
module TransitiveClosure
Mathematicians define a relation R to be a set of ordered pairs, and write s R t to mean 〈s, t〉 ∈ R
. The transitive closure TC (R) of the relation R is the smallest relation containg R such that, s
TC (R)t and t TC (R)u imply s TC (R)u , for any s, t , and u. This module shows several ways

of defining the operator TC .

It is sometimes more convenient to represent a relation as a Boolean-valued function of two
arguments, where s R t means R[s, t ]. It is a straightforward exercise to translate everything in

this module to that representation.

Mathematicians say that R is a relation on a set S iff R is a subset of S × S . Let the support of
a relation R be the set of all elements s such that s R t or t R s for some t . Then any relation is
a relation on its support. Moreover, the support of R is the support of TC (R). So, to define the

transitive closure of R, there’s no need to say what set R is a relation on.

Let’s begin by importing some modules we’ll need and defining the the support of a relation.

extends Integers, Sequences, FiniteSets, TLC

Support(R) ∆= {r [1] : r ∈ R} ∪ {r [2] : r ∈ R}

A relation R defines a directed graph on its support, where there is an edge from s to t iff s R t
. We can define TC (R) to be the relation such that s R t holds iff there is a path from s to t in
this graph. We represent a path by the sequence of nodes on the path, so the length of the path
(the number of edges) is one greater than the length of the sequence. We then get the following

definition of TC .

TC (R) ∆=
let S ∆= Support(R)
in {〈s, t〉 ∈ S × S :

∃ p ∈ Seq(S ) : ∧ Len(p) > 1
∧ p[1] = s
∧ p[Len(p)] = t
∧ ∀ i ∈ 1 . . (Len(p)− 1) : 〈p[i ], p[i + 1]〉 ∈ R}

This definition can’t be evaluated by TLC because Seq(S) is an infinite set. However, it’s
not hard to see that if R is a finite set, then it suffices to consider paths whose length is at
most Cardinality(S). Modifying the definition of TC we get the following definition that de-
fines TC1(R) to be the transitive closure of R, if R is a finite set. The let expression defines

BoundedSeq(S , n) to be the set of all sequences in Seq(S) of length at most n.

TC1(R) ∆=
let BoundedSeq(S , n) ∆= union {[1 . . i → S ] : i ∈ 0 . . n}

S ∆= Support(R)
in {〈s, t〉 ∈ S × S :

∃ p ∈ BoundedSeq(S , Cardinality(S ) + 1) :
∧ Len(p) > 1
∧ p[1] = s
∧ p[Len(p)] = t
∧ ∀ i ∈ 1 . . (Len(p)− 1) : 〈p[i ], p[i + 1]〉 ∈ R}
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This naive method used by TLC to evaluate expressions makes this definition rather inefficient.
(As an exercise, find an upper bound on its complexity.) To obtain a definition that TLC can
evaluate more efficiently, let’s look at the closure operation more algebraically. Let’s define the
composition of two relations R and T as follows.

R ∗∗T ∆= let SR ∆= Support(R)
ST ∆= Support(T )

in {〈r , t〉 ∈ SR × ST :
∃ s ∈ SR ∩ ST : (〈r , s〉 ∈ R) ∧ (〈s, t〉 ∈ T )}

We can then define the closure of R to equal

R ∪ (R ∗∗R) ∪ (R ∗∗R ∗∗R) ∪ . . .

For R finite, this union converges to the transitive closure when the number of terms equals the
cardinality of the support of R. This leads to the following definition.

TC2(R) ∆=
let C [n ∈ Nat ] ∆= if n = 0 then R

else C [n − 1] ∪ (C [n − 1] ∗∗R)
in if R = {} then {} else C [Cardinality(Support(R))− 1]

These definitions of TC1 and TC2 are somewhat unsatisfactory because of their use of
Cardinality(S). For example, it would be easy to make a mistake and use Cardinality(S) in-
stead of Cardinality(S) + 1 in the definition of TC1(R). I find the following definition more
elegant than the preceding two. It is also more asymptotically more efficient because it makes
O(log Cardinality(S)) rather than O(Cardinality(S)) recursive calls.

recursive TC3( )
TC3(R) ∆= let RR ∆= R ∗∗R

in if RR ⊆ R then R else TC3(R ∪ RR)

The preceding two definitions can be made slightly more efficient to execute by expanding the def-
inition of ∗∗ and making some simple optimizations. But, this is unlikely to be worth complicating
the definitions for.

The following definition is (asymptotically) the most efficient. It is essentially the TLA+ rep-
resentation of Warshall ’s algorithm. (Warshall ’s algorithm is typically written as an iterative
procedure for the case of a relation on a set i . . j of integers, when the relation is represented as
a Boolean-valued function.)

TC4(R) ∆=
let S ∆= Support(R)

recursive TCR( )
TCR(T ) ∆= if T = {}

then R
else let r ∆= choose s ∈ T : true

RR ∆= TCR(T \ {r})
in RR ∪ {〈s, t〉 ∈ S × S :

〈s, r〉 ∈ RR ∧ 〈r , t〉 ∈ RR}
in TCR(S )

We now test that these four definitions are equivalent. Since it’s unlikely that all four are wrong

in the same way, their equivalence makes it highly probable that they’re correct.
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assume ∀N ∈ 0 . . 3 :
∀R ∈ subset ((1 . . N )× (1 . . N )) : ∧ TC1(R) = TC2(R)

∧ TC2(R) = TC3(R)
∧ TC3(R) = TC4(R)

Sometimes we want to represent a relation as a Boolean-valued operator, so we can write s R t
as R(s, t). This representation is less convenient for manipulating relations, since an operator is
not an ordinary value the way a function is. For example, since TLA+ does not permit us to
define operator-valued operators, we cannot define a transitive closure operator TC so TC (R)
is the operator that represents the transitive closure. Moreover, an operator R by itself cannot
represent a relation; we also have to know what set it is an operator on. (If R is a function, its

domain tells us that.)

However, there may be situations in which you want to represent relations by operators. In that
case, you can define an operator TC so that, if R is an operator representing a relation on S , and
TCR is the operator representing it transitive closure, then

TCR(s, t) = TC (R, S , s, t)

for all s, t . Here is the definition. (This assumes that for an operator R on a set S , R(s, t) equals

false for all s and t not in S .)

TC5(R( , ), S , s, t) ∆=
let CR[n ∈ Nat , v ∈ S ] ∆=

if n = 0 then R(s, v)
else ∨ CR[n − 1, v ]

∨ ∃ u ∈ S : CR[n − 1, u] ∧ R(u, v)
in ∧ s ∈ S

∧ t ∈ S
∧ CR[Cardinality(S )− 1, t ]

Finally, the following assumption checks that our definition TC5 agrees with our definition TC1.

assume ∀N ∈ 0 . . 3 : ∀R ∈ subset ((1 . . N )× (1 . . N )) :
let RR(s, t) ∆= 〈s, t〉 ∈ R

S ∆= Support(R)
in ∀ s, t ∈ S :

TC5(RR, S , s, t) ≡ (〈s, t〉 ∈ TC1(R))
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