

Hands-on Lab 3.1:

Automating the Deployment of the WCF

Service

Table of Contents

Objectives ... 2

Prerequisites ... 2

Time .. 3

Exercise 1: Deployment Automation: Preparing the Configuration Files .. 3

Task 1: Add an Application-Specific Setting to the Web.config File ... 4

Task 2: Prepare the SetParameters Files .. 4

Task 3: Set the Dependency on the Base File ... 6

Task 4: Set Up the Transformation for the SetParameters Files... 7

Exercise 2: Packaging the Deployment Files .. 9

Task 1: Configure the Packaging Process .. 10

Task 2: Create a Publication Profile .. 10

Task 3: Configuring the Commit Stage to Generate the Package ... 14

Exercise 3: Performing the Automated Deployment ... 16

Task 1: Create the Deployment Script .. 16

Task 2: Configure the Pipeline Stages to Run the Deployment Script .. 20

Exercise 4: Testing the Automated Deployment ... 23

Summary ... 26

Copyright ... 26

2

Objectives

This HOL demonstrates how to automatically deploy the Windows Communication Foundation (WCF)

services that are used in the sample Trey Research application. To enable automatic deployment you

must:

 Prepare the configuration files to match the target environments.

 Package the files that are required to deploy and run the WCF services, as well as the

configuration files.

 Deploy the WCF services to the target environments.

This HOL is part one of the three-part Automation HOL. Together, the three parts demonstrate how to

use Microsoft Visual Studio, Microsoft Team Foundation Server (TFS) and Lab Management to automate

the deployment and testing of the following technologies.

 WCF services

 Windows Presentation Foundation (WPF)

Automation is discussed in Chapter 4 of Building a Release Pipeline with Team Foundation Server 2012.

This lab shows you how to implement the changes to the pipeline that are discussed in that chapter.

As you go through this lab, you'll notice that there are references to Web Deploy and MSDeploy.

MSDeploy is a part of Web Deploy, and is used to package and run deployments. Web Deploy includes

MSDeploy as well as other components, such as the Internet Information Server (IIS) agent that

communicates with MSDeploy to perform the deployments over IIS.

This lab refers to MSDeploy when it talks about the packaging and deployment tool. It refers to Web

Deploy when additional components are involved.

Prerequisites

The only prerequisite for this lab is that you have completed all the preceding labs.

The Trey Research application is in your TreyResearch folder. Visual Studio solutions that are the result

of completing all of the tasks in an exercise are in the Lab03-Automation\Completed-Lab folder.

You run the exercises for this lab on your local computer and on the computers that act as the

environments.

http://msdn.microsoft.com/en-us/library/dn449951.aspx

3

NOTE: You can use either standard environments or SCVMM environments for this lab. Standard

environments are much simpler to set up because you do not need to configure the network

virtualization but some features, such as snapshots, are not available.

Time

If you are familiar with Visual Studio, Web Deploy, IIS, MSBuild, Windows Install XML (Wix), TFS and Lab

Management, you should be able to complete all 3 labs in three to four hours.

This HOL (Lab3.1) takes approximately 60 minutes.

Exercise 1: Deployment Automation: Preparing the Configuration Files

In this exercise you automate the process of preparing each configuration file so that it conforms to a

particular environment. When there are multiple environments, it's typical for the configuration file to

be different for each of them. For example, database connection strings may vary from one

environment to the next as well as endpoints, bindings, and application-specific settings.

One of the objectives of a continuous delivery pipeline is to automate deployment as much as possible.

The pipeline should automatically modify each configuration file so that it conforms to an environment's

requirements. Modifications should not be done manually.

Later in this lab you use MSDeploy to perform the actual deployments. Consequently, you must ensure

that MSDeploy can access the configuration parameters. There are several ways to do this, but the one

that best suits the goals of this lab is to prepare a parameters file that sets the specific configuration

parameters used during a deployment. You set the MSDeploy setParamFile flag so that MSDeploy uses

the parameters file during a deployment. (For more information, see Web Deploy Operation Settings.)

This lab generally follows the approach described in Configuring Parameters for Web Package

Deployment. The last step of this lab is different from the on-line tutorial because it uses configuration

file transforms rather than the MSBuild XmlPoke task. Another difference is that this lab automates the

step where the correct parameters file is selected for the correct target environment.

Using MSDeploy and a parameters file makes it possible to do deployments in a way that conforms to

some best practices for continuous delivery.

 The same binaries are used across all environments because there is no need to have a different

build for each environment.

 Deployment is the same for all environments. The pipeline determines which configuration to

use.

 Environment-specific information is separate from the actual release.

http://technet.microsoft.com/en-us/library/dd569089(v=ws.10).aspx
http://www.asp.net/web-forms/tutorials/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment
http://www.asp.net/web-forms/tutorials/deployment/web-deployment-in-the-enterprise/configuring-parameters-for-web-package-deployment

4

Task 1: Add an Application-Specific Setting to the Web.config File

In this task you add an application-specific setting to the WCF service's Web.config file. The setting is a

key/value pair that stores the name of the environment where the service is running. Although not

required to automate a deployment, this setting can be useful. For example, if you want to do A/B

testing you can either show or hide the feature you're testing, depending on the environment.

1. In Visual Studio, open TreyResearch.sln.

2. Open the Web.config file located in TreyResearch.WcfService (this is the WCF Services

project).

3. Insert the following code at the end of the file, between the </system.webServer> and

</configuration> tags. Save the file and close it.

XML

<appSettings>

<add key="Environment" value="Development" />

</appSettings>

Task 2: Prepare the SetParameters Files

In this task you add the SetParameters files to the project. These are the files that MSDeploy uses when

it deploys to each environment. You need four files. Three are for the three environments. The fourth

file stores the base configuration that is transformed for each environment.

Note: There are at least two ways to provide different configuration settings for different environments.

One is to have a base configuration file that is transformed before a deployment in order to produce a

configuration file for a specific environment. Another, which does not use transforms, is to store

complete configuration files for all environments and to pick the right one during a deployment. The

transform approach is usually better because you only have to specify and maintain the settings that

change from one environment to another. In order to demonstrate this practice, this lab uses the

transform approach, even though the actual configuration files are very simple.

1. Add a new XML file to the project and name it EnvironmentConfiguration.xml. This is the

base file that will be transformed to generate the configuration for each environment. Add

the following code to the file.

XML

<parameters>

 <!-- AUTOMATION HOL - This parameter defines the name of the target Web Site

where the application is deployed -->

 <setParameter name="IIS Web Application Name" value="IIS Web Application

Name" />

 <!-- AUTOMATION HOL - This parameter defines the name of the environment

where the application is running -->

 <setParameter name="Environment" value="Environment" />

5

</parameters>

2. Add three additional XML files to the project, and name each one after a target

environment, using the format EnvironmentConfiguration.<Environment Name>.xml. The

following screenshot shows the results.

3. Add the following XML code to each of the following files. Remember to change the value to

correspond to each environment. The code that is shown is for the testing environment.

Here are the values for the other environments.

◦ For the EnvironmentConfiguration.Production.xml file, value="Production".

◦ For the EnvironmentConfiguration.Staging.xml file, value="Staging".

◦ For the EnvironmentConfiguration.Testing.xml file, value="Testing".

Here is the XML code for the testing environment.

XML

<parameters xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <!-- AUTOMATION HOL - This defines the way the value of the "IIS Web

Application Name" parameter gets transformed for the Testing environment. -->

 <!-- AUTOMATION HOL - In the config file for the Testing environment, the

web application name will be TreyResearchTesting -->

 <setParameter name="IIS Web Application Name"

 value="TreyResearchTesting"

 xdt:Transform="SetAttributes(value)" xdt:Locator="Match(name)"

/>

 <!-- AUTOMATION HOL - This defines the way the value of the "Environment"

parameter gets transformed for the Testing environment. -->

 <!-- AUTOMATION HOL - In the config file for the Testing environment, the

environment name will be Testing -->

 <setParameter name="Environment"

 value="Testing"

 xdt:Transform="SetAttributes(value)" xdt:Locator="Match(name)"

/>

6

</parameters>

Task 3: Set the Dependency on the Base File

In this task you make all the EnvironmentConfiguration.<Environment Name>.xml files dependent on

the base configuration file, EnvironmentConfiguration.xml. Although this step is not required to

perform the transformations, it helps to keep the project organized and understandable.

1. Right-click on the TreyResearch. WcfService project and select Unload project.

2. Right-click on the project again and select Edit TreyResearch. WcfService.csproj. The

MSBuild code that makes up the csproj project file appears.

3. Locate the following XML code.

XML

<Content Include="EnvironmentConfiguration.Production.xml" />

<Content Include="EnvironmentConfiguration.Staging.xml" />

7

<Content Include="EnvironmentConfiguration.Testing.xml" />

<Content Include="EnvironmentConfiguration.xml" />

4. Replace this XML code with the following code, which makes the environment-specific files

dependent upon the base configuration file.

XML

<Content Include="EnvironmentConfiguration.xml" />

<None Include="EnvironmentConfiguration.Testing.xml">

 <DependentUpon>EnvironmentConfiguration.xml</DependentUpon>

</None>

<None Include="EnvironmentConfiguration.Staging.xml">

 <DependentUpon>EnvironmentConfiguration.xml</DependentUpon>

</None>

<None Include="EnvironmentConfiguration.Production.xml">

<DependentUpon>EnvironmentConfiguration.xml</DependentUpon>

</None>

5. Save the file. Right-click on the TreyResearch. WcfService project and select Reload Project.

Your project should have the structure shown in the following screenshot. Note that the

environment-specific files are nested under the base configuration file.

Task 4: Set Up the Transformation for the SetParameters Files

This task uses configuration transformations and follows the standard syntax for Web.config

transformations in Visual Studio. Note that any XML file can be transformed this way. For more

information, see Web.config Transformation Syntax for Web Project Deployment Using Visual Studio.

Transformations occur within the project file, which means that they are performed when the project is

built. Consequently, you don't need to add extra steps that direct the commit stage to generate the

transformed configuration files after it builds the code.

If you're familiar with Web.config transformations in Visual Studio, you may wonder why the lab uses

the TransformXml task explicitly. There are two reasons.

One is that, out of the box, Web.config transforms only work with Web.config files. This lab uses

MSDeploy SetParams files. There are third-party tools available such as SlowCheetah that address this

http://msdn.microsoft.com/en-us/library/dd465326.aspx
http://visualstudiogallery.msdn.microsoft.com/69023d00-a4f9-4a34-a6cd-7e854ba318b5

8

issue, but they offer only partial solutions. Aside from the inconvenience of adding another tool to the

lab, SlowCheetah, for example, also shares some of the same restrictions as Web.config transforms.

Both Web.config transforms and SlowCheetah use Visual Studio build configurations (for example,

debug and release) and are triggered when a build occurs. Because the goal of continuous delivery is to

use the same binaries across all environments, there must be a single build and the transformations

should be based on environments that all use the same build configuration (in the case of this lab, this is

the release build configuration). In other words, transformations must be triggered without having to

rebuild the source code for each environment.

In this task you use the TransformXml MSBuild task to transform the base

EnvironmentConfiguration.xml parameters file. You use the

EnvironmentConfiguration.<EnvironmentName>.xml files to define the transformation. When the

transformations are complete, you will have the environment-specific parameters file.

1. Unload and edit the TreyResearch.WcfService.csproj file, just as you did in Task 3. Near the

bottom of the file, just before the closing </Project> tag, insert the following code. This code

generates the transformed SetParameters files.

XML

<!-- AUTOMATION HOL - Referencing the TransformXml task so we can use it -->

 <UsingTask TaskName="TransformXml"

AssemblyFile="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v11.0\Web\Micr

osoft.Web.Publishing.Tasks.dll" />

 <!-- AUTOMATION HOL - We are triggering the transformations just after

building -->

 <!-- AUTOMATION HOL - Checking whether we are BuildingInsideVisualStudio

makes that this will be triggered only in the Commit Stage of the pipeline (or

in command-line builds), not while working inside Visual Studio -->

 <!-- AUTOMATION HOL - Checking whether we are building the Release

configuration makes the parameters files available only for Release builds,

the ones being used by the pipeline -->

 <Target Name="AfterBuild" Condition="('$(BuildingInsideVisualStudio)' !=

'true') And ('$(Configuration)' == 'Release')">

 <ItemGroup>

 <TransformationFiles Include="EnvironmentConfiguration.*.xml" />

 </ItemGroup>

 <!-- AUTOMATION HOL - We generate the transformated parameters files in a

subfolder of $(OutDir). That way, they will get copied directly to the

BinariesFolder in the TFS build agent, and in turn, to the Drop folder of the

Commit Stage, without having to explicitly copying them -->

 <MakeDir Directories="$(OutDir)\ConfigFiles\WcfService"

Condition="!Exists('$(OutDir)\ConfigFiles\WcfService')" />

 <!-- AUTOMATION HOL - We call the TransformXml task for all the parameters

files using MSBuild batching (the @() syntax) -->

 <TransformXml Source="EnvironmentConfiguration.xml"

Transform="@(TransformationFiles)"

9

Destination="$(OutDir)\ConfigFiles\WcfService\%(TransformationFiles.Identity)"

/>

 </Target>

2. Reload the project. It opens in Solution Explorer.

3. From the Windows Start menu (or in Windows 8, the Start screen) open a Developer

Command Prompt for VS2012. Change the directory to where the TreyResearch.

WcfService.csproj is located.

4. Test to see if the transformations were performed. Run the following command.

CMD

msbuild /p:Configuration=Release

5. After MSBuild finishes, you will find a new folder named ConfigFiles\WcfService under the

bin subfolder. The folder contains the three transformed parameters files for this project. If

you open any of them, you will see that the content has been transformed to match the

target environment.

Exercise 2: Packaging the Deployment Files

In this exercise you package the files that are required for deployment. The package format is the one

that MSDeploy generates. The format is based on a zip file that contains the files to be installed on the

IIS website. When MSDeploy generates a package, it also provides a script that performs the actual

deployment and provides a sample parameters file. You will replace the sample file with the parameter

files that correspond to the environments.

NOTE: Besides packaging, there are other MSDeploy publication methods that can deploy directly to the

target web server. This lab uses packaging for three reasons. The first reason is that the application

10

should be deployed to a stage only if the previous stages were successful. The second reason is that by

using a package that is generated only in the commit stage, you ensure that all the stages use the same

binaries for the deployment. The third reason is that Lab Management orchestrates all the stages in the

pipeline except the commit stage. In Lab Management environments, a deployment agent uses a script

that runs locally on the target machine to deploy to the target environment. A package is a good way to

work with MSDeploy when the deployment is done locally, from the same machine that hosts the IIS

site.

Task 1: Configure the Packaging Process

In this task you configure the packaging process so that the Web.config parameters are available and

can be changed. To do this, you add a parameters.xml file to the project. This file is used by MSBuild

when it generates the zip package. The file tells MSBuild which elements in the Web.config file should

be exposed as parameters during deployment. MSBuild replaces the elements in the final Web.config

file with the corresponding values contained in the parameters files for each environment. Aside from

the tutorial mentioned in Exercise 1, you can also refer to How to: Use Web Deploy Parameters in a Web

Deployment Package. Read the section named "Using Deployment Parameters for Web.Config File

Settings."

1. Open the TreyResearch. WcfService.csproj project.

2. Add a new XML file to the project and name it parameters.xml. Add the following XML code

to the file.

XML

<parameters>

 <!-- AUTOMATION HOL - This parameter section tells MSBuild to expose the

Web.config configuration parameter named Environment, so ti can be changed on

the fly during deployment -->

 <parameter name="Environment"

 description="Environment where the services are running"

 defaultValue="Development">

 <!-- AUTOMATION HOL - This parameterEntry section tells MSBuild how to

locate the parameter inside the Web.config file, so it can expose it -->

 <parameterEntry kind="XmlFile" scope="Web.config"

match="/configuration/appSettings/add[@key='Environment']/@value" />

 </parameter>

</parameters>

3. Save the file and close it.

Task 2: Create a Publication Profile

In this task you create a publication profile that defines how the package is created.

1. Right-click on the TreyResearch. WcfService. csproj project.

http://msdn.microsoft.com/en-us/library/ff398068.aspx
http://msdn.microsoft.com/en-us/library/ff398068.aspx

11

2. Select Publish. The Publish Web wizard opens. The Profile tab should be selected.

3. Select <New Profile…> from the Select or import a publish profile drop-down list. Click

Next. The New Profile dialog box appears.

4. Enter the name CDPipelinePackaging in the New Profile dialog box. Click OK. This will be the

profile used to package the web services in the commit stage. Click Next.

5. The Publish Web wizard advances to the Connection tab. Select Web Deploy Package from

the Publish method drop-down list. With this method, MSDeploy generates a zip file that

contains the required files for the deployment.

6. In the Package location box, enter the package location. In the Site name box, enter the site

name. These values will be overwritten by the values in the environment-specific parameters

files, but remain in the base configuration file, and may be be useful for the development

environment. Click Next.

12

7. The Publish Web wizard advances to the Settings tab. In the Configuration box, select

Release – Any CPU from the drop-down list. The pipeline only uses the release configuration.

13

8. Click Publish. The web services project is built and packaged. The resulting zip file, script and

parameters file are copied to the publish subdirectory under the project folder. The

following screenshot shows an example.

14

The artifact of primary interest is the CDPipelinePackaging.pubxml file that is located in the

Properties/PublishProfiles folder. The goal is to have the pipeline generate the package

automatically each time the commit stage runs. In the next task, you use this file to tell the

pipeline how to do this. The following screenshot shows an example of the

CDPipelinePackaging.pubxml file.

Task 3: Configuring the Commit Stage to Generate the Package

In this task you configure the commit stage to package the web services by editing the 01 Commit Stage

build definition.

1. Open the 01 Commit Stage build definition.

2. Go to the Process tab. In the Advanced section add the following value to the MSBuild

Arguments parameter.

15

Visual Basic

/p:DeployOnBuild=true;PublishProfile=CDPipelinePackaging

The following screenshot shows the modified build definition.

3. The pipeline is now configured to prepare the parameters files and to package the web

services. Remember to save the build configuration. Check in all the pending changes. The

commit stage should be triggered automatically.

After the commit stage successfully finishes, go to the drop folder. Inside the Release

subfolder, you should see:

◦ A _PublishedWebsites\TreyResearch.WcfService_Package subfolder that contains the

.zip package and the .cmd script to deploy it. (There are other files as well, but they

aren't relevant).

◦ A ConfigFiles\WcfService subfolder that contains all the environment specific

parameters files. The following screenshot shows an example.

16

NOTE: You may have noticed that MSDeploy.exe was not run explicitly during this exercise. This is

because MSDeploy is triggered by MSBuild in the context of the Web Publishing Pipeline (WPP). Do not

confuse the WPP with the continuous delivery pipeline you are building. These are two different

concepts. WPP is used by the continuous delivery pipeline.

Exercise 3: Performing the Automated Deployment

In this exercise you set up the pipeline so that it can automatically deploy the packages to the

environments.

Task 1: Create the Deployment Script

In this task you create the deployment script for the WCF service. Lab Management deployment scripts

are batch files that are executed by the Windows command interpreter locally, on the target computer,

by the deployment agent.

1. In Solution Explorer, create a new folder named Deployment under the TreyResearch.

WcfService project. This is where you will store the deployment script.

2. Under the Deployment folder, create a subfolder named WcfService. This folder helps to

organize the scripts when they are copied to the drop folder and to the target environments.

The following screenshot shows the folder hierarchy.

3. Add a new script file to the WcfService subfolder. Right-click the WcfService folder. Add a

new item of type Text File. Change the name of the file to DeployWcfService.cmd.

17

4. In the DeployWcfService.cmd file properties, set the Build Action to None. Set Copy to

Output Directory to Copy always. These settings copy the script to the output directory

when the project is built, and to the drop location during the commit stage. The deployment

agent retrieves the script from the drop location and runs it. The following screenshot shows

the DeployWcfService.cmd property settings.

5. Paste the following code into the file.

18

CMD Script

REM AUTOMATION HOL - This script copies the needed files from the pipeline

Drop folder to the target machine and runs the MSDeploy deployment script

REM AUTOMATION HOL - Path where the deployment package is stored (the Drop

location for the pipeline instance)

set packageLocation=%~1

REM AUTOMATION HOL - Name of the environment where the deployment is made.

This is used to pick the corresponding parameters file from the available ones

set environment=%~2

REM AUTOMATION HOL - Name of the temporal folder to use in the target computer

set tempfolder=%~3

REM AUTOMATION HOL - Preparing the local temp directory to copy the files and

run the deployment

set deploymentLocation="%tempfolder%\WcfService\%environment%"

if exist "%deploymentLocation%" rd /s /q "%deploymentLocation%"

mkdir "%deploymentLocation%"

REM AUTOMATION HOL - Copying the zip package generated by the Commit Stage,

from the Drop location to the local deployment folder

copy

"%packageLocation%\Release_PublishedWebsites\TreyResearch.WcfService_Package\

TreyResearch.WcfService.zip" "%deploymentLocation%"

REM AUTOMATION HOL - Copying the MSDeploy deployment script that was auto-

generated by the publish operation in the Commit Stage, from the Drop location

to the local deployment folder

copy

"%packageLocation%\Release_PublishedWebsites\TreyResearch.WcfService_Package\

TreyResearch.WcfService.deploy.cmd" "%deploymentLocation%"

REM AUTOMATION HOL - Copying the parameters file that tells the MSDeploy

deployment script what to change in the Web.config file during deployment

REM AUTOMATION HOL - We pick the one corresponding to the environment where

the deployment is being done, and rename it to match the name that the

MSDeploy recognizes as a parameters file

copy

"%packageLocation%\Release\ConfigFiles\WcfService\EnvironmentConfiguration.%en

vironment%.xml"

"%deploymentLocation%\TreyResearch.WcfService.SetParameters.xml"

REM AUTOMATION HOL - Running the deployment over the Web Server

REM AUTOMATION HOL - The /Y switch tells the script to actually perform the

deployment

REM AUTOMATION HOL - The script deploys the services over the configured IIS

Website

19

REM AUTOMATION HOL - The script will also transform the final Web.config with

any parameter contained in

TreyResearch.Cloud.WcfService.WebRole.SetParameters.xml

cd "%deploymentLocation%"

TreyResearch.WcfService.deploy.cmd /Y

This script copies the deployment package, the MSDeploy deployment script, and the

parameters file corresponding to the target environment to the web server. The script runs the

MSDeploy deployment script on the server.

6. Save the DeployWcfService.cmd file using the encoding UTF-8 without signature. If you

don't do this, there will be errors when the script runs. In Visual Studio, select the Save As

option from the File menu. The Save File As dialog box appears. Select the Save with

Encoding option from the drop-down menu. The following screenshot shows the Save with

Encoding option.

7. The Advanced Save Options dialog box opens. Select Unicode (UTF-8 without signature).

Click OK. Ignore the source control warning. The following screenshot shows the completed

dialog box.

20

8. Check-in the changes. The script will be copied to the drop location during the commit stage,

and be used by subsequent stages to deploy the web services.

Task 2: Configure the Pipeline Stages to Run the Deployment Script

In this task you configure the remaining stages of the pipeline to run the deployment script.

1. Edit the 02 Acceptance Test Stage build definition so that the stage deploys to the test

environment. Under the Process tab, select the Lab Process Settings parameter by clicking

the ellipses (…). The Lab Workflow Parameters dialog box opens.

2. Under the Environment tab, select the environment you created in Starting Point Lab 01 –

Starting Point.

21

3. Select the Deploy tab. Select Deploy the build. Click Add. This incorporates the deployment

script into the build definition.

4. Select Web Server from the Machine drop-down list. This setting ensures that the

deployment will be done on all the web servers in the environment (in this lab, there is a

single web server).

5. In the Deployment script and arguments column, add the following command line, which

causes the deployment script to execute.

Note: The following command is a single line.

22

CMD

"$(BuildLocation)\Release\Deployment\WcfService\DeployWcfService.cmd"

"$(BuildLocation)" Testing C:\TreyResearchDeployment

The deployment agent retrieves the script directly from the drop location, where it is placed by

the specific instance of the pipeline. Use the $(BuildLocation) built-in variable to compose the

path. The first parameter is the drop location. The second parameter is the name of the target

environment. The third parameter is the location of the temporary folder on the target

computer that is used by the deployment script. The following screenshot shows the completed

dialog box, with a portion of the command.

6. Click Finish and save the changes.

7. Repeat steps 1 through 6 for the 03a Release Stage build definition. In the fifth step, the

second parameter is Production, because the release stage deploys to the production

environment. Here is the code.

CMD

"$(BuildLocation)\Release\Deployment\WcfService\DeployWcfService.cmd"

"$(BuildLocation)" Production C:\TreyResearchDeployment

23

8. Repeat steps 1 through 6 for the 03b UAT Stage build definition. In the fifth step, the second

parameter is Staging, because the UAT stage deploys to the staging environment. Here is the

code.

CMD

"$(BuildLocation)\Release\Deployment\WcfService\DeployWcfService.cmd"

"$(BuildLocation)" Staging C:\TreyResearchDeployment

Exercise 4: Testing the Automated Deployment

In this exercise you test to see if the automated deployment works correctly.

1. Create a new instance of the pipeline by running the 01 Commit Stage. You can either make

some changes in the code and check them in, or, in Team Explorer, queue the build

definition.

2. After the commit stage finishes successfully, the changes are propagated through the

pipeline, so 02 Acceptance Test Stage is triggered automatically. You can monitor the

progress from the Build Explorer window.

3. After the acceptance stage finishes successfully, the web services should be deployed to the

test environment. In the browser, navigate to the URL for the web service to verify this.

24

4. You can also open the Web.config file that was deployed and check that the configuration

settings match the test environment.

5. Finally, you can verify that the deployment folder was created at

C:\TreyResearchDeployment and that it contains the files that are used for the deployment.

25

NOTE: Depending on the configuration of your environment and network, you may get an Access is

denied error when the Lab Management agent tries to run the deployment script from the drop location

(see the screenshot below this note for an example). This is because the Visual Studio Lab Agent service

is configured by default to run under the Local System account, and it is not being impersonated by the

test controller that uses the Lab service account and that accesses the drop location. The easiest

workaround is to grant read permissions to the computer account where the agent is running

(DOMAIN\COMPUTERNAME$) both for the network share and for the folder used as the drop location.

6. At this point, if you want to perform UAT, queue the 03b UAT Stage build definition and

provide the values for the pipeline instance and the drop location. The services will be

automatically deployed to the staging environment.

Note: These values are required. If you don't supply them an error occurs.

7. You can perform the same verifications that you did in steps 3 and 4 for the acceptance test

stage.

8. When you ready to release to production, manually trigger 03a Release Stage.

26

Summary

In this lab you automated the deployment of the WCF web service. To do this, you prepared the

configuration files that set up the environments. There is a base configuration file and three other files

that store the differences between the base configuration and the environments. You made those three

files dependent on the base file. Finally, you added the code that performs the transformations.

You packaged all the files required for the deployment, using the MSDeploy package format. You

configured the packaging process so that the Web.config parameters were available and could be

changed. You then created a publication profile, and configured the pipeline's commit stage to generate

the package.

You then configured the pipeline to perform the deployment automatically by creating a Lab

Management deployment script. Then, you edited the build definitions for the pipeline stages (other

than the commit stage) to deploy to the correct environment. Finally, you tested the automated

deployment.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and

other Internet website references, may change without notice. You bear the risk of using it. Some

examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

© 2013 Microsoft. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Windows Azure, Windows PowerShell, Silverlight,

Expression, Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server,

Visual C#, Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of

companies.

All other trademarks are the property of their respective owners.

