

1

Microsoft Dynamics
®

 AX 2012

Shared Currencies and

Exchange Rates for Microsoft
Dynamics AX 2012

White Paper

This document highlights the key concepts and APIs related to
the calculation, display, and storage of currency and exchange

rate information.

http://microsoft.com/dynamics/ax

Date: April 2011

Author: Paul Winje, Senior Development Lead

Send suggestions and comments about this document to

adocs@microsoft.com. Please include the title with your
feedback.

http://microsoft.com/dynamics/ax
mailto:adocs@microsoft.com

2

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Table of Contents

Overview ... 3
Audience.. 3
Terminology ... 3

Currency calculations .. 4
Working with currency calculations.. 4

Calculate the accounting currency amount from a transaction currency 4
Calculate the transaction currency amount from an accounting currency................................... 5
Calculate using exchange rates that have been provided .. 5
Calculate by overriding the default exchange rate type from the ledger 6
Calculate outside the context of a ledger. ... 6

Upgrading legacy currency calculation calls .. 7

Exchange rates ... 9
Retrieving exchange rates .. 9

Retrieve the exchange rates between a transaction currency and the accounting currency 9
Retrieve the exchange rates between a transaction currency and the accounting currency using

static methods.. 10
Retrieve exchange rates outside the context of a ledger .. 10

Storing and displaying exchange rates ..11
Display a stored exchange rate ... 11
Store an exchange rate entered by a user .. 12
Determine whether an exchange rate should be enabled on a form ... 12

Upgrading old exchange rate calls ..12

Data model.. 14
Data upgrade ..14

3

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Overview

In Microsoft Dynamics® AX 2012, the currency and exchange rate framework has been enhanced to
share information across multiple legal entities. As part of this work, the data model has been
redesigned, the calculation engine has been rewritten, and the APIs have been updated. This
document highlights the key concepts and APIs related to the calculation, display, and storage of
currency and exchange rate information, and illustrates the appropriate patterns to use in application
code.

Audience

This white paper targets developers who are building new applications for Microsoft Dynamics AX 2012
and developers who are updating their existing application code and data.

Terminology

Microsoft Dynamics AX 2012 terms:

Term Definition

Exchange rate The value of one currency expressed in terms of another on a particular
date.

Currency pair The two currencies used in an exchange rate quotation.

Exchange rate type A grouping that allows users to set up different exchange rates for a
currency pair. Examples include Buy, Sell, Spot, and Budget.

Ledger The part of an accounting system that is used for classifying the

monetary value of economic transactions by using a chart of accounts, a

fiscal calendar, and one or more currencies. A ledger has a one-to-one

relationship with a legal entity. Transactions are performed in the context

of a ledger that provides key pieces of information, such as accounting

currency, reporting currency, default exchange rate type, fiscal calendar,

and the chart of accounts.

Transaction currency The currency in which a transaction originates.

Accounting currency The primary currency in which a legal entity maintains its financial
records. The accounting currency is stored in the Ledger table.

Reporting currency The reporting currency of the ledger. The reporting currency is stored in
the Ledger table. It is optional.

Default exchange rate type An exchange rate type stored in the Ledger table that is used to specify
which set of exchange rates should be used for the Ledger.

4

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Currency calculations

Four pieces of information are necessary to perform a currency calculation in Microsoft Dynamics AX
2012:

 From currency

 To currency

 Date

 Exchange rate type

When performing a calculation in the context of a given legal entity, the exchange rate type and one
of the currencies can be derived from the ledger that is associated with that legal entity. For example,
assume that an accounting currency of USD and an exchange rate type of SELL have been set up for a
given ledger. When that ledger is passed to the calculation engine and the
calculateTransactionToAccounting method is called, the calculation engine is able to automatically

determine that the accounting currency is USD and the exchange rate type is SELL.

In most cases, calculations will be performed in the context of a given ledger. When performing a
calculation outside of the context of a ledger, it is still possible to provide all of the necessary
information via parm methods on the calculation engine.

Working with currency calculations

The CurrencyExchangeHelper class was added in Microsoft Dynamics AX 2012 and is the
recommended API to perform calculations between currencies. The following examples illustrate its
usage for the most common scenarios.

Calculate the accounting currency amount from a transaction currency

This example calculates the amount in the context of the current ledger. This is indicated by passing
Ledger::current() to the constructor method of the CurrencyExchangeHelper class.

 CurrencyExchangeHelper currencyExchangeHelper;

 TransDate transactionDate;

 CurrencyCode transactionCurrency = 'CAD';

 AmountCur amountToConvert = 100.50;

 boolean shouldRoundResult = true;

 AmountMst result;

 currencyExchangeHelper = CurrencyExchangeHelper::newExchangeDate(

 Ledger::current(),

 transactionDate);

 result = currencyExchangeHelper.calculateTransactionToAccounting(

 transactionCurrency,

 amountToConvert,

 shouldRoundResult);

5

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Calculate the transaction currency amount from an accounting currency

This example calculates the amount in the context of a ledger other than the current ledger. This is
indicated by the use of the Ledger::primaryLedger method.

 CurrencyExchangeHelper currencyExchangeHelper;

 TransDate transactionDate;

 CurrencyCode transactionCurrency = 'CAD';

 AmountMst amountToConvert = 100.50;

 boolean shouldRoundResult = true;

 AmountCur result;

 currencyExchangeHelper = CurrencyExchangeHelper::newExchangeDate(

 Ledger::primaryLedger(CompanyInfo::findDataArea(‘TST’).RecId),

 transactionDate);

 result = currencyExchangeHelper.calculateAccountingToTransaction(

 transactionCurrency,

 amountToConvert,

 shouldRoundResult);

Calculate using exchange rates that have been provided

There are two important things to note in this example: (1) whenever calculations are performed,
both ExchangeRate1 and ExchangeRate2 must always be considered due to Euro triangulation, and
(2) the rates are always stored in terms of a transaction currency to the accounting currency.
Therefore, if the example called the calculateAccountToTransaction method instead, the exchange
rates should still be passed in the same order.

 CurrencyExchangeHelper currencyExchangeHelper;

 TransDate transactionDate;

 CurrencyCode transactionCurrency = 'CAD';

 AmountMst result;

 currencyExchangeHelper = CurrencyExchangeHelper::newExchangeDate(

 Ledger::current(),

 transactionDate);

 currencyExchangeHelper.parmExchangeRate1(1.234);

 currencyExchangeHelper.parmExchangeRate2(2.54321);

 result = currencyExchangeHelper.calculateTransactionToAccounting(

 transactionCurrency,

 543.34,

 true);

6

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Calculate by overriding the default exchange rate type from the ledger

Calculating an exchange rate by overriding the default exchange rate type would be useful when it is
necessary to use a different set of exchange rates for a calculation scenario. Examples might include

budget processing or consolidations.

 CurrencyExchangeHelper currencyExchangeHelper;

 TransDate transactionDate;

 CurrencyCode transactionCurrency = 'CAD';

 AmountMst result;

 currencyExchangeHelper = CurrencyExchangeHelper::newExchangeDate(

 Ledger::current(),

 transactionDate);

 currencyExchangeHelper.parmExchangeRateType(

 ExchangeRateType::findByName('SpecialRateType').RecId);

 result = currencyExchangeHelper.calculateTransactionToAccounting(

 transactionCurrency,

 200.75,

 true);

Calculate outside the context of a ledger.

Nearly every time a calculation is performed, it will be in the context of a ledger; however, there are
some scenarios where a ledger might not be involved. The following example shows how to perform
such a calculation.

 CurrencyExchangeHelper currencyExchangeHelper;

 TransDate transactionDate;

 CurrencyCode fromCurrency = 'CAD';

 CurrencyCode toCurrency = 'USD';

 AmountCur result;

 currencyExchangeHelper = CurrencyExchangeHelper::construct();

 currencyExchangeHelper.parmExchangeDate(transactionDate);

 currencyExchangeHelper.parmExchangeRateType(

 ExchangeRateType::findByName('SpecialRateType').RecId);

 result = currencyExchangeHelper.calculateCurrencyToCurrency(

 fromCurrency,

 toCurrency,

 123.45,

 true);

Additional, less common scenarios are also supported. Refer to the CurrencyExchangeHelper class
documentation for additional information. Always check to see whether the

CurrencyExchangeHelper class has the method required when converting any amount in the
application. We recommend that you always perform the calculations by using the engine because the
engine takes all necessary factors into account.

http://go.microsoft.com/fwlink/?LinkId=215093
http://go.microsoft.com/fwlink/?LinkId=215093

7

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Upgrading legacy currency calculation calls

Previously, developers calculated amounts by using the CurrencyExchHelper class or the Currency
table methods. The CurrencyExchHelper class has been removed, therefore any calls referencing it
will need to be refactored. Many methods on the Currency table have also been removed and will need
to be refactored.

The following table documents the methods that have been removed from the Currency table along

with the corresponding replacement method, where applicable.

Old method Replacement method

editConsAvgRateNonMonetary N/A – Exchange rate types are now used to store exchange rates specific
to the consolidation process

editConsClosingRateMonetary N/A – Exchange rate types are now used to store exchange rates specific
to the consolidation process

FindExchRate Various methods on the ExchangeRateHelper class

FindExchRateTxt exchRateTxt method on the Currency table

isCurrencyInTriangulation N/A – This method does not need a replacement because the
triangulation flag is not used by the calculation engine any longer; if you
display editable exchange rates on a form, call the
isExchangeRateEditable method on the ExchangeRateHelper class
to determine whether the user should be allowed to modify the rates

ledgerAccountLossName N/A

ledgerAccountNonRealProfitLoss N/A

ledgerAccountNonRealProfitName N/A

ledgerAccountProfitName N/A

priceTypeRound roundWithRuleType method on the CurrencyExchangeHelper class

accountLoss ledgerDimension method on the CurrencyLedgerGainLossAccount
table

accountNonrealLoss ledgerDimension method on the CurrencyLedgerGainLossAccount

table

accountNonrealProfit ledgerDimension method on the CurrencyLedgerGainLossAccount
table

accountProfit ledgerDimension method on the CurrencyLedgerGainLossAccount
table

amountCur2MSTSecond calculateTransactionToReporting method on the
CurrencyExchangeHelper class

amountMST2MSTSecond calculateAccountingToReportingAdjustment method on the
CurrencyExchangeHelper class

codeCompanyCurrency accountingCurrency method on the Ledger table

crossRate getCrossRate method on the ExchangeRateHelper class

exchRateConsAverage N/A – Exchange rate types are now used to store exchange rates specific
to the consolidation process

exchRateConsClosing N/A – Exchange rate types are now used to store exchange rates specific
to the consolidation process

exchRateConsHistorical N/A – Exchange rate types are now used to store exchange rates specific
to the consolidation process

8

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Old method (continued) Replacement method (continued)

existByCompany N/A – Currencies are now shared across all legal entities

findByCompany N/A – Currencies are now shared across all legal entities

findExchRateSecond getExchangeRate2 method on the ExchangeRateHelper class

roundOffAmount roundingPrecision method on the Currency table

roundOffProject N/A

setExchRateHelpText N/A

The following table documents the methods that have been removed from the CurrencyExchHelper

class along with the corresponding replacement method on the new CurrencyExchangeHelper class,

where applicable.

Old method Replacement method

newCurrency newLedger or newExchangeDate

newExchDate newExchangeDate

newExchRateHelper N/A

calculateAmountCurToCur calculateTransactionToTransaction

calculateAmountCurToMst calculateTransactionToAccounting

calculateAmountCurToSecondary calculateTransactionToReporting

calculateAmountMstToCur calculateAccountingToTransaction

calculateAmountMstToSecondary calculateAccountingToReportingAdjustment

parmCompany parmLedgerRecId

parmCurrency Now passed via method calls

parmExchDate parmExchangeDate

parmExchRate parmExchangeRate1

parmExchRateSecondary parmExchangeRate2

parmIsGovernmentExchRate Supported via exchange rate types; the
parmExchangeRateTypeRecId method can be used for this

parmIsTriangulated N/A

roundAmount round

calculateExchRate calcualteExchangeRate

roundAmount_Static round

9

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Exchange rates

The same pieces of information are necessary to work with exchange rates that are used to perform
currency calculations:

 From currency

 To currency

 Date

 Exchange rate type

Retrieving exchange rates

Two exchange rates (ExchangeRate1 and ExchangeRate2) must always be considered when retrieving
or using exchange rates in the application. This is because Euro triangulation is possible for countries
that are in the process of transitioning their national currency to the Euro currency. This results in

scenarios where a currency calculation requires two exchange rates.

 Under normal circumstances, amounts could be converted directly from GBP to USD, which would
require only one exchange rate:

GBP > USD

ExchangeRate1 would be non-zero.

ExchangeRate2 would be zero.

 Assuming that GBP is a denomination of the Euro currency, amounts would require two exchange

rates (triangulation) in order to calculate GBP to USD:

GBP > EUR > USD

ExchangeRate1 would be non-zero.

ExchangeRate2 would be non-zero.

There are nine possible triangulation scenarios, three of which require two exchange rates. As a result,
all code must assume that two exchange rates are possible and must always take this into account
when storing them or passing them to the calculation engine. If a subsystem is only using one
exchange rate, it is likely incorrect unless that rate is a true cross rate that factors in both exchange
rates. (Note that the getCrossRate and getCrossRateReciprocal methods on the
ExchangeRateHelper class do factor in triangulation.)

Another important concept to understand is that the rates are always stored in terms of the
transaction (or reporting) currency to the accounting currency. Therefore, when calling the exchange
rate engine, be sure to set the “from” and “to” currency accordingly. This is illustrated in the following
examples.

The ExchangeRateHelper class was added in Microsoft Dynamics AX 2012 and is the recommended
API to retrieve exchange rates. The following examples illustrate its usage for the most common

scenarios.

Retrieve the exchange rates between a transaction currency and the accounting

currency
 ExchangeRateHelper exchangeRateHelper;

 TransDate transactionDate;

 CurrencyCode transactionCurrency = 'CAD';

 CurrencyExchangeRate exchangeRate1;

 CurrencyExchangeRate exchangeRate2;

 exchangeRateHelper = ExchangeRateHelper::newExchangeDate(

 Ledger::current(),

10

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

 transactionCurrency,

 transactionDate);

 exchangeRate1 = exchangeRateHelper.getExchangeRate1();

 exchangeRate2 = exchangeRateHelper.getExchangeRate2();

Retrieve the exchange rates between a transaction currency and the accounting

currency using static methods

There are performance benefits to using the instance methods, therefore those are recommended
where possible.

 ExchangeRateHelper exchangeRateHelper;

 TransDate transactionDate;

 CurrencyCode transactionCurrency = 'CAD';

 CurrencyExchangeRate exchangeRate1;

 CurrencyExchangeRate exchangeRate2;

 exchangeRate1 = ExchangeRateHelper::getExchangeRate1_Static(

 Ledger::current(),

 transactionCurrency,

 transactionDate);

 exchangeRate2 = ExchangeRateHelper::getExchangeRate2_Static(

 Ledger::current(),

 transactionCurrency,

 transactionDate);

Retrieve exchange rates outside the context of a ledger
 ExchangeRateHelper exchangeRateHelper;

 TransDate transactionDate;

 CurrencyCode fromCurrency = 'CAD';

 CurrencyCode toCurrency = 'USD';

 CurrencyExchangeRate exchangeRate1;

 CurrencyExchangeRate exchangeRate2;

 exchangeRateHelper = ExchangeRateHelper::newCurrencyToCurrency(

 fromCurrency,

 toCurrency);

 exchangeRateHelper.parmExchangeDate(transactionDate);

exchangeRateHelper.parmExchangeRateType(

 ExchangeRateType::findByName('SpecialRateType').RecId);

 exchangeRate1 = exchangeRateHelper.getExchangeRate1();

 exchangeRate2 = exchangeRateHelper.getExchangeRate2();

11

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

When retrieving exchange rates in a Microsoft .NET application that integrates with Microsoft
Dynamics AX 2012, or when reporting on information outside of the context of the application, there
are three additional options for retrieving the exchange rates:

 Use the LedgerExchangeRateService web service call, which allows the ability to both read and

write exchange rates from and to the application.

 Query the ExchangeRateEffectiveView view to retrieve the exchange rates. This is used primarily

in reporting scenarios, but could also be used to gather the necessary information without calling

into the application.

 Finally, the new and improved .NET Interop support added to the Microsoft MorphX®/ X++

environment makes it easier to call X++ code from .NET applications. In this case, the X++

exchange rate engine could be called directly from .NET applications.

Additional, less common scenarios are also supported. Refer to the ExchangeRateHelper class

documentation for additional information. Always check to see whether the ExchangeRateHelper
class has the method required when retrieving exchange rates in the application. We recommend that
you do not retrieve exchange rates directly from the ExchangeRate table because it is likely that some
key factors will be missed if you bypass the exchange rate engine.

Storing and displaying exchange rates

When storing exchange rates that have been entered by the user, you must apply the appropriate
factors prior to storage. The same is true when displaying exchange rates. If the appropriate factors
are not applied before storing or displaying exchange rates, incorrect rates could be used for a
calculation. This is because every rate in the system is first divided by the quotation unit for the
currency pair involved and then is multiplied by 100 before being stored in the database.

Display a stored exchange rate

Here is an example of how an exchange rate that has been stored in the system should be displayed.
Typically, this would occur in a display method as shown below.

 display ExchRate displayExchRate()

{

 ExchangeRateHelper exchangeRateHelper = ExchangeRateHelper::newCurrency(

 Ledger::current(),

 this.CurrencyCode);

 return exchangeRateHelper.displayStoredExchangeRate(this.ExchangeRate);

 }

http://go.microsoft.com/fwlink/?LinkId=215096
http://go.microsoft.com/fwlink/?LinkId=215096

12

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Store an exchange rate entered by a user

This example is similar to the previous one, but shows what to do when storing an exchange rate
entered by the user. Typically, this would occur in an edit method as shown below.

 public edit ExchRate editExchRate(boolean _set, ExchRate _exchRate)

 {

 ExchRate exchRate = _exchRate;

 ExchangeRateHelper exchangeRateHelper = ExchangeRateHelper::newCurrency(

 Ledger::current(),

 this.CurrencyId);

 if (_set)

 {

 this.ExchRate = exchangeRateHelper.prepareExchangeRateForStorage(exchRate);

 }

 else

 {

 exchRate = exchangeRateHelper.displayStoredExchangeRate(this.ExchRate);

 }

 return exchRate;

 }

These methods should be used any time an exchange rate is displayed on a form or report, or any
time a user has the ability to enter or edit an exchange rate. Additionally, it is necessary to enable or
disable the appropriate exchange rates based on the triangulation scenario. For example, because

users cannot edit fixed exchange rates to the Euro currency, those exchange rates should never be
available for editing.

Determine whether an exchange rate should be enabled on a form

The following example shows how to determine whether an exchange rate should be enabled on a
form. Use the value returned to enable the exchange rate controls accordingly. Static methods also
are available.

 ExchangeRateHelper exchangeRateHelper;

 TransDate transactionDate;

 CurrencyCode transactionCurrency = 'CAD';

 CurrencyExchangeRate exchangeRate1;

 CurrencyExchangeRate exchangeRate2;

 exchangeRateHelper = ExchangeRateHelper::newExchangeDate(

 Ledger::current(),

 transactionCurrency,

 transactionDate);

 exchangeRateHelper.isExchangeRate1Editable();

 exchangeRateHelper.isExchangeRate2Editable();

Upgrading old exchange rate calls

In previous versions of Microsoft Dynamics AX, developers retrieved exchange rates by using the
ExchRateHelper class or the ExchRates table methods. The ExchRateHelper class and the
ExchRates table have been removed, therefore any calls referencing them will need to be refactored.

13

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

The following table documents the methods that have been removed from the ExchRates table along

with the corresponding replacement method, where applicable.

Old method Replacement method

editExchRate prepareExchangeRateForStorage method on the
ExchangeRateHelper class; additionally, the
prepareExchangeRateForStorage_Static method also is available

exchangeText N/A

setExchRate prepareExchangeRateForStorage method on the
ExchangeRateHelper class; additionally the
prepareExchangeRateForStorage_Static method is also available

showExchRate displayStoredExchangeRate method on the ExchangeRateHelper
class; additionally the displayStoredExchangeRate _Static method is
also available

displayExchRate displayStoredExchangeRate method on the ExchangeRateHelper
class; additionally, the displayStoredExchangeRate _Static method
is also available

exchRateCache N/A

findExchRateDate N/A

findExchRateDateByCompany N/A – Exchange rates are now shared across all legal entities

flushCacheClient N/A

flushCacheServer N/A

The following table documents the methods that have been removed from the ExchRateHelper class

along with the corresponding replacement method on the new ExchangeRateHelper class, where

applicable.

Old method Replacement method

newExchDate newExchangeDate

getExchRate getExchangeRate1

getExchRateSecond getExchangeRate2

getExchRateTriangulated_Cur2Mst getCrossRate

getExchRateTriangulated_Mst2Cur getCrossRateReciprocal

isTriangulated N/A – This is handled automatically and is no longer
needed

parmCompany parmLedgerRecId

parmCurrency parmFromCurrency and parmToCurrency

parmExchDate parmExchangeDate

parmIsGovernmentExchRate Supported via exchange rate types; the
parmExchangeRateTypeRecId method can be used for
this

parmIsTriangulated N/A – This is handled automatically and is no longer
needed

getExchRate_Static getExchangeRate1_Static

14

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Old method (continued) Replacement method (continued)

getExchRateSecond_Static getExchangeRate2_Static

getExchRateTriangulated_Cur2Mst_Static getCrossRate_Static

getExchRateTriangulated_Mst2Cur_Static getCrossRateReciprocal_Static

isTriangulated_Static N/A – This is handled automatically and is no longer
needed

Data model

This section provides a better understanding of the new shared currency and exchange rate data
model. (See Figure 1, “New currency data model” on the next page.) The mappings between the old

data models and the new data models are documented in the Microsoft Dynamics AX 2012 TechNet
library, in the section Upgrade to Microsoft Dynamics AX 2012.

Data upgrade

Some key decisions were made in Microsoft Dynamics AX 2012 that should virtually eliminate the
need for any data upgrade code for shared currencies and exchange rates:

 All foreign key references to currencies will continue to use the natural key of the Currency table

and do not need to be replaced with a surrogate key.

 All exchange rates are stored exactly as they were before.

 Exchange rate types are defaulted from the ledger and do not need to be stored with transactions.

As a result of these decisions, none of the transactions referencing currencies or exchange rates
requires an upgrade, unless developers have customizations that are directly related to the Currency
or ExchRates tables. Refer to the Microsoft Dynamics AX 2012 TechNet library, Upgrade to Microsoft

Dynamics AX 2012 section for details about the logic used to upgrade all of the currency information

required to perform calculations.

ttp://go.microsoft.com/fwlink/?LinkID=215084
ttp://go.microsoft.com/fwlink/?LinkID=215084
ttp://go.microsoft.com/fwlink/?LinkID=215084

15

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

Figure 1: New currency data model

Ledger

RecId bigint

AccountingCurrency (FK) nvarchar(3)

DefaultExchangeRateType (O) (FK) bigint

BudgetExchangeRateType (O) (FK) bigint

PrimaryForLegalEntity (FK,AK1) bigint

ReportingCurrency (O) (FK) nvarchar(3)

Currency

CurrencyCode nvarchar(3)

Txt (O) nvarchar(60)

RoundingPrecision numeric(32,16)

Symbol (O) nvarchar(5)

CurrencyCodeISO (FK) nvarchar(3)

IsEuro int

RoundOffSales (O) numeric(32,16)

RoundOffTypeSales (O) int

RoundOffPurch (O) numeric(32,16)

RoundOffTypePurch (O) int

RoundOffPrice (O) numeric(32,16)

RoundOffTypePrice (O) int

ISOCurrencyCode

ISOCurrencyCodeAlpha nvarchar(3)

ISOCurrencyName (O) nvarchar(50)

ISOCurrencyCodeNum int

ExchangeRateType

RecId bigint

Name (AK1) nvarchar(20)

Description (O) nvarchar(60)

ExchangeRateCurrencyPair

RecId bigint

FromCurrencyCode (FK,AK1) nvarchar(3)

ToCurrencyCode (FK,AK1) nvarchar(3)

ExchangeRateType (FK,AK1) bigint

ExchangeRateDisplayFactor int

ExchangeRate

RecId bigint

ExchangeRateCurrencyPair (FK,AK1) bigint

ValidFrom (AK1) datetime

ValidTo datetime

ExchangeRate numeric(32,16)

CurrencyLedgerGainLossAccount

RecId bigint

Ledger (FK,AK1) bigint

CurrencyCode (FK,AK1) nvarchar(3)

AccountType (AK1) int

LedgerDimension (FK) bigint

DimensionAttributeValueCombination

RecId bigint

CurrencyEuroDenomination

RecId bigint

CurrencyCode (FK,AK1) nvarchar(3)

StartDate datetime

ExchangeRate numeric(32,16)

CurrencyOnlineConversion

RecId bigint

CurrencyCode (FK,AK1) nvarchar(3)

Affix (AK1) int

Name nvarchar(10)

Ledger

Existing Tables

Existing Tables modified by this feature

New Table

LedgerGainLossAccount

RecId bigint

Ledger (FK,AK1) bigint

AccountType (AK1) int

LedgerDimension (FK) bigint

CompanyInfo

RecId bigint

16

SHARED CURRENCIES AND EXCHANGE RATES FOR MICROSOFT DYNAMICS AX 2012

This document is provided “as-is.” Information and views expressed in this document, including URL and other
Internet Web site references, may change without notice. You bear the risk of using it.
Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.
This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You
may copy and use this document for your internal, reference purposes. You may modify this document for your
internal, reference purposes.

© 2011 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Dynamics, the Microsoft Dynamics logo, and MorphX are trademarks of the Microsoft group of

companies.

All other trademarks are property of their respective owners.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

