

Microsoft Dynamics
®

 AX 2012

Implementing Budgeting for

Microsoft Dynamics AX 2012

Applications

White Paper

This document describes new development patterns in

budgeting and their implementation.

http://microsoft.com/dynamics/ax

Date: July 2011

Author: Kim Kroetsch, Senior Development Lead

Send suggestions and comments about this document to
adocs@microsoft.com. Please include the title with your
feedback.

http://microsoft.com/dynamics/ax
mailto:adocs@microsoft.com?subject=Microsoft%20Dynamics%20AX%202012%20Whitepaper

2

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

Table of Contents

Overview ... 3
Audience.. 3
Terminology ... 3
Implementing budgeting .. 3

Changes to the data model.. 4
Previous version ... 4
Microsoft Dynamics AX 2012 .. 4

BudgetTransactionHeader table ... 4
BudgetTransactionLine table ... 4
Transfers of budgets between modules ... 5
Workflow .. 5
Services ... 5

Implementing the new data pattern ... 6
Budget ledger dimension ... 6

Data model and extended data type ... 6
Microsoft Dynamics AX form control ... 6
Changes needed on the form... 6
Control options .. 8
Considerations for specific scenarios .. 8

X++ code patterns .. 9
Create budget ledger dimensions .. 9
Convert a transaction amount to the accounting currency .. 9
Validate budget transactions .. 9

Data upgrade .. 9
LedgerBudget table normalization ... 9
LedgerBudget table conversions ..10
Additional data revisions ...11

Normalized table .. 11
Deleted tables .. 11
Deleted fields ... 11
Data cleanup .. 12

Appendix ... 13

3

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

Overview

In Microsoft Dynamics® AX 2012, budgeting capabilities have been enhanced to provide substantially
more functionality than in earlier versions. To support this new functionality, budgeting has been
integrated with the ledger, the new accounting distributions framework, the chart of accounts, and the
new account and financial dimensions framework. Budgeting has also been integrated with currency
and exchange rate types, and integration data patterns have been completely revised.

In Microsoft Dynamics AX 2009 and earlier versions, all budgeting data was stored in the
LedgerBudget table. Budget allocations were stored in the same table, and revisions were supported
through a relationship with the BudgetRevision table. A record was considered to be always available
for processing and reporting unless specifically marked otherwise. The user was required to reference
a main account number. There was no way to distinguish budget types or to determine whether
budget amounts were for revenue projections or expenditures. There was no concept of workflow for
budgets or budget changes.

Microsoft Dynamics AX 2012 introduces the concept of a “budget transaction.” The LedgerBudget table
has been normalized into a BudgetTransactionHeader table and a BudgetTransactionLine table. The
BudgetModel table has been maintained without changes from Microsoft Dynamics AX 2009, but the
tables that supported the LedgerBudget table (LedgerBudgetSettlement and BudgetRevision) have
been deprecated. Budgeting is supported by the new budget control framework.

This document does not discuss all of the new budgeting functionality. Instead, it focuses on new
development patterns and their implementation. Note that these budgeting pattern enhancements do

not affect the budget patterns in other modules in any way.

Audience

This document targets developers who are building new applications for Microsoft Dynamics AX 2012

or who are updating their existing application code and data.

Terminology

Microsoft Dynamics AX 2012 terms:

Term Definition

Budget A financial plan that controls expenditures for planned activities.

Ledger The part of an accounting system that is used for classifying the
monetary value of economic transactions by using a chart of accounts, a
fiscal calendar, and one or more currencies.

Ledger dimension A classifier created from the combination of financial dimension values
listed in a chart of accounts and used to classify the financial
consequences of economic activity.

Budget model A planning structure used to schedule budget fund allocations and
expenditures.

Implementing budgeting

This white paper describes the new patterns used in budgeting in Microsoft Dynamics AX 2012 and
how to implement them.

The information provided in this paper is intended for use by developers who need to perform the
following tasks for budgeting:

 Code upgrade

 Data upgrade

4

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

 Microsoft Dynamics AX 2012 service integration

Changes to the data model

Budgeting is supported in Microsoft Dynamics AX 2012 by budget transactions, which are referred to
in the application as budget register entries or budget register account entries. For the physical data
model for the new budgeting tables, see the Appendix.

Previous version

In Microsoft Dynamics AX 2009, a record in the LedgerBudget table contained the details of the
budget, including references to the budget model, ledger account, financial dimensions, currency,
dates, and amounts. A record also held allocation information and a reference to a revision that
indicated whether the record had been changed as a result of that revision. A record was considered

to be always available for processing and reporting unless specifically marked otherwise.

Microsoft Dynamics AX 2012

In Microsoft Dynamics AX 2012, the LedgerBudget table has been normalized into a header table (the
BudgetTransactionHeader table) and a lines table (the BudgetTransactionLine table), with the header

table having a one-to-many relationship with its lines table. Budget transaction tables have their
SaveDataPerCompany table properties set to No.

BudgetTransactionHeader table

A BudgetTransactionHeader table contains a reference to the Ledger table (in its PrimaryLedger field)
that identifies the legal entity associated with the budget transaction data.

A BudgetTransactionHeader table contains the following values that help categorize the transaction:

 A reference to the BudgetModel table, which holds user-defined reference data.

 A reference to the BudgetTransactionCode table, which provides the transaction code.

 A type value (in the BudgetTransactionType field).

The BudgetTransactionHeader table also contains a status value (in the BudgetTransactionStatus field)
that supports “Draft” as a status for the transaction entry in the form, and a process for converting
the status to “Completed.” A “Completed” status means that the budget transaction can no longer be

edited and can be included in reporting.

BudgetTransactionLine table

Microsoft Dynamics AX 2012 continues to support budget allocations by using period allocation keys
(as was done in previous versions), but it uses new budget allocation terminology. Budget transaction
lines can now also be generated by using recurrence patterns for recurring budget amounts.

In addition, when a budget is transferred from other modules, such as Project, Fixed Asset, and

Inventory and Warehouse Management, transaction amounts that have already been transferred
can be reversed instead of having to be deleted, as was the case in Microsoft Dynamics AX 2009. This

feature allows for an enhanced audit trail of changes to the budget. A reversal is tracked by the
BudgetTransactionLineReverse table, which contains references to both the BudgetTransactionLine
that is being reversed and the line that holds the reversal information.

A BudgetTransactionLine table contains a ledger dimension reference, which is held in its
LedgerDimension field. This reference must always be set to the enumeration value of “Budget” from

the LedgerDimensionType enumeration. The LedgerDimensionType enumeration differentiates
the types of ledger dimensions that can be stored in the DimensionAttributeValueCombination table.
The LedgerDimensionBudget extended data type (EDT) is used to support the differentiation of a
budget ledger dimension.

5

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

Only financial dimensions that are designated as enabled for budgeting can be included in a budget
ledger dimension. This designation is stored in the BudgetPrimaryLedgerDimensionAttribute table. This
table holds references to the financial dimensions that are found in the chart of accounts for a ledger
and that are enabled for budgeting. This table associates a ledger record with a DimensionAttribute

record.

Budget transaction lines store the amount of the adjustment to the budget. This amount is entered in
the transaction currency specified on the line. If the budget transaction line has a BudgetType
enumeration value of “Revenue” in its BudgetType field, the sign (positive or negative) of the amount
is adjusted when it is stored in the database. If the budget transaction line has a BudgetType
enumeration value of “Expense,” the sign of the amount is stored as entered.

The line amount is stored in both the transaction currency (in the TransactionCurrencyAmount field)

and in the accounting currency of the ledger (in the AccountingCurrencyAmount field). The amount is
converted to the accounting currency by using the budget exchange rate type that is specified for the
ledger. The calculateTransAmountToAccountingAmount method of the

BudgetTransactionManager class performs this calculation.

Transfers of budgets between modules

Transfers of budgets and forecasts from the Project, Inventory and Warehouse Management,
and Fixed Asset modules to the General Ledger module are preserved in Microsoft Dynamics AX
2012, as is the transfer of a budget from the General Ledger module to the Cost Accounting
module. However, the opposite action—the transfer of a budget from the Cost Accounting module to
the General Ledger module—has been removed in Microsoft Dynamics AX 2012.

To support the transfers of budgets and forecasts between modules, different patterns of transfer of
financial dimension data are needed. This is because only a subset of the dimension attributes

specified by the transferred budget might be enabled for budgeting in the General Ledger module.
These patterns are described in the X++ code patterns section of this document.

Workflow

In Microsoft Dynamics AX 2012, workflow has been implemented for budget transactions. Both
header-level and line-level workflows are supported.

Services

In Microsoft Dynamics AX 2012, budget transactions have a service interface implemented in the
Application Integration Framework (AIF). The Office Business Application add-in for Microsoft Excel®
makes use of services for read/write access to data that the services support. This allows you to use
Excel for developing and adjusting budgets.

The following service operations are supported for budget transactions:

 Read

 Input parameter: AifEntityKeyList

 Return value: BudgetTransaction

 Find

 Input parameter: AifQueryCriteria

 Return value: BudgetTransaction

 FindKeys

 Input parameter: AifQueryCriteria

 Return value: AifEntityKeyList

 Delete

6

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

 Input parameter: AifEntityKeyList

 Return value: void

 Create

 Input parameter: BudgetTransaction

 Return value: AifEntityKeyList

 Update

 Input parameter: AifEntityKeyList, BudgetTransaction

 Return value: void

Implementing the new data pattern

The budget ledger dimension is a new pattern in Microsoft Dynamics AX 2012.

Budget ledger dimension

A budget ledger dimension contains the account structure and financial dimension values. A foreign
key representing a budget ledger dimension is a 64-bit integer field that contains the data from the
corresponding RecId field of the DimensionAttributeValueCombination (or LedgerDimension) table.
Foreign key fields for ledger accounts are named LedgerDimension because that is the alias used for
the DimensionAttributeValueCombination table.

Data model and extended data type

New EDT

LedgerDimensionBudget

New field LedgerDimension

The LedgerDimension field contains a foreign key

to the DimensionAttributeValueCombination table.

Microsoft Dynamics AX form control

The Budget Ledger Dimension control represents a combination of the Segmented Entry control and
the BudgetLedgerDimensionController class. The Segmented Entry control is a general-purpose
control that has been introduced in Microsoft Dynamics AX 2012. The
BudgetLedgerDimensionController class handles events raised by the Segmented Entry control.

This combination allows the control to handle the entry and display of budget dimension values in
Microsoft Dynamics AX forms. The following sections show you how to implement this control on a
Microsoft Dynamics AX form.

Changes needed on the form

In most scenarios, the changes needed on a Microsoft Dynamics AX form are as follows:

1. Verify that the table holding the foreign key to the DimensionAttributeValueCombination table is a
data source on the form.

2. Drag the LedgerDimension field from the data source to the desired location on the form design.

This creates a Segmented Entry control with the appropriate DataSource and ReferenceField
property values. Alternatively, you can add a Segmented Entry control to the design and manually
set the DataSource and ReferenceField properties.

7

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

3. Override the class declaration and the init method on the form. If these methods already exist,
just add the code to the methods.

public class FormRun extends ObjectRun

{

 BudgetLedgerDimensionController budgetLedgerDimensionController;

}

public void init()

{

 super();

 budgetLedgerDimensionController =

BudgetLedgerDimensionController::construct({BackingDataSource_ds},

fieldstr({BackingTable}, LedgerDimension));

}

4. Override the following methods on the Segmented Entry control instance in the form design:

public void jumpRef()

{

 budgetLedgerDimensionController.jumpRef();

}

public boolean validate()

{

 boolean isValid;

 isValid = super();

 isValid = budgetLedgerDimensionController.validate() && isValid;

 return isValid;

}

public void segmentValueChanged(SegmentValueChangedEventArgs _e)

{

 super(_e);

 budgetLedgerDimensionController.segmentValueChanged(_e);

}

public void loadSegments()

{

 super();

 budgetLedgerDimensionController.parmControl(this);

 budgetLedgerDimensionController.parmDimensionAccountStorageUsage(DimensionAccountStora

geUsage::Transactional);

 budgetLedgerDimensionController.parmDate({BackingTable}.Date);

 budgetLedgerDimensionController.loadSegments();

}

public void loadAutoCompleteData(LoadAutoCompleteDataEventArgs _e)

{

 super(_e);

 budgetLedgerDimensionController.loadAutoCompleteData(_e);

}

8

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

5. Override the resolveReference method on the data source field that backs the Segmented Entry

control:

public Common resolveReference(FormReferenceControl _formReferenceControl)

{

 return budgetLedgerDimensionController.resolveReference();

}

6. Set the parmAccountStructure parameter to the RecId of an account structure in the system. In
the most common scenario, the user can choose from multiple account structures. In this case,
create an edit method that sets the parmAccountStructure parameter to the account structure that
is selected on the form.

If the Segmented Entry control is bound to a specific account structure, the RecId of that account
structure can be set in the loadSegments method of the Segmented Entry control.

budgetLedgerDimensionController.parmAccountStructure({Account Structure RecId});

Control options

Several parameters affect the validation, lookup, and storage of a budget ledger dimension as
performed by the Segmented Entry control.

 DataAreaId: Specifies the legal entity associated with the control being managed. This is used for
validation and lookup to restrict valid values. The default value is the current legal entity (this is
the most common scenario). If this parameter is provided by a field that the user can manipulate
on the form, we recommend that you call the corresponding parm method from the modified

method of the control for the DataAreaId field.

 Date: Specifies the date of the transaction associated with the control being managed. This
parameter is used for validation. The default value is empty and no validation is done against the
date.

 DimensionAccountStorageUsage: Specifies how the control being managed is used. This

parameter is used for validation and for saving combinations. Use the

DimensionAccountStorageUsage enumeration and pass in the “Transactional” value.

These parameters should be specified in the loadSegments method of the Segmented Entry control.
They are called every time that the control receives focus. Always declaring the parameters in one
method ensures that a developer can easily verify whether all parameters are being set properly.

Considerations for specific scenarios

When working with the budget ledger dimension control, there are additional considerations for the

following scenarios:

 When multiple fields have an account number control, each field should have its own
BudgetLedgerDimensionController instance.

 Each instance must have a unique name that should include a description of how the backing field
is used. You need to add code that is similar to the example shown in the Changes needed on the

form section for each controller instance.

 When one field needs to be edited in multiple places on the same form, create a single

BudgetLedgerDimensionController instance for the field.

 When two controls share the same controller, the loadSegments method for each control should
always contain a call to the parmControl(this) method before the call to the loadSegments
method for the controller.

9

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

X++ code patterns

The BudgetTransactionManager class is a helper class that supports budget transactions. Some of
the key methods in this class are described below.

Create budget ledger dimensions

The following methods are used to create budget ledger dimensions:

 saveLedgerDimensionBudget

Creates a ledger dimension of type budget by using the dimension attribute values from another
ledger dimension reference. Uses only dimension attributes that are enabled for budget to create
the budget ledger dimension.

 getLedgerDimensionBudget

Combines a default account reference for a main account and a default dimension reference into
one budget ledger dimension. Uses only dimension attributes that are enabled for a budget to
create the budget ledger dimension.

 mergeDefaultDimWithLedgerDim

Combines a ledger dimension with a default dimension into one budget ledger dimension. Uses
only dimension attributes that are enabled for the budget to create the budget ledger dimension.

Convert a transaction amount to the accounting currency

The following method is used to convert currency amounts:

 calculateTransAmountToAccountingAmount

Converts an amount to the accounting currency of the ledger using the budget exchange rate type
specified in the ledger.

Validate budget transactions

All validation logic for budget transactions is performed by methods in the
BudgetTransactionManager class to allow transactions to be shared between the rich client and the
service entry points. The following methods are used for validation:

 validateAccountStructure

 validateBudgetModel

 validateCurrency

 validateDimensionFocus

 validateLedgerDimension

 validateTransactionDate

Data upgrade

This section describes the conversion of data that occurs during the upgrade for budgeting from the
source environment (Microsoft Dynamics AX 4.0 or Microsoft Dynamics AX 2009) to the target

environment (Microsoft Dynamics AX 2012).

LedgerBudget table normalization

The LedgerBudget table in Microsoft Dynamics AX 4.0 or Microsoft Dynamics AX 2009 must be
normalized to the BudgetTransactionHeader and BudgetTransactionLine tables in the new data model.

10

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

During the upgrade process, a BudgetTransactionHeader record is generated for each LedgerBudget
record from the previous version.

If a LedgerBudget record has been “allocated”—that is, broken down into finer amounts—no
BudgetTransactionLine record will be created for it. A BudgetTransactionLine record will only be

created for each expanded LedgerBudget record. The expanded LedgerBudget records will reference
the allocated LedgerBudget record.

In other words, the creation of a BudgetTransactionLine record depends on the values in the ExpandId
and AllocateMethod fields on the LedgerBudget record. If a LedgerBudget record was allocated, the
ExpandId field is set to zero and the AllocateMethod field is set to a value other than “None”. In this
case, no transaction line is created. Otherwise, a budget transaction line is created.

LedgerBudget table conversions

The fields from the LedgerBudget table in Microsoft Dynamics AX 4.0 and Microsoft Dynamics AX 2009

are mapped to BudgetTransactionHeader and BudgetTransactionLine table fields in Microsoft Dynamics
AX 2012 as shown in the following table.

LedgerBudget
table field

Microsoft Dynamics AX
2012 table

Microsoft Dynamics AX
2012 field

Value mapping

RecId BudgetTransactionHeader TransactionNumber

Active BudgetTransactionHeader TransactionStatus Completed where Active =
Yes

Draft where Active = No

BudgetModel BudgetTransactionHeader BudgetModel

BudgetModel BudgetTransactionHeader BudgetModelSubId

BudgetModel BudgetTransactionHeader BudgetModelType BudgetModel.Type based
on join to BudgetModel
record

BudgetModel BudgetTransactionHeader BudgetModelDataAreaId BudgetModel.DataAreaId
based on join to
BudgetModel record

 BudgetTransactionHeader BudgetTransactionType Original budget by default

RevisionDate BudgetTransactionHeader BudgetTransactionType Amendment where
RevisionDate has a value

AssetId BudgetTransactionHeader BudgetTransactionType Fixed asset where AssetId
has a value

ProjTransId BudgetTransactionHeader BudgetTransactionType Project where ProjTransId
has a value

InventTableId BudgetTransactionHeader BudgetTransactionType Demand forecast where
InventTableId =
ForecastSales

Supply forecast where
InventTableId =
ForecastPurch

StartDate BudgetTransactionHeader Date

 BudgetTransactionHeader BudgetTransactionCode Not set during upgrade

AssetId BudgetTransactionLine AssetBudget AssetBudget.RecId based
on join to AssetBudget
record

11

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

ProjTransId BudgetTransactionLine ProjTransBudgetTransId ProjTransBudget.TransId
based on join to
ProjTransBudget record

AccountNum BudgetTransactionLine BudgetType Revenue or Expense based
on join to LedgerTable
referencing AccountPlType
and DebCredProposal
values

StartDate BudgetTransactionLine Date

AccountNum +
Dimension

BudgetTransactionLine LedgerDimension DimensionAttributeValueC
ombination.RecId based
on AccountNum and
Dimension field values

CurrencyCode BudgetTransactionLine TransactionCurrency

Qty BudgetTransactionLine Quantity

Price BudgetTransactionLine Price

Amount BudgetTransactionLine TransactionCurrencyAmount

AmountMST (only
in AX 2009)

BudgetTransactionLine AccountingCurrencyAmount

Cov BudgetTransactionLine IncludeInCashFlowForecast

TaxGroup BudgetTransactionLine TaxGroup

Comment BudgetTransactionLine Comment

Additional data revisions

The following data revisions also occur during the upgrade to Microsoft Dynamics AX 2012.

Normalized table

The following table has been normalized.

Microsoft Dynamics

AX 4.0/2009 table

Microsoft Dynamics

AX 4.0/2009 field

Microsoft Dynamics

AX 2012 table

Microsoft Dynamics

AX 2012 field

LedgerParameters BudgetSettle BudgetParameters CashFlowForecastPeriodAll
ocationKey

Deleted tables

The following tables have been deleted:

 LedgerBudSettlement

 BudgetRevision

Deleted fields

The following fields have been deleted:

 BudgetModel table: TrackRevisions field

 LedgerAllocation table: Freq field; FreqCode field; StartDate field; Stop field

 LedgerParameters table: BudgetCheck field

12

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

Data cleanup

All records that contain references to the ledger budget are deleted from the following tables as a
result of the upgrade process. After the upgrade has been completed, the user can run the relevant

processes to regenerate data in these tables.

 LedgerAllocation

 LedgerConsolidateHistRef

 LedgerAccountCov

13

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

Appendix

Budget data tables

BudgetTransactionHeader

RecId RecId

PrimaryLedger (FK,AK1) RefRecId

TransactionNumber (AK1) BudgetTransactionId

Date TransDate

TransactionStatus BudgetTransactionStatus

InUseBy (O) (FK) userId

BudgetTransactionCode (FK) RefRecId

BudgetTransactionType BudgetTransactionType

IsOneTimeAmendment NoYes

TransferSourceNumber (O) BudgetTransferSourceNumber

ReasonTableRef (O) (FK) ReasonRefRecID

BudgetModelId (FK) BudgetModelId

BudgetSubModelId (FK) BudgetModelSubId

BudgetModelType (FK) HeadingSub

BudgetModelDataAreaId (FK) DataAreaId

WorkflowStatus BudgetTransactionWorkflowStatus

BudgetTransactionCode

RecId RecId

Name (AK1) BudgetCode

BudgetTransactionType BudgetTransactionType

IsDefault NoYes

Description (O) Description

Reason (O) (FK) ReasonCode

WorkflowTableSequenceNumber (O) (FK) WorkflowSequenceNumber

DataAreaId (FK,FK,AK1) DataAreaId

BudgetTransactionLine

RecId RecId

BudgetTransactionHeader (FK,AK1) RefRecId

LineNumber (AK1) LineNum

Date TransDate

LedgerDimension (FK) RefRecId

TransactionCurrencyAmount AmountCur

TransactionCurrency (FK) CurrencyCode

AccountingCurrencyAmount AmountMST

BudgetType BudgetType

WorkflowStatus BudgetTransactionWorkflowStatus

Quantity (O) Qty

Price (O) Price

Comment (O) Description

IncludeInCashFlowForecast NoYes

TaxGroup (O) (FK) TaxGroup

ProjTransBudgetTransId (O) Num

AssetBudget (O) (FK) RefRecId

DEL_AssetBudgetDataAreaId (O) (FK) DataAreaId

GeneralJournalEntry (O) (FK) GeneralJournalEntryRecId

BudgetTransactionLineReverse

RecId RecId

ReversedBudgetTransactionLine (FK,AK1) RefRecId

ReversingBudgetTransactionLine (FK,AK1) RefRecId

Ledger

RecId RecId

Name (AK1) nvarchar(20)

ChartOfAccounts (FK) RefRecId

BudgetExchangeRateType (O) (FK) RefRecId

AccountingCurrency (FK) CurrencyCode

PrimaryForLegalEntity (FK,AK2) RefRecId

IsBudgetControlEnabled NoYes

UserInfo

Id userId

Name UserName

DimensionAttributeValueCombination

RecId RecId

DisplayValue DimensionDisplayValue

LedgerDimensionType LedgerDimensionType

Currency

CurrencyCode CurrencyCode

TaxGroupHeading

TaxGroup TaxGroup

DataAreaId (FK) DataAreaId

BudgetModel

ModelId BudgetModelId

SubModelId BudgetModelSubId

Type HeadingSub

DataAreaId (FK) DataAreaId

DEL_TrackRevisions NoYes

14

IMPLEMENTING BUDGETING FOR MICROSOFT DYNAMICS AX 2012 APPLICATIONS

This document is provided “as-is.” Information and views expressed in this document, including URL and other
Internet Web site references, may change without notice. You bear the risk of using it.
Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.
This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You
may copy and use this document for your internal, reference purposes. You may modify this document for your
internal, reference purposes.
© 2011 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Dynamics, and the Microsoft Dynamics logo are trademarks of the Microsoft group of
companies.

All other trademarks are property of their respective owners.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

