

Hands-on Lab 2.2:

Orchestrating the Remaining Stages

Table of Contents

Objectives ... 2

Prerequisites ... 2

Time .. 2

Exercise 1: Naming the Stage Instance and Setting the Binaries Repository Location 2

Task 1: Open the Solution in the Start-Lab Folder. ... 3

Task 2: Add Arguments to the Workflow .. 3

Task 3: Add the Set the Pipeline Instance Sequence .. 8

Task 4: Set the BuildNumberFormat ... 11

Exercise 2: Building Only Once .. 14

Task 1: Locate and Replace the Build Activity ... 14

Exercise 3: Propagating Changes Automatically or Stopping the Pipeline ... 15

Task 1: Add the NextStagesInPipeline Argument ... 16

Task 2: Add If NextStagesInPipeline can be triggered Activity .. 16

Summary ... 18

Copyright ... 19

-2-

Objectives

In this HOL, you learn how to customize the Lab Management default template in order to orchestrate

the acceptance test stage, the release stage, and the user acceptance test (UAT) stage of the release

pipeline. The acceptance test stage is automatically triggered, while the other two stages are manually

triggered. Orchestration for these stages includes:

 Naming each stage instance.

 Setting the location of the binaries repository.

 Ensuring that none of the stages build the binaries (builds only occur in the commit stage of the

pipeline).

 Ensuring that the next stage retrieves the binaries if the current stage is successful.

 Stopping the pipeline if a stage fails.

This HOL is part two of the four-part Orchestration HOL. Together, the four parts demonstrate how to

use Microsoft Team Foundation Server (TFS) and Lab Management to orchestrate the stages of a release

pipeline that will support continuous delivery. The subject of orchestration is covered in Chapter 3 of

Building a Release Pipeline with Team Foundation Server 2012.

The example application and services that are used in some exercises in this lab are in the subfolders of

the Lab02-Orchestration\Start-Lab folder. Visual Studio solutions that are the result of completing all of

the tasks in an exercise are in the Lab02-Orchestration\Completed-Lab folder. You run the examples for

this lab on your local computer.

Prerequisites

Before you begin this lab you must first complete Lab2.1 – Orchestrating the Commit Stage.

Time

You should be able to complete this lab is about 40 minutes.

Exercise 1: Naming the Stage Instance and Setting the Binaries Repository Location

In this exercise, you modify a copy of the Lab Management template

Start_CDPipelineGenericStageProcessTemplate.xaml, so that it can support orchestration. You

customize the template to give the stage instance the same name as the pipeline instance. This name is

a parameter. It is passed by the preceding stage of the pipeline if the current stage is automatically

triggered. The parameter is provided by a user if the current stage is manually triggered.

http://msdn.microsoft.com/en-us/library/dn449950.aspx

-3-

You also customize the template to define the location of the binaries repository. The commit stage

builds the binaries and stores them. The other stages need to know where to find those binaries. The

repository location is also a parameter that is provided either by the preceding stage or by a user,

depending on whether the current stage is triggered automatically or manually.

Task 1: Open the Solution in the Start-Lab Folder.

In this task you open the workflow file named Start_CDPipelineGenericStageProcessTemplate.xaml. This

file is based on the LabDefaultTemplate.11.1.xaml file.

1. Navigate to HOL\Lab02\Start-Lab.

2. Open the TreyResearchBuildCustomization.sln file. You will see the following solution layout.

3. In Visual Studio, open the Start_CDPipelineGenericStageProcessTemplate.xaml file. It opens in

the workflow editor.

Task 2: Add Arguments to the Workflow

In this task you add arguments to the workflow that define the input parameters and the location of the

binaries repository. You also modify the existing BuildNumberFormat argument.

1. Click the Arguments tab in the lower-left corner of the workflow editor. The Arguments pane

opens.

-4-

2. In the Arguments pane, click Create Argument. In the Name column enter PipelineInstance.

3. Click Create Argument. In the Name column enter

PipelineInstanceForManuallyTriggeredStages.

4. Click Create Argument. In the Name column enter PipelineInstanceDropLocation.

5. Click Create Argument. In the Name column enter

PipelineInstanceDropLocationForManuallyTriggeredStages.

-5-

6. Click the Edit button in the Default value column of the Metadata row.

7. The Process Parameter Metadata Editor opens. Click Add. Enter the PipelineInstance

metadata that is highlighted in red in the following screenshot.

8. Click Add. Enter the PipelineInstanceForManuallyTriggeredStages metadata that is highlighted

in red in the following screenshot.

-6-

9. Click Add. Enter the PipelineInstanceDropLocation metadata that is highlighted in red in the

following screenshot.

-7-

10. Click Add. Enter the PipelineInstanceDropLocationForManuallyTriggeredStages metadata that

is highlighted in red in the following screenshot.

-8-

11. Click Add. Enter the BuildNumberFormat metadata that is highlighted in red in the following

screenshot.

Task 3: Add the Set the Pipeline Instance Sequence

In this task you add a new sequence that sets the stage name. How the name is set is determined by

whether the stage is triggered automatically or manually.

1. Go to the beginning of the workflow and locate the Get Build Details activity.

2. Add a Sequence after the Get Build Details activity and name it Set the Pipeline Instance.

-9-

3. Add an If activity to the sequence and name it If user provided

PipelineInstanceForManuallyTriggeredStages. (The "!" symbol occurs in the following

screenshot because the properties aren't filled in yet.)

4. Set the Condition to check if the stage is manually triggered by adding the following code.

Visual Basic

Not String.IsNullOrEmpty(PipelineInstanceForManuallyTriggeredStages)

Here is a screenshot of the If activity with the Condition filled in.

5. Add an Assign activity to the Then box and name it Set PipelineInstance. For manually triggered

stages, this activity replaces the PipelineInstance variable with the

PipelineInstanceForManuallyTriggeredStages variable.

-10-

6. Add another Assign activity to the Then box and name it Set PipelineInstanceDropLocation. For

manually triggered stages, this activity replaces the PipelineInstanceDropLocation variable with

the PipelineInstanceDropLocationForManuallyTriggeredStages variable.

-11-

Task 4: Set the BuildNumberFormat

In this task you set the build number format.

1. Add an Assign activity after the If activity and name it Set BuildNumberFormat.

2. Set the Set BuildNumberFormat activity's To argument to BuildNumberFormat.

3. Set the Set BuildNumberFormat activity's Value argument to the following code.

Visual Basic

String.Format("$(BuildDefinitionName) {0}", PipelineInstance)

Here is a screenshot of the Assign activity properties with the values filled in.

-12-

4. Move the Update Build Number activity that's located at the very top of the workflow to just

below the Set BuildNumberFormat activity. You do this so that the build number is updated

with the proper value and before any other activities start to run.

5. If you move three activities down the workflow from your current location, you will find an

activity named Compute build location needed. Delete it because this activity already occurs

earlier in the stage.

-13-

6. Replace it with an Assign activity and name it Set BuildLocation using

PipelineInstanceDropLocation.

-14-

7. Set the Assign activity's To argument to BuildLocation.

8. Set the Value argument for the BuildLocation parameter to PipelineInstanceDropLocation.

Exercise 2: Building Only Once

In this exercise you make certain that there are no redundant builds because a continuous delivery

pipeline only builds the binaries once. To do this, you remove the build step from the workflow. Nothing

is built in any stage other than the commit stage, even if a user requests it. Unlike the

BuildNumberFormat parameter, the build step can't be hidden from users. Make sure they know that

the build step is disabled.

Task 1: Locate and Replace the Build Activity

In this task you locate and replace an activity named If Build is needed.

1. Locate the If Build is needed activity. It is below the Set the Pipeline Instance activity.

-15-

2. Right-click on the If Build is needed activity and delete it. The workflow should now have the

Set the Pipeline Instance activity followed by the Update Deployment Summary activity.

Exercise 3: Propagating Changes Automatically or Stopping the Pipeline

In this exercise you configure the workflow to either trigger the next stage if the current stage succeeds,

or to stop the pipeline if the current stage fails. The exercise is similar to exercise 3, task 2 in Lab 2.1.

-16-

Task 1: Add the NextStagesInPipeline Argument

In this task you add a new argument and modify its parameters.

1. In the workflow editor, click Arguments. The Arguments pane appears. Click Create Argument.

Add a new argument named NextStagesInPipeline. Its argument type is String[].

2. Open the Process Parameter Metadata Editor. Click Add. Enter the NextStagesInPipeline

metadata that is highlighted in red in the following screenshot.

Task 2: Add If NextStagesInPipeline can be triggered Activity

This task is a repeat of exercise 4 of Lab2.1. You will reuse the results of that exercise here.

1. Open the Start_CDPipelineCommitStageProcessTemplate.xaml file that you edited in Lab2.1.

2. Scroll to end of the file and locate the If NextStagesInPipeline can be triggered activity.

-17-

3. Right-click the If NextStagesInPipeline can be triggered activity and copy it.

4. Go back to the Start_CDPipelineGenericStageProcessTemplate.xaml file.

5. Scroll to the end of the file and locate the Set build status activity.

-18-

6. Place your cursor after the Set build status activity, right-click and paste the copied If

NextStagesInPipeline can be triggered activity.

Summary

In this HOL you customized the Lab Management default template so that you could orchestrate the

remaining stages of the release pipeline. At this point, only the commit stage runs any steps that are not

directly related to orchestration. For example, the commit stage performs continuous integration and

code analysis. Steps in the other stages are currently placeholders.

-19-

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and

other Internet website references, may change without notice. You bear the risk of using it. Some

examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

© 2014 Microsoft. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Windows PowerShell, Silverlight, Expression,

Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server, Visual C#,

Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are the property of their respective owners.

	Objectives
	Prerequisites
	Time
	Exercise 1: Naming the Stage Instance and Setting the Binaries Repository Location
	Task 1: Open the Solution in the Start-Lab Folder.
	Task 2: Add Arguments to the Workflow
	Task 3: Add the Set the Pipeline Instance Sequence
	Task 4: Set the BuildNumberFormat

	Exercise 2: Building Only Once
	Task 1: Locate and Replace the Build Activity

	Exercise 3: Propagating Changes Automatically or Stopping the Pipeline
	Task 1: Add the NextStagesInPipeline Argument
	Task 2: Add If NextStagesInPipeline can be triggered Activity

	Summary
	Copyright

