
Journal 5

Integration Interchange

Learn the discipline,
pursue the art, and
contribute ideas at
the new Architecture
Resource Center.

Resources you can build on.
microsoft.com/architecture

®

An Introduction to
Topic Maps

The Metropolis and
SOA Governance

Services-Based
Integration

Planes, Trains, and
Automobiles

Enable Internet-Scale
Computing

Link Product Strategy
and Architecture

http://www.microsoft.com/architecture

Editor’s Note 1
by Gurpreet S. Pall

Foreword 2
by Arvindra Sehmi

An Introduction to Topic Maps 3

by Kal Ahmed and Graham Moore
The ISO topic maps paradigm describes how to use a standard XML syntax to describe and interchange
complex relationships between abstract concepts and real-world resources. Get acquainted with the
power of topic maps.

The Metropolis and SOA Governance 10

by Richard Veryard and Philip Boxer
Urban design issues are akin to building and governing large, complex systems. See how to work out
an approach to SOA infrastructure design that takes governance to the edge of the organization.

Services-Based Integration Technologies 18
by Anna Liu and Ian Gorton
Complex application integration solutions are difficult, but a services-based approach to integration holds
the key to seamless integration and interoperability. With the IT industry participating in Web services
standards, take a look at evaluating services-based integration technologies.

Planes, Trains, and Automobiles 22

by Simon Guest
The ubiquitous nature of HTTP has helped Web services attain their current level of adoption. Is HTTP
a great fit for every problem? Discover alternative transport approaches for asynchronous connections,
offline and local applications, and distributed computing.

Enable Internet-Scale Computing 27

by Savas Parastatidis and Jim Webber
Service orientation is a sensible abstraction for managing the increasing level of complexity in
distributed applications. Find out what architectural principles are necessary for HPC computing
requirements.

Link Product Strategy and Architecture 33

by Charlie Alfred
Systems exist to generate value for stakeholders, but this ideal is often met only to a limited degree.
Learn two concepts—value models and architecture strategy—to integrate effectively using the
waterfall, spiral, or agile methods.

THE
ARCHITECTURE

JOURNAL
Journal 5

Resources you can build on. www.microsoft.com/architecture

Contents

http://www.networkedplanet.com/about/index.html

Subject
locator Subject

identifier

View topic

Person

View
resource

NetworkedPlanet

NetworkedPlanet home page

NetworkedPlanet

Alternative
approaches

Well-defined
approach

Common
understanding

Unique to
customer

Supply
infrastructure

Comparison Destination

Cost Custom

Capability
requirement

Proof-of-
technology
prototyping

Stakeholder
input

Elaborate user
requirement

Augment with
generic

requirement

Rank
requirements

Product
evaluation

What-if scenario
analysis

i-MATE knowledgebase
200+ generic requirements

Stakeholder
input

Stakeholder
input

Identify candidate
product

i-MATE
knowledgebase

Short-listed products:
1-3

Evaluation scores

Candidate
products

Ranked requirements

Overall set of application requirements

Application-specific user requirements

Final product selection

Consultant's
laptop

Smart
client

application

Message
queue

E-mail generated
to consultant

Accounting
system

(mainframe based)

Submit
process

Web
services
facade

Messages

Message processing

Resources

Service logic

Value
level

Worst

Adequate

Satisfactory

Preferable

Best

Miles per
gallon

10 mpg

20 mpg

30 mpg

40 mpg

50 mpg

Perceived utility

Linear S-Curve Parabola

0

25

50

75

100

0

10

50

85

100

0

60

80

90

100
V

al
ue

Quality measurement

V
al

ue

Quality measurement

V
al

ue

Quality measurement

Dear Architect,
Over the last 18 months I’ve been fortunate to witness the evolution of
the Architecture Journal from its inception to this current edition: Journal 5.
It has grown in many ways, especially as a vehicle for architects across the
globe to share ideas, learning, and unique perspectives. One key indicator
that this vehicle is getting a life of its own is the sense of continuity that is
emerging across the articles—references and commentary on articles in
previous editions and commitments by authors to write sequels to the top-
ics they introduce in this edition. It encouraged me to go spelunking for old
editions and raised my curiosity for future ones.
 Architecture in the systems world is as vast as the galaxy, and architects
who operate in it have unique challenges like no other role that comes to
mind easily. What makes it even more challenging is that only a handful of
educational institutions offer a formal degree program in this discipline. Un-
like their counterparts in the building world with framed diplomas hanging
on the walls, architectural knowledge is not so easy to acquire. It’s a refined
discipline in which only the brave Jedi knights with special aptitude have
chosen to take on.
 The rapid rate of change in the business world and speed of technology
innovation dictates that architects need a medium to stay current, exchange
ideas with peers, and grow. Only individuals comfortable working with am-
biguity, with knowledge, and experience in many disciplines, and who enjoy
juggling the requirements of various stakeholders, tend to venture into this
exciting and exigent frontier. The Journal is a key medium that goes a long
way to make this possible.
 While reading the six articles and admiring their graphics in this edition,
I learned new things and found perspective on perplexing questions that
sometimes keep me awake at night. The article by Richard Veryard and Phil-
ip Boxer made we wander through the streets of an agile metropolis seeking
parallels with SOA governance space. I stepped through a comprehensive
preflight checklist from Anna Liu and Ian Gorton for evaluating technolo-
gies for my services-based integration needs. If I had to solve picking the
right transportation alternatives for Web services, I would take the route of
“Planes, Trains, and Automobiles” by Simon Guest. For a moment there, I
thought I was reading about metropolitan transportation planning.
 Every article in this edition is rich and engaging and sets the rhythm for
the “Think Ahead, Learn More, Solve Now” theme of the newly launched Ar-
chitect Resource Center at Microsoft.com (www.microsoft.com/architecture).
 I’m confident this edition will make you think, learn something new, and
help you grow like it did for me. I hope it also motivates you to use the Jour-
nal as a medium to share your knowledge and perspective.
Enjoy!

Gurpreet S. Pall

Founder and Editor-in-Chief
Arvindra Sehmi
Microsoft Corporation

Microsoft Editorial Board
Christopher Baldwin
Gianpaolo Carraro
Wilfried Grommen
Simon Guest
Richard Hughes
Neil Hutson
Eugenio Pace
Harry Pierson
Michael Platt
Philip Teale

Publisher
Norman Guadagno
Microsoft Corporation

Design, Print and Distribution
Fawcette Technical Publications
Jeff Hadfield, VP of Publishing
Terrence O’Donnell, Managing Editor
Michael Hollister, VP of Art and
Production
Karen Koenen, Circulation Director
Brian Rogers, Art Director
Kathleen Sweeney Cygnarowicz,
Production Manager
Liz Dreessen, Design Intern

Original Design and Project
Management
Methodologie, Seattle
www.methodologie.com

The information contained in this Best of the Microsoft

Architecture Journal (“Journal”) is for information purposes

only. The material in the Journal does not constitute the

opinion of Microsoft or Microsoft’s advice and you should

not rely on any material in this Journal without seeking

independent advice. Microsoft does not make any warranty

or representation as to the accuracy or fitness for purpose of

any material in this Journal and in no event does Microsoft

accept liability of any description, including liability for

negligence (except for personal injury or death), for any

damages or losses (including, without limitation, loss of

business, revenue, profits, or consequential loss) whatsoever

resulting from use of this Journal. The Journal may contain

technical inaccuracies and typographical errors. The Journal

may be updated from time to time and may at times be

out of date. Microsoft accepts no responsibility for keeping

the information in this Journal up to date or liability for any

failure to do so. This Journal contains material submitted and

created by third parties. To the maximum extent permitted

by applicable law, Microsoft excludes all liability for any

illegality arising from or error, omission or inaccuracy in this

Journal and Microsoft takes no responsibility for such third

party material.

All copyright, trademarks and other intellectual property

rights in the material contained in the Journal belong, or are

licensed to, Microsoft Corporation. You may not copy, repro-

duce, transmit, store, adapt or modify the layout or content

of this Journal without the prior written consent of Microsoft

Corporation and the individual authors.

© 2005 Microsoft Corporation. All rights reserved.

Editor’s
Note

®

1 • Journal 5 • www.microsoft.com /architecture

2 www.microsoft.com /architecture • Journal 5 •

Dear Architect,
It was clear by the second issue of Journal, now called The Architecture Journal,
that demand was high for this kind of Microsoft publication. As editor, I received
much encouragement from friends, colleagues, and customers to make this a last-
ing initiative instead of a one-shot wonder. My aim has always been to develop a
strong community of like-minded individuals around this journal. To be accepted
in the marketplace it had to provide a reputable platform for authors to express
their thoughts and views in an open-minded way with as little interference from
Microsoft as possible, while being credible and financially viable because of
Microsoft’s strong backing.
 I’m glad to say that the Journal will still be with us for a long while. In the
time since Journal 4 was published and the release of this latest issue, Journal
5, the journal has transitioned out of its incubation phase to become a key part
of Microsoft’s architect community development strategy. The Journal features
prominently on Microsoft’s Architect Resource Center (visit www.microsoft.com/
architecture), and we now provide free subscriptions to the printed version. We’re
investing in the professionalism that the Journal requires by creating a team
dedicated to producing and publishing it in collaboration with Fawcette Technical
Publications. These developments are focused on making sure you, our readers,
and our authors get outstanding value and experiences from reading the Journal.
 The Best of Journal interim issue successfully transitioned us from the original
“large” format to this regular magazine format. Tens of thousands of copies have
been distributed this year at TechEd conferences in the U.S. and Europe! At the
same time we’re seeing a lot of momentum and interest in architecture, so much
so that specialist architecture talks at these conferences compete on a par with
traditional developer talks. It’s an exciting time to be in this space, and you can
count on the Journal to lead the way!
 Finally, you’ll notice that I’m writing this foreword and not the editorial as ex-
pected. Well, that’s because Gurpreet Pall did such a good job with his version of
the foreword, we decided to switch.
 As always, if you’re interested in writing for this publication, please send me a
brief outline of your topic and your resume to asehmi@microsoft.com.
 Wishing you good reading!

Arvindra Sehmi

Foreword

3 • Journal 5 • www.microsoft.com /architecture

Topic maps were developed originally in the late 1990s as a way to rep-

resent back-of-the-book index structures so that multiple indexes from

different sources could be merged. However, the developers quickly

realized that with a little additional generalization, they could create

a metamodel with potentially far wider application. The result of that

work was published in 1999 as ISO/IEC 13250 – Topic Navigation Maps.

 In addition to describing the basic model of topic maps and the

requirements for a topic map processor, the first edition of ISO 13250

included an interchange syntax based on SGML and the hypermedia link-

ing language known as HyTime. The second edition, published in 2002

(see Resources), added an interchange syntax based on XML and XLink,

and to date this syntax has the widest support in topic map processing

products. We’ll describe the syntax here.

 Today there are a number of implementations of the standard, both

open source and proprietary, for a number of languages and platforms

including the .NET platform. A topic map consists of a collection of topics,

each of which represents some concept. Topics are related to each other

by associations that are typed n-ary combinations of topics. A topic may

also be related to any number of resources by its occurrences.

 Figure 1 shows the three fundamentals of topic maps. You can see

how the distinction between topic-to-topic and topic-to-resource rela-

tionships enables a partitioning of the model into a topic space that con-

tains only topics and associations between topics, and a resource space

that contains the resources related to topics. This partitioning is interest-

ing because it allows a topic map developed for one set of resources to

be repurposed to index a different set of resources, and thus the topic

map can be considered to be a portable form of knowledge.

Share and Share Alike
Unlike domain-specific models, the topic map model has no predefined

set of types. Instead, individual topic map authors or groups of authors in

Summary

The ISO international standard topic maps para-
digm describes a way in which complex relationships
between abstract concepts and real-world resources
can be described and interchanged using a stand-
ard XML syntax. Here we’ll introduce the topic maps
paradigm in the context of the ISO standard, present
the principal components of the topic map model,
and demonstrate how the standard processing com-
ponents of scope and topic merging give additional
power to this model.

An Introduction to
Topic Maps
by Kal Ahmed and Graham Moore

Topic space

Resource space

Topic Association Resource Occurrence

London

UK

Europe

Figure 1 The three fundamentals of topic maps: topics, associations, and occurrences

Topic Maps

4 www.microsoft.com /architecture • Journal 5 •

As already noted, the topic maps standard does not come with a pre-

defined ontology. (Note that the word ontology in this context means

the system of types of topics, occurrences, and associations that together

define the classes of things and relationships between things that are

documented by a topic map.) There is no restriction on the domains to

which topic maps can be applied and relatively few constraints even on

the modeling approach taken.

Easy Interchange
We have seen topic maps used to model temporal relationships between

events, relationships between abstract concepts and their depictions, and

forms of first-order logic, as well as more traditional relationships such as

thesauri, and controlled vocabularies and business information.

 For many users, the fact that topic maps can be interchanged using

a standard XML-based syntax provides a strong benefit in improving the

portability of their data between applications and platforms. In addition,

the XML interchange syntax allows easy integration of topic map infor-

mation exchange within the Web services architecture.

 There are three principal benefits that system architects and develop-

ers can gain from the application of the topic map paradigm, and they

can be summed up as “flexibility, flexibility, and flexibility.”

 Topic maps provide the metamodel on which a completely flexible

application model can be built. Creating new types of business objects

can be achieved by adding data to the ontology that constructs the topic

map. Because the ontology is itself expressed as topics and associations

between topics, extension of the ontology becomes an issue of adding

data, not an issue of redesigning the underlying storage schema. This

issue makes it possible to modify the data model used by an application

without the need to upgrade deployed persistent stores.

 With the application data stored in a standardized and extensible

metamodel, the path is open to enable much simpler third-party appli-

cation integration and extension. This model would allow a third-party

developer to define its own data and code extensions to an application

without relying on the core application’s schema supporting their exten-

sion-specific data structures.

 In addition to allowing third-party extensions to the application

schema, the flexibility of the topic map structure can be used to allow

users to create their own extensions. This flexibility has two effects: it

a community or practice can define the model for their domain of inter-

est and share those models with other authors from other domains.

 We believe that for many end users, a good topic maps application

will conceal much if not all of the topic maps mechanism, allowing users

to instead concentrate on the domain model(s) that they work with.

However, the topic maps model and the topic maps standard do pro-

vide a number of benefits that can be surfaced in applications and that

can be unique selling points.

 The core topic maps metaphor of topics, occurrences, and associa-

tions strikes a balance between being compact and easy to understand

and providing enough basic infrastructure to allow users to translate their

mental model of a domain into a topic map model. Other forms of data

and information organization, such as RDF and the relational model, may

have a simpler model still, but then require the user to create infrastruc-

ture for common procedures, such as labeling an item with some names,

defining a class structure, or creating n-ary relationships between items.

 As described previously, the topic maps model has a clear distinction

between the domain model, expressed as topics and associations between

topics, and the indexed resources, expressed as occurrences that link topics

to resources. Three major benefits can be derived from this structure:

• The topic map can act as a high-level overview of the domain knowl-

edge contained in a set of resources. In this way the topic map can

serve not only as a guide to locating resources for the expert, but also

as a way for experts to model their knowledge in a structured way

that allows nonexperts to grasp the basic concepts and their relation-

ships before diving down into the resources that provide more detail.

• A topic map can be partitioned easily depending on the resources

to be made available. Some publishers use a topic map-based index

of large sets of resources and then dynamically create the appropri-

ate index when they publish a subset of those resources. With some

thoughtful modeling it is even possible to create different layers of

detail in a topic map and to differentiate between information prod-

ucts based on the indexing and navigation features that they pro-

vide as well as the informational content of the products.

• Topic maps that index different resource sets can be combined easily.

This feature can be used to allow organizations to import third-party

data and indexes and seamlessly integrate their own data and indexes.

Figure 2 Subject locator and subject identifier

http://www.networkedplanet.com/about/index.html

Subject
locator Subject

identifier

View topic

Person

View
resource

NetworkedPlanet

NetworkedPlanet home page

NetworkedPlanet

Topic Maps

5 • Journal 5 • www.microsoft.com /architecture

Figure 3 The structure of an association

Role type

Association type

Role type

Employee

John Smith Employment

Employer

ABC Ltd.

enables applications to be highly customizable, and it enables develop-

ment of horizontal applications that can be integrated more easily into

existing environments.

 For an example of the customizable effect, the flexibility allows much

easier integration of customer-specific data systems. We see this effect as

being the key to vertical applications that can be deployed more easily

for multiple customers. For example, one successful topic map application

was produced by a publisher of legal information for the financial services

market. The unique selling point of their topic maps-based product is that

they can integrate their customers’ marketing and procedures documen-

tation with the legal information they provide.

 A topic is a machine-processable representation of a concept. The

topic maps standard does not restrict the set of concepts that can be

represented as topics in any way. Typically, topics are used to represent

electronic resources (such as documents, Web pages, and Web services)

and nonelectronic resources (such as people or places). Topics can be

used equally to represent things that have no tangible form at all, such as

companies, events, and abstract concepts like “pensions” or “insurance.”

Forms of Identity
Topics have four principal forms of identity. A topic can have zero or

more of each of these forms of identity and thus can be identified within

a topic map system by a number of different ways.

 Identity as a topic resource in a serialized topic map. When a topic

map is represented in a serialized form for interchange, each topic is

assigned a Uniform Resource Identifier (URI) that is unique across that

topic map. These URIs are used principally for deserializing references

between topics. Such identifiers are referred to as source locators.

 Identity as a human-readable label. A topic can have any number

of topic names. Names act as labels for human consumption and can be

either text or a reference to some nontextual representation (for exam-

ple, an icon, a sound clip, an animation, and so on). The scope mecha-

nism (described later) allows for the case of homonyms (where a single

word is used to refer to two or more different concepts).

 Identity by reference. When a topic is used to represent a resource

that already has its own unique URI, that URI can be used as part of the

identity of the topic, which is simply a way of telling the processing agent

that “this topic stands for that resource.” In the topic map standard, this

form of identifier is known as a subject locator.

 Identity by description. Topics can be used to represent a concept

that does not have its own unique URI. Many of the things that a topic

can represent could never have a unique URI because they are not things

that a computer can resolve a reference to. For example, a person may

have any number of database records about them or online biogra-

phies or pictures, but none of those addressable resources is the per-

son; they are merely some form of descriptor for the person. In the topic

map standard, this form of identifier is known as a subject identifier, and

the resource that the subject identifier resolves to is known as a subject

indicator. Topic maps allow the use of URI references to such descriptive

resources as a form of identity. Obviously, it is important that the topic

map author chooses unambiguous descriptive resources for this purpose,

and we’ll return to this issue later.

 The distinction between the latter two of these forms of identity

can be confusing. Consider the URL www.networkedplanet.com/about/

index.htm. This URL links to a Web page that describes the company

NetworkedPlanet. This URL could be used as the subject identifier for a

topic named “The company NetworkedPlanet” because it resolves to a

resource that describes the concept of the company. However, if we want

to talk about the concept “The About page on the Web site, www.net-

workedplanet.com,” we want a topic whose subject really is the resource

at the address: www.networkedplanet.com/about/index.html, and so we

would then use the same URI as a subject locator (see Figure 2).

Types and Names
The key difference between a subject identifier and a subject locator is

that a subject identifier requires human interpretation of a resource to

determine the concept that a topic represents; whereas, a subject locator

simply points to the concept that the topic represents (see Figure 2). The

arrow on the left shows the use of a resource as a subject locator. The

arrow in the center shows the use of the same resource as a subject iden-

tifier. The arrows to the right show the role of the human being in the

interpretation of a subject identifier.

 Although a single topic can have many forms of identity, it is impor-

tant to note that each separate identifier can resolve to only one topic.

The merging rules of topic maps (described later) enforces this one-to-

many relationship between topics and their identifiers.

 In addition to these forms of identity, a topic can also have any num-

ber of types and any number of names. The types of a topic define the

class (or classes) of concept that the concept represented by the topic

belongs to. Types are treated in topic maps as concepts in their own

right, hence, every type is represented by a topic. The type of a topic is

specified simply by a privileged form of relationship between the topic

that represents the instance and the topic that represents the type.

 The names of a topic define a set of labels for a topic. Every name has a

hierarchical structure. At the root is the base name, which has a string rep-

resentation. It is the base name string value that is used to determine topic

identity by label. A base name is also a container for any number of alter-

nate forms (known as variant names). The alternate forms of a name may

be either string values or references to resources, allowing representations

such as icons or sound clips to be referenced as variant names. Base names

and variant names can be given a context (or scope) in which they are

valid, allowing a topic map-aware application to select the best name for

presentation to a user in a given situation. We will cover scope later.

 Associations are the general form for the representation of relation-

ships between topics in a topic map. An association can be thought of as

an n-ary aggregate of topics. That is, an association is a grouping of top-

ics with no implied direction or order; and there is no restriction on the

number of topics that can be grouped together.

Topic Maps

6 www.microsoft.com /architecture • Journal 5 •

ABC Limited ABC Limited

John Smith Smith, John

After
merging

Before
merging

Smith, JohnJohn Smith

 An association can be assigned a type (again defined by a topic)

that specifies the nature of the relationship represented by the associ-

ation. In addition, each topic that participates in the association plays a

typed role that specifies the way in which the topic participates.

 For example, to describe the relationship between a person, John

Smith, and the company he works for, ABC Limited, we would cre-

ate an association typed by the topic Employment and with role types

Employee—for the role played by John Smith—and Employer—for the

role played by ABC Limited (see Figure 3).

Occurrences and Scope
Occurrences are used to represent or refer to information about a con-

cept represented by a topic. Occurrences can be used either to store

string data within the topic map, or to reference any kind of Web-

addressable resource external to the topic map. No restriction is placed

on what type of resource is addressed by an occurrence. It may be a

static HTML page, an HTML page generated by ASP, a Web service, or

any other type of resource. Neither are occurrences restricted to the

HTTP protocol—any address encoded as a URI can be used to address

an external resource.

 Once again, occurrences can be typed, using a topic to express

the occurrence type, and a scope of validity can also be assigned to

an occurrence. Like names, an association can be assigned a scope in

which it is valid, which may be used by a topic map-aware application

to determine whether or not to display the information represented by

the association to a user in a given situation.

 In the topic map standard scope refers to a constraint or a context

in which something is said about a topic. The way in which such state-

ments about topics are made are by adding a name to the topic, spec-

ifying an occurrence for a topic, or by creating an association between

topics (in which case the statement applies to all of the topics in the

association).

 In many cases statements are not always true, but are depen-

dent on a context. For example, we make statements such as “ABC

Limited was top vendor of widgets in Q2 2004” or “Fred says that

ABC Limited is a good investment.” In the first statement the con-

text is a temporal context, and in the second case the context is a

quotation context. More prosaically, context is often used to facili-

tate multilingual interfaces so the concept dog may have the label

dog in the context of the English language, le chien in French, and

das Hund in German.

 In a topic map, scope is defined by a collection of topics that can be

assigned to a name, an occurrence, or an association. The default scope

(where no set is assigned) is known as the unconstrained scope and

simply means that the name, occurrence, or association is always valid.

 When a topic map-aware application encounters a name, occur-

rence, or association that has a scope assigned to it, the application

should make use of information it has about the current operating

context and compare that information against the scope information

contained in the topic map to determine if the construct is valid and

whether or not it should be presented to the user.

 In the current edition of ISO 13250, the mechanics for processing

scope against an application context are not constrained by the stan-

dard, and for many topic map developers this lack of constraint is seen

as a shortcoming as it can make it more difficult to exchange topic

maps that use scope. The next revision to the standard will recommend

that a scope that consists of multiple topics should be processed such

that the scoped construct is valid only if the application determines that

all of the topics in the scope apply to the current application context.

Topic Merging
Automatic topic merging is a key feature of topic maps that brings

many benefits to topic map development and to applications that

make use of topic maps for managing and exchanging data.

 The principle behind topic merging is that in any given topic map,

each subject described by the topic map must be represented by one

and only one topic in the topic map. This principle means that it is the

responsibility of the topic map processor to attempt to identify the sit-

uation in which two topics represent the same subject and to process

them so that only one topic remains. This is the process of merging.

 Identifying when two topics represent the same subject is achieved by

applying heuristics. The topic maps standard defines a set of basic heuristics:

1. If two topics share the same source locator, then they have been

parsed from the same topic map source and must be considered to

represent the same concept.

2. If two topics have the same subject locator, then they both identify

the same network resource as being the thing that they represent.

Figure 4 The topic merging process

Topic Maps

7 • Journal 5 • www.microsoft.com /architecture

3. If two topics have the same subject indicator, then they are both

using the same resource to describe the concept that they represent

and must be considered to represent the same concept.

4. If two topics each have a base name with the same string representa-

tion and the scope of the base names are the same set of topics, then

the topics must be considered to represent the same concept.

5. Finally, a topic map application may make use of any domain-spe-

cific information it has, to determine that two topics represent the

same concept.

 Item 3 in this list raises the importance of selecting a good resource as the

description for a concept. If the description is somehow ambiguous or if the

resource addressed is not well defined enough, it is possible that two different

topic map authors might use the same resource as a descriptor for different

concepts, leading to undesired merging. In our experience, good resources for

subject descriptors are those created specifically to describe a single subject—

for example, the pages at wikipedia.org, or pages created by the topic map

author(s), or by a community of practitioners to define a controlled vocabulary.

 Item 4 has proven to be controversial in the topic map community as

it relies on what many consider to be a relatively weak form of identity: the

name for a concept in some language. The mapping of words to concepts

in a language is a complex affair, and one has challenges in multiple words

having different meanings (homonyms), not to mention localization chal-

lenges! In the next version of the ISO standard, the restrictions on name-

based identity will be tightened still further to require an author to explic-

itly flag a topic name as being one that should be used to confer an iden-

tity (the default being that a name shall not confer identity to its topic).

 Item 5 allows for applications to extend the topic maps standard’s set of

merging criteria with application-specific criteria. These could include cri-

teria based on more than a straightforward string or URI comparison. For

example, an application might know that “The Duke” and “John Wayne”

are names for the same actor and merge two topics on that basis. Having

identified the topics to be merged, the merging process defines the pro-

cess of replacing those two (or more) topics with a single topic. The single

topic that results from the merging process has all of the identifiers, names

(including variant names), and occurrences of the topics that are merged.

In addition, the result topic replaces the merged topics wherever they are

referenced (that is, in any associations, scopes, or types that they appear

in). This process is shown schematically in Figure 4.

 The merging to two (or more) topic maps is simply the process of combin-

ing their sets of topics and associations and then applying the topic merging

rules to the result.

The XTM Syntax
As noted previously, the ISO topic maps standard defines two standard

interchange syntaxes: one SGML based and the other XML based. The

XML syntax defines a topicMap element that contains any number of

topic and association elements. A simple example of a topic map in XML

Topic Map (XTM) syntax looks like this:

<topicMap xmlns=
 http://www.topicmaps.org/
 xtm/1.0/ xmlns:xlink=
 “http://www.w3.org/1999/
 xlink”>
 <topic id=”band”>
 <baseName>
 <baseNameString>Band
 </baseNameString>
 </baseName>
 </topic>
 <topic id=”person”>
 <baseName>
 <baseNameString>Person
 </baseNameString>
 </baseName>
 </topic>
<!--

-->
<!-- The Clash is a Band -->
<topic id=”clash”>
<instanceOf>
 <topicRef xlink:href=”#band”/>
</instanceOf>
<baseName>
 <baseNameString>The Clash</baseNameString>
</baseName>
</topic>
<!-- Joe Strummer is a Person (note multiple names)
-->
<topic id=”joe-strummer”>
<instanceOf>
 <topicRef xlink:href=”#person”/>
</instanceOf>
<baseName>
 <scope>
 <topicRef xlink:href=”stage-name”/>
 </scope>

 <baseNameString>Joe Strummer</baseNameString>
</baseName>
<baseName>
 <baseNameString>Joseph Mellor</baseNameString>
</baseName>
</topic>
<!—
Joe Strummer is a member of The Clash -->

 Note separate member elements
 used for the different roles
 played
-->

<association>
<instanceOf>
 <topicRef xlink:href=”#membership”/>
</instanceOf>
<member>
<roleSpec>
 <topicRef xlink:href=”#group”/>
</roleSpec>
<topicRef xlink:href=”#clash”/>
</member>
<member>
<roleSpec>
 <topicRef xlink:href=”#singer”/>
</roleSpec>
<topicRef xlink:href=”#joe-strummer”/>
</member>
<member>
<roleSpec>
 <topicRef xlink:href=”#guitarist”/>
</roleSpec>
 <topicRef xlink:href=”#joe-strummer”/>
</member>
</association>
</topicMap>

Listing 1. The XML syntax defines a topicMap element that contains any number of topic and association elements; in this case there is syntax
for membership, group, singer, and guitarist.

Topic Maps

8 www.microsoft.com /architecture • Journal 5 •

And Listing 1 shows you similar syntax for membership, group, singer,

and guitarist.

 We will not go into the details of the syntax here. (see Resources for a

link to the original XML topic maps specification produced by TopicMaps.

org—which was subsequently adopted by ISO).

 Note that the XTM syntax does not impose the merging restrictions

that are required of a topic map processor. This allows XTM to be cre-

ated easily, but requires that any processor that reads an XTM file must

detect topics that must be merged and apply merging rules as the XTM

file is parsed. When an XTM file is known to be fully merged (that is,

it doesn’t contain topic elements representing topics that should be

merged), the topic map model it contains can be accessed easily using

standard XML processing tools such as XSLT and XQuery. However, it is

not the case that standard XML processing tools can be easily applied

to XTM files where merging is required.

 Despite the issues with merging, the XTM syntax serves the basic need

of allowing interchange between conformant topic map processing appli-

cations. In addition, the syntax and merging rules together are sufficiently

flexible to even allow parts of a topic map to be serialized as separate XTM

documents and later recombined through merging (see Resources).

 As we have hopefully demonstrated up to this point the topic maps

standard provides a very flexible base architecture for a wide variety

of information and knowledge management applications. This flexibil-

ity can lead to confusion and constant reinvention of basic modeling

approaches. To address this issue, we advocate the development and use

of patterns within topic map applications. We divide patterns into two

broad categories: topic map design patterns that are patterns for model-

ing topic map data and topic map application patterns, which are archi-

tectural patterns for the use of topic map processing systems.

 The basic concept of a topic map design pattern borrows heavily

from design patterns in software engineering. A topic map design pat-

tern provides a focused and reusable ontology that addresses a single

issue. There are a couple of interesting differences, however.

 A topic map design pattern can be more prescriptive than a software

design pattern, as it should specify the subject identifier URIs for the key

topics used by the pattern. In this way every implementation of a particu-

Hierarchical Classification Pattern

Some basic patterns for hierarchical and facetted classification
are supported by several topic map processing applications. The
Hierarchical Classification Pattern uses a modeling property of topic
maps in which every topic, association, and occurrence type is itself
a topic.
 Problem statement. Many classification systems consist of one
or more hierarchies of subjects. A number of different hierarchical
relationships are possible: part-whole, broader-narrower, and so on.
Although the relationships may be different, the hierarchical seman-
tics remain the same. An application working with multiple hierarchi-
cal relationship types requires a way to identify all of these types.
 Pattern description. The pattern given here for modeling a
hierarchical classification system uses one topic to represent each class
in the system. The hierarchy is then modeled by creating associa-
tions between subordinate and superordinate classes. However, it
is recognized that there are a wide variety of different hierarchical
relationships. For this reason, the type of the associations between the
subordinate and superordinate classes are not defined by this pattern.
Instead, this pattern defines the type of all such types, and the type of
all role types for both subordinate and superordinate role players.
 The other issue is how to relate the items classified by this
scheme (the instances) to the topics that represent the classes. If an
instance is represented by a topic, then an association should be
made between the topic representing the class and the topic rep-
resenting the instance. For this purpose, topic types are introduced
to represent the classification of an instance (“Classified as”) and the
roles played in the relationship (“Classification” and “Instance”). If the
instance is not represented as a topic, then an occurrence should be
used, in which case the “Instance” type can be used as an occurrence
type rather than as an association role type.
 Analysis. This pattern creates a means of flagging an associa-
tion type as being a hierarchical relationship and of indicating which
role is the superordinate and which is the subordinate role. This
analysis may be done externally to the topic map, which defines the
association and role types, enabling a preexisting topic map to be
integrated without the need to edit it.

 The classification semantics of the “Classified as,” “Classification,”
and “Instance” types can be omitted from this pattern, where clas-
sification is not the purpose of the hierarchy. For this reason, those
subjects are defined in a separate set of Published Subject Identifiers
(PSIs)—with a different base URI—from the hierarchy-defining sub-
jects.

PSIs for the Hierarchical Classification Pattern
These PSIs are used by the Hierarchical Classification Pattern:

• Hierarchical relation type (www.techquila.com/psi/hierarchy/
#hierarchical-relation-type/) – A type of association type.
Associations that are typed by a topic that is an instance of this type
represent a parent-child relationship between two or more topics.

• Superordinate role type (www.techquila.com/psi/hierarchy/
#superordinate-role-type/) – A type of association role type. The
player(s) of a role that is typed by an instance of this type in an
association of the type Hierarchical Relation Type is the upper ele-
ment in the hierarchy.

• Subordinate role type (www.techquila.com/psi/hierarchy/
#subordinate-role-type) – An association role type. The player(s) of
a role that is typed by an instance of this type in an association of
the type Hierarchical Relation Type is the subordinate element in
the hierarchy.

• Classified as (www.techquila.com/psi/classification/#classifed-as/)
– An association type asserting the relationship between a topic
representing a class in a classification system (playing the role
Classification) and one or more topics representing instances of
that class (playing the role Instances).

• Classification (www.techquila.com/psi/classification/
#classification/) – The role played by a topic representing a class in
a classification scheme.

• Instance (www.techquila.com/psi/classification/#instance) – The
role played by a topic representing a subject that is classified
under a classification scheme. •

Topic Maps

9 • Journal 5 • www.microsoft.com /architecture

lar pattern in a topic map can be recognized instantly by the presence of

topics with the URIs specified by the pattern.

 As a topic map is purely data, behaviors related to a topic map design

pattern are implemented not in the topic map itself but in the process-

ing software that makes use of the topic map data. Some design pat-

terns may prescribe a particular set of behaviors for processing applica-

tions; others may describe only the data model and leave open the way

in which the application processes the data model.

Topic Trees
Some basic patterns taken from Library Science have been defined by

one of the authors and are supported by a number of topic map process-

ing applications (see Resources). These patterns include patterns for hier-

archical and facetted classification. (See the sidebar, “Hierarchical Classifi-

cation Pattern” for an example of one such pattern).

 The Hierarchical Classification Pattern makes use of a very useful

modeling property of topic maps, which is that every topic, association,

and occurrence type is itself a topic. This feature allows the ontology of

a topic map application to be annotated using the same structure as is

used to populate the ontology itself, and can be used to great effect in

design patterns by allowing an existing topic map ontology to be anno-

tated using the pattern “metaontology” rather than modified.

 This pattern enables an application to process a set of associations

between topics as representing a hierarchy. For example, it may display

the topics arranged into a tree view.

 Topic map application patterns provide high-level architectural patterns

and principally concentrate on the integration of a topic map processing

system with other data systems and applications. These patterns include

patterns for representing information from external data systems as topic

map data, patterns for the import of information from external data sys-

tems, and patterns for the export and display of topic map data. (The

details of topic map applications are beyond the scope of this article).

 At the time of this writing more work is being done within ISO both

on the topic maps standard itself and on a suite of companion standards.

Although ISO/IEC 13250 has been through a revision, the core of the

standard has remained unchanged since 1999—exhibiting a fair degree

of stability in comparison to many Internet standards! However, the ISO

committee has decided that the next version of the standard will be a

significant overhaul in the way the standard is presented and a minor

overhaul of the standard itself (see Resources for a link to the Hierarchical

Classification Pattern).

 The ISO/IEC 13250 standard is to be divided into a number of sep-

arate parts: a non-normative introduction, a formal description of

the underlying data model of topic maps, an XML/XLink-based inter-

change syntax with a description of the process of deserializing the

syntax into an instance of the data model and serializing the data

model into a document conforming to the interchange syntax, and

a canonicalization algorithm for the data model that can be used in

topic map processor conformance testing. It is hoped that this orga-

nization will make the standard more reader friendly and will add fea-

tures that were missing originally and were felt to be important for

future developments (specifically, the formal model specification and

the canonicalization algorithm).

 Changes to the standard include the ability to apply datatypes to

occurrence values, including the ability to embed XML; the ability to

declare a subset of the names of a topic as names to be used for determin-

ing topic identity; a clearer model of scope; and a definition of the inter-

change syntax in W3C XML Schema and Relax-NG as well as XML DTD.

What’s Ahead
In addition to the changes to ISO/IEC 13250, the committee has also

commenced work on two companion standards. ISO/IEC 18408, Topic

Maps Query Language (TMQL), will define a language for querying the

topic map data model, allowing the selection of both topic map con-

structs (such as topics and associations) and of the data carried by them

(for example, topic name or occurrence values).

 ISO/IEC 19756, Topic Maps Constraint Language (TMCL), defines a

schema language for topic maps that would allow the schema author to

constrain the constructs that can appear in a topic map and how they

must relate to one another. As with XML a schema language for topic

maps enables both validation and also smarter, schema-driven editing

applications.

 Both of these standards are currently in an early stage of develop-

ment with requirements defined, and, in the case of TMQL, an initial

proposal for the language has been created. Work on the core stan-

dard and on the query and constraint languages can be followed on

the ISO Topic Maps Web site (see Resources). •

About the Authors

Kal Ahmed is cofounder of Networked Planet Limited (www.

networkedplanet.com), a developer of topic map tools and topic maps-

based applications for the .NET platform. He has worked in SGML

and XML information management for 10 years, in both software

development and consultancy, and on the open source Java topic map

toolkit, TM4J as well as contributed to development of the ISO standard.

Graham Moore is cofounder of Networked Planet Limited, and he

has worked for eight years in the areas of information, content, and

knowledge management as a developer, researcher, and consultant.

He has been CTO of STEP, vice president research and development at

empolis GmbH, and chief scientist at Ontopia AS.

Resources
SO/IEC
www.isotopicmaps.org
Home of SC34/WG3 Information Association

www.y12.doe.gov/sgml/sc34/document/ 0322_files/iso13250-2nd-ed-
v2.pdf ”ISO/IEC 13250, Topic Maps (Second Edition),“ M. Biezunski,
S.Newcomb, and S. Pepper (ed.) (May 2002)

Techquila
www.techquila.com/topicmapster.html
“TMShare — Topic Map Fragment Exchange in a Peer-To-Peer
Application,” Kal Ahmed

http://techquila.com/tmsinia.htm
“Topic Map Design Patterns for Information Architecture,” Kal Ahmed

Topic Maps 4 Java (TM4J)
www.tm4j.org
Welcome to the TM4J Project

XTM TopicMaps.org
www.topicmaps.org/xtm/1.0/, “XML Topic Maps (XTM) 1.0,” Steve
Pepper and Graham Moore, eds. (TopicMaps.org 2001)

10 www.microsoft.com /architecture • Journal 5 •

Metropolis and SOA
Governance
by Richard Veryard and Philip Boxer

ior. Thus, in the service economy we expect service-oriented systems to

emerge that are increasingly large and increasingly complex, but that

are also capable of behaviors that are increasingly differentiated, which

as we shall see, is one of the key challenges of service-oriented architec-

ture (SOA).

 The city or metropolis is another large complex system that many

of us encounter in our everyday lives and that we typically experience

as differentiated in its behavior. Our familiarity with cities makes the

metropolis a good starting place for working out the best approach to

building and governing such large complex systems. Furthermore, many

of the key issues for the design and governance of large complex ser-

vice-oriented systems arise also in the field of urban design, where they

have been debated for decades (although without reaching consensus).

 As it happens, the latest heavyweight contribution to the debate on

physical architecture and urban design comes from Christopher Alex-

ander, whose long-awaited work on the nature of order has finally been

published. Alexander has had a profound influence on software engi-

neering for many years—his early work on the synthesis of form influ-

enced the structured methods of Yourdon and deMarco, while his mid-

dle work on patterns was taken up enthusiastically by large numbers of

software engineers, especially in the OO world.

From Cities to SOA
In the twentieth century, two of the best writers on the nature of cit-

ies were Lewis Mumford and Jane Jacobs. Mumford thought a well-

ordered city needed central planning and infrastructure, while Jacobs

took a more anarchist position (see Table 1). Here are some of the issues

raised in the city debate (see Resources).

• Adaptability – In nineteenth-century England, Manchester was

highly adapted to the cotton industry, but failed to adapt to later

waves of industrialization. Meanwhile, Birmingham was far more

Summary

From time to space, the defining technology of the
past thousand years was the clock, and the prevail-
ing technological imperative has been to save time
to make things go faster or better than before.
Approaches to building and governing large, complex
service-oriented systems is not unlike designing and
managing the complexities of a large city.

Modern mechanical clocks with falling weights were invented

around a thousand years ago. The invention is often attributed

to Pope Sylvester II, who was an accomplished mathematician and sci-

entist before becoming pope. Under the Rule of St. Benedict, medi-

aeval monasteries used the clock to regulate labor and prayer. Lewis

Mumford traces the origins of the Industrial Revolution to the Rule of

St. Benedict and to the domination of the clock. Charlie Chaplin’s film,

Modern Times, shows (in exaggerated form) the relentless power of the

clock over the production-line worker. Business process engineering

in the late twentieth century was focused on reducing cycle time and

eliminating waiting. The key slogan: Just in time.

 Of course, it is too early to say what the defining technology of the

next thousand years will turn out to be, but there are already some

signs of a shift from an emphasis on time toward an emphasis on dif-

ference. The Internet, for example, creates new kinds of difference in

the relationships between people and organizations. Business organi-

zations operate as differentiated nodes or clusters within complex net-

worked ecosystems; social and institutional cohesion is mapped against

the coordinates of complex abstract dimensions of difference.

 Our understanding of complexity itself rests on the recognition that

once we go beyond a certain threshold of difference in the behaviors

of systems it becomes impossible to predict their composite behav-

(In contrast to metropolitan city governance...) IT governance is not so mature. Enterprises might learn a lot by looking at how cities manage the difficult process of
resource allocation.

Who makes the tough choices in IT? Is it the CEO, the CIO, the business unit leaders, techies,
or perhaps committees?

What proposals are projected to pay for themselves?

Are priorities established based on cost, flexibility, or asset utilization? What is the timeframe and risk analysis around these projections?

What is success and how is it measured? What in your organization is sacred?

Are we seeking cost reductions, business process transparency, or competitive advantage? What resources remain after funding these efforts?

What balance of short-term, long-term, and speculative investments are right within the spe-
cific corporate culture?

These problems are common for metropolitan and IT environments.

Table 1 SOA governance questions from Pat Helland

SOA Governance

11 • Journal 5 • www.microsoft.com /architecture

A Question of Architecture
The articulation of a complex system into two layers (one homoge-

neous, one hetero) is an architectural question. Obviously there are

companies with a significant commercial stake in this question. It is

therefore worth being suspicious of an articulation that is presented as

given by some historical tradition or technical imperative. (For a prac-

tical example, consider phone companies that would like to regard the

location of mobile phone masts, or towers, as mere infrastructure, to

be decided on technical grounds and requiring no public consulta-

tion. However, people are becoming concerned about the radiation

from these masts, especially near homes and schools, and this politi-

cizes their location.)

 Apparently pure technocratic architectural judgments often con-

ceal a commercial agenda. One of the functions of governance is to

maintain a “level playing field” between different commercial agendas.

Therefore, regulators often aspire to intervene at the architectural level.

 It is conceivable that something could look homogeneous from the

supply side and heterogeneous from the demand side, or vice versa,

so the boundary is itself relative to some supply/demand formulation.

Technology is constantly creating homogeneous/heterogeneous splits;

for example, Voice over IP (VOIP) technology creates a split between

devices that care whether a bitstream represents voice or data (and

therefore regard the traffic as heterogeneous) and devices that don’t

care (and therefore regard the traffic as homogeneous).

 One plausible basis for articulation of layers is the differential rate of

change. It may appear to make sense to standardize and regulate the

slow-moving layer and allow greater diversity in the fast-moving layer.

However, an ecological perspective informs us that the slow moving

dominates the fast moving. This perspective entails a new role for archi-

tecture: To maintain appropriate stratification of layers and coupling

between elements within and across layers, and to operate at a higher

level of abstraction, implementing evidence-based design policies.

 Existing approaches to defining architectures may not work very

well even for the homogenous bits. They certainly don’t work for

the heterogeneous bits, and they also don’t help with defining the

boundary between the homogeneous layer(s) and the heteroge-

neous layer(s). A consequence of our argument is that the boundary

between homogeneous and heterogeneous (as illustrated previously)

adaptable, and this adaptability enabled it to accommodate a series

of industrial innovations.

• Complexity – A city contains a vast quantity of social and commer-

cial interaction. A living city allows for many different levels of such

interaction and for meaningful clusters and subclusters to emerge,

which form an abstract hierarchy.

• Governance – City planning requires orchestration of developments

large and small, balancing local initiative and autonomy against

global coherence.

 There are some strong parallels between town planning and SOA,

which make it reasonable to translate ideas and experience from urban

design into the SOA domain:

• The distribution of design – Detailed design decisions are taken

within different organizations, each following its own agenda (for

example, commercial or political goals).

• The constancy of change – Elements of the whole are being rede-

signed and reconfigured constantly, and new elements are being

added constantly. Structures must evolve in robust ways.

• The need for progressive improvement – Each design increment

should not only make local improvements, but should have a posi-

tive effect on the whole.

• The recursive nature of the architecture – Similar design tasks must

be carried out at different scales (levels of granularity).

 In a recent article in the Microsoft Architects Journal (see Resources

online at www.ftponline.com), Pat Helland offers an extended analysis

comparing the planning and management of IT with the planning and

management of cities. He argues that IT governance has a lot to learn

from city governance (see Table 1) and raises some interesting parallels

between urban design and SOA (see Table 2).

 Helland’s article makes this argument: Progress requires stan-

dardization (according to Helland, people didn’t even wash properly

until they had standard clothing); standardization is associated with

commoditization; standardization requires concentration of power

(and if this involves pathological distortions of socioeconomic rela-

tions, so be it); infrastructure requires central investment (since we

may regard infrastructure as an act of local standardization, it fol-

lows that it must involve concentration of power); and central invest-

ment preserves the “sacred.” Let’s look at the steps of Helland’s

argument in detail.

 Standardization. Progress should involve enriching people’s lives,

while many acts of standardization impoverish them instead. Not

everyone is willing to regard Wal-Mart as the epitome of progress.

Living systems are heterogeneous. Helland’s utopia appears to be a

relatively homogeneous one. Citizens even all smell the same. The

exclusion of antisocial odors is engineered though standard inter-

changeable clothing (although doubtless soap and clean water con-

tribute something as well).

 Modern production methods allow for mass customization, which

involves a separation of production into two layers: a homogeneous

layer of mass production and a heterogeneous layer of customization.

In urban design, the standardized stuff is what goes underneath the

pavement—standard utilities such as water and power, for example. The

human stuff goes above the pavement. It is a question for city gover-

nance to decide what should or may go under the pavement.

The Nature of Order: Christopher
Alexander’s Manifesto

The Nature of Order (see Resources online at www.ftponline.
com)—in its complete four volumes—has implications for the
involvement of people in the design of buildings and in the
detailed ways in which this involvement is likely to be successful
or unsuccessful. It has implications for the flow of money. It has
implications for the handling of architectural detail and for the
successful integration of structural engineering into the frame-
work of design. ... It affects virtually every part of the profes-
sion we now know as architecture, and it indicates necessity for
change, in almost all of them. There is no question, that under the
impact of this theory, architecture will be deeply changed, and it
will be changed for the better. •

SOA Governance

12 www.microsoft.com /architecture • Journal 5 •

is a proper focus of attention for architecture. We shall come back to

what this means in practice.

 Commoditization. We cannot avoid the commoditization of our lives,

but we should be wary of its dangers. (A possible reconciliation of com-

moditization with human values is provided by Albert Borgmann—see

Resources.) Fortunately, we no longer have to put up with one-size-fits-

all software. Situated software—software designed in and for a partic-

ular social situation or context—resists the traditional software engi-

neering pressure toward generalization and apparently disregards the

economics of scale/scope. Instead it works solely within a collaborative

sociotechnical system (the “community”); the conditions for the success

of the software (including meaning and trust) are co-created by the

members of the community.

 One of the earliest forms of situated software was the spreadsheet.

Power users built themselves complicated structures using Visicalc or Lotus

123 or Excel. These were essentially nontransferable artifacts with many hid-

den assumptions, but they served a useful purpose within a given context,

which illustrates the fact that situated software is assisted by the existence of

tools and platforms that provide generalized support for situated software.

Supporting Rich Diversity
The overwhelming success of the spreadsheet was because it per-

formed a useful function, while leaving the user free to create context-

specific meanings. However, the spreadsheet was also limited in that

these meanings were private and undocumented, and attempts to turn

spreadsheets into shared artifacts typically failed.

 This is where the software factory comes in. There is a great oppor-

tunity here to produce software tools capable of supporting a rich

diversity of end-user demand. A Domain-Specific Language (DSL) can

be a way of bridging and holding open the gap between the general

public and the context-specific or private and maintain the dynamic

interaction between supply and demand. This dynamic needs to be

driven by the way the end user defines the relationship between

domains and their business as a whole.

Cities IT shops

Factories or buildings Applications

Transportation Communication

Manufactured goods Structured data

Manufactured assemblies Virtual enterprises

Retail and distribution Business process

Urban infrastructure IT infrastructure

City government IT governance

Symmetry Assumptions Implications of Asymmetry

Technology=Product The first symmetrical assumption is that the first three
challenges are all lined up. Thus, these three chal-
lenges collapse into a single dimension defined by the
technology.

With SOA, we are increasingly confronted with businesses that are nothing more than a technology
platform for other businesses (from Microsoft itself downward). The simple alignment doesn’t work.
Instead, they are pushed into some form of stratification.

Business=Solution The business rules and procedures espoused by the sup-
plier match the ways the services are to be used.

Rail maintenance is supposed to provide reliable and safe railways. In the UK, Network Rail (formerly
Railtrack) takes input services from engineering companies and turns them into output services for
train-operating companies. It has proved to be extremely difficult to align the input requirements
against the output requirements.

Customer demand=
Customer experience

The banking fantasy of straight-through processing is
based on symmetry and shared values all along the
value chain.

Contrast this characteristic with the situation in the pharmaceutical industry, where a drug company’s
set of relationships with GPs and pharmacists are of quite a different nature to those of the GPs and
pharmacists with their patients, despite the tendency of the drug companies to assume that it should
be otherwise.

Table 2 Key parallels between cities and IT from Pat Helland

Table 3 Implications of asymmetry: the three dilemmas

 The service economy is a complex ecosystem. Service-oriented solu-

tions are essentially systems of systems, and their composition should

be mindful of complex systems theory. To maintain requisite variety

(and therefore survival of the fittest) in such an ecosystem, we need

diversity at all levels of abstraction.

 Concentration of Power. The Wal-Mart economic system is unsus-

tainable. It destroys the fabric of small shops on which a rich urban life

depends. Cities are somewhat paradoxical. On the one hand, a city is itself

already a concentration of human activity, but the concentration pro-

cesses are unstable and can result in highly dysfunctional urban forms.

 Historically, cities have had walls to keep out unwanted visitors. Else-

where, Helland has advocated the fortress model of computing. How-

ever, here he seems to be envisioning a continuous metropolitan fabric,

where one city fades into the next (as Manchester merges into Salford).

 Central Investment. Helland’s plea for central investment (the Mum-

ford position) provides a justification for corporate central planning and

investment in IT. Many large and small organizations attempt to impose

central IT planning. However, in many organizations this is a losing bat-

tle. The situation of the IT industry emerges from millions of small pro-

curement decisions, and is closer to the idea of anarchic procurement

(the Jacobs position).

 Nikos Salingaros draws on Alexander to describe how the Mum-

ford-Jacobs dispute can be resolved, but by adopting an approach

that goes beyond simply attempting to reconcile the top-down with

the bottom-up.

 A modern version of the sacred may be found in Borgmann’s notion

of focal things and practices. The role of urban/system governance

would be to create/preserve a space in which these focal things and

practices can be developed and honored.

 In an agile demand economy, the source of the sacred is demand,

which contrasts with a supply-side logic based on a presumption of sym-

metric demand in which markets are defined to reflect the supplier so

that formations of demand are symmetrical to the formations of supply.

 In talking about virtual enterprises, Helland writes: “you have to

consider the context in which the part will be used. Is weight or rugged-

ness the principle concern?” Helland argues that standards are the key

to enabling component providers to leverage the cost of optimization

across a broader market, and this leverage can be understood as sup-

ply-side logic. However, this issue goes beyond standardization (here

extended to business component models, enabling them to be encap-

sulated as component capabilities and orchestrated as a part of larger

assemblies of processes) and opens up the granularity of component

capabilities with respect to each other. That is, what is the repertoire of

alternative component capabilities available? This concept needs to be

understood from the demand-side as well.

SOA Governance

13 • Journal 5 • www.microsoft.com /architecture

The Driving Force
In considering business process, this argument is extended by analogy to

the need for standardization and interchangeability in data and opera-

tions: “people cheerfully accept standard stuff and customization is rare

and expensive. But business process is still largely hand-crafted. There are

poor standards…” And so the argument goes for standardization provid-

ing a basis of extending a supply-side logic deeper into the provision of

services, with business process becoming the driving force that dictates

the shape and form of applications “as surely as Wal-Mart drives the stan-

dards for many, many manufactured goods.”

 This argument doesn’t meet the challenge of the aforementioned

retail cycle (see Resources). This cycle describes the emergence of a

new form of supply-demand relationship (destination), which expands

to become a new form of offering alongside others (comparison)

before it becomes commoditized (cost) and ultimately embedded into

the user’s context (custom). From here, the ground is prepared for

a new cycle (the transitional cusp) and so on. This cycle is a dynamic

process in which the supply side is constantly learning new forms of

supply in response to a demand that is always evolving—and never

fully satisfied. Asymmetric demand describes the demand in its partic-

ular context of use, and this “something always left to be desired” is a

structural deficit that is always there driving the development of mar-

kets. Commoditization is only the supply-side part of the story; the

real issue is the way the dynamics of the formation of demand itself

has to be supported.

 For several decades, Christopher Alexander has been exploring

alternatives to conventional architectural practice. His latest work, the

Nature of Order, was published last year (see the sidebar, “The Nature of

Order: Christopher Alexander’s Manifesto”).

 According to Alexander, large complex systems cannot be pro-

duced by a conventional design process, either top down or bottom up

(see Figure 1). Instead, they emerge from an extended and collaborative

(evolutionary) process. Order and coherence comes from the rules that

govern this evolutionary process, which can be broken down into dis-

crete steps that may either preserve structure and wholeness or destroy

it. Structure and wholeness is articulated as a recursive system of centers.

 Services can easily be considered as centers of value (see Resources

online at www.ftponline.com). Services can be composed into compos-

ite services, with service orchestration (hopefully) yielding coherence

between recursive levels.

 A service-oriented enterprise can then be understood as a con-

tinuous corporate web of services. The architectural properties of this

enterprise depend on the numerous collaborating processes that bring

about its composition. If these are appropriately structure-preserving,

then the enterprise can become both increasingly differentiated and

increasingly integrated, without loss of coherence.

 Alexander is highly critical of the conventional governance over

city planning and urban design, and highly critical of the inflexible

and inhuman results of directed composition. His ideas on design and

order are, we believe, consistent with the needs of collaborative com-

position, as outlined here.

Structural Implications
A business or value chain is composed in a geometric structure. In SOA,

we design a business or value chain as a network of services, which is

a powerful geometrical pattern. However, there may be many possi-

ble network geometries capable of satisfying a given business require-

ment, all of which count as satisfying the principles of SOA—for exam-

ple, hub/spoke or peer to peer.

 A key characteristic of SOA is stratification. A business process is

composed of services from a set of lower-level services presented as

a platform. A good example of a business platform is the set of retail

services offered by Amazon and eBay. Other service providers have

built further retail/logistical services on top of the Amazon/eBay

platforms.

 Each platform is in turn built on even lower services. At the lower

levels there may be collections of IT-based services, known as the enter-

prise service bus (ESB). There may also be sociotechnical service plat-

forms, such as call centers. Some of these lower layers of the stack may

appear to be purely technical services; however, a more complete pic-

ture should reveal the existence of an IT organization maintaining the

platform. In other words, it too is a sociotechnical platform that includes

its administrators and programmers.

 Thus, we have a stratified geometry in which a person tackling

a problem at a given level is presented with a collection of avail-

able services, formed into a virtual platform. You can think of this

collection as a business stack, with one platform stacked on top of

another. And while the SOA principles may provide some geomet-

rical guidance, and mandate certain geometrical patterns, there is

still a design job to determine the form of geometry most appro-

priate to supporting the demanded service. This design job may be

easy when the requirement is trivial, but gets harder as the com-

plexity increases.

 In many situations, the demand side has more variation than a

human designer (or design team) can accommodate. (We characterize

Alternative
approaches

Well-defined
approach

Common
understanding

Unique to
customer

Supply
infrastructure

Comparison Destination

Cost Custom

Capability
requirement

Figure 1 Capability requirement

“THE CITY OR METROPOLIS IS ANOTHER

LARGE COMPLEX SYSTEM THAT MANY OF

US ENCOUNTER IN OUR EVERYDAY LIVES

AND THAT WE TYPICALLY EXPERIENCE AS

DIFFERENTIATED IN ITS BEHAVIOR”

SOA Governance

14 www.microsoft.com /architecture • Journal 5 •

this situation as an asymmetry of demand, which calls for a process of

asymmetric design.) Under these circumstances, we need to go still fur-

ther and start thinking about variable geometry solutions, where the

geometry itself can be adapted on demand.

 For example, in the past we have assumed that granularity has to

be fixed at design time, but we can conceive of a Web service platform

that detects patterns of demand-side composition; defines new com-

ponent services automatically, describing and publishing these new ser-

vices in real time; and notifies likely users of the new service, complete

with an incentive to switch to new ways of orchestrating them in sup-

port of demand-side composition. We can conceive of such a Web ser-

vice platform analyzing the message content of a certain service and

producing a substitute service with a smaller footprint that would sat-

isfy most of the uses in a more elegant way.

 We use the term value landscape to refer to the distribution of cost,

benefit, and know-how across a complex market ecosystem, such as

the insurance industry, for a given level of risk. Technology (including

SOA) influences business geometry because it not only affects transac-

tion costs, but also the way know-how can be leveraged in relation to

demand. The shape of the value landscape changes (has already started

to change) as the result of B2B, B2C, P2P, and BPO. Companies that

once occupied safe market positions may find their commercial advan-

tage slipping away, or they may find themselves cut off from their for-

mer customers or supply chains.

Taking Aim
Let’s suppose an insurance company has these strategic aims:

• Profitability, short-term viability. To deliver the maximum service value

as cost effectively as possible, using available input services and tech-

nologies as efficiently as possible, with minimum costs/risks of change

• Adaptability, medium-term viability. To understand and respond to

changing demand for insurance services, and to trends in cost and

risk, both internally and across the industry; to develop and deploy

new services to exploit new business opportunities and avoid

emerging business threats

• Survival, long-term viability. Making sure the core business propo-

sition remains valid and doesn’t get eroded by more agile players;

taking strategic action in relation to structural changes in the insur-

ance industry

 If we are doing business geometry for an insurance company, we

need to think about the insurance industry as an evolving ecosystem.

We need an as-is model of the present ecosystem (largely based on pre-

SOA technologies) and a to-be model of an emerging ecosystem (based

on the effects of SOA). We can expect the pre-SOA ecosystem to evolve

into some form of post-SOA ecosystem; although, we may not have

much idea which of the possible changes is going to happen first. To sat-

isfy all three strategic aims, an insurance company needs to exploit the

pre-SOA ecosystem and prepare for the post-SOA ecosystem.

 Note that this situation may force the insurance company to

implement a variable geometry across its business stack, both in

the organizational platform and in the underlying IT platform. Oth-

erwise, it will either have to operate suboptimally for an extended

period, or incur significant organization costs and IT costs every

time the industry takes another step toward SOA. Variable geom-

etry involves a dynamic collaboration (collaborative composi-

tion) between an efficient supply side and a variable (asymmetric)

demand side (see Table 2).

 Asymmetry means that the forms of demand are increasingly spe-

cific to the context in which they arise. The first asymmetry involves

separating out technology from the supply of specific products (see

Platform
providers

Solution
providers

1 2 3 4 5 6

Server
platform

Web
services

messaging
and

integration
User

experience ??
User

experience Uncertainty

End user

Referral pathwayService pathways

Supply
side

Asymmetric
demand

Collaborative
composition

Orchestration composition Context of use

End-user experienceLOB features

Figure 2 Collaborative composition in the insurance value chain—based on Microsoft IVC (Source: CBDI Forum, November 2004)

SOA Governance

15 • Journal 5 • www.microsoft.com /architecture

Figure 2). This separation requires modeling of possible behaviors that

can be supported (so Microsoft or car manufacturing has to modularize

itself in support of families of technology use).

 The second asymmetry requires separating business models that

can organize supply from the solutions that are on offer. This separation

requires modeling of the possible forms of business geometry (so rail

maintenance or retail services have to use a franchise model to allow

the variation in business organization to accommodate the variety of

ways in which the service needs to be implemented).

 And the third asymmetry requires separating the different contexts

of use. This separation requires modeling the possible forms of demand

(so that financial or care services are having to take up the way the

through-time wealth/conditions are managed in a way that responds to

different forms of context of use).

Taking the Lead
These asymmetries are summarized in Figure 3, and it is worth con-

sidering what happens if they are ignored. In the first asymmetry the

product is defined by the technology, which is typical of the early

stages in the emergence of new technologies. (Do you remember how

we used to have to use mobile phones?). In the second asymmetry the

solution for the customer is defined by the way the business is orga-

nized. (Do you remember how large businesses used to relate to their

customers before CRM?). And in the third asymmetry the solution to

the problem presented by the customer is assumed to be what the cus-

tomer needs. (Have you ever received a prescription from the doctor

that turns out only to treat the symptom?). We see the major competi-

tive impact of SOA being that it changes what the supplier can afford to

ignore from the customer’s perspective.

 To become better at capturing asymmetric forms of demand, an

organization needs leadership that will enable it to do two things: take

power to the edge of the organization and develop an agile infrastruc-

ture. Taking power to the edge of the organization means the people

at the edge of the organization with the relationship to the asymmet-

ric demand must be able to organize the business model they need to

capture that demand. Developing an agile infrastructure means pro-

viding business services that can be orchestrated and composed at the

edge in response to the particular forms of demand they are target-

ing. This leadership then allows the supply side of a business to extract

economies of scale or scope when providing support across multiple

business models.

 Let’s look at a health care example. Asymmetry in the variety of con-

ditions that people have, and the ways in which they reveal themselves

in people’s lives over time, is ever increasing. Meanwhile hospitals and

clinics are having to become ever more efficient in how they administer

particular care pathways.

 We see this challenge particularly in relation to conditions that are

chronic. Thus, patients don’t produce conditions that fit the treatments

that are available, while organizing acute care systems around the treat-

ment of chronic conditions becomes exorbitantly expensive. Patients’ con-

ditions are relentlessly asymmetric from the point of view of the medical

specialisms trying to care for them. For example, acute surgery can often

be traced to an earlier failure to provide timely prophylactic treatment.

 Getting power to the edge in health care means the funding follow-

ing the patient and the doctors having the ability to craft a treatment plan

that is particular to the patient’s condition. This situation creates a double

challenge for providing health care. Not only must it increase the flexibil-

ity with which its component services may be made available to patients,

but also the doctors have to have a much greater involvement in formulat-

ing whole-life strategies of providing health care that can be tailor made

to a patient’s condition over time, and for the delivery of which they can be

held accountable. Where this can be done, the total cost of care is reduced.

Addressing Asymmetry
A health care purchasing and supplies agency (PASA) was responsible

for the supplies of equipment to a clinical service. They were concerned

about the side effects of minimizing the costs of these supplies—

reduced investment in the industry and a vicious circle of decline in the

quality of the clinical service itself. They decided that the conventional

symmetric design wasn’t working for them; in an attempt to improve

the quality of the clinical service itself, they decided to consider devel-

oping an approach that addressed the asymmetric nature of the clinic’s

demands. They conducted an initial pilot study to establish the feasibil-

ity of an asymmetric design process.

 What PASA accepted was that they needed to address the demand side

of the clinic and establish how best to satisfy its needs. Within this context

of use, they could then address the question of the costs of supply.

 A national process was set up by the modernization agency. This

process ran six pathfinder projects, each of which aimed to estab-

lish how to effect change in each context. It was the national project’s

task to secure long-term support and funding for the change process

in the light of the learning and results of the pathfinders. This process

ultimately involved modeling the regional and national impact of the

changes on NHS and social services budgets.

1st Asymmetry
technology

 ≠
product

Product

Technology

Solution

Business

Customer
experience

Customer
demand

2nd Asymmetry
business

≠
solution

3rd Asymmetry
customer
demand

≠
customer
experience

Figure 3 Three asymmetries of demand

“IT IS CONCEIVABLE THAT SOMETHING COULD

LOOK HOMOGENEOUS FROM THE SUPPLY SIDE

AND HETEROGENEOUS FROM THE DEMAND

SIDE, OR VICE VERSA”

SOA Governance

16 www.microsoft.com /architecture • Journal 5 •

The back end of the platform was able to lift data out of the NHS

environment on patients, appointments, and so on.

Supply-Demand Road Map
Figure 4 shows a typical road map for the service-based business as it

responds to the competitive impact of SOA. The business tackles each

form of asymmetry in turn. It uses a service wrap to decouple the prod-

uct from the technology, which includes defining a different object

model for the demand side, separating raw data from what we might

call “cooked” data; it uses a solution wrap to decouple the solution from

the business, which includes defining different rules for the demand

side, separating the business logic from the orchestration of differ-

ent solutions; and it uses an experience wrap to decouple the ongoing

customer experience from the particular solutions bought by the cus-

tomer at any one time, which includes new forms of process modeling

to understand the customer experience of solutions within their partic-

ular contexts of use.

 The point about this progression is that it confronts the supply-

ing business with the need to manage increasing complexity (and con-

currency) in the way the value chain relates to the customer, hence, the

competitive significance of SOA (see Table 3).

 With the first symmetry, the business needs only one model

because demand can be inferred from supply (or so it seems at the

time!). When this symmetry is broken two models are needed: one to

manage the technology and the other to manage the business. How

many times has an investor of venture capital had to teach this to a

start-up business?

 If the full potential of a business proposition is to be realized, the sec-

ond symmetry of coupling between two modules may have a signifi-

cant impact on the structural cohesion and flexibility of a large system,

but this coupling may be determined by fairly low-level development

choices that are not even visible to the software architects (see Figure 5).

Relationship
to demand

Simple Complex

Value chain

Sy
m

m
et

ri
c

(p
ro

d
uc

t-
ba

se
d

)
A

sy
m

m
et

ri
c

(r
el

at
io

ns
hi

p
-b

as
ed

)

Experience
wrap

Solution
wrap

Service
wrap

Figure 4 The supply-demand road map

Subsystem

Component

System of
systems

System

Context of
use

Usage

1

2 3

4 5

6

Figure 5 The stratification of models

 From the point of view of the supply to the clinics, the demand-

side modeling was of the referral pathways and the services offered

by each clinic in response to the demands arising from those refer-

ral pathways. The supply-side modeling was of the organization of

the clinic itself, together with its use of suppliers, to establish how the

one was aligned to the other. Where this cut came between the sup-

ply side and the demand side was a function of who the client was,

and what was their change agenda. Nevertheless, in examining the

referral pathways and the particular ways in which they themselves

had been colonized by suppliers, further questions were raised about

the organization of primary care itself. These questions were left,

however, to be taken up by a different client system at a later time—

and which would have to address the interests of the strategic health

authorities.

 The key challenge was to give the clinicians design control over how

the clinics operated (that is, power at the edge). Fundamental to this

challenge was to grasp on the supply side the chronic multiepisode

nature of the conditions being treated by the clinic, and on the demand

side the processes of delegation and/or teaming of clinical responsibil-

ity for patients’ conditions. The clinicians lacked the means of defining

the different characteristics of the former and managing the complexi-

ties of the latter. Furthermore, without the means of doing these things,

there was no practical way of holding the clinicians accountable for the

clinical performance of their clinic. The solution was to build a reporting

platform that could support doing these tasks.

 This modeling involved defining the referral pathways and their

characteristics, from which emerged the requirement to change the

way the clinic was relating to demand, as well as defining the service

propositions and clinical business models needed. In the former case,

this meant establishing episode protocols for different conditions, and

in the latter, changing the workflow processes between the clinic and

front and back office processes in support. No realignment of the sup-

ply infrastructures was attempted, considerable gains being available

simply through the way the alignment of suppliers to the demand was

managed. The reporting platform built provided the means of achiev-

ing this goal. The platform allowed the clinic to define its own treat-

ment protocols in relation to its own definitions of referred conditions.

“THE CHALLENGE FOR SOFTWARE ARCHITECTS

IS TO REMAIN RELEVANT TO AN SOA WORLD—

TO A WORLD OF DISTRIBUTED PRODUCTION

OF DISTRIBUTED SERVICES—BY PAYING

ATTENTION TO THE REAL STRUCTURAL ISSUES

EMERGING IN THIS ON-DEMAND WORLD”

SOA Governance

17 • Journal 5 • www.microsoft.com /architecture

 In many organizations, software architects can be outmaneuvered and

marginalized by coalitions of developers and users, and as outsourcing

increases, the position of the software architect may become yet weaker—

especially in those instances where contractual specifications focus on the

functional requirements and underspecify the structural properties, and

where there are inadequate mechanisms for the architects to verify the

structural properties of the delivered software. (For example, hidden cou-

pling that compromises the intended flexibility of a software artifact.)

 So the challenge for software architects is to remain relevant to an

SOA world—to a world of distributed production of distributed ser-

vices—by paying attention to the real structural issues emerging in this

on-demand world. Otherwise, they will be unable to contribute any-

thing of value to the design and management of on-demand systems

of systems. This leads to a need for forms of analysis that support an

asymmetric design regimen and can enable explicit consideration to be

given to implicit choices being made concerning geometry.

 We have seen some vendors recognizing the supply-side issues of

reconciling multiple Web services (for example, IBM Rational), while

other platform vendors are creating the conditions for an explosion in

the numbers of (behavioral) domains needing to be brought into rela-

tion with each other (for example, Microsoft). In both cases the service-

Resources
“Centers: The Architecture of Services and the Phenomenon of Life,”
FTPOnline, Richard C. Murphy (March 2004)

The Component-Based Business: Plug and Play, Richard Veryard
(Springer 2001)

The Culture of Cities, Lewis Mumford (Secker & Warburg, 1938)

The Death and Life of Great American Cities, Jane Jacobs (Vintage
Books, 1961)

“The Information Architecture of Cities,” Journal of Information
Science, Vol. 30, No. 2, Andrew Coward and Nikos Salingaros (April
2004), pp. 107-118

“Metropolis,” Microsoft Architects Journal (April, 2004)

The Nature of Order, 4 Volumes, Christopher Alexander (The Center for
Environmental Structure, 2002-2004).

“Principles of Urban Structure,” Nikos A. Salingaros (Delft University
Press, 2005)

“The Service Based Business,” CBDI Journal, Richard Veryard and David
Sprott (2003) and “SOA Governance and Business Driven SOA,” (2004)

Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools, Jack Greenfield et al. (Wiley, 2004)

Technology and the Character of Contemporary Life: A Philosophical
Inquiry, Albert Borgmann (Chicago, 1984).

“Triply-Articulated Modelling of the Anticipatory Enterprise,” Philip
Boxer and Bernie Cohen (BRL Working Paper, revised 2004)

oriented business is configured as a continuous fabric of services: “the

corporate web”. However, this result can never be achieved in one large

ambitious project. It has to be achieved progressively through a contin-

uous stream of small and medium projects.

Service Production
In the collaborative planning approach, order and coherence emerge

from distributed activity with no central design authority. Each unit of

procurement, development, or maintenance activity has to be regarded

as a project, with project outputs being constituted as services. Thus,

each project contributes something positive to the emerging corpo-

rate web of services. So what form of governance is needed to maintain

architectural order?

 SOA governance is required to ensure that each project satisfies the

global demands of the corporate web and to ensure that there is a well-

balanced mix of projects—different types and different scales (large,

medium, and small).

 Our discussion here has outlined the limitations of a supply-side

approach to SOA governance; directed composition is limited in its

capacity to respond to the full heterogeneity of demand. It leaves too

great a value deficit in relation to demand, which is increasingly hetero-

geneous; asymmetric; and spatially, as well as temporally, differentiated.

We need to take governance to the edge of the organization, acknowl-

edging that we are engaged in processes of asymmetric design, and

prepare to meet the twenty-first century on its own terms. In a subse-

quent article we shall open up the question of what taking “governance

to the edge” means for the design of SOA infrastructures as well as for

the relation to demand. •

About the Authors
Richard Veryard is a writer, management consultant, and technology
analyst based in London, UK.

Philip Boxer is a strategy consultant based in the UK. The authors
thank Bernie Cohen, Pat Helland, and Nikos Salingaros for comments
on earlier drafts.

18 www.microsoft.com /architecture • Journal 5 •

Services-Based
Integration Technologies

Building an enterprise application integration (EAI) solution is diffi-

cult. These solutions need to integrate multiple business systems

that were not intended to work together. Integrating such systems is

difficult for many reasons, including the heterogeneity of the platforms

and programming languages, the diversity and complexity of each indi-

vidual business system, and the difficulty of understanding the require-

ments for the resulting integrated solution.

 Software architects undertake a number of crucial tasks during the

design of integrated enterprise applications. Among these tasks are

helping understand the functional and quality requirements for the

integrated applications; creating the initial architectural blueprint for

the integrated applications; selecting suitable integration technolo-

gies that can fulfill the application requirements; and validating that the

combination of the architecture and the integration technology used to

build the enterprise-wide application is likely to be successful before a

major implementation investment is made.

 We’ll describe a proven approach to assist architects with evaluating

EAI technologies. In particular, we’ll focus our discussion on evaluating

integration technologies for implementing services-based integration.

SOA for Integration
With the advent of industry standards such as Web services, ser-

vice-oriented architecture (SOA) is driving a paradigm shift in many

areas, including enterprise application integration. The services-

based approach to integration addresses problems with integrating

legacy and inflexible heterogeneous systems by enabling IT organi-

zations to offer the functionality locked in existing applications as

reusable services.

 In contrast to traditional EAI, the significant characteristics of the

services-based approach are well-defined, standardized interfaces in

which consumers are provided with easily-understood and consis-

tent access to the underlying service; opaqueness in which the technol-

ogy and location of the application providing the functionality is hid-

den behind the service interface (in fact, there is no need for a fixed

services provider); and flexibility in which both the providers of services

and consumers of services can change—the service description is the

only constant. As long as both the provider and consumer continue to

adhere to the service description, the applications will continue to work.

 Technologies for building services-based integration need to have

these basic functionalities: message delivery, intelligent routing, event

services, application adaptors, XML translation/data transformation, Web

services support, service/process orchestration, business process man-

agement (BPM), and business activity monitoring. Further, to ensure the

success of SOI, the ESB needs to have these qualities: scalability, high per-

formance, security, and manageability.

 As you can see, one of the major focuses is on using industry stan-

dards such as Web services to enable message delivery and various

other advanced services, thus avoiding the problems of traditional EAI

technologies, such as the use of proprietary protocols for message

exchanges. In this way, services-based integration is a design pattern

Summary

Integration technologies are complex, highly techni-
cal, and diverse collections of products that operate
typically in mission-critical business environments. A
services-based approach to integration holds the key
to seamless future integration and interoperability and
can help with evaluating integration technologies.

by Anna Liu and Ian Gorton

Figure 1 Evaluation process

Proof-of-
technology
prototyping

Stakeholder
input

Elaborate user
requirement

Augment with
generic

requirement

Rank
requirements

Product
evaluation

What-if scenario
analysis

i-MATE knowledgebase
200+ generic requirements

Stakeholder
input

Stakeholder
input

i-MATE
knowledgebase

Short-listed products:
1-3

Evaluation scores

Candidate
products

Ranked requirements

Overall set of application requirements

Application-specific user requirements

Final product selection

Identify candidate
product

Ser vices-Based Integration

19 • Journal 5 • www.microsoft.com /architecture

 Elaborate customer requirements. This first step produces a document

that captures the customer’s requirements. Because the technology and

application problems are complex, we usually find that the overall require-

ments are not fully understood. Consequently, a number of workshops are

held with the application stakeholders to elicit the requirements. The stake-

holders involved ideally include both IT and business groups. The result-

ing document details the business and technical requirements that are spe-

cific to the need for integration technology in this services-based integra-

tion environment. Each requirement is expressed as a single item that can

be evaluated against a specific integration technology.

 Augment with generic requirements. This step introduces the i-MATE

knowledgebase of over 200 generic, broadly applicable requirements

for integration technologies. These requirements augment the set of

application-specific requirements with generic integration requirements.

The output of this step represents the overall application requirements

for services-based integration technology, represented as individually

identified requirement points.

 Rank overall requirements. Working with the key application stake-

holders, the overall set of requirements is ranked. At a coarse level, each

requirement is deemed as mandatory, desirable, low priority/not applica-

ble. Within each of these categories, importance weightings are assigned

to give fine-grain control over requirement rankings, in a fashion similar

to that which is described in external resources for COTS products (see

Resources). The output of this step is a collection of weighted require-

ments stored in the i-MATE requirements-analysis tool.

 Identify candidate products. This step identifies the three-to-five integra-

tion products that are most likely to be applicable to the overall application

requirements. In some cases, the customer has already identified a short list,

based on both technical and business reasons. In others, we use our experi-

ence to work with the customer to identify the most likely candidates.

 Product evaluation. In workshops with the key customer stakeholders

and product vendor representatives, we evaluate each of the candidate

products against the overall requirements. Scores are allocated against

each requirement point for each product and captured in the require-

ments-analysis tool. This involves in-depth technical discussions and step-

that ensures interoperability and true integration in any heterogeneous

enterprise landscape.

 There are many varied implementations of integration technologies

that provide these functionalities. They range from the traditional EAI

technologies with Web services features added on, to brand new imple-

mentations with inherent Web services support. Unfortunately, select-

ing an appropriate integration technology implementation for build-

ing SOI is not a simple proposition for most IT organizations. There are

numerous reasons, but they typically revolve around these reasons:

• Technology complexity. Integration products are large, diverse, and

literally have thousands of features and application programming

interfaces. They are complex to understand, and low-level details

can have serious effects on the way a product behaves. The devil is

really in the detail.

• Product differentiation. There are tens to hundreds of products com-

peting in the integration arena. At a superficial level, many have

almost identical sets of features and capabilities. Price difference

can often be very large, which further compounds the problems of

selection and acquisition.

• IT organization knowledge. End-user organizations rarely have archi-

tects and engineers who have the necessary deep and broad under-

standing of integration technologies and products. It is therefore a

time-consuming, expensive exercise for the organization to acquire

this knowledge to choose an appropriate integration product. It also

distracts key engineering staff from their mainstream, application-

focused tasks.

Evaluation
Middleware Architecture and Technology Evaluation in Internet time

(i-MATE) is a specialized software engineering process for evaluating

Component Off The Shelf (COTS) middleware. It is suitable for organi-

zations operating at Level 3 in the Software Engineering Institute’s Soft-

ware Acquisition Capability Maturity Model, especially in its support for

the User Requirements and Acquisition Risk Management key process

areas (see Resources). The effectiveness and novelty of i-MATE lies in

the combination of:

• A defined process. This process comprises a straightforward series

of well-defined process steps for gathering, ranking, and weighting

application requirements for integration middleware.

• A knowledgebase. This knowledgebase contains several hundred

generic requirements for various classes of COTS middleware prod-

ucts, including those unique to services-based integration imple-

mentations.

• A requirements-analysis tool. The analysis tool enables rapid assess-

ment, experimentation, and presentation of how the middleware

products under evaluation compare against the project requirements.

Let’s take a look at i-MATE’s unique features that make it highly suitable

for evaluating integration technologies in the context of building a ser-

vices-based integration solution.

 The process used in i-MATE is similar to those processes described in

proceedings for two international conferences on COTS-based systems

and software engineering (see Resources). It defines the series of steps

undertaken in i-MATE, the decisions that are made, and the artifacts

produced at each stage (see Figure 1). Let’s take a look at each stage.

Middleware
products

In-house lab
testing and
evaluation

i-MATE
Knowledgebase

i-MATE
evaluation

process

Client
application

requirements Middleware
product

selections

Proof-of-
technology
prototypes

MTE
evaluation

reports

Figure 2 Populating the knowledgebase

Ser vices-Based Integration

20 www.microsoft.com /architecture • Journal 5 •

ping through relevant application scenarios to understand precisely how

the integration products behave. In some cases, product capabilities and

features can cause the process to iterate and refine the requirement rank-

ings. Once all products have been evaluated, the requirements-analy-

sis tool automatically calculates weighted summary scores based on indi-

vidual requirement point scores and weightings. Summary charts are also

created automatically to support efficient presentation and reporting.

 Scenario analysis. By varying requirement weightings, the require-

ments-analysis tool makes it trivial to explore various what-if scenarios and

trade-offs, which can be used to further differentiate between candidate

products or confirm the appropriateness of a certain product under varying

requirements. The output from this step is the recommendation of one or

more products that can satisfy the application requirements (see Table 1).

Building a Prototype
Proof-of-technology prototype. When the outcome from the product

evaluation is not 100 percent conclusive, a rapid proof-of-technology

prototype is developed. The prototype typically implements one critical

scenario that will exercise and/or stress the requirement(s) considered

to have highest priority. Even very simple prototypes are powerful tools

that give concrete, indisputable evidence of product capabilities. In sev-

eral i-MATE projects, the results of prototypes have provided the final

differentiation required to finalize product selection.

 In fact, a prototyping phase is always recommended in i-MATE, even

if one product emerges from the process as a clear leader. However,

when only one product is considered, the prototyping task is not com-

petitive and can be scoped and structured more toward validating key

application requirements.

 In terms of resources, the product evaluation and proof-of-tech-

nology prototype stages invariably consume most of the effort in i-

MATE. Product evaluation takes, on average, between one and three

days’ effort per product under evaluation, depending on the i-MATE

team’s familiarity with the particular product. Prototyping is more vari-

able and depends on the complexity of the desired prototype. In most

cases a simple system suffices, and the prototyping stage lasts less than

one week. In other applications where risks are higher, prototyping has

extended to around one month.

 The i-MATE knowledgebase contains an extensive set of generic

requirements for more generic middleware technologies as well as

those specific to ESB technologies. These generic requirements are

derived from the practical experiences from CSIRO’s Middleware

Technology Evaluation project, working with product vendors, and

working on consulting engagements for clients (see Resources).

 There is a different instantiation of the overall knowledgebase for

each class of products because there are different classes of middleware

products. For example, the knowledgebase is versioned for services-

based integration technologies, EAI, application server technologies,

and CORBA technologies. We will look at the services-based integration

knowledgebase in the next example.

 A detailed analysis of the set of generic requirements has resulted in

each knowledgebase being structured as a set of high-level categories,

which encapsulate several individual requirement items. Presentation of

the whole knowledgebase is beyond the scope of this article, but as an

example, the categories for the services-based integration technology

version are described here.

 ESB high-level evaluation categories. Each high-level category con-

tains typically between 10 and 20 individual requirements that relate to

that category. For example, the Web services support category contains

this set of individual technology requirements:

Capturing SOI-specific requirements helps with the plan and
design for the enterprise-wide SOA, saving both time and effort
as well as helping produce a low-risk outcome.

• The product must support the Web Service Basic Profile set of
specifications—for example, WSDL, SOAP, UDDI, and XML.

• The product must support advanced WS- specifica-
tions (including WS-Security, WS-Coordination, WS-
ReliableMessaging, and so on).

• The vendor must implement the WS- set of specifications
through toolkit downloads within six months of the specifica-
tion release date.

• The product must support custom Web services support
through exposing SDK APIs or provide intercept mechanisms.

• The product must have inherent Web services support, rather
than through a separate bolted-on product.

• Access to various Web services features—for example, security
and transactional guarantees—must be supported through
both programmatic APIs and declarative means.

• The product must support easy “Web services enablement” of
existing business service interfaces.

• The product must interoperate with all applications that
expose services through Web services standard interfaces.

• The product must not have proprietary extensions that would
break Web services-based interoperability requirements.

• The Web services toolkit must have undergone the WS-
Interoperability workshops’ rigorous testing to demonstrate
interoperability with other Web services toolkits.

• The vendor must be an active member of the WS-I organization.

SOI-Specific Requirements

Costing Basic technology/services/training costs

XML message and service
management

Facilities available for message format definition, service inter-
face/contract definitions, service management

Integration architecture Core architectural features, flexibility, eventing services, how
are services discovered/integrated/invoked

Adapters Range and quality of adapters available for integration to
external systems

XML translation and data
transformation

How capable are the in-built XML translation tools? Processing
performance characteristics, data-mapping capabilities

Delivery quality Fundamentals of service bus, mode of operation, quality of
service, (for example, reliable messaging), routing capabilities

Web services support Compliant to Web services standards? How comprehensive is
the Web service support? Is Web services support inherent or
bolted on?

Development and support How are applications developed and debugged?

Performance Raw performance and scalability issues

Security Authentication, authorization, encryption, single sign-on
facilities

Transaction services Facilities available for supporting transactional behavior

Workflow Business process management and automation features, busi-
ness activity monitoring

System management How are applications deployed, managed, and versioned?

Technical Miscellaneous technical requirements

Table 1 Analyzing scenarios

Ser vices-Based Integration

21 • Journal 5 • www.microsoft.com /architecture

diverse collections of products that typically operate in mission-criti-

cal business environments. It is also a significant IT investment in ensur-

ing smooth future integration. i-MATE’s key contribution in easing the

integration technology evaluation process lies in the combination of a

prefabricated, reusable set of generic requirements that are based on

the analysis of middleware components characteristics; a process for

incorporating application-specific requirements, weighting individ-

ual requirements; and tool support for capturing and rapidly exploring

requirement trade-offs and generating reports that show how the mid-

dleware products compare against the requirements.

 The services-based integration approach holds the key to seamless

integration and interoperability in the future. If things are done cor-

rectly, we should not be faced with the traditional EAI problems any-

more. With the advent of Web services, and the whole industry contrib-

uting and participating in the standardization effort, for the first time

in our IT industry, Web services and SOA hold the promise of solving

the EAI challenge. Services-based Integration is an important pattern

for implementing such a vision. The careful selection of an integration

technology for this purpose is absolutely crucial in contributing toward

the success of such a software engineering endeavor. •

 Web services support. These requirement points cover low-level,

detailed features of the integration technologies. All services-based

integration solutions will inevitably require some or all of these capa-

bilities. During an i-MATE project, the client is led through the con-

tents of the knowledgebase, and the importance of each require-

ment to the client application is determined. In some projects, the cli-

ent is technologically cognizant, and the process is fast and straight-

forward, requiring less than a day to complete. In other projects, the

client relies on the i-MATE team to explain the implications of many of

the requirements, and their relative importance is set collaboratively.

 In addition to the categorized requirements, the i-MATE knowl-

edgebase is populated with evaluations of various versions of major

middleware products. Each product in the knowledgebase is ranked on

a scale of 1–5 against individual requirements. The rankings occur and

are kept current through two mechanisms, as will be explained shortly

(see Figure 2). The first is the MTE project, which rigorously evaluates

middleware technologies using a defined, repeatable approach. The

outputs of the MTE evaluations feed directly into the evaluations in the

i-MATE knowledgebase. The second mechanism is the i-MATE proj-

ects themselves. Clients often request that an integration technology or

other middleware product or version that has not previously been eval-

uated is assessed during an acquisition project. In such circumstances,

the i-MATE team works with the product vendor to rank the product

features. The resulting evaluation extends the coverage of the products

in the knowledgebase, and these can be reused in subsequent projects.

 By reusing the generic requirements in i-MATE, organizations are

saved the cost of developing their own set of integration technology

requirements. Effort can thus be focused on capturing their application-

specific requirements, and planning and designing for the enterprise-

wide SOA, which saves both time and effort and helps produce a low-

risk outcome (see the sidebar, “SOI-Specific Requirements”).

 A custom requirements-analysis tool has been built to support trade-

off analysis as part of the i-MATE process. The basic tool functionality pro-

vides capture of individual requirements points, both generic and appli-

cation-specific, structured into high-level categories; capture of prod-

uct rankings and requirement weightings; instantaneous calculation of

weighted averages for requirement categories; and instantaneous calcula-

tion and reporting of the evaluation outcomes using charts and graphs.

 The trade-off analysis tool is based on a spreadsheet program. The

major strength of this approach is demonstrated during the product evalu-

ation and what-if scenario analysis phases of i-MATE. As the spreadsheet is

live, any changes made to category rankings or requirement item weighting

are immediately reflected in the graphs depicting the evaluation scores.

 On the screen for setting requirement category weightings, in this

project the rules engine, development and support, and system man-

agement categories are deemed highest priority. These settings gen-

erate a set of graphs representing product rankings once the evalua-

tion of the products is complete. At this stage, it is usually desirable to

explore how the overall evaluation result may vary if one of these high-

priority categories is reduced to a medium level of priority. Chang-

ing any of the priority values causes the spreadsheet to instantly reflect

these changed priorities in the evaluation results, which makes it fea-

sible to rapidly explore alternatives and confirm the evaluation results

under various alternative scenarios.

 The i-MATE process has been described as a process to ease the

evaluation of integration technologies within the context of implement-

ing an SOA. Integration technologies are complex, highly technical, and

Resources

IEEE Computer Society

“A Case Study in Applying a Systematic Method for COTS Selection,”

in Proceedings of the 18th International Conference on Software

Engineering, Jyrki Kontio, pp. 201–209 (March 1996)

“A Formal Process for Evaluating COTS Software Products,”

Patricia K. Lawlis et al., Vol. 34, No. 5 (May 2001)

“A Process for COTS Software Product Evaluation,” in Proceedings of the

1st International Conference on COTS-Based Systems – ICCBSS 2002,

S. Comella-Dorda, et al., pp. 86-96 (February 2002)

“Software Acquisition Capability Maturity Model (SA-CMM)” Version

1.03 Technical Report CMU/SEI-2002-TR-010, Jack Cooper and Matt

Fisher (March 2002)

“Software Component Quality Assessment in Practice: Successes and

Practical Impediments,” in Proceedings of the International Conference on

Software Engineering, Ian Gorton and Anna Liu, pp. 555–559 (May 2002)

“Streamlining the Acquisition Process for Large-Scale COTS Middleware

Components,” in Proceedings of the 1st International Conference on

COTS-based Software Systems, Ian Gorton and Anna Liu, Vol. 2255, pp.

122–131, Lecture Notes in Computer Science (Springer-Verlag 2002)

About the Authors

Anna Liu is an architect in the Microsoft Australia Developer and

Platform Evangelism Group. She specializes in EAI projects, is passionate

about codifying good software engineering best practices, and

accelerates enterprise adoptions of these practices and learning.

Ian Gorton is a senior researcher at National ICT Australia. Until March

2004 he was chief architect in Information Sciences and Engineering at

the US Department of Energy’s Pacific Northwest National Laboratory,

and previously he worked at Microsoft and IBM, as well as in other

research positions, including the CSIRO.

22 www.microsoft.com /architecture • Journal 5 •

Planes, Trains, and
Automobiles
by Simon Guest

As many people know, HTTP has a long history before Web ser-

vices. It has been the default transport for browsing Web pages

since early versions on NCSA Mosaic were released to the world. HTTP

as it stands is a pretty good fit for Web services. Being pervasive, it typ-

ically works well across firewalls and proxy servers, elements (such as

WSDL) are easy to test through HTTP, and many HTTP stacks and serv-

ers are available on which to build implementations. If we also go back

and look at some of the initial design goals for Web services, we see

a lot of momentum around publicly facing Web services. As a result,

HTTP makes for a perfect choice.

 Despite the pervasiveness of HTTP, however, there are scenarios

where it doesn’t always fit. In my experience, I’ve seen these scenar-

ios fall into three categories: asynchronous connections, offline and

local applications, and distributed computing. Let’s take each of these

areas in turn, and examine scenarios where HTTP may not be the per-

fect match.

 Contoso consulting is a fictitious organization that employs nearly

5,000 consultants worldwide. In recent years they have undergone a

phenomenal expansion, hiring many staff at the end of the dot-com

era. Because of this increase in head count, one of the problems the

company now faces is with the submission of timesheets. Every week,

each consultant must submit a timesheet so that clients’ bills are accu-

rate and timely.

 Its current model involves sending a timesheet (created using a tem-

plate in Microsoft Excel) to the accounts department through e-mail.

After the timesheet arrives, a member of the accounts group enters it

into their accounting system to record hours to be billed. The account-

ing system is currently mainframe based.

 As you can imagine, this model for submitting timesheets is

not scaling well with the company’s current expansion. Despite hir-

ing more people for the accounts department, the method of deal-

ing with incoming timesheets through e-mail is becoming laborious

because of the manual process of taking the data from Excel into the

accounting system.

 To help with this system, internal IT has designed a new timesheet

submission service. Using Web services, this service will sit in front of

the mainframe, accept a timesheet from a consultant, and will auto-

matically enter the details into the accounting system. The Web service

design has been kept simple, and a smart client application has been

developed for submitting the timesheets (see Figure 1).

 One of the design goals early on, however, has been to ensure

that the submission of timesheets is performed asynchronously. The

accounting system is becoming dated, and the thought of 5,000 consul-

tants all submitting timesheets on the last day of the week is somewhat

overwhelming. To overcome this problem, the architect for the system

has decided to implement a message queue between the Web service

and the accounting system (see Figure 2).

 The responsibility of the queue will be to batch requests from the

clients before submitting them to the accounting system. This asyn-

Summary

Many implementations of Web services exist today
across multiple platforms and environments. The
majority of these share one thing in common: they
all use HTTP as the underlying transport. The ubiqui-
tous nature of HTTP has helped Web services gain the
adoption they have today. However, is HTTP a great fit
for every problem? Are there application architectures
that would benefit from using other transports? What
are the advantages and disadvantages of doing so?

Consultant's
laptop

Web services
request

using HTTP

Web
services
facade

Accounting
system

(mainframe based)

Smart
client

application

Figure 1 A Web services façade is used to expose the Web service.

Consultant's
laptop

Web services
request

using HTTP Web
services
facade

Submit
process

Accounting
system

(mainframe based)

Smart
client

application

Message
queue

Figure 2 A message queue batches requests from clients to the

mainframe.

Consultant's
laptop

Smart
client

application

Message
queue

E-mail generated
to consultant

Accounting
system

(mainframe based)

Submit
process

Web
services
facade

Figure 3 An asynchronous response back to the client is difficult.

Selected HTTP Alternatives

2323 • Journal 5 • www.microsoft.com /architecture

chronous design will avoid overloading the accounting system with too

many concurrent requests, and at the same time release the smart cli-

ent application to do more tasks (that is, the smart client doesn’t have

to wait until the accounting system has processed the timesheet before

moving on to other tasks). This design all looks good in principle, but the

IT group notices one potential problem. What happens if there is a prob-

lem with the timesheet submission?

 Imagine this sequence: A consultant submits a timesheet through the

Web service (see Figure 2). Everything works and the timesheet request is

placed on the message queue. After a couple of hours (it’s Friday evening

and the system is busy), the accounting system reads the timesheet from

the message queue. In this process it’s discovered that the consultant has

incorrectly assigned some hours to a project that was previously marked

as complete. The accounting system needs this information before it can

continue to process the request.

 Using the current design, what are the options? The accounting system

could raise an alert to a member of the accounting staff (maybe a system

message) to indicate that more information is required. The member of

the accounting staff could then go chase after the consultant for the cor-

rect data. This solution would close the loop, but it’s still a manual task,

and will only scale so far with the number of people in the organization.

 Alternatively, the accounting system could raise an alert to the consul-

tant directly, perhaps sending an e-mail directly to the consultant for the

additional information. Again, this solution should close the loop, but the

request for information is still disconnected from the original process.

 How does the consultant correlate the e-mail to the timesheet sub-

mitted? How does the e-mail describe accurately what information is

missing? How does the accounting system correlate a new or modified

timesheet submission with the old timesheet and the e-mail that was

sent? How does the accounting system follow up if the consultant just

deletes the e-mail? What happens to the existing submission? There is a

possibility this loop will never close.

 Let’s take a step back and ask why an e-mail was required in the first

place? Why couldn’t the accounting system just communicate the infor-

mation directly to the smart client application? The answer: HTTP is a

request/response protocol.

Smart client
application

Consultant's laptop

Web
services

transport
for MQ

Timesheet

Message queue

Web
services

transport
for MQ

Submit
process

Accounting system
(mainframe based)

Figure 4 A timesheet is submitted directly to the message queue.

Consultant's laptop

More
information

Message queue

Web
services

transport
for MQ

Submit
process

Accounting system
(mainframe based)

Smart client
application

Web
services

transport
for MQ

Figure 5 The accounting system requests more information through the message queue.

 Once the timesheet has been submitted and the HTTP request/

response has been completed (see Figure 3), it’s nearly impossible to com-

municate back to the client for more information. Even if the client was

running a local Web server (to accept incoming Web services requests),

what happens if they go offline, or are behind a firewall at a customer’s

site? How about if their IP address and/or hostname has changed since

the last communication? Even more frightening is, who manages the Web

server implementations on each of the 5,000 consultants’ laptops?

 Because HTTP is a request/response protocol, and because it’s

then very difficult for the service to follow up with the client, alter-

native asynchronous measures (that is, the e-mail) have to be taken.

Unfortunately, because this e-mail is effectively “disconnected” from

the original request, it can often take a lot more work to correlate

what needs to happen.

 To see how we can design a solution using transports other than

HTTP, let’s look at a couple of alternative approaches.

 Web services using a message queue. Coming to the conclusion that

HTTP was the culprit was easy. Our first approach for a solution requires

thinking about an alternative transport to replace or retrofit the HTTP

connections in our design.

Accounting
system

(mainframe based)

Consultant's
laptop

Smart
client

application

Submit
process

Message
queue

Web services request
sent using SMTP

Web
services
facade

Web
services

transport
for SMTP

Web services
request

using HTTP

Figure 6 In another approach, we use SMTP for the Web services request.

Selected HTTP Alternatives

24 www.microsoft.com /architecture • Journal 5 •

Figure 7 A local message queue is used to hold the request offline.

Web
services
request
using
HTTP

Consultant's laptop

Submit
process

Web
services

transport
for local

MQ

Web
services

transport
for local

MQ

Smart client
application

Web services
requests

using HTTP

Consultant's laptop

Local Web
server

(for example, IIS)

Smart client
application 1

Smart client
application 2

Figure 8 Two apps on the same machine communicate through HTTP.

Smart client
application 1

Smart client
application 2

Web services
requests

using TCP or
in process

Consultant's laptop

Figure 9 TCP or an in-process transport provides a more direct way

for local applications to communicate.

 The server-based Web service will in turn pick up this message, and

then communicate with the accounting system to process the request.

In the case where the accounting system has to ask for additional infor-

mation, a new message (a request to the consultant) is placed on the

queue: the addressee is the smart client application (see Figure 5).

 This message will remain on the queue until the smart client recon-

nects. To ensure that the message is picked up in a timely fashion, we

may consider a background service on the client that connects to the

message queue and launches the timesheet application’s “missing infor-

mation” dialog for the consultant.

 This approach provides for a solution to our closed-loop issue, and

could well offer a more automated approach, but it has one flaw. The

smart client must be able to connect to the message queue to process

incoming requests from the accounting systems. The majority of mes-

sage queue vendors do this by accessing some proprietary message

queue APIs. How about if the consultant is on the road? How about

if the consultant has only Web and e-mail access in an airport? These

messages are not going to be picked up until he or she connects to the

corporate network, which could be unacceptable. Let’s look at a second

approach using another transport.

 Web services using both HTTP and SMTP. One of the main prob-

lems with the original design is that once the accounting system sent

the e-mail to the consultant for more information, it effectively cre-

ated an open loop. This design relies on the consultant having to

manually associate the incoming text mail message with the process

in the application.

 The transport itself, however, is reasonably effective. With the reli-

ability of e-mail these days, it’s more than likely that the consultant will

have received the e-mail. With this factor in mind, we could consider a

new design that builds on this reliability.

Database

(Accounting
system)

Web services
requests

using SQL

Web services
requests

using HTTP

Consultant's laptop

Smart client
application

Figure 10 A Web services transport is used to log a message to SQL.

Web services
requests and

responses
using SMTP

Web services
transport for SMTP

Web
services

Folder of
PowerPoint

presentations

Bob's laptop

Figure 11 Bob’s Web service processes requests and responses over SMTP.

 Taking our existing design, let’s replace the HTTP communication

with a message queue. The implementation is unimportant at this stage

(it could be MSMQ, IBM MQ Series, Tuxedo, or something else), as long

as it’s able to reliably handle asynchronous requests.

 It’s important to note that we are still going to be using Web

services—we are very much sending and receiving SOAP messages,

except they are being sent using an asynchronous message queue

as opposed to HTTP. We can use some kind of Web service-enabled

transport for the message queue. So, how does this architecture work

with our new scenario?

 The smart client submits a timesheet (and a corresponding Web ser-

vice request is created). This request is placed on the message queue

directly instead of sending it over HTTP (see Figure 4). Once the mes-

sage is placed on the queue, the client can disconnect safely.

Selected HTTP Alternatives

2525 • Journal 5 • www.microsoft.com /architecture

Web services
transport for SMTP

Smart client
application

(results found= 3)

Joe's laptop

Replies are
returned through

SMTP

Consultant's

Consultant's

Consultant's

Consultant's

Consultant's
SMTP Web

service

Figure 13 The smart client application processes returned responses.

Figure 12 Joe’s laptop uses SMTP to send 50 Web services requests.

Smart client
application

Joe's Laptop

SMTP Web
services request

sent to 50
consultants

Consultant's

Consultant's

Consultant's

Consultant's

Consultant's
SMTP Web

service

Web services
transport for SMTP

Problem when using HTTP Alternate transport Advantages Disadvantages

Difficult to communicate back with the client
after a request has been made

Message queue (for example,
MSMQ or IBM MQ Series)

True asynchronous connection Difficult to access in a remote location (requires visibility of
the queue)

Difficult to communicate back with the client
after a request has been made

SMTP True asynchronous connection Requires filter or alternative mailbox to process incoming
messages

Need to correctly handle connection state if
HTTP service is unavailable

Local message queue Submit messages even when offline Requires local install of message queue, plus monitoring
process

Logging Web services requests requires
additional code

SQL Submits messages directly to SQL
server as an alternative transport

Need code on SQL server to map Web services requests to the
database schema

Web server required for two applications on
the same machine

TCP or in process Direct communication without an
additional server

Requires management of open sockets on a local machine (for
example, pooling, local firewall, and so on)

Difficult to expose peer-to-peer Web services
between organizations (unless opening holes
in the firewall)

SMTP Little additional infrastructure
required (assuming the e-mail
server already exists)

Security difficult to control; only good for asynchronous,
potentially long running scenarios

Table 1 When to implement transports over HTTP

 Here, a Web service request over HTTP is still used to submit the

timesheet. As with the original design, this request is committed to a

message queue to release the smart client connection. In this design, if

there is a problem with the timesheet, an e-mail is sent, but not an e-

mail to the consultant. Instead, an e-mail message is generated that

contains a Web service request for the originating smart client applica-

tion. What we are doing is initiating a Web service request for the addi-

tional information, but using SMTP as the transport (see Figure 6).

 The smart client needs a couple of modifications to make this solu-

tion work. We need some way of retrieving the SOAP request through

e-mail—either through a filter on the consultant’s inbox or a separate e-

mail account for the smart client application. Secondly, once the e-mail

is received, the smart client application must process it and cause the

correct action to happen on the client (for example, a dialog asking the

consultant for the missing information).

 One advantage to this approach is that it uses existing transports,

allows the accounting application to initiate a request to the smart cli-

ent application, and (providing we can access e-mail from a remote

location) does not restrict the consultant to having to connect to the

corporate network in which to submit expenses. Remember also that

because the request is a Web service, other standards (such as WS-

Security) can be applied equally, providing integrity and confidentiality

for the message even though it’s being sent over public SMTP servers.

 This concept of asynchronous connections can also apply equally on the

client. Taking our previous example, imagine that the consultant is about to

submit a timesheet. He or she generates the timesheet within the smart cli-

ent application, and then submits it (through HTTP) to the Web service.

 This approach works perfectly well, providing there is a connec-

tion to the Web service. What happens when the consultant submits the

timesheet at a location where there is no connectivity (for example, when

he or she is in an airplane at 30,000 feet between customers’ sites?). In

this instance we would have to think of some kind of offline approach.

Upon clicking the Submit button, the design of the smart client would

have to detect that there is no network connection, and the operation

would be suspended or saved to a local database or queue (see Figure 7).

 Another alternative to this approach is to consider a second trans-

port. Instead of using HTTP directly from the smart client applica-

tion, we could consider a local queuing transport to provide this offline

functionality automatically.

 Here, a local queue (using for example, MSMQ) is installed on the

consultant’s laptop. Instead of using HTTP, the SOAP request is placed

on the queue by default. A second process, potentially running in the

background on the consultant’s machine, would monitor the local

MSMQ instance for new messages and, on a frequent basis, would

check to see whether a connection to the HTTP-based Web service

could be established. Once these two can be connected, the message is

forwarded between the transports.

 For smart client applications, using alternative Web services trans-

ports also opens up other options. Imagine that you have two smart cli-

ent applications running on the same machine that need to communi-

cate (see Figure 8). Initiating calls using Web services over HTTP could

be overkill as it would require a local instance of a Web server, and each

request would likely traverse the network stack on the machine.

 A more efficient way of using two smart client applications would be

to use either a TCP (socket)-based transport or an in-process (or shared

memory) transport (see Figure 9). In this case, the two applications on

Selected HTTP Alternatives

26 www.microsoft.com /architecture • Journal 5 •

 After reading about using alternate transports for Web services, Bob

comes up with a new design. He is going to create a Web service for his

laptop, but instead of accepting incoming connections over HTTP, he

will use SMTP (e-mail) instead (see Figure 11). Clients can send him Web

services requests to search and retrieve his local store of PowerPoint

files. To do this, Bob will create a small smart client application that gen-

erates these requests.

 The beauty of this design is that Bob and others can now take

advantage of the distributed functionality that e-mail provides. Bob

shares his new Web service application with 50 of the other consultants

at Contoso (see Figure 12). What we now have is a very dynamic way of

using Web services to look up PowerPoint files that are held locally on a

number of machines.

 For example, Joe is looking for a PowerPoint presentation on the

topic of C#. He enters the query “C#” into a smart client application to

create a Web services request that is sent through SMTP to an e-mail

distribution list that contains the 50 consultants running Bob’s Web ser-

vice. Once the message is received, the Web service running on each

of these laptops performs a search based on Joe’s criteria. The list of

results is then sent back to Joe’s calling application, which can display

them as responses are received (again through SMTP).

 Joe can now start searching the results as they come back (remem-

ber, just like e-mail he doesn’t need everyone to reply; just enough

people that have the PowerPoint slide he is looking for have to). When

he finds the correct one, a similar request, using Web services over

SMTP, can be made to acquire the presentation (see Figure 13).

 The approaches we’ve discussed here may raise more questions

than they provide answers for. Hopefully, you can see that using Web

services with alternative transports can open up a new range of appli-

cations that have until now been restricted by the use of HTTP.

 One of the questions that you may have is “When should I

implement a transport other than HTTP?” To help answer that

question, and to summarize the scenarios discussed here, refer

to Table 1. Although relatively a new area, significant progress is

being made around implementing alternative transports for Web

services (see Table 2). •

Transport Description

Indigo Indigo is the code name for the next-generation, distributed-com-
puting environment from Microsoft. Indigo offers the promise
of multiple transports for Web services, together with a unified
programming model. Indigo natively supports HTTP, TCP, and MSMQ
in the March 2005 CTP. The programming model allows an easy-to-
extend interface for other transports.

Web Services
Enhancements
(WSE)

For those wanting to implement Web services today, alternate trans-
ports can also be realized using WSE. WSE provides an API called
a custom transport, which allows transports other than HTTP to be
used. Custom transports today include samples for MSMQ, IBM MQ
Series, SMTP, UDP, SQL Server, Named Pipes, TCP, and in process.

Java Message
Service (JMS) API

A number of Java application server vendors are now providing Web
services support through JMS. This alternative allows SOAP request
and responses to be processed on a JMS queue.

Java API for XML
Mail (JAXMail)

JAXMail (part of Sun JWSDP) is a JAX-RPC (Java Web services) exten-
sion to provide support for the SMTP protocol.

Table 2 Implementing alternative transport for Web services
the same machine can communicate using standard Web service requests

and responses, but using a lightweight and manageable transport.

 In addition, using our timesheet example, how about if we wanted to

implement a way of logging all Web services requests (for auditing pur-

poses). We would probably approach this task by creating a log of the

message before it leaves for the service, which would involve a filter or

class to take the message to the database. This solution works, but an

easier approach may be to implement a Web services transport (see Fig-

ure 10). A transport could use a SQL database to log outgoing requests,

yet to the smart client application it looks like just another transport.

Here, the Web services request is sent using two transports. The first

goes to the intended recipient (through HTTP). The second is sent to the

database for logging using a SQL transport.

A Peer-to-Peer Approach
Finally, another area that has great potential for alternative Web services

transports is peer-to-peer computing. Let’s take a look at an example.

Bob is a consultant at Contoso. On his laptop he has a directory of Pow-

erPoint files that he uses for presentations with customers. This direc-

tory travels with him wherever he goes. It’s constantly being worked on,

and it must work in both online and offline scenarios.

 Being a good citizen, Bob wishes to share these PowerPoint slides

with his fellow co-workers, both inside the company and with mem-

bers of other organizations. Many people e-mail him today asking

whether he has a particular PowerPoint slide on a topic, and while this

process works, searching and replying to these requests are consum-

ing a lot of Bob’s time.

 Bob is considering building a centralized Web service to host his

PowerPoint slides. It should be available to everyone, yet he must be

able to access these slides in offline scenarios too. He considers the

steps required to implement such a service.

 Setting up a central server. Bob is going to have to take his directory

of PowerPoint files and host it somewhere centrally. Hosting it centrally

will include not only finding enough disk space, but also a consideration

for managing backups and updating with the latest versions.

 Exposing a Web service. With the server setup, Bob is going to have

to install a Web server on the machine, create a Web service, and work

with the local IT group to make sure that it is correctly hosted behind

Contoso’s firewall (probably in the DMZ).

 Create a smart client application to access. Bob is thinking of creating

a smart client application that will let him keep an offline version of the

slides he needs at a moment’s notice.

 Bob looks at this process—it certainly looks like a lot of work, plus

he’s uncertain how well it will scale. How about if the other 5,000 con-

sultants in the organization want to do something similar? Will they

have to go through the same approach? How about if they are not as

technically savvy as Bob?

 Bob takes a step back and thinks about why he wants to do this

setup. The current system works pretty well; it’s just that he gets flooded

with too many e-mail requests about presentations that he’s recently

delivered, or may have. He could potentially create a Web service on his

laptop to handle these incoming requests. The Web service could search

his directory of PowerPoint files and retrieve certain slides for clients.

The problem with this approach, using HTTP, is that Bob’s laptop has to

be on and accessible for this to work. Generally, Bob is out of the office

a lot, and how does he allow access to his laptop through a firewall for

external customers? It’s looking fairly unmanageable.

About the Author

Simon Guest is a program manager in the Architecture Strategy

team at Microsoft Corporation and specializes in interoperability

and integration. Simon is the author of The Microsoft .NET and J2EE

Interoperability Toolkit (Microsoft Press, September 2003).

27THE ARCHITECTURE JOURNAL • Journal 5 • www.microsoft.com /architecture

Enable Internet-Scale
Computing
by Savas Parastatidis and Jim Webber

From networks for workstations to the Internet, the high-performance

computing community has long advocated composing individ-

ual computing resources in an attempt to provide higher quality of ser-

vice (for example, in terms of processing time, size of data store, band-

width and latency, remote instrument access, and special algorithm inte-

gration). In recent years this progression has been driven by the vision of

“grid computing” where the computational, storage power, and special-

ist functionality of arbitrary networked devices is to be made available on

demand to any other connected device that is allowed to access them.

 Concurrently, the distributed systems community has been working

on design principles and technologies for Internet-scale integration (for

example, Web and Web services). Recently the term service-oriented

architecture (SOA) has emerged as a popular piece of terminology, in

some part because of the hype surrounding the introduction of Web

services. While Web services are perceived as an enabling technology

for building service-oriented applications, they should be treated as an

implementation technology of the set of principles that constitute ser-

vice orientation. The promise of SOA and Web services is the enabling

of loose coupling, robustness, scalability, extensibility, and interoper-

ability. These are precisely the features required of a global fabric for

grid computing—a popular buzzword used to refer to distributed,

high-performance computing (HPC) or Internet-scale computing.

 Here, we describe grid computing and service orientation, and we’ll

discuss how high-performance applications can be designed, deployed,

and maintained by using message-orientation and protocol-based

integration. We’ll also present our approach on how large-scale HPC

applications can work with a multitude of resources and state in a man-

ner that is consistent with SOA principles.

Grid Computing
Grid computing is overloaded and has different meanings to different

communities (and vendors). Some of the common interpretations are

on-demand computing; utility computing; seamless computing; super-

computer interconnectivity; virtual worldwide computer; SETI@home

and ClimatePrediction.net; BOINC-style projects (see Resources); and

virtual organizations.

 We adopt the view that grid computing is synonymous to Internet-

scale computing with a focus on the dynamic exploitation of distrib-

uted resources for HPC. When building grid infrastructure and appli-

cations we promote the application of the same principles, techniques,

and technologies that are typical of modern distributed systems prac-

tice, with service orientation as the architectural paradigm of choice

and Web services as the implementation technology.

 While service orientation is not a new architectural paradigm, the

advent of Web services has reinvigorated interest in the approach.

It is, however, a misconception that Web services are a form of soft-

ware magic that somehow automatically corrals the architect toward a

loosely-coupled solution that is scalable, robust, and dependable. Cer-

tainly, it is possible (and generally highly desirable) to build service-ori-

ented applications using Web services protocols and toolkits; however,

it is equally possible to build applications that violate every architec-

tural principle and tenet of SOA.

 As researchers and developers have re-branded their work to be in

vogue with the latest buzzwords, SOA has become diluted and impre-

Summary

High-performance computing (HPC) has evolved from
a discipline solely concerned with efficient execution of
code on parallel architectures to be more closely aligned
with the field of distributed systems. Modern HPC is as
much concerned with access to data and specialized
devices in wide-area networks (WANs) as much as it is
with crunching numbers as quickly as possible. The focus
of HPC has shifted toward enabling the transparent and
most efficient utilization of a wide range of capabilities
made available over networks, as seamlessly as the way in
which an electrical grid delivers electricity. Such a vision
requires significant intellectual and architectural invest-
ment. Explore a service-oriented approach for enabling
Internet-scale, high-performance applications.

Messages

Message processing

Resources

Service logic

Figure 1 The archetypal structure of a service

HPC Computing

28 www.microsoft.com /architecture • Journal 5 •

Figure 2 Networked applications are built through the exchange of

messages between services hosted in devices.

teristics (for example, support for transactions), which a service supports

and/or requires, in addition to the set of messages and MEPs that con-

vey functional information to and from the service.

 Many organizations are realizing the cost benefits from using clusters

of workstations as alternative platforms to specialized supercomputer facil-

ities for their HPC needs. Until recently, such cluster-based solutions have

been treated as dedicated computational and/or storage resources. Enter-

prises are now seeking to gain in terms of both lower cost and performance

by using the idle processing power, distributed storage capacity, and other

capabilities available by their deployed workstation-based infrastructure—

an approach commonly referred to as “intra-enterprise grid computing.”

 Here we explore dedicated clusters and how service orientation can

be used for building such solutions before proposing an approach to

building intra-enterprise, distributed, high-performance architectures.

 Purpose-built commodity, hardware-based solutions for HPC are

not uncommon inside an administrative domain of organizations with

requirements for high-performance computation. Such solutions are usu-

ally implemented by one or more clusters of workstations with high-

speed interconnects (for example, Myrinet, SCI, Gigabit Ethernet, and so

forth). Some such solutions attempt to provide a single-computer image

to applications through the implementation—in hardware or software—

of techniques that hide the distribution of CPUs, memory, and storage.

 Developers are presented with a familiar programming abstrac-

tion, that of shared-memory symmetric multiprocessing. However, such

approaches have a tendency to limit scalability of computational nodes,

which may become an issue for certain types of parallel applications.

Specialized message-oriented middleware solutions (for example, MPI)

are usually employed to work with the problem of scalability but at the

cost of requiring explicit management of the degree of parallelism by

the application. There is a lot of work in the parallel computing literature

that discusses the advantages and disadvantages of the shared-memory

versus message-passing paradigms for parallel applications.

 Dedicated clusters for HPC are usually considered and managed as

single resources. To enable better utilization of such resources, a ser-

vice-based approach is preferable. For example, access to resources is

usually controlled by a job submission, queuing, and scheduling ser-

vice that ensures optimal system utilization. Web services technologies

can be used for the implementation of such services, and indeed ben-

efit from the significant investment in tooling, efficient run-time sup-

port, documentation, and user education in the Web services area.

The composable nature of Web services technologies makes it easy

Figure 3 Integrating enterprise resources to meet the high-perfor-

mance requirements of applications

cise. Lacking a widely accepted definition of a service, we propose

that a service is the logical manifestation of some physical or logical

resources (for example, databases, programs, devices, humans, and so

on) and/or some application logic that is exposed to the network. And,

services interact by exchanging messages.

 Services consist of some resources (for example, data, programs, or

devices); service logic; and a message-processing layer that works with

message exchanges (see Figure 1). Messages arrive at the service and

are acted on by the service logic, utilizing the service’s resources (if any)

as required. Service implementations may be of any scale—from a sin-

gle operating system process to enterprise-wide business processes.

 Services may be hosted on devices of arbitrary capability (for exam-

ple, workstations, databases, printers, phones, and personal digi-

tal assistants) providing different types of functionality to a network-

based application. This functionality promotes the concept of a con-

nected world in which no single device and/or service is isolated. Inter-

esting applications are built through the composition of services and

the exchange of messages (see Figure 2).

 A message is the unit of communication between services. Service-

oriented systems do not expose abstractions like classes, objects, meth-

ods, and remote procedures, but are instead based around the con-

cept of message transfer. Of course, single message transfers have lim-

ited utility, so there is a tendency for a number of message transfers to

be grouped logically to form message exchange patterns (MEPs)—for

example, an incoming and an outgoing message that are related can

form a “requestresponse” MEP—to support richer interactions. MEPs are

grouped to form protocols that capture the messaging behavior of a ser-

vice (sometimes known as a conversation) for a specific interaction. Such

protocols may be described subsequently in contracts and published to

aid integration with the service (for example, in WSDL or SSDL2).

Protocols and Contracts
The behavior of a service in a distributed application is captured

through the set of protocols that it supports. The notion of protocol is a

departure from the traditional object-oriented world where behavioral

semantics are associated with types, exposed through methods, and

coupled with particular end points (the point of access for particular

instances). Instead, a protocol describes the externally visible behavior

of a service only in terms of the messages, message exchange patterns,

and ordering of those MEPs that are supported by the service.

 Protocols are usually described through contracts to which services

adhere. A contract is a description of the policy (for example, security

requirements or encryption capabilities) and quality-of-service charac-

HPC Computing

29 • Journal 5 • www.microsoft.com /architecture

Windows-Based HPC Computing

A set of Windows-based workstations used by staff are part
of the underutilized-CPUs Active Directory domain. The enter-
prise wishes to leverage the computational capabilities of these
workstations during their idle period (for example, overnight). The
domain administrator pushes the .NET implementation of a set of
Web services that provide submission, monitoring, and manage-
ment of jobs out to workstations through Active Directory. Those
services leverage the underlying Web services middleware plat-
form (for example, Indigo) for their security and quality-of-service
features (for example, notification, reliable messaging, transac-
tions, and so on) requirements.
 Only users that belong to the underutilized-CPUs domain are
allowed to submit jobs. WS-Security is used for the authentica-
tion and message-encryption requirements with the Kerberos
tickets retrieved from the Active Directory. In addition to the
workstations, there is also a dedicated cluster for the enterprise’s
high-performance requirements and a datacenter. Web services
installed on these resources expose computational and data stor-
age functionalities to the network. The enterprise’s applications
are written in a way that can dynamically discover and utilize
any distributed computational resources within the enterprise.
Therefore, as soon as the functionality is enabled, the compu-
tationally intensive applications can automatically start to take
advantage of the distributed infrastructure. The users of such
applications are unaware of the resources used. •

Figure 4 An example of an intra-enterprise SOA with different parts

of the enterprise being represented as services

for quality-of-service, nonfunctional needs of the implementation (for

example, reliable messaging, security, and transactions) to be incorpo-

rated more easily into a heterogeneous environment.

Stealing Cycles from Workstations
An approach that has gained significant momentum recently is the

deployment of cycle-stealing technologies implemented by specialized

middleware, like Condor (see Resources). Such middleware enables the

distribution and management of computational jobs on idle worksta-

tions, while allowing a workstation to almost instantly be reclaimed by

its console-based user when he or she starts to use the computer, as

the cycle-stealing gets suspended, killed, or migrated to another work-

station. However, most current implementations of middleware soft-

ware supporting such installations do not yet leverage interoperable

and composable quality-of-service protocols. As a result, it becomes

difficult to create interoperable and seamless solutions for HPC within

the enterprise.

 In intra-enterprise HPC each workstation, database management

system, device, and so on exposes some functionality as a service.

Building such middleware using these principles, service orientation

can result in deployments that can scale to thousands of workstations.

A service-oriented approach may increase the flexibility, manageabil-

ity, and value of such solutions since a large set of widely accepted units

of functionality/behavior, made available as protocols, can be leveraged

(for example, security, transactions, reliable messaging, and orchestra-

tion). Indeed, there are efforts to do just that with existing systems—for

example, Condor BirdBath (see Resources).

 Future intra-enterprise grid installations will be built around standard

services provided by the underlying operating systems. Application pro-

tocols like WS-Eventing and WS-Management will be implemented and

provided as standard that grid-like solutions can be easily implemented

and deployed. We describe an example of a conceptual approach to

intra-enterprise, HPC computing using Web services (see the sidebar,

“Windows-Based HPC Computing” and Figure 3).

 We identify a nonexhaustive set of generic services, functionalities,

and features that may be offered and/or supported by each device on

the network (see Table 1). Of course, application domain-specific func-

tionalities will also have to be supported (for example, a BLAST service

installed on a powerful server to perform bioinformatics analysis, or a

service implementing an estimation algorithm for petroleum usage).

 Larger enterprises may not be interested in only deploying just sin-

gle cluster solutions or simply reclaiming the idle processing power of

parts of their organizational infrastructure. Instead, they may wish to

focus on the encapsulation of entire sets of computational resources

behind high-level services that, when composed together, can enable

a level of integration that was previously difficult and time-consuming

because of the different number of deployed technologies.

 The approach to architecting intra-enterprise, high-performance

solutions is similar to the approach when the focus is on building the clus-

ter-based solutions discussed earlier (that is, the issues of scalability, loose

coupling, and composability apply equally). Quality-of-service protocols

like security (for authentication, authorization, and accounting); transac-

tions; reliable messaging; and notifications are all part of the underlying

infrastructure and can be used unmodified no matter the type of solution

implemented. Moreover, the set of services used for intra-enterprise solu-

tions can also be used unmodified (for example, user-credential manage-

ment, systems management, application and services deployment, work-

flow support, data storage and archiving, messaging, and so on).

 As mentioned previously, there is still a need for services to offer

access to computational and data resources, scheduling implemen-

tation, visualization, specialized algorithm functionality, and so forth,

depending on the type of application being implemented. This time,

however, the services are at a higher level of abstraction because entire

collections of resources are encapsulated (see Figure 4).

Standard Integration
We note that even though the complexity of the services has increased

from those that we used when building a cluster solution, the complex-

HPC Computing

30 www.microsoft.com /architecture • Journal 5 •

ity of the architecture has not and the principles and guidelines remain

the same. Our distributed application still binds to messages being

exchanged and no assumptions are made about an intra-enterprise-

wide understanding of interfaces and behaviors of the various compo-

nents. Architects design applications through the description of mes-

sages and the definition of protocols, which capture service behavior.

 We observe that as the granularity of the services increases, the

need to increase the granularity of the message exchanges is higher.

The network is expensive and so architects need to design their pro-

tocols and their messages appropriately. As the degree of distribution

of an application increases, the need for loose coupling also increases.

While in a single cluster or in smaller enterprise environments com-

plete control of the infrastructure and the set of deployed technologies

is possible, in an enterprise-wide (or larger) solution it is imperative that

integration happens through standard protocols.

 Also, it is clear that as the complexity of the scale of an application

increases, the functionality of its services becomes even more abstract.

From services that expose specific functionality to the network (for exam-

ple, remote process execution and workstation management) or provide

access to a resource (for example, database system and file system), we

move to services that support aggregation of functionalities (for exam-

ple, job queues, message queues, and cluster management) or resource

aggregation (for example, storage area network and database federation).

 Since the interactions between the services become coarser to mini-

mize the effect of the communication costs between the different parts

of the applications and the services become more abstract and coarse

grained with respect to the resources they encapsulate, we must design

applications using larger building blocks. The larger the scale of a dis-

tributed application, the more important it is to devise declarative, pro-

tocol-based, and coarse-grained mechanisms for describing behavior.

It is at this stage that workflows, contracts, and policies become even

more significant. Service orchestration and abstract business processes

become necessary, and so relevant technologies like WS-BPEL become

an important part of the architect’s toolset.

 In the same way that no single device is an inaccessible island within

an administrative domain, enterprises and organizations are simi-

larly not isolated. As is the case with our physical world, enterprises do

businesses with one another, organizations interact, and government

institutions collaborate. Services and interactions are fundamental to

our day-to-day activities (for example, the banking service, the post

office service, and a travel agent service). It is only natural that when

we model these activities in a computerized world, we follow a similar

architectural approach to the one adopted in the real world.

 As one would expect, when it comes to very large-scale applica-

tions with a focus on delivering high performance, the nature of the

application may lead us to different designs with different strategies

in mind compared to an intra-enterprise situation. Like the real world,

contracts and service-level agreements (SLAs) are put in place to gov-

ern the interactions between enterprises. Virtual organizations may be

established—in the same way alliances are formed between enterprises

in the physical world—to meet the high-performance needs of the par-

ticipating entities’ applications. Indeed, a distributed, high-performance

application may reflect a real-world alliance between enterprises (see

Figure 5)—for example, a number of research institutes joining forces

to solve a large scientific problem.

 For the virtual organizations to be viable, issues such as digital rep-

resentations of agreements, contract negotiations, nonrepudiation of

Figure 5 An illustration of how enterprises can be joined

interactions, federation of user credentials, policies, and agreed qual-

ity-of-service provisioning have to be addressed. High-level, workflow-

based descriptions may be put in place to represent the behavior of the

virtual organization or to choreograph cross-enterprise business inter-

actions. Applications in this space, when appropriately designed and

implemented, may become truly Internet scale.

 While the type of services that are found inside the enterprise—like

job queuing, scheduling, resource brokering, data access and integra-

tion, and visualization—may still be necessary, when we move to Inter-

net scale, care must be taken on how such services are implemented and

deployed. Centralized solutions (for example, a single data store service)

or tight-coupling behaviors (for example, long-lived transactions across

organizations or direct exposure of state) should be avoided.

 Of course, one may argue Google and Amazon are spectacular exam-

ples of centralized repositories. This observation is true, but it is also the

case that these are logical repositories that already use scalable solutions

for their implementations; they are already built on top of distributed, rep-

licated, loosely-synchronized data centers. Google and Amazon can be

seen as good examples of virtualized data access services that have been

designed and implemented with scalability and performance in mind.

 With Internet-scale applications, alliances and collaborations between

organizations are formed using digital contracts. Such contracts repre-

sent the set of SLAs that must be put in place for computational jobs to

travel from one organization to the other; for data sources to become

visible; for the functionality of special equipment to become available

to the partners; for the level of trust on agreed user roles, security, and

policy requirements; and so on. Virtual organizations need contracts to

govern their operations as it is the case with any collaboration between

enterprises in the real world. The contracts are read, validated, and exe-

cuted by specialized supporting middleware.

 Furthermore, in a digital world where every kind of resource is

accessible, application requirements and service offerings are described

using declarative languages. The supporting middleware is responsible

for dynamically matching an application’s requirements with a service

offering. If necessary, dynamic negotiation of payment and SLAs may

have to take place.

 For example, an application may advertise that it needs a service

offering computational resources with specific hardware and software

Virtual
organization

HPC Computing

31 • Journal 5 • www.microsoft.com /architecture

Feature Description

Security All aspects of security (for example, authentication, authorization,
auditing, confidentiality, and privacy) are worked with by using
interoperable and composable protocols like WS-Security, Liberty-
Alliance, SAML, XACML, and so on. Identity management and
federation solutions also need to be in place (for example, Active
Directory).

Job management Those resources on the network that are capable of hosting jobs for
execution offer a job-management service.

Scheduling Resource utilization information is gathered and then used in the
decision process of distributing jobs to the available resources.

Data access Those resources on the network that provide access to data stores
(for example, relational database systems, file systems, and storage
area networks) need to expose appropriate services.

Resource registries
and monitoring

Either P2P or centralized solutions need to be deployed to allow
discovery and monitoring of the devices on the network and their
statuses.

Device management The devices on the network may have to be remotely managed
as a collection or individually (for example, Active Directory and
WS-Management).

Table 1 Services, functionalities, and features that devices may support

Feature Description

Brokering Services to act as brokers for other services will be deployed to enable dynamic discovery of resources or aggregate resources to provide better value.

Payment A common infrastructure for payment, similar to that currently used for credit card payments in the real world, will become necessary.

Computational/storage logical services Services to offer access to computational and storage resources will become available, even if those resources do not belong to a single entity, in the
same way companies offering electricity exist in the real world.

Global and domain-specific service and
resource registries

Global directories like Google will be necessary for the location of resources and other services on the grid. Application domains may deploy their
own specialized registries as a way to add value to its domain users (for example, a registry of bioinformatics-related services).

Data transfer When large datasets need to be transferred across the Internet, specialized, high-performance transfer technologies need to be put in place. The
negotiation of which transfer technology is going to be used will take place over standard protocols. P2P technologies could also be employed.

Contracts and policies Vocabularies and middleware software to create, negotiate, execute, and monitor contracts and policies are going to be vital in an environment
where dynamic virtual organizations are formed.

Orchestration As services are made available around the Internet, technologies to orchestrate them and combine them in application-specific ways are necessary.

Semantics-related technologies In an environment where a vast number of resources and services are available, reasoning about the available information in a universal way is going
to be extremely important.

Table 2 Characteristic services, functionalities, and features for Internet-scale, HPC computing

requirements, a data storage facility of a certain size, a visualization

engine with a specific response time, and an equation-solving service

with a guaranteed uptime. These requirements are expressed using an

XML vocabulary. The resulting document is sent to a (distributed) reg-

istry, and a set of available services are discovered. The underlying mid-

dleware negotiates the SLA and payment details with the resulting ser-

vices according to the application’s requirements within the set of lim-

its that the end user has set. Once agreement has been set, all parties

involved sign a digital contract, which can be used for future disputes.

 The SETI@home, ClimatePrediction.net, and other similar projects

have demonstrated that through community networks it is possible to

bring together resources to solve large problems. If we ignore the con-

troversy surrounding the use of peer-to-peer (P2P) technologies for file

sharing, the grid computing promise of collaboration on scientific and

business problems is a good match for the capabilities of P2P technolo-

gies or community networks.

 Future HPC Internet applications should consider P2P technolo-

gies as enabling technologies for file transfers and sharing, resource

discovery, computation distribution, and so on. For example, we can

imagine a P2P network that allows jobs to be submitted and suitable

resource for execution to be discovered automatically. P2P networks

may be implemented using the same set of Web services technologies

to leverage the huge investment in the underlying quality-of-service

protocols.

 Although the grid computing concept emerged from the super-

computer community, businesses are now also realizing its commer-

cial value. Per-pay or subscription-based access to resources (espe-

cially high-performance compute resources) is starting to emerge as

a viable business model with large companies already deploying the

enabling technologies and services. Of course, the integration of such

deployments into applications has to become ubiquitous and com-

pletely transparent to the end users for the vision of “utility computing”

or “computing as a service” to become a reality.

 This realization yields a number of valuable opportunities. Obviously,

there will be those companies that will be able to reap the benefits from

hosting cost-effective compute resources for others to integrate into their

environments on an ad hoc basis. The reciprocal of this situation is that

there will be opportunities for companies to more effectively plan their

spending on IT infrastructure and decide whether up-front capital invest-

ments may be superseded by the pay-as-you-compute model (or not), in

addition to the general business agility that moving to an SOA will yield.

 The set of typical services/functionalities presented previously (see

Table 1) are also needed in Internet-scale, HPC applications. However,

they are more abstract and must make different assumptions about the

environment in which they are deployed. For example, the issue of who

is allowed to send jobs for execution in an organization’s compute center

will be defined through digital contracts, while the quality of service that

each interaction will receive (for example, CPU and data storage alloca-

tion) will be controlled by the SLAs defined in the same contract. In addi-

tion to the information presented in Table 1, however, we also observe the

set of typical services and behaviors for Internet-scale HPC (see Table 2).

 Having discussed at a very high and abstract level the architecture

of service-oriented, high-performance, distributed applications that can

scale across the Internet, let’s now touch on some important design and

implementation considerations.

 Despite the ever-increasing improvements in network latency and

bandwidth, communication over commodity network infrastructures is

orders of magnitude less efficient than over specialized interconnects

or memory-bus architectures. Consequently, care must be taken when

architecting, designing, and building HPC-distributed applications so

as to minimize the costs associated with message exchanges between

components of an application.

The Tenets of SOA
In addition to network costs, the HPC community is also concerned

with the computational costs incurred from the processing of XML.

HPC Computing

32 www.microsoft.com /architecture • Journal 5 •

Resources
Architectural Styles and the Design of Network-Based Software
Architectures
A doctoral dissertation, University of California, Irvine

www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

“Chapter 5: Representational State Transfer (REST),” Roy Thomas Fielding (2000)

BOINC
http://boinc.berkeley.edu
Berkeley Open Infrastructure for Network Computing

Condor High Throughput Computing
www.cs.wisc.edu/condor/
The Condor Project
www.cs.wisc.edu/condor/birdbath/
BirdBath

The Globus Toolkit
www.globus.org/toolkit/
Welcome to the Globus Toolkit

GridForge
http://forge.gridforum.org/projects/ogsa-wg
Open Grid Services Architecture Working Group (OGSA-WG)

About the Authors

Savas Parastatidis is chief software architect at the School of

Computing Science, University of Newcastle upon Tyne.

Jim Webber is a senior developer with ThoughtWorks Australia.

NEReSC
www.neresc.ac.uk/ws-gaf
North-East Regional e-Science Centre, School of Computing Science,
University of Newcastle upon Tyne

OASISOpen.org
www.oasisopen.org/committees/tc_cat.php?cat=ws
OASIS Web services

OGSA-DAI
www.ogsadai.org.uk
Open Grid Services Architecture Data Access and Integration

SSDL
http://ssdl.org The SOAP Service Description Language

http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/ng.pdf
“An Evaluation of Contemporary Commercial SOAP Implementations”
Alex Ng, Shiping Chen, and Paul Greenfield (2004)

World Wide Web Consortium
Technology and Society Domain
www.w3.org/2001/sw/
Semantic Web Activity

However, this is an aspect that is being addressed by the SOAP commu-

nity. In fact, good SOAP implementations already approach the perfor-

mance of binary mechanisms for short messages (see Resources online

at www.ftponline.com), which implies that eventually the limiting fac-

tor for message transmission either in binary or SOAP format will be

the latency and bandwidth of the network. While we do not wish to

denigrate the importance of low latency and high throughput for HPC

applications, it is clear that the laggard label that SOAP has attracted is

somewhat undeserved.

 Loose coupling and scalability are the results of principled design

and sensible software architecture. We recommend adopting these

tenets for building SOAs:

• The collection of protocols supported by a service determines its

behavioral semantics.

• Services bind to messages and the information conveyed though

them and not to particular end points and state.

• Messages exchanged between services are self-descriptive (that is,

as in REST) insofar as they carry sufficient information to enable

a recipient to establish a processing context and the information

needed to execute the desired action.

• Services are implemented and evolve independently of one another.

• Integration of services takes place through contract-based agreements.

In addition to these principles, we also promote this set of guidelines

when building service-oriented systems:

 Statelessness – This property relates to the self-descriptive nature

principle mentioned previously. Services should aim to exchange mes-

sages that convey all the necessary information necessary for receiving

services to re-establish the context of an interaction in a multimessage

conversation. Stateless services are easy to scale and make failover fault

tolerance very simple.

 Rich messages – Communication costs are usually high, hence, aim

for protocols that involve rich messages that result in coarse-grained

interactions, effectively minimizing the number of times a service has to

reach across the network.

 State management – As per the traditional n-tier application design,

service implementation should delegate all aspects of state manage-

ment to dedicated and specialized data stores (see Figure 1).

 Message dispatching – There should be no assumptions about the dis-

patching mechanisms employed by services. As a result, no dispatching-

specific information should leak from the service implementations, across

the service boundaries, and conveyed through the message contents (for

example, SOAP-RPC, RPC-style SOAP, Document-Wrapped-style WSDL,

or method names conveyed as soap:action or wsa:action attributes).

 Role-specific coupling – Architects should keep in mind that in an

SOA there are no actors like consumer, provider, client, server, and so on.

These are roles that exist at the application level and not at the build-

ing blocks of the architecture: the services. In SOAs, there are only ser-

vices that exchange messages. Treating a pair of services as client/server

introduces a form of coupling that may ultimately be difficult to break.

 Services are a sensible abstraction for encapsulating and managing

the increasing level of complexity in distributed applications. The beauty

of service orientation is that the architectural principles and the guidelines

are consistent from an operating system process through to a service that

encapsulates an entire business process or even an entire organization. The

architectural requirements of high performance, Internet scale, or grid com-

puting are not different from those of enterprise, business-focused comput-

ing, and therefore identical principles and guidelines should be used.

 The authors would like to thank Paul Watson, professor, School of

Computing Science, University of Newcastle upon Tyne, for his useful

feedback during the preparation of this article. •

33 • Journal 5 • www.microsoft.com /architecture

Product Strategy and
Architecture
by Charles Alfred

Creating well-defined value models provides direction that improves

the quality of trade-off decisions, especially in systems that are

deployed to many users in various settings. The existence of a clearly

stated architecture strategy provides a coherent high-level direction for

the system in the same way that the United States Constitution does for

the U.S. Let’s look at how these two concepts can be integrated effec-

tively with the waterfall, spiral, or agile methods.

 Requirements can be ineffective compasses. Current ways of build-

ing complex software-intensive systems are ineffective, which is not the

same as saying that they are inadequate. Many systems built using the

waterfall, spiral, or agile methods are deployed successfully and are able

to satisfy their stakeholders. However, many are not, and for reasons

that are correctable.

 Traditional processes for building software-intensive systems, like

the waterfall and spiral methods, rely on requirements to provide

direction. A common misconception is that requirements are state-

ments that describe the problem. According to Greenfield et al., they

aren’t (see Resources). They define the solution from the perspective

of the users and system sponsor. Requirements have some notable

shortcomings:

• Requirements typically use a binary structure. They function like

pass/fail grades in a college course, and provide little if any help

in making trade-off decisions. Of course, these trade-off decisions

must get made at some point in the process. Often they are made

implicitly, and without full consideration of the implications.

• Requirements are used frequently as the basis for specifying testable

acceptance criteria for a system. In the process of making them spe-

cific, important design decisions are made implicitly, without full

considerations of the implications. Eventually, these decisions must

be reversed at a significant cost, or they end up limiting the poten-

tial of the system.

• Requirements tend to treat all individuals of a given user-type the

same. For example, use-case scenarios for a medical system might

refer to physicians and nurses, while those for a real estate system

might refer to buyer, seller, agent, and lender. The problem is two

physicians aren’t the same, and they aren’t necessarily satisfied by

the same things. There is a good reason why popular restaurants

have many entrees on the menu.

• The information needed to make effective software architecture deci-

sions is often left unstated. All systems are deployed in environ-

ments that place significant obstacles in their path. Overcoming

these obstacles is the responsibility of every system, and succeeding

in spite of them is the mark of an effective system. However, unless

developers have an extremely deep understanding of the problem

Summary

Systems exist to generate value for their stakehold-
ers. Unfortunately, this ideal is often met only to a
limited degree. Current development methods, such
as waterfall, spiral, and agile often provide incomplete
and inadequate direction to stakeholders, architects,
and developers. Two essential concepts—value mod-
els and architecture strategy—are missing from many
development processes; however, these concepts can
be integrated effectively using the waterfall, spiral, or
agile methods.

Table 1. Three vital traits of an intentional system

Trait Mechanism Example

Provide useful features Provide a significant new capability Given Imaging Inc. developed a 11x26mm capsule that encases a digital camera that is capable of passing through and
taking images of parts of a patient’s GI tract.

Improve the quality of existing capabilities Intel’s Pentium 4 CPU uses a 90mm design rule (reduced from 130mm) and is able to perform 13 billion instructions
per second.

Overcome obstacles Address limiting factors Many mutual funds and privately managed portfolios are obligated to meet investment constraints. Pre-trade compli-
ance systems analyze proposed trades to verify that the portfolio remains in compliance.

Identify and mitigate risks A wind shear detection system in a commercial airplane detects the presence of microbursts of wind that could cause
an airplane that is in the process of landing to crash.

Cope with change Exploit opportunities eBay recognized that the rapidly growing population of consumers with Internet access created an opportunity to
provide an electronic auction capability.

Adapt quickly to new conditions Eastman Kodak recognized the technology shift that enabled digital photography and achieved market penetration in
this segment to offset declines in film sales. Polaroid was not as successful in doing so.

Product Strategy and Architecture

34 www.microsoft.com /architecture • Journal 5 •

car can stop from 60 miles per hour depends on the type of surface

(pavement or gravel), slope (up or downhill), conditions (dry, wet, or

ice), and the weight of the vehicle.

• Change catalyst represents some force or event in the environment

that causes value expectations to shift or limiting factors to have

a different impact. For example, decreases in memory chip costs and

increases in storage density became a catalyst for digital photography.

 For the remainder of this discussion we’ll refer to opposing forces

and change catalysts as limiting factors, and we’ll refer to all three col-

lectively as value drivers.

Not So Simple
If a system is to be effective at satisfying the value models of its stake-

holders, it needs to be able to identify and analyze them. Traditional

approaches, like use-case scenarios or business/marketing require-

ments, start by focusing on the types of actors with which the system

interacts. This approach has several major limitations: it focuses more

on what things the actors do, and less on why they do them; it tends

to stereotype actors into categories, where all individuals of a type are

essentially the same (for example, traders, portfolio managers, and sys-

tem administrators); it tends to ignore differences in limiting factors (for

example: Is an equity trader in New York the same as one in London?

Is trading at market open the same as trading during the day?); and it

is based on binary outcomes: the requirement is met or it isn’t. The use

case completes successfully or it doesn’t.

 There is a very logical, practical reason why this approach is popular.

It uses sequential and classification-based reasoning, it is easy to teach

domain, they haven’t accumulated the acumen to make good judg-

ments. At the same time, influential users and system sponsors usu-

ally do have this experience, but often lack the technology or sys-

tems expertise to know when it is needed.

Agile Development
Agile methods, like extreme programming (XP) and Scrum, take a

slightly different approach. These methods emphasize some useful

changes, such as close collaboration between stakeholders and devel-

opers, and very short project iterations to get continual feedback. The

theory is that continuous interaction between stakeholders and devel-

opers is a more reliable mechanism for project navigation, than a big

up-front investment in written requirements.

 In addition, agile methods tend to favor more organic, reactive

approaches (refactoring) to those with more prescriptive guidance

(architecture). Proponents of agile methods speak of allowing the archi-

tecture of a system to evolve. In some situations, this approach can be

effective. One example is when user needs or competitive conditions

change rapidly. However, there are many cases where this approach can

be risky. One in particular is when a product must be developed to run

in many different environments and/or satisfy stakeholders with differ-

ent needs and priorities.

 The main issue with waterfall, spiral, and agile approaches is that

software development often proceeds without some very critical infor-

mation, and without the tools needed to gather it. A seaworthy boat, a

working radio, and a complete set of sails are all necessary, but not nec-

essarily sufficient. An experienced sailor wouldn’t think of leaving port

without a good set of nautical maps, a long-range weather forecast,

and a reliable way of tracking the boat’s location.

 We’ll discuss two processes here: value modeling and architecture

strategy. It will show how effective use of these techniques will capture

essential information about the problem domain that enables users and

developers to make effective trade-offs, permit significant obstacles

to success to be identified and prioritized, and enable the architecture

strategy to be expressed in a clear, concise way that can be understood

by all stakeholders.

 Purposeful systems are developed to create value for their stake-

holders. In most cases, this value is perceived to be beneficial because

these stakeholders play important roles in other systems. In turn, these

other systems exist to create value for their stakeholders. This recursive

quality of systems is one key in the analysis and understanding of value

flows (we’ll discuss this point in more depth shortly).

 Table 1 lists three vital traits of an intentional system. Two mecha-

nisms to achieve each trait are described, and a real-world example is

provided for each mechanism. These three traits are at the heart of a

value model. To identify and work with them more easily, we need to

reduce each one down to an elemental form:

• Value expectation expresses a need for a particular feature, includ-

ing what is provided (capabilities); how well they are provided (qual-

ity attributes); and how beneficial are various levels of quality (utility

function). For example, one driving a car might have a value expec-

tation for how quickly and safely the vehicle can stop from a speed

of 60 miles per hour.

• Opposing force represents some natural or imposed force in the

environment where a system is deployed that makes satisfying a

value expectation well more difficult. For example, how effectively a

Compliance rules might specify upper and lower limits on the
percent of the portfolio’s assets that can be invested in particular
categories, such as security type, industry sector, or geographical
region. Allocation percentages in a portfolio can vary based on
price changes, trades, and corporate actions. If a portfolio fails
to comply with its rules and loses money, it may be required to
indemnify its investors.
 In situations where a portfolio is well within its compliance
limits, there is a low risk that any particular trade will cause a vio-
lation. However, if the market is moving rapidly or trade volume
is heavy, a portfolio that is close to one or more limits has a much
higher risk of becoming out of compliance.
 One major challenge is that rapidly moving markets or periods
of heavy trade volume are exactly the scenario where traders
must be able to respond quickly, to get the best prices. Yet, this
scenario can be the same situation where there are many pending
trades and price-change events to evaluate, making the compli-
ance verification more complex.
 In this case, portfolio size, trade volume, and market volatility
all combine to create a conflict between the need for compli-
ance verification (a risk-mitigation technique) and the need for
efficient trading (which impacts portfolio ROI). To be effective,
the architectures of the portfolio management organization and
its information systems must find a way to balance the trade-off
between compliance risk and timely trades. •

Architecture Challenges in
Portfolio Compliance Systems

Product Strategy and Architecture

35 • Journal 5 • www.microsoft.com /architecture

and explain, and it can produce a set of objectives that are easy to ver-

ify. Of course, if simplicity were the only goal that counted, we’d all still

be walking or riding horses to get from one place to another.

 In his book Competitive Advantage: Creating and Sustaining Supe-

rior Performance, Michael Porter discusses the concept of value chains

in the context of corporate strategic planning (see Resources):

 “Although value activities are the building blocks of competitive

advantage, the value chain is not a collection of independent activi-

ties, but a system of interdependent activities. Linkages are relationships

between the way that one value activity is performed, and the cost or

performance of another.

 “Linkages exist not only within a firm’s value chain (horizontal link-

ages), but between a firm’s value chain and the value chains of sup-

pliers and channels (vertical linkages). The way that supplier or chan-

nel activities are performed affects the cost or performance of a firm’s

activities (and vice versa).”

 If one thinks of a firm (or a supply chain) as a system, and each

major value activity (procurement, receiving, manufacturing, and so on)

as a subsystem, then we can generalize the notion of value chains and

linkages: each entity (value activity) has its own value model to repre-

sent its value expectations and limiting factors, each linkage describes

how the value model of one entity dovetails with the value model of

the entity with which it is linked, and each linkage between two entities

in the same system is what Porter refers to as a horizontal linkage. Each

linkage between entities in different systems is a vertical linkage.

 Porter also refers to the concept of differentiation, where two enti-

ties performing the same set of value activities behave differently. A

simple example might be a taxi versus a municipal bus. While both pro-

vide ground transportation for a fee, these two contexts have different

features. The bus is relatively inexpensive and follows a predetermined

route and schedule. The taxi is available on demand (except for when

you really need one), operates point-to-point, is more expensive, and

holds a limited number of passengers. When it is raining, the extra cost

of a taxi might not matter as much.

Question of Balance
For the rest of this discussion we will use the term value cluster to

refer to an abstract entity that performs a general type of value activ-

ity. Value context will be used to refer to a specialized form of a value

cluster that has significant differences in value expectations, opposing

forces, or change catalysts from other contexts in the same cluster.

 Both value clusters and value contexts have their own value models.

The value model of a cluster represents the common aspects of all con-

texts that specialize that cluster. Each value context specializes the value

model of its cluster. The set of value models for all contexts in a cluster

provide important insights into the differences between what each one

expects, and how its environment affects it.

 Why is this point important? A system’s architecture must perform

a delicate balancing act involving its value drivers. This can be tricky in

a single-context system, where all deployment scenarios have equiv-

alent value expectations and limiting factors. Tasters and AA batteries

are good examples of single-context systems. So are simple text editors,

file difference analyzers, and many other PC desktop utilities. In a single

context system, it is still possible to have interdependencies and con-

flicts among combinations of value expectations and limiting factors.

 However, it gets more challenging. Most complex systems have mul-

tiple contexts. In other words, as you consider different deployment

environments, they have significant variation in value expectations,

opposing forces, and change catalysts. As either the number of contexts

increases, or their degree of compatibility decreases, it becomes much

more difficult to satisfy all of them with a single architecture. While

there are several techniques for dealing with this situation, the first step

is to recognize when you face them.

 Many systems have only a few contexts. These occur most often

with systems that are deployed for internal use inside an organization.

Different deployment environments can have different limiting fac-

tors. For example, a system for dispatching airline baggage handlers is

affected by weather extremes, or an international system is affected by

Value
level

Worst

Adequate

Satisfactory

Preferable

Best

Miles per
gallon

10 mpg

20 mpg

30 mpg

40 mpg

50 mpg

Perceived utility

Linear S-Curve Parabola

0

25

50

75

100

0

10

50

85

100

0

60

80

90

100

V
al

ue

Quality measurement

V
al

ue

Quality measurement

V
al

ue

Quality measurement

Figure 1. Utility curves

“THE MAIN ISSUE WITH WATERFALL, SPIRAL,

AND AGILE APPROACHES IS THAT SOFTWARE

DEVELOPMENT OFTEN PROCEEDS WITHOUT

SOME VERY CRITICAL INFORMATION, AND

WITHOUT THE TOOLS NEEDED TO GATHER IT”

Product Strategy and Architecture

36 www.microsoft.com /architecture • Journal 5 •

local regulations. Other times, deployment environments have different

value expectations. This is especially true when there are international

or cultural differences. Nurses who operate haemodialysis machines for

patients with chronic kidney failure in a government-sponsored hospital

in Europe will have different wants and priorities than nurses who per-

form the same task in a small, private walk-in clinic in the U.S. (where

private insurance providers pay for treatments).

 Many other systems have a large number of contexts. These occur

most frequently with technology-centric products that are developed

for sale or lease to a wide array of customers. The same conditions that

cause variation in slight context systems occurs in spades because the

number of deployment contexts can be thousands or millions of times

larger, the organizations (or systems) in which the stakeholders partic-

ipate can have very different sets of value expectations, and the cata-

lysts that trigger significant change in each deployment environment

are likely to be very different.

 In summary, a value model captures the drivers that determine how

satisfied a particular market segment is, and how difficult it will be to

satisfy them.

Utility Curves
Previously, this discussion made reference to an important concept

called a utility curve. Very simply, a utility curve is a mapping from one

scale of measurement to a second. The first scale represents a result

variable that can be quantified. The second scale is the level of value

(satisfaction, utility) that is generated. The most common example of a

utility curve is one used to map test scores into letter grades for a high

school or college exam. As you will see, a good grasp of utility curves is

absolutely essential to making effective trade-off decisions.

 Figure 1 illustrates a simple example. The first scale represents the

EPA combined city and highway fuel economy for a vehicle. The second

scale represents five qualitative values: worst, adequate, satisfactory,

preferable, and best. Worst is the minimum passable requirement, and

little or no value is lost with results below this level. Adequate repre-

sents a below-average outcome—disappointing, but acceptable. Satis-

factory is the expected outcome—no better, no worse. Preferable rep-

resents an above-average outcome that is satisfying and pleasing, but

not far above the range of ordinary. Best is the best expected outcome,

and little or no value is gained with results that exceed it.

 The example in Figure 1 shows three distinct utility curves. There are

many other possible shapes; these represent three common ones. The

first curve is linear, the second has an s-curve shape, and the third is a

parabola. All three have the exact same worst and best values. What is

interesting to note is the intermediate values. An increase from 10 to 20

miles per gallon yields 10 percent of the available value for the s-curve,

but 60 percent for the parabola.

 In a single-context system the use of utility curves to analyze archi-

tecture strategies is straightforward. The decision analysis method

described by Charles Kepner and Benjamin Tregoe in their book can

be used for this purpose (see Resources). Each alternative is evaluated

against each value expectation. Utility curves are used to map the

value of the quantitative measure achieved by each alternative to its

corresponding value. Then the value levels are weighted by the prior-

ity of the expectation, and totaled. More preferable alternatives have

higher totals.

 The most challenging aspect of this method is choosing an appro-

priate mechanism to evaluate each alternative against each want goal.

The best scenario is when the mechanism provides an objective mea-

Figure 2. Architecture strategy formulation

Value
context

Value
context

Typically
several

contexts

Architecture
challenges

Architecture
approaches

Architecture
strategies

Interactions
create

complexity

Prioritize
to identify

early decisions

Merge
challenges

across
contexts

Tactics to
address key
challenges

Principles of
organization,

operation,
variation, and

 evolution

Architecture
drivers

Value
expectations

Limiting
factors

Value
expectations

Limiting
factors

Product Strategy and Architecture

37 • Journal 5 • www.microsoft.com /architecture

surement (such as measuring miles per gallon or horsepower for an

automobile engine). In some cases, the mechanism might be subjec-

tive. The cost of coming up with an appropriate objective measurement

must be balanced against the extra accuracy and objectivity provided.

In some situations, an initial assessment can be done with subjective

assessments. If the results are close, then objective measurements can

be made to choose among the best alternatives.

Architecture Challenges
An architecture challenge is a situation where one or more limiting fac-

tors make it more difficult to satisfy one or more value expectations.

Simply put, an architecture challenge is an obstacle or barrier that the

system must overcome to provide value. This is a key point. Obstacles

and value expectations are like yin and yang. If obstacles are not pres-

ent, then value drops because the outcome is easy and anyone can do

it. Bottled water is the one noteworthy exception to this rule. Within

any context, identification of architecture challenges involves assess-

ing which limiting factors impact one or more value expectations. If

impacts are observed, do they make fulfilling the value expectation(s)

easier (positive impact) or harder (negative impact)? And how hard or

easy does each impact make things? A simple low, medium, or high

scale usually is sufficient here.

 The sidebar, “Architecture Challenges in Portfolio Compliance Sys-

tems,” describes some architecture challenges that occur in that kind

of compliance system. A more in-depth discussion of architecture chal-

lenges and a case study can be found in a whitepaper by the author

(see Resources).

 Architecture challenges must be considered within their own con-

text. While it might be possible to average utility curves across contexts,

the same cannot be done with the impact of limiting factors on value

expectations. For example, suppose a Web server supplies pages to

users in two contexts. One context accesses static information, such as

reference documents. They want response times between 1–3 seconds.

The other context accesses very dynamic information, like box scores of

in-progress sporting events. They are satisfied with response times in

the range of 3–6 seconds.

 Both contexts are subject to CPU, memory, disk, and network lim-

itations. However, as request volumes increase by a factor of 10 or

100, these two contexts are likely to run into very different scalabil-

ity obstacles. In the dynamic content case, synchronization of updates

and accesses becomes a limiting factor under heavy load. For the

static content, heavy load can be overcome by caching frequently

read pages.

 There is one final point that should be mentioned about architec-

ture challenges and multiple-context systems. In many cases, it will

seem that a single system is capable of supporting many different

contexts. However, the architecture contexts that arise from each con-

text are a very good tool for evaluating how compatible these con-

texts are with each other. When incompatible contexts are addressed

by the same architecture, the result is never that both are satisfied.

Either one suffers at the expense of the other, or both are compro-

mised. One example of this situation is a semiconductor tool that

attempted to support production and research contexts with a single

architecture. Given the very different sets of value expectations (reli-

ability versus flexibility), opposing forces (fab versus lab), and change

catalysts (production runs versus experiments), it was unlikely that this

marriage could be saved.

Architecture Strategy
As discussed earlier, formulating a system’s architecture strategy starts

with recognizing the appropriate value contexts and prioritizing them,

defining utility curves for and prioritizing value expectations in each

context, identifying and analyzing opposing forces and change cata-

lysts in each context, and detecting where limiting factors make it hard

to fulfill value expectations.

 Figure 2 illustrates this process. The previous list of activities brings

us into the architecture challenges box in the middle of the diagram.

At this point, we are working with a list of architecture challenges that

have been gathered from all of the contexts. Each of these challenges

represents the impact of one or more limiting factors on one or more

value expectations. As the diagram shows, before we start addressing

each challenge, we need to prioritize them. The observations we’ll dis-

cuss here explain why the earlier a decision is made, the more things it

is likely to constrain, and the later a decision is made, the fewer alterna-

tives there are available.

 As a result, it only makes sense to reserve the earliest architecture

decisions to be the ones that yield the most value. There are several cri-

teria that can be used for prioritizing architecture challenges. We rec-

ommend a balance among:

• Importance – How high is the priority of value expectations that are

impacted by the challenge? If these value expectations are specific to

a few contexts, then what is the relative priority of these contexts?

Legend

Development process activity

Primary influence (filled arrow)
with feedback (unfilled arrow)

Unidirectional influence

Value model
definition

Architecture
strategy

Requirements
specification

Architecture
definition

Figure 3. Value-driven architecture with traditional methods

“IF SIMPLICITY WERE THE ONLY GOAL THAT

COUNTED, WE’D ALL STILL BE WALKING OR

RIDING HORSES TO GET FROM ONE PLACE

TO ANOTHER”

Product Strategy and Architecture

38 www.microsoft.com /architecture • Journal 5 •

• Magnitude – How large of an impact on the value expectations was

caused by the limiting factors?

• Consequence – How many realistic options do there appear to be?

Do these options have significant differences in difficulty or effec-

tiveness?

• Isolation – How isolated is the impact of the most realistic options?

The more widespread the impact, the more weight this factor has.

 Once the architecture challenges are prioritized, approaches are for-

mulated for those that are highest priority. While techniques such as

architecture styles and patterns can help, this is an area where deep

experience with the problem and solution domains is invaluable (see

Resources for links to two books on these topics). Effective approaches

to significant challenges are the result of skill, insight, effort, and pains-

taking work. This statement is true, regardless of whether the problem

is surgery, executive management, or software architecture.

 As each challenge is addressed, its approach will constrain the

solutions to other challenges, and sometimes create new ones. If the

architecture challenge priorities are correct, then most of the down-

stream constraints will be appropriate. However, in some cases, the

approach to a high-priority challenge might negatively impact sev-

eral slightly lower-priority challenges. The combined priority of the

impacted challenges might outweigh the higher-priority challenge. In

this case, it is advisable to back up and formulate a different approach

to the original challenge.

Set Sail
Once approaches have been formulated to the set of high-priority chal-

lenges, the architecture strategy can be expressed. The architect ana-

lyzes the set of approaches, and factors out a set of guiding principles

in these areas:

• Organization – How is the system organized into subsystems and

components? What is the composition and responsibilities of each?

How can the system be deployed over a network? What types of

users and external systems are there? Where are they located and

how do they connect?

• Operation – How do components interact? In which cases is com-

munication synchronous? In which cases are they asynchronous?

How are the actions of components coordinated? When is it accept-

able to configure a component or run diagnostics on it? How are

error conditions detected, diagnosed, and corrected?

• Variability – Which major features of the system are permitted to

vary from one deployment environment to another? Which options

are supported for each feature, and when can the choice be made

(for example, compile, link, installation, startup, or at runtime)?

What dependencies are there between variation points?

• Evolution – How is the system designed to support change while

retaining its stability? Which specific types of significant change

have been anticipated, and what are the preferred ways to

address them.

 In summary, the architecture strategy is the rudder and keel of

a sailboat, providing direction and stability. It is expected to be a

brief, high-level statement of direction that must be understand-

able by all stakeholders, and should be relatively stable over the

lifetime of the system.

 Figure 3 shows how value models and architecture strategy relate

to the waterfall and spiral methods. Value models and architec-

ture strategy operate at both an earlier point and a higher level than

these methods. When value models are studied and architecture

strategies are formulated, they provide a great foundation for spec-

ifying requirements and defining a more detailed architecture. The

value model drives the requirements and influences the architecture

definition by providing information for making trade-offs. The archi-

tecture strategy drives the more detailed architecture definition and

provides a set of derived requirements that are needed to overcome

known obstacles.

 An appropriate analogy is to view architecture strategy as strate-

gic planning, and value models as market analysis. In this light, require-

ments become corporate objectives and policies. Architecture defini-

tion is the business organization and operational plan, and use cases

are the equivalent of business processes.

 Few companies establish corporate objectives, organizational struc-

ture, operating plans, and business processes without first having a

clear idea of their mission, markets, competitors, resources, and strat-

egy. Even fewer effective ones do this.

 Figure 4 shows how value models and architecture strategy relate

to agile methods. Both XP and Scrum make allowances for an archi-

tecture definition. Scrum does this explicitly, expecting the architec-

ture to be defined in the first 4–5 week iteration. XP does this implic-

itly. One of the 12 core principles of XP is called system metaphor. This

principle is not used as frequently or is as well understood as its more

famous siblings: small releases, pair programming, and test-driven

development.

 In the early days of XP, the team that worked on the large, com-

plex Chrysler Payroll System needed a good way to describe work-

flow management to the Chrysler developers. Somebody got the idea

Figure 4. Integration of value-driven architecture with agile methods

Legend

Development process activity

Primary influence (filled arrow)
with feedback (unfilled arrow)

Software evolution

Value model
definition

Architecture
strategy

Iteration 1 Iteration n

Product Strategy and Architecture

39 • Journal 5 • www.microsoft.com /architecture

of drawing an analogy between payroll workflow and an automotive

assembly line. The metaphor clicked, and the Chrysler developers got

the picture.

Tell a Story
The XP Web site defines system metaphor as what XP uses instead

of a formal architecture. A simple shared story of how the system

works, a metaphor, typically involves a handful of classes and pat-

terns that shape the core flow of the system being built.

 What XP refers to as a “formal architecture” is more like what was

referred to previously in this discussion as an architecture definition.

An architecture strategy plays the same role as a system metaphor,

without being a metaphor. This definition is a significant advantage,

since really effective metaphors (such as the one used in Chrysler)

can be hard to come by. By contrast, clear, concise core principles

are easy to state and easy to understand. A person doesn’t need to

go out and watch the movie Hidalgo to understand what is meant by

“life, liberty, and the pursuit of happiness.”

 In summary, the value model helps us to understand and com-

municate important information about sources of value. Some of the

important issues it addresses are how value flows, why similarities

and differences occur in value expectations and external factors, and

what subset of that value our system seeks to satisfy. It is the archi-

tect’s job to satisfy these value expectations by resolving forces that

influence the system in general—forces that are specific to certain

contexts and forces that are expected to change over time. In this

respect, architecture is similar to flying a jet airplane: the pilot must

transport passengers safely to a known destination, while balancing

the laws of aerodynamics, the capabilities of the plane, and current

and future weather conditions.

 The link between value models and software architecture is

clear and logical, and can be expressed by these nine points:

1. Software-intensive products and systems exist to provide value.

2. Value is a scalar quantity that incorporates perceptions of mar-

ginal utility and relative importance across many distinct goals.

Trade-offs between goals are an extremely important consider-

ation.

3. Value exists at multiple levels, some of which contain the target

system as a value provider. The value models for these scopes

contain the primary drivers of the software architecture.

4. Value models that are above these levels in the hierarchy can

cause the value models of their children to change, which is

important input in formulating the principles of evolution for

the system.

5. For each cluster, value models are homogeneous. Value con-

texts, exposed to different environmental conditions, have dif-

ferent expectations of value.

6. The development sponsor for the system has different priorities

for trying to satisfy various value contexts.

7. Architecture challenges result from the impact of environmental

factors on value expectations within a context.

8. Architecture approaches seek to maximize value by addressing

the highest-priority architecture challenges first.

9. Architecture strategies are synthesized from the highest-prior-

ity architecture approaches by factoring out common rules, pol-

icies, and principles of organization, operation, variation, and

evolution.

The main contributions of this approach are:

• The sources of value in the system are modeled as first-class

concepts. Value expectations associate a small number of capa-

bilities with quality attributes, utility curves, and external fac-

tors. Value expectations are held by value realms and contexts;

realms capture the common aspects of value expectations,

while contexts capture the important multiple variability within

a realm.

• Traceability of architectural reasoning is also a first-class entity.

Value expectations link to architecture challenges, which link to

architecture approaches, which link to architecture strategies.

Stakeholders now can see the thought process that went behind

the solution.

• A very useful side effect of this traceability is an increased

ability to review software architectures. Because the reason-

ing behind the decisions is made explicit, it becomes easier for

other stakeholders (project sponsors, domain experts, technol-

ogy experts, end users) to identify aspects that might be miss-

ing or incorrect. •

RESOURCES

Competitive Advantage: Creating and Sustaining Superior Performance,

Michael E. Porter (Free Press 1998)

Design Patterns: Elements of Reusable Object-Oriented Software,

Erich Gamma et al. (Addison Wesley 1995)

http://c2.com/cgi/wiki?ExtremeProgrammingCorePractices

Extreme Programming Core Practices

“Making Architecture Decisions, an Economic Approach,”

Rick Kazman et al. Technical Report (Carnegie Mellon University,

Software Engineering Institute 2002)

The New Rational Manager, Charles H. Kepner and Benjamin Tregoe

(Kepner-Tregoe Inc. 1997)

Pattern-Oriented Software Architecture, Volume 1: A System of Patterns,

Frank Buschmann et al. (John Wiley and Sons 1996)

Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools, Jack Greenfield et al. (Wiley 2004)

www.foliage.com/whitepapers/index.shtml

“Using Architecture Challenges to Formulate Software Architecture,”

Charlie Alfred (Foliage Software Systems Inc. 2003)

About the Author

Charles Alfred is technical director at Foliage Software Systems, which

delivers competitive advantage through technology strategy, software

architecture, and custom software development. Since being founded

in 1991, Foliage has completed more than 175 projects for clients in

financial services, semiconductors, health care, aviation, and e-business.

Register Now! Call: +1 650.378.7100
Or visit: www.ftponline.com/conferences/eas/barcelona

Build a Solid Foundation for the Agile Enterprise
After three successful North American
events, Enterprise Architect Summit sets
its sights on Europe this autumn, premier-
ing with three days of keynotes, work-
shops and special activities in cosmopoli-
tan Barcelona.

Join us for in-depth sessions highlight-
ing IT strategies and best practices from
the real world—topics to help equip your
organization to respond to emerging IT
challenges and opportunities.

Register by the
Early Bird Deadline
of October 5 and

Save €200*
*Savings Rate is subject

to Euro/USD exchange rate
fl uctuations

November 6 - 8
Barcelona, Spain

050727ea05Barcelona_p6.indd 2050727ea05Barcelona_p6.indd 2 7/29/05 2:50:01 PM7/29/05 2:50:01 PM

Founding & Platinum Partner

Be in the heart of it all! Make your time at EAS
even better by staying at the Hotel Arts on the
shores of the Mediterranean, where all confer-
ence sessions and activities will be held. The
striking contemporary hotel enjoys a spectacu-
lar beachfront location near Barcelona’s fi nest
shops and restaurants. The graceful silhouette
of Hotel Arts Barcelona offers guests spectacu-
lar views over the city and sea.

Few European cities offer the wide diversity of cultural
experience that you’ll fi nd in Barcelona. Couple that with
the luxury of 4.2 km of beach only a short walk from the
city centre and glorious autumn weather, and you have all
the makings of a great destination.

Visiting Barcelona

Register Now! Call: +1 650.378.7100
Or visit: www.ftponline.com/conferences/eas/barcelona

Take Advantage of Great Rates and Maximum Convenience
Stay On-Site at the Ritz-Carlton Hotel Arts, the Offi cial Hotel

for Enterprise Architect Summit

As an EAS attendee, you are eligible for a spe-
cial room rate of €230 (excl. VAT) for single/dou-
ble occupancy. Make your reservation early be-
cause the discounted rate is only in effect until
October 3, 2005 and rooms are subject to avail-
ability. Visit www.ftponline.com/conferences/
eas/barcelona for details.

050727ea05Barcelona_p6.indd 3050727ea05Barcelona_p6.indd 3 7/29/05 2:50:41 PM7/29/05 2:50:41 PM

098-103796 Subscribe at: www.getarchitectjournal.com

®

	Cover
	TOC
	Editor's Note
	Foreword
	An Introduction to Topic Maps
	The Metropolis and SOA Governance
	Services-Based Integration
	Planes, Trains, and Automobiles
	Enable Internet-Scale Computing
	Link Product Strategy and Architecture

