
Version 1.0 October 2010 Copyright Microsoft Corporation ©

Rx Design Guidelines

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 2

1. Table of Contents
1. Table of Contents .. 2

2. Introduction .. 4

3. When to use Rx ... 5

3.1. Use Rx for orchestrating asynchronous and event-based computations 5

3.2. Use Rx to deal with asynchronous sequences of data .. 6

4. The Rx contract ... 8

4.1. Assume the Rx Grammar .. 8

4.2. Assume observer instances are called in a serialized fashion .. 8

4.3. Assume resources are cleaned up after an OnError or OnCompleted message 9

4.4. Assume a best effort to stop all outstanding work on Unsubscribe ... 10

5. Using Rx ... 11

5.1. Consider drawing a Marble-diagram .. 11

5.2. Consider passing multiple arguments to Subscribe .. 11

5.3. Consider using LINQ query expression syntax .. 12

5.4. Consider passing a specific scheduler to concurrency introducing operators 12

5.5. Call the ObserveOn operator as late and in as few places as possible 13

5.6. Consider limiting buffers ... 13

5.7. Make side-effects explicit using the Do operator ... 14

5.8. Use the Synchronize operator only to “fix” custom IObservable implementations................... 14

5.9. Assume messages can come through until unsubscribe has completed 15

5.10. Use the Publish operator to share side-effects ... 15

6. Operator implementations ... 17

6.1. Implement new operators by composing existing operators. .. 17

6.2. Implement custom operators using Observable.Create(WithDisposable) 17

6.3. Implement operators for existing observable sequences as generic extension methods. 18

6.4. Protect calls to user code from within an operator .. 19

6.5. Subscribe implementations should not throw ... 20

6.6. OnError messages should have abort semantics .. 21

6.7. Serialize calls to IObserver methods within observable sequence implementations 22

6.8. Avoid serializing operators .. 24

6.9. Parameterize concurrency by providing a scheduler argument. .. 25

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 3

6.10. Provide a default scheduler .. 25

6.11. The scheduler should be the last argument to the operator.. 26

6.12. Avoid introducing concurrency ... 27

6.13. Hand out all disposables instances created inside the operator to consumers 28

6.14. Operators should not block .. 30

6.15. Avoid deep stacks caused by recursion in operators .. 31

6.16. Argument validation should occur outside Observable.Create(WithDisposable) 32

6.17. Unsubscription should be idempotent ... 33

6.18. Unsubscription should not throw ... 33

6.19. Custom IObservable implementations should follow the Rx contract 33

6.20. Operator implementations should follow guidelines for Rx usage .. 34

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 4

2. Introduction
This document describes guidelines that aid in developing applications and libraries that use the

Reactive Extensions library (http://go.microsoft.com/fwlink/?LinkID=179929).

The guidelines listed in this document have evolved over time by the Rx team during the development

of the Rx library.

As Rx continues to evolve, these guidelines will continue to evolve with it. Make sure you have the latest

version of this document. Updates are announced on the Rx forum:

http://go.microsoft.com/fwlink/?LinkId=201727

All information described in this document is merely a set of guidelines to aid development. These

guidelines do not constitute an absolute truth. They are patterns that the team found helpful; not rules

that should be followed blindly. There are situations where certain guidelines do not apply. The team

has tried to list known situations where this is the case. It is up to each individual developer to decide if

a certain guideline makes sense in each specific situation.

The guidelines in this document are listed in no particular order. There is neither total nor partial

ordering in these guidelines.

Please contact us through the Rx forum: http://go.microsoft.com/fwlink/?LinkId=201727 for feedback

on the guidelines, as well as questions on whether certain guidelines are applicable in specific situations.

http://go.microsoft.com/fwlink/?LinkID=179929
http://go.microsoft.com/fwlink/?LinkId=201727
http://go.microsoft.com/fwlink/?LinkId=201727

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 5

3. When to use Rx

3.1. Use Rx for orchestrating asynchronous and event-based computations
Code that deals with more than one event or asynchronous computation gets complicated quickly as it

needs to build a state-machine to deal with ordering issues. Next to this, the code needs to deal with

successful and failure termination of each separate computation. This leads to code that doesn’t follow

normal control-flow, is hard to understand and hard to maintain.

Rx makes these computations first-class citizens. This provides a model that allows for readable and

composable APIs to deal with these asynchronous computations.

Sample

 var scheduler = new ControlScheduler(this);
 var keyDown = Observable.FromEvent<KeyEventHandler, KeyEventArgs>(
 d => d.Invoke, h => textBox.KeyUp += h, h => textBox.KeyUp -= h);

 var dictionarySuggest = keyDown
 .Select(_ => textBox1.Text)
 .Where(text => !string.IsNullOrEmpty(text))
 .DistinctUntilChanged()
 .Throttle(TimeSpan.FromMilliseconds(250), scheduler)
 .SelectMany(
 text => AsyncLookupInDictionary(text)
 .TakeUntil(keyDown));

 dictionarySuggest.Subscribe(
 results =>
 listView1.Items.AddRange(results.Select(
 result=>new ListViewItem(result)).ToArray()),
 error => LogError(error));

This sample models a common UI paradigm of receiving completion suggestions while the user is typing

input.

Rx creates an observable sequence that models an existing KeyUp event (the original WinForms code did

not have to be modified).

It then places several filters and projections on top of the event to make the event only fire if a unique

value has come through. (The KeyUp event fires for every key stroke, so also if the user presses left or

right arrow, moving the cursor but not changing the input text).

Next it makes sure the event only gets fired after 250 milliseconds of activity by using the Throttle

operator. (If the user is still typing characters, this saves a potentially expensive lookup that will be

ignored immediately). A scheduler is passed to ensure the 250 milliseconds delay is issued on the UI

thread.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 6

In traditionally written programs, this throttling would introduce separate callbacks through a timer.

This timer could potentially throw exceptions (certain timers have a maximum amount of operations in

flight).

Once the user input has been filtered down it is time to perform the dictionary lookup. As this is usually

an expensive operation (e.g. a request to a server on the other side of the world), this operation is itself

asynchronous as well.

The SelectMany operator allows for easy combining of multiple asynchronous operations. It doesn’t only

combine success values; it also tracks any exceptions that happen in each individual operation.

In traditionally written programs, this would introduce separate callbacks and a place for exceptions

occurring.

If the user types a new character while the dictionary operation is still in progress, we do not want to

see the results of that operation anymore. The user has typed more characters leading to a more

specific word, seeing old results would be confusing.

The TakeUntil(keyDown) operation makes sure that the dictionary operation is ignored once a new

keyDown has been detected.

Finally we subscribe to the resulting observable sequence. Only at this time our execution plan will be

used. We pass two functions to the Subscribe call:

1. Receives the result from our computation.

2. Receives exceptions in case of a failure occurring anywhere along the computation.

When to ignore this guideline

If the application/library in question has very few asynchronous/event-based operations or has very few

places where these operations need to be composed, the cost of depending on Rx (redistributing the

library as well as the learning curve) might outweigh the cost of manually coding these operations.

3.2. Use Rx to deal with asynchronous sequences of data
Several other libraries exist to aid asynchronous operations on the .NET platform. Even though these

libraries are powerful, they usually work best on operations that return a single message. They usually

do not support operations that produce multiple messages over the lifetime of the operation.

Rx follows the following grammar: OnNext* (OnCompleted|OnError)? (see chapter 0). This allows for

multiple messages to come in over time. This makes Rx suitable for both operations that produce a

single message, as well as operations that produce multiple messages.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 7

Sample

 //open a 4GB file for asynchronous reading in blocks of 64K
 var inFile = new FileStream(@"d:\temp\4GBfile.txt",
 FileMode.Open, FileAccess.Read, FileShare.Read,
 2 << 15, true);

 //open a file for asynchronous writing in blocks of 64K
 var outFile = new FileStream(@"d:\temp\Encrypted.txt",
 FileMode.OpenOrCreate, FileAccess.Write, FileShare.None,
 2 << 15, true);

 inFile.AsyncRead(2 << 15)
 .Select(Encrypt)
 .WriteToStream(outFile)
 .Subscribe(
 _=> Console.WriteLine("Successfully encrypted the file."),
 error=> Console.WriteLine(
 "An error occurred while encrypting the file: {0}",
 error.Message));

In this sample, a 4 GB file is read in its entirety, encrypted and saved out to another file.

Reading the whole file into memory, encrypting it and writing out the whole file would be an expensive

operation.

Instead, we rely on the fact that Rx can produce many messages.

We read the file asynchronously in blocks of 64K. This produces an observable sequence of byte arrays.

We then encrypt each block separately (for this sample we assume the encryption operation can work

on separate parts of the file). Once the block is encrypted, it is immediately sent further down the

pipeline to be saved to the other file. The WriteToStream operation is an asynchronous operation that

can process multiple messages.

When to ignore this guideline

If the application/library in question has very few operations with multiple messages, the cost of

depending on Rx (redistributing the library as well as the learning curve) might outweigh the cost of

manually coding these operations.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 8

4. The Rx contract
The interfaces IObservable<T> and IObserver<T> only specify the arguments and return types their

methods. The Rx library makes more assumptions about these two interfaces than is expressed in the

.NET type system. These assumptions form a contract that should be followed by all producers and

consumers of Rx types. This contract ensures it is easy to reason about and prove the correctness of

operators and user code.

4.1. Assume the Rx Grammar
Messages sent to instances of the IObserver interface follow the following grammar:

OnNext* (OnCompleted | OnError)?

This grammar allows observable sequences to send any amount (0 or more) of OnNext messages to the

subscribed observer instance, optionally followed by a single success (OnCompleted) or failure (OnError)

message.

The single message indicating that an observable sequence has finished ensures that consumers of the

observable sequence can deterministically establish that it is safe to perform cleanup operations.

A single failure further ensures that abort semantics can be maintained for operators that work on

multiple observable sequences (see paragraph 6.6).

Sample

 var count = 0;
 xs.Subscribe(v =>
 {
 count++;
 },
 e=> Console.WriteLine(e.Message),
 ()=>Console.WriteLine("OnNext has been called {0} times.", count)
);

In this sample we safely assume that the total amount of calls to the OnNext method won’t change once

the OnCompleted method is called as the observable sequence follows the Rx grammar.

When to ignore this guideline

Ignore this guideline only when working with a non-conforming implementation of the IObservable

interface. It is possible to make the observable sequence conforming by calling the Synchronize operator

on the instance.

4.2. Assume observer instances are called in a serialized fashion
As Rx uses a push model and .NET supports multithreading, it is possible for different messages to arrive

different execution contexts at the same time. If consumers of observable sequences would have to deal

with this in every place, their code would need to perform a lot of housekeeping to avoid common

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 9

concurrency problems. Code written in this fashion would be harder to maintain and potentially suffer

from performance issues.

As not all observable sequences are prone to having messages from different execution contexts, only

the operators that produce such observable sequences are required to perform serialization (see

paragraph 6.7). Consumers of observables can safely assume that messages arrive in a serialized fashion.

Sample

 var count = 0;
 xs.Subscribe(v =>
 {
 count++;
 Console.WriteLine("OnNext has been called {0} times.", count);
 });

In this sample, no locking or interlocking is required to read and write to count as only one call to

OnNext can be in-flight at any time.

When to ignore this guideline

If you have to consume a custom implementation of an observable sequence that doesn’t follow the Rx

contract for serialization, use the Synchronize operator to ensure you can still follow this guideline.

4.3. Assume resources are cleaned up after an OnError or OnCompleted

message
Paragraph 4.1 states that no more messages should arrive after an OnError or OnCompleted message.

This makes it possible to cleanup any resource used by the subscription the moment an OnError or

OnCompleted arrives. Cleaning up resources immediately will make sure that any side-effect occurs in a

predictable fashion. It also makes sure that the runtime can reclaim these resources.

Sample

 Observable.Using(
 () => new FileStream(@"d:\temp\test.txt", FileMode.Create),
 fs => Observable.Range(0, 10000)
 .Select(v => Encoding.ASCII.GetBytes(v.ToString()))
 .WriteToStream(fs))
 .Subscribe();

In this sample the Using operator creates a resource that will be disposed upon unsubscription. The Rx

contract for cleanup ensures that unsubscription will be called automatically once an OnError or

OnCompleted message is sent.

When to ignore this guideline

There are currently no known cases where to ignore this guideline.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 10

4.4. Assume a best effort to stop all outstanding work on Unsubscribe
When unsubscribe is called on an observable subscription, the observable sequence will make a best

effort attempt to stop all outstanding work. This means that any queued work that has not been started

will not start.

Any work that is already in progress might still complete as it is not always safe to abort work that is in

progress. Results from this work will not be signaled to any previously subscribed observer instances.

Sample 1

 Observable.Timer(TimeSpan.FromSeconds(2)).Subscribe(...).Dispose()

In this sample subscribing to the observable sequence generated by Timer will queue an action on the

ThreadPool scheduler to send out an OnNext message in 2 seconds. The subscription then gets canceled

immediately. As the scheduled action has not started yet, it will be removed from the scheduler.

Sample 2

 Observable.Start(()=>
 {
 Thread.Sleep(TimeSpan.FromSeconds(2));
 return 5;
 })
 .Subscribe(...).Dispose();

In this sample the Start operator will immediately schedule the execution of the lambda provided as its

argument. The subscription registers the observer instance as a listener to this execution. As the lambda

is already running once the subscription is disposed, it will keep running and its return value is ignored.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 11

5. Using Rx

5.1. Consider drawing a Marble-diagram
Draw a marble-diagram of the observable sequence you want to create. By drawing the diagram, you

will get a clearer picture on what operator(s) to use.

A marble-diagram is a diagram that shows event occurring over time. A marble diagram contains both

input and output sequences(s).

Sample

By drawing the diagram we can see that we will need some kind of delay after the user input, before

firing of another asynchronous call. The delay in this sample maps to the Throttle operator. To create

another observable sequence from an observable sequence we will use the SelectMany operator. This

will lead to the following code:

 var dictionarySuggest =userInput
 .Throttle(TimeSpan.FromMilliseconds(250))
 .SelectMany(input => serverCall(input));

When to ignore this guideline

This guideline can be ignored if you feel comfortable enough with the observable sequence you want to

write. However, even the Rx team members will still grab the whiteboard to draw a marble-diagram

once in a while.

5.2. Consider passing multiple arguments to Subscribe
For convenience, Rx provides extensions to the Subscribe method that takes delegates instead of an

IObserver argument. These overloads make subscribing a lot easier as C# and VB do not support

anonymous inner-classes.

The IObserver interface would require implementing all three methods (OnNext, OnError &

OnCompleted). The extensions to the Subscribe method allow developers to use defaults chosen for

each of these methods.

E.g. when calling the Subscribe method that only has an onNext argument, the OnError behavior will be

to rethrow the exception on the thread that the message comes out from the observable sequence. The

OnCompleted behavior in this case is to do nothing.

In many situations, it is important to deal with the exception (either recover or abort the application

gracefully).

User input ReaReRea

30 ms 60 ms 250 ms

Server call Reactive

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 12

Often it is also important to know that the observable sequence has completed successfully. For

example, the application notifies the user that the operation has completed.

Because of this, it is best to provide all 3 arguments to the subscribe function.

When to ignore this guideline

 When the observable sequence is guaranteed not to complete, e.g. an event such as KeyUp.

 When the observable sequence is guaranteed not to have OnError messages (e.g. an event, a

materialized observable sequence etc…).

 When the default behavior is the desirable behavior.

5.3. Consider using LINQ query expression syntax
Rx implements the query expression pattern as described in the C# 3.0 specification. Because of this, it is

possible to use the LINQ query expression syntax to write queries over observable sequences.

Sample

Consider the following query:

 var r = xs.SelectMany(x => ys, (x,y) => x + y);

This query can be written as:

 var r1 = from x in xs
 from y in ys
 select x + y;

When to ignore this guideline

Consider ignoring this guideline if you need to use many operators in your queries that are not

supported in the query expression syntax. This might negate the readability argument.

5.4. Consider passing a specific scheduler to concurrency introducing

operators
Rather than using the ObserveOn operator to change the execution context on which the observable

sequence produces messages, it is better to create concurrency in the right place to begin with. As

operators parameterize introduction of concurrency by providing a scheduler argument overload,

passing the right scheduler will lead to fewer places where the ObserveOn operator has to be used.

Sample

 var keyup = Observable.FromEvent<KeyEventArgs>(textBox, "KeyUp");
 var throttled = keyup.Throttle(TimeSpan.FromSeconds(1),
 Scheduler.Dispatcher);

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 13

In this sample, callbacks from the KeyUp event arrive on the UI thread. The default overload of the

Throttle operator would place OnNext messages on the ThreadPool (as it uses the ThreadPool timer to

time the throttling). By providing the Scheduler.Dispatcher instance to the Throttle operator, all

messages from this observable sequence will originate on the UI thread.

When to ignore this guideline

When combining several events that originate on different execution contexts, use guideline 5.5 to put

all messages on a specific execution context as late as possible.

5.5. Call the ObserveOn operator as late and in as few places as possible
By using the ObserveOn operator, an action is scheduled for each message that comes through the

original observable sequence. This potentially changes timing information as well as puts additional

stress on the system. Placing this operator later in the query will reduce both concerns.

Sample

 var result =
 (from x in xs.Throttle(TimeSpan.FromSeconds(1))
 from y in ys.TakeUntil(zs).Sample(TimeSpan.FromMilliseconds(250))
 select x + y)
 .Merge(ws)
 .Where(x => x.Length < 10)
 .ObserveOn(Scheduler.Dispatcher);

This sample combines many observable sequences running on many different execution contexts. The

query filters out a lot of messages. Placing the ObserveOn operator earlier in the query would do extra

work on messages that would be filtered out anyway. Calling the ObserveOn operator at the end of the

query will create the least performance impact.

When to ignore this guideline

Ignore this guideline if your use of the observable sequence is not bound to a specific execution context.

In that case do not use the ObserveOn operator.

5.6. Consider limiting buffers
Rx comes with several operators and classes that create buffers over observable sequences, e.g. the

Replay operator. As these buffers work on any observable sequence, the size of these buffers will

depend on the observable sequence it is operating on. If the buffer is unbounded, this can lead to

memory pressure. Many buffering operators provide policies to limit the buffer, either in time or size.

Providing this limit will address memory pressure issues.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 14

Sample

 var result = xs.Replay(10000, TimeSpan.FromHours(1));

In this sample, the Replay operator creates a buffer. We have limited that buffer to contain at most

10000 messages and keep these messages around for a maximum of 1 hour.

When to ignore this guideline

When the amount of messages created by the observable sequence that populates the buffer is small or

when the buffer size is limited.

5.7. Make side-effects explicit using the Do operator
As many Rx operators take delegates as arguments, it is possible to pass any valid user code in these

arguments. This code can change global state (e.g. change global variables, write to disk etc...).

The composition in Rx runs through each operator for each subscription (with the exception of the

sharing operators, such as Publish). This will make every side-effect occur for each subscription.

If this behavior is the desired behavior, it is best to make this explicit by putting the side-effecting code

in a Do operator.

Sample

 var result = xs.Where(x=>x.Failed).Do(x=>Log(x)).Subscribe(...);

In this sample, messages are filtered for failure. The messages are logged before handing them out to

the code subscribed to this observable sequence. The logging is a side-effect (e.g. placing the messages

in the computer’s event log) and is explicitly done via a call to the Do operator.

When to ignore this guideline

Ignore this guideline when the side effect requires data from an operator that is not available to the Do

operator.

5.8. Use the Synchronize operator only to “fix” custom IObservable

implementations
Observable sequences that are created by the Rx operators already follow the Rx contract for grammar

(see paragraph 4.1) and serialization (see paragraph 4.2). There is no need to use the Synchronize

operator on these observable sequences. Only use the Synchronize operator on observable sequences

that were created by other sources and do not follow the Rx contract for synchronization (see paragraph

4.2).

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 15

Sample

 var result = from x in xs.Synchronize()
 from y in ys
 where x > y
 select y;

In this sample only the observable sequence created by another source that doesn’t follow the Rx

contract for synchronization is synchronized. All other operations are already synchronized and do not

require the Synchronize operator.

When to ignore this guideline

There are currently no known cases where to ignore this guideline.

5.9. Assume messages can come through until unsubscribe has completed
As Rx uses a push model, messages can be sent from different execution contexts. Messages can be in

flight while calling unsubscribe. These messages can still come through while the call to unsubscribe is in

progress. After control has returned, no more messages will arrive. The unsubscription process can still

be in progress on a different context.

When to ignore this guideline

Once the OnCompleted or OnError method has been received, the Rx grammar guarantees that the

subscription can be considered to be finished.

5.10. Use the Publish operator to share side-effects
As many observable sequences are cold (see cold vs. hot on Channel 9), each subscription will have a

separate set of side-effects. Certain situations require that these side-effects occur only once. The

Publish operator provides a mechanism to share subscriptions by broadcasting a single subscription to

multiple subscribers.

There are several overloads of the Publish operator. The most convenient overloads are the ones that

provide a function with a wrapped observable sequence argument that shares the side-effects.

http://channel9.msdn.com/Blogs/J.Van.Gogh/Rx-API-in-depth-Hot-and-Cold-observables

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 16

Sample

 var xs = Observable.CreateWithDisposable<string>(observer =>
 {
 Console.WriteLine("Side effect");
 observer.OnNext("Hi");
 observer.OnCompleted();
 return Disposable.Empty;
 });
 xs.Publish(sharedXs =>
 {
 sharedXs.Subscribe(Console.WriteLine);
 sharedXs.Subscribe(Console.WriteLine);
 return sharedXs;
 }).Run();

In this sample, xs is an observable sequence that has side-effects (writing to the console). Normally each

separate subscription will trigger these side-effects. The Publish operator uses a single subscription to xs

for all subscribers to sharedXs.

When to ignore this guideline

Only use the Publish operator to share side-effects when sharing is required. In most situations you can

create separate subscriptions without any problems: either the subscriptions do not have side-effects or

the side effects can execute multiple times without any issues.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 17

6. Operator implementations

6.1. Implement new operators by composing existing operators.
Many operations can be composed from existing operators. This will lead to smaller, easier to maintain

code. The Rx team has put a lot of effort in dealing with all corner cases in the base operators. By

reusing these operators you’ll get all that work for free in your operator.

Sample

 public static IObservable<TResult> SelectMany<TSource, TResult>(
 this IObservable<TSource> source,
 Func<TSource, IObservable<TResult>> selector)
 {
 return source.Select(selector).Merge();
 }

In this sample, the SelectMany operator uses two existing operators: Select and Merge. The Select

operator already deals with any issues around the selector function throwing an exception. The Merge

operator already deals with concurrency issues of multiple observable sequences firing at the same

time.

When to ignore this guideline

 No appropriate set of base operators is available to implement this operator.

 Performance analysis proves that the implementation using existing operators has performance

issues.

6.2. Implement custom operators using Observable.Create(WithDisposable)
When it is not possible to follow guideline 6.1, use the Observable.Create(WithDisposable) method to

create an observable sequence as it provides several protections make the observable sequence follow

the Rx contract (see chapter 0):

 When the observable sequence has finished (either by firing OnError or Oncompleted), any

subscription will automatically be unsubscribed.

 Any subscribed observer instance will only see a single OnError or OnCompleted message. No

more messages are sent through. This ensures the Rx grammar of OnNext*

(OnError|OnCompleted)?

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 18

Sample

 public static IObservable<TResult> Select<TSource, TResult>(
 this IObservable<TSource> source, Func<TSource, TResult> selector)
 {
 return Observable.CreateWithDisposable<TResult>(
 observer => source.Subscribe(
 x =>
 {
 TResult result;
 try
 {
 result = selector(x);
 }
 catch (Exception exception)
 {
 observer.OnError(exception);
 return;
 }
 observer.OnNext(result);
 },
 observer.OnError,
 observer.OnCompleted));
 }

In this sample, Select uses the Observable.CreateWithDisposable operator to return a new instance of

the IObservable interface. This ensures that no matter the implementation of the source observable

sequence, the output observable sequence follows the Rx contract (see chapter 0). It also ensures that

the lifetime of subscriptions is a short as possible.

When to ignore this guideline

 The operator needs to return an observable sequence that doesn’t follow the Rx contract. This

should usually be avoided (except when writing tests to see how code behaves when the

contract is broken).

 The object returned needs to implement more than the IObservable interface (e.g. ISubject, or a

custom class).

6.3. Implement operators for existing observable sequences as generic

extension methods.
An operator becomes more powerful if it can be applied in many cases. If an operator is implemented as

an extension method, it is visible in Intellisense on any existing observable sequence. If the operator is

made generic, it can be applied regardless of the data inside the observable sequence.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 19

Sample

 public static IObservable<TResult> Select<TSource, TResult>(
 this IObservable<TSource> source, Func<TSource, TResult> selector)
 {
 return Observable.CreateWithDisposable<TResult>(
 observer => source.Subscribe(
 x =>
 {
 TResult result;
 try
 {
 result = selector(x);
 }
 catch (Exception exception)
 {
 observer.OnError(exception);
 return;
 }
 observer.OnNext(result);
 },
 observer.OnError,
 observer.OnCompleted));
 }

In this sample, Select is defined as an extension method. Because of this, the operator is visible to any

observable sequence. The work that this operator does is applicable to any observable sequence so it

can be defined using generics.

When to ignore this guideline

 The operator does not work on a source observable sequence.

 The operator works on a specific kind of data and cannot be made generic.

6.4. Protect calls to user code from within an operator
When user code is called from within an operator, this is potentially happening outside of the execution

context of the call to the operator (asynchronously). Any exception that happens here will cause the

program to terminate unexpectedly. Instead it should be fed through to the subscribed observer

instance so that the exception can be dealt with by the subscribers.

Common kinds of user code that should be protected:

 Selector functions passed in to the operator.

 Comparers passed into the operator.

 Calls to dictionaries, lists and hashsets that use a user-provided comparer.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 20

Note: calls to IScheduler implementations are not considered for this guideline. The reason for this is

that only a small set of issues would be caught as most schedulers deal with asynchronous calls. Instead,

protect the arguments passed to schedulers inside each scheduler implementation.

Sample

 public static IObservable<TResult> Select<TSource, TResult>(
 this IObservable<TSource> source, Func<TSource, TResult> selector)
 {
 return Observable.CreateWithDisposable<TResult>(
 observer => source.Subscribe(
 x =>
 {
 TResult result;
 try
 {
 result = selector(x);
 }
 catch (Exception exception)
 {
 observer.OnError(exception);
 return;
 }
 observer.OnNext(result);
 },
 observer.OnError,
 observer.OnCompleted));
 }

This sample invokes a selector function which is user code. It catches any exception resulting from this

call and transfers the exception to the subscribed observer instance through the OnError call.

When to ignore this guideline

Ignore this guideline for calls to user code that are made before creating the observable sequence

(outside of the Observable.Create(WithDisposable) call). These calls are on the current execution

context and are allowed to follow normal control flow.

Note: do not protect calls to Subscribe, Dispose, OnNext, OnError and OnCompleted methods. These

calls are on the edge of the monad. Calling the OnError method from these places will lead to

unexpected behavior.

6.5. Subscribe implementations should not throw
As multiple observable sequences are composed, subscribe to a specific observable sequence might not

happen at the time the user calls Subscribe (e.g. Within the Concat operator, the second observable

sequence argument to Concat will only be subscribed to once the first observable sequence has

completed). Throwing an exception would bring down the program. Instead exceptions in subscribe

should be tunneled to the OnError method.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 21

Sample

 public IObservable<byte[]> ReadSocket(Socket socket)
 {
 return Observable.CreateWithDisposable<byte[]>(observer =>
 {
 if (!socket.Connected)
 {
 observer.OnError(new InvalidOperationException(
 "the socket is no longer connected"));
 return Disposable.Empty;
 }
 ...
 });
 }

In this sample, an error condition is detected in the subscribe method implementation. An error is raised

by calling the OnError method instead of throwing the exception. This allows for proper handling of the

exception if Subscribe is called outside of the execution context of the original call to Subscribe by the

user.

When to ignore this guideline

When a catastrophic error occurs that should bring down the whole program anyway.

6.6. OnError messages should have abort semantics
As normal control flow in .NET uses abort semantics for exceptions (the stack is unwound, current code

path is interrupted), Rx mimics this behavior. To ensure this behavior, no messages should be sent out

by an operator once one of it sources has an error message or an exception is thrown within the

operator.

Sample

 public static IObservable<byte[]> MinimumBuffer(
 this IObservable<byte[]> source, int bufferSize)
 {
 return Observable.CreateWithDisposable<byte[]>(
 observer =>
 {
 var data = new List<byte>();

 return source.Subscribe(value =>
 {
 data.AddRange(value);

 if (data.Count > bufferSize)
 {
 observer.OnNext(data.ToArray());

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 22

 data.Clear();
 }
 },
 observer.OnError,
 () =>
 {
 if (data.Count > 0)
 observer.OnNext(data.ToArray());

 observer.OnCompleted();
 });
 });
 }

In this sample, a buffering operator will abandon the observable sequence as soon as the subscription to

source encounters an error. The current buffer is not sent to any subscribers, maintain abort semantics.

When to ignore this guideline

There are currently no known cases where to ignore this guideline.

6.7. Serialize calls to IObserver methods within observable sequence

implementations
Rx is a composable API, many operators can play together. If all operators had to deal with concurrency

the individual operators would become very complex. Next to this, concurrency is best controlled at the

place it first occurs. Finally, Consuming the Rx API would become harder if each usage of Rx would have

to deal with concurrency.

Sample

 public static IObservable<TResult> ZipEx<TLeft, TRight, TResult>(
 this IObservable<TLeft> left,
 IObservable<TRight> right,
 Func<TLeft, TRight, TResult> resultSelector)
 {
 return Observable.CreateWithDisposable<TResult>(observer =>
 {
 var group = new CompositeDisposable();
 var gate = new object();

 var leftQ = new Queue<TLeft>();
 var rightQ = new Queue<TRight>();

 group.Add(left.Subscribe(
 value =>
 {
 lock(gate)
 {
 if (rightQ.Count > 0)

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 23

 {
 var rightValue = rightQ.Dequeue();
 var result = default(TResult);
 try
 {
 result = resultSelector(value, rightValue);
 }
 catch(Exception e)
 {
 observer.OnError(e);
 return;
 }
 observer.OnNext(result);
 }
 else
 {
 leftQ.Enqueue(value);
 }
 }
 },
 observer.OnError,
 observer.OnCompleted));

 group.Add(right.Subscribe(
 value =>
 {
 lock (gate)
 {
 if (leftQ.Count > 0)
 {
 var leftValue = leftQ.Dequeue();
 var result = default(TResult);
 try
 {
 result = resultSelector(leftValue, value);
 }
 catch (Exception e)
 {
 observer.OnError(e);
 return;
 }
 observer.OnNext(result);
 }
 else
 {
 rightQ.Enqueue(value);
 }
 }
 },
 observer.OnError,

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 24

 observer.OnCompleted));

 return group;
 });
 }

In this sample, two sequences are zipped together, as messages from left and right can occur

simultaneously, the operator needs to ensure that it orders the messages. Next to this it needs to use a

lock to ensure the operator’s internal state (the two queues) doesn’t get corrupted.

When to ignore this guideline

 The operator works on a single source observable sequence.

 The operator does not introduce concurrency.

 Other constraints guarantee no concurrency is in play.

NOTE: If a source observable sequence breaks the Rx contract (see chapter 0), a developer can fix the

observable sequence before passing it to an operator by calling the Synchronize operator.

6.8. Avoid serializing operators
As all Rx operators are bound to guideline 6.7, operators can safely assume that their inputs are

serialized. Adding too much synchronization would clutter the code and can lead to performance

degradation.

If an observable sequence is not following the Rx contract (see chapter 0), it is up to the developer

writing the end-user application to fix the observable sequence by calling the Synchronize operator at

the first place the developer gets a hold of the observable sequence. This way the scope of additional

synchronization is limited to where it is needed.

Sample

 public static IObservable<TResult> Select<TSource, TResult>(
 this IObservable<TSource> source, Func<TSource, TResult> selector)
 {
 return Observable.CreateWithDisposable<TResult>(
 observer => source.Subscribe(
 x =>
 {
 TResult result;
 try
 {
 result = selector(x);
 }
 catch (Exception exception)
 {
 observer.OnError(exception);
 return;

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 25

 }
 observer.OnNext(result);
 },
 observer.OnError,
 observer.OnCompleted));
 }

In this sample, Select assumes that the source observable sequence is following the serialization

guideline 6.7 and requires no additional locking.

When to ignore this guideline

There are currently no known cases where to ignore this guideline.

6.9. Parameterize concurrency by providing a scheduler argument.
As there are many different notions of concurrency, and no scenario fits all, it is best to parameterize

the concurrency an operator introduces. The notion of parameterizing concurrency in Rx is abstracted

through the IScheduler interface.

Sample

 public static IObservable<TValue> Return<TValue>(TValue value,
 IScheduler scheduler)
 {
 return Observable.CreateWithDisposable<TValue>(
 observer =>
 scheduler.Schedule(() =>
 {
 observer.OnNext(value);
 observer.OnCompleted();
 }));
 }

In this sample, the Return operator parameterizes the level of concurrency the operator has by

providing a scheduler argument. It then uses this scheduler to schedule the firing of the OnNext and

OnCompleted messages.

When to ignore this guideline

 The operator is not in control of creating the concurrency (e.g. in an operator that converts an

event into an observable sequence, the source event is in control of firing the messages, not the

operator).

 The operator is in control, but needs to use a specific scheduler for introducing concurrency.

6.10. Provide a default scheduler
In most cases there is a good default that can be chosen for an operator that has parameterized

concurrency through guideline 0. This will make the code that uses this operator more succinct.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 26

Note: Follow guideline 6.12 when choosing the default scheduler, using the immediate scheduler where

possible, only choosing a scheduler with more concurrency when needed.

Sample

 public static IObservable<TValue> Return<TValue>(TValue value)
 {
 return Return(value, Scheduler.Immediate);
 }

In this sample, we provide an overload to the Return operator that takes no scheduler. The

implementation forwards to the other overload and uses the immediate scheduler.

When to ignore this guideline

Ignore this guideline when no good default can be chosen.

6.11. The scheduler should be the last argument to the operator
Adding the scheduler as the last argument makes usage of the operator fluent in Intellisense. As

Guideline 6.10 ensures an overload with a default scheduler, adding or omitting a scheduler becomes

easy.

Sample

 public static IObservable<TValue> Return<TValue>(TValue value)
 {
 return Return(value, Scheduler.Immediate);
 }

 public static IObservable<TValue> Return<TValue>(TValue value,
 IScheduler scheduler)
 {
 return Observable.CreateWithDisposable<TValue>(
 observer =>
 scheduler.Schedule(() =>
 {
 observer.OnNext(value);
 observer.OnCompleted();
 }));
 }

In this sample the Return operator has two overloads, one without a scheduler argument where a

default is picked and one with a scheduler argument. As the scheduler argument is the last argument,

adding or omitting the argument is clearly visible in Intellisense without having to change the order of

the arguments.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 27

When to ignore this guideline

C# and VB support params syntax. With this syntax, the params argument has to be the last argument.

Make the scheduler the final to last argument in this case.

6.12. Avoid introducing concurrency
By adding concurrency, we change the timeliness of an observable sequence. Messages will be

scheduled to arrive later. The time it takes to deliver a message is data itself, by adding concurrency we

skew that data.

This guideline includes not transferring control to a different context such as the UI context.

Sample 1

 public static IObservable<TResult> Select<TSource, TResult>(
 this IObservable<TSource> source, Func<TSource, TResult> selector)
 {
 return Observable.CreateWithDisposable<TResult>(
 observer => source.Subscribe(
 x =>
 {
 TResult result;
 try
 {
 result = selector(x);
 }
 catch (Exception exception)
 {
 observer.OnError(exception);
 return;
 }
 observer.OnNext(result);
 },
 observer.OnError,
 observer.OnCompleted));
 }

In this sample, the select operator does not use a scheduler to send out the OnNext message. Instead it

uses the source observable sequence call to OnNext to process the message, hence staying in the same

time-window.

Sample 2

 public static IObservable<TValue> Return<TValue>(TValue value)
 {
 return Return(value, Scheduler.Immediate);
 }

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 28

In this case, the default scheduler for the Return operator is the immediate scheduler. This scheduler

does not introduce concurrency.

When to ignore this guideline

Ignore this guideline in situations where introduction of concurrency is an essential part of what the

operator does.

NOTE: When we use the Immediate scheduler or call the observer directly from within the call to

Subscribe, we make the Subscribe call blocking. Any expensive computation in this situation would

indicate a candidate for introducing concurrency.

6.13. Hand out all disposables instances created inside the operator to

consumers
Disposable instances control lifetime of subscriptions as well as cancelation of scheduled actions. Rx

gives users an opportunity to unsubscribe from a subscription to the observable sequence using

disposable instances.

After a subscription has ended, no more messages are allowed through. At this point, leaving any state

alive inside the observable sequence is inefficient and can lead to unexpected semantics.

To aid composition of multiple disposable instances, Rx provides a set of classes implementing

IDisposable in the System.Disposables namespace such as:

Name Description

CompositeDisposable Composes and disposes a group of disposable
instances together.

MutableDisposable A place holder for changing instances of disposable
instances. Once new disposable instance is placed,
the old disposable instance is disposed.

BooleanDisposable Maintains state on whether disposing has
occurred.

CancellationDisposable Wraps the CancellationToken pattern into the
disposable pattern.

ContextDisposable Disposes an underlying disposable instance in the
specified SynchronizationContext instance.

ScheduledDisposable Uses a scheduler to dispose an underlying
disposable instance.

Sample

 public static IObservable<TResult> ZipEx<TLeft, TRight, TResult>(
 this IObservable<TLeft> left,
 IObservable<TRight> right,
 Func<TLeft, TRight, TResult> resultSelector)

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 29

 {
 return Observable.CreateWithDisposable<TResult>(observer =>
 {
 var group = new CompositeDisposable();
 var gate = new object();

 var leftQ = new Queue<TLeft>();
 var rightQ = new Queue<TRight>();

 group.Add(left.Subscribe(
 value =>
 {
 lock(gate)
 {
 if (rightQ.Count > 0)
 {
 var rightValue = rightQ.Dequeue();
 var result = default(TResult);
 try
 {
 result = resultSelector(value, rightValue);
 }
 catch(Exception e)
 {
 observer.OnError(e);
 return;
 }
 observer.OnNext(result);
 }
 else
 {
 leftQ.Enqueue(value);
 }
 }
 },
 observer.OnError,
 observer.OnCompleted));

 group.Add(right.Subscribe(
 value =>
 {
 lock (gate)
 {
 if (leftQ.Count > 0)
 {
 var leftValue = leftQ.Dequeue();
 var result = default(TResult);
 try
 {
 result = resultSelector(leftValue, value);

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 30

 }
 catch (Exception e)
 {
 observer.OnError(e);
 return;
 }
 observer.OnNext(result);
 }
 else
 {
 rightQ.Enqueue(value);
 }
 }
 },
 observer.OnError,
 observer.OnCompleted));

 return group;

 });
 }

In this sample, the operator groups all disposable instances controlling the various subscriptions

together and returns the group as the result of subscribing to the outer observable sequence. When a

user of this operator subscribes to the resulting observable sequence, he/she will get back a disposable

instance that controls subscription to all underlying observable sequences.

When to ignore this guideline

There are currently no known instances where this guideline should be ignored.

6.14. Operators should not block
Rx is a library for composing asynchronous and event-based programs using observable collections.

By making an operator blocking we lose these asynchronous characteristics. We also potentially loose

composability (e.g. by returning a value typed as T instead of IObservable<T>).

Sample

 public static IObservable<int> Sum(this IObservable<int> source)
 {
 return source.Aggregate(0, (prev, curr) => checked(prev + curr));
 }

In this sample, the Sum operator has a return type of IObservable<int> instead of int. By doing this, the

operator does not block. It also allows the result value to be used in further composition.

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 31

If the developer using the operator wants to escape the observable world, he or she can use one of the

provided First*, Last* or Single* operators.

When to ignore this guideline

There are currently no known instances where this guideline should be ignored.

6.15. Avoid deep stacks caused by recursion in operators
As code inside Rx operators can be called from different execution context in many different scenarios,

it is nearly impossible to establish how deep the stack is before the code is called. If the operator itself

has a deep stack (e.g. because of recursion), the operator could trigger a stack overflow quicker than

one might expect.

There are two recommended ways to avoid this issue:

 Use the recursive Schedule extension method on the IScheduler interface

 Implement an infinite looping IEnumerable<IObservable<T>> using the yield iterator pattern,

convert it to an observable sequence using the Concat operator.

Sample 1

 public static IObservable<TSource> Repeat<TSource>(
 TSource value, IScheduler scheduler)
 {
 return Observable.CreateWithDisposable<TSource>(
 observer =>
 scheduler.Schedule(self =>
 {
 observer.OnNext(value);
 self();
 }));
 }

In this sample, the recursive Schedule extension method is used to allow the scheduler to schedule the

next iteration of the recursive function. Schedulers such as the current thread scheduler do not rely on

stack semantics. Using such a scheduler with this pattern will avoid stack overflow issues.

Sample 2

 public static IObservable<TSource> Repeat<TSource>(TSource value)
 {
 return RepeatHelper(value).Concat();
 }

 private static IEnumerable<IObservable<TSource>>
 RepeatHelper<TSource>(TSource value)
 {
 while(true)

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 32

 yield return Observable.Return(value);
 }

The yield iterator pattern ensures that the stack depth does not increase drastically. By returning an

infinite IEnumerable<IObservable<TSource>> instance the Concat operator can build an infinite

observable sequence.

When to ignore this guideline

There are currently no known instances where this guideline should be ignored.

6.16. Argument validation should occur outside

Observable.Create(WithDisposable)
As guideline 6.5 specifies that the Observable.Create(WithDisposable) operator should not throw, any

argument validation that potentially throws exceptions should be done outside the

Observable.Create(WithDisposable) operator.

Sample

 public static IObservable<TResult> Select<TSource, TResult>(
 this IObservable<TSource> source, Func<TSource, TResult> selector)
 {
 if (source == null)
 throw new ArgumentNullException("source");
 if (selector == null)
 throw new ArgumentNullException("selector");

 return new Observable.Create<TResult>(observer => source.Subscribe(
 x =>
 {
 TResult result;
 try
 {
 result = selector(x);
 }
 catch (Exception exception)
 {
 observer.OnError(exception);
 return;
 }
 observer.OnNext(result);
 },
 observer.OnError,
 observer.OnCompleted));
 }

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 33

In this sample, the arguments are checked for null values before the Observable.Create operator is

called.

When to ignore this guideline

Ignore this guideline if some aspect of the argument cannot be checked until the subscription is active.

6.17. Unsubscription should be idempotent
The observable Subscribe method returns an IDisposable instance that can be used to clean up the

subscription. The IDisposable instance doesn’t give any information about what the state of the

subscription is. As consumers do not know the state of the subscription, calling the Dispose method

multiple times should be allowed. Only the first call the side-effect of cleaning up the subscription

should occur.

Sample

 var subscription = xs.Subscribe(Console.WriteLine);
 subscription.Dispose();
 subscription.Dispose();

In this sample, the subscription is disposed twice, the first time the subscription will be cleaned up and

the second call will be a no-op.

When to ignore this guideline

There are currently no known cases where to ignore this guideline.

6.18. Unsubscription should not throw
As the Rx’s composition makes that subscriptions are chained, so are unsubscriptions. Because of this,

any operator can call an unsubscription at any time. Because of this, just throwing an exception will lead

to the application crashing unexpectedly. As the observer instance is already unsubscribed, it cannot be

used for receiving the exception either. Because of this, exceptions in unsubscriptions should be

avoided.

When to ignore this guideline

There are currently no known cases where to ignore this guideline.

6.19. Custom IObservable implementations should follow the Rx contract
When it is not possible to follow guideline 6.2, the custom implementation of the IObservable interface

should still follow the Rx contract (see chapter 0) in order to get the right behavior from the Rx

operators.

When to ignore this guideline

Only ignore this guideline when writing observable sequences that need to break the contract on

purpose (e.g. for testing).

Reactive Extensions Design Guidelines

Version 1.0 October 2010 Page 34

6.20. Operator implementations should follow guidelines for Rx usage
As Rx is a composable API, operator implementations often use other operators for their

implementation (see paragraph 6.1). Rx usage guidelines as described in chapter 0 should be strongly

considered when implementing these operators.

When to ignore this guideline

As described in the introduction, only follow a guideline if it makes sense in that specific situation.

