

Hands-on Lab 2.1:

Orchestrating the Commit Stage

Table of Contents

Objectives ... 2

Prerequisites ... 2

Time .. 3

Exercise 1: Add TfsBuildExtensions.Activities.dll to TreyResearchBuildCustomization.sln 3

Exercise 2: Adding Steps That Name the Pipeline Instance and the Commit Stage 3

Task 1: Open the Solution File .. 4

Task 2: Edit the Workflow Arguments .. 4

Task 3: Add the PipelineInstance Variable .. 7

Task 4: Add the Set PipelineInstance Sequence to the Workflow .. 8

Task 5: Add Activities to the Set PipelineInstance Sequence ... 9

Task 6: Add the TfsVersion Activity ... 10

Task 7: Add an Assign Activity ... 13

Exercise 3: Versioning the Assemblies .. 14

Task 1: Add the Versions Assemblies Sequence ... 14

Task 2: Add the FindMatchingFiles Activity .. 15

Task 3: Add a ForEach Activity .. 16

Task 4: Add a TfsVersion Activity .. 17

Exercise 4: Orchestrate the Stage to Propagate Changes or Stop the Pipeline .. 19

Task 1: Add the NextStagesInPipeline Variable .. 19

Task 2: Add a New Parallel Activity ... 20

-2-

Task 3: Add a ForEach Activity to the If Activity. .. 22

Task 4: Add Activities to Trigger Subsequent Stages .. 24

Task 5: Save Everything ... 26

Summary ... 26

Copyright ... 26

Objectives

In this HOL you learn how to customize the TFS default template in order to orchestrate the commit

stage of the release pipeline. Orchestration for the commit stage includes:

 Adding steps that name the pipeline instance and the stage.

 Versioning the assemblies.

 Placing the compiled binaries in the drop location.

 Triggering the next stage if the commit stage succeeds or stopping the entire pipeline if the

commit stage fails.

This HOL is part one of the four-part Orchestration HOL. Together, the four parts demonstrate how to

use Microsoft Team Foundation Server (TFS) and Lab Management to orchestrate the stages of a release

pipeline that will support continuous delivery. The subject of orchestration is covered in Chapter 3 of

Building a Release Pipeline with Team Foundation Server 2012.

The example application and services that are used in some exercises in this lab are in the subfolders of

the Lab02-Orchestration\Start-Lab folder. Visual Studio solutions that are the result of completing all of

the tasks in an exercise are in the Lab02-Orchestration\Completed-Lab folder. You run the examples for

this lab on your local computer.

Prerequisites

Here are the prerequisites for completing this lab.

 Complete Introduction.

 Complete Lab-01-StartingPoint.

http://msdn.microsoft.com/en-us/library/dn449950.aspx

-3-

Time

You should be able to complete all of the exercises in this lab in approximately 40 minutes. If you are

familiar with Visual Studio Editor, TFS, and TFS build customization, you should be able to complete the

four HOLs in the orchestration sequence in three to four hours.

Exercise 1: Add TfsBuildExtensions.Activities.dll to

TreyResearchBuildCustomization.sln

In Lab 1 you added the TFS Build Extensions to the TreyResearch Team Project. In this exercise you’ll add

one of its DLLs to the TreyResearchBuildCustomization.sln located at C:\HOL\Lab02-

Orchestration\Start-Lab\TreyResearchBuildCustomization. Here are the steps.

 Create a Lib folder at the location C:\HOL\Lab02-Orchestration\Start-1.

Lab\TreyResearchBuildCustomization\TreyResearchBuildCustomization.

 Locate TfsBuildExtensions.Activities.dll in the TreyResearch project under the Custom 2.

Assemblies folder that was created in Lab 1.

 Copy the TfsBuildExtensions.Activities.dll and Ionic.Zip.Dll to the new Lib folder. Navigate to 3.

the HOL\Lab02-Orchestration\Start-Lab\TreyResearchBuildCustomization and open the

solution TreyResearchBuildCustomization.sln.

 Navigate to the HOL\Lab02-Orchestration\Start-Lab\TreyResearchBuildCustomization and 4.

open the solution TreyResearchBuildCustomization.sln.

 Add TfsBuildExtensions.Activities.dll to the Reference folder in the 5.

TreyResearchBuildCustomization.sln.

 Save the solution. 6.

Exercise 2: Adding Steps That Name the Pipeline Instance and the Commit Stage

In this exercise you will modify a customized version of the TFS default build template named

Start_CDPipelineCommitStageProcessTemplate.xaml so that it names both the pipeline instance and the

commit stage of that pipeline instance. These names make it easy to associate a particular stage (in this

lab, the commit stage) with a particular pipeline instance.

To name the pipeline instance, you use the TfsVersion activity that is found under the TFS Build

Extensions tab in the Visual Studio Toolbox. The TFSVersion activity calculates the pipeline instance

name. This name is based on the standard pattern Major.Minor.Build.Release.

Note: If the TfsVersion activity does not appear in the Visual Studio Toolbox, you may not have

downloaded the TfsBuildExtensions activity. See Introduction, and the section named "Third-party

Libraries," for more information.

-4-

Task 1: Open the Solution File

In this task, you open the solution file so that you can edit the workflow.

 Navigate to HOL\Lab02-Orchestration\Start-Lab\ TreyResearchBuildCustomization. 1.

 Locate the solution file TreyResearchBuildCustomization.sln. 2.

 When you open the solution file you’ll see the following solution layout. 3.

Task 2: Edit the Workflow Arguments

In this task you add 2 new arguments called MajorVersion and MinorVersion, which will contain

versioning information. Then you edit the metadata for the existing, standard build process argument

BuildNumberFormat and for the new MajorVersion and MinorVersion arguments.

 From Solution Explorer, open Start_CDPipelineCommitStageProcessTemplate.xaml. It 1.

opens in the workflow editor.

 Click the Arguments tab in the lower-left corner of the workflow editor. The Arguments 2.

pane opens.

-5-

 In the Arguments pane, click Create Argument. In the Name column enter MajorVersion. 3.

 Click Create Argument. In the Name column enter MinorVersion. 4.

 Add the metadata for the MajorVersion and MinorVersion arguments and for the standard 5.

build process argument BuildNumberFormat. To do this, click the Edit button in the Default

value column of the Metadata row.

-6-

 The Process Parameter Metadata Editor opens. Click Add. Enter the MajorVersion metadata 6.

shown in the following screenshot.

 Click Add. Enter the MinorVersion metadata that is shown in the following screenshot. 7.

-7-

 Click Add. Enter the BuildNumberFormat metadata that is shown in the following 8.

screenshot. Note that Never means that this parameter is hidden.

Task 3: Add the PipelineInstance Variable

In this task you add the PipelineInstance variable and scope it to the top-level workflow sequence.

 Scroll to the top of the workflow file and click in the first Sequence activity to highlight it. 1.

 Click Variables in the lower-left corner. The variable pane for the top-level scope opens. 2.

 Click Create Variable. 3.

 Create a variable named PipelineInstance. The steps for this task are shown in the following 4.

screenshot.

-8-

Task 4: Add the Set PipelineInstance Sequence to the Workflow

In this task you add the Set PipelineInstance sequence to the workflow. This sequence will include the

steps related to naming the commit stage and the pipeline instance.

1. Locate the activity named Update Build Number for Triggered Builds. It is the first activity

inside the Update Drop Location sequence, near the top of the workflow.

2. Add a Sequence above the Update Build Number activity and within the Update Build

Number for Triggered Builds.

TIP: All activities can be found in the Toolbox by using the search option at the top.

3. Name this sequence Set PipelineInstance by changing the DisplayName property in the

Properties window.

The following screenshot shows the location of the Set PipelineInstance sequence within the workflow.

-9-

Task 5: Add Activities to the Set PipelineInstance Sequence

In this task you add the activities that generate the pipeline instance name within the Set

PipelineInstance sequence.

 Add the WriteBuildMessage activity to the Set PipelineInstance sequence. This activity logs 1.

the operations that occur within the sequence.

 Add the message string "Naming the pipeline instance" by using the Expression Editor. You 2.

can open the editor from the Properties window for the WriteBuildMessage activity. The

following screenshot shows the message. It is highlighted in red.

-10-

Task 6: Add the TfsVersion Activity

In this task you create the TfsVersion activity, which generates the actual version name in the

Major.Minor.Build.Revision format.

 The Major and Minor values are provided by the user.

 The Build value depends on the current date.

 The Revision value is automatically generated and incremented by TFS each time the commit

stage runs.

Note: This naming schema for the pipeline is not mandatory. You can use any schema you like,

as long as it generates unique names.

 Add a TfsVersion activity after the WriteBuildMessage activity. 1.

-11-

 Update the values in the TfsVersion activity properties. The correct values are highlighted in 2.

red in the following screenshot.

-12-

-13-

 Rename the TfsVersion activity to GeneratePipelineInstance name. 3.

Task 7: Add an Assign Activity

In this task, you add an Assign activity that generates the entire instance name for the pipeline and

assigns it to the BuildNumberFormat argument.

 Add an Assign activity below the GeneratePipelineInstance activity. 1.

Note: In the following image the ! sign occurs because the Assign activity properties still need

to be entered.

 Rename the Assign activity to Set new BuildNumberFormat. 2.

 In the Set new BuildNumberFormat To variable box, enter BuildNumberFormat. Insert the 3.

following code into the value argument.

Visual Basic

String.Format("$(BuildDefinitionName) {0}", PipelineInstance)

The following screenshot shows how to set the variable and the argument.

-14-

Exercise 3: Versioning the Assemblies

In this exercise you create the steps that version the assemblies to match the pipeline instance name.

With this versioning strategy, you always know the instance that generated any specific binary. Because,

by default, TFS also labels the code after the build number, you will also be able to identify the source

code that generated the binary.

Task 1: Add the Versions Assemblies Sequence

In this task, you add a sequence that embeds the version number in the AssemblyInfo files in the source

code. The version number is the same as the pipeline instance name. Versioning the assemblies occurs

just after getting the source code from the version control system, but before compiling and building it.

 Locate the Get Workspace activity inside the workflow. It's towards the end of the file. 1.

 Add a Sequence and name it Version Assemblies. The following screenshot shows the 2.

location of the Version Assemblies sequence.

-15-

 Add a variable scoped to the Version Assemblies sequence. Name it AssemblyInfoFiles. The 3.

variable type is IEnumerable<String>. This variable stores the list of AssemblyInfo files to be

changed.

The following screenshot shows the Variables pane with the AssemblyInfoFiles variable.

Task 2: Add the FindMatchingFiles Activity

In this task, you add activities to the Version Assemblies sequence in order to retrieve all the

AssemblyInfo files that need to be changed.

 Add the FindMatchingFiles activity to the Version Assemblies sequence. 1.

 Open the associated Properties dialog box for this activity. 2.

 Set the MatchPattern argument to the following code. 3.

Visual Basic

String.Format(“{0}**\assemblyinfo.cs”, SourcesDirectory)

-16-

 Set the Result argument to AssemblyInfoFiles. 4.

The following screenshot shows how to set the arguments.

Task 3: Add a ForEach Activity

In this task you add a ForEach activity that goes through the list of files included in the

AssemblyInfoFiles variable, assigns them to the fileItem variable and logs the file name.

 Add a ForEach activity after the FindMatchingFiles activity. 1.

 Rename the default item value in the ForEach box to fileItem. 2.

 Open the ForEach activity Properties dialog box. 3.

 Set the TypeArgument argument to String. 4.

 Set the Values argument to AssemblyInfoFiles. The following screenshot shows how to set 5.

the arguments.

 Add a WriteBuildMessage activity inside the ForEach loop. The activity logs the files that are 6.

selected.

 Set the Message property to the following code. 7.

Visual Basic

String.Format("Found file to be versioned: {0}", fileItem)

The following screenshot shows the ForEach loop properties.

-17-

Task 4: Add a TfsVersion Activity

In this task, you add a TfsVersion activity that updates the files with the name of the pipeline instance.

 Add a TfsVersion activity after the ForEach activity. 1.

 Open the TfsVersion activity Properties dialog box. 2.

 Update the TfsVersion activity properties with the values highlighted in red in the following 3.

screenshot.

-18-

-19-

Exercise 4: Orchestrate the Stage to Propagate Changes or Stop the Pipeline

In the final exercise you orchestrate the commit stage so that, if it succeeds, it automatically triggers the

next stage in the pipeline. If the commit stage fails, the entire pipeline stops.

Task 1: Add the NextStagesInPipeline Variable

In this task, you add a variable that holds the list of stages to be triggered if the commit stage succeeds.

 Add a new argument to the workflow named NextStagesInPipeline, of type String[]. In the 1.

Argument type drop-down box, select Array of [T].

 The Select Types dialog box opens. Select String from the drop-down list. 2.

 The NextStagesInPipeline Argument type should be set to String[]. 3.

-20-

 Click the Edit button in the Default value column of the Metadata row to launch the Process 4.

Parameter Metadata Editor.

 The Process Parameter Metadata Editor opens. Click Add. Enter the NextStagesInPipeline 5.

metadata, as shown in the following screenshot.

Task 2: Add a New Parallel Activity

In this task you add a new parallel activity at the end of the entire workflow that determines if the next

stage can be triggered or if the pipeline should stop.

 Go to the Check In Gated Changes for CheckInShelveset Builds activity at the end of the 1.

workflow.

-21-

 Add a Parallel activity just before the Check In Gated Changes for CheckInShelveset Builds 2.

activity.

 Move the Check In Gated Changes for CheckInShelveset Builds activity inside the newly 3.

created Parallel activity.

 Inside the Parallel activity, add an If activity and name it If NextStagesInPipeline can be 4.

triggered. The If activity will check to see if the commit stage has succeeded or failed.

-22-

 In the Condition box insert the following code, which checks to see if the commit stage was 5.

successful.

Visual Basic

(BuildDetail.CompilationStatus = BuildPhaseStatus.Succeeded) And

(BuildDetail.TestStatus = BuildPhaseStatus.Succeeded)

Task 3: Add a ForEach Activity to the If Activity.

In this task you add a ForEach activity to the If Then box located within the Parallel activity. The loop will

iterate through the list of stages contained in the NextStagesInPipeline variable to find what stages

should be triggered if the commit stage succeeds. In addition, you add logging to the work flow.

 Insert a ForEach activity into the If Then box within the Parallel activity. 1.

 In the ForEach box, rename the default item value to Stage. 2.

 Open the ForEach activity's Properties dialog box. 3.

 Set the TypeArgument argument to String. 4.

 Set the Values argument to the NextStagesInPipeline variable. 5.

-23-

 Add a WriteBuildMessage activity above the ForEach activity. This automatically generates a 6.

Sequence that includes the WriteBuildMessage and the ForEach activity.

 Set the message text for this WriteBuildMessage activity with the following code, which logs 7.

the triggering of subsequent stages.

Visual Basic

String.Format("Triggering subsequent stages in the pipeline: {0} stages to be

triggered", NextStagesInPipeline.Length)

 Add another WriteBuildMessage activity inside the ForEach activity body. 8.

 Define the message text for the WriteBuildMessage activity with the following code, which 9.

logs the stage that is triggered.

-24-

Visual Basic

String.Format("Triggering stage: {0}", Stage)

Task 4: Add Activities to Trigger Subsequent Stages

In this task you use the QueueBuild activity from the Community TFS Build Extensions to set some

properties and to trigger the next stage in the pipeline. You pass two parameters to each subsequent

stage of the pipeline. Here are the parameters.

 PipelineInstance: This parameter relates the subsequent stage to the pipeline instance and

gives the stage the same name as that instance.

 DropLocation: Because continuous delivery pipelines only build once, you need this parameter

to tell the subsequent stages where to find the binaries.

 Within the ForEach activity you added in the previous task, add a QueueBuild activity below 1.

the WriteBuildMessage activity.

-25-

 Open the Properties window of the QueueBuild activity to define the values that are 2.

highlighted in red in the following screenshot. The code for each highlighted property is

found in the next steps.

 Add the following code for the BuildController property. 3.

Visual Basic

BuildDetail.BuildController

 Add the following code for the BuildDefinition property. 4.

Visual Basic

BuildDetail.BuildServer.GetBuildDefinition(BuildDetail.TeamProject,Stage)

 Add the following code for the BuildServer property. 5.

Visual Basic

BuildDetail.BuildServer

 Add the following code for the Priority property. 6.

-26-

Visual Basic

Microsoft.TeamFoundation.Build.Client.QueuePriority.Normal

 Add the following code for the ProcessParameters property. 7.

Visual Basic

Microsoft.TeamFoundation.Build.Workflow.WorkflowHelpers.SerializeProcessParameters

(New Dictionary(Of String, Object) From {{"PipelineInstance", PipelineInstance},

{"PipelineInstanceDropLocation", BuildDetail.DropLocation}})

Task 5: Save Everything

Save your work. You have completed the first HOL in the orchestration sequence.

Summary

In this HOL you created and orchestrated the commit stage of the pipeline by customizing the work flow

in the Start_CDPipelineCommitStageProcessTemplate.xaml file. Here are some points to remember.

 There is no way to create a "pipeline" in TFS. Instead, a pipeline is a set of orchestrated stages.

 Each stage of the pipeline is implemented by a build definition.

 Most of the steps inside the stages are implemented by using workflow foundation activities.

 A pipeline instance occurs when the stages execute.

 To check your work, examine the files found in the TreyResearchBuildCustomization.zip file that

is located in the directory HOL\Lab02\Completed-Lab.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and

other Internet website references, may change without notice. You bear the risk of using it. Some

examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

© 2014 Microsoft. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Windows PowerShell, Silverlight, Expression,

Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server, Visual C#,

Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are the property of their respective owners.

	Objectives
	Prerequisites
	Time
	Exercise 1: Add TfsBuildExtensions.Activities.dll to TreyResearchBuildCustomization.sln
	Exercise 2: Adding Steps That Name the Pipeline Instance and the Commit Stage
	Task 1: Open the Solution File
	Task 2: Edit the Workflow Arguments
	Task 3: Add the PipelineInstance Variable
	Task 4: Add the Set PipelineInstance Sequence to the Workflow
	Task 5: Add Activities to the Set PipelineInstance Sequence
	Task 6: Add the TfsVersion Activity
	Task 7: Add an Assign Activity

	Exercise 3: Versioning the Assemblies
	Task 1: Add the Versions Assemblies Sequence
	Task 2: Add the FindMatchingFiles Activity
	Task 3: Add a ForEach Activity
	Task 4: Add a TfsVersion Activity

	Exercise 4: Orchestrate the Stage to Propagate Changes or Stop the Pipeline
	Task 1: Add the NextStagesInPipeline Variable
	Task 2: Add a New Parallel Activity
	Task 3: Add a ForEach Activity to the If Activity.
	Task 4: Add Activities to Trigger Subsequent Stages
	Task 5: Save Everything

	Summary
	Copyright

