
Journal 8

Learn the discipline,
pursue the art, and
contribute ideas at
www.ArchitectureJournal.net
Resources you can
build on.

®

Reliability in
Connected Systems

 A Flexible Model for
Data Integration

 Autonomous Services and
Enterprise Entity Aggregation

Data Replication as an
Enterprise SOA Antipattern

Patterns for High-Integrity
Data Consumption and
Composition

 The Nordic Object/Relational
Database Design

Adopt and Benefit from Agile
Processes in Offshore
Software Development

Service-Oriented
Modeling for Connected
Systems–Part 2

Data by Design

Foreword	 1

by Simon Guest

Reliability in Connected Systems	 2

by Roger Wolter
Loosely coupled, asynchronous, service-oriented applications impose unique reliability requirements. 	
Learn about reliability issues to consider when architecting a connected services application.

A Flexible Model for Data Integration	 6

by Tim Ewald and Kimberly Wolk
Organizations use XML data described by XML schema and exchanged through Web services to integrate systems.
Find out three causes for failure that data-centric integration projects can encounter and their solutions.

Autonomous Services and Enterprise Entity Aggregation	 10

by Udi Dahan
Heterogeneous systems manage their own data, which often are not exposed for external consumption. Take a look
at how autonomous services transform the way we develop systems to more closely match business processes.

Data Replication as an Enterprise SOA Antipattern 	 16

by Tom Fuller and Shawn Morgan
The positives and negatives of data replication can help enterprise architects deliver service-oriented strategies
successfully. Discover how to use an antipattern and a pattern to describe data replication for your enterprise.

Patterns for High-Integrity Data Consumption and Composition	 23

by Dion Hinchcliffe
The Web is becoming less about visual pages and more about services, pure data, and content. Get acquainted with
some patterns that lead to less brittle, more loosely coupled and high-integrity data consumption and composition.

The Nordic Object/Relational Database Design	 28

by Paul Nielsen
An O/R hybrid model provides power, flexibility, performance, and data integrity. Discover how the Nordic Object/
Relational Database Design emulates object-oriented features in today’s relational database engines.

Adopt and Benefit from Agile Processes in 	
Offshore Software Development	 32

by Andrew Filev
Offshore outsourcing of software development presents unique challenges. See why modern tools, the global
communications infrastructure, and a good offshore partner are critical for agile processes.

Service-Oriented Modeling for Connected Systems – Part 2	 35

by Arvindra Sehmi and Beat Schwegler
Part 1 provided an approach to model connected, service-oriented systems that promotes close alignment
between IT solutions and business needs. Now learn how to implement services mapped to business capabilities.

Contents

Resources you can build on. www.architecturejournal.net

Journal 8

TM

Dear Architect,
Welcome to Issue 8 of The Architecture Journal, the theme of which is Data
by Design. As architects, I feel we often undervalue the pervasiveness of data
in architecture, especially when we consider how data is used in applications
and systems that span multiple geographies, time zones, and organizations.
	 One analogy I frequently use compares the availability of data within a
system to water running through the pipes in a house. When we turn on a
faucet, we expect clean, filtered water delivered instantly and usually at a con-
sistent, expected pressure. The pipes are the infrastructure in this analogy, and
the water is the data. When I think about data and its relationship to architec-
ture I like to think of the same approach—the data we deliver to users should
be clean, filtered, and delivered without delay and as expected—regardless of
whether the data is a single e-mail, customer record, or large set of monthly
financial data.
	 Although we will not be covering many plumbing techniques in this issue,
we do have a number of great articles from a distinguished group of authors
that focus on the importance of data.
	 We start with Roger Wolter, a solutions architect at Microsoft and author
of many whitepapers and books on SQL Server and SQL Server Service Broker
(SSB). Roger discusses the importance of reliability for data, especially in the
context of designing connected systems.
	 Tim Ewald and Kimberly Wolk follow with an article that explains some of
the models they created for data integration for the MSDN TechNet Publish-
ing System, the next-generation, XML-based system that forms the founda-
tion of MSDN2. Udi Dahan then takes us on a journey for using entity aggre-
gation to get 360-degree views of our data entities and focusing on concrete
ways to solve immediate business needs.
	 Next, another author team, Tom Fuller and Shawn Morgan, share some
of their experiences realizing that data replication can be an antipattern for
service-oriented architecture (SOA), especially in light of autonomous services
and applications. Then Dion Hinchcliffe, the CTO of Sphere of Influence,
shares some patterns for data consumption and composition, especially in the
areas of mashups and Web 2.0 applications.
	 Paul Nielsen ends our series of data-related papers with an overview of
Nordic, a new object/relational hybrid model that explores greater flexibility
and better performance over traditional relational data models.
	 Rounding out this issue of the Journal, Andrew Filev shares some of his ex-
perience combining an agile methodology with a model of outsourcing, and
then Arvindra Sehmi and Beat Schwegler return with Part 2 of their Modeling
for Connected Systems series. If you missed Part 1, be sure to download Issue
7 of The Architecture Journal at www.architecturejournal.net.
	 Well, that wraps our theme on data. I trust the articles presented in this
issue will help you to design systems with the same data availability as water
flowing from the faucet in your house—of course, I can’t guarantee that you
won’t get your hands wet!

Simon Guest

Founder
Arvindra Sehmi
Microsoft Corporation

Editor-in-Chief
Simon Guest
Microsoft Corporation

Microsoft Editorial Board
Gianpaolo Carraro
John deVadoss
Neil Hutson
Eugenio Pace
Javed Sikander
Philip Teale
Jon Tobey

Publisher
Marty Collins
Microsoft Corporation

Online Editors
Beat Schwegler
Kevin Sangwell

Design, Print, and Distribution
Fawcette Technical Publications
Jeff Hadfield, VP of Publishing
Terrence O’Donnell, Managing Editor
Michael Hollister, VP of Art and
Production
Karen Koenen, Circulation Director
Kathleen Sweeney Cygnarowicz,
Production Manager

The information contained in The Architecture Journal

(“Journal”) is for information purposes only. The material

in the Journal does not constitute the opinion of Microsoft

or Microsoft’s advice and you should not rely on any mate-

rial in this Journal without seeking independent advice.

Microsoft does not make any warranty or representation as

to the accuracy or fitness for purpose of any material in this

Journal and in no event does Microsoft accept liability of

any description, including liability for negligence (except for

personal injury or death), for any damages or losses (includ-

ing, without limitation, loss of business, revenue, profits, or

consequential loss) whatsoever resulting from use of this

Journal. The Journal may contain technical inaccuracies and

typographical errors. The Journal may be updated from time

to time and may at times be out of date. Microsoft accepts

no responsibility for keeping the information in this Journal

up to date or liability for any failure to do so. This Journal

contains material submitted and created by third parties. To

the maximum extent permitted by applicable law, Microsoft

excludes all liability for any illegality arising from or error,

omission or inaccuracy in this Journal and Microsoft takes no

responsibility for such third party material.

All copyright, trademarks and other intellectual property

rights in the material contained in the Journal belong, or are

licensed to, Microsoft Corporation. You may not copy, repro-

duce, transmit, store, adapt or modify the layout or content

of this Journal without the prior written consent of Microsoft

Corporation and the individual authors.

© 2006 Microsoft Corporation. All rights reserved.

®

� • Journal 8 • www.architecturejournal.net

Foreword

� www.architecturejournal.net • Journal 8 •

Reliability in
Connected Systems
by Roger Wolter

From hardware, software, and maintenance perspectives reliabil-

ity is expensive, so it is very important to understand the reliability

requirements of your application. While an application with no reliabil-

ity requirement is rare, implementing an application with more reliabil-

ity than is required can be a waste of time and resources. For this rea-

son, it is important to understand the reliability issues of connected sys-

tems so you can architect a solution that will provide the required level

of reliability while not wasting resources by providing reliability that is

not required.

	 In service-oriented architecture (SOA) or connected systems, ser-

vices communicate with each other through well-defined message

formats, which means that the reliability of the connected systems

application will be influenced strongly by the reliability of the messag-

ing infrastructure it relies on to communicate between services. We

will use the example of services in an automated teller banking appli-

cation to illustrate the various degrees of messaging reliability and

how they are achieved. Message handling between services is gener-

ally more complex than client/server messaging because client/server

messaging can rely on the user to make some decisions about how to

handle various error situations and timeouts, while the server initiat-

ing the message exchange in server-to-server messaging must make

all the decisions that the end user would normally make in a client/

server interaction.

Infrastructure Burden
Many service-oriented applications achieve better throughput by using

asynchronous messaging. With asynchronous messaging a service sends

a message to another service without waiting for a response to the

message before continuing. The service processes many more requests

because it doesn’t waste time waiting for responses to requests it makes

to other services, but it puts the burden of ensuring the message is

delivered and processed on the messaging infrastructure. The choice of

synchronous or asynchronous message handling is usually determined

by the business requirements of the application.

	 For example, if a customer is trying to withdraw money from an

automated teller machine (ATM), making an asynchronous request to

check the customer’s balance and proceeding to dispense the money

without waiting for a response from the balance check is generally not

a sound business decision. This scenario doesn’t necessarily rule out

an asynchronous request, however. The ATM might dispatch a bal-

ance request as soon as the customer selects the withdrawal option and

then let the customer enter an amount while the balance check is pro-

ceeding asynchronously. Once the withdrawal amount is entered and

the balance is received, the ATM application can make the decision on

whether to dispense the cash.

	 Let’s look at how the ATM handles the balance request message.

The ATM service will send the balance request message to the account

service to get the customer’s account balance. At this point, one of

three things will happen: the balance will be returned successfully, an

error will be returned, or the request will time out because the result

was not returned in a timely manner. If the balance is returned, the ATM

service continues with the transaction. If an error is returned, the ATM

uses its business logic to work with it—maybe using a cached copy of

the balance or dispensing or not dispensing the cash depending on the

amount requested. The hardest one to work with is the timeout. A time-

out may mean the message got lost in transit, the message arrived at

the account service but the response was delayed for some reason, or

the response was sent and then lost on the way back.

	 In most cases, the best response is to try again and hope that it

will work better next time. If the message was lost on the way the first

time, it may get through this time. If the response was slow, the origi-

nal response might arrive before the second request times out. Unless

the account service is unreachable or gone completely, a retry should

succeed eventually. Depending on what the problem was, the balance

request might have been processed multiple times, or multiple results

may be received, but as long as the ATM service is prepared to work

with them, these aren’t serious issues.

Summary
Connected system applications are composed of a
number of loosely coupled services often spread over
a network; therefore, achieving high levels of reli-
ability and availability for connected systems applica-
tions poses a unique set of architectural challenges.
For example, if an application stops running because
any one of ten services running on ten different serv-
ers is unavailable, the failure rate for the application
is about ten times the failure rate of the individual
services. Data failure makes this issue much more
critical because a data source may be used by dozens
of services. This article discusses the reliability issues
that must be considered in architecting a connected
services application and shows how some of the new
features in SQL Server 2005 and Microsoft messaging
products address these issues.

Reliabil ity

� • Journal 8 • www.architecturejournal.net

	 If the message was sent asynchronously, the ATM service might

not have the information around to resend the message when a retry

is required, so the messaging infrastructure will need to keep a copy

of the messages it sends and resend them if required. For this type of

simple request message, keeping a copy of the message in memory is

probably adequate because if the ATM looses power the customer will

have to start over anyway. If the ATM service needs a response even

after a power loss, the message will have to be put into some persis-

tent storage, and the messaging system will have to resend it when it

restarts. Figure 1 shows three possible outcomes of a balance request.

Message Delivery
For the synchronous version of this request, a simple SOAP Web service

will provide the required degree of reliability. Error handling and time-

out handling are the responsibility of the ATM service so it will determine

the level of reliability for the request. For the asynchronous version of the

balance request, either the WS-RM channel in the Windows Communi-

cation Foundation (WCF) or express delivery in MSMQ will provide the

required reliability if the request doesn’t have to survive system failures. If

the message has to survive a system restart, MSMQ recoverable delivery

is the appropriate choice. These messaging systems will handle the time-

outs and retries required to deliver the message and the response so the

ATM service doesn’t have to include this logic.

	 Now that we understand the reliability issues with a balance request,

let us move on to the balance change request that happens after the

cash is dispensed. The reliability requirements for this message are a lot

higher because if it doesn’t get delivered successfully, the bank will have

given the customer cash without reducing his or her account balance.

While the customer is not likely to complain, the bank will not be happy

if this situation happens regularly.

	 The balance change message must get delivered and processed

in the face of any number of network and system failures. The mem-

ory-based retry mechanism obviously is not adequate for this task

because a system failure will lose the copy of the message being kept

for retries. Keeping a persisted copy of the message for retries may also

be an issue because it is possible for multiple copies of the message to

be delivered because of retries. If the message decreases the customer

account balance by $200.00, for example, delivering the message multi-

ple times can lead to customer dissatisfaction.

	 The retries required to ensure reliable message delivery work only

if the messages are idempotent. An idempotent message can be deliv-

ered any number of times without violating the business constraints of

the application. Some messages are naturally idempotent. For exam-

ple, a message that changes a customer’s address can be executed mul-

tiple times without ill effects. Other messages are not naturally idempo-

tent, so the messaging system must make them idempotent to prevent

the damage that can be done when a message is processed more than

once (see Figures 2 and 3). This transaction is normally done by keeping a

list of messages that have already been processed; if the same message is

received more than once it will not be processed more than once.

	 Most messaging systems don’t keep a copy of the incoming mes-

sages, but the sender assigns an identifier to each message and the

receiver keeps track of the identifiers it has seen before. These identi-

fiers must be kept until the message destination is sure that the source

has thrown the message away because if the source fails, the mes-

sage might be sent again days later when the source restarts. The list

of processed messages must also be persistent because the destina-

tion service may fail between retries. The destination must also keep

track of the message that was sent in response to the incoming mes-

sage because the source will keep sending the original message until

it receives the response and the reason for the retry might be that the

original response message was lost.

Choose a Message Infrastructure
Unless you are willing to persist and track the messages in your ser-

vice logic, you will need a reliable messaging infrastructure to provide

this level of reliability. Microsoft has three options for this infrastructure:

MSMQ recoverable messaging, SQL Server Service Broker, and BizTalk.

Which option you choose depends on your reliability requirements and

application design.

	 Service Broker and BizTalk provide more reliable message storage

than MSMQ because they store messages in a SQL Server database while

MSMQ stores them in a file. If your application can work with the occa-

sional loss of messages when a file is lost or corrupted, then MSMQ will

be adequate for your needs. Some MSMQ applications guard against the

potential loss of messages by storing a copy of the message in a data-

base. If you are going to store messages, using Service Broker, which

stores messages in the database anyway, is significantly more efficient.

	 Service Broker and BizTalk provide roughly the same degree of reliabil-

ity and defense against message loss because they both store messages in

the database. Service Broker’s message handling is built into the database

server logic, so Service Broker talks directly from the SQL Server process to

the TCP/IP sockets, which is much more efficient than the BizTalk approach

of an external process calling into the database to store messages in a

table. While the Service Broker can deliver significantly more messages per

second than BizTalk, BizTalk offers a large number of features—message

transformation, data-dependent message routing, multiple message trans-

ports, orchestration, and so on—that Service Broker doesn’t offer.

	 In general, if reliable transfer of messages between databases is all

your application requires, then Service Broker is a better choice because

it is more lightweight and efficient at transferring messages than Biz-

Message
lost

Message
lost

Balance
Response

Balance
Response

Bank

XBalance
Request

Bank

X

Balance
Request

Bank

Balance
Request

Figure 1 Balance request

Reliabil ity

� www.architecturejournal.net • Journal 8 •

Talk. If on the other hand your application requires the message manip-

ulation, data integrations, or orchestration features that BizTalk pro-

vides, then Service Broker is probably not the right solution.

	 While MSMQ recoverable messaging doesn’t provide the reliabil-

ity levels that the SQL Server-based options provide, it does have the

advantage of not requiring SQL Server at both messaging endpoints. If

supporting a database at both endpoints is not an option and the appli-

cation’s reliability requirements can be met by MSMQ, then MSMQ is

probably the right choice as the messaging infrastructure. If both of the

communicating services require data storage, however, the extra reli-

ability of storing messages in the database is worthwhile.

	 In our ATM example, the ATM service will require local data storage for

auditing, local storage of data for offline operation, and storage of reference

data, so there will probably be a database in the ATM anyway and one of the

SQL Server–based options is appropriate. The choice between Service Broker

and BizTalk depends on the nonmessaging requirements of the application,

the resources available at the ATM, and the message volume requirements.

Execution Reliability
Previously we discussed reliability in message delivery from one service to

another. Not surprisingly, we found that the amount of reliability required

depends on what the application is doing and how critical the message

data is to the application. Here we will assume that messages are trans-

ferred with the required degree of reliability to a service and examine the

reliability requirements for the service processing the messages.

	 One of the unique requirements of a service that processes asynchro-

nous messages is that receiving a message from the queue is a “pull” oper-

ation. In other words, when a message arrives in a queue, it will sit there

until an application executes a “receive” operation to retrieve and process

the message. This requirement means that an asynchronous service must

ensure that it executes when there are messages in the queue to be pro-

cessed. The most common way to achieve this requirement is to make the

service a Windows service managed by the Windows Service Control Man-

ager (SCM). The SCM will ensure the service is started when Windows starts

and can be configured to restart the service if it fails for some reason.

	 While this configuration generally provides the required level of reli-

ability and is generally the preferred solution when messages arrive at a

constant rate, it can cause problems if the message load varies significantly.

If the service is configured with enough resources to handle peak loads, it

will be wasting resources when the message load is low; and if it is config-

ured to handle the average load, it will get far behind during peak loads.

BizTalk messaging runs as a Windows service so a BizTalk application can

rely on the Windows service to be there to handle incoming messages.

	 MSMQ addresses the message load problem with triggers that start

a messaging processing service each time a message arrives in the

queue. While this processing works well when messages arrive infre-

quently, when message load is high, the overhead of starting a thou-

sand copies of the services can be more than the service logic itself.

	 Service Broker provides a feature called activation to solve this prob-

lem. When a message arrives in an empty queue, Service Broker will start

a stored procedure to handle the message. This stored procedure will

wait in a loop for more messages to arrive and continue in this loop until

the queue is empty. If Service Broker determines that the stored proce-

dure is not keeping up with the messages coming in, it will start addi-

tional copies of the stored procedure until there are enough copies run-

ning to keep up. When the message arrival rate decreases, the queue will

be empty and the extra copies will exit. Then there will always be approx-

imately the right number of resources available to service the incoming

messages. Because Service Broker starts these procedures, it will be noti-

fied if one fails and replace the failing copy. If the service is an external

application instead of a stored procedure, Service Broker provides events

that an external application can subscribe to that will notify the service

when more resources are required to process messages in a queue.

Lost Message
The other reliability issue that service execution must work with is a ser-

vice failure while processing a message. If a service deletes a message

from the queue as soon as it has received it and then fails before com-

pletely processing the message, that message is effectively lost. Simi-

larly, if the service waits until it has completely processed the message

before removing it from the queue, a failure between the processing

step and the message removal will result in the message still being in

the queue when the service restarts, and it will be processed again.

	 As mentioned earlier, processing the same message multiple times

is not a problem if the message is a balance query, but processing a

withdrawal twice can be irritating to the customer involved. The only

real way to ensure that each message is processed “exactly once” is

for the message processing and the queue deletion to be part of the

same transaction. If there is a failure in processing, both the processing

changes and the message deletion are rolled back so everything is back

to the way it was before the message was received.

	 A single commit operation commits both the message receive and

the message processing actions. Similarly, if processing the message

Figure 3 Withdraw cash request retry where the customer loses money

Message
lost

Dispense
Cash

Dispense
Cash

Bank

X

Withdraw
Cash

Bank

Withdraw
Cash

Figure 2 Withdraw cash request harmless retry

Message
lost

Bank

X

Dispense
Cash

Bank

Withdraw
Cash

Withdraw
Cash

Reliabil ity

� • Journal 8 • www.architecturejournal.net

generates an outgoing message, the “send” of the outgoing message

should be part of the transaction to avoid the situation where the ser-

vice rolls back but the response message is still sent. This type of mes-

sage processing is called transactional messaging. Most reliable mes-

saging infrastructures support transactional messaging.

	 Because the messages are stored in a different file than the data-

base, MSMQ transactional messaging requires a two-phase commit

to ensure both parts of the transaction are committed. Because Ser-

vice Broker SEND and RECEIVE commands are TSQL commands, the

messaging and data update operations in a Service Broker service can

be executed from the same SQL Server connection and be part of the

same SQL Server transaction. Therefore, a two-phase commit is not

required, which makes Service Broker’s implementation of transactional

messaging significantly more efficient than MSMQ’s implementation.

	 Again, transactional messaging is required to make a non-idempo-

tent service behave like an idempotent service to eliminate the issues

caused by message retries. If the service is inherently idempotent, then

transactional messaging is not required. If transactional messaging is

not used, the service requester must be prepared to receive a response

multiple times, sometimes over a long time span.

Data Reliability
Now we will look at the impact of data on service reliability. Most ser-

vices access data while processing service messages, so data reliability

is tightly bound to service reliability.

	 One of the unique aspects of asynchronous service execution is that in

many cases the service messages are valuable business objects. In our ATM

service, for example, if balance change messages are lost because of a fail-

ure, the account balance is not changed and the bank loses money. For this

reason, storing messages in the database so they enjoy the same reliabil-

ity, redundancy, and availability protections that the rest of the data stored

there enjoy makes a lot of sense. If the balance change messages in our

example are stored in the same database as the accounts, they will only

be lost if the accounts are also lost. The backups, log backups, and Storage

Area Network (SAN) features used to ensure that the bank account infor-

mation is not lost also apply to the balance change messages, making the

reliability of the service extremely high. If your message reliability require-

ments are high, Service Broker or BizTalk have significant reliability advan-

tages because they store messages in the database.

	 One of the new features of SQL Server 2005 that can improve ser-

vice reliability is database mirroring (DBM). DBM provides reliability by

maintaining a secondary copy of a database that is maintained transac-

tionally consistent with the primary database by applying each transac-

tion that commits on the primary to the secondary copy before return-

ing control to the service. If the primary fails, the secondary copy of the

database can become the primary in a few seconds.

	 Service Broker takes advantage of database mirroring to improve

messaging reliability. If the account database is a DBM pair of data-

bases, the Service Broker database in the ATM will open network con-

nections to both the primary and secondary databases and send mes-

sages to the primary. If the secondary database becomes the primary,

Service Broker is notified immediately and messages are routed to the

new primary with no user intervention or interruption.

	 Highly data–intensive services can take advantage of another fea-

ture in SQL Server 2005 to improve reliability. The integration of the

Common Language Runtime (CLR) into the SQL Server engine means

that the service logic can run into the database also. Therefore, for a

Service Broker service the logic, messages, execution environment,

security context, and data for a service can be in the same database.

	 This single-location storage has many advantages in a system with

high reliability requirements. Database servers generally have the hard-

ware and software features to maintain the high reliability required by a

database. This reliability can now apply to all aspects of the service imple-

mentation. In the unlikely event of a service failure, the whole environ-

ment of the service can be restored to a transactionally consistent state

with the database recovery features. Not only is the data saved, but any

operations in progress are rolled back and restarted in the same execu-

tion and security environment that they were in at the time of failure.

	 The loosely coupled, asynchronous nature of service-oriented appli-

cations imposes some unique reliability requirements. When archi-

tecting services, the level of reliability required for the service must be

understood and taken into account. Microsoft offers a variety of infra-

structures for implementing services that offer different levels of reli-

ability. Choosing the right infrastructure involves matching the level of

reliability required against the capabilities of the infrastructure. The new

features of SQL Server 2005 provide a service-hosting infrastructure

that offers unprecedented levels of reliability for services that require

very high reliability levels. •

Resources

Service Oriented Architecture

http://msdn.microsoft.com/architecture/soa/

“An Overview of SQL Server 2005 for the Database Developer,”

Matt Nunn (Microsoft Corporation, 2005)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnsql90/html/sql_ovyukondev.asp

“Building Reliable, Asynchronous Database Applications Using Service

Broker,” Roger Wolter (Microsoft Corporation, 2005)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnsql90/html/sql2k5_SrvBrk.asp

MSDN Magazine

Distributed .NET – “Learn the ABCs of Programming Windows

Communication Foundation,” Aaron Skonnard (Microsoft Corporation, 2006)

http://msdn.microsoft.com/msdnmag/issues/06/02/

WindowsCommunicationFoundation/

Microsoft Windows Server System – Microsoft BizTalk Server

www.microsoft.com/biztalk/

About the Author

Roger Wolter is a solutions architect on the Microsoft Architecture

Strategy Team. Roger has 30 years of experience in various aspects

of the computer industry including jobs at Unisys, Infospan, Fourth

Shift, and the last seven years as a program manager at Microsoft.

His projects at Microsoft include SQLXML, the SOAP Toolkit, the SQL

Server Service Broker, and SQL Server Express. His interest in the Service

Broker was sparked by a messaging-based manufacturing system he

worked on in a previous life. He also wrote The Rational Guide to SQL

Server 2005 Service Broker Beta Preview (Rational Press, 2005).

� www.architecturejournal.net • Journal 8 •

A Flexible Model for
Data Integration
by Tim Ewald and Kimberly Wolk

Systems integration presents a wide range of challenges to architects

and developers. Over the last several years, the industry has focused

on using XML, Web services, and service-oriented architecture (SOA)

to solve integration problems. Much of the work done in this space

has concentrated on communication protocols, especially on add-

ing advanced features designed to support messages flowing in com-

plex network topologies. While there is undoubtedly some value in this

approach, all of this work on communication protocols has taken focus

away from the problem of integrating data.

	 Having flexible models for combining data across disparate systems

is essential to a successful integration effort. In Web service–based sys-

tems, these models are expressed in XSD. Instances of the model are

represented as XML that is transmitted between systems in SOAP mes-

sages. Some systems map the XML data into relational databases; some

do not. From an integration perspective, the structure of those rela-

tional database models is not important. What matters is the shape of

the XML data model defined in XSD.

	 There are three pitfalls that Web service–based data integration

projects typically fall into. All three are related to how they define their

XML schemas. We confronted all three in our work on the architecture

of the MSDN TechNet Publishing System (MTPS), the next-generation

XML-based system that serves as the foundation for MSDN2. We will

look at our solutions in the context of integrating customer information.

The Essential Data Integration Problem
Imagine you work at a large company. Your company has many out-

ward-facing systems that are used by customers to accomplish a vari-

ety of tasks. For instance, one system offers customized product infor-

mation to registered users who have expressed particular interests.

Another system provides membership management tools for custom-

ers in your partner program. A third system tracks customers who have

registered to come to upcoming events. Unfortunately, the systems

were all developed separately, one of them by a separate company that

your company acquired a year ago. Each of these systems stores cus-

tomer-related information in different formats and locations.

	 This setup presents a critical problem for the business: it doesn’t

have a unified view of a given customer. This problem has two effects.

First, the customer’s experience suffers because the single com-

pany with which they are doing business treats them as different peo-

ple when they use different systems. For example, a customer who

has expressed her desire to receive information about a given product

through e-mail whenever it becomes available has to express her inter-

est in that product a second time when she registers for particular talks

at an upcoming company-sponsored event. Her experience would be

more seamless if the system that registered her for an upcoming event

already knew about her interest in a particular product.

	 Second, the business suffers because it does not have an integrated

understanding of its customers. How many customers who are mem-

bers of a partners’ program are also receiving information about prod-

ucts through e-mail? In both cases, the divisions between the systems

that the customer works with are limiting how well the company can

respond to its customers’ needs.

	 Whether this situation arose because systems were designed and

developed individually without any thought to the larger context within

which they operate or because different groups of integrated sys-

tems were collected through mergers and acquisitions is irrelevant.

The problem remains: the business must integrate the systems to both

Summary
There are many challenges in systems integration for
architects and developers, and the industry has focused
on XML, Web services, and SOA for solving integration
problems by concentrating on communication proto-
cols, particularly in regard to adding advanced features
that support message flow in complex network topolo-
gies. However, this concentration on communication
protocols has taken the focus away from the problem
of integrating data. Flexible models for combining data
across disparate systems are essential for successful
integration. These models are expressed in XML schema
(XSD) in Web service–based systems, and instances
of the model are represented as XML transmitted in
SOAP messages. In our work on the architecture of the
MSDN TechNet Publishing System (MTPS) we addressed
three pitfalls. We’ll look at what those pitfalls are and
our solutions to them in the context of a more general
problem, that of integrating customer information.

“Having flexible models for combining

data across disparate systems is essential

to a successful integration effort”

Data Integration Model

� • Journal 8 • www.architecturejournal.net

improve the customer experience and their knowledge of who the cus-

tomer is and how best to serve them.

	 The most common approach to solving this problem is to man-

date that all systems adopt a single canonical model for a customer.

A group of architects gets together and designs the company’s single

format for representing customer data as XML. The format is defined

using a schema written in XSD. To enable systems to share data in the

new format, a central team builds a new store that supports it. The

XSD data model team and store team deliver their solution to all the

teams responsible for systems that interact with customers in some

way and require that they adopt it. The essential change is shown in

Figures 1 and 2.

	 Each system is modified to use the underlying customer data store

through its Web service interface. They store and retrieve customer

information as XML that conforms to the customer schema. All of the

systems share the same service instance, the same XSD data model, and

the same XML information.

	 This solution appears to be simple, elegant, and good, but a naïve

implementation will typically fail for one of three reasons: demanding

too much information, no effective versioning strategy, and no support

for system-level extension.

Demanding Too Much Information
The first potential cause for failure is a schema and store that require

too much information. When people build a simple Web service for

point-to-point integration, they tend to think of the data their par-

ticular service needs. They define a contract that requires that par-

ticular data be provided. When a contract is generated from source

code, this data can happen implicitly. Most of the tools that map from

source code to a Web service contract treat fields of simple value

types as required data elements, insisting that a client send it. Even

when a contract is created by hand, there is still a tendency to treat all

data as required. As soon as the service determines (by schema val-

idation or code) that some required data is not present, it rejects a

request. The client gets a service fault.

	 This approach to defining Web service contracts is too rigid and

leads to systems that are very tightly coupled. Any change in the ser-

vice’s requirements forces a change in the contract and in the clients

that consume it. To loosen this coupling, you need to separate the defi-

nition of the shape of the data a service expects from a service’s current

processing requirements. More concretely, the data formats defined by

your contract should treat everything beyond identity data as optional.

The implementation of your service should enforce occurrence require-

ments internally at run time (either using a dedicated validation schema

or code). It should be as forgiving as possible when data is not present

in a client request and degrade gracefully.

	 In the customer information example, it is easy to think of cases

where some systems want to work with customers but do not have

complete customer information available. For instance, the system that

records a customer’s interest in a particular product might only collect

a customer’s name and preferred e-mail address. The event registra-

tion system, in contrast, might capture address and credit card informa-

tion as well. If a common customer data model requires that every valid

customer record include name, e-mail, address, and credit card infor-

mation, neither system can adopt it without either collecting more data

than it needs or providing bogus data. Making all the data other than

Figure 1 Three separate data stores, one per system

Product information
notification system

Partnership
membership system

Event
registration system

Customer
data

(format A)

Customer
data

(format B)

Customer
data

(format C)

Product information
notification system

Partnership
membership system

Event
registration system

Customer data
service

Customer data
(canonical

format)

Figure 2 A single data store and format

the identity (ID number, e-mail address, and so forth) optional eases

adoption of the data model because systems can simply supply the

information they have.

	 By separating the shape of data from occurrence requirements,

you make it easier to manage change in the implementation of a sin-

gle service. It is also critical when you are defining a common XML

schema to be used by multiple services and clients. If too much infor-

mation is mandatory, every system that wants to use the data model

may be missing some required piece of information. That leaves each

system with the choice of not adopting the shared model and store

or providing bogus data (often the default value of a simple pro-

gramming language type). Either option can be considered a failure.

	 You gain a lot of flexibility for systems to adopt the model by

loosening the schema’s occurrence requirements nearly completely.

Each system can contribute as much data as it has available, which

makes a common XML schema much easier to adopt. The price is that

systems receiving data must be careful to check that the data they

really need is present. If it is not present, they should respond accord-

ingly by getting more data from the user or some other store, by

downgrading their behavior, or—only in the worst case—generating

a fault. What you are really doing is shifting some of the constraints

you might normally put in an XML schema into your code, where they

will be checked at run time. This shifting gives you room to change

those constraints without revising the shared schema.

No Effective Versioning Strategy
The second potential cause for failure is the lack of a versioning strat-

egy. No matter how much time and effort is put into defining an XML

Data Integration Model

� www.architecturejournal.net • Journal 8 •

schema up front, it will need to change over time. If schema, the shared

store that supports them, and every system that uses them has to move

to a new version all at once, you cannot succeed. Some systems will

have to wait for necessary changes because other systems are not at a

point where they can adopt a revision. Conversely, some systems will

be forced to do extra, unexpected work because other systems need to

adopt a new revision. This approach is untenable.

	 To solve this problem you need to embrace a versioning strat-

egy that allows the schema and store to move ahead independently

of the rate at which other systems adopt their revisions. This solution

sounds simple and it is, as long as you think about XML schemas the

right way.

	 Systems that integrate using a common XML schema view it as

a contract. Lowering the bar for required data by making elements

optional makes a contract easier to agree to because systems are com-

mitting to less. For versioning, systems also need to be allowed to do

more without changing schema namespace. What this means in prac-

tical terms is that a system should always produce XML data based on

the version of the schema it was developed with. It should always con-

sume data based on that same version with additional information. This

definition is a variation on Postel’s Law: “Be liberal in what you accept;

conservative in what you send.” Arguably, this idea underlies all success-

ful distributed systems technologies, and certainly all loosely coupled

ones. If you take this approach, then you can extend a schema without

updating clients.

	 In the customer example, an update to the schema and store might

add support for an additional optional element that captures the user’s

mother’s maiden name for security purposes. If systems working with

the old version generate customer records without this information,

it’s okay because the element is optional. If they send those records to

other systems that require this information, the request may fail, and

that is okay too. If new systems send customer data including the moth-

er’s maiden name to old systems, that is also okay because they are

designed to ignore it.

	 Happily, many Web service toolkits support this feature directly in

their schema-driven marshaling plumbing. Certainly the .NET object-

XML mappers (both the trusty XmlSerializer and the new XmlFormatter/

DataContract) handle extra data gracefully. Some Java toolkits do too,

and frameworks that support the new JAX-WS 2.0 and JAXB 2.0 specifi-

cations will as well. Given that, adopting this approach is pretty easy.

	 The only real problem with this model is that it introduces multi-

ple definitions of a given schema, each representing a different version.

Given a piece of data—an XML fragment captured from a message sent

on the wire, for instance—it is impossible to answer the question: “Is

this data valid?” The question of validity can only be answered relative

to a particular version of the schema. The inability to definitively state

whether a given piece of data is valid presents an issue for debugging

and possibly also for security. With data models described with XML

schema, it is possible to answer a different and more interesting ques-

tion: “Is this data valid enough?”

	 This question is really what systems care about, and you can answer

it using the validity information most XML-based schema validators

provide, which is a reasonable path to take in cases where schema vali-

dation is required, and it can be implemented with today’s schema vali-

dation frameworks.

No Support for System-Level Extension
The third potential cause for failure is lack of support for system-specific

extensions to a schema. The versioning strategy based on the notion that

a schema’s definition changes over time is necessary to promote adop-

tion, but it is not sufficient. While it frees systems from having to adopt

the latest schema revision immediately, it does nothing to help systems

that are waiting for specific schema updates. Delays in revisions can also

make a schema too expensive for a system to adopt. The solution to this

last problem is to allow systems that adopt a common schema to extend

it with additional information of their own. The extension information can

be stored locally in a system-level store (see Figure 3).

Figure 3 A combination of stores (see Figures 1 and 2)

Product information
notification system

Customer data
(format A)

Partnership
membership system

Customer data
(format B)

Event
registration system

Customer data
(format C)

Customer data
service

Customer data
(canonical

format)

Product information
notification system

Partnership
membership system

Event
registration system

Customer data
service

Customer data
(canonical format,
format A, format B,

and format C)

Figure 4 The same store (see Figure 3) with data formats in a shared store

Data Integration Model

� • Journal 8 • www.architecturejournal.net

Resources

MSDN Magazine

http://msdn.microsoft.com/msdnmag/05/02/InsideMSDN/

MSDN2 Library

http://msdn2.microsoft.com/en-us/library/

	 In this case, each system is modified to write customer data to both

its dedicated store using its own data model and to the shared store

using the canonical schema. It is also modified to read customer data

from both its dedicated store and the shared store. Depending on what

it finds, it knows whether a customer is already known to the company

and to the system. Table 1 summarizes the three possibilities.

	 The system can use this information to decide how much infor-

mation it needs to gather about a customer. If the customer is new to

the company, the system will add as much information as it can to the

canonical store. That information becomes available for other systems

that work with customers. It may also store data in its dedicated store

to meet its own needs. This model can be further expanded so that sys-

tem-specific data is stored in the shared store as well (see Figure 4).

	 This solution makes it possible for systems to integrate with one

another using extension data that is beyond the scope of the canon-

ical schema. To work successfully, the store and other systems need

to have visibility into the extension data. In other words, it cannot be

opaque. The easiest way to solve this problem is to make the extension

data itself XML. The system providing the data defines a schema for the

extension data so that other systems can process it reliably. The shared

store keeps track of extension schemas so it can ensure that the exten-

sion data is valid, even if it does not know explicitly what the extension

contains. In the most extreme case, a system might choose to store an

entire customer record in a system-specific format as XML extension

data. Other systems that understand that format can use it. Systems

that do not understand it rely on the canonical representation instead.

	 When systems are independent, they each control their own destiny.

They can capture and store whatever information they need in what-

ever format and location they prefer. The move to a single common

schema and store changes that. If adopting a common XML data for-

mat restricts a system’s freedom to deliver required functionality, you

are doomed to fail.

	 Using a combination of typed XML extension data in either a sys-

tem-level or the shared store adds complexity because you have to

keep data synchronized. But it also provides tremendous flexibility.

You can align systems around whatever combination of the canon-

ical schema and alternate schemas you want. You can drive toward

one XML format over time, but you always have the flexibility to devi-

ate from that format to meet new requirements. This extra freedom is

worth a lot in the uncertain world of the enterprise.

	 A further, subtle benefit of this model is that it allows the team

defining the common schema to slow their work on revisions. Systems

can use extension data to meet new requirements between revisions.

The team working on the canonical model can mine those extensions

for input into their revision process. This feedback loop helps ensure

that model changes are driven by real system requirements.

Mitigate the Risks
Lots of organizations are working on integrating systems using XML

data described using XML schema and exchanged through Web ser-

vices. In this discussion we presented three common causes for failure

in these data-centric integration projects: demanding too much infor-

mation, no effective versioning strategy, and no support for system-

level extensions. To mitigate these risks:

•	 Make schema elements optional, and encode system-specific occur-

rence requirements as part of that system’s implementation.

•	 Build systems that produce data according to their version of a

shared schema but consume so that systems can adopt schema revi-

sions at different rates without changing schema namespace.

•	 Allow systems to extend shared schemas with their own data to

meet new requirements independent of data-model revisions.

	 All of these solutions are based on one core idea: to integrate suc-

cessfully without sacrificing the agility that systems need to be able

to agree on as little as possible and still get things done. So does it all

work? The answer is yes. These techniques are core to the design of the

MSDN/TechNet Publishing System, which underlies MSDN2. •

Table 1 The three possible cases of customer data

Record in
shared store

Record in
system store

Meaning

No No Customer is new to the company.
Collect all common and system-
specific data.

Yes No Customer is known to the company
but new to the system. Collect
system-specific data.

Yes Yes Customer is known to the company
and to the system.

About the Authors

Tim Ewald is a principal architect at Foliage Software Systems where he

helps customers design and build applications ranging from enterprise

IT to medical devices. Prior to joining Foliage, Tim worked at Mindreef,

a leading supplier of Web services diagnostics tools, and before that

Tim was a program manager lead at MSDN, where he worked with

Kim Wolk as co-architects of MTPS, the XML and Web service–based

publishing engine behind MSDN2. Tim is an internationally recognized

speaker and author.

Kim Wolk is the development manager for MSDN and the driving

force behind MTPS, the XML and Web services-based publishing engine

behind MSDN2. Previously, she worked as MTPS co-architect and lead

developer. Before joining MSDN, Kim spent many years as a consultant,

both independently and with Microsoft Consulting Services, where she

worked on a wide range of mission-critical enterprise systems.

“The inability to definitively state

whether a given piece of data is valid

presents an issue for debugging and

possibly also for security”

10 www.architecturejournal.net • Journal 8 •

Autonomous Services
and Enterprise Entity
Aggregation
by Udi Dahan

The term SOA has gained popularity over the past year and has

become the buzzword de jour. Everything these days is service-

oriented, SOA-enabled, or “the key to your SOA success.” The indus-

try continues to struggle with what defines a service; however, various

properties of services do appear to be well accepted. Microsoft’s tenets

of service orientation define four such properties: services are auton-

omous; services have explicit boundaries; services share contract and

schema, not class or type; and service compatibility is based on policy.

	 While these tenets act as important architectural guidelines for

developing complex software, there is obviously more to be said.

Many run-time aspects of services like scalability, availability, and

robustness are not addressed by service orientation. It is exactly these

run-time aspects that are the focus of autonomous services.

Service Autonomy
The phrase “autonomous services” seems to be a simple rewording

of the first tenet, and yet the two have very different meanings. “Ser-

vices are autonomous” means that teams developing cooperating ser-

vices could operate independently—to a degree of course. When

taken together with the tenet about contract and schema, it is clear

that there need be no binary dependencies among those teams. The

development of each service could be done on a different platform,

using different languages and tools. An autonomous service, on the

other hand, is a service whose ability to function is not controlled or

inhibited by other services.

	 The word autonomous has many definitions including: self-govern-

ing, self-controlling, independent, self-contained, and free from exter-

nal control and constraint. In the light of these definitions of auton-

omy, we will examine two kinds of service interaction: synchronous

and asynchronous communication.

	 In Figure 1 we can see that Service A needs to actively hold run-

time resources (the calling thread) until Service B replies. The time it

takes Service A to respond to a single request depends on its inter-

action with Service B. Service A is affected if the network is slow or if

Service B is unavailable or slow. Therefore, it does not appear that Ser-

vice A is “free from external constraint” in this case.

	 Another issue to consider here is coupling. While Service A and Ser-

vice B may be loosely coupled in that they were developed separately

by different teams on different platforms sharing only a WSDL file, we

can see that they are tightly coupled in time. This temporal coupling

can be seen in that the time it takes Service A to respond to a request

includes Service B’s processing time. It is exactly this coupling that

causes undesired failures in Service B to ripple into Service A.

	 There are two ways that we can break this temporal coupling. One

way is for Service A to poll Service B for the result. Unfortunately, poll-

ing leads to undue load on Service B (as a function of number of con-

sumers and the polling interval), and consumers get the requested

information later than the time available. Figure 2 shows the complex-

ity of this solution.

	 If we continue our analysis, we’ll find that spawning a new thread,

or even using the thread pool to handle the polling for each request

we send, is going to drain Service A of its resources fairly quickly. A

more performant (and even more complex) solution would involve

a single thread that manages polling for all the requests sent. That

thread would marshal the results back as they became available to

a different thread, which would finish the processing of the original

Summary
Enterprises today depend on heterogeneous systems
and applications to function. Each of these systems
manages its own data and often doesn’t explicitly
expose it for external consumption. Many of these
systems depend on the same basic concepts like
customer and employee and, as a result, these entities
have been defined in multiple places in slightly dif-
ferent ways. Entity aggregation embodies the busi-
ness need to get a 360-degree view of those entities
in one place. However, this business need is only one
symptom of the larger issue: business/IT alignment.
Service-oriented architectures (SOAs) have been hailed
as the glue that would bring IT closer to business, yet
the hype is already fading. We’ll take a look at con-
crete ways that autonomous services can be used to
transform the way we develop systems to more closely
match business processes and solve immediate entity
aggregation needs.

“Many run-time aspects of services like

scalability, availability, and robustness

are not addressed by service

orientation”

Autonomous Ser vices and Aggregating Entit ies

11 • Journal 8 • www.architecturejournal.net

request. We would do well to heed Occam’s razor before continuing

down this path.

	 A different solution to the problem of temporal coupling that

avoids the issues stated previously is to use asynchronous commu-

nication between these services (see Figure 3). In this case Service A

subscribes to events published by Service B about changes to its inter-

nal state. When these events occur, Service A stores the data that it

considers relevant. Thus, when Service A receives a request it is no

longer dependent on external parties for processing leaving its avail-

ability unaffected. Notice that the load on Service B is even lower than

in the original synchronous communication example since it no lon-

ger receives those requests. Modern publish/subscribe and messaging

infrastructure can keep the load near constant no matter how many

consumers there are. Data freshness is also improved with asynchro-

nous communication; Service A receives the data much closer to the

time that Service B made it available. We need not make trade-offs on

load (as a result of the polling interval) against data freshness.

Technical Boundaries and Data Replication
Although the second tenet seems clear at first glance, the nature of a

boundary isn’t at all obvious. Are the boundaries of Service A and Ser-

vice B in the previous examples any different in the synchronous and

asynchronous cases? It does not appear so, but there is one major

technical difference: transactions.

	 To handle a single request properly, in cases where that request

causes data to be changed, the handling of the request should be done

within the context of a transaction so that the state of the service stays

consistent. If that service has to interact with other services to han-

dle the request, and as a result those services change their data as well,

should those changes occur within the original transaction context?

	 When service interaction is synchronous, the division of respon-

sibility between services may often require that changes across ser-

vice be performed within a single transaction. When services interac-

tion is asynchronous (or synchronous with polling) we avoid changing

data in other services altogether, so there is no need to have transac-

tions cross service boundaries. Obviously, if a transaction starting in

one service were to lock resources in other services, this would require

high levels of trust between all involved services and blur the distinc-

tion of where one service ended and another began.

	 Let us define autonomous services. It is clear that autonomous ser-

vices span much more than low-level communications, encompassing

many aspects including trust and reliability. However, we have seen

that constraining interactions between services to asynchronous mes-

saging has guided our architecture in such a way that autonomous,

loosely coupled services have crystallized. In fact, autonomous ser-

vices appear to expand on service orientation (or constrain its degrees

of freedom) by adding a new tenet: a service interacts with other ser-

vices using asynchronous communication patterns.

	 Note that while a service may consume other services asynchro-

nously, this consumption does not necessarily mean that it cannot

expose a synchronous interface. Google and Amazon do exactly that.

The Web services that they expose are synchronous in nature but it

has no effect on their autonomy.

Figure 1 Synchronous communication

Service A Service B

MakeCustomerPreferred(id)

Customer GetCustomerInfo(id)

Save customer as preferred.

Calling thread
is waiting for
the result.

Figure 2 Synchronous communication with polling

Service A Service B

MakeCustomerPreferred(id)
YieldCustomerInfo(id)

Spawn polling thread

Data ready

Got data?

Got data?

Got data?

Save customer as preferred.

Data ready but
not passed to
customer.

Figure 3 Asynchronous communication

Service A Service B

MakeCustomerPreferred(id)

Save customer as preferred.

Store data
Publish updated customer
information.

Autonomous Ser vices and Aggregating Entit ies

12 www.architecturejournal.net • Journal 8 •

	 At first glance it appears that the use of publish/subscribe com-

munications leads to data duplication between services similar to

what happens when doing data replication. Data replication tech-

niques such as extract, transform, and load (ETL) or file transfer handle

transferring data between low-level data sources like databases and

directories. This transfer bypasses higher-level logical constructs for

managing that data coherently, which often leads to duplicating those

same logical constructs at the consumer end of the transfer.

	 The data that flows through a publish/subscribe interaction behaves

differently. When a service publishes a message, that message must

be part of the service contract—that contract is independent of the

underlying data store’s schema. The process of building the message—

retrieving the appropriate data from the data store and transform-

ing it to the message schema—goes through all the service layers. Ser-

vices that consume these messages do not need to implement the same

logic. Furthermore, the decision of when to publish the message is a

logical decision for which code has been written; it is not a low-level

detail of when the ETL script was scheduled to run.

	 The most important difference between simple data replication and

autonomous service interaction is that the consumer service decides to

save only the data that it needs. There is no longer a “back door” into

the service database. When the consumer service receives the message

that was published, the data within the message does not bypass any of

the layers in the service until it reaches the database (see Resources).

	 When using these kinds of asynchronous service interactions, we

often find that our services tend to be larger and coarser grained, often

containing databases of their own and hosted on their own servers or

datacenters. By keeping transaction contexts constrained to the scope

of a single service, the responsibilities of that service tend to expand to

the level of a business function or department—the natural boundary

found in the business domain. This effect is quite understandable when

we view the levels of coupling at different levels of business. Depart-

ments are loosely coupled to each other, collaborating without intimate

knowledge of each other’s inner workings. Groups internal to a depart-

ment often require much deeper understanding into the workings of

parallel groups to get the job done.

	 We can see that this architectural style in no way contradicts any of

the four tenets, yet familiar service types found when using service ori-

entation no longer fit.

Common Boundary Pitfalls
Process services, activity services, and entity services were once pro-

posed as the way to do service orientation. Process services man-

age long-running business processes. Activity services manage atomic

operations that encapsulate interaction with more than one entity ser-

vice. Entity services manage interaction with a single business entity.

In this model entity aggregation occurs at the entity service level. The

problem with this choice of service boundaries manifests itself in the

synchronous interservice flows (see Figure 4).

	 Although it is quite possible to model the same interaction with

asynchronous messaging (specifically with respect to an external credit

check service), the value in separating order processing into three ser-

vices is unclear. It is unlikely that a different team would be working on

each of the order services or that they would run on different platforms.

The tight coupling between these services is inherent. All of them work

with order processing; not sharing a common Order class would prob-

ably cause code duplication, but that duplication would go against the

third tenet of service orientation. There is only one conclusion: we can-

not separate our services along the process/activity/entity boundar-

ies. Consider the result of modeling this business process using autono-

mous services (see Figure 5).

	 The autonomous services present in Figure 5 represent one possible

division correlating to a given organization; different enterprises would

“Entity aggregation represents the

business need to get a global view of

data across the enterprise”

Figure 4 Interactions between process, activity, and entity services

1. New order

<<Process>>

Order processing
service

2. Validate

<<Activity>>

3. Access

6. Check customer credit

5. Get customer

4. Access

7. Save

Order validation
service

<<Activity>>

Credit check
service

<<Entity>>

<<Entity>>

<<Entity>>

Order entity
service

Product entity
service

Customer entity
service

Autonomous Ser vices and Aggregating Entit ies

13 • Journal 8 • www.architecturejournal.net

have different groups responsible for different business processes. There

are two important differences to note here. The first is that the sales ser-

vice stores the customer and product data it needs internally so that

when it needs to process an order, it already has all the data it needs.

The second difference is that the division of order handling between

separate services does not occur here. Although it is likely that the sales

service has different layers and components for handling the various

steps of order processing, and possibly some kind of workflow engine to

manage those steps, these are implementation details of the service.

	 The code duplication that arises by following the “schema/class”

tenet in the previous case does not occur here, simply because the tenet

does not apply within a service boundary. (The issue here is that they

are all the same entity [Order] probably with the same fields. Before

the entity service goes to save the order, it too must perform valida-

tion: code that’s already been written for the activity service validation.)

If we can no longer use entity services, then how and where does entity

aggregation occur when using autonomous services?

Business-Level Entity Aggregation Requirements
Before we can delve into the technical details of the solution, we must

better define the problem. As was first stated, entity aggregation rep-

resents the business need to get a global view of data across the enter-

prise. Various business departments require different data elements of

a given entity, but seldom require all the data for that entity. This case

is one in which one business department requires data that is owned by

another department. For instance, the marketing department needs to

know total order value per customer per quarter—data that is managed

by the sales department. In this case, we are aggregating data from two

existing systems into one of those systems, which is a different style of

entity aggregation than what is most commonly viewed as entity aggre-

gation; yet it is the most common case seen in the field.

	 Intersystem OLTP aggregation. We will start by examining a concrete

example. In a typical order processing scenario we have two systems: one

accepts orders from our Web site; the other is a homegrown customer

relationship management (CRM) system. Marketing has a new require-

ment that “preferred customers” should receive a 10 percent discount

on all orders. A preferred customer is defined as a customer living in the

United States who has done at least $50,000 of business with the com-

pany over the last quarter, but this definition is expected to change.

	 After analyzing this requirement we can see that it has two parts:

who is a preferred customer, and what do we do with that information?

The first decision that has to be made has to do with boundaries and

responsibilities: which system will be responsible for preferred custom-

ers, and which system will be responsible for what we do with preferred

customers? In this case there is no reason for the CRM system not to

take on the first responsibility and the order processing system taking

on the second. The next decision that has to be made is how these sys-

tems will interact, synchronously or asynchronously.

	 Synchronous OLTP aggregation. The first way to handle this require-

ment is to add to the order processing system a query method that

retrieves customers whose total orders amounted at least X over a

period Y. This method gives us the ability to handle various sums and

time periods as the marketing department changes their rules. The CRM

system would fulfill requests for which customers are preferred custom-

ers by querying the order processing system (see Figure 6).

	 Autonomous OLTP aggregation. In the second approach, we view

each of the systems as autonomous services that notify external con-

sumers of meaningful events. In this case, interactions between ser-

vices are more event driven. In Figure 7, when the order processing sys-

tem needs to know if a given customer is a preferred customer, it does

not have to communicate with the CRM system. The same goes for the

order data and the CRM system. The data from these two systems have

been aggregated by design.

	 Let us explore this example a bit further as the marketing department

changes the rules that define preferred customers. Preferred customers

Figure 5 Interactions between autonomous services

1. New order

Sales

Duplex

1.1 Request check (async)

1.2 Check reply (async)

0. Publish updates to customer
and product information

Marketing

<<External>>

Credit check
service

Responsible for
customers and
products

“Managing a single service that handles

enterprise-wide entity aggregation

needs is much more cost-effective than

managing multiple entity services”

Autonomous Ser vices and Aggregating Entit ies

14 www.architecturejournal.net • Journal 8 •

are now those customers living in all of North America who have placed

at least three orders in the last quarter, each totaling $15,000 or more.

	 In our first approach, the original query we added is no longer rel-

evant. We now need to support a different kind of query (get custom-

ers with at least X orders over period Y, with each order totaling Z or

more, where X = 3, Y = last quarter, and Z = $15,000), changing the

order processing system’s interface, some of its implementation (to

support the new interface), and the code that activates it in the CRM

system (see Figure 8). In the second approach, the only changes we

need to make are internal to the CRM system. Neither the interface

nor the implementation of the order processing system need to be

modified (see Figure 9).

	

The term entity aggregation brings to mind an active process of collect-

ing data from disparate sources and merging the data together to form

a cohesive whole. While the dynamics of the first approach map very

well to this process, the second approach does not. However, it is clear

that the second approach maintains a lower level of coupling between

these two services, even as requirements change. Keep this point in

mind when designing services; loose coupling between services needs

to occur from both the data and the logic perspective.

Entity Aggregation for Business Intelligence
In the previous case, the aggregated data was critical to the function-

ing of the business department(s) involved, participating in day-to-

Figure 7 Aggregating data from different systems with autonomous services

Independent
of the timing of
other publishers

CRM System

New order

Web site
Order

processing
system

Publish customer
information periodically,
including "preferred" status.

Publish order
information periodically.

Give 10 percent
discount

Save "preferred"
information

Yes

Customer
lives in U.S.?

Figure 9 Changes made when using autonomous services

Independent
of the timing of
other publishers

CRM System

New order

Web site
Order

processing
system

Publish customer
information periodically,
including "preferred" status.

Publish order
information periodically.

Give 10 percent
discount

Save "preferred"
information

Save as
preferred

Customer
lives in U.S.?

Figure 8 Changes made when not using autonomous services

CRM SystemWeb site
Order

processing
system

New order

Yes

Yes

Is preferred customer?

Give 10 percent
discount

Yes

Customer
lives in U.S.?

Does the customer
have orders totaling at
least X over period Y,
where X=$50K
and Y=last quarter?

Figure 6 Aggregating data from different systems without autono-
mous services

Customer
lives in U.S.?

CRM system

New order

Web site
Order

processing
system

Does the customer
have orders totaling at
least X over period Y,
where X=$50K
and Y=last quarter?

Yes

Yes
Yes

Is preferred customer?

Give 10 percent
discount

Autonomous Ser vices and Aggregating Entit ies

15 • Journal 8 • www.architecturejournal.net

day transaction processing. However, entity aggregation is most often

discussed in the management context—business wants to get a 360

degree view of the enterprise data. This context is quite different from

the previous one in that the aggregated data is mainly used for decision

support and business intelligence—in other words, primarily read-only

usage scenarios.

	 A simple and effective way of modeling this context is by instituting

a management service (see Figure 10). This service does not perform

operations and provisioning management for other services, but rather

pulls together the data published by all other services and stores it in a

format optimized for its usage scenarios.

	 Another common business requirement that comes up in the con-

text of entity aggregation is historical analysis. While it may not make

sense for the marketing service to maintain historical data about past

products no longer being offered, users of the management service

may find if invaluable to compare sales and profit figures of current and

past products. It would be the responsibility of the management service

to manage these historical trends.

	 One benefit of using a management service as opposed to entity

services is exactly in the operations management area. Managing a sin-

gle service that handles enterprise-wide entity aggregation needs is

Figure 10 Relationships between the management service and other

autonomous services

Management
service

Marketing
service

Legal service Sales service HR service

Publish Publish Publish Publish

Resources

Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions, Gregor Hohpe and Bobby Woolf (Addison-Wesley

Professional, 2003)

“Data on the Outside vs. Data on the Inside,” Pat Helland (Microsoft

Corporation)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnbda/html/dataoutsideinside.asp

“Dealing with Concurrency: Designing Interaction Between Services and

Their Agents,” Maarten Mullender (Microsoft Corporation, 2004)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnbda/html/concurev4M.asp

Microsoft Events

“MSDN Webcast: Why You Can’t Do SOA Without Messaging (Level

300),” Udi Dahan (Microsoft Corporation, 2006)

http://msevents.microsoft.com/cui/WebCastEventDetails.aspx?EventID=

1032273610&EventCategory=5&culture=en-US&CountryCode=US

MSDN – Channel 9 Forums

“ARCast – Autonomous Services,” Udi Dahan (Microsoft Corporation,

2006) http://channel9.msdn.com/Showpost.aspx?postid=163201

“ARCast – Service Orientation and Workflow,” Udi Dahan (Microsoft

Corporation, 2006) http://channel9.msdn.com/ShowPost.

aspx?PostID=163471

“SOA Challenges: Entity Aggregation,” Ramkumar Kothandaraman

(Microsoft Corporation, 2004)

http://msdn.microsoft.com/architecture/soa/default.aspx?pull=/library/

en-us/dnbda/html/dngrfsoachallenges-entityaggregation.asp

About the Author

Udi Dahan is a Microsoft solutions architect MVP, a recognized

.NET development expert, and the chief IT architect and C4ISR

product line manager at KorenTec. Udi is known as a primary

authority on SOAs in Israel and consults on the architecture

and design of large-scale, mission-critical systems developed all

over the country. His experience spans technologies related to

command and control systems, real-time applications, and high-

availability Internet services. For more information, please visit

www.UdiDahan.com.

much more cost-effective than managing multiple entity services—one

for each entity that needs to be aggregated. Internal changes to any of

these services that do not affect their contract may not even impact the

management service. Changes to the contract that may affect numer-

ous entities result in corresponding changes only in the management

service, not in each one of the entity services that previously aggre-

gated those entities.

	 Services may seem to be the new unit of reuse in the enterprise,

but this does not comply with the tenet of autonomy, not to men-

tion that the constraints on how we interact with a service make it dis-

tasteful. For instance, while it may seem that the management service

could easily provide audit trail tracking and storage for all other ser-

vices, this choice could break those services’ autonomy. Should the

management service go down for any reason, other services shouldn’t

be allowed to continue processing without auditing. Furthermore, an

autonomous service could not trust another service to provide this

core capability, which is not to say that you cannot encapsulate audit

trail tracking (or other specific functionalities) into a component that

all services reuse. Regulatory compliance issues must be taken care of

within each service.

	 By recognizing that the requirements for OLTP and OLAP entity

aggregation are different, we have been able to identify two sepa-

rate, yet simple solutions using a single communication paradigm.

Asynchronous messaging patterns enable the creation of autono-

mous, loosely coupled services that more closely resemble the busi-

ness processes they model. As a result, often all that is needed to

respond to changing business requirements is a local change to a

single service. These small-scale changes do not affect interservice

contracts and can be performed with greater certainty that other

systems will not be affected and therefore in less time. Aligning IT

with business has much more to do with interpersonal communica-

tions and understanding than technology, but that does not mean

that technology cannot help. •

16 www.architecturejournal.net • Journal 8 •

Data Replication as an
Enterprise SOA Antipattern
by Tom Fuller and Shawn Morgan

The drive toward service-orientation is still in its infancy. For SOA

to achieve the lofty goals visualized by the industry, architects

will need to rely on documented best practices. This is where pat-

terns and antipatterns will help bridge the gap between conceptual-

ization and reality. Patterns represent a proven repeatable strategy

for achieving expected results. Software architecture patterns and

antipatterns provide documented examples of successes and fail-

ures in attempting to apply those strategies in IT. Through success-

ful identification of architecture abstractions, SOA will begin to find

implementation strategies that ensure successful delivery.

	 We’ll describe why data replication, when used as a foundational

pattern in your enterprise SOA, can lead to a complicated and costly

architecture and provide you with a refactoring strategy to move

from data replication (antipattern) to direct services (pattern). Then

we’ll offer a brief explanation of where data replication can be used

to successfully solve some specific problem domains (replication as

a pattern) without compromising other enterprise architecture ini-

tiatives. Architects will take away from this discussion a strategy for

facilitating the shift away from architectural malfeasance.

	 To promote consistency, the software industry has settled on a

template for documenting design patterns. This template, however,

seemed insufficient to describe architectural antipatterns and their

eventual refactored solutions. A hybrid collection of pattern sections

from various resources were pulled together to help define a struc-

ture for the antipattern and pattern described here (see Resources).

Table 1 shows the superset of sections and whether or not they are

applied to a pattern, antipattern, or both.

Data Replication: An SOA Architectural Antipattern
Let’s begin with a detailed description of how data replication is an

antipattern when applied in an SOA, using the antipattern template to

explain the context specifics and forces that validate this architecture.

An example illustrates the problems when applying this antipattern. In

closing, you will see the refactored solution and the benefits that can

be seen when the pattern is applied in place of the antipattern.

	 Context. This antipattern describes a common scenario that archi-

tects face when attempting to build enterprise SOA solutions in a

distributed environment. In the move from the mainframe environ-

ment to the common distributed environment, a shift has occurred

in the management of our important master data (the data that

drives our enterprise on a daily basis). We decide to build our new

distributed applications using a silo model, where an application is

defined as a set of business functionality exposed through a user

interface (UI), and that business functionality is built within its own

context. This decision encourages architectures that favor extreme

isolation and unnecessary entity aggregation.

	 Forces. This antipattern occurs in an SOA because of the comfort

that architects and designers have with this model. Even when it is

explained as an antipattern within the context of SOA, architects and

designers continue to use this antipattern for these reasons:

•	 The architect is familiar with the data replication strategy. The

techniques used for replicating data have been fine tuned since

Summary
As applications are envisioned and delivered through-
out any organization, the desire to use data replication
as a “quick-fix” integration strategy often wins favor.
This path of least resistance breeds redundancy and
inconsistency. Regularly applying this antipattern within
an enterprise dilutes the original long-term goals of a
service-oriented architecture (SOA). However, depend-
ing on the context in which it surfaces, data replication
can be viewed either positively or negatively. To suc-
cessfully deliver to a service-oriented strategy, enter-
prise architects need to draw from the successes and
failures of other architectures. Architecture patterns,
when discovered and documented, can provide the best
technique for managing the onerous job of influencing
change in your enterprise. Weíll use both an antipat-
tern and a pattern to describe how data replication can
impact your enterprise architecture.

“To promote consistency, the software

industry has settled on a template

for documenting design patterns.

This template, however, seemed

insufficient to describe architectural

antipatterns and their eventual

refactored solutions”

Data Replication as an Antipattern

17 • Journal 8 • www.architecturejournal.net

the earliest days of batch-oriented development. This fine tun-

ing creates a comfort level for the architect that has been design-

ing systems with data replication for years, using either file-based

transfers or extract, transform, and load (ETL tools). It seems sim-

ple enough to continue to use this strategy going forward.

•	 The architect is concerned about the performance of a service

exposed by the master data system. For example, accessing a data

store remotely through services may slow down the new system

over a solution that uses a local database, which is the one-to-

many data scenario.

•	 Separate services may each have slightly different views of the

entity. Combining the different views into an aggregated entity

and maintaining service autonomy is seen as too difficult, so the

data from the services is replicated into a store, which is the many-

to-one data scenario.

•	 The architect is concerned that the new system’s durability could

be compromised. For example, if the new system will access the

master data through a service that exists on the network, network

failures or master data system failures could cause downtime for

the new system. Having the data available locally seems to miti-

gate this concern.

•	 Applications are built using a silo model. An application is defined

as a set of business functionality exposed through a user interface,

and that business functionality is built within its own context with-

out an enterprise architect helping to guide the application devel-

opers toward the reuse of available services.

•	 Resources for delivering a solution using data replication are

abundant. The skills required to implement a solution using data

replication are typically easy to find. Building applications that

leverage new or existing services takes a rarer skill set, requiring

someone with a strong knowledge of distributed systems, Web

services, object orientation, and other modern mechanisms for

delivering solutions to your business.

Blurring Lines of Control
Poor Solution (Antipattern). To accomplish this antipattern, master-

data information is replicated from the master-data source to a new

database created to expose the functionality of the new application

(see Figure 1). This exposure may be accomplished through many dif-

ferent mechanisms, such as the use of an ETL tool or through more

basic mechanisms such as a file transfer of the data from one system

to the other. Master-data information may also be augmented by the

new systems, adding additional entity attributes to the original entity.

	 Consequences. The consequences of this pattern applied incor-

rectly within an SOA are not immediately visible. When data is repli-

cated from the owning master-data system, in a fractal way, to many

different application databases, your service orientation becomes

very hard to manage. Replicated data becomes pervasive across the

enterprise. Unclear responsibility for the data blurs the lines of con-

trol. Multiple services exist to manipulate the same (or slightly aug-

mented) data. The “business view” of the data becomes disparate.

	 This unclear responsibility for the data and loss of control over the

master data is disconcerting to any architect. As data is proliferated

and applications begin to add their own spin to the data the complex-

ity begins to mount. The new fields that are added to the data, which

may be important to the enterprise as well, may not get added back to

the master-data system. Of course, with the compressed timelines and

budgets of most enterprise projects, a project team rarely will take on

the extra effort of creating new data elements within the master-data

system, exposing those new elements through services extended off

of the master-data system, or creating an aggregation services layer

(thus replacing the initial master-data service).

	 They may in fact extend services off of their system that will expose

this new master data. Also, they may create new services that mimic

some of the functionality of the master-data system to expose the

data that they have replicated to their new system. This exposure cre-

ates a large headache for the enterprise architects to manage. The

architect now needs to prevent new systems from consuming services

exposed using replicated data, which leads to confusion within the

enterprise architecture of the true ownership of the business object.

	 Replication also carries with it a huge responsibility on the rep-

licating system to duplicate the business logic of the master-data

system. Many times data is massaged by the master-data system

before being exposed as a service to other applications. In these

cases, the quick-hit method of replicating the data to the new sys-

tem carries with it the burden of also replicating the business

Section Description Pattern Antipattern

Name A useful short name that can help to quickly describe the pattern/antipattern. X X

Context The interesting background information where the pattern/antipattern will be applied. X X

Forces There are a set of reasons why this solution is being used. Very often in an antipattern these reasons are made up
of misconceptions or lack of knowledge.

X X

Solution This section describes the proposed solution to the problem based on the context and forces documented and
represents the strategy or intelligence of the pattern.

X

Poor solution
(Antipattern)

This section will describe the antipattern or solution to a problem that appears to have benefits but in fact will
generate negative consequences when employed.

X

Consequences Consequences are the side effects of the implemented solution. In the case of an antipattern, consequences are
always going to be made up of negative impacts that outweigh the benefit of the pattern itself.

X X

Refactored
solution

Every antipattern should have an inverse that would in fact be a solution or pattern, which may be documented
as patterns.

X

Benefits The benefits will be the same for a documented pattern and the refactored solution of an antipattern. X X

Example A real-world example of where the pattern/antipattern is applied to highlight/solve a problem. X X

Table 1 Correlating sections with patterns and antipatterns

Data Replication as an Antipattern

18 www.architecturejournal.net • Journal 8 •

logic used to massage the data. Unless good analysis is done on

the master-data system, this logic may never get implemented, or

may get implemented incorrectly. An even more detrimental sce-

nario is one in which no business logic surrounding the retrieval

of the master data initially exists. The logic is instead added later

in a project that needs to upgrade the master-data system. This

scenario can be painful for an enterprise that has replicated data

many times. Each system must now be analyzed for the changes

required to the system to meet the new demands of the enter-

prise data.

Widespread Redundancies
It is often easy to dismiss the consequences of using data repli-

cation because, on the surface, they seem superficial. Issues like

disk space, reusable assets, and labor reduction seem to be man-

ageable with or without moving toward service orientation. The

consequence that overshadows them all is the ability to mini-

mize complexity and deliver solutions that can quickly adapt to

change. Data replication adds complexity, brittleness, and inflex-

ibility because of the widespread redundancies it creates in your

enterprise architecture.

	 Let’s look at an example. A new application is being built to han-

dle the management of a purchase order. The architecture demands

that business services be created for the new system and that the UI,

whether a portal or Web-based implementation, consumes those

business services.

	 The business requirements dictate that the system should per-

form the functions of creation, modification, and viewing of pur-

chase orders. Part of the purchase order is customer information,

which is stored in a customer relationship management (CRM) sys-

tem. The CRM system exposes services to retrieve customer infor-

mation, but the decision is made by the architect to replicate the

customer master data to the purchase order systems based on the

forces discussed previously.

	 A requirement of the new purchase order system is to create an

account number for each customer. This new data is attached to the

replicated customer data in the PO system’s local database. The UI

“The benefits of an SOA will only be

fully realized by an organization that

is cognizant of the mind-set change

required to deliver solutions using

new architectural patterns”

Master-data
application

Master-data system A

LOB application A

LOB application

Data
repository

LOB application B

LOB application

Data
repository

LOB application C

LOB application

Data
repository

ETL ETL

ETL

Data
repository

Figure 1 Proliferation of master data leads to distributed ownership of various permutations.

Data Replication as an Antipattern

19 • Journal 8 • www.architecturejournal.net

displays customer information through the use of a new Web service

created by the narrow vertical purchase order system. Other busi-

ness services are developed for creation, modification, and view-

ing of purchase orders that are then consumed by the PO system’s

UI. Any data manipulation or massaging that the master-data system

does when a user accesses its data services must be replicated into

the new system. Any changes of that data going forward must also

be replicated to the new system, as well as any changes to any busi-

ness logic to access that data.

	 The diagram shown in Figure 2 makes it clear that the data

replication results in duplicate services. Each application now has

its own view of the customer entity, with its own way to access

the data through a service that was created for that purpose. The

purchase order system copies and extends the customer data

through its own set of services, which effectively creates redun-

dancy and confusion for any future systems looking to consume

customer services.

	 Now the next application comes along, a system that manages

invoicing/accounting. This system also needs the customer data,

including the account number. There are now several choices that

the system designers have to make concerning customer data. Do

they go get the customer data master information from the CRM

system and get the customer account number from the PO sys-

tem, or do they—since the data all exists in the PO system—just

go to the PO system to get all of the customer information? In fact,

because durability is a big concern (a force in this antipattern), a

decision is made to replicate the customer data from the PO sys-

tem to the invoicing system. Now three systems have a view of cus-

tomer data in certain degrees of completeness. Three systems are

forced to build any business logic around the access of that data.

Each of them expose customer data through services (because we

are building a “service-oriented architecture”), and the ability for

the enterprise to manage customer data in an agile way continues

to break down.

Cognizant of Change
Refactored solution. The benefits of an SOA will only be fully real-

ized by an organization that is cognizant of the mind-set change

required to deliver solutions using new architectural patterns. SOA

will not deliver the kinds of benefits that are possible until archi-

tects realize that only by providing a single point of control over

the business services and data can the organization truly become

the responsive, flexible, and scalable enterprise that SOA promises.

To successfully refactor the solution, you must address the forces

that create the antipattern:

•	 The architect is familiar with the data replication strategy. Use the

key performance indicators (KPI) that drive an SOA implementa-

tion to build a case to not replicate data unnecessarily. Training on

SOA implementations that reduce data replication needs can also

mitigate this force.

•	 The architect is concerned about the performance of a service

exposed by the master-data system. Test to validate the perfor-

mance of an exposed service. Through testing and an under-

standing of the service-level agreement (SLA) for the new appli-

cation, many will find that the use of a new or existing service

that exposes master data will perform within the SLA demands.

•	 Separate services may each have slightly different views of the

entity. The skills and technologies to combine the different

views into an aggregated entity and maintain service auton-

omy are already well established and can usually be done at

run time.

•	 The architect is concerned that the new system’s durability could

be compromised. Address the durability of the exposed business

Figure 2 Data redundancy in the antipattern

This interface, which is likely an
online user interface of some
type, is made available as part
of the CRM system.

Online interaction with customer information

This interface, which is likely an
online user interface of some

type, is made available as part
of the purchase order system.

Online interaction with customer information

Corporate user
CRM system Purchase order system

CRM internal
application

CRM
enterprise
services

Web services are
exposed to
extend this
legacy platform
to internal
systems.

CRM data
repository

Purchase
order services

Purchase
order internal
application

Web services are
exposed to adhere
with the SOA
initiative.

Purchase order
data repository

Purchase order services

Customer master data

Data Replication as an Antipattern

20 www.architecturejournal.net • Journal 8 •

services through available infrastructure mechanisms such as

clustering.

•	 Applications are built using a silo model. Many projects require

the involvement of an architect with an eye toward new and

existing services and the functionality they provide. In fact,

applications as we know them today must morph from a simple

box on a diagram to an assembly of new and existing services.

•	 Resources for delivering a solution using data replication are abun-

dant. Currently available patterns, templates, standards, and tools

allow true SOA with “mid-level” designers and developers.

	 Following a detailed analysis of these issues, you can decide

your architectural strategy. The shift toward service orientation

requires us to think differently about what are the critical ques-

tions when making these types of decisions. Instead of focusing

so much time on the architecture of my “application” architects

should focus on the architecture of the enterprise services. Ser-

vices should be built on the system that maintains and manages

the data, or aggregating services should be built to provide the

data, eliminating the need to replicate the data to another appli-

cation to provide a service.

	 The enterprise view of an application needs to fundamentally

change. To make SOA work, we must shift from building applica-

tions—a stand-alone system that provides user functionality—to

building products: an array of features to be delivered to the cus-

tomer. We should be building services that provide this business

functionality. The product is nothing more than a composition or

orchestration of one or more services and provides one or more

pieces of business functionality. It is the aggregation of solved

use cases.

Eliminate Ambiguity
Once this mind-set becomes clear, and these forces have been mit-

igated, direct access to the line-of-business (LOB) services becomes

a reality. The UIs of new systems can call existing services as needed,

without any data indirection.

Figure 3 The refactored system

Online interaction with customer information Online interaction with customer information

Corporate user
CRM system Purchase order system

CRM internal
application

CRM
enterprise
services

Web services are
exposed to
extend this
legacy platform
to internal
systems.

CRM data
repository

Purchase
order system

Purchase
order internal
application

Web services are
exposed to adhere
with the SOA
initiative.

Purchase order
data repository

Purchase order services

Customer services

Invoice
data

repository

Online interaction
with customer
information

Corporate user

Customer detail Purchase orders

This interface, which is likely an
online user interface of some
type, is made available as part
of the CRM system.

This interface, which is likely an
online user interface of some

type, is made available as part
of the purchase order system.

Invoice system

Invoice internal
application

Data Replication as an Antipattern

21 • Journal 8 • www.architecturejournal.net

	 Following a refactoring of the architecture to direct services the

ambiguity of data ownership is eliminated. New applications like the

Invoice system (see Figure 3) are able to retrieve data from the mas-

ter systems of record.

	 Benefits. Architects are constantly called on to evaluate the

trade-offs of using a certain pattern within a certain solution. When

the enterprise architectural environment attempts to move toward

an SOA, for all of the reasons that SOA is an important architec-

ture, the trade-offs of replicating data to enhance the speed of the

application or the durability of the application must be evaluated

against the benefits of the clarity and simplicity gained from the sin-

gle-point ownership and governance that a service architecture can

bring to your organization.

	 Additional benefits of using the direct services pattern can be

found in the KPI that push us toward an SOA initiative in the first

place. Service orientation is the latest attempt to create renewable

application deliverables. Extreme cost savings can be found through

the reuse of services, both in storage space and labor costs. While

data replication can appear to satisfy the functional requirements,

the goals of the enterprise architecture vision are not being met.

	 Another benefit can be found in the efficiencies gained by

retrieving only the data you need. Architectures that leverage event-

driven data retrieval are sure to be more efficient than antiquated

batch-oriented processes. Replicating all of the data during a time-

constrained batch window creates costly overhead. Without a mech-

anism for retrieving the right data at the right time using services,

you use additional processing cycles to move data that may have lit-

tle or no use depending on the activities that depend on that data.

The direct services pattern will ensure that you do not perform any

wasted processing.

	 Ultimately, the goal of any enterprise data service is to give as

complete a view of an entity as possible without sacrificing the

benefits of the enterprise architecture initiatives. In cases where

core pieces of that entity are fragmented across multiple systems,

the design of the service may require some level of aggregation.

However, this doesn’t eliminate the option of using the direct ser-

vices pattern to retrieve those subcomponents of our entity.

	 An architecture that effectively implements and consumes direct

services will minimize the brittleness of the enterprise solution port-

folio by eliminating redundancy. Through centralization and reuse,

the services built using this pattern will provide the best possible

approach for remaining agile in a climate of change.

Data Replication as a Pattern
All enterprises have complicated systems and requirements that

require architects to remain pragmatic about the patterns they

endorse. In these scenarios an architect must control the widespread

adoption of replication patterns through good enterprise gover-

nance. If that doesn’t happen, the enterprise is at risk of overusing

this pattern. Because of its perceived low barrier of entry for devel-

opers, designers, and architects, the data replication strategy should

only be considered a pattern in rare situations.

	 Context. The context where data replication is a pattern is

slightly different than the context where it is an antipattern. It still

stems from a distributed model where you wish to have a copy of

the master data maintained in a system external to the master-

data system. In some situations, you may not be able to avoid rep-

lication. Some examples include where network latency is a prob-

lem, such as in a WAN; where the master-data system is unreliable

or has incompatible maintenance windows; when offline capabili-

ties are a key requirement of the application; and when the risks of

not having services is mitigated through the expected usage of the

application.

	 Forces. The forces that influence the decision to make a copy of

the master data and may justify the complexity involved in duplicat-

ing the data are:

•	 Data availability on the master-data system doesn’t match the

requirements for the new system. For example, the master-data

system must be taken down for maintenance between certain

hours where the new system must be available (and the data is

critical to the use cases delivered by the new system).

•	 The network is unreliable or too slow. For example, on a WAN

where the network consistently is losing connection to the master-

data system, copying the data may alleviate this problem. Another

scenario is that the network is too slow to support direct con-

sumption of the data when required.

•	 The system is expected to have offline capabilities. This force is

often a requirement found in systems that will have very little

Figure 5 A master-master replication scenario

Replication building block

Acquire Manipulate Write

Replication link 1

Write Manipulate Acquire

Replication link 2

Change
role

Change
role

Source

Target

Replication
set

Source

Target

Replication
set

“Another benefit can be found in the

efficiencies gained by retrieving only

the data you need. Architectures that

leverage event-driven data retrieval

are sure to be more efficient than

antiquated batch-oriented processes”

Figure 4 Data movement building block

Data movement building block

Acquire Manipulate Write

Source Target

Movement
set

Data Replication as an Antipattern

22 www.architecturejournal.net • Journal 8 •

About the Authors

Tom Fuller is CTO and senior SOA consultant at Blue Arch Solutions

Inc. (www.BlueArchSolutions.com), an architectural consulting,

training, and solution provider in Tampa, Florida. Tom was recently

given the Microsoft Most Valuable Professional (MVP) award in the

Visual Developer ñ Solution Architect discipline. He is also the current

president of the Tampa Bay chapter of the International Association

of Software Architects (IASA), holds a MCSD.NET certification, and

manages a community site dedicated to SOA, Web services, and

Windows Communication Foundation (formerly “Indigo”). He

has a series of articles published recently on the Active Software

Professional Alliance and in SQL Server Standard magazine. Tom

speaks at many of the user groups in the southeastern U.S. Visit www.

SOApitstop.com for more information, and contact Tom at tom.

fuller@soapitstop.com.

Shawn Morgan is CEO and senior architect at Blue Arch Solutions,

Inc. (www.BlueArchSolutions.com). Shawn has architected solutions

for many Fortune 500 companies including Federal Express, Beverly

Enterprises, and Publix Super Markets. Shawn focuses on enabling

enterprises to deliver IT solutions through architecture. Contact

Shawn at shawn.morgan@bluearchsolutions.com.

Resources

Design Patterns: Elements of Reusable Object-Oriented Software, Erich

Gamma, et al. (Addison-Wesley Professional, 1995)

Microsoft Developer Network: “Data Patterns – Microsoft Patterns &

Practices,” Philip Teale, Christopher Etz, Michael Kiel, and Carsten Zeitz

(Microsoft Corporation, 2003)

“Principles of Service Design: Service Patterns and Anti-Patterns”

(Microsoft Corporation, 2005)

“SOA Antipatterns” (IBM, November, 2005)

Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools, Jack Greenfield, et al. (Wiley & Sons, 2004)

or no connectivity to the enterprise services that are providing

the data.

•	 The data will be copied without any reusable business logic for the

purpose of analysis only. There are scenarios where data would need

to be copied to a data warehouse for use in analytical reports. In most

cases, this type of data transfer is most effective when an ETL tool is

used to simply copy the data once it is deemed ready for archiving.

	 Solution. One solution to these forces is data replication. Data

replication can be performed using an architectural building block

known as a data movement building block. The data movement build-

ing block consists of a source, movement link, and destination.

	 The diagram shown in Figure 4 displays the basic building block

of many other data movement patterns (see Resources). Depend-

ing on the solution, you may need multiple data movement building

blocks to handle a master-master scenario, where the data can be

updated in both the source and destination (see Figure 5).

	 Benefits. Much of the work described in the patterns discussed pre-

viously can be done with tools and nondevelopment resources. This

feature is one of the primary benefits of this approach because you

will often see a lower initial total cost of ownership (TCO). This benefit

doesn’t tell the whole story though. Often the long-term maintenance

and versioning of these types of tools and strategies are very costly. If

the primary focus is time to market and the road map for the solution is

relatively short, then this may be a viable pattern with a high degree of

upside. Keep in mind you will trade brittleness and possible refactoring

costs down the road. Sometimes such refactoring can be done by wrap-

ping a legacy system that doesn’t meet the tenets of SOA with an inter-

face that is SOA compliant. In this way, the enterprise architecture can

move toward SOA as a whole, without having to refactor every applica-

tion in its domain.

Document Best Practices
An unavoidable aspect of innovation in technology is change. Appli-

cation architects must remain focused on mitigating the risk of

change. Using patterns and antipatterns to document best practices

has proven to be successful since the earliest OO patterns. When

applied in a timely fashion, architectural patterns are the most viable

weapon in the battle against change.

“Long-term maintenance and versioning of

these types of tools and strategies are

very costly. If the primary focus is time to

market and the road map for the solution

is relatively short, then this viable

pattern may have a high degree of upside.”

	 The pattern and antipattern discussed here focused on data rep-

lication and its role in an enterprise with an SOA initiative. By using

a template for pattern description, you can see why this technique

can have a positive or negative impact depending on the context

in which it is applied. Using patterns to solve this architecture mis-

match illustrates exactly how successful adopting an architecture-

driven methodology can be.

	 As the software industry continues to evolve, the role of architec-

ture and patterns will become even more critical. Patterns like data

replication that are common within current architectures may now

be detrimental to your enterprise’s architectural progression. Orga-

nizations that can see the shift from applications to services will be

the ones who will make the move much more quickly and see the full

potential of SOA.

	 The seemingly unattainable goals of software industrial-

ization are quickly becoming a reality. Patterns are the build-

ing blocks of consistency and agility in enterprise architec-

ture. Treating them as first-class architecture artifacts will help

to accelerate their discovery and adoption. In time, an enter-

prise that creates a reusable library of these patterns will have

increased responsiveness to their business sponsors and gained

an edge over any competition. •

23 • Journal 8 • www.architecturejournal.net

Patterns for High-Integrity
Data Consumption and
Composition
by Dion Hinchcliffe

These days the field of software development is just as much

about assembly and composition of preexisting services and

data as it is about creating brand new functionality. The world of

mashups on the Web and composite applications in the world of ser-

vice-oriented architecture (SOA) are demanding that data—in very

different forms and from virtually any source—be pushed together,

interact cleanly, and then go about their separate ways. And these

approaches demand that this interaction happens and occurs effi-

ciently, all without losing fidelity or integrity.

	 The considerable variety of data these days includes an exten-

sive array of XML-based formats, as well as increasingly widespread,

lighter weight data formats such as the JavaScript Object Nota-

tion (JSON) and microformats. Applications also have to increas-

ingly work with rich forms of data such as images, audio, and video,

and we can’t forget the older, everyday workhorse formats such as

text, EDI, and even native objects. All of these formats are increas-

ingly being woven and blended together at the same time systems

become more interconnected and integrated into vast supply chains,

enterprise service buses (ESBs), SOAs, and Web mashups. Maintain-

ing order in such data chaos is more important than ever. The good

news is that first-order rules for handling all of this data heterogene-

ity are beginning to emerge.

	 Web services, SOA, and especially the Web itself are made of open

standards that make it possible for systems to speak together—the

ubiquitous and essential HTTP being a prime example. However, this

communication does not allow one to assume what sort of data your

software will have to consume in the applications of the future.

While it is still a good bet that you will probably be facing some

form of XML, it’s now just as likely you will be faced with one of the

lightweight data formats growing in popularity such as JSON. How-

ever, increasingly, it could just as easily be simple, plain text; a tree

of native objects; or even a deeply-layered, WS-* style Web services

stack that will be provided by the forthcoming Windows Communi-

cation Foundation (WCF).

	 Developers are therefore faced with serious challenges in terms

of creating good data modeling, architecture, and integration tech-

niques that can encompass this diversity. The heterogeneity of data

representation forms can be quite daunting in environments with

high levels of system integration. Never mind that in very loosely

coupled, highly federated systems, as many applications are increas-

ingly becoming, the likelihood of frequent change is high. Conse-

quently, it is up to the application development community to create

a body of knowledge on best practices for the low-barrier consump-

tion of data from many different sources and formats, with matching

techniques for integrating, merging, and relating them. The commu-

nity also needs to ensure that integrity is maintained while remain-

ing highly resilient to change and even the inevitable evolution of

the underlying data formats.

	 While the patterns presented here are not authoritative and

intended primarily to be guidance, they are based on the well-

accepted concept of the interface contracts. Interface contracts are

now common in the Web services world with WSDL as well as in

many programming languages but particularly in design by contract.

In an interface contract, a provider and a supplier come together

and agree on a set of interactions, usually described in terms of

methods or services. These interactions will cause data of interest to

pass back and forth across the interface boundary.

	 The exact definition of the interactions, including their locations

and protocols, are precisely defined in the contract, which is pref-

erably machine readable. Of particular interest are the data struc-

tures that are passed back and forth between supplier and client

as parameters during each interaction. And it is these data struc-

tures that are really the center of the mashup/composite application

model. Because it is here, when these highly diverse data structures

meet, that we need to put principles of data integration and recom-

bination into the sharpest relief.

Forces and Constraints of Consumption and Composition
Along these lines then, we can get a general sense of the forces that

are shaping data consumption and composition in modern distrib-

uted software systems. In rough order, these are:

	 The interface contract as driver of data consumption and com-

position. When using data structures from any external source or ser-

vice, such as a Web service, data structures must be validated against

the interface contract provided by the source service. This validation can

Summary
The challenge is to consume and manage data from
multiple underlying sources in different formats while
participating in a federated information ecosystem
and while maintaining integrity and loose coupling
with good performance. Here are some emerging pat-
terns for the growing world of mashups and composi-
tion applications.

Emerging Patterns

24 www.architecturejournal.net • Journal 8 •

often be done at design time for data sources that are known to be

highly stable and reliable. But in federated systems, especially those

not under the direct control of the consumer, careful consideration

must be given to doing contract checking at run time. Run-time con-

tract checking in loosely coupled systems is an emerging technique,

and some interesting options are at the disposal of the service con-

sumer to avoid problems up front. The bottom line is that the inter-

face contract is the principal artifact that drives data consumption

and composition.

	 Abstraction impedance disrupts data consumption and com-

position. The physical point at which data integration occurs is

increasingly outside the classic control of databases, and data-

access libraries convert everything to a unified data abstraction.

Data retrieved from multiple external services and in multiple forms

can and do collide within the browser, inside front-end clients, or

on the server side‘s inside code and outside the database. The data

structures from these underlying services, depending on the soft-

ware application, range from native objects, XML, JSON, and SOAP

document/fragments to text, binary, and multimedia data. Though

abstraction impedance has been a well-known problem in software

for a long time, it has only been exacerbated by the proliferation of

the growing number of available models for representing informa-

tion. When consuming and compositing these data structures into

usable aggregate representations and then back out to their source

services, a number of major problems appear.

•	 Data format variability. The fundamental formats of the underlying

data structures are often highly incompatible, and good local facili-

ties for processing all the forms that might be encountered are not

usually at hand. Particularly problematic are extremely complex for-

mats that require sophisticated protocol stacks to handle, such as

higher-order Web services with WS-Policy requirements.

•	 Data identity. Keys and unique object/data identifiers often are

not in common formats and are not the facilities available for

checking and enforcing them consistently across abstractions.

•	 Data relationships. Establishing relationships and associations

among data structures of highly differing formats can be prob-

lematic, both for efficiency and performance, for a number of rea-

sons. Converting all data to a common format can be expensive,

both in terms of maintenance and run-time cost. It also introduces

the problem of maintaining the provenance of blended data and

extracting it back out as it’s modified. Keeping data structures in

native forms assumes good mechanisms for compositing, relating,

and manipulating them.

•	 Data provenance. Maintaining the originating source service of a

chunk of data is essential for maintaining valid context for ongo-

ing conversations with the source and for changes to the data in

particular, such as updates, additions, and deletions of the data.

•	 Data integrity. Modifying source data, ensuring that changes are

valid according to the underlying service’s interface contract, and

not violating schema definitions are important. With well-defined

XML documents that are supported by rich XML schemas, these

validations are less of an issue. However, lighter weight program-

ming models such as JSON and others like it often do not have any

machine-readable schemas. These types of data formats, though

often only available from a federated service, are at the highest risk

of integrity problems since the rules for changing and otherwise

manipulating them are not as well defined as the other formats.

•	 Data conversion. Often, there are no well-specified conversions

between data formats, or, even worse, multiple choices present

themselves that alter the data in subtle ways. The most frequently

affected data are numeric representations, but these conversions

can also affect a data source in multiple character sets, audio/

video data, and GIS data almost as often.

Figure 1 Schemas embedded in an interface contract are usually the largest client dependency.

1) /wsdl:definitions/wsdl:service/@name[,='OrderService']

2) /wsdl:definitions/wsdl:service/wsdl:port[@name='OrderServiceSoap'

and @binding='tns:OrderServiceSoap']

3) /wsdl:definitions/wsdl:binding[@name='OrderServiceSoap' and

@type='tns:OrderServiceSoap' and...

XPath contract checks

Build XML request according to contract

Contract-checking service client

Check

Invoke

Location

Binding

Operations

Schema

Service description

Service

“When using data structures from any

external source or service, such as a

Web service, data structures must be

validated against the interface contract

provided by the source service”

Emerging Patterns

25 • Journal 8 • www.architecturejournal.net

	 Large interface contract surface areas. Extremely complex sche-

mas and interface structures are growing into one of the leading

problems in distributed systems data architecture. Experience has

shown time and again that simpler is more reliable and of higher

quality. Yet distributed services interface contracts often have large

and complex XML schemas and WSDL definitions. The likelihood that

changes will occur, inadvertently or not, increases with the complex-

ity of an interface contract and its embedded schemas. While simple

XML and REST approaches to services tend to encourage the desired

simplicity, sometimes certain application domains are not “simple,”

and these service models are subject to additional problems because

of the lack of interface contract standards. The bottom line is that

the likelihood that changes to the contract without a remote sup-

plier being aware of the changes increases with the size of the over-

all contract, because changes to large schemas are more likely to go

undetected than changes to a smaller schema.

	 Implicit version changes. Even in well-controlled environments,

changes to services and their interface contracts can happen with-

out notifying all dependent parties. Barring changes to the way data

services work currently, this pattern will only become more common

in the highly federated environments of the present and those of the

future. Without any change, the services you depend on will change

without your knowledge or prior notification, and you will have to

accept this fact as practical, inevitable, and unfortunate. Conse-

quently, developing conscious strategies to detect version changes

and handle them effectively is essential to maintain the quality of a

mashup or composite application’s data and functionality.

Patterns of Data Consumption and Composition
The patterns described here are intended to present a lightweight

stance on data modeling and application architecture. These obser-

vations are a result of observing the dynamic world of Web mashups

and composition applications that have been thriving on the Web

for several years now. The nimble, minimalist approaches used by

mashups in particular are an inspiration but in themselves often are

not sufficient to create quality software. These patterns are intended

to capture the spirit of mashups, put them in context with good

software engineering practices, and to start a discussion and debate

in the software community about these lean methods for connecting

services and data.

	 Pattern 1 – Minimal surface area dependency on interface con-

tract. This pattern is the front-end aspect of the well-known soft-

ware design maxim: “Be liberal in what you accept, conservative

in what you send.” Most Web service toolkits, relational database

frameworks, and multimedia libraries encourage dependencies on

too much of the interface contract, often the entire contract, regard-

less of what the software depends on. For a great many of con-

sumption and composition scenarios, a small surface area depen-

dency is really all that is necessary. A full contract dependency intro-

duces a tremendous amount of brittleness because changes that

have no relation to the data in the data structure that is depended

on will still break the client. While some data consumption toolkits

are already forgiving of this dependency, there is often little control

over what parts the toolkits care about.

	 For many applications, only direct dependencies of the needed

internal data elements are appropriate. All other dependen-

cies should be actively elided from the dependency relation-

ship within the source data. The upshot here is that changes to

the interface contract that are not of importance to the data con-

sumer must not prevent the use of the data. The converse must

be true as well; changes to the contract that matter must imme-

diately become apparent to prevent incorrect behavior and use

of the data. Examples of minimal dependencies include: XML,

key paths through the schemas to data elements; relational data,

only the tables, types, columns, and indexes used by the client;

and multimedia, only the portions of the media structure that are

required such as the specific channels, bit rates, image portion,

video segment, and so on.

Small surface area dependency on service
and frequent checks for contract changes

Loosely
coupled

contract-checking
client

Direct XML message
handling

Changes minimally Supple, highly resilient
service participation

= Changes over time

Tim
eEndpoint

(URI, protocol, contract)

Service (SOAP or REST)

Service
implementation

Service assumes clients check the contract,
and all changes are backward compatible

Figure 2 Run-time checking of the interface contract on Web services

Emerging Patterns

26 www.architecturejournal.net • Journal 8 •

	 Pattern 2 – Run-time contract checking for changes. The ser-

vices that mashups and composite applications depend on for data

are subject to unexpected change at any time. This change could be

because of moving the endpoint to a new location, stopping use of

a previously supported protocol, changes to underlying schema, or

even just outright deliberate interface changes or internal service

failures. The reason leads to the necessity of checking the contract to

detect changes to it. It also requires being able to handle many con-

tract changes gracefully since they may very well not affect the part

of the contract you care about.

	 In reality, there are two types of run-time contract check. One is

to check the contract specification itself, if one exists. This specifica-

tion is often the WSDL or other metadata that is officially published

in conjunction with the service itself. These can be checked eas-

ily and quickly with a variety of programmatic techniques, including

XPath queries for XML-based schemas or other relatively lightweight

techniques. Hard-coded contract checks in traditional programming

languages are not as easy to implement or change and should be a

second choice.

	 The second contract check is to do validation of the contract

against the instances of data that the service provides. Interface con-

tracts often have their own abstraction impedance with their delivery

mechanisms, and it can be surprising how often inconsistencies will

creep in between the data provided and the interface contract, even

with otherwise high-quality toolkits.

	 The biggest dilemma presented by this pattern is how often to

check the “check the contract” itself. Checking the contract and the

instance data with each retrieval of data from its source can be time-

consuming and is usually unnecessary. Ultimately, determining the

frequency of contract checking is largely dependent on the appli-

cation requirements and the nature of the data and its tolerance for

inaccuracy and incorrect behavior. For many applications, checking

synchronously may not even be an option, and it may make sense to

set up an appropriately periodic background process to identify con-

tract changes, which will inevitably occur.

	 Pattern 3 – Reducing structures to a common data abstraction

format. In reality, the carnival of data structures and formats that

mashups and composite applications have to work with will only con-

tinue to grow. Software can either manipulate them in their native

data formats, which means losing opportunities to maintain rela-

tionships and enforce business rules, or it can convert all of them

to a common abstraction. This conversion is the approach that data

libraries like ADO.NET use with its DataSets and XML does with other

non-XML data sources. Subsuming the differences in source data by

converting them into and out of a common data abstraction that

provides a single unified model to work with can be appealing for a

number of reasons. First, relationships between the various underly-

ing data sources can be checked and enforced as the data is manip-

ulated and changed. Second, views into the data can take advan-

tage of the abstraction mechanism making it less necessary to build

custom Model-View-Controller (MVC) mechanisms and use existing

libraries and frameworks that can process the abstraction.

	 Not all sets of heterogeneously formatted data structures are

a good candidate for this pattern, and it may make little sense for

some data formats that have dramatic levels of abstraction imped-

ance—image data with non-image data, for example. There is also

a potentially nontrivial cost for data transformation and conversion

into and out of the common format. For many applications, however,

this cost is entirely acceptable.

	 Within certain data-consumption environments, like the Web

browser, there are limited choices for maintaining a common

data format, and JSON and the XML DOM tend to be quite popu-

lar for browser-based solutions. On the server side the choices are

far richer but are often platform dependent. XML structures, O/R

libraries like Hibernate, relational databases, and even native object

graphs often make excellent common abstraction models depend-

ing on the application. But the very different nature of hierarchi-

cal data like XML and object graphs is one of the classic impedance

problems in computer science, and care must be taken when using

this pattern.

	 The bottom line: if performance is not absolutely critical and the

underlying data formats and schemas are amenable, this pattern can

be very powerful for working with federated data sources. The dis-

advantage is that the common abstraction approach can certainly

involve more maintenance and take on brittleness because mapping

and metadata must be maintained.

	 Pattern 4 – Native structures mediated with Model-View-Con-

troller (MVC). Converting all source data into a common format will

not be an option in many situations because 1) the processing over-

head is excessive since much of the data might not be used, or 2)

duplicating it in the local environment might be prohibitive in terms

of resources. Or it could be because there is no common format that

makes sense for all the underlying datatypes. In this case, creating

an MVC that mediates the access, translation, and data integrity with

the underlying native structures can provide the best options for

both performance and data storage.

	 MVC is a powerful design pattern in its own right that has been

proven time and again as an excellent strategy for the separation of

the concerns in application software. Its use is particularly appropriate

when there are multiple underlying data models in a given application.

Good software design dictates that offering a unified view of the source

data provides a single, clean, consistent interface that makes it easy

to view, interact with, and modify the underlying data. Access to the

underlying data with the MVC approach is also relatively efficient since

only the data needed must be processed to satisfy most requests.

	 While there are many advantages with MVC, however, the disad-

vantages are similar to pattern 3 in that the maintenance of the MVC

code can be enormous. Certainly, there are an increasing number of

off-the-shelf libraries that can help software designers build MVC on

both the client and the server. Be warned, though: mapping code is

brittle and tedious.

	 Pattern 5 – Direct native data structure access. For many appli-

cations, especially simpler, browser-based ones, converting source

data into common formats or building sophisticated MVC architec-

“The Web itself is becoming the most

important supplier of highly federated

data, a source that will only grow and

become more important in the next

few years”

Emerging Patterns

27 • Journal 8 • www.architecturejournal.net

Resources

microformats

http://microformats.org

Wikipedia

http://en.wikipedia.org/wiki/Design_by_contract

“The Impedance Mismatch Between Conceptual Models and

Implementation Environments,” Scott N. Woodfield, Computer Science

Department, Brigham Young Univerisity (ER‘97 and Scott N. Woodfield,

1997)

http://osm7.cs.byu.edu/ER97/workshop4/sw.html

Hewlett-Packard Development Company

Technical Reports

“Rethinking the Java SOAP Stack,” Steve Loughran and Edmund Smith

www.hpl.hp.com/techreports/2005/HPL-2005-83.html

About the Author

Dion Hinchcliffe is chief technology officer at Sphere of Influence Inc.

Table 1 Common data abstractions

Abstraction Contract standard Advantages Disadvantages

Text, JSON, binary Informal, textual Relatively efficient Not self-describing, not ideally efficient

Native objects Class definition Unified behavior and data, encapsulation,
high-level abstraction, and composition

Requires conversion of most data into
objects, requiring a mapping technique

XML XML schemas (XSD), Relax NG, WSDL, and
many others

Self-describing, rich schema description,
and extensible without breaking backward
compatibility

Very size inefficient, no way to distribute
behavior, and schema descriptions are lim-
ited even with XSD

Images Specifications for JPEG, TIFF, GIF, BMP, PNG,
and many others

N/A N/A

Audio Specifications for WAV, WMA, MP3, and AAC N/A N/A

Video Specifications for AVI, QuickTime, MPEG,
and WMF

N/A N/A

tures just isn’t a good option. Direct access to the data makes more

sense, and the decision is often a commonsense one, having to do

with the libraries at hand. Plus, as mentioned before, simpler is often

higher quality and better because there is less to break or maintain.

	 In this pattern, which works best with less highly structured data,

the native data structures are used directly without an intermediary

or any data conversion, which means data stores in text, XML, JSON,

and so on are manipulated natively. The drawback, of course, is that

you cannot rely on the facilities that data abstraction libraries can

give you to enforce integrity or track changes. However, this pattern

often requires the least amount of processing or learning third-party

libraries. It can be easy to develop, and because there is no conver-

sion or data access layers to go through, it’s also quite fast.

	 Pattern 6 – All data modification is atomic. More sophisti-

cated views of data and services prescribe properties known as

ACID, for atomicity, concurrency, isolation, and durability. Usually

ascribed to database systems, ACID is an excellent and practical

rule of thumb for almost any concurrent data access system. Unfor-

tunately, almost no one yet in the world of Web services and mash-

ups has the notion of transactions in their protocols, which would

confer many of the properties of ACID to the modification of data.

Far from ignoring the problem, mashup and composite application

developers must be acutely aware of working without a tightrope

as they work with their data.

	 This awareness introduces significant issues with complex data

modification scenarios, one being that any data retrieval and stor-

age that is dependent on an extended conversation with under-

lying services will almost certainly not be protected by the same

transaction boundary and related ACID properties. Software code

must expect that data integrity problems will occur, especially in an

extended conversation that may never finish to completion or fail

partway through. Avoiding long-running conversations altogether

is one option. Making software operation dependent, as much as is

possible, in individual atomic interaction with underlying services is

another good way. Each step in the interaction is a discrete, visible

success that allows the software to offer its users clear options when

a conversation with a supplier data service fails. These two options

allow software developers to respect the ACID rule of thumb.

A Return to Simplicity
The Web itself is becoming the most important supplier of highly

federated data, a source that will only grow and become more

important in the next few years. While XML and lightweight data

formats will likely be the dominant data structure that most soft-

ware will have to work with in the foreseeable future, curve balls

are en route. These curve balls include much needed optimizations

in XML such as binary XML, advances in microformats, new mul-

timedia codecs that will suddenly change an entire audio/visual

landscape, and completely new transport protocols such as Bittor-

rent, which will make many of the patterns here problematic, to say

the least.

	 A return to simplicity in data design is back in vogue, exempli-

fied by the rise in the interest in formats like JSON, microformats,

and dynamic languages like PHP and Ruby. This design simplicity can

make data more malleable and easier to connect together. It also

allows for less difficulty in writing software to care for and manage

it. While the patterns presented here are overarching ones that can

lead to less brittle, more loosely coupled, and high-integrity data

consumption and composition, the story is really just beginning. As

the Web becomes less about visual Web pages and more about ser-

vices and pure data and content, becoming adept at being a nim-

ble consumer and supplier of the information ecosystem will be an

increasingly critical success factor. •

28 www.architecturejournal.net • Journal 8 •

The Nordic
Object/Relational
Database Design
by Paul Nielsen

The differences between object-oriented development and the

relational database model create a tension often called the

object-relational impedance mismatch. Inheritance just does not

translate well into a relational schema. The technical impedance mis-

match is aggravated by the cultural disconnect between applica-

tion coders and database administrators (DBAs). Often neither side

fully understands nor respects the other’s lexicon. A sure way to get

under a DBA’s skin is to refer to the database as the “object per-

sistence utility.” That relationship is unfortunate because each side

brings a unique set of advantages to the data architecture problem.

	 In many ways object-oriented design is superior to the relational

model. For example, designing inherence between classes can be accom-

plished using the relational supertype/subtype pattern, but the object-

oriented design is a more elegant solution. Also, nearly all application

code is object oriented and an object-oriented database would interface

with the application more easily than would a relational database.

	 As sophisticated as object-oriented technology is at model-

ing reality, the relational side is not without significant advan-

tages. Relational database engines offer performance, scalability,

and high-availability options, and the financial muscle to ensure

the database platform will still be here in a few decades. Relational

technology is well understood, and relational databases offer more

powerful query and reporting tools than object databases. The few

pure object database companies available simply do not have the

resources to compete with Microsoft, Oracle, or IBM.

	 The conundrum of the object-relational impedance mismatch

then is how to best embrace the elegance of object-oriented tech-

nologies while retaining the power, flexibility, and long-term stabil-

ity of a mature relational database engine. Since application pro-

grammers are generally the most interested in solving this prob-

lem, and human nature tends to solve problems using the most

comfortable skill set, it is not surprising that most solutions are

implemented in a mapping layer between the database and the

application code that translates objects into relational tables for

persisting objects.

The Nordic Proposal
I propose that a relational model, designed to emulate object-ori-

ented features, can perform extremely well within today’s rela-

tional database engines, and that manipulating the class inheri-

tance and complex associations directly in the database, close to

the data, is in fact very efficient. This efficiency was not always

the case. I was hired to optimize a Transact-SQL (T-SQL)-intensive,

object/relational (O/R) database design implemented with SQL

Server 6.5 and failed. Development of the Nordic Object/Relational

Database Design involved a year’s worth of iterations, a simplified

metadata schema, and SQL Server’s maturing T-SQL.

	 As with any database project, a strictly enforced data abstrac-

tion layer that encapsulates the database is necessary for long-term

extensibility. For an O/R hybrid database, the data abstraction layer

also provides the façade for the object-oriented features. Behind the

façade’s code are the metadata schema and code generation for the

classes, objects, and associations (see Figure 1). When implementing

this solution there are a few key design decisions.

	 Class management. Within the relational schema, class and

attribute metadata are easily modeled using a common one-to-

many relationship. The superclass/subclass relationship is modeled

as a hierarchical tree, using either the more common adjacency list

pattern or the more efficient materialized path pattern.

	 Navigating up and down the class hierarchy with user-defined

functions enables SQL queries to join easily with any class’s dece-

dent or ancestor classes. These user-defined functions are lever-

Summary
The New Object/Relational Database Design (Nordic),
like many tools, is not the most fitting or expedi-
ent solution for every kind of database problem.
However, the object/relational hybrid model can
provide more power, greater flexibility, better perfor-
mance, and even higher data integrity than tradi-
tional relational models, particularly for databases
that benefit from inheritance, creative data mining,
flexible class interactions, or workflow constraints.
Discover some of the innovations that are possible
when object-oriented technology is modeled using
today’s mature relational databases.

“As sophisticated as object-oriented

technology is at modeling reality,

the relational side is not without

significant advantages”

O/R Hybrid Model

29 • Journal 8 • www.architecturejournal.net

aged throughout the façade layer. For instance, when selecting

all the properties for a class, joining with the superclasses() user-

defined function returns all superclasses, and the query can then

select all of a given class’s properties including properties inherited

from superclasses.

	 In the context of working with persisted objects, polymorphism

refers to the select method’s ability to retrieve not only the current

class’s objects but all subclass objects as well. For example, select-

ing all contacts should select not only objects of the contact class

but also objects of the customer and major customer subclasses. A

user-defined function that returns a table variable of all subclasses

of a given class makes writing this query and stored procedure effi-

cient and reusable.

	 Object management. Objects are best modeled using a sin-

gle object table that stores the object’s common data such as the

unique objectid, object’s class, audit data, and a few search attri-

butes common to nearly every class, like name, a date attribute, and

so forth. Additional attributes are stored in custom class tables that

use an objectid foreign key to relate the custom attributes to the

object table. The createclass and other class-management, façade-

stored procedures execute the Data Definition Language (DDL) code

to create or modify the custom class tables and generate the custom

façade code for selecting, inserting, and updating objects.

	 The major design decision for modeling how objects are stored

is how to represent the custom attribute data. There are three pos-

sible methods: the value-pair pattern, concrete custom class tables,

and cascading custom class tables. The value-pair pattern, also

called the generic pattern, uses a diamond-shaped pattern consist-

ing of class, property, object, and value. The value table uses a sin-

gle column to store all values. This long, narrow table uses one row

for every attribute. Ten million objects with fifteen attributes would

use 150 million rows in the value table. SQL Server is more than

capable of working with large tables—that’s not a problem. This

model appears to offer the most flexibility because attributes can

be added without modifying the relational schema; however, this

model suffers from nonexistent, or at best awkward, data typing

and is difficult to query using SQL.

A Table for Every Class
The concrete custom class model uses a table for each class with col-

umns for every custom attribute including nonabstract inherited attri-

butes. An object exists in only two tables—the object table and the

concrete custom class table—while attributes are replicated in every

subclass’s concrete custom class tables. Therefore, if the animal class

has a birthdate attribute, and the mammal subclass has a gender attri-

bute (since some animals do not have a gender), then the mammal

custom class table includes objectid, birthdate, and gender columns.

	 This pattern has the advantage that selecting all attributes for a

given class requires, only joining the object metadata table with a

single custom class table. The disadvantage is implementing poly-

morphism; selecting all animals requires performing a union of

every subclass and either eliminating subclass attributes or adding

surrogate superclass attributes so all selects in the union have com-

patible columns.

	 An improvement over the value-pair pattern, the concrete cus-

tom class tables use a relational column for each attribute so attri-

bute data typing can easily implement the native data types of the

host relational database.

	 The third option implemented in the Nordic Object/Relational

Database Design, cascading custom class tables, uses a table for

each class like the concrete class solution. However, instead of rep-

licating attributes, each attribute is represented only once in its

own class, and every object is represented once in every cascad-

ing class. Using the mammal and animal example, the animal table

contains objectid and birthdate, and the mammal table consists of

objectid and gender. An instance of the mammal object is stored

in the object metadata, the animal table, and the mammal table.

Polymorphism is very easy in this option, however, more joins are

required to select all attributes from subclasses. Since SQL Server

is optimized for joins, cascading custom class tables perform very

well. As with concrete custom class tables, strong data typing is

supported by the host database.

	 Association management. Object-oriented technology’s associ-

ations are very similar to relational database technology’s foreign

key constraints, and it is certainly possible to define associations

within an O/R hybrid model by adding foreign key attributes and

assigning relational declarative referential integrity constraints to

the custom class tables.

	 However, storing every object in a single table offers some

exciting alternatives for modeling associations. Where a normal-

ized relational database might contain dozens of foreign keys, each

with a different foreign key table and column, and each references

a different primary key, an O/R hybrid association table needs to

reference only a single table. Every foreign key relationship in the

database can be generalized into a single association.objectid to

object.objectid foreign key.

	 The association table can be designed as a paired list (ObjectA_

id, ObjectB_id), but this design is too limiting for complex collec-

tions, and queries must identify objectA and objectB. The more

flexible alternative uses an object-association list consisting of a

single objectid to reference the object, and an associationid to

group associated objects. An associationtypeid column can refer-

ence association metadata that describes the association and might

provide association constraints.

Figure 1 The O/R hybrid design uses a façade to encapsulate the object-

oriented functionality executed within a relational database schema.

Class
designer

Transform
Microsoft SQL

Server
into an

O/R DBMS
OR DBMS base

schema metadata

Microsoft SQL Server

Object
browser

Custom class
façade

Custom class
tables

Façade interface

O/R Hybrid Model

30 www.architecturejournal.net • Journal 8 •

	 A single table for every object and another table for every associ-

ation sounds radically different than a normalized schema, and it is.

The physical structure is not a problem though; SQL Server excels at

long narrow tables, and this design lends itself to clustered and non-

clustered covering index tuning, which yields high performance.

Find All Associations
For the database architect the object-association list pattern pro-

vides amazing possibilities. First, joining an object with n num-

ber of other objects of any class always uses the same query (see

Figure 2). Adding additional tables to a relational query adds n-

1 joins, but the object-association list consistently uses the same

three joins regardless of the number of classes involved. Depend-

ing on the application, this style of relating objects can scale con-

siderably better than a normalized relational model. As new classes

are added to the data model or to the association they are auto-

matically included in “find all associations” queries without modify-

ing any existing code.

	 Finding all associations between classes, or all objects not par-

ticipating in any association with another class, or other creative yet

powerful data mining queries are all trivial and reusable set-based

queries. SQL Server user-defined functions can encapsulate work-

ing with associations and the many logical combinations of objects

that do or do not participate in associations.

	 Complex collections are also possible with an object-association

list. For instance, a classroom collection might include one class-

room, one or more instructors, one or more desks, curriculum, and

one or more students as defined in the association metadata.

	 Generalized associations open up more possibilities. Web pages

are also linked using a generalized method; every hyperlink uses

an anchor tag and a URL. It is essentially an object-association list

embedded within HTML code. It is trivial to graphically map a Web

page and display the navigation between Web pages regardless of

the content of the Web page. Likewise, it is trivial to bounce between

the object and association tables and instantly locate objects associ-

ated by several degrees of separation regardless of class.

About the Author

Paul Nielsen is a SQL Server MVP, author of the SQL Server Bible

series (Wiley, 2002), and is writing Nordic Object/Relational Design In

Action (Manning), which is due to be published later this year. He offers

workshops on database design and optimization and may be contacted

though his Web site, www.SQLServerBible.com.

	 I am currently developing a child-sponsorship management data-

base to help organizations fight poverty. Using the object-associ-

ation list, a single user-defined function that finds associations for

any object can find that Joe sponsors a child in Peru, is scheduled

to attend a meeting about poverty, wrote three letters to the child,

sent a gift last year, and inquired about a child in Russia.

	 Spidering the association-object list for multiple degrees of

separation also reveals that Greg is scheduled to visit the town in

Peru where Joe’s child lives, 14 others attended the same poverty

meeting as Joe, and three of those sponsor children in Peru. This

flexibility for any object with one query is impossible with a rela-

tional design.

Object Workflow State
The generality of the object-association list lends itself to another

database innovation—integrating object workflow state into the

database. While workflow state does not apply to all classes, for

some classes, workflow is a dimension of data integrity missing

from the relational database model.

	 A typical workflow for an order might be shopping cart, order

confirmed, payment confirmed, inventory allocated, in process,

ready to ship, and shipped. A relational foreign key only constrains

the secondary table to referencing a valid primary key value. Using

a relational database, a shipdetail row can be created that refer-

ences the order regardless of the workflow state of the order. Cus-

tom code must validate that the order has completed certain steps

prior to shipping.

	 With inheritable workflow states defined as part of the class

metadata, the association metadata can restrict the objects to class

and workflow state integrating workflow into the object data.

	 I have highlighted some of the innovations possible when object-

oriented technology is modeled using today’s mature relational

databases. As with any tool, the Nordic Object/Relational Database

Design is not the best solution for every database problem; however,

for databases that benefit from inheritance, creative data mining,

flexible class interactions, or workflow constraints, the O/R hybrid

model can provide more power, flexibility, performance, and even

data integrity than traditional relational models. •

“With inheritable workflow states

defined as part of the class metadata,

the association metadata can restrict

the objects to class and workflow

state integrating workflow into the

object data”

Figure 2 A generic three-join query locates all associated objects

regardless of the class.

FROM

SO

A1

A2

SELECT PO.ObjectCode, SO.ObjectCode

FROM Object PO

JOIN Association A1

ON PO.ObjectID = A1.ObjectID

JOIN Association A2

ON A1.AssociationID = A2.AssociationID

JOIN Object SO

ON SO.ObjectID = A2.ObjectID

PO

No matter how you say the word

“Architecture”, you can now access

The Architecture Journal in 8 languages.

For Issue #7 we are pleased to announce

the public availability of The Architecture

Journal in English, Spanish, Brazilian

Portuguese, French, German, Simplified

Chinese, Japanese, and Korean.

To access localized versions of the Journal,

visit http://www.architecturejournal.net

and click on one of the languages listed on

the top bar to download the PDF.

Now live at www.ArchitectureJournal.net!

32 www.architecturejournal.net • Journal 8 •

Adopt and Benefit from
Agile Processes in Offshore
Software Development
by Andrew Filev

During the post-bubble era, IT budgets were cut more than

were demands for their services, which prompted managers

to search for more cost-effective solutions and empowered the

trend for outsourcing software development to emerging mar-

ket countries (offshore development). The economic driving force

is not the only force for this trend. The recent rapid growth trig-

gered by an improved communications infrastructure also plays a

major role.

	 With respect to working in distributed teams in general and

to offshore outsourcing in particular, usable voice over Internet

protocol (VoIP) software, instant messengers, e-mail clients, and

wikis have made online communications easier. Moreover, now it

is often preferable to use online tools such as wikis over personal

communications because these tools not only help to communi-

cate the information, but also help to structure and store it. These

tools are also effective when distributing information to many

recipients.

	 These globally available, fast Internet connections power other

tools, which adds to this trend. Modeling tools help to make doc-

umentation more self-explanatory in distributed teams. Bug track-

ers, source control servers, Web portals, and online collaboration

tools all help coordinate the distributed projects. Terminal services

and virtual machines facilitate remote testing and administration.

	 The Internet also brought emerging market countries onto the

track of high technologies. Because the Internet bypasses politi-

cal borders, thousands of young people in developing countries

like Russia and China use it to learn technologies that are cutting

edge and improve their English skills. This new wave of Internet-

educated software engineers came just in time to reinforce the off-

shoring trend.

	 The recent rise of offshore outsourcing made it big enough to

become the target for political debates. For this discussion assume

offshore development is an existing reality, and we’ll focus on max-

imizing return from such outsourcing engagements. We’ll skip the

politics, but consult the list of resources for McKinsey Global Insti-

tute’s research that quantifies the benefits of offshoring for the U.S.

economy and debunks several myths about it.

Agile Software Development Trends
Let’s return back onshore. Here the hearts and minds of many

managers and engineers are conquered by another modern trend,

agile software development. Slow heavyweight methods didn’t

prove themselves in today’s dynamic business environment. Slen-

der budgets demand more results, while bureaucracy was never

the best choice in terms of return on investment (ROI). The power

of agile methods lies in collaboration, flexibility, and dedication to

the business value of software as reflected in core principles of the

Agile Manifesto: individuals and interactions over processes and

tools, working software over comprehensive documentation, cus-

tomer collaboration over contract negotiation, and responding to

change over following a plan (see Resources).

	 Agile methods greatly suit the new wave of Internet-based

start-ups (often called Web 2.0). Agile software development lets

some of these start-ups achieve more for less and release signif-

icant projects with small teams and tiny budgets. The short iter-

ations and working software principles are reflected in a practice

called constant beta after several Google products with the word

“beta” incorporated in their logo.

	 However, agile methods are not one size fits all. They work well

for small co-located teams facing rapidly changing conditions.

While there are cases where agile software development’s appli-

cability is subject to question—such as in distributed development

with offshore outsourcing—my successful five years of experience

applying principles of agile development in distributed teams dem-

onstrates that it is possible and that it gives great returns when

used properly.

	 There are other scenarios where the use of agile software devel-

opment processes remains questionable. Examples are large devel-

Summary
In modern software development there are two
trends that allow people to get more for less: agile
development and offshore outsourcing. Let’s look at
how and when to successfully combine both to raise
the competitiveness of your business.

“Agile methods are not one size

fits all. They work well for small

co-located teams facing rapidly

changing conditions”

Agile Processes for Offshoring

33 • Journal 8 • www.architecturejournal.net

opment teams (more than 20 people working on one indepen-

dent project), systems where predictability is paramount (life-criti-

cal applications), and bureaucratic environments. We won’t look at

such scenarios here, and furthermore we assume a company has a

corporate culture favoring agile development and intends to apply

the ideas presented here to software teams of fewer than 20 peo-

ple (that is, 20 people on a particular team or project, not on the

entire development team). We’ll instead look at the application of

agile methods to distributed development in general and offshore

outsourcing in particular.

Combining the Trends
Offshore software development deals represent a whole spec-

trum of different engagements, from hiring one offshore devel-

oper from rentacoder.com on one side, to billion-dollar deals with

U.S. companies who own overseas subsidiaries on the other. Some

of these deals are arranged in a way that prevents the companies

from using an agile software development process, even if one of

the sides wants to.

	 To implement an agile process, the selected outsourcing model

should encourage communications and collaboration, assume flexi-

bility, and justify releasing often. Though dozens of criteria may be

applied to outsourcing deals, not many of them are as important

for our further discussions as the pricing model. See Figure 1 for

the mapping of the most common pricing schemas.

	 Predictable results imply predictable processes. In Figure 2

you can see groups of the development processes aligned on

the predictive-adaptive scale. If we use a predictive-adaptive

criterion, predictable schemas, which are closer to the left end

of the scale (see Figure 1), require more predictability from the

software development process; while agile development pro-

cesses lie on the opposite side of the software development pro-

cesses continuum.

	 The predictability concern is especially related to fixed

scope-fixed price engagements. When this type of contract

is applied to an outsourcing deal, the client and provider are

naturally tied to predictive software development processes

and their consequences. So this contract is not a good fit for

agile software development. When designing an outsourcing

engagement, remember that responsiveness to changes encour-

ages using pricing models like time and material, which gives

flexibility both to client and provider and is a better fit for agile

development.

	 When structuring the deal, consider how the selected schema

will affect communications and collaboration. An agile develop-

ment process requires an open environment, tight in-team inte-

gration, shared common goals, understood business value, and

frequent communication. The more barriers we have among engi-

neers, customers, users, managers, and other stakeholders, the

harder it is to provide a base for agile software development,

which means reducing middlemen to allow maximum transpar-

ency and integration between teams.

	 Big players work this out by establishing their own branches in

other countries, which makes economical sense if a company wants

to have more than 100 engineers in its overseas development cen-

ter. The exact number depends heavily on the other country and

such factors as how easily the company may recruit talented peo-

ple there.

	 When considering this alternative, do not repeat the mistakes

of some small and midsize businesses, who underestimated the

hidden expenses like top management time, travel budgets, local

attorney’s fees, and other costs. Also, the rapid growth of econ-

omies in developing countries causes shortages of talent, which

doesn’t ease the life of small foreign newcomers. While local play-

ers are better networked in their local community, branches of big

companies may set this off by well-known brands, bigger salaries,

and better social packages.

	 Such luxuries are often out of reach of small companies, which

may want to have only 15 developers overseas. Successful small

and midsize players overcome the costs of handling remote office

setup by using dedicated development teams, offshore develop-

ment centers (ODCs), build-operate-transfer (BOT) models, vir-

tual offices, virtual teams, and so forth. Regardless of the name

and details, one thing is common in these models: the offshore

provider is more focused on providing physical, legal, IT, and HR

infrastructure to the client than on participating in the develop-

ment process. The responsibility for project delivery in such deals is

shared between client and provider.

	 To reap the full benefits of such deals, engineers must be

assigned to one client, and team retention rates must be good

in both companies. The provider must provide transparent com-

munications to the client on every level, including developer-

to-developer communications. People must speak one language

without a translator.

	 In successful engagements we sometimes see that although

people in remote offices get paid through the provider, they asso-

ciate themselves more with the client and share the values and cor-

porate culture of both companies.

Using the Right Practices and Tools
There are well-known practices used by successful software devel-

opment teams: common coding standards; a source-control server;

one-click, build-and-deploy scripts; continuous integration; unit

Figure 1 Point-to-point and service bus integration

Figure 2 Three integration layers

Waterfall Iterative Agile

Predictive Adaptive

Fixed price

Pricing tied to results

Combined schemas Time and material
cost plus

Pricing tied to activities

“Choosing the right model is also

very important, but it doesn’t

guarantee success”

Agile Processes for Offshoring

34 www.architecturejournal.net • Journal 8 •

testing; bug tracking; design patterns; and application blocks.

These practices must be applied to distributed teams more strictly

than to local teams.

	 For example, consider continuous integration. It might be

extremely frustrating to come to work and get a broken build from

the source-control server, while the person responsible for it is

several thousand miles away and might be seeing dreams at the

moment. This issue might not be big if done by the guy in the next

office, but it might become a major problem in a distributed sce-

nario hurting productivity and communications. You can minimize

such risks by sticking to continuous integration practices teamwide

and installing the corresponding server (such as Microsoft Team

Foundation Server, CruiseControl.NET, and CruiseControl).

	 Teams working on the Microsoft .NET platform are in a great

position with the features provided by Microsoft Visual Studio Team

System right out of the box. You get prescriptive Microsoft Solutions

Framework for Agile Development and supporting tools. This prod-

uct is extremely helpful for teams who need more guidance with

agile development in distributed environments. For experienced

teams, it’s an integrated solution that provides great ROI.

	 Another Microsoft product, which provides great value for dis-

tributed teams, is Windows SharePoint Services (WSS). Wikis natu-

rally fit and help agile development in distributed teams, and the

next version of WSS is planned to have wiki among its enhance-

ments. WSS is also tightly integrated with Visual Studio Team Sys-

tem, which makes it the best choice for the team’s Web portal.

	 From an IT infrastructure point of view, I recommend using a

virtual private network (VPN), giving the teams equal access to

shared resources. The VPN environment, being less strict than a

public network, allows using such features as Windows Live Mes-

senger’s application sharing, video and voice calls, remote assis-

tance, and whiteboard.

Communication, Communication, and Communication
Working remotely, small misunderstandings quickly grow into

bigger problems. In distributed development teams manag-

ers must pay attention to communication practices, which they

sometimes omit without negative consequences in local develop-

ment. This attention includes regular (daily/weekly) reports and

status update meetings, which allow the team members to syn-

chronize, discuss achievements, and reveal problems. Manag-

ers should also try to build personal human relations in teams

through introductory meetings, on-site visits, team-building

activities, and other methods.

	 In offshore outsourcing deals, development managers should

be aware of language, cultural, and time zone barriers and must

find ways to surmount these obstacles. Globalization slowly

but constantly erases the cultural distinctions in the profes-

sional environment, but there are still cases when cultural differ-

ences bring confusion. There are many country-specific issues in

this topic, and they are out of the scope of this discussion. Lan-

guage issues are much easier to detect, though it doesn’t mean

that they’re easier to overcome. Where companies face a lan-

guage barrier, it is common and highly desirable to have com-

pany-sponsored language training for employees. In most of the

offshore development countries professionals are motivated to

learn English, so it is usually people in these locations who get

language training.

	 Variations in time zones specifically make the process more dif-

ficult. But it turns out that in countries with developed outsourc-

ing industries, software engineers are usually ready to adapt their

working schedule to work with overseas counterparts. There are

two strategies to handle time zone differences. The first is to sep-

arate teams by activity; for example, have quality assurance and

product managers on site and developers overseas. This arrange-

ment allows implementing a cycle, where developers implement

fixes and new requirements while their counterparts are sleeping

and vice versa. Of course there should be intersections in work-

ing schedules (in the beginning/end of a working day). The second

approach is to divide projects into blocks, and try to assign each

block to one location, delegating as many functions as possible

to this location. The second approach forces better communica-

tion and thus better serves agile development, but both work, and

sometimes there is no choice.

	 Choosing the right model is also very important, but it doesn’t

guarantee success. It’s highly recommended that at least one

party has experience in agile development, preferably in a dis-

tributed environment. The lack of face-to-face communication,

along with time, cultural, and language differences, requires

attention and investing additional efforts to get desired results.

The benefits of having a good offshore partner—cost-savings,

on-demand staff augmentation, and outsourcing infrastructure-

related tasks—(which might be summarized as “getting more for

less”) far outweigh investment in building the productive rela-

tions. This positive balance would be impossible without mod-

ern tools empowered by the great communications infrastructure

now available globally. •

Resources

“Exploding the Myths of Offshoring,” Martin N. Baily and Diana Farrell,

The McKinsey Quarterly (McKinsey & Company, 2004)

www.mckinseyquarterly.com (Note: registration required.)

Manifesto for Agile Development

http://agilemanifesto.org

About the Author

Andrew Filev (MCA, MVP) is vice president responsible for offshore

operations at Murano Software. He establishes offshore development

centers and leads and motivates teams. An excellent communicator,

Andrew fills the gap between different cultures and builds lasting

partnerships with clients.

“Agile development process requires

an open environment, tight in-team

integration, shared common goals,

understood business value, and

frequent communication”

35 • Journal 8 • www.architecturejournal.net

Service-Oriented
Modeling for Connected
Systems – Part 2
by Arvindra Sehmi and Beat Schwegler

In part 1 we ended our discussion with a pragmatic Service Ori-

ented Analysis and Design (SOAD) process that is used to extract

all of the necessary pieces required to build your service model. This

extraction includes service contracts, service-level agreements (SLAs)

derived from the service-level expectation (SLE) defined for each busi-

ness capability, and the service orchestration requirements. With a

detailed service model closely aligned with and derived from the busi-

ness model, you should now be well placed to map the service model

to a technology model that identifies how each service will be imple-

mented, hosted, and deployed.

	 By using the preceding approach and by creating the service

model, you can hand over to your IT department data schemas, ser-

vice contracts, and SLA requirements. Before the service is built, how-

ever, consideration should be given to supporting service autonomy at

the technology level by clearly separating interfaces from implemen-

tation and the underlying transport mechanisms. Developing service

implementation strategies that decouple the service endpoint from the

service implementation helps you to plan for change. Selecting appro-

priate hosts and service management options to fulfill the stated SLAs

also requires careful consideration. Your choices in these areas are cap-

tured and defined by the technology model.

Creating a Technology Model
The technology model consists of several artifacts: service inter-

face, service implementation, service host, service management, and

orchestration engine. we will look at the details of each.

	 The service interface specifies how a document or message can be

received. The interface allows you to specify which transports are going

to be provided, regardless of the implementation. More than one ser-

vice interface can implement a service contract, but every service inter-

face implements one specific binding such as SOAP over HTTP.

	 If required you can provide multiple service interfaces using differ-

ent transports. For example, you might bind a single interface to a Web

services transport and also to a Windows message-queuing transport.

Each transport provides different capabilities such as interoperability

and transactional support and different restrictions. For example, mes-

sage queuing does not directly support the request/response pattern.

At least one interface should be provided for interoperability by ensur-

ing that the interface conforms to the Web Services Interoperability

Basic Profile (WS-I BP) version 1.x.

	 Service implementation is the implementation of a business capabil-

ity independent of the underlying host. It should also have no depen-

dency on its interfaces. The service implementation can call other ser-

vices by using binding-dependent proxies, and to achieve binding-

independent proxies they should be created by using factories.

	 The service host provides an endpoint for the service interfaces.

The choice of host should be based on specified SLA requirements. For

example, if the business expects 24/7 operations, this characteristic has

a huge impact on your choice of host, and in these scenarios queu-

ing technologies such as Microsoft Message Queue or SQL Server Ser-

vice Broker are often required. In the technology model hosts repre-

sent cost options. In the business model the SLE represents the value.

By being able to map the choice of host back to an SLA captured by

the service model, and ultimately to a business-driven SLE, the cost of

a given host can be justified and quantified.

	 An added benefit of moving to services and away from silo-

based applications is that if you have one specific business capa-

bility that requires 24/7 operations, you can move this service to a

host that provides the necessary performance and redundancy. You

might be able to use less-costly hosts for other capabilities. With

the silo-based approach, you are forced to select one host for the

entire application.

Summary
As architects, we can adopt a new kind of thinking to
essentially force explicit consideration of service model
artifacts into our design processes, which helps us iden-
tify the artifacts correctly and at the right level of abstrac-
tion to satisfy and align with the business needs of our
organizations. In part 1 we offered a three-part approach
for modeling connected, service-oriented systems in a
way that promotes close alignment between the IT solu-
tion and the needs of the business. We examined the
current perspective of service-orientated thinking and
explained how the current thinking and poor concep-
tualization of service orientation has resulted in many
failures and generally poor levels of return on invest-
ment (ROI). We also examined the benefits of inserting a
service model in between the conventional business and
technology models that are familiar to most architects,
and discussed the Microsoft Motion methodology and
capability mapping to identify business capabilities that
can be mapped to services. In this second of two parts
we’ll show you how to implement these mapped services.

Ser vice-Oriented Modeling

36 www.architecturejournal.net • Journal 8 •

	 For the service management artifact appropriate action must be

taken if an SLA cannot be fulfilled, and to support this action you must

be able to monitor and manage the service. Service interfaces, imple-

mentations, and hosts should be instrumented, for example, by using

Windows Management Instrumentation (WMI). Microsoft Operations

Manager (MOM) can then be used to monitor and manage the service,

while Microsoft Systems Management Server (SMS) is used to support

change and configuration management in the service’s “edge” ecosys-

tem. Your chosen orchestration engine should also provide monitoring

support such as the Business Activity Monitoring (BAM) features pro-

vided by BizTalk Server. In the future, WS-Management will play a cen-

tral role in managing resources independently from the hosting and

management platform.

	 For the orchestration engine artifact orchestration requirements

should be defined in a platform-independent way by the service

model, but ultimately you need to use a specific orchestration engine.

The technology model identifies the target platform such as Microsoft

BizTalk Server.

	 By creating the technology model you can explicitly capture the

foregoing artifacts, but how should you approach service develop-

ment? How do you map these artifacts to a service implementa-

tion, and how do you implement the contract specified by the service

model? Shortly, we will discuss an approach that helps you to build

services in a way that satisfies the service tenets and modeling princi-

ples discussed earlier.

Creating Services Today
Given a set of conceptual service artifacts, how can you define these

in code, and how should you organize the code within Visual Studio

2005? The key thing to bear in mind is the need for separation among

data, messages, interfaces, implementation internals, and transport

bindings. Figure 1 shows an approach for mapping service artifacts to

Visual Studio 2005 solutions and projects.

	 The “xx” placeholders shown in Figure 1 represent an appropriate

namespace based on the service name—for example, OrderService.

Using a single Visual Studio 2005 solution file for a given service and

as a container for the multiple projects you see in Figure 1 is a recom-

mended practice. We will look at these projects.

•	 The xx.Data project is used to hold the on-the-wire data schema

definitions that are obtained from the service model entity and also

contains the common language runtime (CLR) representation of that

schema.

•	 The xx.Messages project is used to hold definitions of the messages

required to communicate with the service, which includes inbound

and outbound messages. A message is represented as a schema ele-

ment containing elements of the data contract.

•	 The xx.Interfaces project contains the interface definitions.

•	 The xx.ES and xx.WS projects contain transport endpoints for inter-

faces. In the example shown in Figure 1, xx.ES provides an enterprise

services transport, and xx.WS provides a Web services transport.

•	 The xx.Adapters and xx.Internals projects contain the implementa-

tion of the service. An adapter contained in the xx.Adapters project

provides a level of indirection between the interface and the inter-

nal implementation. The adapter parses the inbound message and

passes the relevant data entities to the internal implementation code.

The adapter also wraps data output from the implementation within

the response message. Note that with this approach, the implemen-

tation knows nothing about the messages passed through the inter-

face, which allows you to change your messaging infrastructure with-

out impacting your internal service implementation.

	 The endpoint shown in Figure 1 is purely a deployment artifact and

is dependent on your choice of transport binding. For example, with a

Web services transport, you would deploy your service to an Internet

Information Services (IIS) Web server running ASP.NET.

	 Adapters. The adapter is a key artifact that enables you to decou-

ple your implementation from the messaging. It is also a good place

to perform message transformations if they are required. For example,

within the adapter you could transform an external representation of a

customer ID (for example, 10 characters) into your internal representa-

tion (for example, 12 digits). By creating a new adapter per version of

your service, the adapter also provides a way to version services with-

out affecting the implementation or your previously published service

interfaces.

	 Versioning. When considering versioning, you need to distinguish

between versioning the abstract or concrete contract and version-

ing the internal implementation. A key architectural goal is to provide

independent versioning between the two. The contract itself consists

of the data, message, interface, and endpoints. You can version each of

these artifacts independently if you architect the service so that each

composing artifact refers to a single version of the composed artifact.

For example, the message contract that is composed of the data con-

tract should refer to precisely one version of the data contract. This

reference must be true for the XSD/WSDL and the CLR representation

of that contract.

SO concepts Visual Studio .NET projects

Entity

Message

Interface

Transport

Endpoint

xx.Data

xx.Messages

xx.Interfaces

xx.Internals

Implementation

xx.Adapters

xx.ES xx.WS

Deployment

Figure 1 Mapping service artifacts to Visual Studio 2005 projects

“Each transport provides different

capabilities such as interoperability

and transactional support and

different restrictions”

Ser vice-Oriented Modeling

37 • Journal 8 • www.architecturejournal.net

	 Data and message contracts should be versioned according to

the XML versioning and extensibility policy (see Resources). You

can version service interfaces by providing a new interface that

inherits from the previous (CLR), one that is mapped into a new

WSDL port type.

Six Steps for Building a Service
To arrive at these Visual Studio 2005 projects and build a service today

using this approach, adopt this six-step process:

1.	 Design the data and message contract.

2.	 Design the service contract.

3.	 Create the adapters.

4.	 Implement the service internals.

5.	 Connect the internals to the adapters.

6.	 Create the transport interfaces.

	 Let’s look at the details of each step. For the first step—design

the data and message contract—take the canonical data schema that

defines the wire representation of the data (an output of your service-

oriented analysis and design) and define the data classes and mes-

sage classes. There are two approaches to creating your data schemas

and data classes. By using a schema-first approach, you can create an

XSD schema and then use a tool such as Xsd.exe or XsdObjectGen.exe

to generate the data classes automatically. Alternatively, if you prefer

a code-first approach, you can define your data classes in C# or Visual

Basic and then use Xsd.exe to create an equivalent XSD schema. Here

is an example of a data contract:

namespace DataContracts
{
	 [Serializable]
	 [XmlType("Order", Namespace=
		 "urn.contoso.data/order")]
	 public partial class Order
	 {
		 [XMlElement("Customer")]
		 public Customer customerField;
		 [XMlElement("Items")]
		 public OrderItemsList
			 ordersItemsField;
		 ...
	 }
}

	 Once you have defined your data classes, you can define your

inbound and outbound messages, which contain the data classes as

their payload. For example, this code snippet shows an input message

called OrderMessage for a hypothetical order service that contains an

Order as its payload:

namespace MessageContracts
{
	 using System.Xml;
	 using System.Xml.Serialization;
	 using DataContracts;

	 [Serializable]
	 [XmlType(Namespace=
		 "urn.contoso.msgs/orderservice"
)]
	 [XmlRoot(Namespace=
		 "urn.contoso.msgs/
		 orderservice"]
	 public class OrderMessage
	 {
		 [XmlElement("Order")]
		 public Order order;
	 }
}

	 In step 2—design the service contract—define the abstract ser-

vice contract either by using a WSDL-first approach or by defining your

interfaces using C# or Visual Basic. Your interfaces define which mes-

sages your service receives and which messages (if any) it returns. To

generate the interface from the WSDL, you need to use the Wsdl.exe /si

switch:

Wsdl.exe xx.wsdl /si

	 Note that this switch works only with Microsoft .NET Framework

version 2.0. This next example defines an interface to the order service

that defines a single PlaceOrder() method that accepts an OrderMes-

sage message and returns an OrderTrackingMessage message:

namespace Interfaces
{
	 using MessageContracts;

	 public interface IOrderService
	 {
		 OrderTrackingMessage
			 PlaceOrder(OrderMessage
			 placeOrderMsg);
	 }
}

	 Note that in this case a request/response message pattern is used,

and therefore you need to ensure that the message processing time

(the time between the request and response) must be sub-second.

If this processing time cannot be guaranteed, use another message-

exchange pattern such as a duplex message exchange, which correlates

two one-way messages to a logical request/response pattern.

	 To generate the WSDL from the preceding interface, you can create

an ASMX Web service class that implements the interface and then calls

the Web service passing ?WSDL—for example, http://localhost/Order-

Service/OrderService.asmx?wsdl. This Web service causes the WSDL to

be generated and returned from the Web service.

	 In step 3—create the adapters—create the adapter class that pro-

vides the indirection between the interface and the internals. This class

ensures that the internals knows nothing about the message con-

tract. The adapter unwraps the inbound message and passes the pay-

load data to the internal implementation performing any required data

Ser vice-Oriented Modeling

38 www.architecturejournal.net • Journal 8 •

format transformations from message to internal format. Similarly, on

the way back the adapter performs any necessary format transforma-

tions on the data returned from the service implementation and wraps

it inside an outbound service message if there is one. Here’s a sample

adapter:

namespace Adapters
{
	 using MessageContracts;
	 using ServiceInterfaces;

	 public class OSA : IOrderService
	 {
		 public virtual
			 OrderTrackingMessage
			 PlaceOrder(
			 OrderMessage placeOrderMsg)
		 {
			 // Call internals here
		 ...
		 }
	 }
}

	 Note that the adapter is always in process with the caller, and the

process identity depends on your choice of host. If the internal imple-

mentation is hosted within IIS, then the ASMX (“edge”) interface instan-

tiates the service internal. If the internal is hosted within enterprise ser-

vices, but the calls arrive through an ASMX Web service, the ASMX

interface delegates the call to the enterprise services interface, which

then instantiates the adapter and passes the message to it. Because all

transports implement the same interface you can chain calls together.

	 In step 4—implement the service internals—create your service

internal implementation. A single implementation exists regardless of

your chosen transport or transports. This code snippet shows the skele-

ton code required to provide an implementation of the order process-

ing service:

namespace BusinessLogic
{

	 public class OSI
	 {
		 public static string
			 AcceptOrder(
			 DataContracts.Order order)
		 {
			 // Process the order
			 ...
			 return "XYZ";
		 }
	 }
}

	 Notice how the internal implementation has no knowledge of the

message. It knows about only the data contract. In this case it is passed

a single Order object. If you want to be completely independent of the

wire format, the internal would not even have access to the data con-

tract. In this scenario, the adapter would map the external data con-

tract to the internal data types.

	 In step 5—connect the internals to the adapters—call your inter-

nal implementation from your adapter code. Note that the message is

not passed to the implementation, which decouples the internal imple-

mentation from the message contract and enables you to change one

without impacting the other. This code snippet shows the adapter code

again, this time with a call to the internal service implementation:

namespace Adapters
{
	 using MessageContracts;
	 using ServiceInterfaces;

	 public class OSA : IOrderService
	 {
		 public virtual
			 OrderTrackingMessage
			 PlaceOrder(
			 OrderMessage placeOrderMsg)
		 {
			 OrderTrackingMessage otm =
				 new OrderTrackingMessage();

namespace Endpoints.WS
{
	 using System;
	 using System.Diagnostics;
	 using System.Web.Services;
	 using System.ComponentModel;
	 using System.Web.Services.Protocols;
	 using System.Web.Services.Description;
	 using System.Xml.Serialization;
	 using MessageContracts;
	 using ServiceInterfaces;
	 using Adapters;

	 [WebService(Namespace=
		 "urn.contoso.interfaces/orderservice")]

	 public class OrderService : System.Web.Services.
		 WebService, IOrderService
	 {
		 [WebMethod]
		 [SoapDocumentMethod(ParameterStyle=
			 SoapParameterStyle.Bare)]
		 public OrderTrackingMessage PlaceOrder(
			 OrderMessage placeOrderMsg)
		 {
			 IOrderService adapter = new OSA();
			 return adapter.PlaceOrder(PlaceOrderMsg);
		 }
	 }
}

Listing 1 The IOrderService interface

Ser vice-Oriented Modeling

39 • Journal 8 • www.architecturejournal.net

			 otm.TrackingId =
				 BusinessLogic.OSI.
				 AcceptOrder(
				 placeOrderMsg.Order);
			 return otm;
		 }
	 }
}

	 In step 6—create the transport interfaces—bind your abstract ser-

vice interfaces defined in step 2 to a specific transport. Listing 1 shows

the IOrderService interface defined in step 2 bound to a Web services

transport.

Using Process-Automated Guidance
By following the six-step process just discussed, you can build ser-

vices that conform to all tenets and principles covered here. How-

ever, because all of the items described in the six-step process can be

described by metadata, it is possible to automate large sections of the

service generation. You can use tools such as the Guidance Automa-

tion Toolkit (GAT) to help automate the guidance (see Resources). Pro-

cess-automated guidance is particularly helpful to transform between

semantically identical XML and CLR artifacts such as XSD and CLR

classes, transform among the WSDL port type and CLR interfaces, gen-

erate adapters based on the interface description, and generate differ-

ent endpoint technologies based on the interface description.

	 The old way of thinking about service orientation is not work-

ing, and a new way of thinking is required. By adopting this new kind

of thinking, as architects we can force explicit consideration of service

model artifacts in your design process, which helps you to identify the

artifacts correctly and at the right level of abstraction to satisfy and

align with business needs.

	 From a modeling perspective, the gap between conventional busi-

ness and technology models is too large, which is a key contributing

Resources

 “Designing Extensible, Versionable XML Formats,” Dare Obasanjo

(Microsoft Corporation, 2004)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnexxml/html/xml07212004.asp

“Modeling and Messaging for Connected Systems,” Arvindra Sehmi and

Beat Schwegler

A Webcast of a presentation at Enterprise Architect Summit–Barcelona

(FTPOline.com, 2005) www.ftponline.com/channels/arch/reports/

easbarc/2005/video/

MSDN – Guidance Automation Toolkit (GAT) http://msdn.microsoft.

com/vstudio/teamsystem/Workshop/gat/default.aspx

Obtain a case study on Microsoft Motion methodology by sending a

request to motion@microsoft.com.

 “Service-Oriented Modeling for Connected Systems – Part 1,” Arvindra

Sehmi and Beat Schwegler, The Architecture Journal, Issue 7, March

2006. http://www.thearchitecturejournal.net

About the Authors

Arvindra Sehmi is head of enterprise architecture in the Microsoft

EMEA Developer and Platform Evangelism Group. He focuses on

enterprise software engineering best practices adoption throughout

the EMEA developer and architect community and leads architecture

evangelism in EMEA for the financial services industry. Arvindra is

editor emeritus of the Microsoft Architecture Journal. He holds a

Ph.D. in biomedical engineering and a master’s degree in business.

Beat Schwegler is an architect in the Microsoft EMEA Developer and

Platform Evangelism Group. He supports and consults to enterprise

companies in software architecture and related topics and is a frequent

speaker at international events and conferences. He has more than 13

years experience in professional software development and architecture

and has been involved in a wide variety of projects, ranging from real-

time building control systems and best-selling shrink-wrapped products

to large-scale CRM and ERP systems. For the past four years, Beat’s main

focus has been in the area of service orientation and Web services.

factor to the failure of many service-orientation initiatives. We’ve pre-

sented a three-part model with the introduction of a service model

in between the business and technology models to promote much

closer alignment of your services with the needs of the business. With a

detailed service model closely aligned with and derived from the busi-

ness model, you are well placed to map the service model to a tech-

nology model that identifies how each service will be implemented,

hosted, and deployed. Capability mapping and the Motion methodol-

ogy provide an effective way to identify business capabilities and ulti-

mately services. The decomposition of the business into capabilities

provides the top-level decoupling for the underlying service contracts,

and not the other way around as it usually is today.

	 Connected systems are instances of the entire three-part model,

and they respect the four tenets of service orientation. They can be

more completely implemented by using the five pillars of Microsoft’s

platform technologies. Recall that we asked upfront: How do we avoid

making the same mistakes with SOAs that previous, hopeful initia-

tives have resulted in? How do we ensure that the chosen implementa-

tion architecture relates to the actual or desired state of the business?

How do we ensure a sustainable solution that can react to the dynam-

ically changing nature of the business—in other words, how can we

enable and sustain an agile business? How can we migrate to this new

model elegantly and at a pace that we can control? And, how can we

make this change with good insight into where we can add the great-

est value to the business from the outset?

	 Service orientation with Web services is only the implementation of

a particular model. It is the quality and foundation of the model that

determines the answers to these questions.

Acknowledgements
The authors would like to thank Ric Merrifield, director, Microsoft Business

Architecture Consulting Group; David Ing, independent software architect;

Christian Weyer, architect, thinktecture; Andreas Erlacher, architect, Micro-

soft Austria; and Sam Chenaur; architect, Microsoft Corporation for provid-

ing feedback on early drafts of this article. We would also like to show our

appreciation to Alex Mackman, principal technologist, CM Group Ltd., an

excellent researcher and writer who helped us enormously. •

job name: AUB Vision Sprd#1 (Office)

media type: Mag

media unit: Spread

b/w or color: 4/C

client: Microsoft
job #: MAUB-GEN-50600012-A-R1

size: A

live: 7”w x 9.75”h

trim: 8”w x 10.75”h

bleed: 8.25”w x 11”h

gutter: 0.5” total

laser output at: 100%

file name: 50600012_A_R1_prf.indd

studio artist: Tiger • ME ST G5 [Jeff Boice]

date: 4/12/06 3:25 PM

rounds: 17 of 3 collects: 6 of 1ap
pr

ov
al

 si
gn

of
f PF CD TM

AD PR AB

CW AE QC

link names: Office_US_SWOP_50.tif (CMYK; 273 ppi, 273 ppi), Office_US_BW_50.tif (Gray; 273 ppi, 273 ppi), YPOP_Corp_w.ai, AUB_Welcome_
lock_rev.ai

font family: Segoe (Bold, Regular)
ink names: Process Cyan, Process Magenta, Process Yellow, Process Black
notes: FTP to PDI.

B
:11

 in
B:8.25 in

T:10
.75

 in
T:8 in

S
:9.75

 in
S:7 in

164045mea01A_Lpg pp

ready_

ready_ ready_

PACIFIC DIGITAL IMAGE • 333 Broadway, San Francisco CA 94133 • 415.274.7234 • www.pacdigital.com
Filename:

Colors:
Operator: Time:

Date:
164045mea01A_Lpg.ps_wf02
Cyan, Magenta, Yellow, Black

SpoolServer 00:14:04
06-05-16

NOTE TO RECIPIENT: This file is processed using a Prinergy Workflow System with an Adobe Postscript Level 3 RIP. The resultant PDF
contains traps and overprints. Please ensure that any post-processing used to produce these files supports this functionality. To correctly
view these files in Acrobat, please ensure that Output Preview (Separation Preview in earlier versions than 7.x) and Overprint Preview
are enabled. If the files are re-processed and these aspects are ignored, the traps and/or overprints may not be interpreted correctly and
incorrect reproduction may result. Please contact Pacific Digital Image with any questions or concerns.

job name: AUB Vision Sprd#1 (Office)

media type: Mag

media unit: Spread

b/w or color: 4/C

client: Microsoft
job #: MAUB-GEN-50600012-A-R1

size: A

live: 7”w x 9.75”h

trim: 8”w x 10.75”h

bleed: 8.25”w x 11”h

gutter: 0.5” total

laser output at: 100%

file name: 50600012_A_R1_prf.indd

studio artist: Tiger • ME ST G5 [Jeff Boice]

date: 4/12/06 3:25 PM

rounds: 17 of 3 collects: 6 of 1ap
pr

ov
al

 si
gn

of
f PF CD TM

AD PR AB

CW AE QC

link names: Office_US_SWOP_50.tif (CMYK; 273 ppi, 273 ppi), Office_US_BW_50.tif (Gray; 273 ppi, 273 ppi), YPOP_Corp_w.ai, AUB_Welcome_
lock_rev.ai

font family: Segoe (Bold, Regular)
ink names: Process Cyan, Process Magenta, Process Yellow, Process Black
notes: FTP to PDI.

B
:11

 in

B:8.25 in

T:10
.75

 in

T:8 in

S
:9.75

 in

S:7 in

164045mea01A_Rpg pp

ready_

ready_

In a people-ready business, people make it happen. People, ready with software.

When you give your people tools that connect, inform, and empower them, they’re ready. Ready

to make the most of their knowledge, skill, and ambition. Ready to develop new products, help

customers, and solve problems. Ready to build a successful business: a people-ready business.

Microsoft. Software for the people-ready business.SM To learn more, visit microsoft.com/peopleready

© 2006 Microsoft Corporation. All rights reserved. Microsoft and “Your potential. Our passion.” are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PACIFIC DIGITAL IMAGE • 333 Broadway, San Francisco CA 94133 • 415.274.7234 • www.pacdigital.com
Filename:

Colors:
Operator: Time:

Date:
164045mea01A_Rpg.ps_wf02
Cyan, Magenta, Yellow, Black

SpoolServer 00:13:59
06-05-16

NOTE TO RECIPIENT: This file is processed using a Prinergy Workflow System with an Adobe Postscript Level 3 RIP. The resultant PDF
contains traps and overprints. Please ensure that any post-processing used to produce these files supports this functionality. To correctly
view these files in Acrobat, please ensure that Output Preview (Separation Preview in earlier versions than 7.x) and Overprint Preview
are enabled. If the files are re-processed and these aspects are ignored, the traps and/or overprints may not be interpreted correctly and
incorrect reproduction may result. Please contact Pacific Digital Image with any questions or concerns.

098-105499	 Subscribe at: www.architecturejournal.net

®

	Cover
	Table of Contents
	Foreword
	Reliability in Connected Systems
	A Flexible Model for Data Integration
	Autonomous Services and Enterprise Entity Aggregation
	Data Replication as an Enterprise SOA Antipattern
	Patterns for High-Integrity Data Consumption and Composition
	The Nordic Object/Relational Database Design
	Adopt and Benefit from Agile Processes in Offshore Software Development
	Service-Oriented Modeling for Connected Systems – Part 2

