

Hands-on Lab 3.2:

Automating the Deployment of the WPF

App

Table of Contents

Objectives ... 2

Prerequisites ... 2

Time .. 3

Exercise 1: Setting Up the Target Environments ... 3

Task 1: Set Up the Environments .. 3

Task 2: Set Up the Environment in Lab Manager.. 3

Exercise 2: Preparing the Deployment Configuration Files ... 4

Task 1: Prepare the App.config Files ... 4

Task 2: Set the Dependency on the Base File ... 6

Task 3: Set Up the Transformations for the TreyResearch.WpfClient.exe.Config Files 7

Exercise 3: Deployment Automation: Packaging the Files for Deployment .. 9

Task 1: Create the WiX Visual Studio Project .. 9

Task 2: Configure the Commit Stage To Generate the Installers .. 16

Task 3: Test the Configuration Transforms and Package Generation .. 21

Exercise 4: Performing the Automated Deployment ... 22

Task 1: Create the Deployment Script for The Agent ... 22

Task 2: Configure the Pipeline Stages to run the Deployment script ... 24

Exercise 5: Testing the Deployment ... 26

-2-

Task 1: Test the Deployment .. 27

Summary ... 29

Copyright ... 29

Objectives

In this HOL you learn how to automatically deploy the Windows Presentation Foundation (WPF)

application that is part of the sample Trey Research project. Automating the deployment includes:

 Setting up the target environments.

 Preparing the configuration files to match the target environments.

 Packaging the files that are needed to deploy and run the WPF application, along with the

configuration files.

 Deploying to the target environments.

This HOL is part two of the three-part Automation HOL. Together, the three parts demonstrate how to

use Microsoft Visual Studio, Microsoft Team Foundation Server (TFS) and Lab Management to automate

the deployment and testing of the following technologies:

 WCF services

 WPF

Automation is discussed in Chapter 4 of Building a Release Pipeline with Team Foundation Server 2012.

This lab implements the pipeline changes that are discussed in that chapter.

Prerequisites

The prerequisite for this lab is to have completed all the previous labs.

NOTE: You can use either standard environments or SCVMM environments for this lab. Standard

environments are much simpler to set up because you do not need to configure the network

virtualization, but some features, such as snapshots, are not available.

The Trey Research application is in your TreyResearch folder. Visual Studio solutions that are the result

of completing all of the tasks in an exercise are in the Lab03-Automation\Completed-Lab folder.

You run the examples for this lab on your local computer and the computer(s) that host the

environments.

http://msdn.microsoft.com/en-us/library/dn449951.aspx

-3-

Time

This HOL (Lab3_2) takes approximately 60 minutes.

Exercise 1: Setting Up the Target Environments

In this exercise you set up the target environments so that they can run the WPF application and so that

they can be managed by the pipeline.

The pipeline has four environments: development, test, staging, and production. Because the

development environment is isolated and only exists on development machines, it doesn't host the WPF

application. However, the other three environments do. Typically, these three environments would

reside on three different computers. For simplicity, this lab uses one computer for all three

environments.

Task 1: Set Up the Environments

In this task you install the Windows Installer XML (WiX) tool set on the development machine, as well as

on the build machine(s) that host the build agent(s) that run the commit stage of the pipeline. You use

WiX to package and deploy the WPF application.

Go to http://wixtoolset.org/ to download and install WiX.

Task 2: Set Up the Environment in Lab Manager

Note: If you use Brain Kellar's VM, you use the same computer and environment that you set up in Lab

1 -- Starting Point.

From Lab Management, simply verify that the environment that contains the computer is still available.

The following screenshot shows an example of what you should see.

http://wixtoolset.org/

-4-

Exercise 2: Preparing the Deployment Configuration Files

In this exercise you automate the process of creating configuration files that conform to a specific

environment. In particular, the App.config file of the WPF application uses a different URL in each

environment to access the web services.

Task 1: Prepare the App.config Files

In this task you add the App.config files to the project. The pipeline uses these files when it deploys the

WPF application to each environment. You need four files. Three are for the three environments. The

fourth stores the base configuration that is transformed for each environment. This file already exists.

 In Visual Studio, open TreyResearch.sln. 1.

 In Solution Explorer, under TreyResearch.WpfClient, find the App.config file. 2.

-5-

 Use the Text File template to add three additional configuration files. Name each one after 3.

the target environment, using the format

TreyResearch.WpfClient.exe.<Environment>.config. The following screenshot shows the

results.

4. Add the following XML code to each file. Replace the <IIS-Server> tag with the name of the

server for each different environment and config file.

XML

<?xml version="1.0" encoding="utf-8" ?>

<!-- For more information on using transformations

-6-

 see the web.config examples at

http://go.microsoft.com/fwlink/?LinkId=214134. -->

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-

Transform">

 <system.serviceModel>

 <client>

 <!-- AUTOMATION HOL - This defines the way the value of the "endpoint"

setting gets transformed for the Testing environment. -->

 <!-- AUTOMATION HOL - In the config file for the Testing environment,

the endpoint will get this value -->

 <endpoint address="http://<IIS-Server:port>/SensorReadingService.svc"

 name="BasicHttpBinding_ISensorReadingService"

 xdt:Locator="Match(name)"

 xdt:Transform="SetAttributes(address)">

 </endpoint>

 </client>

 </system.serviceModel>

</configuration>

Task 2: Set the Dependency on the Base File

In this task you make all the TreyResearch.WpfClient.exe.<Environment Name>.config files dependent

on the base configuration file, App.config. Although this step is not required to perform the

transformations, it helps to keep the project organized and understandable.

 Right-click on the TreyResearch.WpfClient project and select Unload project. 1.

 Right-click on the project again and select Edit TreyResearch.WpfClient.csproj. The MSBuild 2.

code that makes up the csproj project file appears.

 Locate the following XML code. 3.

XML

<None Include="TreyResearch.WpfClient.exe.Production.config" />

-7-

<None Include="TreyResearch.WpfClient.exe.Staging.config" />

<None Include="TreyResearch.WpfClient.exe.Testing.config" />

 Replace the XML with the following code, which makes the environment-specific files 4.

dependent upon the base configuration file.

XML

<None Include="TreyResearch.WpfClient.exe.Production.config">

 <DependentUpon>App.config</DependentUpon>

</None>

<None Include="TreyResearch.WpfClient.exe.Staging.config">

 <DependentUpon>App.config</DependentUpon>

</None>

<None Include="TreyResearch.WpfClient.exe.Testing.config">

 <DependentUpon>App.config</DependentUpon>

</None>

 Save the file. Right-click on the TreyResearch.WpfClient project and select Reload Project. 5.

Your project should have the structure shown in the following screenshot. Note that the

environment-specific files are nested under the base configuration file.

Task 3: Set Up the Transformations for the TreyResearch.WpfClient.exe.Config Files

In this task you use the TransformXml MSBuild task to transform the base App.config configuration file.

You use the TreyResearch.WpfClient.exe.<Environment Name>.config files to define the

transformations. When the transformations are done, you will have the environment-specific

configuration files.

-8-

 Unload and edit the TreyResearch.WpfClient.csproj file, the same way as you did in task 2. 1.

Near the bottom of the file, just before the closing </Project> tag, insert the following code.

XML

 <!-- AUTOMATION HOL - Referencing the TransformXml task so we can use it -->

 <UsingTask TaskName="TransformXml"

AssemblyFile="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v11.0\Web\Micr

osoft.Web.Publishing.Tasks.dll" />

 <!-- AUTOMATION HOL - We are triggering the transformations just after

building -->

 <!-- AUTOMATION HOL - Checking whether we are BuildingInsideVisualStudio

makes that this will be triggered only in the Commit Stage of the pipeline (or

in command-line builds), not while working inside Visual Studio -->

 <!-- AUTOMATION HOL - Checking whether we are building the Release

configuration makes the configuration files available only for Release builds,

the ones being used by the pipeline -->

 <Target Name="AfterBuild" Condition="('$(BuildingInsideVisualStudio)' !=

'true') And ('$(Configuration)' == 'Release')">

 <ItemGroup>

 <TransformationFiles Include="TreyResearch.WpfClient.exe.*.config" />

 </ItemGroup>

 <!-- AUTOMATION HOL - We generate the transformated configuration files in

a subfolder of $(OutDir). That way, they will get copied directly to the

BinariesFolder in the TFS build agent, and in turn, to the Drop folder of the

Commit Stage, without having to explicitly copying them -->

 <MakeDir Directories="$(OutDir)\ConfigFiles\WpfClient"

Condition="!Exists('$(OutDir)\ConfigFiles\WpfClient')" />

 <!-- AUTOMATION HOL - We call the TransformXml task for all the

configuration files using MSBuild batching (the @() syntax) -->

 <TransformXml Source="App.config" Transform="@(TransformationFiles)"

Destination="$(OutDir)\ConfigFiles\WpfClient\%(TransformationFiles.Identity)"

/>

 </Target>

 Reload the project. It opens in Solution Explorer. 2.

 From the Windows Start menu (or in Windows 8, the Start screen) open a Developer 3.

Command Prompt for VS2013. Change the directory to the location of TreyResearch.

WpfClient.csproj.

 Test to see if the transformations were performed. Run the following command. 4.

CMD

msbuild /p:Configuration=Release TreyResearch.WpfClient.csproj

 After MSBuild finishes, you should find a new folder named ConfigFiles under the 5.

bin\Release subfolder. The folder contains the three transformed configuration files. If you

open any of them, you'll see that the content has been transformed to match the target

environment.

-9-

Exercise 3: Deployment Automation: Packaging the Files for Deployment

In this exercise you use the Windows Installer to package the files that will be deployed. There are

several tools that generate Windows Installer packages. This lab uses the WiX tool set. WiX allows you to

build Windows installation packages from XML source code. WiX supports completely automated

installations and uninstallations, and is integrated with Visual Studio and MSBuild. For more information

about the Windows Installer, see Windows Installer. For more information about writing WiX files, refer

to the WiX tutorial or the WiX manual.

Task 1: Create the WiX Visual Studio Project

In this task you create a WiX Visual Studio project.

 In Visual Studio, add a new project to the TreyResearch solution. In the Add New Project 1.

dialog box, click Windows Installer XML. Click the Setup Project template. Name the project

TreyResearch.WpfClient.Setup.

http://msdn.microsoft.com/en-us/library/windows/desktop/cc185688(v=vs.85).aspx
http://wix.tramontana.co.hu/
http://wix.sourceforge.net/manual-wix3/main.htm

-10-

 In the TreyResearch.WpfClient.Setup project, open the Product.wxs file. This file describes 2.

the behavior of the Windows Installer.

 Replace the existing code with the following code. 3.

XML

<?xml version="1.0" encoding="UTF-8"?>

<!-- AUTOMATION HOL - This is the Product.wxs file that describes how the

Windows Installer package is generated and how it will behave during

deployment. -->

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

-11-

 <!-- AUTOMATION HOL - For the Product section below, there are a couple of

attributes worth mentioning. -->

 <!-- The UpgradeCode attribute uniquely identifies our product in the

installation database of the target computer for upgrades. It is a GUID that

we must generate and provide. -->

 <!-- It can be generated in Visual Studio: "Tools->Create GUID->Registry

format" (just remove the curly braces). -->

 <!-- The Version attribute relates the installer package to the product

its contains, and allows us to use Windows Installer update features if

needed. -->

 <Product Id="*" Name="TreyResearch.WpfClient" Language="1033"

 Version="$(var.ProductVersion)" Manufacturer="TreyResearch"

UpgradeCode="8365f624-ffc5-4719-ac25-f403a54e593c">

 <Package Keywords="Installer" Description="TreyResearch.WpfClient Wix

Installer" Comments="Installer package for the TreyResearch.WpfClient

application" Manufacturer="TreyResearch" InstallerVersion="200"

Compressed="yes" />

 <!-- AUTOMATION HOL - The following two sections are added to support

upgrades. -->

 <Upgrade Id="8365f624-ffc5-4719-ac25-f403a54e593c">

 <UpgradeVersion OnlyDetect="yes" Minimum="$(var.ProductVersion)"

Property="NEWERVERSIONDETECTED" IncludeMinimum="no" />

 <UpgradeVersion OnlyDetect="no" Maximum="$(var.ProductVersion)"

Property="OLDERVERSIONBEINGUPGRADED" IncludeMaximum="no" />

 </Upgrade>

 <InstallExecuteSequence>

 <RemoveExistingProducts After="InstallInitialize" />

 </InstallExecuteSequence>

 <MediaTemplate EmbedCab="yes" />

 <!-- AUTOMATION HOL - In the Feature subsection, we describe the

components that are going to be installed on the target machine. -->

 <!--In this case, it is going to be just the product components

(binaries and configuration files), and a couple of shortcuts to help the user

locate and run the application. -->

 <Feature Id="Complete" Title="TreyResearch.WpfClient Complete" Level="1">

 <ComponentGroupRef Id="ProductComponents" />

 <ComponentGroupRef Id="Shortcuts" />

 </Feature>

 </Product>

 <Fragment>

 <!-- AUTOMATION HOL - Here we specify the target directories that will be

modified during the installation. -->

 <Directory Id="TARGETDIR" Name="SourceDir">

-12-

 <Directory Id="ProgramFilesFolder">

 <!-- AUTOMATION HOL - The folder Program Files\TreyResearch.WpfClient

will be created. -->

 <Directory Id="INSTALLFOLDER" Name="TreyResearch.WpfClient" />

 </Directory>

 <Directory Id="ProgramMenuFolder" Name="Programs">

 <!-- AUTOMATION HOL - The Program Menu folder will be modified to

receive the TreyResearch.WpfClient shortcut. -->

 <Directory Id="ProgramMenuDir" Name="TreyResearch.WpfClient" />

 </Directory>

 <!-- AUTOMATION HOL - The Desktop will be modified as well, to receive

the TreyResearch.WpfClient shortcut. -->

 <Directory Id="DesktopFolder" Name="Desktop" />

 </Directory>

 </Fragment>

 <Fragment>

 <ComponentGroup Id="ProductComponents" Directory="INSTALLFOLDER">

 <Component Id="MainExecutable">

 <!-- AUTOMATION HOL - The main executable for the application will be

copied to INSTALLFOLDER. -->

 <!-- AUTOMATION HOL - The Source attribute is specified by means of a

couple of parameters, so we can easily provide them during an automated build

in the build server. -->

 <File Id="TreyResearch.WpfClient.exe"

Name="TreyResearch.WpfClient.exe"

Source="$(var.SourcePath)\$(var.MainExecutable)" KeyPath="yes">

 <!-- AUTOMATION HOL - A couple of shortcuts are created for the main

executable: one in the start menu (star screen in Windows 8) and another one

in the desktop. -->

 <Shortcut Id='startmenuTreyResearch.WpfClient'

Directory='ProgramMenuDir' Name='TreyResearch.WpfClient'

WorkingDirectory='INSTALLDIR' Icon='TreyResearchIcon.exe' Advertise='yes' />

 <Shortcut Id='desktopTreyResearch.WpfClient'

Directory='DesktopFolder' Name='TreyResearch.WpfClient'

WorkingDirectory='INSTALLDIR' Icon='TreyResearchIcon.exe' Advertise='yes' />

 </File>

 </Component>

 <Component Id="ConfigFile">

 <!-- AUTOMATION HOL - The configuration file for the application will

be copied to INSTALLFOLDER. -->

 <!-- AUTOMATION HOL - The Source attribute is specified by means of a

couple of parameters, so we can easily provide them during an automated build

in the build server. -->

 <File Id="TreyResearch.WpfClient.exe.config"

Name="TreyResearch.WpfClient.exe.config"

Source="$(var.SourcePath)\ConfigFiles\WpfClient\$(var.EnvironmentConfigFile)"

/>

 </Component>

-13-

 </ComponentGroup>

 <ComponentGroup Id='Shortcuts' Directory='ProgramMenuDir'>

 <Component Id="ProgramMenuShortcut">

 <!-- AUTOMATION HOL - These keys allow to remove the application

shortcuts on uninstall. -->

 <RemoveFolder Id='ProgramMenuDir' On='uninstall' />

 <RegistryValue Root='HKCU' Key='Software\[Manufacturer]\[ProductName]'

Type='string' Value='' KeyPath='yes' />

 </Component>

 </ComponentGroup>

 </Fragment>

 <Fragment>

 <!-- AUTOMATION HOL - Here we specify the icon for the application; it is

just the one embedded into the executable. -->

 <Icon Id="TreyResearchIcon.exe"

SourceFile="$(var.SourcePath)\$(var.MainExecutable)" />

 </Fragment>

</Wix>

 Save the file and close it. 4.

In Solution Explorer, right-click on the TreyResearch.WpfClient.Setup project. Click Unload

Project. Click Edit TreyResearch.WpfClient.Setup.wixproj.

 Inside the first <PropertyGroup> section just before the </PropertyGroup> begins, add the 5.

following line of code.

-14-

XML

 <!-- AUTOMATION HOL - Here we define the parameters that can be passed

when generating the installer. -->

 <!-- ProductVersion: version number for the product and for the installer.

-->

 <!-- SourcePath: root path where the files to be added to the installer

are located. -->

 <!-- EnvironmentConfigFile: environment-specific configuration file that

will be included in the installer, instead of the default App.config. -->

 <!-- MainExecutable: this is the executable for the WPF application. -->

 <!-- Additionally, we will pass the OutputPath property as a parameter so

we can change the place where the generated installer is copied. But we don't

need to specify it here since it is a regular MSBuild property. -->

<DefineConstants>ProductVersion=$(ProductVersion);SourcePath=$(SourcePath);Env

ironmentConfigFile=$(EnvironmentConfigFile);MainExecutable=$(MainExecutable)</

DefineConstants>

This code defines the parameters so that they are available when MSBuild creates the installer,

either from the command line or from within the commit stage of the pipeline.

 Reload the TreyResearch.WpfClient.Setup.wixproj project. It opens in Solution Explorer. 6.

 Remove the TreyResearch.WpfClient.Setup.wixproj from the Visual Studio solution. This 7.

project does not build inside Visual Studio because it is configured to be built from the

command line or by Team Build, and by passing in the necessary parameters. Removing it

from the solution avoids confusion and prevents build errors. In Solution Explorer, right-click

on the project. Click Remove. The following screenshot shows an example of what you

should see after you remove the project..

 Generate the installer. From the Windows Start menu (or in Windows 8, the Start screen) 8.

open a Developer Command Prompt for VS2012. Change the directory to the location of the

WiX project. The following command generates the installer for the test environment.

Before running the following command, replace the highlighted path with your current

working directory for the TreyResearch solution.

-15-

CMD

msbuild TreyResearch.WpfClient.Setup.wixproj

"/p:Configuration=Release;ProductVersion=0.0.0.0;SourcePath=<Folder containing

the Visual Studio solution

file>\TreyResearch.WpfClient\bin\Release;EnvironmentConfigFile=TreyResearch.Wp

fClient.exe.Testing.config;MainExecutable=TreyResearch.WpfClient.exe;OutputPat

h=Bin\Release\Testing\"

The following screenshot shows the command with an example of the source path.

 Go the folder you specified in the OutputPath parameter. You should find the .msi installer 9.

for the test environment. The following screenshot shows an example.

-16-

Task 2: Configure the Commit Stage To Generate the Installers

In this task you modify the commit stage's build workflow so that it generates the installers for all of the

environments.

NOTE: In the first lab, the commit stage prepares the configuration files and packages for the WCF

service. During the deployment, the other stages of the pipeline replace the configuration file with the

one corresponding to the target environment. The advantage to this approach is that the commit stage

remains short and finishes quickly. A fast commit stage is important because it runs every time there is a

check-in, and you want to know as soon as possible if the check-in has caused any problems.

However, for the WPF Windows installer, it is easier to prepare all the installers with the correct

configuration files during the commit stage. This removes a dependency on WiX in the later stages of the

pipeline.

 In Visual Studio, open the TreyResearchBuildCustomization solution that you created in the 1.

Orchestration HOL.

 Open the CDPipelineCommitStageProcessTemplate.xaml file. 2.

 Open Find and Replace (Ctrl + F). Search for If a Compilation Exception Occurred. Close Find 3.

and Replace.

 Add a Sequence activity to the Else section of the If a Compilation Exception Occurred 4.

activity and name it Package WpfClient. You must perform the packaging after the

WpfClient project is compiled, so that the binaries and configuration files are available, but

before the results are copied to the drop folder.

-17-

 Add a new variable named EnvironmentConfigFiles, of type IEnumerable<String>, scoped to 5.

the Package WpfClient sequence. This variable stores the list of environment-specific

configuration files.

 Add a FindMatchingFiles activity to the sequence and set its properties to the following 6.

code.

Visual Basic

String.Format(“{0}\Release\ConfigFiles\WpfClient\TreyResearch.WpfClient.exe.*.

config”,BinariesDirectory)

The following screenshot shows the MatchPattern property.

The MatchPattern property specifies how to search for the configuration files. In this case, the

search occurs inside the directory that was specified during Exercise 2, Task 3, step 5.

-18-

NOTE: For simplicity, the path and name of the configuration files in the MatchPattern are

hardcoded. An improvement would be to specify the MatchPattern property when defining the

build, expose it as an argument and specify its metadata. This is what you did for the arguments

in the Orchestration HOL. You could do the same for the rest of the properties in this section, as

well.

 Add a ForEach activity and rename it ForEach configuration file. This activity iterates 7.

through the configuration files. Make sure the properties match what is shown in the

following screenshot.

 Inside the Body of the ForEach activity, create a variable named 8.

EnvironmentConfigFileName, which will store the name of the configuration file.

-19-

 Inside the Body of the ForEach activity, add an Assign activity and name it Assign 9.

EnvironmentConfigFileName. Set the To property to EnvironmentConfigFileName. Set the

Value property to System.IO.Path.GetFileName(cfgFile).

 Create a variable named TargetEnvironment. Set the Variable type to String. Set the Scope 10.

to PackageWpfClient.

The value of the TargetEnvironment variable will be the target output path. Each installer will

be generated in a subfolder that is named after the environment where the installer will run.

 Add another Assign activity after the Assign EnvironmentConfigFileName activity you added 11.

in step 9. Name it Assign TargetEnvironment.

-20-

 Set the To property to TargetEnvironment. Set the Value property to the following code. 12.

Visual Basic

(New

System.Text.RegularExpressions.Regex("TreyResearch.WpfClient.exe.(?<TargetEnvi

ronment>.+).config")).Match(EnvironmentConfigFileName).Groups("TargetEnvironme

nt").Value

This code retrieves the name of the environment from the configuration file name.

 Add a WriteBuildMessage activity after the Assign activity in order to perform logging. 13.

 Set the WriteBuildMessage Importance property. 14.

Visual Basic

Microsoft.TeamFoundation.Build.Client.BuildMessageImportance.High

 Set the WriteBuildMessage Message property. 15.

Visual Basic

String.Format("Generating the installer for {0} configuration file, {1}

environment", EnvironmentConfigFileName, TargetEnvironment)

 Add an MSBuild activity. This activity invokes MSBuild to generate the installers. 16.

-21-

 Set the CommandLineArguments property to the following code. 17.

Visual Basic

String.Format("/p:Configuration=Release;ProductVersion={0};SourcePath=""{1}\Re

lease"";EnvironmentConfigFile=""{2}"";MainExecutable=TreyResearch.WpfClient.ex

e;OutputPath=""{3}\Release\Deployment\WpfClient\Installers\{4}\\""",

PipelineInstance, BinariesDirectory, EnvironmentConfigFileName,

BinariesDirectory, TargetEnvironment)

 Set the Project property to the following code. 18.

Visual Basic

String.Format("{0}\TreyResearch.WpfClient.Setup\TreyResearch.WpfClient.Setup.w

ixproj", SourcesDirectory)

 Set the Targets property to the following code. 19.

Visual Basic

New String() {"Rebuild"}

This code ensures that the installers are generated each time MSBuild is called from within the

ForEach configuration file loop.

Task 3: Test the Configuration Transforms and Package Generation

In this task you test to see if the configuration files are transformed correctly and if the install packages

are generated correctly.

 Make sure that the modified build process template, 1.

CDPipelineCommitStageProcessTemplate.xaml, along with all the other changes you've

made, are checked into version control. These changes include the WiX Visual Studio project

and the changes you made to the WpfClient project.

-22-

 The commit stage should be triggered automatically. After it finishes successfully, open the 2.

drop folder. You should see a subfolder for each environment. Each subfolder should contain

a different .msi installer for each environment.

Exercise 4: Performing the Automated Deployment

In this exercise you set up the pipeline so that it can automatically deploy the installer packages to the

environments.

Task 1: Create the Deployment Script for The Agent

 In Solution Explorer, under the TreyResearch.WpfClient project, create a new folder named 1.

Deployment. Create a subfolder named WpfClient.

-23-

 Add a new script file to the WpfClient subfolder. Right-click on the subfolder and add a new 2.

item of type Text File. Change the name to DeployWpfClient.cmd.

 Open the DeployWpfClient.cmd file properties. Set Build Action to None, and Copy to 3.

Output Directory to Copy always. This means that, when the project is built, the script will

be copied to the output directory, and in turn to the drop location, so that the deployment

agent can retrieve and run it.

 Open the DeployWpfClient.cmd file. Paste the following code into it. 4.

XML

REM AUTOMATION HOL - This script copies the msi installer for the new version

and environment, and runs it

REM AUTOMATION HOL - Path where the deployment package is stored (the Drop

location for the pipeline instance)

set packageLocation=%~1

REM AUTOMATION HOL - Name of the environment where the deployment is made.

This is used to pick the corresponding installer from the available ones

set environment=%~2

REM AUTOMATION HOL - Name of the temporal folder to use in the target computer

set tempfolder=%~3

REM AUTOMATION HOL - Preparing the local temp directory to copy the installer

and run the deployment and store log files

set deploymentLocation=%tempfolder%\WpfClient\%environment%

if exist "%deploymentLocation%" rd /s /q "%deploymentLocation%"

mkdir "%deploymentLocation%"

-24-

REM AUTOMATION HOL - Copying the msi installer to the deployment location (the

one corresponding to the target environment).

copy

"%packageLocation%\Release\Deployment\WpfClient\Installers\%environment%\TreyR

esearch.WpfClient.Setup.msi" "%deploymentLocation%"

REM AUTOMATION HOL - Running the deployment

msiexec.exe /i "%deploymentLocation%\TreyResearch.WpfClient.Setup.msi" /Lv*

"%deploymentLocation%\install.log" /passive ALLUSERS="1"

The script copies the installer from the drop location and runs the installer with the correct

parameters. If there is a previous version of the application already installed, it is automatically

updated by the installer.

 Save the .cmd file using the encoding UTF-8 without signature. Select Save As from the 5.

Visual Studio File menu. Select the UTF-8 without signature option from the drop-down

menu. Ignore the source control warning that. Save the file and check it in.

Task 2: Configure the Pipeline Stages to run the Deployment script

In this task you configure the remaining stages of the pipeline to run the deployment script.

 Edit the 02 Acceptance Test Stage build definition so that the stage deploys to the test 1.

environment. Under the Process tab, open the Lab Process Settings. The Lab Workflow

Parameters dialog box opens.

 Under the Environment tab, select the environment you used in Lab3_1. 2.

-25-

 Select the Deploy tab. Select Deploy the build. Click Add. This incorporates the deployment 3.

script into the build definition.

 Select Client from the Machine drop-down list. 4.

 In the Deployment script and arguments column, add the following command line, which 5.

causes the deployment script to execute.

-26-

CMD

"$(BuildLocation)\Release\Deployment\WpfClient\DeployWpfClient.cmd"

"$(BuildLocation)" Testing C:\TreyResearchDeployment

 Click Finish and save the changes. 6.

 Repeat steps 1 through 6 for 03a Release Stage and 03b UAT Stage. In the fifth step, make 7.

sure that the second parameter passed to the deployment script is Production for 03a

Release Stage and Staging for 3b UAT Stage.

Note: The last client entry is for the Windows Phone 8 componet. You will only see this if you

perform the advanced labs.

Exercise 5: Testing the Deployment

In this exercise you test to see if the automated deployment works correctly.

-27-

Task 1: Test the Deployment

1. Create a new instance of the pipeline by running the 01 Commit Stage. You can either make

some changes in the code and check them in, or, in Team Explorer, queue the build

definition.

2. After the commit stage finishes successfully, the changes are propagated through the

pipeline, so 02 Acceptance Test Stage is triggered automatically. You can monitor the

progress from the Build Explorer window.

 When the commit stage finishes, all the artifacts required for the deployment (the package, 3.

the configuration files and the scripts) have been generated and copied to the drop folder.

When the acceptance stage finishes, you can log in to the target computer, go to the test

environment, and run the WPF Client application from the shortcuts that have been created.

The following screenshot is an example of what you should see.

-28-

 You can check that the application is using the web service URL for the test environment by 4.

opening the TreyResearch.WpfClient.exe.config file that is located in C:\Program Files

(x86)\TreyResearch.WpfClient.

-29-

 At this point, if you want to perform UAT, queue the 03b UAT Stage build definition and 5.

provide the values for the pipeline instance and the drop location. The WPF application will

be automatically deployed to the staging environment.

 You can check that the WPF application is using the web service URL that corresponds to the 6.

staging environment by opening the TreyResearch.WpfClient.exe.config file that is located

in C:\Program Files (x86)\TreyResearch.WpfClient.

 When you are ready to release the WPF application to production, trigger 03a Release 7.

Stage.

Summary

In this lab you automated the deployment of the WPF application. To do this, you installed the WiX tool

set. You were able to use the same Lab Management environment that you used in the previous labs.

Next, you prepared the App.config files that set up the environments. There is a base configuration file

and three other files that store the differences between the base configuration and the environments.

You made those three files dependent on the base file. Finally, you added the code that performs the

transformations.

You then packaged all the files required for the deployment, using the WiX tool set to create the

Windows install package. To do this, you created a WiX project in Visual Studio. Within that project, you

created the .wxs file that describes the behavior of the Windows Installer.

The next step was to configure the commit stage of the pipeline to generate the installers for all the

environments. You did this by modifying the build workflow. You tested to see that the configuration

files and installers were generated correctly by triggering a build and examining the newly created

subfolders

You then configured the pipeline to perform the deployment automatically by creating a Lab

Management deployment script. Then, you edited the build definitions for the pipeline stages (other

than the commit stage) to deploy to the correct environment. Finally, you tested the automated

deployment.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and

other Internet website references, may change without notice. You bear the risk of using it. Some

examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

© 2014 Microsoft. All rights reserved.

-30-

Microsoft, Windows, Windows Server, Windows Vista, Windows PowerShell, Silverlight, Expression,

Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server, Visual C#,

Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are the property of their respective owners.

	Objectives
	Prerequisites
	Time
	Exercise 1: Setting Up the Target Environments
	Task 1: Set Up the Environments
	Task 2: Set Up the Environment in Lab Manager

	Exercise 2: Preparing the Deployment Configuration Files
	Task 1: Prepare the App.config Files
	Task 2: Set the Dependency on the Base File
	Task 3: Set Up the Transformations for the TreyResearch.WpfClient.exe.Config Files

	Exercise 3: Deployment Automation: Packaging the Files for Deployment
	Task 1: Create the WiX Visual Studio Project
	Task 2: Configure the Commit Stage To Generate the Installers
	Task 3: Test the Configuration Transforms and Package Generation

	Exercise 4: Performing the Automated Deployment
	Task 1: Create the Deployment Script for The Agent
	Task 2: Configure the Pipeline Stages to run the Deployment script

	Exercise 5: Testing the Deployment
	Task 1: Test the Deployment

	Summary
	Copyright

