David Hill, Microsoft Corporation
pp 04-13

Ricard Roma i Dalfé,
Microsoft Corporation
pp 14 -18

Richard Drayton, FiS and
Arvindra Sehmi, Microsoft EMEA
pp 19-33

Pedro Sousa, Carla Marques Pereira
and José Alves Marques,

Link Consulting, SA

Pp 34-39

Maarten Mullender,
Microsoft Corporation
pp 40 - 49

Oren Novotny,
Goldman, Sachs & Co
pp 50 - 52

JOURNAL

JOURNALA4 MICROSOFT ARCHITECTS JOURNAL

Dear Architect

The advances in technology and
industry standards that enable service
oriented architecture (SOA) are also
driving a paradigm shift in client
architecture. Individually these changes
may be considered evolutionary, but in
aggregate they unite to revolutionize
client architecture. Historically, client-
side applications were tightly bound

to a specific backend system. More
precisely, the primary function of the
client-side application was to expose
the functionality and data of a specific
backend system to users. While it was
possible to build clients that could
interact with multiple backend systems,
doing so was extremely complex and
seldom undertaken.

SOA has changed all of that. In a
SOA, the functionality and data of

backend systems are exposed as
services (or fronted by mid-tier web
services), and those services are
consumed by client applications. The
client application is no longer tightly
bound to a single backend system.
Businesses now have the freedom,
and means, to efficiently build
radically new client applications that
truly optimize user productivity and
streamline workflow.

The design imperative for client side
applications has shifted from system-
centric models of connecting the user
population at large to specific systems,
to user-centric models that provide
users with transparent access to all the
services they need for their job or task.
If one extends this model by seamlessly
integrating these services with the rich

A NEW PUBLICATION FOR SOFTWARE ARCHITECTS

capabilities of desktop applications,
then one can achieve something which
redefines the standards for operational
excellence. And furthermore, by giving
equal treatment to both user and
system models within a convergent
service-centric model, one can
significantly enhance the integration
between them with seamless
functional interoperation.

In this edition of JOURNAL, we begin
the intriguing journey to explore
perspectives of these various models.

Enjoy!

Chris Capossela

Vice President,

Information Worker Business Group,
Microsoft Corporation



By Arvindra Sehmi

Dear Architect
Welcome to the autumn issue
of JOURNAL.

It has been several years now since
.NET hit the streets and created
momentum around Microsoft’s vision
of connecting people and processes
together, anytime, anywhere and on any
device. This vision was built on Web
services standards implementations on
.NET and broad adoption in the
technical community. Both prerequisites
have been achieved, not only on .NET
but also on other vendor platform
offerings. With this has come a better
understanding of the new possibilities
for application architectures, specifically
SOA which, I would argue, is the first
expression of that understanding.

We are seeing the architectural ideas
behind SOA being adopted in many
areas of the overall system solution.
These are not restricted just to the
application layer because of resulting
productivity and business benefits. For
instance, integration, interoperability,
management, operations, testing,
security, data and user interface
aspects of system solutions can each be
viewed from the perspective of service-
orientation. A so-called service oriented
convergence (SOC) phenomenon is
taking place, at least conceptually,
amongst the architectural thinkers

I have been working with lately.!

In this issue of JOURNAL there are
three papers which will add some
credence to this way of thinking
especially as it relates to the role of
service consumers in SOC and

1The Nerd, The Suit and the Fortune
Teller, Tech-Ed Europe 2004.

particularly the role of smart clients
and task-oriented user interfaces.

We start with a paper by David Hill,

a member of the Microsoft Architecture
Strategy team, who contrasts thin and
smart client architecture approaches
and provides guidance on how to choose
between them. David shows us that
“smart clients are rich clients done
right”, leveraging new technology and
techniques to avoid the pitfalls of
traditional rich client applications
whilst aligning neatly with the
principles of convergent service-centric
system models.

Ricard Roma i Dalf6 from Microsoft’s
Office division discusses in his article
a new metadata-driven approach to
building task-oriented service
consumers directly within Microsoft
Office applications. The Information
Bridge Framework (IBF) goes beyond
a service’s WSDL metadata by
automating the construction of user-
interfaces from metadata descriptions
of the entities that constitute consumed
services. It does this by describing
entity views, their relationships and
identity references, and operations
which can be performed on them.

Performance is probably one of the
least understood and misquoted
metrics in the field of computing today.
However, as a metric for system
evaluation, it is considered by most
users to be one of the most important
and critical factors for assessing the
suitability of systems. Richard Drayton
of FiS and Arvindra Sehmi from the
Enterprise Architecture team in

Keep updated with additional information
at http:/msdn.microsoft.com/architecture/journal

Microsoft EMEA write a paper on
benchmarking a scalable transaction
engine which has an architecture
based on loosely coupled, stateless,
message processing components
arranged in a queuing network. This
architecture proved invaluable from

a benchmarking perspective because

it is backed up by sound mathematical
techniques which enable an assessment
of the impact on performance of various
implementation realization techniques
a-priori to deciding on any specific
realization technologies. Therefore,
measured benchmark metrics inherit
and benefit from these mathematically
credible foundations.

Pedro Sousa, Carla Marques Pereira
and José Alves Marques, all from Link
Consulting, follow with their paper
discussing how, within the context of
various Enterprise Architecture
Frameworks each with their own
concepts, components, and
methodologies, the most important
concern for architects is alignment.
This concern may lead to consideration
of simpler architecture concepts

and simpler methodologies because the
focus is not to define development
artifacts but to check their consistency.

Next, Maarten Mullender, Solutions
Architect in Microsoft’s Architecture
Strategy team introduces us to
Razorbills which is a proposal for
describing ‘what’ services do, thereby
dramatically improving the usefulness
of service consumption. There are
similarities with the second article on
IBF where the description is done in
terms of entities, views, actions,

JOURNAL“ | Editorial 2



references and relationships but the
emphasis is on helping business
analysts and users to better bridge

the gap between structured and
unstructured, and formal and informal
content and process. Maarten goes
further to discuss the relevance of
this approach in entity aggregation

at informational and functional levels,
user interaction and collaboration.

The final paper is a short piece on Next
Generation Tools by Oren Novotny of
Goldman, Sachs & Co. In this he argues
that development tools must support
the shift that languages have already
made and fully support model-driven
development. He insists source code
files should be eliminated as they no
longer serve a useful function in this
context and the current rationale for
using them is made irrelevant by better
and different means in these next
generation tools.

Please visit
http://msdn.microsoft.com/architecture
to keep up-to-date on architecture
thinking at Microsoft and to
conveniently download

JOURNAL articles.

As always, if you're interested in
writing for this publication please send
me a brief outline of your topic and
your resume to asehmi@microsoft.com.

Wishing you a great holiday season and
good reading!

Arvindra Sehmi
Architect, D&PE,
Microsoft EMEA

JOURNAL

| Editorial 3



By David Hill, Microsoft Corporation

Abstract

The presentation layer is a vitally
important part of an application —

an inappropriately architected
presentation layer can lead to too much
complexity, a lack of flexibility and an
inefficient and frustrating user
experience. Thin client applications
have well known benefits over
traditional rich client applications

in terms of deployment and
manageability and this has led to their
popularity in recent years. However,
with the advent of smart clients, the
choice of presentation layer
architecture is no longer
straightforward. Rich clients have
evolved into smart clients that can
combine the central management
advantages of thin clients with the
flexibility, responsiveness, and
performance of rich clients. This article
discusses the thin and smart client
approaches and provides guidance on
how to choose between them.

The Importance of the
Presentation Layer

The presentation layer of most
applications is very often critical to the
application’s success. After all, the
presentation layer represents the
interface between the user and the rest
of the application. It’s where the rubber
hits the road, so to speak. If the user
can’t interact with the application in

a way that lets them perform their
work in an efficient and effective
manner, then the overall success of the
application will be severely impaired.

Personally, I think the term
presentation layer really does not do

justice to the function and importance
of this layer. It is rarely about just
presenting information to user — it’s
often more about providing the user
with interactive access to the
application. Perhaps a more
appropriate name for this layer is the
user interaction layer. For simplicity,
though, for this article I'll stick

with the commonly accepted name for
this layer.

In any case, you’ll want to design this
layer to provide the user with the right
user experience, so that they can
interact with the application in an
effective and efficient way. Of course
you also need to architect and then
implement this layer in such a way
that it adequately takes into account
the development, maintenance, and
operational needs of the business.
Choosing the right architecture for the
presentation layer of the application is
vitally important in order to achieve all
of these goals.

The two commonly adopted approaches
to presentation layer architecture and
design are the thin client approach and
the smart client approach. Of course,
many factors influence the decision
about which approach is best for a
particular application — for example,
client platform requirements,
application deployment and update,
user experience, performance, client-

side integration, offline capabilities, etc.

— and each has inherent strengths and
weaknesses and naturally supports a
certain style of application. You’ll find,
however, that the distinction between
them can blur, and this can easily lead

to the wrong basic approach being
applied leading to problems later on.

For example, it is possible to provide

a rich user interface with a browser-
based presentation layer, just as it is
possible to provide a completely
dynamic user interface with a smart
client. Neither would be very easy to
achieve, and both would very likely
result in unneeded complexity, a lack
of flexibility and high development and
maintenance costs.

Many organizations choose a thin
client architecture by default without
duly considering the alternatives.
While they will not be appropriate

for all scenarios, a smart client
architecture can offer significant
advantages over a thin client approach
without incurring the downsides
traditionally associated with rich
clients. Organizations should carefully
consider each approach so that they
adopt the right approach from the
outset, minimizing the TCO over the
lifetime of the application.

In the following sections, I'll examine
the thin and smart client approaches
and some of the technologies behind
them. For each I'll describe the basic
architecture and discuss some of the
design options within each. After that
T'll talk about the relative strengths
and weaknesses of each approach in
terms of a number of common factors
and requirements that you should
take into account when determining
the most appropriate approach for
your application.

“A smart client architecture can offer significant advantages over a thin client approach without
incurring the downsides traditionally associated with rich clients.”

JOURNAL

| Choosing the Right Presentation Layer Architecture 4



-éé n

[0

: eoe Page
: Browser Deployment
P Security
i Sandbox \ —
: Browser
Page .
Business
Logic | I
Data Ul
Server Roundtrip

Limited Local s &

Data Support

Client

No O0ffline Support

! Web Server

Figure 1: Schematic Overview of Thin Client Architecture

What Is a Thin Client?

Many thin client technologies pertain
to the server side and there are many
web server platforms and frameworks
(ASP, ASP.NET, JSP, and others) to
choose from. Each has particular
features that try to make it easier to
write thin client applications, but they
all deliver the user interface to a
browser on the client through a series
of HTML pages. A thin client
application is pretty easily defined as
one that uses a browser to provide the
execution environment for the
application’s (HTML defined) user
interface.

In addition to rendering the user
interface and allowing the user to
interact with it, the browser also

provides generic security, state

JOURNAL

management, and data handling
facilities plus the execution environment
for any client-side logic. For the latter,
the browser typically provides a script
engine and the ability to host other
executable components; such as Java
Applets, ActiveX and .NET controls,
and so on, (though most definitions
would not consider these executable
components to be thin client technologies
— see hybrid applications below).

An application architected to use a thin
client presentation layer is decomposed
into pages and each page is “deployed”
to the client upon request. Each page
contains the user interface description
and, typically, a small amount of client-
side script logic and a small amount of
state/data (view-state, cookies, XML
data islands, etc.). Figure 1 shows a

schematic representation of a thin
client presentation layer architecture.

The browser has a limited ability to
interact with the client environment
(hardware and other software
applications running on the client).

It does provide a mechanism that
permits storage of small amounts of
data on the client (via cookies), and
sometimes the ability to cache pages,
but typically these facilities are of
limited use except as a way to provide
simple session management

or tracking, and rudimentary read-only
offline capabilities, respectively.

The browser also provides the security
infrastructure so that different
applications (pages) can have more or
fewer permissions assigned so that
they can do different things around
state (such as cookies), they can host
components, and execute scripts.
Internet Explorer implements these
facilities through different zones,
trusted sites, ratings, etc.

In an attempt to provide a richer and
more responsive user interface, some
web applications have resorted to
DHTML and similar technologies to
facilitate a richer user interface. While
these technologies are non-standard,
in the sense that all browsers do not
support them in the same way, they do
provide the ability to include more
advanced user interface elements such
as drop down menus, drag and drop,
and more with in a web page.

Other web applications have resorted
to hosting complex components within

| Choosing the Right Presentation Layer Architecture 5



FCAS Security~_
Sandbox ove

Deployﬁent

Smart Client

User Interface

(]l

Smart

Client

R
l S, l
“lornansy

Business Logic

Local Data/v&

Web
Service

2\

Business
Logic

Caching

0ffline Support

i Client i Web

Server

Figure 2: Schematic Overview of a Smart Client Architecture

the page including Java Applets,
ActiveX and .NET components.

These components provide either a
more responsive user interface or
client-side logic that cannot be
implemented in script for performance
or security reasons. This is where the
thin client starts to overlap with smart
client leading to so-called hybrid
applications.

While you can certainly use such
hybrid applications to leverage the
strengths and weaknesses of each
approach, in this document, I'll define
the term thin client to mean a generic
web application that does not rely on
such components but just utilizes the
basic facilities provided by the browser
environment. Since hybrid applications
need to rely on smart client capabilities
to avoid management and operational
problems, I'll describe hybrid
applications in a later section when

I discuss smart client applications.

What Is a Smart Client?

Smart client applications are maybe
not as easy to define as thin client
applications because they can take
many different forms and are not
limited to the one-size-fits-all approach
of thin client applications. The
essential difference between a smart
client and a thin client is that a smart
client does not rely on a browser to
provide the execution, security and
user interface environment for its
operation. Also, smart clients, rather
than HTML and Jscript, typically
involve compiled code artifacts
(components, assemblies, etc.) running
on the client machine to provide the
application’s user interface and client-
side logic.

How do smart clients relate to rich
clients? Rich client applications have
evolved into smart client applications.
Rich clients offered many advantages
over thin client applications including

improved performance, responsiveness
and flexibility, and the ability to work
offline, but rich clients suffered from a
number of operational problems when
it came to deploying and updating them
in a robust way. Thin client solutions
of course excel in the deployment and
update area and this is one of the main
reasons for their popularity.

However, smart client applications
represent a best-of-both-worlds
approach by taking the manageability
advantages of thin client applications
and combining them with the benefits
of rich client applications. Smart clients
are rich clients done right, leveraging
new technology and techniques to

avoid the pitfalls of the traditional rich
client applications.

For example, smart client applications
built on the .NET platform can take
advantage of a number of fundamental
technologies that the NET Framework
provides to solve many of the problems
traditionally associated with rich client
applications. While it has always been
possible to build rich client applications
that minimized or avoided the
deployment and security drawbacks,
the facilities provided by the .NET
Framework make it very much easier
to do.

.NET provides the ability to deploy an
application, or part of an application,
from a web server. This technology,
known as No-Touch Deployment, lets
you deploy applications via a URL. This
allows you to release applications to a
central location (i.e. to a web server) so
that the applications can be deployed
automatically to the client on demand.
All clients can be automatically kept up
to date since the application checks for
updates automatically each time the

“Smart clients are rich clients done right, leveraging new technology and techniques to avoid
the pitfalls of traditional rich client applications.”

JOURNAL

| Choosing the Right Presentation Layer Architecture 6



application runs and each client
application downloads the new code
if required.

.NET also provides the Code Access
Security (CAS) infrastructure. CAS
assigns .NET code-specific permissions
according to the evidence that it
presents. CAS serves much the same
function as the browser does in a thin
client application, providing a sandbox
environment in which the application
operates. No-Touch Deployment
integrates with (CAS). By default,
applications that are deployed using
No-Touch Deployment will be granted
a restricted set of permissions
according to the URL zone from which
they were deployed. Network
administrators can modify permissions
using security policy so that the
application can be granted, or denied,
specific permissions according to

the requirements.

Creating a smart client application
with the .NET Framework provides
less fragile applications. Traditionally,
installing a rich client application could
break other applications as it replaced
important components and DLLs that
were shared by other applications.
.NET allows applications to be isolated,
keeping all application artifacts in a
local directory so that all assemblies
are kept separate. Furthermore, such
applications do not require any
registration process when they are
deployed, further reducing the risk

of breaking other applications. In
addition, the .NET Framework allows
multiple versions of an assembly to be
deployed side by side. This ensures
that when an application executes,

it runs with the exact versions of the
assemblies that it was built and
tested with.

JOURNAL

An application architected to use a
smart client for its presentation layer
will typically provide a central
deployment server, from which the
smart client artifacts can be deployed
to the clients, and a number of web
services to provide access to the back-
end business capabilities — business
logic and data — and which are
consumed by the smart client. Since
the smart client is running code on

the client, it can more cleanly separate
the user interface from the client-side
data and logic. In addition, depending
on the permissions it has been granted,
it can more freely interact with other
client-side resources such as local
hardware and other software running
on the client. Figure 2 shows a
schematic overview of this architecture.

What does a smart client look like?
Smart client applications can take
many forms and the architect of such
an application faces a number of design
choices. The first decision to be made is
to choose the most appropriate
application style — the way in which the
smart client is presented to the user.

In general, there are three ways to
design a smart client application:

— Windows Applications. Traditional
Windows style applications, typically
built using Windows Forms or mobile
applications built on the .NET
Compact Framework.

— Office Applications. Microsoft Office
programs that are extended to
include smart client capabilities,
connecting the user to line of
business applications and business
processes.

— Hybrid Applications. Applications
that utilize a combination of thin
and smart client technologies. For
example, by hosting Windows Forms

controls within a browser page or
by hosting the browser within a
Windows Forms application.

Choosing the right application style is
crucial if you want to fully realize the
benefits of a smart client approach.
Deployment, security, development, and
offline capabilities all affect the choice
of smart client application style but
perhaps the biggest factor to consider is
the overall user experience. Each choice
represents a different type of user
experience and choosing the right one
will give the user the right combination
of flexibility and performance they need.

Windows Applications

Users associate smart client
applications with traditional Windows-
style applications because they provide
rich client functionality that includes
toolbars, menubars, context menus,
drag and drop support, context sensitive
help, undo/redo, and more. Developers
can build these kinds of smart client
applications on the .NET Framework
or the NET Compact Framework using
Windows Forms to provide these rich
user interface features.

These developers can also take
advantage of pre-built smart client
functionality by leveraging the
Application Blocks provided by the
Microsoft Patterns and Practices group.
These blocks provide the application with
common smart client capabilities such as
local data caching, seamless deployment
and the ability to work offline.

Windows Forms applications provide
the most control over the user
experience, allowing the developer to
craft the user interface and user
interaction model to suit their exact
needs. For applications which require

| Choosing the Right Presentation Layer Architecture 7



a specific user experience which cannot
naturally be provided by any of the
Office applications, this approach will
be the best fit.

Office 2003 Smart Client
Applications

Microsoft Office programs provide an
extremely compelling platform for
building smart client solutions.
Extending Office applications so that
they form part of a distributed solution,
connecting them to remote data sources
and business services, not only benefits
the users, it also brings efficiencies to
the developers that write the
applications, and to those that must
deploy and manage them.

There are many users who are familiar
with Office and use it everyday in their
work. Extending Office applications by
connecting them to remote data sources
and business services means that the
solution can benefit from the user’s
familiarity, obviating or drastically
reducing the need to re-train the user.
The user benefits too, since they can
continue to use the application with
which they are familiar.

Many organizations extensively use
Microsoft Office. Most business PCs —
yours, your customers, your service
providers, and your suppliers — have
Office applications installed. Using
Office as the client for line of business
systems can reduce the need to install
and maintain incremental client
applications to access backend data
sources and services. And very often,
data from line of business applications
is copied into Office applications such
as Word or Excel for further
manipulation, editing, analysis, and
presentation. Copying and pasting is
time consuming and introduces the
potential for errors. More importantly,

the link to the data is lost so the user
needs constant refreshes, repeating the
copy and paste process, and possibly
introducing concurrency problems.

Office applications can also provide a
lot of the functionality that is required
to display and manipulate data,
allowing the user to interact with the
solution using the full power of Office.
This can save a huge amount of time
and effort allowing you to develop and
release a solution must faster. For
example, Excel provides powerful
capabilities to sort, manipulate, and
display data. Reusing these capabilities
in your smart client solution can be
very cost effective.

Of course, users have the ability to
integrate additional functionality into
their Office applications for a while. In
some cases this has led to ad-hoc but
business-critical solutions that are
difficult to manage because they aren’t
developed or maintained by the IT
department. Building these solutions
using smart client technologies allows
them to be more easily deployed and
updated and represents a way to retain
the value of the solutions whilst solving
some of the manageability issues.

Office 2003 provides support for
integrating smart client capabilities
into Office application and connecting
them to remote services that provide
access to data and business processes.
Some of the more important
technologies Office 2003 supports for
creating smart client solutions include:

— XML Support. Office 2003 provides
a number of facilities that allow
developers to more easily connect
Office applications to remote data
sources and business process
through XML.

— Word, Excel and InfoPath can use

XML to store the structure and
contents of a document in human
or machine readable XML form.
Microsoft has released W3C-
compliant XSD schemas for these
file formats and these schemas are
freely available for everyone to use
in their own solutions. These
schemas allow Word and Excel
documents and InfoPath forms to
be easily constructed on the server
and provided to the client through
XML web services and users can
readily display and edit these
documents. This technology can
also be used to provide document
composition, indexing or searching
functionality. And of course, since
these documents are XML, they
can be exchanged with any other
system or process, providing

a means for data interchange
across heterogeneous systems.
This technology is ideally suited

to document-centric solutions.
Word, Excel, and InfoPath can also
consume XML messages or
documents that conform to custom
or user-defined schema. Users can
use their Office applications as
presentation layer services in data-
centric solutions where the
business processes or services
already define the message schema.
This type of smart client
application maps elements and
attributes in the message to specific
areas of the document so that the
Office application can display them
appropriately and allow the user to
edit the values whilst ensuring that
the data entered by the user
conforms to the underlying schema.
Specific values can be queried, set,
or referenced programmatically
using an XPath query statement.

“Extending Office applications so that they form part of a distributed solution, connecting them to
remote data sources and business services, not only benefits the users, it also brings efficiencies
to the developers that write the applications, and to those that must deploy and manage them.”

JOURNAL

| Choosing the Right Presentation Layer Architecture 8



— Smart Documents. Smart document
solutions help the user to interact
with a document by providing
additional data and guidance to the
user according to their current
location within the document. As the
user interacts with the document, it
can display relevant information
or guidance to the user using the task
pane, or it can automatically fill in
missing data according to the current
task. Connecting this experience
to remote services to obtain live data
or to enable interaction with business
processes allows powerful and
integrated applications to be built.

— Information Bridge Framework (IBF).
IBF is a declarative solution that
builds on smart document technology
to allow documents to be connected to
services through metadata. Smart
tags within an Office application
interact with the generic IBF
infrastructure and the metadata
associated with the available web
services to provide access to relevant
data and business processes from
within the document according to the
documents contents and the user’s
current activity. For example, if a
user receives a document that refers
to a specific supplier, the IBF
infrastructure can access data about
that company and display it in the
task pane. It can also provide access
to available options, allowing the
document to be connected to other
business processes.

— Visual Studio Tools for Office (VSTO).
VSTO provides access to the object
models for Word and Excel to
managed code extensions. Developers
can build complex and comprehensive
Office smart client solutions using
VSTO to not only provide access to
the full power of Word and Excel but

JOURNAL

also to all of the features of the NET
Framework, such as Windows Forms,
that enable rich and responsive user
interfaces to be easily integrated.
VSTO also provides a superior
development experience, allowing the
developer to easily create and debug
a solution. VSTO essentially provides
the code behind the document to form
a solution that leverages the facilities
provided by the “host” application.

Hybrid Applications

Hybrid smart client applications
combine the smart client and thin
client approaches. They can provide a
way to extend an existing thin client
application with smart client
capabilities, or a way to integrate a
browser-based application into a smart
client application.

For example, a smart client application
may host an instance of a browser so
that certain content and application
functionality can be provided using the
thin client approach. This architecture
can be very useful when the application
needs to integrate an existing thin
client application, or when it needs to
leverage a key benefit of the thin client
approach to provide linked dynamic
content provided by a web server. Of
course, such content and functionality
will only be available when the user is
online but the smart client part of the
application can be used to provide
useful functionality when offline and
enhance the application with access to
the thin client functionality when online.

In some cases, the hybrid approach
can be used to extend an existing thin
client application by hosting smart
client controls or components within
a web page. These components can
provide a rich and responsive user
interface and specific application

functionality (for example, rendering
and visualizing data) while the rest of
the application is delivered in a thin
client way. However, this architecture is
not suitable for providing offline
support since the hosting web page will
not be available without a connection,
or for providing client-side integration
of software or hardware unless suitable
security policy changes are in place.

Choosing the Right Interaction
Layer Architecture

Both the thin client and the smart client
approaches clearly have their place. Each
has its own strengths and weaknesses
and the choice between them will
depend on the requirements of a specific
application or business need. The correct
approach will provide the user with

the right user experience so that they
can interact with the application in an
effective and efficient way, whilst
adequately taking into account the
development, maintenance, and
operational aspects of the application.

Some organizations have a policy that
dictates a thin client approach for all
applications. Choosing a thin client
approach by default can lead to
significant technical problems for some
applications because the browser
platform is not able to easily support
the requirements of moderately
complex applications. Developing a
thin client application to have the look,
feel, and capabilities of a traditional
rich client application can be extremely
challenging and costly. Why? The
browser imposes severe limitations

on the developer in terms of state
management, client-side logic, client-
side data, and the provision of rich user
interface features such as drag and
drop, undo/redo, etc.

| Choosing the Right Presentation Layer Architecture 9



Conversely, choosing a smart client
approach for all applications is not
appropriate since it can result in overly
complex solutions for applications that
just present data dynamically and
require the benefits of a highly
dynamic user interface. Also, if your
application must support multiple
client operating systems, a smart client
approach may not be appropriate due
to cross-platform restrictions.

Adopting a single approach for all
applications is therefore likely to result
in unnecessary cost, complexity, a lack
of flexibility and reduced usability.
Both approaches can likely co-exist
within the enterprise, according to the
requirements of specific applications
and the needs of the business. Choosing
one approach over the other should be
decided on a per-application basis,
although in some cases both
approaches can be combined, either

by integrating thin and smart client
technologies appropriately or by
adopting a dual channel approach
where some class of users can access
the application using a thin client while
users with more stringent requirements
use a smart client. Either way, the key
is to leverage the appropriate
technology at the appropriate time to
fulfill the expectations of the users and
the overall needs of the business.

The thin client approach has well-
known benefits in terms of reach and
ease of deployment and operation.
However, with the advent of smart
client technology, smart clients are
catching up in this area and are now
aviable alternative to thin clients for
many scenarios. In particular, smart
clients do not suffer from the
deployment and management problems
that rich client solutions suffered from,
and smart client solutions add benefits

in terms of flexibility, responsiveness,
and performance.

So, if deployment and manageability
are no longer the dominant factors that
influence the decision between the two
approaches, how does one choose
between them? With the erosion of
the relative benefits of the thin client
approach in this area, the balance is
changing and the factors which have
to be considered have increased.
Depending on the relative priority of
the requirements, one approach will
be more suitable than the other, and
choosing the correct approach will
result in a faster and less complex
development process, improved ease
of use, and higher user satisfaction.

The features, advantages and
disadvantages of each approach are
described above but how do these
translate into a decision given the
requirements of a specific application?
Some of the more important factors
that companies must consider include:

— Client platform requirements

— Deployment and update
requirements

— User experience requirements

— Performance requirements

— Client-side integration requirements

— Offline requirements

This is not a comprehensive list of
factors and your company’s IT
department may add other factors that
are critically important to specific
applications. In particular, this list of
factors is focused on operational or
functional requirements and
development and design-time factors
have not been included here. Still,
these factors may be of sufficient
importance to sway the balance
between one approach and the other.

Deciding on the right approach is a
joint decision between the IT staff and
business owners. The adopted approach
should lead to a solution where both
groups are happy: the IT from the
management side, and the business
owners from the functionality side.

Client Platform

Client platform flexibility can be
important for a customer or partner
facing applications where the principal
users are external to the organization
and for which a specific client platform
cannot be mandated, or for applications
that have to be accessible from non-
Windows operating systems.

Thin clients offer the ability to target
multiple client platforms, though this
often requires the application to
determine the exact type of target
platform so that it can change its
operation or behavior to accommodate
the differences between the various
browsers, especially when the target
platform must include mobile devices.
The thin client framework itself can
handle many of these differences. For
example, ASP.NET on the server can
determine the target browser type and
render content for each browser
accordingly. Using some of the more
advanced browser features, however,
will likely result in having to develop
specific code to handle the differences
between browser types.

The smart client approach does not
offer this capability although
applications that target only Windows
operating systems can use the .NET
Framework and/or the .NET Compact
Framework (for mobile applications)
to deliver a smart client solution on a
wide range of client devices, even for
external users.

“The correct approach will provide the user with the right user experience so that they can
interact with the application in an effective and efficient way, whilst adequately taking into
account the development, maintenance, and operational aspects of the application.”

JOURNAL

| Choosing the Right Presentation Layer Architecture 10



If your application must support
external users or clients running non-
Windows operating systems, then the
thin client approach should be
strongly considered.

Deployment and Update

Both the thin and smart client
approaches involve deploying the user
interface, application logic, and data to
the client. In both cases, these artifacts
are centrally located and managed and
deployed to the client on demand. In
the thin client approach, these artifacts
are not persistent on the client and
need to be “deployed” each time the
user runs the application. In the smart
client approach, the client can persist
these artifacts to enable offline usage
or to optimize the deployment and
update process.

Since both approaches allow the
company to centrally locate the
application’s artifacts, they both
provide centralized management

with respect to user authorization,
application deployment, update, etc.
Companies can use thin client and
smart client to provide solutions to
ensure that users only run the absolute
latest version of the application, though
the smart client allows for additional
flexibility, such as the ability for
different users to run different versions
of the application (for example, pilot
groups), or for the application to be run
offline. In order to realize these
benefits, however, the solution may
require additional security policy
changes and/or an update manager
component to be deployed to the client.

If your scenario requires that the
application runs offline then you should
strongly consider the smart client
approach. On the other hand, if the
application would not benefit from

JOURNAL

having artifacts be persisted on the
client, then the thin client approach
may make more sense. In the latter
case, applications that primarily
present dynamic data, or where
concurrency problems (with respect
to application logic or data) would be
severe, tend to be better served using
a thin client.

User Experience

Thin and smart client applications are
each suited to specific user interface
styles. Many thin client applications
try to provide a rich user experience
but they tend to fall short in certain
important aspects due to the limitations
of the browser when compared to a
smart client platform. For instance, basic
rich client features such as drag/drop
and undo/redo are very difficult to
develop in a thin client solution. The
complexity associated with providing
these features can be considerable and
can reduce the cross-platform benefits
of the thin client approach.

You should also consider how the user
interacts with the application. Some
applications are very linear because
the user typically interacts with it in

a pre-defined or similar way. Other
applications are non-linear and the user
may start one task only to suspend it,
complete another task, and then go back
to the original task. Managing the state
required to provide such functionality
can be challenging in a thin client
solution. For example, thin client
solutions have to be designed to handle
the situation if the user presses the back
button in the middle of an important
transaction. Such a situation is easier
to handle in a smart client application.

Smart clients can also take advantage
of local resources to provide local data
searching, sorting, visualization, and

client-side validation to improve the
usability of an application and enhance
the user experience. Such features can
lead to an increase in data quality and
user satisfaction and productivity.

Performance

A significant difference between the
two approaches is that smart client
applications provide superior
performance compared to their thin
client counterparts.

At a basic level, a thin client typically
uses script (which it must interpret on
the fly) as the means to deliver and
execute client-side application logic.

In contrast, a smart client solution can
deliver specific compiled code to the
client. Additionally, and perhaps more
importantly, client-side logic in a smart
client application has fewer restricts in
the way that it can interact with the
user interface, local data storage, or
with services located on the network.
For these reasons, good smart client
architecture allows the solution
developer to more easily deliver a high
performance solution.

The user’s perception of performance
depends on how they use the
application and how they expect it to
behave. Applications that are used
infrequently or with which the user
does not interact very much, for
example, applications that simply
obtain and display data, will not
benefit from raw higher client-side
performance. Applications that are
heavily used, however, will appear to
perform poorly if there is even a small
delay for frequently used features. In a
call center application, for example, a
delay of four or five seconds to retrieve
customer order details can easily add
up to significant user dissatisfaction
(and cost).

| Choosing the Right Presentation Layer Architecture 11



Of course, for functionality that sends
or retrieves data over the network, both
approaches will exhibit the same raw
performance. However, a well-designed
smart client solution can perform its
network communication on a separate
thread enabling the application to
remain responsive while it sends and
received data over the network. Such
background work can be accomplished
pro-actively, say in response to an
incoming customer call. In addition, it
is easier for smart client solutions to
cache data locally, which can reduce the
number of network calls or reduce the
bandwidth required to perform the
same function. These features can have
a huge impact on the user’s perceived
performance of an application.

Smart client solutions can provide
more rigorous client-side data
validation. For example, because

a smart client solution can cache data
and logic locally, it is possible to cache
read-only reference data that the
application can use to provide field and
cross-field validation. Applications that
use such validation can provide early
feedback to the user, improving the
perceived performance of the
application, reduce the number of times
data gets transferred over the network,
and ensure higher data quality. Thin
client solutions may need to rely on
complex scripts to provide the same
level of functionality and may not be
able to locally validate data with
respect to other data that is

not displayed on the current page.

A smart client solution can also take
maximum advantage of the local
processing, storage, and display
capabilities to allow the user to query,
sort, and visualize data on the client
without the need to make a network
call. This ability is especially evident

when using an Office application such
as Excel as the smart client host
environment. This can result in a
significant reduction in network calls to
perform the same function for a thin
client application.

Since the smart client solution user
interface is typically provided by specific
code running on the client, it can provide
a more responsive user interface to the
user. Rich client user interface features,
such as drag and drop, undo/redo,
context sensitive help, keyboard
shortcuts, etc., can all help to improve
the user experience, and with it the
perceived performance of the application.

If performance is an important issue
you should consider a smart client
solution. A user’s perceived
performance of an application is often
more important that the actual
performance of individual operations.
A good application’s ultimate goal is to
ensure that the user can perform their
work effectively and efficiently in a way
that user satisfaction is maintained.

Client-Side Integration

Often an application requires access to
client-side resources so that they can
be integrated into the overall solution.
Sometimes the client-side resources
include hardware (a printer, telephone,
barcode reader, etc.) or software
(integration of other line-of-business
or desktop applications).

Of course, both the thin client and
smart client approaches operate within
a sandbox. In the thin client case, the
browser provides the sandbox; for

a smart client, the NET Framework
runtime provides the sandbox.
Integrating client-side resources into

a thin client application typically
requires using a hybrid application

architecture to host a component
within a page (for example an ActiveX
control) to extend beyond the browser
sandbox. This approach is not very
flexible and often depends on the user
to make security decisions about
downloading components to run on the
client under the user’s login account.

The .NET Framework runtime utilizes
a more flexible approach and grants
managed code permissions based upon
the evidence that it presents and the
local security policy. By default, code
downloaded from a web server cannot
interact with the local resources except
in very limited and specific ways.
However, your application logic can
grant the code additional permissions
to access to specific resources such as
specific directories on the disk, access
to other applications, local databases, etc.

This managed approach represents a
more granular and more flexible
mechanism for controlling the security
aspects of an application, allowing the
smart client to integrate other client-
side resources without introducing a
security risk. More importantly, the
network administrator uses security
policies to make security decisions
rather than individual users, so the
application code cannot perform actions
or access resources for which it has not
been granted permission.

Smart client applications often use
code access security to control the
caching of data and logic on the client.
Such behavior is essential to providing
offline capabilities and so these kinds
of applications typically require
security policy changes to grant
specific permissions. Typically, this
involves granting the application
permission to cache the code and data
on the local disk.

“It is important that the correct approach is applied from the outset to avoid unnecessary

complexity, cost, lack of flexibility, and a poor user experience. ”

JOURNAL

| Choosing the Right Presentation Layer Architecture 12



If the solution requires access to client-
side resources such as local hardware
or other applications installed locally,
then the smart client approach
provides a secure and flexible solution.

Offline Capabilities

As organizations become increasingly
dependent on their IT systems and the
data and services that they provide, it
becomes more important for users to be
able to work offline. Providing support
for offline access to data and services,
using the same application whether they
are on or offline, enables the user to
remain productive at all times and helps
to ensure consistency and data quality.

While network connectivity is becoming
more and more ubiquitous, it is
important to note that having a network
connection is typically not enough to
guarantee access to an application and
the data and services that it represents.
Line of business applications inside the
firewall may not be accessible to users
when they are out of the office unless
the organization invests in a VPN
infrastructure. Even in this case, forging
a connection can be time consuming and
expensive. Ad-hoc or brief access to the
application is often not appropriate or
possible leading to lost opportunities or
data inconsistencies.

Sometimes users can plan to be offline.
For example, you might have a sales
worker who is out of the office for a
specific period of time or a user who
works from home. Sometimes, however,
it is difficult to plan for an offline
scenario. For example, a user in a
warehouse with a Tablet PC may have
a wireless connection that periodically
drops. Another consideration is the

David Hill
Microsoft Corporation
davidhil@microsoft.com

JOURNAL

quality of a user’s connection. As
organizations become increasingly
distributed over the globe, network
connectivity can suffer from high
latency or low bandwidth problems.

In each of these cases, a smart client
solution can provide robust access to
the application so that the effect of
connectivity changes can be minimized
or eliminated. By intelligently caching
data and logic on the client, and
automatically deploying updates to
both when required, the application
can provide the user with a seamless
experience independent of its connected
state. In addition, a smart client can
ensure that all network calls are
handled on a background thread so
that the application never has to wait
for the network to respond, again
allowing the user to carry on working
regardless of the state of the network.

Realizing these goals with a thin client
solution is very difficult to achieve. Some
solutions try to solve this problem by
providing the web application, or a
subset of it, on the client using a local
web server. Such solutions are difficult to
maintain and require a complex
infrastructure to ensure that updates to
the application and its data are handled
appropriately. Such solutions reduce the
centralized management benefits that
are often cited as the main reason for the
adoption of a thin client solution, and
they impose all of the other drawbacks
inherent in a thin client solution.

Conclusion

Choosing the right presentation layer
architecture can be critical to the
overall success of an application. The
right architecture will provide the right

David Hill is a Solution Architect on
the Microsoft Architecture Strategy
team. For the last two years, David has
been helping customers and partners
architect and build successful smart

balance between the user experience,
ease of development and testing, and
the operational requirements of the
application. Users are increasingly
demanding that their part of this
equation is taken into account.

The thin and smart client approaches
are both well-suited to particular styles
of applications. Recent advances in
technology have redressed some of the
imbalance between these approaches so
that they need not be inappropriately
applied to situations for which they are
not suited. It is important that the
correct approach is applied from the
outset to avoid unnecessary complexity,
cost, lack of flexibility, and a poor

user experience.

Blanket corporate policies that favor one
approach over the other are prone to
incur these problems. An organization
must carefully consider the overall
needs of the application and compare
these to the capabilities of each
approach. The factors that can influence
this decision are many and varied and
this article has only touched on some of
the more common ones. Invariably, the
decision will come down to a
compromise between the various factors.
Understanding these factors, and their
relative priorities, can help ensure that
your organization chooses the right
presentation layer architecture.

Resources

— Smart Client Architecture and
Design Guide — Microsoft Patterns
and Practices.

— Overview of Office 2003 Developer
Technologies — MSDN.

— Overview of Office 2003 Developer
Tools and Programs — MSDN.

client solutions on the .NET platform.
He was a key contributor to the
Patterns and Practices Smart Client
Architecture and Design Guide, and
the Offline Application Block.

| Choosing the Right Presentation Layer Architecture 13



By Ricard Roma i Dalf6, Microsoft Corporation

Introduction

Enterprises today are moving towards
SOA as a way to expose their
applications and data for consumption.
By embracing SOA, enterprise assets
like line of business applications or
back-end systems can be used by a
variety of solutions/applications built
on top of the services exposed by those
assets. In this world you can look at
an enterprise as a set of services that
expose sets of data or functionality
and encapsulate the business logic
behind them.

Building solutions on top of these
services is fairly easy today using
existing development tools. Different
vendors provide tools for both exposing
and developing on top of those services
by using standards like SOAP or WSDL.

Once enterprises start developing a few
of these solutions problems start to
arise. Here are some of the most
common problems:

a) Solutions are one off. They only talk
to one or a set of predefined services
and the solution itself is hard to
reuse. Changes on the services
require a rebuild/redeployment of
the solution.

b) Knowledge about what the service
exposes is in people’s heads rather
than in the definition of the service
itself. Current standards only cover
the how you get to those services.

¢) It is hard to bring different services
together. There are no predefined
aggregation mechanisms and there
is no definition on how one service
relates to another (services do not
know about each other).

d) Solutions UI is hard to do and
usually poor (unless huge
investments are made) by most
common users standards. It is hard

to emulate current off the shelf
applications Uls in a one off solution.

e) Most users are fairly familiar with
applications like Office Suite (Word,
Excel, Outlook, etc.) but they need to
be trained if a new application/
solution is rolled out increasing the
costs of such deployment.

Because all of the above a better
mechanism for building solutions on
top of existing services is required.

The Metadata approach

Today web services expose quite a bit of
information about how the service can
be consumed but offer very little help
in understanding what type of
information or functionality is offered.
Web services usually expose WSDL so
tools can easily discover what methods
and parameters the web service
exposes but offer little clues about what
business entities are defined behind
those methods or even if they affect the
back-end systems at all (no way to say
if a method will update the back-end
system for example). It seems that
WSDL is not enough for representing
what today’s services expose.

We propose a new set of Metadata that
is associated with a service and
explains the kind of things that a user
of the service (a solution developer) will
require to know.

In this new Metadata we will expose
concepts like:

a) Entities — Abstract business or user
definitions that will encapsulate a set
of data or functionality. For example,
we can have a Customer entity.

b) Views — A schema associated with an
entity that describes a subset of data
about it. For example, for the
Customer entity we may

have several views like Customer
Contact Information or Customer
Financial Information. Each view
complies to a particular schema and
is a representation of the entity for a
given context.

¢) Relationships — Entities/Views can
be related to others and these
relationships should be described
in this Metadata. For example,
Customer entity may be related to
an Orders entity. Relationships allow
for navigations between the entities
by just executing the Metadata
description. A relationship then will
describe how to get from one entity
into another.

d) References — A reference is a
common way to point to a set of
information. It is a schema and
represents the minimum set of
information needed to retrieve a
piece of data, e.g. Customer Id for
retrieving a Customer. There can be
multiple ways you can retrieve a piece
of information, e.g. a customer could
be retrieved by name, Id, SSN, etc.

e) Operations — These are the methods
that are available for a given
entity/view to operate on. You could
think of GetCustomer or
UpdateCustomer or ReleaseOrder as
examples of such operations.

Describing Metadata for existing
Services only solves half of the
equation. The other half (the solutions
developed on top of these services) also
requires a Metadata description. We
think that you can build most solutions
by thinking in terms of Actions that are
executable by the end user. These
Actions are constructed on top of the
Services Entities/Views and provide
actionability on top of them. A Customer
action will certainly have an Action to
display its data and maybe another
action to update it. The action

“Today web services expose quite a bit of information about how the service can be consumed
but offer very little help in understanding what type of information or functionality is offered.”

JOURNAL

| Information Bridge Framework 14



Office Application Integration Metadata
Designer

Application and Rendering

Attached | Task Pane Manager |
Schema

| Host Integration | &l

| Rendering |

Metadata
Information
Bridge Engine
Client
Server
A 4
SOAP Metadata
Service

Metadata

Information
Bridge
Compliant
Web Service

Information
Bridge
Compliant
Web Service

Information

Customer Bridge
Information Compliant

Web Service

Invoices

SAP Legacy Aggregation
Application Service

Web Services

Figure 1: IBF Architecture

description should link the data IBF accomplishes several things:
retrieved from the service into the
UI or solution functionality that a) Create Metadata description for
will use it. services

b) Create Metadata infrastructure for
Information Bridge Framework building solutions/applications on
Information Bridge Framework (IBF) top of services
is the Microsoft response to the above ¢) High level of reusability across
challenges and Metadata approach. solutions
IBF allows connecting LOBs and back- d) Easy maintenance and deployment
end systems with Office applications of solutions
and creating solutions on top of web e) High level of integration with Office
services via a Metadata approach. applications

f) Very low learning curve for existing
Office users

Information Bridge Architecture
IBF architecture (as seen in Figure 1)
includes the following components:

a) An IBF compliant web service that
encapsulates the LOB or back-end
system. We discuss the compliance
issue in the next section (Designing
and developing an IBF solution).

b) A Metadata repository (Metadata
Service) that includes both the
Service and the Solution Metadata.
The repository is exposed itself as
a web service that provides access to
the Metadata. There is one central
repository where all Services and
Solutions are described. Clients will
download subsets of this Metadata
on as needed basis for execution
based on their permissions.

¢) IBF Client Engine. This last piece
has two distinct components:

a. The Engine which downloads the
Metadata from the Metadata
Service when needed and keeps a
local cache of it. It also understands
Metadata and executes it based on
the current context. It performs all
the non UI related operations like
SOAP calls, transformations, etc.
This component is UI agnostic.

b. The UI Engine which is the part
that understands about the
application where it’s being hosted
(Word, Excel, etc.) and will render
the UI and provide services
specific to the host application.

It creates an abstraction layer on
top of the hosting application so
Solutions built with IBF don’t
need to know about differences
between hosting apps.

d) Metadata Designer is a Visual
Studio based tool that allows for
editing/importing of Metadata to
the Metadata Service.

“We propose a new set of Metadata that is associated with a service and explains the kind of
things that a user of the service (a solution developer) will require to know.”

JOURNAL“ | Information Bridge Framework 15



Designing and developing an
Information Bridge solution

When designing an IBF (Information
Bridge Framework) solution you must
separate it into three distinct blocks
(see Figure 2). On one end you need to
describe an IBF compliant web service
that encapsulates the functionality of
your back-end application that you
want to offer your end users. On the
other end you need to design the UI
and experience that you want to offer
to the users of your solution. The final
step is to link both your Service and
the UI solution you have built by using
IBF metadata. By separating these
three stages you can allocate different
resources to each one of them and then
can operate in an independent manner
and only agreeing on the interfaces (or
common schemas) that they will share.

Creating an IBF compliant Service
IBF requires Services that will provide
the data and interaction with the data
needed for your solution. IBF currently
supports two kinds of Services: Web
Services and CLR Components. Web
Services are the most common way to
expose back-end data, and most of the
IBF examples use them for the Service
description. If you require offlining of
data or caching (for performance
reasons) a CLR implementation is

also possible.

When designing a Service for IBF you
should keep in mind that you are
building a Service for user
consumption, so you want to expose
data and methods that are meaningful
to the user.

There are also a few concepts you
need to be aware of when building
these Services:

XML
Authoring

Microsoft Tools

Schema-
Attached

Document

Office
System

Developer Smart

Tags SDK

Embedded

A 4

Smart Tags

Document Solutions

Metadata Configuration

Microsoft
Office System

UI Controls and Bindings

-NET Visual ~ XéL or ~ -
Developer Studi NET L~ Windows = ——
tudio .
Forums Microsoft
Office System
Solution Metadata
Authentication N ComEex &
Manager > - Ll Action
Developer / i —— Service
Business Active Directory
Analyst
Visual Metadata ‘G
Studio .NET "l Designer 4
Plug-in Metadata Library

Web Services
Development

p|Bridge-compliant

Information

Web Service

.NET Web o oy
Services Fsua

Studio .NET
Developer

Bridge-compliant

Information

Web Service

P[Bridge-compliant

Information

Web Service

— I
App.

LOB
App.

LOB
App.

Figure 2: The three distinct blocks of an IBF solution

— Entities — You can think of an entity
as a business object that has a
particular meaning to the user and
that the user will be able to act upon.
An example of an entity can be
Customer, Order or Opportunity. All

of those have some data associated
with them and are actionable from
the user point of view. For example,
the customer entity might have data
associated with a particular customer
(name, address, location, etc.) as well

“IBF allows connecting LOBs and back-end systems with Office applications and creating
solutions on top of web services via a Metadata approach.”

JOURNAL

| Information Bridge Framework 16



as methods that allow the user

to act on the entity, such as
UpdateCustomerInformation or
SendEmailToCustomer. It might also
be a starting point to other entities
via relationships like
CustomerOrders or
CustomerOpportunities.

— Views — IBF partitions entities in
different views. A view is a subset of
information related to the entity. For
a customer you might have a
Customer Contact Information view
and a Customer Financial view.

— References — A reference in IBF world
is a piece of information that
uniquely identifies an instance of an
entity/view. For the previous example
a reference could be Customer Id or
Customer Name if that allows you to
uniquely identify the customer.

— Relationships — Some of the
entity/views will have relationships
between them and the Metadata we
build should describe those. An
example would be Customer and
Orders since you can relate a
Customer with its orders and
an Order with its Customer.

Based on the previous concepts when
you build a Service you will identify
three different kinds of methods:

— Get — A get method is one that allows
you to retrieve the data for an
entity/view by passing a Reference.
An example would be a method called
GetCustomerContactInformation
that would accept a Customer Id
Reference parameter.

— Put — This is a method that allows
you to modify the content of an
entity/view by updating the back-end
system. It accepts two inputs, the
Reference to the entity/view to
update and the data to be updated.

— Act — This kind of method allows for
doing things that are not related to
getting/updating an entity/view or
across multiple entities.

When you understand these concepts,
you can build a Service around them.
The service will expose a collection of
methods of type Get/Put/Act and by
doing so will define the schemas for the
references and the views (data return
by Get operations).

For the Service to be complete it has to
expose IBF Metadata that describes
the previously explained concepts.

IBF provides tools that automatically
generate Metadata from a web service
and you can then increment the
Metadata by annotating the methods
exposed in there around Entities/Views
and map them to the right References.

Creating UI components

IBF allows your documents to contain
live links to back-end data. The way
these documents contain information
about what back-end data to obtain

is via SmartTags or by having an
attached schema to the document.
The SmartTag or element node in the
schema will store information about
what back-end piece of information

is pointing to. As discussed in the
previous topic on how to create an
IBF Service, these are References.
SmartTags, for example, will contain
a Reference to the back-end piece of
information. Your solution will have to
define how it wants these SmartTags
to get into the document and IBF
provides/recommends several ways for
doing so. You can automatically generate
a document with the SmartTags
embedded (this would be useful if the
emails/documents are dynamically
generated by some process); you can

JOURNAL

use a SmartTag recognizer to detect
pieces of text based on a regular
expression or by doing a look up and
dynamically insert a SmartTag in
them; and you can also use the built in
Search capability in IBF for the user to
find the instance of information they
are interested in and allowing them

to paste it into the document.

The remaining Ul pieces are what will
get displayed to the user. IBF provides
a Window Pane approach that hosts
regions that are fully definable by the
solution provider. IBF supports .NET
CLR controls and HTML regions (and
menus for those regions). Creating a
piece of Ul is just a matter of creating a
control and implementing one interface
that will get the data into the control.
The control itself does not need to know
how or where the data is coming from.
The control only needs to know the
type of data that will be provided. IBF
will dynamically instantiate the control
at run time and will pass the right data
to the control. This allows for a
separation of displaying of data from
how you get to that data. Following the
previous example you could create a
control that knows how to render
Customer information (it knows about
the schema of a Customer and that it
contains its name, address and so on).

Creating Solution Metadata

The final step for creating an IBF
solution is to create the Metadata that
will link the Service description with
the Ul elements that have been defined
for it. IBF provides a few concepts that
allow for easy creation of these
Metadata based solutions:

— Actions — These are the executable
units from a user point of view and
can contain both Service and Ul

| Information Bridge Framework 17



methods/operations. In the previous
example you would have a
DisplayInformation action that would
use the Service entity/view on
CustomerContactInformation and
would link it to the user control we
created for displaying customer
information.

— Transformations — Because data from
the Service and the data required by
the Ul elements might not be the
same, IBF allows you to transform
the data. XSL transformations,
regular expressions or calling CLR
components are all supported ways to
transform data.

— Relationships — Your solution may
have relationships beyond those
provided by the Service. It may also
know about relationships across
Services. As an example I may be able
to relate a Customer in one of my
legacy apps with my Customer in my
CRM system.

Deployment and Security

You can think of IBF as a central
repository of Metadata, Service
description and UI elements that will

Ricard Roma i Dalfé
Microsoft Corporation
ricardrd@microsoft.com

be deployed dynamically as solutions
are used by the IBF client components.
No code/Metadata other than the IBF
client needs to be installed on client
machines. The IBF client component
connects to the appropriate Metadata
Service to obtain all Metadata and UI
elements needed for a given context.
After it has the Metadata description
and UI elements, it will execute them
along with the Service method calls,
and it will construct the Ul and user
experience as needed.

Because IBF uses CLR components for
UI rendering it builds on top of NET
security, all components are
dynamically downloaded and cached
locally, and are executed in a
sandboxed environment so they cannot
harm the client machine. If you need
your controls to have a higher level of
control, you can sign those controls and
increase their privileges by using
standard .NET Security Policies.

This provides for a robust and
deployment free environment for your
enterprise solutions.

Ricard Roma i Dalf6 is the development

lead for the Information Bridge
Framework project. He is working on
next versions of IBF and solving
connectivity problems with Line of
Business applications. He had been
previously in the Office team and
helped release Office 2000, XP and
2003 in various development roles. He
holds a M.S. in Computer Science from
Polytechnic University of Catalunya.

JOURNAL

Conclusion

IBF, by separating the Service layer
from the Ul layer and linking them via
Metadata, allows for a high level of
abstraction and reusability of both your
Services and your Ul components. This
provides a very powerful platform for
specifying the back-end assets in an
enterprise and creating solutions
around them that can be linked or
combined without coding. This
Metadata approach adds a lot of
flexibility and allows for further
refinement of solutions around
customer scenarios in a Metadata
driven approach. IBF provides powerful
UI constructs to help build a complete
Ul experience and integration with
Office applications. It also provides for
a secure and deployment free
environment of new solutions by
building on top of .NET technologies.

Resources

For more information about IBF go to
the site:
http://msdn.microsoft.com/ibframework

| Information Bridge Framework 18



By Richard Drayton, FiS and Arvindra Sehmi, Microsoft EMEA

Performance is probably one of the
least understood and misquoted
metrics in the field of computing today.
It is common practise amongst
technologists and application vendors
to regard performance as an issue that
can safely be left to a tuning exercise
performed at the end of a project or
system implementation. In contrast,
performance, as a metric for system
evaluation, is considered by most users
to be one of the most important and
indeed critical factors for assessing the
suitability of a system for a particular
purpose. This paper describes a
benchmarking exercise undertaken
during October 2002 at Microsoft’s ISV
Laboratories (ISV Labs) in Redmond,
Washington as part of joint project

Figure 1: Processing Engine Model

Front End
Participant Connection PAM

(VPN in-bound messages) Component

between the Capital Markets Company
(Capco) and Microsoft.

The project was initiated when Capco
was commissioned by the Singapore
Exchange Limited (SGX) to provide a
business assessment and to develop a
technical architecture for the exchange’s
centralised transaction processing
utility. The utility was to provide
matching services for post-trade, pre-
settlement interactions of participants
in the equities and fixed income
trading areas of the Singapore market.
The design of the main processing
engine was done following a process
known as Software Performance
Engineering (SPE) [SMITH90,
SMWILO2] in which the entire design

. A
Connection to External
Exception Management
and Workflow Services 1
1

Workflow Processor
(Exception Management)

Message
Processor

Message
Processor

Message
Processor

Message
Message Processor
Routing
Component
Message
Processor

Message
Processor

Message
Processor

Message
Processor

Database Management

Connection to External
Database Services

D

and validation exercise is modelled
from a performance perspective rather
than from a traditional object-oriented
design perspective.

Two subsystems were created by
Capco, known respectively as STP
Bridge (a communications
infrastructure and exchange gateway)
and STE (a scalable transaction
engine). Both were used in the
benchmarking exercise.

The Processing Model

The architecture of STE was based on
loosely coupled, stateless, message
processing components arranged in a
queuing network for high scalability,
high performance, and extremely high

Notification
Processor

Connection to Participants
(VPN out-bound messages)
and Settlement Services

“Unrealisable performance is a common characteristic of benchmarks”

JOURNAL

| Benchmarking a Transaction Engine Design

19



transaction throughputs. For SGX, a
worst case transaction processing load
of approximately 600 messages per
second was estimated by analysis of
their trading history over the previous
few years; which turned out to be the
highest processing level required
during the previous Asian financial
crisis in 1998 when exchange dealings
were considered abnormally high. This
value was used as the baseline/target
processing load. A stretch load target of
2000 messages per second was set to
ensure the architecture, if successful,
would have adequate headroom to cope
with future expected trading volume
growth and volatility.

The decision to use loosely coupled
components communicating through
message queues rather than through
more traditional component interfaces
(APT’s) requires information to be
passed from component to component
either directly through the messages
themselves (persistent message flow) or
by enriching the messages as they pass
through various processing steps
(temporal message flow). The
processing components themselves are
largely independent of each other and
stateless. This results in benefits such
as lower software development risk
and realisation costs for individual
components together with higher
scalability and flexibility
characteristics of the processing engine
as a whole when compared to
traditional monolithic application
development approaches. Most
conventional designs support only

one of the two possible scalability
dimensions: scale-up — increased
processing power through increased
processor resources (memory, CPU,
ete.), or scale-out — increased
processing power through increased
number of processing nodes. This

JOURNAL

architecture supports both types
of scaling.

The overall architecture of the STE
processing engine is shown in Figure 1.

This consists of a number of STE
components which have responsibility
for processing sub areas of the
underlying trading business activities.
The business process support provided
by the engine is realised by breaking
down the entire trade lifecycle into a
set of related atomic messages. Each
market participant generates and
receives various subsets of these atomic
messages during execution of the trade.

An implication of the architecture is
that the business process itself must be
capable of being represented by fully
asynchronous commutative set of
operations, that is, it must be able to
process messages in any order. This
removes the necessity to synchronise
message processing and business
operations throughout the engine,

a task which would result in an
incredibly slow and complex
application. Note that synchronization
is different to correlation of messages
which is applied in normal processing.
Several other “autonomous computing”
requirements are catered for in the
processing model. Amongst these are
the notions of distrusting systems,
idempotent operations, state
management, message correlation,
context management, tentative
operations, message cancellation, and
transaction compensationl.

Business-level message flow through
the processing engine is based, in part,
on the execution model proposed by the
Global Straight Through Processing
Association (GSTPA) which proposed a
similar centralised utility model for

cross-border trade settlement. The SGX
processing model was likely to require
operational links to other centralised
utilities like the GSTPA, so the
message sets used were based, in part,
on those used by the GSTPA to help
with inter-operability in the future?.

The business process for the Singapore
market reduced to a set of four principal
message types, namely, Notice of
Execution (NOE), Trade Allocation
(ALC), Net Proceeds Allocation (NPR)
and Settlement Instructions (SET).

The process surrounding these message
types involved a number of interactions
leading to a set of some 35 message
variants that formed the entire business
operating model. As recent events in the
financial services industry illustrated,
the range of processing volumes that
could be experienced by the utility
would be comparatively large. For this
reason a heavy focus was placed on the
ability of the architecture to support
high scalability requirements.

Modelling Performance

A valid benchmarking exercise allows
other institutions to repeat the
benchmark for themselves and to be
able to achieve similar results. It was
also important to support the

1Pat Helland’s “Autonomous computing:
Fiefdoms and Emissaries” [PHELO02]
webcast gives more details on the
autonomous computing model.

2The GSTPA is now defunct but this
unfortunate event has no impact on
the substance of this study.
Additionally, the original proposal
championed by the GSTPA could not be
used directly in the Singapore market,
so specific processing schemes were
created for the SGX processing engine.

| Benchmarking a Transaction Engine Design 20



arguments for the architecture model
through sound mathematical
techniques which would enable an
assessment of the impact on
performance of various implementation
realisation techniques a-priori

to deciding on any specific realisation
technologies. Figure 2 shows the
queuing network model used for the
performance analysis in the
benchmark. Note, this works hand-in-
hand with a client-side Participant
Access Module (PAM).

By conducting the benchmark in this
way it was felt that the results of the
exercise, good or bad, would be credible
and valid and that the results would
serve as the basis for a case study into
the application of queuing network
models for the processing of Post Trade,
Pre-Settlement information as part of
an overall high performance straight
through processing (STP) initiative in
the financial services industry.

Measuring Performance

One of the most frustrating aspects of
performance engineering occurs when a
performance unit which permits valid
comparisons to be made between
similar systems is not identified.

Figure 2: Queuing Network Model

Message handler
processing queues

and message servers

Performance is a subjective quantity
whose absolute value is often
determined solely by the user of a
system and not by any systematic
algorithm or process. This nebulous
aspect of performance gives rise to
variations in the perceived value of
performance characteristics for a
specific system even without
accompanying physical changes to the
underlying technology whatsoever.

The results of any benchmark are
subject to wide interpretation and this
can jeopardise any comparative
analysis of software systems.
Unrealisable performance is a common
characteristic of benchmarks that has
little relevance to a user’s perspective
of performance. The existence of
unrealisable performance can be shown
in numerous examples of published
benchmarks where results often
indicate high levels of performance that
are simply unobtainable in the real
world. For example, an ADSL
connection offers a theoretical
download speed of 512 K, but in reality
is limited by contention with other
users on the same exchange. So, a more
realistic way to do performance
comparisons between systems is to

Matching process
queues and
matching servers

»
L

In-bound Message Queue

Confirmation and

and STE side PAM and

routing server

out-bound message queue
with processing server

O

v

v

0 DL
P9 99

JOURNAL

establish metrics for an operational
situation which can be readily
reproduced outside the test
environment and is meaningful from
the system user’s perspective.

To avoid these sorts of frustrations
with the benchmarking process, a
practical technique was required which
would provide a supportable and
reproducible figure for the performance
of the realised system. The technique
chosen was based on Buzen and
Denning’s work [BDEN78] allowing
credible performance figures to be
obtained based upon sound
mathematical principles.

The Operational Benchmark

The purpose of the benchmark was to
validate the architectural design on
Microsoft platform technologies and

to establish the credibility of the
benchmark in an environment highly
correlated with the operational
requirements that would be presented
to potential system users. This goal
could only be achieved if the benchmark
tests were firstly performed using
volumes and process loading levels
consistent with those that would be
experienced in the final realised utility,
and secondly performed in a manner
that could be reproduced on-site as
well as in the laboratory.

For the laboratory exercise a set of
test management components were
created which allowed an end-to-end
analysis to be performed. These
consisted of a scalable message driver
and corresponding scalable message
sink with performance measurements
being taken from these two points. The
performance figures were calculated
on the time taken to fully process a
known number of messages forming a
known number of financial trades.

| Benchmarking a Transaction Engine Design 21



The Buzen & Denning Method
Buzen and Denning [BDEN78]
described a practical technique for
evaluating the performance of queuing
network software systems. In essence,
they argued that a simple and easily
obtainable measurement of queue
length over time could be used to
establish all the performance metrics
which they had defined for queuing
networks. A realisation of the Buzen
and Denning technique produces an
execution graph for the network model
similar to that shown in Figure 3.

A simple queuing model can be viewed
as a queue together with an associated
server, as shown in Figure 3 where
messages arrive (arrivals) on an
in-bound queue on the left hand side,
are processed by the server, and exit
(completions) on the right hand side.
The Buzen and Denning technique
involves sampling the queue length

of the server at regular intervals and
recording the number of message
remaining in the queue and
continuing the observations over a
period of time.

Figure 3: Simple Execution Graph

Arrivals

o

Queuing Component

Number of Jobs
(Tasks)

: : Completions

Time

The resulting graph of observations is
known the execution graph and clearly
shows the arrivals (i.e., increases in the
height of the graph) and completions
(i.e., decreases in the height of the
graph) of messages. Using these
figures, Buzen and Denning derived a
set of formulae from an original result
established by J.D.C. Little (known as
Little’s Law [LITTL61]) which enabled
all of the required performance metrics
to be determined. A summary of the
formulae is shown in Table 1.

Table 1: Buzen and Denning Formulae

Metric

Length of Observation

Arrivals

Completions

Busy Time

Utilisation

Throughput

Mean Service Time

Execution Distribution

Mean Queue Length

Residence Time

Queuing Time

Measuring Performance

To complete the performance
measurement a standard set of
business messages was needed
representing the mean business
process life cycle for the utility. A
standard “trade” was created using an
NOE (notice of execution) message, two
ALC (trade allocation) messages, two
NPR (net proceeds) messages and two
SET (settlement instruction) messages.
A standard trade therefore consisted of
7 base messages which together with

Definition

Total number of time units over
which the observation has been
made.

Total number of Arrivals over the
length of observation.

Total number of Completions over
the length of the observation.

The number of time units where
the number of messages in the
system exceeds zero.

The calculated value: v

The calculated value:

=B
T
_C
T
_B
C

The calculated value: o

T
A= (Messages,)
The calculated value: R

The calculated value:

The calculated value: L

The calculated value: RT —

“One of the most frustrating aspects of performance engineering occurs when a performance
unit which permits valid comparisons to be made between similar systems is not identified”

JOURNAL

| Benchmarking a Transaction Engine Design 22



Criteria

Trade Reference

Buyer Reference

Seller Reference

Security Reference

Security Type
Trade Date

Settlement Date

Trade Currency

Settlement Currency

Trade Quantity

Trade Type

Trade Direction

Unit Price

Trade Fees

Country Reference

Gross Amount

Rate

Table 2: Message Matching Criteria

Definition

The trade reference identification information must
match for all elements of the trade.

The Banking Identification Code (BIC) for the buyer
involved in the trade for all elements must match.

The Banking Identification Code (BIC) for the seller
involved in the trade for all elements must match.

The security reference code (ISIN, QSIP, SEDOL etc.)
must match for all messages in the trade where
security designation is included.

The security reference type (ISIN) must match.

The specified date of the trade must match on all
messages containing a trade date. Additionally, the
trade date must be a valid trading day for the
locations specified in the messages.

The specified settlement data of the trade must match
on all messages containing a settlement date.
Additionally, the settlement date must be a valid
trading day for the locations specified in the messages.

The trade currency designation of the trade must match
on all messages where the trade currency is specified.

The settlement currency designation of the trade
must match on all messages where the trade currency
is specified.

The quantity of the security or fixed income trade
must match in all relevant messages. This criteria
required also that the sum of the allocations for a
trade matched the execution quantity.

The type of the business trade being performed must
match on all relevant messages.

The buy/sell status of the trade must match on all
relevant messages.

The price per unit traded must match on all
relevant messages.

Fees and commissions contained within the trade
must match on all relevant messages.

Base country designations must match on all
relevant messages.

The calculated value of quantity * price must match
the value contained in the relevant messages.

The fixed income interest rate must match on all
relevant messages.

JOURNAL

the requisite acknowledgement and
confirmation messages between
participants comprised the entire
information set for the tests. The
completion of a trade’s processing by
the system generated one further
message which was designated the CLS
(clearing and settlement) message.

In the GSTPA specification a
combination of up to seventeen
different elements in the messages
were required to match before the
entire trade could be considered valid.
The requirements differed depending
on the particular message types being
matched but at some point all
seventeen matching criteria had to be
applied for the trade to be processed.
The full set of matching criteria is
shown in Table 2 for reference. The
matching process entailed scanning
the message database matching table
for all elements of the trade specified
in each message as each message was
received. When the scan yielded the
required seven matching atomic
messages a valid CLS message was
sent to the out-bound queue of the
test system.

In addition to the matching process,
the business process for the Singapore
market also requires validation of the
contents of the messages for items such
as currency and country designations,
security reference codes, payment and
settlement dates and participant
identification information. A collection
of static data was created to form the
base reference data for the utility and
is shown in Table 3 for reference.

To establish the benchmark result test
message sets were generated using the
static data. A message builder
component was used to randomly select
appropriate static data and then

| Benchmarking a Transaction Engine Design 23



Data Item Records

Participant 38

Security

Currency

Country

Profile

Routing Data

Queue Data

Table 3: Static Data Parameters

Machine

PARC4603
PARC4602
PARC4504
PARC4503
PARC4502
PARC4501
PARC4202
PARC4201

PARC4208
PARC4107
PARC4507
PARC4508

Table 5: Software Operating Environment

Operating Sys.

Windows Server 2003
build 3680.main

Windows Server 2003
build 3680.main

Comment

Reference data designating the valid
participant codes available to the system.

Reference data designating the valid security
codes available to the system. For the
Singapore market only ISIN codes are used.

The ISO 4217 standard codes for currencies.
The ISO 3166 standard codes for countries.

The profile data for active participants. The
profile static data contained the X.509 public
key data for the signed messages to be
returned to participants and the private key
data for the participant designed as the
utility. All messages were digitally signed
and check for each message transferred.

Internal and external queue routing
information. Each participant was designated
an out-bound reference queue to which
relevant messages were routed. Internal
queue references for the grid computing part
of the processing utility were also contained
in this data block.

Additional queue information relating to the
host machine IP address and TCP/IP post
number for data connections (used on the
MQSeries version of the software only).

Support Software

MSMQ 3.0; Capco STE 3.0
(C/C++) with Microsoft
Libraries

MSMQ 3.0; MSSQL 2000 sp2

combine it into the standard trade of
seven independent messages. Two core
message sets were created; the first
contained blocks of 250,000 trades
(1,750,000 messages) and the second
contained 1,000,000 trades (7,000,000
messages). A normal business cycle
would require all matched or
unmatched trades existing in the
system after 3 days to be cleared from
the system database; however, it was
decided to keep all processed
tradeinformation in to investigate the
degradation in database performance
as volumes increased. The message sets
were stored in standard text files in
XML format ready for transmission
into the processing engine.

To monitor the benchmark and obtain
the required performance metrics a
set of management components was
constructed. These were a message
driver component, a message sink
component, and an additional
component to monitor the queue
lengths of both the in-bound and out-
bound message queues as well as the
internal queue lengths at regular
intervals. The message driver
component processes the test message
set files sequentially and applies a
digital signature prior to sending
them to the in-bound queue of the
processing engine. Each message
driver running on its own without
contention with other processes in the
system can achieve in the region of
8000 messages per second. This figure
is very close to the benchmark results
provided by Microsoft for the MSMQ
product. A message sink component
reads the information destined for the
CLS queue and monitors the time
taken to process a given number of
messages through the system. The
monitoring components are shown

in Figure 4.

“The results of any benchmark are subject to wide interpretation and this can jeopardise
any comparative analysis of software systems”

JOURNAL

| Benchmarking a Transaction Engine Design 24



Machine Manufacturer Disk Network Ext. Storage

PARCXXXX Dell 1550 36GB

Gigabit

1 7:N210.0.9.9.¢ Dell 1550 36GB Gigabit

PARCXXXX IBM X370 2x 73GB Gigabit Compaq MSA 1000

Table 4: Basic Hardware Environment (x4)

Hardware Environment

The nature of the architecture
proposed for the processing utility
lends itself to higher performance
where multiple machines are
concerned. To remove resource
contention issues within the overall
architecture, it is better to have
multiple single CPU machines than a
single multiple CPU machine. The
hardware used was 4 instances of the
set of machines shown in Table 4.

To scale-out processing during the
benchmark we simply deployed
multiple copies of this basic hardware
environment.

In addition to the hardware listed in
Table 4, a further 8 single CPU
machines hosted the message drivers,
monitor and message sink components
used to record the benchmark results.

The database was put on Compaq MSA
1000 RAID (Redundant Array of
Inexpensive Disks) storage device
configured for level 0 support
(maximum throughput, minimum
recoverability). Since the business
scenario for the trading exchange
utility required local (i.e. client-side)
database support for each participant
connected to the utility, disaster
recovery sites, and on-line dual system
redundancy, the loss of RAID
recoverability was considered a small
price to pay compared to the gain in

JOURNAL

performance provided by a RAID level
0 configuration.

We initially thought a single database
storage device could manage the full
trade transaction volumes. But it soon
became apparent during execution of
the benchmark tests that internal disk
queuing reached excessive levels. We’ll
see later how this problem was avoided.

Software Environment

The software operating environment
used for the various hardware
platforms and support software
components is listed in Table 5.
Although the RTM release of
Windows™ Server 2003 had not
occurred at the time of the benchmark,
the release candidate (RC1) was

Figure 4: Benchmark Monitoring Arrangement

Processing
Engine

Queue
Monitor

available and was considered to be
sufficiently stable and complete to

be a valid part of the benchmark. All
applicable service packs were applied
to the operating environment including
any third party drivers used for
peripheral devices.

Scaling the Architecture

For the benchmark tests the scale-up
model involved executing the software
components on 4 CPU machines (an
increase of 2 over the basic processing
node) and also executing the code on
the 64-bit Itanium processors. Although
the Itanium machines contained only
2 processors, the available bus and
I/0O bandwidth was considerably
higher than the standard 32-bit
platforms and the results obtained

| Benchmarking a Transaction Engine Design 25



were certainly encouraging. We did not
have time to investigate the scale-up
model thoroughly.

The scale-out model employed was to
increase the number of processing
nodes from 1 through 8 processing
engines and from 1 through 4 database
processors. We spent the bulk of our
time investigating the scale-out model.

Software Processing

The STE engine components were
written in C/C++. They process XML
messages using an exception based
heuristic in which messages are
assumed to be correct for both content
and format until such time as an error
is detected (missing or incorrect data).
On exception, the message in question
is directed to a nominated exception
queue for further processing. The
subsequent exception resolution
processes were not included in the
scope of the benchmark tests.

Buffer fill
thread process

Contention between the in-
bound and out-bound threads

Validation of the content of each
message was carried out against static
data which had been pre-loaded into
memory-based arrays. The validation
process involved organising the
required static data into sorted arrays,
using C/C++ gsort function, and
validating the existence of XML
elements by locating an entry within
the array, using C/C++ bsearch
function. Data elements in the XML
messages are accessed using the
standard C/C++ strstr function.

Benchmark Results

The benchmark tests produced some
interesting results. Some validated the
application design, while others led to
architectural changes to address
identified performance issues. The
basic lesson we learned was that you
generally need to “tune for percentages
and re-architect for orders of magnitude
improvements in performance.”

Buffer empty
thread process

causes delayed throughput

In-bound queue process to
fill the local message buffer

Qi

—

Out-bound queue process to
transfer the local message
queue to the remote machine

MO

Memory Buffer
(4MB increments, MSMQ 2.0)

Memory based, non-persistent queue
buffer. Buffer is allocated in
steps of 4MB (MSMQ 2.0) depending
on the demands of the input
message size and rate

Figure 5: Single Queue Manager Contention Process

JOURNAL

Message Queue Processing

The benchmark test was conducted

at two basic levels, the first having
250,000 trades (1.75 million messages)
and the second having 1,000,000 trades
(7 million messages). All processed
information was left in the database
as an added processing load on the
system. The arrangement shown in
Figure 4 was used as the basis for the
benchmark evaluation.

A significant latency time was noted
when the message driver components
were first started due mainly to
contention issues within the individual
queue managers processing the
message streams. The insert process
rate was so high that the individual
queue manager processes had
insufficient time during the start of
each run to transfer messages across
the network to the remote processing
machines. This gave the effect of the
initial transfers taking several seconds
before the performance monitors picked
up any activity on the processing nodes
of the system. Figure 5 explains this
queue manager contention process.

In practise it is extremely unlikely that
several million messages would arrive
as a single input into the utility and
therefore the latency effect could be
ignored for the purposes of the
benchmark evaluation. This effect would
be common to all asynchronous message
transfer systems, not just MSMQ which
was used for the benchmark.

A similar effect could be observed in
the processing components when large
numbers of messages would arrive in
their in-bound queue (remote host
message buffer) as a single input. This
meant that the processing components
would be pushed to approximately
100% loading during the initial start of
a run and would stabilise to a lower

| Benchmarking a Transaction Engine Design 26



figure once flow through the machines
had evened out. A typical performance
monitor output for a single processing
node is shown in Figure 6. The effect
of the initial message burst can be
clearly seen in the response curve for
the combined dual processor machine.

Furthermore, the effect of processing
completion of the in-bound messages
flowing into the queue manager
message buffer can be seen in the later
part of the response graph for the host
machine. Here, increasing resources (or
more accurately reducing contention)
would allow an increased use of
processor power in the latter stages

of the processing cycle.

To counter both these effects of hitting
message queue buffer limits too quickly
and uneven processor utilization
during the message injection phase, we
added a larger number of in-bound
queue processes and in-bound queues.

gl xlelEalEl Hxle slels

[EXEIE

This enabled the in-bound message
load to be aggregated over more
resources thus reducing the latency
times involved. Perhaps the biggest
difference was made by using MSMQ
3.0 instead of MSMQ 2.0. The former
has a 4GB memory buffer size limit
before a new buffer allocation is made,
which is three orders of magnitude above
the 4MB buffer size in MSMQ 2.03.

Multi-node Processing

In the original designs of STE a single
database was used. As the number of
processing nodes (dual processor
machines running the component
software) increased, a distinct drop in
the overall processing rate was noticed.
This drop in processing throughput is
shown in Figure 7 and was caused by
contention within the database
component.

The cause of the contention was not
due to operating system or component

o0

. ; Initial recovery time
from “step function”

a0 input

70

B0

50

| Mean processing level
for sustained message
throughput (in-bound
messages being
received)

Ell 3

h

c\«m%
Y

20

LA

™~ Mean processing level
for sustained message
throughput (in-bound
message flow
complete)

Last| 00071 Average

47615 Minimurn 0.001  Mavimurn 99.219  Duration 1:40

Color | Soale | Counter [ Instance: Farent

[ Objest [ Computer [ |

1000 Messagesinus
1000 Messagesinus
1000 MessagesinOus
1000 %Processor Time
1000 %Processor Time
1000 Pagesfsec

Disk. ueue.

pact50T emecpm. i queus
parc450T cmemlam mla cl01. queus
parcd50T omeweb web, i1 queus

[

MSMO Queue
MSMO Queve
M5MO Queue
Processor

SAPARCAEDT |
SPARC4S0T

SWPARC4S0T

SWPARC4S0T

Processor PARC4SDT

Memary SINZKLAPT .

PhysicalDisk: FT.

i Time

Figure 6: Processor Time for a Typical Component

JOURNAL

3The individual message size is
limited to 4MB in both MSMQ 3.0
and MSMQ 2.0, but this was not an

issue in our scenario.

software problems but due to excessive
disk queuing occurring in the RAID
array. This meant that available
bandwidth for transferring information
onto the disks of the RAID array was
insufficient to meet the demands made
by STE’s software elements. This effect
is most easily seen when examining the
insertion rate of information into the
database. The performance graph for
the single database server is shown in
Figure 8. Here, the corresponding
performance graph to the one shown in
Figure 7 shows the dramatic reduction
in inserts into the database cause by
disk queuing in the RAID array as the
number of processing nodes increases.
The contention for available resources
caused by this queuing means that the
system couldn’t reasonably cope with
more than 2 processing nodes in the
original design.

The next section discusses how this
issue was overcome.

Process Rate per Node

600.00

500.01 \
\\

400.00

300.00

200.00

Message Throughput
(messages per second)

1 2 3 4
Number of Nodes (Processors)

Figure 7: Process Rate per Node

Process Rate per Node
(single database server)

2500

Theoretical linear increase
i on a per

2000 1
node basis

I —

Recorded process rate into the
database as the numberof |
nodes increases

1000

Insert Rate
(messages per second)

500

o |
1 2 3 4

Processing Nodes

Figure 8: Process Rate per Node (Single Database
Engine)

| Benchmarking a Transaction Engine Design 27




Server Hashing Algorithm

After discussions with the Microsoft
SQL Server team regarding techniques
for improving the available bandwidth
for disk operations the use of a hashing
algorithm was proposed which would
enable multiple database serves to be
incorporated into the overall solution.
The purpose of the hashing algorithm
is to use a unique key on the trade
derived from the message data, and a
corresponding hash function which
produces a single numeric value
resolving to a unique instance of a
database server. A hashing algorithm
was chosen to reflect our business need
to always direct constituent messages
of specific trades to the same database
server. For the benchmark the key
consisted of a subset of the matching
criteria defined in Table 2. The key
was constructed by concatenating a
chosen subset of matching criteria
values and converted to a single, very
long integer number. This number was
then divided by a binary value

4S denotes the server number (base 0)
in the range 0-(N-1); K denotes the
very large integer value determined by
the key for the message and N denotes
the proposed number of database
servers (clearly N must be greater
than 0 and less than K). The
calculation of the modulus function
may seem complex, however, by
choosing a binary multiple for the
divisor the calculation reduces to right
shifting the value of K by N bit
position for N > 0. For example if N
were set to 3 then the divisor would be
8 and shifting the value of K right by
3 bit positions would accomplish the
required division. The remainder on
division by 8 is therefore simply the
value of the least significant 3 bits of K
(an integer in the range 0 through 7).

representing the number of proposed
database servers (or instances) as
shown in the following formula:

K

S = remainder
oN

Using this formula we very effectively
improved performance by federating
multiple database servers (or
instances) with a hash.

The infrastructure architecture for the
proposed utility was revised to reflect
the inclusion of the multiple database
solution using the hashing algorithm
as shown in Figure 9. For ongoing

Dell 1550

benchmark testing support for up to 16
database servers was made within the
software components, however, the
system was tested to a maximum of

4 such servers.

Repeating the tests using the hashing
algorithm to distribute the database
load across four database servers
yielded very impressive results.

The Little’s Law Curve

The performance metrics determined
by Buzen and Denning are based on a
fundamental result produced by J.D.C.
Little [LITTL61]. The generalised
performance characteristic discovered
by Little is shown in Figure 10.

IBM X370 Compagq

— MSA 1000
Compaq
Dell 1850 MSA 1000
¥ . =
: I8
(=]
L
Dell 1550 - =,
=== || | | ([—— |
1BM X370 Compaq
Ee——yee—y MSA 1000
£ =
|
L]
=
Dell 1550 Compaq
P MSA 1000
(=]
=
S

Figure 9: Final Hardware Infrastructure Arrangement

“The impressive results of the benchmark largely speak for themselves with the overall
performance, scalability and flexibility well established.”

JOURNAL

| Benchmarking a Transaction Engine Design

28



For any queuing model, when
processing a specific number of tasks
the response time increases as

the arrival rate (and for a balanced
queuing model the completion rate)
increases. The curve is characterised
by having an almost linear portion

in the early stages getting
progressively more asymptotic as the
input (and completion rate) increases.

The first observable results, Figure 11,
showed that the increase of 400% in
the available database bandwidth
placed the system in the linear portion
of the of the performance graph
producing an almost linear response
characteristic when the processing
components are scaled from 1 to

4 nodes.

In fact the measured results showed an
extremely linear scaling between 1 and
4 processing nodes with only a minimal
divergence from the linear model being
observable. However, if the input rate is

increased (in this case by increasing
the number of processing nodes to 8) a
divergence from the linear scaling case
can be observed. This measured effect
is shown in Figure 12.

Using measured results the Little’s
Law curve can be drawn for the test
queuing network model as shown in
Figure 13. The result shows that the
operational performance of the queuing
model will suffer increasing reduction
in performance as the number of
processing nodes increases past 4
components with a significant
reduction at 8 processing components.
At this point it is worth noting the
scale on the left hand side of the graph
in Figure 12 showing the throughput
rate of the entire STE queuing model
measured at some 7734 messages

per second.

Clearly the next scaling option to use
would be to increase the number of
database servers to 8 (i.e., the next

available binary multiple). With this
we would reasonably expect to see the
message processing throughput rate
reach in excess of 15,000 messages per
second given a suitable increase in the
number of processing nodes used.

Degradation with Stored Volume
At the measured processing rate the
queuing network would achieve a
sustained rate in excess of 27,842,400
messages per hour or 222,739,200 per
operating day. It is reasonable to ask if
such a high processing rate measured
over several minutes could be
sustained over time. To determine the
characteristics of the model as stored
volumes increase, the processing load
of some 2,000,000 messages was used
as a base figure and a subsequent
processing run of 7,000,000 messages
was used to determine the effect on the
overall performance as the database
volumes increased. The measured
degradation in message throughput
with volume is shown in Figure 14.

The Generalised Little's Law Curve

Deviation from the Linear /
model as the i
rate increase: /

Response Time

Completion Rate (jobs/unit time)

Message Process Rate

10000.00
9000.00 ‘ |
8000.00 !

7000.00 —
6000.00
5000.00
4000.00
3000.00
2000.00 T
1000.004 — 1

0.00

Process Rate
(messages per second)

-

4 5 6 7 8
Processing Nodes

Database Degradation with Volume

9000
8000

7000

6000 —
5000

4000
3000
2000

Message Rate
(messages per second)

1000
0

1 2 3 4 5 6 7
Message Volume
(millions of messages)

Figure 10: Generalised Little's Law Curve

Figure 12: Scalability with Eight Processing Nodes

Message Process Rate

2000 /

1000

Process Rate
(message per second)
w s ow
§5¢

Response Time

°

1 2 3 4

Processing Nodes

Performance Curve
Increasing Processing Nodes

900
800
700
600
500
400
300
200
100

Number of Processing Nodes

Figure 11: Linear Scaling with Multiple Database
Instances (Single Database Engine)

JOURNAL

Figure 13: The Measured Little's Law Curve

Figure 14: Database Degradation with Volume

| Benchmarking a Transaction Engine Design 29




Here the processing rate dropped to
some 5,500 messages per second as the
volume processed reached the
7,000,000 messages target. Even at this
extreme level, the queuing model was
achieving some 19,800,000 message per
hour or 158,400,000 per operating day.
The granularity of the result did not
permit a more accurate measurement
of the degradation effect other than the
linear approximation shown here. If a
finer granularity observation had been
made the degradation rate would have
been seen as a curve rather than a
straight line indicating that a reduced
degradation effect would be experienced
as volumes increased further (possibly
a characteristic of the paging schemas
used for the B-Tree structure of
modern RDBMS?’s). The 7,000,000
messages processed during this test
represented 1,000,000 trades processed
in a relatively short period of time.

Little's Law Curve —
Buzen and Denning Results

o [T 1
|
0,

500.00 ponse curve for 500,
400,00

300.00

Response Time (seconds)

ing Rate per

Figure 15: Measured Performance Curve

Little's Law Curve - Expanded

Performance Operating Region

ALC Message Processor

H
&

NOE Message Processor

Response Time

Processing Rate (messages per second)

Figure 16: Expanded Performance Curve

JOURNAL

It is worth noting that there are many
examples of existing transaction
engines in the financial services
industry that have failed to reach this
operating level using technology rated
to a higher performance level than the
Windows and Intel based machines
used in these tests.

The Buzen & Denning Results

To determine the performance of the
individual components the Buzen and
Denning metrics need to be determined.
The monitoring process measured the
length of each of the processing queues
used for the queuing network model
and the performance metrics were
calculated. A sample result from the
calculation process is shown in Table 6.

The sample shows the processing of
approximately 398,573 messages
through the queuing model (taken as

Parameter
Number of Processors 1

Observation Time - T units 343

Arrivals — N 53476

Completions — C 53476
Busy Time — B 315
Utilisation — U 0.92
Throughput — X 155.9067
Mean Service Time - S 0.00589
Execution Distribution - A 817,385

2383.047

Mean Queue Length - LL

Residence Time - RT 15.28508

Queuing Time 15.27919

Table 6: Sample Buzen and Denning Results Calculation

a sample from one of two processing
nodes). The host machine supporting
the 7 software components (one NOE
and two each of ALC, NPR and SET
software modules) reached an average
93% utilisation during the monitoring
interval (U) according to the Windows
performance monitoring tools. For the
throughput calculation it must be
borne in mind that there were two
processing components running for
each of the ALC, NPR and SET
message types. The processing network
therefore achieved a mean throughput
rate of approximately 1,162 messages
per time unit during the test with a
latency time of approximately 14.97
seconds. Latency, in this case refers to
the time difference between input and
output message processing. A message
entering the network will appear on
the output side approximately 14.97
seconds later at the measured

2 2

343 343

59040.5 56659 56849

59040.5 56659 56849

329 308 322

0.96 0.90 0.94

172.1297 165.1866 165.7405

0.005572 0.005436 0.005664

887,046.5 818,094 860,110

2586.141 2385.114 2507.609

15.02437 14.43891 15.12973

15.0188 14.43347 15.12407

| Benchmarking a Transaction Engine Design 30



processing levels. The sample rate was
set to a 7 second interval (owing to the
use of an un-calibrated tick interval)
and the sample data set was 500,000
messages (two messages drivers each
with 250,000 messages from the
standard test data set). In this case
there were two process engines (or host
machines) and the results shown were
taken from one of those processing
engines (note that the results for the
ALC, NPR and SET components are
aggregated across two components
since the original data was measured
from the message queue from which
both components were being fed).

The marginally higher service time
(S) for the NOE messages reflects the
higher processing level required of
this component because of audit trail
persistence and validation processing.
The performance curve for each of the
processing components is shown in
Figure 15 with the overall performance
point marked for clarity. This is
fundamentally the generalised Little’s
Law curve for the STE processing
engine; however, this generalised view
does not give all of the detail necessary
to accurately predict the operating
performance of the engine. It is
apparent that, for the individual
components there are different
completion rates and therefore
depending on which view of the
performance metrics you wish to take
there will be a different corresponding
performance values.

This gives rise to the Performance
Operating Region (POR) for the
network as shown in the shaded area
of the graph in Figure 16. In this
particular instance the results are
reasonably close and therefore the
corresponding performance operating
region is narrow. This is not always the

JOURNAL

case, however, and there are examples
of systems where the POR covers a
region exceeding 400% of the mean
performance level. The prediction of
the POR requires some complicated
mathematics that were beyond the
scope of this benchmark exercise,
however, the effect of the POR is
included here to explain the variation
in the measured results during
repetitive tests.

Comments and Conclusions

The impressive results of the benchmark
largely speak for themselves with the
overall performance, scalability and
flexibility well established. The
throughput rate for the overall engine
certainly places it amongst some of the
largest transaction engines for post
trade processing infrastructure in the
financial services industry. The target
and stretch performance levels were
exceeded with comfortable margins,
and there are strong indications that
the overall architectural approach will
support even greater message
throughputs. It is certainly worth
stating that, with the achieved
performance levels, current Microsoft
technology offerings are capable of
operating within the enterprise layer of
any financial institution. Some aspects
of operation within the enterprise
layer, like resilience and reliability were
not tested during this benchmark and
remain to be proven for this design.
However, networked or grid computing
based architectures like this one have
inherent characteristics to support
extremely high levels of resilience and
reliability. The use, therefore, of efficient
grid based processing machines and
low cost software technology would
seem to be a winning combination.

Low Cost and Efficient Realisation
Probably one of the more significant
results of the entire benchmark process
is the now proven ability of Microsoft
technology to perform and scale to
enterprise levels. The processing rates
achieved with the queuing architecture
certainly place the Microsoft operating
system in the upper band for capability
and scalability in networked
computing. The second most significant
result of the testing was the relatively
low cost of implementation of the
system in the Microsoft environment.

Potential Improvement Areas

In addition to the monitoring tools
used to detail the benchmark results,
Microsoft was able to provide
additional process monitoring tools
(which will be available in Visual
Studio 2005) that gave a detailed view
of the execution of the software
elements. The Microsoft analysis tools
indicated that the software components
were spending on average 30%-35% of
their time performing functions related
to data extraction from the XML
messages. This was not an overly
surprising result since the main
function of the software components
was to validate and process string
types. To access required information
the C/C++ strstr search function was
used and we treated the entire message
as one complex string. (Note: for our
problem domain this was faster than
directly using an XML parser and
DOM objects with XSLT.) Although

in general circumstances the use of
strstr produces adequate performance
levels, there are more efficient
techniques that can be employed to
extract information from string-based
message structures.

R.S. Boyer and J.S. Moore [BYMR77]
described a very efficient mechanism

| Benchmarking a Transaction Engine Design 31



for searching well structured strings.
The algorithm works well where the
structure of the string is known in
advance and is used predominantly in
applications where searching large text
strings is required, such as in digital
library applications, editors or word
processors. For the queuing network
the use of the algorithm would at first
sight seem inappropriate since we have
no way of determining the nature or
structure of the next received message
within the network. However, for the
processing components the structure of
the message is known since we route
the message according to type for
further processing. The use of the
Boyer-Moore algorithm could yield
improved results over the existing
implementation of the network,
however, the relatively small size of the
XML messages (an average of 1,500
bytes per message) might be too small
for the Boyer-Moore algorithm to yield
results that would justify the work
required to implement the algorithm.

Itanium and 64-Bit Processing

The operation of the queuing network
model was tested using a beta version
of SQL Server running on new (at least
it was then) Itanium 64-bit hardware
and the Windows operating system.
Although this was not acceptable as a
production benchmarking environment
(because of using beta software) the
results would be a useful indicator of

Comparison of C# (managed) and C/C++
(unmanaged) code

7000
6000
5000
4000
3000
2000
1000

C+

C#

Message Throughput

Module Realisation

Figure 17: Comparison of Managed and
Unmanaged Code

JOURNAL

future performance gains that could
be obtained using this future Intel/
Microsoft technology.

On this hardware the measured
throughput was an average of 872
messages per second which was
considered extremely high considering
the environment in which the test took
place. Firstly, this result was obtained
using a standard SCSI disk unit as
opposed to the RAID arrays used in the
main benchmark exercise. Standard
SCSI performance rates would have
been considerably slower than the
RAID performance rates. Secondly,

the Itanium database server had only
two processors installed against the

8 processors used for the database
engines in the benchmark. The
opportunity to perform a full
benchmark test within a 64-bit
environment is eagerly awaited.

C# and Managed Code

The software components were also
generated for use in the Microsoft C#
Managed Code environment where a
direct comparison could be made
between the C/C++ and C# versions.
As a simple test the operation of the
message drivers was compared
between the operating models.

The process involved was fairly simple
so that the effects of inefficient coding
could be ignored (the actual number
of active lines of code was very small).
The process was to take a prepared
message file and stream the data into
a code loop. Processing would continue
until a message separation character
was received. The resultant message
was then wrapped in a standard
GSTPA header and a digital signature
applied to the message block. The
message was then written to the
message queue for the queuing
network model for processing. This

process continued until the entire
prepared file was read.

The parameter of interest to us was
the throughput rate at which message
could be read off the data file and
queued. The results of the test are
shown in Figure 17.

[These results clearly show the
enhanced performance of C/C++ over
the managed code environment (NET
Framework 1.1). It is also fair to point
out that the results also include the
comparison of efficiency of the
interoperability layer between C/C++
and C# which is crossed for accessing
MSMQ.

At first sight it could be argued that
from a performance perspective, the
managed code environment should
never be implemented in place of a
C/C++ installation. This view, however,
would be misleading since all system
solutions are a compromise between
cost, performance and reliability. The
overall performance results for the
managed code environment reflected
the test performed on the (simple)
message driver component producing a
throughput rate of approximately 2000
messages per second. Although this
rate is around 25% of the base C/C++
level, there are definitely compensating
factors that must be considered. The
production of C# code is significantly
more efficient that that obtainable with
C/C++ code, in fact the rate at which
operational code could be developed in
C# was extremely impressive. Note, a
lower rate of 2000 messages per second
(which is 7,200,000 messages per hour
or 57,600,000 messages per day) is still
considered in the upper bracket of
transaction engine benchmarks and it
will only get better as managed code
gets faster!

| Benchmarking a Transaction Engine Design 32



Furthermore, care must be taken when
comparing managed and unmanaged
code environments. The use of virtual
machine environments like the Common
Language Runtime (CLR) used in the
NET Framework and indeed Java/ J2EE
VM based environments can produce
benchmark figures comparable with that
of C/C++ code where memory-based
operation are concerned. Unfortunately,
such benchmark comparisons give a
false picture of the overall performance
levels that can be expected because most
applications include elements of local
and remote I/O operations and dynamic
object creation and deletion. Conversely,
the ease of implementation and potential
improvements in reliability and
manageability may well allow managed
code environment to out-perform C/C++
in the creation of applications sacrificing
performance for lower costs and faster
implementation times.

Given that we have significant
unrealisable performance (see the
above discussion on this topic) with our
unmanaged code implementation of the
STE system — because the architecture
scaled-up so remarkably well, we
actually find ourselves in an opportune
position to trade-off this unrealisable
performance for the benefits of using
managed code in future implementations
of this generalised architecture. For
some insights into this statement

see [SEVAO04].

References

[BDEN78] Buzen J.P. and Denning P.J.,
“The Operational Analysis of Queuing
Network Models”, ACM Computing
surveys, 10, 3, Sept. 1978, 225-261.

[BYMR77] Boyer R.S, Moore J.S,
1977, A fast string searching
algorithm. Commaunications of the
ACM. 20:762-772.

JOURNAL

[LITTL61] Little J.D.C, “A Proof of the
Queuing Formula L = AW”, Operations
Research, 9, 1961.

[PHELO2] Pat Helland, 2002,
“Autonomous computing: Fiefdoms and
Emissaries”, Microsoft Webcast,
http://microsoft.com/usa/Webcasts/
ondemand/892.asp

[SMITH90] Connie U. Smith,
“Performance Engineering of Software
Systems”, Addison-Wesley, ISBN 0-201-
53769-9, 1990.

[SEVA04] Arvindra Sehmi and
Clemens Vasters, FABRIQ GotDotNet
Workspace:
http://workspaces.gotdotnet.com/fabriq

[SMWILO02] Connie U. Smith and
Lloyd Williams, “Performance
Solutions: A Practical Guide to
Creating Responsive, Scalable
Software”, Addison-Wesley,

ISBN 0-201-72229-1, 2002.

[UASDSO01] Susan D. Urban, Akash
Saxena, Suzanne W. Dietrich, and Amy
Sundermier, “An Evaluation of
Distributed Computing Options for a
Rule-Based Approach to Black-Box
Software Component Integration”,
Proceedings of the Third Int’l Workshop
Advanced Issues of E-Commerce and
Web-Based Information Systems
(WECWIS’01), 2001.

[ZHESO01] Huaxin Zhang and Eleni
Stroulia, “Babel: Representing
Business Rules in XML for Application
Integration”, Proceedings of the 23rd
International Conference on Software
Engineering (ICSE’01), 2001.

Richard Drayton

FiS Group
richard.drayton@btinternet.com
Richard Drayton has been actively
involved in technology architecture and
design for 30 years. Recognized for his
work in the field of software performance
engineering, he is a practicing member
of the ACM's SIGMETRICS group. For
the past 15 years Richard has been
active in the design and development of
Financial Trading and Processing
systems for many of the worlds leading
investment banks. Previously Richard
was the head of Front Office Technology
for Deutsche Bank in Frankfurt, Global
Head of Architecture for Commerz
Financial Products and Global Head of
Architecture for Dresdner Bank. As
part of his work with the IEEE and
ACM, he has focused on the adaptation
of high performance computing solutions
to the financial services industry with
particular focus on the implementation
of end to end STP market infrastructure
solutions. He is the Executive Director
responsible for technology solutions
with the Financial Infrastructure
Solutions Group. He holds an M.Sc.

in Electronic System Design as well

as degrees in Pure Mathematics and
Communications Technology.

Arvindra Sehmi

Microsoft EMEA
asehmi@microsoft.com

Arvindra Sehmi is an Architect in
Microsoft EMEA Developer and
Platform Evangelism Group. He focuses
on enterprise software-engineering best
practice adoption throughout the EMEA
developer and architect community

and leads Architecture Evangelism in
EMEA for the Financial Services
Industry where his current interest is
in high performance asynchronous
computing architectures. Arvindra is
the executive editor of JOURNAL. He
holds a Ph.D. in Bio-medical Engineering
and a Masters degree in Business.

| Benchmarking a Transaction Engine Design 33



By Pedro Sousa, Carla Marques Pereira and José Alves Marques, Link Consulting, SA

Introduction

The alignment between Business
Processes (BP) and Information
Technologies (IT) is a major issue in
most organizations, as it directly
impacts on the organization’s agility
and flexibility to change according to
business needs. The concepts upon
which alignment is perceived are
addressed in what is called today the
“Enterprise Architecture”, gathering
business and IT together.

Many Enterprise Architecture
Frameworks have been proposed,
focusing on different concerns and with
different approaches for guiding the
development of an IT infra-structure
well suited for the organization. Each
Enterprise Architecture Framework
has its own concepts, components,

and methodologies to derive the
component all the required artifact.
However, when the main concern is
alignment, we may consider simpler
architecture concepts and simpler
methodologies because the focus is not
to define development artifacts but only
to check their consistency.

The focus of this paper is to show how
alignment between Business and IT
can be stated in terms of the
components found in most Enterprise
Architectures.

In the next section, we briefly introduce
three well known Enterprise
Architecture Frameworks, namely: The
Zachman Framework, Capgemini’s
Integrated Architecture Framework
and the Microsoft Enterprise
Architecture. We do not intend to fully
describe them, but solely present

the main aspects.

Next, we present the basic concepts
common to these frameworks, focusing

on their generic properties and leaving
out specificities of each framework. We
will consider four basic components of
an Enterprise Architecture: Business
Architecture, Information Architecture,
Application Architecture and

Technical Architecture.

Finally, we show how alignment
between Business and IT can be
disaggregated into alignment between
these basic components, we present
general heuristics defined in terms of
the architectural components and
present the work in progress. We will
not address the Technical Architecture;
the main reason being that technical
alignment is mostly dependent on the
technology itself.

Enterprise Architecture
Frameworks

The Zachman Framework

The Zachman Framework for
Enterprise Architecture (www.zifa.com)
proposes a logical structure for
classifying and organizing the
descriptive representations of an
enterprise. It considers six dimensions,
which can be analyzed in different

Figure 2 - The Integrated Architecture Framework

Figure 1 - The Zachman Framework, © John A.
Zachman International

perspectives, as presented in Figure 1;
the rows represent the perspectives
and the columns the dimensions within
a perspective.

The Framework is structured around
the views of different users involved in
planning, designing, building and
maintaining an enterprise’s
Information Systems:
— Scope (Planner’s Perspective) —
The planner is concerned with the
strategic aspects of the organization,
thus addressing the context of its
environment and scope.
— Enterprise Model (Owner’s
Perspective) — The owner is

Contextual answers the
Contextual question 'why do we need
an architecture?' and
Why? ‘what is the overall

eeee Security eeee

Business Information

context?’

Conceptual answers the
question 'what are the
requirements and what 1is
the vision of a solution?'

Conceptual

what?

Logical |Logical answers the
question 'how are these

how? requirements to be met?'

Physical Physical answers the
question 'with what is

with what? the solution built?’

“We developed Alignment’s Heuristics as a common sense rule (or a set of rules) to increase
the probability of finding an easier way to achieve Business, Information and Application

Architectures alignment.”

JOURNAL

| Enterprise Architecture Alignment Heuristics 34



interested in the business perspective
of the organization, how it delivers
and how it will be used.

— System Model (Designer’s
Perspective) — The designer is
concerned with the systems of the
organization to ensure that they will,
in fact, fulfill the owner’s expectations.

— Technology Model (Builder’s
Perspective) — The builder is
concerned with the technology used
to support the systems and the
business in the organization.

— Detailed Representations
(Subcontractor’s Perspective) — This
perspective addresses the builder’s
specifications of system components
to be subcontracted to third parties.

While the rows describe the
organization users’ views, the columns
allow focusing on each dimension:

— Data (What?) — Each of the cells in
this column addresses the
information of the organization. Each
of the above perspectives should have
an understanding of enterprise’s data
and how it is used.

— Function (How?) — The cells in the
function column describe the process
of translating the mission of the
organization into the business and
into successively more detailed
definitions of its operations.

Figure 3 — Microsoft Enterprise Architecture
Perspectives

Microsoft Architecture

Business Perspective
Information Perspective

Technology Perspective

— Network (Where?) — This column is
concerned with the geographical
distribution of the organization’s
activities and artifacts, and how they
relate with each perspective of the
organization.

— People (Who?) — This column
describes who is related with each
artifact of the organization, namely
Business processes, information and
IT. At higher level cells, the “who”
refers to organizational units,
whereas in lower cells it refers to
system users and usernames.

— Time (When?) — This column
describes how each artifact of the
organizations relates to a timeline, in
each perspective.

— Motivation (Why?) — This column is
concerned with the translation of
goals in each row into actions and
objectives in lower rows.

Capgemini’s Integrated
Architecture Framework
Capgemini has developed an approach
to the analysis and development of
enterprise and project-level
architectures know as the Integrated
Architecture Framework (IAF) shown
in Figure 2 [AMO04].

IAF breaks down the overall problem
into a number of the related areas
covering Business (people and
processes), Information (including
knowledge), Information Systems, and
Technology Infrastructure, with two
special areas addressing the
Governance and Security aspects
across all of these. Analysis of each of
these areas is structured into four
levels of abstraction: Contextual,
Conceptual, Logical and Physical.

The Contextual view presents the
overall justification for the organization
and describes the contextual

Business

‘////’ Architecture
1
i

Alignment
1

1
v
Technical
Architecture

Information
Architecture

Figure 4 - Decomposing Business and IT Alignment
into Architectural Components

environment. It corresponds largely to
Zachman’s Planner’s Perspective row.

The Conceptual view describes what
the requirements are and what the
vision for the solution is. The Logical
view describes how these requirements
and vision are met. Finally, the
Physical view describes the artifacts of
the solution.

These views have no direct relation to
Zachman’s perspectives because in IAF,
Business, Information, Information
Systems and Technology Infra-
structure are the artifacts of the
architecture whereas in Zachman,
Business, Information Systems and
Technology are views (perspectives).

Microsoft Enterprise Architecture
Microsoft Enterprise Architecture
shown in Figure 3, is a two dimensional
framework, that considers four basic
perspectives (business, application,
information, and technology), and

four different levels of detail
(conceptual, logical and physical

and implementation).

The business perspective describes how
a business works. It includes broad
business strategies along with plans for
moving the organization from its current
state to an envisaged future state.

“The issue of alignment is based on the coherency between elements of Business Architecture,
elements of Information Architecture and elements of Application Architecture.”

JOURNAL

| Enterprise Architecture Alignment Heuristics 35



The application perspective defines the
enterprise’s application portfolio and is
application-centered. The application
perspective may represent cross-
organization services, information, and
functionality, linking users of different
skills and job functions in order to
achieve common business objectives.

The information perspective describes
what the organization needs to know to
run its business processes and
operations. The information perspective
also describes how data is bound

into the business processes, including
structured data stores such as
databases, and unstructured data
stores such as documents,
spreadsheets, and presentations that
exist throughout the organization.

The technology perspective provides a
logical, vendor-independent description
of infrastructure and system components
that are necessary to support the
application and information
perspectives. It defines the set of
technology standards and services
needed to execute the business mission.

Each of these perspectives has a
conceptual view, a logical view and a
physical view. Elements of the physical
view also have an implementation view.
Microsoft Enterprise Architecture

is described in detail at
msdn.microsoft.com/architecture/
enterprise/

Making a parallel between the
Microsoft’s and Zachman’s Enterprise
Framework, the Business perspective
corresponds to Planner’s and Owner’s
perspectives; Application perspective to
Zachman Designer’s perspective;
Technology perspective to Builder’s and
Subcontractor’s perspectives

and finally, the Microsoft Information
perspective corresponds to the Data
column in the Zachman framework.

Identifying Enterprise
Architecture Components from
an Alignment perspective

As we could see in previous sections,
different Enterprise Frameworks have
different ways to model artifacts of
the Enterprise, their perspectives and
the different levels at which they can
be described.

The Enterprise Frameworks address

a large number of problems and
therefore have a degree of complexity
far larger than needed if the sole
problem is the alignment of the
business and IT architecture. Thus we
can simplify these models and just
consider the sub-architectures which
have a certain commonality. It is out
of the scope of this paper to fully study
and justify similar concepts in these
Enterprise Architecture Frameworks.
If alignment is the main concern, an
Enterprise Architecture has four
fundamentals components: Business
Architecture, Information Architecture,
Application Architecture and Technical
Architecture. This is not new, and it has
been long accepted in the Enterprise
Architect Community (for instance see
www.eacommunity.com).

We will address the issue of alignment
based on the coherency between
elements of Business Architecture,
elements of Information Architecture
and elements of Application
Architecture. The more elements each
of these Architectures has, the more
rich and complex is the concept of
alignment, because more rules and
heuristics need to be stated to govern
the relation between these elements.

So, in order to build up alignment,
one must first clarify the elements of
each architecture (see Figure 4).

In what concerns the Technical
Architecture, its alignment is mostly
dependent on the technology itself. We
are currently investigating how Service
Oriented Architecture (SOA) concepts
overlap with previous architectures
and how alignment could be formulated
in its model. This is ongoing work and
is beyond the scope of this paper.

Business Architecture

The Business Architecture is the result
of defining business strategies,
processes, and functional requirements.
It is the base for identifying the
requirements for the information
systems that support business activities.
It typically includes the following: the
enterprise’s high-level objectives and
goals; the business processes carried
out by the enterprise as a whole, or at
least a significant part; the business
functions performed; major
organizational structures; and the
relationships between these elements.

In this paper, we consider a simpler
case where the Business Architecture
includes only Business Processes, each
business process is composed by a flow
of business activities and each activity
is associated with information entities,
time, and people. Business Processes
have attributes such as criticalness,
security level, delayed execution
(batch), on-line, and so on.

Information Architecture

The Information Architecture describes
what the organization needs to know to
run its processes and operations, as
described in the Business Architecture.
It provides a view of the business

“Applications that manage information entities should provide means to make the entity
information distributable across the organization using agreed-on protocols and formats.”

JOURNAL

| Enterprise Architecture Alignment Heuristics 36



information independent of the IT view
of databases. In the Information
Architecture, business information is
structured in Information Entities,
each having a business responsible for
its management and performing
operations like: Acquisition,
Classification, Quality Control,
Presentation, Distribution, Assessment,
and so on.

Information Entities must have an
identifier, defined from a business
perspective, a description, and a set of
attributes. Attributes are related to
business processes (that use or produce
them) and to applications (that create,
read, update and delete them).
Attributes are classified according to
different properties such as Security,
Availability and so on.

As an example, Client and Employee are
typical Information Entities. Employee
has attributes such as “courses taken”,
“competences”, “labor accidents”, and
“career”. Each of these attributes can
be physically supported by a complex
database schema in different databases
used by several applications.

Application Architecture

The Application Architecture describes
the applications required to fulfill two
major goals: (i) support the business
requirements, and (ii) allow efficient
management of Information Entities.
Application Architecture is normally
derived from the analyses of both
Business and Information Architectures.

Application Architecture typically
include: descriptions of automated
services that support the business
processes; descriptions of the
interaction and interdependencies
(interfaces) of the organization’s

JOURNAL

application systems; plans for
developing new applications and
revision of old applications based on
the enterprises objectives, goals, and
evolving technology platforms.

Applications also have required
attributes, such as availability (up
time), scalability (ability to scale up
perform), profile based accesses (ability
to identify who does each tasks).

Alignment and Architecture
Components

After identifying the major architectural
components from an alignment point of
view, we are now in position to address
the relations between these components
in terms of alignment.

Alignment between Business and
Applications

In a fully aligned Business and
Applications scenario, the time and
effort business people spent to run the
business should be only devoted to
“reasoning” functions. On the contrary,
misalignments force business people
to perform extra and mechanic work
such as:

— Inserting the same data multiple
times in different applications.

— Logging in multiple times, once for
each application they need to access.

— Recovering from a failed operation
across multiple systems, requiring
careful human analyses to rollback to
a coherent state.

— Overcoming inappropriate application
functionality. For example, printing
invoices one by one because
applications do not have an interface
for multiple printing.

Notice that alignment between
Business and Applications in the above

context, does not imply a flexible and
agile IT Architecture, in fact, a measure
of a flexible and agile IT Architecture is
the effort IT people make to keep the
Business and Applications aligned
when Business is changing. This topic
is addressed next.

Alignment between Information

and Applications

In fully aligned Information and

Applications Architectures, IT people

only spent effort and time coding

business functions and logics. On the
contrary, misalignments between
information and application require IT
people to do extra coding for:

— Keeping multiple replicas of the same
data coherent, because they are
updated by multiple applications.

— Assuring coherency from multiple
transactions, because a single
business process crosses multiple
applications.

— Gathering information from multiple
systems and coding rules to produce a
coherent view of the organization’s
business information.

— Transforming data structures when
data migrates between applications.

The extra coding is required to
consistently modify both architectures.
However, since the information critical
to run the business (Information
Architecture) is far more stable

than the applications to support it
(Applications Architecture), most
effort really is put into changing in
the Applications.

Alignment between Business and
Information

Information and Business
Architectures are aligned when
business people have the information
they need to run the business. This

| Enterprise Architecture Alignment Heuristics 37



means accurate, with the right level of
detail, and on time information. Unlike
the previous misalignments, here the
impact is neither time nor effort, but
the impossibility of getting the
adequate piece of information relevant
for the business.

Examples are abundant; a CEO asks
for some report, where sales figures
need to be disaggregated by type of
services. Assuming the report
requested by the CEO has either actual
or foreseen business relevance, the
possibility/ impossibility to produce
such report is an evidence of the
alignment/misalignment between
information and Business
Architectures. To produce the report we
must have the adequate basic data and
data exploring applications, and thus
this is an issue that should be dealt by
the previous Alignments (Information/
Applications and Business/Applications).

Alignment Heuristics

We developed Alignment’s Heuristics
as a common sense rule (or a set of
rules) to increase the probability of
finding an easier way to achieve
Business, Information and Application
Architectures alignment.

Heuristics presented result from
mapping our experience, both as
academic teaching at university and
professional consultancy services, into
the context of the Business,
Information and Application
Architectures presented in this paper.
We present the heuristics that we
consider to have a greater value, given
its simplicity and its results.

JOURNAL

The main heuristics to consider when
checking alignment between Business
and Application Architectures are:

— Each business process should be
supported by a minimum number of
applications. This simplifies user
interfaces among applications,
reduces the need for application
integration, and also minimizes the
number of applications that must be
modified when the business
process changes.

— Business activities should be
supported by a single application.
This reduces the need for distributed
transactions among applications.

— Critical business processes should be
supported by scalable and highly
available applications.

— Critical business processes/activities
should be supported by different
applications than the non critical
business processes/activities. This
helps to keep critical hardware and
permanent maintenance teams as
small as possible.

— Each application’s functionality
should support at least one business
process activity. Otherwise, it plays
no role in supporting the business.

— Information required for critical
processes should be also supported
by scalable and highly available
systems.

— Business processes activities
requiring on-line/batch support
should be supported by applications
running on different infra-structures,
making easier the tuning of the
systems for operating window.

The main heuristics to check alignment
between Application and Information
Architectures are:

— An information entity is managed by
only one application. This means that
entities are identified, created and
reused by a single application.

— Information entities are created
when identifiers are assigned to
them, even if at that time no
attributes are known. For example, if
the Client information entity may be
created before its name and address
and other attributes are known. Even
so, the application that manages
Client information entity must be the
application that manages their IDs.

— Applications that manage
information entities should provide
means to make the entity information
distributable across the organization
using agreed-on protocols and formats.

— Exporting and distributing
information entities across
organization applications should
make use of a “data store”, rather
than a point to point Application
integration. Applications managing
a given information entity should
export its contents to the data store
when its contents have changed.
Applications requiring a given
information entity should inquire the
data store for up-to-date information.
This allows for computational
independence between applications,
and make possible to size the HW
required to run an application
without knowing the rate that other
applications demand information
from it. Further, if the application
goes down, it allows other to continue
operation using best possible data.

| Enterprise Architecture Alignment Heuristics 38



— Whenever possible, applications
should manage information entities
of the same security level. This
simplifies the implementation of
controls and procedures in
accordance with the security policy.

Finally the main heuristics to apply for
Business and Information alignment are:

— All business processes activity create,
update and/or delete at least one
information entity.

— All information entities attributes
are read at least by one business
process activity.

— All information entities have
an identifier understood by
business people.

— All information entities must have
a mean of being transformed for
presentation to appropriate
audiences using enterprise-standard
applications and tools.

— All information entities must derive
from known sources, and must have
a business people responsible for its
coherency, accuracy, relevance and
quality control.

— All information entities must be
classified and named within the
Information Architecture.

— For each information entity, Business
people should be responsible for
assessing the usefulness and
cost/benefits of information and
sustain its continued use.

Final Remarks

The heuristics presented have been
validated and tested in real projects.

In some cases, different heuristics
produce opposite recommendations.
This means that, a compromise solution
must be reached. In other cases,
heuristics do not favor optimal solutions

JOURNAL

from an engineering point of view,
because optimal solutions do not
normally take into account flexibility
and ease of change.

Another remark is the heuristics
presented intend to validate alignment
among architectures, but assume that
each architecture is “aligned within
itself”. This means that we are not
checking if, for example, the Business
Architecture presents a good and a
coherent schema of the business
processes and activities. Likewise,

we are not checking if Applications
Architecture makes sense or not.

This requires more complex models,
such as the ones initially proposed in
original Frameworks (Zachman, IAF
and Microsoft).

The work presented was developed using
the Zachman Framework as the general
approach, but is strongly focused in the
alignment issues. We have coded a large
percentage of the heuristics presented
in a modeling tool (System Architect
from Popkin Software) and we are able
to derive a measurement for alignment
given a Business, Application and
Information Architecture. We have
started work to include these heuristics
in Microsoft Visio.

We consider the heuristics to be
valuable because they force architects
to think about the justification of their
decisions, leaving better documented
and solid architectures.

References

[AMO04] Andrew Macaulay, Enterprise
Architecture Design and the Integrated
Architecture Framework, JOURNALI:
Microsoft Architects Journal, Issue 1,
January 2004.

Pedro Sousa

pedro.sousa@link.pt

Pedro Sousa is responsible for
Enterprise Architecture professional
services at Link Consulting SA, where
he has been involved in several
Enterprise Architecture projects for
the past six years. He is an Associate
Professor at the Technical University
of Lisbon (IST), where he teaches on
theses subjects in Masters of Computer
Science courses. He has published a
series of papers about Business and
IT alignment.

Carla Marques Pereira

Carla Marques Pereira has a MSc in
Computer Science at the Technical
University of Lisbon (IST). She is
reading for a PhD on the subject of
“Business and IT alignment”. Carla
is a member of Link Consulting SA’s
Enterprise Architects team and a
researcher in the Center for
Organizational Engineering
(ceo.inesc.pt).

José Alves Marques

José Alves Marques is CEO of Link
Consulting SA and a full Professor at
Technical University of Lisbon (IST).
Technically, his main focus is
Distributed Systems Architectures
and Services Oriented Architectures.
He has a long track of published
papers and projects on these domains.

| Enterprise Architecture Alignment Heuristics 39



By Maarten Mullender, Microsoft Corporation

Why did the razorbill raise her bill?
So that the sea urchin would see
her chin!

Introduction

Almost exactly seven years ago, I read
a Microsoft internal memo called The
Internet Applications Manifesto, Take I1
or The Sea Urchins Memo. This paper
pushed for using XML as the
communication mechanism between
services. To quote:

I call this model the sea urchin model
because I think of sites already as sea
urchins with many spikes sticking out
of them (URLs) each dispensing Ul
(HTML). These URLs as most have
already realized are the “methods”

of the site. In this brave new world,

I expect sites to also routinely become
Information dispensers with the
“methods” of the site returning not UI
but information. Thus one can think of
the Web as a sea filled with spiky sea
urchins, all willing to emit information
of various kinds if one but knew to ask.
Initially, one will have to know to ask.
The evolution of an infrastructure that
can automatically find such
information will depend upon the
emergence of what I call “Schema”,
namely universally agreed upon types
of semantics that allow multiple
independent consumers and producers
to agree on how to share information
in specific domains. See opportunities
below for more on this.

Since the Sea Urchins memo, we have
made great progress in describing the
how of services. With “Razorbills”, I
propose putting a similar effort behind
providing a description of the what’ of
services. Describing the ‘what’ will add
dramatically to the usefulness of
services and “raise her bill”.

I propose standardizing the ‘what’
description using Entities, Views,
Actions, References and Relationships.

Service Oriented Architecture (SOA) is
as much, if not more, about consuming
services as it is about building services.
To enable better consumption I believe
we need infrastructure that allows
people that may be less technical but
do have domain expertise (the so called
business analysts) to design and build
solutions. We need infrastructure that
allows users of any application,
structured forms as well as free form
documents, to really use the
functionality offered by services.
Standardization on a way of describing
services in business terminology will
help do that. It will help business
analysts and users to better bridge the
gap between the structured and the
unstructured, the formal and informal,
both in content and in process.

What and How

Current service descriptions such as
WSDL and the WS-Standards describe
how to access functionality. Once the
caller has decided which functionality
to invoke, the WSDL describes how

to encode the message, how to route
the message, how to secure the
message, how to authenticate the caller
and everything else needed to describe
how to send the message. It does not
describe what should be called. For

any dedicated client or consumer of a
service that already knows what to call,
this is great and since the infrastructure
and the description are based on
standards, the code is reusable and
many technologies can interoperate.
This means that you can create
communications between many parts,
based on a single infrastructure.

However, this implies that the logic of
what is being called is coded into the
application. When organizations want
to be flexible, they may want to access
services to get information, aggregate
information, and reorder information,
or they may want to change process
flows. Currently, to do this, they require
developers. This may make the desired
changes expensive — in many cases,

too expensive. Organizations facing this
problem would rather have business
analysts, and even business users,
make these changes. This would make
change cheaper, shorten the change
cycle, and make them more agile.

If our software could communicate
this what to the business people, then
they could define new aggregation of
information, and change or create
the flow of processes without the help
of developers.

If we describe what services have to
offer and we describe this in terms
understood by both business people
and software, we would not only have
a description of the how, but also of
the what’.

This information is available today, but
it is in the heads of the designers and
developers — at worst — and in some
design documents at best. The
consuming applications are being
written using this knowledge. However,
it is generally not available to tools and
other software that could be used by
analysts and users to solve their
challenges. We need to find a standard
way of describing this information.

In the following I will explain the
fundamental idea of such a description
of what services expose and then I will
highlight possible use of such

“With ‘Razorbills’, I propose putting a similar effort behind providing a description

of the what of services.”

JOURNAL“4 | Razorbills 40



description. I believe and I hope that
I will be incomplete; going down this
road will undoubtedly provide us with
more insight and more ideas.

What

Services expose business functionality
to their consumers. Business analysts
and business users often prefer to
think in terms of the entities they use.
They understand the relationships
between these entities and the actions
that can be taken on those entities.

Entities

Most services encapsulate entities.
However concrete these entities were
for the designers of the service, for the
consumer of the service they are
abstract. The consumer cannot touch
them or manipulate them; the
consumer does not know whether they
are stored in a single table or in a set
of files. The consumer, however, does
understand what they represent:
Customer, Order, Problem report, etc.
The entity is made up of the
combination of all of its state, its
behavior as well as its relations to
other entities.

Views

The service exposes views on these
entities. The consumer may obtain an
address view, or a financial view, or a
historical view on the customer. These
views are snapshots of the entity,
taken from a specific viewpoint. The
views are concrete. They have a well-
defined schema exposing attributes

or properties of the entity. It must be
noted however, that views do not
necessarily present a subset of the
entity information. They may very
well contain information from related
entities and overlap with views on those
entities. The view on an order may

contain the customer’s name and address
as well as the product descriptions so
that it may be used in the user
interface or to populate a document.

Actions

The service also exposes methods or
actions. Many of the actions are
related to an entity. For example,
“release order” or “upgrade customer”
are clearly related to specific entities.
And, if these actions require input
information, this information often
comes from views on other entities.
For example, a request to a supplier to
create a sales order is built using the
information from a purchase proposal.
A view on the purchase proposal is
converted into the sales order request.

Entities, views and actions are artifacts
that we can describe, that a user can
understand and that may help us
describe services in ways that can be
understood by business analysts.

I want to mention other artifacts that
are less often used.

References

Many entities can be identified using
key attributes. However, they can often
also be uniquely identified using other
attributes. Customers can be identified
using their social security number, tax
number, or DUNS number. A list of
customers can be retrieved via the zip
code, the region, or the account
manager. We can formalize this
through the concept of reference.

A reference defines either a unique
instance or a list of instances. A
reference, like a view, has a schema.

The actions exposed by the service
accept references to identify the
entities they operate on. The references

are a more formal way of defining
possible input and a more generic
way as well.

References formulate queries to
services. Such a query may be as
simple as the list of key attributes or
as complex as the formulation of a
complete set of conditions. Often a
reference will consist of a combination
of required and optional attributes
allowing clients that have different
information to obtain the same views
and use the same actions through the
same interfaces. Design of reference
schemas is just as important and just as
complex as the design of view schemas.

Relationships

Now, if we have a view of one entity, an
order say, it should not be too hard to
build a reference to a related entity, e.g.
the customer for that order. In other
words, we can transform the order-view
into a customer-reference which refers
to the customer entity. This effectively
gives us a relationship between the
order view and the customer entity.

A relationship uses the data in one
view to construct a reference to another
entity. Such a relationship can be
defined using the schemas of a view
and a reference. Consequently,
relationships are not constrained

to a single service; they can define
relationships between entities
encapsulated in different services.

If we are able to describe these
entities, the views on these entities,
the relationships between these
entities and the actions on these
entities in terms that are understood
both by the business people and the
software, we would have a description
of the ‘what’. This description should

JOURNAL4 | Razorbills 41



Example

Let me give a simple example. Suppose we retrieve an order —i.e. a view on an
order — from a Web service. The order view may come in XML that, after much
simplification, looks something like:

<ERP:0rder OrderID="8245" >
<Customer CustomerID="4711" >
<CustomerAddress
Name="Microsoft Corporation”
Country="USA"

/>
</Customer>
<OrderLines>

</OrderLines>
</ERP:0rder>

Table 1: Simplified Order View

The view is not restricted to what is stored in the order table or in the order object.
This view on an order includes some customer information and possibly some
product information, so that it can be displayed or printed.

From such an order, we may derive references to the customer for the order:

<ERP:CustomerReference CustomerID="4711" Such a reference is useful
/> to access services that share
the same customer numbers

This reference would be
useful to access services
that do not share the
unique key.

<CRM:CustomerReference
CustomerName="Microsoft Corporation”
State="WA"

/>

Of course you can add
redundant information,
so that the reference can
CustomerName="Microsoft Corporation” be used for all kinds of
State="WA" services. Ultimately there
is no reason why the view
/> itself could not be used as
a reference and it may
sometimes be very useful.

<My :CustomerReference
CustomerID="4711"

Table 2: Examples of Customer References

not only describe the artifacts and the
relation between them, but also their
behavior, what people can do with
them and what software can do with
them. This description can easily be
linked to, and in fact has to build on,
the existing description of the how.

Even though much of this information
can be provided by the designer of the
service interface similar to how WSDL
is currently provided, an extension to
WSDL cannot solve all of our needs.
Relationships between entities offered
by different services should not be
stored in either, but would require
storage external to these services.
Instance specific information, such as
the current availability of relationships
and actions, as well as information
created at run-time, such as tasks in

a collaborative workflow, require run-
time interrogation of the service and
thus a run-time description. This is
very much related to service contracts
and the required infrastructure for
providing run-time information about
the state of a specific conversation.

Since views are what the designer
exposes of the entities, much of the
information is available in the systems
today. Every service that was designed
around entities provides most of the
information needed and in many other
systems the analysis has been done
and captured in some form

of metadata.

The values in these references came
from the view on the order. The names
of the elements and attributes may be
different between the view and the
reference. Sometimes it is even useful to
merge in values that did not come from
the original, if you want to restrict the
result set to a specific department for
instance, or, if you need a combination

“It is only a logical evolution that leads us from how to access services to what services offer.”

JOURNAL4 | Razorbills 42



of views as the source (e.g.: all
customers that bought a product xyz
from account manager abc). The recipe
that gets you from the view or the set
of views to the reference is called

a relationship. The relationship can be
defined as an XSLT or as a piece of
code, it doesn’t really matter as long
as the consumer understands how to
interpret the metadata and construct
the reference. The relationship
describes how the consumer of

the services can construct a reference
from a view.

References may refer to entities, thus
allowing the consumer (the user or the
client-side code) to decide which view to
retrieve, or they may refer to a specific
view on an entity. The reference
schema alone is not sufficient for the
client to retrieve a view. The client
needs a description of which service
provides access to the service, which
method needs to be called, and how

to call that method using the given
reference. For any given view, there
may be one or more references that can
be used to obtain that view and for
each valid combination we need the

description of which method to call.

Not all customer references can be used
to retrieve all customer views. For
example, an ERP service may not
provide a method to retrieve customer
information using the Social Security
Number (SSN), but the CRM service
may. So, you may go to the CRM service
to retrieve enough customer information
to build a reference to the ERP customer.

Lists have views too: a customer
address list is completely different from
a customer balance list. Both are views
on a list of customers.

The descriptions of Entities, Views,
Actions, References and Relationships
would not be limited to schemas and
recipes. These descriptions would
encompass information about those
artifacts. The descriptions need to be
useful both to humans and to software,
including describing:

— Which method needs to be invoked to
retrieve a specific view from a
reference.

— How long a view is guaranteed to
remain valid, or how long it may be

References do not always return a single instance. It is equally possible to have

references to lists, like for instance:

<ERP:0OrderListReference CustomerID="4711"

/>

<ERP:0rderListReference
ProductID="B-747"

/>

<ERP:CustomerReference
CustomerID="4711"

/>

Table 3: Examples of OrderList References

A reference to find all orders
for a specific customer.

A reference to a list of
orders requiring a more
complex query over the
order items.

There is no problem
offering a method that
retrieves orders using a
customer reference.

used to formulate requests. The
prices in the catalog from Ikea are
valid for a year, but what information
can I use from a production schedule,
and, for how long? What can we
describe about these different types
of information contained in views?

— Caching behavior and how to
optimally retrieve and manage the
offline views.

— Access rights on references and thus
on relationships.

— Relevance of relationships for certain
roles, allowing the user interface to
display the most relevant
relationships.

— Types of relationships, such as one-
to-one relationships, one-to-many,
one-way, hierarchical, sibling, hard’
and ‘soft’, etc.

— How an aggregated view is composed
and what the caching policy for the
constituent views and thus for the
aggregated view is.

— When an action should be enabled or
disabled in the user interface.

— The action’s impact on the service’s
state. Does it update state, is the
update transactional, does it throw
exceptions or offer retries, etc.

Entities and Views in SOA

The differentiation between entities
and views is important in a distributed
environment. Data is copied between
the systems and whenever the
consumer of a service retrieves data,
it will get a copy. When I request
information about an entity, I will
receive a copy. This copy is a view on,
or a snapshot of, the state of the entity
from a particular angle. I may receive
the customer’s financial view, or the
customer’s satisfaction view, or the
customer’s contact view. These views
depend on what I want to do and what
I am allowed to see. When I receive
that information only a few

JOURNAL4 | Razorbills 43



milliseconds later, the service may
already have moved on and changed its
internal state. The view may no longer
reflect the internal state of the service
even when I receive it, and the chance
of my view being out of sync increases
the longer I hold on to it. The
differentiation between view and entity
is an important recognition of the fact
that the consumer has an outside view
on the entity and that there is a time
difference between creating that view
and receiving it. It’s like taking a
picture; the picture is frozen in time,
whereas the subject of the picture may
move on. If you take a picture of a
building, you will not see the entire
building; you will only see it from one
particular angle. The building will not
change much after the picture has been
taken, but the people on the picture,
the clouds on the picture and even the
trees on the picture will move. The
snapshot is taken from a particular
angle or viewpoint and frozen in time.

Because views are copies of data and
may be or may get out of sync, the
concept of references is important.
They provide access to the source of the
information, to the entity itself. They
allow us to convey and store information
and let the service that encapsulates
the entity deal with the concurrency
issues. References are less likely to

get out of sync. Normally, that will only
happen if the entity ceases to exist. To
avoid this from happening, I would
recommend that the entity be marked as
being obsolete rather than to delete it.

As I said above, the entity is made up
of the combination of all of its state,

its behavior and its relations to other
entities. Understanding the mechanisms
that cover the relationships between
entities and their views, their behavior
and other entities should form one of

the fundamentals of any distributed
architecture and thus of any SOA. It
would be a huge step to capture these
mechanisms in ways that can be used
by the business people, the designers,
and developers as well as by the systems.

These concepts are very similar to
what we know from object orientation.
However, there are differences. The
most important one, I find, is the notion
of distance between consumer and
supplier of the functionality. The data
has to travel from within the service to
the consumer. One of the consequences
of this is that, since the data will not
be locked on behalf of the consumer,
the consumer has to be prepared for
changes to the service’s statei. This
leads to the concept of views. This
notion of physical distance and the
consequential temporal distance
between requesting information,
providing information and using that
information leads to a whole new field
requiring explorationii. For instance,
what is the behavior of the service
when it is receives a request that uses
older data? What are the guarantees the
service will give about that data? When
I issue a price list with prices valid
through January 1, I guarantee that

I will honor those prices. When I request
a stock price, there is no guarantee
whatsoever. What are the possible
guarantees or service level agreements
and how can we describe these?

iSee for instance my article: “Dealing
with Concurrency: Designing
Interaction Between Services and
Their Agents” at
http://www.msdn.microsoft.com/library/
en-us/dnbda/html/concurev4M.asp.

How Can What Be Used?

Exposing all this information is extra
work for the designers and developers
of the service. This extra work will only
pay off if these services are consumed
using this new description. We don’t
only need infrastructure to capture and
expose the functionality offered by the
service, we also need the infrastructure
to consume that information and offer
it to business analysts and users so
that they can do useful things. In the
following, I present only a few
examples of infrastructure to provide
better service to users and thus to offer
better human interaction.

Entity Aggregation

Formalizing the concepts of entities,
views, and references provides a good
starting point for a model for entity
aggregation and for information
integration in general and thus for an
information architecture. By providing
infrastructure and tools for information
integration, building on a description of
services in terms a domain expert
understands, a business analyst will
have more influence on the way the
business is organized.

Let me revisit entities. Earlier I wrote
that a service encapsulates entities. If
we look at the customer entity, many
organizations will have multiple
services defining customer entities.
There could be an ERP system with an

ii Pat Helland has an interesting article
on this subject “Data on the Outside
vs. Data on the Inside” at
http:/www.msdn.microsoft.com/library/
en-us/dnbda/html/dataoutsideinside.asp.

“Relationships are not constrained to a single service; they can define relationships between
entities encapsulated in different services.”

JOURNAL“4 | Razorbills 44



ERP customer entity, a CRM system
with a CRM customer entity and many
other systems as well. Users might
want to see an aggregated customer
entity that has aggregated views as
well as the original ones and that has
aggregated actions as well as the
original ones and that has all the
relationships from the original ones
and possibly some new ones. We want
the business analyst to define these
aggregations and reduce the required
amount of support from the developers.

In entity aggregation, entities are
combined to form new entities. These
entities may live in the same service
or may come from different services.
Entity aggregation, or information
integration, has two main aspects:

— Aggregating information
— Aggregating functionality

I will discuss these separately.

Aggregating information

An aggregated entity is defined by the
views on that aggregated entity and by
specifying how these views are built
out of the underlying views. A business
analyst can build new schemas using
the existing ones, taking into account
constraints such as whether the access
rights to these underlying views match
the intended audience for the
aggregated view.

A tool should be able to see how the
information can be retrieved from the
specification of the composition. For
instance the tool could decide that
when presented with a CRM customer
reference, the CRM view should be
retrieved first and then a relationship
from that view to an ERP customer
reference could be used to obtain the
ERP information. It could define a

different path when presented with
an ERP customer reference.

When the information needs to be
replicated, the tool could look at the
caching policies of the constituent
views and provide replication for those
and offer aggregation based on the
cached views. In other cases it may try
to minimize the number of constituent
views. For example, by retrieving an
aggregate view of the ERP customer,
retrieve and cache that and then
derive the smaller views from the
cached aggregate.

Whichever the best algorithm for the
specific problem, a tool should be able
to offer working solutions using the
information given by the description of
what the services have to offer. The
metadata should provide information
that helps the business analyst define
useful combinations and make
appropriate policy choices and it should
provide information for tools and run-
time to support and execute both the
decision process and the outcome.

Aggregating functionality

Actions on such an aggregated entity
will often have to touch the underlying
entities. In some cases this has to be an
“all or nothing” action and in other
cases it has to be made certain that all
individual steps are executed. Both are
examples of what I call short running
processes or activities. A tool could
concatenate actions based on their
inputs and outputs. Moreover, given a
description of the underlying actions or
methods, including a description of
their transactional behavior such as
whether they update state, throw
exceptions or offer retries, a tool could
concatenate the underlying actions in a
logical sequence to minimize chance of
failure and inconsistency and even

raise an event or send an email in case
something does go wrong after all. Of
course there is no reason to restrict this
to entity aggregation, these types of
activities happen all the time. This is
generally applicable in the area of
service orchestration.

Again, a description in user
understandable terms allows a user or
an analyst to combine and order a set
of actions and build larger actions.

A description of behaviors and side
effects of actions allows a tool to make
sure that such aggregated actions
behave predictably and can be
controlled and managed.

Even with good tool support, defining
good schemas for views on and
references to entities remains difficult.
We should put more effort in providing
guidance in this area. One of the major
challenges in this area is designing for
change, where the different artifacts
have a different rate of change. Data
obviously changes much faster than
schemas do and some types of data
change faster than others. The
definition of the data may change while
the definition of the processes remains
unchanged. The reverse of this may
happen too. Views, references, actions,
code and process definitions will often
change at different rates and at
different times. A discussion on this
goes beyond the scope of this document.
Nonetheless, it must be clear that a
good design of all of these artifacts
must include a concept of versioning
even in the first version.

Collaboration

References play an important role
when crossing the boundary of
organizations where one wants to make
sure that both parties collaborate on
the same subject. Often this is

JOURNAL4 | Razorbills 45



complicated by the fact that not all
information can or may be shared.

For instance when one physician sends
information about a patient to another
it is important to be able to send an
exact reference to the other party, to
unambiguously identify the patient,
but both parties will have access to
their own private additional
information. The other party will have
different information available and will
access different services to obtain that
information, but the reference may still
be standardized for the domain and be
communicated. The key attributes and
therefore the data model do not have

to be the same on both sides. It suffices
to agree on an interchange format for
the references.

On the other side, the work of
collaborating users that do have
access to the same services could be
coordinated by those services if the
users communicate references instead
of chunks of information. Multiple
users can request changes from the
service and the service will resolve the
concurrency issues. The single truth is
clear to all in the coordinating service.

Microsoft Office Information Bridge
Framework (IBF) uses references in
documents to communicate information
and to allow the user to add business
context to a document. References can
be used to convey not only a limited
piece of information, such as an
expense report, but also to provide
access to a wealth of information, such
as the trip report, the customer
opportunities, and other information
related to such an expense report. If
the recipient of the information has a
description of the references and of
relationships used in the document,
this user can then do more than just

consume the information compiled
by the sender. Related relevant
information will automatically be
available and offered as well.

Many collaborations or workflows
designed today store the data with the
flow. The flow then just runs by itself
based on that data. It breaks as soon as
someone does anything in the backend
system that influences the flow. For
example, when designing a flow for
doing a stock trade, the progress of the
trade is stored in the workflow system
and the flow tries to just go ahead.

If someone blocks that trade in the
backend system, the flow runs into an
exception at some next step. In other
words the designer should have
synchronized the state of the flow
with the state of the backend system.

References are also a way to avoid
unneeded duplication or even
multiplication of state — state that may,
and often will, become out of sync.
Formalizing references will reduce, not
completely solve, the problem.

This is true for workflows and for
document collaboration. There is no
difference between using references in
workflows, documents, e-mails or in
instant messenger. In all cases I have
the choice between sending the data
itself or a reference to that data and
in all cases I have to manage change
between many copies when I send the
data or I have a service manage it for
me. If I send a document to ten people
for review; each person gets a copy and
everyone makes changes. If instead

I send everyone a reference to the
document, each person can edit the
document and the changes are
synchronized by the service. Using the
references avoids making many copies

and having to manage those copies.
This can now be delegated to a service
that was already designed to deal with
concurrent updates and that service
does not care whether the references
were sent by email, instant messenger
or as part of a workflow.

The main points here are that in
designing for collaboration and
processes in general:

1. Avoid building a parallel data
structure, but use references instead
to make it easier to develop robust
flows and collaborations

2. Eliminating different types of
payload makes designing the system
easier. References have behavior:
the actions defined by the service
description of the entity. The
workflow can use this behavior.

The concept of references helps reduce
synchronization issues and this helps
reduce the need for conflict resolution.
It also helps convey uniquely
identifiable information without the
need to align the systems, which then
can be used to identify related
information by following the
relationships. Capturing these concepts
makes them available to tools,
infrastructure, and thus to humans.

User Interaction

The description of views and actions
effectively exports this functionality to
the consumer of the service. A consumer
can use this to provide presentation for
views on entities in the user interface.
The step to portals seems a natural
continuation. For instance a portal can
define parts to show views on entities. A
part showing the content of such a view
to the user can provide access to the
actions, using buttons, or smart tags,

JOURNAL4 | Razorbills 46



thus exposing these actions to end
users. The metadata can provide hints
to the user interface on how to expose
the actions and the run-time description
can provide hints as to whether certain
actions are available at this time for the
instance that is currently displayed.

If these parts use portal infrastructure
based in the proposed metadata, then
that infrastructure would know which
view on which entity instance is being
shown. It could then offer the user a
choice of relevant related instances
that the user could navigate to. IBF
was the first instantiation of this idea
and offered a portal in the task pane.

Not only presentation, but also offline
availability would be aided by a
description of the views and their
relationships. Service agents manage
offline and cached information on
behalf of their consumers. I could see a
design where if such a service agent is
triggered to take an instance offline,

it uses the relationships to see what
further relevant information should be
taken offline. It uses the relationships
to find the relevant instances and to
prune the offline tree by weighing that
relevance. For instance, if the calendar
takes an appointment offline for a
customer visit, by following the
reference in the appointment the
customer information can be taken
offline, and by following further
relationships, the problem reports can
be taken offline as well.

The concepts of portal parts and service
agent infrastructure form the basis for a
smart portal infrastructure. The addition
of the extended service description
provides user interface with the ability
to generically provide actions to the

user and enable or disable these actions

as appropriate. Moreover the description
of relationships between the views
provides navigation between the parts.
The description also offers service agents
the opportunity for more intelligent
offline behavior. All in all, the description
of services offers much to make

a smarter portal.

What Should Happen Next?

It is only a logical evolution that leads
us from how to access services to what
services offer. Many organizations and
vendors already describe the
functionality of their services in
metadata. It is only a reasonable to
expect that the industry will standardize
on the way to describe these services. It
is equally reasonable to expect that it
will take time, a lot of time.

The Sea Urchins memo was about how
to communicate. Razorbills is about
what to communicate; until she can
“raise her bill” the sea urchin will never
“see her chin.” Just like the original Sea
Urchins memo discussed the need for
both a method and tools for sharing
data, for functionality, we will need
infrastructure to describe and expose
what functionality services have to offer.
But such infrastructure alone doesn’t
bring about change. So, we will need
applications and application
infrastructure to use these descriptions.
One will not be available before the
other, they will have to grow up together
and in the mean time, we will want to
use some of the concepts already. We
don’t want to wait for this entire
infrastructure to be available, but we do
want to use it as it becomes available.

Raise Her Bill

Standardization on exposing what
services have to offer requires an
industry effort in the following areas:

Extensible model to describe what
services offer

This, like the current WS standards,
should offer a fixed basis and be
extensible in most areas. For instance,
multiple standards describing caching
behavior or the guarantees on data
validity might evolve and each of
these needs to be plugged in to the
overall description.

Extensible infrastructure for that
model

It is important to provide a model that,
like WSDL, can be queried by both
tools and service consumers. However,
it is equally important to not just
provide static information. The effort
needs to align with our thinking on
service contracts and should include
dynamic definition and redefinition of
views, actions, references, relationships
and even entities. Such as, providing
the current availability of actions and
relationships on a particular instance
or provide information about an
instance of an ad-hoc workflow.
Building on the extensible SOAP
infrastructure, this should become part
of the .NET Framework.

Shared infrastructure for storing
inter-service description

The description of everything that
transcends a single service needs a
place to go. This includes relationships
between entities in different services
as well as the description of user
interface or hints for user interface.

I am hesitant to call for a directory
infrastructure on top of UDDI.
Distributed directory infrastructures
are gaining popularity and seem to
offer good alternatives. Important in
this context is only that consumers

of these services can store and query a
description of inter-service relationships.

JOURNAL4 | Razorbills 47



After the Sea Urchins memo, it took us
a few years to be convinced that XML
was the way to communicate and we're
still struggling to define all of the
standards and required infrastructure.
It will take time before the above starts
being realized and the razorbill will
have proudly raised her bill. However,
would this be enough for the sea urchin
to see her chin?

See Her Chin

For the above infrastructure to be
visible and usable, the industry would
have to provide tools, applications, and
higher level infrastructure that allows
the users, the business analysts, and
even developers to build on that
infrastructure. I will suggest a few here
and others will be able to extend this
short list with many other useful
examples. Not all of the above
infrastructure needs to be in place.
Some of these can start using more
proprietary solutions. When solutions
like these become available, everybody,
including the sea urchin, will be able to
see the razorbill’s chin.

Build tools for Entity Aggregation
and Service Orchestration

Bring aggregation and orchestration to
the domain of business analysts where
it belongs. In Microsoft, BizTalk would
form an ideal basis to build tools

for this.

Provide User Interface
infrastructure to browse the business
Build a Smarter Portal defining default
presentation for views, thus allowing
navigation from view to view, across
entities and across services.

Provide a Framework for

Service Agents

Such a framework would enable smart
clients to deal with intermittent
connectivity and caching and queuing.
Using the relationships, service agents
could not only take views offline,

but could also provision relevant
related information.

What Should We Do in the

Mean Time?

Putting all this infrastructure in place
will be a multi-year effort. To prepare
for this future, I recommend those
building services:

Differentiate between entities

and views

Distributed computing and therefore
Service Oriented Architecture and
Design introduce the necessity to think
about the distance between the
services and between the service and
its consumer. Differentiate between
the entity information contained in

the service and the copies of
information defined by the views. Put
these views into schemas and assemble
a collection of reusable schemas. Build
on existing industry specific schemas
when available.

Define and describe the properties of
these views. For example, manage access
to information by means of views and
examine how the service honors the
information it handed out in accepting
requests that use that information.

Formalize the concept of references
When defining an information model,
model references, build services to use
these references, abstract away the key
attributes, think about the defining
attributes of the entities and schematize
this to allow other services and
humans to interact with these services.

JOURNAL“4 | Razorbills 48



Define your own metadata
Regardless of where the metadata
standardization effort is going, you will
be able to reuse the effort put into the
analysis of service interaction. Making
the parts of your software that consume
services more generic, providing more
consistent user interaction and
providing more relevant information to
the users will be easier if you have this
metadata in place.

Conclusion

The information architecture is the
model for interaction between services
at the semantic level. It is the model
for interaction about what. Much like
the programming model describes how
to design services for programming their
communication and coordination, the
information architecture describes how
to design services for human interactions.

Capturing and exposing what services
have to offer, in such a way that the
functionality can be used is an important
and crucial part of the information
architecture. Doing this in business
terms will provide business analysts and
users access to more, and more relevant,
information and functionality. Opening

up services to business analysts and
users allows them to create flexible
content and to create flexible processes,
and it provides them with information
and functionality. This not only drives
down the cost of business and the cost
of change, it also gives them the chance
to seize opportunities that were not
even visible before.

Addressing these challenges will help
our industry address another set of
business requirements: Information
should not just be available; people
should be able to find it, be able to
identify the relevant parts, act on it,
convey it and interact with it.

The sea urchin not only lives, it started
swimming. We use XML as the
communication mechanism between
services, and the industry as a whole is
working hard to describe even better
how to communicate between services.

Now the razorbill should raise her bill
to show what services can offer so they
can be used by other software and
humans alike. If the industry takes on
this challenge, the razorbill will not
only swim, but fly as well.

Maarten Mullender
Microsoft Corporation
maartenm@microsoft.com

Maarten Mullender is a solutions
architect for the .NET Enterprise
Architecture Team; this team is
responsible for architectural guidance
to enterprise architects. During the last
seven years, Maarten has been working
at Microsoft with a select group of
enterprise partners and customers

on projects that were exploring the
boundaries of Microsoft’s product
offerings. The main objectives of these
projects were to solve a real customer
need and, in doing so, to generate
feedback to the product groups.
Maarten has been working for more
than twenty years as a program
manager, as a product manager

and as an architect on a wide range

of products.

JOURNAL4 | Razorbills 49



By Oren Novotny, Goldman, Sachs & Co

Background

The file has been the central container
of work in software development for
over thirty years. All of a project’s
structure and logic is ultimately
reduced down to files and directories.
The tools that surround software
development are built around this
concept, too; compilers, linkers, and
even language features rely on source
code files as input. Version control
systems mirror the file system’s
structure, maintaining a copy of every
version of each file monitored. For
decades this has been acceptable and
has even become standard. Languages
such as C are built upon file
references in the source code via
include directives.

The Problem

In the mid-1990s, the idea of Object-
Oriented development finally began to
gain momentum. Languages like C++,
once formerly constrained to small
research projects, now became the
mainstream. With this fundamental
shift, the file-based system of
development was dragged along as a
relic of old. C++, like its predecessor,
also uses file includes to resolve
dependencies. Despite new techniques
and languages for modelling and
designing software, such as UML, in
the end source files still needed to be
created and linked to each other. This
linkage leads to a duplication of effort
as models must then be translated into
files and source code. Complex build
scripts must also be written to ensure
the proper building of the application.
Should a model change, the source
needs to be updated to reflect the
change; conversely, should the source
code change, the models need to be
updated. A number of different
software solutions have been created to
smooth the synchronization of these

disparate files, but they’re still
developed under the fundamental
notion that the file is the central unit
of output.

The file also proves to be a difficult
challenge when working in a team
environment. If multiple developers
check a file out from source control,
then the version control system must
ensure that conflicting changes do not
occur. If they do occur, then manual
intervention is required to resolve the
differences. The source control systems
are limited since they rely on the file as
the unit to control. The source control
systems are completely unaware of the
language structure contained within
the file. It seems clear that the file is a
relic that has outlived its usefulness for
software development.

Model Driven Architecture

In late 2001, a new methodology for
software development began to emerge:
model driven architecture (MDA). The
fundamental principal behind MDA is
that the model, not the code, should be
the central focus. Platform independent
models are created in UML and then
undergo various levels of transformation
to eventually wind up as source code for
a specific platform. It stands to reason
then, that the model, not the file, should
become the new unit of output. A model
has many different views at different
levels of abstraction. At the highest
level, platform independent components
can be specified in analysis; at the
lowest level there is a platform specific
implementation that reduces to a set of
classes in code. The available modelling
notation allows for the definition of all
necessary features needed to replace
files; specifically, dependencies between
classes can easily be marked by means
of an association arrow with a
dependency stereotype.

Tools that support the creation of
models should ideally allow for version
control on each individual model
element. Each element should have the
ability to be checked in and out of a
repository. Similarly, the modelling tool
should work with the repository to
provide branching and merging support
at the element level. For example,

a developer should be able to connect
to the repository and obtain a list of
elements that meet a given need. The
developer should then be able to branch
the repository element for inclusion in
a new model. At a later date, another
developer might wish to reconcile
differences between branched elements
in different models. The development
environment should support this.

One common example of when this
functionality is needed is for bug fixes.
If a bug in a model element is fixed in
one project, then other projects that are
using the same model element might
wish to incorporate those changes; this
should be an easy task to accomplish.

The Solution

The solution to these problems is
nothing short of a complete paradigm
shift. The development tools must
support the shift that languages have
already made and fully support MDA
development. It is easy to argue that
the source code is, in reality, just
another model. The argument is
exemplified by the existence of a
language-independent Code Document
Object Model (CodeDOM). When you
get down to the basics, the source code
and the UML classes are simply
different views of the same underlying
data. Any separation between them is
an artificial construct that needs to be
eliminated. A developer should be able
to create classes as UML, complete
with methods and attributes,

and toggle between the UML and the

“Development tools must support the shift that languages have already made and fully support

MDA development.”

JOURNAL

| Next Generation Tools for OOD 50



source code. The source code should be
available in many different languages —
simultaneously. This is largely possible
today with CodeDOM, which is
essentially an object-oriented meta-
model that can be easily mapped to
UML. The code structure is easily
portable between most .NET
compatible languages and the tools
should support this.

One artifact that must be eliminated
is the source code file. It serves no
function in MDA that cannot be better
done by different means. In place of
source files, an IDE would instead
connect directly to a project repository.
The project would then list the objects
directly, bypassing the need for files.
This new functionality would work
similarly to the “Class View” currently
available in Visual Studio. The view
would be organized by nested
namespaces rather than directories
and by classes, structs, and resources
instead of files. When a developer
double-clicks the class, the code is
opened in the editor.

The Class View would also contain
UML diagrams. A diagram would be
able to be created at any place in the
hierarchy, and the developer should

be able to drag the classes onto the
designer surface. Each namespace
would have a default diagram and any
number of supplementary diagrams
showing different parts of the system.
The tool would have a graphical view of
the classes and their relationships in
addition to a code view.

Ideally, the code should not be stored in
any single language; it should be stored
as a model with additional CodeDOM
structures. Minor additions to the
CodeDOM classes could enable the
representation of all language features,

eliminating the need for language-
specific code snippets. Each method

in the model can contain language-
independent CodeDOM constructs
which can then be translated into any
supported language for easy editing.
Just like there can be a split-view of
design and HTML view in FrontPage,
a development environment should
provide a split-view of model and code.

When file-based development is
replaced with model-based
development, a new world of
possibilities is opened. Rather than
designing websites by creating web
pages directly, Activity Diagrams can
be constructed to model the user’s
interaction with the site. Upon
compilation, the tools would generate
the necessary output files to support
the diagrams. Each activity on the
diagram that requires a user interface
would contain a UI design. For
example, for any given activity, a web
UI design and Windows UI design
could be a part of the activity. The tools
could allow the import/export of HTML
files to allow designers the ability to
use their own tools rather than the
default IDE. After a designer is done,
the HTML file would then be imported
back into the activity. This whole
concept falls squarely in line with the
new “Whitehorse” technologies
Microsoft is including in Visual

Studio 2005.

Visual Studio 2005 will include support
for Microsoft’s Dynamic Systems
Initiative (DSI) by providing a tool able
to create a System Definition Model
(SDM) linking components to
hardware. Whitehorse includes a set

of new designers in support of MDA
called Software Factories [JG04];

a UML-like class designer is available
for source code and logical application

JOURNAL

and infrastructure and designers allow
developers to declare the application
component structure, configuration and
deployment settings early on in the
design process. Like code files are now,
these models are currently stored as
files within the solution. All models
should be stored within the repository
directly with APIs created to access the
models from the repository.

The source control system should also
be cognizant of the inherent structure
present in the model and code. It
should support the check-in and check-
out of model elements down to the
function level. That way, two
developers could work on different
parts of a class without the potential
for later reconciliation.

The build tools also need to support
this new environment. Rather than
compile files, what they really need to
do is compile a model. By way of a
deployment model, classes would be
associated with assemblies and
executables. The compilers would look
to the deployment model to determine
the physical separation of the project’s
classes and resources, and to the class
dependencies to resolve symbols. The
build process would output many
different files depending on needs; for a
web project, the ASPX or ASMX pages
would be created alongside the binary
assemblies. The build process would
also read the SDM and generate the
appropriate setup files and export the
SDM for import into a deployment tool.

For compatibility purposes, the tools
should allow for the extraction and
import of source code files in any
supported language. A developer could
select a given set of classes to export
and the tool would generate the
required files. A developer could then

| Next Generation Tools for OOD 51



modify the files and then import them
back into the project. The tool would
automatically create the model
elements and prompt for reconciliation
changes if needed.

Conclusion

The modern development environment
has not yet fully caught up to the
object-oriented shift. All of the tools
still rely on a file to be the container
of source code. While some contain
modelling capabilities as well, the
models exist as different entities than
the file and its code. The tools need

to evolve to support modern software
development; they need to merge the
model view and the code view into a
single entity.

While this may seem like a radical
shift, and it is, the new tools will be
natural to developers. Developers
already expect their classes to be
organized by namespace; they do not
really care about which file or directory
contains what code. If a developer
changes a method signature, then he
will want, and expect, to find all
references to the method to fix them.
Architects already construct models of
software and systems so they can
understand them.

References

[JGO04] Jack Greenfield, The Case for
Software Factories, JOURNALS3:
Microsoft Architects Journal, Issue 3,
July 2004.

JOURNAL

Oren Novotny
Goldman, Sachs & Co
oren@novotny.org

Oren Novotny is a software developer
with Goldman, Sachs & Co with an
interest in all technical things.
Previously he was a solutions architect
with Unisys Corporation. Oren is also a
freelance consultant frequently helping
in various open source projects.

| Next Generation Tools for OOD 52



JOURNAL

Executive Editor

& Program Manager

Arvindra Sehmi

Architect, Developer and Platform
Evangelism Group, Microsoft EMEA
www.thearchitectexchange.com/asehmi

Managing Editor

Graeme Malcolm

Principal Technologist, Content
Master Ltd.

Editorial Board

Christopher Baldwin

Architect, Developer and Platform
Evangelism Group, Microsoft EMEA
Felipe Cabrera

Architect, Advanced Web Services,
Microsoft Corporation

Gianpaolo Carraro

Architect, Developer and Platform
Evangelism Group, Windows
Evangelism,

Microsoft Corporation

Mark Glikson

Program Manager,

Developer and Platform Evangelism
Group, Architecture Strategy, Microsoft
Corporation

Simon Guest

Program Manager, Developer and
Platform Evangelism Group,
Architecture Strategy,

Microsoft Corporation
www.simonguest.com

Part No: 098-101154

Neil Hutson

Director of Windows Evangelism,
Developer and Platform Evangelism
Group, Microsoft Corporation
Terry Leeper

Director, Developer and Platform
Evangelism Group, Microsoft EMEA
Eugenio Pace

Product Manager, PAG, Microsoft
Corporation

Harry Pierson

Architect, Developer and Platform
Evangelism Group, Architecture
Strategy,

Microsoft Corporation
devhawk.com

Michael Platt

IT Professional Manager, Developer
and Platform Evangelism Group,
Microsoft Ltd.
blogs.msdn.com/michael_platt

Beat Schwegler

Architect, Developer and Platform
Evangelism Group, Microsoft EMEA
weblogs.asp.net/beatsch

Philip Teale

Partner Strategy Consultant, MCS,
Microsoft Ltd.

Microsoft

Microsoft is a registered trademark of Microsoft Corporation

Project Management
Content Master Ltd.

Design Direction
venturethree, London
www.venturethree.com
Orb Solutions, London
www.orb-solutions.co.uk

Orchestration

Richard Hughes

Program Manager, Developer and
Platform Evangelism Group,
Architecture Strategy,

Microsoft Corporation

Foreword Contributor

Chris Capossela

Vice President, Information Worker
Business Group, Microsoft Corporation

The information contained in this Microsoft® Architects Journal (‘Journal’) is for information purposes only. The material in the Journal does not constitute the opinion of Microsoft or Microsoft’s advice and you should not rely
on any material in this Journal without seeking independent advice. Microsoft does not make any warranty or representation as to the accuracy or fitness for purpose of any material in this Journal and in no event does
Microsoft accept liability of any description, including liability for negligence (except for personal injury or death), for any damages or losses (including, without limitation, loss of business, revenue, profits, or consequential loss)
whatsoever resulting from use of this Journal. The Journal may contain technical inaccuracies and typographical errors. The Journal may be updated from time to time and may at times be out of date. Microsoft accepts no
responsibility for keeping the information in this Journal up to date or liability for any failure to do so. This Journal contains material submitted and created by third parties. To the maximum extent permitted by applicable law,
Microsoft excludes all liability for any illegality arising from or error, omission or inaccuracy in this Journal and Microsoft takes no responsibility for such third party material.

All copyright, trade marks and other intellectual property rights in the material contained in the Journal belong, or are licenced to, Microsoft Corporation. Copyright © 2003 All rights reserved. You may not copy, reproduce,
transmit, store, adapt or modify the layout or content of this Journal without the prior written consent of Microsoft Corporation and the individual authors. Unless otherwise specified, the authors of the literary and artistic
works in this Journal have asserted their moral right pursuant to Section 77 of the Copyright Designs and Patents Act 1988 to be identified as the author of those works.



	Front Cover/Contents
	Editorial by Arvindra Sehmi
	Choosing the Right Presentation Layer Architecture by David Hill, Microsoft Corporation
	David Hill - Biography
	Information Bridge Framework: Bringing SOA to the desktop in Office applications by Ricard Roma i Dalfó, Microsoft Corporation
	Ricard Roma i Dalfó - Biography
	Benchmarking a Transaction Engine Design By Richard Drayton, FiS and Arvindra Sehmi, Microsoft EMEA
	Richard Drayton - Biography
	Arvindra Sehmi - Biography
	Enterprise Architecture Alignment Heuristics By Pedro Sousa, Carla Marques Pereira and José Alves Marques, Link Consulting, SA
	Pedro Sousa - Biography
	Carla Marques Pereira - Biography
	José Alves Marques - Biography
	Razorbills: What and How of Service Consumption By Maarten Mullender, Microsoft Corporation
	Maarten Mullender - Biography
	Next Generation Tools for Object-Oriented Development By Oren Novotny, Goldman, Sachs & Co
	Oren Novotny - Biography

