

Hands-on Lab 6.2:

(Advanced) Automating the Deployment of

the Windows Phone 8 App

Table of Contents

Objectives ... 2

Time .. 3

Exercise 1: Setting Up the Target Environments ... 3

Task 1: Install the Windows Phone 8 Emulator .. 3

Task 2: Set Up the Development Environment ... 3

Task 3: Set Up the Environment in Lab Managment .. 4

Exercise 2: Preparing the Configuration Files .. 4

Task 1: Prepare the ServiceReferences.ClientConfig Files .. 4

Task 2: Set the Dependency on the Base File ... 6

Task 3: Set Up the Transformation for the ServiceReferences.ClientConfig Files 7

Exercise 3: Deployment Automation: Packaging the Files for Deployment .. 8

Task 1: Change the Default Name of the Generated XAP Package .. 8

Exercise 4: Performing the Automated Deployment ... 9

Replacing the ServicesReferences.ClientConfig File ... 9

Starting the Emulator .. 10

Task 1: Creating the Deployment Script for the Agent ... 10

Task 2: Create the PowerShell Script .. 11

Task 3: Create the Script That Launches the Emulator and Deploys the Application............................. 13

-2-

Task 4: Configure the Pipeline Stages to Run the Deployment Script .. 14

Exercise 5: Testing the deployment ... 16

Summary ... 19

Copyright ... 19

Objectives

This HOL demonstrates how to automatically deploy the Trey Research Windows Phone 8 app to the

target environments. To enable automatic deployment you must:

 Set up the target environments.

 Prepare the configuration files to match the target environments.

 Package the files that are required to deploy and run the Windows 8 Phone application as well

as the configuration files.

 Deploy the Windows Phone 8 app to the target environments.

This HOL is part two of the two part AdvancedHOL. (The subject of automation is covered in Chapter 4 of

Building a Release Pipeline with Team Foundation Server 2012.)

Note: You cannot use the Brian Kellar VM with this lab.

Prerequisites

The prerequisite for completing this lab is to have completed the previous advanced lab.

Note: You can use either standard environments or SCVMM environments for this lab. Standard

environments are much simpler to set up because you do not need to configure the network

virtualization but some features, such as snapshots, are not available.

The Trey Research application used in the previous lab is your starting point for this lab, it should be in

your TreyResearch folder. Visual Studio solutions that are the result of completing all of the tasks in an

exercise are in the Lab03-Automation\Completed-Lab folder, which is built out in Lab 3.1. Although this

lab is about the Windows Phone 8 app, it doesn’t change anything in terms of the workflow of the

release pipeline.

You run the exercises for this lab on your local computer and on the computer(s) that act as the

environments.

http://msdn.microsoft.com/en-us/library/dn449951.aspx

-3-

Time

This HOL takes approximately 60 minutes.

Exercise 1: Setting Up the Target Environments

In this exercise you set up the target environments so that they can run the Windows Phone 8 emulator

and so that they can be managed by the pipeline. The emulator is not mandatory. You can also use a

physical Windows Phone 8 device plugged into the target machine. The procedure is largely identical.

The pipeline has four environments: development, testing, staging, and production. Because the

development environment is isolated and only exists on development machines, it doesn't host an

emulator. However, the three other environments each need a Windows Phone 8 emulator in order to

deploy and run the Windows Phone 8 application.

Typically, these three emulators would reside on three different computers. For simplicity, this lab uses

a single machine with one emulator.

Task 1: Install the Windows Phone 8 Emulator

In this task you install the Windows Phone 8 emulator on the computer that hosts the target

environments. There are two prerequisites.

 The emulator requires Windows 8 or Windows Server 2012.

 You cannot use a virtual machine (VM) because the emulator runs on Hyper-V itself.

Download the Windows Phone 8 SDK and install it. The SDK includes the emulator.

Task 2: Set Up the Development Environment

In this task you install the Windows Phone 8 SDK on all the development machines, as well as the build

machine(s) that host the build agent(s) that run the commit stage of the pipeline. There are two

considerations:

 The build agents must be installed on a Windows 8 or Windows Server 2012 machine.

 A VM will work if you plan to use it only for building the application and not for running it inside

the emulator.

Download the Windows Phone 8 SDK at http://developer.windowsphone.com/en-us/downloadsdk and

install it.

http://developer.windowsphone.com/en-us/downloadsdk
http://developer.windowsphone.com/en-us/downloadsdk

-4-

Task 3: Set Up the Environment in Lab Managment

In this task you add the computer that hosts the Windows Phone 8 emulator to a Lab Management

environment. The pipeline uses Lab Management to manage the environments and for automation.

Before you begin this task, make sure that there is a running test controller that is configured for Lab

Management.

1. Open Microsoft Test Manager.

2. Select the team project that contains the build definitions for the pipeline orchestration.

Select Connect Now.

3. Click Connect to Lab.

4. In the Environments dialog box, you should see the environment that you set up in Lab 3.1-

Automating the Deployment of the WCF Service. Select it. Click Next.

5. In the Machines tab, select Add Machine to add the computer that will run the emulator to

the environment.

6. In the Computer name field, provide either the NetBIOS or DNS name.

7. In the Type Role field enter Client. (You use a generic name here because the same

computer is used for the WPF application.)

8. The User name and Password fields should already be filled in.

9. Click Verify.

10. If the verification succeeds, click Finish.

11. After a few minutes the agents are installed on the target machines and the environment is

available to the pipeline.

Exercise 2: Preparing the Configuration Files

In this exercise you automate the process of creating configuration files that conform to a specific

environment. In particular, the ServiceReferences.ClientConfig file for the Windows Phone 8 app uses a

different URL in each environment to access the web services.

Task 1: Prepare the ServiceReferences.ClientConfig Files

In this task you add the ServiceReferences.ClientConfig files to the project. The pipeline uses these files

when it deploys the Windows Phone 8 app to each environment. You need four files. Three are for the

three environments. The fourth stores the base configuration that is transformed for each environment.

This file already exists.

1. In Visual Studio, open TreyResearch.sln.

-5-

2. In Solution Explorer, under TreyResearchWinPhoneClient, find the

ServiceReferences.ClientConfig file.

3. Use the Text File template to add three additional configuration files. Name each one after

the target environment, using the format ServiceReferences.<Environment

Name>.ClientConfig. For example, the file for the production environment is named

ServiceReferences.Production.ClientConfig.

4. Add the following XML code to each file. Replace the <IIS-Server> tag with the name of the

IIS server that you used in Lab 3.1.

XML

<?xml version="1.0" encoding="utf-8"?>

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-

Transform">

 <system.serviceModel>

 <client>

 <!-- AUTOMATION HOL - This defines the way the value of the "endpoint"

setting gets transformed for the Testing environment. -->

 <!-- AUTOMATION HOL - In the config file for the Testing environment,

the endpoint will get this value -->

 <endpoint address="http://<IIS-Server>:9000/SensorReadingService.svc"

 name="BasicHttpBinding_ISensorReadingService"

 xdt:Transform="SetAttributes(address)" xdt:Locator="Match(name)"

/>

 </client>

 </system.serviceModel>

</configuration>

-6-

Task 2: Set the Dependency on the Base File

In this task you make all the ServiceReferences.<Environment Name>.ClientConfig files dependent on

the base configuration file, ServiceReferences.ClientConfig. Although this step is not required to

perform the transformations, it helps to keep the project organized and understandable.

1. Right-click on the TreyResearch. WinPhoneClient project and select Unload project.

2. Right-click on the project again and select Edit TreyResearch.WinPhoneClient.csproj. The

MSBuild code that makes up the csproj project file appears.

3. Locate the following XML code.

XML

<Content Include="ServiceReferences.Production.ClientConfig" />

<Content Include="ServiceReferences.Testing.ClientConfig" />

<Content Include="ServiceReferences.Staging.ClientConfig" />

4. Replace the XML with the following code, which makes the environment-specific files

dependent upon the base configuration file.

XML

<None Include="ServiceReferences.Production.ClientConfig">

 <DependentUpon>ServiceReferences.ClientConfig</DependentUpon>

</None>

<None Include="ServiceReferences.Testing.ClientConfig">

 <DependentUpon>ServiceReferences.ClientConfig</DependentUpon>

</None>

<None Include="ServiceReferences.Staging.ClientConfig">

 <DependentUpon>ServiceReferences.ClientConfig</DependentUpon>

</None>

5. Save the file. Right-click on the TreyResearch. WinPhoneClient project and select Reload

Project. Your project should have the structure shown in the following screenshot. Note that

the environment-specific files are nested under the base configuration file.

-7-

Task 3: Set Up the Transformation for the ServiceReferences.ClientConfig Files

In this task you use the TransformXml MSBuild task to transform the base

ServiceReferences.ClientConfig configuration file. You use the ServiceReferences.<Environment

Name>.ClientConfig files to define the transformation. When the transformation is done, you will have

the environment-specific configuration files.

1. Unload and edit the TreyResearch. WinPhoneClient.csproj file just as you did in Task 2. Near

the bottom of the file, just before the closing </Project> tag, insert the following code.

XML

 <!-- AUTOMATION HOL - Referencing the TransformXml task so we can use it -->

 <UsingTask TaskName="TransformXml"

AssemblyFile="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v11.0\Web\Micr

osoft.Web.Publishing.Tasks.dll" />

 <!-- AUTOMATION HOL - We are triggering the transformations just after

building -->

 <!-- AUTOMATION HOL - Checking whether we are BuildingInsideVisualStudio

makes that this will be triggered only in the Commit Stage of the pipeline (or

in command-line builds), not while working inside Visual Studio -->

 <!-- AUTOMATION HOL - Checking whether we are building the Release

configuration makes the configuration files available only for Release builds,

the ones being used by the pipeline -->

 <Target Name="AfterBuild" Condition="('$(BuildingInsideVisualStudio)' !=

'true') And ('$(Configuration)' == 'Release')">

 <ItemGroup>

 <TransformationFiles Include="ServiceReferences.*.ClientConfig" />

 </ItemGroup>

 <!-- AUTOMATION HOL - We generate the transformated configuration files in

a subfolder of $(OutDir). That way, they will get copied directly to the

BinariesFolder in the TFS build agent, and in turn, to the Drop folder of the

Commit Stage, without having to explicitly copying them -->

 <MakeDir Directories="$(OutDir)\ConfigFiles\WindowsPhone"

Condition="!Exists('$(OutDir)\ConfigFiles\WindowsPhone')" />

-8-

 <!-- AUTOMATION HOL - We call the TransformXml task for all the

configuration files using MSBuild batching (the @() syntax) -->

 <TransformXml Source="ServiceReferences.ClientConfig"

Transform="@(TransformationFiles)"

Destination="$(OutDir)\ConfigFiles\WindowsPhone\%(TransformationFiles.Identity

)" />

 </Target>

2. Reload the project. It opens in Solution Explorer.

3. From the Windows Start menu (or in Windows 8, the Start screen) open a Developer

Command Prompt for VS2012. Change the directory to the location of TreyResearch.

WinPhoneClient.csproj.

4. Test to see if the transformations are performed. Run the following command.

CMD

msbuild /p:Configuration=Release TreyResearch.WinPhoneClient.csproj

5. After MSBuild finishes, you should find a new folder named ConfigFiles under the bin

subfolder. The folder contains the three transformed configuration files. If you open any of

them, you will see that the content has been transformed to match the target environment.

NOTE: The Version parameter could also be set for each environment. This parameter is stored in the

application manifest, WMAppManifest.xml. You could transform the parameter so that it matches the

instance of the pipeline that generated each XAP package.

To do this, you would use a similar approach to the one used to transform the

ServiceReferences.ClientConfig files. An additional step is that the commit stage would pass the

version number as a parameter to MSBuild.

Other than its similarity to what you've already seen, this HOL doesn't set the Version parameter

because the binaries are already versioned, so versioning the package isn't a critical step. However, if

you want to distribute a package to end users then it could be useful to know the package's version

before installing it.

Exercise 3: Deployment Automation: Packaging the Files for Deployment

In this exercise, you only need you change the default name of the XAP package so that it is meaningful,

no matter the environment. By default, Windows Phone 8 projects are always packaged during the build

process. MSBuild generates the XAP package without requiring any special configuration. This is true

even when the build is done by TFS Build in the commit stage.

Task 1: Change the Default Name of the Generated XAP Package

In this task you change the default name of the XAP package by removing a substring.

-9-

1. In Solution Explorer, select the Properties folder for the TreyResearch.WinPhoneClient

project.

2. In the Application section, remove the text _Debug_AnyCPU from the Xap file name field.

The following screenshot shows the modified XAP file name.

3. Save the project.

Exercise 4: Performing the Automated Deployment

In this exercise you set up the pipeline so that it can automatically deploy the packages to the

environments.

In general, the same process shown in Lab 3.1 Automating the Deployment of the WCF Service also

applies to Windows Phone 8 apps. The deployment is done locally by the Lab Management deployment

agent, which uses a script that you provide.

However, deployment scripts for Windows Phone 8 packages must address two issues. The first issue is

how to replace the base configuration file with the transformed file. The second has to do with starting

the Windows Phone 8 emulator.

Replacing the ServicesReferences.ClientConfig File

You need to provide a mechanism that replaces the ServiceReferences.ClientConfig file embedded in the

XAP package with a transformed file that corresponds to an environment. Because XAP packages are

actually .zip files with a different extension, you can extract the contents of the package, replace the

configuration file, and then repackage the contents before deploying them. This exercise shows how to

use a PowerShell script to do this.

-10-

Starting the Emulator

The final deployment step is to start the Windows Phone 8 emulator. This operation must be done in the

context of a Windows session that has a graphical user interface (GUI). However, the deployment agent

is a Windows service, which means there is no GUI. In other words, the deployment agent can’t start the

emulator in order to deploy the package. Even if you configure the agent’s Windows service so that it

can interact with the desktop, the emulator would be launched under the lab service account, which is

different from the one that is used by someone who wants to run the emulator.

Although this issue makes it impossible to automate the entire deployment, it is not a critical limitation.

Testing the Windows Phone 8 app within the pipeline must be done manually in any case. A tester can

run the last deployment step just before starting the actual tests.

To make the last step as easy as possible, this exercise shows you how to write an additional script that

the pipeline copies to the target machine. A user can select this script to open the emulator with the

application deployed inside it.

Task 1: Creating the Deployment Script for the Agent

1. In Solution Explorer, create a new folder named Deployment under the

TreyResearch.WinPhoneClient project. This is where you will store the deployment script.

2. Under the Deployment folder, create a subfolder named WindowsPhone so that the scripts

are better organized when they are copied to the drop folder and the target environments.

The following screenshot shows the folder hierarchy.

3. Add a new script file to the WindowsPhone subfolder. Right-click on the folder and add a

new item of type Text File. Change the name to DeployWinPhoneClient.cmd.

4. In the DeployWinPhoneClient.cmd properties, set the Build Action to None. Set Copy to

Output Directory to Copy always.

5. Paste the following script into the file.

-11-

CMD Script

REM AUTOMATION HOL - This script copies the needed files from the pipeline Drop
folder to the target machine and runs the PowerShell script that leaves the
package prepared for deployment

REM AUTOMATION HOL - Path where the deployment package is stored (the Drop
location for the pipeline instance)
set packageLocation=%~1
REM AUTOMATION HOL - Name of the environment where the deployment is made. This is
used to pick the corresponding configuration file from the available ones
set environment=%~2
REM AUTOMATION HOL - Name of the temporal folder to use in the target computer
set tempfolder=%~3

REM AUTOMATION HOL - Preparing the local temp directory to copy the files and run
the deployment
set deploymentLocation="%tempfolder%\WindowsPhone\%environment%"
if exist "%deploymentLocation%" rd /s /q "%deploymentLocation%"
mkdir "%deploymentLocation%"

REM AUTOMATION HOL - Copying the PowerShell script used for repackaging, from the
Drop location to the local deployment folder
copy
"%packageLocation%\Release\Deployment\WindowsPhone\RepackageWinPhoneClient.ps1"
"%deploymentLocation%"

REM AUTOMATION HOL - Running the PowerShell script to change the configuration
file and repackage
cmd /c Powershell.exe -ExecutionPolicy bypass -File
"%deploymentLocation%\RepackageWinPhoneClient.ps1" "%packageLocation%\Release"
"%deploymentLocation%" "%environment%"

6. The script copies a PowerShell script that modifies the XAP package to have the correct

parameters (you create the PowerShell script in the next task), and runs it.

7. Save the .cmd file using the encoding scheme UTF-8 without signature. Ignore the source

control warning.

Task 2: Create the PowerShell Script

In this task you create a PowerShell script that copies the package and configuration files from the drop

location, extracts the contents of the package, replaces the configuration file, and repackages the

application.

1. Right-click on the WindowsPhone subfolder. Add a new item of type Text File. Change the

name to RepackageWinPhoneClient.ps1.

2. Open the RepackageWinPhoneClient.ps1 properties. Set the Build Action to None. Set Copy

to Output Directory to Copy always.

3. Copy the following script into the file and save it.

-12-

Powershell Script

<#

AUTOMATION HOL - This script copies the needed files from the pipeline Drop

folder to the target machine,

extracts the package, replaces the configuration file, and repackages the

application again.

#>

param(

 [parameter(Mandatory=$true)]

 [string]

 # AUTOMATION HOL - Path where the package to deploy (Xap file) and

configuration files are located

 $packageLocation,

 [parameter(Mandatory=$true)]

 [string]

 # AUTOMATION HOL - Temporal path to use for deployment

 $deploymentLocation,

 [parameter(Mandatory=$true)]

 [string]

 # AUTOMATION HOL - Environment where deployment is made, used to pick

the corresponding configuration file from the available ones

 $environment

)

AUTOMATION HOL - Function to extract the contents of the xap file

function ExtractXap

{

param($sourceXapFile, $targetFolder)

[System.Reflection.Assembly]::Load("System.IO.Compression.FileSystem,Version=4

.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089") | Out-Null

 [System.IO.Compression.ZipFile]::ExtractToDirectory($sourceXapFile,

$targetFolder)

}

AUTOMATION HOL - Function to create the xap file back from the extracted

contents

function PackageXap

{

param($destinationXapFile, $sourceFolder = '')

 [System.IO.Compression.ZipFile]::CreateFromDirectory($sourceFolder,

$destinationXapFile)

}

AUTOMATION HOL - Copying the package and configuration files from the

package location

Copy-Item "$($packageLocation)\TreyResearch.WinPhoneClient.xap"

$($deploymentLocation)

-13-

Copy-Item

"$($packageLocation)\ConfigFiles\WindowsPhone\ServiceReferences.$($environment

).ClientConfig" $deploymentLocation

AUTOMATION HOL - Creating the temporary folder to copy the files, extract

the xap and apply the target configuration for the environment

$tempFolder = "$($deploymentLocation)\temp"

if (!(Test-Path -path $tempFolder)) {New-Item $tempFolder -Type Directory}

AUTOMATION HOL - Extracting the package

$packageFile = $deploymentLocation + "\TreyResearch.WinPhoneClient.xap"

ExtractXap -sourceXapFile $packageFile -targetFolder $tempFolder

AUTOMATION HOL - Overwriting the configuration file with the one

corresponding to the target environment

$sourceServiceConfig = $deploymentLocation + "\ServiceReferences." +

$environment + ".ClientConfig"

$targetServiceConfig = $tempFolder + "\ServiceReferences.ClientConfig"

Copy-Item $sourceServiceConfig -Destination $targetServiceConfig -Force

AUTOMATION HOL - Regenerating the xap package with the new configuration

file

Remove-Item -Path $packageFile

PackageXap $packageFile -sourceFolder $tempFolder

AUTOMATION HOL - Copying the script that runs the emulator from the package

location, to leave it ready for the user

Copy-Item

"$($packageLocation)\Deployment\WindowsPhone\DeployAndLaunchEmulator.cmd"

$($deploymentLocation)

Task 3: Create the Script That Launches the Emulator and Deploys the Application

In this task, you create a script that launches the emulator and deploys the Windows Phone 8 app to it.

The script invokes the Windows Phone SDK command line deployment tool in order to deploy the

application and launch the emulator.

For more information about deploying and running Windows Phone 8 applications in the emulator, see

How to deploy and run a Windows Phone app.

1. Right-click on the WindowsPhone subfolder. Add a new item of type Text File. Change the

name to DeployAndLaunchEmulator.cmd.

2. Open the DeployAndLaunchEmulator.cmd properties. Set the Build Action to None. Set

Copy to Output Directory to Copy always.

3. Copy the following code into the file.

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402565(v=vs.105).aspx

-14-

XML

REM AUTOMATION HOL - This script launches the Windows Phone 8 emulator and

deploys the package on it, leaving it opened for the user

"C:\Program Files (x86)\Microsoft SDKs\Windows Phone\v8.0\Tools\XAP

Deployment\XapDeployCmd.exe" /installlaunch TreyResearch.WinPhoneClient.xap

/targetdevice:xd

4. Save the .cmd file using the encoding scheme UTF-8 without signature. Ignore the source

control warning.

At this point, you have made all the required changes to theTreyResearch.WinPhoneClient project.

Make sure that you’ve saved all the files and checked them in to the TFS version control system.

Task 4: Configure the Pipeline Stages to Run the Deployment Script

In this task you configure the release and UAT stages of the pipeline to run the deployment script. You

won't configure the acceptance test stage because you can't automate Windows Phone 8 testing inside

the emulator.

1. Open the build definition for 03a Release Stage, which deploys to the production

environment. Under the Process tab, open the Lab Process Settings.

2. The Lab Workflow Parameter dialog box opens. In the Environment section, make sure that

the environment used in Lab 3.1 is selected.

-15-

Select the Deploy tab. Click Add to incorporate the deployment script into the build definition.

3. In the Machine drop down list, select Client. The deployment will be done on all the clients

in the environment (in this lab there is only one).

4. In the Deployment script and arguments column, add the following command line, which

will execute the script.

CMD

"$(BuildLocation)\Release\Deployment\WindowsPhone\DeployWinPhoneClient.cmd"

"$(BuildLocation)" Production C:\TreyResearchDeployment

The deployment agent retrieves the script directly from the drop location, where it is placed by

the specific instance of the pipeline. Use the $(BuildLocation) built-in variable to compose the

path. The first parameter is the drop location. The second parameter is the name of the target

environment, which in this case is the production environment. The third parameter is the

temporary folder in the target computer that is used by the deployment scripts. The following

screenshot shows the completed dialog box.

-16-

5. Click Finish and save the changes.

6. Repeat steps 1 through 5 for the 03b UAT Stage. In the fourth step, the second parameter is

Staging, because the UAT stage deploys to the staging environment. Here is the code.

CMD

"$(BuildLocation)\Release\Deployment\WindowsPhone\DeployWinPhoneClient.cmd"

"$(BuildLocation)" Staging C:\TreyResearchDeployment

Exercise 5: Testing the deployment

In this exercise you test to see if the Windows Phone 8 app is correctly deployed to the different

environments.

1. Create a new instance of the pipeline by running the 01 Commit Stage. You can either make

some changes in the code and check them in, or, in Team Explorer, queue the build

definition.

-17-

2. After the commit stage finishes successfully, the changes are progagated through the

pipeline, so the 02 Acceptance Test Stage is triggered automatically. You can monitor the

progress from the Build Explorer window.

3. At this point, if you want to perform UAT, queue the 03b UAT Stage build definition, and

provide the values for the pipeline instance and the drop location.

4. Verify that the deployment occurs automatically. Log on to the target machine and run the

script that triggers the emulator.

5. Check if the deployment can be made automatically by logging on to the target machine and

running the script that triggers the emulator. From Windows Explorer, select

C:\TreyResearchDeployment\WindowsPhone\Staging\DeployAndLaunchEmulator.cmd.

The following screenshot shows an example of what you should see.

-18-

6. Check that the application uses the web service URL that corresponds to the correct

environment. For example, you can open the ServiceReferences.ClientConfig file that is

embedded in the

C:\TreyResearchDeployment\WindowsPhone\Staging\TreyResearch.WinPhoneClient.xap

file. To do this, change the file extension from .xap to .zip. The following screenshot shows

an example of what you should see.

-19-

7. When you are ready to release to the production environment, trigger the 03a Release

Stage. Follow the same steps that you did for the staging environment to make sure that the

deployment occurred correctly.

Summary

In this HOL you automated the deployment of Trey Research's Windows 8 phone app to the test, staging

and production environments. You set up the target environments and then the Lab Management

environment. You then prepared the configuration files. You created three files for the three

environments. The base configuration file already existed.

Next, you prepared the configuration files. You set the dependency on the base file, and added the code

that performs the transforms. You then automated the step for packaging the files by changing the

default name of the XAP package.

You then created a deployment script and another script that launches the emulator. You then

configured the UAT and release stages to run the scripts. Finally, you tested the pipeline to ensure that

the deployments happened correctly.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and

other Internet website references, may change without notice. You bear the risk of using it. Some

examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

-20-

© 2013 Microsoft. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Windows Azure, Windows PowerShell, Silverlight,

Expression, Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server,

Visual C#, Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of

companies.

All other trademarks are the property of their respective owners.

