Jsing TypeScript to develop
arge JavaScript applications —
-xperiences from the trenches

Dirk Baumer

Introduction to
Typescript

Application scale JavaScript
development is hard.

Types, Classes & @elellgle
Modules Guidelines & Patterns

Development
Performance

Tooling

TypeScript is a typed superset of JavaScript
that compiles to plain JavaScript.

Any browser. Any host. Any OS.

Open Source.

TypeScript

Starts with JavaScript

All JavaScript code is TypeScript code, simply copy and paste
All JavaScript libraries work with TypeScript

Optional Static Types, Classes, Modules

Enable scalable application development and excellent tooling
Zero cost: Static types completely disappear at run-time

Alligned with ECMAScript 6

Classes, Modules, Arrow Functions, Rest Arguments and Default Arguments are
aligned with what is currently proposed in ECMAScript 6

Ends with JavaScript

Compiles to idiomatic JavaScript
Runs in any browser or host, on any OS

Demo

Getting started with TypeScript

Writing better JavaScript

Formalization of common JavaScript patterns

Function overloads, rest and default arguments

Type inference and structural typing

In practice very few type annotations are necessary

Works with existing JavaScript libraries

Declaration files can be written and maintained separately

Not “provably type safe”

Types reflect intent but do not provide guarantees

Demo

TypeScript Classes and Modules

Classes and Modules

Scalable application structuring

Classes, Modules, and Interfaces enable clear contracts between components

Supports popular module systems

CommonJS and AMD modules in any ECMAScript 3 compatible environment

What's Included?

Compiler
Open Source, written in TypeScript

Tooling

Visual Studio language service, browser hosted playground

Libraries

Full static typing of DOM, jQuery, node s, ...
See also https://github.com/borisyankov/Definitely Typed)

And More

Lots of samples and formal Language Specification

Converting form
Javascript to
Typescript

Growing a JS Code base

“JavaScript code ‘rots’ over time” --Ben

“Writing JavaScript code in a large
project is like carving code in
stone” --Alex

‘It is easy to write a large JS program
it is difficult to maintain it” --Anders

Surviving JS Growth

Up to 50k LOC

free style (with unit tests)

50k LOC

use class and module pattern = WinJS classes, name spaces

> 100k LOC

use explicit module dependencies > AMD or CommonJS

> 150k LOC

use typed interfaces and add type annotations = TypeScript

From 30% to 60%

Define .d files for existing JS code

New code implemented in TypeScript
Used a tool to convert WinJS.define calls to ambient classes

But .d files are hard to maintain as the JS code evolves

Converted existing code

Bottom-up: start with files that has no dependencies
Type the API surface
No type inference for API
Introduce interfaces for object literals and object bags/maps

Experiences

"As | did conversions, | began typing various object literals | was passing
around as interfaces. Soon enough, | realized how inconsistent | was, the
same data was flowing around in at least 3 different formats. This is because
of the easiness through which you can create literals in JavaScript Need
some placeholder for data?... Just create a new literal object.” --Alex

“In JavaScript, you are really at the mercy of your
ability to spell.
function deleteRange(range) {

delete this.markers[range.statMarkerld]; //start
--Alex

"I would really like to benefit from type checking
everywhere in the code. | went on to hover over all
variables to see if their type was inferred and |
helped the compiler out with type annotations only
where it failed. --Ben

Features we love most beside
Types, Classes and Modules

Interface with

Arrow functions : :
optional properties

Function
overloads

Typing of Maps

> [+ ()
[object Object]
>{}+ U]

0

> () Of

W00 s o o b R e

... and how TypeScript helps with this

var result = [] + [];
result = [] + jt;
result = jt + ||;

result = jt + jt;
result = "abc™ - : 1
Operator '-'

any

cannot be applied to types 'string’' and 'number’

Application scale JavaScript
development is hard.

TypeScript makes it easier.

http://typescriptlang.org

