
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS AUGUST 2017 VOL 32 NO 8

Visual Studio Extensions......8

 0817msdn_CoverTip_8x10.75.indd 1 0817msdn_CoverTip_8x10.75.indd 1 7/11/17 1:30 PM7/11/17 1:30 PM

http://www.devexpress.com/try

 0717msdn_CoverTip_8x10.75.indd 2 0717msdn_CoverTip_8x10.75.indd 2 6/6/17 12:21 PM6/6/17 12:21 PM

http://www.devexpress.com/try

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS AUGUST 2017 VOL 32 NO 8

Creating Extensions for Multiple
Visual Studio Versions
Carlos Quintero.. 8

How Xamarin.Forms Customization
Took an FAA Drone App Higher
Dan Hermes.. 18

Git Internals: Architecture and Index Files
Jonathan Waldman.. 26

Actionable Messages for Outlook
Woon Kiat Wong.. 34

Batch Processing Using a
Serverless Architecture
Joseph Fultz.. 44

COLUMNS
EDITOR’S NOTE
MEAN Machine
Michael Desmond, page 4

UPSTART
3 Demands: Mastering
the Job Hunt
Krishnan Rangachari, page 6

TEST RUN
Deep Neural Network IO
Using C#
James McCaffrey, page 58

THE WORKING
PROGRAMMER
How To Be MEAN:
Up-Angular-izing
Ted Neward, page 66

ESSENTIAL .NET
C# 7.0: Tuples Explained
Mark Michaelis, page 72

DON’T GET ME STARTED
Salt and Pepper
David Platt, page 80

Visual Studio Extensions......8

0817msdn_C1_v1.indd 1 7/12/17 11:54 AM

Get started today with a free trial,
reference apps, tutorials, and eBooks at
Infragistics.com/Ultimate

To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588

� JavaScript/HTML5 and ASP.NET MVC components, with support for:

Also includes controls for WPF, Windows Forms, and ASP.NET,
plus prototyping, remote usability testing, and more.

Write Fast, Run Fast
with Infragistics Ultimate Developer Toolkit
Includes 100+ beautiful, fast grids, charts, and other UI controls, plus
productivity tools for quickly building high-performing web, mobile,
and desktop apps

� Xamarin UI controls with innovative, code-generating productivity tools

Featuring

Untitled-6 2 7/6/17 3:41 PM

http://www.Infragistics.com/Ultimate

Get started today with a free trial,
reference apps, tutorials, and eBooks at
Infragistics.com/Ultimate

To speak with sales or request a product demo with a solutions consultant call 1.800.231.8588

� JavaScript/HTML5 and ASP.NET MVC components, with support for:

Also includes controls for WPF, Windows Forms, and ASP.NET,
plus prototyping, remote usability testing, and more.

Write Fast, Run Fast
with Infragistics Ultimate Developer Toolkit
Includes 100+ beautiful, fast grids, charts, and other UI controls, plus
productivity tools for quickly building high-performing web, mobile,
and desktop apps

� Xamarin UI controls with innovative, code-generating productivity tools

Featuring

Untitled-6 3 7/6/17 3:42 PM

http://www.Infragistics.com/Ultimate

msdn magazine2

ID STATEMENT MSDN Magazine (ISSN 1528-4859) is
published 13 times a year, monthly with a special issue in
November by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid
at Chatsworth, CA 91311-9998, and at additional mailing
offices. Annual subscription rates payable in US funds
are: U.S. $35.00, International $60.00. Annual digital
subscription rates payable in U.S. funds are: U.S. $25.00,
International $25.00. Single copies/back issues: U.S. $10,
all others $12. Send orders with payment to: MSDN
Magazine, P.O. Box 3167, Carol Stream, IL 60132, email
MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN
Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return
Undeliverable Canadian Addresses to Circulation Dept.
or XPO Returns: P.O. Box 201, Richmond Hill,
ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part
prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 4 Venture,
Suite 150, Irvine, CA 92618.

LEGAL DISCLAIMER The information in this magazine
has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed
or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While
the information has been reviewed for accuracy, there
is no guarantee that the same or similar results may be
achieved in all environments. Technical inaccuracies may
result from printing errors and/or new developments
in the industry.

CORPORATE ADDRESS 1105 Media, 9201 Oakdale Ave.
Ste 101, Chatsworth, CA 91311 www.1105media.com

MEDIA KITS Direct your Media Kit requests to Chief
Revenue Officer Dan LaBianca, 972-687-6702 (phone),
972-687-6799 (fax), dlabianca@1105media.com

REPRINTS For single article reprints (in minimum
quantities of 250-500), e-prints, plaques and posters
contact: PARS International Phone: 212-221-9595.
E-mail: 1105reprints@parsintl.com.
www.magreprints.com/QuickQuote.asp

LIST RENTAL This publication’s subscriber list, as well as
other lists from 1105 Media, Inc., is available for rental.
For more information, please contact our list manager,
Jane Long, Merit Direct. Phone: 913-685-1301;
E-mail: jlong@meritdirect.com;
Web: www.meritdirect.com/1105

Reaching the Staff
Staff may be reached via e-mail, telephone, fax, or mail.
E-mail: To e-mail any member of the staff, please use the
following form: FirstinitialLastname@1105media.com
Irvine Office (weekdays, 9:00 a.m. – 5:00 p.m. PT)
Telephone 949-265-1520; Fax 949-265-1528
4 Venture, Suite 150, Irvine, CA 92618
Corporate Office (weekdays, 8:30 a.m. – 5:30 p.m. PT)
Telephone 818-814-5200; Fax 818-734-1522
9201 Oakdale Avenue, Suite 101, Chatsworth, CA 91311
The opinions expressed within the articles and other
contentsherein do not necessarily express those of
the publisher.

President
Henry Allain

Chief Revenue Officer
Dan LaBianca

Chief Marketing Officer
Carmel McDonagh

ART STAFF

Creative Director Jeffrey Langkau
Associate Creative Director Scott Rovin
Senior Art Director Deirdre Hoffman
Art Director Michele Singh
Art Director Chris Main
Senior Graphic Designer Alan Tao
Senior Web Designer Martin Peace

PRODUCTION STAFF

Print Production Coordinator Lee Alexander

ADVERTISING AND SALES

Chief Revenue Officer Dan LaBianca
Regional Sales Manager Christopher Kourtoglou
Advertising Sales Associate Tanya Egenolf

ONLINE/DIGITAL MEDIA

Vice President, Digital Strategy Becky Nagel
Senior Site Producer, News Kurt Mackie
Senior Site Producer Gladys Rama
Site Producer Chris Paoli
Site Producer, News David Ramel
Director, Site Administration Shane Lee
Front-End Developer Anya Smolinski
Junior Front-End Developer Casey Rysavy
Executive Producer, New Media Michael Domingo
Office Manager & Site Assoc. James Bowling

LEAD SERVICES

Vice President, Lead Services Michele Imgrund
Senior Director, Audience Development
& Data Procurement Annette Levee
Director, Audience Development
& Lead Generation Marketing Irene Fincher
Director, Client Services & Webinar
Production Tracy Cook
Director, Lead Generation Marketing Eric Yoshizuru
Director, Custom Assets & Client Services Mallory Bastionell
Senior Program Manager, Client Services
& Webinar Production Chris Flack
Project Manager, Lead Generation Marketing
Mahal Ramos

MARKETING

Chief Marketing Officer Carmel McDonagh
Vice President, Marketing Emily Jacobs
Marketing & Editorial Assistant Megan Burpo

ENTERPRISE COMPUTING GROUP EVENTS

Vice President, Events Brent Sutton
Senior Director, Operations Sara Ross
Senior Director, Event Marketing Merikay Marzoni
Events Sponsorship Sales Danna Vedder
Senior Manager, Events Danielle Potts
Coordinator, Event Marketing Michelle Cheng
Coordinator, Event Marketing Chantelle Wallace

Chief Executive Officer
Rajeev Kapur

Chief Operating Officer
Henry Allain

Chief Financial Officer
Craig Rucker

Chief Technology Officer
Erik A. Lindgren

Executive Vice President
Michael J. Valenti

Chairman of the Board
Jeffrey S. Klein

General Manager Jeff Sandquist
Director Dan Fernandez
Editorial Director Mohammad Al-Sabt mmeditor@microsoft.com
Site Manager Kent Sharkey
Editorial Director, Enterprise Computing Group Scott Bekker
Editor in Chief Michael Desmond
Features Editor Sharon Terdeman
Features Editor Ed Zintel
Group Managing Editor Wendy Hernandez
Senior Contributing Editor Dr. James McCaffrey
Contributing Editors Dino Esposito, Frank La Vigne, Julie Lerman, Mark Michaelis,
Ted Neward, David S. Platt
Vice President, Art and Brand Design Scott Shultz
Art Director Joshua Gould

AUGUST 2017 VOLUME 32 NUMBER 8

magazine

0817msdn_Masthead_v1_2.indd 2 7/13/17 9:34 AM

mailto:mmeditor@microsoft.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:dlabianca@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105

Untitled-7 1 6/30/17 1:50 PM

www.leadtools.com

msdn magazine4

It was August 2015 when Ted Neward officially settled down. Neward
for years has used his column, The Working Programmer, as a plat-
form to cover everything and anything—from his 10-part opus on
Multiparadigmatic .NET development, to his experiment with an
ELIZA-like intelligent conversation bot (this back in 2012, mind
you), to his work with alternative frameworks and databases like
Oak, Cassandra and MongoDB. And don’t even get me started on
his brilliant LOLCODE column (msdn.com/magazine/dn166934)—I’m
still chuckling about that.

But it was two years ago this month that Neward—accidentally,
it turns out—settled on a single topic. Since his August 2015 column,
“How To Be MEAN: Getting Started” (msdn.com/magazine/mt185576),
Neward has been exploring the popular MEAN stack, consisting of
MongoDB, Express, Angular and Node.js. That article was intended
to be the first of perhaps half a dozen columns exploring MEAN.
Now, 24 months later, Neward is still at it. And judging by the online
traffic his columns are generating, he could go another 24 months.

“I originally thought this would maybe be a six- to nine-piece
series, and then we’d move on to some other things,” Neward says.
“In fact, I have a number of .NET-centric ideas waiting in the wings,
including a piece or two on static code analyzers, which is about
as far from the world of dynamic, typeless, JavaScript-y program-
ming as you can get.”

Neward describes writing about the MEAN stack as “both tricky
and rewarding,” with frequent, major updates unveiling green fields
to explore. This was particularly true of the Angular 2 release in
September 2016, which Neward describes as a “complete transfor-
mation,” but he also singles out changes to both TypeScript and
the ECMAScript language. And while Neward says MEAN can

solve thorny problems that seem to bedevil other platforms, the
bill eventually comes due.

“When you’re deeper in, you discover that what was easy on your
old platform—like .NET or JVM or whatever—is not so easy here,
and you’re forced to sit back in your chair and go, ‘Huh.’”

At the end of the day, MEAN is just an architectural stack, much
like LAMP (Linux, Apache, MySQL, PHP) before it, and Neward
cautions against ascribing too much to it.

“We talked about this a year or so ago: You can build an ASP.NET
WebAPI + CouchDB + ReactJS stack, and call it ‘ARC,’ if you like, and
have just as much success with it as you can with MEAN.”

Neward should know. He’s been having success with MEAN for
two years now, and he’s not done yet. In upcoming issues, he says
he plans to dive into Angular Routing, and from there into testing
and forms.

MEAN Machine

© 2017 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specific environments and configurations. These recommendations or guidelines may not apply to dissimilar configurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEditor’s Note

“I originally thought this would
maybe be a six- to nine-piece

series, and then we’d move on to
some other things.”

Ted Neward, MSDN Magazine Columnist

0817msdn_DesmondEdNote_v3_4.indd 4 7/12/17 11:55 AM

mailto:mmeditor@microsoft.com
http://msdn.com/magazine/dn166934
http://msdn.com/magazine/mt185576
http://msdn.microsoft.com/magazine

MSDN Magazine Vendor ProfileVPmagazine

MSDN MAGAZINE VENDOR PROFILE

Download your FREE 30-day trial g www.ActivePDF.com

ActivePDF provides developers and IT professionals with the capability to move closer to a fully
functional digital environment. Digitalize your organization by integrating PDF manipulation
and automation into your business process workflow. Join the PDF Revolution!

Toll Free US: 866 468 6733 | Outside US: +1 949 582 9002

ActivePDF Family of Products

DocGenius™
 Developer tools for creating software applications that have embedded PDF functionality.

Toolkit
Scalable & flexible PDF
processing library

Xtractor
Search PDF to retrieve or
extract text & images

WebGrabber
Server-Based HTML-to-PDF
conversion

Server
PDF generation for legacy
software

DocSight™ Unattended server applications that enable creation, conversion and other PDF functionality.

OCR
Image conversion of PDF files
to searchable text

DocConverter
High-volume document
conversion

Meridian
Network PDF printer for
unlimited users

DocSpace™ Server applications with user interfaces for viewing, creating and interacting with PDF.

ReaderPlus
Browser-based PDF viewer
and editor

Untitled-3 1 7/7/17 3:53 PM

http://www.ActivePDF.com
http://www.ActivePDF.com

msdn magazine6

When you’re job hunting, there are three demands that a potential
employer might make: skills, experience and achievements. The
more you can exceed expectations on these demands, the more
likely you’ll get the job.

Skills
Maybe all your experience is in the Microsoft .NET Framework
and Azure, but a job you’re interested in is recruiting developers
for Java and a competing cloud platform. What do you do?

First, about 30 percent to 40 percent of technology companies
(including the likes of Facebook and Google) are technology-
agnostic in their hiring. Even if you have zero experience in their
primary stacks, they’ll hire you if you’re a good engineer; they’ll
trust you to learn the tools and languages quickly.

Second, another 20 percent to 30 percent of companies will
give “credit” for similar-enough technologies. For example, some
shops on a non-Azure cloud will “honor” your Azure experience,
and some Java shops will look favorably on your .NET experience.

At the remaining 30 percent to 50 percent of companies—the
ones that are looking for specific stack experience—developers
make the mistake of trying to sell themselves as “quick learners.”
The problem is everybody claims to be a quick learner!

Instead, the trick is to gain and demonstrate some experience in
the stack in which you have zero experience. Your day job may be
in .NET, but you can take on skunkworks or tool projects at work
using other technologies. Typically, you have more technical wiggle
room with non-core projects. If you do this over a few months,
you can shift your resume from being 100 percent C# projects to,
say, 80 percent C# and 20 percent Python.

Then, in your interviews, if you get grilled on your stack expe-
rience, you can say, “My background is in C#. Over the last few
months, I’ve been using Python more and more in my projects,
and I like it a lot. One of the things that’s attracting me to this role
is the opportunity to use Python even more.”

This comes off as not only sincere, but its vulnerable nature protects
you. You aren’t claiming to be a Python god or goddess, but you’re
also not bemoaning your Python newbie status. Plus, you’ve weaved a
story of how your past experience leads into this future opportunity.

Experience
Sometimes, the whole point of a job switch is that you want a better
position than the one you’re in right now. In effect, you want to “up-level.”
But how do you upgrade from a manager position to a director one?
How do you get hired as a manager if you’ve never managed people?

Upgrading from a team lead to a senior manager or director is
relatively easy, especially if you’re at a big company. You can demand
a loftier title when you switch to a smaller company or a startup.
The smaller company appreciates your big-company experience,
maturity, expertise, and skillset, and you appreciate the upgraded
title, the greater scope of your responsibilities, and the opportu-
nity for more direct impact.

Now, if you have zero management experience and your goal is
to become a manager at a new job, it’s more challenging. That’s a
little bit like a 12-year-old you’ve never met asking to babysit your
1-year-old. The 12-year-old isn’t a known commodity, and neither
are non-managers who want to get hired as managers.

In such situations, it helps for you to become an “acting manager”
at your current role. This means you can manage interns, mentor
junior- and mid-level engineers, and act as a project manager on
some projects, as technical lead on others, and as design architect
on still others. This way, you don’t have to ask the companies you
interview with to trust your “potential.” Instead, you can showcase
your status as a manager in your responsibilities (if not in title) and
share five to 10 experiences to prove it.

Achievements
Sometimes, it may feel like the world is being flooded with new
software engineers. How do you stand out in this virtually indis-
tinguishable ocean?

While the number of software engineers keeps increasing, I
observe—in my interactions with hundreds of software engineers
each year—that there’s still an extreme shortage of self-aware software
engineers with strong communication skills and good technical chops.

So, the more you invest in yourself as an engineer, the more you
stand out and live up to your own potential. This includes prac-
ticing mock technical interviews on sites like pramp.com, devouring
technical interview books and courses, investing in your own
coaching and personal development, and polishing your resume
and story-telling skills. It also includes mastering how to position
yourself in every stage of the job hunt.

Ultimately, you aren’t competing with an army of mediocre soft-
ware engineers; in fact, the more mediocre engineers there are,
the easier it is to stand out! You’re competing with yourself to set
extraordinarily high standards of performance, and pursue them
with determination, dedication and enthusiasm.	 n

Krishnan Rangachari helps brilliant developers have amazing careers. Visit
RadicalShifts.com for his free courses.

3 Demands: Mastering the Job Hunt

Upstart KRISHNAN RANGACHARI

0817msdn_RangaUpstart_v3_6.indd 6 7/12/17 11:57 AM

www.RadicalShifts.com

Untitled-5 1 9/28/15 4:25 PM

www.amyuni.com

msdn magazine8

The release of a new version of Visual Studio is always a
challenge for developers of extensions (packages, add-ins, templates
and so forth). For example, Visual Studio 2010 introduced the new
Visual Studio Installer for eXtensions (VSIX files); Visual Studio
2012 introduced the light/dark themes; and Visual Studio 2015
removed add-ins (with the Add-In Manager); not to mention that
each Visual Studio version provides a new SDK, new extensibility
assemblies and new APIs. With Visual Studio 2017, this challenge is
even bigger, due to its new modular setup based on workloads and
individual components, and to a new version of the manifest for
the VSIX deployment mechanism. While some developers (most
notably from Microsoft) release a different new extension for each
Visual Studio version, most would prefer to release a single updated
extension that can target the widest range of Visual Studio versions.

In this article, I’ll show you how to accomplish this. For this
purpose, I’ll focus on the most common scenario: a package with
a command, created in a managed language (C#, in this case) and
deployed as a VSIX file.

The goals to be accomplished are the following:
• �To use a single Visual Studio project to create the package.
• �To use Visual Studio 2017 for development and debugging.
• �To generate a single package DLL as the result of the build.
• �To put that single DLL inside a single VSIX file.
• �To be able to install that VSIX file on Visual Studio 2017 and

on many past versions (2015, 2013 and so on).
Because two artifacts are needed—a DLL file (which is the package)

and a VSIX file (which is the deployment vehicle for the package)—I’ll
explain each of these separately: First, how they work at installation
or run time; second, how to develop them.

The VSIX File
As mentioned earlier, Visual Studio 2010 introduced the VSIX
deployment mechanism to install Visual Studio extensions, and it’s
been the preferred way ever since. A VSIX file has the extension .vsix
and can be installed in different ways. If the VSIX file is published
on the Visual Studio Marketplace (formerly Visual Studio Gallery)
and it’s compatible with the Visual Studio version and edition you’re
using, you can install it using the Extensions and Updates dialog.
Under the Tools menu, click on Extensions and Updates and then
go to Online | Visual Studio Marketplace (see Figure 1).

V IS UAL ST UD IO

Creating Extensions
for Multiple
Visual Studio Versions
Carlos Quintero

This article discusses:
•	How Visual Studio extensions are created, deployed and installed

•	How to create a single package for multiple Visual Studio versions

•	How to deploy a package with a single VSIX file

Technologies discussed:
Visual Studio 2012, 2013, 2015 and 2017,
Microsoft .NET Framework, VSIX files

Code download available at:
msdn.com/magazine/0817magcode

0817msdn_QuinteroExt_v3_8-16.indd 8 7/12/17 11:56 AM

http://msdn.com/magazine/0817magcode

9August 2017msdnmagazine.com

You can also double-click a VSIX file. When this happens, a
Visual Studio Launcher (C:\Program Files (x86)\Common Files\
Microsoft Shared\MSEnv\VSLauncher.exe) associated to the
.vsix file extension is executed; this locates the VSIXInstaller.exe
utility of the highest installed Visual Studio version (the highest
version is required to be able to install to all lower versions). Then,
the VSIX Installer shows the dialog in Figure 2 so you can select
the compatible Visual Studio versions and editions in which to
install the extension.

VSIX files can be installed programmatically, too, using the
VSIXInstaller.exe utility with its command-line options, such as
the target Visual Studio version (2017, 2015 and so on) and edition
(Community, Professional and the like). You can find that utility in
the Common7\IDE subfolder of your Visual Studio installation.

In any case, either Visual Studio or the VSIXInstaller.exe utility
needs to know which Visual Studio versions and editions the VSIX
file supports. That information can be discovered via a manifest
file inside the file. The VSIX file is actually a .zip file, so you can
rename its .vsix file extension to .zip and then open it to examine
its contents (see Figure 3).

As you can see, there are several files inside: The .dll file is the
package DLL. The .pkgdef file is used at installation time to add
some keys to the Windows Registry that allows Visual Studio to
recognize the DLL as a package. The
[Content_Types].xml file describes
the content type for each file exten-
sion (.dll, .json and so forth). The cata
log.json and manifest.json files are
required by Visual Studio 2017. And the
extension.vsixmanifest file describes the
name of the extension, version,
and more, and which Visual Studio
versions and editions it supports.

You can unzip the extension.vsix-
manifest file and open it with a text
editor to examine its contents, which
will look similar to what’s shown in
Figure 4.

As you can see, the manifest states
in the InstallationTarget XML ele-
ment the supported Visual Studio
editions. Here, the Microsoft.Visual
Studio.Pro value targets the Profes-
sional edition and higher, such as
the Premium, Ultimate, Enterprise
and any other such editions. Note
that it also targets the Community
edition, which is basically a Profes-
sional edition with some licensing
restrictions and without some
features. It also states the range of
supported Visual Studio versions:
10.0 (2010), 11.0 (2012), 12.0 (2013),
14.0 (2015), 15.0 (2017).

When the VSIX file of a per-user
extension is installed (either by Visual Studio or by the VSIX
Installer), the files inside are unzipped and copied to a random
folder at this location: C:\Users\<user>\AppData\Local\Microsoft\
VisualStudio\<version number>\Extensions\<random folder>.
The <version number> can have an “Exp” suffix appended for the
“Experimental Instance” (explained later), and for Visual Studio 2017
it will also include the “instance id” of the installed Visual Studio.
This instance id is randomly generated at Visual Studio install time; it
was added to support side-by-side installations of different editions
of the same version (2017) of Visual Studio, something that wasn’t
possible before. For machine-wide extensions, the subfolder
Common7\IDE\Extensions is used. Notice that in any case each
Visual Studio version uses its own folder for its extensions.

While it would be nice if all Visual Studio versions supported the
same manifest format, unfortunately that’s not the case. Visual Studio
2010 introduced VSIX and the first version of the manifest. Visual Studio
2012 introduced version 2, which is completely different and incompat-
ible with version 1. However, Visual Studio 2012, 2013 and 2015—all of
which support version 2—can still accept a version 1 manifest, so you
can build a VSIX file with a version 1 and target from Visual Studio
2010 to Visual Studio 2015. But Visual Studio 2017 supports neither
version 1 nor version 2. Instead, it requires a third version of the
manifest. Fortunately, version 3 keeps using the value “2.0.0.0” in the

Version attribute of the PackageMan-
ifest XML element and it adds only an
XML element named <Prerequisites>
(and the two new files, catalog.json and
manifest.json, into the VSIX file). So,
it’s completely backward-compatible
with the second version, supported by
Visual Studio 2012, 2013 and 2015 (but
not by Visual Studio 2010, which only
supports version 1). This means that you
can’t target Visual Studio 2010-2017 with
a single VSIX file. From this point, I’ll
give up on Visual Studio 2010 and will
continue with a VSIX file that supports
Visual Studio 2012, 2013, 2015 and 2017.

Figure 1 The Extensions and Updates Dialog Window

Figure 2 The VSIX Installer

0817msdn_QuinteroExt_v3_8-16.indd 9 7/12/17 11:56 AM

http://www.msdnmagazine.com

msdn magazine10 Visual Studio

The Package DLL
A managed Visual Studio package is a DLL that contains a class that
inherits from Microsoft.VisualStudio.Shell.Package. It’s decorated
with certain attributes that help at build time to generate a .pkgdef
file (which, as mentioned earlier, you can find inside the VSIX file
and in the installation folder of the extension). The .pkgdef file is
used at startup (older versions of Visual Studio) or at installation
time (version 15.3 of Visual Studio 2017) to register the DLL as a
package for Visual Studio. Once it’s registered, Visual Studio will
try to load the package at some point, either on startup or when
one of its commands is executed if the package uses delay loading
(which is the best practice). During the attempt to load the man-
aged DLL and initialize the package, three things happen: the DLL
will be loaded by the Common Language Runtime (CLR) of a
Microsoft .NET Framework version; it will use some DLLs pro-
vided by a .NET Framework; and it will use some DLLs provided
by Visual Studio. I will examine each of these in turn.

A .NET Framework is the sum of two things: The CLR + libraries
(both base class and additional libraries). The CLR is the runtime (the
JIT compiler, garbage collector and so forth) and it loads managed
DLLs. In the distant past, each .NET Framework version 1.0, 1.1 and
2.0 (used by Visual Studio.NET 2002, Visual Studio.NET 2003 and
Visual Studio 2005) provided its own CLR version (1.0, 1.1 and 2.0).
However, the .NET Frameworks 3.0 and 3.5, used by Visual Studio
2008, continued to use the exact same CLR 2.0 of .NET Framework
2.0, instead of introducing a new one. Visual Studio 2010 intro-
duced .NET Framework 4 and CLR 4.0, but since then all new .NET
Frameworks 4.x have used CLR 4.0 (although swapping it “in-place”
with a backward-compatible version rather than reusing the exact
CLR 4.0 of .NET Framework 4). Since Visual Studio 2012 and higher

all use CLR 4.0, the CLR version is not a problem when the DLL of
an extension targets Visual Studio 2012, 2013, 2015 and 2017.

Libraries constitute the second part of a .NET Framework;
these are DLLs referenced by a Visual Studio project and used at
run time. To develop a single extension that targets multiple ver-
sions of Visual Studio, you must use the highest .NET Framework
installed by default by the lowest Visual Studio version that you
want to target. This means that if you want to target Visual Studio
2012 and higher, you need to use .NET Framework 4.5. You can’t
use, say, .NET Framework 4.5.1 introduced by Visual Studio 2013,
because any DLL introduced in that version would not be present
on a computer with only Visual Studio 2012 installed. And unless
you really need that DLL, you won’t want to force such users to
install .NET Framework 4.5.1 to use your extension (it could hurt
sales or downloads and support).

The extension also needs DLLs that are provided by Visual Studio
(typically named Microsoft.VisualStudio.*). At run time, Visual
Studio finds its DLLs at some well-known locations, such as the
folder Common7\IDE with its subfolders Common7\IDE\Public
Assemblies and Common7\IDE\PrivateAssemblies, and from the
Global Assembly Cache (GAC). The GAC for .NET Framework 4.x
is located at C:\Windows\Microsoft.NET\assembly (there’s another
GAC at C:\Windows\assembly, but that one is for older .NET
Frameworks). Visual Studio 2017 uses a more isolated installation that
avoids the GAC, relying instead on the folders described previously.

There are a couple of key principles to follow when developing
and generating a VSIX file: You must use the versions provided by
the lowest Visual Studio version your extension targets. That means
that if you want to target Visual Studio 2012 and higher, you must
use only assemblies and extensibility APIs provided by that ver-

Figure 4 The Contents of a Manifest File

Figure 3 Contents of a VSIX File

The release of a new version
of Visual Studio is always a
challenge for developers

of extensions.

0817msdn_QuinteroExt_v3_8-16.indd 10 7/12/17 11:56 AM

Untitled-6 1 3/6/17 2:32 PM

www.nsoftware.com

msdn magazine12 Visual Studio

sion (or lower). If your extension uses a DLL introduced by Visual
Studio 2013 or higher, the extension won’t work on a machine with
only Visual Studio 2012. The second principle is that the extension
never must deploy Visual Studio DLLs, neither to the locations I
mentioned (folders of Visual Studio or GAC), nor to the installa-
tion folder of the extension. These DLLs are provided by the target
Visual Studio, which means that the VSIX file shouldn’t include them.

Many Visual Studio DLLs have a version number (8.0 … 15.0)
in the name, such as Microsoft.VisualStudio.Shell.11.0.dll or
Microsoft.VisualStudio.Shell.Immutable.10.0.dll. These help to iden-
tify the Visual Studio version that introduced them, but don’t get
fooled: it’s a name, not a version. For example, there are four ver-
sions (11.0.0.0, 12.0.0.0, 14.0.0.0 and 15.0.0.0) of Microsoft.Visual.
Studio.Shell.11.0.dll, each one provided, respectively, by a Visual
Studio version (2012, 2013, 2015 and 2017). The first three 11.0.0.0
to 14.0.0.0 are installed by the respective Visual Studio version in
the GAC and the fourth version, 15.0.0.0, used by Visual Studio
2017, is installed in the Common\IDE\PrivateAssemblies folder.

Because an extension that targets Visual Studio 2012 and
higher must use Visual Studio assemblies with version 11.0.0.0
(the first principle mentioned earlier), this means that the reference
Microsoft.Visual.Studio.Shell.11.0.dll must be version 11.0.0.0. But
because that version isn’t installed by Visual Studio 2013 and higher
(they start at version 12.0.0.0), and the extension shouldn’t deploy
Visual Studio DLLs (the second principle), wouldn’t the extension
fail when trying to use that Visual Studio DLL? The answer is no,
and it’s thanks to an assembly-binding redirection mechanism
provided by the .NET Framework, which allows you to specify
rules like “when something requests this version of an assembly,
use this newer version of it.” Of course, the new version must be
fully backward-compatible with the old version. There are several
ways to redirect assemblies from one version to another. One way
is this: An executable (.exe file extension) can provide an accom-
panying configuration file (.exe.config file extension) that speci-
fies the redirections. So, if you go to the Common7\IDE folder of
your Visual Studio installation, you’ll find the devenv.exe execut-
able of Visual Studio, and a devenv.exe.config file. If you open the
.config file with a text editor, you’ll see that it contains lots of as-
sembly redirections:

<dependentAssembly>
 <assemblyIdentity
 name="Microsoft.VisualStudio.Shell.11.0"
 publicKeyToken="b03f5f7f11d50a3a"
 culture="neutral"/>
 <bindingRedirect
 oldVersion="2.0.0.0-14.0.0.0
 newVersion="15.0.0.0"/>
</dependentAssembly>

So, Visual Studio 2017 (15.0) has an assembly version redirection
for Microsoft.VisualStudio.Shell.11.0 that states that whenever some-
thing requests old versions 2.0.0.0 to 14.0.0.0, use the new version
15.0.0.0 instead. That’s how Visual Studio 2013 or later can use an
extension referencing Microsoft.VisualStudio.Shell.11.0 version
11.0.0.0, even if they don’t provide that exact version.

Developing the Extension
Now that you know how things work at run time, you can develop
the package. To recap, you’ll create a VSIX project using Visual

Studio 2017 with a manifest that targets Visual Studio versions
from 12.0 to 15.0; it will contain a package and a command; and it
will use only references with version 11.0.0.0 (or lower) installed
by Visual Studio 2012.

You might wonder at this moment which Visual Studio versions
should be installed on your development machine. The best prac-
tice is to have two development machines as follows: On the first,
if you have enough space on your disk, install all the Visual Studio
versions—2012, 2013, 2015 and 2017. They can all coexist side by side
and you’ll be able to test them during development. For Visual Studio
2017, even different editions such as Community, Professional
and Enterprise can coexist at the same time, something that wasn’t
possible with older versions of Visual Studio. If available space is
a concern, install the minimal components for the old versions,
or skip some version in the middle of the range (2013 or 2015).

On your second development machine, install only Visual Studio
2017 or, even better, a build server with no Visual Studio version
installed (just the Build Tools 2017), to build your extension for
release. This approach will help ensure that you’re not inadvertently
using DLLs or other dependencies from folders installed by older
Visual Studio versions. You might also wonder if it wouldn’t be safer
to develop or build on a machine with only Visual Studio 2012
installed and the answer is that it’s not possible: To generate a VSIX
file for Visual Studio 2017 (which creates a version 3 manifest and
adds the catalog.json and manifest.json files), you need the Visual
Studio SDK 15.0 of Visual Studio 2017 or, with some work, the Visual
Studio SDK 14.0 of Visual Studio 2015. Neither the Visual Studio
SDK 12.0 of Visual Studio 2013 nor the Visual Studio SDK 11.0 of
Visual Studio 2012 can generate VSIX files for Visual Studio 2017.

And the best practice for (serious) testing is: Use a separate
machine (virtual or cloud-based) for each Visual Studio version
(so you’ll need four machines to test your extension on Visual
Studio 2012 to Visual Studio 2017 in isolation). This best practice
helped me to find some errors in the code sample for this article!

To get the Visual Studio 2017 project templates to create a package
(or any other kind of extension) you need the “Visual Studio exten-
sion development” workload. If you didn’t install it when you first
installed Visual Studio 2017, go to the folder C:\Program Files (x86)\
Microsoft Visual Studio\Installer, launch vs_Installer.exe, click the
Modify button and select that workload at the bottom of the list.

Create a new VSIX project using the File | New | Project menu;
go to the Visual C# | Extensibility templates; ensure you’ve selected
.NET Framework 4.5 on the dropdown list at the top; and select the

And the best practice for
(serious) testing is: Use a

separate machine (virtual or
cloud-based) for each Visual

Studio version.

0817msdn_QuinteroExt_v3_8-16.indd 12 7/12/17 11:56 AM

Untitled-2 1 6/6/17 10:36 AM

www.devexpress.com/spreadsheet

msdn magazine14 Visual Studio

VSIX Project template. Name the project VSIX-
ProjectVS2012_2017. Double-click the source.
extension.vsixmanifest file to open its custom
editor. In the Metadata tab, set the product name,
author, version and so on. In the Install Targets
tab, click the Edit button, select the Microsoft.
VisualStudio.Pro identifier (that value also tar-
gets the Community edition, which is basically
a Professional edition) and set the target instal-
lation range, [11.0,15.0], as shown in Figure 5.
A square bracket means the value is included.
A parenthesis would mean that the value is
excluded, so you can also set [11.0,16.0). You can
also target a minor version (like 15.3) using the
build number (such as 15.0.26208.1).

In the Dependencies tab, delete all items. In
the Prerequisites tab, click the Edit button and
set the minimal Visual Studio 2017 component
your extension requires. In this example, only
the Visual Studio core editor is required. This
section is new for Visual Studio 2017 and the
version 3 manifest, so it only applies to version
15.0 (see Figure 6):

Add a package to the VSIX project by
right-clicking the VSIX project node in Solution Explorer, then
select the Add | New Item menu to bring up the Add New Item dia-
log. Now, go to the Visual Studio C# Items | Extensibility | VSPackage
node, select the Visual Studio Package template and name it MyPack-
age.cs. Add a command to the package repeating the actions of
the previous step, but selecting this time the Custom Command
template. Name this MyCommand1.cs.

To follow the principle of using the fewest dependencies required,
in the source code of MyPackage.cs and MyCommand1.cs, remove
the unused (grayed) namespaces. Then right-click the VSIX project
node in Solution Explorer and click the Manage NuGet Packages
for Solution entry. In the Installed section, uninstall all the pack-
ages in the order shown here:

Microsoft.VisualStudio.Shell.15.0
Microsoft.VisualStudio.Shell.Framework
Microsoft.VisualStudio.CoreUtility
Microsoft.VisualStudio.Imaging
Microsoft.VisualStudio.Shell.Interop.12.0
Microsoft.VisualStudio.Shell.Interop.11.0
Microsoft.VisualStudio.Shell.Interop.10.0
Microsoft.VisualStudio.Threading
Microsoft.VisualStudio.Shell.Interop.9.0
Microsoft.VisualStudio.Shell.Interop.8.0
Microsoft.VisualStudio.TextManager.Interop.8.0
Microsoft.VisualStudio.Shell.Interop
Microsoft.VisualStudio.TextManager.Interop
Microsoft.VisualStudio.Validation
Microsoft.VisualStudio.Utilities
Microsoft.VisualStudio.OLE.Interop

(Don’t uninstall the Microsoft.VSSDK.BuildTools package,
which is the Visual Studio SDK.)

In the project’s References node in Solution Explorer, uninstall
all the remaining references (that weren’t acquired as NuGet pack-
ages) except System and System.Design. Now you can rebuild the
solution. You’ll get compilation errors that will be solved adding
just the references shown in Figure 7.

Unfortunately, Microsoft doesn’t provide an official NuGet
package for Microsoft.VisualStudio.Shell.11.0 (you can find an
unofficial NuGet VSSDK.Shell.11 package, though). If you have
Visual Studio 2012 installed (you should if that’s the minimal-
supported version for your extension), you can get it from the
GAC as explained earlier. Alternatively, you can get all the required
assemblies by installing the Visual Studio 2012 SDK (bit.ly/2rnGsfq)
that provides them in the subfolders v2.0 and v4.0 of the folder
C:\Program Files (x86)\Microsoft Visual Studio 11.0\VSSDK\
VisualStudioIntegration\Common\Assemblies. The last column
of the table shows the subfolder of the Visual Studio 2012 SDK
where you can find each assembly.

To avoid dependencies on unofficial NuGet packages or on
specific local folders (either from a Visual Studio SDK or from a

Figure 7 Visual Studio 2012 References

Assembly Name
Assembly
Version

Visual Studio 2012
SDK Subfolder

Microsoft.VisualStudio.OLE.Interop 7.1.40304.0 v2.0
Microsoft.VisualStudio.Shell.Interop 7.1.40304.0 v2.0
Microsoft.VisualStudio.Shell.Interop.8.0 8.0.0.0 v2.0
Microsoft.VisualStudio.Shell.Interop.9.0 9.0.0.0 v2.0
Microsoft.VisualStudio.Shell.Interop.10.0 10.0.0.0 v2.0
Microsoft.VisualStudio.Shell.Immutable.10.0 10.0.0.0 v4.0
Microsoft.VisualStudio.Shell.11.0 11.0.0.0 v4.0

Figure 6 Prerequisites

Figure 5 Installation Targets

0817msdn_QuinteroExt_v3_8-16.indd 14 7/12/17 11:56 AM

www.bit.ly/2rnGsfq

MSDN MAGAZINE VENDOR PROFILE

Executive Summary
• The dtSearch enterprise and developer product line

instantly searches terabytes of text, with no limit on the
number of concurrent search threads.

•	dtSearch’s	own	document	filters	support	a	wide	variety	of	
data	formats,	including	“Office”	files,	PDFs,	emails	and	
attachments, online data and other databases.

• The products offer over 25 hit-highlighted search options,
with special forensics search options and extensive
international language support.

•	Developer	products	include	faceted	searching	and	multiple	
other	advanced	data	classification	options.

•	SDKs	span	a	wide	range	of	platforms,	with	APIs	for	.NET,	
C++ and Java.

Key Benefits
Terabyte Indexer. dtSearch enterprise and developer products
can index over a terabyte of text in a single index, spanning
multiple directories, emails and attachments, online data and
other databases. dtSearch products can create and search any
number of indexes, and can search indexes during updates.

Concurrent, Multithreaded Searching. dtSearch developer
products	support	efficient	multithreaded	searching,	with	no	limit	
on the number of concurrent search threads.

Document Filters and Supported Data Types. dtSearch’s own
document	filters	support	“Office”	documents,	PDFs,	compression	
formats, emails and multilevel nested attachments, online data
and	other	databases.	Document	filters	are	built	into	the	product	
line and also available for separate licensing.

Over 25 Search Options. dtSearch products have more than
25 search features, including special forensics search options and
extensive	international	language	support.	The	dtSearch	Engine	
also has a range of relevancy-ranking options, including positive

Instantly Search
Terabytes of Text

magazine

MSDN MAGAZINE VENDOR PROFILE

For hundreds of developer case studies and press review, and fully-functional
evaluations (including the search engine and the document filters), visit g dtSearch.com

and	negative	variable	term	weighting	and	metadata	ranking.	For	
federated searching, products have integrated relevancy ranking
with multicolor hit-highlighting search options across both online
and	offline	data.

Faceted Search and Other Search Results Filtering. The
dtSearch	Engine	supports	user-interface-driven	faceted	or	“drill	
down”	category	searching,	as	well	as	numerous	other	full-text	
and	metadata	classification	options.

SDKs.	The	dtSearch	Engine	offers	.NET,	Java	and	C++	APIs.	
dtSearch.com has extensive code samples covering topics such
as faceted searching and indexing databases, including
SharePoint,	NoSQL	and	SQL,	along	with	BLOB	data.	Platforms	
include	Windows	and	Linux	(with	separate	native	64-bit	builds	
of	both)	as	well	as	UWP,	Mac	and	Android.	The	dtSearch	
Engine	also	works	on	cloud	platforms	like	Azure	and	AWS.

Untitled-1 1 7/13/17 11:02 AM

www.dtSearch.com
www.dtSearch.com

msdn magazine16 Visual Studio

Visual Studio installation), the best approach is to get the assem-
blies from wherever and create a folder called VS2012Assemblies
under the root folder of the project. Then, copy the DLLs to that
folder, reference them from there (using the Browse button of the
project’s Reference Manager dialog) and add the VS2012Assemblies
folder to source code control, ensuring that the DLLs are added
to it (normally source code control tools don’t add DLLs by
default). So, from this point, the required Visual Studio assemblies
are part of the source code.

To follow the principle of not including assembly references in
the VSIX file and not even in the output folder, select each refer-
ence and in the Properties window ensure that the Copy Local
property is set to False. At this point the solution can be rebuilt
without errors. Using Windows Explorer, go to the output folder.
Only these files should be generated: extension.vsixmanifest,
VSIXProjectVS2012_2017.dll, VSIXProjectVS2012_2017.pkgdef
and VSIXProjectVS2012_2017.vsix.

When you build the project, one of the MSBuild targets deploys
the extension to the Experimental instance of Visual Studio. This
is an instance of Visual Studio that uses different folders and
Registry entries than the normal instance, so that you don’t make
the normal instance unusable if something goes wrong with
your extension during development. (You can always reset the
Experimental instance clicking the Windows Start button, typing

“Reset the” and executing the “Reset
the Visual Studio 2017 Experimental
Instance” command.) If you go to the
Debug tab on the Properties page of
the project, you can set the Start exter-
nal program field to the Visual Studio
2017 devenv.exe file. (It’s important to
change this if upgrading, since it would
point to an old version of Visual
Studio.) You can also see that the
Command line arguments specify
“Exp” as the root suffix (see Figure 8),
so that the Experimental Instance is
also used for debugging.

Click the Debug | Start Debugging
menu entry and a new Visual Studio

instance will be launched (notice its caption indicates “Experimen-
tal Instance”). If you click the Tools | Invoke MyCommand1 menu
entry, the package will be loaded, the command will be executed
and a message box will be shown.

If you want to use Visual Studio 2017 to debug the extension on
a previous Visual Studio version, you need to make two changes:
First, because once the extension is built it’s deployed to the
Visual Studio Experimental Instance of the version whose SDK was
used to build the project, you need to remove the NuGet package
Microsoft.VSSDK.BuildTools version 15.0 and use version 14.0
for Visual Studio 2015 or version 12.0 for Visual Studio 2013. For
Visual Studio 2012 there isn’t a NuGet package for the VSDK, so
you need to edit the .csproj file and point the VSToolsPath vari-
able to the location of the VSSDK 11.0 (C:\Program Files (x86)\
MSBuild\Microsoft\VisualStudio\v11.0), which you must install
separately. Second, you need to go to the Debug tab on the
Properties page of the project and set the Start external program
field to the matching Common7\IDE\devenv.exe executable.

As you probably know, many Visual Studio projects support
round-tripping. That is, they can be opened and debugged by
several Visual Studio versions without suffering modifications.
This is not the case with extensibility projects “out of the box.”
However, with some mastering of MSBuild and Visual Studio SDKs,
you may achieve it, but it’s always a tricky approach.

Once you’re done with the development and debugging, you can
build your extension in Release configuration and test it on Visual
Studio versions installed in isolated instances on test machines. If
everything goes well, you can then publish your extension on the
Visual Studio Marketplace!	 n

Carlos Quintero has received the Microsoft Most Valuable Professional award 14
times, currently in the category of Visual Studio and Development Technologies.
He has been helping other developers to create extensions for Visual Studio since
2002, blogging about it since 2006 at visualstudioextensibility.com and more
recently tweeting about it: @VSExtensibility.

Thanks to the following technical experts for reviewing this article:
Justin Clareburt, Alex Eyler and Mads Kristensen

Figure 8 Debug Experimental Instance

As you probably know, many
Visual Studio projects support
“round-tripping”; that is, they

can be opened and debugged
by several Visual Studio versions
without suffering modifications.

0817msdn_QuinteroExt_v3_8-16.indd 16 7/12/17 11:56 AM

http://visualstudioextensibility.com
www.twitter.com/VSExtensibility

CONTACT US

US: +1 903 306 1676
EU: +44 141 628 8900
AU: +61 2 8006 6987

sales@asposeptyltd.com

Try for FREE at
www.aspose.com

File Format APIs
Working with Files?

FR
EE

 T
R

IA
L

Manipulate Word, Excel, PDF, PowerPoint, Outlook and more than 100 other
file formats in your applications without installing Microsoft Office.

DOC, XLS, PDF, PPT, MSG, BMP, PNG, XML and many more!

Platforms supported: .NET, Java, Cloud, Android, SharePoint, Reporting
Services, and JasperReports

COMBINEMODIFY
PRINTCONVERTCREATE

Untitled-8 1 1/5/17 2:05 PM

http://www.aspose.com
mailto:sales@asposeptyltd.com

msdn magazine18

More than 1 million drones are in the hands of recre-
ational flyers. People are taking unprecedented video footage of
events, geography and nature with drone cameras. Commercial
drone flyers are conducting inspections of structures and surveying
land in a way that’s changing their industries. All these drones in
the air have become the concern of the Federal Aviation Adminis-
tration (FAA), which has responded with a strategy and a series of
new regulations aimed at helping flyers operate safely and legally.

Of course, there’s an app for that. It’s called B4UFLY, and it’s
written in Xamarin.Forms (note: B4UFLY is used with permission
from Network Designs and the FAA). Drawing upon FAA airport
and special location data, the app provides flyers with an interac-
tive map and real-time status updates depending on their position
or their planned flight. The status reflects the level of flight safety
and legality and helps the flyer find areas away from airports and
restricted airspace. The app, as shown in Figure 1, has been down-
loaded more than 300,000 times and is in its second year of updates.

The beauty of this Xamarin.Forms implementation is just how
much of it is truly cross-platform. Of the 25 screens in the app,
only one requires platform-specific customization. Many, if not
most, mobile app requirements today include a cross-platform
mandate. If such an app plan is mostly data entry and display,
standard navigation and UI, and minimal graphics and animation,
then it should be considered a strong candidate for development
using Xamarin.Forms.

What Is Xamarin.Forms?
Xamarin.Forms is a library of cross-platform UI classes built
atop Xamarin.Android and Xamarin.iOS that also binds directly
to the native Universal Windows Platform (UWP), as shown in
Figure 2. This provides a cross-platform set of UI components
that render in each of the three native OSes.

Xamarin.Forms provides a cross-platform library of pages,
layouts, and controls and is a great place to begin building an
app quickly. There are two ways to create UIs in Xamarin.Forms:
either in C# using the rich Xamarin.Forms API or using Exten-
sible Markup Language (XAML), a declarative markup language
created by Microsoft.

What Does the Xamarin.Forms Solution Look Like?
The B4UFLY solution contains four projects. The B4UFly project
contains the Xamarin.Forms markup and code. The b4ufly.Droid
project contains the Android-specific code and the b4ufly.iOS

XAMA R I N . FOR MS

How Xamarin.Forms
Customization Took an
FAA Drone App Higher
Dan Hermes

This article discusses:
•	Xamarin.Forms customization

•	Cross-platform mobile development

•	Dynamic layouts

Technologies discussed:
Xamarin.Forms, Custom Renderer, Effects, Native View Declaration

0817msdn_HermesFAA_v4_18-25.indd 18 7/12/17 11:52 AM

19August 2017msdnmagazine.com

project is the iOS piece of the solution. B4UFly_UITEST contains
scripts for UI testing, which can be done on a local computer or,
ultimately, on Xamarin Test Cloud.

The Xamarin.Forms project, called B4UFly, contains cross-
platform UI code written using XAML with C# codebehind and
the Xamarin.Forms library. Cross-platform business logic and data
access code is housed in the UTILS folder. App.cs is the initializa-
tion file for the Xamarin.Forms app.

Each platform-specific project has its own startup file for the
respective OS. The Android project contains a startup file called
MainActivity.cs, which defines an activity class inherited from
Xamarin.Forms.Platform.Android.FormsApplicationActivity.

The iOS project contains a startup file called AppDelegate, which
inherits from Xamarin.Forms.Platform.iOS.FormsApplicationDelegate.

Once a Xamarin.Forms project is created, development of the
UI can follow.

Dynamic Layouts
B4UFLY makes use of all of the standard Xamarin layouts, including
StackLayout, AbsoluteLayout and Grid. Xamarin.Forms Layouts
can also be employed to create dynamic layouts with content that
changes in real time. This isn’t about data binding, although that’s
possible, as well. This is about modifying the structure and appear-
ance of the screens themselves.

The two most important screens in the app are the map and the
status page. The map is where the flyer’s GPS position is determined,
and where surrounding locations and flight restrictions and air-
ports are displayed. The map is also where a pin can be dropped,
in something called Planning Mode, so the flyer can determine if
it’s safe to fly there.

The status page (Figure 3) tells the user if it’s
safe to fly. There are three main statuses: yellow,
orange and red. (There’s no green because of
lawyers.) Each of these statuses is reflected on
the status page by a different status icon, by the
text in the header and the color of the header’s
background, as well as the text that’s displayed
on the page to explain the status. Even the ad-
ditional info buttons at the bottom of the page
can change. The entire status page is dynamic.

Xamarin.Forms provides several ways
to change content in midstream, providing
dynamic content modifiable in real time.
The first way is to modify existing layouts
and their elements. The second is to show
and hide elements. The third way is to add
and remove elements from the page using
C#. B4UFLY employs all three of these
approaches in the status screen.

Modifying layouts begins with a layout
to modify, created using XAML in this case,
though it could just as easily be created using
C#. This example is a StackLayout containing
a status bar at the top of the map containing
a status icon called topStatusIcon:

<StackLayout x:Name="topStatusIconHolder" Orientation="Horizontal"
 VerticalOptions="FillAndExpand" HorizontalOptions="StartAndExpand"
 Padding="0, 5, 5, 0" BackgroundColor="White" >
 <Image x:Name="topStatusIcon" Aspect="AspectFit" Source="Blank.png"
 VerticalOptions="CenterAndExpand"
 BackgroundColor="Transparent" HorizontalOptions="CenterAndExpand"
 HeightRequest="50" WidthRequest="50" />
</StackLayout>

Depending on the user’s flight location, the status can change
to fly or no-fly. This example shows a no-fly situation and the text
and icon are updated to reflect the restriction:

if (safeToFlyResult.isInForbiddenZone == true)
{
 topStatusTextHolder.BackgroundColor = Color.White;
 topStatusText.Text = "Flight Prohibited";
 topStatusText.IsVisible = true;
 topStatusIcon.Source = ImageSource.FromFile("no_drone_zone.png");

Showing and hiding elements begins with a XAML layout, the
“DO NOT FLY” status in this case:

<StackLayout x:Name="stackForbiddenToFly" Orientation="Vertical" IsVisible="false"
 Padding="10, 20, 10, 5" VerticalOptions="Start">
 <Label x:Name="forbiddenDoNotFlyText" Text="DO NOT FLY YOUR AIRCRAFT"
 TextColor="#DA4E5B"
 FontSize="22" FontAttributes="Bold" HorizontalOptions="Center"
 HorizontalTextAlignment="Center" />
</StackLayout>

When the status is determined to be no-fly because a location
has been chosen where drone flight is prohibited, the StackLayout
stackForbiddenToFly is made visible (as shown in Figure 3):

if (safeToFlyResult.isInForbiddenZone == true)
{
 stackForbiddenToFly.IsVisible = true;
 ...

The final dynamic UI approach is the physical removal of ele-
ments from a layout using C# code. Here’s an example of a layout and
button being removed from a layout’s collection of child elements:

stackCurrentLocationTop.Children.Remove (refreshComboStack);
stackCurrentLocationTop.Children.Remove (dismissImgBtn);

Add a layout to a layout’s children:
� stackCurrentLocationTop.Children.Add

 (refreshComboStack, 3, 4, 0, 1);

Those are the three main approaches to
dynamic UI: modify existing layouts and
their elements, showing and hiding ele-
ments, and adding and removing elements
and layouts from layout collections using C#.

Xamarin.Forms has become an increas-
ingly easier choice with the outstanding
support for Xamarin.Forms customization,
providing access to native UI features. A
good rule of thumb is that you don’t want to
have to customize (by platform) more than
20 percent to 30 percent of your app. More
than that and you should use a platform-
specific option, such as Xamarin.Android or
Xamarin.iOS. So what does it mean to
customize a Xamarin.Forms app?

Customizing Your App
Using Xamarin.Forms
Before Xamarin.Forms was released, I
would code my mobile app’s cross-platform
business logic and data layer in C#. I

Figure 1 B4UFLY Planning Mode Helps
People Find Places to Fly Their Drones

0817msdn_HermesFAA_v4_18-25.indd 19 7/12/17 11:52 AM

http://www.msdnmagazine.com

msdn magazine20 Xamarin.Forms

would then build my UIs with complete access to the underly-
ing native SDKs, but I’d need to make UIs for each platform using
Xamarin.iOS, Xamarin.Android or Windows 10 SDK.

So when it was first announced that with Xamarin.Forms
you could build your mobile UI only once and compile for iOS,
Android and the UWP, my heart skipped a beat. That’s because it’s
what I always longed for: an end-to-end cross-platform develop-
ment experience.

However, I knew just how deep Xamarin already went when it
came to native UI and I wondered: “What if I need something that
Xamarin.Forms can’t do?”

I asked everyone I knew to explain exactly what Xamarin.Forms
could do and what it couldn’t do, and I received many terrific
responses that helped me better understand Xamarin.Forms, but
no one could really answer my question. So, I wrote a book to
answer it: “Xamarin Mobile Application Development” (Apress,
2015). And here’s a spoiler: Use custom renderers.

Custom renderers give you the ability to punch down through
the Xamarin.Forms abstraction and gain direct access to
Xamarin.Android, Xamarin.iOS and the UWP. This means access

to the native UI SDKs: iOS UIKit, Android SDK and Windows
10 SDK. You can create platform-specific views and pages in the
platform-specific project anytime you need to use functionality in
native iOS, Android and Windows.

Using the Xamarin.Forms built-in Dependency Injection, you
initialize and reference the custom UI class and Xamarin pulls it
out of the appropriate platform’s project for you. That’s how the
map page was built in B4UFLY.

But what if you just want to change one or two properties or
events and don’t need an entire custom UI class?

Enter Effects. Coding an entire UI renderer class for each platform
can be excessive. Sometimes all that’s needed is a tweak to a single
control element, such as a drop shadow on a label. While custom
renderers expose an entire platform-specific class, Effects exposes
just its properties. The entire element needn’t be subclassed, though
a platform-specific class is necessary. A Xamarin.Forms effect offers
this precision approach to platform-specific UI customization.

What if all you really need is a native control on your
Xamarin.Forms layout?

Take the plunge and declare a platform-specific control, some-
times called a “native control,” though it’s a Xamarin control and not
truly native. Instead of coding overly customized custom renderers,
declare native views from Xamarin.iOS, Xamarin.Android or the
UWP directly into your Xamarin.Forms layouts. Using a shared
project and conditional compilation, include platform-specific UI
libraries in your C# UI classes where you can reference them as
directly as if you were coding in the native platform. Set properties
and event handlers on these views and use them side-by-side with
Xamarin.Forms views, in both C# and XAML.

Xamarin.Forms development gives you the ease of cross-plat-
form development using C# and a single UI library with a solid

Figure 5 B4UFLY Planning Mode Page
in San Francisco, Calif.

Figure 4 Map Page at Lexicon Systems
Office in Beverly, Mass.

Figure 3 B4UFLY Status Page in a
No-Fly Area

Figure 2 Xamarin Libraries Bind to Native OS Libraries

Xamarin

Xamarin.iOS

Xamarin.Forms

Xamarin.Android

Windows 10 SDKiOS UIKit Android SDK

0817msdn_HermesFAA_v4_18-25.indd 20 7/12/17 11:52 AM

Q What is JetBrains Rider?

A Rider is our new stand-alone cross-platform IDE for .NET
development. It is built on top of IntelliJ platform and incorporates
features of our well-known Visual Studio extension, ReSharper.
Rider is a smart, powerful, yet very fast and smooth IDE.

Rider provides .NET developers with smart code completion,
highlighting, search, navigation, code inspections, quick-fi xes, and
refactorings. IntelliJ platform brings debugger, excellent VCS
integration, local history, building, and many other features that
help developers be productive.

We are doing our best to make Rider fast, because it’s one of the
key aspects that affect developer happiness. Rider uses our new
technology that runs features like code indexing or analysis in a
process that is completely separated from UI, which allows Rider
to be a very powerful, yet smooth and responsive IDE, that lets
you develop .NET applications on Mac or Linux, not just Windows.

Q What platforms and technologies does Rider support?

A The majority of modern .NET technologies
is supported, including ASP.NET and ASP.NET
Core web applications, as well as desktop
.NET applications.

We support Unity via bundled plugin that
brings Unity-specifi c features to Rider.
Xamarin is supported on both iOS/Android
platforms, so Rider can load, build, run and
debug Xamarin applications.

Rider embeds IntelliJ components to better
support different .NET-related technologies.
For example, it uses amazing features from
WebStorm to support all kinds of web
technologies, and DataGrip functionality
to work with databases and SQL fi les.

Q Is Rider going to support everything ReSharper supports?

A Right now Rider has 90% of ReSharper features. Diagrams, call
tracking and hierarchy tool windows will ultimately be supported,
too. Moreover, both IntelliJ and ReSharper plugins can be used
with Rider as well.

Q Why should Visual Studio users consider trying Rider?

A If we’re talking about pure Visual Studio experience (without
ReSharper), the reasons are fairly obvious: Rider will give you
what Visual Studio simply cannot: hundreds of code inspections
and fi xes, small and large refactorings, smart navigation and
code generation.

Compared to Visual Studio with ReSharper installed, Rider still gives
you strong reasons to consider it. It’s faster (according to feedback
we receive from our users) and because it uses 64-bit architecture,
Rider can work with very complex or large solutions that are
beyond 32-bit capabilities of current Visual Studio. And don’t forget
that Rider can work on any modern OS, not just Windows.

VPmagazine

MSDN MAGAZINE VENDOR PROFILE

To learn more about Rider and download
a free 30-day trial, please visit g www.jetbrains.com/rider

JetBrains Rider:
New Cross-Platform .NET IDE
A Q&A with Kirill Skrygan,
Rider Team Lead at JetBrains

Untitled-4 1 7/12/17 3:48 PM

http://www.jetbrains.com/rider
http://www.jetbrains.com/rider

msdn magazine22 Xamarin.Forms

foundation of customization options for those times when you
really need native features. Use custom renderers to build platform-
specific UI classes using Xamarin.iOS, Xamarin.Android and the
UWP. Use effects to access platform-specific properties. And when
you can’t do without the real thing, declare a native view in your
Xamarin.Forms layout.

Custom Renderers—B4UFLY Map
The B4UfLY map page is the only page of more than 25 in
the app that requires customization. That ratio of 25:1 generic
Xamarin.Forms pages to customized page makes this app a strong
case study for Xamarin.Forms.

The map uses your current location and provides immediate
surrounding flight restrictions and warnings, as shown in Figure 4.

A variation on the map page is Planning Mode, which permits
the dropping of a pin to determine the restrictions and flight sta-
tuses of hypothetical locations, as shown in Figure 5. Note the
icon in the upper left indicating “no-fly” due to a nearby controlled
airspace (the “C” icon).

Xamarin.Forms binds to only a fraction of the features available
in the complete platform-specific UI libraries (iOS Webkit, Android
SDK and Windows 10 SDK). Fortunately, Xamarin.Forms exposes
the mechanism whereby cross-platform views are converted into
platform-specific views. This mechanism is called rendering. By
creating your own custom renderers, you get full access to platform-
specific features buried deep within each view.

Custom renderers are a bridge between Xamarin.Forms and
Xamarin platform-specific libraries, Xamarin.iOS, Xamarin.An-
droid and Windows 10 SDK. Think of a custom renderer as a way
to access and extend the binding between Xamarin.Forms and the
platform-specific elements.

Project requirements call for features not possible with the out-
of-the-box Xamarin.Forms.Maps library, including the placement
of icons and colored areas around each icon to delimit certain air-
spaces on the map. Custom rendering to the rescue! Beginning
with MapPage, created by inheriting ContentPage, you can create
a foundational class, which you can use to customize its renderer
for each platform, letting you code custom graphics separately for
iOS and Android:

namespace b4ufly.iOS
{
 public partial class MapPage : ContentPage
 {
 public static MapPage me = null;
 public static MyMap map = null;
 public static Boolean plannerModeOn = false;

Once you have a custom element, MapPage, then you need to
create the custom renderers for each platform, iOS and Android
in B4UFLY, although you can also do this for UWP. Renderers
realize a view on the native platform. You create your own ren-
derer by inheriting from the standard MapRenderer, beginning
with iOS:

[assembly:ExportRenderer (typeof(MyMap), typeof(MyMapRenderer))]
namespace b4ufly.iOS
{
 public class MyMapRenderer : MapRenderer, MapExtension
 {

MyMapRenderer draws the locations on the map that drone
flyers need to be aware of: airports, controlled airspace, military

facilities and the like. The renderer draws both icons and surround-
ing colored areas denoting the important airspace. These types of
graphics are handled slightly differently in iOS than in Android. The
Android map renderer uses a similar approach to the one used for iOS:

[assembly: ExportRenderer (typeof(MyMap), typeof(MyMapRenderer))]
namespace b4ufly.Droid
{

 public class MyMapRenderer : MapRenderer, MapExtension,
 GoogleMap.IOnCameraChangeListener, GoogleMap.IOnMarkerDragListener,
 GoogleMap.IOnMarkerClickListener
 {

Once you create the renderers, it’s time to use them. Based on the
MyMap data type, which uses the MyMapRenderer, the following
statement instantiates a platform-specific map:

map = new MyMap(MapSpan.FromCenterAndRadius(new Position(0, 0), Distance.
FromMiles(1.0)))

The built-in Inversion of Control (IoC) mechanism in Xama-
rin.Forms uses the renderer from the platform project currently
being built. By adding platform-specific map references, you could
explicitly instantiate an Apple Mapkit in the iOS renderer and a
Google Map in the Android renderer.

Figure 6 Xamarin.Forms UI

Platform-Specific
UI Layer

Using Custom
Renderers

Shared C# Code
Core Library

Business Logic
and Data Layer

Shared C# Code and Markup Using Xamarin.FormsCross-Platform
UI Layer

C# Code Using
Windows 10 SDK

C# Code Using
Xamarin.iOS

C# Code Using
Xamarin.Android

Windows 10 AppiOS App Android App

[assembly:ResolutionGroupName ("FAA")]
[assembly:ExportEffect (typeof(DropShadowEffectLabel), "DropShadowEffectLabel")]
namespace b4ufly.iOS
{
 public class DropShadowEffectLabel : PlatformEffect
 {
 protected override void OnAttached ()
 {
 try {
 var effect =
 (DropShadowEffect)Element.Effects.FirstOrDefault
 (e => e is DropShadowEffect);
 if (effect != null) {
 Control.Layer.ShadowColor = effect.Color.ToCGColor();
 Control.Layer.CornerRadius = 5;
 Control.Layer.ShadowOffset = new CGSize (5, 5);
 Control.Layer.ShadowOpacity = 1.0f; }
 } catch (Exception ex)
 {
 Console.WriteLine ("Cannot set effect property. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }
}

Figure 7 iOS implementation of DropShadowEffectLabel

0817msdn_HermesFAA_v4_18-25.indd 22 7/12/17 11:52 AM

Data Quality Made Easy.
Your Data, Your Way.

Start Your Free Trial
www.Melissa.com/msft-pd

@

NAME

Our data quality solutions are available
on-premises and in the Cloud – fast,
easy to use, and powerful developer
tools and plugins for the Microsoft®
Product Ecosystem.

Melissa provides the full spectrum of data

quality to ensure you have data you can trust.

We profile, standardize, verify, match and

enrich global People Data – name, address,

email, phone, and more.

 1-800-MELISSA

Melissa Data is Now Melissa.
Why the change?
See for Yourself at the New www.Melissa.com

Untitled-5 1 3/10/17 1:19 PM

http://www.Melissa.com/msft-pd
http://www.Melissa.com

msdn magazine24 Xamarin.Forms

Customization of Xamarin.Forms elements leads you to a different
view of the solution architecture, with custom renderers residing in
the middle platform-specific UI layer, as shown in Figure 6.

Custom renderers are powerful and thorough in their imple-
mentation as platform-specific enablers of Xamarin.Forms UI
elements. Custom renderers are, however, heavy artillery. If you
want something more tactical, like merely customizing a property
on a Xamarin.Forms control, consider an “effect.”

Effects
Effects provide access to individual platform-specific properties
of controls and can be parameterized. To create an effect, first cre-
ate a class that is a subclass of the RoutingEffect class. Mind the
method overrides and attributes. Then use the effect in your app.

In addition to exposing properties, effects also have the capac-
ity to pass parameters to those properties and define events on
Xamarin.Forms controls. You pass parameters to the effect using
Attached Properties or the Common Language Runtime (CLR).
The following example uses the CLR to bind properties to the effect
and creates the DropShadowEffect in the Xamarin.Forms project:

public class DropShadowEffect : RoutingEffect
{
 public Color Color { get; set; }

 public DropShadowEffect () : base ("FAA.DropShadowEffectLabel")
 {			
 }
}

This label effect provides a color property for the shadow and
references the platform-specific implementation of the Drop
ShadowEffectLabel in its base class.

You implement the effect in a platform-specific project, simi-
larly to a custom renderer, although implementation is optional
in each platform. Once per project, you add a ResolutionGroup-
Name attribute containing your company name to avoid collisions
with other effects of the same name. Each Effect class is subclassed

from PlatformEffect and needs an ExportEffect, which registers the
effect with Xamarin.Forms. Figure 7 shows an implementation
on iOS in the Xamarin.iOS project.

Control is an iOS UIView.PlatformEffect that exposes these
methods and which must be overridden:

• �OnAttached—customize the control here
• �OnDetached—perform cleanup (for example, deregister events)

Next is the Android implementation, similar to the iOS effect,
except that the label control is the Android-specific TextView, as
shown in Figure 8. The TextView control is typed explicitly to
access the SetShadowLayer method.

Once the effect is in place, it’s time to invoke it. First, a control
needs to be declared in XAML or C#. You then attach the effect
to the control by adding it to the control’s effects collection. The
following example shows the XAML approach with an Entry con-
trol declared in XAML with the DropShadowEffect added to the
control’s Effects collection and the Color property set to black:

<Label Text="Label with Shadow" ... >
 <Label.Effects>
 <local:DropShadowEffect Color="Black">
 </local:DropShadowEffect>
 </Label.Effects>
</Label>

Using C# instead of XAML, the label with attached effect can
be created, as shown here:

var label = new Label {
 Text = "Label with Shadow",
 ...
};
label.Effects.Add (new DropShadowEffect {
 Color = Color.Black,
});

Tactical customization using effects lets you make specific chang-
es to the Xamarin.Forms controls, but sometimes changing certain
properties and methods just isn’t enough. When you want to use
a lot of features of a native control, then you wind up doing a lot
of custom effects coding.

Native View Declaration
Sometimes you want complete control of the UI. Thankfully there’s
now a way to get this in Xamarin.Forms via native view declaration.
Declared native controls are incredibly powerful, but are not without
limitations. They’re easiest to use in XAML, secondarily in C# using
a Shared Project (which is called native embedding), though it’s pos-
sible but not easy or recommended to use them in a Portable Class
Library (PCL). A lot of projects use PCLs and that often means native
views are best used in XAML, and that’s the approach I’ll cover here.

There are two steps in declaring a native view in XAML. First,
specify the namespace for each native source. Second, declare the
native view. Figure 9 shows an example, using the label control. It
begins with the basic XAML page and defines the namespaces for
iOS, Android and Windows (shown in bold code).

Next, native views are declared in the Content property of the
ContentPage. A UILabel for iOS, a TextView for Android and a
TextBlock for Windows:

<ContentPage.Content>
 <ios:UILabel Text="This is an iOS UILabel" View.HorizontalOptions="Start"/>
 <androidWidget:TextView Text="This is an Android TextView"
 x:Arguments="{x:Static formsandroid:Forms.Context}" />
 <win:TextBlock Text="This is a Windows TextBlock"/>
</ContentPage.Content>

[assembly:ResolutionGroupName ("FAA")]
[assembly:ExportEffect (typeof(DropShadowEffectLabel), "DropShadowEffectLabel")]
namespace b4ufly.Droid
{
 public class DropShadowEffectLabel : PlatformEffect
 {

 protected override void OnAttached ()
 {
 try {
 var control = Control as Android.Widget.TextView;
 var effect =
 (DropShadowEffect)Element.Effects.FirstOrDefault
 (e => e is DropShadowEffect);
 if (effect != null) {
 Android.Graphics.Color color = effect.Color.ToAndroid ();
 control.SetShadowLayer (5, 5, 5, color);
 // params: radius, offsetX, offsetY, color
 }
 } catch (Exception ex) {
 Console.WriteLine ("Cannot set effect property. Error: ", ex.Message);
 }
 }

 protected override void OnDetached ()
 {
 }
 }
}

Figure 8 Android Implementation of DropShadowEffectLabel

0817msdn_HermesFAA_v4_18-25.indd 24 7/12/17 11:52 AM

msdnmagazine.com

dtSearch.com 1-800-IT-FINDS

 The Smart Choice for Text Retrieval®

since 1991

dtSearch’s document filters support
popular file types, emails with multilevel
attachments, databases, web data

Developers:
• APIs for .NET, Java and C++
• SDKs for Windows, UWP, Linux,

Mac and Android
• See dtSearch.com for articles on

faceted search, advanced data
classification, working with SQL,
NoSQL & other DBs, MS Azure, etc.

Visit dtSearch.com for
• hundreds of reviews and case studies
• fully-functional evaluations

Instantly Search
Terabytes of Data
across a desktop, network, Internet or
Intranet site with dtSearch enterprise
and developer products

®

Over 25 search features, with easy
multicolor hit-highlighting options

Those are the three approaches to Xamarin.Forms custom-
ization: custom renderers, effects and native view declaration.
Custom renderer is a heavyweight option offering a lot of flexi-
bility, while effects provides a surgical approach to customization.
Native view declaration is the nuclear option, circumventing
Xamarin.Forms entirely.

Wrapping Up
You’ll eventually need more from Xamarin.Forms than it gives you
out-of-the-box, just like I did with B4UFLY. When complex tasks
or designs are required by Xamarin.Forms, virtually anything is
possible using Xamarin.Forms customization. Customization pro-
vides access to the lower-level, platform-specific, screen-rendering
classes called “renderers,” which use platform-specific controls
to create all Xamarin.Forms screens. Any Xamarin.Forms screen
can be broken into platform-specific screens, classes, controls and
properties using this approach.

A lighter-weight approach is to use effects to access platform-
specific properties and events. You can also use entire native controls
on your Xamarin.Forms pages using native view declaration.

This means that you can write a Xamarin.Forms page or app
and customize it by platform. Use customization sparingly, or
risk a fragmented UI code base that probably should have been
written entirely as a platform-specific UI. Used judiciously, cus-
tomization can turn your basic, lackluster product into a versatile,
unique, popular app.

In B4UFLY, the FAA’s investment in Xamarin.Forms continues
to pay off because of the many ongoing enhancements that are
generic to the many cross-platform text-based pages. The platform-
specific map page contains some cross-platform elements, but
much of that page requires platform-specific customization. This
Xamarin.Forms architecture is extensible and development times
and costs are lower because of it; the significant code reuse is
practical and elegant.	 n

Dan Hermes is a Xamarin MVP, a Microsoft MVP, and author of “Xamarin
Mobile Application Development.” He is principal of Lexicon Systems, a Boston-
based consultancy building award-winning mobile apps and helping companies
build their own successful apps. Follow his blog at mobilecsharpcafe.com, on Twitter:
@danhermes or contact him at dan@lexiconsystemsinc.com.

Thanks to the following technical expert for reviewing this article:
Jesse Liberty

<?xml version="1.0" encoding="utf-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"
 xmlns:androidWidget="clr-namespace:Android.Widget;assembly=
 Mono.Android;targetPlatform=Android"
 xmlns:formsandroid="clr-namespace:Xamarin.Forms;assembly=
 Xamarin.Forms.Platform.Android;targetPlatform=Android"
 xmlns:win="clr-namespace:Windows.UI.Xaml.Controls;assembly=Windows,
 Version=255.255.255.255, Culture=neutral, PublicKeyToken=null,
 ContentType=WindowsRuntime;targetPlatform=Windows"
 x:Class="b4ufly.NativeView" >
 <ContentPage.Content>
 </ContentPage.Content>
</ContentPage>

Figure 9 Native Control Namespace Declarations

0817msdn_HermesFAA_v4_18-25.indd 25 7/12/17 11:52 AM

mailto:dan@lexiconsystemsinc.com
www.dtSearch.com
www.mobilecsharpcafe.com
www.twitter.com/danhermes
http://www.msdnmagazine.com

msdn magazine26

In my last article (msdn.com/magazine/mt809117), I showed how
Git uses a directed acyclic graph (DAG) to organize a repo’s com­
mit objects. I also explored the blob, tree and tag objects to which
commit objects can refer. I concluded the article with an intro­
duction to branching, including the distinction between HEAD
and head. That article is a prerequisite to this one, in which I’ll dis­
cuss the Git “three-tree” architecture and the importance of its
index file. Understanding these additional Git internals will build on
the foundational knowledge that will make you a more effective Git
user and will provide new insights as you explore various Git oper­
ations fronted by the graphical Git tooling in the Visual Studio IDE.

Recall from the last article that Visual Studio communicates with Git
using a Git API, and that the Visual Studio IDE Git tooling abstracts
away the complexity and capabilities of the underlying Git engine.
That’s a boon for developers who want to implement a version-con­
trol workflow without needing to rely on the Git command-line
interface (CLI). Alas, the otherwise helpful Git abstractions of the

IDE can sometimes lead to confusion. For example, ponder the
basic workflow of adding a project to Git source control, modify­
ing project files, staging them and then committing the staged files.
To do that, you open the Team Explorer Changes pane to view the
list of changed files and then you select the ones you want to stage.
Consider the leftmost image in Figure 1, which shows that I changed
two files in the working directory (Marker 1).

In the next image to the right, I staged one of those changed files:
Program.cs (Marker 2). When I did that, Program.cs appears to
have “moved” from the Changes list to the Staged Changes list. If
I further modify and then save the working directory’s copy of
Program.cs, it continues to appear in the Staged Changes section
(Marker 3)—but it also appears in the Changes section (Marker
4)! Without understanding what Git is doing behind the scenes,
you might be flummoxed until you figured out that two “copies”
of Program.cs exist: one in the working folder and one in the Git
internal database of objects. Even if you realize that, you might not
have any insight as to what would happen when you unstage the
staged copy, try to stage the second changed copy of Program.cs,
undo changes to the working copy or switch branches.

To truly grasp what Git is doing as you stage, unstage, undo, commit
and check out files, you first must understand how Git is architected.

The Git Three-Tree Architecture
Git implements a three-tree architecture (a “tree” in this context
refers to a directory structure and files). Working from left to right

DE VO PS

Git Internals: Architecture
and Index Files
Jonathan Waldman

This article discusses:
•	Git’s three-tree architecture

•	How the Git index works

•	Index extensions

Technologies discussed:
Visual Studio 2017, Git for Windows 2.10

0817msdn_WaldmanGit_v3_26-33.indd 26 7/12/17 11:57 AM

http://msdn.com/magazine/mt809117

27August 2017msdnmagazine.com

in Figure 2, the first tree is the collection of files and folders in the
working directory—the OS directory that contains the hidden
.git folder; the second tree is typically stored in a single binary file
called index, located in the root of the .git folder; the third tree
is composed of Git objects that represent the DAG (recall that
SHA-1-named Git objects are located in two-hex-digit-named
folders .git\objects and can also be stored in “pack” files located
in .git\objects\pack and in file paths defined by the .git\objects\
info\alternates file). Keep in mind that the Git repo is defined by
all files that sit in the .git folder. Often, people refer to the DAG as
the Git repo, and that’s not quite accurate: The index and the DAG
are both contained in the Git repo.

Notice that while each tree stores a directory structure and files,
each leverages different data structures in order to retain tree-
specific metadata and to optimize storage and retrieval. The first tree
(the working directory tree, also called “the working tree”) is plainly
the OS files and folders (no special data structures there, other than
what’s at the OS level) and serves the needs of the software devel­
oper and Visual Studio; the second tree (the Git index) straddles
the working directory and the commit objects that form the DAG,
thereby helping Git perform speedy working-directory file-content
comparisons and quick commits; the third tree (the DAG) makes
it possible for Git to track a history of commits, as discussed in the
previous article. In its capacity as a robust version control system,

Git adds helpful metadata to the
items it stores in the index and in
commit objects. For example, the
metadata it stores in the index
helps it detect changes to files
in the working directory, while
the metadata it stores in commit
objects helps it track who issued
the commit and for what reason.

To review the three trees in
the three-tree architecture and to
put some perspective around the
remainder of this article’s focus: You
already know how the working-
directory tree functions, because

it’s actually the OS file system you’re already well-versed in using.
And if you read my earlier article, you should have good work­
ing knowledge of the DAG. Thus, at this point, the missing link is
the index tree (hereafter, “the index”) that straddles the working
directory and the DAG. In fact, the index plays such an important
role that it’s the sole subject of the remainder of this article.

How the Index Works
You might have heard the friendly advice that the index is syn­
onymous with the “staging area.” While that’s somewhat accurate,
to speak of it that way belies its true role, which is not only to
support a staging area, but also to facilitate the ability of Git to detect
changes to files in your working directory; to mediate the branch-
merge process, so you can resolve conflicts on a file-by-file basis
and safely abort the merge at any time; and to convert staged files
and folders into tree objects whose references are written to the
next commit object. Git also uses the index to retain information
about files in the working tree and about objects retrieved from
the DAG—and thus further leveraging the index as a type of cache.
Let’s investigate the index more thoroughly.

The index implements its own self-contained file system, giving
it the ability to store references to folders and files along with meta­
data about them. How and when Git updates this index depends on
the kind of Git command issued and the command options spec­
ified (if you’re so inclined, you can even use the Git update-index
plumbing command to manage the index yourself), so exhaustive
coverage here isn’t possible. However, as you work with the Visual
Studio Git tooling, it’s helpful to be aware of the primary ways in
which Git updates the index and in which Git uses information
stored in the index. Figure 3 shows that Git updates the index with
working directory data when you stage a file, and it updates the
index with DAG data when you initiate a merge (if there are merge
conflicts), clone or pull, or switch branches. On the other hand, Git
relies on information stored in the index when it updates the DAG
after you issue a commit, and when it updates the working directory
after you clone or pull, or after you switch branches. Once you
realize that Git relies on the index and that the index straddles so
many Git operations, you’ll begin to appreciate the advanced Git
commands that modify the index, effectively empowering you to
finesse how Git operates.

Figure 1 The Team Explorer Changes Pane Can Show the Same File in Its Changes
and Staged Changes Sections

Figure 2 The Git Three-Tree Architecture Leverages the All-
Important Index File for Its Smart and Efficient Performance

Git Repo

Where Stored
.git\objects

Compressed Binary Files

Where Stored
.git\index

Single Binary File

The OS File System

Where Stored
folder containing .git

OS File System

Working Directory Index DAG

0817msdn_WaldmanGit_v3_26-33.indd 27 7/12/17 11:57 AM

http://www.msdnmagazine.com

msdn magazine28 DevOps

Let’s create a new file in the working directory to see what hap­
pens to it as it’s written to the index. As soon as you stage that file,
Git creates a header using this string-concatenation formula:

blob{space}{file-length in bytes}{null-termination character}

Git then concatenates the header to the beginning of the file con­
tents. Thus, for a text file containing the string “Hello,” the header
+ file contents would generate a string that looks like this (keep in
mind there’s a null character before the letter “H”):

blob 5Hello

To see that more clearly, here’s the hexadecimal version of that string:
62 6C 6F 62 20 35 00 48 65 6C 6C 6F

Git then computes an SHA-1 for the string:
5ab2f8a4323abafb10abb68657d9d39f1a775057

Git next inspects the existing index to determine if an entry for
that folder\file name already exists with the same SHA-1. If so, it

locates the blob object in the .git\objects folder and updates its
date-modified time (Git will never overwrite objects that already
exist in the repo; it updates the last-modified date so as to delay this
newly added object from being considered for garbage collection).
Otherwise, it uses the first two characters of the SHA-1 string as the
directory name in .git\objects and the remaining 38 characters to
name the blob file before zlib-compressing it and writing its con­
tents. In my example, Git would create a folder in .git\objects called
5a and then write the blob object into that folder as a file with the
name b2f8a4323abafb10abb68657d9d39f1a775057.

When Git creates a blob object in this manner, you might be
surprised that one expected file property is conspicuously missing
from the blob object: the file name! That’s by design, however. Recall
that Git is a content-addressable file system and, as such, it manages
SHA-1-named blob objects—not files. Each blob object is normally
referenced by at least one tree object, and tree objects in turn are
normally referenced by commit objects. Ultimately, Git tree objects
express the folder structure of the files you stage. But Git doesn’t cre­
ate those tree objects until you issue a commit. Therefore, you can
conclude that if Git uses only the index to prepare a commit object, it
also must capture the file-path references for each blob in the index—
and that’s exactly what it does. In fact, even if two blobs have the same
SHA-1 value, as long as each maps to a different file name or differ­
ent path/file value, each will appear as a separate entry in the index.

Git also saves file metadata with each blob object it writes to the
index, such as the file’s create and modified dates. Git leverages this
information to efficiently detect changes to files in your working
directory using file-date comparisons and heuristics rather than
brute-force re-computing the SHA-1 values for each file in the
working directory. Such a strategy speeds up the information you
see in the Team Explorer Changes pane—or when you issue the

porcelain Git status command.
Once armed with an index entry

for a working-directory file along
with its associated metadata, Git is
said to “track” the file because it can
readily compare its copy of the file
with the copy that remains in the
working directory. Technically, a
tracked file is one that also exists in
the working directory and is to be
included in the next commit. This
is in contrast to untracked files, of
which there are two types: files that
are in the working directory but not
in the index, and files that are explic­
itly designated as not to be tracked
(see the Index Extensions section).
To summarize, the index gives Git
the power to determine which files
are tracked, which are not tracked,
and which should not be tracked.

To better understand the spe­
cific contents of the index, let’s
use a concrete example by starting

Figure 3 Primary Git Actions That Update the Index (Green)
and Git Actions That Rely on What the Index Contains (Red)

Stage (Add)

Working Directory Index DAG

Merge

Switch Branch (Check Out)Switch Branch (Check Out)

Clone Clone

Pull Pull

Commit

Figure 4 Viewing the History in Order to See What Visual Studio Does When You Create a
New Project

0817msdn_WaldmanGit_v3_26-33.indd 28 7/12/17 11:57 AM

Award-winning Document, Medical,
and Multimedia Imaging Technology
LEADTOOLS is a family of comprehensive toolkits designed to help
programmers integrate raster, document, medical, multimedia, and
vector imaging into their desktop, server, tablet, and mobile
applications. LEADTOOLS gives developers the most flexible and
powerful imaging technology, offering development support for
OCR, Barcode, Forms Recognition, PDF, Document Conversion
and Viewing, Document Cleanup, Annotations, DICOM, PACS,
HL7, Audio/Video Codecs, MPEG-2 Transport, DVR, Streaming,
File Formats (150+), Image Compression, Image Processing, Color
Conversion, Viewers, Special Effects, Scanning/Capture, Printing,
and more. A LEADTOOLS toolkit literally puts millions of lines of
code at the fingertips of application developers.

One-Stop Shop
LEAD supports the full range of imaging categories allowing
customers to standardize on LEADTOOLS for all imaging require-
ments and eliminate multiple-vendor headaches. Enjoy the
simplicity of one vendor relationship, one license agreement, and
one support contact. With access to the full suite of LEADTOOLS
SDKs developers stand to gain Medical Imaging, Document
Imaging, Recognition, Vector, Multimedia, and general Imaging
components with cross-platform capability.

Free Technical Support
LEAD offers free and unlimited technical support via email, user
forums, and live chat; LEADTOOLS customers receive this free
technical support in perpetuity. We also offer premium support
options on a per case basis.

Imaging Component Experts
LEAD’s developers are imaging experts as well as development
component experts. Consistently receiving industry recognition
from the developer community, LEADTOOLS is designed to allow
customers to easily integrate its technology into real-world solutions.

Reduce Time-to-Market
Decrease solution costs and time-to-revenue by leveraging
LEADTOOLS imaging libraries and components. Develop your
customers’ solutions with less overhead and a faster rollout.
Deliver sooner and get paid quicker.

Plug In and Go
Quickly image-enable existing solutions with minimal code changes.
LEADTOOLS provides many customizable, ready-built components
including document and medical web viewers, file converters,
recognition engines, and codecs.

Outshine Your Competitors
Increase your company’s competitive advantage by adding
significant functionality to your offering without substantially
affecting cost or time-to-deliver.

Experience that Matters
Founded in 1990, LEAD has a track record of more than 27 years of
profitable operations and excellent customer service. LEAD is currently
shipping version 19 of its core products. If your customer has an imaging
requirement, chances are LEAD has already coded, tested, and deployed
it. Increase the productivity of your employees by allowing them to
leverage upon LEAD’s years of development blood, sweat, and tears.

MSDN Magazine Vendor Profile

Why Choose LEADTOOLS?

VPmagazine

MSDN MAGAZINE VENDOR PROFILE

Download a FREE, 60-day Evaluation SDK at g www.leadtools.com

Untitled-3 1 7/7/17 12:30 PM

http://www.leadtools.com
http://www.leadtools.com

msdn magazine30 DevOps

with a new Visual Studio project. The complexity of this project isn’t
so important—you just need a couple of files to adequately illustrate
what’s going on. Create a new console application called MSDNCon­
soleApp and check the Create directory for solution and the Create
new Git repository checkboxes. Click OK to create the solution.

I’ll issue some Git commands in a moment, so if you want to run
them on your system, open a command prompt window in the
working directory and keep that window within reach as you fol­
low along. One way to quickly open a Git command window for a
particular Git repo is to access the Visual Studio Team menu and
select Manage Connections. You’ll see a list of local Git repositories,
along with the path to that repo’s working directory. Right-click the
repo name and select Open Command Prompt to launch a window
into which you can enter Git CLI commands.

Once you create the solution, open the Team Explorer Branches
pane (Figure 4, Marker 1) to see that Git created a default branch
called master (Marker 2). Right-click the master branch (Marker
2) and select View History (Marker 3) to view the two commits
Visual Studio created on your behalf (Marker 4). The first has the
commit message “Add .gitignore and .gitattributes”; the second has
the commit message “Add project files.”

Open the Team Explorer Changes pane. Visual Studio relies on
the Git API to populate items in this window—it’s the Visual Studio

version of the Git status command.
Currently, this window indicates
there are no unstaged changes in
the working directory. The way
Git makes this determination is
to compare each index entry with
each working directory file. With
the index’s file entries and associ­
ated file metadata, Git has all the
information it needs to determine
whether you’ve made any changes,
additions, deletions, or if you
renamed any files in the working
directory (excluding any files men­
tioned in the .gitignore file).

So the index plays a key role in
making Git smart about differences
between your working directory
tree and the commit object pointed
to by HEAD. To learn a bit more
about what kind of information the
index provides to the Git engine,
go to the command-line window

you opened earlier and issue the following plumbing command:
git ls-files --stage

You can issue this command at any time to generate a complete
list of files currently in the index. On my system, this produces
the following output:

100644 1ff0c423042b46cb1d617b81efb715defbe8054d 0 .gitattributes
100644 3c4efe206bd0e7230ad0ae8396a3c883c8207906 0 .gitignore
100644 f18cc2fac0bc0e4aa9c5e8655ed63fa33563ab1d 0 MSDNConsoleApp.sln
100644 88fa4027bda397de6bf19f0940e5dd6026c877f9 0 MSDNConsoleApp/App.config
100644 d837dc8996b727d6f6d2c4e788dc9857b840148a 0 MSDNConsoleApp/
MSDNConsoleApp.csproj
100644 27e0d58c613432852eab6b9e693d67e5c6d7aba7 0 MSDNConsoleApp/Program.cs
100644 785cfad3244d5e16842f4cf8313c8a75e64adc38 0 MSDNConsoleApp/Properties/
AssemblyInfo.cs

The first column of output is a Unix OS file mode, in octal. Git
doesn’t support the full range of file-mode values, however. You’re
likely to only ever see 100644 (for non-EXE files) and 100755 (for
Unix-based EXE files—Git for Windows also uses 100644 for
executable file types). The second column is the SHA-1 value for
the file. The third column represents the merge stage value for
the file—0 for no conflict or 1, 2 or 3 when a merge conflict exists.
Finally, notice that the path and file name for each of the seven blob
objects are stored in the index. Git uses the path value when it builds
tree objects ahead of the next commit (more on that in a moment).

Now, let’s examine the index file itself. Because it’s a binary file,
I’m going to use HexEdit 4 (a freeware hex editor available at
hexedit.com) to view its contents (Figure 5 shows an excerpt).

The first 12 bytes of the index contain the header (see Figure 6).
The first 4 bytes will always contain the characters DIRC (short for
directory cache)—this is one reason the Git index is often referred
to as the cache. The next 4 bytes contain the index version num­
ber, which defaults to 2 unless you’re using certain features of Git
(such as sparse checkout), in which case it might be set to version 3
or 4. The final 4 bytes contain the number of file entries contained
further down in the index.

Figure 5 A Hex Dump of the Git Index File for the Project

Figure 6 The Git Index Header Data Format

Index File - Header Entry
00 - 03
(4 bytes)

DIRC Fixed header for a directory cache entry.
All index files begin with this entry.

04 - 07
(4 bytes)

Version Index version number (Git for Windows
currently uses version 2).

08 - 11
(4 bytes)

Number of entries As a 4-byte value, the index supports up
to 4,294,967,296 entries!

0817msdn_WaldmanGit_v3_26-33.indd 30 7/12/17 11:57 AM

www.hexedit.com

Q You have just released the version 3 of DocuVieware, can
you tell us more about this SDK?

A DocuVieware is an HTML5 viewer and document management
kit to build web applications. It can be effortlessly
integrated into applications based on different web
technologies, like angular2, Node.js, php, asp.net mvc/
core, etc., with the help of Web Service Architecture.

DocuVieware operates seamlessly on any device and
platform, including mobile phones and tablets.

We help developers creating dynamic web applications
with user interaction. All User Interface elements and
document’s appearance in the viewer, like rotation and
zooming, are managed client-side. The user can
perform a large variety of actions, like creating annotations and
comments, and scan and print documents.

Our customers have been using our GdPicture.NET SDK for
desktop applications, for many years, and with great success.
Some of them have already made the transition to web applica-
tions. That’s why we have developed a tool which is comprehen-
sive and fully customizable, yet easy to integrate.

DocuVieware is powered by our GdPicture.NET Document
Imaging and Image Processing SDK. To build DocuVieware, we
have developed a layer containing features specific to web
applications, which encapsulates GdPicture.NET and its three
thousand functionalities.

Q How do you make DocuVieware evolve?

A DocuVieware is growing every day thanks to customer
feedback: if there is something our toolkit doesn’t do yet, and you
want it included, just ask us, and will see how we can implement it.
Customers under maintenance can influence our roadmap
significantly to make DocuVieware tailored to their needs.

For version 3, we have tried to focus on making collaborative
work an easy task for everyone, thanks to comment statuses and
discussion support. Many other features and improvements are
also available with this new release.

We’re constantly looking for the latest technologies on the
market, and we often end up creating our path when we feel
something is missing in the industry.

Q DocuVieware is a product of your company, ORPALIS.
Do you have any other project coming up?

A We keep on improving our SDK offer by implementing
new functionalities in GdPicture.NET and DocuVieware on a
weekly basis.

We have a strong expertise in formats: we provide full PDF
support and manage more than a hundred formats. We are
also specialized in symbol recognition. Our OCR, barcoding,
and MICR engines are recognized worldwide for their speed
and accuracy.

We are currently working on a new project that combines our
technologies and our knowledge in web infrastructures.
DocuVieware is already built with a scalable architecture,
meaning that your web application developed with DocuVieware
will work the same if you’re hosting it on one or a thousand
servers. Our future innovative platform will offer access to the
same components available in GdPicture.NET and DocuVieware
(plus a lot of other new innovative features for manipulating
documents), in a REST API.

MSDN Magazine Vendor ProfileVPmagazine

MSDN MAGAZINE VENDOR PROFILE

To access your 60 days free trial, go to g www.docuvieware.com

Develop Collaborative Web
Applications with DocuVieware
Q&A with Loïc Carrère, owner, and CEO of ORPALIS,
and creator of GdPicture.NET and DocuVieware

Untitled-3 1 7/7/17 12:31 PM

http://www.docuvieware.com
http://www.docuvieware.com

msdn magazine32 DevOps

Following the 12-byte header is a list of n index entries, where
n matches the number of entries described by the index header.
The format for each index entry is presented in Figure 7. Git sorts
index entries in ascending order based on the path/file name field.

The first 8 bytes represent the time the file was created as an off­
set from midnight of Jan. 1, 1970. The second 8 bytes represent the
time the file was modified as an offset from midnight of Jan. 1, 1970.
Next are five 4-byte values (device, inode, mode, user id and group
id) of file-attribute metadata related to the host OS. The only value
used under Windows is the mode, which most often will be the
octal 100644 I mentioned earlier when showing output from the
ls-files command (this converts to the 4-byte 814AH value, which
you can see at position 26H in Figure 5).

Following the metadata is the 4-byte length of the file contents.
In Figure 5, this value starts at 030, which shows 00 00 0A 15
(2,581 decimal)—the length of the .gitattributes file on my system:

05/08/2017 09:24 PM <DIR> .
05/08/2017 09:24 PM <DIR> ..
05/08/2017 09:24 PM 2,581 .gitattributes
05/08/2017 09:24 PM 4,565 .gitignore
05/08/2017 09:24 PM <DIR> MSDNConsoleApp
05/08/2017 09:24 PM 1,009 MSDNConsoleApp.sln
 3 File(s) 8,155 bytes

 3 Dir(s) 92,069,982,208 bytes free

At offset 034H is the 20-byte SHA-1 value for the blob object:
1ff0c423042b46cb1d617b81efb715defbe8054d.

Remember, this SHA-1 points to the blob object that contains
the file contents for the file in question: .gitattributes.

At 048H is a 2-byte value containing two 1-bit flags, a 2-bit merge-
stage value, and a 12-bit length of the path/file name for the current
index entry. Of the two 1-bit flags, the high-order bit designates
whether the index entry has its assume-unchanged flag set (typi­
cally done using the Git update-index plumbing command); the
low-order bit indicates whether another two bytes of data precede
the path\file name entry—this bit can be 1 only for index versions
3 and higher). The next 2 bits hold a merge-stage value from 0 to
3, as described earlier. The 12-bit value contains the length of the
path\file name string.

If the extended flag was set, a 2-byte value holds the skip-work­
tree and intent-to-add bit flags, along with filler placeholders.

Finally, a variable length sequence of bytes contains the path\file
name. This value is terminated with one or more NUL characters.
Following that termination is the next blob object in the index or
one or more index extension entries (as you’ll see shortly).

Earlier, I mentioned that Git doesn’t build tree objects until you
commit what’s been staged. What that means is the index starts

out with only path/file names and references to blob
objects. As soon as you issue a commit, however, Git
updates the index so it contains references to the tree
objects it created during the last commit. If those
directory references still exist in your working direc­
tory during the next commit, the cached tree object
references can be used to reduce the work Git needs to
do during the next commit. As you can see, the role of
the index is multifaceted, and that’s why it’s described
as an index, staging area and cache.

The index entry shown in Figure 7 supports only
blob object references. To store tree objects, Git uses
an extension.

Index Extensions
The index can include extension entries that store
specialized data streams to provide additional infor­
mation for the Git engine to consider as it monitors
files in the working directory and when it prepares the
next commit. To cache tree objects created during the
last commit, Git adds a tree extension object to the
index for the working directory’s root as well as for
each sub-directory.

Figure 5, Marker 2, shows the final bytes of the
index and captures the tree objects that are stored
in the index. Figure 8 shows the format for the tree-
extension data.

The tree-extension data header, which appears at off­
set 284H, is composed of the string “TREE” (marking
the start of the cached tree extension data) followed by
a 32-bit value that indicates the length of the extension
data that follows. Next are entries for each tree entry:
The first entry is a variable-length null-terminated

Figure 7 The Git Index File-Index Entry Data Format

Index File - Index Entry
4 bytes 32-bit created time in

seconds
Number of seconds since Jan. 1, 1970,
00:00:00.

4 bytes 32-bit created time -
nanosecond component

Nanosecond component of the created
time in seconds value.

4 bytes 32-bit modified time in
seconds

Number of seconds since Jan. 1, 1970,
00:00:00.

4 bytes 32-bit modified time -
nanosecond component

Nanosecond component of the created
time in seconds value.

4 bytes device Metadata associated with the file—these
originate from file attributes used on the
Unix OS.

4 bytes inode
4 bytes mode
4 bytes user id
4 bytes group id
4 bytes file content length Number of bytes of content in the file.
20 bytes SHA-1 Corresponding blob object’s SHA-1 value.
2 bytes Flags (High to low bits)

1 bit: assume-valid/assume-unchanged
flag
1-bit: extended flag (must be 0 for
versions less than 3; if 1 then an
additional 2 bytes follow before the path\
file name)
2-bit: merge stage
12-bit: path\file name length (if less than
0xFFF)

2 bytes
(version 3
or higher)

Flags (High to low bits)
1-bit: future use
1-bit: skip-worktree flag (sparse checkout)
1-bit: intent-to-add flag (git add -N)
13-bit: unused, must be zero

Variable Length Path/file name NUL terminated

0817msdn_WaldmanGit_v3_26-33.indd 32 7/12/17 11:57 AM

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
➤ Visual Studio / .NET

Framework
➤ JavaScript / HTML5 Client
➤ Native Client
➤ Software Practices
➤ Database and Analytics
➤ Angular JS

➤ ASP.NET / Web Server
➤ Agile
➤ ALM / DevOps
➤ Cloud Computing
➤ Windows Client
➤ Xamarin

vslive.com/chicagoEVENT PARTNER GOLD SPONSOR PRODUCED BYSUPPORTED BY

magazine

CHICAGO
SEPT 18-21, 2017
DOWNTOWN MARRIOTT

REGISTER
NOW

Register by August 18
and Save $200!
Use promo code VSLCHTI

0817msdn_VSLive_Insert.indd 1 6/19/17 12:49 PM

MSDN_Insert_placement_7.625x5.indd 1 7/25/17 11:23 AM

www.vslive.com/chicago

REGISTER
NOW

Register by August 25
and Save $300!
Use promo code VSLANTI

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
➤ Visual Studio / .NET
➤ JavaScript / HTML5
➤ Angular
➤ Native Mobile & Xamarin
➤ Software Practices
➤ Database and Analytics

➤ ASP.NET Core
➤ Web API
➤ ALM / DevOps
➤ Cloud Computing
➤ UWP
➤ Unit Testing

EVENT PARTNER PRODUCED BYSUPPORTED BY

magazine

vslive.com/anaheim

ANAHEIM, CA
OCT 16-19, 2017
HYATT REGENCY
A Disneyland® Good Neighbor Hotel

0817msdn_VSLive_Insert.indd 2 6/19/17 12:49 PM

MSDN_Insert_placement_7.625x5.indd 2 7/25/17 11:23 AM

www.vslive.com/anaheim

33August 2017msdnmagazine.com

string value for the tree path (or simply NUL for the
root tree). The following value is an ASCII value, so it
is to be read as the “7” you see in the hex editor—the
number of blob entries covered by the current tree
(because this is the root tree, it has the same num­
ber of entries you saw earlier when issuing the Git
ls-files stage command). The next character is a space,
followed by another ASCII number to represent the
number of subtrees the current tree has.

The root tree for our project has only 1 subtree:
MSDNConsoleApp. This value is followed by a line­
feed character, then the SHA-1 for the tree. The SHA-1
starts at offset 291, beginning with 0d21e2.

Let’s confirm that 0d21e2 is actually the root tree
SHA-1. To do that, go to the command window
and enter:

git log

This displays details of the recent commits:
commit 5192391e9f907eeb47aa38d1c6a3a4ea78e33564
Author: Jonathan Waldman <jonathan.waldman@live.com>
Date: Mon May 8 21:24:15 2017 -0500

 Add project files.

commit dc0d3343fa24e912f08bc18aaa6f664a4a020079
Author: Jonathan Waldman <jonathan.waldman@live.com>
Date: Mon May 8 21:24:07 2017 -0500

 Add .gitignore and .gitattributes.

The most recent commit is the one with the timestamp 21:24:15,
so that’s the one that last updated the index. I can use that commit’s
SHA-1 to find the root-tree SHA-1 value:

git cat-file -p 51923

This generates the following output:
tree 0d21e2f7f760f77ead2cb85cc128efb13f56401d
parent dc0d3343fa24e912f08bc18aaa6f664a4a020079
author Jonathan Waldman <jonathan.waldman@live.com> 1494296655 -0500
committer Jonathan Waldman <jonathan.waldman@live.com> 1494296655 -0500

The preceding tree entry is the root tree object. It confirms that
the 0d21e2 value at offset 291H in the index dump is, in fact, the
SHA-1 for the root tree object.

The other tree entries appear immediately after the SHA-1 value,
starting at offset 2A5H. To confirm the SHA-1 values for cached
tree objects under the root tree, run this command:

git ls-tree -r -d master

This displays only the tree objects, recursively on the current branch:
040000 tree c7c367f2d5688dddc25e59525cc6b8efd0df914d MSDNConsoleApp
040000 tree 2723ceb04eda3051abf913782fadeebc97e0123c MSDNConsoleApp/Properties

The mode value of 040000 in the first column indicates that this
object is a directory rather than a file.

Finally, the last 20 bytes of the index contain an SHA-1 hash rep­
resenting the index itself: As expected, Git uses this SHA-1 value
to validate the data integrity of the index.

While I’ve covered all of the entries in this article’s example index
file, larger and more complex index files are the norm. The index
file format supports additional extension data streams, such as:

• �One that supports merging operations and merge-conflict res­
olution. It has the signature “REUC” (for resolve undo conflict).

• �One for maintaining a cache of untracked files (these are
files to be excluded from tracking, specified in the .gitignore

and .git\info\exclude files and by the file pointed to by core.
excludesfile). It has the signature “UNTR.”

• �One to support a split-index mode in order to speed index
updates for very large index files. It has the signature “link.”

The index’s extension feature makes it possible to continue
adding to its capabilities.

Wrapping Up
In this article, I reviewed the Git three-tree architecture and delved into
details behind its index file. I showed you that Git updates the index
in response to certain operations and that it also relies on infor­
mation the index contains in order to carry out other operations.

It’s possible to use Git without thinking much about the index.
Yet having knowledge about the index provides invaluable insight
into Git’s core functionality while shedding light on how Git detects
changes to files in the working directory, what the staging area is
and why it’s useful, how Git manages merges, and why Git performs
some operations so quickly. It also makes it easy to understand com­
mand-line variants of the check out and rebase commands—and
the difference between soft, mixed and hard resets. Such features
let you specify whether the index, working directory, or both the
index and working directories should be updated when issuing
certain commands. You’ll see such options when reading about
Git workflows, strategies and advanced operations. The purpose
of this article is to orient you to the important role the index plays
so you can better digest the ways in which it can be leveraged. 	 n

Jonathan Waldman is a Microsoft Certified Professional who has worked with
Microsoft technologies since their inception and who specializes in software ergo-
nomics. Waldman is a member of the Pluralsight technical team and he currently
leads institutional and private-sector software-development projects. He can be
reached at jonathan.waldman@live.com.

Thanks to the following Microsoft technical experts for reviewing this article:
Kraig Brockschmidt, Saeed Noursalehi, Ralph Squillace and Edward Thomson

Figure 8 The Git Index File Tree-Extension Object Data Format

Index File - Cached Tree-Extension Header
4 bytes TREE Fixed signature for a cached

tree-extension entry.
4 bytes 32-bit number

representing the length
of TREE extension data

Cached Tree-Extension Entry
Variable Path NUL-terminated path string (null only for

the root tree).
ASCII number Number of entries ASCII number representing the number

of entries in the index covered by this
tree entry.

1 byte 20H (space character)
ASCII number Number of subtrees ASCII number representing the number

of subtrees this tree has.
1 byte 0AH (linefeed character)
20 bytes Tree object’s SHA-1 SHA-1 values of the tree object this

entry produces.

0817msdn_WaldmanGit_v3_26-33.indd 33 7/12/17 11:57 AM

mailto:jonathan.waldman@live.com
http://www.msdnmagazine.com

msdn magazine34

I love e-mail. At work, it’s where I go to stay on top of what’s
going on and what I need to do. It’s where I receive notifications
of new expense reports submitted by my team, new replies to my
tweets, new comments to my pull requests and so on. But e-mail
could be so much better. Why do I need to click a link in e-mail
and wait for the finance system Web site to load in a browser
before I can approve an expense report? Why do I have to men-
tally change my context? I should be able to approve the expense
report directly in the context of my e-mail client.

Sound familiar? Outlook is about to make your life much better,
save you time and make you more productive.

Introducing Actionable Messages
Actionable Messages let users complete tasks within the e-mail itself.
It offers a native experience in both the Outlook desktop client
and Outlook Web Access (OWA). In this article, I’ll use the word
Outlook to mean either Outlook desktop client or OWA.

In the example I’ll be using, the fictional company Contoso
has an internal expense approval system. Every time an employee

submits an expense report, an e-mail message is sent to the
manager for approval. I’ll walk through the steps on how to use
Actionable Messages in Outlook that lets the manager approve the
request within the e-mail message itself.

My First Actionable Message
In Figure 1, you see the HTML of an Actionable Message. It might
look complicated, but believe me, it’s not. I’ll explain the markup in
detail in the following sections. The first step is to send an e-mail
with the markup from Figure 1 to your Office 365 e-mail account.

As shown in Figure 2, in the message itself, there’s a message
card with two buttons with which you can interact. If you click
on the Approve button, it’ll result in an error for now because you
haven’t yet specified the URL for the action. You’ll add the URL
later. If you click on the View Expense button, a browser will open
and navigate to the Expense Approval Web site.

MessageCard Markup
The e-mail message itself is typical HTML markup. To make it an
Actionable Message in Outlook, you insert MessageCard markup
in the <script> element. One main advantage of this approach is
that e-mail messages will continue to render as usual on clients
that don’t recognize the MessageCard markup. The format of this
markup is called JSON-LD, which is a standard format to create
machine-readable data across the Internet. Now, let’s go through
the markup in detail. These two lines of code are mandatory in
every markup:

"@context": "http://schema.org/extensions",
"@type": "MessageCard",

MICROS OF T OFF IC E

Actionable Messages
for Outlook
Woon Kiat Wong

This article discusses:
•	Create and send Actionable Messages

•	Validating a JSON Web token

•	Designing Web services for Actionable Messages

Technologies discussed:
Actionable Message Markup, Actionable Message JSON Web
Token, Actionable Message Security

0817msdn_WongOutlook_v4_34-43.indd 34 7/12/17 11:58 AM

Q Who is Melissa, and what solutions do you provide?

A Melissa Global Intelligence was founded in 1985 as Melissa
Data. For over three decades, we have been a leading provider of
data quality, ID verification, and data management solutions. Our
software, cloud services, and data integration components
leverage comprehensive and authoritative reference data to
profile, verify, standardize, consolidate, match/dedupe, enrich,
and update U.S. and global contact data, including names,
addresses, phone numbers and email addresses for improved
analytics, efficient operations, and strong customer relationships.

Q What are the most common causes of poor data quality?

A The major cause of bad data is from typographical errors and
non-conforming data entered during the data entry process—
either by employees or customers filling out contact forms. The
next biggest cause of bad data comes from migrating data due
to irregular, missing, or misplaced data values that cause
surprises. Bad data costs businesses between 10-25% of revenue
each year, and in 2016 cost US businesses over $3.1 trillion. That’s
why implementing real-time validation of contact information
like addresses, email, phone, and other important information is
essential, as well as establishing a data governance team in
charge of understanding the impact of data quality.

Q What is the difference between rules-based and active
data quality, and why is active data quality so important?

A Data that is mostly static, internally generated and controlled—
like KPIs—employee performance metrics, new product develop-
ment, supplier payment optimization, and inventory reduction
data, can usually be well managed by rules-based validation.

Active data like customer names, addresses, emails, phone
numbers, company names, and job titles, constantly change and

require complex parsing rules and multisourced reference data
for verification. For instance, the telephone number 949-555-
5659 might look valid from a rules-based perspective, but is it
actually callable, and associated with the right customer?

Active data quality relies on deep domain knowledge of contact
and location data to parse, format, cleanse, enrich, and match
customer records to provide the organization with accurate,
timely, and actionable information.

Q Should companies build out a DQ solution or purchase an
off-the-shelf one from a trusted vendor?

A We recommend a Hybrid approach. Companies should look
to Build their own data quality solutions to handle rules-based
data quality processes—those where they have the expertise
and experience with their own internal data. Where active data
quality is required, a Buy approach will usually be more efficient
and cost-effective in the long run. Combining both Build and
Buy can result in the best-of-both world results. We urge organi-
zations to strive for small wins first—solve one problem at a
time in discreet phases. This will help you show tangible results
quickly and get the buy-in you need for future projects. Now,
rinse and repeat.

Q How are Melissa’s solutions employed?

A Melissa offers every kind of integration option you can
imagine. We have on-prem APIs and Cloud services that allow
you to build into existing or custom applications. We also offer
plugins for data integration platforms like SQL Server®, Pentaho®
and Talend®, and CRM software like Salesforce® and Dynamics®
CRM. Our smart, sharp tools approach means we can help you
create the best solutions based on your budget and needs and
achieve data quality without breaking the bank.

MSDN Magazine Vendor ProfileVPmagazine

MSDN MAGAZINE VENDOR PROFILE

The Build vs. Buy Data Quality
Challenge for Optimizing Accuracy
Q&A with Bud Walker, Vice President of Enterprise Sales & Strategy

For more information, please visit g www.melissa.com

Untitled-5 1 7/10/17 2:28 PM

http://www.melissa.com
http://www.melissa.com

msdn magazine36 Microsoft Office

You set the context to http://schema.org/extensions and the type
to “MessageCard.” The MessageCard type indicates that this e-mail
is an Actionable Message.

Next is the property “hideOriginalBody.” When the value is set
to true, the e-mail body is hidden and only the card is displayed,
as shown in Figure 2. This is useful when the card itself contains

all the information a user would need or the content of the card is
redundant with the content of the e-mail body. In case the mes-
sage is viewed in an e-mail client that doesn’t understand message
cards, then the original body will be shown and the message card
will not, regardless of the value of “hideOriginalBody.” The value
of the property “title” is the title of the MessageCard:

"hideOriginalBody": "true",
"title": "Expense report is pending your approval",

Next is “sections.” You can think of a section as representing
an “activity.” If your card has multiple activities you should defi-
nitely use multiple sections, one per activity. Figure 3 shows
markup with one section. You use the facts property of a section,
which is an array of name-value pairs, to display the details of an
expense report.

Next is “potentialAction.” This is an array of actions that can be
invoked on this card. Currently the supported actions are OpenUri
and HttpPOST:

"potentialAction": [{
 "@type": "HttpPost",
 "name": "Approve",
 "target": ""
}, {
 "@type": "OpenUri",
 "name": "View Expense",
 "targets": [{ "os": "default",
 "uri": "https://expense.contoso.com/view?id=98432019"}]
}]

The OpenUri action will open a browser and navigate to the
URL specified in the targets property. The targets property is an
array that lets you specify platform-specific URLs. For example,
you might want users on iOS and Android to navigate to different
URLs. In this example, you set the OS to default, which means the

URL is the same for all platforms.
The HttpPOST action will make

an HTTP POST request to an
external Web service specified in
the target property. Currently the
value is empty. That’s why you see
an error when you click on the
Approve button.

MessageCard
Playground App
It would be great if you could
visualize how the card looks when
you’re authoring the markup.
Microsoft has a Web app that lets
you do just that. It’s called the
MessageCard Playground App
(bit.ly/2s274S9).

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf8">
 <script type="application/ld+json">{
 "@context": "http://schema.org/extensions",
 "@type": "MessageCard",
 "hideOriginalBody": "true",
 "title": "Expense report is pending your approval",
 "sections": [{
 "text": "Please review the expense report below.",
 "facts": [{
 "name": "ID",
 "value": "98432019"
 }, {
 "name": "Amount",
 "value": "83.27 USD"
 }, {
 "name": "Submitter",
 "value": "Kathrine Joseph"
 }, {
 "name": "Description",
 "value": "Dinner with client"
 }]
 }],
 "potentialAction": [{
 "@type": "HttpPost",
 "name": "Approve",
 "target": ""
 }, {
 "@type": "OpenUri",
 "name": "View Expense",
 "targets": [{ "os": "default",
 "uri": "https://expense.contoso.com/view?id=98432019"}]
 }]
 }
 </script>
 </head>
 <body>
 <p>Please approve
 expense report #98432019 for $83.27.</p>
 </body>
</html>

Figure 1 HTML of an Outlook Actionable Message

Figure 2 Actionable Message in Outlook Web Access

It would be great if you could
visualize how the card looks when

you’re authoring the markup.

0817msdn_WongOutlook_v4_34-43.indd 36 7/12/17 11:58 AM

www.bit.ly/2s274S9

(888) 850-9911
Sales Hotline - US & Canada:

/update/2017/08

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2017 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
2 New Century Place
East Street
Reading, Berkshire
RG1 4ET
United Kingdom

Asia / Pacific Headquarters
ComponentSource
7F Kojimachi Ichihara Bldg
1-1-8 Hirakawa-cho
Chiyoda-ku
Tokyo, 102-0093
Japan www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $586.04
Help and documentation for .NET and mobile applications.

• Powerful features in an easy, accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to responsive HTML, CHM, PDF, MS Word, ePUB, Kindle or print

• Styles and Templates give you full design control

BEST SELLER

Experience the brand new look at www.componentsource.com

Aspose.Total for .NET from $2,939.02
Create, Edit & Manipulate Word, Excel, PDF and PowerPoint Files in your .NET apps.

• Aspose.Total for .NET contains every Aspose .NET API in one complete package

• Also works with MS Visio, MS OneNote, MS Project, Email, Images, Barcodes, OCR & OMR

• Mail Merge, Document Assembly, Text Extraction, PST & OST Creation and File Conversion

• Create and Recognize Barcodes, Control Text Formatting, Paragraphs, Images and Tables

• Now includes the new Aspose.CAD and Aspose.3D APIs

BEST SELLER

DevExpress DXperience 17.1 from $1,439.99
The complete range of DevExpress .NET controls and libraries for all major Microsoft platforms.

• WinForms - New TreeMap control, Chart series types and Unbound Data Source

• WPF - New Wizard control and Data Grid scrollbar annotations

• ASP.NET - New Vertical Grid control, additional Themes, Rich Editor Spell Checking and more

• Windows 10 Apps - New Hamburger Sub Menus, Splash Screen and Context Toolbar controls

• CodeRush - New debug visualizer expression map and code analysis diagnostics

BEST SELLER

LEADTOOLS Document Imaging SDKs V19 from $2,995.00 SRP

Add powerful document imaging functionality to desktop, tablet, mobile & web applications.

• Universal document viewer & conversion framework for PDF, O� ce, CAD, TIFF & more

• OCR, MICR, OMR, ICR and Forms Recognition supporting structured & unstructured forms

• PDF SDK with text edit, hyperlinks, bookmarks, digital signature, forms, metadata

• Barcode Detect, Read, Write for UPC, EAN, Code 128, Data Matrix, QR Code, PDF417

• Zero-footprint HTML5/JavaScript UI Controls & Web Services

BEST SELLER

Untitled-1 1 7/5/17 10:27 AM

http://www.componentsource.com

msdn magazine38 Microsoft Office

You should always design your card in the app first. Once you’re
happy with the card layout, you can then use the markup in your
e-mail messages.

Calling an External Web Service
with HttpPOST Action
Now you have a message card with two actions. The OpenUri will open
a browser and navigate to the URL specified in the action. For the Http-
POST action, you’d like it to call your REST API that will approve the
expense report. You replace the HttpPOST action with the following:

{
 "@type": "HttpPost",
 "name": "Approve",
 "target": "https://api.contoso.com/expense/approve",
 "body": "{ \"id\": \"98432019\" }"
}

When a user clicks on the Approve button, a Microsoft server
will make an HTTP POST request that’s similar to the following:

POST api.contoso.com/expense/approve
Content-Type: application/json

{ "id": "98432019" }

The target is the URL, which the Microsoft server is going to
make a POST request to, and the body is the content of the request.
The body content is always assumed to be JSON.

Now you’ll send yourself an e-mail with the new markup. When
you click on the Approve button, the action is completed successfully.

ActionCard Action
Now let’s add a Reject button so users can reject an expense report.
For reject, you need additional input from users to explain why
the expense report is rejected.

The ActionCard action is designed for such scenarios. It con-
tains one or more inputs and associated actions that can be either
OpenUri or HttpPost. You insert an ActionCard action in between
HttpPOST and OpenUri, as shown in Figure 4.

If you send yourself the updated markup, there are Approve,
Reject and View Expense buttons. If you click on the Reject button,
you can now enter comments before you reject the expense report.

Let’s take a look at the ActionCard action markup. Besides the
type and name properties, it has an array of inputs and actions. In
this example, you have a multiline TextInput that lets users enter
text. The other supported inputs are DateInput and Multichoice
Input. For more details, refer to bit.ly/2t3bLJN.

You have an HttpPOST action that will make a call to the exter-
nal Web service to reject the expense report. This is similar to the
HttpPOST action for the approve action. One major difference is
that you want to pass the comments entered by users to the Web
service call. You can reference to the value of the text input by
using {{rejectComment.value}}, where rejectComment is the ID
of the text input.

Web Service for Actionable Messages
So far you’ve seen the markup for Actionable Messages in Outlook
and how it works. In the rest of the article, I’ll describe how a
Web service should handle requests coming from Actionable
Messages in Outlook.

Actionable Messages will work with any Web service that can handle
HTTP POST requests. In this example, your Web service is an API
controller in ASP.NET MVC. Figure 5 shows your API controller.

There are two methods in this API controller, one for approval
and another for rejection. The Web service must return an HTTP
status code of 2xx for the action to be considered successful. The
Web service can also include the CARD-ACTION-STATUS
header in the response. The value of this header will be displayed
to the user in a reserved area of the card. If you deploy the Web
service to https://api.contoso.com and you click on the Approve
button, you’ll get the notification that the operation was completed
successfully, as shown in Figure 6.

You now have the Actionable Message working end to end. You
can send out the Actionable Message and when the user clicks on
the Approve button, an HTTP POST request is made to your Web
service. Your Web service will process the request and return 200
OK. Outlook will then mark the action as done. Next, I’ll look at
how you can secure your Web service.

"sections": [{
 "text": "Please review the expense report below.",
 "facts": [{
 "name": "ID",
 "value": "98432019"
 }, {
 "name": "Amount",
 "value": "83.27 USD"
 }, {
 "name": "Submitter",
 "value": "Jonathan Kiev"
 }, {
 "name": "Description",
 "value": "Dinner with client"
 }]
}],

Figure 3 Card with One Section

"potentialAction": [{
 "@type": "HttpPost",
 ...
}, {
 "@type": "ActionCard",
 "name": "Reject",
 "inputs": [{
 "@type": "TextInput",
 "id": "comment",
 "isMultiline": true,
 "title": "Explain why the expense report is rejected"
 }],
 "actions": [{
 "@type": "HttpPOST",
 "name": "Reject",
 "target": "https://api.contoso.com/expense/reject",
 "body": "{ \"id\": \"98432019\", \"comment\": \"{{rejectComment.value}}\" }"
 }]
},{
 "@type": "OpenUri",
 ...
}]

Figure 4 ActionCard Action

Actionable Messages will work
with any Web service that can
handle HTTP POST requests.

0817msdn_WongOutlook_v4_34-43.indd 38 7/12/17 11:58 AM

www.bit.ly/2t3bLJN

39August 2017msdnmagazine.com

Limited-Purpose Tokens
Because the expense ID usually follows a certain format, there’s a risk
that an attacker can perform an attack by posting a lot of requests with
different expense IDs. If an attacker successfully guesses an expense
ID, the attacker might be able to approve or reject that expense report.
Microsoft recommends developers use “limited-purpose tokens” as
part of the action target URL or in the body of the request. The limited-
purpose token should be hard for attackers to guess. For example, I
use a GUID, a 128-bit number as the limited-purpose token. This
token can be used to correlate service URLs with specific requests and
users. It can also be used to protect Web services from replay attacks
(bit.ly/2sBQmdn). You update the markup to include a GUID in the body:

{
 "@type": "HttpPost",
 "name": "Approve",
 "target": "https://api.contoso.com/expense/approve",
 "body": "{ \"id\": \"98432019\", \"token\": \
 "d8a0bf4f-ae70-4df6-b129-5999b41f4b7f\" }"
}

Bearer Token
While limited-purpose tokens make it harder for attackers to forge a
request, they’re still not perfect. Ideally, a Web service should be able
tell whether an HTTP POST request is coming from a Microsoft
server instead of some unauthorized, potentially malicious server.

Microsoft solves this problem by including a bearer token in
every HTTP POST request it sends to Web services. The bearer
token is a JSON Web Token (JWT) and it’s included in the Autho-
rization header of a request. When a user clicks on the Approve
button, the Web service will receive a request that looks like this:

POST https://api.contoso.com/expenses/approve

Content-Type: application/json
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IjhxZ3A4VER
CbDJINkp5RkU0WjM0ZDJoYS1rRSIsImtpZCI6IjhxZ3A4VERCbDJINkp5RkU0WjM0ZDJoYS1rRSJ9.
eyJpYXQiOjE0ODQwODkyNzksInZlciI6IlNUSS5FeHRlcm5hbEFjY2Vzc1Rva2VuLlYxIiwiYXBw
aWQiOiI0OGFmMDhkYy1mNmQyLTQzNWYtYjJhNy0wNjlhYmQ5OWMwODYiLCJzdWIiOiJkYXZpZEBj
b250b3NvLmNvbSIsImFwcGlkYWNyIjoiMiIsImFjciI6IjAiLCJzZW5kZXIiOiJleHB
lbnNlYXBw... (truncated for brevity)

{
 "id": "98432019",
 "token": "d8a0bf4f-ae70-4df6-b129-5999b41f4b7f"
}

What follows “Bearer” in the Authorization header is a long base-64
encoded string that’s a JSON Web Token (JWT). You can decode the
JWT at jwt.calebb.net. Figure 7 shows a sample token after it’s decoded.

Every JWT has three segments, separated by a dot (.). The first
segment is the header, which describes the cryptographic oper-
ations applied to the JWT. In this case, the algorithm (alg) used
to sign the token is RS256, which means RSA using the SHA-256
hash algorithm. The x5t value specifies the thumbprint of the key
used to sign the token.

The second segment is the payload itself. It has a list of claims
that the token is asserting. Web services should use these claims to

verify a request. The table in Figure
8 describes these claims.

The third segment is the digital
signature of the token. By verify-
ing the signature, Web services can
be confident that the token is sent
by Microsoft and trust the claims
in the token.

Verifying a digital signature is a
complex task. Fortunately, there’s
a library on NuGet that makes the
verification task easy. The library
is available at bit.ly/2stq90c and it’s
authored by Microsoft. Microsoft
also published code samples for
other languages on how to verify
the token. Links for these code
samples are available at the end
of this article.

[RoutePrefix("expense")]
public class ExpenseController : ApiController
{
 [HttpPost]
 [Route("approve")]
 public HttpResponseMessage Approve([FromBody]JObject jBody)
 {
 string expenseId = jBody["id"].ToString();

 // Process and approve the expense report.
 HttpResponseMessage response = this.Request.CreateResponse(HttpStatusCode.OK);
 response.Headers.Add("CARD-ACTION-STATUS", "The expense was approved.");

 return response;
 }

 [HttpPost]
 [Route("reject")]
 public HttpResponseMessage Reject([FromBody]JObject jBody)
 {
 string expenseId = jBody["id"].ToString();
 string comment = jBody["comment"].ToString();

 // Process and reject the expense report.
 HttpResponseMessage response = this.Request.CreateResponse(HttpStatusCode.OK);
 response.Headers.Add("CARD-ACTION-STATUS", "The expense was rejected.");

 return response;
 }
}

Figure 5 Expense API Controller

Figure 6 Expense Report with Successful Approval Notification

0817msdn_WongOutlook_v4_34-43.indd 39 7/12/17 11:58 AM

www.bit.ly/2sBQmdn
http://jwt.calebb.net
www.bit.ly/2stq90c
http://www.msdnmagazine.com

Untitled-7 2 6/5/17 1:38 PM

www.textcontrol.com
www.reporting.cloud

Untitled-7 3 6/5/17 1:38 PM

www.textcontrol.com

msdn magazine42 Microsoft Office

After you include the NuGet package in the Web service project,
you can use the VerifyBearerToken method, as shown in Figure
9, to verify the bearer token in a request.

First, the method verifies there’s a bearer token in the
Authorization header. Then, it initializes a new instance of
ActionableMessageTokenValidator and calls the ValidateToken
Async method. The method takes two parameters. The first one
is the bearer token itself. The second one is the Web service
base URL. If you look at the decoded JWT, this is the value

of the aud (audience) claim. It basically means the token is
issued for the intended audience, which is your Web service but
not any other Web service. In this case, the API to be called is
http://api.contoso.com/expense/approve. The value in the claim
will be the base URL, which is https://api.contoso.com.

The method will return an instance of ActionableMessage
TokenValidationResult. First, you’ll check the property

{
 typ: "JWT",
 alg: "RS256",
 x5t: "8qgp8TDBl2H6JyFE4Z34d2ha-kE",
 kid: "8qgp8TDBl2H6JyFE4Z34d2ha-kE"
}.
{
 iat: 1484089279,
 ver: "STI.ExternalAccessToken.V1",
 appid: "48af08dc-f6d2-435f-b2a7-069abd99c086",
 sub: "david@contoso.com",
 appidacr: "2",
 acr: "0",
 sender: "expenseapproval@contoso.com",
 iss: "https://substrate.office.com/sts/",
 aud: "https://api.contoso.com",
 exp: 1484090179,
 nbf: 1484089279
}.
[signature]

Figure 7 A Sample Bearer JSON Web Token

Figure 8 Description of Claims in Payload

Claims Description
iss The token issuer. The value should always be

https://substrate.office.om/sts/. The Web service should reject
the token and the request if the value does not match.

appid The ID of the application which issues the token. The value
should always be 48af08dc-f6d2-435f-b2a7-069abd99c086.
The Web service should reject the token and the request if the
value doesn’t match.

aud The audience of the token. It should match the hostname of the
Web service URL. The Web service should reject the token and
the request if the value doesn’t match.

sub The subject who performed the action. The value will be the
e-mail address of the person who performed the action, if the
e-mail address or any of the proxy e-mail addresses is in the
To: line. If none of the e-mail addresses is matched, this will be
the hashed value of the subject’s user principal name (UPN). It’s
guaranteed to be the same hashed value for the same UPN.

sender The e-mail address of the original message sender.
tid The tenant ID of the token issuer.

private async Task<HttpStatusCode> VerifyBearerToken(
 HttpRequestMessage request, string serviceBaseUrl, string expectedSender)
{
 if (request.Headers.Authorization == null ||
 !string.Equals(request.Headers.Authorization.Scheme, "bearer",
 StringComparison.OrdinalIgnoreCase) ||
 string.IsNullOrEmpty(request.Headers.Authorization.Parameter))
 {
 return HttpStatusCode.Unauthorized ;
 }

 string bearerToken = request.Headers.Authorization.Parameter;
 ActionableMessageTokenValidator validator =
 new ActionableMessageTokenValidator();
 ActionableMessageTokenValidationResult result =
 await validator.ValidateTokenAsync(bearerToken, serviceBaseUrl);

 if (!result.ValidationSucceeded)
 {
 return HttpStatusCode.Unauthorized;
 }

 if (!string.Equals(result.Sender, expectedSender,
 StringComparison.OrdinalIgnoreCase) ||
 !result.ActionPerformer.EndsWith("@contoso.com",
 StringComparison.OrdinalIgnoreCase))
 {
 return HttpStatusCode.Forbidden;
 }

 return HttpStatusCode.OK;
}

[HttpPost]
[Route("approve")]
public async Task<HttpResponseMessage> Approve([FromBody]JObject jBody)
{
 HttpRequestMessage request = this.ActionContext.Request;
 HttpStatusCode result = await VerifyBearerToken(
 request, "https://api.contoso.com",
 "expenseapproval@contoso.com");

 switch (result)
 {
 case HttpStatusCode.Unauthorized:
 return request.CreateErrorResponse(
 HttpStatusCode.Unauthorized, new HttpError());

 case HttpStatusCode.Forbidden:
 HttpResponseMessage errorResponse =
 this.Request.CreateErrorResponse(HttpStatusCode.Forbidden, new HttpError());
 errorResponse.Headers.Add("CARD-ACTION-STATUS",
 "Invalid sender or the action performer is not allowed.");
 return errorResponse;

 default:
 break;
 }

 string expenseId = jBody["id"].ToString();

 // Process and approve the expense report.

 HttpResponseMessage response = this.Request.CreateResponse(HttpStatusCode.OK);
 response.Headers.Add("CARD-ACTION-STATUS", "The expense was approved.");

 return response;
}

Figure 9 The VerifyBearerToken Method

Verifying a digital signature is
a complex task. Fortunately,

there’s a library on NuGet that
makes the verification task easy.

0817msdn_WongOutlook_v4_34-43.indd 42 7/12/17 11:58 AM

43August 2017msdnmagazine.com

ValidationSucceeded. If the validation succeeded, the value will
be true; otherwise, it’ll be false.

The result also includes two other properties that will be use-
ful to third parties. The first one is Sender. This is the value of the
sender claim in the token. This is the e-mail address of the account
that sent the actionable message. The second one is the Action-
Performer, which is the value of the sub claim. This is the e-mail
address of the person who performed the action. In this example,
only those with @contoso.com e-mail addresses can approve or
reject an expense report. You can replace the code with a more
complicated verification of your own.

Refresh Card
So far the only way to provide feedback to a user is through the
CARD-ACTION-STATUS header. The value of the header will
be displayed to the user in a reserved area of the card. Another
option is to return a refresh card to the user. The idea is to replace
the current action card with a different card. There are a few reasons
why you want to do that. For example, after an expense report is
approved, you don’t want users to be able to approve or reject the
expense report again. Instead, you’d like to tell the user that the
expense report is already approved. Figure 10 shows the markup
that you’ll return.

You need to set the value of the header CARD-UPDATE-IN-BODY
to true so Microsoft servers know that the response has a refresh
card. Figure 11 shows the Approve method returns a refresh card.

Wrapping Up
Actionable Messages let users complete tasks within Outlook in
a secure way. It’s available in desktop Outlook and Outlook Web
Access today and the feature is coming to Outlook for Mac and
Outlook Mobile soon. It’s straightforward to implement Action-
able Messages. First, you need to add the required markup to the
e-mails you’re sending out. Second, you need to verify the bearer
token sent by Microsoft in your Web service. Actionable Messages
will make your users happier and more productive. There is
so much more about Actionable Messages than this article can
cover. Visit bit.ly/2rAD6AZ for the complete references and links to
the code samples.

I’d like to acknowledge Sohail Zafar, Edaena Salinas Jasso, Vas-
ant Kumar Tiwari, Mark Encarnacion and Miaosen Wang, who
helped review this article for grammar, spelling, and flow.	 n

Woon Kiat Wong is a software engineer from the Knowledge Technologies Group
in Microsoft Research. He works closely with the Outlook team to deliver Action-
able Messages. Contact him at wowong@microsoft.com.

Thanks to the following Microsoft technical experts for reviewing this article:
Pretish Abraham, David Claux, Mark Encarnacion and Patrick Pantel

{
 "@context": "http://schema.org/extensions",
 "@type": "MessageCard",
 "hideOriginalBody": "true",
 "title": "Expense report #98432019 was approved",
 "sections": [{
 "facts": [{
 "name": "ID",
 "value": "98432019"
 }, {
 "name": "Amount",
 "value": "83.27 USD"
 }, {
 "name": "Submitter",
 "value": "Kathrine Joseph"
 }, {
 "name": "Description",
 "value": "Dinner with client"
 }]
 }]
}

Figure 10 Markup Returned to Expense Report with Refresh Card

private HttpResponseMessage CreateRefreshCard(
 HttpRequestMessage request, string actionStatus,
 string expenseID, string amount, string submitter, string description)
{
 string refreshCardFormatString = "{\"@context\": \"http://schema.
org/extensions\",\"@type\": \"MessageCard\",\"hideOriginalBody\":
\"true\",\"title\": \"Expense report #{0} was approved\",\"sections\":
[{\"facts\": [{\"name\": \"ID\",\"value\": \"{0}\"},{\"name\":
\"Amount\",\"value\": \"{1}\"},{\"name\": \"Submitter\",\"value\":
\"{2}\"},{\"name\": \"Description\",\"value\": \"{3}\"}]}]}";
 string refreshCardMarkup = string.Format(
 refreshCardFormatString,
 expenseID,
 amount,
 submitter,
 description);

HttpResponseMessage response = request.CreateResponse(HttpStatusCode.OK);
Response.Headers.Add("CARD-ACTION-STATUS", actionStatus);
 response.Headers.Add("CARD-UPDATE-IN-BODY", "true");
 response.Content = new StringContent(refreshCardMarkup);

 return response;
}

[HttpPost]
[Route("approve")]
public async Task<HttpResponseMessage> Approve([FromBody]JObject jBody)
{
 HttpRequestMessage request = this.ActionContext.Request;
 HttpStatusCode result = await VerifyBearerToken(
 request, "https://api.contoso.com",
 "expenseapproval@contoso.com");

 switch (result)
 {
 case HttpStatusCode.Unauthorized:
 return request.CreateErrorResponse(
 HttpStatusCode.Unauthorized, new HttpError());

 case HttpStatusCode.Forbidden:
 HttpResponseMessage errorResponse =
 this.Request.CreateErrorResponse(
 HttpStatusCode.Forbidden, new HttpError());
 errorResponse.Headers.Add("CARD-ACTION-STATUS",
 "Invalid sender or the action performer is not allowed.");
 return errorResponse;

 default:
 break;
 }

 string expenseId = jBody["id"].ToString();

 // Process and approve the expense report.

 return CreateRefreshCard(
 request,
 "The expense was approved.",
 "98432019",
 "83.27 USD",
 "Jonathan Kiev",
 "Dinner with client");
}

Figure 11 The Approve Method Returns a Refresh Card

0817msdn_WongOutlook_v4_34-43.indd 43 7/12/17 11:58 AM

mailto:wowong@microsoft.com
www.bit.ly/2rAD6AZ
http://www.msdnmagazine.com

msdn magazine44

For Azure enterprise customers, a key challenge in
managing their cloud footprint is the ability to control what they
spend and to charge those costs back to the consumers. Fortu-
nately, there are several vendors that provide tools, such as Cloud
Cruiser, Cloudyn, and Cloudability, to help with collecting usage
data and generating a rich set of reports. Additionally, you can
find many good examples of how to pull data programmatically,
such as the post from a former co-worker of mine, Ed Mondek, in
which he shows how to pull data into Excel and view it (bit.ly/2rzDOPI).
However, if you want to pull that data regularly and enable his-
torical, present trend and predictive views, you need to store a lot
more data. For a large enterprise with thousands of resources per
subscription, that amount of data can be daunting and is certainly
not what you’d want to fetch and keep on a local machine.

Luckily, there’s another way. In this article I’m going to walk you
through the serverless Extract-Transform-Load (ETL) process I set
up to extract such data, provide a little enrichment and store the data
to a place where further work (analytics, map-reduce and so forth)

can be done. I’ll touch on the overall design, key decision points
and important things to consider in taking a serverless approach.

Determining Consumption
The first decision is choosing between the Enterprise Agreement
(EA) Billing API and the Azure Billing API, which centers its
requests around specific subscriptions. My prototype is targeted at
enterprise customers with multiple enrollments in an EA. In the
scenario with which I’m working, subscriptions are being used as
part of the management boundaries for both specific product groups
and for separating production from non-production resources.
This could result in a fairly high number of subscriptions in flux
due to the volatile proof-of-concept (PoC) type of work being cre-
ated as new groups and new product lines start up in Azure. Thus,
I chose to work with the EA API because it reduced the scope
of work in that I don’t have to create a discovery mechanism for
subscriptions. This leaves me with the noted challenge of not having
any data for subscriptions created outside of the enrollments for
the enterprise. While this is an important area to tackle, it comes
with a number of other process and management challenges that
have to be solved organizationally and is outside the scope of the
work I want to accomplish.

Requirements and Logical Flow
In any architecture, it’s the intersections between systems that require
the most scrutiny in design and testing. A serverless architecture
doesn’t change the need to consider the volume of data that moves

A ZURE

Batch Processing Using a
Serverless Architecture
Joseph Fultz

This article discusses:
•	Design considerations in a serverless architecture

•	Integrating multiple Azure Platform-as-a-Service capabilities

•	Billing data retrieval

Technologies discussed:
Azure CosmosDB, Azure Functions, Azure Blob Storage

0817msdn_FultzBatch_v3_44-52.indd 44 7/12/17 11:55 AM

www.bit.ly/2rzDOPI

45August 2017msdnmagazine.com

through the supersystem, and must take into account the partic-
ular constraints of the discrete subsystems. The principal change
in architecting such a supersystem is more in the depth or scope
when defining the system, such as sizing a queue for throughput,
but not sizing the hardware that hosts it. You must still consider
latency, connectivity, volume, availability, cost, and any number of
other factors, but the work of sizing and defining the particulars of
the service ends once you’ve defined the capacity and the cost of
the capability needed to meet the identified requirements. There’s
no additional work of defining the host environment and all its
needed artifacts as you might have done in the past.

Before I get into designing what the overall flow of information
into the system will look like, let’s note a few facts about the source
systems and some requirements for the end-state system:

• �All of the data for every subscription under the EA will be
returned for all resources for every day it’s available in the
designated month. This can result in a lot of data, with a linear
growth as the month progresses.

• �Any and all records may be updated throughout the month.
The stated settlement timing is 72 hours. As a point of safety,
I’ll consider all records in flux for a given month until 72
hours past the beginning of the subsequent month.

• �The usage data isn’t returned with an ID for the enrollment,
so I’ll have to add it.

• �Determining cost is a separate activity and requires retrieving
the rate card and further processing.

• �No information will be received for subscriptions that aren’t
in the specified EA.

Additionally, there are a few technical business requirements
that the prototype must include:

• �The ability to create read-only and geographically distributed
datasets must be included.

• �Processing performance should be adjustable for cost
versus performance.

• �The ability to secure access at the subscription level should
be designed in.

The overall flow itself is fairly simple in that I’m simply going to
retrieve the data, add a small amount of information and persist
it into the target storage.

As depicted in Figure 1, the path for getting the data to its tar-
get is fairly simple because there’s no integration with any external
systems other than the EA Billing API. I know that when I work
through the data, I’ll have to do some amount of initial processing
and enrichment (for example, add the enrollment ID), and on
the persistence side I’ll have to deal with existing records from
the previous day’s fetches. I’ll probably want to look at separating
those two processes.

Thus, you see three major blocks that represent retrieval, enrich-
ment and persistence, which are all separated by some queuing
mechanism. The complications start after I make some technology
picks and start looking at the details of implementing with those
components and making the processing pipeline run in parallel.

Technology Mapping
At this point in the process, two factors beyond the requirements
of the overall system may come into play: enterprise standards
and personal preference. If these are in conflict, the result can be
almost endless debate. Fortunately, in this instance I don’t have to
worry about this. I do have my own mix of constraints, along with
those I noted from the initial requirements. In this case, I’d like to
make sure to hit these marks:

• �Simplest compute provisioning and edits/updates for quick
cycles of testing

• �Easy automatic scaling
• �Easy provisioning for geographic distribution of data
• �Easy mechanisms for scheduling and triggering work

Here, I want to focus on the work and not on the system setup.
I’ll leave things like cost analysis for various implementations
and adherence to corporate standards until after I have a working
prototype. I did consider some alternatives, such as Azure SQL
Database versus Azure Cosmos DB, but I’m going to focus on my
choices and the primary motivations for each of those choices.

• �Compute: Azure Functions will serve me well here. It meets
my need for scale and simplicity while also providing easy
configuration of scheduled and triggered jobs and easy
integrations with bindings.

• �Queuing: Keeping things simple, I’ll use Azure Storage Blobs
and separate the files by containers. The unknown but expect-
edly large size of each initial input file makes storage queues
a non-option for initial retrieval, and likely takes them out
of the running for processing individual subscription data
splits. Beyond that, I’d like to keep the mechanism uniform
and I really don’t need any advanced capabilities, such as
priority messages, routing, message-specific security and
poisoned message handling.

• �Storage: Azure Cosmos DB is indeed my friend here. Using
the subscription ID as the partition key allows me to limit
access by subscription, if necessary. Additionally, the ease
of adding and removing read and read-write geographically
distributed replicas and native support in Power BI makes
this a no-brainer for my system. Last, I have to admit a little
personal bias: I want a proper document storage mecha-
nism that supports the SQL syntax I’ve used for too many
years to abandon.

Figure 2 represents the application of technology to the logical
architecture, as well as adding some processing flow to it.

I’ve taken the liberty of including the names I used in this dia
gram, but you might not have names at this stage of the design.
The shapes used indicate the technology in play; the numbers on
the line are the sequence in which the process is executed, and
the arrows indicate which component initiates the outbound call.
Note that I’ve identified four Azure Functions, four Azure Storage Figure 1 Logical Flow

Fetch Data
for Enrollment

Enrich and Split
for Processing

Enrich and Split
for Processing

Parallel

Persistence QueueIntake Queue

0817msdn_FultzBatch_v3_44-52.indd 45 7/12/17 11:55 AM

http://www.msdnmagazine.com

msdn magazine46 Azure

Blob Containers and three Azure
Cosmos DB collections that I’ll
employ as the working pieces of
my implementation.

Separating the data into three
collections is useful for explain-
ing, but serves a grander purpose.
I won’t need the same security for
each of the types of documents and
the separation makes that easy to
understand and manage. More im-
portant, I define the performance
characteristics by collection and the
separation allows me to more eas-
ily optimize that by having a large
high-throughput collection specif-
ically for the DetailedUsageData,
while the other two remain minimal.

Retrieving Data
Starting with the first two legs of the
data journey, I want to run some-
thing similar to what I do with a Cron job. While the WebJobs SDK
itself would support this type of implementation, it would leave
a lot of work of configuring the runtime environment to me and
increase my overall development effort. Because Azure Functions
is built on top of the WebJobs SDK and naturally supports Timer
Trigger, it’s an easy choice. I could’ve used Azure Data Factory
because it’s a tool made specifically for moving data around and it
supports retrieving Web data and working with Blobs. However,
that would mean I’d need to work out certain things with regard
to reference data and updating duplicate records in Azure Cosmos
DB when I don’t have the row ID. Familiarity with development
and debugging using Azure Functions, and the information I can
get from Azure Functions integration with Application Insights,
makes Azure Functions my preferred choice in this instance.

The Timer Trigger has an obvious function, but in order for
DailyEABatchControl to know what to process, it retrieves con-
figuration information from the Enrollments collection, which
has the following schema:

{
 "enrollmentNumber": "<enrollment number>",
 "description": "",
 "accessKey": "<access key>",
 "detailedEnabled": "true",
 "summaryEnabled": "false",
}

For now, having the enrollment number, access key and a flag
to turn on processing (“detailedEnabled”) is sufficient for me to
do work. However, should I start adding capabilities and need
additional run configuration information, Azure Cosmos DB
will allow me to easily add elements to the document schema
without having to do a bunch of reworking and data migration.
Once the DailyEABatchControl is triggered, it will loop through
all of the documents and call RetrieveUsage for each enrollment
that has “detailedEnabled” set to true, separating the logic to start
a job from the logic to retrieve the source data. I use the JobLog

collection to determine if a job has already been run for the day,
as shown in Figure 3.

The last lamba results in a filtered list of enrollments for which
data hasn’t been retrieved for the day in question. Next, I’ll call the
RetrieveUsage (step 3 in Figure 2) from within DailyEABatch
Control by calling it with HTTPClient with sufficient data in the
post body for it to know the enrollment for which it’s fetching
data and the month for which it’s fetching it, as shown in Figure 4.

It’s worth pointing out that this isn’t intended to be an open sys-
tem. I’m creating a closed processing loop so I don’t want just any
caller executing the RetrieveUsage Function. Thus, I’ve secured it
by requiring a code that’s not shown in Figure 4, but is part of the
URI returned from GetEnvironmentVariable(“retrieveUsageUri”).
In an enterprise implementation, a service principal and Azure
Active Directory integration would be a more realistic choice to
achieve a higher degree of security.

// Get list of enrollments for daily processing
List<Enrollment> enrollments =
 inputDocument.CreateDocumentQuery<Enrollment>(
 UriFactory.CreateDocumentCollectionUri(dbName, enrollmentCollection),
 new SqlQuerySpec("SELECT * FROM c WHERE c.detailedEnabled = 'true'"),
 queryOptions).ToList<Enrollment>();

// Get yesterday's date to make sure there are logs for today
int comparisonEpoch =
 (int)(DateTime.UtcNow.AddDays(-1) - new DateTime(1970, 1, 1)).TotalSeconds;

string logQuery =
 "SELECT * FROM c WHERE c.epoch > '" + comparisonEpoch.ToString() + "'";

List<JobLog> logs = inputDocument.CreateDocumentQuery<JobLog>(
 UriFactory.CreateDocumentCollectionUri(dbName, jobLogCollection),
 new SqlQuerySpec(logQuery), queryOptions).ToList<JobLog>();

// Get list of enrollments for which there is no match
var jobList = enrollments.Where(x =>
 !logs.Any (l => l.enrollmentNumber == x.enrollmentNumber));

Figure 3 Job Control Logic

Figure 2 Technology Map and Data Flow

3

1

4 5

7

6

9

10

11

RetrieveUsage

DailyEABatchControl

SplitDailyUsage

ProcessDailyUsage

newdailyusage

newdailysplit

processedusage

processeddailysplit

{ }

Enrollments

{ }

JobLog

{ }

DetailedUsageData
EAUsage

{ }

8

12

2

EA Portal
(Billing API)

Power BI Reporting

0817msdn_FultzBatch_v3_44-52.indd 46 7/12/17 11:55 AM

[WPF]
[Windows Forms]
[Free Gauges]
[Data Visualization]
[Volume Rendering]
[3D / 2D Charts] [Maps]

LightningChart®

The fastest and most advanced
charting components

Create eye-catching and
powerful charting applications
for engineering, science
and trading

Get free trial at
LightningChart.com/ms

• DirectX GPU-accelerated
• Optimized for real-time monitoring
• Supports gigantic datasets
• Full mouse-interaction
• Outstanding technical support
• Hundreds of code examples

NEW
• Now with Volume Rendering extension
• Flexible licensing options

Untitled-12 1Untitled-12 1 3/31/17 5:16 PM3/31/17 5:16 PM

www.LightningChart.com/ms

msdn magazine48 Azure

The last step of the first leg of my data’s journey is within the
RetrieveUsage function, where it’s persisted to the newdailyusage
container with Azure Blob Storage. However, in order to get that
data I have to construct the call and include the accessKey as a
bearer token in the header:

HttpClient httpClient = new HttpClient();

string retrieveUsageUri = usageQB.FullEAReportUrl();

httpClient.DefaultRequestHeaders.Add("authorization", bearerTokenHeader);
httpClient.DefaultRequestHeaders.Add("api-version", "1.0");

var response = await httpClient.GetAsync(retrieveUsageUri);

response.EnsureSuccessStatusCode();

string responseText = await response.Content.ReadAsStringAsync();

For the sake of brevity, I’ve cut some date manipulations out of
this code block and haven’t included a helper class for generating the
bearerTokenHeader or the UsageReportQueryBuilder. However,
this should be sufficient to illustrate how they’re used and ordered.
The accessKey is passed into the static method FromJwt, which will
return the BearerToken type, from which I simply grab the header
and add it to the request that’s created from the URL constructed
by the call to usageQB.FullEAReportUrl. Last, I update the out-
put binding to the path and filename I want for the Blob target:

path = "newdailyusage/" + workingDate.ToString("yyyyMMdd")
 + "-" + data.enrollment + "-usage.json";
var attributes = new Attribute[]
{
 new BlobAttribute(path),
 new StorageAccountAttribute("eabillingstorage_STORAGE")
};

using (var writer = await binder.BindAsync<TextWriter>(attributes))
{
 writer.Write(responseText);
}

This will result in a structure in Azure Storage that looks like this:
newdailyusage/
		 20170508-1234-usage.json
		 20170508-456-usage.json
		 20170507-123-usage.json

This allows me to store data multiple enrollments and multiple
files for each enrollment in case processing doesn’t happen for some
reason. Additionally, because data can change for previous days as
the month progresses, it’s important to have the files available for
research and reconciliation in case anomalies show up in the report data.

Splitting Data for Parallel Processing
With so much data coming in and the work of somehow updating
records for a given month of processing each day, it’s important to
process this data in a parallel fashion. Usually, at least nowadays,
this is when I break out the parallel libraries for C#, write a few
lines of code and pat myself on the back for being a genius at par-
allel processing. However, in this instance, I’d really like to just rely
on the capabilities of the platform to do that for me and allow me
to focus on each discrete task.

The next Azure Function in the sequence has been configured
with a blob trigger so it will pick up files that land in the inbound
processing storage container. The job at this step is to split the
inbound file into a file-per-day per enrollment. All in all, this is a
pretty simple step, but it does require deserializing the JSON file
into RAM. It’s important to note this, because the method I’ve
chosen to use for the prototype simply calls the deserialize method:

JsonConvert.DeserializeObject<List<EAUsageDetail>>(myBlob);

I know this to be sufficient for my purposes, but the present
RAM allocation for the Azure Function host is 1.5GB. It’s possible
that, for a large enrollment with substantial resources provisioned,
a file would become too big at some point in the month to load
into RAM, in which case an alternate method for parsing and split-
ting the file will have to be used. Moreover, if you create an Azure
Function that takes more than five minutes to run, it will have to
be modified because the current default is five minutes, though
this can be adjusted to a max of 10 minutes via the host configura-
tion JSON. As I mentioned early on, knowing the volume of data
will be key at each point and for integration in the overall system.
Once the data has been deserialized, I’ll grab the max day out of
it and set up a loop from day one to day max to start selecting out
the data for each of those days, as shown in Figure 5.

Once all the days have been split into separate files and written
out (see step 7 in Figure 2), I simply move the file to the processed

foreach(var doc in jobList)
{
 HttpClient httpClient = new HttpClient();

 string retrieveUsageUri = @"https://" +
 System.Environment.GetEnvironmentVariable("retrieveUsageUri");

 string postBody = "{\"enrollment\":\"" + doc.enrollmentNumber + "\"," +
 "\"month\":\"" + DateTime.Now.ToString("yyyy-MM") + "\"}";

 httpClient.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/json"));

 var content = new StringContent(postBody, Encoding.UTF8, "application/json");
 var response = await httpClient.PostAsync(theUri, content);

 response.EnsureSuccessStatusCode();

 string fetchResult = await response.Content.ReadAsStringAsync();
}

Figure 4 Retrieving Usage Data

// Loop through collection filtering by day
for(int dayToProcess = 1; dayToProcess <= maxDayOfMonth; dayToProcess++)
{
 // Get documents for current processing day
 var docsForCurrentDay = results.Where (d => d.Day==dayToProcess);

 // Serialize to string
 string jsonForCurrentDay =
 JsonConvert.SerializeObject(docsForCurrentDay);
 log.Info($"***** Docs for day {dayToProcess} *****");

 // Get date for one of the records for today
 string processDateString = (from docs in results where docs.Day ==
 dayToProcess select docs.Date).First();

 path = "newdailysplit/" + DateTime.Parse(processDateString).ToString("yyyyMMdd")
 + "-" + enrollment + "-dailysplit.json";

 // Write out each day's data to file in container "\newdailysplit"
 var attributes = new Attribute[]
 {
 new BlobAttribute(path),
 new StorageAccountAttribute("eabillingstorage_STORAGE")
 };

 using (var writer = await binder.BindAsync<TextWriter>(attributes))
 {
 writer.Write(jsonForCurrentDay);
 }
}

Figure 5 Selecting Each Day’s Data

0817msdn_FultzBatch_v3_44-52.indd 48 7/12/17 11:55 AM

Founded in 1991, Text Control is an
award-winning Visual Studio Industry Partner
and leading vendor of word processing and
reporting components for Windows, web and
mobile development technologies.

Q What is Text Control doing?

A Since 25 years, our products and technologies help
thousands of developers add comprehensive
reporting and word processing functionality to their
applications. Our mission is to use everyday innova-
tion to uncover our user’s real reporting requirements.

Digital transformation changed every process in
today’s business world. The number of e-commerce
transactions skyrocket and supply chains are fully
connected. In nearly any business process, documents
and reports need to be designed, created, shared and
archived. Our technologies help companies to
integrate document processing to client, web and cloud solutions
to gain the largest competitive advantage.

We have been developing software components for reporting
and document processing for more than 25 years. We are
continually looking for new and innovative ways to improve
document processing to make these processes easier for
end-users and more efficient.

Q What is the Text Control Reporting Framework?

A The Text Control Reporting Framework combines powerful
reporting features with an easy-to-use, MS Word compatible
word processor. Users can create documents and templates using
ordinary Microsoft Word skills. It is completely independent from
MS Word or any other third-party application and can be
completely integrated into business applications. The Text Control
Reporting Framework is included in all .NET based TX Text
Control products including ASP.NET, Windows Forms and WPF.

Q What sets Text Control Reporting apart from other
reporting vendors?

A Text Control Reporting is based on the powerful word
processing component TX Text Control. The MS Word compatible
template can be merged with a data object (business object) or
database content with one line of code. At the same time, Text
Control provides a powerful API to customize this merge process
completely. The report generation can be fully integrated into
.NET applications.

Q Tell us more about your new Cloud reporting Web API

A Text Control ReportingCloud brings complete reporting
functionality to the cloud so all developers can use it, irrespective
of the platform or language they’re using. Its highly RESTful API
can be used to merge Microsoft Word compatible templates with
JSON data from all clients including .NET, JavaScript, PHP, Node.JS,
jQuery, Ruby, Python, Android, Java and iOS.

MSDN Magazine Vendor ProfileVPmagazine

MSDN MAGAZINE VENDOR PROFILE

For more information, visit g www.textcontrol.com

We Are Changing the Way
You Look at Reporting
A Reporting Q&A with Bjoern Meyer, Text Control

Untitled-3 1 7/7/17 12:31 PM

http://www.textcontrol.com
http://www.textcontrol.com

msdn magazine50 Azure

usage container. To keep the diagram in Figure 2 easy to parse, I’ve
omitted some containers—in particular, the error files container
is missing from the diagram. This is the container that holds any
file that causes an exception during processing, whether that file
is the entire usage file or just one of the daily splits. I don’t spend
time or effort correcting the data for missing or errored days
because, once an issue is identified, the process can be triggered for
a given month and enrollment or for a single daily split to correct
the problem. Also clearly missing from the prototype are alerting
and compensating mechanisms for when errors occur, but that’s
something I want to bubble up through Application Insights
integration with the Operations Management Suite.

Persisting the Data to Azure Cosmos DB
With the files split and ready to be picked up by the ProcessDaily
Usage Function, it’s time to consider some issues that need to be
addressed, namely throughput to the target and how to handle
updates. Often when working through some solution architecture
in an enterprise, you run into older systems that are less capable,
or where real-time loads and high-throughput scenarios need to
be managed. I don’t naturally have any hard
throughput constraints in my cloud native
setup for this architecture, but I could create
problems for myself if I don’t take the time
to think through the volume and speed of
the data I’m feeding into the cloud services
I’m consuming.

For my data set, each of the daily splits
is about 2.4MB and contains about 1,200
individual documents. Keep in mind that
each document represents one meter read-
ing for one resource provisioned in Azure.
Thus, for each EA the number of documents
in a daily split could vary greatly depending
on resource usage across the enterprise. The
ProcessDailyUsage Function is configured to
trigger based on receiving new blobs in the
newdailysplit container. This means I’ll have
as many as 31 concurrent Function executions
manipulating the data. To help me estimate
what I need to provision for Azure Cosmos
DB, I used the calculator at documentdb.com/
capacityplanner. Without some empirical
testing I had to make a few guesses for the

initial provisioning. I know there will
be 31 concurrent executions, but it’s a
little harder to nail down how many
concurrent requests per second that
will create without doing repetitive
runs. The end result of this proto-
type will help to inform the final
architecture and requirements for
provisioning, but because I’m work-
ing forward on this timeline, I’m
going to take a stab at it using the

following as my rules for estimating:
• �1,200 records
• �31 concurrent executions (for a single EA)
• �0.124 seconds per request (empirical evidence from

measuring a few individual requests)
I’ll round down to 0.1 seconds for a more conservative estimate,

thus overestimating the load. This nets 310 requests per second per
EA, which in turn comes out to about 7,800 request units (RUs)
based on the calculator results, as can be seen in Figure 6.

Because the maximum RUs that can be provisioned without
calling support is 10,000, this might seem kind of high. However,
I’m running an unthrottled parallel process and that drives up the
throughput significantly, which in turn will drive up the cost. This
is a major consideration when designing the structure because it’s
fine for me to run this for some testing, but for the real solution
I’ll need a throttling mechanism to slow down the processing so
I can provision fewer RUs and save myself a little money. I don’t
need the data to be captured as fast as possible, just within a
reasonable enough time that someone could review and consume
it on a daily basis. The good news is that the Azure Functions team

has a concurrency control mechanism in
the backlog of issues that will eventually get
resolved (bit.ly/2tcpAbI), and will provide a
good means of control once implemented.
Some other options are to introduce artifi-
cial arbitrary delays (let’s all agree this is bad)
or to rework the processing and handle the
parallel execution explicitly in the C# code.
Also, as technical expert Fabio Cavalcante
pointed out in a conversation, another good
option would be to modify the architecture
a bit by adding Azure Storage Queues and
using features such as visibility timeouts and
scheduled delivery to act as a throttling mech-
anism. That would add a few moving parts
to the system and I’d have to work out the
interaction of using a queue for activation
while keeping the data in storage, or slice up
the data in 64KB blocks for the queue. Once
throttling is available in Azure Functions,
I’ll be able to keep it in this simpler form
with which I’m working. The salient point
here is that when working with a serverless
architecture you must be familiar with the

Figure 6 Azure Cosmos DB Pricing Calculator

Figure 7 Provisioning a New Collection

0817msdn_FultzBatch_v3_44-52.indd 50 7/12/17 11:55 AM

http://documentdb.com/capacityplanner
http://documentdb.com/capacityplanner
www.bit.ly/2tcpAbI

Untitled-1 1 7/5/17 10:28 AM

www.jetbrains.com/rider

msdn magazine52 Azure

constraints of the platforms on which you’re building, as well as
the cost of each decision.

When provisioning more than 2,500 RUs, the system requires
that a partition key be specified. This works for me, because I
want to partition that data in any case to help with both scale and
security in the future.

As you can see in Figure 7, I’ve specified 8,000 RUs, which
is a little more than the calculation indicated, and I’ve specified
SubscriptionId as the partition key.

Additionally, I set up the ProcessDailyUsage with a blob trigger
on the newdailysplit container and with an input and output bind-
ing for Azure Cosmos DB. The input binding is used to find the
records that exist for the given day and enrollment and to handle
duplicates. I’ll ensure that my FeedOptions sets the cross-partition
query flag, as shown in Figure 8.

I create a query to grab all the records for the enrollment on
that date and then loop through and delete them. This is one
instance where SQL Azure could’ve made things easier by issuing
a DELETE query or by using an upsert with a known primary key.
However, in Azure Cosmos DB, to do the upsert I need the row ID,
which means I must make the round trip and do the comparison
on fields I know to uniquely identify the document and then use
that row’s id or selflink. For this example, I simply delete all the

records and then add the new—and potentially updated—documents
back in. To do this I need to pass in the partition key to the Delete
DocumentAsync method. An optimization would be to pull the
documents back and do a local comparison, update any changed
documents and add net new documents. It’s a little taxing, because
all of the elements in each document must be compared. Because
there’s no primary key defined for the billing documents, you can
likely find the matched document using SubscriptionId, MeterId,
InstanceId and Date and compare the rest of the elements from
there. This would offload some of the work from Azure Cosmos
DB and reduce the overall traffic.

With the way cleared to add the documents back into the collection,
I simply loop through the docs and call AddAsync on the document-
Collector I defined as the output binding for the Azure Function:

// Update the enrollment field in the incomming collection
incomingDailyUsage.ForEach (usage => usage.Enrollment = enrollment);

int processedRecordCount=0;
foreach (EnrollmentUsageDetail usageDoc in incomingDailyUsage)
{

 await documentCollector.AddAsync(usageDoc);
 processedRecordCount++;
}

While it’s not much of a change, I’ve also done a little bit of
enrichment by adding the Enrollment number to each document
in the collection. Running one daily split file produces the log
information shown in Figure 9.

Final Note
The only thing left to do is to run a good many iterations with
varying inputs and then measure so I can properly size the ser-
vices I’m using. This includes testing out the geographic replication
capabilities and some further prototyping of the security that I’ll
want to implement around subscription data access; these were
two of the major reasons for choosing Azure Cosmos DB. The net
lessons to be gleaned are some of the ones that we seem to keep
learning in the world of IT:

1. �There are no magic bullets, not even with a serverless architecture.
2. �Nothing replaces thorough testing.
3. �Size your dependent services and treat this as seriously as

you did when sizing your hardware in the past.
4. �Pay close attention to cost, especially under high through-

put conditions.
The upside of using serverless compute like Azure Functions is

that you pay only for what’s consumed. For regular but infrequent
processing such as this, that can be a big benefit in cost savings.
Finally, configuring capabilities is a better experience and allows
faster time to product than configuring host servers.	 n

Joseph Fultz is a cloud solution architect at Microsoft. He works with Microsoft
customers developing architectures for solving business problems leveraging
Microsoft Azure. Formerly, Fultz was responsible for the development and archi-
tecture of GM’s car-sharing program (mavendrive.com). Contact him on Twitter:
@JosephRFultz or via e-mail at jofultz@microsoft.com.

Thanks to the following Microsoft technical expert who reviewed this article:
Fabio Calvacante

2017-06-10T01:16:55.291 Function started (Id=bfb220aa-97ab-4d36-9c1e-602763b93ff0)
2017-06-10T01:16:56.041 First 15 chars: [{"AccountOwner
2017-06-10T01:16:56.181 get date
2017-06-10T01:16:56.181 getting enrollment
2017-06-10T01:16:56.181 Incoming date: 11/01/2016 for Enrollment: 4944727
2017-06-10T01:16:56.181 Collection: partitionedusage
2017-06-10T01:16:56.181 query: SELECT * FROM c where c.Enrollment =
"4944727" AND c.Date = "11/01/2016"
2017-06-10T01:16:56.181 Create delete query
2017-06-10T01:16:56.197 Delete documents
2017-06-10T01:17:23.189 2142 docs deleted while processing
20161101-4944727-dailysplit.json
2017-06-10T01:17:23.189 Import documents
2017-06-10T01:17:44.628 2142 records imported from file
20161101-4944727-dailysplit.json
2017-06-10T01:17:44.628 Moving file 20161101-4944727-dailysplit.json to /
processedusage container
2017-06-10T01:17:44.674 Deleting 20161101-4944727-dailysplit.json
2017-06-10T01:17:44.690 Completed!
2017-06-10T01:17:44.690 Function completed (Success, Id=bfb220aa-97ab-
4d36-9c1e-602763b93ff0, Duration=49397ms)

Figure 9 The Log Information from a Daily Split File

string docsToDeleteQuery = String.Format(@"SELECT * FROM c where c.Enrollment =
 ""{0}"" AND c.Date = ""{1}""", enrollment, incomingDataDate);

FeedOptions queryOptions = new FeedOptions { MaxItemCount = -1,
 EnableCrossPartitionQuery = true };

IQueryable<Document> deleteQuery = docDBClient.
CreateDocumentQuery<Document>(
 UriFactory.CreateDocumentCollectionUri(dbName, collectionName),
 new SqlQuerySpec(docsToDeleteQuery), queryOptions);

log.Info("Delete documents");
int deletedDocumentCount = 0;
foreach (Document doc in deleteQuery)
{
 await docDBClient.DeleteDocumentAsync(((dynamic)doc)._self,
 new RequestOptions { PartitionKey =
 new PartitionKey(((dynamic)doc).SubscriptionId) });
 deletedDocumentCount++;
}

Figure 8 Using FeedOptions to Set the Cross-Partition Query Flag

0817msdn_FultzBatch_v3_44-52.indd 52 7/12/17 11:55 AM

mailto:jofultz@microsoft.com
www.mavendrive.com
www.twitter.com/JosephRFultz

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com

4 LOCATIONS
TO CHOOSE FROM

JOIN US

TURN THE PAGE FOR MORE EVENT DETAILS

See pages 70-71

See pages 54-55

See page 56-57

See pages 76-79
12-17

Redmond
August 14-18

Chicago
September 18-21

Anaheim
October 16-19

Orlando
November 12-17

LAST CHANCE!

CONNECT WITH US

Untitled-5 1Untitled-5 1 7/12/17 6:34 PM7/12/17 6:34 PM

www.vslive.com
www.vslive.com
www.linkedin.com
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents

PRODUCED BYSUPPORTED BY

magazine

GOLD SPONSOR

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics Include:

Visual Studio / .NET Framework
JavaScript / HTML5 Client
Native Client
Software Practices
Database and Analytics
Angular JS

ASP.NET / Web Server
Agile
ALM / DevOps
Cloud Computing
Windows Client
Xamarin

Register By August 18 and Save $200!
Use promo code VSLCH5

REGISTER
NOW

Untitled-5 2Untitled-5 2 7/12/17 6:10 PM7/12/17 6:10 PM

www.vslive.com/chicagomsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/chicagomsdn

ALM /
DevOps

Cloud
Computing

Database and
Analytics

Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

CHICAGO AGENDA AT-A-GLANCE

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, September 18, 2017 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM
M01 Workshop: Distributed Cross-Platform

Application Architecture
- Jason Bock & Rockford Lhotka

M02 Workshop: Practical ASP.NET DevOps
with VSTS or TFS - Brian Randell

M03 Workshop: SQL Server 2016 for
Developers - Andrew Brust & Leonard Lobel

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Visual Studio Live! Day 1: Tuesday, September 19, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM KEYNOTE: To Be Announced

9:15 AM 10:30 AM T01 JavaScript for the C# Developer
- Philip Japikse T02 Storyboarding 101 - Billy Hollis T03 Build Cross-Platform Apps in C#

using CSLA .NET - Rockford Lhotka
T04 What’s New in Visual Studio

2017 - Robert Green

10:45 AM 12:00 PM
T05 TypeScript: The Future of Front

End Web Development
- Ben Hoelting

T06 Better, Faster, Automated!
Windows App Deployment in Visual
Studio Mobile Center - Ela Malani &

Piyush Joshi

T07 Roll Your Own Dashboard in
XAML - Billy Hollis

T08 What’s New in C#7
- Jason Bock

12:00 PM 1:00 PM Lunch - Visit Exhibitors

1:00 PM 1:30 PM Dessert Break - Visit Exhibitors

1:30 PM 2:45 PM T09 ASP.NET Core MVC - What You
Need to Know - Philip Japikse

T10 Professional Scrum
Development Using Visual Studio

2017 - Richard Hundhausen
T11 What’s New for Developers in

SQL Server 2016 - Leonard Lobel T12 To Be Announced

3:00 PM 4:15 PM
T13 User Authentication for

ASP.NET Core MVC Applications
- Brock Allen

T14 PowerShell for Developers
- Brian Randel

T15 What’s New in Azure IaaS v2
- Eric D. Boyd T16 To Be Announced

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, September 20, 2017

7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM W01 Securing Web APIs in ASP.NET
Core - Brock Allen

W02 Professional Software
Testing Using Visual Studio 2017

- Richard Hundhausen
W03 Cloud Oriented Programming

- Vishwas Lele
W04 Database Development

with SQL Server Data Tools
- Leonard Lobel

9:30 AM 10:45 AM W05 Assembling the Web - A Tour
of WebAssembly - Jason Bock

W06 Get Started with Git and
GitHub - Robert Green

W07 Building Modern Web Apps
with Azure - Eric D. Boyd

W08 Tactical DevOps for SQL Server
- Brian Randell

11:00 AM 12:00 PM General Session: To Be Announced

12:00 PM 1:00 PM Birds-of-a-Feather Lunch - Visit Exhibitors

1:00 PM 1:30 PM

1:30 PM 2:45 PM
W09 Tools for Modern

Web Development Dev Ops
- Ben Hoelting

W10 Go Mobile with C#,
Visual Studio, and Xamarin

- James Montemagno
W11 Build Awesome AF Apps!

- Rachel Appel
W12 Power BI: Analytics for
Desktop, Mobile and Cloud

- Andrew Brust

3:00 PM 4:15 PM
W13 Get Rid of HTML Tables for
Better Mobile Web Applications

- Paul Sheriff

W14 Continuous Integration &
Deployment for Mobile Apps

- James Montemagno

W15 Microservices with Azure
Container Service & Service Fabric

- Vishwas Lele
W16 Power BI: Beyond the Basics

- Andrew Brust

4:30 PM 5:45 PM W17 Use HTML5/Bootstrap to Build
Business UI - Paul Sheriff

W18 Mobilizing your Existing
Enterprise Applications

- Nick Landry

W19 Busy Developer’s Guide to the
Google Cloud Platform

- Ted Neward
W20 Big Data Solutions in Azure

- David Giard

7:00 PM 9:00 PM Visual Studio Live! Evening Event

START TIME END TIME Visual Studio Live! Day 3: Thursday, September 21, 2017

7:30 AM 8:00 AM Web Client

8:00 AM 9:15 AM
TH01 I Just Met You, and “This”
is Crazy, But Here’s My NaN, So

- Rachel Appel

TH02 PowerApps, Flow, and
Common Data Service: Empowering

Businesses with the Microsoft
Business Application Platform

- Archana Nair

TH03 Lessons Learned from Real
World Xamarin.Forms Projects

- Nick Landry
TH04 Busy Developer’s Guide to

NoSQL - Ted Neward

9:30 AM 10:45 AM
TH05 Build Object-Oriented

Enterprise Apps in JavaScript with
TypeScript - Rachel Appel

TH06 PowerApps and Flow Part II:
Package, Embed, and Extend Your
Applications - Anousha Mesbah &

Pratap Ladhani

TH07 Improve Your Retrospective
Outcomes with Agile Kaizen

- Angela Dugan

TH08 Building Applications with
DocumentDb - New Features and

Best Practices - Raj Krishnan

11:00 AM 12:15 PM TH09
- Doris Chen

TH10 Getting Started with Entity
Framework Core - Jim Wooley

TH11 Open Source for Microsoft
Developers - Rockford Lhotka

TH12 Introduction to Machine
Learning with R - Raj Krishnan

12:15 PM 1:15 PM Lunch

1:15 PM 2:30 PM
TH13 Practical Performance Tips
and Tricks to Make Your HTML/
JavaScript Faster - Doris Chen

TH14 Getting Your Agile Team
Unstuck! Tips and Tricks for Blasting

Through Common Setbacks
- Angela Dugan

TH15
Dependency Injection - Jeremy Clark

TH16 The Rise of the Machines -
Machine Learning for Developers

- Adam Tuliper

2:45 PM 4:00 PM
TH17 Building Powerful

Applications with AngularJS 2 and
TypeScript - David Giard

TH18 Improving Code Quality with
Roslyn Code Analyzers - Jim Wooley

TH19 Unit Testing Makes Me Faster:
Convincing Your Boss, Your Co-

Workers, and Yourself
- Jeremy Clark

TH20 I’m Emotional - Using
Microsoft Cognitive Services to

Understand the World Around You
- Adam Tuliper

Speakers and sessions subject to change

Untitled-5 3Untitled-5 3 7/12/17 6:11 PM7/12/17 6:11 PM

www.vslive.com/chicagomsdn
www.vslive.com/chicagomsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BY

INTENSE TRAINING FOR DEVELOPERS, ENGINEERS,
PROGRAMMERS, ARCHITECTS AND MORE!
Development Topics include:

Visual Studio / .NET
JavaScript / HTML5
Angular
Native Mobile & Xamarin
Software Practices
Database and Analytics

ASP.NET Core
Web API
ALM / DevOps
Cloud Computing
UWP
Unit Testing

ANAHEIM, CA
OCT 16-19, 2017
HYATT REGENCY
A Disneyland® Good Neighbor Hotel

Register by August 25 and Save $300!
Use promo code VSLAN5

REGISTER
NOW

Untitled-5 4Untitled-5 4 7/12/17 6:11 PM7/12/17 6:11 PM

www.vslive.com/anaheimmsdn

CONNECT WITH US

twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/anaheimmsdn

ANAHEIM AGENDA AT-A-GLANCE
ALM /

DevOps
Cloud

Computing
Database and

Analytics
Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, October 16, 2017 (Separate entry fee required)

7:30 AM 9:00 AM Pre-Conference Workshop Registration - Coffee and Morning Pastries

9:00 AM 6:00 PM
M01 Workshop: Distributed Cross-Platform

Application Architecture
- Jason Bock & Rockford Lhotka

M02 Workshop: Practical ASP.NET DevOps
with VSTS or TFS - Brian Randell

M03 Workshop: Developer Dive into
SQL Server 2016 - Leonard Lobel

6:45 PM 9:00 PM Dine-A-Round

START TIME END TIME Visual Studio Live! Day 1: Tuesday, October 17, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:00 AM KEYNOTE: To Be Announced

9:15 AM 10:30 AM T01
- Doris Chen

T02 Go Mobile with C#,
Visual Studio, and Xamarin

- James Montemagno
T03 To Be Announced T04 What’s New in Visual Studio

2017 - Robert Green

10:45 AM 12:00 PM
T05 Build Object-Oriented

Enterprise Apps in JavaScript with
TypeScript - Rachel Appel

T06 Optimizing and Extending
Xamarin.Forms Mobile Apps

- James Montemagno
T07 What’s New for Developers in

SQL Server 2016 - Leonard Lobel T08 To Be Announced

12:00 PM 1:30 PM Lunch

1:30 PM 2:45 PM T09 Angular 101: Part 1
- Deborah Kurata

T10 Get Started with Git and
GitHub - Robert Green

T11 Exploring T-SQL Enhancements:
Windowing and More

- Leonard Lobel
T12 Microsoft Teams - More Than

Just Chat! - Nedra Allmond

3:00 PM 4:15 PM T13 Angular 101: Part 2
- Deborah Kurata

T14 Do It Again, Faster! Automate
Your Windows Deployment Pipeline

- Ela Malani
T15 What’s New in Azure IaaS v2

- Eric D. Boyd
T16 Open Source for the Microsoft

Developer - Rockford Lhotka

4:15 PM 5:30 PM Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, October 18, 2017

7:00 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM
W01 I Just Met You, and “This”
is Crazy, But Here’s My NaN, So

- Rachel Appel
W02 Tactical DevOps with VSTS

- Brian Randell
W03 Go Serverless with Azure

Functions - Eric D. Boyd
W04 What’s New in C#7

- Jason Bock

9:30 AM 10:45 AM
W05 Practical Performance Tips
and Tricks to Make Your HTML/
JavaScript Faster - Doris Chen

W06 Real World VSTS Usage for the
Enterprise - Jim Szubryt

W07 Cloud Oriented Programming
- Vishwas Lele

W08 I’ll Get Back to You:
Understanding Task, Await,
and Asynchronous Methods

- Jeremy Clark

11:00 AM 12:00 PM General Session: To Be Announced

12:00 PM 1:30 PM Birds-of-a-Feather Lunch

1:30 PM 2:45 PM W09 Assembling the Web - A Tour
of WebAssembly - Jason Bock

W10 Database Lifecycle
Management and the SQL Server

Database - Brian Randell

W11 Microservices with Azure
Container Service & Service Fabric

- Vishwas Lele
W12 Getting Started with Entity

Framework Core - Jim Wooley

3:00 PM 4:15 PM
W13 Building Single Page Web

Applications Using Aurelia.js and the
MVVM Pattern - Ben Hoelting

W14 Getting to SAFe in the
Enterprise - Jim Szubryt

W15 Busy Developer’s Guide to the
Clouds - Ted Neward

W16 Improving Code Quality with
Roslyn Code Analyzers - Jim Wooley

4:30 PM 05:45 PM W17 Securing Angular Apps
- Brian Noyes

W17 Building Applications with
DocumentDb - New Features and

Best Practices - Raj Krishnan

W18 Busy Developer’s Guide
to the Google Cloud Platform

- Ted Neward
W19

- Jeremy Clark

7:00 PM 9:00 PM Visual Studio Live! Evening Event

START TIME END TIME Visual Studio Live! Day 3: Thursday, October 19, 2017

7:30 AM 8:00 AM Registration - Coffee and Morning Pastries

8:00 AM 9:15 AM TH01 ASP.NET Core MVC - What
You Need to Know - Philip Japikse

TH02 Tools for Modern
Web Development Dev Ops

- Ben Hoelting

TH03 The Rise of the Machines -
Machine Learning for developers

- Adam Tuliper
TH04 Storyboarding 101

- Billy Hollis

9:30 AM 10:45 AM
TH05 Role-Based Security

Stinks: How to Implement Better
Authorization in ASP.NET and ASP.

NET Core - Benjamin Day

TH06 Building Cross-Platform Apps
in C# using CSLA .NET

- Rockford Lhotka
TH07 Introduction to Machine
Learning with R - Raj Krishnan

TH08 Agile: You Keep Using
That Word... - Philip Japikse

11:00 AM 12:15 PM TH09 From Zero to the Web API
- Paul Sheriff

TH10 Programming with the
Model-View-ViewModel Pattern

- Miguel Castro

TH11 I’m Emotional - Using
Microsoft Cognitive Services to

Understand the World Around You
- Adam Tuliper

TH12 Top 10 Ways to Go from
Good to Great Scrum Master

- Benjamin Day

12:15 PM 1:15 PM Lunch

1:15 PM 2:30 PM
TH13 Cortana Everywhere: Speech,
Conversation & Skills Development

- Nick Landry
TH14 Roll Your Own Dashboard

in XAML - Billy Hollis
TH15 Unit Testing T-SQL Code

- Steve Jones
TH16 Exposing an Extensibility API

for your Applications
- Miguel Castro

2:45 PM 4:00 PM TH17 Securing Web Apps and APIs
with IdentityServer - Brian Noyes

TH18 Windows 10 for Developers:
Building Universal Apps for 1B

Devices - Nick Landry
TH19 A Tour of SQL Server Security

Features - Steve Jones
TH20 Real World Applications for
Dependency Injection - Paul Sheriff

Speakers and sessions subject to change

Untitled-5 5Untitled-5 5 7/12/17 6:11 PM7/12/17 6:11 PM

https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com
www.vslive.com/anaheimmsdn
www.vslive.com/anaheimmsdn

msdn magazine58

Many of the recent advances in machine
learning (making predictions using data)
have been realized using deep neural
networks. Examples include speech rec-
ognition in Microsoft Cortana and Apple
Siri, and the image recognition that helps
enable self-driving automobiles.

The term deep neural network (DNN)
is general and there are several specific
variations, including recurrent neural
networks (RNNs) and convolutional
neural networks (CNNs). The most
basic form of a DNN, which I explain in
this article, doesn’t have a special name,
so I’ll refer to it just as a DNN.

This article will introduce you to DNNs
so you’ll have a concrete demo program
to experiment with, which will help you
to understand literature on DNNs. I won’t present code that can be
used directly in a production system, but the code can be extended
to create such a system, as I’ll explain. Even if you never intend to
implement a DNN, you might find the explanation of how they
work interesting for its own sake.

A DNN is best explained visually. Take a look at Figure 1. The
deep network has two input nodes, on the left, with values (1.0,
2.0). There are three output nodes on the right, with values (0.3269,
0.3333, 0.3398). You can think of a DNN as a complex math func-
tion that typically accepts two or more numeric input values and
returns one or more numeric output values.

The DNN shown might correspond to a problem where the goal
is to predict the political party affiliation (Democrat, Republican,
Other) of a person based on age and income, where the input values
are scaled in some way. If Democrat is encoded as (1,0,0) and
Republican is encoded as (0,1,0) and Other is encoded as (0,0,1), then
the DNN in Figure 1 predicts Other for someone with age = 1.0 and
income = 2.0 because the last output value (0.3398) is the largest.

A regular neural network has a single hidden layer of processing
nodes. A DNN has two or more hidden layers and can handle very
difficult prediction problems. Specialized types of DNNs, such as
RNNs and CNNs, also have multiple layers of processing nodes,
but more complicated connection architectures, as well.

The DNN in Figure 1 has three hidden layers of processing
nodes. The first hidden layer has four nodes, the second and third
hidden layers have two nodes. Each long arrow pointing from left
to right represents a numeric constant called a weight. If nodes are
zero-base indexed with [0] at the top of the figure, then the weight
connecting input[0] to hidden[0][0] (layer 0, node 0) has value 0.01
and the weight connecting input[1] to hidden[0][3] (layer 0, node
3) has value 0.08 and so on. There are 26 node-node weight values.

Each of the eight hidden and three output nodes has a small
arrow that represents a numeric constant called a bias. For example,
hidden[2][0] has bias value of 0.33 and output[1] has a bias value of
0.36. Not all of the weights and bias values are labeled in the dia-
gram, but because the values are sequential between 0.01 and 0.37,
you can easily determine the value of a non-labeled weight or bias.

In the sections that follow, I explain how the DNN input-output
mechanism works and show how to implement it. The demo pro-
gram is coded using C#, but you shouldn’t have too much trouble
refactoring the code to another language, such as Python or
JavaScript, if you wish to do so. The demo program is too long to
present in its entirety in this article, but the complete program is
available in the accompanying code download.

The Demo Program
A good way to see where this article is headed is to examine the screen-
shot of the demo program in Figure 2. The demo corresponds to the

Deep Neural Network IO Using C#

Test Run JAMES MCCAFFREY

Code download available at msdn.com/magazine/0717magcode.

Figure 1 A Basic Deep Neural Network

hidden (3)input

2.0

1.0

output

.3269

.3333

.3398*

.5628

.5823

.6017

.35

.37

.4711

.4915

.32

.31

.17

.20

.4649

.4801

.34

.33
.21

.26

.01

.02

.08

.3627

.4621

.4301

.3969

.27

.30

.09

.10

.16

0817msdn_McCaffreyTRun_v4_58-64.indd 58 7/12/17 11:53 AM

http://msdn.com/magazine/0717magcode

ComponentOne
Studio

Elegant, modular
.NET UI controls for

Visual Studio

ActiveReports

Powerful .NET reporting
platform for essential

business needs

Spread Studio

Versatile .NET
spreadsheet data and

UI components

Visual Studio

Wijmo
JavaScript

Fast, lightweight
true JavaScript controls

written in TypeScript

ComponentOne Studio
for Xamarin

Cross-platform grids,
charts, and UI controls

for native mobile
devices

Visual Studio-Integrated UI Controls and Developer
Productivity Tools for Delivering Enterprise Apps
Across All Platforms and Devices

Build More
with GrapeCity Developer Solutions

Powerful development
tools engineered for

Visual Studio developers

© 2017 GrapeCity, Inc. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

GrapeCity’s family of products provides developers, designers,
and architects with the ultimate collection of easy-to-use tools for
building sleek, high-performing, feature-complete applications.
With over 25 years of experience, we understand your needs and
offer the industry’s best support. Our team is your team.
For more information: 1.800.858.2739

Learn more and get free
30-day trials at
tools.grapecity.com

Untitled-2 1 7/13/17 2:21 PM

http://tools.grapecity.com

msdn magazine60 Test Run

DNN shown in Figure 1 and illustrates the input-output mechanism
by displaying the values of the 13 nodes in the network. The demo code
that generated the output begins with the code shown in Figure 3.

Notice that the demo program uses only plain C# with no
namespaces except for System. The DNN is created by passing the
number of nodes in each layer to a DeepNet program-defined class
constructor. The number of hidden layers, 3, is passed implicitly
as the number of items in the numHidden array. An alternative
design is to pass the number of hidden layers explicitly.

The values of the 26 weights and the 11 biases are set like so:
int nw = DeepNet.NumWeights(numInput, numHidden, numOutput);
Console.WriteLine("Setting weights and biases to 0.01 to " +
 (nw/100.0).ToString("F2"));
double[] wts = new double[nw];
for (int i = 0; i < wts.Length; ++i)
 wts[i] = (i + 1) * 0.01;
dn.SetWeights(wts);

The total number of weights and biases is calculated using a static
class method NumWeights. If you refer back to Figure 1, you can
see that because each node is connected to all nodes in the layer
to the right, the number of weights is (2*4) + (4*2) + (2*2) + (2*3)
= 8 + 8 + 4 + 6 = 26. Because there’s one bias for reach hidden and
output node, the total number of biases is 4 + 2 + 2 + 3 = 11.

An array named wts is instantiated with 37 cells and then the
values are set to 0.01 through 0.37. These values are inserted into
the DeepNet object using the SetWeights method. In a realistic,
non-demo DNN, the values of the weights and biases would be
determined using a set of data that has known input values and
known, correct output values. This is called training the network.
The most common training algorithm is called back-propagation.

The Main method of the demo program concludes with:
...
 Console.WriteLine("Computing output for [1.0, 2.0] ");
 double[] xValues = new double[] { 1.0, 2.0 };
 dn.ComputeOutputs(xValues);
 dn.Dump(false);
 Console.WriteLine("End demo");
 Console.ReadLine();
 } // Main
} // Class Program

Method ComputeOutputs accepts an array of input values and
then uses the input-output mechanism, which I’ll explain shortly, to
calculate and store the values of the output nodes. The Dump helper
method displays the values of the 13 nodes, and the “false” argu-
ment means to not display the values of the 37 weights and biases.

The Input-Output Mechanism
The input-output mechanism for a DNN is best explained with a
concrete example. The first step is to use the values in the input
nodes to calculate the values of the nodes in the first hidden layer.
The value of the top-most hidden node in the first hidden layer is:

tanh((1.0)(0.01) + (2.0)(0.05) + 0.27) =
tanh(0.38) = 0.3627

In words, “compute the sum of the products of each input node
and its associated weight, add the bias value, then take the hyper-
bolic tangent of the sum.” The hyperbolic tangent, abbreviated
tanh, is called the activation function. The tanh function accepts
any value from negative infinity to positive infinity, and returns
a value between -1.0 and +1.0. Important alternative activation
functions include the logistic sigmoid and rectified linear (ReLU)
functions, which are outside the scope of this article.

The values of the nodes in the remaining hidden layers are cal-
culated in exactly the same way. For example, hidden[1][0] is:

tanh((0.3627)(0.09) + (0.3969)(0.11) + (0.4301)(0.13) + (0.4621)
(0.15) + 0.31) =
tanh(0.5115) = 0.4711

And hidden[2][0] is:
tanh((0.4711)(0.17) + (0.4915)(0.19) + 0.33) =
tanh(0.5035) = 0.4649

The values of the output nodes are calculated using a different
activation function, called softmax. The preliminary, pre-activation
sum-of-products plus bias step is the same:

pre-activation output[0] =
(.4649)(0.21) + (0.4801)(0.24) + 0.35 =
0.5628
pre-activation output[1] =
(.4649)(0.22) + (0.4801)(0.25) + 0.36 =
0.5823
pre-activation output[2] =
(.4649)(0.23) + (0.4801)(0.26) + 0.37 =
0.6017

Figure 2 Basic Deep Neural Network Demo Run

using System;
namespace DeepNetInputOutput
{
 class DeepInputOutputProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Begin deep net IO demo");
 Console.WriteLine("Creating a 2-(4-2-2)-3 deep network");
 int numInput = 2;
 int[] numHidden = new int[] { 4, 2, 2 };
 int numOutput = 3;
 DeepNet dn = new DeepNet(numInput, numHidden, numOutput);
...

Figure 3 Beginning of Output-Generating Code

0817msdn_McCaffreyTRun_v4_58-64.indd 60 7/12/17 11:54 AM

Untitled-7 1 6/30/17 1:56 PM

www.docuvieware.com

msdn magazine62 Test Run

The softmax of three arbitrary values, x, y, y is:
softmax(x) = e^x / (e^x + e^y + e^z)
softmax(y) = e^y / (e^x + e^y + e^z)
softmax(z) = e^z / (e^x + e^y + e^z)

where e is Euler’s number, approximately 2.718282. So, for the DNN
in Figure 1, the final output values are:

output[0] = e^0.5628 / (e^0.5628 + e^0.5823 + e^0.6017) = 0.3269
output[1] = e^0.5823 / (e^0.5628 + e^0.5823 + e^0.6017) = 0.3333
output[2] = e^0.6017 / (e^0.5628 + e^0.5823 + e^0.6017) = 0.3398

The purpose of the softmax activation function is to coerce the out-
put values to sum to 1.0 so that they can be interpreted as probabilities
and map to a categorical value. In this example, because the third
output value is the largest, whatever categorical value that was encoded
as (0,0,1) would be the predicted category for inputs = (1.0, 2.0).

Implementing a DeepNet Class
To create the demo program, I launched Visual Studio and selected
the C# Console Application template and named it DeepNetInput-
Output. I used Visual Studio 2015, but the demo has no significant
.NET dependencies, so any version of Visual Studio will work.

After the template code loaded, in the Solution Explorer win-
dow, I right-clicked on file Program.cs and renamed it to the more
descriptive DeepNetInputOutputProgram.cs and allowed Visual
Studio to automatically rename class Program for me. At the top
of the editor window, I deleted all unnecessary using statements,
leaving just the one that references the System namespace.

I implemented the demo DNN as a class named DeepNet. The
class definition begins with:

public class DeepNet
{
 public static Random rnd;
 public int nInput;
 public int[] nHidden;
 public int nOutput;
 public int nLayers;
...

All class members are declared with public scope for simplic-
ity. The static Random object member named rnd is used by the
DeepNet class to initialize weights and biases to small random values
(which are then overwritten with values 0.01 to 0.37). Members
nInput and nOuput are the number of input and output nodes.
Array member hHidden holds the number of nodes in each hid-
den layer, so the number of hidden layers is given by the Length
property of the array, which is stored into member nLayers for
convenience. The class definition continues:

public double[] iNodes;
public double [][] hNodes;
public double[] oNodes;

A deep neural network implementation has many design choices.
Array members iNodes and oNodes hold the input and output
values, as you’d expect. Array-of-arrays member hNodes holds
the hidden node values. An alternative design is to store all nodes
in a single array-of-arrays structure nnNodes, where in the demo
nnNodes[0] is an array of input node values and nnNodes[4] is
an array of output node values.

The node-to-node weights are stored using these data structures:
public double[][] ihWeights;
public double[][][] hhWeights;
public double[][] hoWeights;

Member ihWeights is an array-of-arrays-style matrix that holds
the input-to-first-hidden-layer weights. Member hoWeights is an
array-of-arrays-style matrix that holds the weights connecting the
last hidden layer nodes to the output nodes. Member hhWeights
is an array where each cell points to an array-of-arrays matrix that
holds the hidden-to-hidden weights. For example, hhWeights[0][3]
[1] holds the weights connecting hidden node [3] in hidden layer
[0] to hidden node [1] in hidden layer [0+1].These data structures
are the heart of the DNN input-output mechanism and are a bit
tricky. A conceptual diagram of them is shown in Figure 4.

The last two class members hold the hidden node biases and
the output node biases:

public double[][] hBiases;
public double[] oBiases;

As much as any software system I work with, DNNs have many
alternative data structure designs, and having a sketch of these data
structures is essential when writing input-output code.

Computing the Number of Weights and Biases
To set the weights and biases values, it’s necessary to know how many
weights and biases there are. The demo program implements the
static method NumWeights to calculate and return this number.
Recall that the 2-(4-2-2)-3 demo network has (2*4) + (4*2) + (2*2) +
(2*3) = 26 weights and 4 + 2 + 2 + 3 = 11 biases. The key code in method
NumWeights, which calculates the number of input-to-hidden,
hidden-to-hidden and hidden-to-output weights is:

int ihWts = numInput * numHidden[0];
int hhWts = 0;
for (int j = 0; j < numHidden.Length - 1; ++j) {
 int rows = numHidden[j];
 int cols = numHidden[j + 1];
 hhWts += rows * cols;
}
int hoWts = numHidden[numHidden.Length - 1] * numOutput;

Instead of returning the total number of weights and biases as
method NumWeights does, you might want to consider returning the
number of weights and biases separately, in a two-cell integer array.

Setting Weights and Biases
A non-demo DNN typically initializes all weights and biases to
small random values. The demo program sets the 26 weights to
0.01 through 0.26, and the biases to 0.27 through 0.37 using class
method SetWeights. The definition begins with:

public void SetWeights(double[] wts)
{
 int nw = NumWeights(this.nInput, this.nHidden, this.nOutput);
 if (wts.Length != nw)
 throw new Exception("Bad wts[] length in SetWeights()");
 int ptr = 0;
...

Figure 4 Weights and Biases Data Structures

ihWeights[][]

[0]

[1]

[0]

[1] [2] [3]

hoWeights[][]

[0]

[1]

[0]

[1] [2]

hhWeights[][][]

[0] [1]

[0]

[3]

[2]

[1]

[1]

[0]

[0]

[1]

[0]

[1]

0817msdn_McCaffreyTRun_v4_58-64.indd 62 7/12/17 11:54 AM

US: +1 903 306 1676
EU: +44 141 628 8900
AU: +61 2 8006 6987

Contact Us:

sales@asposeptyltd.com

GroupDocs.Total

.NET Libraries Java Libraries Cloud APIs

APIs to view, export, annotate, compare, sign,
automate and search documents in your
applications.

Manipulating Files?

Visit us at www.groupdocs.com

Try for Free

Untitled-8 1 1/5/17 2:06 PM

http://www.groupdocs.com
mailto:sales@asposeptyltd.com

msdn magazine64 Test Run

Input parameter wts holds the values for the weights and biases,
and is assumed to have the correct Length. Variable ptr points into
the wts array. The demo program has very little error checking in
order to keep the main ideas as clear as possible. The input-to-first-
hidden-layer weights are set like so:

for (int i = 0; i < nInput; ++i)
 for (int j = 0; j < hNodes[0].Length; ++j)
 ihWeights[i][j] = wts[ptr++];

Next, the hidden-to-hidden weights are set:
for (int h = 0; h < nLayers - 1; ++h)
 for (int j = 0; j < nHidden[h]; ++j) // From
 for (int jj = 0; jj < nHidden[h+1]; ++jj) // To
 hhWeights[h][j][jj] = wts[ptr++];

If you’re not accustomed to working with multi-dimensional
arrays, the indexing can be quite tricky. A diagram of the weights
and biases data structures is essential (well, for me, anyway). The
last-hidden-layer-to-output weights are set like this:

int hi = this.nLayers - 1;
for (int j = 0; j < this.nHidden[hi]; ++j)
 for (int k = 0; k < this.nOutput; ++k)
 hoWeights[j][k] = wts[ptr++];

This code uses the fact that if there are nLayers hidden (3 in the
demo), then the index of the last hidden layer is nLayers-1. Method
SetWeights concludes by setting the hidden node biases and the
output node biases:

...
 for (int h = 0; h < nLayers; ++h)
 for (int j = 0; j < this.nHidden[h]; ++j)
 hBiases[h][j] = wts[ptr++];

 for (int k = 0; k < nOutput; ++k)
 oBiases[k] = wts[ptr++];
}

Computing the Output Values
The definition of class method ComputeOutputs begins with:

public double[] ComputeOutputs(double[] xValues)
{
 for (int i = 0; i < nInput; ++i)
 iNodes[i] = xValues[i];
...

The input values are in array parameter xValues. Class member
nInput holds the number of input nodes and is set in the class
constructor. The first nInput values in xValues are copied into the
input nodes, so xValues is assumed to have at least nInput values
in the first cells. Next, the current values in the hidden and output
nodes are zeroed-out:

for (int h = 0; h < nLayers; ++h)
 for (int j = 0; j < nHidden[h]; ++j)
 hNodes[h][j] = 0.0;

for (int k = 0; k < nOutput; ++k)
 oNodes[k] = 0.0;

The idea here is that the sum of products term will be accumu-
lated directly into the hidden and output nodes, so these nodes
must be explicitly reset to 0.0 for each method call. An alterna-
tive is to declare and use local arrays with names like hSums[][]
and oSums[]. Next, the values of the nodes in the first hidden
layer are calculated:

for (int j = 0; j < nHidden[0]; ++j) {
 for (int i = 0; i < nInput; ++i)
 hNodes[0][j] += ihWeights[i][j] * iNodes[i];
 hNodes[0][j] += hBiases[0][j]; // Add the bias
 hNodes[0][j] = Math.Tanh(hNodes[0][j]); // Activation
}

The code is pretty much a one-one mapping of the mechanism
described earlier. The built-in Math.Tanh is used for hidden node
activation. As I mentioned, important alternatives are the logistic
sigmoid function and the rectified linear unit (ReLU) functions,
which I’ll explain in a future article. Next, the remaining hidden-
layer nodes are calculated:

for (int h = 1; h < nLayers; ++h) {
 for (int j = 0; j < nHidden[h]; ++j) {
 for (int jj = 0; jj < nHidden[h-1]; ++jj)
 hNodes[h][j] += hhWeights[h-1][jj][j] * hNodes[h-1][jj];
 hNodes[h][j] += hBiases[h][j];
 hNodes[h][j] = Math.Tanh(hNodes[h][j]);
 }
}

This is the trickiest part of the demo program, mostly due to the
multiple array indexes required. Next, the pre-activation sum-of-
products are calculated for the output nodes:

for (int k = 0; k < nOutput; ++k) {
 for (int j = 0; j < nHidden[nLayers - 1]; ++j)
 oNodes[k] += hoWeights[j][k] * hNodes[nLayers - 1][j];
 oNodes[k] += oBiases[k]; // Add bias
}

Method ComputeOutputs concludes by applying the softmax activa-
tion function, returning the computed output values in a separate array:

...
 double[] retResult = Softmax(oNodes);
 for (int k = 0; k < nOutput; ++k)
 oNodes[k] = retResult[k];
 return retResult;
}

The Softmax method is a static helper. See the accompanying code
download for details. Notice that because softmax activation requires
all the values that will be activated (in the denominator term), it’s
more efficient to compute all softmax values at once instead of
separately. The final output values are stored into the output nodes
and are also returned separately for calling convenience.

Wrapping Up
There has been enormous research activity and many breakthroughs
related to deep neural networks over the past few years. Specialized
DNNs such as convolutional neural networks, recurrent neural
networks, LSTM neural networks and residual neural networks are
very powerful but very complex. In my opinion, understanding
how basic DNNs operate is essential for understanding the more
complex variations.

In a future article, I’ll explain in detail how to use the back-
propagation algorithm (arguably the most famous and important
algorithm in machine learning) to train a basic DNN. Back-
propagation, or at least some form of it, is used to train most DNN
variations, too. This explanation will introduce the concept of
the vanishing gradient, which in turn will explain the design and
motivation of many of the DNNs now being used for very sophis-
ticated prediction systems.	 n

Dr. James McCaffrey works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products, including Internet Explorer and Bing.
Dr. McCaffrey can be reached at jamccaff@microsoft.com.

Thanks to the following Microsoft technical experts who reviewed this article:
Li Deng, Pingjun Hu, Po-Sen Huang, Kirk Li, Alan Liu, Ricky Loynd, Baochen
Sun, Henrik Turbell.

0817msdn_McCaffreyTRun_v4_58-64.indd 64 7/12/17 11:54 AM

mailto:jamccaff@microsoft.com

YOU OWE IT TO YOURSELF, YOUR COMPANY AND

YOUR CAREER TO BE AT TECHMENTOR REDMOND 2017!

PLUG IN TO NEW KNOWLEDGE
@ THE SOURCE

+++

IN-DEPTH TRAINING FOR IT PROS

AUGUST 7 – 11, 2017

MICROSOFT HEADQUARTERS

REDMOND, WA

WHAT SETS TECHMENTOR APART?
+ Immediately usable IT education

+ Training you need today, while preparing you for tomorrow

+ Zero marketing-speak, a strong emphasis on doing more with
the technology you already own, and solid coverage of what’s
just around the corner

+ Intimate setting, where your voice is heard, making it a viable
alternative to huge, first-party conferences

+ Experience life @ Microsoft Headquarters for a full week

HOT TRAINING TOPICS INCLUDE:
+ Windows Server + Hyper-V + Windows PowerShell + DSC
+ DevOps + Azure + Security + And More! +

REGISTER NOW SAVE $300 THROUGH AUGUST 7
MUST USE DISCOUNT CODE TMEB01
 TECHMENTOREVENTS.COM/REDMOND

SUPPORTED BY:

EVENT SPONSOR: GOLD SPONSOR:

PRODUCED BY:

Untitled-2 1 6/6/17 10:37 AM

www.techmentorevents.com/redmond

msdn magazine66

Welcome back again, MEANers.
It’s been two years since I started this particular series on the

MEAN (Mongo, Express, Angular, Node) stack. And, as was bound
to happen, various parts of the MEAN stack have evolved since the
series started. Most of these updates (specifically the Node, Express
and Mongo versions) are transparent, and adopting them is a non-
event: Just upgrade the underlying bits and everything works.

But Angular upgrades have been of some concern to the Web
front-end world for a while, particularly because the substantive
changes between AngularJS (v1) and Angular (v2 and beyond) cre-
ated some serious backward-compatibility issues. (I use the term
“backward compatibility” loosely here, because the backward-
compatibility story for v1 to v2 was essentially, “Rewrite the whole
thing—trust us, it’ll be great!”) Thus, it was with some amount of
consternation that the Angular world was watching for the first
major update to Angular, and when that update was announced
to be a major version enhancement, anxiety mounted.

Turns out, while we were busy writing the front end of the sample
application, the Angular team did what they were supposed to do—
release a new version of Angular into the world. That means it’s time
to take a moment, bite the bullet, and upgrade the application to the
new version of Angular: v4. (The Angular team decided to skip 3
and move straight to 4.) Spoiler alert: This turns out to be far, far
less painful than people imagined it might be, and offers a lot of
hope regarding future Angular updates—which is good because the
Angular team has promised that they’re going to release cadence
much more in line with traditional open source projects. Which
means, bluntly, a lot of small, incremental upgrades released much
more quickly (every 6 months) than what’s been the norm so far.

Upgrading Angular
Fundamentally, upgrading to Angular 4 means using the Node
Package Manager (npm) to update the npm packages in use to
the latest versions. This takes the form of the too-familiar “npm
install” command, using a version tag (“@latest”) for each pack-
age and the “--save" argument to capture the latest version into the
application’s package.json file. For those running on a *nix system
(Linux or macOS, typically), the command takes the following
form, all of which should be typed on one line:

npm install @angular/{common,compiler,compiler-
cli,core,forms,http,platform-browser,platform-browser-dynamic,platform-
server,router,animations}@latest typescript@latest --save

The *nix command shells allow for the various packages to be
captured under the “{“/”}” pairs, even though technically each one

is named “@angular/common,” “@angular/compiler” and so on.
For those of you on Windows, you get this slightly longer version:

npm install @angular/common@latest @angular/compiler@latest @angular/
compiler-cli@latest @angular/core@latest @angular/forms@latest @angular/
http@latest @angular/platform-browser@latest @angular/platform-browser-
dynamic@latest @angular/platform-server@latest @angular/router@latest @
angular/animations@latest typescript@latest --save

Once the “npm install” is finished executing, for all intents and
purposes the upgrade is done. Simply run the application using
“ng serve” again, and everything should be back to running status.

Angular 2-to-4 Pain Points
The Angular team has admitted that it’s not always a smooth transition—
however, the release notes take care to point out that most of the
pain (apparently) is localized to the use of animations, which is a
subject I haven’t explored yet. Specifically, the team removed an-
imations from @angular/core, and dropped them into its own
Node package, @angular/animations (which you can see in the
previous “npm install” command). That way, if the application
doesn’t use animations, it doesn’t have to carry along the code of
animations in the core package.

Angular 4 New Features
The Angular 4 release notes carry the full weight of the story, but
there are a few things in particular worth calling out.

First, the Angular team is focused on reducing the size/weight
footprint of the Angular libraries. This is good for obvious reasons,
particularly for those users who aren’t on high-speed fiber connec-
tions with the rest of the world. The Angular team says they’re not
done, either, so expect that each successive Angular release will
seek to decrease its footprint even further.

In the same spirit, the Angular team has reduced the overall
size of the generated codebehind view templates, up to 60 percent.

How To Be MEAN: Up-Angular-izing

The Working Programmer TED NEWARD

Fundamentally, upgrading to
Angular 4 means using the Node

Package Manager (npm) to
update the npm packages in use

to the latest versions.

0817msdn_NewardWProg_v3_66-68.indd 66 7/12/17 11:56 AM

Untitled-1 1Untitled-1 1 7/14/17 11:11 AM7/14/17 11:11 AM

www.nevron.com

msdn magazine68 The Working Programmer

Again, this means that the application you build will be that much
smaller and lighter.

Second, the team improved the “*ngIf ” and “*ngFor” directives
used in view templates for branching and iteration scenarios,
respectively. You haven’t seen those yet, so the new features won’t
be apparent yet, but you’ll see them soon, so hang in there.

Last, the Angular team also brought the Angular libraries up to
the latest versions of TypeScript (2.2), which includes better nullable
checking, some better type support for ECMAScript (ES) 2015-style
mixings, and an “object” type to represent a type that’s the base
type of all declared types in TypeScript, similar to the role that
System.Object serves in much .NET code. This implicitly also brings
support for TypeScript 2.1, which has some interesting features on
its own, like the “keyof ” operator, mapped types (which provides
the utility types Partial, Readonly, Pick and Record), and support
for the “spread” and “rest” operators from ES 2015. All of this is
well beyond the scope of Angular itself, but any good TypeScript
tutorial (or the TypeScript Web site itself) will explain their use.
Fundamentally, these won’t change the code that you write when
writing Angular, at least not right away, but as these features get used
more in the Angular library, they might start finding their way into
the surface area of the Angular API. That likely won’t happen for
a while, however, so for the moment, the biggest thing to keep in
mind is that Angular is keeping up with the evolution of TypeScript.

Wrapping Up
Hopefully I’ve helped you understand that doing this upgrade costs
you almost nothing to do—that’s the best kind of version update.
More important, it’s refreshing to know that as Angular applications
grow and evolve, the required work to keep them up-to-date with
the latest versions of Angular is (for the moment, anyway) trivial.

How To Be MEAN: Two Years On
While working on this column, MSDN Magazine Editor in Chief
Michael Desmond pointed out that my How To Be MEAN series
was turning 2 years old as of this issue. How is it that I’m still work-
ing in the MEAN mines? Some of it has to do with the fact that this
series is attacking a rather large subject—a complete soup-to-nuts,
front-end-to-data-storage, REST API middleware-based platform,
rather than just a library or framework. But some of it has to do
with the nature of the MEAN stack itself.

You see, the MEAN platform is different from the .NET
Framework platform not in terms of what it provides—both have a
programming language, an HTTP library/framework for receiving

JSON data submitted, drivers for accessing databases and so on.
Rather, it differs in terms of what it doesn’t provide. That is to say,
the MEAN platform, building on top of the Node.js platform
stresses a sense of “minimalism” that the .NET platform doesn’t.

That might sound like a slight to one or the other platform; that
somehow Node.js isn’t “fully baked” or that .NET is “too heavy.” No
such value judgement is intended. But where .NET emerged from
Microsoft and continues to be heavily driven by what the .NET
Framework team has built over the years, the Node.js platform
has been bolted together by libraries built by hundreds of teams
and thousands of developers from all across the world. There are
pros and cons to each approach—but that’s not the direction I’m
headed with this.

The fact is both platforms are available to you, at your discretion.
And even just two years ago, the idea of Microsoft being a platform
by which developers could use either .NET or Node.js—or even Java
or PHP—for building applications on or near the Microsoft OS (or
cloud platform) seemed ludicrous. There were signs that suggested
that Microsoft might reach this kind of “all platforms created
equal” mentality, but the company’s history suggested we might
see an approach where .NET would be first among those equals.

Consider this for a moment: The “A” in the MEAN stack stands
for Angular. When I began this series, Angular was not the power
house, rich-client, single-page application (SPA) platform that it
is today—it was but one of several potential bets that you might
make on the JavaScript front-end landscape. Angular has seen a
definite rise in interest, and the pages of this magazine have been
decorated with numerous references to Angular, both within the
confines of this column and in feature pieces written by others.

What’s remarkable is that this interest is in a front-end technology
written in the open source world by a team that not only doesn’t
work for Microsoft, but works for one of Microsoft’s competitors.
Yet it uses the open source TypeScript language developed by
Microsoft. It’s enough to make your head spin.

The MEAN stack, and the coverage of MEAN in this magazine
in many ways articulate everything about “the new Microsoft.” It’s
a stellar demonstration of how the Microsoft of 2017 is so entirely
different from the Microsoft of 2007 or 2000. The Microsoft that
valued competition over cooperation and community is long gone.
The company before us today certainly competes, but not with its
community. The Microsoft of 2017 wants you to use the technol-
ogy stack of your choice, ideally within its cloud or on its OS, but
if you have a different choice than that, well, that’s your choice.

At the end of the day, the MEAN stack is “just” a stack made up
of three parts (MongoDB, Angular and Node.js/Express) that can
interoperate with one another. And the fact that Microsoft not only
embraces that, but encourages it, tells you just how far things have
come from where it was before.

Kind of makes you wonder what the next few years have in store
for us, doesn’t it? Happy coding!	 n

Ted Neward is a Seattle-based polytechnology consultant, speaker and mentor,
currently working as the director of developer relations at Smartsheet.com. He
has written more than 100 articles, authored and coauthored a dozen books,
and works all over the world. Reach him at ted@tedneward.com or read his blog
at blogs.tedneward.com.

In the same spirit, the Angular
team has reduced the

overall size of the generated
codebehind view templates,

up to 60 percent.

0817msdn_NewardWProg_v3_66-68.indd 68 7/12/17 11:56 AM

mailto:ted@tedneward.com
http://blogs.tedneward.com

0

5

25

75

95

100

Alachisoft-MSDN-Magazine-Ad-Feb-2017-Ver-1.0

Tuesday, February 14, 2017 3:56:01 PM

Untitled-6 1 3/6/17 2:20 PM

www.alachisoft.com
mailto:sales@alachisoft.com

REDMOND
AUGUST 14-18, 2017
MICROSOFT HEADQUARTERS

➤ Rub elbows with blue badges
➤ Experience life on campus
➤ Enjoy lunch in the Commons

and visit the Company Store
➤ And More!

JOIN US AT MICROSOFT HEADQUARTERS
THIS SUMMER

Register by August 14
and Save $300!*
Use promo code RDEB01

Scott Hanselman,
Keynote Speaker

SPACE IS LIMITED

SUNDAY, AUG 13: PRE-CON
HANDS-ON LABS
Choose From:
➤ Angular
➤ Dev Ops with

ASP.NET Core/EF Core
➤ SQL Server 2016

NEW!
Only
$695!

ALM / DevOps Cloud
Computing

Database and
Analytics

Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

START TIME END TIME Full Day Hands-On Labs: Sunday, August 13, 2017 (Separate entry fee required)

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Busy Developer’s
HOL on Angular - Ted Neward

HOL02 Full Day Hands-On Lab: DevOps with ASP.NET
Core and EF Core - Benjamin Day & Brian Randell

HOL03 Full Day Hands-On Lab: Developer Dive
into SQL Server 2016 - Leonard Lobel

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, August 14, 2017 (Separate entry fee required)

8:00 AM 12:00 PM M01 Workshop: Modern Security Architecture
for ASP.NET Core - Brock Allen

M02 Workshop: Distributed Cross-Platform Application
Architecture - Jason Bock & Rockford Lhotka

M03 Workshop: Big Data, BI and Analytics
on The Microsoft Stack - Andrew Brust

12:00 PM 2:00 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:00 PM 5:30 PM M01 Workshop Continues - Brock Allen M02 Workshop Continues
- Jason Bock & Rockford Lhotka M03 Workshop Continues - Andrew Brust

7:00 PM 9:00 PM Dine-A-Round Dinner

START TIME END TIME Visual Studio Live! Day 1: Tuesday, August 15, 2017

8:00 AM 9:15 AM
T01 Go Mobile With C#,

Visual Studio, and Xamarin
- James Montemagno

T02 Angular 101: Part 1
- Deborah Kurata

T03 New SQL Server 2016
Security Features for

Developers - Leonard Lobel

 T04 Building an Agile Culture
 that Scales - Aaron Bjork

T05 The Future of C#
- Dustin Campbell
& Mads Torgersen

9:30 AM 10:45 AM
T06 Building Connected and

Disconnected Mobile Apps
- James Montemagno

T07 Angular 101: Part 2
- Deborah Kurata

T08 No Schema, No Problem!
Introduction to Azure

DocumentDB - Leonard Lobel

T09 Getting to the Core of
.NET Core - Adam Tuliper

T10 Building Apps with
 Microsoft Graph and Visual

Studio - Robert Green

10:45 AM 11:15 AM Sponsored Break - Visit Exhibitors

11:15 AM 12:15 PM KEYNOTE: Microsoft’s Open Source Developer Journey - Scott Hanselman, Principal Community Architect for Web Platform and Tools, Microsoft

12:15 PM 1:30 PM Lunch - Visit Exhibitors

1:30 PM 2:45 PM T11 Take the Tests: Can You Evaluate
Good and Bad Designs? - Billy Hollis

T12 Assembling the Web—
A Tour of WebAssembly

- Jason Bock

T13 Unit Testing & Test-Driven
Development (TDD) for

Mere Mortals - Benjamin Day

T14 Mobile DevOps with
the Microsoft Stack

- Abel Wang

T15 Azure for .NET
 Developers: In Plain English

- Michael Crump

3:00 PM 4:15 PM
T16 A Developers Introduction
to HoloLens - Billy Hollis & Brian

Randell

T17 Spans, Memory,
and Channels—Making

.NET Code Fast - Jason Bock

 T18 Developing for Windows
and Linux Side by Side

- Gilles Khouzam

T19 Entity Framework Core
for Enterprise Applications

- Benjamin Day

T20 Debugging Tips and
Tricks for Visual Studio

- Kaycee Anderson

4:15 PM 5:45 PM Microsoft Ask the Experts & Exhibitor Reception Sponsored by

START TIME END TIME Visual Studio Live! Day 2: Wednesday, August 16, 2017

8:00 AM 9:15 AM W01 Roll Your Own Dashboard
in XAML - Billy Hollis

W02 Migrating to
 ASP.NET Core—A True

Story - Adam Tuliper

W03 Hacker Trix - Learning from
OWASP Top 10 - Mike Benkovich

W04 Distributed Architecture:
Microservices and Messaging

- Rockford Lhotka

W05 Architecting Big Data
Solutions with Azure

- Michael Rys

9:30 AM 10:45 AM

W06 Customizing Your UI for
Mobile Devices: Techniques to Create

a Great User Experience - Laurent
Bugnion

W07 User Authentication for
ASP.NET Core MVC Applications

- Brock Allen

W08 From Containers to Data in
Motion, Tour d’Azure 2017 - Mike

Benkovich

W09 ASP.NET Core 2.0
- Jass Bagga

W10 Agile: You Keep
Using That Word...

- Philip Japikse

11:00 AM 12:00 PM GENERAL SESSION: Amplifying Human Ingenuity with Microsoft AI - Paul Stubbs, Director of Product Marketing for AI and Bots, Microsoft

12:00 PM 1:30 PM Birds-of-a-Feather Lunch - Visit Exhibitors

1:30 PM 2:45 PM
W11 Building Cross-platform App.

Dev. with CLSA.NET - Rockford
Lhotka

W12 Securing Web APIs in
ASP.NET Core - Brock Allen

W13 Tactical DevOps with VSTS
- Brian Randell

W14 TypeScript and the Future
of JavaScript - Jordan Matthiesen

& Bowden Kelly

W15 Agile Failures:
Stories from The Trenches

- Philip Japikse

2:45 PM 3:15 PM Sponsored Break - Exhibitor Raffle @ 2:55 pm (Must be present to win)

3:15 PM 4:30 PM
W16 Building Truly Universal

Applications with Windows, Xamarin
and MVVM - Laurent Bugnion

W17 Integrating AngularJS &
ASP.NET MVC - Miguel Castro

W18 Get Started with Git
and GitHub - Robert Green

W19 SOLID—The Five
Commandments of Good

Software - Chris Klug

W20 Using Angular 2,
JavaScript, and TypeScript
to Build Fast and Secure

 Mobile Apps - Jordan Matthiesen

6:15 PM 8:30 PM Set Sail! VSLive!’s Seattle Sunset Cruise - Advanced Reservation & $10 Fee Required

START TIME END TIME Visual Studio Live! Day 3: Thursday, August 17, 2017

8:00 AM 9:15 AM
TH01 Lessons Learned from
Real World Xamarin.Forms

Projects - Nick Landry

TH02 Build Real-Time
Websites and Apps with
SignalR - Rachel Appel

TH03 “Aurelia vs “Just
Angular” a.k.a “The

Framework Formerly Known
as Angular 2” - Chris Klug

TH04 Go Serverless with Azure
Functions - Eric D. Boyd

TH05 Git at Microsoft
Scale - Edward Thomson

9:30 AM 10:45 AM
TH06 Creating Great Looking

Android Applications Using
Material Design - Kevin Ford

TH07 Database Lifecycle
Management and the
SQL Server Database

- Brian Randell

TH08 Hard Core
ASP.NET Core
- Rachel Appel

TH09 Breaking Down Walls with
Modern Identity - Eric D. Boyd

TH10 Microsoft Set List:
Details Dropping Soon

11:00 AM 12:15 PM TH11 Software Engineering in an
Agile Environment - David Corbin

TH12 Bots are the New Apps:
Building Bots with ASP.NET

WebAPI & Language
Understanding - Nick Landry

TH13 Power BI: Analytics for
Desktop, Mobile and Cloud

- Andrew Brust

TH14 Enriching MVC Sites
with Knockout JS
- Miguel Castro

TH15 What’s New in
Visual Studio 2017 for

C# Developers
- Kasey Uhlenhuth

12:15 PM 2:15 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:15 PM 3:30 PM
TH16 Classic Software Design

Principles and Why They Are Still
Important- David Corbin

TH17 Getting Started with
Aurelia - Brian Noyes

TH18 Big Data with Hadoop,
 Spark and Azure HDInsight

- Andrew Brust

 TH19 Extend and Customize
 the Visual Studio Environment

- Walt Ritscher

TH20 Serverless with Azure
 Functions—Scale Dynamically

and Pay per Execution
- Donna Malayeri

3:45 PM 5:00 PM
TH21 End-to-End Dependency

Injection & Testable Code
- Miguel Castro

 TH22 Everything You Need
to Know About Package

Management - Alex Mullans

TH23 Continuous Integration and
Deployment for Mobile using Azure

Services - Kevin Ford

TH24 Windows Package
Management with NuGet and

Chocolatey - Walt Ritscher

 TH25 Securing Client Apps
with IdentityServer

- Brian Noyes

START TIME END TIME Visual Studio Live! Post-Conference Workshops: Friday, August 18, 2017 (Separate entry fee required)

8:00 AM 5:00 PM F01 Workshop: Building Modern Web Apps with Azure - Eric D. Boyd F02 Workshop: Data-Centric Single Page Apps with Aurelia, Breeze, and Web API - Brian Noyes

Speakers and sessions subject to change

SUPPORTED BY

magazine

EVENT PARTNER PRODUCED BYGOLD SPONSORS

* Only
available
on 3- and
5-day
packages.

There are many perks to attending training at
Microsoft Headquarters, and one of the
biggest is getting to hear from Microsoft
insiders who are “in the trenches”, working
with developers just like you on a daily basis.

Microsoft Speakers are noted with a

FULL TRACK OF MICROSOFT
SESSIONS NOW UPDATED!

SILVER SPONSOR

Untitled-4 2 7/13/17 1:11 PM

www.vslive.com/redmondmsdn

CONNECT WITH US
twitter.com/vslive –
@VSLive

facebook.com –
Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

vslive.com/redmondmsdn

REDMOND AGENDA AT-A-GLANCE
ALM / DevOps Cloud

Computing
Database and

Analytics
Native
Client

Software
Practices

Visual Studio /
.NET Framework Web Client Web Server

START TIME END TIME Full Day Hands-On Labs: Sunday, August 13, 2017 (Separate entry fee required)

9:00 AM 6:00 PM HOL01 Full Day Hands-On Lab: Busy Developer’s
HOL on Angular - Ted Neward

HOL02 Full Day Hands-On Lab: DevOps with ASP.NET
Core and EF Core - Benjamin Day & Brian Randell

HOL03 Full Day Hands-On Lab: Developer Dive
into SQL Server 2016 - Leonard Lobel

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, August 14, 2017 (Separate entry fee required)

8:00 AM 12:00 PM M01 Workshop: Modern Security Architecture
for ASP.NET Core - Brock Allen

M02 Workshop: Distributed Cross-Platform Application
Architecture - Jason Bock & Rockford Lhotka

M03 Workshop: Big Data, BI and Analytics
on The Microsoft Stack - Andrew Brust

12:00 PM 2:00 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:00 PM 5:30 PM M01 Workshop Continues - Brock Allen M02 Workshop Continues
- Jason Bock & Rockford Lhotka M03 Workshop Continues - Andrew Brust

7:00 PM 9:00 PM Dine-A-Round Dinner

START TIME END TIME Visual Studio Live! Day 1: Tuesday, August 15, 2017

8:00 AM 9:15 AM
T01 Go Mobile With C#,

Visual Studio, and Xamarin
- James Montemagno

T02 Angular 101: Part 1
- Deborah Kurata

T03 New SQL Server 2016
Security Features for

Developers - Leonard Lobel

 T04 Building an Agile Culture
 that Scales - Aaron Bjork

T05 The Future of C#
- Dustin Campbell
& Mads Torgersen

9:30 AM 10:45 AM
T06 Building Connected and

Disconnected Mobile Apps
- James Montemagno

T07 Angular 101: Part 2
- Deborah Kurata

T08 No Schema, No Problem!
Introduction to Azure

DocumentDB - Leonard Lobel

T09 Getting to the Core of
.NET Core - Adam Tuliper

T10 Building Apps with
 Microsoft Graph and Visual

Studio - Robert Green

10:45 AM 11:15 AM Sponsored Break - Visit Exhibitors

11:15 AM 12:15 PM KEYNOTE: Microsoft’s Open Source Developer Journey - Scott Hanselman, Principal Community Architect for Web Platform and Tools, Microsoft

12:15 PM 1:30 PM Lunch - Visit Exhibitors

1:30 PM 2:45 PM T11 Take the Tests: Can You Evaluate
Good and Bad Designs? - Billy Hollis

T12 Assembling the Web—
A Tour of WebAssembly

- Jason Bock

T13 Unit Testing & Test-Driven
Development (TDD) for

Mere Mortals - Benjamin Day

T14 Mobile DevOps with
the Microsoft Stack

- Abel Wang

T15 Azure for .NET
 Developers: In Plain English

- Michael Crump

3:00 PM 4:15 PM
T16 A Developers Introduction
to HoloLens - Billy Hollis & Brian

Randell

T17 Spans, Memory,
and Channels—Making

.NET Code Fast - Jason Bock

 T18 Developing for Windows
and Linux Side by Side

- Gilles Khouzam

T19 Entity Framework Core
for Enterprise Applications

- Benjamin Day

T20 Debugging Tips and
Tricks for Visual Studio

- Kaycee Anderson

4:15 PM 5:45 PM Microsoft Ask the Experts & Exhibitor Reception Sponsored by

START TIME END TIME Visual Studio Live! Day 2: Wednesday, August 16, 2017

8:00 AM 9:15 AM W01 Roll Your Own Dashboard
in XAML - Billy Hollis

W02 Migrating to
 ASP.NET Core—A True

Story - Adam Tuliper

W03 Hacker Trix - Learning from
OWASP Top 10 - Mike Benkovich

W04 Distributed Architecture:
Microservices and Messaging

- Rockford Lhotka

W05 Architecting Big Data
Solutions with Azure

- Michael Rys

9:30 AM 10:45 AM

W06 Customizing Your UI for
Mobile Devices: Techniques to Create

a Great User Experience - Laurent
Bugnion

W07 User Authentication for
ASP.NET Core MVC Applications

- Brock Allen

W08 From Containers to Data in
Motion, Tour d’Azure 2017 - Mike

Benkovich

W09 ASP.NET Core 2.0
- Jass Bagga

W10 Agile: You Keep
Using That Word...

- Philip Japikse

11:00 AM 12:00 PM GENERAL SESSION: Amplifying Human Ingenuity with Microsoft AI - Paul Stubbs, Director of Product Marketing for AI and Bots, Microsoft

12:00 PM 1:30 PM Birds-of-a-Feather Lunch - Visit Exhibitors

1:30 PM 2:45 PM
W11 Building Cross-platform App.

Dev. with CLSA.NET - Rockford
Lhotka

W12 Securing Web APIs in
ASP.NET Core - Brock Allen

W13 Tactical DevOps with VSTS
- Brian Randell

W14 TypeScript and the Future
of JavaScript - Jordan Matthiesen

& Bowden Kelly

W15 Agile Failures:
Stories from The Trenches

- Philip Japikse

2:45 PM 3:15 PM Sponsored Break - Exhibitor Raffle @ 2:55 pm (Must be present to win)

3:15 PM 4:30 PM
W16 Building Truly Universal

Applications with Windows, Xamarin
and MVVM - Laurent Bugnion

W17 Integrating AngularJS &
ASP.NET MVC - Miguel Castro

W18 Get Started with Git
and GitHub - Robert Green

W19 SOLID—The Five
Commandments of Good

Software - Chris Klug

W20 Using Angular 2,
JavaScript, and TypeScript
to Build Fast and Secure

 Mobile Apps - Jordan Matthiesen

6:15 PM 8:30 PM Set Sail! VSLive!’s Seattle Sunset Cruise - Advanced Reservation & $10 Fee Required

START TIME END TIME Visual Studio Live! Day 3: Thursday, August 17, 2017

8:00 AM 9:15 AM
TH01 Lessons Learned from
Real World Xamarin.Forms

Projects - Nick Landry

TH02 Build Real-Time
Websites and Apps with
SignalR - Rachel Appel

TH03 “Aurelia vs “Just
Angular” a.k.a “The

Framework Formerly Known
as Angular 2” - Chris Klug

TH04 Go Serverless with Azure
Functions - Eric D. Boyd

TH05 Git at Microsoft
Scale - Edward Thomson

9:30 AM 10:45 AM
TH06 Creating Great Looking

Android Applications Using
Material Design - Kevin Ford

TH07 Database Lifecycle
Management and the
SQL Server Database

- Brian Randell

TH08 Hard Core
ASP.NET Core
- Rachel Appel

TH09 Breaking Down Walls with
Modern Identity - Eric D. Boyd

TH10 Microsoft Set List:
Details Dropping Soon

11:00 AM 12:15 PM TH11 Software Engineering in an
Agile Environment - David Corbin

TH12 Bots are the New Apps:
Building Bots with ASP.NET

WebAPI & Language
Understanding - Nick Landry

TH13 Power BI: Analytics for
Desktop, Mobile and Cloud

- Andrew Brust

TH14 Enriching MVC Sites
with Knockout JS
- Miguel Castro

TH15 What’s New in
Visual Studio 2017 for

C# Developers
- Kasey Uhlenhuth

12:15 PM 2:15 PM Lunch @ The Mixer - Visit the Microsoft Company Store & Visitor Center

2:15 PM 3:30 PM
TH16 Classic Software Design

Principles and Why They Are Still
Important- David Corbin

TH17 Getting Started with
Aurelia - Brian Noyes

TH18 Big Data with Hadoop,
 Spark and Azure HDInsight

- Andrew Brust

 TH19 Extend and Customize
 the Visual Studio Environment

- Walt Ritscher

TH20 Serverless with Azure
 Functions—Scale Dynamically

and Pay per Execution
- Donna Malayeri

3:45 PM 5:00 PM
TH21 End-to-End Dependency

Injection & Testable Code
- Miguel Castro

 TH22 Everything You Need
to Know About Package

Management - Alex Mullans

TH23 Continuous Integration and
Deployment for Mobile using Azure

Services - Kevin Ford

TH24 Windows Package
Management with NuGet and

Chocolatey - Walt Ritscher

 TH25 Securing Client Apps
with IdentityServer

- Brian Noyes

START TIME END TIME Visual Studio Live! Post-Conference Workshops: Friday, August 18, 2017 (Separate entry fee required)

8:00 AM 5:00 PM F01 Workshop: Building Modern Web Apps with Azure - Eric D. Boyd F02 Workshop: Data-Centric Single Page Apps with Aurelia, Breeze, and Web API - Brian Noyes

Speakers and sessions subject to change

NEW

Untitled-4 3 7/13/17 1:11 PM

www.vslive.com/redmondmsdn
www.vslive.com/redmondmsdn
https://www.twitter.com/vslive
https://www.facebook.com/vsliveevents
www.linkedin.com

msdn magazine72

Back in November, in the Connect(); special issue, I provided
an overview of C# 7.0 (msdn.microsoft.com/magazine/mt790178), in
which I introduced tuples. In this article, I delve into tuples again,
covering the full breadth of the syntax options.

To begin, let’s consider the question: Why tuples? On occasion,
you’ll likely find it useful to combine data elements. Suppose, for
example, you’re working with information about countries, such
as the poorest country in the world in 2017: Malawi, whose capital
is Lilongwe, with a gross domestic product (GDP) per capita of
$226.50. You could obviously declare a class for this data, but it
doesn’t really represent your typical noun/object. It’s seemingly
more a collection of related pieces of data than it is an object.
Surely, if you were going to have a Country object, for example,
it would have considerably more data than just properties for the
Name, Capital and GDP per capita. Alternatively, you could store
each data element in individual variables, but the result would be
no association between the data elements; $226.50 would have
no association with Malawi except perhaps by a common suffix
or prefix in the variable names. Another option would be to com-
bine all the data into a single string—with the disadvantage that to
work with each data element individually would require parsing
it out. A final approach might be to create an anonymous type,
but that, too, has limitations; enough, in fact, that tuples could
potentially replace anonymous types entirely. I’ll leave this topic
until the end of the article.

The best option might be the C# 7.0 tuple, which, at its simplest,
provides a syntax that allows you to combine the assignment of
multiple variables, of varying types, in a single statement:

(string country, string capital, double gdpPerCapita) =
 ("Malawi", "Lilongwe", 226.50);

In this case, I’m not only assigning multiple variables, but
declaring them as well.

However, tuples have several other additional syntax possibilities,
each shown in Figure 1.

In the first four examples, and although the right-hand side rep-
resents a tuple, the left-hand side still represents individual variables
that are assigned together using tuple syntax, which involves two or
more elements separated by commas and associated with parenthe-
ses. (I use the term tuple syntax because the underlying data type
the compiler generates on the left-hand side isn’t technically a
tuple.) The result is that although I start with values combined as a

tuple on the right, the assignment to the left deconstructs the tuple
into its constituent parts. In example 2, the left-hand-side assign-
ment is to pre-declared variables. However, in examples 1, 3 and
4, the variables are declared within the tuple syntax. Given that
I’m only declaring variables, the naming and casing convention
follows the generally accepted Framework Design Guidelines—“Do
use camelCase for local variable names,” for example.

Note that although implicit typing (var) can be distributed
across each variable declaration within the tuple syntax, as shown
in example 4, you can’t do the same with an explicit type (such as
string). In this case, you’re actually declaring a tuple type, not just
using tuple syntax and, therefore, you’ll need to add a reference to
the System.ValueType NuGet package—at least until .NET Stan-
dard 2.0. Because tuples allow each item to be a different data type,
distributing the explicit type name across all elements wouldn’t
necessarily work unless all the item data types were identical (and
even then, the compiler doesn’t allow it).

In example 5, I declare a tuple on the left-hand side and then
assign the tuple on the right. Note that the tuple has named
items—names you can then reference to retrieve the item values
back out of the tuple. This is what enables the countryInfo.Name,
countryInfo.Capital, and countryInfo.GdpPerCapita syntax in
the System.Console.WriteLine statement. The result of the tuple
declaration on the left is a grouping of the variables into a single
variable (countryInfo) from which you can then access the con-
stituent parts. This is useful because you can then pass this single
variable around to other methods and those methods will also be
able to access the individual items within the tuple.

As already mentioned, variables defined using tuple syntax use
camelCase. However, the convention for tuple item names isn’t
well-defined. Suggestions include using parameter-naming con-
ventions when the tuple behaves like a parameter —such as when
returning multiple values that before tuple syntax would’ve used
out parameters. The alternative is to use PascalCase, following
the naming convention for public fields and properties. I strongly
favor the latter approach in accordance with the Capitalization
Rules for Identifiers (itl.tc/caprfi). Tuple item names are rendered
as members of the tuple and the convention for all (public)
members (which are potentially accessed using a dot operator)
is PascalCase.

Example 6 provides the same functionality as example 5, although
it uses named tuple items on the right-hand side tuple value and an
implicit type declaration on the left. The items’ names are persisted

C# 7.0: Tuples Explained

Essential .NET MARK MICHAELIS

Code download available at itl.tc/MSDN.2017.08.

0817msdn_MichaelisNET_v3_72-75.indd 72 7/12/17 11:55 AM

http://itl.tc/MSDN.2017.08
http://msdn.microsoft.com/magazine/mt790178
www.itl.tc/caprfi

Untitled-5 1 7/6/17 3:22 PM

www.spreadsheetgear.com

msdn magazine74 Essential .NET

to the implicitly typed variable, however, so they’re still available
for the WriteLine statement. Of course, this opens the possibility
that you could name the items on the left-hand side with names
that are different from those you use on the right. While the C#
compiler allows this, it will issue a warning that the item names
on the right will be ignored as those on the left take precedence.

If no item names are specified, the individual elements are still
available from the assigned tuple variable. However, the names are
Item1, Item2 and so on, as shown in example 7. In fact, the ItemX
name is always available on the tuple—even when custom names
are provided (see example 8). However, when using IDE tools like
any of the recent flavors of Visual Studio that support C# 7.0, the
ItemX property will not appear within the IntelliSense dropdown—a
good thing because presumably the provided name is preferable.

As shown in example 9, portions of a tuple assignment can be
excluded using an underscore; this is
called a discard.

Tuples are a lightweight solution
for encapsulating data into a single
object in the same way that a bag
might capture miscellaneous items
you pick up from the store. Unlike
arrays, tuples contain item data
types that can vary virtually without
constraint (although pointers aren’t
allowed), except that they’re identi-
fied by the code and can’t be changed
at run time. Also, unlike with arrays,
the number of items within the
tuple is hardcoded at compile time,
as well. Last, you can’t add custom
behavior to a tuple (extension meth-
ods notwithstanding). If you need
behavior associated with the encap-
sulated data, then leveraging object-
oriented programing and defining a
class is the preferred approach.

The System.ValueTuple<…>
Type
The C# compiler generates code that
relies on a set of generic value types
(structs), such as System.Value
Tuple<T1, T2, T3>, as the underlying
implementation for the tuple syntax
for all tuple instances on the right-
hand side of the examples in
Figure 1. Similarly, the same set of
System.ValueTuple<...> generic value
types is used for the left-hand-side
data type starting with example 5.
As you’d expect with a tuple type,
the only methods included are those
related to comparison and equality.
However, perhaps unexpectedly, there

are no properties for ItemX, but rather read-write fields (seemingly
breaking the most basic of .NET Programming Guidelines as
explained at itl.tc/CS7TuplesBreaksGuidelines).

In addition to the programming guidelines discrepancy, there’s
another behavioral question that arises. Given that the custom
item names and their types aren’t included in the System.Value
Tuple<...> definition, how is it possible that each custom item
name is seemingly a member of the System.ValueTuple<...> type
and accessible as a member of that type?

What’s surprising (particularly for those familiar with the anon-
ymous type implementation) is that the compiler doesn’t generate
underlying Common Intermediate Language (CIL) code for the
members corresponding to the custom names. However, even
without an underlying member with the custom name, there is
(seemingly) from the C# perspective, such a member.

Figure 1 Sample Code for Tuple Declaration and Assignment

Example Description Example Code
1. Assigning a tuple to

individually declared
variables.

(string country, string capital, double gdpPerCapita) =
 ("Malawi", "Lilongwe", 226.50);
System.Console.WriteLine(
 $@"The poorest country in the world in 2017 was {
 country}, {capital}: {gdpPerCapita}");

2. Assigning a tuple to
individually declared variables
that are pre-declared.

string country;
string capital;
double gdpPerCapita;

(country, capital, gdpPerCapita) =
 ("Malawi", "Lilongwe", 226.50);
System.Console.WriteLine(
 $@"The poorest country in the world in 2017 was {
 country}, {capital}: {gdpPerCapita}");

3. Assigning a tuple to
individually declared and
implicitly typed variables.

(var country, var capital, var gdpPerCapita) =
 ("Malawi", "Lilongwe", 226.50);
System.Console.WriteLine(
 $@"The poorest country in the world in 2017 was {
 country}, {capital}: {gdpPerCapita}");

4. Assigning a tuple to
individually declared variables
that are implicitly typed with
a distributive syntax.

var (country, capital, gdpPerCapita) =
 ("Malawi", "Lilongwe", 226.50);
System.Console.WriteLine(
 $@"The poorest country in the world in 2017 was {
 country}, {capital}: {gdpPerCapita}");

5. Declaring a named item tuple
and assigning it tuple values
and then accessing the tuple
items by name.

(string Name, string Capital, double GdpPerCapita) countryInfo =
 ("Malawi", "Lilongwe", 226.50);
System.Console.WriteLine(
 $@"The poorest country in the world in 2017 was {
 countryInfo.Name}, {countryInfo.Capital}: {
 countryInfo.GdpPerCapita}");

6. Assigning a named item tuple
to a single implicitly typed
variable that’s implicitly typed
and then accessing the tuple
items by name.

var countryInfo =
 (Name: "Malawi", Capital: "Lilongwe", GdpPerCapita: 226.50);
System.Console.WriteLine(
 $@"The poorest country in the world in 2017 was {
 countryInfo.Name}, {countryInfo.Capital}: {
 countryInfo.GdpPerCapita}");

7. Assigning an unnamed tuple
to a single implicitly typed
variable and then accessing
the tuple elements by their
Item-number property.

var countryInfo =
 ("Malawi", "Lilongwe", 226.50);
System.Console.WriteLine(
 $@"The poorest country in the world in 2017 was {
 countryInfo.Item1}, {countryInfo.Item2}: {
 countryInfo.Item3}");

8. Assigning a named item tuple
to a single implicitly typed
variable and then accessing
the tuple items by their
Item-number property.

var countryInfo =
 (Name: "Malawi", Capital: "Lilongwe", GdpPerCapita: 226.50);
System.Console.WriteLine(
 $@"The poorest country in the world in 2017 was {
 countryInfo.Item1}, {countryInfo.Item2}: {
 countryInfo.Item3}");

9. Discard portions of the tuple
with underscores.

(string name, _, double gdpPerCapita) countryInfo =
 ("Malawi", "Lilongwe", 226.50);

0817msdn_MichaelisNET_v3_72-75.indd 74 7/12/17 11:55 AM

http://itl.tc/CS7TuplesBreaksGuidelines

75August 2017msdnmagazine.com

For all the named tuple local variable examples, for example:
var countryInfo = (Name: "Malawi", Capital: "Lilongwe", GdpPerCapita: 226.50)

it’s clearly possible that the names could be known by the compiler
for the remainder of the scope of the tuple because that scope is
bounded within the member in which it’s declared. And, in fact,
the compiler (and IDE) quite simply rely on this scope to allow
accessing each item by name. In other words, the compiler looks
at the item names within the tuple declaration and leverages them
to allow code that uses those names within the scope. It’s for this
reason, as well, that the ItemX methods aren’t shown in the IDE
IntelliSense as available members on the tuple (the IDE simply
ignores them and replaces them with the named items).

Determining the item names from when scoped within a mem-
ber is reasonable for the compiler, but what happens when a tuple
is exposed outside the member—such as a parameter or return
from a method that’s in a different assembly (for which there’s
possibly no source code available)? For all tuples that are part of
the API (whether a public or private API), the compiler adds item
names to the metadata of the member in the form of attributes.
For example, this:

[return: System.Runtime.CompilerServices.TupleElementNames(
 new string[] {"First", "Second"})]
public System.ValueTuple<string, string> ParseNames(string fullName)
{
 // ...
}

is the C# equivalent of what the compiler generates for the following:
public (string First, string Second) ParseNames(string fullName)

On a related note, C# 7.0 doesn’t enable the use of custom item
names when using the explicit System.ValueTuple<…> data type.
Therefore, if you replace var in Example 8 of Figure 1, you’ll end
up with warnings that each item name will be ignored.

Here are a few additional miscellaneous facts to keep in mind
about System.ValueTuple<…>:

• �There are a total of eight generic System.ValueTuple structs
corresponding to the possibility of supporting a tuple with up
to seven items. For the eighth tuple, System.ValueTuple<T1,
T2, T3, T4, T5, T6, T7, TRest>, the last type parameter
allows specifying an additional value tuple, thus enabling
support for n items. If, for example, you specify a tuple with
8 parameters, the compiler will automatically generate a
System.ValueTuple<T1, T2, T3, T4, T5, T6, T7, System.Value
Tuple<TSub1>> as the underlying implementing type. (For
completeness, System.Value<T1> exists, but will really only
be used directly and only as a type. It will never be used
directly by the compiler because the C# tuple syntax requires
a minimum of two items.)

• �There is a non-generic System.ValueTuple that serves as a
tuple factory with Create methods corresponding to each
value tuple arity. The ease of using a tuple literal, such as var
t1 = (“Inigo Montoya”, 42), supersedes the Create method at
least for C# 7.0 (or later) programmers.

• �For all practical purposes, C# developers can essentially
ignore System.ValueTuple and System.ValueTuple<T>.

There’s another tuple type that was included with the .NET
Framework 4.5—System.Tuple<…>. At that time, it was expected
to be the core tuple implementation going forward. However,
once C# supported tuple syntax, it was realized that a value type
generally performed better and so System.ValueTuple<…> was
introduced, effectively replacing System.Tuple<…> in all cases
except for backward compatibility with existing APIs that depend
on System.Tuple<…>.

Wrapping Up
What many folks didn’t realize when it was first introduced is
that the new C# 7.0 tuple all but replaces anonymous types—and
provides additional functionality. Tuples can be returned from
methods, for example, and the item names are persisted in the
API such that meaningful names can be used in place of ItemX
type naming. And, like anonymous types, tuples can even repre-
sent complex hierarchical structures such as those that might be
constructed in more complex LINQ queries (albeit, like with
anonymous types, developers should do this with caution). That
said, this could possibly lead to situations where the tuple value
type exceeds 128 bytes and, therefore, might be a corner case for
when to use anonymous types because it’s a reference type. Except
for these corner cases (accessing via typical reflection might be
another example), there’s little to no reason to use an anonymous
type when programming with C# 7.0 or later.

The ability to program with a tuple type object has been around
for a long time (as mentioned, a tuple class, System.Tuple<…>,
was introduced with the .NET Framework 4, but was available
in Silverlight before that). However, these solutions never had an
accompanying C# syntax, but rather nothing more than a .NET
API. C# 7.0 brings a first-class tuple syntax that enables literals—
like var tuple = (42, “Inigo Montoya”)—implicit typing, strong
typing, public API utilization, integrated IDE support for named
ItemX data and more. Admittedly, it might not be something you
use in every C# file, but it’s likely something you’ll be grateful to
have when the need arises and you’ll welcome the tuple syntax over
the alternative out parameter or anonymous type.

Much of this article derives from my “Essential C#” book
(IntelliTect.com/EssentialCSharp), which I’m currently in the midst of
updating to “Essential C# 7.0.” For more information on this topic,
check out Chapter 3.	 n

Mark Michaelis is founder of IntelliTect, where he serves as its chief technical
architect and trainer. For nearly two decades he’s been a Microsoft MVP, and
a Microsoft Regional Director since 2007. Michaelis serves on several Micro­
soft software design review teams, including C#, Microsoft Azure, SharePoint
and Visual Studio ALM. He speaks at developer conferences and has written
numerous books, including his most recent, “Essential C# 6.0 (5th Edition)” (itl.tc/­
EssentialCSharp). Contact him on Facebook at facebook.com/Mark.Michaelis,
on his blog at IntelliTect.com/Mark, on Twitter: @markmichaelis or via e-mail
at mark@IntelliTect.com.

Thanks to the following Microsoft technical expert for reviewing this article:
Mads Torgersen

TUPLE ITEM NAMING GUIDELINES

Do use camelCase for all variables declared using tuple syntax.
Consider using PascalCase for all tuple item names.

0817msdn_MichaelisNET_v3_72-75.indd 75 7/12/17 11:55 AM

mailto:mark@IntelliTect.com
http://IntelliTect.com/EssentialCSharp
http://itl.tc/EssentialCSharp
http://itl.tc/EssentialCSharp
www.facebook.com/Mark.Michaelis
www.IntelliTect.com/Mark
www.twitter.com/markmichaelis
http://www.msdnmagazine.com

Coding in Paradise
Grab your flip flops, and your laptops, and make plans to attend Visual Studio Live!
(VSLive!™), the conference more developers rely on to expand their .NET skills and the
ability to build better applications.

Over six full days of unbiased and cutting-edge education on the Microsoft Platform,
developers, engineers, designers, programmers and more will soak in the knowledge on
everything from Visual Studio and the .NET framework, to AngularJS, ASP.NET and Xamarin.

EVENT PARTNERS PLATINUM SPONSOR

magazine

SUPPORTED BY

CONNECT WITH LIVE! 360

twitter.com/live360
@live360

facebook.com
Search "Live 360"

linkedin.com
Join the "Live! 360" group!

ROYAL PACIFIC RESORT
AT UNIVERSAL ORLANDO

NOVEMBER 12-17

Untitled-3 2 7/13/17 12:14 PM

www.vslive.com/orlandomsdn
https://twitter.com/live360events
https://facebook.com/live360events
https://www.linkedin.com/

TURN THE PAGE FOR MORE EVENT DETAILS

Whether you are an
 Engineer
 Developer
 Programmer
 Software Architect
 Software Designer

You will walk away from this event having
expanded your .NET skills and the ability
to build better applications.

PRODUCED BY

VSLIVE.COM/ORLANDOMSDN

REGISTER
NOW

REGISTER BY
AUGUST 11 AND
SAVE $500!*

Use promo code ORLAUG4

* Savings based on 5-day packages only.
See website for details.

5 GREAT CONFERENCES,
1 GREAT PRICE

Five (5) events and hundreds of
sessions to choose from—mix and
match sessions to create your own,
custom event line-up—it’s like no
other conference available today!

Visual Studio Live! Orlando is part
of Live! 360, the Ultimate Education
Destination. This means you’ll have
access to four (4) other co-located
events at no additional cost:

NEW: HANDS-ON LABS
Join us for full-day,
pre-conference hands-on
labs Sunday, November 12.

Only $595 through August 11

Untitled-2 1 7/13/17 11:24 AM

Untitled-3 3 7/13/17 12:15 PM

www.vslive.com/orlandomsdn

AGENDA AT-A-GLANCE

ALM / DEVOPS CLOUD
COMPUTING

NATIVE
CLIENT SOFTWARE PRACTICES VISUAL STUDIO /

.NET FRAMEWORK WEB CLIENT WEB SERVER MODERN APPS LIVE!

START TIME END TIME Full Day Hands-On Labs: Sunday, November 12, 2017

9:00 AM 6:00 PM VSS01 Full Day Hands-On Lab: Busy Developer's HOL on Angular - Ted Neward VSS02 Full Day Hands-On Lab: From 0-60 in a day with Xamarin and Xamarin.Forms - Roy Cornelissen

START TIME END TIME Pre-Conference Workshops: Monday, November 13, 2017 Pre-Con Workshops: Monday, Nov. 13

8:30 AM 5:30 PM VSM01 Workshop: Distributed Cross-Platform Application Architecture
- Jason Bock & Rockford Lhotka

VSM02 Workshop: Artificial Intelligence or DevOps??
- Brian Randell

 VSM03 Workshop: Service Oriented Technologies:
 Designing, Developing, & Implementing WCF and the Web API

 - Miguel Castro

MAM01 Workshop: Building Modern Mobile Apps
- Brent Edwards & Kevin Ford

6:30 PM 8:00 PM Dine-A-Round Dinner @ Universal CityWalk - 6:30pm - Meet at Conference Registration Desk to walk over with the group Dine-A-Round Dinner

START TIME END TIME Day 1: Tuesday, November 14, 2017 Day 1: Tuesday, November 14, 2017

8:00 AM 9:00 AM Visual Studio Live! KEYNOTE: To Be Announced
Modern Apps Live! KEYNOTE PANEL:

Industry Trends, Technology, and Your
Career - Matt Lockhart (Moderator)

9:15 AM 10:30 AM
VST01 Front-end Web Development in 2017 for

the Front-endally Challenged Microsoft Developer
- Chris Klug

VST02 Go Mobile with C#, Visual Studio, and Xamarin
- James Montemagno

VST03 Microservices with Azure Container
Service & Service Fabric - Vishwas Lele

VST04 What's New in
Visual Studio 2017 - Robert Green

MAT01 Modern App Development: Transform How
You Build Web and Mobile Software - Rockford Lhotka

10:30 AM 11:00 AM Networking Break • Visit the EXPO - Pacifica 7 Networking Break • Visit the EXPO - Pacifica 7

11:00 AM 12:00 PM LIVE! 360 KEYNOTE: To Be Announced - Pacifica 6 LIVE! 360 KEYNOTE

12:00 PM 12:45 PM Lunch • Visit the EXPO Lunch • Visit the EXPO

12:45 PM 1:30 PM Dessert Break • Visit the EXPO Dessert Break • Visit the EXPO

1:30 PM 2:45 PM VST05 ASP.NET Core MVC—What You Need to Know
- Philip Japikse

VST06 Optimizing and Extending Xamarin.Forms
Mobile Apps - James Montemagno

VST07 Tactical DevOps with Visual Studio
Team Services - Brian Randell VST08 To Be Announced MAT02 Architecture: The Key to Modern

App Success - Brent Edwards

2:45 PM 3:15 PM Networking Break • Visit the EXPO - Pacifica 7 Networking Break • Visit the EXPO - Pacifica 7

3:15 PM 4:30 PM VST09 Angular(2)—The 75-Minute Crash Course
- Chris Klug

VST10 Building a Cross-Platform Mobile App Backend
in the Cloud - Nick Landry

VST11 Database Lifecycle Management and the SQL
Server Database - Brian Randell

VST12 Top 10 Entity Framework Core
Features Every Developer Should Know

- Philip Japikse

MAT03 Modern Mobile Development: Build
a Single App For iOS, Android, and Windows with

Xamarin Forms - Kevin Ford

4:40 PM 5:00 PM VST13 Fast Focus: Aurelia vs. Just Angular - Chris Klug VST14 Fast Focus: Tips & Tricks for Xamarin
Development - James Montemagno VST15 Fast Focus on Azure Functions - Rachel Appel VST16 Fast Focus: Busting .NET Myths

- Jason Bock
MAT04 Fast Focus: Hybrid Web Frameworks

- Allen Conway

5:10 PM 5:30 PM VST17 Fast Focus: Web Security 101 - Brock Allen VST18 Fast Focus: Cross-Platform Code Reuse
- Rockford Lhotka

VST19 Fast Focus: Exploring Microservices in
a Microsoft Landscape - Marcel de Vries

VST20 Fast Focus: Dependency Injection
in 20 Minutes - Miguel Castro

MAT05 Fast Focus: Web Assembly
- Jason Bock

5:30 PM 7:30 PM Exhibitor Reception - Pacifica 7 Exhibitor Reception - Pacifica 7

START TIME END TIME Day 2: Wednesday, November 15, 2017 Day 2: Wednesday, November 15, 2017

8:00 AM 9:15 AM VSW01 User Authentication for ASP.NET Core
MVC Applications - Brock Allen VSW02 Cloud Oriented Programming - Vishwas Lele VSW03 Overcoming the Challenges of Mobile

Development in the Enterprise - Roy Cornelissen
VSW04 Building Apps with Microsoft Graph

and Visual Studio - Robert Green
MAW01 Focus on the User Experience #FTW

- Jim Barrett

9:30 AM 10:45 AM VSW05 Building AngularJS Component-Based
Applications - Miguel Castro

VSW06 Building Modern Web Apps with Azure
- Eric D. Boyd

VSW07 Creating a Release Pipeline with
Team Services - Esteban Garcia

VSW08 Bots are the New Apps:
Building Bots with ASP.NET Web API &
Language Understanding - Nick Landry

MAW02 DevOps, Continuous Integration,
the Cloud, and Docker - Dan Nordquist

10:45 AM 11:30 AM Networking Break • Visit the EXPO - Pacifica 7 Networking Break • Visit the EXPO - Pacifica 7

11:30 AM 12:30 PM LIVE! 360 KEYNOTE: To Be Announced - Pacifica 6 LIVE! 360 KEYNOTE

12:30 PM 1:30 PM Birds-of-a-Feather Lunch Birds-of-a-Feather Lunch

1:30 PM 2:00 PM Dessert Break • Visit the EXPO Dessert Break • Visit the EXPO

2:00 PM 3:15 PM VSW09 Securing Web APIs in ASP.NET Core
- Brock Allen

VSW10 A/B Testing, Canary Releases and
Dark Launching, Implementing Continuous Delivery on

Azure - Marcel de Vries

VSW11 The Zen of UI Automation Testing
- Rachel Appel VSW12 To Be Announced MAW03 Security with Speed for Modern Developers

- Michael Lester

3:15 PM 4:00 PM Networking Break • Visit the EXPO • Expo Raffle @ 3:30 p.m. - Pacifica 7 Networking Break • Visit the EXPO • Raffle @ 3:30 p.m.

4:00 PM 5:15 PM VSW13 Build Object-Oriented Enterprise Apps in
JavaScript with TypeScript - Rachel Appel

VSW14 Lock the Doors, Secure the Valuables,
and Set the Alarm - Eric D. Boyd

VSW15 Unit Testing & Test-Driven Development
(TDD) for Mere Mortals - Benjamin Day

VSW16 PowerApps, Flow, and
Common Data Service: Empowering

Businesses with the Microsoft Business
Application Platform - Charles Sterling

MAW04 Coding for Quality and Maintainability
- Jason Bock

8:00 PM 10:00 PM Live! 360 Dessert Luau - Wantilan Pavilion Live! 360 Dessert Luau - Wantilan Pavilion

START TIME END TIME Day 3: Thursday, November 16, 2017 Day 3: Thursday, November 16, 2017

8:00 AM 9:15 AM VSH01 HTTP/2: What You Need to Know
- Robert Boedigheimer

VSH02 PowerApps and Flow Part II: Package,
Embed, and Extend Your Applications

- Manas Maheshwari & Pratap Ladhani
VSH03 Exploring C# 7 New Features - Adam Tuliper VSH04 Top 10 Ways to Go from Good

to Great Scrum Master - Benjamin Day

MAH01 Modern Web Development: Building Server Side
Using ASP.NET Core, MVC, Web API, and Azure

- Allen Conway

9:30 AM 10:45 AM VSH05 ASP.NET Tag Helpers - Robert Boedigheimer VSH06 Storyboarding 101 - Billy Hollis VSH07 .NET Standard—From Noob to Ninja
- Adam Tuliper

VSH08 Devs vs. Ops: Making Friends
with the Enemy - Damian Brady

MAH02 Modern Web Development: Building Client Side
Using TypeScript and Angular - Allen Conway

11:00 AM 12:00 PM Visual Studio Live! Panel: To Be Announced - Brian Randell (Moderator), Damian Brady, Jeremy Clark, Esteban Garcia, Billy Hollis, & Adam Tuliper
Modern Apps Live! Panel: Mobile Development

Technologies - Rockford Lhotka (Moderator),
James Montemagno, Kevin Ford

12:00 PM 1:00 PM Lunch on the Lanai - Lanai / Pacifica 7 Lunch on the Lanai - Lanai / Pacifica 7

1:00 PM 2:15 PM VSH09 I See You: Watching the User with
Reactive Forms - Deborah Kurata

VSH10 Continuous Integration and Deployment
for Mobile Using Azure Services - Kevin Ford

VSH11 Deploying Straight to Production:
A Guide to the Holy Grail - Damian Brady

VSH12 Design Patterns: Not Just
for Architects - Jeremy Clark

MAH03 Manage Distributed Teams with Visual Studio
Team Services and Git - Brian Randell

2:30 PM 3:45 PM VSH13 Angular Routing - Deborah Kurata VSH14 XAML Inception—Deep Composition
for Better UI - Billy Hollis

VSH15 Application Insights: Measure
Your Way to Success - Esteban Garcia

VSH16 DI Why? Getting a Grip on
Dependency Injection - Jeremy Clark

MAH04 Using All That Data: Power BI to the Rescue
- Scott Diehl

4:00 PM 5:00 PM Next? Visual Studio Live! Networking Event - Brian Randell (Moderator), Damian Brady, Jeremy Clark, Esteban Garcia, Billy Hollis, & Deborah Kurata Next? Modern Apps Live! Networking Event
- Rockford Lhotka (Moderator)

START TIME END TIME Post-Conference Workshops: Friday, November 17, 2017 Post-Con Workshops: Friday, Nov. 17

8:00 AM 5:00 PM VSF01 Workshop: Angular Fundamentals - John Papa VSF02 Workshop: Building, Running & Continuously Deploying
 Microservices with Docker Containers on Azure - Marcel de Vries & Rene van Osnabrugge

MAF01 Workshop: Modern App Deep Dive—
Xamarin, Responsive Web, UWP

- Kevin Ford, Brent Edwards, Allen Conway

Speakers and sessions subject to change

NEW

L360_VSL17_4pg_ad_0817_f.indd 4 7/13/17 9:48 AMUntitled-3 4 7/13/17 12:15 PM

www.vslive.com/orlandomsdn

Presented in
Partnership with

Check Out These Additional Sessions
for Developers at Live! 360

SQL Server Live! features 30+
developer sessions, including:

NEW! Full Day Hands-On Lab:
Developer Dive into SQL Server 2016
Turbo Boost - SQL Tricks Everybody
MUST Know - Pinal Dave
Advanced SSIS Package Authoring with Biml - Tim Mitchell
Graph DB Support in SQL Server 2017 - Karen Lopez
Big Data Technologies: What, Where and How to Run Them on
Azure - Andrew Brust
Top Five SQL Server Query Tuning Tips - Janis Griffin
Workshop: Big Data, BI, and Analytics on The Microsoft Stack
- Andrew Brust

TechMentor features 20 +
developer sessions, including:

NEW! Full Day Hands-On Lab:
Ethical Hacking with Kali Linux
- Mike Danseglio & Avril Salter
Workshop: Windows Security—How I Do It!
- Sami Laiho
Hardware, Camtasia, and a Storyline: Creating Your Own
User Training - Greg Shields
Make Your PowerShell Scripts Bulletproof with Pester
- Melissa Januszko
Controlling Your Azure Spend - Timothy Warner
PowerShell Scripting Secrets - Jeffery Hicks
In-Depth Introduction to Docker - Neil Peterson

 NEW! Full Day Hands-On Lab:
Developing Extensions for Microsoft
Teams - Paul Schaeflein
Workshop: Mastering the SharePoint Framework- Andrew Connell
TypeScript for SharePoint Developers -Rob Windsor
Building Office Add-ins for Outlook with Angular - Andrew Connell
Developing SharePoint Framework Components Using Visual
Studio - Paul Schaeflein
What Every Developer Needs to Know about SharePoint
Development Online or On-Prem - Robert Bogue
Build a Complete Business Solution Using Microsoft Graph API
through Client Side Web Parts - Julie Turner

15+ developer sessions, including:

ROYAL PACIFIC RESORT
AT UNIVERSAL ORLANDO

NOVEMBER 12-17

WEB SERVER MODERN APPS LIVE!

h Xamarin and Xamarin.Forms - Roy Cornelissen

Pre-Con Workshops: Monday, Nov. 13

p: Service Oriented Technologies:
g, & Implementing WCF and the Web API

 - Miguel Castro

MAM01 Workshop: Building Modern Mobile Apps
- Brent Edwards & Kevin Ford

Dine-A-Round Dinner

Day 1: Tuesday, November 14, 2017

Modern Apps Live! KEYNOTE PANEL:
Industry Trends, Technology, and Your

Career - Matt Lockhart (Moderator)

VST04 What's New in
Visual Studio 2017 - Robert Green

MAT01 Modern App Development: Transform How
You Build Web and Mobile Software - Rockford Lhotka

LIVE! 360 KEYNOTE

VST08 To Be Announced MAT02 Architecture: The Key to Modern
App Success - Brent Edwards

VST12 Top 10 Entity Framework Core
Features Every Developer Should Know

- Philip Japikse

MAT03 Modern Mobile Development: Build
a Single App For iOS, Android, and Windows with

Xamarin Forms - Kevin Ford

VST16 Fast Focus: Busting .NET Myths
- Jason Bock

MAT04 Fast Focus: Hybrid Web Frameworks
- Allen Conway

VST20 Fast Focus: Dependency Injection
in 20 Minutes - Miguel Castro

MAT05 Fast Focus: Web Assembly
- Jason Bock

Exhibitor Reception -

Day 2: Wednesday, November 15, 2017

VSW04 Building Apps with Microsoft Graph
and Visual Studio - Robert Green

MAW01 Focus on the User Experience #FTW
- Jim Barrett

VSW08 Bots are the New Apps:
Building Bots with ASP.NET Web API &
Language Understanding - Nick Landry

MAW02 DevOps, Continuous Integration,
the Cloud, and Docker - Dan Nordquist

LIVE! 360 KEYNOTE

Birds-of-a-Feather Lunch

VSW12 To Be Announced MAW03 Security with Speed for Modern Developers
- Michael Lester

VSW16 PowerApps, Flow, and
Common Data Service: Empowering

Businesses with the Microsoft Business
Application Platform - Charles Sterling

MAW04 Coding for Quality and Maintainability
- Jason Bock

Live! 360 Dessert Luau - Wantilan Pavilion

Day 3: Thursday, November 16, 2017

VSH04 Top 10 Ways to Go from Good
to Great Scrum Master - Benjamin Day

MAH01 Modern Web Development: Building Server Side
Using ASP.NET Core, MVC, Web API, and Azure

- Allen Conway

VSH08 Devs vs. Ops: Making Friends
with the Enemy - Damian Brady

MAH02 Modern Web Development: Building Client Side
Using TypeScript and Angular - Allen Conway

Modern Apps Live! Panel: Mobile Development
Technologies - Rockford Lhotka (Moderator),

James Montemagno, Kevin Ford

Lunch on the Lanai - 7

VSH12 Design Patterns: Not Just
for Architects - Jeremy Clark

MAH03 Manage Distributed Teams with Visual Studio
Team Services and Git - Brian Randell

VSH16
Dependency Injection - Jeremy Clark

MAH04 Using All That Data: Power BI to the Rescue
- Scott Diehl

- Rockford Lhotka (Moderator)

Post-Con Workshops: Friday, Nov. 17

 & Continuously Deploying
e - Marcel de Vries & Rene van Osnabrugge

MAF01 Workshop: Modern App Deep Dive—
Xamarin, Responsive Web, UWP

- Kevin Ford, Brent Edwards, Allen Conway

VSLIVE.COM/ORLANDOMSDN

Untitled-1 1 7/13/17 12:17 PM

Untitled-3 5 7/13/17 12:19 PM

www.vslive.com/orlandomsdn

msdn magazine80

We’re currently celebrating the 50th anniversary of the classic
Beatles album “Sgt. Pepper’s Lonely Hearts Club Band” (SPLHCB).
Its beautiful strains brighten my office atmosphere as I write these
words. Other writers may address its groundbreaking musical
effects (see the interview with the recording engineer at bit.ly/2rEetU0),
or its place in the evolution of rock music. Or its spoofs, from
Doonesbury (bit.ly/2sjceHR) to National Lampoon (bit.ly/2sHv-
CAN). But contemplating Sgt. Pepper today makes me notice the
ways in which changes in listening technology have driven changes
in musical artistry.

At the time of SPLHCB’s release, essentially all music was sold on
LP albums. You had to buy the whole package, and listen to all of its
songs sequentially. The progression to cassette tapes and then to CDs
didn’t change that constraint. Therefore, the artist had to carefully
compose the sequence of songs on the album, as their influence on
each other was inescapable. The Beatles placed George Harrison’s
introspective, sitar-laden “Within You, Without You” ahead of Paul
McCartney’s whimsical “When I’m Sixty-Four,” driven by its trio of
clarinets. Reversing that order would have induced entirely differ-
ent feelings in even a casual listener. They carefully slotted Ringo’s
“With a Little Help From My Friends” into the second track, where
it would do the least damage, and gave it introductory applause
effects to pre-dispose the audience’s perceptions toward approval.

The digital revolution—the liberation of pure thought-stuff
from the profane physical medium on which it resided—undid
these artistic decisions. Online stores such as iTunes and Amazon
sold individual songs, so you didn’t have to buy the bad ones. Any
listener could easily rip CDs to disk, composing playlists that mixed
and matched tracks and artists in any order. We lost that part of
the artist’s intention.

And that liberation/loss doesn’t solely affect the album’s song
sequences. It also ripples through the content of individual songs. An
artist releasing an album today can’t know which track the listener
is hearing before or after any song. Therefore, each song needs to be
an island unto itself, rather than part of an artistic whole. How can
anyone compose or play the final orchestral crescendo in “A Day
in the Life” (bit.ly/1LLne4Z), terminating in the world’s most famous
piano chord, without intending to signal the end of the larger work
to which it belongs? (That remains my biggest dilemma on playing
Sgt. Pepper from end to end: What the heck do I play next?)

Sometimes this liberation from pre-imposed order is good.
When I search Spotify for an artist, it will by default play a shuffle
of that artist’s most popular tunes. If I’m introducing my daughters

to the Grateful Dead, that’s not such a bad thing. But sometimes
it’s not so good: allowing them to reach the age of majority with-
out experiencing the spare, wandering piano at the end of Bruce
Springsteen’s “Incident on 57th Street” segueing straight into the
first crashing chords of “Rosalita” would be abdicating my duty
as a parent. They ask me, “Daddy, what was all the fuss about the
Beatles’ White Playlist?” and I’m not sure what to tell them. Some
things are worth digging for.

I can hear you thinking: Plattski, you always were a Luddite in this
industry, failing to worship technology for its own sake as we all do,
insisting on a practical benefit before you’d jump on any bandwagon
(see, for example, my March 2016 column, “The Internet of Invisible
Things,” msdn.com/magazine/mt683803). But now you’re going positively
Amish on us. Your nostalgia for the original artistic sequences is
like an old jeweler moaning over the loss of those beautiful metal
components in a mechanical watch, when a simple quartz oscilla-
tor keeps far better time for a tenth of the price.

I’m not saying you shouldn’t make your own playlists, I certainly
make mine. (Try my Trop Rock playlist that Spotify automatically
exports to my Facebook page.) But the 50th anniversary of Sgt.
Pepper reminds me to carefully examine the original artists’
chosen sequence and content, especially for albums which pre-
date easy ripping and self-composition. I expect some cheers for
this idea now, and even more in two years, when we celebrate the
50th anniversary of “Abbey Road.”	 n

David S. Platt teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books, includ-
ing “Why Software Sucks” (Addison-Wesley Professional, 2006) and “Introducing
Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Software Legend
in 2002. He wonders whether he should tape down two of his daughter’s fingers so
she learns how to count in octal. You can contact him at rollthunder.com.

Salt and Pepper

Don’t Get Me Started DAVID S. PLATT

The digital revolution—the
liberation of pure thought-stuff

from the profane physical
medium on which it resided—
undid these artistic decisions.

0817msdn_PlattDGMS_v3_80.indd 80 7/12/17 11:56 AM

www.bit.ly/2rEetU0
www.bit.ly/2sjceHR
www.bit.ly/2sHvCAN
www.bit.ly/2sHvCAN
www.bit.ly/1LLne4Z
http://msdn.com/magazine/mt683803
www.rollthunder.com

Untitled-3 1Untitled-3 1 1/13/17 11:32 AM1/13/17 11:32 AM

www.scaleoutsoftware.com/appfabric
www.scaleoutsoftware.com/appfabric

Untitled-1 1 7/7/17 10:57 AM

www.syncfusion.com/MSDNunlimited

Using Aspose.Words for .NET to
Convert Word Docs to HTML -
Case Study

Adding File Conversion and
Manipulation to Business Systems

DOC, XLS, JPG,
PNG, PDF, BMP,
MSG, PPT, VSD,
XPS & many other
formats.

Native APIs for .NET, Java & Cloud

File Format APIs

www.aspose.com

US Sales: +1 903 306 1676
sales@asposeptyltd.com

EU Sales: +44 141 628 8900 AU Sales: +61 2 8006 6987

Powerful File APIs that are easy and intuitive to use

http://www.aspose.com
mailto:sales@asposeptyltd.com

Aspose.Total

Aspose.Words

Aspose.Cells Aspose.BarCode

Aspose.Imaging

Aspose.Tasks

Aspose.Pdf Aspose.Email

Aspose.Slides

DOC, RTF, PDF, HTML, PNG
ePub, XML, XPS, JPG...

XLS, CSV, PDF, SVG, HTML, PNG
BMP, XPS, JPG, SpreadsheetML...

JPG, PNG, BMP, GIF, TIFF, WMF
ICON...

XML, MPP, SVG, PDF, TIFF
PNG...

PDF, BMP, JPG, GIF, TIFF
PNG...

PDF, XML, XSL-FO, HTML, BMP
JPG, PNG, ePub...

MSG, EML, PST, MHT, OST
OFT...

PPT, POT, ODP, XPS
HTML, PNG, PDF...

and many more!

Every Aspose API combined in one powerful suite.

Contact Us:
US: +1 903 306 1676
EU: +44 141 628 8900
AU: +61 2 8006 6987
sales@asposeptyltd.com

File Format APIs

mailto:sales@asposeptyltd.com

Your File Format APIs

Every Aspose API combined in one powerful suite.

Working with Files?
Try Aspose File APIs

Over 15,000 Happy Customers

Convert
Print
Create
Combine
Modify

fi les from your applications!

.NET Java Cloud

Get your FREE evaluation copy at www.aspose.com

http://www.aspose.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Pricing Info

Standard Enhanced Standard Enhanced
Developer Small Business $999 $1498 Site Small Business $4995 $7490
Developer OEM $2997 $4494 Site OEM $13986 $20972

The pricing info above is for .NET: prices for other platforms may diff er. For the latest, contact sales.

Aspose.Cells
Work with spreadsheets and data without depending on Microsoft Excel
• Solution for spreadsheet creation, manipulation and conversion.
• Import and export data.

ASPOSE.CELLS IS A
PROGRAMMING API that allows
developers to create, manipulate
and convert Microsoft Excel
spreadsheet fi les from within their
own applications. Its powerful
features make it easy to convert
worksheets and charts to graphics
or save
reports to
PDF.

Aspose.
Cells
speeds up
working
with
Microsoft
Excel
fi les. The
API is a fl exible tool for simple
tasks such as fi le conversion, as
well as complex tasks like building
models. Developers control page
layout, formatting, charts and
formulas. They can read and write
spreadsheet fi les and save out to a
wide variety of image and text fi le
formats.

Fast, scalable, and reliable,
Aspose.Cells saves time and eff ort
compared to using Microsoft Offi ce

Automation.

Common Uses
• Building dynamic reports on

the fl y.
• Creating Excel dashboards with

charts and pivot tables.
• Rendering and printing

spreadsheets and graphics with
high fi delity.

• Exporting data to, or importing
from, Excel and other
spreadsheets.

• Generating, manipulating and
editing spreadsheets.

• Converting spreadsheets to
images or other fi le formats.

Key Features
• A complete spreadsheet

manipulation solution.
• Flexible data visualization and

reporting.
• Powerful formula engine.
• Complete formatting control.

Supported File Formats

XLS, XLSX, XLSM, XMPS, XLTX,
XLTM, ODS, XPS, SpreadsheetML,
tab delim., CSV, TXT, PDF, HTML, and
many image formats including SVG,
TIFF, JPEG, PNG and GIF.

Format support varies across platforms.

Platforms

Aspose.Cells lets developers work with data sources, formatting, even formulas.

A fl exible API
for simple
and complex
spreadsheet
programming.

pg 4

http://www.aspose.com
mailto:sales@asposeptyltd.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Aspose.Cells for
.NET, Java, Cloud & more

File Formats
XLS, CSV, ODS, PDF, SVG, HTML, PNG, BMP, XPS, JPG
SpreadsheetML and many others.

Spreadsheet Manipulation
Aspose.Cells lets you create, import, and export
spreadsheets and also allows you to manipulate contents,
cell formatting, and fi le protection.

Creating Charts
Aspose.Cells comes with complete support for charting
and supports all standard chart types. Also, you can
convert charts to images.

Graphics Capabilities
Easily convert worksheets to images as well as adding
images to worksheets at runtime.

Get your FREE Trial at
htt p://www.aspose.com

100% Standalone

Aspose.Cells does not require Microsoft Offi ce to
be installed on the machine in order to work.

File Format APIs

http://www.aspose.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Pricing Info

Standard Enhanced Standard Enhanced
Developer Small Business $999 $1498 Site Small Business $4995 $7490
Developer OEM $2997 $4494 Site OEM $13986 $20972

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

Aspose.Words
Program with word processing documents independently of Microsoft Word
•	 Solution for document creation, manipulation and conversion.
•	 Advanced mail merge functionality.
ASPOSE.WORDS IS AN
ADVANCED PROGRAMMING
API that lets developers perform
a wide range of document
processing tasks with their own
applications. Aspose.Words
makes it possible to generate,
modify, convert, render and print
documents without Microsoft
Word. It provides sophisticated and
flexible access to, and control over,
Microsoft
Word files.

Aspose.
Words is
powerful,
user-
friendly
and
feature
rich. It
saves
developers time and effort
compared to using Microsoft Office
Automation and makes gives them
powerful document management
tools.

Aspose.Words makes creating,
changing and converting DOC and
other word processing file formats
fast and easy.

Common Uses
•	 Generating reports with

complex mail merging; mail
merging images.

•	 Populating tables and
documents with data from a
database.

•	 Inserting formatted text,
paragraphs, tables and
images into Microsoft Word
documents.

•	 Adding barcodes to
documents.

•	 Inserting diagrams and
watermarks into Word
documents.

•	 Formatting date and numeric
fields.

Key Features
•	 A complete Microsoft Word

document manipulation
solution.

•	 Extensive mail merge features.
•	 Complete formatting control.
•	 High-fidelity conversion,

rendering and printing.

Supported File Formats

DOC, DOCX, ODT, OOXML, XML,
HTML, XHTML, MHTML, EPUB, PDF,
XPS, RTF, and a number of image
formats, including TIFF, JPEG, PNG
and GIF.

Format support varies across
platforms.

Aspose.Words has sophisticated controls for formatting and managing tables and other
content.

Platforms

Generate,
modify, convert,
render and print
documents
without
Microsoft Word.

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

pg 6

http://www.aspose.com
mailto:sales@asposeptyltd.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Case Study: Aspose.Words for .NET
ProHire Staffi ng - Using Aspose.Words for .NET to convert Word Docs
to HTML

The converted HTML resume version needed to look close to the original.

PROHIRE IS THE WORKFORCE
SOLUTIONS LEADER
IN THE UNITED STATES
AND SPECIALIZE IN THE
RECRUITMENT OF SALES
AND SALES MANGEMENT
PROFESSIONALS. We were
founded with the goal of becoming
the premier provider of executive
search and placement services to
the Fortune 500 and
Inc. 500 Companies.

Problem

ProHire uses
Bullhorn ATS as its
Application Tracking
System to track the
electronic handling
of its recruitment
needs. We wanted
to integrate the
Bullhorn API with our new website.
Our goal was to convert MS Word
Documents resumes into a clean
and concise HTML format into our
existing .Net Stack. The converted
HTML resume version needed to
look close to the original.

Looking for a Solution

We chose the ASPOSE.Words
product because it easily integrated
into our existing .Net stack, and
provided a quality MS Word to
HTML conversion. The product
was easy to download, and with a
few lines of code we were up and
running. We found the primary

diff erence between the Aspose.
Words and other products was the
obvious conversion quality from MS
Word to HTML.

Finding a Solution

We had tested other products that
converted Word to HTML. Every one
we tested had some problem with
the conversion. Some of them lost

elements of the resume
during the conversion.
Most of them changed
the format of the resume
or changed the color of
the text unexpectedly.
This is unacceptable
when you are sending
a resume to a hiring
manger. We were
very satisfi ed with the
results. We did not need

any technical support because
documentation was suffi cient to us.

Implementation

Once we had the Aspose DLL our
developer was able to implement
Aspose.Words for .NET in a few
hours. The transitions with Aspose.
Words for .NET was very painless to
do.

Outcome

We are very pleased with the
success of our Aspose.Words for
.NET implementation. Aspose.Words
is a very powerful development tool
that is well documented and easy to
install. The documentation is easy
to understand and use. If you want
a product to convert Word Docs
to HTML look no further. ProHire is
happy to recommend Aspose.

This is an extract from a case study on
our website. For the full version, go to:
www.aspose.com/corporate/
customers/case-studies.aspx

“The transitions
with Aspose.
Words for
.NET was very
painless to do.”

pg 7

http://www.aspose.com
mailto:sales@asposeptyltd.com
http://www.aspose.com/corporate/customers/case-studies.aspx

File Format APIs

Open, Create, Convert, Print
& Save Files

from within your own applications.

ASPOSE.TOTAL
allows you to process these fi le formats:

DOC XLS PPT PDF EML
PNG XML RTF HTML VSD
BMP & barcode images.

• Word documents
• Excel spreadsheets
• PowerPoint presentations
• PDF documents
• Project documents
• Visio documents
• Outlook emails
• OneNote documents

Contact Us:
US: +1 903 306 1676
EU: +44 141 628 8900
AU: +61 2 8006 6987
sales@asposeptyltd.com

mailto:sales@asposeptyltd.com

Helped over 11,000 companies and over 300,000 users work with
documents in their applications.

.NET, Java, and Cloud

File Format APIs

GET STARTED NOW

• Free Trial
• 30 Day Temp License
• Free Support
• Community Forums
• Live Chat
• Blogs
• Examples
• Video Demos

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

EXTRACTING DATA FROM A
DATABASE AND DELIVERING
IT TO THE SALES TEAM AS A
REPORT, complete with charts and
corporate branding, is fine. Until the
sales team says that they want it as
a Microsoft Excel file,
and could you add a
dashboard?

Using information
from online forms in
letters that can are
printed and posted
is easy. But what if
you also want to add
tracking barcodes and
archive a digital copy
as a PDF?

Ensuring that your business system
supports all the different Microsoft
Office file formats your users want
can be difficult. Sometimes the
native file format support of your
system lets you down. When that is
the case, use tools that extend that
capability. A good tool can save you
time and effort.

Document Conversion Options

Building your own solution: Time-
consuming and costly, this option
is only sensible if the solution you
develop is central to your business.

Using Microsoft Office
Automation: Microsoft Office

Automation lets you use Microsoft
Office programs server-side. It is
not how the Office products were
designed to be used. It can work
well but you might notice issues
with the stability, security and

speed of the system,
as well as cost.

Using an API: The
API market has lots of
free and commercial
solutions, some
very focused, some
feature-rich. An API
integrates with your
code and gives you
access to a range of
new features.

Look to Aspose

Aspose are API experts. We create
APIs, components and extensions
that work independently of
Microsoft Automation to extend
a platform’s native file format
manipulation capabilities.

Aspose have developed APIs for
.NET, Java, Cloud and Android that
lets developers convert, create and
manipulate Microsoft Office files –
Microsoft Word, Excel, PowerPoint,
Visio and Project – and other
popular business formats, from
PDFs and images to emails. We also
have APIs for working with images,

barcodes and OCR. The APIs are
optimised for stability, speed and
ease of use. Our APIs save users
weeks, sometimes months, of effort.

Adding File Conversion and Manipulation to
Business Systems
How often do people in your organization complain that they can’t get information in the file format
and layout they want? Converting documents from one format to another without losing layout and
formatting should be simple, but it can be frustrating for both users and developers.

Aspose creates
APIs that work
independently
of Microsoft
Office
Automation.

Finding the Right Tool

To find the product that’s right for
you, take a systematic approach:

•	 List must-have and nice-to-
have features.

•	 Research the market.
•	 Ask for recommendations.
•	 Select a few candidates .
•	 Run trials.
•	 Evaluate

•	 ease of use,
•	 support and

documentation,
•	 performance, and
•	 current and future

needs.

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

pg 10

http://www.aspose.com
mailto:sales@asposeptyltd.com

Pricing Info

Standard Enhanced Standard Enhanced
Developer Small Business $599 $1098 Site Small Business $2995 $5490
Developer OEM $1797 $3294 Site OEM $8386 $15372

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

Aspose.BarCode
A complete toolkit for barcode generation and recognition
•	 Generate barcodes with customer defined size and color.
•	 Recognize a large number of barcode types from images.

ASPOSE.BARCODE IS A
ROBUST AND RELIABLE
BARCODE GENERATION
AND RECOGNITION API that
allows developers to add barcode
generation and recognition
functionality to their applications
quickly and easily.

Aspose.BarCode supports most
established barcode specifications.
It can export generated barcodes to
multiple image formats, including
BMP, GIF, JPED, PNG and TIFF.

Aspose.
BarCode
gives
you full
control
over every
aspect
of the
barcode
image, from background and
bar color, through image quality,
rotation angle, X-dimension,
captions, and resolution.

Aspose.BarCode can read and
recognize most common 1D and
2D barcodes from any image and at
any angle. Filters help developers

clean up difficult to read images to
improve recognition.

Common Uses
•	 Generating and recognizing

barcode images.
•	 Printing barcode labels.
•	 Enhancing workflow by adding

barcode functionality.
•	 Using recognition functions to

drive real-life work processes.

Key Features
•	 Barcode generation and

recognition.
•	 Comprehensive support for 1D

and 2D symbologies.
•	 Image processing for improved

recognition.

Supported File Formats

JPG, TIFF, PNG, BMP, GIF, EMF, WMF,

EXIP and ICON.

Format support varies across platforms.

Supported Barcodes

Linear: EAN13, EAN8, UPCA, UPCE,
Interleaved2of5, Standard2of5, MSI,
Code11, Codabar, EAN14(SCC14),
SSCC18, ITF14, Matrix 2 of 5, PZN,
Code128, Code39 Extended,
Code39 Standard, OPC, Code93
Extended, Code93 Standard,
IATA 2 of 5, GS1Code128, ISBN,
ISMN, ISSN, ITF6, Pharmacode,
DatabarOmniDirectional, VIN,
DatabarTruncated, DatabarLimited,
DatabarExpanded, PatchCode,
Supplement 2D: PDF417,
MacroPDF417, DataMatrix, Aztec,
QR, Italian Post 25, Code16K,
GS1DataMatrix Postal: Postnet,
Planet, USPS OneCode, Australia
Post, Deutsche Post Identcode,
AustralianPosteParcel, Deutsche
Post Leticode, RM4SCC,
SingaporePost, SwissPostParcel

Aspose.BarCode offers a large number of
symbologies and formatting options.

Platforms

Robust and
reliable barcode
generation and
recognition.

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

pg 11

http://www.aspose.com
mailto:sales@asposeptyltd.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Aspose for Cloud

The easiest API to
Create, Convert & Automate Documents in the cloud.

Convert
Create
Render
Combine
Modify

without installing anything!

+1 903 306 1676
sales@asposeptyltd.com

+44 141 628 8900 +61 2 8006 6987• • •

Free Evaluation at www.aspose.com

Aspose.Words
for Cloud

Create and convert docs
Manipulate text
Render documents
Annotate

Aspose.Cells
for Cloud

Create spreadsheets
Convert spreadsheets
Manipulate cells and
formulas
Render spreadsheets

Aspose.Slides
for Cloud

Create presentations
Manage slides
Edit text and images
Read and convert

Aspose.Pdf
for Cloud

Create and convert PDFs
Manipulate text, images
Add pages, split, encrypt
Manage stamps

Aspose.Email
for Cloud

Create, update, and
convert messages
Extract attachments
Use with any language

Aspose.BarCode
for Cloud

Generate barcodes
Read barcodes
Set attributes
Multiple image formats

http://www.aspose.com
mailto:sales@asposeptyltd.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Pricing Info

Standard Enhanced Standard Enhanced
Developer Small Business $799 $1298 Site Small Business $3995 $6490
Developer OEM $2397 $3894 Site OEM $11186 $18172

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

ASPOSE.EMAIL IS AN EMAIL
PROGRAMMING API that allows
developers to access and work
with PST, EML, MSG and MHT files.
It also offers an advanced API for
interacting with enterprise mail
systems like Exchange and Gmail.

Aspose.Email can work with HTML
and plain text emails, attachments
and embedded OLE objects.
It allows
developers to
work against
SMTP, POP, FTP
and Microsoft
Exchange
servers. It
supports mail
merge and
iCalendar
features,
customized
header and body, searching archives
and has many other useful features.

Aspose.Email allows developers to
focus on managing email without
getting into the core of email and
network programming. It gives you
the controls you need.

Common Uses
•	Sending email with HTML
formatting and attachments.

•	Mail merging and sending mass
mail.

•	Connecting to POP3 and
IMAP mail servers to list and
download messages.

•	Connecting to Microsoft
Exchange Servers to list,
download and send messages.

•	Create and update tasks using
iCalendar.

•	 Load from and save messages
to file or stream (EML, MSG or
MHT formats).

Key Features
•	 A complete email processing

solution.
•	 Support for MSG and PST

formats.
•	 Microsoft Exchange Server

support.
•	 Complete recurrence pattern

solution.

Supported File Formats

MSG, MHT, OST, PST, EMLX, TNEF,
and EML.

Format support varies across platforms.

Aspose.Email
Work with emails and calendars without Microsoft Outlook
•	 Complete email processing solution.
•	 Message file format support.

Aspose.Email lets your applications work with emails, attachments, notes and calendars.

Platforms

Aspose.
Email works
with HTML
and plain
text emails,
attachments
and embedded
OLE objects.

pg 13

http://www.aspose.com
mailto:sales@asposeptyltd.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Pricing Info

Standard Enhanced Standard Enhanced
Developer Small Business $999 $1498 Site Small Business $4495 $6990
Developer OEM $2997 $4494 Site OEM $13986 $20972

The pricing info above is for .NET: prices for other platforms may diff er. For the latest, contact sales.

ASPOSE.PDF IS A PDF
DOCUMENT CREATION AND
MANIPULATION API that
developers use to read, write and
manipulate PDF documents without
using Adobe Acrobat. Aspose.
Pdf is a sophisticated product that
integrates with your application to
add PDF capabilities.

Aspose.Pdf off ers a wealth of
features that lets developers
compress fi les, create tables, work
with links,
add and
remove
security,
handle
custom
fonts,
integrate
with
external
data
sources,
manage bookmarks, create table of
contents, create forms and manage
form fi elds.

It helps developers add, work with
attachments, annotations and PDF
form data, add, replace or remove
text and images, split, concatenate,

extract or inset pages, and print
PDF documents.

Common Uses
• Creating and editing PDF fi les.
• Inserting, extracting,

appending, concatenating and
splitting PDFs.

• Working with text, images,
tables, images, headers, and
footers.

• Applying security, passwords
and signatures.

• Working with forms and form
fi elds.

Key Features
• PDF creation from XML or XSL-

FO documents.
• PDF form and fi eld support.
• Advanced security and

encryption.
• High-fi delity printing and

conversion.
• Supported File Formats
• PDF, PDF/A, PDF/A_1b, PCL, XLS-

FO, LaTeX, HTML, XPS, TXT and
a range of image formats.

Format support varies across platforms.

Aspose.Pdf
Create PDF documents without using Adobe Acrobat
• A complete solution for programming with PDF fi les.
• Work with PDF forms and form fi elds.

Aspose.Pdf can be used to automatically complete PDF forms with external data.

Read, write and
manipulate PDF
documents
independently
of Adobe
Acrobat.

Platforms

pg 14

http://www.aspose.com
mailto:sales@asposeptyltd.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Aspose.Pdf
.Net, Java & Cloud

File Formats
PDF DOC XML XSL-FO XPS HTML BMP JPG PNG
ePUB & other image file formats.

Create and Manipulate PDFs
Create new or edit/manipualte existing PDFs.

Form Field Features
Add form fields to your PDFs. Import and export form
fields data from select file formats.

Table Features
Add tables to your PDFs with formatting such as table
border style, margin and padding info, column width and
spanning options, and more.

Get started today at www.aspose.com

http://www.aspose.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Aspose.Note for .NET
Aspose.Note for .NET is an API that lets developers convert Microsoft OneNote pages
to a variety of file formats, and extract the text and document information.

Conversion is fast and high-fidelity. The output looks like the OneNote page, no mat-
ter how complex the formatting or layout.

Aspose.Note works independently of Office Automation and does not require Microsoft
Office or OneNote to be installed.

File Formats and Conversion

Microsoft OneNote
2010, 2010 SP1,
2013

Load,
Save

PDF Save

Images (BMP, GIF,
JPG, PNG)

Save

Rendering and Printing

Save as Image
(BMP, GIF, JPG, PNG)

Save as PDF

Document Management

•	 Extract text
•	 Get the number of pages in

a document.
•	 Get page information.
•	 Extract images.
•	 Get image information from

a document.
•	 Replace text in document.

Modify, convert, render and extract text and images from
Microsoft OneNote files without relying on OneNote or
other libraries.

Features

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Pricing Info

Standard Enhanced Standard Enhanced
Developer Small Business $399 $898 Site Small Business $1995 $4490
Developer OEM $1197 $2694 Site OEM $5586 $12572

The pricing info above is for .NET.

Aspose.Imaging
Create Images from scratch.
• Load existing images for editing purposes.
• Render to multiple fi le formats.

ASPOSE.IMAGING IS A CLASS
LIBRARY that facilitates the
developer to create Image fi les
from scratch or load existing ones
for editing purpose. Also, Aspose.
Imaging provides the means to
save the created or edited Image
to a variety of formats. All of the
above mentioned can be achieved
without the need of an Image
Editor. It works independent of
other applications and although
Aspose.Imaging allows you to
save to Adobe PhotoShop® format
(PSD), you do not need PhotoShop
installed on the machine.

Aspose.Imaging is fl exible, stable
and powerful. It’s many features
and image
processing
routines
should meet
most imaging
requirements.
Like all Aspose
fi le format
components,
Aspose.
Imaging introduces support
for an advanced set of drawing
features along with the core
functionality. Developers can

draw on Image surface either
by manipulating the bitmap
information or by using the
advanced functionality like
Graphics and Paths.

Common Uses
• Create images from scratch.
• Load and Edit existing images.
• Export images to a variety of

formats.
• Adding watermark to images.
• Export CAD drawings to PDF &

raster image formats.
• Crop, resize & RotateFlip

images.
• Extract frames from multipage

TIFF image.

Key Features
• Create, edit, and save images
• Multiple fi le formats
• Drawing features
• Export images

Supported File Formats

BMP, JPG, TIFF, GIF, PNG, PSD, DXF,
DWG, and PDF.

Aspose.Imaging allows creation and manipulation of images.

Platforms

Create images
from scratch.
or load
existing ones...

pg 17

http://www.aspose.com
mailto:sales@asposeptyltd.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

Pricing Info

Standard Enhanced Standard Enhanced
Developer Small Business $799 $1298 Site Small Business $3995 $6490
Developer OEM $2397 $3894 Site OEM $11186 $18172

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

Aspose.Slides
Work with presentations without using Microsoft PowerPoint
•	 Complete solution for working with presentation files.
•	 Export presentations and slides to portable or image formats.

ASPOSE.SLIDES IS A FLEXIBLE
PRESENTATION MANAGEMENT
API that helps developers read,
write and manipulate Microsoft
PowerPoint documents. Slides
and presentations can be saved to
PDF, HTML and image file formats
without Microsoft PowerPoint.

Aspose.Slides offers a number of
advanced
features
that make
it easy to
perform
tasks
such as
rendering
slides,
exporting

presentations, exporting slides to
SVG and printing. Developers use
Aspose.Slides to build customizable
slide decks, add or remove standard
graphics and automatically publish
presentations to other formats.

Aspose.Slides gives developers
the tools they need to work with
presentation files. It integrates
quickly and saves time and money.

Common Uses
•	 Creating new slides and cloning

existing slides from templates.
•	 Handling text and shape

formatting.
•	 Applying and removing

protection.
•	 Exporting presentations to

images and PDF.
•	 Embedding Excel charts as OLE

objects.
•	 Generate presentations from

database.

Key Features
•	 A complete presentation

development solution.
•	 Control over text, formatting

and slide elements.
•	 OLE integration for embedding

external content.
•	 Wide support for input and

output file formats.

Supported File Formats

PPT, HTML, POT, PPS, PPTX, POTX,
PPSX, ODP, PresentationML, XPS,
PDF and image formats including
TIFF and JPG.

Format support varies across
platforms.

Aspose.Slides has advanced features for working with every aspect of a presentation.

Platforms

Aspose.Slides
gives you the
tools you need
to work with
presentation
files.

pg 18

http://www.aspose.com
mailto:sales@asposeptyltd.com

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

www.aspose.com

EU: +44 141 628 8900 US: +1 903 306 1676
sales@asposeptyltd.com

Oceania: +61 2 8006 6987

To see the Priority and Enterprise support rates, refer to the product price list, or contact our sales team.

Sponsored Support is unique so pricing is specifi c to each project. Please contact our sales team to discuss.

Pricing Info

Support Services
Get the assistance you need, when you need it, from the people who know our products best.
• Free support for all, even when evaluating
• Get the level of support that suits you and your team

NO ONE KNOWS OUR
PRODUCTS AS WELL AS WE DO.
We develop them, support them and
use them. Our support is handled
through our support forums and is
available to all Aspose users.

Support

We are developers ourselves and
understand how frustrating it is
when a technical issue or a quirk in
the software stops you from doing
what you need to do. This is why
we off er free
support.
Anyone
who uses
our product,
whether they
have bought
them or are
using an
evaluation,
deserves our
full attention and respect. We have
four levels of support that can fi t
your needs.

Support Options

Free

Everyone who uses Aspose
products have access to our free
support. Our software developers
are on stand-by to help you
succeed with your project, from
the evaluation to roll-out of your
solution.

Priority

If you want to know when you’ll hear
back from us on an issue and know
that your issue is prioritized, Priority
Support is for you. It provides a more
formal support structure and has its
own forum that is monitored by our
software engineers.

Enterprise

Enterprise customers often have
very specifi c needs. Our Enterprise
Support option gives them access
to the product development team
and infl uence over the roadmap.
Enterprise Support customers have
their own, dedicated issue tracking
system.

Sponsored

Available to Enterprise customers
that would like to request features,
this higher prioritized support can
ensure your needed features are
on our roadmap. A member of
our team will produce a feature
specifi cation document to capture
your requirements and how we
intend to fulfi ll them so the direction
development will take is clear up-
front.

Work with the developers that developed
and continue to maintain our products.

Everyone who
uses Aspose
products have
access to our
free support.

pg 19

http://www.aspose.com
mailto:sales@asposeptyltd.com

We’re Here
 to Help You

Aspose has 4 Support Services to best suit your needs

Free Support

Priority Support

Enterprise Support

Sponsored Support

Support Forums with no Charge

24 hour response time in the week,
issue escalation, dedicated forum

Communicate with product
managers, infl uence the roadmap

Get the feature you need built now

Technical Support is an
issue that Aspose takes very
seriously. Software must
work quickly and depend-
ably. When problems arise,
developers need answers in
a hurry. We ensure that our
clients receive useful answers
and solutions quickly.

Email • Live Chat • Forums

Contact Us
US Sales: +1 903 306 1676
sales@asposeptyltd.com
EU Sales: +44 141 628 8900

AU Sales: +61 2 8006 6987

File Format APIs

mailto:sales@asposeptyltd.com

	Back
	Print
	MSDN Magazine, August 2017
	Cover Tip
	Front
	Back

	Contents
	FEATURES
	Creating Extensions for Multiple Visual Studio Versions
	How Xamarin.Forms Customization Took an FAA Drone App Higher
	Git Internals: Architecture and Index Files
	Actionable Messages for Outlook
	Batch Processing Using a Serverless Architecture

	COLUMNS
	EDITOR’S NOTE: MEAN Machine
	UPSTART: 3 Demands: Mastering the Job Hunt
	TEST RUN: Deep Neural Network IO Using C#
	THE WORKING PROGRAMMER: How To Be MEAN: Up-Angular-izing
	ESSENTIAL .NET: C# 7.0: Tuples Explained
	DON’T GET ME STARTED: Salt and Pepper

	Visual Studio Live! - Insert
	Aspose - Outsert

