MICROSOFT. VISUAL STUDIO. 2005 TEAM
SYSTEM

Adopting a Value-Up Paradigm

WHITE PAPER | AUGUST 2006
SAM GUCKENHEIMER

FOR THE LATEST INFORMATION, PLEASE SEE
HTTP://MSDN.MICROSOFT.COM/VSTUDIO/TEAMSYSTEM

2

Microsoft® i
Visual Studio 2005

Contents

A Paradigm Shift. . ..o 2
Three Forcesto Reconcile 2
What Software Is Worth Building? 3

Contrasting Paradigms o 3

Attention 10 FlOWo 6
Contrast to Work-Down 7
TrANSPATENCY o oottt ettt e e e e e e 8

One Work Item Database 10
Instrument Daily Activities. 13

Simple Observations 14
Project "Smells” o 14
Multidimensional Metricsand Smells 15

Fit Process to the Project. 16

UMY oot e e e e e 17

1 Fur Lkt eud g meii: Pegpre

ier Kb
von . Eistadeim, v

IRe da Kalaredyuamil Mg ws

] ' e — wia dy

244 -':::_g l.;u (L T el — s |i-|f.l;:w..-siﬂ“‘“l
T Kocpar in Ay simenisien o

- £ I{ gt e fahm, selibs doy Py,
pHYD 1 . e e ™
I

r“:-:n.f-; -::,dl:rzl Brea buahiaediiype P smsesy bhugt
Alirhavegung vom Leiter gui
o g el v Whlichen Anommg dia 5.4,.'?;.’.‘."2.;
: I |..|:|'|-- i :hr sadare dissir Karpar der brmagie i wieen
r gt e pﬂ'u"w‘ Rt -r|-|m mors sied. Newagt sich simiel s leu':
Il-: “-' i B e i Ebibebt in div Dmpalung des Magnntes
i -1- .F-id.l:-e- s Esorgiovaris, webiles o
; o P ﬁ..“ l:: ‘m don Laiters bifaden, slass Etrom
= . Rt t-;]-,,-.;.L 1?9] Srwept sieh dae Leainay
. £ lamg dgy agiatai | .
L “#:;u‘l - - 'Iln?n [b:_uln Eine ﬂll!wvhl:'ll-\.l: I:r\llh- e
B r--‘ _,*...-_nwm 10 Energie entapricht, dig 1
o . 22 :::n‘ bai den bueddea ims dugs gelabie
e b _-'.':h:ti;:d“ Sardomen vou dersallag
prL e . Hhh e ety | TRalsng gib, wia i eraten
2 i il Abplakar Art, spviy iy
2 il ¥
= — Fang :5-:-' I;.{lc- r';qn sam .I.-'-I.l.:;-::;" .rl:' s
1 Wobras iy Cer ey, dad dea Bepsin F
PlLANCE gFifs o
[N . lede n;l.: 380 Im der Mechanik, ool snch in
o !“---'-"'!|z| LODE. mﬂm i‘.‘m_PﬁT;ir:n.. der Erschaivunges ent.
sirkmi 7 alle Kserdinateusyais
I_‘_'_r_,,..n-“-' [T Gleitbanpes pillin, suck T:
et Sdrsarbithan wnd aptischen Grastry Eolivs, win
i sritar Ordenng baiebls. sreicarm (LA -
SR r-!.lntl i Gipenden | Prineip
:-unn:l. wardin wind gug Voraussstming ar.
frdem dln et b mur sebaiaie HITEMraglily
ygiymin. W ¥TE
. B
BT
o jemANE
VEELAR
FIGURE 1.1

Einstein’s 1905 paper was the focal point of a paradigm shift in our understanding of physics.
It arose from forty years of work on the most vexing technical challenges of his day—how to
synchronize clocks and how to accurately draw maps over long distances.

A theory should be as simple as
possible, but no simpler.

ATTR. ALBERT EINSTEIN

Visual Studio Team System: Adopting a Value-Up Paradigm

A Paradigm Shift

Paradigm shifts come in fits and starts, as old theories can no longer explain the world as
observed. A poster child for the scientific paradigm shift is Albert Einstein’s Theory of Special
Relativity, published in 1905. Einstein’s work reduced Newtonian mechanics to a special case,
settled forty years of debate on the nature of time and synchronicity, and set the agenda for
much of science, technology, and world affairs of the twentieth century.

According to a posthumous legend many of us learned in school, Einstein was a solitary
theoretician whose day job reviewing patent applications was a mere distraction from his
passionate pursuit of physics. Yet this popular view of Einstein is misguided. In fact, the majority
of patent applications that Einstein reviewed concerned the same physics problem that fascinated
him—how to synchronize time over distance for multiple practical purposes, such as creating
railroad schedules, maritime charts, and accurate territorial maps in an age of colonial expansion.
Indeed, the synchronization of time was a great technological problem of the age, for which
special relativity became a mathematical solution, capping decades of debate.

Einstein was not the only person to solve the mathematical problem in 1905—the far more
prominent Henri Poincaré produced an alternative that has long since been forgotten.! Why is
Einstein’s solution the one taught in every physics class today? Poincaré’s calculations relied on
the "ether,” a supposed medium of space that had pervaded nineteenth-century physics. Einstein’s
Special Relativity, on the other hand, used much simpler calculations that required no ether. This
was the first notable example of the principle later attributed to Einstein, that “a theory should be
as simple as possible, but no simpler”

Three Forces to Reconcile

A shift similar to the contrasting views of physics one hundred years ago has been occurring
today in software development. On a weekend in 2001, seventeen software luminaries convened
to discuss “lightweight methods.” At the end of the weekend, they launched the Agile Alliance,
initially charged around the Agile Manifesto.? Initially, it was a rallying cry for those who saw
formal software processes, as currently practiced, to be like the “ether” of nineteenth-century
physics—an unnecessary complexity and impediment to productivity. Five years later, “agility”

is mainstream. Industry analysts advocate it, every business executive espouses it, and everyone
tries to get more of it.

At the same time, two external economic factors came into play. One is global competition.

The convergence of economic liberalization, increased communications bandwidth, and a highly
skilled labor force in emerging markets made the outsourcing of software development to lower
wage countries (notably India) economical.? The Indian consultancies, in turn, needed to assure
their quality to American and European customers. Many latched onto the Capability Maturity
Model Integrated (CMMI) from the Software Engineering Institute at Carnegie Mellon University.*
The CMMI epitomized the heavyweight processes against which the agilists rebelled and was
considered too expensive to be practical outside of the defense industry. The offshorers, with their
cost advantage, did not mind the expense and could turn the credential of a CMMI appraisal into
a competitive advantage.

1 Thomas Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, 1962).

2 www.agilemanifesto.org

3 See Thomas L. Friedman, The World Is Flat: A Brief History of the Twenty-First Century (Farrar, Strauss & Giroux, 2005) for
a discussion of the enabling trends.

4 http://www.sei.cmu.edu/cmmi/

2 Visual Studio Team System: Adopting a Value-Up Paradigm

The second economic factor is increased attention to regulatory compliance after the lax business
practices of the 1990s. In the U.S., the Sarbanes-Oxley Act of 2002 (SOX) epitomizes this emphasis
by holding business executives criminally liable for financial misrepresentations. This means that
software and systems that process financial information are subject to a level of scrutiny and audit
much greater than previously known.

These forces—agility, outsourcing/offshoring, and compliance—cannot be resolved without a

paradigm shift in the way we approach the software lifecycle. The modern economics require

agility with accountability. Closing the gap requires a new approach, both to process itself and
to its tooling.

What Software Is Worth Building?

To overcome the gap, you have to recognize that software engineering is not like other
engineering. When you build a bridge, a road, a house, or a building, you can safely study
hundreds of very close examples. Indeed, most of the time, economics dictate that you build
the current one almost exactly like the last, to take the risk out of the project.

With software, if someone has built a system just like you need, or close to what you need, then
chances are you can license it commercially (or even find it as freeware). No sane business is going
to spend money building software that it can buy more economically. With thousands of software
products available for commercial license, it is almost always cheaper to buy. Because the decision
to build software has to be justified based on sound return on investment and risk analysis, the
software projects that get built will almost invariably be those that are not available commercially.

This business context has a profound effect on the nature of software projects. It means that the
software projects that are easy and low risk, because they've been done before, don't get funded.
The only new software development projects undertaken are ones which haven't been done
before, or whose predecessors are not publicly available. This business reality, more than any
other factor, is what makes software so hard and so risky and attention to process so important.®

Contrasting Paradigms

The uncertainty in software projects makes it difficult to estimate tasks correctly, and that difficulty
creates a high variance in the accuracy of the estimates. A common misperception is that the
variance is acceptable because the positive and negative variation average out. In fact, because
software projects are long webs of dependent events, the variation itself accumulates in the form
of downstream delays.®

Unfortunately, most accepted project management wisdom comes from the world of roads and
bridges. In that world, design risks are low, design cost is small relative to build cost, and the
opportunity to deliver incremental value is rare. (You can't drive across a half-finished bridge!)
With this style of project management, you determine an engineering design early, carefully
decompose the design into implementation tasks, schedule and resource the tasks according to
their dependencies and resource availability, and monitor the project by checking off tasks as
completed (or tracking percentages completed). For simplicity, I'll call this style of project manage-
ment the work-down approach, because it is easily envisioned as burning down a list of tasks.

> There are other arguments as well, such as the design complexity of software relative to most engineering pursuits.
See, for example, Boris Beizer, “Software Is Different,” in Software Quality Professional I:1 (American Society for Quality,
Dec 1998).

¢ The negative consequence of the interplay of variation and dependent events is central to the Theory of Constraints.
For example, Eliyahu M. Goldratt, The Goal (North River Press, 1986).

Visual Studio Team System: Adopting a Value-Up Paradigm 3

The work-down approach does work well for engineering projects with low risk, low variance, and
well-understood design. Many IT projects, for example, are customizations of commercial-off-the-

shelf software (COTS), such as enterprise resource planning systems. Often, the development is a
small part of the project relative to the business analysis, project management, and testing.
Typically, these projects have lower variability than new development projects, and, accordingly,
the wisdom of roads and bridges works better for repetitive customization projects than for new
development.

Since 19927, there has been a growing challenge to the work-down wisdom about software
process. No single term has captured the emerging paradigm, but for simplicity, I'll call this the
value-up approach, as shown in Figure 1.2. And as happens with new paradigms, the value-up
view has appeared in fits and starts.

WA A el s Yalis [
yes &1 1

OrK LK ue Jp
v Plan +

v Task 1
v Task 2
v Task 3

Q N
®
- OO

FIGURE 1.2

Value

Remaining Work

«

The attitudinal difference between work-down and value-up is in the primary measurement. Work-
down treats the project as a fixed stock of tasks at some cost that need completion and measures
the expenditure against those tasks. Value-up measures value delivered at each point in time and
treats the inputs as variable flows rather than fixed stock.

An example of the value-up school is the agile project management manifesto Declaration of
Interdependence?. It states six principles that characterize value-up:

* We increase return on investment by making continuous flow of value our focus.

* We deliver reliable results by engaging customers in frequent interactions and shared
ownership.

« We expect uncertainty and manage for it through iterations, anticipation, and adaptation.

» We unleash creativity and innovation by recognizing that individuals are the ultimate source
of value, and creating an environment where they can make a difference.

* We boost performance through group accountability for results and shared responsibility
for team effectiveness.

« We improve effectiveness and reliability through situationally specific strategies, processes,
and practices.

7 The first major work to highlight what | call the Value-Up Approach is Gerald M. Weinberg, Quality Software
Management, Volume I: Systems Thinking (New York: Dorset House, 1992).

& The Agile Project Manifesto is the center of gravity for the build-up view:
http://www.pmdeclarationofinterdependence.org/.

Behind these principles themselves is a significantly different point of view about practices
between the work-down and value-up mindsets. This table summarizes the differences.

Core
assumption

Planning and
change process

Work-down attitude

Planning and design are the most
important activities to get right. You
need to do these initially, establish
accountability to plan, and monitor
against the plan, and carefully
prevent change from creeping in.

Value-up attitude

Change happens, embrace it.
Planning and design will continue
through the project. Therefore,
you should invest in just enough
planning and design to understand
risk and to manage the next small
increment.

Primary
measurement

Task completion. Because we know the
steps to achieve the end goal, we can
measure every intermediate deliverable
and compute earned value running as
the % of hours planned to be spent by
now vs. the hours planned to be spent to
completion.

Only deliverables that the customer
values (working software, completed
documentation, etc.) count. You need to
measure the flow of the work streams by
managing queues that deliver customer
value and treat all interim measures
skeptically.

Definition of
quality

Conformance to specification. That's why
you need to get the specs right at the
beginning.

Value to the customer. This perception
can (and probably will) change. The
customer may not be able to articulate
how to deliver the value until working
software is initially delivered. Therefore,
keep options open, optimize for
continual delivery, and don't specify
too much too soon.

Acceptance of
variance

Tasks can be identified and estimated in
a deterministic way You don't need to
pay attention to variance.

Variance is part of all process flows,
natural and man-made. To achieve
predictability, you need to understand
and reduce the variance.

Intermediate
work products

Documents, models, and other
intermediate artifacts are necessary to
decompose the design and plan tasks,
and they provide the necessary way to
measure intermediate progress.

Intermediate documentation should
minimize the uncertainty and variation
in order to improve flow. Beyond that,
they are unnecessary.

Troubleshooting
approach

The constraints of time, resource,
functionality, and quality determine
what you can achieve. If you adjust one,
you need to adjust the others. Control
change carefully to make sure that there
are no unmanaged changes to the plan.

The constraints may or may not be
related to time, resource, functionality,
or quality. Rather, identify the primary
bottleneck in the flow of value, work it
until it is no longer the primary one, and
then attack the next one. Keep reducing
variance to ensure smoother flow.

Approach to
trust

4 Visual Studio Team System: Adopting a Value-Up Paradigm

People need to be monitored and
measured to standards. Incentives
should be used by management to
reward individuals for their performance
relative to plan.

Pride of workmanship and teamwork are
more effective than individual incentives.
Trustworthy transparency, where the
whole team can see all the team’s
performance data, works better than
management directive.

Visual Studio Team System: Adopting a Value-Up Paradigm

Attention to Flow

Central to the value-up paradigm is an emphasis on flow. There are two discrete meanings of flow,
both significant in planning software projects.

First, flow is the human experience of performing expertly:

We have seen how people describe the common characteristics of optimal experience: a sense
that one’s skills are adequate to cope with the challenges at hand, in a goal-directed, rule-
bound action system that provides clear clues as to how well one is performing. Concentration
is so intense that there is no attention left over to think about anything irrelevant, or to worry
about problems. Self-consciousness disappears, and the sense of time becomes distorted. An
activity that produces such experiences is so gratifying that people are willing to do it for its own
sake, with little concern for what they will get out of it, even when it is difficult, or dangerous.’

This meaning of flow is cited heavily by advocates of eXtreme Programming and other practices
that focus on individual performance.

The second meaning of flow is the flow of customer value as the primary measure of the system
of delivery.

Flow means that there is a steady movement of value through the system. Client-valued
functionality is moving regularly through the stages of transformation—and the steady arrival
of throughput—with working code being delivered.?’

In this paradigm, you do not measure planned tasks completed as the primary indicator of
progress; you count units of value delivered. Your rates of progress in throughput of delivered
value, and stage of completion at the units of value, are the indicators that you use for planning
and measurement.

Correspondingly, the flow-of-value approach forces you to understand the constraints that restrict
the flow. You tune the end-to-end flow by identifying the most severe bottleneck or inefficiency
in your process, fixing it, and then tackling the next most severe.

The development manager must ensure the flow of value through the transformation processes
in the system. He is responsible for the rate of production output from the system and the time
it takes to process a single idea through the system. To understand how to improve the rate of
production and reduce the lead time, the development manager needs to understand how the
system works, be able to identify the constraints, and make appropriate decisions to protect,
exploit, subordinate, and elevate the system processes.'!

A flow-based approach to planning and project management requires keeping intermediate
work-in-process to a minimum, such as in Figure 1.3. This mitigates the risk of late discovery
of problems and unexpected bubbles of required rework.

° Mihaly Csikszentmihaly, Flow: The Psychology of Optimal Experience (Harper Collins 1990), p. 71.
0 David J. Anderson, Agile Management for Software Engineering (Upper Saddle River, NJ: Prentice Hall, 2004), p. 77.
U bid, p. 77.

6 Visual Studio Team System: Adopting a Value-Up Paradigm

Note the
bulge in the
resolved
scenario
area,
indicating a
bottleneck
in testing.

Remaining Work
Howr much work. is left and when will it be done?

-

Bl Active
Resolved
B Closed

Number of Work Items

The slope
of the
closed line
will not
approach
the backlog
height by
iteration
end.

6/13/2005- 8
6{19/2005-

6/26/2005

62242005

FIGURE 1.3

Measuring flow of scenario completion on a daily basis shows the rhythm of progress or quickly
identifies bottlenecks that can be addressed as they arise. In this example planned work for the
iteration is progressing well through development (active turning to resolved), but is stuck in testing
(resolved to closed). If you tracked development only you would expect completion of the work by
the expected end date, but because of the bottleneck, you can see that the slope of the active
triangle is not steep enough to finish the work on time. This lets you drill into the bottleneck and
determine whether the problem is inadequate testing resources or poor quality of work from
development.

Contrast to Work-Down

An icon of the work-down paradigm is the widely taught “iron triangle” view of project
management. This is the notion that there are only variables that a project manager can work
with: time, resources (of which people are by far the most important), and functionality. If you
acknowledge quality as a fourth dimension (which most people do now), then you have a
tetrahedron, as shown in Figure 1.4.

Visual Studio Team System: Adopting a Value-Up Paradigm

FIGURE 1.4

The iron “triangle” (really, a tetrahedron) treats a
project as a fixed stock of work, in classic work-
down terms. In order to stretch one face of the
tetrahedron, you need to stretch the others.

esource® i\
R |~,.‘a

b

VilsuD

This viewpoint can be summarized as:

To keep the triangle balanced, you have to balance schedule, cost, and product. If you want

to load up the product corner of the triangle, you also have to load up cost or schedule or both.
The same goes for the other combinations. If you want to change one of the corners of the
triangle, you have to change at least one of the others to keep it in balance.??

According to this view, a project manager has an initial stock of resources and time. Any change
to functionality or quality requires a corresponding increase in time or resources. You cannot
stretch one face without stretching the others, and they are all connected.

Although widely practiced, this paradigm does not work well. Just as Newtonian physics is now
known to be a special case, the iron triangle is a special case that assumes the process is flowing
smoothly to begin with. In other words, it assumes that resource productivity is quite uniformly
distributed, that there is little variance in the effectiveness of task completion, and that spare capa-
city exists throughout the system. These conditions exist sometimes, notably on low-risk projects.
Unfortunately, for the types of software projects usually undertaken, they are often untrue.

Many users of Agile methods have demonstrated experiences that pleasantly contradict this
viewpoint. For example, in many cases, if you improve qualities of service, such as reliability,

you can shorten time. Significant improvements in flow are possible within the existing resources
and time.!?

Transparency

It's no secret that most software projects are late, both in the execution and in the discovery that
they are late.* One of the consequences of this phenomenon is a vicious cycle of groupthink and
denial that undermines effective flow. Late delivery leads to requests for replanning, which leads
to pressure for evermore optimistic estimates, which leads to more late delivery, and so on. And
most participants in these projects plan optimistically, replan, and replan, but with little visibility
into the effects. Of course, the all too frequent result is a death march.

12 Steve McConnell, Rapid Development (Microsoft Press, 1996), p. 126.

13 For a more detailed discussion of this, using the nomenclature of the Theory of Constraints, see David J. Anderson &
Dragos Dumitriu, “From Worst to Best in 9 Months: Implementing a Drum-Buffer-Rope Solution in Microsoft's IT
Department,” presented at the TOCICO Conference, November 2005, available from http://www.agilemanagement.net/
Articles/Papers/From_Worst_to_Best_in_9_Months_Final_1_2.pdf.

1 The Standish Group (www.standishgroup.com) publishes a biennial survey called “The Chaos Report.” According to the
2004 data, 71% of projects were late, over budget, and/or canceled.

8 Visual Studio Team System: Adopting a Value-Up Paradigm

This is not because people can't plan or manage their time. The problem is more commonly the
disparity among priorities and expectations of different team members. Most approaches to
software engineering have lots of places to track the work—spreadsheets, Microsoft Project Plans,
requirements databases, bug databases, test management systems, triage meeting notes, etc.
When the information is scattered like that, it is pretty hard to get a whole picture of the project—
you need to look in too many sources, and it's hard to balance all of the information into one
schedule. And when there are so many sources, the information you find is often obsolete, once
you find it.

Things don't need to be that way. Some community projects post their development schedules on
the web, effectively making individual contributors create expectations among their community
peers about their tasks. Making all the work in a project visible can create a virtuous cycle. Of
course, this assumes that the project is structured iteratively, the scheduling and estimation are
made at the right granularity, and triage is effective at keeping the work item priorities in line with
the available resources in the iteration.

FIGURE 1.5

The central
graphic of the
SCRUM
methodology is a

great illustration

Scrune 15 minute daily meeting.

Teams member respond to basics; Of ﬂOW, in the
1) What did you do since last Scrum

Meeting? management
2) Do you have any obstacies? sense. Not

Spant Backiog: Backiog 3) What will you do before naxt e
Feature(s) items 30 days meeling? surpr/smg/y,

inad |
:os:’;?r?—-e: e;pz:!;d SCRUM pioneered
. | A ﬁ the concept of a
Himeons] ! & single product
r ' New functionality
Is demonstrated bCle/Og asa
at end of sprint management
Product Backiog. technique.
Praritized praduct features desirad by the custamer

SCRUM, one of the agile processes, championed the idea of a transparently visible product
backlog, as shown in Figure 1.5. Here's how SCRUM defines it:

Product Backlog is an evolving, prioritized queue of business and technical functionality that
needs to be developed into a system. The Product Backlog represents everything that anyone
interested in the product or process has thought is needed or would be a good idea in the
product. It is a list of all features, functions, technologies, enhancements and bug fixes that
constitute the changes that will be made to the product for future releases. Anything that
represents work to be done on the product is included in Product Backlog.’®

This transparency is enormously effective, for multiple reasons. It creates a “single set of books,” in
other words, a unique, maintained source of information on the work completed and remaining.
Combined with flow measurement as in Figure 1.3, it creates trust among the team, because
everyone sees the same actual data and plan. And finally, it creates a virtuous cycle between team
responsibility and individual accountability. After all, an individual is most likely to complete a task
when he/she knows exactly who is expecting it to be done.®

15 Ken Schwaber & Mike Beedle, Agile Software Development with SCRUM, (Prentice Hall, 2001), pp. 32-3.

16 Bellotti, V,; Dalal, B.; Good, N.; Bobrow, D. G.; Ducheneaut, N. What a to-do: studies of task management towards the
design of a personal task list manager. ACM Conference on Human Factors in Computing Systems (CHI2004); 2004
April 24-29; Vienna; Austria. NY: ACM; 2004; 735-742.

Visual Studio Team System: Adopting a Value-Up Paradigm 9

One Work Item Database

Visual Studio Team System takes the idea of a transparent product backlog even further. Team

System uses a common product backlog to track all planned, active, and completed work for

the team and a history of the majority of actions taken and decisions made regarding that work.

It calls these units “work items” and lets the user view and edit them in a database view inside
Visual Studio, in Microsoft Excels, and in Microsoft Project, all the while syncing them to a
common database.

OO0

Source Metrics
Code Test .

1010101

@ Excel
@ Project)

Scenario
Quality of Service

Devalopment Task

& Team Foundation Test Task
Client Bug
@ Visual Studio Risk

FIGURE 1.6

VSTS enacts and instruments the process, tying source code, testing, work items, and metrics
together. Work items include all the work that needs to be tracked on a project, for example,

scenarios, quality of service requirements, development tasks, test tasks, bugs, and risks. These can

be viewed and edited in the Team Explorer, Visual Studio, Microsoft Excel, or Microsoft Project.

One database behind the common, familiar tools defragments the information. Instead of

cutting and pasting among randomly distributed artifacts, project managers, business analysts,
developers, and testers all see the same work, whether planned in advance or scheduled on the
fly, and whether from well understood requirements or discovered while fixing a bug. And unlike
separate project tracking tools and techniques, much of the data collection in VSTS is automatic.

10 Visual Studio Team System: Adopting a Value-Up Paradigm

5 Al Work Iber [Bralia] - Microsol Yisual Studio

e [d Wiew Buld Team Tedt Toobk Windew Cowendy Help
P 2 Dm A R REED-
SR EE S 1|0 g%l | R JeE fac = o
o ARWerk Bems (Resta] | PR Teos Eagicees - 3 |
}' Cosery Resuts: 16 et found (1 cumvently selschecl, The query has been modfed. | [F=TE0E]
Ly EA ok e 1 Stake To o TERe i reheny
- ermbu
i o ek - P i e B97 el b Py Tamiook ok Themsy = Lag Teamisok
= FOO% sty of Server Bequrerend A tur Sappets S0 il ey e prowets o s 199 m':""'“"
- M Gty of Sevie ererend Al Rerri St s 1 540 T Frinfulafns e il iy W ""'M
§ R sty of Seve Regurerent Ae - Ml e e by of wisk e -y E";m;‘m
MEY Gty of Servie Reqursment Ao et Tesshock, irkes settings reed b be wrvsd i e loc Dol -j": o Sk
T g Aot ST Wiork Theam dhake) Corvick B repaed = rp——
M Tk Actren B Irpherrant Sattrg Ciskog —31 A Tuiks
e s At e T =, il Work s
M0 g Er e et secrk, Bom o vl Br g i ervalkd ‘reated e =5 1y ek e
H sty of Sorvie Medrnrend Al e Ll okt eyt B it i bnchr el teed My e, Boorn o A0 T
AT Cnsy ol Sevie Beparevend A Py e TFS Sty Gring Sl =, Prcject Chacklat
R Tk ATt B Compoey vt 120 Loy Totws Frsinuclatuon S — P Bugs
M Tk Ao e mplerer Guatry itor 0y e
Mok Tek At by Iplerrart rry Maruges LI & [Donumarts
mE s Er by Gury gamren dort furcton m mipoted S L
m [Tess Bulds
[a] | 2
Tarih, 7032 - Craate Fest Plan
-
Mol [reate Test Fan Dinciphra: [Tent = 7
Ot atn
Bewa: [Pk o =l
Revstion: [Toamboh hun =
Sabs)
Basgradia: ot T =
Deorption |ensey | Lrbs | File Aemachments | Denats | L N |
- | =) e Gytes... [t | e

~ Ereer List |] Dnatget | I Prorudien Chasmges | History |] o Cirves e Bl] Pt Rensts AP Fred Sysebeod Results
Beand4) Swed

FIGURE 1.7

This is an example of the work items as they appear either in the Team Explorer of VSTS or in
Visual Studio. Note that tasks, requirements, and bugs can all be viewed in one place.

Because VSTS uses a common database to track work items, it exposes them not just in
Team Explorer but also in Microsoft Excel and Microsoft Project.

Visual Studio Team System: Adopting a Value-Up Paradigm

A Bl £ e et Fowst Jook Qats Tegw Wedew e ! r-8x

Qe 3= 2-0) @ [=i s B 5P EEEE S % AN R N A
£ + | 7] et work lhems % Publich] Refresh | 5 Configure List | 7% Choose Colnve i_,me:uMl

5 = E Actwn
A B [4 | [i] E =

1 Project: Tesniook Senver: nelson Duery: [None|

2 =|¥aork Hem lype =] Slate =|Assigned To = Tithe =

3 Task Artwe bt Craate Test Plam

L] 033 Taek beary Add nirer PET (lecal #1o0g) for Tedarlok Work Bier
|5 | P25 Quality of Serace Requirement =|ys Suppoets 50 smultanesusly loaded progects for each TFE

(] PG Cuality of Serace Reguirement ALiwe Jheys Suppoet up 1050 Tean Fourdation Sener associabons

7 PO Qushity of Serace Reguirement Artie ooy M ahrended losding of Wk Rermd

& POZS Quaity of Serace Requitement At Joays Teamiook uter seflings need 10 be caved in user local peofile

a POAF Bug Artre Joys Wark tem dialog cannal be resized

0 P Task Astin S Imilarrant Sattngs Dulog

11 A Bug Astve Iperez Repor s LRL is massineg hitpdf prefo

12 P00 Bug Arte perez Crealing work ibemn from email bangs in imalid ‘Created time'

13 T Qusiny of Serace Reguinment Aring IpERET Load edliahTalon needs [0 oOour on backgetund thread
14 | TIET Quainty of Serace Reguinsment Ast Jperez Suppoel TFS Security Group Setlings

15 PO Task Actwe jperez Dheploy nersr test lab Team Fousdation Server

16 P35 Task Artwe Tyles Implarrant Qusry Edtor

7 T35 Taek Actg Iyl Implarrsnt Query Mardger U

18 P03 Bug Actre tyler Chuery groupings donl function as expected | |
LE L

x|

21 -
Woa b w0 Sheeti Sesd hests [E} | i
Ready LB 5

FIGURE 1.8

With VSTS the same data can be viewed and edited in Microsoft Excel. The work items, regardless
of type, are stored in the same Team Foundation database.

You can use Microsoft Project to manage the key task items that you track and report there.

romt Tgmat foch Eroldt Colborsts T Mnde ek A
AT E Gl T 0 R e E B e RS F e RBie s = gone b % - msrpn H

¥ Get Work Bems ¥ Pusish ¢ | et uJuummm;l
[0

e s | St [y e gy e T TN -
EIE DDA ILRLAE 1E 0 I L BLAE 0 N LB L ALAE 30

1| Creste Tact Fan Jome Tw1GAES TraiQsEs L)
3| s v FT (il vines) ire Teamink et o dien T iQAEE FeiQTES

3] e B ormenstty K et i ot 1S Qe TwiGaBA T iQue

A el o 50 Tows Fouredabin Seveer dgang Qe T 008 Tue 10608

w| M rascied ey of Mo ey Geeyn Tem 1008 Tue 102008

§ Teweiok e aeSrge resd b b e 1 une ol prati Qamr Tw 0808 Tue 068

T| rdors e chaiog carnal b recre Ddmr T 1006 Tus 1060

8 gt Setrgn Doy T T T

B Fupar sereas LFL & mennng o £ peei lam? T iQEE Tue Q46
e T ——— Joers PeSiREA FeiQTe

| Lt ot s o b G0 £ Do] el Eaen o 17000 M}MI:E]

13| Suppeet 175 Senurty G Selieg Toen Tm3TEE Thedes

11] Domplory rere bt s T ¥ carinion Serrr lary PeIGRE feinaee

1 it Gy Fotoe laen T 10GE6 ThalQGES

¥ et Gy banager i Jam PRiGTES on /006

T oy gt dond Rncion s spened lam? TwiMES TueiME8

L] |
By
FIGURE 1.9

Optionally, Project lets you plan and manage some or all of the work items, with full round-tripping
to the Team Foundation database.

The use of Excel and Project is convenient, but not necessary. All of the functionality is available
through the Team Explorer, the client for Team Foundation. If you're using any Visual Studio Team
System client edition or Visual Studio Professional, then the Team Explorer will appear as a set of
windows inside the development environment.

12 Visual Studio Team System: Adopting a Value-Up Paradigm

For offline editing, management, and “what-ifs” of work items, use Excel or Project. Your files are
stored locally on your client while you work. The changes are written back in Team Foundation
when you next synchronize with the database and any potential merge conflicts are highlighted
at that time. On the other hand, when you use Team Explorer, changes are saved to the
database during the session.

The extensibility of Team System makes it possible for Microsoft partners to add functionality.
For example, Personify Design Teamlook!” provides team members a view of their Team Projects
on multiple Team Foundation Servers from within Microsoft Office Outlooks. Team Foundation
Server extensibility enables Teamlook to track work items with full accountability in the familiar
communications tool, Outlook.

B uery: Al Work Therma - Microandt Duthock

Ble [t Wew G0 [ock ftions el Teambuok

St = | 2 K | ety kReply o) o Formard | ZaFnd |14 7 -lwj
| Farviita Folders i B Tk digywd Te Opevend By | Tharged Date Segbe | =
] drbea

St e 1001 Implermerd Seftren Duakeg ores fum 1240068 1104 AN At

- TG wiieh Foore ey Lt b recioed Borer Nue [24/2006 11100 AN A

TATR Mook wiee ettt bed 1o b divvid i user ket e ol [Tiser 1240006 11104 24 Aovew

- .‘;h-mman PA0H Mglnthepgisd spdre of Wik, Tt =] Wi AFTHI006 1104 MM Aotew

& 3 teckirw Pkl 700% Spport up o 50 Team Foureiation S snooatone Der Tue LTHI006 10CER AM At

= = Teamiook B R T e T p———r o T 1{THI008 10957 BM Actrew

= L S fusbican T8 fudd e AT (loxtal shorn) Fer Tonmiod, Work [Emem e Tum 1[HI08 |1:14 BM Adten

= [Promect; Teamiook: F R T Oy S e —— e T 1[2H008 |1 06 BM Acteen

= Gy At B VAT Suppeet TFS Seurty Grougs Settings Pore Tus 1[NE008 1099 AN Acve

3 Query: All Qualty of Servee Reduinmmarts el st 1724{2006 | 104 AM Aeteor

L] T AFDHD006 LLiE3 AN Aoy
s T AFHI006 11110 &M Actrow
[Tum L[THI008 1111 AM Aew
[Tum 1{2H008 |1 08 &M Adtn
e Tum 17242006 1107 8M Acten

. P00 Lo irbale gt et Bo 0D o bl el
jm:?m A4 Cremtine mark ioevs From emal beings 1 rwald ested e’
L L TE0R Report pres LEL & mipng hitp: I prefe
3 Cumrys My Work Eema P08 Query groupngs dont Function s scpeched
2 Chstry My Work Toase for 0 Tawn Prajcts || /008 Implemart Gusry Maruger U
) Gy Praect Chacilist PO Impleserd Gy Edtor
) Ty Reschond Bucn

o Searh Folders

U

| M
5| Calenar

ul_dl

| < wla (8 !. i
18 e

FIGURE 1.10

With Teamlook from Personify Design, you can also use Outlook as a client for the
Team Foundation server.

Instrument Daily Activities

The transparent backlog relies on accurate data to be useful. Often, collecting the data becomes
a major activity in itself and often relies on willing compliance of large numbers of participants.
This disciplined attention to the bookkeeping is rarely sustained in practice, especially during
periods of intense activity.

The irony is that the vast majority of the data that a team needs is directly correlated to other
actions that are already managed by software. Developers check in code, builds parse that code,
testers write and run tests, and all their activities are tracked somewhere—in Project, Excel, the
bug database, or timesheets. What if you could gather all that data automatically, correlate it,
and use it to measure the process?

7 http://www.personifydesign.com/

Visual Studio Team System: Adopting a Value-Up Paradigm 13

Team System takes that approach. It instruments the daily activities of the team members to
collect process data with no overhead. For example, every time a developer checks updated code
into version control, work items are updated to reflect the tasks and scenarios updated by this
code. The relationships are captured in a “changeset,” and when the next build runs, it identifies
the change sets included and updates work items again with the build number. When tests then
execute, they use the same build number. Then test results, code changes, and work items are all
correlated automatically by Team System.

Process FIGURE 1.11
The metrics
o Q warehouse
collects the data

from all of the
- actions on the
project to provide

Sgnu;ge A h_l'lelrrn_s 1f'1lfnrk Items Por!a!\ reports that

% = : = | 7 correlate the
010101 |) A) different sources
rm? r1J Eq 134 : T 2] and dimensions
1010101] | e of data.

Meitrics Warehouse Reporting

In addition to keeping the backlog current and visible, this automatic data collection populates a
data warehouse with metrics that allow trends and comparisons of quality from many dimensions
on a daily basis. Just like a data warehouse that provides business intelligence on functions like a
sales or production process, this one provides intelligence on the software development process.

Simple Observations

With this data warehouse, basic questions become easy to answer. Is the project coming in on time,
or how far off is it? How much has the plan changed? Who's over or under and needs to have work
rebalanced? What rates should we use to estimate remaining work? How effective are our tests?
These are basic questions most project managers would love to answer with hard data. Once the
data collection is automated, the answers become straightforward.

Project “Smells”

More significantly, most project managers would love to find blind spots—places where data
indicate a likely problem. It is now common to talk about “smells” for these suspicious areas of
code.’® Problems for the project as a whole also appear often as hard-to-pin-down smells, which
are not well exposed by existing metrics. I'll cover smells in some detail in Chapter 9, but for now
I'll share a common example. Imagine a graph that showed you these bug and test pass rates:

8 Originally used for code in Martin Fowler, Refactoring (Addison Wesley, 1999), p. 75.

14 Visual Studio Team System: Adopting a Value-Up Paradigm

Culty Inchcators FIGURE 1.12
Weat i o ety of o o™

R The X-axis identifies different

I components of your project; the
bars show you active bugs and
the test pass rate for each
component.

What would you conclude? Probably that the Instore Pickup Kiosk code is in great shape, and that
you should look for problems elsewhere.

At the same time, there's a danger of relying on too few metrics. Consider this graph, that overlays
code churn (the number of lines added, modified, and deleted) and code coverage from testing
(the percentage of code lines or blocks exercised during testing) on the same axes.

N b e o FIGURE 1.13
. Overlaying code
Note the low coverage and
code coverage =
b ' code churn for
churn for this l the components
L L provides a very
i R different
poairg perspective
on the data.

Suddenly the picture is reversed. There's really high code churn in Instore Pickup Kiosk and the
code is not being covered by the tests that supposedly exercise that component. This picture
reveals that we may have stale tests that aren’t exercising the new functionality. Could that be
why they're passing and not covering the actual code in this component?

Multidimensional Metrics and Smells

The ability to see more dimensions of the project data is a direct benefit of the metrics warehouse,
collecting and correlating data from daily activities. It provides a quantitative, visual tool to pursue
the smells. In this way, you can achieve the level of visibility needed for the strictest compliance
reporting, yet work in an agile manner, and have the same visibility into a remote project, even
outsourced, that you would have in a local one.

Visual Studio Team System: Adopting a Value-Up Paradigm 15

Fit Process to the Project

Instrumenting daily activities and automatically collecting data make it much easier to follow a
consistent software process. Team System automates the process guidance and instruments the
process, so that most of the overhead associated with process, and most of the resistance to
compliance, can disappear.

However, this quickly exposes a valid concern, that no one process fits all software projects, even
within one organization. Regulatory environment, business risk, business upside, technology risk,
team skills, geographic distribution, and project size all play a role in determining the right fit of
process to a project.

Team System takes the diversity of process into account, allowing the project team to choose or
adapt its methodology for contextual realities. When you start a team project in VSTS you pick a
process template, as shown in Figure 1.14, and you can customize the process further for each
project. In effect, each project can choose its process, determining not only guidance, but
workflow, policies, templates, reports, and permissions.

Mew Team Project on JLI01 EHE

3"ﬁ Select a Process Template

The process bemplate defines key aspects of how the team project is managed. The process template
W;#MMWJMFMSJW,MMMMMWM
project.

Which process template should be used to create the team project?

Choose the M5F For Agile Software Development process fior projects with shoet ifecycdes and -
delvery-orienbed beams who can work without lots of intermediste documentation. MSF for Agile
Software Development is an iberative, scenanio-driven development process For bulding .NET, Web,
‘Web Service, and other ohject-oriented applications. It drectly incorporates practices For handing
quality of service requirements such as parformance and security, utiizes a context-driven approach
{context-based) to determine how to operate the project, explicitly calls out project risk as a success
criteria for the oplimal delvery of software, and incorporates all of the traditional software
development roles such &5 the business anshest, project manager, architect, developer, bester, and
release manager. This MSF process is & Flexible guidance framesork that helps create an adaptive
system For software development. This agile methodalogy anticipates the need to adapt to change,

and focuses on people & the most important component bo the success of a project, It also
emphasizes the delivery of working software and promotes customer validation as key success =
measures, Chooss MSE for CMMI Process Improvement over MSF for Agile Software Development, i
wour organization is undertaking a broad quality assurance and process improvement initistive or :I

< Previous pet> |[Eosh | cancel |

FIGURE 1.14

When you start a Team Project, your first choice is which “Process Template” to apply for the project.
The Process Template defines the process guidance website, the work item types and their workflow,
starter work items, the security groups and permissions, reports, and templates for work products.

16 Visual Studio Team System: Adopting a Value-Up Paradigm

Summary

In practice, most software processes require manual enactment, where collecting data and
tracking progress are expensive. Up front, such processes need lots of documentation, training,
and management, and they have high operating and maintenance costs. Most significantly, the
process artifacts and effort do not contribute in any direct way to the delivery of customer value.
Project managers can spend forty hours cutting-and-pasting to report status.

This constraint has left process as an exercise for managers, specialist Program Management
Offices, and skilled practitioners, who could define metrics and activities quite divorced from the
interests of the practitioners or the tools used to implement them. The dominant paradigm in
this world has been the Work-Down view, where software engineering is a deterministic exercise,
similar to other engineering pursuits.

In contrast, the business forces driving software engineering today require a different paradigm.
In keeping with the dictum As simple as possible, but no simpler, a team today needs to embrace
the paradigm of customer value, change, variance, and situationally specific actions as a part of
everyday practice. This is equally true whether projects happen in-house or are outsourced, and
whether local or geographically distributed. Managing such a process usually requires a Value-Up
Approach.

Typically, the Value-Up Approach requires tooling. Collecting, maintaining, and reporting the data
without overhead are simply not practical otherwise. In situations where regulatory compliance
and audit are required, the tooling is necessary to provide the change management and audit
trails. Team System is designed from the ground up to support the Value-Up Approach, in an
auditable way.

Excerpted from Software Engineering with Microsoft Visual Studio Team System

Library of Congress Catalog Number:

Guckenheimer, Sam, 1956

Software engineering with Visual studio team system / Sam Guckenheimer, Juan J. Perez.

p.cm.
ISBN 0-321-27872-0 (pbk. : alk. paper)

1. Microsoft Visual studio. 2. Software engineering. 3. Microsoft .NET Framework. I. Perez, Juan J. Il.
Title. QA76.758.G82 2006 005.1--dc22

2006004369
Copyright © 2006 Sam Guckenheimer

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

ISBN 0-321-27872-0

Visual Studio Team System: Adopting a Value-Up Paradigm 17

