Hands-on Lab 3.2:
Automating the Deployment of the WPF

App

, Microsoft®) . .
patterns & practices g Visual Studio

" proven practices for predictable results ALM Rangers

Table of Contents
(0] oY [Tt AV =T 3PS SR 2
PrEIEQUISITES «.eeviiieeeee ettt ettt e e e e ettt ettt e e e s sttt aeeeeesea s abb et aeeeeesaasebaeaeeeeessaaassbaaaeeessnsaansaaaaaeessnnas 2
LI L= TSP PPPTRTRPN 3
Exercise 1: Setting Up the Target ENVIFONMENTS ...cccccuiiiiiiciiiiicciiie ettt e e s are s e srre e e s snaaeeeeas 3
Task 1: SEt UP the ENVIFONMENTSccciiiei ettt ettt e et e e e e tee e e e eatee e e e e abae e e eeabaee e enaseeeeennrenas 3
Task 2: Set Up the Environment in Lab Manager.......c.ueiiicuieeieeiee ettt vte e e e evte e e e e e e 3
Exercise 2: Preparing the Deployment Configuration FileScceeciiiiieciiiii e e 4
Task 1: Prepare the App.CONFIg FIlES......oui it srre e e saree e e e 4
Task 2: Set the Dependency 0n the Base Filecciiiiiiiiciiii ittt 6
Task 3: Set Up the Transformations for the TreyResearch.WpfClient.exe.Config Files...........cccuvrennnieee. 7
Exercise 3: Deployment Automation: Packaging the Files for Deploymentccccecciiveeiieeeeciiiee e, 9
Task 1: Create the WiX Visual StUdIO ProjJECE.........cciiiiiii ittt e e e etae e e e et 9
Task 2: Configure the Commit Stage To Generate the Installers........cccccevecvieiieciiie e 16
Task 3: Test the Configuration Transforms and Package Generationccccceecvieeivciieeicciiee e 21
Exercise 4: Performing the Automated DeploymeNnt........ccuueii i e 22
Task 1: Create the Deployment Script for The AZENtcccuiviiiciiieeeceee ettt 22
Task 2: Configure the Pipeline Stages to run the Deployment SCriptcccoveeeeciieeecciiiee e e 24

Exercise 5: Testing the DePIOoYMENT......cui e e e e e e e e e e e s re e e e e e e e e esnnnraeeeeeas 26

Task 1: Test the DEPIOYMENT ..o et e e e e e e e st re e e e e e e e e eennbaseeeeeaeeeeansnnns 27

SUIMIMIAIY e s e e e e e e e e e e e s e aeasaeaaasaaaaasaaasssasasasasasaaasssassassasasesasasesesesesasanenananenns 29
(070 o1V T={ o | S PP SURPPRNt 29
Objectives

In this HOL you learn how to automatically deploy the Windows Presentation Foundation (WPF)
application that is part of the sample Trey Research project. Automating the deployment includes:

e Setting up the target environments.
e Preparing the configuration files to match the target environments.

e Packaging the files that are needed to deploy and run the WPF application, along with the
configuration files.

e Deploying to the target environments.

This HOL is part two of the three-part Automation HOL. Together, the three parts demonstrate how to
use Microsoft Visual Studio, Microsoft Team Foundation Server (TFS) and Lab Management to automate
the deployment and testing of the following technologies:

e WCF services

e WPF

Automation is discussed in Chapter 4 of Building a Release Pipeline with Team Foundation Server 2012.
This lab implements the pipeline changes that are discussed in that chapter.

Prerequisites
The prerequisite for this lab is to have completed all the previous labs.

NOTE: You can use either standard environments or SCVMM environments for this lab. Standard
environments are much simpler to set up because you do not need to configure the network
virtualization, but some features, such as snapshots, are not available.

The Trey Research application is in your TreyResearch folder. Visual Studio solutions that are the result
of completing all of the tasks in an exercise are in the Lab03-Automation\Completed-Lab folder.

You run the examples for this lab on your local computer and the computer(s) that host the
environments.

http://msdn.microsoft.com/en-us/library/dn449951.aspx

Time

This HOL (Lab3_2) takes approximately 60 minutes.

Exercise 1: Setting Up the Target Environments

In this exercise you set up the target environments so that they can run the WPF application and so that
they can be managed by the pipeline.

The pipeline has four environments: development, test, staging, and production. Because the
development environment is isolated and only exists on development machines, it doesn't host the WPF
application. However, the other three environments do. Typically, these three environments would
reside on three different computers. For simplicity, this lab uses one computer for all three
environments.

Task 1: Set Up the Environments

In this task you install the Windows Installer XML (WiX) tool set on the development machine, as well as
on the build machine(s) that host the build agent(s) that run the commit stage of the pipeline. You use
WiX to package and deploy the WPF application.

Go to http://wixtoolset.org/ to download and install WiX.

Task 2: Set Up the Environment in Lab Manager

Note: If you use Brain Kellar's VM, you use the same computer and environment that you set up in Lab
1 -- Starting Point.

From Lab Management, simply verify that the environment that contains the computer is still available.
The following screenshot shows an example of what you should see.

http://wixtoolset.org/

- O X

@ @ ‘ @ | Lab Center Test Settings Library Controllers

Environments Mew w Open Items (0] =

E Environments

@ New (. Deploy | [§ Open X - Environment: Testing+Staging+Production Mark 'In Use' =

* Description:

| MName - | Status

= Type: Standard (1)

Testing+5taging+Production @ Ready
S
=
=
<Web Server Machine> <Client Machine>

Web Server Client
Ready Ready

Exercise 2: Preparing the Deployment Configuration Files

In this exercise you automate the process of creating configuration files that conform to a specific
environment. In particular, the App.config file of the WPF application uses a different URL in each

environment to access the web services.

Task 1: Prepare the App.config Files

In this task you add the App.config files to the project. The pipeline uses these files when it deploys the
WPF application to each environment. You need four files. Three are for the three environments. The
fourth stores the base configuration that is transformed for each environment. This file already exists.

1. In Visual Studio, open TreyResearch.slIn.

2. InSolution Explorer, under TreyResearch.WpfClient, find the App.config file.

App.config + X

<?uml version="1.8" encoding="utf-8" >

Eﬂ(configur‘ation)

Bl

[]-[-[T+

<startup>
<supportedRuntime version="v4.8" sku=".NETFramework,Version=v4.5" />
</fstartup>
¢<system.serviceModel>
<bindings>
<basicHttpBinding»
<binding name="BasicHttpBinding_ISensorReadingService™ />
</basicHttpBinding>
</bindings>
¢!-- Change the endpoint address below to point to the URL of the WCF
<client>
<endpoint address="http://localhost/TreyResearch/SensorReadingse
binding="basicHttpBinding" bindingConfiguration="BasicHttpBi
contract="%ensorReadingServiceRef.ISensorReadingService™ nam

<fclient>
§ </system.serviceModel>
| </configuration>

the target environment, using the format

[3

Solution Explorer
@ e-endn o #RA

Search Selution Explorer (Ctrl+7)

] Solution 'TreyResearch' (4 projects)
b .nuget
b T TreyResearch.WcfService
4 TreyResearch.WefService Tests
4 TreyResearch. WpfClient

b M Properties

[=B References

[ﬁ Service References

P B Appaxaml

b B MainWindow.xaml
4 TreyResearch WpfClient.UITests

Use the Text File template to add three additional configuration files. Name each one after

TreyResearch.WpfClient.exe.<Environment>.config. The following screenshot shows the

results.

Solution Explorer
@ o-20dm #RR

Search Selution Explorer (Ctrl+7)

byl Solution 'TreyResearch' (3 projects)
b nuget
B E TreyResearch WefService
b &[] TreyResearch.WcfService.Tests
4 #[cs] TreyResearch.WpfClient

b & M Properties

[=B References

i Service References

el Appxaml

B al) MainWindow.sxaml

1}»@ TreyResearch WpfClient.exe.Production.config

4}»@ TreyResearch WpfClient.exe.5taging.config
28] TreyResearch.WpfClient.exe.Testing.config

4. Add the following XML code to each file. Replace the <IIS-Server> tag with the name of the

server for each different environment and config file.

XML

<?xml version="1.0" encoding="utf-8" ?>

<!-- For more information on using transformations

-5-

see the web.config examples at
http://go.microsoft.com/fwlink/?LinkId=214134. -->
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-
Transform">
<system.serviceModel>
<client>

<!-- AUTOMATION HOL - This defines the way the value of the "endpoint"
setting gets transformed for the Testing environment. -->
<!-- AUTOMATION HOL - In the config file for the Testing environment,
the endpoint will get this value -->
<endpoint address="http://<IIS-Server:port>/SensorReadingService.svc"
name="BasicHttpBinding_ISensorReadingService"
xdt:Locator="Match(name)"
xdt:Transform="SetAttributes(address)">
</endpoint>
</client>
</system.serviceModel>
</configuration>

Task 2: Set the Dependency on the Base File

In this task you make all the TreyResearch.WpfClient.exe.<Environment Name>.config files dependent
on the base configuration file, App.config. Although this step is not required to perform the
transformations, it helps to keep the project organized and understandable.

1. Right-click on the TreyResearch.WpfClient project and select Unload project.

2. Right-click on the project again and select Edit TreyResearch.WpfClient.csproj. The MSBuild
code that makes up the csproj project file appears.

TreyResearch.WpfClient.csproj* + X Sl Solution Explorer

<?xml wversion="1.8" encoding="utf-8"2> + & o-ed *
Sl<Project ToolsVersion="4.8" DefaultTargets="Build" wxmlns="http://schemas.mic

<Import Project="%(M5BuildExtensionsPath)\${M5BuildTooclsVersion)\Microsoft Search Solution Explorer (Ctrl+7)

-] <PropertyGroup> . , .
<C2nfi;uratzon Condition=" "${Configuration)' == "' “:Debug</Configurati ka] Solution TreyResearch’ (3 projects)
<Platform Condition=" '$(Platform)’' == '' ">AnyCPU</Platform> b Ruget X
<ProjectGuid>{76A104FF -AGG7-4859 - BEEA-AGASFIDD2615}</ProjectGuid> b &1 TreyResearch.WcfService
<OutputTyperWinExe</OutputType> [TreyResearch.\WcfService Tests
<AppDesignerFolder>Properties</AppDesignerFolder> 3 @ TreyResearch.WpfClient (unavailable)
<RoctNamespace>TreyResearch.WpfClient</RootNamespaces 4 TreyResearch.WpfClient.UITests

<AssemblyName>TreyResearch.WpfClient</AssemblyName>
<TargetFrameworkVersion>v4.5</TargetFrameworkVersions
<FileAlignment>512</FileAlignments
<ProjectTypeGuids>{68dc8134-eba5-43b8-bcco-bbabcl6c2548} ; [FAE@4ECE-301F -
<Marninglevel>4</Warninglevels

<PublishUrl>publish‘\</PublishUrl>

<Install>true</Install>

¢<InstallFrom>Disk</InstallFrom>

<UpdateEnabled>false</UpdateEnabled>

<UpdateMode>Foreeround</UndateMode>

3. Locate the following XML code.
XML
<None Include="TreyResearch.WpfClient.exe.Production.config" />

-6-

<None Include="TreyResearch.WpfClient.exe.Staging.config" />
<None Include="TreyResearch.WpfClient.exe.Testing.config" />

4. Replace the XML with the following code, which makes the environment-specific files
dependent upon the base configuration file.

XML

<None Include="TreyResearch.WpfClient.exe.Production.config">
<DependentUpon>App.config</DependentUpon>

</None>

<None Include="TreyResearch.WpfClient.exe.Staging.config">
<DependentUpon>App.config</DependentUpon>

</None>

<None Include="TreyResearch.WpfClient.exe.Testing.config">
<DependentUpon>App.config</DependentUpon>

</None>

5. Save the file. Right-click on the TreyResearch.WpfClient project and select Reload Project.
Your project should have the structure shown in the following screenshot. Note that the
environment-specific files are nested under the base configuration file.

Solution Explorer

@ o-eudnd *R&

Search Solution Explorer (Ctrl+7)

skl Solution TreyResearch' (3 projects)
P mm .nuget
E TreyResearch WcfService
b &[c# TreyResearch.WcfService.Tests
4 s[c8] TreyResearch M pfClient

b & & Properties

[+ =B References

b @ Service References

d?@ App.config
4};@ TreyResearch. WpfClient.exe.Production.config

A

@ TreyResearch WpfClient.exe Staging.config
@ TreyResearch WpfClient.exe, Testing.config

b al) Appxaml
b =M MainWindaw vaml

Task 3: Set Up the Transformations for the TreyResearch.WpfClient.exe.Config Files

In this task you use the TransformXml MSBuild task to transform the base App.config configuration file.
You use the TreyResearch.WpfClient.exe.<Environment Name>.config files to define the
transformations. When the transformations are done, you will have the environment-specific
configuration files.

1. Unload and edit the TreyResearch.WpfClient.csproj file, the same way as you did in task 2.
Near the bottom of the file, just before the closing </Project> tag, insert the following code.

XML

<!l-- AUTOMATION HOL - Referencing the TransformXml task so we can use it -->

<UsingTask TaskName="TransformXml"
AssemblyFile="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v11l.0\Web\Micr
osoft.Web.Publishing.Tasks.d1l1l" />

<!-- AUTOMATION HOL - We are triggering the transformations just after
building -->

<!l-- AUTOMATION HOL - Checking whether we are BuildingInsideVisualStudio
makes that this will be triggered only in the Commit Stage of the pipeline (or
in command-line builds), not while working inside Visual Studio -->

<!-- AUTOMATION HOL - Checking whether we are building the Release
configuration makes the configuration files available only for Release builds,
the ones being used by the pipeline -->

<Target Name="AfterBuild" Condition="('$(BuildingInsideVisualStudio)' !=

"true') And ('$(Configuration)' == 'Release’')">
<ItemGroup>
<TransformationFiles Include="TreyResearch.WpfClient.exe.*.config" />
</ItemGroup>

<l-- AUTOMATION HOL - We generate the transformated configuration files in
a subfolder of $(OutDir). That way, they will get copied directly to the
BinariesFolder in the TFS build agent, and in turn, to the Drop folder of the
Commit Stage, without having to explicitly copying them -->

<MakeDir Directories="$(OutDir)\ConfigFiles\WpfClient"
Condition="!Exists('$(OutDir)\ConfigFiles\WpfClient"')" />

<!-- AUTOMATION HOL - We call the TransformXml task for all the
configuration files using MSBuild batching (the @() syntax) -->

<TransformXml Source="App.config" Transform="@(TransformationFiles)"
Destination="$(0OutDir)\ConfigFiles\WpfClient\%(TransformationFiles.Identity)"
/>

</Target>

2. Reload the project. It opens in Solution Explorer.

3. From the Windows Start menu (or in Windows 8, the Start screen) open a Developer
Command Prompt for VS2013. Change the directory to the location of TreyResearch.
WpfClient.csproj.

4. Test to see if the transformations were performed. Run the following command.
CmMD
msbuild /p:Configuration=Release TreyResearch.WpfClient.csproj

5. After MSBuild finishes, you should find a new folder named ConfigFiles under the
bin\Release subfolder. The folder contains the three transformed configuration files. If you
open any of them, you'll see that the content has been transformed to match the target
environment.

View

Hame Share

- 1 . = TreyResearch » TreyResearchWpfClient » bin » Release » ConfigFiles » WpfClient

wo BuildProce: & Mame Date modified Type

“u TreyResean | TreyResearch WpfClient.exe Production.canfig FI06,/2003 1402 COMFIGFil
alnuget E TreyResearch.WpfClient.exe. Staging.config ' 2 COMFIGFl
' : _T_:::;S: | ETrE}rResearch.WprIient.exe.Testing.cnnﬁg CONFIG Fil
;" ;
“ult TreyRese:
“ut TreyRese

. TrevRese ¥

Exercise 3: Deployment Automation: Packaging the Files for Deployment

In this exercise you use the Windows Installer to package the files that will be deployed. There are
several tools that generate Windows Installer packages. This lab uses the WiX tool set. WiX allows you to
build Windows installation packages from XML source code. WiX supports completely automated
installations and uninstallations, and is integrated with Visual Studio and MSBuild. For more information
about the Windows Installer, see Windows Installer. For more information about writing WiX files, refer
to the WiX tutorial or the WiX manual.

Task 1: Create the WiX Visual Studio Project
In this task you create a WiX Visual Studio project.

1. In Visual Studio, add a new project to the TreyResearch solution. In the Add New Project
dialog box, click Windows Installer XML. Click the Setup Project template. Name the project
TreyResearch.WpfClient.Setup.

http://msdn.microsoft.com/en-us/library/windows/desktop/cc185688(v=vs.85).aspx
http://wix.tramontana.co.hu/
http://wix.sourceforge.net/manual-wix3/main.htm

b Recent NET Framework4.5 = Sortby: Default - Search Installed Te 2 ~

4 Installed .
Setup Project Windows Installer XML Type: Windows Installer XML

P Visual Basic A project for creating a Windows Installer
b Visual C# of Merge Module Pr... Windows Installer XML AML based M3 file
b Visual C++

Windows Installer XML > Setup Library Proj... Windows Installer XML
I Misual F2 =

SQOL Server : Bootstrapper Proje.. Windows Installer XML
I JavaScript

I Other Project Types
Modeling Projects

C# Customn Action.. Windows Installer XML

I Online YEB Custorm Action...Windows Installer XML

C++ Custom Acti... Windows Installer XML

Marne: [TreyResearch WpfClient.Setup|

Location: I\PMNPYIteration 2\ TreyResearch

2. Inthe TreyResearch.WpfClient.Setup project, open the Product.wxs file. This file describes
the behavior of the Windows Installer.

Solution Explorer

& o-2uan »F

Search Selution Explorer (Ctrl+7)

“ka] Solution 'TreyResearch' (4 projects)

b .nuget

b EE TreyResearch. WefService

ia[c# TreyResearch.WcfService.Tests

+[c#] TreyResearch. WpfClient

e TreyResearch WpfClient.Setup
[+3] References

%8B Product.wxs

3. Replace the existing code with the following code.

AV T

XML

<?xml version="1.0" encoding="UTF-8"?>

<!-- AUTOMATION HOL - This is the Product.wxs file that describes how the
Windows Installer package is generated and how it will behave during
deployment. -->

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

-10-

<l-- AUTOMATION HOL - For the Product section below, there are a couple of
attributes worth mentioning. -->
<!-- The UpgradeCode attribute uniquely identifies our product in the
installation database of the target computer for upgrades. It is a GUID that
we must generate and provide. -->

<l-- It can be generated in Visual Studio: "Tools->Create GUID->Registry
format" (just remove the curly braces). -->
<!-- The Version attribute relates the installer package to the product

its contains, and allows us to use Windows Installer update features if
needed. -->
<Product Id="*" Name="TreyResearch.WpfClient" Language="1033"
Version="$(var.ProductVersion)" Manufacturer="TreyResearch"
UpgradeCode="8365f624-ffc5-4719-ac25-f403a54e593c">

<Package Keywords="Installer" Description="TreyResearch.WpfClient Wix
Installer" Comments="Installer package for the TreyResearch.WpfClient
application” Manufacturer="TreyResearch" InstallerVersion="200"
Compressed="yes" />

<!-- AUTOMATION HOL - The following two sections are added to support
upgrades. -->
<Upgrade Id="8365f624-ffc5-4719-ac25-f403a54e593c">
<UpgradeVersion OnlyDetect="yes" Minimum="$(var.ProductVersion)"
Property="NEWERVERSIONDETECTED" IncludeMinimum="no" />
<UpgradeVersion OnlyDetect="no" Maximum="$(var.ProductVersion)"
Property="OLDERVERSIONBEINGUPGRADED" IncludeMaximum="no" />
</Upgrade>
<InstallExecuteSequence>
<RemoveExistingProducts After="InstallInitialize" />
</InstallExecuteSequence>

<MediaTemplate EmbedCab="yes" />

<!l-- AUTOMATION HOL - In the Feature subsection, we describe the
components that are going to be installed on the target machine. -->
<!--In this case, it is going to be just the product components
(binaries and configuration files), and a couple of shortcuts to help the user
locate and run the application. -->
<Feature Id="Complete" Title="TreyResearch.WpfClient Complete" Level="1">
<ComponentGroupRef Id="ProductComponents" />
<ComponentGroupRef Id="Shortcuts" />

</Feature>
</Product>
<Fragment>
<!l-- AUTOMATION HOL - Here we specify the target directories that will be
modified during the installation. -->

<Directory Id="TARGETDIR" Name="SourceDir">
-11-

<Directory Id="ProgramFilesFolder">
<!-- AUTOMATION HOL - The folder Program Files\TreyResearch.WpfClient
will be created. -->
<Directory Id="INSTALLFOLDER" Name="TreyResearch.WpfClient" />
</Directory>
<Directory Id="ProgramMenuFolder" Name="Programs">
<!-- AUTOMATION HOL - The Program Menu folder will be modified to

receive the TreyResearch.WpfClient shortcut. -->
<Directory Id="ProgramMenuDir" Name="TreyResearch.WpfClient" />
</Directory>

<!l-- AUTOMATION HOL - The Desktop will be modified as well, to receive
the TreyResearch.WpfClient shortcut. -->
<Directory Id="DesktopFolder" Name="Desktop" />
</Directory>
</Fragment>

<Fragment>
<ComponentGroup Id="ProductComponents" Directory="INSTALLFOLDER">
<Component Id="MainExecutable">
<!-- AUTOMATION HOL - The main executable for the application will be
copied to INSTALLFOLDER. -->
<!-- AUTOMATION HOL - The Source attribute is specified by means of a
couple of parameters, so we can easily provide them during an automated build
in the build server. -->
<File Id="TreyResearch.WpfClient.exe"
Name="TreyResearch.WpfClient.exe"
Source="$(var.SourcePath)\$(var.MainExecutable)" KeyPath="yes">
<!-- AUTOMATION HOL - A couple of shortcuts are created for the main
executable: one in the start menu (star screen in Windows 8) and another one
in the desktop. -->
<Shortcut Id='startmenuTreyResearch.WpfClient'
Directory="'ProgramMenuDir' Name='TreyResearch.WpfClient"
WorkingDirectory="INSTALLDIR' Icon='TreyResearchIcon.exe' Advertise='yes' />
<Shortcut Id='desktopTreyResearch.WpfClient'
Directory="'DesktopFolder' Name='TreyResearch.WpfClient'
WorkingDirectory="INSTALLDIR' Icon='TreyResearchIcon.exe' Advertise='yes' />
</File>
</Component>
<Component Id="ConfigFile">
<!-- AUTOMATION HOL - The configuration file for the application will
be copied to INSTALLFOLDER. -->
<!-- AUTOMATION HOL - The Source attribute is specified by means of a
couple of parameters, so we can easily provide them during an automated build
in the build server. -->
<File Id="TreyResearch.WpfClient.exe.config"
Name="TreyResearch.WpfClient.exe.config"
Source="$(var.SourcePath)\ConfigFiles\WpfClient\$(var.EnvironmentConfigFile)"
/>
</Component>

-12-

</ComponentGroup>
<ComponentGroup Id='Shortcuts' Directory='ProgramMenuDir'>
<Component Id="ProgramMenuShortcut">
<!-- AUTOMATION HOL - These keys allow to remove the application

shortcuts on uninstall. -->
<RemoveFolder Id='ProgramMenuDir' On='uninstall' />
<RegistryValue Root="HKCU' Key='Software\[Manufacturer]\[ProductName]’

Type='string' Value='"' KeyPath='yes' />
</Component>
</ComponentGroup>
</Fragment>

<Fragment>
<!-- AUTOMATION HOL - Here we specify the icon for the application; it is

just the one embedded into the executable. -->
<Icon Id="TreyResearchIcon.exe"
SourceFile="¢$(var.SourcePath)\$(var.MainExecutable)" />

</Fragment>

</Wix>
4, Save the file and close it.

In Solution Explorer, right-click on the TreyResearch.WpfClient.Setup project. Click Unload
Project. Click Edit TreyResearch.WpfClient.Setup.wixproj.

Solution Explorer

@ o--a &R

Search Solution Explorer (Ctrl+7)

fa] Solution TreyResearch' (4 projects)
b .nuget

* TreyResearch.WcfService

[TreyResearch WefService Tests
B TreyResearch. WpfClient

Reload Project

& Edit TreyResearch WpfClient. Setup.wixpraj
g Cut Ctrl+X
X Remove Del

5. Inside the first <PropertyGroup> section just before the </PropertyGroup> begins, add the

following line of code.

-13-

XML

<!l-- AUTOMATION HOL - Here we define the parameters that can be passed

when generating the installer. -->

<!l-- ProductVersion: version number for the product and for the installer.
-->

<!-- SourcePath: root path where the files to be added to the installer
are located. -->

<!-- EnvironmentConfigFile: environment-specific configuration file that
will be included in the installer, instead of the default App.config. -->
<!l-- MainExecutable: this is the executable for the WPF application. -->

<!-- Additionally, we will pass the OutputPath property as a parameter so
we can change the place where the generated installer is copied. But we don't
need to specify it here since it is a regular MSBuild property. -->

<DefineConstants>ProductVersion=$(ProductVersion);SourcePath=$(SourcePath);Env
ironmentConfigFile=$(EnvironmentConfigFile);MainExecutable=$(MainExecutable)</
DefineConstants>

This code defines the parameters so that they are available when MSBuild creates the installer,
either from the command line or from within the commit stage of the pipeline.

6. Reload the TreyResearch.WpfClient.Setup.wixproj project. It opens in Solution Explorer.

7. Remove the TreyResearch.WpfClient.Setup.wixproj from the Visual Studio solution. This
project does not build inside Visual Studio because it is configured to be built from the
command line or by Team Build, and by passing in the necessary parameters. Removing it
from the solution avoids confusion and prevents build errors. In Solution Explorer, right-click
on the project. Click Remove. The following screenshot shows an example of what you
should see after you remove the project..

Solution Explorer
@ o--0d@m #RR
Search Selution Explorer (Ctrl+7)

fa] Solution 'TreyResearch' (4 projects)

b .nuget
B TreyResearch.WcfService
B TreyResearch.Wecf5ervice Tests

P TreyResearch WpfClient

b TreyResearch WpfClient. Ul Tests

8. Generate the installer. From the Windows Start menu (or in Windows 8, the Start screen)
open a Developer Command Prompt for VS2012. Change the directory to the location of the
WiX project. The following command generates the installer for the test environment.
Before running the following command, replace the highlighted path with your current
working directory for the TreyResearch solution.

-14-

CMD

msbuild TreyResearch.WpfClient.Setup.wixproj
"/p:Configuration=Release;ProductVersion=0.0.0.0;SourcePath=<Folder containing
the Visual Studio solution
file>\TreyResearch.WpfClient\bin\Release;EnvironmentConfigFile=TreyResearch.Wp
fClient.exe.Testing.config;MainExecutable=TreyResearch.WpfClient.exe;OutputPat
h=Bin\Release\Testing\"

The following screenshot shows the command with an example of the source path.

B Developer Command Prompt for V52012 - O “

I :»PNP~Iteration 2:TreyResearch“TreyResearch.WpfClient._Setupimzbuild TreyRezearc

h.WpfClient . .Setup.wixproej "/p:Configuration=Release;:;Productlersion=8.8.8.08;50urc
ePath=1 :»~FNP~Iteration 2*TreyResearch-TreyResearch.WpfClient~bin~Releaze;:;Environ
entConfigFile=TreyResearch.UpfClient.exe.Testing.config;MainExecutahle=TreyRese
rch.UpfClient .exe ; OutputPath=Bin~Releaze~Testing™.""

9. Go the folder you specified in the OutputPath parameter. You should find the .msi installer
for the test environment. The following screenshot shows an example.

| = | Application Toals Testing
“ Home Share Wiew Manage
TreyResearch » TreyResearch.WpfClient. Setup bin Release b Testing
. - - -
w BulldProce: [ame Date maocdified Type Size

e TreyResear — -
314:3 Windows Installer

200131457 WEXPDE File

BJ TreyResearch. WpfClient. Setup.msi

we ohuget — -
|| TreyResearch. WpfClient.Setup.wixpelb

packages
TreyRese:
TreyRese:
TreyRese:

TreyRese:

| =) =l =l =l

TreyRese:

St

-15-

Task 2: Configure the Commit Stage To Generate the Installers

In this task you modify the commit stage's build workflow so that it generates the installers for all of the
environments.

NOTE: In the first lab, the commit stage prepares the configuration files and packages for the WCF
service. During the deployment, the other stages of the pipeline replace the configuration file with the
one corresponding to the target environment. The advantage to this approach is that the commit stage
remains short and finishes quickly. A fast commit stage is important because it runs every time there is a
check-in, and you want to know as soon as possible if the check-in has caused any problems.

However, for the WPF Windows installer, it is easier to prepare all the installers with the correct
configuration files during the commit stage. This removes a dependency on WiX in the later stages of the
pipeline.

1. In Visual Studio, open the TreyResearchBuildCustomization solution that you created in the
Orchestration HOL.

2. Open the CDPipelineCommitStageProcessTemplate.xaml file.

3. Open Find and Replace (Ctrl + F). Search for If a Compilation Exception Occurred. Close Find
and Replace.

CDPipelineCommit...cessTemplatexaml # X

Process Restore Caollapse £

Find and Replace -

A Find in Files | & Replace in Files

Find what:

Drop activity here

| If a Compilation Exception Occurred|]
Laak in:

v
Found in property ‘DisplayName’ | =

&% If a Compilation Exception Occurred +| Find options

Condition + | Result options

Mot compilationException Is Nothing

Find Previous
Then

Bookmarlk All Find All

100 Rethrow Compilation Excey Drop activity here

4. Add a Sequence activity to the Else section of the If a Compilation Exception Occurred
activity and name it Package WpfClient. You must perform the packaging after the
WpfClient project is compiled, so that the binaries and configuration files are available, but
before the results are copied to the drop folder.

-16-

.f.’.}. If a Compilation Exeception Occurred

B

Condition
Mot compilationException |s Mothing
Then Elze

g1 Package WpfClient

]

i] Rethrow Compilation Exce|

Drop activity here

5. Add a new variable named EnvironmentConfigFiles, of type IEnumerable<String>, scoped to
the Package WpfClient sequence. This variable stores the list of environment-specific
configuration files.

4

Mame Variable type Scope Default
Croplocation String Sequence Enter a VB expression
Pipelinelnstance String Sequence Enter a VB expression
EnvironmentCenfigFiles System.Cellections.Generic.[Enumerable <System.String> ¥ |Package WpfClient | Enter a VE expression

Create Variable

6. Add a FindMatchingFiles activity to the sequence and set its properties to the following
code.

Visual Basic

String.Format(“{@}\Release\ConfigFiles\WpfClient\TreyResearch.WpfClient.exe.*.
config”,BinariesDirectory)

The following screenshot shows the MatchPattern property.

Properties * A X
Microsoft.Team Foundation. Build. Workflow.Actiities.FindMatchingFiles

Clear

DisplayMame Find EnvironmentConfigFiles
MatchPattern String.Format{*{0}\Release\ConfigFiles\WpfClient\TreyResearch.WpfClient.exe.*.config”, BinariesDirectory) IZ‘
Result EnvircnmentConfigFiles IZ‘

The MatchPattern property specifies how to search for the configuration files. In this case, the
search occurs inside the directory that was specified during Exercise 2, Task 3, step 5.

-17-

NOTE: For simplicity, the path and name of the configuration files in the MatchPattern are
hardcoded. An improvement would be to specify the MatchPattern property when defining the

build, expose it as an argument and specify its metadata. This is what you did for the arguments

in the Orchestration HOL. You could do the same for the rest of the properties in this section, as

well.

7. Add a ForEach activity and rename it ForEach configuration file. This activity iterates

through the configuration files. Make sure the properties match what is shown in the

following screenshot.

g1 Package WpfClient o
ity Find EnvironmentConfigFil
i1 |F|:|rEach configuration file =
Foreach |cfgFile | in EnvironmentConfigFiles
Body
Properties * O X
System.Activities.Statements.ForEach<System String >
Clear
DisplayMame ForEach cenfiguration file
Typefrgument String -
e
i Values ErvironmentConfigFiles |Z|
le<Strina=

8. Inside the Body of the ForEach activity, create a variable named
EnvironmentConfigFileName, which will store the name of the configuration file.

Name Variable type Scope

BuildDetail IBuildDetail Sequence
Droplocation String Sequence
Pipelinelnstance String Sequence
EnviranmentConfigFileName String Package WpfClient

Crente Wariahle

-18-

Default

Enter a VB expression
Enter a VB expression
Enter a VB expression

Enter a VB expression

9. Inside the Body of the ForEach activity, add an Assign activity and name it Assign
EnvironmentConfigFileName. Set the To property to EnvironmentConfigFileName. Set the
Value property to System.l0.Path.GetFileName(cfgFile).

41 ForEach configuration file

Foreach |cfgFile | in EnvironmentConfigFiles

Body

[31 Sequence

w6 Assign EnvirenmentConfigFileMarr

EnvironmentConfi = System.|0.Path.Ge

»

Properties

‘-El Search:

E Misc
DisplayMame
To

Value

System.Activities.Statements.Assign

Assign EnvironmentCenfigFileName
EnvironmentConfigFileName

System.lO.Path.GetFileName{cfgFile)

Clear

L]
-]

10. Create a variable named TargetEnvironment. Set the Variable type to String. Set the Scope

to PackageWpfClient.

Name Variable type

EnvironmentConfigFiles

MainExecutable String
EnvironmentCenfigFileName String
;TargetEnvironment EString

romnilatinnFyrantinn Fvrantinn

|[Enumerable <String=

Scope

Package WpfClient
Package WpfClient
Package WpfClient

Package WpfClient

Sennensa

Default

Enter a VB expression
Enter a VB expression
Enter a VB expression
Enter a VB expression

Frter n VR epvnrescinn

The value of the TargetEnvironment variable will be the target output path. Each installer will
be generated in a subfolder that is named after the environment where the installer will run.

11. Add another Assign activity after the Assign EnvironmentConfigFileName activity you added
in step 9. Name it Assign TargetEnvironment.

-19-

[y Sequence

a6 Assign EnvironmentConfigFileMarr

EnvircnmentConfi = System.|O.Path.Ge

a6 Assign TargetEnvironment

TargetEnvironmen = (Mew Systern. Text.

12. Set the To property to TargetEnvironment. Set the Value property to the following code.
Visual Basic
(New

System.Text.RegularExpressions.Regex("TreyResearch.WpfClient.exe.(?<TargetEnvi

ronment>.+).config")).Match(EnvironmentConfigFileName).Groups("TargetEnvironme
nt").Value

This code retrieves the name of the environment from the configuration file name.

13. Add a WriteBuildMessage activity after the Assign activity in order to perform logging.

e+ Assign TargetEnvironment

TargetEnvironmen = (MNew System. Text.

|%: WriteBuildMessage

14. Set the WriteBuildMessage Importance property.

Visual Basic
Microsoft.TeamFoundation.Build.Client.BuildMessageImportance.High
15. Set the WriteBuildMessage Message property.

Visual Basic

String.Format("Generating the installer for {0} configuration file, {1}
environment"”, EnvironmentConfigFileName, TargetEnvironment)

16. Add an MSBuild activity. This activity invokes MSBuild to generate the installers.

-20-

a6 Assign TargetEnvironment

TargetEnvironmen = (Mew Systemn. Text.

|5 WriteBuildMessage

{1k MSBuild

17. Set the CommandLineArguments property to the following code.

Visual Basic

String.Format("/p:Configuration=Release;ProductVersion={0};SourcePath=""{1}\Re
lease"";EnvironmentConfigFile=""{2}"";MainExecutable=TreyResearch.WpfClient.ex
e;O0utputPath=""{3}\Release\Deployment\WpfClient\Installers\{4}\\""",
PipelinelInstance, BinariesDirectory, EnvironmentConfigFileName,
BinariesDirectory, TargetEnvironment)

18. Set the Project property to the following code.

Visual Basic

String.Format("{@}\TreyResearch.WpfClient.Setup\TreyResearch.WpfClient.Setup.w
ixproj", SourcesDirectory)

19. Set the Targets property to the following code.

Visual Basic
New String() {"Rebuild"}

This code ensures that the installers are generated each time MSBuild is called from within the
ForEach configuration file loop.

In this task you test to see if the configuration files are transformed correctly and if the install packages
are generated correctly.

1. Make sure that the modified build process template,
CDPipelineCommitStageProcessTemplate.xaml, along with all the other changes you've
made, are checked into version control. These changes include the WiX Visual Studio project
and the changes you made to the WpfClient project.

-21-

2. The commit stage should be triggered automatically. After it finishes successfully, open the
drop folder. You should see a subfolder for each environment. Each subfolder should contain
a different .msi installer for each environment.

Haome Share Wiew
- <« U] Commut Stage 0.0, . r Release ¥ Deployment » ient k Installers w Se
t+ a1 it Stage 0.0.0603,608 Rel Deploy WpfCli Install [v] 5
S Favarites Cal Mame Date modified Type Size
B Desktop | Praduction 03/06/2013 17233 File falder
j Dawnloads | Staging 03/06/2013 17233 File falder
"l Recent places | | Testing 03/06/2013 17:33 File falder
& SkyDrive

Haome Share View
@ » 4 L« 01 Commit Stage 0.0.0603.695 » Release » Deployment » WpfClient » Installers » Testing v G Search Testing
< Favorites & Marne Date macdlified Type Size
B Desktop ﬁl TreyResearch WpfClient.Setup.msi 20131732 Windows Installer ... TZKB
@ Downloads u TreyResearch WpfClient.Setup.wixpdb w3732 WIXPDEB File TOKB
"E‘, Recent places
& SloyDrive

Exercise 4: Performing the Automated Deployment

In this exercise you set up the pipeline so that it can automatically deploy the installer packages to the
environments.

Task 1: Create the Deployment Script for The Agent

1. In Solution Explorer, under the TreyResearch.WpfClient project, create a new folder named
Deployment. Create a subfolder named WpfClient.

-22-

Solution Explorer

@ o--wdm #RAR

Search Solution Explorer (Ctri+7)

vkl Solution 'TreyResearch' (3 projects)
B .nuget
[E@ TreyResearch. WcfService
b &[c#] TreyResearch.WcfService.Tests
4 <[c#] TreyResearch, WpfClient

b & & Properties

[+ =B References

b Service References

4 Deployment
|f| WpfClient
b 74d App.config

b aly Appxaml
sl MainWindow.xaml

2. Add a new script file to the WpfClient subfolder. Right-click on the subfolder and add a new
item of type Text File. Change the name to DeployWpfClient.cmd.

3. Open the DeployWpfClient.cmd file properties. Set Build Action to None, and Copy to
Output Directory to Copy always. This means that, when the project is built, the script will
be copied to the output directory, and in turn to the drop location, so that the deployment
agent can retrieve and run it.

4. Open the DeployWpfClient.cmd file. Paste the following code into it.

XML

REM AUTOMATION HOL - This script copies the msi installer for the new version
and environment, and runs it

REM AUTOMATION HOL - Path where the deployment package is stored (the Drop
location for the pipeline instance)

set packagelocation=%~1

REM AUTOMATION HOL - Name of the environment where the deployment is made.
This is used to pick the corresponding installer from the available ones

set environment=%~2

REM AUTOMATION HOL - Name of the temporal folder to use in the target computer
set tempfolder=%~3

REM AUTOMATION HOL - Preparing the local temp directory to copy the installer
and run the deployment and store log files

set deploymentLocation=%tempfolder%\WpfClient\%environment%

if exist "%deploymentLocation%" rd /s /q "%deploymentLocation%"

mkdir "%deploymentLocation%"

-23-

REM AUTOMATION HOL - Copying the msi installer to the deployment location (the
one corresponding to the target environment).

copy
"%packageLocation%\Release\Deployment\WpfClient\Installers\%environment%\TreyR
esearch.WpfClient.Setup.msi" "%deploymentLocation%"

REM AUTOMATION HOL - Running the deployment

msiexec.exe /i "%deploymentLocation%\TreyResearch.WpfClient.Setup.msi" /Lv*
"%deploymentLocation%\install.log" /passive ALLUSERS="1"

The script copies the installer from the drop location and runs the installer with the correct
parameters. If there is a previous version of the application already installed, it is automatically
updated by the installer.

5. Save the .cmd file using the encoding UTF-8 without signature. Select Save As from the
Visual Studio File menu. Select the UTF-8 without signature option from the drop-down
menu. Ignore the source control warning that. Save the file and check it in.

Task 2: Configure the Pipeline Stages to run the Deployment script
In this task you configure the remaining stages of the pipeline to run the deployment script.

1. Edit the 02 Acceptance Test Stage build definition so that the stage deploys to the test
environment. Under the Process tab, open the Lab Process Settings. The Lab Workflow
Parameters dialog box opens.

02 Acceptance Test Stage & X

General Team Foundation Build uses a build process template defined by a Windows Warkflow (XAML) file. The behaviar

. of this template can be customized by setting the build process parameters provided by the selected template.
rigger

Source Settings

Builel Defaults

m CDPipelineGenericStageProcessTemplate.xaml v Show details

Retention Palicy

Build process template:

Build process parameters:

4 1. Required

Lab Process Seftings To see or edit the details, click ...
4 2, Basic

Legging Verbosity Marmal

4 3. Release pipeline

MNext stages in pipeline

2. Under the Environment tab, select the environment you used in Lab3_1.

-24-

w-=

_E Specify the environment where the application is deployed

Welcame . . . -
Environment name: |Testlng+Staglng+Product|on v

Revert to a specific snapshot of the environment
Snapshot name:

(i) This opticn is available enly for virtual envirenments,

3. Select the Deploy tab. Select Deploy the build. Click Add. This incorporates the deployment
script into the build definition.

4. Select Client from the Machine drop-down list.

Lab Workflow Parameters ?
__E Specify how to deploy the build on the selected environment
Welcome Deploy the build 3
Environment
Build Specify the deployment scripts to be run on the machines of the environment. You can identify the machines
either by their names or roles. You can use macros and optional arguments while specifying deployment
_ scripts (for example, ${BuildLocation)\myscript argumentT). If you use Windows Shell commands, begin the
Test commands with emd /e (for example, emd /c mkdir C:\MyDeploymentDirectory). Click here for more
information,
Specify deployment scripts by
(®) Roles of machines in envirenment
() Names of machines in envirenment
o Add ¥ Delete
Machine Deplayment script and arguments Warking directory
Web Server "${BuildLocation)'Release" Deplayment'WefService'\D...

+
Client W

.ﬁ One or more scripts de not have machine or deployment script specified.

[l\ i llllll:ll

5. Inthe Deployment script and arguments column, add the following command line, which
causes the deployment script to execute.

-25-

CMD
"$(BuildLocation)\Release\Deployment\WpfClient\DeployWpfClient.cmd"
"$(BuildLocation)" Testing C:\TreyResearchDeployment

6. Click Finish and save the changes.

7. Repeat steps 1 through 6 for 03a Release Stage and 03b UAT Stage. In the fifth step, make
sure that the second parameter passed to the deployment script is Production for 03a
Release Stage and Staging for 3b UAT Stage.

':% Specify how to deploy the build on the selected environment

Welcome Deploy the build

Envircnment

Build Specify the deployment scripts to be run on the machines of the environment. You can identify the machines
either by their names or reles. You can use macros and eptional arguments while specifying deployment
scripts (for example, ${BuildLocation)\myscript argument1). If you use Windows Shell commands, begin the
commands with cmd /¢ (for example, cmd /¢ mkdir ChMyDeploymentDirectory). Click here for more

information.

Specify deployment scripts by:
(®) Roles of machines in environment

(") Mames of machines in envircnment

o Add % Delete

Machine Deployment script and arguments Working directory

Server "§{BuildLocation)\Release\Deployment\Wcf5ervice\D...
Client "§(BuildLocati on)\Release\Deployment\WpfClient\De...
Client "§(BuildLocation)\Release\Deployment\WindowsPho...

of the environment after deploying the build

| < Previous | | Mext >

Note: The last client entry is for the Windows Phone 8 componet. You will only see this if you

perform the advanced labs.

Exercise 5: Testing the Deployment

In this exercise you test to see if the automated deployment works correctly.

-26-

Task 1: Test the Deployment

1. Create a new instance of the pipeline by running the 01 Commit Stage. You can either make
some changes in the code and check them in, or, in Team Explorer, queue the build
definition.

2. After the commit stage finishes successfully, the changes are propagated through the
pipeline, so 02 Acceptance Test Stage is triggered automatically. You can monitor the
progress from the Build Explorer window.

Build Explorer - lteration 2 + X

€ Set Priority ol |

E Cueued 'ﬂ' Completed

Builel definition: Status filter:
<Any Build Definition = ¥ | <Any Status

L] Only shaw builds requested by me

@ Id Build Definition Build Mame Priority Date O
@ 53 01 Commit Stage O Commit Stage 0.0.0603,702 Maormal 030620
[554 02 Acceptance Test Stage 02 Acceptance Test Stage 0.0.0603.702 Maormal 0370620

3. When the commit stage finishes, all the artifacts required for the deployment (the package,
the configuration files and the scripts) have been generated and copied to the drop folder.
When the acceptance stage finishes, you can log in to the target computer, go to the test
environment, and run the WPF Client application from the shortcuts that have been created.
The following screenshot is an example of what you should see.

-27-

Record Readings | View Readings

ol —

Submit Reading

4. You can check that the application is using the web service URL for the test environment by
opening the TreyResearch.WpfClient.exe.config file that is located in C:\Program Files
(x86)\TreyResearch.WpfClient.

KW= TreyResearch.WpfClient
Home Share View
@ - 4 ,H < Program Files (x36) » TreyResearch.WpfClient v | Search TreyResearch.V
‘5& Favaritec Mame Date modified Type Size
B Deskiop | TreyResearch, WpfClient.exe 6/3/2013 345 AM Application
Li. Downloads @ TreyResearch.WpfClient.exe.config 6/3/2013 9:45 AM COMFIG File
(ﬁ Recent places

Edit Format Wiew Help

= Libra </bindings>
<client>
@' M <!-- AUTOMATION HOL - This setting is the URL for the web service
= Pi <!-- AUTOMATION HOL - Here it contains the URL for the Development
B vid <!-- AUTOMATION HOL - It will be transformed to match the real URL

<endpoint address="http://@SERVERNAME@PORT/SensorReadingService. svc'

binding="basicHttpBinding" bindingConfiguration="BasicHttpBi:

contract="SensorfReadingServiceRef.I5%ensorReadingService” name
</client>

Flevietrm ot caMadaT s

-28-

5. At this point, if you want to perform UAT, queue the 03b UAT Stage build definition and
provide the values for the pipeline instance and the drop location. The WPF application will
be automatically deployed to the staging environment.

6. You can check that the WPF application is using the web service URL that corresponds to the
staging environment by opening the TreyResearch.WpfClient.exe.config file that is located
in C:\Program Files (x86)\TreyResearch.WpfClient.

7. When you are ready to release the WPF application to production, trigger 03a Release
Stage.

Summary

In this lab you automated the deployment of the WPF application. To do this, you installed the WiX tool
set. You were able to use the same Lab Management environment that you used in the previous labs.

Next, you prepared the App.config files that set up the environments. There is a base configuration file
and three other files that store the differences between the base configuration and the environments.
You made those three files dependent on the base file. Finally, you added the code that performs the
transformations.

You then packaged all the files required for the deployment, using the WiX tool set to create the
Windows install package. To do this, you created a WiX project in Visual Studio. Within that project, you
created the .wxs file that describes the behavior of the Windows Installer.

The next step was to configure the commit stage of the pipeline to generate the installers for all the
environments. You did this by modifying the build workflow. You tested to see that the configuration
files and installers were generated correctly by triggering a build and examining the newly created
subfolders

You then configured the pipeline to perform the deployment automatically by creating a Lab
Management deployment script. Then, you edited the build definitions for the pipeline stages (other
than the commit stage) to deploy to the correct environment. Finally, you tested the automated
deployment.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and
other Internet website references, may change without notice. You bear the risk of using it. Some
examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

© 2014 Microsoft. All rights reserved.

-29-

Microsoft, Windows, Windows Server, Windows Vista, Windows PowerShell, Silverlight, Expression,
Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server, Visual CH,
Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are the property of their respective owners.

-30-

	Objectives
	Prerequisites
	Time
	Exercise 1: Setting Up the Target Environments
	Task 1: Set Up the Environments
	Task 2: Set Up the Environment in Lab Manager

	Exercise 2: Preparing the Deployment Configuration Files
	Task 1: Prepare the App.config Files
	Task 2: Set the Dependency on the Base File
	Task 3: Set Up the Transformations for the TreyResearch.WpfClient.exe.Config Files

	Exercise 3: Deployment Automation: Packaging the Files for Deployment
	Task 1: Create the WiX Visual Studio Project
	Task 2: Configure the Commit Stage To Generate the Installers
	Task 3: Test the Configuration Transforms and Package Generation

	Exercise 4: Performing the Automated Deployment
	Task 1: Create the Deployment Script for The Agent
	Task 2: Configure the Pipeline Stages to run the Deployment script

	Exercise 5: Testing the Deployment
	Task 1: Test the Deployment

	Summary
	Copyright

