

Hands-on Lab 4.2:

Metrics for Continuous Delivery in TFS

Table of Contents

Objectives ... 2

Prerequisites ... 2

Time .. 3

Exercise 1: Preparing the Sample Data for the Reports (Optional) ... 4

Task 1: Set Up the Process Template to Receive the Test Data .. 4

Task 2: Upload the Test Data to TFS ... 8

Task 3: Revert the Process Template to its Original State .. 12

Exercise 2: Creating the Cycle Time Report .. 13

Task 1: Identify the Required information and Decide How to Present It .. 14

Task 2: Prepare the SQL Query that Retrieves Data from the Tfs_Warehouse Database 15

Task 3: Create an Excel Workbook to Present the Results ... 20

Task 4: Understanding the Results.. 31

Initial Cycle Time ... 31

Changes in Cycle Time ... 31

Exercise 3: Creating the MTTR report ... 31

Task 1: Identify the Required information and Decide How to Present It .. 31

Task 2: Prepare the SQL Query that Retrieves Data From the Tfs_Warehouse Database 33

Task 3: Create an Excel Sheet to Present the Results ... 35

Task 4: Understanding the Results.. 45

Initial MTTR Results... 46

Changes in MTTR ... 46

-2-

Exercise 4: Creating the MTBF report ... 46

Task 1: Identify the Required Information and Decide How to Present It ... 46

Task 2: Prepare the SQL Query that Retrieves Data from the Tfs_Warehouse Database 47

Task 3: Create an Excel Sheet to Present the Results ... 50

Task 4: Understanding the Results.. 60

Initial MTBF Results ... 60

Changes in MTBF ... 61

Summary ... 61

Helpful Tips ... 61

Cycle Time Reports ... 61

Tips for MTTR reports ... 62

Copyright ... 62

Objectives

This HOL demonstrates how to create custom reports in Microsoft Team Foundation Server (TFS) for

some of the key metrics used with continuous delivery release pipelines. These metrics are

 Cycle time

 Mean Time To Recovery (MTTR)

 Mean Time Between Failures (MTBF)

The meaning and purpose of these metrics is covered in Chapter 5 of Building a Release Pipeline with

Team Foundation Server 2012.

The lab is based on the MSF for Agile Software Development 2013 TFS process template. The reports

that are built in the lab may work with minor or no changes in earlier versions of the template, but they

have not been tested. Two other default templates in TFS, Microsoft Visual Studio Scrum 2013 and MSF

for CMMI Process Improvement 2013, have not been tested either, but you may find that you can adapt

the techniques demonstrated in this lab to work with them.

Prerequisites

Here are the prerequisites for completing this lab.

http://msdn.microsoft.com/en-us/library/dn449959.aspx

-3-

 You need to create a TFS team project that is based on the MSF for Agile Software

Development 6.2. Neither Team Foundation Service nor TFS Express will work because they do

not have the required reporting capabilities.

Note: An empty team project is a better starting point if you want the sample data to begin

from a known starting point, but the reports will work with any project that is based on the MSF

for Agile Process Template. You do not need to use the TreyResearch solution.

 You need Microsoft Excel 2007 or later.

 Your user account should be a member of the TfsWarehouseDataReader role in the

Tfs_Warehouse database. In order to add a user, connect as an administrator to the database.

Read Grant Permissions to view or create SSRS reports in TFS for more information. Look for the

section named Add report authors to database roles and follow steps 1 through 4 (steps 5

through 7 are not required for this lab).

 Optionally, if you want to run the SQL queries described in this lab, you will need SQL Server

Management Studio.

Note: This lab uses Excel 2013. The Brian Keller VM uses Excel 2010. If you are using this environment,

some of the views will be slightly different.

The first exercise in this lab is optional because it only adds some sample data that is used to test to see

if the reports work properly. If you want to complete this exercise, you also need the following:

 You need Visual Studio 2012 in order to use the witAdmin.exe command line tool and the

Developer Command Prompt for Visual Studio 2012.

 Your user account must have the Manage process template permission for the TFS project

collection that contains the TFS team project. For more information, see Collection-level

permissions in Team Foundation Server Permissions on MSDN.

NOTE: If you are in the Project Collection Administrators security group in TFS (see Collection-level

permissions), you already have all the required permissions for all the activities described in this lab.

The sample data used in the first exercise of this lab is in the Lab04-Monitoring\Start-Lab folder. You

run this lab on your local computer.

Time

You should be able to complete all of the exercises in this lab in approximately 40 minutes.

http://msdn.microsoft.com/en-us/library/bb737953.aspx
http://msdn.microsoft.com/en-us/library/ms252587(v=vs.110).aspx#Collection
http://msdn.microsoft.com/en-us/library/ms252587(v=vs.110).aspx#Collection
http://msdn.microsoft.com/en-us/library/ms252587(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms252587(v=vs.110).aspx#Collection
http://msdn.microsoft.com/en-us/library/ms252587(v=vs.110).aspx#Collection

-4-

Exercise 1: Preparing the Sample Data for the Reports (Optional)

In this exercise you create some work items in the target team project in order to have some meaningful

data.

This exercise is optional, as it's only purpose is to provide data for the reports. If you already have

meaningful data in a TFS project, in the form of User Story and Bug work items that are in the Closed

state, you can skip this exercise and go to Exercise 2. Run the reports against your TFS project.

NOTE: Don’t perform this exercise with a TFS team project that is handling actual user requests in a

production environment. The changes you make to the process template during the exercise will make

the team project stop working properly until you finish. Furthermore, you fill the team project with

dummy data that is only useful for the purposes of this lab.

Task 1: Set Up the Process Template to Receive the Test Data

The reports you will build get their information from the following fields in the User Story and Bug work

items.

 Microsoft.VSTS.Common.ActivatedDate

 Microsoft.VSTS.Common.ClosedDate

You will use the following fields to filter the data.

 System.State

 System.Reason

In order to prepare meaningful data to test the reports, you need to write information into these fields.

Specifically, you need to create:

 User Stories in the Closed state with the reason Acceptance tests pass, and that have

meaningful values for the activated and closed dates.

 Bugs in the Closed state with the reason Verified, and that have meaningful values for the

activated and closed dates.

Normally, in the MSF for Agile process template, these fields and values are either marked as read only,

modified by TFS as a result of specific state transitions, or are only available after going through several

steps in the workflow that handles work items. To insert many work items with specific values in a single

operation, you must configure the process template so that you can temporarily bypass these rules.

 Log on to the machine where you have Visual Studio or Team Explorer installed, as the user 1.

who has the Manage process template permission over the TFS project collection that

contains the TFS team project.

-5-

 Create a new Agile Team project. In this lab, the name used is Lab04-Metrics. 2.

 Open a Visual Studio Developer command prompt. Use the witAdmin.exe command line 3.

tool to get a copy of the definition of the User Story and Bug work item types. You will

modify them to bypass the rules. Run the following commands.

CMD

witadmin exportwitd

/collection:http://tfsServerURL:portNumber/virtualDirectory/CollectionName

/p:"Name of the Team Project" /n:"User Story" /f:"User Story.xml"

CMD

witadmin exportwitd

/collection:http://tfsServerURL:portNumber/virtualDirectory/CollectionName /p:

"Name of the Team Project" /n:"Bug" /f:"Bug.xml"

There should be two XML files, User Story.xml and Bug.xml, copied to your local folder.

 Make a copy of these XML files by running the following commands. (You will need to revert 4.

the template later.)

CMD

copy "User Story.xml" "User Story - Bypass Rules.xml"

copy "Bug.xml" "Bug - Bypass Rules.xml"

 Open the file User Story - Bypass Rules.xml for editing. Type the following command. 5.

CMD

notepad "User Story - Bypass Rules.xml"

 Locate the following section of the file. 6.

http://msdn.microsoft.com/en-us/library/vstudio/dd236914.aspx

-6-

XML

 <TRANSITION from="" to="New">

 <REASONS>

 <DEFAULTREASON value="New" />

 </REASONS>

 </TRANSITION>

Replace it with the following XML code.

XML

 <TRANSITION from="" to="Closed">

 <REASONS>

 <DEFAULTREASON value="Acceptance tests pass" />

 </REASONS>

 </TRANSITION>

You will now be able to directly create User Story work items that have the desired state and

reason, and the activated and closed dates will be writable as well. Save the file and close the

editor.

 Open the file Bug - Bypass Rules.xml for editing. Type the following command. 7.

CMD

notepad "Bug - Bypass Rules.xml"

 Locate the following section in the file. 8.

XML

 <TRANSITION from="" to="Active">

 <REASONS>

 <DEFAULTREASON value="New" />

 <REASON value="Build Failure" />

 </REASONS>

 <FIELDS>

 <FIELD refname="Microsoft.VSTS.Common.ActivatedBy">

 <ALLOWEXISTINGVALUE />

 <COPY from="currentuser" />

 <VALIDUSER />

 <REQUIRED />

 </FIELD>

 <FIELD refname="Microsoft.VSTS.Common.ActivatedDate">

 <SERVERDEFAULT from="clock" />

 </FIELD>

 </FIELDS>

 </TRANSITION>

Replace it with the following XML code.

XML

 <TRANSITION from="" to="Closed">

-7-

 <REASONS>

 <DEFAULTREASON value="Verified" />

 </REASONS>

 </TRANSITION>

You will be now be able to directly create Bug work items that have the desired state and

reason, and the activated and closed dates will be writable as well. Save the file and close the

editor.

 Upload the new work item type definitions with the bypassed rules to the TFS team project 9.

with the following commands.

CMD

witadmin importwitd

/collection:http://tfsServerURL:portNumber/virtualDirectory/CollectionName /p:

"Name of the Team Project" /f:"User Story - Bypass Rules.xml"

CMD

witadmin importwitd

/collection:http://tfsServerURL:portNumber/virtualDirectory/CollectionName /p:

"Name of the Team Project" /f:"Bug - Bypass Rules.xml"

The team project can now receive new User Stories and Bugs that are in the Closed state, and

that have the desired reasons and dates. You can leave the command prompt open because you

will use it later.

-8-

Task 2: Upload the Test Data to TFS

In this task you fill the team project with some User Story and Bug work items that will be used to test

the custom reports.

 Open the Sample Work Items.xlsx file that is located in the Lab4-Monitoring\Start-Lab 1.

folder. It contains 64 rows and 4 columns of data that represent User Story and Bug work

items.

 Click the + sign at the bottom of the current sheet to create a new sheet. 2.

 From the TEAM menu, click New List. This allows you to connect to TFS in order to import 3.

the data.

NOTE: The TEAM menu isn’t available unless you have installed Visual Studio Team Explorer or

the TFS Client Object Model after Excel was installed on the machine.

 Connect to your TFS server, project collection and team project. 4.

 The New List dialog box appears. Select Input list. Click OK. 5.

http://visualstudiogallery.msdn.microsoft.com/f30e5cc7-036e-449c-a541-d522299445aa

-9-

 In the ribbon, click Choose Columns. 6.

 The Choose Columns dialog box appears. Use the up and down controls in the Selected 7.

columns section so that they look as they do in the screenshot. Click OK.

-10-

 Go back to the first sheet. Select all the rows and columns that contain data, from cell A1 to 8.

D64. Use Ctrl+A and then Ctrl+C so that the data is copied to the clipboard.

-11-

 Go to the second sheet. Select the B3 cell. Use Ctrl-V so that the data from the first sheet is 9.

pasted here. In the ribbon, click Publish.

 After a few moments, the work items are created inside the TFS team project. Each one has 10.

an ID. You can close Excel without saving the changes when you are prompted. The following

screenshot shows an example of the work items.

-12-

Task 3: Revert the Process Template to its Original State

In this task you return the process template to its original state.

 From the command prompt, upload the original work item type definitions to the TFS team 1.

project by typing the following commands.

CMD

witadmin importwitd

/collection:http://tfsServerURL:portNumber/virtualDirectory/CollectionName /p:

"Name of the Team Project" /f:"User Story.xml"

CMD

witadmin importwitd

/collection:http://tfsServerURL:portNumber/virtualDirectory/CollectionName /p:

"Name of the Team Project" /f:"Bug.xml"

-13-

You can delete the four XML files if you want. The process template is now back to its original state.

Exercise 2: Creating the Cycle Time Report

In this exercise you create the cycle time report.

There is an overall approach to follow when creating the reports in this lab.

Use Excel as the reporting tool. There are other options. The most relevant one is SQL Server Reporting

Services (SSRS). SSRS reports have more features than Excel, such as formatting options, dynamic

parameters and filters, subscriptions, and a better security model. However, this lab focuses on the

reports themselves so it uses Excel, which is simpler. For more information see Create, Customize, and

Manage Reports for Visual Studio ALM.

The data source is the relational store for TFS reporting, which is the Tfs_Warehouse database. It is the

recommended source. You should not query the TFS operational databases directly. The TFS Analysis

Services cube is also not needed for this lab. For more information about using the Tfs_Warehouse

relational store, see Generate Reports Using the Relational Warehouse Database for Visual Studio ALM.

You can also refer to Grant Holliday's blog post.

In general, the steps to create a report are:

 Identify the information you need for the report. 1.

 Determine how to present the information. 2.

 Prepare the SQL query that retrieves the data from the Tfs_Warehouse database. 3.

http://msdn.microsoft.com/en-us/library/vstudio/bb649552.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb649552.aspx
http://msdn.microsoft.com/en-us/library/vstudio/ms244691.aspx
http://blogs.msdn.com/b/granth/archive/2010/05/09/tfs2010-how-to-query-work-items-using-sql-on-the-relational-warehouse.aspx

-14-

 Create an Excel workbook with a connection to the Tfs_Warehouse database that runs the 4.

query and presents the results in the tabular and chart formats.

Task 1: Identify the Required information and Decide How to Present It

Cycle time is the time it takes from the moment you begin to implement a feature to the moment you

release the feature.

In order to track cycle time, you need to determine the data you need and how to extract it from TFS. In

the MSF for Agile process template, features are represented by the User Story work item so you will

filter for that work item type.

Not all the user stories stored in the TFS team project are useful for tracking cycle time. Only those that

have been completed and released to users are. For this lab, the criteria is to choose the user stories

that are in the Closed state because of the Acceptance tests pass reason.

Note: This lab assumes that closed user stories are features that are released to users. If the criteria is

different for your project, you can modify the process template to reflect this and filter on custom

state and reason values. For example you could add a new Released state that is reached because of

the reason Deployed to production.

You can see the workflow of states for the User Story work item.

You also need to filter for the team project you are using and you need two fields to calculate the cycle

time. The first field is when the decision to implement the user story is made. In this lab, this is the date

when the User Story work items become Active. In the MSF for Agile template, this value is

automatically stored in the Activated Date field.

The second field is when the User Story work item's state becomes Closed. For the MSF for Agile

template, this value is automatically stored in the Closed Date field.

You must also decide how to present the data in the final report. The calculation to be made is the time

elapsed between the Closed Date value and the Activated Date value for each User Story work item.

However, the report is more readable if the values are adjusted by units of time and by grouping.

This lab uses a day as the unit of time. The results are grouped so that they present the average cycle

time per week. Showing the cycle time for every user story would produce too much information and

the report would be confusing. Showing the average cycle time for the user stories completed each

week makes a much more comprehensible report.

Note: There are no restrictions on the number of user stories being returned. If you have many work

items in your team project and you want to keep the reports short, you can add a filter to take out the

oldest user stories, or the ones that were closed before a given date.

Here is a summary of how to track the average cycle time per week, in days, since the beginning of the

project. In order to filter the rows use the following items:

http://msdn.microsoft.com/en-us/library/dd380634.aspx%23Tracking

-15-

 The User Story work item.

 The Closed state.

 The Acceptance tests pass reason.

 The name of the team project collection

 The name of the team project

To calculate the cycle time for the rows, use the following items:

 The Activated Date field.

 The Closed Date field.

To group and present the information:

 Use day as the unit of time.

 Use week as the grouping scale.

Note: As with any other report in TFS, team members must make sure to keep the information in the

work items up to date. In particular, for this report, they should write any feature to be incorporated

into the product as a User Story work item, they should set its state to Active when they decide that it

will be implemented, and they should set its state to Closed when it has been released.

Task 2: Prepare the SQL Query that Retrieves Data from the Tfs_Warehouse Database

In this lab you use a SQL view named CurrentWorkItemView to retrieve information about User Story

work items whose current state is Closed.

 Although this step is optional, you can connect to the Tfs_Warehouse database from SQL 1.

Server Management Studio and run a simple query to get an idea of the database's

organization. The following screenshot shows how to connect to the database.

-16-

The following screenshot shows a simple query that displays the structure of the

Tfs_Warehouse database's CurrentWorkItemView virtual table.

-17-

The following screenshot shows a query that selects the top five records from the

CurrentWorkItemView.

-18-

 Identify the names of the columns in the CurrentWorkItemView that you need for the 2.

report:

◦ To filter the rows you need:

 The column name of the User Story work item, which is System_WorkItemType.

 The column name of the Closed state, which is System_State.

 The column name of the Acceptance tests pass reason, which is

System_Reason.

 The column name of the team project collection and the team project, which is

ProjectPath.

◦ Identify the names of the columns that you need to calculate the cycle time. They are:

 The column name of the Activated Date field, which is

Microsoft_VSTS_Common_ActivatedDate.

 The column name of the Closed Date field, which is

Microsoft_VSTS_Common_ClosedDate.

 Write the query. Here is a commented, working version that you can use. 3.

T-SQL

SELECT

 -- We are adding a trailing '0' for 1-digit week numbers,

 -- so we use the RIGHT function to remove it if was not

 -- needed because the week number had 2 digits.

 RIGHT

 (

-19-

 '0'

 -- Number of the week inside the year

 + CAST(DATEPART(wk, [Microsoft_VSTS_Common_ClosedDate])

 AS VARCHAR)

 -- Separator

 + '/'

 -- Year

 + CAST(DATEPART(yyyy, [Microsoft_VSTS_Common_ClosedDate])

 AS VARCHAR)

 -- Maximum length of the returned value (format: WW/YYYY)

 , 7

) AS [Week]

 -- Average Cycle Time in days, per each week

 ,AVG(

 DATEDIFF(dd, [Microsoft_VSTS_Common_ActivatedDate],

 [Microsoft_VSTS_Common_ClosedDate])

)

 AS [Average Cycle Time in days]

FROM

 [dbo].[CurrentWorkItemView]

WHERE

 [ProjectPath] = '\YOUR-PROJECTCOLLECTION NAME\TEAM PROJECT NAME'

 AND [System_WorkItemType] = 'User Story'

 AND [System_State] = 'Closed'

 AND [System_Reason] = 'Acceptance tests pass'

GROUP BY

 -- Grouping by week and year to calculate the average

 DATEPART(wk, [Microsoft_VSTS_Common_ClosedDate]),

 DATEPART(yyyy, [Microsoft_VSTS_Common_ClosedDate])

ORDER BY

 -- Ordering by year and week number

 DATEPART(yyyy, [Microsoft_VSTS_Common_ClosedDate]),

DATEPART(wk, [Microsoft_VSTS_Common_ClosedDate])

 If you paste the query into SQL Management Studio and run it, you should get one row for 4.

each week when at least one user story was successfully released, along with the average

cycle time in days for that week. The following screenshot shows the results if you run the

query on the data that you prepared in the first exercise.

-20-

Task 3: Create an Excel Workbook to Present the Results

In this task you create an Excel workbook to present the data.

 Create a new Excel workbook. Name it Continuous Delivery Metrics for TreyResearch.xlsx. 1.

 Change the name of the first sheet to Cycle Time and write a title for the report in the first 2.

cells. The following screenshot shows an example.

-21-

 Select the cell where you want the data for the report to be inserted (for example, B4). From 3.

the DATA menu, select From Other Sources. Select From SQL Server from the drop-down

list.

 The Data Connection Wizard appears. In the Server name text box, enter the server name 4.

where the Tfs_Warehouse database is located. If necessary, enter the credentials. Click

Next.

-22-

 From the Select the database that contains the data you want drop-down list, select 5.

Tfs_Warehouse. Select CurrentWorkItemView from the list of tables. Click Next.

-23-

 Append the text Cycle Time to the File Name and Friendly Name fields so that there is no 6.

conflict with other reports in the same Excel workbook. Click Finish.

-24-

 The Import Data dialog box opens. Click Properties. 7.

 The Connection Properties dialog box opens. Select the option Refresh data when opening 8.

the file, so that the report is updated each time the Excel workbook opens.

-25-

 Select the Definition tab. From the Command type drop-down list, select SQL. In the 9.

Command text text box paste the entire query you prepared in Task 2, step 3. Click OK. You

will get a warning. Ignore it and click Yes.

-26-

 The Import Data dialog box reappears. Click OK. 10.

-27-

 In your Excel sheet, you should see a table with the cycle time data in it. Select all the rows 11.

and columns that contain the data. In the following screenshot, this is from B5 to C14.

-28-

 From the INSERT menu, click Insert Line Chart. Select Line with Markers. 12.

-29-

 You should see a chart that resembles the following screenshot. 13.

 Format the resulting chart to suit your preferences. In the following screenshots, the Chart 14.

Title is removed and a linear trend line is added. (To do this, click the + sign that appears

when you select the chart. A popout menu appears that gives you a variety of options.) The

chart is also widened so that the weeks and years at the bottom are clearer, and the chart is

positioned near the table.

-30-

 Save and close the Excel workbook. The next time you open it, both the table and the chart 15.

will be updated to reflect the additional user stories that the team has released.

Note: The Tfs_Warehouse database is updated periodically by a job that uses data gathered from the

operational database of the TFS collection. By default, the job runs every 2 minutes. You can change

the time by using the WarehouseControlWebService methods, which are accessible from TFS. You can

also force a manual update. For more information about the web service see Manually Process the

Data Warehouse and Analysis Services Cube for Team Foundation Server. Because the Tfs_Warehouse

is not updated in real time, you may find that the report doesn’t reflect the last work item data you

changed. You can wait a maximum of 2 minutes (if the default waiting time is used) and then refresh

the data or you can reopen the workbook.

http://msdn.microsoft.com/en-us/library/ff400237(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ff400237(v=vs.100).aspx

-31-

Task 4: Understanding the Results

In this task you learn how to interpret the data you've gathered. The data in the cycle time report allows

you to infer valuable information about a project. The sample data used in this lab is from the Trey

Research team's project. Examining the data gives you a good idea of how the cycle time changed in

relation to the team's efforts to improve the pipeline.

Initial Cycle Time

At the beginning of their project, before they implemented any improvements, the team had an average

cycle time of 35 days. This is close to the 6 weeks they estimated when they prepared their first value

stream map. (See Chapter 2 of Building a Release Pipeline with Team Foundation Server 2012.) An

average cycle time of 35 days means that during the last two weeks of 2011, they were releasing

features they had decided to implement approximately 6 weeks earlier, around mid-November.

Changes in Cycle Time

You can use the report to determine if the team is releasing features faster than before. Of course,

improving the cycle time shouldn't be because you've reduced the quality of your software, or because

you've taken shortcuts. It should be because you've improved your release process and because you've

removed bottlenecks. Cycle time can be combined with other metrics, such as MTTR and MTBF (covered

later in this lab), to give a better understanding of the release process.

During the first weeks of 2012, the team saw their cycle time increase significantly. This is because they

began to spend time improving their release process improvement, at the expense of implementing new

features. Their efforts quickly yielded benefits because the cycle time was greatly reduced from the

third to the seventh week of 2012.

After that, the cycle time increased again because the team spent time creating the TFS reports. These

reports gave them a better understanding of their process, and let them know if the process was

improving over time. The trend line shows that, even with its ups and downs, the cycle time has

improved from where they were in the beginning.

Exercise 3: Creating the MTTR report

In this exercise you learn to create the MTTR report. The overall process is very similar to the cycle time

report, so this exercise focuses on the differences between the two.

Task 1: Identify the Required information and Decide How to Present It

MTTR is the average time elapsed from the moment a problem is found in the production environment

to the moment that the problem is fixed. For more information, see Chapter 5 of the guidance Building a

Release Pipeline with Team Foundation Server 2012.

http://msdn.microsoft.com/en-us/library/dn449958.aspx
http://msdn.microsoft.com/en-us/library/dn449959.aspx

-32-

In order to track the MTTR, you determine the data you need and how to extract it from TFS. In the MSF

for Agile process template, problems found in production are represented by the Bug work item, so you

will filter on that work item type.

Not all the bugs stored in the TFS team project are useful for tracking the MTTR. Only those that have

been fixed in production are. For this lab, the criteria is to choose the bugs that are in the Closed state,

because of the Verified reason.

Note: The problem with this criteria is that the Bug work item is used not only for production bugs but

for any bug that is found during the development process. To solve this issue, you can modify the Bug

work item to include a new field that indicates whether the bug is a production bug one or not.

Another option is to use a special value for the Area field. These modifications are out of the scope of

this HOL, but if you decide to implement them, you can easily adapt the report query so that it filters

by using the new field.

You can see the workflow of states for the Bug work item.

You also need to filter by the team project and you need two fields to calculate the MTTR. The first field

is the moment when the bug is discovered in the production environment. In this lab, this is the date

when the Bug work item's state became Active. In the MSF for Agile template, this value is automatically

stored in the Activated Date field.

The second field is when the bug is fixed and its state becomes Closed. In the MSF for Agile template,

this value is automatically stored in the Closed Date field.

You must also decide how to present the data in the final report. The calculation to be made is the time

elapsed between the Closed Date value and the Activated Date value. However, the report would be

more readable if the values were adjusted by units of time and by grouping.

This lab uses the hour as the unit of time. The results are grouped so that they present the MTTR per

week. This gives a reasonable level of detail and makes it easier to see if the MTTR is getting smaller,

which means it's improving over time.

There are no restrictions on the number of bugs being returned. If you have many work items in your

team project and you want to keep the report short, you can add a filter to take out the oldest bugs, or

the ones that were closed before a given date.

Here is a summary of how to track the MTTR per week, in hours, since the beginning of the project. In

order to filter the rows, use the following items:

 The Bug work item.

 The Closed state.

 The Verified reason.

 The name of the team project collection

 The name of the team project.

http://msdn.microsoft.com/en-us/library/dd380645.aspx%23CloseBugs

-33-

To calculate the MTTR for these rows, use the following items.

 The Activated Date field.

 The Closed Date field.

To group and present the information:

 Use hour as the unit of time.

 Use week as the grouping scale.

Note: As with any other report in TFS, team members must make sure to keep the information in the

work items up to date. For this report, they should register any bug found in production as a Bug work

item and set its state to Active. They should set its state to Closed when it has been fixed in

production.

Task 2: Prepare the SQL Query that Retrieves Data From the Tfs_Warehouse Database

The MTTR calculation uses the same approach as the cycle time calculation. All the required information

is in the CurrentWorkItemView, in the Tfs_Warehouse database.

 Identify the names of the columns in the CurrentWorkItemView that you need for your 1.

report.

◦ To filter the rows, you need:

 The column name of the Bug work item, which is System_WorkItemType.

 The column name of the Closed state, which is System_State.

 The column name of the team project collection and the team Project, which is

ProjectPath.

◦ To calculate the MTTR for these rows, you need:

 The column name of the Activated Date field, which is

Microsoft_VSTS_Common_ActivatedDate.

 The column name of the Closed Date field, which is

Microsoft_VSTS_Common_ClosedDate.

 Write the query. Here is a commented, working version that you can use. It is almost the 2.

same as the cycle time query.

Note: Change '\YOUR-PROJECTCOLLECTION NAME\TEAM PROJECT NAME' to your project's

path.

-34-

T-SQL

SELECT

 -- We are adding a trailing '0' for 1-digit week numbers,

 -- so we use the RIGHT function to remove it if was not

 -- needed because the week number had 2 digits.

 RIGHT

 (

 '0'

 -- Number of the week inside the year

 + CAST(DATEPART(wk, [Microsoft_VSTS_Common_ClosedDate])

 AS VARCHAR)

 -- Separator

 + '/'

 -- Year

 + CAST(DATEPART(yyyy, [Microsoft_VSTS_Common_ClosedDate])

 AS VARCHAR)

 -- Maximum length of the returned value (format: WW/YYYY)

 , 7

) AS [Week]

 -- Mean Time To Recover, in hours, per each week

 ,AVG(

 DATEDIFF(hh, [Microsoft_VSTS_Common_ActivatedDate],

 [Microsoft_VSTS_Common_ClosedDate])

)

 AS [MTTR in hours]

FROM

 [dbo].[CurrentWorkItemView]

WHERE

 [ProjectPath] = '\YOUR-PROJECTCOLLECTION NAME\TEAM PROJECT NAME'

 AND [System_WorkItemType] = 'Bug'

 AND [System_State] = 'Closed'

GROUP BY

 -- Grouping by week and year to calculate the average

 DATEPART(wk, [Microsoft_VSTS_Common_ClosedDate]),

 DATEPART(yyyy, [Microsoft_VSTS_Common_ClosedDate])

ORDER BY

 -- Ordering by year and week number

 DATEPART(yyyy, [Microsoft_VSTS_Common_ClosedDate]),

 DATEPART(wk, [Microsoft_VSTS_Common_ClosedDate])

 If you paste the query into SQL Management Studio and run it, you should see one row for 3.

each week when at least one bug was closed, as well as the MTTR in hours for that week.

The following screenshot show the query and its results if you use the data you prepared in

the first exercise.

-35-

Task 3: Create an Excel Sheet to Present the Results

In this task you create a new Excel sheet to present the MTTR data.

 Open the Continuous Delivery Metrics for TreyResearch Excel workbook. 1.

 Add a new sheet and name it MTTR and write a title for the report in the first cells. The first 2.

screenshot shows an example.

-36-

 Select the cell where you want the data for the report to be inserted (for example, B4). From 3.

the DATA menu, select From Other Sources. Select From SQL Server from the drop-down

list.

 The Data Connection Wizard appears. In the Server name text box, enter the server name 4.

where the Tfs_Warehouse database is located. If necessary, enter the credentials. Click

Next.

-37-

 From the Select the database that contains the data you want drop-down list, select 5.

Tfs_Warehouse. Select CurrentWorkItemView from the list of tables. Click Next.

-38-

 Append the text MTTR to the proposed File Name and Friendly Name fields, so that there is 6.

no conflict with other reports in the same Excel workbook. Click Finish.

-39-

 The Import Data dialog box opens. Click Properties. 7.

 The Connection Properties dialog box opens. Select the option Refresh data when opening 8.

the file, so the report gets updated each time the Excel workbook opens.

-40-

 Select the Definition tab. From the Command type drop-down list, select SQL. In the 9.

Command text text box paste the entire query you prepared in Task 2, step 2. Click OK. You

will get a warning. Ignore it and click Yes.

-41-

 The Import Data dialog box reappears. Click OK. 10.

-42-

 In your Excel sheet, you should see a table with the MTTR data in it. Select all the rows and 11.

columns containing the data. In the following screenshot, this is from B5 to C14.

-43-

 From the INSERT menu, click Insert Line Chart. Select Line with Markers. 12.

-44-

 You should see a chart that resembles the following screenshot. 13.

 Format the resulting chart to suit your preferences. In the following screenshots, the Chart 14.

Title is removed and a linear trend line is added. The chart is widened so that the weeks and

years at the bottom are clearer, and the chart is positioned near to the table.

-45-

 Save and close the Excel workbook. The next time you open it, both the table and the chart 15.

will be updated to reflect the additional bus that the team has fixed.

Task 4: Understanding the Results

In this task you learn how to interpret the data you've gathered. The data in the MTTR report allows you

to infer valuable information about a project. The sample data used in this lab is from the Trey Research

team's project. Here are the conclusions.

-46-

Initial MTTR Results

At the beginning of the project, the Trey Research MTTR was erratic and difficult to predict. The process

they used to fix bugs was not standardized and there were no good tools or best practices. An MTTR of

174 around mid-November of 2011 means that they were fixing production bugs that had been found

approximately one week earlier.

Changes in MTTR

In the first weeks of 2012, the team saw a significantly larger (which means poorer) MTTR. This is

because they began to spend time improving their release process, at the expense of fixing bugs. Their

efforts quickly yielded benefits because the MTTR was greatly reduced from the second to the sixth

week of 2012. It also became more predictable because of improvements to the pipeline, including

automated deployments and tests.

If you compare MTTR with cycle time, you can see that the trend lines for both are similar. If you

improve your process and reduce your cycle time, you must also be reducing your MTTR.

Exercise 4: Creating the MTBF report

In this exercise you learn to create the MTBF report. The overall process is very similar to the cycle time

and MTTR reports, so this exercise focuses on the differences between them.

Task 1: Identify the Required Information and Decide How to Present It

The MTBF metric is the average time elapsed from the moment a problem is found in the production

environment to the moment that the next problem is found in that environment. For more information

about this metric, see Chapter 5 of Building a Release Pipeline with Team Foundation Server 2012.

In order to track the MTBF, you must determine the data you need and how to extract it from TFS. In the

MSF for Agile process template, problems found in production are represented by the Bug work item, so

you will filter on that work item type.

Not all the bugs stored in the TFS team project are useful for tracking the MTBF. Only those that have

been fixed in production are. For this lab, the criteria is to choose the bugs that are in the Closed state,

because of the Verified reason.

Note: This approach has the same issue with non-production bugs that was mentioned in the section

on MTTR.

You also need to filter by the team project and you need one field to calculate the MTBF. It is the

moment when the bug is discovered in the production environment, which is the Activated Date field.

The calculation to determine the MTBF is the time elapsed between the Activated Date of one bug and

the Activated Date of the next bug to be found.

http://msdn.microsoft.com/en-us/library/dn449959.aspx

-47-

There are no restrictions on the number of bugs being returned. If you have many work items in your

team project and you want to keep the report short, you can add a filter to take out the oldest bugs, or

the ones that were closed before a given date.

You must also decide how to present the data in the final report. This lab uses the hour as the unit of

time. The results are grouped so that they present the MTBF per week. This gives a reasonable level of

detail and makes it easier to see if the MTBF is growing larger, which means it's improving over time.

Here is a summary of how to track the MTBF per week, in hours, from the beginning of the project.

In order to filter the rows, use the following items:

 The Bug work item.

 The Closed state.

 The Verified reason. Note that the only valid reason for a bug to be in the Closed state in the

MSF for Agile template is Verified, so you don't need to filter on it.

 The name of the team project collection.

 The name of the team project.

To calculate the MTBF for these rows, use the Activated Date field.

To group and present the information:

 Use hour as the unit of time.

 Use week as the grouping scale.

Note: As with any other report in TFS, team members must make sure to keep the information in the

work items up to date. In particular, for this report, they should register any bug found in production

as a Bug work item with a state of Active. They should set the state to Closed when it has been fixed in

production.

Task 2: Prepare the SQL Query that Retrieves Data from the Tfs_Warehouse Database

You calculate the MTBF by using the same approach that you used for cycle time and MTTR. All the

required information is in the CurrentWorkItemView, in the Tfs_Warehouse database. Nevertheless,

the resulting query is quite different.

 Identify the column names in the CurrentWorkItemView that you need for the report: 1.

◦ To filter the rows, you need:

 The column name of the Bug work item, which is System_WorkItemType.

 The column name of the Closed state, which is System_State.

-48-

 The column name of the team project collection and the team project, which is

ProjectPath.

◦ To calculate the MTBF for these rows, you need the column name of the Activated Date,

which is Microsoft_VSTS_Common_ActivatedDate.

 Write the query. Here is a commented, working version that you can use. 2.

Note: Change '\YOUR-PROJECTCOLLECTION NAME\TEAM PROJECT NAME' to your project's

path name.

T-SQL

SELECT

 -- We are adding a trailing '0' for 1-digit week numbers,

 -- so we use the RIGHT function to remove it if was not

 -- needed because the week number had 2 digits.

 RIGHT

 (

 '0'

 -- Number of the week inside the year

 + CAST(DATEPART(wk, [CurrentBug].[Date])

 AS VARCHAR)

 -- Separator

 + '/'

 -- Year

 + CAST(DATEPART(yyyy, [CurrentBug].[Date])

 AS VARCHAR)

 -- Maximum length of the returned value (format: WW/YYYY)

 , 7

) AS [Week]

 -- Mean Time Between Failures, in hours, per each week

 ,AVG(

 DATEDIFF(hh, [FormerBug].[Date], [CurrentBug].[Date])

) AS [MTBF in hours]

FROM

(

 -- List of bugs, ordered by Activated date

 SELECT

 (

 ROW_NUMBER()

 OVER(ORDER BY [Microsoft_VSTS_Common_ActivatedDate] ASC)

) + 1 AS [ID]

 ,[Microsoft_VSTS_Common_ActivatedDate] AS [Date]

 FROM [dbo].[CurrentWorkItemView]

 WHERE

 [ProjectPath] = '\YOUR-PROJECTCOLLECTION NAME\TEAM PROJECT NAME'

 AND [System_WorkItemType] = 'Bug'

 AND [System_State] = 'Closed'

) AS [FormerBug]

-49-

INNER JOIN

(

 -- Just the same list of bugs as before, also ordered by Activated

 -- date, but with the rows shifted one position so we can

 -- calculate the time between one bug and the next one (notice

 -- that in this case the result of the ROW_NUMBER function is not

 -- increased by 1 to make the shift happen)

 SELECT

 (

 ROW_NUMBER()

 OVER(ORDER BY [Microsoft_VSTS_Common_ActivatedDate] ASC)

) AS [ID]

 ,[Microsoft_VSTS_Common_ActivatedDate] AS [Date]

 FROM [dbo].[CurrentWorkItemView]

 WHERE

 [ProjectPath] = '\YOUR-PROJECTCOLLECTION NAME\TEAM PROJECT NAME'

 AND [System_WorkItemType] = 'Bug'

 AND [System_State] = 'Closed'

) AS [CurrentBug]

ON [FormerBug].[ID] = [CurrentBug].[ID]

GROUP BY

 -- Grouping by week and year to calculate the average

 DATEPART(wk, [CurrentBug].[Date])

,DATEPART(yyyy, [CurrentBug].[Date])

 If you paste the query into SQL Management Studio and run it, you should see one row for 3.

each week when at least one bug that was later fixed was found. You’ll also see the MTBF in

hours for that week. The following screenshot show the query and its results if you use the

data you prepared in the first exercise.

-50-

Task 3: Create an Excel Sheet to Present the Results

In this task you create a new Excel sheet to present the MTBF data.

 Open the Continuous Delivery Metrics for TreyResearch Excel workbook. 1.

 Add a new sheet and name it MTBF. Write a title for the report in the first cells. The 2.

following screenshot shows an example.

-51-

 Select the cell where you want the data for the report to be inserted (for example, B4). From 3.

the DATA menu, select From Other Sources. Select From SQL Server from the drop-down

list.

 The Data Connection Wizard appears. In the Server name text box, enter the server name 4.

where the Tfs_Warehouse database is located. If necessary, enter the credentials. Click

Next.

-52-

 From the Select the database which contains the data you want drop-down list, select 5.

Tfs_Warehouse. Select CurrentWorkItemView from the list of tables. Click Next.

-53-

 Append the text MTBF to the proposed File Name and Friendly Name fields so that there is 6.

no conflict with other reports in the same Excel workbook. Click Finish.

-54-

 The Import Data dialog box opens. Click Properties. 7.

 The Connection Properties dialog box opens. Select the option Refresh data when opening 8.

the file, so that the report is updated each time the Excel workbook opens.

-55-

 Select the Definition tab. Under the Command type drop-down list, select SQL. In the 9.

Command text text box paste the entire query you prepared in Task 2, step 2. Click OK. You

will get a warning. Ignore it and click Yes.

-56-

 The Import Data dialog reappears. Click OK. 10.

-57-

 In your Excel sheet, you should see a table with the MTBF data in it. Select all the rows and 11.

columns containing the data. In the following screenshot, this is from B5 to C15.

-58-

 From the INSERT menu, click Insert Line Chart. Select Line with Markers. 12.

-59-

 You should see a chart that resembles the following screenshot. 13.

 Format the resulting chart to suit your preferences. In the following screenshots, the Chart 14.

Title is removed and a linear trend line is added. The chart is widened so that the weeks and

years at the bottom are clearer, and the chart is positioned near the table.

-60-

 Save and close the Excel workbook. The next time you open it, both the table and the chart 15.

will be updated to reflect the additional bugs that the team has found and fixed.

Task 4: Understanding the Results

In this task you learn how to interpret the MTBF data you've gathered. Here are some conclusions you

can make about the Trey Research project.

Initial MTBF Results

Around mid-November of 2011, the team initially had an MTBF of 108 hours. This means that they were

finding production bugs about every four or five days.

-61-

Changes in MTBF

The MTBF is still unpredictable. Although the team has improved their release process, they still have to

improve their quality. This means they need to examine where they should focus their testing efforts

and the types of tests they need to perform. Nevertheless, the trend shows that they are steadily

increasing (improving) their MTBF.

Summary

In this HOL, you learned how to create custom TFS reports that track three metrics that are key to

evaluating the efficiency of a continuous delivery pipeline. The first metric is cycle time, which is the

time that elapses from the moment you decide to implement a feature to the moment you release the

feature.

The second metric is MTTR, which is the average time elapsed from the moment a problem is found in

the production environment to the moment that the problem is fixed. The MTBF metric is the average

time elapsed from the moment one problem is found in the production environment to the moment

that the next problem is found in that environment.

In general, the steps to create a report are:

 Identify the information you need for the report. 1.

 Determine how to present the information. 2.

 Prepare the SQL query that retrieves the data from the Tfs_Warehouse database. 3.

 Create an Excel workbook with a connection to the Tfs_Warehouse database that runs the 4.

query and presents the results in tabular and chart formats.

Helpful Tips

This section contains information on using the data with other metrics and other templates.

Cycle Time Reports

NOTE: An User Story could pass any amount of time in the New state before being activated, but we

don’t consider it part of the Cycle Time – it would be part of a different metric, the Lead Time. That

metric is important for Lean and Agile process, but it is not a key indicator for Continuous Delivery and

for improving the development process and the release pipeline.

TIP: If you want to prepare the report for the Visual Studio Scrum process template, and have a look at

the corresponding equivalent fields and transitions, you will notice that the Activated Date field is not

updated when a Product Backlog Item gets to the Commited state. But you can easily modify the

template so it gets updated and cycle time can be measured.

-62-

TIP: For the MSF for CMMI template the field to use is also Activated Date, but in the Requirement

work item type.

TIP: This is exactly the same for Product Backlog Items in the Visual Studio Scrum template; look for the

Closed Date that gets updated when the PBI gets to the Done state.

TIP: For the MSF for CMMI template, you will need to use the Resolved Date field, that gets updated

when the Requirement gets to the Resolved state.

TIP: It may be useful to have the units (days), the grouping (weeks) and the date for the oldest Story to

return, as parameters for the report. That way we could easily change the report to track, for example,

the average cycle time per day, in hours, in the last three months (or whichever other version of the

report you care about). This is one of the features that you can have easily implemented if you build

your report in SSRS.

Tips for MTTR reports

TIP: If you want to prepare the report for the Visual Studio Scrum process template, and have a look at

the corresponding equivalent fields and transitions, you will notice that the workflow and values for the

fields are a bit different. The Activated Date field is not updated when a Bug gets to the Approved state.

But you can easily modify the template so it gets updated and MTTR can be measured.

TIP: For the MSF for CMMI template you can use also the Bug work item type, and look for the same

Activated Date field.

TIP: This is exactly the same for Bugs in the Visual Studio Scrum template; look for the Closed Date that

gets updated when the Bug gets to the Done state.

TIP: For the MSF for CMMI template, you will need to use the Resolved Date field, that gets updated

when the Bug gets to the Resolved state.

TIP: It may be useful to have the units (days), the grouping (weeks) and the date for the oldest Bug to

return, as parameters for the report. That way we could easily change the report to track, for example,

the MTTR per day, in minutes, in the last three months (or whichever other version of the report you

care about). This is one of the features that you can have easily implemented if you build your report in

SSRS.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and

other Internet website references, may change without notice. You bear the risk of using it. Some

examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

© 2014 Microsoft. All rights reserved.

-63-

Microsoft, Windows, Windows Server, Windows Vista, Windows PowerShell, Silverlight, Expression,

Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server, Visual C#,

Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are the property of their respective owners.

	Objectives
	Prerequisites
	Time
	Exercise 1: Preparing the Sample Data for the Reports (Optional)
	Task 1: Set Up the Process Template to Receive the Test Data
	Task 2: Upload the Test Data to TFS
	Task 3: Revert the Process Template to its Original State

	Exercise 2: Creating the Cycle Time Report
	Task 1: Identify the Required information and Decide How to Present It
	Task 2: Prepare the SQL Query that Retrieves Data from the Tfs_Warehouse Database
	Task 3: Create an Excel Workbook to Present the Results
	Task 4: Understanding the Results
	Initial Cycle Time
	Changes in Cycle Time

	Exercise 3: Creating the MTTR report
	Task 1: Identify the Required information and Decide How to Present It
	Task 2: Prepare the SQL Query that Retrieves Data From the Tfs_Warehouse Database
	Task 3: Create an Excel Sheet to Present the Results
	Task 4: Understanding the Results
	Initial MTTR Results
	Changes in MTTR

	Exercise 4: Creating the MTBF report
	Task 1: Identify the Required Information and Decide How to Present It
	Task 2: Prepare the SQL Query that Retrieves Data from the Tfs_Warehouse Database
	Task 3: Create an Excel Sheet to Present the Results
	Task 4: Understanding the Results
	Initial MTBF Results
	Changes in MTBF

	Summary
	Helpful Tips
	Cycle Time Reports
	Tips for MTTR reports

	Copyright

