Hands-on Lab 2.1:
Orchestrating the Commit Stage

) Microsoft® . .
patterns & practices g Visual Studio

" proven practices for predictable results ALM Rangers

Table of Contents

(0] oY [Tt {1V LT3RPS 2
PrEIEQUISITES «.eeeeiiieeee ettt ettt e e ettt e et e e e s sttt ee e e e e s saaab e e aaeeees s asbbeaaaeeesssasssraaeeeessesanssaaaaeeessnnas 2
LI L0 L= TS OPPSP T UPPPTTUPRSN 3
Exercise 1: Add TfsBuildExtensions.Activities.dll to TreyResearchBuildCustomization.sln.........ccccccevvvennn. 3
Exercise 2: Adding Steps That Name the Pipeline Instance and the Commit Stagecccccevveevicveeeiccnneennn. 3
Task 1: Open the SOIULION FIlEeee it re e e e bee e e e e bae e e e eabae e e e e abeee e eenranas 4
Task 2: Edit the WOrKflOW ArSUMENTScc.eviiiiciiee ettt ettt tte e e e tre e e e e bae e e e eabae e e e eabeeeeeenneeas 4
Task 3: Add the Pipelinelnstance Variable.........ccuuiiiiiiiiiciiie st 8
Task 4: Add the Set Pipelinelnstance Sequence to the Workflow.........ccccccveeiicieiicceee e, 9
Task 5: Add Activities to the Set Pipelinelnstance SEQUENCEcoovciiiiiiciiiee e 10
Task 6: Add the TFSVErsion ACTIVITY.....c..eeiicciiiee ettt e e et e e e e eate e e e eara e e e snreeeesnraeeesanes 11
Task 7: Add an ASSIZN ACTIVITYuueie ettt e et e e e et e e e e e at e e e e sataeeeenraeeesntaeeessranaesanes 12
Exercise 3: Versioning the ASSEMBIIESuii i e e e e e e e e nte e e e e aneeas 14
Task 1: Add the Versions Assemblies SEQUENCEccccuiiiiiiciiiieicciiee ettt e e s s sare e e sarae e s enes 14
Task 2: Add the FIndMatchingFiles ACHIVILYcccviiiiciiee e et 15
Task 3: Add @ FOrEQCh ACLIVITY c.o.evveeeiceiiee ettt e e et e e e e sate e e e s ata e e e saraeeeeanes 15
Task 4: Add @ TFSVEISION ACTIVITY ..eeeeieiiieieciie ettt e et e e et e e e e eat e e e e eeataeeesearaeeesanraeeasanes 16
Exercise 4: Orchestrate the Stage to Propagate Changes or Stop the Pipeline......cccccovecviieeeeeiiicccninennen. 18
Task 1: Add the NextStagesInPipeline Variable ... 18

Task 2: Add @ NeW Parallel ACHIVITYeeii it e e e ara e e e s arae e e enes 19

Task 3: Add a ForEach Activity to the If ACtiVity.coeoeiieiee e 21

Task 4: Add Activities to Trigger SUbSeqUENT STAZESciivciiii i 23

TaSK 5: SAVE EVEIYENING. ..ottt et e e et e e e e te e e s ebt e e e s s bteeeeentaeeesntaeeesntaeeesanes 25
SUIMIMIAIY et e e e e e e e e e e e e e e e e s e e e e e e e e e e e s e e e s eseeeeseaaeaaeasasaassssasssassssesessssesesssssssesessesssesseseeeeseseeneennsenannns 25
(070 o1V T={ o | PP UPSPRNt 25
Obijectives

In this HOL you learn how to customize the TFS default template in order to orchestrate the commit
stage of the release pipeline. Orchestration for the commit stage includes:

e Adding steps that name the pipeline instance and the stage.
e Versioning the assemblies.
e Placing the compiled binaries in the drop location.

e Triggering the next stage if the commit stage succeeds or stopping the entire pipeline if the
commit stage fails.

This HOL is part one of the four-part Orchestration HOL. Together, the four parts demonstrate how to
use Microsoft Team Foundation Server (TFS) and Lab Management to orchestrate the stages of a release
pipeline that will support continuous delivery. The subject of orchestration is covered in Chapter 3 of
Building a Release Pipeline with Team Foundation Server 2012.

The example application and services that are used in some exercises in this lab are in the subfolders of
the Lab02-Orchestration\Start-Lab folder. Visual Studio solutions that are the result of completing all of
the tasks in an exercise are in the Lab02-Orchestration\Completed-Lab folder. You run the examples for
this lab on your local computer.

Prerequisites
Here are the prerequisites for completing this lab.
e Complete Introduction.

e Complete Lab-01-StartingPoint.

http://msdn.microsoft.com/en-us/library/dn449950.aspx

Time

You should be able to complete all of the exercises in this lab in approximately 40 minutes. If you are
familiar with Visual Studio Editor, TFS, and TFS build customization, you should be able to complete the
four HOLs in the orchestration sequence in three to four hours.

Exercise 1: Add TfsBuildExtensions.Activities.dll to
TreyResearchBuildCustomization.sIn
In Lab 1 you added the TFS Build Extensions to the TreyResearch Team Project. In this exercise you’ll add

one of its DLLs to the TreyResearchBuildCustomization.sln located at C:\HOL\Lab02-
Orchestration\Start-Lab\TreyResearchBuildCustomization. Here are the steps.

1. Create a Lib folder at the location C:\HOL\Lab02-Orchestration\Start-
Lab\TreyResearchBuildCustomization\TreyResearchBuildCustomization.

2. Locate TfsBuildExtensions.Activities.dll in the TreyResearch project under the Custom
Assembilies folder that was created in Lab 1.

3. Copy the TfsBuildExtensions.Activities.dll to the new Lib folder.

4. Navigate to the HOL\Lab02-Orchestration\Start-Lab\TreyResearchBuildCustomization and
open the solution TreyResearchBuildCustomization.sin.

5. Add TfsBuildExtensions.Activities.dll to the Reference folder in the
TreyResearchBuildCustomization.sin.

6. Save the solution.

Exercise 2: Adding Steps That Name the Pipeline Instance and the Commit Stage

In this exercise you modify a copy of the TFS default build template named
Start_CDPipelineCommitStageProcessTemplate.xaml so that it gives names to both the pipeline instance
and the commit stage of that pipeline instance. These names make it easy to associate a particular stage
with a particular pipeline instance.

To name the pipeline instance, you use the TfsVersion activity that is found under the TFS Build
Extensions tab in the Visual Studio Toolbox. The TFSVersion activity calculates the pipeline instance
name. This name is based on the standard pattern Major.Minor.Build.Release.

Note: If the TfsVersion activity does not appear in the Visual Studio Toolbox, you may not have
downloaded the TfsBuildExtensions activity. See Introduction, and the section named "Third-party
Libraries," for more information.

Task 1: Open the Solution File

In this task, you open the solution file so that you can edit the workflow.
1. Navigate to HOL\Lab02-Orchestration\Start-Lab\ TreyResearchBuildCustomization.
2. Locate the solution file TreyResearchBuildCustomization.sin.

3. When you open the solution file you'll see the following solution layout.

Solution Explorer
@ o-2d ,RR
Search Solution Explorer (Ctrl+;) P

&7m Solution TreyResearchBuildCustomization™ (1 project)

4 (@] TreyResearchBuildCustomization
b &/ Properties
b =m References

af) Start_CDPipelineCommitStageProcessTemplatexaml
&M Start_CDPipelineGenericStageProcessTemplate xaml

Task 2: Edit the Workflow Arguments

In this task you add 2 new arguments called MajorVersion and MinorVersion, which will contain
versioning information. Then you edit the metadata for the existing, standard build process argument
BuildNumberFormat and for the new MajorVersion and MinorVersion arguments.

1. From Solution Explorer, open Start_CDPipelineCommitStageProcessTemplate.xaml. It
opens in the workflow editor.

2. Click the Arguments tab in the lower-left corner of the workflow editor. The Arguments
pane opens.

Start_CDPipelineC...ocessTemplate.xaml

Process

[yl Sequence

+ X

-

| Get the Build

[§1 Update Drop Location

Variables | Arguments I Imports

,?ﬂ Update Build Number for Triggerec

Expand All Collapse All

Fe

»

W P wx ~ B EH

3. Inthe Arguments pane, click Create Argument. In the Name column enter MajorVersion.

4. Click Create Argument. In the Name column enter MinorVersion.

MNarme
GetVersion
PrivateDroplocation
Verbosity

Metadata
SupportedReasons

BuildProcessVersion

Direction

MajorVersion

EMinor\u’ersion

Lreate Argument

Vanables Arguments

Imports

Argument type Default value
String Enter a VB expression -
String Enter a VB expression
BuildVerbosity Microsoft. TeamFoundation.Build W
ProcessParameter! {Collection) [|
BuildReason Al =]
String 1.0
String Enter a VB expression
String Enter a VB expression

-

P o - HMB

5. Add the metadata for the MajorVersion and MinorVersion arguments and for the standard

build process argument BuildNumberFormat. To do this, click the Edit button in the Default

value column of the Metadata row.

Name Direction Argument type Default value

GetVersion In String Enter a VB expression
PrivateDropLocation In String Enter a VB expression

Verbosity In BuildVerbosity Microsoft.TeamFoundation.Build Wo
Metadata Property ProcessParameterl (Collection) [
SupportedReasons Property BuildReasaon All B
BuildProcessVersion Property String 11.0

MajorVersion In String Enter a VB expression

MinorVersion In String Enter a VB expression

Create Argument

6. The Process Parameter Metadata Editor opens. Click Add. Enter the MajorVersion metadata
that is outlined in red in the following screenshot.

Parameters:
MSBuildMultiProc Parameter Name:

SolutionSpecificBuildQutpul ” MajorV/ersion
MajarVersion Display Mame:

|| Major Version

Category:
||#9m Versioning

Description:

Major Version to use far
versicning and setting the
pipeling instance name

Editor:
|

View this parameter when:

| Always show the parameter ¥ |

ok || Cancel |

7. Click Add. Enter the MinorVersion metadata that is outlined in red in the following
screenshot.

Parameters:

MSBuildMultiPrac Parameter Name:
SolutionSpecificBuildOutpui || MinorVersion
MajarVersion Display Mame:

Minaryersion ||Minor Version

Categaory:
||#9[H] Versioning

Description:

Minor Yersion to use for
versicning and setting the
pipeling instance name

Editor:
|

View this parameter when:

| Always show the parameter |

oK || Cancel |

8. Click Add. Enter the BuildNumberFormat metadata that is outlined in red in the following
screenshot. Note that Never means that this parameter is hidden.

Parameters:

MSBuildMultiProc Parameter Name:

SolutionSpecificBuildOutput BuildNumberFormat

MajorVersion Display Name:

MinorVersion |BuiIdNumberFormat
BuildNumberFormat

Category:
#900 Misc

Description:

Editor:

[] Required

View this parameter when:

‘ Never = ‘

OK || Cancel ‘

Task 3: Add the Pipelinelnstance Variable

In this task you add the Pipelinelnstance variable and scope it to the top-level workflow sequence.
1. Scroll to the top of the workflow file and click in the first Sequence activity to highlight it.
2. Click Variables in the lower-left corner. The variable pane for the top-level scope opens.
3. Click Create Variable.

4. Create a variable named Pipelinelnstance. The steps for this task are shown in the following
screenshot.

Start_CDPipelineC...ocessTemplatexaml + X

-

Expand All Collapse All

Process
¥ Sequence
1. Click in here to highlight top-level Sequence
|2 Get the Build
£31 Update Drop Location A
271 Update Build Number for Triggerec A
Name Variable type Scope Default
BuildDetail |BuildDetail Sequence Enter a VB expression
DropLocation String Sequence Enter a VB expression
Pipelinelnstance String Sequence Enter a VB expression
Create Variable R i
Create Pipelinelnstance Variable
lick Variables Menu Item
Variables -_Arguments Imports * P 100%

W

s

2

Task 4: Add the Set Pipelinelnstance Sequence to the Workflow

In this task you add the Set Pipelinelnstance sequence to the workflow. This sequence will include the
steps related to naming the commit stage and the pipeline instance.

1. Locate the activity named Update Build Number for Triggered Builds. It is the first activity
inside the Update Drop Location sequence, near the top of the workflow.

2. Add a Sequence above the Update Build Number activity and within the Update Build

Number for Triggered Builds.

TIP: All activities can be found in the Toolbox by using the search option at the top.

3. Name this sequence Set Pipelinelnstance by changing the DisplayName property in the

Properties window.

The following screenshot shows the location of the Set Pipelinelnstance sequence within the workflow.

i3] Update Drop Location

&

27 Update Build Mumber for Trigg A&

ry1 Set Pipelineinstance

b

Drop activity here

|.'3'J Update Build Number

Task 5: Add Activities to the Set Pipelinelnstance Sequence

In this task you add the activities that generate the pipeline instance name within the Set
Pipelinelnstance sequence.

1. Add the WriteBuildMessage activity to the Set Pipelinelnstance sequence. This activity logs
the operations that occur within the sequence.

2. Add the message string "Naming the pipeline instance" by using the Expression Editor. You
can open the editor from the Properties window for the WriteBuildMessage activity. The
following screenshot shows the message. It is highlighted in red.

CDPipelineCommit...cessTemplatexaml & X i Properties *uxH
Build Numb... * Set Pipelinelnstance Restore Collapse Al| Microsoft.TeamFoundation.Build.Workflow.Activities. WriteBuildMessage

Clear

DisplayName WriteBuildMessage
Importance Microsoft.TeamFoundatic E

I 1 WriteBuildMessage I

Expression Editor ?

Message (String)

1 G te Pipelinelnst:
I3 Generate Pipelinelnstance 1 I"Naming the pipeline instance” I

25 Set new BuildNumberFormat

BuildMumberForm = String.Format("${B

oK Cancel

Varisbles Arguments Impors W @ 100%

-10-

Task 6: Add the TfsVersion Activity

In this task you create the TfsVersion activity, which generates the actual version name in the
Major.Minor.Build.Revision format.

e The Major and Minor values are provided by the user.
e The Build value depends on the current date.

e The Revision value is automatically generated and incremented by TFS each time the commit

stage runs.

Note: This naming schema for the pipeline is not mandatory. You can use any schema you like,

as long as it generates unique names.

1. Add a TfsVersion activity after the WriteBuildMessage activity.

ry1 Set Pipelinelnstance

ity WriteBuildMessage

1 TisVersion

2. Update the values in the TfsVersion activity properties. The correct values are highlighted in
red in the following screenshot.

-11-

Properties

A X

TfsBuildExtensions.Activities.TeamFoundationServer. TfsVersion

%l Search:
B Misc

Clear

I Action

GetVersion

AssemblyDescription

Enter a VB expression

AssemblyVersion Enter a VB expression IZ’
Build Enter a VB expression |Z|
BuildNumberRegex \d+\\d+\\d+\\d+
CombineBuildAndRevision []

| DateFormat MMdd
Delimiter o
DisplayName GeneratePipelinelnstance name

FailBuildOnError

True

]
Files Enter a VB expression IZ’
ForceSetVersion J
IgnoreExceptions Set to true to ignore unhandled e. Izl
LogExceptionStack True !
Major MajorVersion u
Minor MinorVersion !
PaddingCount 0
PaddingDigit
Revision Enter a VB expression IZ’
SetAssemblyDescription]

I SetAssemblyFileVersion] I
SetAssemblyVersion ﬁ
StartDate Enter a VB expression II’
TextEncoding Enter a VB expression IZ’

TreatWarningsAsErrors

Set to true to make all warnings ¢ Izl

UseUtcDate |:|

Version Pipelinelnstance |:
VersionFormat DateTime

VersionTemplateFormat Enter a VB expression |:

3. Rename the TfsVersion activity to GeneratePipelinelnstance name.

Task 7: Add an Assign Activity

In this task, you add an Assign activity that generates the entire instance name for the pipeline and
assigns it to the BuildNumberFormat argument.

1. Add an Assign activity below the GeneratePipelinelnstance activity.

-12-

Note: In the following image the ! sign occurs because the Assign activity properties still need
to be entered.

27 Update Build Number for Triggered Builds ()

¥ Set Pipelinelnstance Or
1y WriteBuildMessage

1 Generate Pipelinelnstance 1

203 Set new BuildNumberFormat (1]

To = Entera VE express

2. Rename the Assign activity to Set new BuildNumberFormat.

3. In the Set new BuildNumberFormat To variable box, enter BuildNumberFormat. Insert the
following code into the value argument.

Visual Basic

String.Format("$(BuildDefinitionName) {@}", PipelineInstance)

The following screenshot shows how to set the variable and the argument.

[Generate Pipelinelnstance ¢]

I
=g Set new BuildMumberFormat |

BuildMumberForm = String.Format("$(B
|

Walue (Infrgument)

-13-

Exercise 3: Versioning the Assemblies

In this exercise you create the steps that version the assemblies to match the pipeline instance name.
With this versioning strategy, you always know the instance that generated any specific binary. Because,
by default, TFS also labels the code after the build number, you will also be able to identify the source
code that generated the binary.

Task 1: Add the Versions Assemblies Sequence

In this task, you add a sequence that embeds the version number in the Assemblylnfo files in the source
code. The version number is the same as the pipeline instance name. Versioning the assemblies occurs
just after getting the source code from the version control system, but before compiling and building it.

1. Locate the Get Workspace activity inside the workflow. It's towards the end of the file.
2. Add a Sequence and name it Version Assemblies. The following screenshot shows the

location of the Version Assemblies sequence.

|# Get Workspace 23

Handle Failed Requests

failedRequests

| Mark Requests for Retry

b

[31 Version Assemblies

Drop activity here

3. Add avariable scoped to the Version Assemblies sequence. Name it AssemblylInfoFiles. The
variable type is IEnumerable<String>. This variable stores the list of AssemblyInfo files to be
changed.

The following screenshot shows the Variables pane with the AssemblyInfoFiles variable.

-14-

Marme Variable type Scope Default

BuildDirectory String Run On Agent Enter a VB expression =
BuildDetail |BuildDetail Sequence Enter a VB expression
BuildAgent [BuildAgent Run On Agent Enter a VB expression
BinariesDirectory String Run On Agent Enter a VB expression
WzsemblylnfoFiles |[Enumerable<String> Version Assemblies Enter a VB expression
[regie Varighle
w
Vanables Arguments Imports "' P 100% - EE
Task 2: Add the FindMatchingFiles Activity
In this task, you add activities to the Version Assemblies sequence in order to retrieve all the
AssemblylInfo files that need to be changed.
1. Add the FindMatchingFiles activity to the Version Assemblies sequence.
2. Open the associated Properties dialog box for this activity.
3. Set the MatchPattern argument to the following code.
Visual Basic
String.Format(“{@}**\assemblyinfo.cs”, SourcesDirectory)
4. Set the Result argument to AssemblylinfoFiles.
The following screenshot shows how to set the arguments.
v Properties v 3 x
Expand All Collapse All Microsoft.-TeamFoundation.Build.Workflow.Activities.FindMatchingFiles
31 Version Assemblies A - 31 search: Clear
] Misc
DisplayName FindMatchingFiles
14 FindMatchingFiles MatchPattern String.Format("{0}**\assemblyinfo.cs", SourcesDirectory) f_“
Result AssemblyinfoFiles r

Task 3: Add a ForEach Activity

In this task you add a ForEach activity that goes through the list of files included in the
AssemblylnfoFiles variable, assigns them to the fileltem variable and logs the file name.

1. Add a ForEach activity after the FindMatchingFiles activity.
2. Rename the default item value in the ForEach box to fileltem.
3. Open the ForEach activity Properties dialog box.

-15-

4. Set the TypeArgument argument to String.

5. Set the Values argument to AssemblylnfoFiles. The following screenshot shows how to set
the arguments.

v DO DTS o D D D O D o nsttonnns. w

Expand All Collapse All System.Activities.Statements.ForEach <System.String >

1] ForEach<String>

Fareach | fileltem |in = AssemblylnfoFiles

DisplayName ForEach<String>
Body TypeArgument String v
Values AssemblyInfoFiles. E

Drop activity here

>

6. Add a WriteBuildMessage activity inside the ForEach loop. The activity logs the files that are
selected.

7. Setthe Message property to the following code.

Visual Basic

String.Format("Found file to be versioned: {0}", fileItem)

The following screenshot shows the ForEach loop properties.

:
Expand All Collapse Al Microsoft.TeamFoundation.Build Workflow.Activities. WriteBuildMessage
4] ForEach<String> A = Eﬂ Search: Clear
Foreach in AssemblyinfoFiles B Misc
DisplayName WriteBuildMessage
Body : : i :
Importance Microsoft. TeamFoundation.Build.Client. BuildMessagelmpor I:‘
String.Format("Found file to be versioned: {0}, fileltem) [_]l
A

4y WriteBuildMessage

Task 4: Add a TfsVersion Activity

In this task, you add a TfsVersion activity that updates the files with the name of the pipeline instance.
1. Add a TfsVersion activity after the WriteBuildMessage activity.
2. Open the TfsVersion activity Properties dialog box.

3. Update the TfsVersion activity properties with the values highlighted in red in the following
screenshot.

-16-

Properties * 0 X
TfsBuildExtensions.Activities. Team FoundationServer. TfsVersion

Clear
SetVersion
AssemblyDescription Enter a VB expression IzI
AssemblyVersion Enter a VB expression Iz'
Build Enter a VB expression Iz'
BuildNumberRegex a4 Ad S d +\Nd +
CombineBuildAndRevision L]
DateFormat
Delimiter . Iz'
DisplayMame Set Version in Assemblylnfo files
FailBuildOnError True [.]
Files AssemblylnfoFiles
ForceSetVersion L]
IgnoreExceptions Set to true to ignore unhandled e Iz'
LogExceptionStack True Iz'
Major MajorVersion III
Minor Minor¥ersion III
PaddingCount 0
PaddingDigit
Revision Enter a VE expression |_|
SetAssemblyDescription
SetAssemblyFileVersion
SetAssemblyVersion L]
StartDate Enter a VB expression |Z|
TextEncoding Enter a VB expression |Z|
TreatWarningsAsErrors Set to true to make all warnings « |Z|
UseUtcDate g
Wersion Pipelinelnstance III
DateTime v
VersionTemplateFormat Enter a VB expression

-17-

Exercise 4: Orchestrate the Stage to Propagate Changes or Stop the Pipeline

In the final exercise you orchestrate the commit stage so that, if it succeeds, it automatically triggers the
next stage in the pipeline. If the commit stage fails, the entire pipeline stops.

Task 1: Add the NextStagesInPipeline Variable
In this task, you add a variable that holds the list of stages to be triggered if the commit stage succeeds.

1. Add a new argument to the workflow named NextStagesinPipeline, of type String[]. In the
Argument type drop-down box, select Array of [T].

MName Direction Argument type Default value
BuildProcessVersion Property String 11.0 -
MajorVersion In String Enter a VB expression
MinorVersion In String Enter a VB expression
MextStagesinPipeline In ‘ Enter a VB expression

——,——— 4

P : Boolean b

Variables Arguments Imports Int32 P 100% h ﬂ EE
String
Array of [T] ‘
Browse for Types ...

2. The Select Types dialog box opens. Select String from the drop-down list.

ArrayOf«T=
DT A

Int32 ~
4 Boolean k
Name Int32 ult value
BuildProcess\Ver String 1.0

Object
MajorVersion Array of [T] fnter a VB expression
MinorVersion Browse for Types ... Enter a VB expression
MNextStagesinPipeline In Array of [T] ~ || Enter a VE expression
A 3
Variables Arguments Imports * P 100% hd ﬂ E

3. The NextStagesInPipeline Argument type should be set to String[].
-18-

Marne Directicn Argument type Default value
BuildProcess\Version Property String 1.0 -
MajorVersion In String Enter o VB expression
MinorVersion In String Enter a VB expression
MextStages|nPipeline In String[] Enter a VB expression

Argument -
Vanables Arguments Imports ‘ P 100% - E

4. Click the Edit button in the Default value column of the Metadata row to launch the Process

Parameter Metadata Editor.

5. The Process Parameter Metadata Editor opens. Click Add. Enter the NextStagesinPipeline
metadata, as shown in the following screenshot.

Parameters:

MSBuildMultiProc
SelutienSpecificBuildOutpu
MajorVersion

Minor/ersion

BuildMumberFormat
INex‘tStageslnPipeIine I

Parameter Mame:

MNextStagesinPipeline

Display Mame:

INext stages in pipeline

Category:

I#QSO Release pipeline

Description:

succeeds

Mext stages in the pipeline, to
be triggered if this stage

Editor:

[] Required

View this parameter when:

| Always show the parameter |

oK

|| Cancel |

Task 2: Add a New Parallel Activity

In this task you add a new parallel activity at the end of the entire workflow that determines if the next

stage can be triggered or if the pipeline should stop.

1. Go to the Check In Gated Changes for CheckinShelveset Builds activity at the end of the

workflow.

-19-

Start_CDPipelineC...ocessTemplatexaml* + X -
Expand All Collapse All

Process
-~

A

2] Check In Gated Changes for Che

| Check In Gated Changes

2. Add a Parallel activity just before the Check In Gated Changes for CheckinShelveset Builds

activity.

>

(it Parallel

Drop activity here

271 Check In Gated Changes for Che A&

1% Check In Gated Changes

Move the Check In Gated Changes for CheckInShelveset Builds activity inside the newly

created Parallel activity.

»

09 [Parae]

2] Check In Gated Changes for Che

A

&) Check In Gated Changes

4. Inside the Parallel activity, add an If activity and name it If NextStagesInPipeline can be
triggered. The If activity will check to see if the commit stage has succeeded or failed.

-20-

00 Parallel (1]

&2 If NextStagesinPipeline can be triggered Oa

Condition 271 CheckIn Gated Changesfor Ch A&

Then Else

4 Check In Gated Changes

5. Inthe Condition box insert the following code, which checks to see if the commit stage was
successful.

Visual Basic

(BuildDetail.CompilationStatus = BuildPhaseStatus.Succeeded) And
(BuildDetail.TestStatus = BuildPhaseStatus.Succeeded)

B Parallel

& f

Condition

Condition (Boolean)

»

|(BuildDetail.CompilationStatus = BuildPhaseStatus.Succeeded) And 0
(BuildDetail.TestStatus = BuildPhaseStatus.Succeeded)

Cancel

Task 3: Add a ForEach Activity to the If Activity.

In this task you add a ForEach activity to the If Then box located within the Parallel activity. The loop will
iterate through the list of stages contained in the NextStagesinPipeline variable to find what stages
should be triggered if the commit stage succeeds. In addition, you add logging to the work flow.

1. Insert a ForEach activity into the If Then box within the Parallel activity.
2. Inthe ForEach box, rename the default item value to Stage.

3. Open the ForEach activity's Properties dialog box.

4. Set the TypeArgument argument to String.

5. Set the Values argument to the NextStagesinPipeline variable.

-21-

>

™
g If

Condition
(BuildDetail CompilationStatus = BuildPhaseStatus.Succeeded) And

Then Else

>

1] ForEach<String>

Foreach |Stage |iﬂ | MextStagesinPipeline

Body

Drop activity here

Drop activity here

Add a WriteBuildMessage activity above the ForEach activity. This automatically generates a

6.
Sequence that includes the WriteBuildMessage and the ForEach activity.
Then
(41 Sequence A
| WriteBuildMessage
P

1] ForEach<String>

Foreach |Stage in NextStagesinPipeline

Body

7. Setthe message text for this WriteBuildMessage activity with the following code, which logs
the triggering of subsequent stages.

Visual Basic
String.Format("Triggering subsequent stages in the pipeline: {0} stages to be

triggered", NextStagesInPipeline.Length)
8. Add another WriteBuildMessage activity inside the ForEach activity body.

9. Define the message text for the WriteBuildMessage activity with the following code, which

logs the stage that is triggered.

-22-

Visual Basic

String.Format("Triggering stage

Then

B

3 Sequence

iy WriteBuildMessage

4] ForEach<String>

&

Foreach Stage in NextStagesinPipeline

Body

i WriteBuildMessage

: {0}", Stage)

Task 4: Add Activities to Trigger Subsequent Stages

In this task you use the QueueBuild activity from the Community TFS Build Extensions to set some
properties and to trigger the next stage in the pipeline. You pass two parameters to each subsequent

stage of the pipeline. Here are the parameters.

Pipelinelnstance: This parameter relates the subsequent stage to the pipeline instance and

gives the stage the same name as that instance.

DropLocation: Because continuous delivery pipelines only build once, you need this parameter

to tell the subsequent stages where

1. Within the ForEach activity you added in the previous task, add a QueueBuild activity below

the WriteBuildMessage activity.

to find the binaries.

-23-

1] ForEach<String> OAa
Foreach |Stage in NextStagesinPipeline

Body

§ Sequence (1P

i# WriteBuildMessage:

1 QueueBuild (1)

2. Open the Properties window of the QueueBuild activity to define the values that are
highlighted in red in the following screenshot. The code for each highlighted property is
found in the next steps.

Properties *Ox

TfsBuildExtensions.Activities, Team FoundationServer.QueueBuild

‘%l Search: Clear
B Misc

BuildController BuildDetail. BuildController IZ‘

BuildDefinition BuildDetail. BuildServer.GetBuildDefinition(BuildDetail. TeamPraject, Stage) Iz‘

BuildServer BuildDetail. BuildServer IZ‘

DisplayMName Queue next stage

Priority Microsoft. TeamFoundaticn.Build.Client.QueuePriority.Normal

ProcessParameters Microsoft.TeamFoundation.Build. Workflow.WorkflowHelpers.SenalizeProcessP Iz‘
]

Result Enter a VE expression

3. Add the following code for the BuildController property.

Visual Basic

BuildDetail.BuildController

4. Add the following code for the BuildDefinition property.

Visual Basic
BuildDetail.BuildServer.GetBuildDefinition(BuildDetail.TeamProject,Stage)
5. Add the following code for the BuildServer property.

Visual Basic

BuildDetail.BuildServer

6. Add the following code for the Priority property.
-24-

Visual Basic

Microsoft.TeamFoundation.Build.Client.QueuePriority.Normal

7. Add the following code for the ProcessParameters property.

Visual Basic

Microsoft.TeamFoundation.Build.Workflow.WorkflowHelpers.SerializeProcessParameters
(New Dictionary(Of String, Object) From {{"PipelineInstance", PipelinelInstance},
{"PipelineInstanceDropLocation", BuildDetail.DropLocation}})

Save your work. You have completed the first HOL in the orchestration sequence.

Summary

In this HOL you created and orchestrated the commit stage of the pipeline by customizing the work flow
in the Start_CDPipelineCommitStageProcessTemplate.xaml file. Here are some points to remember.

e There is no way to create a "pipeline" in TFS. Instead, a pipeline is a set of orchestrated stages.
e Each stage of the pipeline is implemented by a build definition.

e Most of the steps inside the stages are implemented by using workflow foundation activities.
e A pipeline instance occurs when the stages execute.

e To check your work, examine the files found in the TreyResearchBuildCustomization.zip file that
is located in the directory HOL\Lab02\Completed-Lab.

Copyright

This document is provided "as-is." Information and views expressed in this document, including URL and
other Internet website references, may change without notice. You bear the risk of using it. Some
examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

© 2013 Microsoft. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Windows Azure, Windows PowerShell, Silverlight,
Expression, Expression Blend, MSDN, IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server,
Visual C#, Visual C++, Visual Basic, and Visual Studio are trademarks of the Microsoft group of
companies.

All other trademarks are the property of their respective owners.

-25-

