

Microsoft Dynamics
®

 AX 2012

Implementing the Account
and Financial Dimensions

Framework for Microsoft

Dynamics AX 2012
Applications

White Paper

This document highlights new patterns used to represent
accounts and financial dimensions, and describes how to
convert the existing patterns to the new Microsoft Dynamics

AX 2012 patterns. This white paper has been updated for
Microsoft Dynamics AX 2012 R2 and Microsoft Dynamics AX

2012 R3.

February 2014

http://microsoft.com/dynamics/ax

Bill Frandsen, Senior Developer

Jason Dinham, Senior Development Lead

Send suggestions and comments about this document to

adocs@microsoft.com. Please include the title with your
feedback.

http://microsoft.com/dynamics/ax
mailto:adocs@microsoft.com?subject=Microsoft%20Dynamics%20AX%202012%20Whitepaper

2

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Table of Contents

Overview ... 3
Audience... 3
Terminology .. 4

Implementing or upgrading code .. 5
Process for performing code and data upgrades ... 5

Changes to the data model.. 5
Default account ... 6
Main account ... 6
Ledger account .. 6
Multi-type account ... 6
Default dimension .. 7
Dimension attribute set .. 8

Revising your data patterns .. 8
Default account ... 8
Main account ..12
Ledger account ...13
Multi-type account ..17
Default dimension ...21
Dimension attribute set ...24

Setting an entity to be dimensionable ... 27

X++ code patterns .. 28
Default account pattern ...28
Main account pattern ...28
Ledger account pattern ..29
Multi-type account pattern ...29
Default dimension pattern ..29
Dimension attribute set pattern ..29

Web services ... 29
DimensionService class..30
ChartOfAccountsService class ...31
DimensionValueService class ..33
FinancialDimensionValidationService class ..35
FinancialDimensionBalanceService class ..40

Data upgrade .. 40
Conversion patterns ..41
Environments ...43
DimensionConversionHelper API ...45
Set-based upgrade ..45

Updates since initial publication ... 46

Appendix ... 47

3

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Overview

In Microsoft Dynamics AX 2012, the account and financial dimensions framework has been
enhanced to provide substantially more functionality. To support this new functionality, the data
model has also been completely redesigned. Therefore, developers will need to update every
reference to ledger accounts and financial dimensions in existing applications to reference the new
data model.

Each of the account and financial dimensions patterns defined in this white paper has a
corresponding Microsoft Dynamics AX form control. Form controls provide a consistent

implementation of the functionality across the application and a simplified programming model for
the framework. Account form controls combine the Segmented Entry control and a controller class.
The Segmented Entry control is a general-purpose Microsoft Dynamics AX client control that is
being introduced in Microsoft Dynamics AX 2012. The controller class is an X++ class that handles
the events raised by the Segmented Entry control. The combination of a control and an underlying

class allows the user to see a dynamic number of segments, based on the values the user

provides. The controls described in this white paper handle lookup, “view details” functionality, and
validation for each segment in the account number. This design allows for a straightforward and
consistent implementation of these patterns in Microsoft Dynamics AX forms.

In Microsoft Dynamics 2009, a ledger account was represented by a single string value and was
considered to be separate from the financial dimensions. Ledger accounts were stored in the
LedgerTable table. When developers needed to hold a foreign key to a ledger account, they stored
the string “LedgerTable.AccountNum” for that account in their table. Financial dimensions were

referenced as an array of up to 10 array elements that each held the string value of a foreign key
to the Dimensions table. All financial dimension values were stored in the Dimensions table. You
could not use data stored in other Microsoft Dynamics AX tables as financial dimensions.

In Microsoft Dynamics AX 2012, no part of the legacy framework still exists. However, many of the
underlying concepts persist. Microsoft Dynamics AX 2012 still has ledger accounts and financial
dimensions, but the definition of these terms has changed slightly to account for the new
functionality.

This document does not discuss all of the new functionality within ledger accounts and financial

dimensions. Instead, it highlights the new patterns that are used to represent ledger accounts and
financial dimensions and describes how to convert existing patterns to the new Microsoft Dynamics
AX 2012 patterns. Note that financial dimension pattern enhancements do not affect inventory
dimension patterns in any way.

Note: Changes have been made to this paper after it was initially published.

For details, see Updates since initial publication.

Audience

This white paper is intended for developers who are building new applications for Microsoft
Dynamics AX 2012 and developers who are updating their existing application code and data.

4

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Terminology

Microsoft Dynamics AX 2012 terms:

Term Definition

Advanced rule A rule in an accounting system that controls the additional valid financial
dimension value combinations when the requirements of the account
structure condition are met.

Account structure A configuration of the main account financial dimension and other
financial dimensions.

Financial dimension A financial data classifier created from the parties, locations, products,
and activities in an organization and used for management reporting.

Financial dimension value A data element in the domain of a financial dimension.

Ledger account A classifier created from the combination of the main account value listed
in a chart of accounts and other financial dimension values; used to
classify the financial consequences of economic activity.

Ledger account alias A shortcut that is used to retrieve a complete or partial ledger account.

Main account A classifier of economic resource value based on the claims that parties
make on the economic resources owned by a legal entity; used to classify
debit and credit entries in an accounting system.

Additional notes about terminology use in Microsoft Dynamics AX 2012:

 Ledger account: In previous versions of Microsoft Dynamics AX, the term ledger account was
used to specify what is now referred to as the main account. This terminology was used mainly
because the application never merged the ledger account with financial dimensions to create
ledger account combinations. Financial dimension fields were always tracked separately. In

Microsoft Dynamics AX 2012, the main account is merged with financial dimensions to create a
more integrated view of the chart of accounts (COA) and financial activity.

 Financial dimension: The meaning of this term across the application has not changed.
However, the functionality and implementation are very different. With the new support for
unlimited financial dimensions in Microsoft Dynamics AX 2012 and the ability to use existing

application data to define financial dimensions, the functionality has been greatly enhanced.

5

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Implementing or upgrading code

The information in this white paper is intended for developers who need to perform the following
tasks for ledger accounts and financial dimensions:

 Code upgrade

 Data upgrade

 Setting an entity to be dimensionable

 Web service integration

 Microsoft Dynamics AX 2012 form development

 Microsoft Dynamics AX 2012 X++ code development

Process for performing code and data upgrades

Developers who need to perform a code upgrade for existing applications should first attempt to

identify all references to the defined code patterns and then follow the instructions in the relevant
sections of this white paper to upgrade their code. You can perform a code upgrade in any
sequence, but all of the following steps are required:

 Identify the pattern or patterns that your code currently uses.

 Add new fields in the data model to represent the new foreign keys to accounts and financial
dimensions.

 Assign the DEL_ prefix to the field and set the ConfigurationKey to SysDeletedObjects60 to
delete the old foreign key fields.

 Update the user interface to use the new control that is appropriate for the pattern defined.
The new controls make use of the new foreign keys that you added to your data model.

 Update the references and business logic in your X++ classes and table methods to use the
new code patterns defined in the X++ code patterns section of this white paper.

 Update existing reports to make use of the new data model, including the specific views

created for reporting.

After the code upgrade is complete, developers should refer to the Data upgrade section of this
white paper to code their data upgrade scripts.

Changes to the data model

The first step in upgrading your code for use in the new framework for accounts and financial
dimensions is to identify where in the data model you were using these patterns. The following
sections explain the new patterns that you will use to upgrade your code and how the new
patterns relate to the old account and financial dimension patterns. The new patterns are as
follows:

 Default account

 Main account

 Ledger account

 Multi-type account

 Default dimension

 Dimension attribute set

6

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Default account

Previous version

A default account in Microsoft Dynamics AX 2009 was a string field that held the ledger account
and was a foreign key to the LedgerTable table. The field was used primarily on posting profiles to
determine which ledger account should be used when posting to the general ledger.

Microsoft Dynamics AX 2012

The default account pattern consists of a single segment, main account. The default account is a
separate pattern from the main account because of the additional business logic built into its

underlying control. This business logic handles data restrictions in lookups and other critical
functionality that would have to be developed separately in each uptake scenario without the
control. A foreign key representing a default account is a 64-bit integer field that contains the data
from the corresponding RecId field in the DimensionAttributeValueCombination (or
LedgerDimension) table. Foreign key fields for default accounts are named LedgerDimension
because that is the alias used for the DimensionAttributeValueCombination table.

For a data model diagram of the DimensionAttributeValueCombination subsystem, see the

Appendix.

Main account

Previous version

In Microsoft Dynamics AX 2009, the main account pattern was most closely represented by ledger

accounts in the LedgerTable table. There was no difference between default account patterns and
main account patterns in the previous version of the framework.

Microsoft Dynamics AX 2012

The main account pattern represents just one of the possible segments in a ledger account. A main
account is required in a ledger account, but it does not have to be the first segment. When
referencing a main account as a foreign key, the developer should set up a reference to the RecId

field in the MainAccount table.

For a data model diagram of the MainAccount table, see the Appendix.

Ledger account

Previous version

In Microsoft Dynamics AX 2009, the ledger account pattern was the same as the main account and

default account patterns.

Microsoft Dynamics AX 2012

A ledger account contains the main account, account structure, and the financial dimension values
that are needed to populate the related account structure and advanced rule structures. A foreign
key representing a ledger account is a 64-bit integer field that contains the data from the
corresponding RecId field in the DimensionAttributeValueCombination table (also called the

LedgerDimension table). Foreign key fields for ledger accounts are named LedgerDimension
because that is the alias used for the DimensionAttributeValueCombination table.

For a data model diagram of the DimensionAttributeValueCombination subsystem, see the
Appendix.

Multi-type account

Previous version

In Microsoft Dynamics AX 2009, all financial modules used a common structure for their account
numbers, which was a String10. This pattern allowed a single string field to hold the account
number, regardless of which account type was selected. Additional business logic was needed to
determine which account type the developer was dealing with. This pattern could produce
discrepancies, such as when a user decided to change the account number format for one module

7

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

(for example, changing “bank” to a String30) but not for the related modules that shared the
account number field.

Microsoft Dynamics AX 2012

The multi-type account pattern consists of an account type field and its related ledger account or

default account. In this pattern, a ledger account or default account can store accounts other than
ledger accounts. When the account type field for the related account is set to “ledger,” this pattern
becomes the default account or ledger account pattern (depending on the extended data type used
for the field). If the account type field is not set to “ledger,” the pattern stores a system-generated
account structure (used to specify which account number should be stored in the field) and an
account number for the related account type. For example, if the account type field is set to
“customer,” the related account number field will contain a customer number with a related

account structure that indicates that the account number field should contain a single customer
value.

This pattern is primarily used for the setup and entry of financial journals. In this case, a multi-
type account will store one of six types of accounts, based on the related account type field (asset,
bank, customer, vendor, project, or ledger). A foreign key representing a multi-type account is a

64-bit integer field that contains the data from the corresponding RecId field of the

DimensionAttributeValueCombination (LedgerDimension) table. Foreign key fields for multi-type
accounts are named LedgerDimension because that is the alias used for the
DimensionAttributeValueCombination table.

For a data model diagram of the DimensionAttributeValueCombination subsystem, see the
Appendix.

Default dimension

Previous version

The default dimension pattern represented a set of financial dimensions and their values. A
customer typically set the values for given financial dimensions on master data records for
defaulting purposes or directly on some transactions.

This pattern was represented in the Microsoft Dynamics AX 2009 data model with a financial

dimensions array field. In the Application Object Tree (AOT), this field was represented as a single

array field. In the database, the array was represented as having a “one field per-array element.”
The dimension array could have from 3 to 10 elements.

Microsoft Dynamics AX 2012

The default dimension pattern still represents a set of financial dimensions and their related
values. A customer will still set the values for given financial dimensions on master data records
for defaulting purposes or directly on some transactions. The primary difference is in how this data

is stored. In the new data model, this pattern is represented by a single field. The single field is a
foreign key reference to the RecId field in the DimensionAttributeValueSet table. This new value
references the correct record in the DimensionAttributeValueSet (or Default Dimension) table.
Whereas the previous model limited storage to 10 financial dimensions, the new model allows you
to store an unlimited number of financial dimensions and their values.

For a data model diagram of the DimensionAttributeValueSet subsystem, see the Appendix.

8

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Dimension attribute set

The dimension attribute set pattern represents a set of financial dimensions and their related
enumeration values. This pattern is used in advanced general ledger processing where different
financial dimensions can be handled differently, based on these stored enumeration values.

Previous version

The dimension attribute set pattern was represented in the Microsoft Dynamics AX 2009 data
model by a financial dimension array of enumeration fields. In the AOT, the dimension attribute
set pattern was represented as a single array field. In the database, the array was represented as

having a “one field per-array element.” The dimension array could have from 3 to 10 elements.

Microsoft Dynamics AX 2012

The dimension attribute set pattern is still used to store a set of financial dimensions and related
data, such as enumeration values. This pattern is used in places where it is necessary to store
additional information about dimensions, such as whether they are optional or required. For an
example of this implementation, see the VendPaymMode form under Forms in the AOT. A

foreign key representing a dimension attribute set is a 64-bit integer field that contains the data

from the corresponding RecId field of the DimensionAttributeSet table. Whereas the previous
model limited storage to 10 financial dimensions, the new model allows you to store an unlimited
number of financial dimensions.

For a data model diagram of the DimensionAttributeSet subsystem, see the Appendix.

Revising your data patterns

This section provides detailed information about how to map your existing account and financial
dimension patterns to the new patterns. Each pattern subsection has a table that shows the old
extended data types and field names that were used to represent the pattern in Microsoft
Dynamics AX 2009. The table also shows the new extended data types and the field names that

you must use to represent the pattern in Microsoft Dynamics AX 2012. Each pattern subsection
explains how the Microsoft Dynamics AX form control for the pattern must be set up and how to
query the data for inquiry and reporting needs.

Default account

In Microsoft Dynamics AX 2009, account numbers from the LedgerTable table that were used to
post financial activity to the general ledger were considered to represent default accounts.

To upgrade your code for Microsoft Dynamics AX 2012, you must replace your data model with the
new field names and extended data types specified in the following table. You need to update the
forms where these fields are displayed to use the control defined in this section. The X++ code
that references these fields must use the new fields and code patterns defined for default

accounts.

9

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Data model and extended data types

The following table lists the previous and new extended data types (EDTs) and fields related to
default accounts.

 Previous Microsoft Dynamics AX 2012

EDTs AccountNum

LedgerAccount

LedgerDimensionDefaultAccount

Fields AccountNum

LedgerAccount

Account

LedgerDimension

LedgerDimension is a foreign key to the
DimensionAttributeValueCombination table.

Microsoft Dynamics AX form control

The Default Account control is a combination of the Segmented Entry control and the

LedgerDimensionDefaultAccountController class. The

LedgerDimensionDefaultAccountController class handles the events raised by the Segmented
Entry control.

Changes needed on the form

In simple scenarios, the changes needed on the form are as follows:

1. Verify that the table that will hold the foreign key to the DimensionAttributeValueCombination
table is a data source on the form.

2. Drag the LedgerDimension field from the data source to the desired location on the form
design. This should add a Segmented Entry control at this location on the form with
appropriate DataSource and ReferenceField property values. Alternatively, you can
complete this step by adding a Segmented Entry control to the design and manually setting
the DataSource and ReferenceField properties.

3. Override the following methods on the form.

public class FormRun extends ObjectRun

{

 LedgerDimensionDefaultAccountController ledgerDimensionDefaultAccountController;

}

public void init()

{

 super();

 ledgerDimensionDefaultAccountController =

 LedgerDimensionDefaultAccountController::construct(myTable_ds,

 fieldstr(MyTable, LedgerDimension));

}

4. Override the following methods on the Segmented Entry control instance in the form design.

public void jumpRef()

{

 ledgerDimensionDefaultAccountController.jumpRef();

}

public void loadAutoCompleteData(LoadAutoCompleteDataEventArgs _e)

{

 super(_e);

 ledgerDimensionDefaultAccountController.loadAutoCompleteData(_e);

}

public void segmentValueChanged(SegmentValueChangedEventArgs _e)

{

10

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

 super(_e);

 ledgerDimensionDefaultAccountController.segmentValueChanged(_e);

}

public void loadSegments()

{

 super();

 // (Optional parm*() specification should go here, see the Control options section.)

ledgerDimensionDefaultAccountController.parmControl(this);

 ledgerDimensionDefaultAccountController.loadSegments();

}

public boolean validate()

{

 boolean isValid;

 isValid = super();

 isValid = ledgerDimensionDefaultAccountController.validate() && isValid;

 return isValid;

}

5. Override the following methods on the data source field that backs the Segmented Entry
control.

public Common resolveReference(FormReferenceControl _formReferenceControl)

{

 return ledgerDimensionDefaultAccountController.resolveReference();

}

11

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Control options

There are four parameter methods available for specifying items that the control can link to and
validate. These parameter methods should be called in the loadSegments method. These

methods are called every time that the control receives focus. Always declaring the parameters in
one method ensures that developers can easily verify whether all parameters have been correctly
set.

 parmCurrentLedgerCOA: Specifies a particular chart of accounts from which to derive the
list of main accounts. The default value is the current chart of accounts.

 parmFilterLedgerPostingType: Specific main accounts can be excluded from the lookup
based on the posting type, but the values are allowed to be entered manually. The default

value is None, meaning all accounts are valid.

Note The parameter name (FilterLedgerPostingType) differs from the one for the Ledger
Account control because, in this case, it only restricts what is shown in the lookup when the
filter is selected. For account entry, it prevents entry of values entirely.

 parmIncludeFinancialAccounts and parmIncludeTotalAccounts: Specific main accounts

can be excluded from the lookup and prevented from being entered manually. The

IncludeFinancialAccounts and IncludeTotalAccounts parameters are used for validation and
lookup to restrict valid values. The default value for each parameter is false.

Reporting and querying

The default account is a single-level account combination that always encompasses a MainAccount
table record. The reporting issues are the same as those described for the main account in the
Main account section, except that you must first query the DimensionAttributeValueCombination

table to get the RecId of the MainAccount table.

The following are query examples:

 Display the value of the default account.

select

 DISPLAYVALUE

from

 DIMENSIONATTRIBUTEVALUECOMBINATION

where

 RECID = 1

 Join to the MainAccount table to display additional fields.

select

 MA.MMAINACCOUNTID, MA.NAME

from

 DIMENSIONATTRIBUTEVALUECOMBINATION DAVC

 join MAINACCOUNT MA on (DAVC.MAINACCOUNT = MA.RECID)

where

 DAVC.RECID = 1

12

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Main account

In Microsoft Dynamics AX 2012, account numbers from the LedgerTable table that are used to
specify the account as a generic reference are considered to be main accounts. All references used
to build ledger accounts should use the default account pattern instead.

When the main account pattern is required, the data model must be replaced with the new field
names and extended data types specified in the following table. The forms where these fields are
displayed need to be updated to use the reference group controls used for the refRecId pattern.
The X++ code that references these fields must use the new fields that you add to your data

model.

Data model and extended data type

In Microsoft Dynamics AX 2009, the main account and the default account were similar patterns
that used the same EDT names and field names. When performing updates, you need to determine
which pattern the new fields should use, based on how the data was being used in the old pattern.

 Previous Microsoft Dynamics AX 2012

EDTs AccountNum

LedgerAccount

MainAccountNum

Fields AccountNum

LedgerAccount

Account

MainAccount

MainAccount is a foreign key to the MainAccount
table.

Microsoft Dynamics AX form control

Tables with foreign key references to main account should be implemented as surrogate keys.
When displayed on the form, the ReferenceGroup control should be used to provide surrogate key

replacement, which allows the user the view and edit the natural key of the main account, yet
persist it as a surrogate foreign key.

See the section on Reporting and querying for an explanation of this usage.

Reporting and querying

A central issue when performing reporting or general querying of MainAccount data is that most of
the fields are shared through the chart of accounts specified in the MainAccount table. Each

MainAccount record must have a valid foreign key to the chart of accounts. Another new concept in
Microsoft Dynamics AX 2012 is that only one chart of accounts can be specified for a given ledger.
Each legal entity must specify which ledger it will use. The ledger specifies the chart of accounts,
account structures, financial calendar, accounting currency, reporting currency, and other critical
ledger setup information. When querying the MainAccount table from a table with a foreign key,
you are assured of getting the proper record because a unique RecId is used as the foreign key. If
you have only the MainAccount.MainAcountId, you must know the legal entity, ledger, or chart of

accounts to query for your data. Because a legal entity only has a single ledger, and because a
ledger only has a single chart of accounts, you can find the current chart of accounts with any of
these three pieces of data.

Within the MainAccount data model there is also a set of fields that is specific to a legal entity.
These fields (such as default tax codes) can have different values for each legal entity that uses
this chart of accounts. To access these fields, you need to know the legal entity for the main

account that you are querying. For an illustration of the MainAccount data model, see the

Appendix.

The following are query examples:

 Find all MainAccount records for a specific chart of accounts, given the name of that chart.

select

 MainAccountId

from

 MAINACCOUNT

13

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

 join LEDGERCHARTOFACCOUNTS

on (MAINACCOUNT.LEDGERCHARTOFACCOUNTS = LEDGERCHARTOFACCOUNTS.RECID)

where

 LEDGERCHARTOFACCOUNTS.NAME = 'EXT'

 Find all MainAccount records for a specific chart of accounts, given the legal entity name.

select

 MAINACCOUNT.MAINACCOUNTID

from

 MAINACCOUNT

 join LEDGERCHARTOFACCOUNTS

ON (MAINACCOUNT.LEDGERCHARTOFACCOUNTS = LEDGERCHARTOFACCOUNTS.RECID)

 join LEDGER ON (LEDGER.CHARTOFACCOUNTS = LEDGERCHARTOFACCOUNTS.RECID)

 join COMPANYINFO ON (LEDGER.PRIMARYFORLEGALENTITY = COMPANYINFO.RECID)

where

COMPANYINFO.DATAAREA = 'DMO'

Ledger account

In Microsoft Dynamics AX 2009, an account number from the LedgerTable table was considered to
represent a ledger account. The account number was combined with the financial dimensions array
to link financial activity to a ledger account. An example of this was the LedgerTrans table, in
which the AccountNum field represented the ledger account and the Dimension field represented

the financial dimensions.

In Microsoft Dynamics AX 2012, these fields are deleted and replaced with a single field that holds
the main account and all financial dimensions related to financial activity. To upgrade your code for
Microsoft Dynamics AX 2012, your data model must be replaced with the new field names and
extended data types specified in the following table. You need to update forms in which these
fields are displayed to use the control defined in this section. The X++ code that references these
fields must use the new fields and code patterns defined for default accounts. Often, the most

difficult upgrade task is determining whether to convert AccountNum and Dimension fields in a
single table to the ledger account pattern, or to convert the fields to use the default account and
default dimensions patterns.

14

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Data model and extended data types

The following table lists the previous and new extended data types (EDTs) and fields related to
ledger accounts.

 Previous Microsoft Dynamics AX 2012

EDTs AccountNum

LedgerAccount

LedgerDimensionAccount

Fields AccountNum

LedgerAccount

Account

LedgerDimension

LedgerDimension is a foreign key to the
DimensionAttributeValueCombination table.

Microsoft Dynamics AX form control

The Ledger Account control uses a combination of the LedgerDimensionAccountController

class and the Segmented Entry control. This control handles the entry and display of ledger

accounts in Microsoft Dynamics AX forms.

Changes needed on the form

In simple scenarios, the changes needed on a Microsoft Dynamics AX form are as follows:

1. Verify that the table holding the foreign key to the DimensionAttributeValueCombination table
is a data source on the form.

2. Drag the LedgerDimension field from the data source to the desired location on the form

design. This creates a Segmented Entry control with the appropriate DataSource and
ReferenceField property values. Alternatively, you can complete this step by adding a
Segmented Entry control to the design and manually setting the DataSource and
ReferenceField properties.

3. Override the following methods on the form. If the methods already exist, just add the code to
the methods. Be sure to indicate where the super() call is for the init method.

class declaration:

public class FormRun extends ObjectRun

{

 LedgerDimensionAccountController ledgerDimensionAccountController;

}

init (for the form):

public void init()

{

 super();

 ledgerDimensionAccountController =

LedgerDimensionAccountController::construct({BackingDataSource_ds},

fieldstr({BackingTable},LedgerDimension));

}

4. Override the following methods on the Segmented Entry control instance in the form design:

public void jumpRef()

{

 ledgerDimensionAccountController.jumpRef();

}

public boolean validate()

{

boolean isValid;

isValid = super();

isValid = ledgerDimensionAccountController.validate() && isValid;

15

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

return isValid;

}

public void segmentValueChanged(SegmentValueChangedEventArgs _e)

{

super(_e);

ledgerDimensionAccountController.segmentValueChanged(_e);

}

public void loadSegments()

{

 super();

 ledgerDimensionAccountController.parmControl(this);

 // The value of this parameter varies depending on the type of form.

 // See the Control options section below for more detail.

 ledgerDimensionAccountController.loadSegments();

}

public void loadAutoCompleteData(LoadAutoCompleteDataEventArgs _e)

{

 super(_e);

 ledgerDimensionAccountController.loadAutoCompleteData(_e);

}

5. Override the following methods on the data source field that backs the Segmented Entry
control:

public Common resolveReference(FormReferenceControl _formReferenceControl)

{

 return ledgerDimensionAccountController.resolveReference();

}

Control options

Several parameters affect the validation, lookup, and saving of ledger accounts performed by the
Segmented Entry control. The following are the methods used to set these parameters:

 parmCurrency: Specifies the currency code associated with the control being managed. The
Currency parameter is used for validation and lookup to restrict valid values. The default value
is empty and no restriction or validation is done against the currency.

 parmDataAreaId: Specifies the legal entity associated with the control being managed. The
DataAreaId parameter is used to restrict valid values for validation and lookup. The default
value is the current legal entity. If this parameter is provided by a field that the user can
manipulate on the form, we recommend that you call the corresponding parm method from

the modified method of the control for the DataAreaId field.

 parmDate: Specifies the date of the transaction associated with the control being managed.
The Date parameter is used for validation. The default value is empty and no validation is

done against the date.

 parmDialogField: Specifies the dialog field that references the ledger account when using the
LedgerDimensionAccountController on a RunBase dialog.

 parmDimensionAccountStorageUsage: Specifies how to use account storage for the

control being managed. The DimensionAccountStorageUsage parameter is used for validation
and for saving combinations. The default value is setup. Use the
DimensionAccountStorageUsage enumeration to pass in the type.

16

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

 parmDimensionAutocompleteFilter: Specifies custom filtering of the autocomplete data.
Use the DimensionAutocompleteFilterable interface to specify the filtering code.

 parmDisableMRU: Specifies whether the lookup for the most recently used data should be
prevented from appearing. The default value is false. Note: the full lookup showing all or just

valid values will still be accessible.

 parmJournalName: Specifies the journal name associated with the control being managed.
The JournalName parameter is used for validation and lookup to restrict valid values. The
default value is empty and no restriction or validation is done against the journal name.

 parmLockMainAccountSegment: Specifies whether the segment containing the main
account is non-editable. The default value is false.

 parmPostingType: Specifies the posting type associated with the control being managed.

The PostingType parameter is used for validation and lookup to restrict valid values. The
default value is empty and no restriction or validation is done against the posting type.

 parmSkipSuspendedAndActiveDateValidation: Specifies whether suspended and inactive
values can be entered without displaying a validation error. The default value is false.

 parmTaxCode: Specifies the tax code associated with the control being managed. The
TaxCode parameter is used for validation and lookup to restrict valid values. The default value

is empty and no restriction or validation is done against the tax code.

 parmUser: Specifies the user associated with the control being managed. The User parameter
is used for validation and lookup to restrict valid values. The default value is the current user.

 parmValidateBlockedForManualEntry: Specifies whether validation should be enforced for
dimension values marked as not allowing manual entry. The default value is false.

These parameters should be specified in the loadSegments method. They are called every time
the control receives focus. Always declaring the parameters in one method ensures that

developers can easily verify whether all parameters have been correctly set.

Special scenarios

When multiple fields have an account number control, each field should have its own
LedgerDimensionAccountController instance. Each instance must have a unique name that

ends with “LedgerDimensionAccountController” and can begin with a functional description of
how the backing field is used. If the variable name becomes too long, the “LedgerDimension”

prefix in the variable name can be dropped.

Code that is similar to the example shown earlier in this section should be added for each
controller instance. When one field needs to be edited in multiple places on the same form,
there should be a single LedgerDimensionAccountController instance for the field. When
two controls share the same controller, the loadSegments method for each control should
always contain a call to parmControl(this) before the call to the loadSegments method for

the controller.

17

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Reporting and querying

A ledger account contains a default account and a collection of financial dimensions. To make it
easier to implement common reporting scenarios, such as viewing the full combination, Microsoft

Dynamics AX 2012 has added a DisplayValue field in the DimensionAttributeValueCombination
table. This string shows all ledger account segments, separated by the defined segment separator.

The following are query examples:

 Display the ledger account value.

select

 DISPLAYVALUE

from

 DIMENSIONATTRIBUTEVALUECOMBINATION

where

 RECID = 1

 Display only the MainAccount.MainAccountId and MainAccount.Name values.

select

 MA.MAIMACCOUNTID, MA.NAME

from

 DIMENSIONATTRIBUTEVALUECOMBINATION DAVC

 join MAINACCOUNT MA on (DAVC.MAINACCOUNT = MA.RECID)

where

 DAVC.RECID = 1

 Display each segment of the ledger account with data related to the segments.

Note We have created a view in the AOT to simplify querying the database in this common
scenario. In this example, we return the display value separately for each segment in a ledger

account.

select

 DALVV.DISPLAYVALUE

from

 DIMENSIONATTRIBUTELEVELVALUEVIEW DALVV

where

 DALVV.VALUECOMBINATIONRECID = 1

Multi-type account

In Microsoft Dynamics AX 2009, there were scenarios in which the value of an account number

was dependent on a related field (often called the account type field). Depending on the account
type that was selected, a specific type of account number was stored. For example, if the
“customer” account type was selected, an account number representing a customer was expected
in the account number field. The most common scenario for this pattern involved the financial
journals, where the user could select from six different account types.

In Microsoft Dynamics AX 2012, this pattern still exists. The pattern has been built into the
account and financial dimension framework to address the requirements of financial journals. The

pattern is more complicated in Microsoft Dynamics AX 2012 because the ledger account is very
different from other accounts that can be entered on a financial journal. Ledger accounts now
allow the user to enter many segments.

18

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Data model and extended data types

The following table lists the previous and new extended data types (EDTs) and fields related to
multi-type accounts.

 Previous Microsoft Dynamics AX 2012

EDTs AccountNum

LedgerAccount

DimensionDynamicAccount

Fields AccountNum

LedgerAccount

Account

LedgerDimension

LedgerDimension is a foreign key to the
DimensionAttributeValueCombination table.

Microsoft Dynamics AX form control

The Multi-Type Account control represents a combination of the Segmented Entry control and the

DimensionDynamicAccountController class. The Segmented Entry control is a general-purpose

control that has been introduced in Microsoft Dynamics AX 2012. The
DimensionDynamicAccountController class handles the events raised by the Segmented Entry
control. This combination allows the control to handle accounts of several different types.

Changes needed on the form

In simple scenarios, the changes needed on the form are as follows:

1. Verify that the table that will hold the foreign key to the DimensionAttributeValueCombination

table is a data source on the form.

2. Drag the LedgerDimension field from the data source to the desired location on the form
design. This action should add a Segmented Entry control at this location on the form with
appropriate DataSource and ReferenceField property values. Alternatively, you can
complete this step by adding a Segmented Entry control to the design and manually setting
the DataSource and ReferenceField properties.

3. Override the following methods on the form.

class declaration:

public class FormRun extends ObjectRun

{

 DimensionDynamicAccountController dimAccountController;

}

init (for the form):

public void init()

{

 super();

 dimAccountController = DimensionDynamicAccountController::construct(

ledgerJournalTrans_ds,

fieldstr(LedgerJournalTrans, LedgerDimension),

 fieldstr(LedgerJournalTrans, AccountType));

}

19

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

4. Override the following methods on the Segmented Entry control instance in the form design.

public void jumpRef()

{

 dimAccountController.jumpRef();

}

public void loadAutoCompleteData(LoadAutoCompleteDataEventArgs _e)

{

 super(_e);

 dimAccountController.loadAutoCompleteData(_e);

}

public void segmentValueChanged(SegmentValueChangedEventArgs _e)

{

 super(_e);

 dimAccountController.segmentValueChanged(_e);

}

public void loadSegments()

{

 super();

 // (Optional parm*() specification should go here, see the Control options

section.)

 dimAccountController.parmControl(this);

 dimAccountController.loadSegments();

}

public boolean validate()

{

 boolean isValid;

 isValid = super();

 isValid = dimAccountController.validate() && isValid;

 return isValid;

}

5. Override the following methods on the data source field that backs the Segmented Entry

control.

public Common resolveReference(FormReferenceControl _formReferenceControl)

{

 return dimAccountController.resolveReference();

}

20

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Control options

Several parameter methods can be used to manage the information that the control links to and
validates:

 parmCurrency: Specifies the currency code associated with the control that is being
managed. The Currency parameter is used for validation and lookup to restrict valid values.
The default value is empty and no restriction or validation is done against the currency.

 parmDataAreaId: Specifies the legal entity associated with the control being managed. The
DataAreaId parameter is used for validation and lookup to restrict valid values. The default
value is the current legal entity. If this is provided by a field that the user can manipulate on
the form, we recommend that you call the corresponding parm method from the modified

method of the control for the DataAreaId field.

 parmDate: Specifies the date of the transaction associated with the control being managed.
The Date parameter is used for validation. The default value is empty and no validation is
done against the date.

 parmDialogField: Specifies the dialog field that references the ledger account when using the

LedgerDimensionAccountController on a RunBase dialog.

 parmDimensionAccountStorageUsage: Specifies how the control being managed is used.
The DimensionAccountStorageUsage parameter is used for validation and the saving of
combinations. The default value is setup.

 parmDimensionAutocompleteFilter: Specifies custom filtering of the autocomplete data.
Use the DimensionAutocompleteFilterable interface to specify the filtering code.

 parmDisableMRU: Specifies whether the lookup for the most recently used data should be
prevented from appearing. The default value is false.

Note The full lookup showing all or just valid values will still be accessible.
parmFilterLedgerPostingType: Specific main accounts can be excluded from the lookup
based on the posting type, but the values are allowed to be entered manually. The default
value is None, meaning all accounts are valid. See also parmPostingType.

 parmIsDefaultAccount: Specifies whether the control presents a default account or a full
account/dimension combination pattern.

 parmJournalName: Specifies the journal name associated with the control being managed.

The JournalName parameter is used for validation and lookup to restrict valid values. The
default value is empty and no restriction or validation is done against the journal name.

 parmPostingType: Specifies the posting type associated with the control being managed.
The PostingType parameter is used for validation and lookup to restrict valid values. The
default value is empty and no restriction or validation is done against the posting type.

 parmSkipSuspendedAndActiveDateValidation: Specifies whether suspended and inactive

values can be entered without displaying a validation error. The default value is false.

 parmTaxCode: Specifies the tax code associated with the control being managed. The
TaxCode parameter is used for validation and lookup to restrict valid values. The default value
is empty and no restriction or validation is done against the tax code.

 parmUser: Specifies the user associated with the control being managed. This parameter is
used for validation and lookup to restrict valid values. The default value is the current user.

 parmValidateBlockedForManualEntry: Specifies whether validation should be enforced for

dimension values marked as not allowing manual entry. The default value is false.

 parmIncludeTotalAccounts: Specifies whether main accounts marked as “total” can be
used. The IncludeTotalAccounts parameter is used for validation and lookup to restrict valid
values. The default value is false.

Parameters should be specified in the loadSegments method and are called every time the
control receives focus. Always declaring the parameters in one method ensures that developers
can easily verify whether all parameters have been correctly set.

21

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Reporting and querying

Multi-type accounts are stored in the same table as default accounts and ledger accounts. Multi-
type accounts always contain a single account segment that holds an account number for an

account other than the main account. For example, in financial journals, the user has a choice of
entering accounts types: bank, asset, customer, vendor, project, or ledger. In all cases except the
ledger account, a multi-type account is stored. Because multi-type accounts use the same data
model as ledger accounts, the same query helpers exist.

The following are query examples:

 Display the account value.

select

 DISPLAYVALUE

from

 DIMENSIONATTRIBUTEVALUECOMBINATION

where

 RECID = 1

 Display the account with data related to the segment.

Note We have created a view in the AOT to simplify querying the database in this common
scenario. The DimensionAttributeLevelValue.DisplayValue, DimensionAttribute.RecId, and
DimensionAttributeValue.RecId are returned for each segment in the multi-type account.

The RecIds that are returned can be useful because the DimensionAttribute table defines which
entity the account number is related to. You can use this additional information to determine

whether the DisplayValue is displaying a vendor account or a customer account.

select

 DALVV.DISPLAYVALUE,

 DALVV.DIMENSIONATTRIBUTE,

 DALVV.ATTRIBUTEVALUERECID

from

 DIMENSIONATTRIBUTELEVELVALUEVIEW DALVV

where

 DALVV.VALUECOMBINATIONRECID = 1

Default dimension

In Microsoft Dynamics AX 2009, financial dimensions were stored in an array of string values on

every table that needed to reference a set of financial dimension values. Master data tables, such
as Customer, Vendor, and Bank Account, held these sets of financial dimension defaults for use
during subledger posting to the general ledger. The posting code merged multiple sets of financial
dimensions to determine which financial dimension values to update during the general ledger
posting.

To upgrade your code for Microsoft Dynamics AX 2012, your data model must be replaced with the
new field names and extended data types specified in the following table. Forms that display these

fields need to be updated to use the control defined in this section. The X++ code that references
these fields must use the new fields and code patterns defined for default dimensions.

22

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Data model and extended data type

The following table lists the previous and new extended data types (EDTs) and fields related to
default dimensions.

 Previous Microsoft Dynamics AX 2012

EDTs Dimension

SysDimension

DimensionLedgerJournal

DimensionDefault

Fields Dimension DefaultDimension

DefaultDimension is a foreign key to the
DimensionAttributeValueSet table.

Microsoft Dynamics AX form control

The Default Dimension control is backed by the DimensionDefaultingController class. The

DimensionDefaultingController class handles drawing of individual field controls for each
financial dimension for the current ledger’s account structures, and field entry/validation, lookup,
and “view details” functionality. Drawing the fields is a dynamic process because it is possible to
add, change, or remove financial dimensions after installation of Microsoft Dynamics AX 2012.
Validation, lookup, and “view details” functionality is encapsulated into the control for ease of
implementation. Parameters can be set on the control to change the functionality of validation and
the lookup.

Changes needed on the form

In simple scenarios, the changes needed on the form are as follows:

1. Verify that the table that will hold the foreign key to the DimensionAttributeValueSet table is a
data source on the form.

2. Create a tab page that will contain the financial dimensions control. This control is often the
only data shown on the tab because the number of financial dimensions can be large.

1. Set the Name metadata of the tab to TabFinancialDimensions.

2. Set the AutoDeclaration metadata of the tab to Yes.

3. Set the Caption metadata of the tab to @SYS101181 (Financial dimensions).

4. Set the NeedPermission metadata of the tab to Manual.

5. Set the HideIfEmpty metadata of the tab to No.

3. Override the pageActivated method on the new tab.

public void pageActivated()

{

 dimDefaultingController.pageActivated();

 super();

}

23

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

4. Override the following methods on the form.

class declaration:

public class FormRun extends ObjectRun

{

 DimensionDefaultingController dimDefaultingController;

}

init (for the form):

public void init()

{

 super();

 dimDefaultingController=DimensionDefaultingController::constructInTabWithValues(

 true,

 true,

 true,

 0,

 this,

 tabFinancialDimensions,

 "@SYS138487");

 dimDefaultingController.parmAttributeValueSetDataSource(myTable_ds,

 fieldstr(myTable, DefaultingDimension));

}

5. Override the following methods on the form data source that contains the foreign key to the
DimensionAttributeValueSet table.

public int active()

{

 int ret;

 ret = super();

 dimDefaultingController.activated();

 return ret;

}

public void write()

{

 dimDefaultingController.writing();

 super();

}

public void delete()

{

 super();

 dimDefaultingController.deleted();

}

24

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Control options

Two overloads of the constructor will build the Default Dimension control with different
characteristics:

 DimensionDefaultingController::constructInGroupWithValues: Constructs an instance of
the DimensionDefaultingController class with a StringEdit control associated with each
dimension attribute that is added to the specified FormGroupControl object.

 DimensionDefaultingController::constructInTabWithValues: Constructs an instance of
the DimensionDefaultingController class with a StringEdit control associated with each
dimension attribute that is added to the specified FormTabPageControl object.

Reporting and querying

The default dimension pattern is stored in a data model that starts with the
DimensionAttributeValueSet table. All foreign keys to this pattern hold a RecId to this table. We
have provided a view in the AOT to simplify querying the segments defined in the pattern.

The following query example displays the name of the dimension segment and the related value

stored for that segment.

select

 NAME,

 DISPLAYVALUE

from

 DEFAULTDIMENSIONVIEW

where

 DEFAULTDIMENSION = 5637144603

Dimension attribute set

A dimension attribute set is a list of one or more dimension attributes that are being tracked for a
particular purpose. Each dimension attribute has a related enumeration value that needs to be
tracked. For example, suppose you need to specify a list of dimension attributes and specify the
actions that can be performed for each dimension attribute. Assume that there are three
dimension attributes in the system: Department, Cost Center, and Purpose. Also, assume that

there is a Required field that specifies an enumeration with the following order of values:

Optional, Blank, and Required. You would like to specify Required for Department, Blank for
Cost Center, and Optional for Purpose. In this scenario, the pattern you would use would be a
dimension attribute set. This pattern also supports variations, including a simple checkbox instead
of an enumeration field.

Data model and extended data types

The following table lists the previous and new extended data types (EDTs) and fields related to

dimension attribute sets.

 Previous Microsoft Dynamics AX 2012

EDTs DimensionAllocation

DimensionKeepFromTransaction

DimensionEnumeration

Fields DimensionAllocation

KeepTransactionDimension

DimensionSelectionCriteria

DimensionKeepTransaction

DimensionSelectionCriteria and
DimensionKeepTransaction are foreign keys to
the DimensionAttributeSet table.

Microsoft Dynamics AX form control

The Dimension Attribute Set control is similar to the Default Dimension control, but you are
required to add an enumeration to the control instead of the dimension attribute values. The
Dimension Attribute Set control is supported by the DimensionDefaultingController class. The
DimensionDefaultingController class handles the drawing of individual field controls for each

25

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

financial dimension in the ledger, and the field entry/validation, lookup, and “view details”
functionality. Drawing the fields is a dynamic process because it is possible to add, change, or
remove financial dimensions after the installation of Microsoft Dynamics AX 2012. Validation,
lookup, and “view details” functionality are encapsulated into the control for ease of

implementation. You can set parameters on the control to change the functionality of validation
and the lookup.

Changes needed on the form

In simple scenarios, the changes needed on the form are as follows:

1. Verify that the table that will hold the foreign key to the DimensionAttributeSet table is a data
source on the form.

2. Create a tab page that will contain the financial dimensions control. This control is often the

only data shown on the tab because the number of financial dimensions can be large.

1. Set the Name metadata for the tab to TabFinancialDimensions.

2. Set the AutoDeclaration metadata for the tab to Yes.

3. Set the Caption metadata for the tab to @SYS101181 (Financial dimensions).

4. Set the NeedPermission metadata for the tab to Manual.

5. Set the HideIfEmpty metadata for the tab to No.

3. Override the pageActivated method on the new tab.

public void pageActivated()

{

 dimensionDefaultingController.pageActivated();

 super();

}

4. Override the following methods on the form.

class declaration:

public class FormRun extends ObjectRun

{

 DimensionDefaultingController dimDefaultingController;

}

init (for the form):

public void init()

{

 super();

 dimDefaultingController=DimensionDefaultingController::

constructInGroupWithChecks(

 true,

0,

this,

tabFinancialDimensions,

"@SYS138487",

"",

"");

 dimDefaultingController = parmAttributeValueSetDataSource(myTable_ds,

 fieldstr(myTable, DefaultingDimension));

}

5. Override the following methods on the form data source that contains the foreign key to the
DimensionAttributeSet table.

public int active()

{

 int ret;

26

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

 ret = super();

 dimDefaultingController.activated();

 return ret;

}

public void write()

{

 dimDefaultingController.writing();

 super();

}

public void delete()

{

 dimDefaultingController.deleted();

 super();

}

Control options

Several overloads of the constructor will build the Dimension Attribute Set control with different
characteristics:

 DimensionDefaultingController::constructInGroupWithChecks: Constructs an instance
of the DimensionDefaultingController class that has a check box control associated with
each dimension attribute that is added to the specified FormGroupControl object.

 DimensionDefaultingController::constructInGroupWithChecksAndValues: Constructs

an instance of the DimensionDefaultingController class with a check box and a StringEdit
control associated with each dimension attribute that is added to the specified
FormGroupControl object.

 DimensionDefaultingController::constructInGroupWithCombosAndValues: Constructs
an instance of the DimensionDefaultingController class with a combo box and a StringEdit
control associated with each dimension attribute that is added to the specified
FormGroupControl object.

 DimensionDefaultingController::constructInTabWithChecks: Constructs an instance of
the DimensionDefaultingController class with a check box control associated with each
dimension attribute that is added to the specified FormTabPageControl object.

 DimensionDefaultingController::constructInTabWithChecksAndValues: Constructs an
instance of the DimensionDefaultingController class with a check box and a StringEdit
control associated with each dimension attribute that is added to the specified
FormTabPageControl object.

 DimensionDefaultingController::constructInTabWithCombos: Constructs an instance of
the DimensionDefaultingController class with a combo box control associated with each
dimension attribute that is added to the specified FormTabPageControl object.

 DimensionDefaultingController::constructInTabWithCombosAndValues: Constructs an
instance of the DimensionDefaultingController class with a combo box and a StringEdit
control associated with each dimension attribute that is added to the specified

FormTabPageControl object.

Reporting and querying

The dimension attribute set pattern is stored in a data model that starts with the
DimensionAttributeSet table. All foreign keys to this pattern hold a RecId to this table. We have
provided a view in the AOT to simplify querying the segments (dimension attributes) defined in the
pattern.

The following query example displays the name of the dimension attribute (such as department,
cost center, and purpose), the integer that defines the AOT enumeration, and the integer
enumeration value.

27

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

select

 DA.NAME,

 DAS.BASEENUMTYPE,

 DASI.ENUMERATIONVALUE

from

 DIMENSIONATTRIBUTESET DAS

 join DIMENSIONATTRIBUTESETITEM DASI on (DASI.DIMENSIONATTRIBUTESET = DAS.RECID)

 join DIMENSIONATTRIBUTE DA on (DA.RECID = DASI.DIMENSIONATTRIBUTE)

where

 DAS.RECID = 1

Setting an entity to be dimensionable

To set an entity to be dimensionable, create a view as directed below. The entity will automatically
appear as an available backing entity type.

Also, to integrate with the dimensions framework when deleting or renaming the natural key of the
backing entity, you must write custom code on the backing table's delete method, and also on

either the update or renamePrimaryKey method. See CustTable for an example of the pattern
these methods must follow.

1. The view name must be DimAttribute[yourentityname]. For example, DimAttributeCustTable.

2. The view must contain a root data source named BackingEntity that points to your backing
table to identify a surrogate key and natural key.

3. The view may optionally contain additional related data sources to handle inheritance or
relational associations to provide additional fields, such as a name from the DirPartyTable.

4. The view must contain the following fields named exactly as follows:

 Key - Must point to the backing entity's SK field. For example, an int64 RecId field.

 Value - Must point to the backing entity's NK field. For example, a str30 AccountNum field.

 Name - Must point to the source of an additional description for the entity. For example, a
str60 Description field.

5. The view must have a SingularLabel assigned that is different from its Label property.

6. The view must have the same ConfigKey as the backing table.

7. The view must be included in the DimensionEssentials Security Privilege.

Because the list of dimensionable entities are cached on both the client and server, the creation of
a new dimensionable entity will not appear in the list of existing entities until a call to clear the
caches is performed, or until both the client and the server are restarted. In order to clear the
caches and have the new backing entity appear immediately, you must execute the following line
of code within a job:

DimensionCache::clearAllScopes();

If a new Organization Model OMOperatingUnitType enumeration is added, the steps to make it
dimensionable are similar but can be made shorter as follows:

1. Copy one of the existing DimAttributeOM[entityname] views, rename it appropriately and

adjust all associated labels and help text.

2. Expand the Datasource\BackingEntity (OMOperatingUnit)\Ranges node on the copied view and
change the value property on the range to the new OMOperatingUnitType enumeration value
that was just added.

Because the OMOperatingUnitType is backed by the OMOperatingUnit table, generic code already
exists to handle the delete, update and renamePrimaryKey methods. Therefore, in this case,
you do not need to update these methods.

28

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

X++ code patterns

This section describes the common APIs, which are used to access and modify account and
financial dimensions data. These APIs are all class methods.

Note Calls to the DimensionDefaultingService will not share the same database transaction
context as the caller, even if the caller has a transaction currently running. As with all X++ service
calls, these calls are asynchronous.

Default account pattern

Use the following methods for the default account pattern.

 DimensionStorage::getDefaultAccount: Gets the default account that represents the
specified main account RecId.

 DimensionStorage::getDefaultAccountForMainAccountNum: Gets the default account
that represents the specified main account number.

 DimensionStorage::getLedgerDefaultAccountFromLedgerDim: Gets the default account
that represents the main account from the specified ledger dimension.

Main account pattern

Use the following methods for the main account pattern.

 DimensionStorage::getMainAccountFromLedgerDimension: Gets the main account table
buffer that corresponds to the specified ledger dimension.

 DimensionStorage::getMainAccountIdFromLedgerDimension: Gets the RecId of the
main account that corresponds to the specified ledger dimension.

 DimensionStorage::getMainAccountNumFromLedgerDimension: Gets the account

number of the main account that corresponds to the specified ledger dimension.

29

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Ledger account pattern

Use the following methods for the ledger account pattern.

 DimensionDefaultingEngine::getLedgerDimensionFromAccountAndDim: Gets the
ledger dimension that represents the combination for the specified main account and default
dimension.

 DimensionDefaultingService::serviceApplyFixedDimensions: Gets the ledger dimension
that represents the combination formed by applying any fixed dimensions specified on the
main account on the specified ledger dimension.

 DimensionDefaultingService::serviceCreateLedgerDimension: Gets the ledger
dimension that represents the combination for the specified ledger dimension and default
dimensions.

 DimensionDefaultingService::serviceMergeLedgerDimensions: Gets the ledger
dimension that represents the combination formed by merging the specified ledger dimensions
together.

 DimensionStorage::getAccountStructureFromLedgerDimension: Gets the RecId of the

account structure for the specified ledger dimension.

Multi-type account pattern

Use the following methods for the multi-type account pattern.

 DimensionStorage::getDynamicAccount: Gets the ledger dimension that represents the

dynamic account for the specified account and account type.

 DimensionStorage::ledgerDimension2AccountNum: Gets the string value of the account
for the specified dynamic account.

Default dimension pattern

Use the following methods for the default dimension pattern.

 DimensionDefaultingEngine::overrideDefaultDimension: Updates a default dimension

with the specified dimension values.

 DimensionDefaultingService::serviceMergeDefaultDimensions: Merges the specified
default dimensions into a single default dimension.

 DimensionDefaultingService::serviceReplaceAttributeValue: Replaces the value of the
specified dimension attribute in the target default dimension with the value from the source

default dimension.

 DimensionStorage::getDefaultDimensionFromLedgerDimension: Gets the default
dimension that represents all dimension values from the specified ledger account other than
the main account.

 DimensionAttributeValueSetStorage: This class provides an API for creating and editing
default dimensions.

Dimension attribute set pattern

Use the following method for the dimension attribute set pattern.

 DimensionAttributeSetStorage: This class manages the storage of the
<c>DimensionAttributeSet</c> table and the <c>DimensionAttributeSetItem</c> table.

Web services

Web service classes are provided to more easily integrate with the major subsystems of the
account/dimension framework. The classes use only natural key information instead of surrogate

key record IDs. This section describes the service APIs.

30

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

DimensionService class

The DimensionService class provides standard primitive operations for retrieving a list of all
financial dimensions available or for a specific account structure.

getDimensions method

Returns an X++ list type that contains elements of class type DimensionContract for all
dimensions associated with the specified account structure. The AccountStructureContract class
is used to specify the name of the account structure to retrieve the list of dimensions for.

Example

[X++]

accountStructureContract = new AccountStructureContract();

accountStructureContract.parmName('Expense');

dimensionService = new DimensionService();

dimensionList = dimensionService.getDimensions(accountStructureContract);

dimIterator = new ListIterator(dimensionList);

dimensionContract = dimIterator.value();

name = dimensionContract.parmDimensionName();

dimIterator.next();

…

[C#]

AccountStructureContract accountStructureContract =

 new AccountStructureContract { parmName = accountStructureName };

DimensionServiceClient proxy = new DimensionServiceClient();

try

{

 DimensionContract[] dimensionList = proxy.getDimensions(null, accountStructureContract);

}

finally

{

 proxy.Close();

}

31

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

getDimensionsAll method

Returns an X++ list type that contains elements of class type DimensionContract for all
dimensions in the system.

Example

[X++]

dimensionService = new DimensionService();

dimensionList = dimensionService.getDimensionsAll();

dimIterator = new ListIterator(dimensionList);

dimensionContract = dimIterator.value();

name = dimensionContract.parmDimensionName();

dimIterator.next();

…

[C#]

DimensionServiceClient proxy = new DimensionServiceClient();

try

{

 DimensionContract[] dimensionList = proxy.getDimensionsAll(null);

}

finally

{

 proxy.Close();

}

ChartOfAccountsService class

The ChartOfAccountsService class provides standard primitive operations for retrieving a list of
all ledgers, ledger chart of accounts, main accounts for a specific ledger chart of accounts or
creation of main accounts.

createMainAccount method

Creates a new main account. The class MainAccountContract is used to specify the name and
other fields that describe the main account.

Example

[X++]

service = new ChartOfAccountsService();

mainAccountContract = new MainAccountContract();

mainAccountContract.parmMainAccountId('999');

mainAccountContract.parmName('Service Test Account');

mainAccountContract.parmLedgerChartOfAccounts(curext());

result = service.createMainAccount(mainAccountContract);

[C#]

MainAccountContract mainAccountContract = new MainAccountContract();

mainAccountContract.parmMainAccountId = "99999";

mainAccountContract.parmName = "Test Main Account";

mainAccountContract.parmLedgerChartOfAccounts = this.CompanyName;

ChartOfAccountsServiceClient proxy = new ChartOfAccountsServiceClient();

try

32

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

{

 bool created = proxy.createMainAccount(null, mainAccountContract);

}

finally

{

 proxy.Close();

}

getLedgerChartOfAccounts method

Returns an X++ list type that contains elements of class type LedgerChartOfAccountsContract
for all ledger charts of accounts in the system.

Example

[X++]

service = new ChartOfAccountsService();

list = service.getLedgerChartOfAccounts();

enumerator = list.getEnumerator();

while (enumerator.moveNext())

{

 ledgerCOAcontract = enumerator.current();

 name = ledgerCOAcontract.parmName();

}

[C#]

ChartOfAccountsServiceClient proxy = new ChartOfAccountsServiceClient();

try

{

 LedgerChartOfAccountContract[] ledgerChartOfAccounts =

proxy.getLedgerChartOfAccounts(null);

 this.VerifyLedgerChartOfAccounts(ledgerChartOfAccounts);

}

finally

{

 proxy.Close();

}

33

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

getLedgers method

Returns an X++ list type that contains elements of class type MainAccountContract for all main
accounts for a specific ledger chart of accounts. The class LedgerChartOfAccountContract is

used to specify the name of the ledger chart of account to retrieve the list of main accounts for.

Example

[X++]

service = new ChartOfAccountsService();

ledgerCOAContract = new LedgerChartOfAccountContract();

ledgerCOAContract.parmName(curext());

list = service.getMainAcounts(ledgerCOAContract);

enumerator = list.getEnumerator();

while (enumerator.moveNext())

{

 mainAccountContract = enumerator.current();

 mainAccountId = mainAccountContract.parmMainAccountId();

}

[C#]

ChartOfAccountsServiceClient proxy = new ChartOfAccountsServiceClient();

try

{

 LedgerContract[] ledgers = proxy.getLedgers(null);

}

finally

{

 proxy.Close();

}

DimensionValueService class

The DimensionValueService class provides standard primitive operations for creating a user-
defined dimension value for a specific financial dimension and retrieving a list of all values for a
specific financial dimension.

createDimensionValue method

Creates a new user-defined financial dimension value for the specified financial dimension. The

class DimensionValueContract is used to specify the dimension attribute and value as well as
additional properties of the value.

Example

[X++]

service = new DimensionValueService();

dimensionValueContract = new DimensionValueContract();

dimensionValueContract.parmDescription('Sales department');

dimensionValueContract.parmValue('Dept001');

dimensionValueContract.parmDimensionAttribute('Department');

service.createDimensionValue(dimensionValueContract);

[C#]

DimensionValueContract dimensionValueContract =

 new DimensionValueContract { parmDimensionAttribute = dimensionAttributeName,

 parmValue = "Fund_09",

34

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

 parmDescription = "Fund 09",

 parmActiveFrom = DateTime.Today,

 parmActiveTo = DateTime.Today,

 parmIsSuspended = Reference.NoYes.Yes,

 parmIsBlockedForManualEntry = Reference.NoYes.Yes,

 parmBackingEntityType = 656,

 parmGroupDimension = string.Empty,

 parmPersonnelNumber = "AMO" };

DimensionValueServiceClient proxy = new DimensionValueServiceClient();

try

{

 bool isSuccessful = proxy.createDimensionValue(null, dimensionValueContract);

}

finally

{

 proxy.Close();

}

getDimensionsValues method

Returns an X++ list type that contains elements of class type DimensionValueContract for all
values for a specified financial dimension. The class DimensionContract is used to specify the
dimension name.

Example

[X++]

service = new DimensionValueService();

dimensionContract = new DimensionContract();

dimensionContract.parmDimensionName('Department');

dimensionValueContractList = service.getDimensionValues(dimensionContract);

contractIterator = new ListIterator(dimensionValueContractList);

dimensionValueContract = contractIterator.value();

dimensionValue = dimensionValueContract.parmValue();

contractIterator.next();

…

35

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

[C#]

DimensionContract dimensionContract =

 new DimensionContract { parmDimensionName = dimensionAttributeName };

DimensionValueServiceClient proxy = new DimensionValueServiceClient();

try

{

 DimensionValueContract[] dimensionValueList = proxy.getDimensionValues(null,

dimensionContract);

}

finally

{

 proxy.Close();

}

FinancialDimensionValidationService class

The FinancialDimensionValidationService class provides standard primitive operations for

validating a budget, budget planning, or ledger account.

getStatusForBudgetAccount method

Returns an instance of the DimensionValidationStatusContract class that contains the
validation status for a budget account. You use the BudgetAccountContract class to specify the
current structure, constraints, and budget-enabled dimensions for the account.

Example

[X++]

service = new FinancialDimensionValidationService();

budgetAccountValidationContract = new BudgetAccountValidationContract();

budgetAccountContract = new BudgetAccountContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

validationStatus = new DimensionValidationStatusContract();

budgetAccountContract.parmAccountStructure('Expense');

budgetAccountContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

budgetAccountContract.parmValues().addEnd(dimensionAttributeValueContract);

budgetAccountValidationContract.parmBudgetAccountContract(budgetAccountContract);

validationStatus = service.getStatusForBudgetAccount(budgetAccountValidationContract);

getStatusForBudgetAccountList method

Returns an instance of the DimensionValidationStatusListContract class that contains the
validation status for a collection of budget account contracts. You use instances of the
BudgetAccountContract class to specify the current structure, constraints, and budget-enabled
dimensions for each account in the collection.

Example

[X++]

service = new FinancialDimensionValidationService();

validationContracts = new List(Types::Class);

validationStatusList = new DimensionValidationStatusListContract();

budgetAccountListValidationContract = new BudgetAccountListValidationContract();

36

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

budgetAccountValidationContract = new BudgetAccountValidationContract();

budgetAccountContract = new BudgetAccountContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

budgetAccountContract.parmAccountStructure('Expense');

budgetAccountContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

budgetAccountContract.parmValues().addEnd(dimensionAttributeValueContract);

budgetAccountValidationContract.parmBudgetAccountContract(budgetAccountContract);

validationContracts.addEnd(budgetAccountValidationContract);

budgetAccountValidationContract = new BudgetAccountValidationContract();

budgetAccountContract = new BudgetAccountContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

budgetAccountContract.parmAccountStructure('Expense');

budgetAccountContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('20');

budgetAccountContract.parmValues().addEnd(dimensionAttributeValueContract);

budgetAccountValidationContract.parmBudgetAccountContract(budgetAccountContract);

validationContracts.addEnd(budgetAccountValidationContract);

budgetAccountListValidationContract.parmValidationContracts(validationContracts);

validationStatusList = service.getStatusForBudgetAccountList(

budgetAccountListValidationContract);

getStatusForBudgetPlanning method

Returns an instance of the DimensionValidationStatusContract class that contains the
validation status for a budget planning account. You use the BudgetPlanningContract class to
specify the current structure, constraints, advanced rules, budget planning rules, and organization
model relationships for the account.

Example

[X++]

service = new FinancialDimensionValidationService();

budgetPlanningValidationContract = new BudgetPlanningValidationContract();

budgetPlanningContract = new BudgetPlanningContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

validationStatus = new DimensionValidationStatusContract();

budgetPlanningContract.parmAccountStructure('Expense');

budgetPlanningContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

budgetPlanningContract.parmValues().addEnd(dimensionAttributeValueContract);

budgetPlanningValidationContract.parmBudgetPlanningContract(budgetPlanningContract);

validationStatus = service.getStatusForBudgetPlanning(budgetPlanningValidationContract);

37

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

getStatusForBudgetPlanAccountList method

Returns an instance of the DimensionValidationStatusListContract class that contains the
validation status for a collection of budget plan accounts. You use instances of the

BudgetPlanningContract class to specify the current structure, constraints, advanced rules,
budget planning rules, and organization model relationships for each budget plan contract in the
collection.

Example

[X++]

service = new FinancialDimensionValidationService();

validationContracts = new List(Types::Class);

validationStatusList = new DimensionValidationStatusListContract();

budgetPlanAccountListValidationContract = new BudgetPlanAccountListValidationContract ();

budgetPlanningValidationContract = new BudgetPlanningValidationContract();

budgetPlanningContract = new BudgetPlanningContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

budgetPlanningContract.parmAccountStructure('Expense');

budgetPlanningContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

budgetPlanningContract.parmValues().addEnd(dimensionAttributeValueContract);

budgetPlanningValidationContract.parmBudgetPlanningContract(budgetPlanningContract);

validationContracts.addEnd(budgetPlanningValidationContract);

budgetPlanningValidationContract = new BudgetPlanningValidationContract();

budgetPlanningContract = new BudgetPlanningContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

budgetPlanningContract.parmAccountStructure('Expense');

budgetPlanningContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('20');

budgetPlanningContract.parmValues().addEnd(dimensionAttributeValueContract);

budgetPlanningValidationContract.parmBudgetPlanningContract(budgetPlanningContract);

validationContracts.addEnd(budgetPlanningValidationContract);

budgetPlanAccountListValidationContract.parmValidationContracts(validationContracts);

validationStatusList = service.getStatusForBudgetPlanAccountList(

 budgetPlanAccountListValidationContract);

getStatusForLedgerAccount method

Returns an instance of the DimensionValidationStatusContract class that contains the
validation status for a ledger account. You use the LedgerAccountContract class to specify the
current structure, constraints, advanced rules, and organization model relationships for the
account.

Example

[X++]

service = new FinancialDimensionValidationService();

38

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

ledgerAccountValidationContract = new LedgerAccountValidationContract();

ledgerAccountContract = new LedgerAccountContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

ledgerAccountContract.parmMainAccount('65000');

ledgerAccountContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

ledgerAccountContract.parmValues().addEnd(dimensionAttributeValueContract);

ledgerAccountValidationContract.parmLedgerAccount(ledgerAccountContract);

validationStatus = service.getStatusForLedgerAccount(ledgerAccountValidationContract);

getStatusForLedgerAccountList method

Returns an instance of the DimensionValidationStatusListContract class that contains the

validation status for a collection of ledger accounts. You use instances of the
LedgerAccountContract to specify the current structure, constraints, advanced rules, and
organization model relationships for each account in the collection.

Example

[X++]

service = new FinancialDimensionValidationService();

validationContracts = new List(Types::Class);

validationStatusList = new DimensionValidationStatusListContract();

ledgerAccountListValidationContract = new LedgerAccountListValidationContract ();

ledgerAccountValidationContract = new LedgerAccountValidationContract();

ledgerAccountContract = new LedgerAccountContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

ledgerAccountContract.parmMainAccount('59000');

ledgerAccountContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

ledgerAccountContract.parmValues().addEnd(dimensionAttributeValueContract);

ledgerAccountValidationContract.parmLedgerAccount(ledgerAccountContract);

validationContracts.addEnd(ledgerAccountValidationContract);

ledgerAccountValidationContract = new LedgerAccountValidationContract();

ledgerAccountContract = new LedgerAccountContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

ledgerAccountContract.parmMainAccount('65000');

ledgerAccountContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('20');

ledgerAccountContract.parmValues().addEnd(dimensionAttributeValueContract);

ledgerAccountValidationContract.parmLedgerAccount(ledgerAccountContract);

validationContracts.addEnd(ledgerAccountValidationContract);

ledgerAccountListValidationContract.parmValidationContracts(validationContracts);

39

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

validationStatusList = service.getStatusForLedgerAccountList(

 ledgerAccountListValidationContract);

validateBudgetAccount method

Validates that the combination specified in the BudgetAccountContract class is valid per the
current structure, constraints, and budget-enabled dimensions.

Example

[X++]

service = new FinancialDimensionValidationService();

budgetAccountValidationContract = new BudgetAccountValidationContract();

budgetAccountContract = new BudgetAccountContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

budgetAccountContract.parmAccountStructure('Expense');

budgetAccountContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

budgetAccountContract.parmValues().addEnd(dimensionAttributeValueContract);

budgetAccountValidationContract.parmBudgetAccountContract(budgetAccountContract);

isValid = service.validateBudgetAccount(budgetAccountValidationContract);

validateBudgetPlanningAccount method

Validates that the combination specified in the BudgetPlanningContract class is valid per the
current structure, constraints, advanced rules, budget planning rules, and organization model
relationships.

Example

[X++]

service = new FinancialDimensionValidationService();

budgetPlanningValidationContract = new BudgetPlanningValidationContract();

budgetPlanningContract = new BudgetPlanningContract();

dimensionAttributeValueContract = new DimensionAttributeValueContract();

budgetPlanningContract.parmAccountStructure('Expense');

budgetPlanningContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

budgetPlanningContract.parmValues().addEnd(dimensionAttributeValueContract);

budgetPlanningValidationContract.parmBudgetPlanningContract(budgetPlanningContract);

isValid = service.validateBudgetPlanningAccount(budgetPlanningValidationContract);

validateLedgerAccount method

Validates that the combination specified in the LedgerAccountContract class is valid per the
current structure, constraints, advanced rules, and organization model relationships.

Example

[X++]

service = new FinancialDimensionValidationService();

ledgerAccountValidationContract = new LedgerAccountValidationContract();

ledgerAccountContract = new LedgerAccountContract();

40

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

dimensionAttributeValueContract = new DimensionAttributeValueContract();

ledgerAccountContract.parmMainAccount('65000');

ledgerAccountContract.parmValues(new List(Types::Class));

dimensionAttributeValueContract.parmName('Department');

dimensionAttributeValueContract.parmValue('10');

ledgerAccountContract.parmValues().addEnd(dimensionAttributeValueContract);

ledgerAccountValidationContract.parmLedgerAccount(ledgerAccountContract);

isValid = service.validateLedgerAccount(ledgerAccountValidationContract));

FinancialDimensionBalanceService class

The FinancialDimensionBalanceService class provides standard primitive operations for
retreiving the balance for a specific dimension set.

getBalance method

Returns the balance in the class DimensionSetBalanceContract for the specified dimension set.
The class DimensionSetContract is used to specify the dimension attribute and value as well as
additional properties of the value.

Example

[X++]

service = new FinancialDimensionBalanceService();

attributeValueContractMA = new DimensionAttributeValueContract();

contract = new DimensionSetContract();

contract.parmIncludeOperatingFiscalPeriod(true);

contract.parmPostingLayer(OperationsTax::Current);

contract.parmCombination(new DimensionSetCombinationContract());

contract.parmCombination().parmDimensionSetName('Main Account Focus');

contract.parmCombination().parmValues(new List(Types::Class));

attributeValueContractMA.parmName('MainAccount');

attributeValueContractMA.parmValue('10025');

contract.parmCombination().parmValues().addEnd(attributeValueContractMA);

resultContract = service.getBalance(contract);

amount = resultContract.parmAccountCurrencyAmount();

Data upgrade

This section provides information that you should know before you attempt to upgrade account
and dimension data in Microsoft Dynamics AX 2012. Included is information about the new fields
or values, the methods used to convert to them, the APIs where these methods are found, and
examples of how to use them.

Important: You must use the official APIs for data creation or imports that use hash values. This
includes data creation for the DimensionAttributeValueCombination,

DimensionAttributeValueGroup, DimensionAttributeSet, DimensionAttributeValueSet and related
child tables. The hash generation process is protected framework functionality and may be subject
to change. Therefore, all creation of combination and dimension set data must flow through the
provided APIs, which go through DimensionStorage, DimensionAttributeSetStorage or
DimensionAttributeValueSetStorageTest.

41

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Warning: Direct import or modification of data in these tables and/or altering hash values and
linked records WILL result in corruption of the account/dimension combination data and be very
difficult to trace and fix.

Conversion patterns

The following patterns demonstrate how to convert the legacy account and financial dimension
data to the new Microsoft Dynamics AX 2012 values. The patterns described in this section are the
same patterns defined earlier in the Revising your data patterns section.

Default dimension conversion pattern

Converts Dimension to DefaultDimension.

The default dimension pattern converts legacy financial dimension values from the legacy financial
dimension array field to a DefaultDimension value. The new value will reference the correct record
in the DimensionAttributeValueSet (Default Dimension) table. The conversion is handled by the
DimensionConversionHelper class.

Example

assetBook.DefaultDimension = DimensionConversionHelper::getNativeDefaultDimension(

assetBook.Dimension);

Default account conversion pattern

Converts AccountNum to LedgerDimension

The default account pattern converts an existing ledger account from the AccountNum field to a
LedgerDimension value. The new LedgerDimension value will contain a reference to a main
account and an account structure. This new value will reference a record in the

DimensionAttributeValueCombination (Ledger Dimension) table. The conversion is handled by the
DimensionConversionHelper class.

Example

bankAccountTable.LedgerDimension =

DimensionConversionHelper::getNativeDefaultAccount(bankAccountTable.LedgerAccount);

Ledger account conversion pattern

Converts AccountNum + Dimension to LedgerDimension

The ledger account pattern converts an existing ledger account and related dimension array values

to a LedgerDimension value. The new ledger account pattern stores the related main account, the
account structure, and all Dimension values. Just as in the default account pattern, the converted
information is stored in the DimensionAttributeValueCombination (LedgerDimension) table.

Example

bankAccountTrans.LedgerDimension = DimensionConversionHelper::getNativeLedgerDimension(

bankAccountTrans.LedgerAccountNum, bankAccountTrans.Dimension);

Dimension attribute set conversion pattern

Converts DimUse to DimensionAttributeSet

The dimension attribute set pattern converts an array of enumeration values (mapped to be the
same as the dimension array) to a DimensionAttributeSet value. The new value will reference the

correct record in the DimensionAttributeSet table. This pattern works with any enumeration type
value. This pattern is not used often (because it does not often apply), but because it is different
from the others, guidance is provided about how to convert the data.

42

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Example

CustPaymModeTable custPaymModeTable;

DimensionAttributeSetStorage dimensionAttributeSetStorage;

HashKey dimAttrHashKeys[];

RecId dimAttrIds[];

SysDictEnum sysDictEnum = new SysDictEnum(enumNum(SysDimension));

DimensionAttribute attribute;

str name;

int i;

int dimSize;

// Get the size of the dimension.

dimSize = sysDictEnum.values();

// Retrieve the attribute ids for the dimension.

for (i = 1; i<=dimSize; i++)

{

name = sysDictEnum.index2Symbol(i-1);

attribute = DimensionAttribute::findByName(name);

dimAttrIds[i] = attribute.RecId;

dimAttrHashKeys[i] = attribute.HashKey;

}

// Updating the table.

while select forupdate custPaymModeTable

{

dimensionAttributeSetStorage = new DimensionAttributeSetStorage(enumnum(NoYes));

for (i = 1; i<=dimSize; i++)

{

 dimensionAttributeSetStorage.addItem(dimAttrIds[i], dimAttrHashKeys[i],

custPaymModeTable.DimUse[i]);

}

custPaymModeTable.DimensionAttributeSet = dimensionAttributeSetStorage.save();

custPaymModeTable.doUpdate();

}

Multi-type account conversion pattern

Converts AccountNum to LedgerDimension

The multi-type account pattern uses an AccountType field (for example, LedgerJournalACType) to
determine the correct method to call. If the related account type has a value of “ledger,” either the

default account pattern or the ledger dimension pattern is used, because these will be ledger
accounts.

Otherwise, the AccountNum field contains a subledger account (customer, vendor, project, asset,
or bank) and the DimensionConversionHelper::getNativeNonLedgerAccount method is used.
The subledger account value is converted to a LedgerDimension value. This pattern is always

stored in the DimensionAttributeValueCombination (LedgerDimension) table, regardless of the

account type (ledger, asset, bank, customer, vendor, or project) that it is representing.

43

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Example

if (ledgerJournalTrans.AccountType == LedgerJournalACType::Ledger)

{

 shadow_LedgerJournalTrans.LedgerDimension =

DimensionConversionHelper::getNativeLedgerDimension(ledgerJournalTrans.AccountNum,

ledgerJournalTrans.Dimension);

}

else

{

 shadow_LedgerJournalTrans.DefaultDimension =

DimensionConversionHelper::getNativeDefaultDimension(ledgerJournalTrans.Dimension);

 shadow_LedgerJournalTrans.LedgerDimension =

DimensionConversionHelper::getNativeNonLedgerAccount(ledgerJournalTrans.AccountNum,

ledgerJournalTrans.AccountType);

}

Main account conversion pattern

Converts AccountNum to MainAccount

The main account pattern converts a legacy ledger account value to a reference to the
corresponding MainAccount table record. Use the MainAccount::findByMainAccountId method
for this pattern.

Example

ledgerAllocation.FromMainAccount = MainAccount::findByMainAccountId(

ledgerAllocation.del_FromAccount).RecId;

Dimension ledger account type conversion pattern

Converts LedgerAccountType to DimensionLedgerAccountType

The dimension ledger account type pattern converts a LedgerAccountType enumeration value to
a DimensionLedgerAccountType enumeration value. Use the DimensionConversionHelper::
ledgerAccountType2DimLedgerAccountType method for this pattern.

Example

vendDefaultAccounts.DimensionLedgerAccountType =

DimensionConversionHelper::ledgerAccountType2DimLedgerAccountType(

vendDefaultAccounts.DEL_LedgerAccountType);

Environments

You can upgrade data in either the source environment (Microsoft Dynamics AX 4.0 or Microsoft
Dynamics AX 2009) or the target environment (Microsoft Dynamics AX 2012). The
DimensionConversionHelper API is provided for use in both environments.

44

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Microsoft Dynamics AX 2012

When you upgrade data in the Microsoft Dynamics AX 2012 environment, a table attribute must be
added for every table referenced by the upgrade script. The following is a list of table attributes

that must be added to your script when you upgrade one of the account dimension fields.

UpgradeScriptTableAttribute(tableStr(DimensionAttribute),false,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeDirCategory),false,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeLevelValue),true,true,false,true),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeValue),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeValueCombination),true,true,false,true)

,

UpgradeScriptTableAttribute(tableStr(DimensionAttributeValueCombinationStatus),false,true,fals

e,true),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeValueGroup),true,true,false,true),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeValueGroupCombination),true,true,false,

true),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeValueGroupStatus),false,true,false,true

),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeValueSet),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeValueSetItem),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeSet),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionAttributeSetItem),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionFinancialTag),false,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionHierarchy),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionHierarchyLevel),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionLedgerAccount),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionLedgerAccountValue),true,true,false,false),

UpgradeScriptTableAttribute(tableStr(DimensionValueGroupJournalControlStatus),false,true,false

,true),

UpgradeScriptTableAttribute(tableStr(FinancialTagCategory),false,true,false,false),

UpgradeScriptTableAttribute(tableStr(LedgerParameters),false,true,false,false),

UpgradeScriptTableAttribute(tableStr(MainAccount),false,true,false,false),

UpgradeScriptTableAttribute(tableStr(Ledger), false, true, false, false),

Microsoft Dynamics AX 4.0 and Microsoft Dynamics AX 2009

When you upgrade a table in one of the source environments, you must ensure that the necessary
account and dimension upgrade scripts have been run before you run your table script.

You can do this by adding a transform dependency to the transform that was created for the
LedgerTable table, which is named transformation_LedgerTable.

There are two ReleaseUpdateTransformDB methods provided for this purpose:
addTransformDependency and addTransformDependencyByTable.

If your transform resides in the ReleaseUpdateTransformDB50_Ledger or the

ReleaseUpdateTransformDB40_Ledger class, use the following syntax:

ReleaseUpdateTransformDB::addTransformDependency(transformation_LedgerTable.getTransformationI

d(), ledgerJournalTableTransform.getTransformationId());

Otherwise, use the following syntax:

ReleaseUpdateTransformDB::addTransformDependencyByTable(tablenum(LedgerTable),

custCollectiontransform.getTransformationId());

45

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

DimensionConversionHelper API

The DimensionConversionHelper class is provided in both the source and target environments.
All patterns described in the Conversion patterns section earlier in this white paper use the
DimensionConversionHelper class, with the exception of the main account and dimension
attribute set conversion patterns. The implementation in each environment is the same; you will
see no difference in the conversion, regardless of the environment you work in.

The following methods are available for use in the DimensionConversionHelper class:

 getNativeDefaultAccount

 getNativeDefaultDimension

 getNativeLedgerDimension

 getNativeNonLedgerAccount

 ledgerAccountType2DimLedgerAccountType

These methods work as follows:

 public static RecId getNativeDefaultAccount(LedgerAccount _ledgerAccount)

Passes in a LedgerAccount value; a RecId is returned. Sets the LedgerDimension field with the

RecId.

 public static RecId getNativeDefaultDimension(Dimension _dimension)

Passes in a Dimension value; a RecId is returned. Sets the DefaultDimension field with the
RecId.

 public static RecId getNativeLedgerDimension(LedgerAccount _ledgerAccount,
Dimension _dimension, RecId _hierarchyId =

DimensionConversionHelper::getAccountStructureHierarchyId())

Passes in a LedgerAccount and a Dimension value; a RecId is returned. Sets the
LedgerDimension field with the RecId.

 public static RecId getNativeNonLedgerAccount(LedgerJournalAC _account, int
_accountType, enumId _enumType = enumnum(LedgerJournalACType),

ModuleInventCustVend _custVend = ModuleInventCustVend::Cust)

Passes in the account and account type values; a RecId is returned. Sets the LedgerDimension

field with the RecId.

 public static DimensionLedgerAccountType
ledgerAccountType2DimLedgerAccountType(LedgerAccountType
_ledgerAccountType)

Passes in the LedgerAccountType value; a DimensionLedgerAccountType value is returned.

Set-based upgrade

Although not designed with set-based operations in mind, modifications have been made to the
DimensionAttributeValueCombination table to assist in set-based operations when you are working
with an extremely large table.

The DEL_AccountNum and DEL_Dimension fields have been added to the
DimensionAttributeValueCombination table and will be populated as combinations during the

upgrade. These fields have been created to give you old table fields to join to, which enables you
to map your new data to the old data, if it exists. Combinations still need to be processed
individually because it is not feasible to implement the hashing algorithm used in the creation of
the combination in a set-based manner.

After the combinations have been created, you need to perform a join to the
DimensionAttributeValueCombination table and the table that you want to populate.

46

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX
2012 APPLICATIONS

Updates since initial publication

The following table lists changes made to this document after it was initially published.

Date Change

February 2014 Updated to address Microsoft Dynamics AX 2012 R3 and updated some earlier
content for accuracy:

 Added information about the budget planning validation that is part of the
FinancialDimensionValidationService service.

 Described the new FinancialDimensionValidationService functionality for all
account types.

June 2013 Updated to address Microsoft Dynamics AX 2012 R2, and updated some earlier
content for accuracy:

 Added more information about how to make an entity dimensionable.

 Corrected some misinformation regarding default accounts (structures were
not associated with them).

 Updated the description of MainAccountList for Microsoft Dynamics AX 2012
R2. Sharing of structures now occurs at the Ledger not Chart of Accounts level.

 Described the DimensionDefaultingService call for fixed dimensions
functionality.

August 2011 Initial publication

47

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX 2012
APPLICATIONS

Appendix

MainAccount

RecId RecId

AccountCategoryRef (O) (FK) AccountCategoryRef

AdjustmentMethod_MX AdjustmentMethod_MX

Closing LedgerClosing

ConsolidationMainAccount (O) RefRecId

CurrencyCode (O) CurrencyCode

DebitCreditBalanceDemand DebCredBalanceDemand

DebitCreditCheck DebCredProposal

DebitCreditProposal DebCredProposal

ExchangeAdjusted NoYes

InflationAdjustment_MX NoYes

LedgerChartOfAccounts (FK,AK1) RefRecId

MainAccountId (AK1) MainAccountNum

MainAccountTemplate (O) (FK) RefRecId

MandatoryPaymentReference NoYes

Monetary LedgerMonetary

Name (O) AccountName

OffsetLedgerDimension (O) (FK) RefRecId

OpeningAccount (O) (FK) RefRecId

PostingType LedgerPostingType

RepomoType_MX RepomoType_MX

ReportingAccountType DimensionLedgerAccountReportingType

SRUCode (O) LedgerSRUCode

TransferYearEndAccount_ES (O) RefRecId

Type LedgerDimensionAccountType

UnitOfMeasure UnitOfMeasureRecId

UserInfoId (O) (FK) UserId

ValidateCurrency FieldControl

ValidatePosting FieldControl

ValidateUser FieldControl

LedgerChartOfAccounts

RecId RecId

Description (O) Description

MainAccountFormatMask (O) DimensionValueMask

Name (AK1) Name

MainAccountLegalEntity

RecId RecId

AutoAllocate NoYes

DefaultDimension (O) (FK) DimensionDefault

LegalEntity (FK,AK1) RefRecId

MainAccount (FK,AK1) RefRecId

TaxCode (O) TaxCode

TaxDirection SalesPurch

TaxFree NoYes

TaxGroup (O) TaxGroup

TaxItemGroup (O) TaxItemGroup

TaxItemGroupHeadingDataAreaId (O) DataAreaId

TaxTableDataAreaId (O) DataAreaId

ValidateTaxCode FieldControl

MainAccountControlUser

RecId RecId

UserId (FK,AK1) UserId

MainAccount (FK,AK1) RefRecId

MainAccountControlPosting

RecId RecId

MainAccount (FK,AK1) RefRecId

Posting (AK1) LedgerPostingType

TaxTable

TaxCode TaxCode

DataAreaId SelectableDataAreaId

MainAccountControlTaxCode

RecId RecId

DataAreaId (FK,FK,AK1) SelectableDataAreaId

MainAccount (FK,AK1) RefRecId

TaxCode (FK,AK1) TaxCode

MainAccountControlCurrencyCode

RecId RecId

CurrencyCode (AK1) CurrencyCode

MainAccount (FK,AK1) RefRecId

DimensionAttributeValueCombination

RecId RecId

AccountStructure (O) RefRecId

DisplayValue DimensionDisplayValue

Hash (AK1) varbinary(20)

LedgerDimensionType LedgerDimensionType

MainAccount (O) RefRecId

48

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX 2012
APPLICATIONS

DimensionAttributeValueCombination

RecId RecId

AccountStructure (O) RefRecId

DisplayValue DimensionDisplayValue

Hash (AK1) varbinary(20)

LedgerDimensionType LedgerDimensionType

MainAccount (O) RefRecId

DimensionAttributeLevelValue

RecId RecId

DimensionAttributeValue (FK,AK1) RefRecId

DimensionAttributeValueGroup (FK,AK1) RefRecId

DisplayValue DimensionDisplayValue

Ordinal DimensionOrdinal

DimensionAttributeValueGroup

RecId RecId

DimensionHierarchy (FK) RefRecId

Hash (AK1) varbinary(20)

Levels Level

DimensionAttributeValueGroupCombination

RecId RecId

DimensionAttributeValueCombination (FK,AK2,AK1) RefRecId

DimensionAttributeValueGroup (FK,AK1) RefRecId

Ordinal (AK2) DimensionOrdinal

Combination Storage

DimensionAttributeValue

RecId RecId

ActiveFrom DimensionActiveFrom

ActiveTo DimensionActiveTo

DimensionAttribute (FK,AK1) RefRecId

EntityInstance (AK1) RefRecId

GroupDimension (O) GroupDimension

HashKey (AK2) HashKey

IsBlockedForManualEntry NoYes

IsDeleted (AK1) NoYes

IsSuspended NoYes

IsTotal NoYes

Owner (O) (FK,IE1) RefRecId

DimensionHierarchy

RecId RecId

DeletedVersion (AK1) SequenceNum

Description (O) Description

DraftDescription (O) Description

DraftName (O) Name

FocusIsAutomaticUpdate NoYes

FocusState smallint

HashKey (AK2) HashKey

IsDraft (AK1) NoYes

IsSystemGenerated (AK1) NoYes

Name (AK1) Name

StructureType (AK1) DimensionHierarchyType

49

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX 2012
APPLICATIONS

DimensionAttributeSet

RecId RecId

BaseEnumType (AK1) int

Hash (AK1) varbinary(20)

DimensionAttributeSetItem

RecId RecId

DimensionAttribute (FK,AK1) RefRecId

DimensionAttributeSet (FK,AK1) RefRecId

EnumerationValue int

DimensionAttribute

RecId RecId

BackingEntityKeyFieldId FieldId

BackingEntityKeyFieldName FieldStr

BackingEntityTableId TableId

BackingEntityTableName TableStr

BackingEntityType TableId

BackingEntityValueFieldId FieldId

BackingEntityValueFieldName FieldStr

HashKey (AK2) HashKey

KeyAttribute FieldId

Name (AK1) Name

NameAttribute FieldId

ReportColumnName (O) DimensionAttributeReportColumnName

ValueAttribute FieldId

ViewName TableStr

DimensionAttributeValue

RecId RecId

ActiveFrom DimensionActiveFrom

ActiveTo DimensionActiveTo

DimensionAttribute (FK,AK1) RefRecId

EntityInstance (AK1) RefRecId

GroupDimension (O) GroupDimension

HashKey (AK2) HashKey

IsBlockedForManualEntry NoYes

IsDeleted (AK1) NoYes

IsSuspended NoYes

IsTotal NoYes

Owner (O) (FK,IE1) RefRecId

DimensionAttributeValueSet

RecId RecId

Hash (AK1) varbinary(20)

DimensionAttributeValueSetItem

RecId RecId

DimensionAttributeValue (FK,FK,AK1) RefRecId

DimensionAttributeValueSet (FK,AK1) RefRecId

DisplayValue DimensionValue

50

IMPLEMENTING THE ACCOUNT AND FINANCIAL DIMENSIONS FRAMEWORK FOR MICROSOFT DYNAMICS AX 2012
APPLICATIONS

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

This document is provided “as-is.” Information and views expressed in this document, including URL and other
Internet Web site references, may change without notice. You bear the risk of using it.
Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.
This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You
may copy and use this document for your internal, reference purposes. You may modify this document for your
internal, reference purposes.

© 2014 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Dynamics, and the Microsoft Dynamics logo are trademarks of the Microsoft group of
companies.

All other trademarks are property of their respective owners.

http://www.microsoft.com/dynamics

