
Forms Authentication, Authorization, User
Accounts, and Roles :: Validating User
Credentials Against the Membership User
Store

Introduction
In the preceding tutorial we looked at how to create a new user account in the

Membership framework. We first looked at programmatically creating user accounts

via the Membership class’s CreateUser method, and then examined using the

CreateUserWizard Web control. However, the login page currently validates the

supplied credentials against a hard-coded list of username and password pairs. We

need to update the login page’s logic so that it validates credentials against the

Membership framework’s user store.

Much like with creating user accounts, credentials can be validated programmatically

or declaratively. The Membership API includes a method for programmatically

validating a user’s credentials against the user store. And ASP.NET ships with the

Login Web control, which renders a user interface with textboxes for the username

and password and a button to log in.

In this tutorial we will examine how to validate a user’s credentials against the

Membership user store using both programmatic means and the Login control. We

will also look at how to customize the login control’s appearance and behavior. Let’s

get started!

Step 1: Validating Credentials Against the
Membership User Store
For web sites that use forms authentication, a user logs on to the website by visiting

a login page and entering their credentials. These credentials are then compared

against the user store. If they are valid, then the user is granted a forms

authentication ticket, which is a security token that indicates the identity and

authenticity of the visitor.

To validate a user against the Membership framework, use the Membership class’s

ValidateUser method. The ValidateUser method takes in two input parameters –

username and password – and returns a Boolean value indicating whether the

credentials were valid. Like with the CreateUser method we examined in the

previous tutorial, the ValidateUser method delegates the actual validation to the

configured Membership provider.

http://www.asp.net/learn/security/tutorial-05-cs.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.membership.validateuser.aspx

The SqlMembershipProvider validates the supplied credentials by obtaining the

specified user’s password via the aspnet_Membership_GetPasswordWithFormat

stored procedure. Recall that the SqlMembershipProvider stores users’ passwords

using one of three formats: clear, encrypted, or hashed. The

aspnet_Membership_GetPasswordWithFormat stored procedure returns the

password in its raw format. For encrypted or hashed passwords, the

SqlMembershipProvider transforms the password value passed into the

ValidateUser method into its equivalent encrypted or hashed state and then

compares it with what was returned from the database. If the password stored in the

database matches the formatted password entered by the user, the credentials are

valid.

Let’s update our login page (~/Login.aspx) so that it validates the supplied

credentials against the Membership framework user store. We created this login page

back in the An Overview of Forms Authentication tutorial, creating an interface with

two TextBoxes for the username and password, a “Remember Me” checkbox, and a

Login button (see Figure 1). The code validates the entered credentials against a

hard-coded list of username and password pairs (Scott/password, Jisun/password,

and Sam/password). In the Forms Authentication Configuration and Advanced Topics

tutorial we updated the login page’s code to store additional information in the forms

authentication ticket’s UserData property.

http://www.asp.net/learn/security/tutorial-02-cs.aspx
http://www.asp.net/learn/security/tutorial-03-cs.aspx

Figure 1: The Login Page’s Interface Includes Two TextBoxes, a
CheckBoxList, and a Button

The login page’s user interface can remain unchanged, but we need to replace the

Login button’s Click event handler with code that validates the user against the

Membership framework user store. Update the event handler so that its code

appears as follows:

protected void LoginButton_Click(object sender, EventArgs e)

{

 // Validate the user against the Membership framework user store

 if (Membership.ValidateUser(UserName.Text, Password.Text))

 {

 // Log the user into the site

 FormsAuthentication.RedirectFromLoginPage(UserName.Text,

RememberMe.Checked);

 }

 // If we reach here, the user's credentials were invalid

 InvalidCredentialsMessage.Visible = true;

}

This code is remarkably simple. We start by calling the Membership.ValidateUser

method, passing in the supplied username and password. If that method returns

true, then the user is signed into the site via the FormsAuthentication class’s

RedirectFromLoginPage method. (As we discussed in the An Overview of Forms

Authentication tutorial, the FormsAuthentication.RedirectFromLoginPage creates

the forms authentication ticket and then redirects the user to the appropriate page.)

If the credentials are invalid, however, the InvalidCredentialsMessage Label is

displayed, informing the user that their username or password was incorrect.

That’s all there is to it!

To test that the login page works as expected, attempt to login with one of the user

accounts you created in the preceding tutorial. Or, if you have not yet created an

account, go ahead and create one from the

~/Membership/CreatingUserAccounts.aspx page.

Note: When the user enters her credentials and submits the login page form,

the credentials, including her password, are transmitted over the Internet to

the web server in plain text. That means any hacker sniffing the network

traffic can see the username and password. To prevent this, it is essential to

encrypt the network traffic by using Secure Socket Layers (SSL). This will

ensure that the credentials (as well as the entire page’s HTML markup) are

encrypted from the moment they leave the browser until they are received by

the web server.

How the Membership Framework Handles
Invalid Login Attempts
When a visitor reaches the login page and submits their credentials, their browser

makes an HTTP request to the login page. If the credentials are valid, the HTTP

response includes the authentication ticket in a cookie. Therefore, a hacker

attempting to break into your site could create a program that exhaustively sends

HTTP requests to the login page with a valid username and a guess at the password.

If the password guess is correct, the login page will return the authentication ticket

cookie, at which point the program knows it has stumbled upon a valid

username/password pair. Through brute force, such a program might be able to

stumble upon a user’s password, especially if the password is weak.

http://www.asp.net/learn/security/tutorial-02-cs.aspx
http://www.asp.net/learn/security/tutorial-02-cs.aspx
http://www.asp.net/learn/security/tutorial-02-cs.aspx
http://en.wikipedia.org/wiki/Secure_Sockets_Layer

To prevent such brute force attacks, the Membership framework locks out a user if

there are a certain number of unsuccessful login attempts within a certain period of

time. The exact parameters are configurable through the following two Membership

provider configuration settings:

 maxInvalidPasswordAttempts – specifies how many invalid password

attempts are allowed for the user within the time period before the account is

locked out. The default value is 5.

 passwordAttemptWindow – indicates the time period in minutes during which

the specified number of invalid login attempts will cause the account to be

locked out. The default value is 10.

If a user has been locked out, she cannot login until an administrator unlocks her

account. When a user is locked out, the ValidateUser method will always return

false, even if valid credentials are supplied. While this behavior lessens the

likelihood that a hacker will break into your site through brute force methods, it can

end up locking out a valid user who has simply forgotten her password or

accidentally has the Caps Lock on or is having a bad typing day.

Unfortunately, there is no built-in tool for unlocking a user account. In order to

unlock an account, you can modify the database directly – change the IsLockedOut

field in the aspnet_Membership table for the appropriate user account – or create a

web-based interface that lists locked out accounts with options to unlock them. We

will examine creating administrative interfaces for accomplishing common user

account- and role-related tasks in a future tutorial.

Note: One downside of the ValidateUser method is that when the supplied

credentials are invalid, it does not provide any explanation as to why. The

credentials may be invalid because there is no matching username/password

pair in the user store, or because the user has not yet been approved, or

because the user has been locked out. In Step 4 we will see how to show a

more detailed message to the user when their login attempt fails.

Step 2: Collecting Credentials through the
Login Web Control
The Login Web control renders a default user interface very similar to the one we

created back in the An Overview of Forms Authentication tutorial. Using the Login

control saves us the work of having to create the interface to collect the visitor’s

credentials. Moreover, the Login control automatically signs in the user (assuming

the submitted credentials are valid), thereby saving us from having to write any

code.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.aspx
http://www.asp.net/learn/security/tutorial-02-cs.aspx

Let’s update Login.aspx, replacing the manually created interface and code with a

Login control. Start by removing the existing markup and code in Login.aspx. You

may delete it outright, or simply comment it out. To comment out declarative

markup, surround it with the <%-- and --%> delimiters. You can enter these

delimiters manually, or, as Figure 2 shows, you may select the text to comment out

and then click the “Comment out the selected lines” icon in the Toolbar. Similarly,

you can use the “Comment out the selected lines” icon to comment out the selected

code in the code-behind class.

Figure 2: Comment Out the Existing Declarative Markup and Source Code in
Login.aspx

Note: The “Comment out the selected lines” icon is not available when

viewing the declarative markup in Visual Studio 2005. If you are not using

Visual Studio 2008 you will need to manually add the <%-- and --%>

delimiters.

Next, drag a Login control from the Toolbox on to the page and set its ID property to

myLogin. At this point your screen should look similar to Figure 3. Note that the

Login control’s default interface includes TextBox controls for the username and

password, a “Remember me next time” CheckBox, and a “Log In” Button. There are

also RequiredFieldValidator controls for the two TextBoxes.

Figure 3: Add a Login Control to the Page

And… we’re done! When the Login control’s “Log In” button is clicked, a postback will

occur and the Login control will call the Membership.ValidateUser method, passing

in the entered username and password. If the credentials are invalid, the Login

control displays a message stating such. If, however, the credentials are valid, then

the Login control creates the forms authentication ticket and redirects the user to the

appropriate page.

The Login control uses four factors to determine the “appropriate page” to redirect

the user to upon a successful login:

 Whether the Login control is on the login page as defined by loginUrl

setting in the forms authentication configuration; this setting’s default value

is Login.aspx

 The presence of a ReturnUrl querystring parameter

 The value of the Login control’s DestinationUrl property

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.destinationpageurl.aspx

 The defaultUrl value specified in the forms authentication configuration

settings; this setting’s default value is Default.aspx

Figure 4 depicts the how the Login control uses these four parameters to arrive at its

“appropriate page” decision.

Figure 4: Add a Login Control to the Page

Take a moment to test out the Login control by visiting the site through a browser

and logging in as an existing user in the Membership framework.

The Login control’s rendered interface is highly configurable. There are a number of

properties that influence its appearance; what’s more, the Login control can be

converted into a template for precise control over the layout the user interface

elements. The remainder of this step examines how to customize the appearance

and layout.

Customizing the Login Control’s
Appearance
The Login control’s default property settings render a user interface with a title (“Log

In”), TextBox and Label controls for the username and password inputs, a

“Remember me next time” CheckBox, and a “Log In” button. The appearances of

these elements are all configurable through the Login control’s numerous properties.

Furthermore, additional user interface elements – such as a link to a page to create a

new user account – can be added by setting a property or two.

Let’s spend a few moments to gussy up the appearance of our Login control. Since

the Login.aspx page already has text at the top of the page that says “Login”, the

Login control’s title is superfluous. Therefore, clear out the TitleText property value

in order to remove the Login control’s title.

The “User Name:” and “Password:” Labels to the left of the two TextBox controls can

be customized through the UserNameLabelText and PasswordLabelText properties,

respectively. Let’s change the “User Name:” Label to read “Username:”. The Label

and TextBox styles are configurable through the LabelStyle and TextBoxStyle

properties, respectively.

The “Remember me next time” CheckBox’s Text property can be set through the

Login control’s RememberMeText property, and its default checked state is

configurable through the RememberMeSet property (which defaults to False). Go

ahead and set the RememberMeSet property to True so that the “Remember me next

time” CheckBox will be checked by default.

The Login control offers two properties for adjusting the layout of its user interface

controls. The TextLayout property indicates whether the “Username:” and

“Password:” Labels appear to the left of their corresponding TextBoxes (the default),

or above them. The Orientation property indicates whether the username and

password inputs are situated vertically (one above the other) or horizontally. I am

going to leave these two properties set to their defaults, but I encourage you to try

setting these two properties to their non-default values to see the resulting effect.

Note: In the next section, “Configuring the Login Control’s Layout,” we will

look at using templates to define the precise layout of the Layout control’s

user interface elements.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.titletext.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.usernamelabeltext.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.passwordlabeltext.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.labelstyle.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.textboxstyle.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.textboxstyle.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.remembermetext.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.remembermeset.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.textlayout.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.orientation.aspx

Wrap up the Login control’s property settings by setting the CreateUserText and

CreateUserUrl properties to “Not registered yet? Create an account!” and

“~/Membership/CreatingUserAccounts.aspx”, respectively. This adds a hyperlink to

the Login control’s interface pointing to the page we created in the preceding

tutorial. The Login control’s HelpPageText and HelpPageUrl properties and

PasswordRecoveryText and PasswordRecoveryUrl properties work in the same

manner, rendering links to a help page and a password recovery page.

After making these property changes, your Login control’s declarative markup and

appearance should look similar to that shown in Figure 5.

Figure 5: The Login Control’s Properties’ Values Dictate Its Appearance

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.createusertext.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.createuserurl.aspx
http://www.asp.net/learn/security/tutorial-05-cs.aspx
http://www.asp.net/learn/security/tutorial-05-cs.aspx
http://www.asp.net/learn/security/tutorial-05-cs.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.helppagetext.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.helppageurl.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.passwordrecoverytext.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.passwordrecoveryurl.aspx

Configuring the Login Control’s Layout
The Login Web control’s default user interface lays out the interface in an HTML

<table>. But what if we need finer control over the rendered output? Maybe we want

to replace the <table> with a series of <div> tags. Or what if our application

requires additional credentials for authentication? Many financial websites, for

instance, require users to supply not only a username and password, but also a

Personal Identification Number (PIN), or other identifying information. Whatever the

reasons may be, it is possible to convert the Login control into a template, from

which we can explicitly define the interface’s declarative markup.

We need to do two things in order to update the Login control to collect additional

credentials:

1. Update the Login control’s interface to include Web control(s) to collect the

additional credentials.

2. Override the Login control’s internal authentication logic so that a user is only

authenticated if their username and password is valid and their additional

credentials are valid, too.

To accomplish the first task, we need to convert the Login control into a template

and add the necessary Web controls. As for the second task, the Login control’s

authentication logic can be superseded by creating an event handler for the control’s

Authenticate event.

Let’s update the Login control so that it prompts users for their username, password,

and email address and only authenticates the user if the email address supplied

matches their email address on file. We first need to convert the Login control’s

interface to a template. From the Login control’s Smart Tag, choose the “Convert to

template” option.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.authenticate.aspx

Figure 6: Convert the Login Control to a Template

Note: To revert the Login control to its pre-template version, click the Reset

link from the control’s Smart Tag.

Converting the Login control to a template adds a LayoutTemplate to the control’s

declarative markup with HTML elements and Web controls defining the user

interface. As Figure 7 shows, converting the control to a template removes a number

of properties from the Properties window, such as TitleText, CreateUserUrl, and

so forth, since these property values are ignored when using a template.

Figure 7: Fewer Properties are Available When the Login Control is
Converted to a Template

The HTML markup in the LayoutTemplate may be modified as needed. Likewise, feel

free to add any new Web controls to the template. However, it is important that

Login control’s core Web controls remain in the template and keep their assigned ID

values. In particular, do not remove or rename the UserName or Password

TextBoxes, the RememberMe CheckBox, the LoginButton Button, the FailureText

Label, or the RequiredFieldValidator controls.

To collect the visitor’s email address, we need to add a TextBox to the template. Add

the following declarative markup between the table row (<tr>) that contains the

Password TextBox and the table row that holds the “Remember me next time”

CheckBox:

<tr>

 <td align="right">

 <asp:Label ID="EmailLabel" runat="server"

AssociatedControlID="Email">Email:</asp:Label>

 </td>

 <td>

 <asp:TextBox ID="Email" runat="server"></asp:TextBox>

 <asp:RequiredFieldValidator ID="EmailRequired" runat="server"

 ControlToValidate="Email" ErrorMessage="Email is required."

 ToolTip="Email is required."

ValidationGroup="myLogin">*</asp:RequiredFieldValidator>

 </td>

</tr>

After adding the Email TextBox, visit the page through a browser. As Figure 8

shows, the Login control’s user interface now includes a third textbox.

Figure 8: The Login Control Now Includes a Textbox for the User’s Email
Address

At this point, the Login control is still using the Membership.ValidateUser method

to validate the supplied credentials. Correspondingly, the value entered into the

Email TextBox has no bearing on whether the user can log in. In Step 3 we will look

at how to override the Login control’s authentication logic so that the credentials are

only considered valid if the username and password are valid and the supplied email

address matches up with the email address on file.

Step 3: Modifying the Login Control’s
Authentication Logic
When a visitor supplies her credentials and clicks the “Log In” button, a postback

ensues and the Login control progresses through its authentication workflow. The

workflow starts by raising the LoggingIn event. Any event handlers associated with

this event may cancel the log in operation by setting the e.Cancel property to true.

If the log in operation is not cancelled, the workflow progresses by raising the

Authenticate event. If there is an event handler for the Authenticate event, then

it is responsible for determining whether the supplied credentials are valid or not. If

no event handler is specified, the Login control uses the Membership.ValidateUser

method to determine the validity of the credentials.

If the supplied credentials are valid, then the forms authentication ticket is created,

the LoggedIn event is raised, and the user is redirected to the appropriate page. If,

however, the credentials are deemed invalid, then the LoginError event is raised

and a message is displayed informing the user that their credentials were invalid. By

default, on failure the Login control simply sets its FailureText Label control’s Text

property to a failure message (“Your login attempt was not successful. Please try

again”). However, if the Login control’s FailureAction property is set to

RedirectToLoginPage, then the Login control issues a Response.Redirect to the

login page appending the querystring parameter loginfailure=1 (which causes the

Login control to display the failure message).

Figure 9 offers a flow chart of the authentication workflow.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.loggingin.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.authenticate.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.loggedin.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.loginerror.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.failureaction.aspx

Figure 9: The Login Control’s Authentication Workflow

Note: If you are wondering when you would use the FailureAction’s

RedirectToLogin page option, consider the following scenario. Right now our

Site.master master page currently has the text, “Hello, stranger” displayed

in the left column when visited by an anonymous user, but imagine that we

wanted to replace that text with a Login control. This would allow an

anonymous user to log in from any page on the site, instead of requiring

them to visit the login page directly. However, if a user was unable to log in

via the Login control rendered by the master page, it might make sense to

redirect them to the login page (Login.aspx) because that page likely

includes additional instructions, links, and other help – such as links to create

a new account or retrieve a lost password – that were not added to the

master page.

Creating the Authenticate Event Handler
In order to plug in our custom authentication logic, we need to create an event

handler for the Login control’s Authenticate event. Creating an event handler for

the Authenticate event will generate the following event handler definition:

protected void myLogin_Authenticate(object sender,

AuthenticateEventArgs e)

{

}

As you can see, the Authenticate event handler is passed an object of type

AuthenticateEventArgs as its second input parameter. The

AuthenticateEventArgs class contains a Boolean property named Authenticated

that is used to specify whether the supplied credentials are valid. Our task, then, is

to write code here that determines whether the supplied credentials are valid or not,

and to set the e.Authenticate property accordingly.

Determining and Validating the Supplied
Credentials
Use the Login control’s UserName and Password properties to determine the

username and password credentials entered by the user. In order to determine the

values entered into any additional Web controls (such as the Email TextBox we

added in the previous step), use LoginControlID.FindControl("controlID") to

obtain a programmatic reference to the Web control in the template whose ID

property is equal to controlID. For example, to get a reference to the Email TextBox,

use the following code:

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.authenticateeventargs.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.username.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.password.aspx

TextBox EmailTextBox = myLogin.FindControl("Email") as TextBox;

In order to validate the user’s credentials we need to do two things:

1. Ensure that the provided username and password are valid

2. Ensure that email address entered matches the email address on file for the

user attempting to log in

To accomplish the first check we can simply use the Membership.ValidateUser

method like we saw in Step 1. For the second check, we need to determine the

user’s email address so that we can compare it to the email address they entered

into the TextBox control. To get information about a particular user, use the

Membership class’s GetUser method.

The GetUser method has a number of overloads. If used without passing in any

parameters, it returns information about the currently logged in user. To get

information about a particular user, call GetUser passing in their username. Either

way, GetUser returns a MembershipUser object, which has properties like UserName,

Email, IsApproved, IsOnline, and so on.

The following code implements these two checks. If both pass, then e.Authenticate

is set to true, otherwise it is assigned false.

protected void myLogin_Authenticate(object sender,

AuthenticateEventArgs e)

{

 // Get the email address entered

 TextBox EmailTextBox = myLogin.FindControl("Email") as TextBox;

 string email = EmailTextBox.Text.Trim();

 // Verify that the username/password pair is valid

 if (Membership.ValidateUser(myLogin.UserName, myLogin.Password))

 {

 // Username/password are valid, check email

 MembershipUser usrInfo = Membership.GetUser(myLogin.UserName);

 if (usrInfo != null && string.Compare(usrInfo.Email, email,

true) == 0)

 {

 // Email matches, the credentials are valid

 e.Authenticated = true;

 }

 else

http://msdn2.microsoft.com/en-us/library/system.web.security.membership.getuser.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.membershipuser.aspx

 {

 // Email address is invalid...

 e.Authenticated = false;

 }

 }

 else

 {

 // Username/password are not valid...

 e.Authenticated = false;

 }

}

With this code in place, attempt to log in as a valid user, entering the correct

username, password, and email address. Try it again, but this time purposefully use

an incorrect email address (see Figure 10). Finally, try it a third time using a non-

existent username. In the first case you should be successfully logged on to the site,

but in the last two cases you should see the Login control’s invalid credentials

message.

Figure 10: Tito Cannot Log In When Supplying an Incorrect Email Address

Note: As discussed in the “How the Membership Framework Handles Invalid

Login Attempts” section in Step 1, when the Membership.ValidateUser

method is called and passed invalid credentials, it keeps track of the invalid

login attempt and locks out the user if they exceed a certain threshold of

invalid attempts within a specified time window. Since our custom

authentication logic calls the ValidateUser method, an incorrect password

for a valid username will increment the invalid login attempt counter, but this

counter is not incremented in the case where the username and password are

valid, but the email address is incorrect. Chances are, this behavior is

suitable, since it’s unlikely that a hacker will know the username and

password, but have to use brute force techniques to determine the user’s

email address.

Step 4: Improving the Login Control’s
Invalid Credentials Message
When a user attempts to log on with invalid credentials, the Login control displays a

message explaining that the login attempt was unsuccessful. In particular, the

control displays the message specified by its FailureText property, which has a

default value of “Your login attempt was not successful. Please try again.”

Recall that there are many reasons why a user’s credentials may be invalid:

 The username may not exist

 The username exists, but the password is invalid

 The username and password are valid, but the user is not yet approved

 The username and password are valid, but the user is locked out (most likely

because they exceeded the number of invalid login attempts within the

specified time frame)

And there may be other reasons when using custom authentication logic. For

example, with the code we wrote in Step 3, the username and password may be

valid, but the email address may be incorrect.

Regardless of why the credentials are invalid, the Login control displays the same

error message. This lack of feedback can be confusing for a user whose account has

not yet been approved or who has been locked out. With a little bit of work, though,

we can have the Login control display a more appropriate message.

http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.failuretext.aspx

Whenever a user attempts to login with invalid credentials the Login control raises its

LoginError event. Go ahead and create an event handler for this event, and add the

following code:

protected void myLogin_LoginError(object sender, EventArgs e)

{

 // Determine why the user could not login...

 myLogin.FailureText = "Your login attempt was not successful.

Please try again.";

 // Does there exist a User account for this user?

 MembershipUser usrInfo = Membership.GetUser(myLogin.UserName);

 if (usrInfo != null)

 {

 // Is this user locked out?

 if (usrInfo.IsLockedOut)

 {

 myLogin.FailureText = "Your account has been locked out

because of too many invalid login attempts. Please contact the

administrator to have your account unlocked.";

 }

 else if (!usrInfo.IsApproved)

 {

 myLogin.FailureText = "Your account has not yet been

approved. You cannot login until an administrator has approved your

account.";

 }

 }

}

The above code starts by setting the Login control’s FailureText property to the

default value (“Your login attempt was not successful. Please try again”). It then

checks to see if the username supplied maps to an existing user account. If so, it

consults the resulting MembershipUser object’s IsLockedOut and IsApproved

properties to determine if the account has been locked out or has not yet been

approved. In either case, the FailureText property is updated to a corresponding

value.

To test this code, purposefully attempt to log in as an existing user, but use an

incorrect password. Do this five times in a row within a 10 minute time frame and

the account will be locked out. As Figure 11 shows, subsequent login attempts will

always fail (even with the correct password), but will now display the more

descriptive “Your account has been locked out because of too many invalid login

attempts. Please contact the administrator to have your account unlocked” message.

Figure 11: Tito Performed Too Many Invalid Login Attempts and Has Been
Locked Out

Summary
Prior this tutorial, our login page validated the supplied credentials against a hard-

coded list of username/password pairs. In this tutorial, we updated the page to

validate credentials against the Membership framework. In Step 1 we looked at using

the Membership.ValidateUser method programmatically. In Step 2 we replaced our

manually created user interface and code with the Login control.

The Login control renders a standard login user interface and automatically validates

the user’s credentials against the Membership framework. Moreover, in the event of

valid credentials, the Login control signs the user in via forms authentication. In

short, a fully functional login user experience is available by simply dragging the

Login control onto a page, no extra declarative markup or code necessary. What’s

more, the Login control is highly customizable, allowing for a fine degree of control

over both the rendered user interface and authentication logic.

At this point visitors to our website can create a new user account and log into the

site, but we have yet to look at restricting access to pages based on the

authenticated user. Currently, any user, authenticated or anonymous, can view any

page on our site. Along with controlling access to our site’s pages on a user-by-user

basis, we might have certain pages whose functionality depends on the user. The

next tutorial looks at how to limit access and in-page functionality based on the

logged in user.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following

resources:

 Displaying Custom Messages to Locked Out and Non-Approved Users

 Examining ASP.NET 2.0’s Membership, Roles, and Profile

 How To: Create an ASP.NET Login Page

 Login Control Technical Documentation

 Using the Login Controls

About the Author
Scott Mitchell, author of multiple ASP/ASP.NET books and founder of

4GuysFromRolla.com, has been working with Microsoft Web technologies since 1998.

Scott works as an independent consultant, trainer, and writer. His latest book is

Sams Teach Yourself ASP.NET 2.0 in 24 Hours. Scott can be reached at

mitchell@4guysfromrolla.com or via his blog at http://ScottOnWriting.NET.

Special Thanks To…
This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this

tutorial were Teresa Murphy and Michael Olivero. Interested in reviewing my

upcoming MSDN articles? If so, drop me a line at mitchell@4GuysFromRolla.com.

http://aspnet.4guysfromrolla.com/articles/050306-1.aspx
http://aspnet.4guysfromrolla.com/articles/120705-1.aspx
http://msdn2.microsoft.com/en-us/library/ms178331.aspx
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.login.aspx
http://quickstarts.asp.net/QuickStartv20/aspnet/doc/security/login.aspx
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4guysfromrolla.com
http://scottonwriting.net/
mitchell@4GuysFromRolla.com

