

Hands-on Lab 4.1:

Monitoring the Continuous Delivery

Pipeline

Table of Contents

Objectives ... 1

Prerequisites ... 2

Time .. 2

Exercise 1: Monitoring Instances of the Pipeline ... 2

Task 1: Trigger and Monitor Pipeline Instances .. 2

Exercise 2: Retriggering Failed Stages .. 14

Task 1: Retrigger a Failed Stage Other Than the Commit Stage ... 14

Task 2: Retriggering the Commit Stage ... 20

Exercise 3: Dealing with Bugs ... 22

Stop the Pipeline and Identify the Cause of the Failure ... 22

Use the Debugging Symbols ... 23

Fix the Bug and Run the Pipeline .. 23

Summary ... 23

Copyright ... 23

Objectives

This HOL demonstrates how to monitor instances of the continuous delivery release pipeline, and how

to analyze the information you receive. You learn to interpret feedback from a pipeline that is running

2

normally. You also learn what to do when the pipeline stops, either because there are problems with the

environments or with the code.

Prerequisites

You need to have completed all the previous labs.

Time

You should be able to complete this lab in about 40 minutes.

Exercise 1: Monitoring Instances of the Pipeline

In this exercise you learn how to monitor the pipeline, identify running instances and get information

about them.

Task 1: Trigger and Monitor Pipeline Instances

In this task you trigger and monitor instances of the pipeline. You can trigger an instance of the pipeline

in two ways.

 Manually queue the 01 Commit Stage build definition.

 Check in changes to the code.

Both methods have the same outcome. This task uses the first method because it is easier.

 Trigger a new instance of the pipeline by queuing the 01 Commit Stage build definition. In 1.

Team Explorer, click Builds. Click All Build Definitions. Click 01 Commit Stage.

3

2. Repeat the operation several times to create several pipeline instances. In the following

screenshot there are five instances. This is one more than the number of build agents so the last

instance is queued rather than running. This is an example of how the pipeline works when

there are concurrent instances. (Remember that you will have different instance numbers.)

4

3. In Team Explorer – Builds, click Actions. Select Manage Queue from the drop-down list. Build

Explorer opens. This is the main monitoring tool for the pipeline.

TIP: Most of the activities that you can perform with Build Explorer can also be done by selecting

the BUILD tab from the Web Access portal associated with the team project.

 In Build Explorer, clear the Only show builds requested by me option if necessary. 4.

Automatically triggered stages such as the acceptance test stage are run by the build service

account, so you won’t be able to see them if you have this option checked.

 Each pipeline instance is identified by the version number assigned to it during the commit 5.

stage. Use the version number to relate running stages to each other when you monitor a

pipeline instance. In the following screenshot, the pipeline instance 0.0.0624.989 has

successfully finished the commit stage and has automatically triggered the acceptance test

stage. You know this because both stages have the same version number. The acceptance

test stage takes precedence over the queued commit stage at the bottom of the screen

because of the automatic trigger.

5

4. New acceptance test stages are queued as soon as the commit stages in the same pipeline

instances have finished. They run as long as there are enough build agents available. In the

following screenshot, the 0.0.0624.990 instance has advanced and is running its acceptance test

stage. However, there is another acceptance test stage in the queue because all four build

agents are busy.

5. All the pipeline stages but the commit stage have dependencies on environments because they

perform automated deployments and tests on specific machines. This means that the pipeline

6

orchestration must ensure that the target environment is not already being used by another

pipeline instance. For example if a pipeline instance deploys to an environment where another

instance is running tests, the deployment will fail. If you open the details of a running

acceptance test stage (select it from Build Explorer), it's likely that you will see that, even though

the stage is running from the point of view of the build agent, in fact it has been blocked by

either the deployment agent or the test agent. The blocked acceptance test stage is waiting for

the environment to be ready . The following screenshot shows an example of this situation.

6. As soon as the environment is released, the next blocked stage that is waiting for it will be able

to continue. In the following screenshot, the environment is reserved (look for the line Reserve

Environment for Deployment). This means it is in use and other stages are blocked until it is

released.

7

7. After all the stages finish, you can use Build Explorer to see the overall results. You can get

details about a particular pipeline instance by selecting any of its stages. The following

screenshot shows an example of the overall results.

8

8. If you look at the 0.0.0625.990 instance, you see that its acceptance test stage has not

completely succeeded. If you select the stage, you can see more details. These are shown in the

following screenshot.

9

 Notice that three tests have failed. No code changed since the last time the tests passed, so 9.

you know it must be a problem related to the environments.

 Click View Test Results. Microsoft Test Manager opens. Here is an example screenshot. 10.

10

 The error message indications that there is no active session (either by using the remote 11.

desktop or locally) on the computer that runs the UI tests. The UI tests require an active

session. After you create the session, rerun the pipeline.

 Next, examine the reasons why the 0.0.0624.991 acceptance test stage completely failed. 12.

The following screenshot shows the details.

11

The issue is that the single test controller could not handle the number of pipeline instances that

were triggered simultaneously. The instance failed because the step where the acceptance test

stage waits for the environment to be ready took too long and the operation timed out.

13. The only instance that has successfully passed the acceptance test stage is 0.0.0625.995. The

reason is that, when the UI tests were failing because there was no active session on the target

machine, a session was opened before the acceptance test stage was triggered. This instance

can advance to the release stage and the UAT stage, which are manually triggered. To trigger

the stage you need the pipeline instance number (0.0.0625.995), and the full path to the

commit stage drop location, which in the example, is \\G1008-FabBC\builds\Iteration 2\01

Commit Stage\01 Commit Stage 0.0.0624.995. The following two screenshots show how to

manually trigger the release stage.

file://G1008-FabBC/builds/Iteration%202/01%20Commit%20Stage/01%20Commit%20Stage%200.0.0624.995
file://G1008-FabBC/builds/Iteration%202/01%20Commit%20Stage/01%20Commit%20Stage%200.0.0624.995

12

13

After you queue a manually triggered stage, you can monitor and manage it from Build Explorer,

just as you would with a manually triggered stage. Note that the naming convention for the

build definitions helps to identify the sequence followed while running the stages (1 – 2 – 3a and

3b), where 1 signifies a commit stage build definition, and 2 signifies an acceptance test build

definition. These two stages run one after the other. A 3a signifies a release stage and 3b

signifies a UAT stage. These stages run in parallel (3a and 3b). The following screenshot shows

these two stages and who triggered them.

14

Exercise 2: Retriggering Failed Stages

In this exercise you learn how to retrigger a particular stage of the pipeline when there is a failure. If a

pipeline instance fails it stops so that the issues aren't propagated to further stages. This happens by

default. You then must determine the reason for the failure. There are two possibilities.

 Failures that are caused by the code that was checked in (the change that triggered the pipeline

instance). These failures are because of bugs in the code. See Exercise 3 for more information.

 Failures that are caused by the environment, including both the target environment where

deployment, testing, and other activities are done, and also the pipeline environment itself,

which is composed of the build and test controllers and agents, the binaries repository and any

other related entities. After you fix the environment, there are two ways to proceed.

◦ Create a new instance of the pipeline by triggering the commit stage. This is generally

the preferred way but it doesn't suit every situation.

◦ If you want to retry specific check-ins but there are more recent changes checked in,

you can't simply trigger the pipeline because it always uses the latest version of the

code when it is instantiated. In this case, you must retrigger the stage that failed.

Task 1: Retrigger a Failed Stage Other Than the Commit Stage

If you want to retrigger a stage that is not the commit stage, you can aways do it manually, no matter

whether the stage is a manually triggered one or an automatically triggered one. The problem is that if

you run it using the same pipeline instance number, you will get an error because the name of any build

has to be unique in TFS. The following screenshot shows an example.

15

Note: The steps shown in this task should be used to help debug the pipeline and should not be

performed when using the pipeline in a production environment.

The easiest workaround is to prepare a temporary build definition that mirrors the stage you want to

retry, but with a different name, and use it instead of the original one. As a concrete example, here is

what to do if you you want to retry an acceptance test stage that only partially succeeded for the

0.0.0624.990 instance.

 Fix the problem with the environment. In this example, open a remote desktop session to 1.

the computer that runs the automated UI tests, using the service account used by the test

agent. Leave it active.

16

 From Team Explorer, clone the build definition for the acceptance test stage and give it a 2.

different name. In this example, the stage is renamed to 02 Acceptance Test Stage – for

retries. You can enter the name in the build definition editor and then save the build

definition. This is shown in the following two screenshots.

17

 Manually run the stage. 3.

18

 Provide the expected parameters, which are the pipeline instance and its drop location. 4.

19

 Use Build Explorer to monitor the stage. The stage should pass if the environment is now 5.

fixed. The following two screenshots show that the stage runs and that it passes.

20

 After the stage has finished, you can either delete the cloned build definition or leave it just 6.

in case you need it again.

Follow the same procedure for manually triggered stages that fail.

Task 2: Retriggering the Commit Stage

In this task you learn how to retrigger the commit stage. The commit stage differs from the other stages

because it always uses the latest changes in version control. If you want to retry a specific change, but

not the latest change, you need to tell the pipeline which check-in to use.

 Manually queue the commit stage build definition. 1.

 Provide the change to use. You can either specify the label (by default, TFS labels the code 2.

being built) or the changeset number in the Queue Build dialog box. Enter it in Build process

parameters > 2. Advanced > Get Version. Use the format C<Changeset number> or L<Label

name> or. The following two screenshots show an example of each method.

21

22

Exercise 3: Dealing with Bugs

In this exercise you learn some general approaches to use when a stage of the pipeline fails because of a

bug in the code. This exercise is not a step-by step procedure but a set of guidelines about what you can

do.

Stop the Pipeline and Identify the Cause of the Failure

If the pipeline stops, investigate the build summary, build details and logs to find information about the

failure. If the failure is caused by the code (either the application code or the automated testing code), it

should be straightforward to trace the problem. Because different pipeline instances run for different

changes, the failure must be caused by the change checked in to version control.

23

Use the Debugging Symbols

For problems that are difficult to debug, you might find the debuggings symbols that contain all the

debugging information to be useful. The commit stage generates a debug version as well as a release

version. It is located in the same drop folder. Select the binary and program database file (PDB) and

deploy it to the appropriate environment.

A potential improvement for the pipeline would be to tokenize the deployment scripts so that they

receive the appropriate binary (debug or release) as a parameter. This would mean that deployments

are also automated for debugging as well as for standard tests and validations.

Fix the Bug and Run the Pipeline

After you fix the code and check it in, a new instance of the pipeline is created. A continuous delivery

pipeline should be treated as a one way system for code (as opposed to environments). You shouldn't

try to rerun a single stage. Instead, the pipeline should complete its entire run, from beginning to end. If

you don't do this, you can't be sure that your fix has passed all the validations that the pipeline

performs.

Summary

In this lab you learned how to monitor instances of the pipeline and what to do when there are

problems, either with the environment or the code. You first learned how to use Build Explorer to track

the progress of a pipeline instance, associate stages that belong to the same pipeline instance, and look

at the build details for a particular stage.

You then learned how to retrigger a failed stage that was not a commit stage when there were problems

with an environment. You then adapted that technique so thay you could retrigger a commit stage.

Finally, you learned a general approach to addressing bugs in the code.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and

other Internet website references, may change without notice. You bear the risk of using it. Some

examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

© 2014 Microsoft. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Windows PowerShell, Silverlight, Expression,

Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server, Visual C#,

Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of companies.

All other trademarks are the property of their respective owners.

	Objectives
	Prerequisites
	Time
	Exercise 1: Monitoring Instances of the Pipeline
	Task 1: Trigger and Monitor Pipeline Instances

	Exercise 2: Retriggering Failed Stages
	Task 1: Retrigger a Failed Stage Other Than the Commit Stage
	Task 2: Retriggering the Commit Stage

	Exercise 3: Dealing with Bugs
	Stop the Pipeline and Identify the Cause of the Failure
	Use the Debugging Symbols
	Fix the Bug and Run the Pipeline

	Summary
	Copyright

