intervals to even out any bias.

FakeBit: Shows a phony Fitbit screen claiming that you’ve been
exercising. Free version shows steps and calories. Paid version also
allows you to award yourself medals.

Ventrilosnark: Throws a voice making nasty remarks to a spe-
cific audience location while a speaker’s back is turned. Requires two
phones to create phased waveforms to steer sound. Free version uses
a random voice. Paid subscription version samples voice of person
sitting at the target location and makes snarky remarks in that voice.
If your credit card expires, phone makes nasty comments in your
voice from your location.

Baby, Maybe: Fertility cycle tracker with random variations
built in.

Shut Up, Stella: The perfect gift for anyone who doesn’t miss their
ex. User specifies name of ex. Program starts to nag when it hears
ex’s name between alert syllables (“Oh, Stella dear”) and continues
until user firmly states, “Shut up, [name].” User can select subjects
for nagging (for example, drinking too much, farting in bed and
so on). Free version uses generic male/female voice. Paid version
scours the Web for the particular ex’s voice, possibly calling their
phone to sample outgoing messages and then nags in that. Inspired
by Star Trek episode “I, Mudd.”

GPSHutUp: Partner app of “Shut Up, Stella.” Uses same free/
paid voices. Enter your destination, app gives you directions for
the longest, least efficient journey. “No, you idiot, turn right here,
not left,” which you ignore. Argues back when you insist, “I know
where I’m going.” When you arrive, grudgingly admits, “Hey, your
way really was faster. You’re so smart.” Even if it wasn’t, and you’re not.

Fight Night: Starts and continues an argument between auto-
mated wizards—Siri, Alexa, Cortana (and Google, if it ever gives
her a human name). Choose any two partners, type in a starting
insult—“Siri, Cortana says you’re rotten to the core”—and off it goes.
“Oh yeah? Tell her she’s a talking donut, getting stale, and I’m coming
over to take a bite.” Paid version automatically posts to social media.

DumpCover: App that covers up excretory and related noises
when you go to the bathroom during a phone conference and forget
to press mute. Paid version automatically mutes the microphone
on first detection of any impolite sounds. Free version does that
for the first five occurrences, then kicks in after five-second delay.

Scat!: A phone lying on a couch cushion detects when a cat jumps
on the good couch, scares cat down with loud barking noises. Free
version works at first, but effectiveness decays logarithmically, as
cat wises up. Paid version interfaces with Internet of Things smart
squirt bottle to provide negative reinforcement.

Plattski: Free version spouts random gibberish sentences, period-
ically attempts to convince you that they contain profound wisdom.
Takes over your phone, won’t shut up or uninstall no matter what you
do. Paid version (only bitcoins accepted) finally shuts up. 	 n

David S. Platt teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books,
including “Why Software Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Software
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fingers so she learns how to count in octal. You can contact him at rollthunder.com.

Snaglets

Don’t Get Me Started DAVID S. PLATT

I do hereby declare and name a
new category of thing, which I’ll
call Snaglets. A Snaglet is an app

that doesn’t exist, but should.

0417msdn_PlattDGMS_v3_72.indd 72 3/13/17 8:47 AM

http://msdn.com/magazine/dn166939
www.rollthunder.com

Untitled-3 1Untitled-3 1 1/13/17 11:32 AM1/13/17 11:32 AM

www.scaleoutsoftware.com/appfabric

Untitled-8 1 3/9/17 3:09 PM

www.syncfusion.com/SDunlimited

	Back
	Print
	MSDN Magazine, April 2017
	Cover Tip
	Front
	Back

	Contents
	FEATURES
	Bringing Docker To Windows Developers with Windows Server Containers
	Modernizing Traditional .NET Apps with Docker
	The New Azure App Service Environment
	Develop Hosted Web Apps for UWP

	COLUMNS
	UPSTART: A Plan for Promotion
	CUTTING EDGE: Query JSON Data in SQL Server 2016
	DATA POINTS: Tips for Building Tests with EF Core and Its InMemory Provider
	TEST RUN: Kernel Perceptrons using C#
	ESSENTIAL .NET: Understanding C# foreach Internals and Custom Iterators with yield
	MODERN APPS: Exploring the Map Control
	DON’T GET ME STARTED: Snaglets

	DevExpress - Insert
	Visual Studio Live! - Insert

