Hands-on Lab 3.1:
Automating the Deployment of the WCF
Service

, Microsoft®) . .
patterns & practices g Visual Studio

" proven practices for predictable results ALM Rangers

Table of Contents
(0] oY [Tt AV =T 3PS SR 2
PrEIEQUISITES «.eeviiieeeee ettt ettt e e e e ettt ettt e e e s sttt aeeeeesea s abb et aeeeeesaasebaeaeeeeessaaassbaaaeeessnsaansaaaaaeessnnas 2
LI L= TSP PPPTRTRPN 3
Exercise 1: Deployment Automation: Preparing the Configuration Filesccccceveiiiiiiiiiiieeiiiiiiec e, 3
Task 1: Add an Application-Specific Setting to the Web.config Filecccociereiiiiiiii e, 4
Task 2: Prepare the SetParameters FileSoooo ittt e e e etae e e e e e e e araeas 4
Task 3: Set the Dependency 0N the Base Filecoouiiiiiciiie et e 6
Task 4: Set Up the Transformation for the SetParameters Files........ccocvivecieiiiciiei e, 7
Exercise 2: Packaging the Deployment FIlEScuuiiiiiiiiiiiiiie ettt e e st e e s e seae e e e snaaeeeeas 9
Task 1: Configure the Packaging PrOCESScciicciiiieieiieee ettt ee ettt ettt et e e e et e e e e tte e e e e areeeesneeeaeeanes 10
Task 2: Create a PUblication Profileo oottt 10
Task 3: Configuring the Commit Stage to Generate the Package.......ccccevecvieeicciiee e 14
Exercise 3: Performing the Automated DeploymMent........cccuuiieiiiiiiiiiiiiee e 16
Task 1: Create the DeploymMeENT SCrPLci it et e e ere e e e e bre e e s sbraeeeeanes 16
Task 2: Configure the Pipeline Stages to Run the Deployment Script.......ccoveeieiiieeiiiiiee e 20
Exercise 4: Testing the Automated DePIOYMENTccooeeeiiiiiiiee e e e 23
Y U100 0o -1 VRS R 26

(010 o1V T4 o | R UURRRN 26

Obijectives

This HOL demonstrates how to automatically deploy the Windows Communication Foundation (WCF)
services that are used in the sample Trey Research application. To enable automatic deployment you
must:

e Prepare the configuration files to match the target environments.

e Package the files that are required to deploy and run the WCF services, as well as the
configuration files.

e Deploy the WCF services to the target environments.

This HOL is part one of the three-part Automation HOL. Together, the three parts demonstrate how to
use Microsoft Visual Studio, Microsoft Team Foundation Server (TFS) and Lab Management to automate
the deployment and testing of the following technologies.

e WCF services

e Windows Presentation Foundation (WPF)

Automation is discussed in Chapter 4 of Building a Release Pipeline with Team Foundation Server 2012.
This lab shows you how to implement the changes to the pipeline that are discussed in that chapter.

As you go through this lab, you'll notice that there are references to Web Deploy and MSDeploy.
MSDeploy is a part of Web Deploy, and is used to package and run deployments. Web Deploy includes
MSDeploy as well as other components, such as the Internet Information Server (1IS) agent that
communicates with MSDeploy to perform the deployments over IIS.

This lab refers to MSDeploy when it talks about the packaging and deployment tool. It refers to Web
Deploy when additional components are involved.

Prerequisites
The only prerequisite for this lab is that you have completed all the preceding labs.

The Trey Research application is in your TreyResearch folder. Visual Studio solutions that are the result
of completing all of the tasks in an exercise are in the Lab03-Automation\Completed-Lab folder.

You run the exercises for this lab on your local computer and on the computers that act as the
environments.

http://msdn.microsoft.com/en-us/library/dn449951.aspx

NOTE: You can use either standard environments or SCVMM environments for this lab. Standard
environments are much simpler to set up because you do not need to configure the network
virtualization but some features, such as snapshots, are not available.

Time

If you are familiar with Visual Studio, Web Deploy, 1IS, MSBuild, Windows Install XML (Wix), TFS and Lab
Management, you should be able to complete all 3 labs in three to four hours.

This HOL (Lab3.1) takes approximately 60 minutes.

Exercise 1: Deployment Automation: Preparing the Configuration Files

In this exercise you automate the process of preparing each configuration file so that it conforms to a
particular environment. When there are multiple environments, it's typical for the configuration file to
be different for each of them. For example, database connection strings may vary from one
environment to the next as well as endpoints, bindings, and application-specific settings.

One of the objectives of a continuous delivery pipeline is to automate deployment as much as possible.
The pipeline should automatically modify each configuration file so that it conforms to an environment's
requirements. Modifications should not be done manually.

Later in this lab you use MSDeploy to perform the actual deployments. Consequently, you must ensure
that MSDeploy can access the configuration parameters. There are several ways to do this, but the one
that best suits the goals of this lab is to prepare a parameters file that sets the specific configuration

parameters used during a deployment. You set the MSDeploy setParamFile flag so that MSDeploy uses
the parameters file during a deployment. (For more information, see Web Deploy Operation Settings.)

This lab generally follows the approach described in Configuring Parameters for Web Package

Deployment. The last step of this lab is different from the on-line tutorial because it uses configuration
file transforms rather than the MSBuild XmlIPoke task. Another difference is that this lab automates the
step where the correct parameters file is selected for the correct target environment.

Using MSDeploy and a parameters file makes it possible to do deployments in a way that conforms to
some best practices for continuous delivery.

e The same binaries are used across all environments because there is no need to have a different
build for each environment.

e Deployment is the same for all environments. The pipeline determines which configuration to
use.

e Environment-specific information is separate from the actual release.

http://technet.microsoft.com/en-us/library/dd569089(v=ws.10).aspx
http://www.asp.net/web-forms/tutorials/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
http://www.asp.net/web-forms/tutorials/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment

In this task you add an application-specific setting to the WCF service's Web.config file. The setting is a
key/value pair that stores the name of the environment where the service is running. Although not
required to automate a deployment, this setting can be useful. For example, if you want to do A/B
testing you can either show or hide the feature you're testing, depending on the environment.

1. In Visual Studio, open TreyResearch.sln.

2. Open the Web.config file located in TreyResearch.WcfService (this is the WCF Services
project).

3. Insert the following code at the end of the file, between the </system.webServer> and
</configuration> tags. Save the file and close it.

XML

<appSettings>
<add key="Environment" value="Development" />
</appSettings>

In this task you add the SetParameters files to the project. These are the files that MSDeploy uses when
it deploys to each environment. You need four files. Three are for the three environments. The fourth
file stores the base configuration that is transformed for each environment.

Note: There are at least two ways to provide different configuration settings for different environments.
One is to have a base configuration file that is transformed before a deployment in order to produce a
configuration file for a specific environment. Another, which does not use transforms, is to store
complete configuration files for all environments and to pick the right one during a deployment. The
transform approach is usually better because you only have to specify and maintain the settings that
change from one environment to another. In order to demonstrate this practice, this lab uses the
transform approach, even though the actual configuration files are very simple.

1. Add a new XML file to the project and name it EnvironmentConfiguration.xml. This is the
base file that will be transformed to generate the configuration for each environment. Add
the following code to the file.

XML

<parameters>

<!-- AUTOMATION HOL - This parameter defines the name of the target Web Site
where the application is deployed -->

<setParameter name="IIS Web Application Name" value="IIS Web Application
Name" />

<!-- AUTOMATION HOL - This parameter defines the name of the environment
where the application is running -->

<setParameter name="Environment" value="Environment" />

4

</parameters>

2. Add three additional XML files to the project, and name each one after a target
environment, using the format EnvironmentConfiguration.<Environment Name>.xml. The
following screenshot shows the results.

4 TreyResearch.WcfService

b & Properties

[+ =B References
B App_Data

b Store
%) EnvironmentConfiguration.Production.xml
/%) EnvironmentConfiguration.Staging.xml
@ EnvironmentConfiguration. Testing.xml

@ EnvirenmentConfiguration.xml

= c* |SensorReadingService.cs
=@ SensorReadingService.sve
b e Web.config

3. Add the following XML code to each of the following files. Remember to change the value to
correspond to each environment. The code that is shown is for the testing environment.
Here are the values for the other environments.

o For the EnvironmentConfiguration.Production.xml file, value="Production".
o For the EnvironmentConfiguration.Staging.xml file, value="Staging".
o For the EnvironmentConfiguration.Testing.xml file, value="Testing".

Here is the XML code for the testing environment.

XML

<parameters xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform”>
<!-- AUTOMATION HOL - This defines the way the value of the "IIS Web
Application Name" parameter gets transformed for the Testing environment. -->
<l-- AUTOMATION HOL - In the config file for the Testing environment, the
web application name will be TreyResearchTesting -->
<setParameter name="IIS Web Application Name"
value="TreyResearchTesting"
xdt:Transform="SetAttributes(value)" xdt:Locator="Match(name)"
/>
<!l-- AUTOMATION HOL - This defines the way the value of the "Environment"
parameter gets transformed for the Testing environment. -->
<!-- AUTOMATION HOL - In the config file for the Testing environment, the
environment name will be Testing -->
<setParameter name="Environment"
value="Testing"
xdt:Transform="SetAttributes(value)" xdt:Locator="Match(name)"
/>

</parameters>

Task 3: Set the Dependency on the Base File

In this task you make all the EnvironmentConfiguration.<Environment Name>.xml files dependent on
the base configuration file, EnvironmentConfiguration.xml. Although this step is not required to
perform the transformations, it helps to keep the project organized and understandable.

1. Right-click on the TreyResearch. WcfService project and select Unload project.

TreyResearch.WefService.csproj™ R X it J6ly il 5] 1

~ Solution Explorer wiiiii

*xml version="1. encoding="utf-8"?> + & e-2d ’
=l<Project ToolsVersion="4.8" DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2883"> a
<Import Project="%(MSBuildExtensionsPath)\$(MSBuildToolsversion)\Microsoft.Commen.props™ Condition="Exists('% Search Solution Explorer (Ctrl+7)
=1 <PropertyGroup> N . \ .
<Configuration Condition=" '&(Configuration)' == "' "»Debug</Configuration> alg] Solution [LevReeaichiizporect)
<Platform Condition=" '§({Platform)’' == '' "»AnyCPU</Platform> 4 nuget X
= <ProductVersion> 58 NuGet.Config
</Productversion> O MuGet.exe

<SchemaVersion>2.8</SchemaVersion> T hTetETger
<ProjectGuid>{@165FFEB-BA450-48FB-BB3B-A76446(439E4}</ProjectGuids b [TreyResearch.WcfService (unavailable)
<ProjectTypebuids>{349¢5851-65df-11da- 9384-00065b846T21] ; {fac@s4ecd-301F-11d3-bf4b-88ceaf79efbc}</ProjectTyp H TeyResearc ETVICE:
<QutputType>Library</OutputType> b 5 & Properties
<AppDesignerFolder>Properties</AppDesignerFolder>

. P =B References
<RootNamespace>TreyResearch.WcfService</RootNamespace>

N . N b &c#* TestHarness.cs
<Assemblvlame>TrevResearch.WcfSservice</Assemblviame>

2. Right-click on the project again and select Edit TreyResearch. WcfService.csproj. The
MSBuild code that makes up the csproj project file appears.

olution Explorer

@ o--ad &R

Search Selution Explorer (Ctrl+7)

ahg] Solution TreyResearch' (2 projects)
i nuget
a4d MuGet.Config
O MuGet.exe
i | MuGettargets

b gl TreyResearch.WcfService (unavailable

Reload Project
€ Edit TreyResearch. WcfService.csproj

¥ Cut Ctrl+ 3
X Remove Del

3. Locate the following XML code.

XML

<Content Include="EnvironmentConfiguration.Production.xml™ />
<Content Include="EnvironmentConfiguration.Staging.xml" />

6

<Content Include="EnvironmentConfiguration.Testing.xml" />
<Content Include="EnvironmentConfiguration.xml" />

4. Replace this XML code with the following code, which makes the environment-specific files
dependent upon the base configuration file.

XML

<Content Include="EnvironmentConfiguration.xml" />

<None Include="EnvironmentConfiguration.Testing.xml">
<DependentUpon>EnvironmentConfiguration.xml</DependentUpon>

</None>

<None Include="EnvironmentConfiguration.Staging.xml">
<DependentUpon>EnvironmentConfiguration.xml</DependentUpon>

</None>

<None Include="EnvironmentConfiguration.Production.xml">

<DependentUpon>EnvironmentConfiguration.xml</DependentUpon>

</None>

5. Save the file. Right-click on the TreyResearch. WcfService project and select Reload Project.
Your project should have the structure shown in the following screenshot. Note that the
environment-specific files are nested under the base configuration file.

P -" TreyResearch. WefService
b & & Properties
[+ =B References
B App_Data
b @ Store
F 4}:@ EnvironmentConfiguration.xml
a'.‘-v@ EnvironmentConfiguration.Production.xml

@ EnvironmentConfiguration. Staging.xml
@ EnvironmentConfiguration. Testing.xml

b = r# [KencarReadimaSenrire o

Task 4: Set Up the Transformation for the SetParameters Files

This task uses configuration transformations and follows the standard syntax for Web.config
transformations in Visual Studio. Note that any XML file can be transformed this way. For more
information, see Web.config Transformation Syntax for Web Project Deployment Using Visual Studio.

Transformations occur within the project file, which means that they are performed when the project is
built. Consequently, you don't need to add extra steps that direct the commit stage to generate the
transformed configuration files after it builds the code.

If you're familiar with Web.config transformations in Visual Studio, you may wonder why the lab uses
the TransformXml task explicitly. There are two reasons.

One is that, out of the box, Web.config transforms only work with Web.config files. This lab uses
MSDeploy SetParams files. There are third-party tools available such as SlowCheetah that address this

7

http://msdn.microsoft.com/en-us/library/dd465326.aspx
http://visualstudiogallery.msdn.microsoft.com/69023d00-a4f9-4a34-a6cd-7e854ba318b5

issue, but they offer only partial solutions. Aside from the inconvenience of adding another tool to the
lab, SlowCheetah, for example, also shares some of the same restrictions as Web.config transforms.

Both Web.config transforms and SlowCheetah use Visual Studio build configurations (for example,
debug and release) and are triggered when a build occurs. Because the goal of continuous delivery is to
use the same binaries across all environments, there must be a single build and the transformations
should be based on environments that all use the same build configuration (in the case of this lab, this is
the release build configuration). In other words, transformations must be triggered without having to
rebuild the source code for each environment.

In this task you use the TransformXml MSBuild task to transform the base
EnvironmentConfiguration.xml parameters file. You use the
EnvironmentConfiguration.<EnvironmentName>.xml files to define the transformation. When the
transformations are complete, you will have the environment-specific parameters file.

1. Unload and edit the TreyResearch.WcfService.csproj file, just as you did in Task 3. Near the
bottom of the file, just before the closing </Project> tag, insert the following code. This code
generates the transformed SetParameters files.

XML

<!-- AUTOMATION HOL - Referencing the TransformXml task so we can use it -->

<UsingTask TaskName="TransformXml"
AssemblyFile="¢(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v11.0\Web\Micr
osoft.Web.Publishing.Tasks.d11" />

<!-- AUTOMATION HOL - We are triggering the transformations just after
building -->

<!l-- AUTOMATION HOL - Checking whether we are BuildingInsideVisualStudio
makes that this will be triggered only in the Commit Stage of the pipeline (or
in command-line builds), not while working inside Visual Studio -->

<!-- AUTOMATION HOL - Checking whether we are building the Release
configuration makes the parameters files available only for Release builds,
the ones being used by the pipeline -->

<Target Name="AfterBuild" Condition="('$(BuildingInsideVisualStudio)' !=

"true') And ('$(Configuration)' == 'Release')">
<ItemGroup>
<TransformationFiles Include="EnvironmentConfiguration.*.xml" />
</ItemGroup>

<!-- AUTOMATION HOL - We generate the transformated parameters files in a
subfolder of $(OutDir). That way, they will get copied directly to the
BinariesFolder in the TFS build agent, and in turn, to the Drop folder of the
Commit Stage, without having to explicitly copying them -->

<MakeDir Directories="$(OutDir)\ConfigFiles\WcfService"
Condition="!Exists('$(OutDir)\ConfigFiles\WcfService')" />

<!-- AUTOMATION HOL - We call the TransformXml task for all the parameters
files using MSBuild batching (the @() syntax) -->

<TransformXml Source="EnvironmentConfiguration.xml"
Transform="@(TransformationFiles)"

Destination="$(OutDir)\ConfigFiles\WcfService\%(TransformationFiles.Identity)"

/>
</Target>

2. Reload the project. It opens in Solution Explorer.
3. From the Windows Start menu (or in Windows 8, the Start screen) open a Developer

Command Prompt for VS2013. Change the directory to where the TreyResearch.
WcfService.csproj is located.

4. Test to see if the transformations were performed. Run the following command.

CMD

msbuild /p:Configuration=Release

5. After MSBuild finishes, you will find a new folder named ConfigFiles\WcfService under the
bin subfolder. The folder contains the three transformed parameters files for this project. If
you open any of them, you will see that the content has been transformed to match the

target environment.

N[N = | WefService = B
1 LE]
;m Haome Share Wiew ﬂ
I
: » [£ cut : x Ej@ e Edopen - FH selectan
= _ = =
1 =1 [-] Copy path % | e ol ¥ [Aedit Select none
Copy Paste Mave Copy Delete Rename [Henws Praperties -
Paste shortcut to - to- - falder - L) History oo Invert selection
(—:I = T L = bin ¢ ConfigFiles » WcfService v & Search WefService o
- -
wli .nuge & Mame Date modified Type Size
wo packs . — . B
TestR 0 EnvironmentConfiguration.Productionsml [0/07/2073 13014 ML Dacument | KB
| Testl
= TrerR I\ EnvironmentConfiguration. Staging.sxml [0/07/2013 13014 (ML Dacument I KB
| Trey
= AJ I\ EnvironmentConfiguration.Testing.xml [0/07/2013 13004 (ML Dacument I KB
wld APE
. bin
| obi ¥
Fitems 1 item selected 447 bytes

Exercise 2: Packaging the Deployment Files

In this exercise you package the files that are required for deployment. The package format is the one
that MSDeploy generates. The format is based on a zip file that contains the files to be installed on the
IIS website. When MSDeploy generates a package, it also provides a script that performs the actual
deployment and provides a sample parameters file. You will replace the sample file with the parameter

files that correspond to the environments.

NOTE: Besides packaging, there are other MSDeploy publication methods that can deploy directly to the
target web server. This lab uses packaging for three reasons. The first reason is that the application

9

should be deployed to a stage only if the previous stages were successful. The second reason is that by
using a package that is generated only in the commit stage, you ensure that all the stages use the same
binaries for the deployment. The third reason is that Lab Management orchestrates all the stages in the
pipeline except the commit stage. In Lab Management environments, a deployment agent uses a script
that runs locally on the target machine to deploy to the target environment. A package is a good way to
work with MSDeploy when the deployment is done locally, from the same machine that hosts the IS
site.

Task 1: Configure the Packaging Process

In this task you configure the packaging process so that the Web.config parameters are available and
can be changed. To do this, you add a parameters.xml file to the project. This file is used by MSBuild
when it generates the zip package. The file tells MSBuild which elements in the Web.config file should
be exposed as parameters during deployment. MSBuild replaces the elements in the final Web.config
file with the corresponding values contained in the parameters files for each environment. Aside from
the tutorial mentioned in Exercise 1, you can also refer to How to: Use Web Deploy Parameters in a Web

Deployment Package. Read the section named "Using Deployment Parameters for Web.Config File

Settings."
1. Open the TreyResearch. WcfService.csproj project.

2. Add a new XML file to the project and name it parameters.xml. Add the following XML code
to the file.

XML

<parameters>
<!l-- AUTOMATION HOL - This parameter section tells MSBuild to expose the
Web.config configuration parameter named Environment, so ti can be changed on
the fly during deployment -->
<parameter name="Environment"
description="Environment where the services are running"
defaultValue="Development">
<!l-- AUTOMATION HOL - This parameterEntry section tells MSBuild how to
locate the parameter inside the Web.config file, so it can expose it -->
<parameterEntry kind="XmlFile" scope="Web.config"

match="/configuration/appSettings/add[@key="Environment']/@value" />
</parameter>
</parameters>

3. Save the file and close it.

Task 2: Create a Publication Profile
In this task you create a publication profile that defines how the package is created.

1. Right-click on the TreyResearch. WcfService. csproj project.

10

http://msdn.microsoft.com/en-us/library/ff398068.aspx
http://msdn.microsoft.com/en-us/library/ff398068.aspx

2.
3.

4.

Select Publish. The Publish Web wizard opens. The Profile tab should be selected.

Select <New Profile...> from the Select or import a publish profile drop-down list. Click
Next. The New Profile dialog box appears.

Publish Web ?
@ Publish Web

Select or import a publish profile

Connection Publish_To_Local_IIS v
Publish_To_Local_IIS
<Mew Profile...>

Settings

Preview
Publishing to Windows Azure Web Sites? Sign up for a free account

Find other hosting options at our web hosting gallery

< Pres Next > H Publish || e

Enter the name CDPipelinePackaging in the New Profile dialog box. Click OK. This will be the
profile used to package the web services in the commit stage. Click Next.

The Publish Web wizard advances to the Connection tab. Select Web Deploy Package from
the Publish method drop-down list. With this method, MSDeploy generates a zip file that
contains the required files for the deployment.

In the Package location box, enter the package location. In the Site name box, enter the site
name. These values will be overwritten by the values in the environment-specific parameters
files, but remain in the base configuration file, and may be be useful for the development
environment. Click Next.

11

& publish web

Profile

Connection

Settings

Preview

Publish Web

CDPipelinePackaging *

Publish method: | Web Deploy Package

Package location: | publish TreyResearch.WefServicezip

Site name: TreyResearchDevelopment|

< Prev || Next > || Publish ||

Close

7. The Publish Web wizard advances to the Settings tab. In the Configuration box, select
Release — Any CPU from the drop-down list. The pipeline only uses the release configuration.

12

@' Publish Web

Profile CDPipelinePackaging *

Connection

Configuration: | Release - Any CPU

() File Publish Options
[] Precompile during publishing Confiqure

Settings

[] Exclude files from the App_Data folder

Databases

) No databases found in the project

< Prev H Next > H Publish || i

8. Click Publish. The web services project is built and packaged. The resulting zip file, script and
parameters file are copied to the publish subdirectory under the project folder. The
following screenshot shows an example.

13

SN 2= publish = B
“ Home Share View ~ @
—] & Cut p ! =i T 4 [open BH select all
"™ \ _
—J [copy path - S l”’ == ‘—*(Edlit Select nane
Copy Paste _ Mowve Capy Delete Rename e Praperties g
2| Paste shortout ta to - falcler - ¥4 History oo Invert selection
Cliphoard Organize [l Open Select
— . - [<
'5_’) = T e TreyResearch » TreyResearch WefService » publish v O search publish pel
-
wl nuge & Marne Date madified Type Size
| packs . . i .
= _T_ F; TreyResearch WefService deploy.cmd Windows Camma 15 KB
| Testl
= TrevR | TreyResearch WecfService deploy-readme... Teut Dacument 4 KB
J Tre
b ‘: 5] TreyResearch. WefService SetParameters x.. XML Dacument | KB
. b.PF I\ TreyResearch WefService. SourceManifest... XML Dacument I KB
. bin
) 1) TreyResearch WefService zip Campressed (zipp 10 KB
| obi ¥
5 items

The artifact of primary interest is the CDPipelinePackaging.pubxml file that is located in the
Properties/PublishProfiles folder. The goal is to have the pipeline generate the package

automatically each time the commit stage runs. In the next task, you use this file to tell the

pipeline how to do this. The following screenshot shows an example of the

CDPipelinePackaging.pubxml file.

(@ TG T LT RN e Source Control Explorer

<?xml version="1.8" encoding="utf-8"#»
S<l--
This file is used by the publish/package process of your Web project. You can customize the
by editing this MSBuild file. In order to learn more about this please visit http://go.micre
-2
—-l<Project TooclsVersion="4.8" xmlns="http://schemas.microsoft.com/developer/msbuild/2883">
=| <PropertyGroup>
<WebPublizhMethod>Package</WebPublishMethod>
<LastUsedBuildConfiguraticon>Release</LastUsedBuildConfiguration>
<LastUsedPlatform»Any CPU</LastUsedPlatform:
<SiteUrlTolaunchAfterPublish />
<ExcludeApp_DatarFalse</Excludefpp Data>
<DesktopBuildPackagelocation»publish\TreyResearch.WcfService. zip</DesktopBuildPackagelo
<PackageAssingleFilertrue</PackageAssingleFiles
<DeployIisAppPath>TreyResearchDevelopment</DeployIisfippPath:
= <PublishDatabaseSettings>
<Objects xmlns="" />
</PublishDatabaseSettings>
</PropertyGroup>
</Project>

Task 3: Configuring the Commit Stage to Generate the Package

[2 K

Solution Explorer
® e-2nd

Search Solution Explaorer (Ctrl+)

=

afad Solution ‘TreyResearch' (3 projects)
4 {m nuget
5§ NuGet.Config
[0 NuGet.exe
5| MuGettargets
4 7] TreyResearch.WcfService
4 5{m Properties
4 {m| PublishProfiles
+) CDPipelinePackaging. pubxml
&) Publish_To_Local_lIS.pubxml
P &c* Assemblylnfo.cs
[=-m References
i App_Data
b Store
4 +) EnvironmentConfiguration.xml

In this task you configure the commit stage to package the web services by editing the 01 Commit Stage

build definition.

1. Open the 01 Commit Stage build definition.

2. Go tothe Process tab. In the Advanced section add the following value to the MSBuild

Arguments parameter.

14

Visual Basic
/p:DeployOnBuild=true;PublishProfile=CDPipelinePackaging

The following screenshot shows the modified build definition.

01 Commit Stage & X

General Team Foundation Build uses a build process template defined by a Windows Warkflow (XAML) file. The behavior of this
i template can be customized by setting the build process parameters provided by the selected template.
rigger

Source Settings .
Build process template:
Build Defaults

m CDPipelineCom mitStageProcessTemplate.xaml v Show details

Retention Palicy

Build process parameters:

+ Source And Symbol Server Settings Index Saurces
4 3. Advanced
» Agent Settings Use agent where Mame=" and Tags is empty; Max Wait Time: 04:0
Analyze Test Impact True
Associate Changesets and Work ltems True
Create Work Item on Failure True
Disable Tests False
Get Version
Label Sources True
M5Build Arguments I [p:DeployOnBuild=true;PublishProfile =CDPipelinePackaging I
M2Build Multi-Proc Tre
M5Build Platform X86
Private Drop Location
M5 Build Arguments

Specify any additional command line arguments to pass to M3Build.exe,

3. The pipeline is now configured to prepare the parameters files and to package the web
services. Remember to save the build configuration. Check in all the pending changes. The
commit stage should be triggered automatically.

After the commit stage successfully finishes, go to the drop folder for the build. Inside the
Release subfolder, you should see:

o A _PublishedWebsites\TreyResearch.WcfService_Package subfolder that contains the
.zip package and the .cmd script to deploy it. (There are other files as well, but they
aren't relevant).

o A ConfigFiles\WcfService subfolder that contains all the environment specific
parameters files. The following screenshot shows an example.

15

Home Share View v 0

@ * T o« 0 Commit Stage 0.0.0529.481 » Release » ConfigFiles » WefService v & Search WefService o
< Favarites A Mame : Date modified Type Size
B Desktop D EnvironmentCanfiguration.Productionsml - 29 XML Document TER
& Downloads D) EnvironmentConfiguration. Staging.xml XML Document TKB
%‘.-_'.' Recent places) EnvironmentConfiguration. Testing.xml XML Document TKB
#& SkyDrive

NOTE: You may have noticed that MSDeploy.exe was not run explicitly during this exercise. This is
because MSDeploy is triggered by MSBuild in the context of the Web Publishing Pipeline (WPP). Do not
confuse the WPP with the continuous delivery pipeline you are building. These are two different
concepts. WPP is used by the continuous delivery pipeline.

Exercise 3: Performing the Automated Deployment

In this exercise you set up the pipeline so that it can automatically deploy the packages to the
environments.

Task 1: Create the Deployment Script

In this task you create the deployment script for the WCF service. Lab Management deployment scripts
are batch files that are executed by the Windows command interpreter locally, on the target computer,
by the deployment agent.

1. In Solution Explorer, create a new folder named Deployment under the TreyResearch.
WcfService project. This is where you will store the deployment script.

2. Under the Deployment folder, create a subfolder named WcfService. This folder helps to
organize the scripts when they are copied to the drop folder and to the target environments.
The following screenshot shows the folder hierarchy.

4 4@ TreyResearch WefService
b & & Properties
- =B References
B App_Data

4 Deployment
=] WefService

[— P

3. Add a new script file to the WcfService subfolder. Right-click the WcfService folder. Add a
new item of type Text File. Change the name of the file to DeployWcfService.cmd.

16

: Add New Item - TreyResearch.WcfService ?
B
! 4 |nstalled Sort by: Default v i Search Installed Templates (Ctrl+E) P~
b4 Visual G2 - . Vi
: |su; 4 i SOL Server Compact 4.0 Local Database Visual C# Type: Visual G2
_r DD & An empty text file
L ata
i i 50QL Server Database Visual C#
L General
1 Web
! Windows Forms E Text File Visual =
WPF
Reporting B Text Template Visual C#
Silverlight
'. Waorkflow E‘ WOCF Data Service Visual C#
i XNA Garne Studio 4.0 >
1 @ WCF Service Visual C#
t| b Online
1
: 'I'Ij Web Configuration File Visual C#
n
]
n
i :@ Web Service Visual C#
' — -
P Name |Dep|0chFService.cmd| |
]
n
! | Add || Cancel

4. Inthe DeployWcfService.cmd file properties, set the Build Action to None. Set Copy to
Output Directory to Copy always. These settings copy the script to the output directory
when the project is built, and to the drop location during the commit stage. The deployment
agent retrieves the script from the drop location and runs it. The following screenshot shows
the DeployWcfService.cmd property settings.

4 W vWLISENILE
+E] DeployWefService.cmd
b g Store
4 i) EnvironmentConfiguration.xml
5711 EnvironmentConfiguration.Productionsml
513 EnvironmentConfiguration.Staging.cml
5713 EnvironmentConfiguration. Testing.xrml

& c* |SensorReadingService.cs
=M™ wmararnctere veal

Solution Explorer | Team Explorer Class View

DeployWcfService.cmd File Properties

2
B Advanced
Browse to LIEL
Build Action Mane
Copy to Output Directory Copy always
Custom Tool

5. Paste the following code into the file.
17

CMD Script

REM AUTOMATION HOL - This script copies the needed files from the pipeline
Drop folder to the target machine and runs the MSDeploy deployment script

REM AUTOMATION HOL - Path where the deployment package is stored (the Drop
location for the pipeline instance)
set packagelocation=%~1

REM AUTOMATION HOL - Name of the environment where the deployment is made.
This is used to pick the corresponding parameters file from the available ones
set environment=%~2

REM AUTOMATION HOL - Name of the temporal folder to use in the target computer
set tempfolder=%~3

REM AUTOMATION HOL - Preparing the local temp directory to copy the files and
run the deployment

set deploymentLocation="%tempfolder%\WcfService\%environment%"

if exist "%deploymentLocation%" rd /s /q "%deploymentLocation%"

mkdir "%deploymentLocation%"

REM AUTOMATION HOL - Copying the zip package generated by the Commit Stage,
from the Drop location to the local deployment folder

copy

"%packageLocation%\Release\ PublishedWebsites\TreyResearch.WcfService_Package\
TreyResearch.WcfService.zip" "%deploymentLocation%"

REM AUTOMATION HOL - Copying the MSDeploy deployment script that was auto-
generated by the publish operation in the Commit Stage, from the Drop location
to the local deployment folder

copy

"%packageLocation%\Release\ PublishedWebsites\TreyResearch.WcfService_Package\
TreyResearch.WcfService.deploy.cmd" "%deploymentLocation%"

REM AUTOMATION HOL - Copying the parameters file that tells the MSDeploy
deployment script what to change in the Web.config file during deployment

REM AUTOMATION HOL - We pick the one corresponding to the environment where
the deployment is being done, and rename it to match the name that the
MSDeploy recognizes as a parameters file

copy
"%packagelLocation%\Release\ConfigFiles\WcfService\EnvironmentConfiguration.%en
vironment%.xml"
"%deploymentLocation%\TreyResearch.WcfService.SetParameters.xml"

REM AUTOMATION HOL - Running the deployment over the Web Server

REM AUTOMATION HOL - The /Y switch tells the script to actually perform the
deployment

REM AUTOMATION HOL - The script deploys the services over the configured IIS
Website

18

REM AUTOMATION HOL - The script will also transform the final Web.config with

any parameter contained in

TreyResearch.Cloud.WcfService.WebRole.SetParameters.xml

cd "%deploymentLocation%"
TreyResearch.WcfService.deploy.cmd /Y

This script copies the deployment package, the MSDeploy deployment script, and the
parameters file corresponding to the target environment to the web server. The script runs the

MSDeploy deployment script on the server.

6. Save the DeployWcfService.cmd file using the encoding UTF-8 without signature. If you
don't do this, there will be errors when the script runs. In Visual Studio, select the Save As
option from the File menu. The Save File As dialog box appears. Select the Save with
Encoding option from the drop-down menu. The following screenshot shows the Save with

Encoding option.

T | <« Deployment » WcfService v O Search WcfService R
Organize ~ New folder = - @
“ MName : Date modified Type Size
- & DeployWcfService.cmd 6/9/2013 4:30 PM Windows Comma... 1KB
A
S
File name: ‘ DeployWcfService.cmd v‘
Save as type: ‘AII Files (%) V‘
“ Hide Folders Save |¥ Cancel
Save

Save with Encoding..

7. The Advanced Save Options dialog box opens. Select Unicode (UTF-8 without signature).
Click OK. Ignore the source control warning. The following screenshot shows the completed

dialog box.

19

Codepage 65001

Us-AsLIN- Lodepage SUTZS

Vietnamese (Windows) - Codepage 1258
Wang Taiwan - Codepage 20005

Western European (DOS) - Codepage 850
Western European (IAS) - Codepage 20105
Western European (I50) - Codepage 28591
Western European (Mac) - Codepage 10000

Unicade (UTF-8 without signature) - Codepage 65001

Line endings:

Current Setting

Cancel

8. Check-in the changes. The script will be copied to the drop location during the commit stage,
and be used by subsequent stages to deploy the web services.

Task 2: Configure the Pipeline Stages to Run the Deployment Script
In this task you configure the remaining stages of the pipeline to run the deployment script.

1. Edit the 02 Acceptance Test Stage build definition so that the stage deploys to the test
environment. Under the Process tab, select the Lab Process Settings parameter by clicking
the ellipses (...). The Lab Workflow Parameters dialog box opens.

02 Acceptance Test Stage # X
Team Foundation Build uses a build process template defined by a Windows Workflow ({AML) file, The

) behavior of this template can be customnized by setting the build process parameters provided by the selected
Trigger ternplate.

Source Settings

General

Build process template:
Build Defaults

m CDPipelineGenericStageProcessTemplate.xaml

Retention Policy

[~ Shaw details

Build process parameters:

4 1. Required
Lab Process Settings

4 2, Basic

To see or edit the details, click ... El

2. Under the Environment tab, select the environment you created in Lab 01 — Starting Point.

20

Specify the environment where the application is deployed

Welcame . . . -
Environment name: |Testlng+Staglng+Produd|on v

Revert to a sPEeC ITIC ':||:||;':||'\J'. of the environment
Snapshot name:

() This opticn is available enly for virtual envirenments,

3. Select the Deploy tab. Select Deploy the build. Click Add. This incorporates the deployment
script into the build definition.

Specify how to deploy the build on the selected environment

Welcome Deploy the build .

Environment

Build Specify the deployment scripts to be run on the machines of the envirenment. You can identify the machines
either by their names or roles. You can use macros and optional arguments while specifying deployment
scripts (for example, $(BuildLocation)ymyscript argumentl). If you use Windews Shell commands, begin the
commands with emd /c (fer example, cmd /o mkdir CAMyDeploymentDirectory). Click here for more
information,

Specify deployment scripts by:
(® Rales of machines in envirenment

() Names of machines in envirenment

o Add X Delete

Machine Deployment script and arguments Waorking directory 1

vl

.ﬂ Cne or more scripts do net have machine or deployment script specified.

4. Select Web Server from the Machine drop-down list. This setting ensures that the
deployment will be done on all the web servers in the environment (in this lab, there is a
single web server).

5. Inthe Deployment script and arguments column, add the following command line, which
causes the deployment script to execute.

Note: The following command is a single line.

21

CmMD

"$(BuildLocation)\Release\Deployment\WcfService\DeployWcfService.cmd"
"$(BuildLocation)" Testing C:\TreyResearchDeployment

The deployment agent retrieves the script directly from the drop location, where it is placed by
the specific instance of the pipeline. Use the $(BuildLocation) built-in variable to compose the
path. The first parameter is the drop location. The second parameter is the name of the target
environment. The third parameter is the location of the temporary folder on the target
computer that is used by the deployment script. The following screenshot shows the completed
dialog box, with a portion of the command.

'%' Specify how to deploy the build on the selected environment

Welcome Deploy the build

Environment

Build Specify the deployment scripts to be run on the machines of the environment. You can identify the machines
either by their names or roles. You can use macros and optional arguments while specifying deployment
scripts (for example, ${BuildLocation)\myscript argument1). If you use Windows Shell commands, begin the
commands with cmd /c (for example, cmd /c mkdir CA\MyDeploymentDirectory). Click here for more
information,

Specify deployment scripts by:
(®) Roles of machines in environment

() Mames of machines in envirenment

o Add X Delete

Machine Deplayment script and arguments Warking directory

Web Server "${BuildLocation)" Testing C:

ke a snapshot of the environment after deploying the build

< Previous || Finish | | Cancel

6. Click Finish and save the changes.

7. Repeat steps 1 through 6 for the 03a Release Stage build definition. In the fifth step, the
second parameter is Production, because the release stage deploys to the production
environment. Here is the code.

CmMD

"$(BuildLocation)\Release\Deployment\WcfService\DeployWcfService.cmd"
"$(BuildLocation)" Production C:\TreyResearchDeployment

22

8. Repeat steps 1 through 6 for the 03b UAT Stage build definition. In the fifth step, the second
parameter is Staging, because the UAT stage deploys to the staging environment. Here is the
code.

CmMD

"$(BuildLocation)\Release\Deployment\WcfService\DeployWcfService.cmd"
"$(BuildLocation)" Staging C:\TreyResearchDeployment

Exercise 4: Testing the Automated Deployment
In this exercise you test to see if the automated deployment works correctly.

1. Create a new instance of the pipeline by running the 01 Commit Stage. You can either make
some changes in the code and check them in, or, in Team Explorer, queue the build
definition.

2. After the commit stage finishes successfully, the changes are propagated through the
pipeline, so 02 Acceptance Test Stage is triggered automatically. You can monitor the
progress from the Build Explorer window.

Build Explorer & X

02 Set Priority - WO

E Cueued 'ﬂ' Completed

Build definition: Status filter:
<Any Build Definition = W | =Any Status

[] Only show builds requested by me

@ ld Build Definition Build Mame Priarity

0 453 1 Commit Stage 0 Commit Stage 0.0.0529.453 Marmal
4 9
[: 454 (2 Acceptance Test Stage (2 Acceptance Test Stage 0.0.0529483 Maormal
P 9 P 9

3. After the acceptance stage finishes successfully, the web services should be deployed to the
test environment. In the browser, navigate to the URL for the web service to verify this.

23

P-EC

:%} SensorReadingService Service ‘ |

ensorReadingService Service

You have created a service.

To test this service, vou will need to create a client and use it to call the service. You can do this using the svcutil.exe tool from the command line with the f

svoutil.exe http://locelhost:3000/SensorReadingService.svc?wadl

You can also access the service description as a single file:

http://localhost: 3000/ 5ensorReadingService. svc?singleWsdl

4. You can also open the Web.config file that was deployed and check that the configuration
settings match the test environment.

SRR TreyResearchTesting =|8] %
“ Home Share Wiew v @
:(.:. - 7t | . < Local Disk (C:) » inetpub » TreyResearchTesting v G | | Search TreyResearchTesting 2 |
‘v Favorites Marme Date modified Type Size
nkax:
B Desktop . bin /2013 3:13 AM File folder
4. Downloads =] EnvironmentConfiguration #2013 5:13 PM XML Document 1KB
15| Recent places mj packages f2013 5:13 PM COMFIG File 1KB
|2 parameters 013 513 PM XML Document 1KB
4 Libraries || SensorReadingService.sve /2013 5:13PM SVC File 1KEB
3 Documents M:I Web f/29/2013 5:14 PM CONFIG File 4KB
& Music the Se
=) Pictul | Web - Notepad \;li-
B Vieed e it Format View Help
= C Set to false before deployment to avoid disclosing web app folder information. ~
1% Comp
-->
<directoryBrowse enabled="true" />
€l Netwo </system.webServer:
<appSettings»
<add key="Environment” walue="Testing" />
</appSettings>»
</configuration>
b
< 1 >

5. Finally, you can verify that the deployment folder was created at
C:\TreyResearchDeployment and that it contains the files that are used for the deployment.

24

| T - Testing

Home Share View

:(':' - 1 ‘W C: TreyResearchDeploymentt W Service' Testing wl
' Favorites Mame - Date modified Ty
B Desktop TreyResearch.Cloud WefService WebRole... 5/29/2013 5:14PM W
4 Downloads = TreyResearch.Cloud WecfService WebRole., 5/259/2013 5:14 PM AP
:~_'.'. Recent places Y TreyResearch.Cloud WefService WebRole 5/29/2013 514 PM e

= Libraries

= Nariments

NOTE: Depending on the configuration of your environment and network, you may get an Access is
denied error when the Lab Management agent tries to run the deployment script from the drop location
(see the screenshot below this note for an example). This is because the Visual Studio Lab Agent service
is configured by default to run under the Local System account, and it is not being impersonated by the
test controller that uses the Lab service account and that accesses the drop location. The easiest
workaround is to grant read permissions to the computer account where the agent is running
(DOMAIN\COMPUTERNAMES) both for the network share and for the folder used as the drop location.

€39 Access is denied

€3 FException Message: Tearn Foundation Server could not complete the deployment task for machine STest-Azent?, script "\
buildsh, W01 Commit Stageh01 Commit Stage 0.0.0530.516\Release\ Deployment\WindowsPhone
YDeployWinPhoneClient.cmd"' and arguments "\ <Drop Location=\Build 01 Commit Stageh01 Commit Stage 0.0.0330.516"
Production', (type LabDeploymentProcessException)
Exception Stack Trace:
Server stack trace:

at Microsoft. TeamFoundation.Lab. Workflow. Activities.RunDeploymentTask.ExecuteDeploymentTask. RunCommand{AsyncState
state)

at Systern.Runtime.Rernoting. Messaging.StackBuilderSink._PrivateProcesshessage(lntPtr md, Object[] args, Object server, Object[]&
outhrgs)

at Systern.Runtime.Rermoting. Messaging.StackBuilderSink. AsyncProcessMessage(lMessage msg, IMessageSink replySink)

6. At this point, if you want to perform UAT, queue the 03b UAT Stage build definition and
provide the values for the pipeline instance and the drop location. The services will be
automatically deployed to the staging environment.

Note: These values are required. If you don't supply them an error occurs.

7. You can perform the same verifications that you did in steps 3 and 4 for the acceptance test
stage.

8. When you ready to release to production, manually trigger 03a Release Stage.

25

Summary

In this lab you automated the deployment of the WCF web service. To do this, you prepared the
configuration files that set up the environments. There is a base configuration file and three other files
that store the differences between the base configuration and the environments. You made those three
files dependent on the base file. Finally, you added the code that performs the transformations.

You packaged all the files required for the deployment, using the MSDeploy package format. You
configured the packaging process so that the Web.config parameters were available and could be
changed. You then created a publication profile, and configured the pipeline's commit stage to generate
the package.

You then configured the pipeline to perform the deployment automatically by creating a Lab
Management deployment script. Then, you edited the build definitions for the pipeline stages (other
than the commit stage) to deploy to the correct environment. Finally, you tested the automated
deployment.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and
other Internet website references, may change without notice. You bear the risk of using it. Some
examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

© 2014 Microsoft. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Windows PowerShell, Silverlight, Expression,
Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server, Visual CH,
Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are the property of their respective owners.

26

	Objectives
	Prerequisites
	Time
	Exercise 1: Deployment Automation: Preparing the Configuration Files
	Task 1: Add an Application-Specific Setting to the Web.config File
	Task 2: Prepare the SetParameters Files
	Task 3: Set the Dependency on the Base File
	Task 4: Set Up the Transformation for the SetParameters Files

	Exercise 2: Packaging the Deployment Files
	Task 1: Configure the Packaging Process
	Task 2: Create a Publication Profile
	Task 3: Configuring the Commit Stage to Generate the Package

	Exercise 3: Performing the Automated Deployment
	Task 1: Create the Deployment Script
	Task 2: Configure the Pipeline Stages to Run the Deployment Script

	Exercise 4: Testing the Automated Deployment
	Summary
	Copyright

