MODULE CarTalkPuzzle
Car Talk is a U.S. radio program about car repair. Each show includes a puzzle, which is often a
little mathematical problem. Usually, those problems are easy for a mathematically sophisticated
listener to solve. However, I was not able immediately to see how to solve the puzzle from the
22 October 2011 program. I decided to specify the problem in TLA+ and let TLC (the TLA+
model checker) compute the solution. This is the specification I wrote. (I have tried to explain
in comments all TLA+ notation that is not standard mathematical notation.) Once TLC had
found the solution, it was not hard to understand why it worked.

Here is the problem. A farmer has a 40 pound stone and a balance scale. How can he break the
stone into 4 pieces so that, using those pieces and the balance scale, he can weigh out any integral
number of pounds of corn from 1 pound through 40 pounds.

The following statement imports the standard operators of arithmetic such as + and < (less
than or equals). It also defines the operator .. so that i .. j is the set of all integers k with
1< k<jg.

EXTENDS Integers

For generality, I solve the problem of breaking an N pound stone into P pieces. The following
statement declares N and P to be unspecified constant values.

CONSTANTS N, P

I define the operator Sum so that if f is any integer-valued function, and S any finite subset of
its domain, then Sum(f, S) is the sum of f[z] for all z in S. (In TLA+, function application is
indicated by square brackets instead of parentheses, as it is in ordinary math.)

A RECURSIVE declaration must precede a recursively defined operator. The operator CHOOSE
is known to logicians as Hilbert’s Epsilon. It is defined so that CHOOSE z € S : P(z) equals some
unspecified value v such that P(v) is true, if such a value exists.

RECURSIVE Sum/(_, _)
A

Sum(f, S) = 1Fr S ={} THEN 0
ELSE LET T = CHOOSE z € S : TRUE

N fla] + Sum(f, S\ {z})

I now define the set Break of all “breaks”, where a break represents a method of breaking the
stone into P (integer-weight) pieces. The obvious definition of a break would be a set of weights.
However, that doesn’t work because it doesn’t handle the situation in which two of pieces have
the same weight. Instead, I define a break of the N pound stone into P pieces to be a function
B from 1 .. P (the integers from 1 through P) into 1 .. N such that B[:] is the weight of piece
number ¢. To avoid solutions that differ only by how the pieces are numbered, I consider only
breaks in which the pieces are numbered in non-decreasing order of their weight. This leads to
the following definition of the set Break of all breaks.

In TLA+, [S — T is the set of all functions with domain S and range a subset of 7. V and 3
are the universal and existential quantifiers.

Break = {B€[1..P—1..N]: Sum(B,1..P)=N
AVi€l..P:Vje (i+1)..P: B[] < B[}

To weigh a quantity of corn, we can put some of the weights on the same side of the balance scale
as the corn and other weights on the other side of the balance. The following operator is true for
a weight w, a break B, and sets S and T of pieces if w plus the weight of the pieces in S equals
the weight of the pieces in T'. The elements of S and T are piece numbers (numbers in 1 .. P),
so Sum/(B, S) is the weight of the pieces in S.

IsRepresentation(w, B, S, T) = SN T=1{}

Aw+ Sum(B, S) = Sum(B, T)
I now define IsSolution(B) to be true iff break B solves the problem, meaning that it can be used
to balance any weight in 1 .. N.

SUBSET S is the set of all subsets of S (the power set of S).

IsSolution(B) = Yw € 1..N:
38, T € suBsSeT (1.. P) : IsRepresentation(w, B, S, T)

I define AllSolutions to be the set of all breaks B that solve the problem.
AllSolutions = {B € Break : IsSolution(B)}

We can now have TLC compute the solution to the problem as follows. We open this module
in the TLA+ Toolbox (an Integrated Development Environment for the TLA+ tools). We then
create a new TLC model in which we assign the values 40 to N and 4 to P. We specify in the
model that TLC should compute the value of AllSolutions and run TLC on the model. After
running for 22 seconds on my 3 year old 2.5 GHz laptop, it prints the result

{(1, 3,9, 27)}

In TLA+, a k-tuple is represented as a function f with domain 1 .. k . Therefore, TLC prints a
break B, which with P =4 is a function with domain 1 .. 4, as the tuple (B[1], B[2], B[3], B[4]).
Its output therefore indicates that there is a single break that solves the Car Talk puzzle, and it
breaks the stone into pieces of weights 1, 3, 9, and 27 pounds.

You have undoubtedly observed that the weights of the four pieces are 370, 3°1, 3°2, and 3°3. You
may also have observed that 40 equals 1111 base 3. These facts should give you enough of a hint
to be able to answer this:

For what values of N and P is the problem solvable, and what is a solution for those values?

|

1
It’s a good idea to check that the definition of AllSolutions really generates solutions. The following
operator defines EzpandSolutions to be a set of sequences, one for each solution in AllSolutions.
Each of those sequences is of length N, where the element ¢ shows how to weight ¢ pounds of
corn. For example, for the single solution with N = 40 and P = 4, element 7 of the sequence is

(7, {3} {1, 99

indicating that to weight 7 pounds of corn, we can put the 3 pound weight on the same side of
the balance as the corn and the 1 and 9 pound weights on the other side. For simplicity, I have
made the definition work only only when the solution breaks the stone into pieces with unequal
weights. As an exercise, modify the definition so it prints the elements using sequences instead of
sets, as in

(7, (3), (1, 9))
so it works if the weights of the pieces are not all distinct.
The definition below uses the following notation:

X is the Cartesian product of sets.

[wel..Nw— F(w)]is the N tuple with F(7) as element 4.
a

EzpandSolutions
LET PiecesFor(w, B) = cHOOSE ST € (SUBSET (1 .. P)) x (SUBSET (1.. P)):
IsRepresentation(w, B, ST[1], ST[2])

Image(S, B) = {B
SolutionFor(w, B)

z]:z € S}

(w,

Image(PiecesFor(w, B)[1], B),
Image(PiecesFor(w, B)[2], B))
IN {[w € 1..Nw SolutionFor(w, B)] : B € AllSolutions}

1>

L

Created by Leslie Lamport on 26 October 2011

