




Application scale JavaScript
development is hard.



TypeScript is a typed superset of JavaScript
that compiles to plain JavaScript.

Any browser. Any host. Any OS.

Open Source.



TypeScript

Starts with JavaScript

Optional Static Types, Classes, Modules
scalable application development and excellent tooling

Zero cost: Static types 

Alligned with ECMAScript 6
Classes, Modules, Arrow Functions, Rest Arguments and Default Arguments are 
aligned with what is currently proposed in ECMAScript 6

Ends with JavaScript





Writing better JavaScript

Formalization of common JavaScript patterns

Type inference and structural typing

Works with existing JavaScript libraries

Not “provably type safe”





Classes and Modules

Scalable application structuring
d

Supports popular module systems



What’s Included?

Compiler

Tooling

Libraries

And More



Converting form 
JavaScript to 
TypeScript



Growing a JS Code base

“Writing JavaScript code in a large 

project is like carving code in 

stone” --Alex

“JavaScript code ‘rots’ over time” --Ben

“It is easy to write a large JS program 

it is difficult to maintain it” --Anders



Surviving JS Growth

Up to 50k LOC

50k LOC
use class and module pattern  WinJS classes, name spaces

> 100k LOC
use explicit module dependencies  AMD or CommonJS

> 150k LOC
use typed interfaces and add type annotations  TypeScript



From 30% to 60% 

Define .d files for existing JS code

Converted existing code
Bottom-up: start with files that has no dependencies
Type the API surface

No type inference for API

Introduce interfaces for object literals and object bags/maps



Experiences

“As I did conversions, I began typing various object literals I was passing 

around as interfaces. Soon enough, I realized how inconsistent I was, the 

same data was flowing around in at least 3 different formats. This is because 

of the easiness through which you can create literals in JavaScript …. Need 

some placeholder for data?... Just create a new literal object.” --Alex

“In JavaScript, you are really at the mercy of your 

ability to spell. “

function deleteRange(range) {

delete this.markers[range.statMarkerId]; //start 

--Alex

“I would really like to benefit from type checking 

everywhere in the code. I went on to hover over all 

variables to see if their type was inferred and I 

helped the compiler out with type annotations only 

where it failed. --Ben



Features we love most beside
Types, Classes and Modules



And some fun
https://www.destroyallsoftware.com/talks/wat



… and how TypeScript helps with this



Application scale JavaScript
development is hard.

TypeScript makes it easier.

http://typescriptlang.org


