
module DieHarder
We now generalize the problem from Die Hard into one with an arbitrary number of jugs, each

holding some specified amount of water.

extends Naturals

We now declare two constant parameters.

constant Jug , The set of all jugs.

Capacity , A function, where Capacity[j ] is the capacity of jug j .

Goal The quantity of water our heros must measure.

We make an assumption about these constants–namely, that Capacity is a function from jugs to

positive integers, and Goal is a natural number.

assume ∧ Capacity ∈ [Jug → {n ∈ Nat : n > 0}]
∧Goal ∈ Nat

We are going to need the Min operator again, so let’s define it here. (I prefer defining constant

operators like this in the part of the spec where constants are declared.

Min(m, n) ∆= if m < n then m else n

We declare the specification’s single variable and define its type invariant and initial predicate.

variable contents contents[j ] is the amount of water in jug j

TypeOK ∆= contents ∈ [Jug → Nat ]

Init ∆= contents = [j ∈ Jug 7→ 0]

Now we define the actions that can be performed. They are the obvious generalizations of the
ones from the simple DieHard spec. First come the actions of filling and emptying jug j , then the
action of pouring water from jug j to jug k .

Note: The definitions use the TLA+ notation

[f except ![c] = e]

which is the function g that is the same as f except g[c] = e. In the expression e, the symbol @

stands for f [c]. This has the more general form

[f except ![c1] = e1, . . . , ![ck ] = ek ]

that has the expected meaning.

FillJug(j ) ∆= contents ′ = [contents except ![j ] = Capacity [j ]]

EmptyJug(j ) ∆= contents ′ = [contents except ![j ] = 0]

JugToJug(j , k) ∆=
let amountPoured ∆= Min(contents[j ], Capacity [k ]− contents[k ])
in contents ′ = [contents except ![j ] = @− amountPoured ,

![k ] = @ + amountPoured ]

As usual, the next-state relation Next is the disjunction of all possible actions, where existential

quantification is a general form of disjunction.

Next ∆= ∃ j ∈ Jug : ∨ FillJug(j )

1



∨ EmptyJug(j )
∨ ∃ k ∈ Jug \ {j} : JugToJug(j , k)

We define the formula Spec to be the complete specification, asserting of a behavior that it begins

in a state satisfying Init , and that every step either satisfies Next or else leaves contents unchanged.

Spec ∆= Init ∧2[Next ]contents

We define NotSolved to be true of a state iff no jug contains Goal gallons of water.

NotSolved ∆= ∀ j ∈ Jug : contents[j ] 6= Goal

We find a solution by having TLC check if NotSolved is an invariant, which will cause it to print
out an “error trace” consisting of a behavior ending in a states where NotSolved is false. Such a
behavior is the desired solution.

2


