

Microsoft Dynamics
®

 AX 2009

Print Management

Integration Guide

White Paper

Print management gives users specialized control of print settings for
selected Microsoft Dynamics AX reports.

Date: April 27, 2009

Print Management

2

PRINT MANAGEMENT INTEGRATION GUIDE

Table of Contents

Feature description .. 3

Why use Print Management? ... 3

Architectural overview.. 4

Defining metadata ... 4

Set up print management ... 12

Use print management settings ... 14

Conclusion .. 18

3

PRINT MANAGEMENT INTEGRATION GUIDE

Feature description

Print management gives users control of print settings for selected Microsoft Dynamics® AX

reports. Print settings include the number of copies, the printer destination, and the multi-

language text that can be included on the report. Print management also includes the

following features:

 The ability to modify the print settings of a report based on the contents of the data

being printed. For example, send sales orders > $1000 to Printer A and sales orders

> $10,000 to Printer B.

 The ability to specify print settings at various levels of the application. For example,

module-level print settings apply to all documents in a given module, while

customer-level print settings only apply to specific customers and transaction-level

print settings apply only to specific transactions.

 The ability to override or add to the settings from higher levels in the application. For

example, module-level settings can be overridden at the customer or transaction

level if not desirable. Furthermore, additional settings can be added to the existing

settings for similar reasons.

Why use Print Management?

You should consider using the print management framework when the following conditions

are true:

 Your new or existing feature has reports that require specialized print management.

 You are adding a new document type to the application similar to the document

types currently supported by print management. The document types supported by

print management in the Dynamics AX 2009 release are as follows:

Accounts Payable
 Purchase order

 Purchase order invoice

 Purchase order packing slip

 Purchase order receipts list

 Request for quote

 Request for quote - Accept

 Request for quote - Reject

 Request for quote - Return

Accounts Receivable
 Confirmation

 Free text invoice

 Quotation

4

PRINT MANAGEMENT INTEGRATION GUIDE

 Sales order confirmation

 Sales order invoice

 Sales order packing slip

Inventory management

 Picking list

Project
 Project invoice

Architectural overview

The print management subsystem can be broken into three main parts: metadata, setup,

and retrieval. The metadata portion defines a series of classes that allow you to describe

how print management should work. Here you can describe how many levels of defaulting

are possible, what tables and columns should be involved in queries, and other pertinent

information. The setup portion defines a generic user experience that can be opened

throughout the application based on certain inputs. You would call this in areas where print

management information has to be managed by end users. The retrieval portion defines an

API which enables you to retrieve and use the print management information set up by the

user.

Defining metadata

Print management metadata is defined completely in code and stems from three main

classes or concepts: PrintMgmtDocType (documents), PrintMgmtNode (nodes) and

PrintMgmtHierarchy (hierarchies).

A document is the document or report to which specific print management settings apply.

Documents are at the heart of print management because all settings are defined for

documents of a particular type. Once users set up this information it is used whenever that

Define
metadata

Set up print
management

settings

Use print
management

settings

5

PRINT MANAGEMENT INTEGRATION GUIDE

document is printed. The documents in the print management system are defined in the

PrintMgmtDocType class and are always related to specific nodes in print management.

A node is a particular level of defaulting in a hierarchy. For example, in the Accounts

Receivable module print management settings can exist at the Sales Order Transaction

level, the Customer level and the Module level. Each of these levels is considered a node

and each node in print management must derive from the abstract PrintMgmtNode class.

While nodes define the level at which print management settings can exist, they do not

have any order by themselves which is where hierarchies help.

A hierarchy is a group of related nodes. Using the previous example, the nodes mentioned

would all be a part of the Account Receivable Hierarchy. The ordering of nodes in a

hierarchy defines the ordering of defaulting for print management settings. Each hierarchy

in print management must derive from the abstract PrintMgmtHierarchy class.

To bring it all together, consider the following diagram which shows how documents, nodes

and hierarchies all relate to each other to define the print management metadata for a

hypothetical Accounts Receivable hierarchy.

6

PRINT MANAGEMENT INTEGRATION GUIDE

Accounts Receivable (Hierarchy)

The Accounts Receivable node represents the module level settings and all documents

present in the module apply at this level. The Customer node represents settings that apply

to specific customers and once again all documents present in the module apply. At the

lowest level the nodes represent transaction level settings and, as expected, only certain

documents apply to each specific transaction.

To integrate with print management you may have to modify existing nodes or hierarchies

to meet the needs of the documents you want to print. You may also be required to create

new nodes, hierarchies or documents to accomplish the same goal. The following sections

outline the steps that are required to accomplish these common integration tasks.

Accounts Receivable (Node)

- Sales packing slip (Document)

- Sales invoice (Document)

- Sales confirmation (Document)

- Pick list (Document)

- Sales quote (Document)

- Free text invoice (Document)

Customer (Node)

- Sales packing slip (Document)

- Sales invoice (Document)

- Sales confirmation (Document)

- Pick list (Document)

- Sales quote (Document)

- Free text invoice (Document)

Sales order (Node)

- Sales packing slip (Document)

- Sales invoice (Document)

- Sales confirmation (Document)

- Pick list (Document)

Sales quote (Node)

- Sales quote (Document)
Free text invoice (Node)

- Free text invoice (Document)

7

PRINT MANAGEMENT INTEGRATION GUIDE

Adding a new document
Whether you are adding a new document to new or existing nodes the same steps are

required. If you want a better understanding of the classes or methods mentioned in the

steps, see the XML documentation that is included in the source code.

(1) Update the PrintMgmtDocumentType enumeration

 Add the document type to the enumeration immediately following the last element.

 Create and assign a label for the document type that follows the pattern for existing

document types.

(2) Update the PrintMgmtDocType class to handle the new document type.

 Modify the getQueryTableId method. Add the table ID of the table that will be used

when enabling users to enter conditional queries for the document type. This is

generally the Jour table that is used when you post, but could be any table that

applies.

 Modify the getQueryRangeFields method. Add the default fields that should be used

when entering conditional queries for the new document type. The order in which

they are added will also be the order in which they appear in the query window.

Consider wrapping this logic with a call to isConfigurationkeyEnabled, passing the

appropriate configuration key, to guarantee that the fields only appear when the

functionality is enabled in the system.

(3) Update the PrintMgmtDocTypeTest class to handle the new document type.

 Modify the testGetDisplayName method. Add a test to guarantee that the document

type appears with the correct text.

 Modify the testGetQueryTableId method. Add a test to guarantee that the document

type has the correct query table id.

 Modify the testGetQueryRangeFields method. Add a test to guarantee that the

document type has the correct default query fields.

(4) Update all PrintMgmtNode derivatives to which the document type applies.

 Modify the getDocumentTypes method. Add the document type to the list of

supported document types. Wrap this logic with a call to isConfigurationkeyEnabled,

passing the appropriate configuration key, to guarantee that the documents only

appear when the functionality is enabled in the system.

(5) Update necessary PrintMgmtNode derivatives’ tests for the document type.

 Modify the testNodeDocumentTypes method. Create or update this method to handle

the document type.

(6) Update necessary PrintMgmtHierarchy derivatives to which the document type applies.

 Modify the getParentImplementation method. This method is used to define the

structure of the nodes in a hierarchy. In some cases, the document type affects the

logic to determine the parent and in other cases it does not. For example, Sales

order invoice documents use the InvoiceAccount field of the SalesTable to find their

parent node, whereas Sales order confirmation documents use the CustAccount field

of the SalesTable. This is all determined based on the document type. If your new

document type requires special behavior such as this, update the method.

(7) Update necessary PrintMgmtHierarchy derivatives’ tests for the document type.

8

PRINT MANAGEMENT INTEGRATION GUIDE

 This step is only necessary if you were required to update the

getParentImplementation method.

 Update the testGetParent method. Add tests for the new document type following

the existing pattern.

 Update the testGetParentSkippingLevels method. Add tests for the new document

type following the existing pattern.

Creating or modifying nodes
New nodes are necessary when a new level of defaulting is necessary for the documents

you want to print. If you want a better understanding of the classes or methods mentioned

in the steps, see the XML documentation that is included in the source code.

(1) Ensure a node does not already exist that meets your needs. Look at the classes that

derive from the PrintMgmtNode class to determine this information. Even if an existing node

defines document types you are not interested in using, you can still use the node. If none

of the existing nodes meet your needs, continue to step 2.

(2) Create a new enumeration value in the PrintMgmtNodeType enumeration

 Add the node type to the enumeration immediately following the last element.

 The name of the element should match the table to which the print management

settings will be related. If the print management settings do not relate to a table,

choose a name following the existing patterns present.

 Create and assign a label for the node type. If the node references a table, use the

table name label from the table it references. If not, follow the existing patterns

present.

(3) Create a new class that derives from the PrintMgmtNode class. Be sure to reference the

existing PrintMgmtNode derivatives for examples.

 The class should be prefixed with 'PrintMgmtNode_' and should follow the naming

pattern of the existing nodes. If the node is tied to a particular table, the table name

should follow the prefix such as PrintMgmtNode_CustTable, for example.

 Implement the getDisplayCaptionImplementation method.

o This method controls the caption that will appear for the instance of the node

in the Print Management window.

o Return the appropriate label for Module level settings. See existing examples

in PrintMgmtNode_Purch or PrintMgmtNode_Sales.

o Return strfmt("@SYS108943", _tableBuffer.caption()) for account level

settings. See existing example in PrintMgmtNode_CustTable or

PrintMgmtNode_VendTable.

o Return strfmt("@SYS108944", _tableBuffer.caption()) for transaction level

settings. See existing examples in PrintMgmtNode_SalesTable or

PrintMgmtNode_PurchTable.

o Customize as necessary for unique situations.

 Implement the getDocumentTypes method.

o Return a list of document types the node supports.

o The document types should be wrapped in configuration key checks so that

they are only loaded if the configuration key is enabled. For example,

isConfigurationkeyEnabled(configurationkeynum(LogisticsBasic)).

9

PRINT MANAGEMENT INTEGRATION GUIDE

 Implement the getIconImageResNum method.

o This method controls the icon that will appear for the instance of the node in

the Print Management window.

o Return the resource ID used to display the icon representing this node. The

resAppl macro contains the resource ID definitions for icon images. This

method should return one of those resource IDs. If additional resource IDs

are used, they should also be added to the build method of the

ImageListAppl_PrintMgmt class.

o Module level nodes should use the same icon that is used for the module,

account level nodes should use #ImagePrintManagementAccount, and

transaction level nodes should use #ImagePrintManagementTrans.

 Implement the getNodeType method.

o Return the appropriate PrintMgmtNodeType enumeration value.

 Implement the getReferenceTableId method.

o Return the table to which the node will be related. For example, if a node is

tied to specific customers you would return tablenum(CustTable).

o If the node is not related to a specific table, return the value of 0. Module

level settings are examples of nodes that are not tied to specific tables.

(4) Modify the PrintMgmtNode::construct method. Add a case statement to construct your

new node.

(5) Create appropriate unit tests.

 The name of the test class should be identical to the node followed by the postfix

'Test'.

 Regarding the contents of the tests, follow the example of existing node tests that

are similar to your node type. For example, module-level, account level, transaction

level nodes, or other.

 To add data, follow the existing examples in the PrintMgmtTestSuite class.

o Add a macro that defines the id of the table in the classDeclaration.

o Add a new method that retrieves the table following the existing pattern. For

example, getSalesTable, getCustInvoiceTable, and so forth.

o Create the data in the setUpReferenceData method and make to

trackInsertedRows for the table you add.

 Once done, add the new test to the PrintMgmtTestSuite by adding the appropriate

entry in the new method.

(6) If the node relates to a table, update the appropriate relations and cascading deletes.

 Create a relation on the PrintMgmtDocInstance table to the table you are

referencing. For example, PrintMgmtDocInstance -> SalesTable.

 Add a cascading delete on the table you are referencing to the

PrintMgmtDocInstance table. For example, SalesTable -> PrintMgmtDocInstance.

(7) Add the node to the appropriate hierarchy. See the Creating or modifying hierarchies

section for the steps that are needed to do this.

(8) Add the node to the PrintMgmt shared project.

Creating or modifying hierarchies

10

PRINT MANAGEMENT INTEGRATION GUIDE

In some cases existing hierarchies can be modified to include or rearrange existing nodes.

In other cases completely new hierarchies are necessary. Both scenarios have similar steps

which are outlined later in this document. If you want a better understanding of the classes

or methods mentioned in the steps, see the XML documentation that is included in the

source code.

(1) Create a new enumeration value in the PrintMgmtHierarchyType enumeration.

 Add the hierarchy type to the enumeration immediately following the last element.

 Create and assign a label for the hierarchy type following the existing patterns.

(2) Create a new class that derives from the PrintMgmtHierarchy class. Be sure to reference

the existing PrintMgmtHierarchy derivatives for examples.

 The class should be prefixed with 'PrintMgmtHierarchy_' and should follow the

naming pattern of the existing hierarchies.

 Implement the getNodesImplementation method.

o Return the list of nodes the hierarchy supports.

 Implement the getParentImplementation method.

o This method is used to define the structure of the nodes in a hierarchy.

It provides an instance of a node and a document type as input parameters

and will be required to return an instance of the PrintMgmtNodeInstance

class. This PrintMgmtNodeInstance class brings together a PrintMgmtNode

instance with the actual table buffer record it relates with.

o If the parent node does not reference a table, only the PrintMgmtNodeType

enumeration value of the parent is required to be returned through the

parmNodeDefinition property of the PrintMgmtNodeInstance class.

o If the parent node does reference a table, the specific record of the parent

node should be returned also. This is returned through the

parmReferencedTable property of the PrintMgmtNodeInstance class. If the

record cannot be found, a null value should be returned.

o See existing implementations for a better understanding of what is necessary

for this method.

(4) Modify the PrintMgmtHierarchy::construct method. Add a case statement to construct

your new hierarchy.

(5) Create appropriate unit tests.

 The name of the test class should be identical to the hierarchy followed by the

postfix 'Test'.

 Regarding the contents of the tests, follow the example of existing hierarchy tests.

 To add data, follow the existing examples in the PrintMgmtTestSuite class.

o Add a macro that defines the id of the table in the classDeclaration.

o Add a new method that retrieves the table following the existing pattern. For

example, getSalesTable or getCustInvoiceTable.

o Create the data in the setUpReferenceData method and make sure to

trackInsertedRows for the table you add.

 Once done, add the new test to the PrintMgmtTestSuite by adding the appropriate

entry in the new method.

11

PRINT MANAGEMENT INTEGRATION GUIDE

(6) If you are modifying an existing hierarchy, make sure to update the appropriate

hierarchy tests.

 Modify the testIsValidNodeType method. Update the count because the number of

nodes added will have changed.

(7) Add the hierarchy to the PrintMgmt shared project.

12

PRINT MANAGEMENT INTEGRATION GUIDE

Set up print management

Users need the ability to set up print management for each node in a hierarchy. Using the

Accounts Receivable example, this means that users should be able to set up print

management settings at the module level, the customer level and at each transaction level.

To make this possible you must start the user experience from the appropriate forms for

each node in your hierarchy. Since the user experience is based on the metadata which

defines your documents, nodes and hierarchies there is not much you need to provide to get

a fully functional and reusable user experience.

The API to start the user experience is centered around the PrintMgmtSetupContext class.

To demonstrate the usage of this class, consider the following code which starts the print

management user experience from the Purchase Order Details window:

This represents a fairly common scenario and will likely suit your needs most of the time.

Note that all documents associated with the PurchTable node type will be displayed in the

user experience. Sometimes there are cases where you may want to display only certain

documents associated to a node or want to show multiple hierarchies. A scenario such as

this is outlined in the code example that follows. It shows the code that starts the print

management user experience from the Customer details window:

void clicked()

{

 PrintMgmtSetupContext setupContext = new PrintMgmtSetupContext();

 ;

 // If you reference a table, always include this check

 if (purchTable_ds.cursor() == null)

 return;

 super();

 // The first parameter specifies the hierarchy to display and

 // the second specifies which node to start with. All parent

 // nodes "above" the starting node will be displayed, along

 // with the starting node.

 setupContext.addHierarchyContext(

 PrintMgmtHierarchyType::Purch,

 PrintMgmtNodeType::PurchTable);

 // This links the caller to the instance of the print mgmt form

 setupContext.parmCaller(element);

 // This is the record the node is associated with. If a node

 // is not related to a table, pass null.

 setupContext.parmReferencedTableBuffer(purchTable_ds.cursor());

 PrintMgmt::launchSetup(setupContext);

}

13

PRINT MANAGEMENT INTEGRATION GUIDE

The following screenshot illustrates the resulting user experience:

void clicked()

{

 PrintMgmtSetupContext setupContext = new PrintMgmtSetupContext();

 List salesDocs = new List(Types::Enum);

 List projectDocs = new List(Types::Enum);

 List inventDocs = new List(Types::Enum);

 ;

 if (custTable_ds.cursor() == null)

 return;

 super();

 // This example shows the ability to call with multiple hierarchies

 // as well as the ability to limit which documents appear for each

 // node in those hierarchies. If the document filter list was not

 // passed, all documents would appear in each hierarchy and it

 // would not make sense to show Project or Inventory documents in

 // the Accounts Receivable hierarchy, for example.

 // Add sales documents

 salesDocs.addEnd(PrintMgmtDocumentType::Confirmation);

 salesDocs.addEnd(PrintMgmtDocumentType::Quotation);

 salesDocs.addEnd(PrintMgmtDocumentType::SalesFreeTextInvoice);

 salesDocs.addEnd(PrintMgmtDocumentType::SalesOrderConfirmation);

 salesDocs.addEnd(PrintMgmtDocumentType::SalesOrderInvoice);

 salesDocs.addEnd(PrintMgmtDocumentType::SalesOrderPackingSlip);

 setupContext.addHierarchyContext(

 PrintMgmtHierarchyType::Sales,

 PrintMgmtNodeType::CustTable,

 salesDocs);

 // Add project documents

 projectDocs.addEnd(PrintMgmtDocumentType::ProjectInvoice);

 setupContext.addHierarchyContext(

 PrintMgmtHierarchyType::Project,

 PrintMgmtNodeType::CustTable,

 projectDocs);

 // Add invent documents

 inventDocs.addEnd(PrintMgmtDocumentType::InventPickList);

 setupContext.addHierarchyContext(

 PrintMgmtHierarchyType::Invent,

 PrintMgmtNodeType::CustTable,

 inventDocs);

 setupContext.parmCaller(element);

 // Note that even though multiple hierarchies are allowed, the

 // starting node for each must reference the same table buffer.

 setupContext.parmReferencedTableBuffer(custTable_ds.cursor());

 PrintMgmt::launchSetup(setupContext);

}

14

PRINT MANAGEMENT INTEGRATION GUIDE

If you want a better understanding of the PrintMgmtSetupContext class, see the XML

documentation that is included in the source code.

Use print management settings

Once the metadata has been defined and users can set up print management settings it is

necessary to use those settings when printing documents. There are two options available

to accomplish this task based on the purpose of your document:

(1) Create a derivative of the FormLetterReport class and use the FormLetterReport class to

retrieve and enumerate settings. In this case, your document is (or should be) part of the

FormLetter class hierarchy. These documents are generated during posting and require a

unique FormLetter and FormLetterReport derivative.

(2) Call print management directly through the PrintMgmt::getSettings method. In this

case, your document is not required to be a part of the FormLetter class hierarchy. These

documents are independent and are not generated during posting time.

Even if Option #2 matches your scenario, you will likely find the most benefit in using

Option #1. Option #1 provides some nice shortcuts and prevents you from worrying about

many of the details, even if your document is not involved in the posting process. As a

result, Option #2 will not be described in detail because it is mainly available for custom

needs. Refer to the XML documentation of the PrintMgmtPrintContext,

PrintMgmtPrintSetting and PrintMgmtPrintSettingDetail classes for more detail about Option

#2, or view the implementation of the methods on the FormLetterReport abstract class.

The API to retrieve user settings is centered around the abstract FormLetterReport class and

its concrete derivatives. The following steps describe how to implement the necessary

15

PRINT MANAGEMENT INTEGRATION GUIDE

classes and interact with the FormLetterReport class to retrieve the print management

settings. If you want a better understanding of the classes or methods mentioned in the

steps, see the XML documentation that is included in the source code.

(1) Create a new class that derives from the FormLetterReport class. Be sure to reference

the existing FormLetterReport derivatives for examples.

 Use a name that follows a similar pattern as the following existing derivatives:

o PurchFormLetterReport_Invoice

o PurchFormLetterReport_PackingSlip

o SalesFormLetterReport_Confirm

o SalesFormLetterReport_Invoice

 Implement the getDefaultPrintJobSettings method. Based upon the

PrintSetupOriginalCopy enumeration value provided, return the default print job

setting. This is the default that will be used if no printer destination is specified on

the print management setting. Normally this value can be retrieved from the

FormLetter class derivative that corresponds to the FormLetterReport class derivative

because default printers are set up on the posting form.

 Implement the getPrintMgmtDocumentType method. Return the appropriate

PrintMgmtDocumentType enumeration value.

 Implement the getPrintMgmtHierarchyType method. Return the appropriate

PrintMgmtHierarchyType enumeration value.

 Implement the getPrintMgmtNodeType method. Return the appropriate

PrintMgmtNodeType enumeration value.

(2) Modify the FormLetterReport::construct method. Add a case statement to construct your

new form letter report.

(3) Create appropriate unit tests.

 The name of the test class should be identical to the form letter report class followed

by the postfix 'Test'.

 Regarding the contents of the tests, follow the example of existing form letter report

tests that are present.

(4) Modify the document being printed to use the print settings.

 The following code example retrieves and uses the print management settings for

the Sales invoice report.

16

PRINT MANAGEMENT INTEGRATION GUIDE

Override the init method of the report to create an instance of the concrete

FormLetterReport class and set the initial values based upon the context.

void init()

{

 ;

 // Construct an instance of the FormLetterReport class and save it as

 // a class variable for later use in other methods on the report.

 salesFormLetterReport =

FormLetterReport::construct(PrintMgmtDocumentType::SalesOrderInvoice);

 salesFormLetterReport.parmReportDesign(element);

 // printCopyOriginal determines whether this is a reprint or not.

 salesFormLetterReport.parmPrintType(printCopyOriginal);

 if (salesFormLetter)

 {

 // This indicates the posting process, so use the printers

 // set up on the posting forms as the defaults if print

 // management destinations cannot be found.

 salesFormLetterReport.parmDefaultCopyPrintJobSettings(

 new PrintJobSettings(

 salesFormLetter.printerSettingsFormletter(

 PrintSetupOriginalCopy::Copy)));

 salesFormLetterReport.parmDefaultOriginalPrintJobSettings(

 new PrintJobSettings(

 salesFormLetter.printerSettingsFormletter(

 PrintSetupOriginalCopy::Original)));

 salesFormLetterReport.parmUsePrintMgmtDestinations(

 salesFormLetter.usePrintManagement());

 }

 else if (printCopyOriginal == PrintCopyOriginal::OriginalPrint)

 {

 // Always use the print management destinations when reprinting

 // with the print management option.

 salesFormLetterReport.parmUsePrintMgmtDestinations(true);

 }

}

17

PRINT MANAGEMENT INTEGRATION GUIDE

Override the fetch method of the report to retrieve the settings and iterate over them

printing a copy for each one found.

void fetch()

{

 ;

 // Load all print settings associated with the current record.

 // The custInvoiceJour table is the record being printed and the

 // user-defined queries will be run against this table to see which

 // print settings apply.

 // The custInvoiceJour.salesTable() is the transaction that the

 // print management settings are related with. This is the record

 // that starts the defaulting process for the settings that should

 // be considered.

 salesFormLetterReport.loadPrintSettings(

 custInvoiceJour,

 custInvoiceJour.salesTable(),

 custInvoiceJour.LanguageId);

 while (salesFormLetterReport.moveNextPrintSetting())

 {

 // Set print settings for this document

 element.unpackPrintJobSettings(

 salesFormLetterReport.getCurrentPrintSetting()

 .parmPrintJobSettings().packPrintJobSettings());

 element.printJobSettings().copies(

 salesFormLetterReport.getCurrentPrintSetting().parmNumberOfCopies());

 // Perform report logic here

 this.send(custInvoiceJour);

 // The FormLetterReport class handles iterating over the settings

 if (salesFormLetterReport.checkNextPrintSetting())

 {

 element.reset();

 }

 }

}

18

PRINT MANAGEMENT INTEGRATION GUIDE

Create a section to print the text associated with the setting and override the

executeSection method to determine when the section should be displayed.

Create a display method in the section that prints the text to get the text associated with

the current setting.

Your document may also have a requirement to show whether or not it is an original or a

copy. If so, create the appropriate display method to handle this that would look something

like the following.

Conclusion

Now your document can take advantage of the rich features of print management. If you

have additional questions about the details behind the print management subsystem, refer

to the XML documentation included in the source code or the online help.

// BP Deviation Documented

display str invoiceText()

{

 ;

 if (salesFormLetterReport.getCurrentPrintSetting().parmType()

 == PrintMgmtDocInstanceType::Copy)

 {

 // Return label that has something to do with "Copy"

 }

 else

 {

 // Return label that has something to do with "Original"

 }

}

// BP Deviation Documented

display PrintFooterText footerTextMsg()

{

 ;

 return

salesFormLetterReport.getCurrentPrintSetting().parmIdentificationText();

}

public void executeSection()

{

 ;

 if (salesFormLetterReport.isFooterPresentForCurrentPrintSetting())

 {

 super();

 }

}

19

PRINT MANAGEMENT INTEGRATION GUIDE

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the

date of publication. Because Microsoft must respond to changing market conditions, this document should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of

publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS

TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of

this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of

Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject

matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this

document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Dynamics, and the Microsoft Dynamics Logo are either registered trademarks or trademarks of Microsoft

Corporation, or Microsoft Business Solutions ApS in the United States and/or other countries. Microsoft Business Solutions ApS is a

subsidiary of Microsoft Corporation.

http://www.microsoft.com/dynamics

	Feature description
	Why use Print Management?
	Architectural overview
	Defining metadata
	Set up print management
	Use print management settings
	Conclusion

