
TechEd Special Edition

input for better outcomes

Learn the discipline, pursue the art, and contribute ideas at
www.architecturejournal.net

19

Mapping Applications
to the Cloud

Enterprise Social
Computing

A Language for Software
Architecture

A Pragmatic Approach
to Describing Solution
Architectures

Developing Parallel
Programs

Toward an Enterprise
Business Motivation Model

Contents

Sign up for your free subscription to The Architecture Journal www.architecturejournal.net

Foreword
by Diego Dagum

1

A Language for Software Architecture
by J.D. Meier
Building software applications involves many important decisions. By organizing these decisions as a

language and a set of mental models, we can organize and share knowledge more effectively. Rather than a

sea of information, we can quickly browse hot spots for relevant solutions.

36

A Pragmatic Approach to Describing Solution Architectures
by Mike Walker
Production environments often fail to realize the solution architectures described in the documentation. In

this article, we look at how we view, approach, and maintain architecture descriptions that will help guide

decision making at the implementation stage.

29

Enterprise Social Computing
by Kendrick Efta
Starting small, certain enterprises reproduced the effects of consumer-focused social computing

technologies within the firewall. As success stories are being seen and case studies take shape, organizations

can begin to plan social computing investments that involve customers, partners, and external communities

in order to harness all that collective intelligence.

24

Developing Parallel Programs
by Ranjan Sen, Ph.D.
Parallel programming is becoming the mainstream paradigm in day-to-day information processing. Its aim

is to build the fastest programs on parallel computers. This article shows how the methodologies for

developing a parallel program can be put into integrated frameworks.

17

Toward an Enterprise Business Motivation Model
by Nick Malik
This article outlines a new structure that can be used to model a wide array of business motivations in

context with the structure and activities of the business. Adopting this structure can support an effort

toward greater enterprise architecture maturity.

10

Mapping Applications to the Cloud
by Darryl Chantry
Will all applications run in the Cloud? Should you attempt to port all of your existing applications to the

Cloud? Should all your new applications be developed in the Cloud? What is this Cloud thing, anyway?

These are a few of the questions that arise whenever you start thinking about using cloud services.

 2

19

Foreword

Dear Architect,
We have been actively working on enhancing your experience both
in terms of delivery channel and high quality content. To do so, we have
decided to stop our print edition and become a fully digital resource. With
the dynamic and flexible digital format, you can search inside articles, send
by email, and access related information and multimedia with a simple
mouse-click. And, of course, you can still print the whole magazine or an
individual article if you want to.
	 Let’s start from delivery channels. Some readers were already receiving
the Journal as a quarterly newsletter containing a link to the PDF. Those
subscribed to the printed edition are now receiving this newsletter too,
sent to the email account used when you originally subscribed.1 This
newsletter is now enriched with a selection of relevant architecture articles,
featuring content published by Microsoft as well as other media groups and
independent voices. The newsletter frequency becomes monthly (the Journal
will keep its quarterly cycle). Content won’t be limited to articles: You’ll also
get taped interviews, demos, case studies, gadgets, calls for papers, and a
wealth of other resources to help you in your work as an architect, aligning
technology to the business.
	 The editorial coverage is also being re-aligned and enhanced. We’ll
continue to cover current and forward-thinking topics of interest to the
industry (we are working these days on “Architecture during uncertain times:
Giving value back to the business thru smart technology decisions”), looking
at issues from development to infrastructure from the architect’s eye. Our
coverage of concrete platform solutions will be extended to new depths.
You’ll find useful information about putting ideas into practice in both the
featured articles themselves and the complementary readings through our
partnership with MSDN Magazine for software developers and Technet
Magazine for IT professionals.
	 Dear reader, while discontinuing the print magazine represents a
disruption, we are excited about the improvements to relevance, accuracy,
and quantity of information we will be able to deliver to your inbox.

The Architecture Journal #19 1

Diego Dagum
Editor-in-chief

Founder
Arvindra Sehmi

Director
Lucinda Rowley

Editor-in-Chief
Diego Dagum

Contributors for This Issue
Darryl Chantry
Kendrick Efta
Nick Malik
J.D. Meier
Ranjan Sen, Ph.D.
Mike Walker

Design, Print, and Distribution
United Business Media Limited –
Contract Publishing
Chris Harding, Managing Director
Angela Duarte, Publication Manager
Bob Steigleider, Production Manager
Camille Verde, Senior Art Director

The information contained in The Architecture Journal
(“Journal”) is for information purposes only. The material
in the Journal does not constitute the opinion of Microsoft
Corporation (“Microsoft”) or United Business Media Limited
(“UBM”) or Microsoft’s or UBM’s advice and you should
not rely on any material in this Journal without seeking
independent advice. Microsoft and UBM do not make any
warranty or representation as to the accuracy or fitness
for purpose of any material in this Journal and in no event
do Microsoft or UBM accept liability of any description,
including liability for negligence (except for personal injury
or death), for any damages or losses (including, without
limitation, loss of business, revenue, profits, or consequential
loss) whatsoever resulting from use of this Journal. The
Journal may contain technical inaccuracies and typographical
errors. The Journal may be updated from time to time and
may at times be out of date. Microsoft and UBM accept no
responsibility for keeping the information in this Journal
up to date or liability for any failure to do so. This Journal
contains material submitted and created by third parties. To
the maximum extent permitted by applicable law, Microsoft
and UBM exclude all liability for any illegality arising from
or error, omission or inaccuracy in this Journal and Microsoft
and UBM take no responsibility for such third party material.

The following trademarks are registered trademarks of
Microsoft Corporation: Microsoft, Active Directory, Excel,
Groove, Outlook, PowerPoint, SharePoint, Silverlight, SQL
Server, Visio, Visual Basic, Visual C#, Visual Studio, Windows
Live, Windows Server, and Windows Vista. Any other
trademarks are the property of their respective owners.

All copyright and other intellectual property rights in the
material contained in the Journal belong, or are licensed
to, Microsoft Corporation. You may not copy, reproduce,
transmit, store, adapt or modify the layout or content of
this Journal without the prior written consent of Microsoft
Corporation and the individual authors.

Copyright © 2009 Microsoft Corporation. All rights reserved.

®

 1 You don’t lose your right to unsubscribe to this newsletter.
	 Find how at http://msdn.microsoft.com/en-us/architecture/aa699369.aspx.

2 The Architecture Journal #19

by Darryl Chantry

Which Came First: The Cloud or Cloud Computing?
Cloud computing has fired the imaginations of many information-
technology (IT) professionals around the world, whether they are small
independent software vendors (ISVs), Silicon Valley startups, or large
corporations that are looking to cut costs. There seems to be an ever-
increasing number of people who look to the Cloud to hit upon the magic
bullet that will solve any IT problem.
	 One interesting aspect of the hype that surrounds cloud computing
is the lack of a clear definition as to what cloud computing is and, just as
relevant, what it is not. If you were to ask 100 people to define the Cloud
and what they believe cloud computing is, you would probably get 150
different answers (some people tend to answer twice, with the first answer
contradicting the second). With this in mind, it seems only fitting to begin
this article by discussing a general definition for cloud computing.
	 The Cloud (or the Internet, if you prefer) has been around for
some time now, about 25 years; so without a doubt, the Cloud
came first, right? Well, one could argue that the first servers on the
Internet were really storage devices for data and applications to be
shared and run globally; or to put it another way, to provide cloud
computing resources in multiple locations globally with almost infinite
scalability. Contrast that to today’s cloud-computing initiatives that
are pretty much there to provide data, applications, and computing
power globally with almost infinite scalability, and you quickly see the
difference… Or is there really a difference?
	 The difference is that we are using new technologies to put a new spin
on old ideas. Cloud computing is more about evolution than revolution,
with technology allowing price points that take these thoughts and make
them available to all people — regardless of budget size — via a utility-
based, pay-for-what-you-use model.

Utility Computing
Utility computing refers to using computing resources (infrastructure,
storage, core services) in the same way you would use electricity or water;
that is, as a metered service in which you only pay for what you use. The
utility can eliminate the need to purchase, run, and maintain hardware,
server, and application platforms, and to develop core services — for
example, billing or security services. Consider the following scenario.
	 A Web-based ISV that wants to makes components available for
Facebook or MySpace faces the following dilemma: The components
they create could be adopted by thousands, or could struggle to find
acceptance in any form. Most ISVs have limited capital, so they need
to balance the expenditure between developing their application and
providing infrastructure to support their software.
	 Such balancing acts can lead to poor applications with good platform
support, or great applications that are rarely accessible due to poor
platform support. Neither scenario is a path to success; this is where utility-
based cloud platforms can help. Cloud utility platforms can provide a
low-cost alternative that can easily scale to meet the demand for the ISV’s
application, which allows them to commit practically all of their resources
toward building a great application.
	 As cloud services are essentially available as a utility offering, should the
product fail, the ISV can simply shut down the services and stop all costs
associated with the software.
	 The utility model also allows organizations to offset some of the costs
of running private data centers by providing additional infrastructure
resources to manage peak loads; this is also known as cloud bursting.
	 Traditionally, to handle peak loading, organizations would often design
data centers that had the processing power to manage peak loads; this
meant that for the majority of the time the data center was underutilized.
By using cloud bursting, an organization can build a data center to the
specifications that will allow the entity to run all normal day-to-day
workloads within their environment, and then use cloud providers to
provide additional resources to manage peak loads.
	 Utility computing is often associated to some form of virtualized
platform that allows for an almost infinite amount of storage and/
or computing power to be made available to the platforms users
through larger data centers. The evolution of cloud computing is
now broadening the definition of utility computing to include service
beyond those of pure infrastructure.

Summary
As economic pressure builds globally, many organizations
are starting to look at Cloud Computing as a potential
choice to reduce the total cost of ownership for IT. In
searching for ways to use Cloud Computing technologies,
enterprises have to ask what applications make good
candidates for moving to the Cloud and which do not, such
as “Does the nature of the business itself allow for Cloud
Computing to even be considered?”
	 This article provides a broad overview into what Cloud
Computing is and discusses an approach to mapping
enterprise applications to Cloud Computing platforms to
assist in determining whether your applications or your
business model are a good fit for the Cloud.

Mapping Applications
to the Cloud

“Will all applications run in the Cloud?
Should you attempt to port all of your existing
applications to the Cloud? Should all your new
applications be developed in the Cloud? What is
this Cloud thing, anyway?”

3The Architecture Journal #19

Mapping Applications to the Cloud

Will All Applications Move to the Cloud?
Will all applications run in the Cloud? Should you attempt to port all of
your existing applications to the Cloud? Should all your new applications
be developed in the Cloud? What is this Cloud thing, anyway? These are
a few of the questions that arise whenever you start thinking about using
cloud services.
	 Some applications will be ideal candidates to be ported to a
cloud platform, developed on a cloud platform, or hosted on a cloud
infrastructure, while other applications will be poor cloud candidates. In
this case, the standard architectural answer “it depends” can be applied
to all of the preceding questions. Practically every application potentially
could exist either partially or fully in the Cloud; the only caveat to this are
the trade-offs in an application’s attributes — and, possibly, functionality —
that you might be willing to make to move it to the Cloud.
	 The following pages discuss a few ideas for decomposing an
application into its basic attributes, and decomposing the Cloud into its
basic attributes, to help make decisions as to whether running your specific
application in the Cloud is practical.

Mapping an Application to the Cloud
Every application is designed to fulfill some purpose, whether an order
management system, flight reservation system, CRM application, or
something else. To implement the function of the application, certain
attributes need to be present: For example, with an order management
system, transaction and locking support might be critical to the
application. This would mean that cloud storage might not be suitable
as a data store for such a purpose. Determining the key attributes of
any application or subsystem of a larger application is a key step in
determining whether or not an application is suitable for the Cloud.
	 Figure 1 shows a number of key high-level attributes (blue column) that
could be relevant to any application. The potential number of attributes
for any given application does not need to be recorded; what you are
attempting to determine is which attributes are the critical ones for your
application. This will likely produce a manageable list of attributes that can
then be mapped to the Cloud. Selecting Data Management, for example,
presents a list of secondary attributes that provide more details for the
high-level attributes. Selecting Access then allows you to specify if you want
either online, offline, or both online and offline access to your data source.
	 Building on the Data Access example, you can start to see how this 	
attribute could affect the choice as to whether or not to use a cloud provider
for data storage. Should the application in question need purely online data,

cloud storage would be an excellent choice; however, if offline
data is all that is required, this could be a key indicator that the
application is not suited for the Cloud. And if you decide that
the application requires both an online and an offline model,
the cost of developing the application to synchronize data

between the application and the Cloud would need to be considered.
	 Choosing to support both an offline and online experience for the
end users will add additional cost to the project; however, should another
attribute, such as high scalability, be identified, the advantages that the
Cloud provides in this area easily could offset the cost of developing
an offline experience. (See Appendix A, Sample Application-Mapping
Attributes, page 7.)

What Makes Up the Cloud?
After you have decomposed an application and determined its key
attributes, you can begin work on a similar exercise for the Cloud —
specifically, for cloud service providers. Splitting cloud attributes into broad
categories can simplify the mapping process. The categories used in this
example are cloud infrastructure, cloud storage, cloud platform, cloud
applications, and core cloud services.
	 You could map any application attributes to cloud attributes in one or
more categories, as depicted in Figure 2.

Cloud Infrastructure
Cloud infrastructure is infrastructure, or more commonly, virtual servers in
the Cloud. Infrastructure offerings are the horsepower behind large-scale
processes or applications. For large-scale applications, think Facebook
or MySpace; for large-scale processing, think a high-performance
infrastructure cluster that is running engineering stress-test simulations for
aircraft or automobile manufacturing.
	 The primary vehicle for cloud infrastructure is virtualization; more
specifically, running virtual servers in large data centers, thereby removing
the need to buy and maintain expensive hardware, and taking advantages

Infrastructure

App 1

App 2 App 3

Platfform Storage Application Core

Figure 2: Mapping application attributes to cloud attributes

Conformant

Data Management

Access

Online Online

Security

Data Management

Maintainability

Reusability

Availability

Portability

Scalability

Affordability

Reliability

User Experience

Distribution

Access

Searchable

Indexed

Transacted

Persistence

State

Structure

Online

Online Yes Yes

Figure 1: Attributes map of an application
“Every application is designed to
fulfill some purpose, whether an flight
reservation system, CRM application,
or something else. To implement the
function of the application, certain
attributes need to be present, which
could mean cloud storage might not be
suitable as a data store. Determining
the key attributes of any application is
a key step in determining whether an
application is suitable for the Cloud.”

4 The Architecture Journal #19

Mapping Applications to the Cloud

of economies of scale by sharing Infrastructure resources.
Virtualization platforms are typically either full virtualization or
para-virtualization environments. (See Appendix B for a more
detailed explanation of virtualization, page 8.)

Cloud Storage
Cloud storage refers to any type of data storage that resides
in the Cloud, including: services that provide database-like
functionality; unstructured data services (file storage of digital
media, for example); data synchronization services; or Network
Attached Storage (NAS) services. Data services are often
consumed in a pay-as-you-go model or, in this case, a pay-
per-GB model (including both stored and transferred data).
	 Cloud storage offers a number of benefits, such as the
ability to store and retrieve large amounts of data in any
location at any time. Data storage services are fast, inexpensive, and
almost infinitely scalable; however, reliability can be an issue, as even
the best services do sometimes fail. Transaction support is also an issue
with cloud-based storage systems, a significant problem that needs to
be addressed for storage services to be widely used in the enterprise.

Cloud Platform
A cloud platform is really the ability to build, test, deploy, run, and
manage applications in the Cloud. Cloud platforms offer alternatives
to these actions; for example, the build experience might be online
only, offline only, or a combination of the two, while tools for testing
applications might be nonexistent on some platforms, yet superb on
others.
	 Cloud platforms as a general rule are low-cost, highly scalable
hosting/development environments for Web-based applications and
services. It is feasible (although an oversimplification) to consider cloud
platforms as an advanced form of Web hosting, with more scalability
and availability than the average Web host. There are pros and cons for
any technology, and a con in the cloud platform world is portability.
As soon as an application is developed to run on a specific platform,
moving it to another cloud platform or back to a traditional hosting
environment is not really an option.

Cloud Applications
A cloud application exists either partially or fully within the Cloud, and
uses cloud services to implement core features within the application.
The architecture of cloud applications can differ significantly from
traditional application models and, as such, implementing cloud
applications can require a fundamental shift in application-design
thought processes.
	 Cloud applications can often eliminate the need to install and run the
application locally, thereby reducing the expenditure required for software
maintenance, deployment, management, and support. This type of

application would be considered a Software as a Service (SaaS) application.
	 An alternative to this would be the Software plus Services (S+S) model.
This is the hybrid between traditional application development and a full
SaaS implementation. S+S applications typically use rich client applications
that are installed on a client’s PC as an interface into externally hosted
services. S+S often includes the ability to interact with an application in an
offline mode, and sync back to a central service when required.

Core Cloud Services
Core cloud services are services that support cloud-based solutions, such
as identity management, service-to-service integration, mapping, billing/
payment systems, search, messaging, business process management,
workflow, and so on. Core cloud services can be consumed directly by an
individual, or indirectly through system-to-system integration.
	 The evolution of core cloud services potentially will mimic that of
the telecommunications industry, with many services falling under the
categories of Business Support Systems (BSS) or Operational Support
Systems (OSS).
	 BSS services manage the interactions, with customers typically handling
tasks such as:

• Taking orders
• Processing bills
• Collecting payments.

OSS services manage the service itself and are responsible for items such as:

• Service monitoring
• Service provisioning
• Service configuration.

Attributes Map for Cloud Services
By using the five cloud categories, we can now develop a set of attributes
for each of the categories. These attributes can be used in two ways:

• Mapping your application’s attributes to cloud attributes to validate
whether cloud services are suitable for your application, and identifying
which types of services to use

• Evaluating cloud service providers as possible candidates for hosting
your applications, identifying which types of services are available from
your chosen provider(s), and then determining specific implementation
attributes of the services offered.

Figure 3 shows the five cloud categories and a list of attributes for the
cloud-storage category. Each cloud provider implements its cloud services !

Cloud Infrastructure

Cloud Storage

API

SOAP REST

Cloud Platform

Cloud Storage

Cloud Applications

Cloud Core Services

Structured

Searchable

Relational

Transacted

Persistent

Security

API

Cost

SOAP

REST Yes No

Figure 3: Five cloud categories and attributes for cloud storage

“A cloud platform is really the ability to build,
test, deploy, run, and manage applications in the
Cloud. Cloud platforms offer alternatives to these
actions; for example, the build experience might
be online only, offline only, or a combination of
the two, while tools for testing applications
might be nonexistent on some platforms, yet
superb on others.”

5The Architecture Journal #19

Mapping Applications to the Cloud

in a slightly different way, with companies like Microsoft offering a number
of different storage alternatives that developers can choose to use,
depending on the required features, for a specific application.
	 Just like application attributes, cloud attributes must be weighed
carefully when determining whether a cloud provider’s services are a
good fit for your needs, as you will have to factor in implementation
cost for each decision you make. (See Appendix A, Sample Cloud-
Mapping Attributes, page 8.)

Overlaying the Cloud and Applications
Now that you have a complete understanding of the application and of
what cloud services you could use to implement a solution, you can now
start to make decisions about what the eventual architecture could be.
Should you find that the Cloud is a viable and cost-effective alternative to
traditional application architecture, the next step would be to choose the
most suitable cloud provider(s) for the application.
	 It is quite possible that no single vendor would match completely
with your requirements; however, you might find that you can obtain all
of the services that your application requires from multiple vendors.
	 Figure 4 depicts an application that uses a number of cloud services,
from multiple cloud providers. The preceding example could represent an
application that is built in ASP.NET and is running on the Azure platform
(cloud platform); however, the application also needs components with
full trust, which means that the components can run only in a full virtual
environment (cloud infrastructure). Data is stored
in a Microsoft cloud (cloud storage), with services
such as Workflow and Identity (core cloud services)
also provided via Azure. The last requirement for the
application could be a billing/payment service (core
cloud services), which could be provided by another
cloud provider.
	 Although this scenario is feasible, the costs that
are associated with having accounts with multiple
providers, using a number of APIs, and then
integrating all of the services into an application
could be impractical. The likely solution would be to
find a single vendor that delivers the majority of the
services that are required by your application, and
use this as the base platform for a hybrid solution.

One Cloud to Rule Them All
Is there one cloud, or are there multiples clouds?
This is a debate that I have heard a number of

times already. One side of this argument is public versus private
clouds. Can a private implementation of cloud technologies
be called a cloud at all, or is it something else? Are all of the
public cloud offerings the same? And what about applications
or systems that span both private and public clouds in a hybrid
model? Where do these fit?
	 The honest answer is that the argument is irrelevant. Whether
you subscribe to one theory or another, the desired outcome is the
same: Build the most cost-effective system that you can that works.
The previous section looked at ideas to help you make decisions;
now, we will take a quick look at potential applications that could
exist in the Cloud or as part of a hybrid cloud solution.

Architecting Solutions in the Cloud
This section describes three application scenarios for which
solutions could be implemented by using cloud services. The
following scenarios are by no means an extensive list of possible

solutions that are suitable for cloud services; they are only indications of
applications that could be feasible.

Ticketing System
When discussing the benefits of a cloud infrastructure, there seems to
be a consensus that a concert ticketing system would make an ideal
candidate for a cloud scenario (Figure 5). On the surface, this type of
application looks like a viable candidate; ticketing systems are often
subject to high demand over a short period of time (people scrambling
to buy tickets for a concert or sporting event that will sell out rapidly).
This is often followed by long periods of low to moderate activity.
	 Ticketing applications are often overloaded during the periods of high
demand, when the need for computing resources is extremely high. The
ability to run up instances of virtual machines to cover such periods would
be beneficial. There are, however, a number of issues that must be taken
into account before architecting such a solution:

• Ticketing systems are data intensive and highly transactional.
Transactions can be required for the payments system as well as to
reserve specific seats for a given event.

• Personally identifying information is almost certain to be collected,
with many customers having an account with the ticketing company or,
potentially, wanting to create an account with the organization.

• Validating credit-card payments can be time consuming, and is a

Figure 4: Single application that uses multiple cloud services and vendors

Infrastructure

App 1

Platfform Storage Application Core

Vendor 1 Vendor 2 Vendor 1 Vendor 3 Vendor 4 Vendor 5

Figure 5: Using cloud infrastructure for ticketing system

Payments Gateway

Internet

Concert Ticketing System

Transactional data locking
required, payments

and PII data collected

Cloud Services Platform

Move Batch
Processing to AWS

Payments Gateway

Data storage
batch data

Compute instance to
process payments

6

Mapping Applications to the Cloud

The Architecture Journal #19

potential source of bottlenecks in the
ticketing process.

• Some virtual cloud-server platforms
cannot save state, which means that
once a server image is shut down, all
changes or additions to data that is
stored within the image are lost.

• Existing ticketing companies already
will have significant investment in
infrastructure and data management.

• Depending on the cloud service that
is chosen, virtual cloud-server images
that are not able to save state will
need to be recreated for every event,
which could well result in a significant
amount of work being required to
prepare an environment for each new
instance.

With all of this in mind, there are a number of ways to use a cloud service
to reduce the demand on an existing system during a peak loading time:

• Duplicate the internal system completely. This would require the most
amount of work; once the application is ready to use, it still would need
to be synchronized with the current system for every new instance.
Permanently leaving the system on (even in a reduced capacity) could be
expensive due to the cost of using a services platform.

• Split the workload between internal systems and a cloud service in
real time. This would involve splitting the process of selecting seats
and purchasing tickets across the two environments; for example, the
transaction could begin on the internal ticketing system where customers
log into their account, select the event they wish to attend, select the
seats, and then are passed off to a cloud service for final processing of
payment. This would mean creating a virtual cloud server that simply
completes the final stage of processing and, as such, would not need to
be synchronized with the main system — effectively being a stateless
processing engine. Only minimal data would need to be transferred to
the cloud service, and credit-card information could be collected on the
external system for single use and then deleted.

• Split the workload between internal systems using batch processing.
Similarly to the preceding processing method, this method would
differ in that all personal information would be collected on the
internal system, including Cc: details. This information then could
be placed in a process queue and shipped in batches to the cloud
service for processing. This would mean that should payment fail, a
secondary process for contacting the person who is attempting to
purchase the tickets would need to be implemented if it does not
already exist.

The preceding solutions are examples of how a ticketing system could
split processing between a cloud service and a company’s internal systems
during periods of heavy use.

Photo/Video Processing
This example shows how you can combine multiple services (infrastructure,
storage, and queuing) to provide a solution for data processing (Figure 6).
In this scenario there are a chain of photo processing stores that make use
of the cloud service to render or reformat digital media files.
	 The photo chain has a number of stores spread across the U.S. and
wishes to centralize large image and video processing to reduce two

aspects of the system: the amount of hardware in each store; and the
complexity of maintaining and supporting the hardware.
	 When a customer comes into a store with a video that needs to
be converted to a different format, the video file is first uploaded to a
storage service, and then a message is placed in a queue service that a
file is on the storage platform and needs to be converted to a different
format. An application controller that is running computer instances
receives the message from the queue, and then either uses an existing
instance of a virtual machine, or creates a new instance, to handle the
reformatting of the video. As soon as this process is complete, the
controller places a message in the queue to notify the store that the
project is complete.
	 The preceding scenario easily can be converted to an online
experience, so that customers could upload files for processing without
having to go to a physical location.

Web Site Peak Loading
The final example that I will use is that of a Web site that has an
extremely high amount of traffic on an irregular basis, which makes
it impractical to build out the hosting infrastructure to support such
peaks (Figure 7). Such sites could be news sites with breaking stories,
game sites announcing a new game, or movie sites showing trailers of
the next blockbuster.
	 The solution to this scenario involves creating a complete copy of
the company’s Web site, or the part of the Web site that will experience
the heavy traffic, on a cloud-service infrastructure service. The copy
of the site would be a static instance running across a number of
Web servers that could be configured as either a load-balanced set of
servers or as a cluster. You can make any changes you need to on the
original Web site, and then synchronize them back to the cloud servers.
This would create latency, but would greatly reduce the effort needed
to maintain the Web servers and Web sites, and would eliminate the
problem of maintaining state between the internally and externally
hosted Web sites.
	 There are many ways to architect solutions for the preceding
scenarios, as there are many more scenarios in which you can use a
cloud service. The goal of this article is merely to highlight a few of the
alternatives and uses for the services that are emerging.

Conclusion
The fascination of the Cloud and cloud technologies is driving many
developers, ISVs, start-ups, and enterprises to scrutinize cloud services

Figure 6: Using cloud infrastructure for photo/video processing

Photo/Video Processing Cloud Services Platform

Virtual server
compute cluster

Large data object
storage

Message queuing
service

Franchise stores
digital graphics chain

Internet

7

Mapping Applications to the Cloud

The Architecture Journal #19

Figure 7: Using cloud infrastructure for peak load coverage

Internet Vitual servers providing a
peak loading copy of a website

Web site

Web site that on occasion
gets extremely high volumes
e.g news site with
breaking story

Cloud Services Platform

transfer web site
to compute cluster

Sample Application-Mapping Attributes

User experience
•	 Usability
•	 Responsive
•	 Efficiency
•	 Performance
•	 Personalizable
•	 User interface
•	 Graphical
•	 Interactive

•	 Distributed
•	 Textural
•	 None
•	 Interaction model
•	 Device
•	 SaaS
•	 Online

Security
•	 Emergency hotfix or breach

management
•	 Security procedures
•	 Trust relationship with platform
•	 Applications security model
•	 Data flow
•	 Malicious code

•	 Access controls
•	 Remote access
•	 Identity
•	 Cryptography
•	 Auditing
•	 Authentication/Authorization

model

Affordability
•	 Resource cost
•	 Development
•	 Available skills
•	 Software enhancements cost

•	 Licensing
•	 Postproduction hardware
•	 Decommissioning
•	 Initial hardware

Data
•	 State
•	 State full
•	 Stateless
•	 Stability
•	 Application constraints
•	 Database constraints
•	 Persistence

•	 Online/Offline
•	 Structure
•	 Unstructured
•	 Indexed
•	 Searchable
•	 Transaction management

Maintainability
•	 Available skill sets
•	 Language support (dev)
•	 Application standards
•	 Technology implementation
•	 Application-code complexity

and volume

•	 Configuration management
•	 Operational management
•	 Flexible
•	 Technology

Scalability
•	 Replication
•	 Caching
•	 Pooling
•	 Software load balancing

•	 Scale out
•	 Scale up
•	 Hardware load balancing

Availability
•	 Technology/Configuration/
		 Implementation to support

availability

•	 Uptime requirement

and assess their suitability for adoption. The
promises of lower cost of ownership — and
of almost limitless scalability, in both storage
and infrastructure power — are hard to ignore.
The promise of the Cloud definitely warrants
inspection; however, you must manage the
adoption of cloud services carefully and
realize that not all applications are suited for
the Cloud. Many applications will work in the
Cloud; however, hidden costs of hosting some
solutions in the Cloud could see projects being
delivered with much higher development and
running costs than would be true of more
traditional and well-defined architectures and
technologies.

About the Author
Darryl Chantry is a senior architect in the Platform Architecture Team
at Microsoft. He has a broad skill set as an architect, having worked as
an enterprise architect, solutions architect, and infrastructure architect.
He joined Microsoft’s New Zealand Developer & Platform Evangelism
team in 2002. Darryl was born and raised in Auckland, New Zealand.
Rugby was always a passion for him, but he has developed a special
interest in anthropology, history, and user experiences. He and his wife
reside in Redmond, Wash., with a Boerboel dog and two Burmese cats.

Follow up on this topic
• Introducing the Azure Services Platform (a David Chappell article):

http://download.microsoft.com/download/e/4/3/e43bb484-3b52-4fa8-
a9f9-ec60a32954bc/Azure_Services_Platform.pdf

• Azure for Business: http://www.microsoft.com/azure/business.mspx
• Azure for Corporate Developers:

http://www.microsoft.com/azure/corpdev.mspx
• Azure for Independent Software Vendors (ISVs):

http://www.microsoft.com/azure/isv.mspx

Appendix A

(cont’d on page 8)

8 The Architecture Journal #19

Appendix B
Cloud-Infrastructure Platforms and Virtualization Types
One of the key enabling-technologies for cloud-computing platforms is
virtualization, which is the ability to provide an abstraction of computing
resources. When we look at cloud-infrastructure platforms as they stand
today, they predominately come in two flavors: fully virtualized or para-
virtualized environments.
	 There are many more variations to virtualization than the two that I have
just mentioned; so, for this post, I thought that I would discuss some of the
virtualization methods that exist and that could well find their way into a
cloud-infrastructure offering.

Emulation
In this type of virtualization, the virtual environment emulates a hardware
architecture that an unmodified guest operating system (OS) requires. One
of the common instances in which you encounter emulated hardware is with
mobile devices. Application developers will use an emulated environment to
test applications that are designed to run on smart phones or on PDAs, for
example. (See Figure 8.)
 	 Pros: Simulates a hardware environment, which is completely different
from the underlying hardware. An example of this would be a mobile device
such as a smart phone emulated on a desktop PC.
	 Cons: Poor performance and high resource usage.

Full Virtualization
In full virtualization, an image of a complete unmodified guest OS is
made and run within a virtualized environment. The difference between
full virtualization and emulation is that all of the virtualized guests run
on the same hardware architecture. All of the guests support the same
hardware, which allows the guest to execute many instructions directly
on the hardware—thereby, providing improved performance. (See
Figure 9.)

Mapping Applications to the Cloud

Figure 8: Emulated-virtualization environment

Application

Guest OS Type X Guest OS Type Y Guest OS Type Z

Hardware Type X Hardware Type Y Hardware Type Z

Application Application

Hardware Base Physical Machine

Sample Cloud-Mapping Attributes

Cloud infrastructure
•	 High availability
•	 Isolation level
•	 Support application types

•	 Support legacy applications
•	 Network support
•	 Platform (OS) support

Cloud platform
•	 Development environment
•	 Test environment

•	 Deployment model
•	 Language support

Core services
•	 Queue
•	 Identity
•	 Federated
•	 Claims

•	 Custom
•	 Billing
•	 Workflow
•	 Search

Cloud storage
•	 Structured
•	 Unstructured
•	 Highly scalable
•	 Stability
•	 Application constraints
•	 Database constraints

•	 Transaction management
•	 Indexed
•	 Searchable
•	 Online/Offline
•	 Persistence

Cloud application
•	 Messaging (e-mail)
•	 Customer relationship

management (CRM)
•	 Project management
•	 Accounting

•	 Web portal
•	 Calendar
•	 Maps

Conformability
•	 Auditable
•	 Regulatory

•	 Standards

Portability
•	 Cross-platform •	 Within platform

Distributability
•	 Local •	 Geo-distributed

Extensibility
•	 Meta-model •	 Configurable

Reliability
•	 Configuration management
•	 Startup and automatic recovery
•	 System performance
•	 Recovery procedures and
	 methods

•	 Load balancing
•	 Fault tolerance

Interoperability
•	 Communications and data

usage
•	 Integration impacts

•	 Architecture compatibility
•	 Ease integration (APIs)

Reusability
•	 Distributable and reusable
•	 Modularity

•	 Hierarchy
•	 Code abstraction

Sample Application-Mapping Attributes - cont’d

9The Architecture Journal #19

Mapping Applications to the Cloud

 	 Pros: The ability to run multiple OS versions from multiple
vendors: Microsoft Windows Server 2003, Windows Server 2008,
Linux, and UNIX, for example.
	 Cons: Virtualized images are complete OS installations and can
be extremely large files. Significant performance hits can occur
(particularly on commodity hardware), and input/output operation-
intensive applications can be adversely effected in such environments.

Para-Virtualization
In para-virtualization, a hypervisor exports a modified copy of the
physical hardware. The exported layer has the same architecture as
the server hardware. However, specific modifications are made to this
layer that allow the guest OS to perform at near-native speeds. To
take advantage of these modified calls, the guest OS is required to
have small modifications made to it. For example, you might modify
the guest OS to use a hypercall that provides the same functionality
that you would expect from the physical hardware. However, by using
the hypercall, the guest is significantly more efficient when it is run in
a virtualized environment. (See Figure 10.)
 	 Pros: Lightweight and fast. Image sizes are significantly smaller,
and performance can reach near-native speeds. Allows for the
virtualization of architectures that would not normally support full
virtualization.
	 Cons: Requires modifications to the guest OS, which allows the OS
to support hypercalls over native functions.

OS-Level Virtualization
In OS virtualization, there is no virtual machine; the virtualization is

Figure 10: Para-virtualization environment

Modified Guest
OS

(Same hardware
architecture
supported)

Modified Guest
OS

(Same hardware
architecture
supported)

Modified Guest
OS

(Same hardware
architecture
supported)

ApplicationsApplications Applications

Hardware Base Physical Machine

Virtual Machine Monitor

Modified Hardware Layer Same Hardware Architecture

VM
Management

Extensions

Figure 11: OS-virtualization environment

Isolated Server
(Same hardware,

same OS)

Isolated Server
(Same hardware,

same OS)

Isolated Server
(Same hardware,

same OS)

ApplicationsApplications Applications

Isolated Server
(Same hardware,

same OS)

Applications

Hardware Base Physical Machine

Shared OS

Figure 12: Application-virtualization environment

Application Virtualization Layer

App A v2.0App A v1.0 App B v2.0 App B v2.0

Hardware base physical machine

Shared OS

done completely within a single OS. The guest systems share common
features and drivers of the underlying OS, while looking and feeling
like completely separate computers. Each guest instance will have
its own file system, IP address, and server configuration, and will run
completely different applications. (See Figure 11.)
 	 Pros: Fast, lightweight, and efficient, with the ability to support a
large number of virtual instances.
	 Cons: Isolation of instances and security concerns around data are
significant issues. All virtual instances must support the same OS.

Application Virtualization
Application virtualization, as with any other type of virtualization,
requires a virtualization layer to be present. The virtualization layer
intercepts all calls that are made by the virtualized application to
the underlying file systems, redirecting calls to a virtual location. The
application is completely abstracted from the physical platform and
interacts only with the virtualization layer. This allows applications
that are incompatible with each other to be run side by side:
Microsoft Internet Information Services 4.0, 5.0, and 6.0 all could run
side-by-side, for example. This would also improve the portability of
applications by allowing them to run seamlessly on an OS for which
they were not designed. (See Figure 12.)
 	 Pros: Improves the portability of applications, allowing them
to run in different operating environments. Allows incompatible
applications to run side by side. Allows accelerated application
deployment through on-demand application streaming.
	 Cons: Overhead of supporting a virtual machine can lead to much
slower execution of applications, in both run-time and native environments.
Not all software can be virtualized, so is not a complete solution.

Figure 9: Full-virtualization environment

Guest OS
(Same hardware

architecture
supported)

Guest OS
(Same hardware

architecture
supported)

Guest OS
(Same hardware

architecture
supported) VM

Management
Extensions

ApplicationsApplications Applications

Hardware Base Physical Machine

Virtual Machine Monitor

10 The Architecture Journal #19

by Nick Malik

Introduction
Enterprise Architecture is an area of IT that focuses on answering some
fairly difficult questions: How do we improve our alignment with the
business? How do we increase the agility and flexibility of IT? How do
we reduce the cost of managing information while improving the level
of service to our business customers? The answers to each of these
questions play out in the models, reports, and recommendations of the
Enterprise Architect.
	 Questions like these are tough to answer. The typical enterprise
is continuously changing to adapt to market conditions, competitive
pressures, regulatory changes, and new opportunities. Talented architects,
program managers, and business leaders frequently find themselves
negotiating a careful path between the often competing goals of various
business leaders across the enterprise. How do you plan for the future
when everything is changing?
	 The answer to this conundrum lies in having a clear view of where the
business is, and where it wants to go. If the business and IT leaders are not
seeing the same measures or aligned to the same goals, much of the work
of Enterprise Architecture loses its effectiveness.
	 There are four steps to this process, as illustrated in the Figure 1. Each
builds on the one before it, so you cannot effectively perform these out of
sequence.

1. Adopt a model: There are many ways to describe how a business
is designed to operate. Various models, from value chain analysis
to SIPOC diagrams to business model diagrams have been used to
illustrate various aspects of value, relationship, and production. Each
has its own strengths. Each focuses on different things.

	 Each business needs to carefully select a single model that is as
comprehensive as possible, answers the questions that they want to
ask, and can be executed by existing resources. Selecting the wrong
model has the effect of wasting time to produce bad advice. Selecting
many different models has the disadvantage of producing many
different answers to pressing questions. As the saying goes, “A man
with one watch knows the time. A man with two watches is never sure.”

		 A single conceptual model can be used to answer many different
kinds of questions for different stakeholders. To extend the analogy,
one watch can display the current time in two time zones, as well as
provide a stopwatch and countdown timer. All can be consistent, yet
each answers a different question.

 2.	 Capture Goals: Once you have a model that can be used to describe
the business, it is time to use it. Describe the business in that model.
Capture both existing structures and future looking objectives and
goals. Create a base of knowledge and understanding that you can turn
to when questions arise. This is the data that you will use to generate
consensus when strong-willed leaders make a bid to use emotion and
passion to overwhelm reason. Get your data right, because it matters.

3.	 Align Efforts: Most businesses have ongoing “change efforts” and
a few more waiting to get started. Each effort has their sponsor and
many have ardent supporters. Alignment means making sure that each
of these efforts is tied to a specific strategic goal or objective and that
there is a reason to believe that accomplishing the effort will further
the particular goal. Business Process Improvement techniques like Six
Sigma are often used to demonstrate how a particular effort supports
a goal through statistics, measurements, and management methods.
After completing this stage, an enterprise architect can produce
reports, based on verifiable data, that illustrate the relative value of
each project to the goals of the business.

Summary
A business motivation model is a conceptual
information model that demonstrates how the efforts
of the business are, or are not, aligned to its goals.
Producing and delivering reports that illustrate this
alignment supports highly mature decision-making. But
before we can collect data to produce these reports, the
structure for data must be developed. Existing models
are not sufficient to serve these needs. This paper
outlines a new structure that can be used to model
a wide array of business motivations in context with
the structure and activities of the business. Adopting
this structure can support an effort toward greater
enterprise architecture maturity.

Toward an Enterprise
Business Motivation Model

4. Manage
Portfolio

3. Align Efforts

2. Capture Goals

1. Adopt a Model

Figure 1: Building toward excellence — each step in describing the

business builds on the one below it

11The Architecture Journal #19

Business Motivation Model

4.	 Manage Portfolio: Having data is one thing. Using it is another. For
an enterprise to make a move away from passion-driven decisions and
toward decisions built on data, the data has to be there, and then the
business has to make a commitment to use it. That said, having the will
to use data, but no data to use, produces an equally ineffective situation.

The first three steps in this process are “all about the data.” Step one is to
select the data model and then, from there, to fill it with pertinent data to
support decisions. Unfortunately, creating an overall model is difficult and
time consuming. It is far better to adopt an existing model than to create
your own.
	 Experience teaches us that the simplest of disagreements about
seemingly small things (like “what is a service,” “how many applications
do we have,” or “what metrics should we use”) can drive wasted effort and
produce inaccuracies in understanding. These inaccuracies can be sizeable,
significant enough to influence portfolio decisions. At the extreme,
valuable projects may be canceled, delayed, or delivered inefficiently, while
low priority projects consume resources or block the way.

The Stakeholders of a Motivation Model
Clearly, Enterprise Architects can benefit from a shared understanding of
the business. However, many more internal stakeholders, both inside and
outside of IT, benefit from a common understanding of the business.
	 Enterprise Program Management Office (EPMO) – When a change in
strategy is considered, the EPMO can quickly identify the projects that may
be affected and how a change to the priority of those projects may affect
other enterprise dependencies.
	 Line of business leaders – Through visibility into the goals and
strategies of other businesses, the leaders can more effectively negotiate
interdependencies to achieve their shared goals. It will be simpler to
avoid taking dependencies when nimbleness is required, and easier
to take a dependency when efforts need to be leveraged off of one
another. Business leaders can also use this information to avoid short-term
dependencies while planning for longer-term dependencies.
	 Business analysts – Analysis and Requirements gathering efforts can
benefit through a single shared understanding of how each business
unit and change strategy is aligned to enterprise goals. Using this
understanding, analysts can collect requirements more efficiently, insure
a complete coverage of their efforts, reduce the amount of time that
business SMEs need to spend sharing information, and improve the results
of their analysis.
	 Software designers and project managers – Having a common base of
understanding of the business can help IT software professionals to produce
information models, analysis models, software services, and information
portals that more closely align to business goals without requiring the
business analysts to document the business in redundant
and often conflicting ways. The model can be used to
trace the requirements back to their source, not just in
terms of the people who provided the requirements, but
the rationale that they used to justify them.
	 IT service managers – Through a shared
understanding of the business, IT managed services,
as described in ITIL, can be designed in a manner that
minimizes overlaps, ensures a cost-effective use of
resources, and insures that investments for flexibility
are made in the right places. In addition, service
managers can align their service level agreements to
many parts of the business in a consistent manner
and can use the business motivation model to identify
and illustrate opportunities to deliver new services
and improve existing ones.

Sources of Business Motivation Models
With all of the various benefits of a consistent model of the business, it is no
surprise that a number of prior attempts at describing a generic business
motivation model have come to light. One strong effort by the Object
Management Group produced the OMG Business Motivation Model (the
first official version was released in September 2007).
	 An outgrowth of a multi-year effort by the Business Rules Group,
the OMG Business Motivation Model (OMG BMM) allows an analyst to
describe the business motivation using a small set of core concepts: means,
ends, influencers, and directives.
	 The OMG is not the only body that has attempted to solve this
problem. The Open Group Architectural Framework (TOGAF) version 9.0
includes, for the first time, a business motivation model that is simpler than
the OMG model and is based on the concepts of drivers, goals, objectives,
and measures.
	 These two models are useful in their own narrow context, but the
models defined by TOGAF and OMG can only answer a limited set of
questions. We needed more than these models could provide. For example,
neither model is able to recognize the source of multiple competing
goals within an enterprise. Neither model can answer the following
question: How do I determine which conflicting strategies, from different
business models, must be rationalized in order to simplify shared business
processes?
	 In order to answer questions like this, we need to represent a key
concept, one that is not well represented in the existing models: one
enterprise can use more than one “business model” (Figure 2). This
business makes two types of electronic eavesdropping equipment that it
sells through three different channels.
 	 When you examine this enterprise, consider this central question:

How many businesses are represented here?

One must answer this question to understanding the nature of business
motivation.

Understanding the Notion of a Business Model
Our answer, to the question above, is based on a comprehensive
understanding of business architecture. If a business is a “way to make
money,” then each “way to make money” is a collection of elements
that together form a business model. A business model is a specific
configuration of these elements. Elements of a business model include
things like customers, products, finances, and resources.
	 A business model goes beyond an abstract “vision” statement. It is
a specific set of elements in a specific configuration. Dr. Osterwalder,
in his Ph.D. thesis, outlined a set of elements that are part of a business

Sound
amplification
components

IBuySpy Sound
Equipment

Manufacturers

Government
Agencies

Direct to
Consumer

Eavesdropping
equipment

Electronic
component

manufacturers

Electronic
assembly

manufacturers

Figure 2: Value flows for the fictional company IBuySpy — how many business

models are represented?

12 The Architecture Journal #19

Business Motivation Model

model. Our adaptation of his approach appears in Figure 3. For more
information on the work of Dr. Osterwalder, visit his blog at http://
business-model-design.blogspot.com/
 	 Before we go into detail about the meaning buried in each diagram,
let’s take a moment to understand how to read the diagrams:

• The arrows from one box to another represent a relationship. The
arrowhead tells you how to read the verb on the line. For example, in
Figure 3, you may have read that “the value configuration targets the
customer demands and relationships.” Two verbs on a line can be read
as two relationships. Therefore, the value configuration both empowers
some partners and prevents others.

• Each type of information appears once and only once.
Therefore, if you have a description of a business unit, it
belongs in the part of the model that describes business units,
and nowhere else. In that way, this model can be used to form
a relational database.

In the Enterprise Business Motivation Model, the composition of
all of the elements in Figure 3 forms the business model. When a
business is just beginning to form, some or all of these elements
would be collected together in a document called a “business
plan.” The business model is a statement of how the business is
supposed to operate. It is, in effect, similar to a vision statement,
but one that not only motivates behavior but helps to guide
development of the corporate structure itself. The business model
describes why you need business units, and what responsibilities
they have. Business processes are created within the confines of
a business unit to fulfill those responsibilities. At the center of this
space is the business model.
	 If we return to the example of IBuySpy, we can ask
the question again: how many business models does the
enterprise have? IBuySpy sells to three different market

segments, and within those segments, IBuySpy sells two totally different
types of products. We could describe IBuySpy as having two business
models (based on the type of products), three models (based on
the market segments) or four business models (based on the value
flows). While answering the question is context specific, and therefore
beyond the scope of this article, one conclusion should be obvious: an
enterprise can have more than one business model. IBuySpy has more
than one way to make money.
	 Note that it is possible to represent some of this detail in the OMG
BMM. It is possible, for example, to represent each business model as a
vision. However, it is not possible to represent the unique relationship that
each business model has with motivating the formation of the business
units, business processes, and specific strategies.
	 Albert Einstein once said “Make everything as simple as possible, but
not simpler.” The Business Motivation Model from the OMG proved too
simple for our needs. It was accurate, but not useful. It was this single
realization that inspired the work described in this article.

Building a New Business Motivation
Model from the Ground Up
Placing the concept of a “business model” into the heart of a “motivation
model” is a major change from current thinking. Existing models were
not designed to represent an enterprise with all of its business units and
competing strategies, business policies, and influences. So, in effect, we are
starting over.
	 However, rather than start from scratch, we started from the same basic
elements as those defined by the OMG and TOGAF models, and set out
to analyze, compose, and create a single model that would produce an
understanding of the business that is rich enough to meet the needs of the
stakeholders described above.
	 From the OMG Business Motivation Model, we draw in the
concepts of an Influencer, an Assessment, and a Directive. From the
TOGAF model, we draw in the concepts of a Driver, a Business Unit,
and a Business Process. From Osterwalder, we draw the concept of the
business model. From the Innovation Value Institute, we draw in the
concept of a Business Capability. At the starting gate, the “model” is
simply a set of entities that may or may not be correct (Figure 4). But it
is a place to start.

Figure 4: The raw materials to build a model from — concepts drawn from

published and unpublished sources

Assesment
SWOT

Impact

Business Unit
Capability

Influencer

Driver

Business Model

Directive

Business Process

Business Unit

Responsibility

Maturity

Principles

Finances Offerings

Alliances

Competencies Activities

Asset

Business ProgramBusiness Policy

Business Rules

Artifacts
Channels

Markets

Goals/Strategies

Measure/KPIs

Business Trends

Competition

Regulation

Recommendation

Business Alliance /
Partnership

Business Model View
Enterprise Business Motivation Model

Required
Competency

affect

input to

targetsdrives

drives

Value
Configuration

affect

affect and
demand

delivered
through

Geographies and
Locales

Distribution
Channels

Products and
Services

Customer Demands
and Relationships

Finance and
Revenue Modelsempowers/

prevents

Figure 3: The elements of a business model — one of seven core

models in the Enterprise Business Motivation Model

13The Architecture Journal #19

Business Motivation Model

What Exactly Does It Mean to Motivate an Enterprise?
The next step to developing a new motivation model is to establish the
relationships between these entities. In order to clarify the relationships, we
start with the nature of motivation. Motivation can be defined as:

motivation (noun) - internal and external factors that stimulate desire and
energy in people to be continually interested in and committed to a
job, role, or subject, and to exert persistent effort in attaining a goal.
(BusinessDictionary.com)

	 This definition clearly states that motivation is about people. You
can’t truly motivate a business because a business doesn’t have desire.
You can only motivate the people involved in an enterprise. Equally
important is the notion that motivation has different effects. You can
motivate people to change a business, or motivate them to maintain
a business in a specific manner. There is more than one kind of
motivation.
	 A business motivation model is an attempt to capture the relationship
between the factors that stimulate change (motivators) and the places in
the business where those changes can be seen. Different motivating factors
have different relationships. The relationships are what differentiate one
type of motivator from another.
	 By looking at the relationships between ‘motivators’ and their effects on
the business, we can discern three basic types of motivators.

1. Influencers are external to the business. They behave as they wish,
and it is up to the business to notice them and respond. Influencers
include competitors and analysts as well as abstract things like
business trends and competitive opportunities. The relationship
between an influencer and the business manifests in the form of a
driver. An influencer inspires a driver, and that driver changes the
enterprise. The driver translates influence into terms (and activities)
that a business can understand.

2. Drivers are internal motivators that affect the model, structure or
capabilities of a business. Drivers are change agents. They represent
any entity or effort that directly drives the business to change.
Drivers include strategies as well as mission statements and change
projects. Drivers can also be the people who are responsible for
bringing those strategies into reality.

3. Directives are statements of policy or rules that do not change the
business. Instead, they provide the rules by which the business is
required to operate. You can change the business by changing the
directives that guide it. Directives affect the individual decisions that
people make and therefore primarily influence business processes.

These three types of motivators are the cornerstones of the Enterprise
Business Motivation Model, as illustrated in Figure 5.
	 We’d like to point out a distinction between this model and those
described by the OMG and TOGAF. The model above groups together
the concepts of a goal, a strategy, a principle, and a measure as types of
drivers. More detail will follow on this point.
	 To understand the distinction between an influencer, a driver and a
directive, consider this simple analogy.
	

When Frank returned from work one particularly hot day last summer,
he noticed that some of the neighborhood children had set up a
lemonade stand on the corner. Four children, all under the age of 12,
were busy selling refreshments for 50 cents each and doing quite well
for themselves.
		 When Frank mentioned the lemonade stand to his own family,
he expected his children to shun the idea. After all, they were not
particularly industrious children. Yet his 12-year-old daughter Megan
and his 10-year-old son Daniel both showed great interest.
		 So the next day, with some encouragement, Megan and Daniel
marched down to the curb and set up shop on a folding card table, selling
their lemonade with cookies they bought by the dozen from Ozun’s Bakery
three blocks away. Megan’s friend Alice joined them and worked through
most of the afternoon. At 75 cents each, their lemonade was more
expensive than the competition, but the cookies made a huge difference.
		 Frank had carefully coached his children on how to politely take
an order and make the correct change. They all agreed not to “eat the
inventory” or give away any free samples. At the end of the day, they
had made enough money to pay for supplies with a little profit left
over. Megan saved her money, and Daniel bought a new toy. But more
importantly, in Frank’s eyes, they had learned to take some initiative and
were rewarded for it.

	 In this story, the influencers were the warm weather, as well as the
neighborhood kids. Frank himself was an influencer. They inspired the
business. But warm weather didn’t put together the lemonade stand. That
was Megan and Daniel’s job. They created a business model that involved
all aspects of the business, from suppliers to customers, including the
strategy of selling their lemonade with cookies.

	 Megan and Daniel were drivers, responsible for making
the changes needed. But those same kids, along with
Megan’s friend Alice, were also the business unit. The
folding table, inventory of lemons and cookies, and even
the hand-lettered signs, are resources of the business unit.
		 Megan and Daniel learned some of the skills they
would need (capabilities) like how to make change,
how to treat customers well, and how to replenish the
lemonade, from their father and then taught Alice. In
addition, they had decided on some key directives
(“don’t eat the inventory” and “no free samples”) that
helped to insure that there would be a profit at the end
of the day. They kept those directives in mind as they
performed their business processes throughout the day.

Figure 5: Enterprise Business Motivation Model

Assesment
SWOT

Impact

Business Unit
Capability

Influencer Driver

Business Model Directive

Business Process

Business Unit

Responsibility

Maturity

Principles

Finances Offerings

Alliances

Competencies

Activities

Asset

Business Service

Business Program

Business Policy

Standards

Business Rules

Artifacts

Requirements

Channels

Markets

Goals/Strategies

Measure/KPIs

Business Trends

Competition

Regulation

Recommendation

“A business motivation model is an attempt to
capture the relationship between the factors that
stimulate change (motivators) and the places in
the business where those changes can be seen.”

14 The Architecture Journal #19

Business Motivation Model

Types of Business Drivers
As you might imagine, each of the base types described so far have
specific subtypes that draw out the distinctions within the model and
provide for clear traceability. Figure 6 highlights the various types of
drivers within the enterprise business motivation model.
 	 As you can see from this model, the mission and vision of the
enterprise are not contained within the description of the business
model. While they may influence the business model, the mission and
vision are statements of principle. They are used to drive action, and are
therefore drivers.
	 The model presented here is different from the existing motivation
model developed by the OMG. In the OMG model, a mission statement
is a means to an end described by the vision statement. Strategy and
Tactic are subtypes of “course of action.” An
extract from the OMG Business Motivation
model, highlighting these elements, is
shown in Figure 7.
 	 The reason for the difference is simple:
the Enterprise Business Motivation Model
considers the complex (yet common)
scenario where some stakeholders may
want to change the business while other
stakeholders may not want to change it,
or may have conflicting ideas about how
to change it. If we are going to effectively
understand the dynamics of change, we
need to be able to describe both the
business as it stands today, and rationale
for changing it.
	 Both of these concerns, the “right now”
and the “not yet,” exist at the same time,
and both must exist independently in the
model in order to understand and trace the
impact of change across the organization.

Business Units and Their Capabilities
Whether your business is a lemonade stand or a multi-national
corporation, a business model can be constructed to describe how the
business can make money. That business model describes the way the
enterprise must behave in order to make money.
	 The business model demands that the business must have some
resources, and that those resources must be applied in a particular
configuration in order to produce a valuable result. These resources live
within the ‘business unit’ part of the business motivation model.
	 A business unit is not only the hierarchical list of people employed
by the enterprise, but also the assets, products, services, liabilities, and
any other “item of value” that tends to appear on a balance sheet or
product catalog. The business units are the organizational ‘parts’ of

Figure 7: The existing OMG BMM represents various drivers but not the business itself

Mission Vision Desired
Result

Goal

EndMeans

Strategy

Course of
Action

is a

channels effort to

includes specific

Subset of
Object Management Group
Business Motivation Model
v1.0 Jan 2008

includes specific
makes operative the

is a

enables

is a is a
is a

amplifies
is a

is a

as component
of the plan for

Figure 6: Types of business drivers and how they relate to one another

evaluates

enables

responds to influences

drives
changes to

prioritizes

makes operative the

enables includes

Mission Vision

Maturity
Assesment

Capability
Roadmap

Business Unit
Capability

Business
Model

Driver

Principle

Influencer

Business Model
Assesment

is a is a
is a is a

is a

motivates change
towards

defines
requirements for

describes
changes to

evaluates

realized in

charts path
to ais ais a

provides
impetus for

describes
impact of

Business Strategy/
Objective

Stakeholder Business
Goal

accountable
for

15The Architecture Journal #19

Business Motivation Model

an enterprise that actually do the work. Figure 8 highlights the key
concepts within the business unit view.
 	 Many of the concepts in this model are identical to those described
by the OMG Business Motivation Model, including the relationships
surrounding Assets. However, this model adds the concepts of a business
capability, capability roadmap, maturity assessment, and business service.
(Note that the OMG model uses the term “Organizational Unit” which
should be read as a synonym for “Business Unit.”)
	 Where the business model describes the required competencies of a
business, the “business unit capability” is the description of a specific
ability, to be performed by a specific business unit. For example, if our
business model says that we need to be competent at “selling widgets,”
there must be a business unit (“sales”) that has the ability to perform this
task (“sell widgets”) using a set of business processes (“generate lead,” “offer
product,” “close sale”). We included this concept in the Enterprise Business
Motivation Model because it is the anchor for one of the two types of
assessments: the capability maturity assessment.
	 A maturity assessment evaluates how well
a business unit performs a required capability. A
highly mature capability is efficient, effective, and
repeatedly produces a high quality result. A finding
of “immature” illustrates the areas of the business
that could be improved. It will not, however, illustrate
the order in which those improvements will be made.
That is where the “capability roadmap” comes in.
A capability roadmap answers the question “which
capability do we need to improve, and when, in
order to improve our enterprise.” Such a roadmap is,
itself, a driver of change.
	 The concepts of business program, company,
and asset are external to the EBMM. They are
illustrated here as reference points for extending and
connecting this model with others.
	 A business service, in this model, is a packaging of
business capabilities so that an offering can be made to
a customer or partner (including an internal customer).
The business model defines what business services

must exist (if any). The business service calls upon specific business units to
provide the effort needed for that service.

Governing Business Processes
Business Processes are an integral part of the business motivation model
because one of the three types of motivation, directives, apply primarily
to business processes. A business process is a series of activities, usually
performed in order, that create value for the customers of the process.
Directives include business rules and business policies, and they are useful
for guiding and governing the behavior of these business processes. (See
Figure 9.)
	 Understanding and modeling the business rules is an important activity,
and the work of the Business Rules Group to create a methodology for
describing business rules is a key step toward maturity in this space. Readers
are encouraged to take a look at the SBVR standard, published by the
OMG, in order to dig deeper into this critical area.

Figure 9: Elements related to business process and directive

Business
Unit

Business
Rules and Facts

Process
Metric

Key Performance
Indicator

Success Metric/
Measure

Business Strategy/
Objective

Business
Policy

Policy
Type

basis for

is a

governs

measures

tracks

includes

specific for

includes

enables

sets performance
criteria

includes

Business
Process

Business
Unit Capability Directive

performs is a
categorizes

supports

is a

tracks
success of

drives changes to

Figure 8: Elements of a business unit

Driver Business
Program

Maturity
Assesment

Capability
Roadmap

makes money for

Enterprise

Business
Process

Business
Unit

Business
Service

Company

Asset

Directive

specific for

implemented
through

includes

governs

prioritizes

influences
enables

defined
in

motivates
change
towards

defines requirements for

describes changes to evaluates

changes

governs
use ofmanages

responsible for

performs

delivered
through

operates

provides
consumes

includes

parts ofis a

Business Unit
Capability

Business
Model

requires

16 The Architecture Journal #19

 	 A success measure may not be a direct measurement of a business
process. Rather, a success measure is the measurable understanding of
“success” that may be cited in the business strategy statements themselves.
For our Lemonade stand, “reducing the amount of waiting time” may have
the effect of increasing sales because fewer people will leave the line and
those that stay will be more satisfied. In this case, our Key Performance
Indicator (reduce wait time) is selected because it tracks the success
measures (increased revenue and increased customer satisfaction).
	 Once again, it is the relationship of the metrics to the rest of the
model that highlight their nature. A metric is not a driver, but it can be
used by a driver to motivate change in the business.

The Overall Structure of the Enterprise BMM
The overall structure of the Enterprise Business Motivation Model is
illustrated in Figure 10. This diagram illustrates each of the core entities
for the Enterprise Business Motivation Model. Other elements can be
connected to this model, including requirements for IT software, to
indicate traceability from the business drivers down to the changes
needed in the IT infrastructure.

Conclusion and Next Steps
Clearly, the Enterprise Business Motivation Model is substantially different
from the models that exist in other frameworks. To the greatest extent
possible, we used the elements and relationships that were defined in
other models as guides in order to ease the process of adopting a new
motivation model into an enterprise architecture program.
	 Adopting a rich and mature model for capturing the structure and

motivations of a business is a key part of growing the maturity of Enterprise
Architecture. Many of the most important questions of enterprise
architecture require a solid understanding of how the business is structured
and aligned to deliver value, and a single comprehensive model of business
motivation allows an Enterprise Architect to answer those questions.
	 We invite comment on this model and hope to see it merge into the
EA frameworks that are appearing in various standards bodies around the
world. If you have suggestions, questions, or comments, please address
them to Nick.Malik@Microsoft.com or visit MotivationModel.com to join
the discussion.

About the Author
Nick Malik has been on the leading edge of software development
as a developer, architect, and business leader for 28 years, including
stints at Racal, American Express, IBM, and Acadio. In his current role
as an Enterprise Architect in Microsoft’s internal IT group, he considers
himself fortunate to be surrounded by some of the most brilliant minds
in Microsoft. When he is not busy being a geek, he can be caught
watching the latest movies, exercising with his wife Marina, or horsing
around with his kids Max, Andy, and Katrina.

Follow up on this topic
• Enterprise Architecture: http://msdn.microsoft.com/architecture/ea
• Enterprise Business Motivation Model: http://www.motivationmodel.com
• Innovation Value Institute: http://ivi.nuim.ie/
• Inside Architecture blog: http://blogs.msdn.com/nickmalik
• Object Management Group: http://www.omg.org

Business Motivation Model

Figure 10: Detailed structure of the Enterprise Business Motivation Model

Required
Competency

affect

input to

targetsdrives

drives

Value
Configuration

affect
affect and
demand

delivered
through

Geographies
and Locales

Distribution
Channels

Products and
Services

Customer Demands
and Relationships

Finance and
Revenue Models

Strength or
Weakness

Potential
Impact

Issue

Business
Judgement

Business Model
Assesment

Recommendation
of Change

Enterprise

composes

Business Model
Element

Business Model

Potential
Reward

Influencer Driver Capability
Roadmap

Business Unit
Capability

Maturity
Assessment

Key Performance
Indicator

Business
Requirement

IT Managed
Service

Business Strategy/
Objective

Influencing
Organization

Principle Business
Goal

Business
Trend

Competitive
Opportunity

Regulation

Risk

composesmakes money for

evaluates

source
of

is a is a

makes operative the

is a
is a

realized in
evaluates

charts path
to a

is a

motivates change towardsprovides impetus for

responds to

accountable for

includes

enables

describes
changes to

tracks
success of

measures

demands

implemented
through

empowers/
prevents

includes

is a

trackssets performance criteria

drives

composes

packages

Specific for

defined in
includes

provides consumes

perfoms
governs

is a is a

supports

categorizes

basis for

is a

describes impact of

is a

defines
requirements for

drive
changes to
priortizes

Business
Rules and Facts

Business
Policy

Policy
TypeDirective

Business System
Interaction

Process
Metric

Success Metric/
Measure

Business
Process

Business
Unit

Business
Services

StakeholderVisionMission

Competitive
Pressure

Business Alliance /
Partnership

influences

enables

17The Architecture Journal #19

by Ranjan Sen, Ph.D.

Introduction
Parallel programming utilizes concurrency to achieve high-performance
computing. Historically confined to supercomputing parlance, parallel
programming today is becoming the mainstream paradigm in regular
day-to-day information processing. This is energized by the widespread
availability of multi-core multiprocessors and cost-effective server clusters.
The software industry in general is integrating rich desktop and server
software-development tools with new-generation parallel-processing tools.
Examples include use of Microsoft Visual Studio and the .NET extension
for parallel computing, Microsoft Windows HPC Server, decentralized
distributed service-oriented programming, grid computing, and so on.
Many of these are rich in ideas that are based on decades of research;
side-effect–free functional programming, giving protection against race;
data-flow paradigm for non–von Neumann
architecture; and many more.
	 Parallel programs are built by combining
sequential programs. The goal is to allow
independent sequential programs to run
in parallel and produce partial results that
then are merged into the final solution via
different combination patterns. We want to
get correct, bug-free parallel programs that
can deliver performance and possibly other
benefits, such as reliability, availability, and
fault tolerance that is integrated with an
existing software ecosystem.
	 Parallel programming is fast becoming
an essential developer skill. Multifarious
variations in parallel-processing technology,
from clients to server clusters, provide diverse
developer toolsets and runtime environments.
Knowing the basic concepts helps in a better
comprehension of the complexity, and it is
never more crucial to the developer than now.

Correctness and Performance
Developers must continue creating correct and efficient applications.
Both correctness and performance confirm that a program produces
the result that it is supposed to deliver within an expected time frame.
In establishing this, the conventional model that is used for sequential
computers is von Neumann’s “stored-program” model. In the “stored-
program” model, there is a single thread of execution; instructions are
executed by one processor at a time.
	 In parallel computers, there is more than one processor, each of
which executes an execution thread simultaneously. Parallel-computer
models that are used for correctness and performance analysis are simple
extensions of stored-program models. The two models that are used are
the shared-memory model and the distributed-memory model (Figure 1).
In the first model, a common memory is shared by all processors; in the
latter model, it is not.
 	 The goal of achieving a high-performance application is achieved by
having several sequential programs run simultaneously, overlapped in
time, with the common goal of solving the same problem. This leads to
two important concepts: decomposition and pattern.

Decomposition and Pattern
Decomposition is the art of splitting (or decomposing) a problem into
independent parts to be solved concurrently. Each of these parts might
obtain (partial) results that can be combined to obtain the final result; we
need a combining scheme (or pattern) for these parts. We can establish

Summary
Parallel programming is an extension of sequential
programming; today, it is becoming the mainstream
paradigm in day-to-day information processing. Its aim
is to build the fastest programs on parallel computers.
The methodologies for developing a parallel program
can be put into integrated frameworks. Development
focuses on algorithm, languages, and how the program
is deployed on the parallel computer.

All processors share a single global memory

Symmetric Multiprocessing – SMP,
Multi-core processor PC

Processors don’t have shared memory but
communicate via network

Multicomputer Multiprocessing – MPP,
Commodity compute clusters

Traditional
Stored program
model

processor processor processor

Bus

Memory I/O
devices

Computer

Computer

Computer

Interconnection network

Computer

Computer

Figure 1: Parallel computers — shared-memory and distributed-memory models

Developing Parallel
Programs

18 The Architecture Journal #19

Developing Parallel Programs

correctness and analyze for performance for each of the parts, as well as
the pattern that is used, to argue about correctness and performance of
the overall parallel computation.
	 As an example, consider the problem of finding maximum of 16 data.
We can divide the data into four parts of 4 data and find the maximum
for each of these parts concurrently on four processors. Then, we can
find the maximum of the maximums. The sequential parts that are used
are the method of finding maximum of 4 data. The pattern that is used
is finding four intermediate possible maximums in parallel, and then
finding the actual maximum. Figure 2 illustrates this scheme.
	 The idea of using decomposition and pattern is not new (see a standard
text, such as [Quinn, 2004] in References). One can think of decomposition
as finding one or more pieces of sequential algorithm (sequential program)
that can be run concurrently on more than one processor. Such a sequential
piece is often referred to as computational grain or simply the grain of
a parallel computation. Similarly, a pattern corresponds to a high-level
algorithm of coordination or a composition scheme. Several patterns are
known to be useful (see [Mattson, 2005] in References).

Analysis of Parallel Programs
Parallel-computer models can be used to analyze parallel algorithms
or the corresponding programs for correctness and performance. A
parallel algorithm is correct if both the sequential program and the
pattern used are correct. We can follow methods that are similar to
those used for sequential programs/algorithms to establish correctness.
We can use the same approach for debugging/diagnosing a faulty
parallel program in this way.
	 In determining correctness, we examine the memory states of
data that the program is supposed to transform. In parallel programs,
dependencies are linear within the sequential pieces of programs that
run in parallel. However, the pattern may have nonlinear dependencies.
For example, the pattern that is used in the preceding algorithm to find
the maximum of 16 integers is a correct scheme, because the programs
Max1, Max2, and the composition scheme that is given by runMax all are
correct. Figure 2 shows a graph of the dependencies of the sequentially
executing programs that are given by Max1 and Max2, as expressed in
runMax.bat. More often, the nodes of these graphs can represent either
data or tasks (computation), or both. In the former case, it is called a
data-flow graph; in the latter, it is called a task graph.

	 Similarly, an algorithmic approach can give us an estimate of
performance. For example, we can reason that in the first stage (of parallel
computation), four execution instances of Max1 on four processors can take
place in time T (to find maximum of 4 integers) concurrently. In the second
stage, we may have one execution instance of Max2 on one processor. Then,
the overall time of the algorithm that is used is 2T with four processes (a
process is an execution instance of a program). This estimate gives a good
point of reference as to what to expect.

Speedup: A Measure of Performance
The ratio of time that is taken by a sequential program to time that is taken
by a parallel program is called speedup. In general, you can find different
parallel algorithms to solve a problem. It is important to know which
achieves the best performance.
	 Amdahl’s law gives 1/[S + (1-S)/n] as an estimate of maximum
speedup, where S is the fraction of inherently sequential code in an
application, and n is the number of processors. By way of illustration, in
the preceding maximum-finding program, the fraction S is given by the
program Max1.c. In the example of finding maximum of the 16 integer,
the fraction S is 0.2 (four instances of Max1 and one instance of Max2 run
sequentially would be 100 percent) and, by Amdahl’s law, speedup can be
at most 2.5 with four processors.
	 The notion of scaled speedup is given by Gustafson-Barsis’s law.
According to it, scaled speedup is bounded by n + (1–n)*s, where n is the
number of processors, and s is the ratio of the time that is spent in the
serial part of the program versus the total execution time. In our preceding
example, s = 1/(log416) = 0.5. So that, for n = 4, this is 2.5; for n = 16 (s =
0.3), it is 11.5; for n = 64 (s = 0.25), it is 49; and so on.

Parallel-Computing Platforms
In the early days of parallel processing, architectures
were expensive and specialized. Recently, multi-core
processors have become the de facto processor
technology.1 The multi-core phenomenon caused
a large-scale impact on game software in early
2000, when Sony used multiple processors for
its PlayStation PS2.2 At the same time, high-
performance server-cluster programs are
superseding the supercomputers in performance.3
There is also the trend of special hardware, such as
gate arrays (for example, FPGA); Graphics Processor
Units (GPU) or cell processors are bringing out new
ways to assemble parallel architecture. Today, diverse
scenarios of distributed systems are using parallel
processing for improved resource utilizations,
throughput, reliability, and availability.
	 In the large-scale parallel-computing platform
technology, operating systems are updated for
multi-core processors, and new and extension

Max1.c
 Finds maximun of 4 command line
 integers
 Saves it in file I.txt
Max2.c
 Finds maximum of 4 integers in file
 I.txt
runMax.bat
 Runs Max1 4 times on 4 integers
 each, to find max in each
 runs Max2 on 4 integers saved in
 I.txt by the earlier runs

123 87 243 9

78 34 67 21

78 243 98
450

87 23 450 76

17 74 98 21

Max1 Max1 Max1 Max1

Max2

450

Figure 2: Scheme showing problem of finding maximum of 16 data

“One can think of decomposition as finding
one or more pieces of sequential algorithm
that can be run concurrently on more than
one processor. Such a sequential piece often
referred to as computational grain or simply
the grain of a parallel computation. Similarly, a
pattern corresponds to a high-level algorithm
of coordination or a composition scheme. “

19The Architecture Journal #19

Developing Parallel Programs

in optimizing compilers and development systems are being crafted
out. In the distributed-systems arena, we are seeing rapid integration of
mainstream enterprise-grade technology, as well as a growth in loosely
coupled systems. Some of the related software and switching technology
are mentioned later.
	 Myrinet is an ANSI4 standard that is used widely in computer clusters.5
Features include an interface card that uses firmware to process protocols
and off-loads host processors, OS bypass for low-latency communication,
and so on. Ten-gigabit Ethernet is an IEEE standard and is the fastest
version of the Ethernet standard. This is 10 times as fast as Gigabit
Ethernet, which is the technology for transmitting Ethernet frames at
the rate of one gigabit per second. Network switched fabrics, such as
InfiniBand,6 are commonly used in parallel-computer architectures

Computer Clusters
Clusters of computers and workstations are a very popular hardware/
software commodity as a cost-effective parallel-processing platform (see
[Sterling, 2002] in References). However, administering and managing such
clusters can be quite complex. Clusters of Windows Server (here, called
Windows HPC Server) address these problems in addition to the high-
performance platform goals. Windows HPC Server provides necessary
cluster services and tools, including Microsoft MPI, job scheduler, and
cluster-management service to make powerful cluster solutions in diverse
scenarios. The high-performance ranking is in the top 10 of the top-500
list.7 New-generation network services are added with MSMPI for support
of very high-speed communication between physical computes in a cluster.
	 The job scheduler can run jobs that are defined in service-oriented
architecture (SOA), in addition to traditional job definitions, as a composition
of tasks that execute programs around the cluster nodes. Also, it accepts jobs
via the HPCBP service interface — thus allowing interoperability from any
platform that adheres to the grid-interface protocol.
	 A Dryad8 is an infrastructure for using the resources in a cluster or
data center that allows a programmer to express a program in terms of
sequential programs and connecting them via one-way channels. Dryad
can express common computing frameworks, such as map-reduce9 or
the relational algebra; it handles job creation and management, resource
management, job monitoring, visualization, fault tolerance, re-execution,
scheduling, and accounting. (See Figure 3.)

	 SSIS SQL Server 2005 Integration Service has been built on top of
Dryad. It executes many instances of Microsoft SQL Server, each on a
Dryad vertex, and uses fault tolerance and scheduling services. This is
being used currently as part of the AdCenter10 log-processing pipelines.
 	 The goal of DryadLINQ,11 a related project, is to make distributed
computing on a large computer cluster simple enough for ordinary
programmers. DryadLINQ translates LINQ programs into distributed
Dryad computations and distributes them to different nodes of a cluster.
The features include declarative programming; automatic parallelization
(both multi-core on a workstation and cluster-wide); integration with
Visual Studio (Intellisense, code refactoring, integrated debugging,
build, source-code management); automatic serialization; job graph
optimizations, via both static term rewriting and dynamic query-plan
optimizations; and conciseness.

Decentralized Software Services (DSS)
The DSS runtime is built on top of Concurrency and Coordination
Runtime (CCR),12 which is a highly concurrent, message-oriented
programming model. CCR has powerful orchestration primitives,
enabling coordination of messages without the use of manual threading,
locks, semaphores, and so on. CCR addresses the need of service-
oriented applications by providing a programming model that facilitates
managing asynchronous operations, dealing with concurrency, exploiting
parallel hardware, and handling partial failure.
	 Run-time files for CCR and DSS are available on the Microsoft
.NET Framework and .NET Compact Framework. The DSS protocol is
being distributed via the Microsoft Open Specification Promise.13 The

availability of the protocol will make communication
between a variety of hardware and software easier.
Binary serialization gives faster throughput. VPL
development tools support regular as well as mobile
development. Also, there is a DSS Service–generation
tool: Visual Simulation Tool.
		 Among other large-scale clusters and new-
generation integration technologies are the cloud
computing architecture from Microsoft Windows
Azure,14 Amazon15 and the Eco-Science Analysis
project.16 The ecological data is huge; databases,
data cubes, and Web services have been used in the
context of data handling. In science with electronic
means (eScience), tools such as Excel, MatLab,
ArcGIS, and SPlus are used. The challenge is how to
connect the data in the cloud to the analysis tool on
the desktop without requiring full data download.

Developing Parallel Programs
To understand better the design, we use a model
at a higher level than the shared-memory model
or the distributed-memory model. This is the task/
channel model (see [Quinn, 2004] in References). A

legacy
code

sed, awk, grep, etc.

PSQL Perl C++ Scope

C#

C#

C++

SSIS

SQL
serverDryadLINQ

Dryad

Distributed Filesystem (Cosmos)

Cluster Services

Windows
Server

Windows
Server

Distributed Shell (Nebula)

CIFS/NTFS

Windows
Server

Windows
Server

jo
b

qu
eu

in
g,

 m
on

ito
rin

g

Machine
Learning

Vectors

Figure 3: Dryad architecture

”The job scheduler can run jobs that are
defined in service-oriented architecture (SOA),
in addition to traditional job definitions, as a
composition of tasks that execute programs
around the cluster nodes. Also, it accepts
jobs via the HPCBP service interface — thus
allowing interoperability from any platform
that adheres to the grid-interface protocol.”

20 The Architecture Journal #19

Developing Parallel Programs

task is a program, its local memory, and a collection of I/O ports. This is
represented by a process in an operating system (threads are contained
in processes). The local memory contains the program instruction and
data. A task can send local data values to other tasks via output ports and
receive data values from them via input ports. A channel is a message
queue that connects the output of one task to the input port of another.
Data values appear at the input port in the same order in which they are
placed in the output port at the other end of the channel.
	 Figure 4 gives a conceptual view of the task/channel model. Tasks are
represented as circular nodes and channels are represented by directed
lines. A direct line between task i and task j indicates a dependency of
task j on task i. Independent tasks can run in parallel. Consequently, if
the tasks are executed in parallel, task j will have to wait for task i to
send data. This is called data dependency, and the graph is a data-flow
graph. However, if the channels represent completion signals, this
depicts control dependency; in that case, the graph is a control-flow
graph (also called a task graph).
	 Task parallelism is achieved when independent tasks execute
concurrently. Note that tasks that correspond to nodes that have identical
labels in Figure 4 run in parallel, and we achieve task parallelism. Data
parallelism is when a task or tasks operate(s) on disjointed sets of data.
	 Consider a four-step process for parallel-program design: partition,
communication, agglomeration, and mapping (see [Foster, 1995] and
[Dongarra, 2003] in References). Partitioning is the process of dividing the
computation and the data into pieces or primitive tasks. Increasing the
number of primitive tasks reduces the inherently sequential fraction in the
parallel program that is designed. This helps in raising the parallelism that
is possible, according to the theoretical bounds that are given by Amdahl’s
law and Gustafson-Barsis’s law. Communication considers the plan for inter-
process communication necessary for the parallel program.
	 Agglomeration is the process of grouping tasks into larger tasks
in order to improve performance or logical abstraction. Mapping is
the process of assigning tasks to processors. The goal is to balance
computation and communication loads in order to maximize processor
utilization and minimize inter-processor communications.

The Parallel-Programming Ecosystem
Parallel programming aims to build the fastest programs on parallel
computers. These programs must be correct as well as amenable
to modern software-engineering practices for efficient life-cycle
management. The main factors to achieve this are the following:

1. Algorithm that is used
2. Implementation language and interfaces

3. Programming environment and tools
4. Target parallel-computing platform

There is considerable literature on designing parallel algorithms (see [Akl,
1989], [Leighton, 1992], and [Miller, 2005] in References). Essentially, the
basic approach is finding sequential pieces that can run in parallel and
combining efficiently the results that they obtain.
	 Tools for developing parallel programs are based on four different
approaches. The first is to extend a compiler. The second is to extend a
sequential programming language and allow core parallel-programming
schemes to be captured from known environments. The third is to add a
parallel-programming layer; this is a layer on a sequential core that controls
creation and synchronization of processes and partitioning data. The fourth
is to create a new parallel-programming language, such as Fortran 90,
High Performance Fortran,17 or C. 18 We will discuss the two more popular
approaches: OpenMP, which is an extension of C++, and Message-Passing
Interface (MPI). 19

OpenMP
OpenMP is based on the shared-memory model. The standard view of
parallelism in a shared-memory program is fork/join parallelism. When the
program begins execution, only a single thread (master thread) is active.
The master thread executes the sequential portions of the algorithm. At
points where parallel operations are necessary, the master thread forks
(creates or awakens) additional threads. Then, the master thread and these
new threads work concurrently through the parallel section. At the end of
the parallel code, the created threads die or are suspended, and the flow of
control returns to the single master thread.
	 A sequential program is a special case of a shared-memory parallel
program—one that has no fork/join. The shared-memory model supports
incremental parallelization, which makes it possible to transform a
sequential program into a parallel program one block of code at a time.
This is a quick way to develop a parallel version of an existing program.
However, the underlying algorithm might not be the best parallel algorithm.
	 OpenMP makes it easy to indicate when the iterations of a for loop
can be executed in parallel. See the second commented-out line in the
following code snippet:

 #pragma omp parallel private(t, x,y,local_count)
 {
 local_count = 0;
 Random^ rand = gcnew Random();
 t = omp_get_num_threads();
 #pragma omp parallel for
 for (int i = tid; i < samples; i += t) {
 x = rand->Next(0,10000)*.0001;
 y = rand->Next(0,10000)*.0001;
 if (x*x+y*y <= 1.0) local_count++;
 }
 #pragma omp critical
 count += local_count;

 }

The #pragma omp parallel for directives in OpenMP are denotations
to the C++ compiler to process the portion in the curly brackets for
parallel execution. Also, note how it is possible to define parameters
that are private to each thread (to reduce contention for shared
memory), and the use of a critical segment using pragmas.
	 In the preceding example, private variables are declared via a clause
of the parallel pragma declaration. This allows avoiding contention

Figure 4: Task/channel model — conceptual view

Task
1

1

3

4

2

2

channel

dependency

Data

Program

Local
Memory

...............................

..........................

..........................

.............................

................................

0

21The Architecture Journal #19

Developing Parallel Programs

when all threads access these variables (in the parentheses). Note that
we have used a critical segment to allow the threads to add their results
back to the value to the shared variable count.

Message-Passing Interface (MPI)
MPI is a standard programming library that is available from FORTRAN,
C, or C++. It enables creation of a distributed-memory programming
environment that can be established across different physical
computers. There are different flavors of MPI: Microsoft MPI (which is
based on MPI-220), HP MPI, Intel MPI, Open MPI, LAM/MPI, MPICH,
FT-MPI, and others.
	 SPMD for a distributed-memory parallel-computer model is the
underlying approach of the programming. The same program is run on all
participating computers (processors, cores, and nodes). An MPI runtime
makes services available through application programming interfaces (APIs)
for necessary support of parallel computation. Processors are identified by
rank in a communication world, and it is possible to have one-to-one as
well as collective communication between them.
	 In Figure 5, three physical computers are shown to host multiple
processes that have distinct ranks.
 	 The entire collection forms a communication world, so that any
processes that are in it can access each other via message-based
communication.

A simple MPI program is shown in the following code snippet:

 #include “mpi.h”
 #include <stdio.h>

 int main(int argc,char* argv[]) {

 int numtasks, rank, rc;

 /** initialize MPI environment **/
 rc = MPI_Init(&argc,&argv);
 if (rc != MPI_SUCCESS) {
 printf (“Error starting MPI program.
Terminating.\n”);
 MPI_Abort(MPI_COMM_WORLD, rc);
 }
 /** get the number of processes and their ranks
**/
 MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

printf (“Number of tasks= %d My rank= %d and
Hostname=%s\n”, numtasks,rank,getenv(“COMPUTERNAM
E”));

 MPI_Finalize();
 }

MPI functions and constants are defined in the mpi.h file and the
data types; operations and constants are similar to the standard C and
FORTRAN equivalents. For complete list of MPI functions, see [Gropp,
1999] in References.

New-Generation Tools
Java and .NET programming languages have programming extensions to
support parallel programming in managed runtimes (see [Lea, 1999] in

References). Parallel FX Library (PFX) runs on .NET Framework 3.5 and the
to be released new .NET Framework 4.0.21 The .NET Framework provides
a runtime that is called the CLR and which runs the code in a managed
environment, with automatic garbage collection, just-in-time execution,
added code-access security, and so on. In this way, parallel processing is
integrated with the hosts of modern .NET-based technologies.22

	 The underlying technique in PFX is to use anonymous functions—
building expressions by using them and then executing such expressions in
parallel. It is convenient to represent anonymous functions as anonymous
delegates23 or as lambda expressions.24 Also, it is possible to create
expression trees by using nesting of expressions; and, with the help of
lambda expressions, we can use functions in such expressions.
	 Imperative task parallelism is achieved via the task parallel library:
System.Threading.dll. Task Parallel Library (TPL) is built on a scheduler that
uses cooperative scheduling and work stealing to achieve fast, efficient
scheduling and maximum processor utilization.
	 TPL provides the System.Threading.Parallel, System.
Threading.Tasks.Task, and System.Threading.Tasks.
Future<T> types, respectively. The first type is used for parallelizing loops
and regions. The static methods that are available with the Parallel type
are For, ForEach, and Invoke. For example:

Task Parallel:
for (int i=0; i < n; i++) results[i] = compute(i);
Parallel.For(0, n, I => results[i] = compute(i));

Data Parallel:
(IEnumerable<T> objects. Use of foreach and ForEach
keywords):
foreach(testClass t in data) compute (t);
Parallel.ForEach(data, delegate(testClass t)
{compute(c);});

Note that the For and ForEach methods take a lambda expression for
definition of the function to apply in parallel. The Invoke static method
can be used to run statements in a block of statement in parallel. The
Task class can be used to create and operate on a task; it is similar to

Figure 5: Three physical computers hosting multiple

processes with distinct ranks

Rank 1 Rank 2 Rank 3

Rank 0

Rank 0

Rank 4

Computer/core3

Process with Rank in
Communication group

Computer/core 1

C
om

pu
te

r/
co

re
 2

Rank 5

“SPMD for a distributed-memory parallel-
computer model is the underlying approach of
the programming. The same program is run on all
participating computers (processors, cores, and
nodes). An MPI runtime makes services available
through application programming interfaces (APIs)
for necessary support of parallel computation. ”

22 The Architecture Journal #19

Developing Parallel Programs

what ThreadPool provides. A delegate is queued for execution. The
Task is simpler to use and offers more functionality. Methods for wait,
status check of tasks are present.
	 Illustrations are given in C#, but TPL is available also in Visual
Basic 2008 and F#, which is a functional programming language (see
[MacLennan, 1990] in References).
	 The Future<T> class derives from Task. This has a value associated
with it that is the result of the asynchronous execution of the System.
Func<T> type instance that is provided as parameter. The value can be
accessed from the Future instance and can be used to wait until it is
available. Future provides a mechanism to define a data-driven or data-
flow computing architecture.25

	 High-level constructs — such as thread-safe collections,
more sophisticated locking primitives, data structures for work
exchange, types to control how variables are productive, and
the repertoire of powerful synchronization primitives — include
CountEvent, LazyInit<T>, ManualResetEventSlim,
SemaphoreSlim, SpinLock, SpinWait, WriteOnce<T>,
and the Collections.BlockingCollection<T>,
Collections.CouncurrentQueue<T>, and Collections.
ConcurrentStack<T>.
	 Parallel LINQ (PLINQ) is a component of PFX. The data parallel
nature ensures that programs can scale efficiently as data increases.
PLINQ offers an incremental way of taking advantage of parallelism
for existing solutions to existing problems. To use PLINQ, you will have
to wrap the data source in an IParallelEnumerable<T> with a
call to the System.Linq.ParallelEnumerable.AsParallel
extension method (IParallelEnumerable is an extension of
IEnumerable<T>).

The var q defines the query, and foreach actually executes it
over the data source q. This declarative query helps the PLINQ to
delay determination of optimal resource uses, such as the number of
processors to run the query until it is actually executed in the foreach
with action a. It will arrange for parts of the query to run on the
available processors through the hidden use of multiple threads.

MPI.NET
MPI.NET26 is an efficient interface for using the native MPI library
from C#. It simplifies interface and extends MPI by taking advantage
of features of C# and the managed-unmanaged interoperability
mechanism. Several innovative measures have been taken to
reduce abstraction penalties in performance. For example, generic
versions of point-to-point Send allow the use of any user-defined
types for transmission. In general, this is extended to all types of
communication operations. For more information, see [MPI.NET,
2008] in References

Programming Environment and Tools
In multi-core systems, operating systems are revamped to include various
paradigms to ensure better resource utilization. In clusters, many of these
supports are integrated development and deployment services and tools,
including service-oriented job scheduling.27

	 Tools provide debugging support at both source levels, such as in Visual
Studio. Visual Studio also provides a parallel debugger extension.28 Trace
logs can help diagnose these problems.29 Portland Group has a debugger
for Windows cluster.30 Other providers include TotalView.31

	 The most common process is to profile the behavior via tracing tools,
followed by analysis and tuning. MPI was developed with tracing in mind.
MPE, which is trace library, is available with MPI distribution 32; also, it is
shipped with Windows HPC Cluster.33 The trace may be viewed by using
viewing tools, such as Jumpshot.34 Other tools include Intel Trace Analyzer
and Collector (Vampir), 35 MPICL + ParaGraph,36 and Epilog and KOJAK.37

Conclusion
Parallel programming is an extension of sequential programming. A parallel
algorithm is given by algorithms of the constituting sequential program
and a pattern to combine them. The programming model for analyzing
sequential programming is extended to the shared-memory model and the
distributed-memory model. Various processor and cluster architectures that
support parallel computing are variations of these two models.
	 Correctness of parallel programs can be established via correctness of
the sequential programs and the pattern of combination of these pieces.
Performance of parallel programs depends on algorithm, implementation
details, and target-computer architecture. Parallel computers range from
multi-core processors to clusters, computational grids, and cloud computers.
	 All of the methodologies for developing parallel programs can be
put into an integrated framework. Development focuses on algorithm,
languages, and how the program is deployed on the parallel computer.

Endnotes
1 Moore, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.4155
2 Copeland, Michael. “Faster Chips, Slower Computers?” Fortune Magazine,

August 14, 2008, http://money.cnn.com/2008/08/13/technology/

microchips_copeland.fortune/index.htm?postversion=2008081405
3 TOP500 Supercomputing Sites, http://www.top500.org/
4 American National Standards Institute.
5 Myrinet Overview, http://www.myri.com/myrinet/overview/
6 InfiniBand, http://en.wikipedia.org/wiki/InfiniBand
7 TOP500.org uses LINPACK Benchmarks to rank performance of parallel

computers, including clusters worldwide, http://www.top500.org/
8 Dryad Overview, http://research.microsoft.com/research/sv/dryad/
9 Google MapReduce, http://labs.google.com/papers/mapreduce.html
10 Microsoft adCenter, http://advertising.microsoft.com/search-advertising
11 DryadLINQ Overview, http://research.microsoft.com/research/sv/

DryadLINQ/
12 Microsoft Robotics Studio (MSRS), CCR, and DSS, http://msdn.microsoft.

com/en-us/library/bb648760.aspx
13 Microsoft Open Specification Promise, http://www.microsoft.com/

interop/osp/default.mspx
14 Microsoft Windows Azure,

!

IEnumberable<T>data = ...;

var q = data.Where(x => p(x)).Orderby(x=> f(x));

foreach (var e in q) a(e);

AsParallel()

”Parallel programming is an extension of
sequential programming. A parallel algorithm
is given by algorithms of the constituting
sequential program and a pattern to combine
them. The programming model for analyzing
sequential programming is extended to the
shared-memory model and the distributed-
memory model.”

http://msdn.microsoft.com/en-us/azure/default.asp

http://money.cnn.com/2008/08/13/technology/microchips_copeland.fortune/index.htm?postversion=2008081405
http://research.microsoft.com/research/sv/DryadLINQ/
http://msdn.microsoft.com/en-us/library/bb648760.aspx
http://www.microsoft.com/interop/osp/default.mspx

23The Architecture Journal #19

Developing Parallel Programs

15 Varia, Jinesh. “Cloud Architectures.” Amazon Web Services, July 2008.
16 Van Ingen, Catharine, and Jay Gupchup. “Enabling Eco-Science

Analysis with MatLab and DataCubes in the Cloud.” Microsoft Research

Publications, May 2008, http://research.microsoft.com/research/pubs/view.

aspx?type=Technical Report&id=1488
17 High Performance Fortran is based on Fortran 90 and was developed in

1993 at Rice University.
18 C* is a parallel version of C that was developed in 1992 for The

Connection Machine, http://www.cs.sunysb.edu/~csilva/papers/rpe/node5.

html
19 Microsoft Visual C++ has an OpenMP extension; Microsoft Windows

HPC Server 2008 and Microsoft Windows Compute Cluster Server 2003

(CCS) SDK has an MPI (MPICH2). Visual Studio Integrated Development

Environment can be integrated with both OpenMP with C++ and

Microsoft MPI.
20 MPI-2 is the standard for an MPI, http://www.mpi-forum.org/docs/docs.

html
21 Microsoft .NET Framework, http://msdn.microsoft.com/en-us/

netframework/default.aspx
22 MSDN Parallel-Computing Forum, http://forums.microsoft.com/MSDN/

default.aspx?ForumGroupID=551&SiteID=1, and Parallel-Computing

Developer Center, http://msdn.microsoft.com/en-us/concurrency/default.

aspx.
23 A delegate is a pointer to functions that preserves type and signature

information.
24 Anonymous methods were introduced in C# 2.0 that allow declaring

inline methods with a delegate function. In C# 3.0, the lambda expression

is available for the same purpose, but more elegantly.
25 Read about Jack Dennis and the papers on data-flow architecture at

http://en.wikipedia.org/wiki/Jack_Dennis.
26 MPI.NET at PPoPP Home Page, http://research.ihost.com/ppopp08/
27 New in Windows HPC Server 2008, http://www.windowshpc.net/Pages/

Default.aspx.
28 Read about debugging MPI on Windows cluster using Visual Studio at

Windows HPC home page, http://www.microsoft.com/hpc/
29 MPI trace logs in WHPC.
30 Read about PGDBG and PGPROF at The Portland Group Web site, http://

www.pgroup.com/resources/mpitools.htm
31 TotalView Technologies, http://www.totalviewtech.com/index.htm
32 MPI Parallel Environment (MPE), http://www-unix.mcs.anl.gov/perfvis/

download/index.htm), from Argonne National Lab.
33 Windows HPC Cluster is the product Windows CCS 2003 or Windows

HPC Server 2008 edition.
34 Jumpshot, http://www-unix.mcs.anl.gov/perfvis/download/index.htm
35 Intel Trace Analyzer and Collector, http://www.intel.com/cd/software/

products/asmo-na/eng/306321.htm
36 MPICL (Instrumentation Library for MPI), http://www.csm.ornl.gov/picl/,

and ParaGraph (Performance Visualization Tool for MPI), http://www.csar.

uiuc.edu/software/paragraph/
37 Epilog, http://icl.cs.utk.edu/projectsfiles/kojak/software/kojak/win_

epilog.zip, and KOJAK, http://icl.cs.utk.edu/kojak/index.html.php

References
[Akl, 1989] Akl, Selim G. The Design and Analysis of Parallel Algorithms.

Englewood Cliffs, NJ: Prentice Hall, 1989.

[Dongarra, 2003] Dongarra, Jack J., et al. Sourcebook of Parallel Computing.
San Francisco: Morgan Kaufman Publishers, 2003.

[Foster, 1995] Foster, Ian. Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering. Reading, MA: Addison-Wesley,
1995.

[Gropp, 1999] Gropp, William, et al. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. Cambridge, MA: MIT
Press, 1999.

[Lea, 1999] Lea, Doug. Concurrent Programming in Java: Design Principles
and Patterns. Second edition. Reading, MA: Addison-Wesley, 1999.

[Leighton, 1992] Leighton, Frank Thomson. Introduction to Parallel
Algorithms and Architectures: Arrays, Trees, Hypercubes. San Mateo, CA: M.
Kaufmann Publishers, 1992.

[MacLennan, 1990] MacLennan, Bruce J. Functional Programming: Practice
and Theory. Reading, MA: Addison-Wesley, 1990.

[Mattson, 2005] Mattson, Timothy G., et al. Patterns for Parallel
Programming. Boston: Addison-Wesley, 2005.

[Miller, 2005] Miller, Russ, et al. Algorithms Sequential and Parallel: A Unified
Approach. Second edition. Hingham, MA: Charles River Media, 2005.

[MPI.NET, 2008] Gregor, Douglas, and Andrew Lumsdaine. “Design and
Implementation of a High-Performance MPI for C# and the Common
Language Infrastructure.” MPI.NET Publications. Proceedings of 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Salt Lake City, February 2008.

[Quinn, 2004] Quinn, Michael J. Parallel Programming in C with MPI and
OpenMP. Dubuque, IA: McGraw-Hill, 2004.

[Sterling, 2002] Sterling, Thomas L. Beowulf Cluster Computing with
Windows. Cambridge, MA: MIT Press, 2002.

About the Author
Ranjan Sen is Senior Solutions Architect at Microsoft. He joined Microsoft
in 2001, having worked in high performance computing, parallel processing
and architecture since 1981. Ranjan earned his Ph.D. in Computer Science
at Calcutta University in 1978, and has served on the faculty of several
universities since 1979, including Indian Institute of Technology, Rutgers
University, and Hampton University. Ranjan specializes in graph theoretic
modeling for algorithm to architecture mapping and has published

extensively on the subject.

Follow up on this topic
• MSDN Magazine October 2008 on Parallel Computing: http://msdn.

microsoft.com/en-us/magazine/cc992993.aspx
• High Performance Computing in the Real World: http://technet.microsoft.

com/en-us/magazine/2009.04.hpc.aspx
.NET Parallel Extensions: http://msdn.microsoft.com/en-us/concurrency/

default.aspx
• Windows HPC Server 2008: http://www.microsoft.com/hpc/en/us/

default.aspx

http://research.microsoft.com/research/pubs/view.aspx?type=Technical Report&id=1488
http://www.cs.sunysb.edu/~csilva/papers/rpe/node5.html
http://www.mpi-forum.org/docs/docs.html
http://msdn.microsoft.com/en-us/netframework/default.aspx
http://forums.microsoft.com/MSDN/default.aspx?ForumGroupID=551&SiteID=1
http://forums.microsoft.com/MSDN/default.aspx?ForumGroupID=551&SiteID=1
http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://www-unix.mcs.anl.gov/perfvis/download/index.htm
http://www-unix.mcs.anl.gov/perfvis/download/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/306321.htm
http://www.intel.com/cd/software/products/asmo-na/eng/306321.htm
http://www.csar.uiuc.edu/software/paragraph/
http://www.csar.uiuc.edu/software/paragraph/
http://icl.cs.utk.edu/projectsfiles/kojak/software/kojak/win_epilog.zip
http://icl.cs.utk.edu/projectsfiles/kojak/software/kojak/win_epilog.zip
http://msdn.microsoft.com/en-us/magazine/cc992993.aspx
http://msdn.microsoft.com/en-us/magazine/cc992993.aspx
http://technet.microsoft.com/en-us/magazine/2009.04.hpc.aspx
http://technet.microsoft.com/en-us/magazine/2009.04.hpc.aspx

24 The Architecture Journal #19

by Kendrick Efta

Introduction
The Web 2.0 phase of the Internet characterizes a fundamental transition
from an ecosystem of static, generated Web content, to an ecosystem of
applications and services that have become vibrant, thriving communities
driven by user participation and promotion. These new services and
applications provide rich, collaborative, social experiences to users, helping
to foster collective intelligence — the “wisdom of the crowds” — and
evolving the way users solve problems, shape opinions and perceptions,
and interact with communities. These user experiences and the effects of
these social computing capabilities have become the hallmark of Web 2.0
technologies.
	 Although this shift has had the most dramatic impact on consumer
Web applications and services, many businesses and enterprises are still
grappling with how to best reproduce the effects to the Web 2.0 consumer
and social Web within the four walls of their organizations.
	 Enterprises have a distinct set of needs and challenges that must
be considered and addressed in order for any deployment of social
applications and services to be successful. Additionally, the concept of
“weak” versus “strong” social software environments — especially as they
relate to social structures and norms within an enterprise — can help
enterprises plan for the evolution of their investments in social computing,
ensuring business value as the enterprise grows and evolves. Finally,
investments in platforms like Microsoft Office SharePoint Server 2007 allow

enterprises to “start small,” trying out aspects of the platform to determine
what best meets their needs, and then “scaling up” the proven services and
applications to meet the strategic needs of the enterprise.

Enterprise Business Needs
Many enterprises exhibit a common pattern of business needs worth
considering when evaluating enterprise platforms and social software.
These needs manifest themselves as “Application Megatrends”1 (Figure 1):

• Agility: applications that can be composed in hours or days (as opposed
to weeks or months) to meet immediate business needs. The business
needs for these applications are often identified and managed at a
tactical level, and are often referred to as “provisional applications” —
they may be discarded or retired once the business need no longer
exists. Conversely, these provisional applications may serve as proofs
of concept to help demonstrate the return on investment for a larger,
more comprehensive solution.

• Usability: functionality and information delivered in interfaces with
which the users are already familiar. For instance, if users spend a
larger percentage of their work day using Microsoft Outlook 2007,
users should be able to access key functionality and information from
within the Outlook interface. Additionally, there is an increasing need
for ubiquitous channels through which social computing information
can be relayed. These may take the form of mobile interfaces, Desktop
Internet Applications, or Rich Internet Applications (like Silverlight or
Flash).

• “Long Tail” business needs: many small companies, or small teams within
large organizations, cannot afford to build custom applications and still
meet highly individuated business needs. IT organizations within these
enterprises are able to address large-scale, enterprise-wide needs, but
typically do not have time or budget to implement smaller projects
with “niche” requirements.

Summary
Given the key business needs and application trends
common within enterprises today, Microsoft Office
SharePoint Server 2007 allows enterprises to start small
and reproduce the effects of consumer-focused social
computing technologies within the firewall. In addition to
supporting smaller-scale “weak” social computing, MOSS
allows users to scale-up to “strong” social computing
scenarios that connect larger numbers of users who
are widely distributed, and that generate collective
intelligence within organizations. As organizations begin
to see success stories and case studies take shape, they
can begin to plan social computing investments that
involve customers, partners, and external communities.
Organizations can also seek to leverage the relationship
between business decision makers and IT to adopt or
develop richer sets of tools on the SharePoint platform
that help to enable social computing both within and
outside of the firewall.

Enterprise Social
Computing

Agility

Consumer Social Computing Use Cases

Demographic Changes

Next Generation Workplace

Usability
Long Tail

Needs
Empowered

Access

Figure 1: Business Needs Influenced by Demographic and

Workplace Changes

25

Enterprise Social Computing

• Empowered access: software capabilities to enable all users, not just
management or executives, to make better decisions. Empowered
access may represent itself as the democratization of information within
an enterprise, or simply taking advantage of a platform’s functionality
to enable smart decisions and actions regardless of the role of the user.

Additionally, there are “horizontal” social changes that may affect how
enterprises perceive and respond to the business needs above.

• Worker demographics: The 81 million children (Tapscott, 2008, p.
16) born from 1977 through 1997 (known as “Generation Y” or
“Millennials”) have begun to enter the workforce in significant numbers.
These workers have been raised with technology, and many expect to
adopt and find innovative uses for technology and social computing
in their work just as they do in their personal lives. Conversely, the 77
million “Baby Boom” workers born between 1946 and 1964 (Tapscott,
2008, p. 16) are starting to near retirement age and exit the workforce.
Although there is a percep tion that these workers do not widely
embrace technology, there is agreement that they have tremendous
knowledge and experience and that social computing technology may
be an excellent way to record and share their intellectual capital prior to
their retirement. 2

• Next-generation workplaces: Enterprises are increasingly embracing
arrangements that break with more traditional workplace infrastructure
and expectations. These include telecommuting, collaboration with
remote colleagues across organizational hierarchies, virtual team-
oriented structures, changes in how relationships with customers
and partners are managed, and an increasing presence of project
freelancers and consultants participating in the “Gig Economy” as
economic conditions remain unstable.

• Consumer-based social computing use cases: Many workers are active
and effective participants in social computing, an have developed
the expectations that consumer-based tools can and should be used
within their companies. Recently, there have been widely-noted
success stories3 of social-computing deployments within enterprises
based on consumer models. These success stories have fueled the
conversation about how social computing can be adopted within
the four walls of an enterprise, reproducing the positive effects of
the consumer-based technology and helping to fulfill company
business needs.

The Enterprise Challenge
Although many workers are ready to adopt the consumer social-
computing technology to enhance productivity and enable collective
intelligence, a key challenge resides with the IT departments who are
responsible for the deployment and maintenance of these tools. IT
departments need “Enterprise Ready” tools that are secure, controlled,
compliant, and manageable. Their concerns about these areas of
governance are very real. There are numerous examples of malware
infecting systems,4 of intellectual property being leaked, and of lost
productivity. Additionally, many of the consumer-oriented social-
computing services do not currently have plans to accommodate
enterprise-specific uses of their services.5 Thus, there are several key
considerations that enterprises should take into account when trying to
reproduce the effects of the consumer Web within the four walls:

• Successful adoption and deployment of social computing solutions
is largely focused on people — their relationships, how they work
together, how they communicate, and the business processes they use.
The technology itself is typically a much smaller part of the solution.

Understanding the needs of the people in the enterprise will greatly
increase the likelihood that the technology meets those needs, and that
the users understand and are bought into the benefits of the technology.

• Investigate enterprise platforms that support both “weak” as well as
“strong” social computing scenarios. A recent Gartner report6 draws the
distinction between “weak” and “strong” social computing. Although
every collaboration technology is social in some way, “weak” social
software can supplement the preexisting connections and social
interaction between individuals (e-mail, document collaboration, instant
messaging). “Strong” social software encourages interaction between
larger numbers of individuals with looser social connections (Facebook,
Digg, LinkedIn, SlideShare, Twitter). This distinction allows organizations
to identify how their business needs fit on the continuum between
weak and strong social software, framing a discussion with the users in
their organizations about these needs, and enabling them to plan their
investment in social-computing technology.

• Don’t “boil the ocean.” Start now, leveraging the platform in place (i.e.
“weak” social software), and begin to prove how social computing (i.e.
“strong” social software) can help to meet business needs.

• Plan longer-term investments in social computing to engage customers,
partners, and other consumer-oriented communities and services.

• Evolve approaches and capabilities for governance and compliance as
needed–governance needs will change over time.

Solutions Framework
Microsoft Office SharePoint Server (MOSS) 2007 provides a platform
and solutions framework for social-computing business needs outlined
above. Although a consumer-focused solutions framework will
necessarily include applications, services, and users that site outside
of the firewall, for our purposes, we’ll consider only the framework for
what will be supported within the four walls of an enterprise. Here’s a
quick tour (Figure 2):

Desktop

Enterprise Social Computing Clients

Social Media Blogs Wikis Forums Mashups

Analytics

Enterprise-to-Community ServicesSocial Services

EMM ECM WCM BPM BI

Portal
Framework

User
Profiles

Enterprise
Search

LOB
Integration

LOB Systems

Social Core (Collective Intelligence,
Social Graphs)

Mobile Browser

Figure 2: Social Computing Solutions Framework

The Architecture Journal #19

26

Enterprise Social Computing

Line of Business (LOB) Systems
It may be necessary to provide data from an enterprise’s line of business
systems to an enterprise platform like MOSS 2007. These data may include
Customer Relationship Management information, fiscal and accounting
data, sales information, and so on. Key business processes and workflows
architected on the SharePoint platform many depend upon these LOB data
to successfully execute.

Enterprise Productivity Services
These services include many of the features common to both weak and
strong social software, and demonstrate the key benefits of selecting a
strong enterprise platform that can enable organizations to materialize
both short-term and longer-term investments in the software. MOSS 2007
services include:

• Enterprise Metadata Management (EMM): central management and
maintenance of corporate metadata to be leveraged in various features
of the platform.

• Enterprise Content Management (ECM): management of content
and assets; integration of EMM to describe and catalog content;
architecture of compliance and retention policies; integration of
content assets and metadata into productivity applications like the
Microsoft Office 2007 suite.

• Web Content Management (WCM): management of Web-based
content; management of reusable and localized content; content
staging and replication; document conversion into Web-based content;
creation and maintenance of key UI and branding assets.

• Business Process Management (BPM): management of business processes
via workflow automation via SharePoint Designer 2007 workflows and

custom-developed Windows Workflow Foundation (WWF) solutions.
• Business Intelligence (BI): Excel Services, Excel Web Access, Key

Performance Indicators (KPIs).
• LOB Integration: Integration with LOB systems via Business Data Catalog

(BDC), display of business intelligence data from Excel Services.
• Enterprise search: search capabilities for content, LOB data, profiles, and

search content stored in off-platform file shares and databases.
• User profiles: management of profile data, social graph and

relationships, personally-managed assets associated with the profile,
unified communications, presence, and Active Directory integration.

• Portal framework: core services designed to orchestrate and provide user
interfaces for the above features; additionally, the framework provides
features like e-mail Alerts, RSS feeds, and connectivity to Microsoft Office
2007 products like Outlook 2007 and Excel 2007. Additionally, it provides
various authentication, authorization, and permissions models.

Enterprise Social Computing Features
MOSS 2007 provides many out-of-the-box social computing features
that build upon core Productivity Services, enabling enterprises to
begin using these features with relatively small investments in planning:

• Blogs: out-of-the-box features allow users to create their own
blogs; post entries via both Web interfaces and tools like Microsoft
Word 2007 and Windows Live Writer; and manage categories and
metadata. Additionally, users may comment on posts. Enhancements
to SharePoint’s blog functionality include the Enhanced Blog Edition
of the Community Kit for SharePoint.

• Wikis: Wiki functionality that allows users to create rich stores of
unstructured knowledge by quickly composing wiki pages, creating
stub pages to indicate where additional content is needed, and to edit
and version content over time. Enhancements to SharePoint’s Wiki
functionality include the Enhanced Wiki Edition of the Community Kit
for SharePoint.

• Forums and discussion boards: features to allow users to post discussion
topics and replies online; integration with Microsoft Exchange allows
users to continue to use the e-mail discussion groups they may still be
using while also saving copies of the discussion threads online so that
they’re available for indexing and can appear in enterprise Search results.

• Social core: MySite features allow users to create and maintain profiles as
well as a social graph of colleagues and organizational hierarchies within

Figure 3: Collaborative Records Management: Home Page

Figure 4: Collaborative Records Management: Connecting
Document Library to Outlook 2007

Figure 5: Collaborative Records Management: Editing
a Document Offline

The Architecture Journal #19

http://get.live.com/writer/overview

27

Enterprise Social Computing

the enterprise; additionally, MOSS provides features for presence as well
as basic visibility into activities of peers that are part of the social network.

• Analytics: MOSS provides out-of-box usage analytics as well as event
logging.

Enterprise Social Computing Clients
Although MOSS is primarily accessible via Web Brower clients, there is
rich integration with the Microsoft Office 2007 productivity suite and
through mobile-enabled interfaces. MOSS also includes Web Services,
which can be called from other applications to integrate, process, and
display data useful to users. An excellent example of this is Vista Gadgets
that display custom views of MOSS data.

Examples of Social Computing Within the Enterprise
The following examples are intended to for both platform features and
social computing features within an enterprise. The first two examples
demonstrate solutions that fit more clearly into the “weak” social software
experience, and the remaining examples are solutions falling squarely into
the “strong” social software experience.

Collaborative Records Management
This solution shows how an organization of geographically distributed
subject matter experts leveraged MOSS’ collaboration features to better
share large numbers of Briefing Documents among themselves (Figures
3, 4, and 5, page 26). Although this example doesn’t feature the same
functionally available on consumer sites, it demonstrates the strength of an
enterprise platform like MOSS in supporting “weak” social scenarios where
users already know each other and work closely together. Additionally, it is
an excellent example of a “provisional application” being quickly composed
by workers to meet a specialized business need. Specifically, the solution:

• Connects a SharePoint Document Library to Microsoft Outlook 2007 for
offline browsing and editing.

• Provides customized views of the Document Library to enable quick
scanning of information or views grouped by predefined criteria.

• Connects a Groove 2007 Workspace to the SharePoint Document
Library to make relevant information available in an interface already
adopted by users.

• Makes available key document metadata and descriptions via RSS feeds.

Figure 6: Call Center Questions Filtered by Vertical and Role Figure 7: Call Center Rating Drill Down

Figure 8: Social Search: Results Interface Figure 9: Social Search: Commenting on a Search Result

The Architecture Journal #19

28

Enterprise Social Computing

• Leverages SharePoint Designer 2007 workflows to allow users to do
a “Quick Submit” for a Brief without needing to completely populate
the project brief template. Users are optionally able to use the mobile
interface for the “Quick Submit” feature.

Call Center Questions Management
This solution was rolled out to a small team of inside sales professionals
who call C-level executives as part of their sales activities (Figures 6 and 7,
page 27). The team had been managing all call scripts in Microsoft Word
and Excel, and was looking for a way to use MOSS 2007 to allow team
members to rate the effectiveness of questions and also provide subjective
comments. The display mechanism ensured that call questions rated as
the most effective were “bubbled to the top” of the call questions list,
increasing the likelihood of using questions more effectively.

Social Search: Silverlight Search Application
This social search application was designed as a prototype to demonstrate
how MOSS’ enterprise search capabilities could be enhanced (Figures 8
and 9, page 27). The MOSS Enterprise Search catalog was supplemented
by other search sources, as well as by social search features:

• The application UI was built in Silverlight for its rich visualization and
UI; a standard ASP.NET version was developed for users without the
Silverlight plug-in.

• The solution consumed custom-developed Web Services that
aggregated several search catalogs into a single, master search index.

• The solution introduced social features that are common in the
consumer social search and bookmark space: Users could rate search
results, comment on search results, save favorite searches and links, and
submit their own links into a catalog of user-generated content.

Enterprise Social Media: Podcasting Kit for SharePoint
The Podcasting Kit for SharePoint (PKS) represents one of the best
examples of a “strong” social-computing experience available on
the SharePoint platform (Figures 10 and 11). Designed as a solutions
accelerator, PKS enables enterprises to use podcasting and common
social-computing features (ratings, comments, favorites, download
statistics, user profiles, faceted browsing, mobile interfaces, taxonomy/
tagging) to manage and aggregate knowledge within organizations. PKS
is distributed under Public License with its source code and is free to use
if you’re already using MOSS 2007.

References
1 This treatment of enterprise needs is borrowed from Scott Jamison’s
presentation from the 2007 Strategic Architect Forum. These needs
continue to be just as relevant, and are perhaps more immediate, given the
current global economy.
2 Salkowitz, 2008, pp. 85-88
3 Appearing as presenters at the Enterprise 2.0 Conference in June
2008, Don Burke and Sean Dennehy from the CIA discussed the CIA’s
deployment and adoption of Intellipedia; Shawn Dahlen and Christopher
Keohane demonstrated Lockheed Martin’s social software platform.
4 See Lt. General Jeffrey Sorenson’s example of finding almost 30,000
instances of malware on the Army’s host computers
5 See Mark Zuckerberg’s comment about Facebook’s focus on enterprises.
He states that although Facebook is not an enterprise application,
someone will make a lot of money developing a social networking app for
the enterprise.
6 Nikos Drakos, 2008

Bibliography
Nikos Drakos, A. B. (2008). Tutorial: Social Context, Not Technology, Definies
Social Software. Gartner.
Salkowitz, R. (2008). Generation Blend. Hoboken, New Jersey: John Wiley &
Sons, Inc.
Tapscott, D. (2008). Grown Up Digital. New York, New York: McGraw Hill.

About the Author
Kendrick Efta is co-founder and Principal Consultant of Allyis. With more
than a decade’s experience conceptualizing, designing, and building
enterprise solutions, Ken is responsible for driving Allyis’ innovation
and thought leadership efforts as well providing strategic insight and
direction for clients. Prior to co-founding Allyis, he served as a technology
consultant to a number of Seattle-area businesses. Ken was recognized by
Western Washington University, along with Allyis co-founders Richard Law
and Ethan Yarbrough, as its inaugural “Young Alumnus of the Year.”

Follow up on this topic
• How to Get the Most Value from Social Computing for Business

with Microsoft: http://www.microsoft.com/downloads/
details.aspx?FamilyId=C5844123-7F31-49D4-811C-
7B90E6217B1D&displaylang=en

• Social Computing in the Microsoft Platform: http://www.microsoft.com/
sharepoint/capabilities/collaboration/social.mspx

Figure 10: PKS: Home Page Features Figure 11: PKS Podcast Download and Details Page

The Architecture Journal #19

http://www.microsoft.com/downloads/details.aspx?FamilyId=C5844123-7F31-49D4-811C-7B90E6217B1D&displaylang=en
http://www.microsoft.com/sharepoint/capabilities/collaboration/social.mspx

29The Architecture Journal #19

by Mike Walker

Since the dawn of information technology (IT), engineers and architects
have created reams of documents to describe their solutions. These
have been published in three-ring binders and placed in obscure
places on bookshelves, eventually to collect dust and be forgotten —
something with which engineers and architects have had to deal as a
fact of life.
	 As time has passed, documentation has evolved from a listing of
detailed methods and procedures to the separation of multiple aspects
of the solution from the detailed APIs and user-interface (UI) design
to the architectural aspects. Integration with developmental and
architectural processes furthered this activity and, eventually, became a
required and common practice. By doing so, governance processes in
many ways restricted forward progress. In many ways, governance has
created both justified and unjustified restrictions to forward-moving
progress on designs and coding, if a set of documentation had not
been completed. This has led to frustration and productivity blockers.
	 Current architecture documentation does not live up to the promise
of providing return on investment in the design process. Often,
the design that is articulated in architecture documentation is not
realized in the final implemented design that is hosted in a production
environment.
	 This pervasive growth of documents shows how critical the
information is to the support of the software-development life cycle
(SDLC). We now see the same with the support of architecture efforts,
too. There are a number of challenges that occur with this paradigm.
 	 As Figure 1 shows, we are adding more and more documents to an
already large portfolio of documents that must be completed. In the past,
this was manageable; now, however, documents can be bloated, and there
is a higher probability of information being duplicated. Often, this is a
result of tightly coupling a document with a process step.
	 The goal is to solve the deficiencies and challenges with current
architecture documentation while preserving the aspects that do work

and have been assimilated into the daily lives of architects.
To do this, we will explore the following concepts:

• Alleviating challenges with current documents — Templates and new
thought-provoking ideas will be introduced that challenge the existing
ways of documenting architectures.

• Living architecture designs — Designs often are static and do not have
a life outside of the development life cycle. We will introduce ways to
change that.

• Enhancing decision support — Often, there are templates and checklists
that give an architect a common way to think about problems. This is an
accelerator to solving problems that have yet to be solved or identified.

• Deriving to solutions — Given how the human mind works, writing
down a design to a specific problem in “black and white” often shows
gaps in current thinking.

• Common means of collaboration — These provide a working
information store to share and collaborate on architectures with team
members.

• Supportability and maintainability — Documents provide important
information on how a system was built. This provides support personnel
with vital information for solving postproduction issues. For architects,
the understanding of current system architecture will allow them to
build out a set of strategies for the enterprise.

Summary
The return on investment of technical documentation
is often not realized and documentation is frequently
looked upon as a necessary evil. Creating the right
architecture descriptions can help guide decision
making at the various stages of the IT life cycle,
however, there are limitations on formalized structures,
information models, and intelligent tooling that takes
the current architecture documentation to the next
level of usefulness. In this article, we look at how we
view, approach, and maintain architecture descriptions,
and consider how this process can be improved.

Pragmatic Approach
to Describing Solution
Architectures

Project Enterprise Architecture Development

Figure 1: Documentation, increasing at an accelerated rate

“The most common and pervasive interface
for creating architecture descriptions is
Microsoft Office Word. Office Word is part
of the Microsoft Office suite of productivity
tools. With documentation, there are
many other tools that play a role in the
documentation processes.”

30 The Architecture Journal #19

Describing Solution Architectures

Rethinking the Traditional Architecture Document
The most common and pervasive interface for creating architecture
descriptions is Microsoft Office Word. Office Word is part of the Microsoft
Office suite of productivity tools. With documentation, there are many
other tools that play a role in the documentation processes.
	 As Figure 2 shows, Office provides a way to reduce complexity and
costs significantly. The Office suite is easy to understand and most users
already have them on their desktops. Augmenting the existing Office tools
to make them fit the usage of architects is particularly ideal. It maintains a
consumable amount of complexity while limiting the overall costs.
	 However, Office Word is not the only tool that is used in the
architectural processes. There are many other tools that have roles to play
in how we document our architectures. These tools include the following:

• Office Visio
• Office PowerPoint
• Office Excel
• Office SharePoint

It is important to understand the context in which these tools interact.
Figure 3 shows an illustration of how other productivity tools play a part in
architectural processes.
 	 We can assert quickly that there is not just one tool that used in
the documentation of architecture; myriad tools are used for collecting
information from or publishing to. If we want to solve the challenges with
the process, we should keep this in mind.

Optimizing Office Word to Describe Architectures
The underlying goal is to change the role of Office Word from simply
a word processor to more of a UI for designing architectures. Applying
structured UI concepts to Office Word provides many benefits to the
architecture document, including the following:

• Structured content — Information can be better described in the
document. We want to do this because of the challenges mentioned
regarding how information does not integrate well with process or
future design activities. One example is the process of importing a
model into an architecture document. Often, we import a picture that
represents a model of the specific viewpoint of an architecture. If we

had an information model, we could specify that the model imported
is indeed the logical model, instead of a generic image file.

• Extensible — With a little more structure, information has meaning
and definition. This makes the information extensible to other
processes downstream.

• Consumable — Ability to consume external content is also possible
with a more structured interface. As an example, if you so choose, you
could import external architecture information from other systems to
automate your design efforts.

Through the use of the Office Word 2007 features that center on XML, we
can truly start to extend this interface. Word does so by providing:

• Embedding XML documents — embed XML file into document for full
data qualification.

• Office Word XML format — fully describes the formatting from the
data through XML to have true separation of the formatting versus the
information.

• Content controls — map most content controls to elements in XML data
attached to a document.

Building the new UI for the architecture documents is easier in Office
Word. A series of out-of-the-box functions are provided in the Office Word
interface. For the architecture document, we will use the built-in tools that
Office Word provides to create this new UI, which will enable us to describe
our information in a meaningful way.

The Architecture of the System-Architecture Document
To change fundamentally how architects use a system-architecture
document, we must look at what services Office Word provides to add
additional capabilities that will automate and create rich metadata
integration services.
	 For this solution, we will use a real world reference architecture called
the Enterprise Architecture Toolkit (EATK). This toolkit will show how to alter
Office Word from a word processor to a UI for describing architectures in
a new way. The Microsoft Office environment provides rich extensibility
that will allow developers to extend in a meaningful way. To do so, an
architectural approach will have to be taken. By separating out layers and
capabilities, approaches and technologies can be identified to derive to the
right solution.

Size = Amount of
Complexity

Modeling Tools

Office + Info Mgmt +
Workflow = EATK

Office Tools

Time to Deliver

Cost

Figure 2: Microsoft Office Word reduces complexity and cost

Cost

Microsoft
Sharepoint

Microsoft
Word

Microsoft
Visio

Microsoft
Powerpoint

Microsoft
Excel

Analyze Architecture
Information

Communicate Architectures

Articulate Architectures

Store and Share
Architectures

Model Architectures

Figure 3: Other productivity tools playing a role in the

documentation process

31The Architecture Journal #19

Describing Solution Architectures

 	 As Figure 4 shows, there are four architectural layers that expose
discrete services for this solution. These include the following:

• Platform — This is what the solution-architecture document and the
integration services connect to. The platform components integrate
with Office SharePoint Application Server environment for rich line-of-
business (LOB) integration.

• Tool — The mechanism of Office Word is referred to here. The tool
provides extensibility into the UI that provides Microsoft Office
ribbons to execute tasks easily with a level of context and Microsoft
Office task panes that extend the UI with additional entry or listings of
information.

• Document — The document provides the way in which a user can
enter architecture descriptions. This is different in the EATK, as the
document acts as the glue between the tool and the information itself.
This is accomplished through an architecture-document template and
the use of Office Word custom controls.

• Information — The information in the document is managed
completely different from a traditional document. All of the
information that is typed into the document is linked back to an XML

node behind the scenes. This fully qualifies what is typed. Not only is
the information rich, but it is extensible.

Platform Architecture
A great deal of work has been done in building componentized add-ins
at the tooling level in Office Word, but this is not enough to change
fundamentally the architecture document into a tool for designing
architectures. The components that are applied to Office Word build
upon a larger architecture canvas. The EATK provides a server-side
Architecture Portal and Architecture Meta-Data Repository (AMR). This
architecture interacts with the document-level activities when we create
an architecture design.
	 Figure 5 shows a logical representation of the architecture that the
EATK provides. It leverages a series of Microsoft-platform technologies,
which include the following:

• Microsoft Office SharePoint (MOSS) 2007 — Used as an Architecture
Portal, Document Management Services, and Workflow

• Windows Workflow Foundation (WF) — The hosted workflow on the
portal that interacts with the desktop application and add-ins

• Microsoft Project Server — Can be used as the platform for interacting
with project and portfolio data

• Microsoft SQL Server — Used as the database platform for the AMR that
the Office Word add-ins Patterns Browser and Architect Lookup will use
to get their information

• Microsoft IIS 7.0 — Used as the hosting platform for the AMR
Services layer

Figure 4: Architectural layers

Tool
Exposes: Task Panes / Ribbons

Document
Exposes: Templates / User Interface / Controls /

Interaction w/ Tooling

Information
Exposes: Offline Information / Structured Content

/ Qualification of architecture information

P
latfo

rm
Exp

oses: C
entralized

 W
orkflow

 /
EC

M
 / A

p
p

lication Services

Figure 5: Architecture behind EATK system-architecture document

Outlook Word Task
Panes

Portal Open
Extensibility

MOSS Presentation Services

FormsWeb Parts Lists

MOSS Application Services

Portal Collaboration
- Ent. Search
- Presence

Forms
Server

Project Server

Project Parts

PSI Forwarder

Project Server
Interface

Business Objects

Data Access

Windows SharePoint Services (WSS 3.0)
Base Services (RMS Document Libraries)

Human Workflow Sevices (WF)

W
eb

 Services

WSS Content WSS
Config

Architecture
Meta-data Store

Project
Server

“To change fundamentally how architects use
a system-architecture document, we must look
at what services Office Word provides to add
additional capabilities that will automate and
create rich metadata integration services.”

32 The Architecture Journal #19

Describing Solution Architectures

 The server components in the EATK play a part in how we change the role
of an architecture document. All of the components on the server leverage
platform capabilities of Office SharePoint, but change the context in which
they can be used. The context is the architecture-development process.
In doing so, we can take generic capabilities such as Enterprise Content
Management (ECM) to automate how information is audited and versioned.
	 The following are new interfaces and EATK components that were
developed specifically for the architectural process and to interact directly
with the system-architecture document:

• AMR Web Services — Services layer that allows for programmatic
interaction with the AMR. It provides extensibility into not only the AMR,
but also other related services such as PPM or Application Portfolio
Management (APM).

• AMR Data Services — The base information services that delivers
information such as patterns and existing IT assets to the Office Word
task panes.

• Document-Management Services — An Office SharePoint–based set of
services that are used to manage documents. It comprises functionality
such as check-in, auditing, versioning, integrating with workflow,
security, and archiving.

• Workflow Services — WF is used as the base of the workflow capabilities.
Also, it is hosted on the server, which allows the architecting workflows
that are applicable to the entire enterprise, instead of to just one
architect.

Tool Architecture
This aspect of the solution is key to bridging the system-architecture
document to both the platform for LOB integration and the document
itself, which will be the interface in which architects will describe their
solutions. All of the application logic is encapsulated in this layer.
Because this is the layer in which code is developed, this solution
is dependent on Office Word API and other standard integration
technologies.
 	 Figure 6 shows the extended capabilities of Office Word. We have
extended the following aspects of Office Word:

• Ribbons — We use this functionality as a launch pad for downstream
activities, workflow triggering, collaboration, and information retrieval.

• Task panes — We can use this functionality for various aspects in which

we want to create other interfaces from within Office Word.
• Properties — Assigning metadata to a document

System-Architecture Document Ribbons
Using the ribbon for the system-architecture document, we will have a series
of functions that relate directly to architectural processes and information.
 	 As Figure 7 shows, there are four ribbon components in the EATK:

• Patterns Search — It displays patterns and existing IT assets that will
help solve specific architecture-design questions and challenges.

• Patterns Browser — It allows for surfacing the right patterns in a more
intuitive way for solving a business problem.

• Architect Lookup — Looking up an architect who is assigned to a project
is streamlined with Architect Lookup by integrating collaboration via
office communication server (ocs)

• Upload Doc — Automatically have a way to integrate architecture
information into hosted workflow and consumed into a metadata
repository.

System-Architecture Document Task Panes
Task panes can be very useful to architects, as they can surface meaningful
information at a moment’s notice with a click of a ribbon component. This
information is not only visible, but also interactive.
	 Tangible ways in which these task panes empower IT architects are the
following:

• Systematic reuse — Many of the architectures that we build have
repeatable patterns built within. By surfacing patterns in a composite

Figure 6: Components of Office Word interface

Figure 8: Interacting with elements in document

Figure 7: Ribbon components of system-architecture document

33The Architecture Journal #19

Describing Solution Architectures

manner, we can reuse the aspects and views of architectures in a
systematic way.

• Decision support — By reviewing existing architectures, we can review
how solutions were developed based on a set of drivers. Not only can
you review, but also you can contrast decisions on these architectures
with the challenges of the current architecture efforts.

• Automation — Not only can you view the patterns and assets in the
task pane, but also you can apply them to your architecture design. By
reusing models and architectural descriptions, you can automate the
architectural process by eliminating unnecessary work.

• Traceability of technology choices — Not only can you surface this
information and apply it to your architecture designs, but now you can
create relationships between what was imported and the architecture
that you are designing.

As one example of this is the Patterns Browser. The intent of the Patterns
Browser is to surface pattern information into the design environment.
Two types of information are displayed:

• Assets — Shows what has been built.
• Patterns — Shows what should be built.

As Figure 8 shows, patterns can be applied to the elements of an
existing architecture. In the preceding case, it is the reuse of a
logical architecture model. Appling the selected model is as easy as
double-clicking the pattern in the Patterns Browser. The pattern then
is applied to the element that is selected in the document.
	 Another innovative way the Task Pane is utilized is by introducing
collaboration. The architectural process is no longer a one-
architect job. Typically multiple architects with specific roles design
systems architecture. Examples of these roles include; Application,
Information, Hardware, Security, or Infrastructure architect.
	 Other roles in review processes will have an impact on the
validity, quality, and level of completeness of the designs. This affects
the architecture in a significant way, too. These roles usually are part
of an Architectural Review Board of sorts. In this function, it is critical
that the architecture document give this group of individuals the
information that it needs to make decisions on the architecture. By
introducing the collaborative aspects to the architectural process,
we can reduce the number of issues ahead of time, instead of at the
end of the process — thus, changing the architecture-design process
from its current form of a reactive process to a proactive process.
	 Architect Lookup would return the names and photos of the
Hardware, Security, and Information architects. As Figure 9 shows, the
Architect Lookup task pane reveals the architect resources, based on
the project that is assigned to the architecture work. The way in which
Architect Lookup determines this is by using the assigned project ID.
The project ID is found in the meta-data of the document. This meta-
data can be entered either manually or through automated means
when the architecture-design request is sent.
	 Architect Lookup will take the project ID and perform a query
against multiple systems to return a set of results. Project Server
(or a custom information store) can be used to retrieve the list of
architect resources, while Office SharePoint and Active Directory are
used to take the resources in the PPM repository and correlate them
with the images of the person, along with links to IM and personal
portal sites.
	 Use of Architect Lookup eliminates the need to go to project
plans, portals, or file shares to find this information manually. It is
a simple click away to get instant access to other resources on the
project, to get answers to questions.

Figure 9: Architect Lookup task pane

Figure 10: Collaborative architectures

Envision Design Build Stabilize Deploy Production

Architecture Development

Application
Architect

Business
Architect

Chief
Architect

LOB CIO
Architect

Hardware
Architect

Security
Architect

Information
Architect

Application
Architect Architect

Operations
Architect

Modify Maintain

Review

Create

34 The Architecture Journal #19

Describing Solution Architectures

 	 Each role has a part to play in the architectural process. Given the
illustration in Figure 10, we see that an Application architect might start
the process, but then might need the aid of other architects. In this
case, the Application architect might be the owner of the document
and be the primary contributor. The other roles that are shown — such
as Hardware architect, Security architect, and Information architect —
are some that would interact. These roles will validate, add, and modify
architecture-design descriptions.
	 In this context, a sample of common questions to these roles would
look like the following:

• How will the security model affect how I design my application?
• I know that I must design an external portal, but what does the server-

tier model look like for the DMZ?
• What will the network stack look like, and how will that affect

performance or scalability?
• What is the right hardware?

Document-Template Architecture
Along with enhancements to the tool, the next layer of concern is the
document template.
	 The document-template layer does not have a great deal of intelligence
to it; however, it does allow interaction from Office Word to the document.
One example is that the EATK allows information from an external source
to be “clicked and dragged” into the document. This pulls data from a
database and populates the document with architecture models.
	 The EATK provides not only the Office Word add-ins that are described
in the previous sections of this article, but also a system-architecture
document template, as Figure 11 shows:
 	 The views that are listed in the table of contents are a set of
common views. These views can be renamed or removed, and
additional views can be added. These views provide a starting point
for architects. Whereas you can use the system-architecture document
template as your corporate standard in your company, it will be
common practice to modify it.
	 With many documents that are surrounded by process, we want to
create templates to ensure that they are used in a consistent way. This
is the same case with the system-architecture document template. A
template for the architecture document will allow for:

Figure 11: System-architecture document template

Figure 12: IEEE framework for architectural description

Mission

Enviroment System Architecture

Stakeholder Rationale

Concern Viewpoint View

Library
Viewpoint

fulfills 1..*

influences has an

inhabits

described by
1

is important to
1..*

has 1..*
identifies
1..* provides

is addresed to
1..*

participates in

has
1..*

identifies
1..*

used to
cover 1..*

has source
0..1

selects
1..*

conforms to

organized by
1..*

participates in
1..* consists of

1..* aggregates
1..*

establishes methods for
1..*

Model

Architectural
Description

35The Architecture Journal #19

•	 Everyone using the right version of the architecture document.
•	 Ensuring that the information models stay intact.
•	 Allowing for information to be generated by the system.
•	 Enabling information to be consumed by downstream processes.

Information Architecture
The last piece of the puzzle is the information itself. Having great add-ins
and template is great; however, without a meaningful way to express and
ensure that the information is long living in a connected process, it is not as
useful as it could be. Without information architecture, it would be difficult
to qualify architectures.
	 The information layer is the base of the solution; it is where the majority
of the consideration is made. All layers interact with each other in some
way, but the information layer is connected directly to all. It is consumed in
workflows, information-entry processes, and automation through Microsoft
Office ribbons and task panes.
	 By using industry-standard techniques to derive to the target
information architecture. Two fundamental aspects of the EATK that we
must explore are the following:

• Ontology — We want to define a set of terms that are understood
commonly within the enterprise. By doing so, we can relate information
properly and consistently.

• Taxonomy — This will allow you to correlate architecture information
with other aspects of architecture.

The architecture document should use the terms in the proper usage to
qualify what the information is. Publishing an online ontology mapping
will be useful toward understanding the information within the document.
In the context of the system-architecture document, ontology provides
agreed-upon terminology for architecture. As an example, it would
define the meanings of a platform, system, subsystem, application, and
components.
	 Defining what these architecture elements are, however, is one piece of
the puzzle. How these elements relate to each other is the next logical step.
We will use taxonomy for this. The EATK uses an industry standard from
IEEE to solve this challenge. IEEE 1471 is used as the basis for the taxonomy
and ontology of the system-architecture document.
	 IEEE 1471 is the first formalized standard for describing architectures
and how they relate to other aspects of the software-development
process. It leverages a scalable meta-model that shows the relationships
between common elements in the architecture-development process.
 	 In Figure 12, IEEE 1471 provides a meta-model that allows us to relate
architectures with other aspects of the software-development process
(page 34). The system-architecture document focuses on specific areas of
the taxonomy, while other EATK components focus on other aspects of
the standard.
	 The aspects that are implemented to support IEEE 1471 in the system-
architecture document are the following:
• Structured content — An architecture schema that represents the
information that we want to gather in our architecture document was
created that has a viewpoint-based model applied to it.

• Qualifying information — Links between decisions that have been
made and other systems or architecture descriptions are built into
the schema. As a user enters information or applies patterns to
the architecture document, it will correlate that information by
unique ID.

• Publishing mechanisms — Provides facilities to store information from
the schema, so that it can be related to other non-document–related
information.

• Generating information — Provides a mechanism to rebuild or generate
sections of an architecture document.

System-Architecture Markup XML
With an ontology and taxonomy for architecture, we now can look at what
this means from an implementation perspective. The system-architecture
document has an underlying XML structure that is used to describe the
information in the form of XML.
	 The System Architecture Markup XML is a way to provide clear
separation between the presentation markup and the information markup.
This greatly simplifies integration to hosted workflow, repositories, and
third party tooling.

Conclusion
In this article, we reviewed how to change fundamentally the way in
which we view, approach, and maintain architecture descriptions. There
is no doubt that there could be significant value in capturing information
about the designs of our architectures that will help guide decision makers
through the processes of making the right architecture decisions. However,
this is not always the outcome, as often no formalized structure, process,
information model, or intelligent tooling is bundled with this process.
Key takeaways include the following:

• Architects who want to implement these concepts can use the EATK,
which provides a set of templates, processes, and a solution accelerator
that can be used to accelerate this implementation for architects.

• Architects can achieve significant productivity gains through reduction
of manual activities and process automation.

• Architecture information can be used in a much more meaningful
way by eliminating the document graveyard effect, by integrating
architecture descriptions with an AMR.

• The quality of decision making can be improved by eliminating points
of duplication; thus, information quality can be increased significantly.

• Wikis and modeling tools complement this implementation—or, in
some cases, replace it.

• Solutions such as COTS and custom-developed applications can be
integrated with this solution through standard integration technologies.

About the Author
Mike Walker is a principle architect who delivers strategy for the enterprise
architecture space at Microsoft. He is responsible for creating, driving,
and evangelizing Microsoft’s worldwide Enterprise 2.0 and Enterprise
Architecture strategies. Specifically, Mike ensures that institutions around
the world realize the full extent of Microsoft’s vision and value proposition.
He has also evolved many of the concepts behind mainstream architectural
approaches and styles. His works are realized through publication in
books, trade publications, authoritative architecture guidance, articles,
code delivery and standardized frameworks. Those frameworks include:
the Enterprise Architecture Toolkit (EATK), Loan Origination Reference
Architecture, and Financial Services Component Library. You can visit his
blog at http://www.MikeTheArchitect.com

Follow up on this topic
• Enterprise Architecture: http://msdn.microsoft.com/architecture/ea

• IEEE 1471: http://www.iso-architecture.org/ieee-1471/

• Describing the Enterprise Architectural Space:

http://msdn.microsoft.com/en-us/library/ms978655.aspx

• Enterprise Architecture Design and the Integrated Architecture

Framework: http://msdn.microsoft.com/en-us/library/aa480017.aspx

Describing Solution Architectures

36 The Architecture Journal #19

by J.D. Meier

A Map of the Terrain
One of the most effective ways to deal with information overload is to
frame a space. Just like you frame a picture, you can frame a problem to
show it a certain way. When I started the patterns & practices Application
Architecture Guide 2.0 project, the first thing I wanted to do was to
frame out the space. Rather than provide step-by-step architectural
guidance, I thought it would be far more valuable to first create a map
of what’s important. We could then use this map
to prioritize and focus our efforts. We could also
use this map as a durable, evolvable backdrop for
creating, organizing and sharing our patterns &
practices work. Figure 1 shows the main map, the
Architecture Frame, we created to help us organize
and share principles, patterns, and practices in the
application architecture space.

Mapping Out the Architecture Space
Creating the map was an iterative and incremental
process. The first step was to break up application
architecture into meaningful buckets. It first
started when I created a project proposal for
our management team. As part of the proposal,
I created a demo to show how we might chunk
up the architecture space in a meaningful way. In
the demo, I included a list of key trends, a set of
application types, a set of architectural styles, a
frame for quality attributes, an application feature

frame, a set of example deployment patterns, and a map of patterns &
practices solution assets. I used examples where possible simply to illustrate
the idea. It was well received, and it served as a strawman for the team.
	 Each week, our core Application Architecture Guide 2.0 project team
met with our extended development team, which primarily included
patterns & practices development team members. During this time, we
worked through a set of application types, created a canonical application,
analyzed layers and tiers, evaluated key trends, and created technology
matrix trade-off charts. To create and share information rapidly, we created
many mind maps and slides. The mind maps worked well. Rather than get
lost in documents, we used the mind maps as backdrops for conversation
and elaboration.

Key Mapping Exercises
We mapped out several things in parallel:

• Key trends. Although we didn’t focus on trends in the guide, we first
mapped out key trends to help figure out what to pay attention to.
We used a mind map and we organized key trends by application,
infrastructure, and process. While there weren’t any major surprises, it
was a healthy exercise getting everybody on the same page in terms of
which trends mattered.

• Canonical application. The first thing we did was figure out the delta
from the original architecture guide. There were a few key changes. For
example, we found that today’s applications have a lot more clients and
scenarios they serve. They’ve matured and they’ve been extended. We

Summary
One of the most important outcomes of the patterns
& practices Application Architecture Guide 2.0 project
is a language for the space: a language for application
architecture. Building software applications involves a lot
of important decisions. By organizing these decisions as
a language and a set of mental models, we can simplify
organizing and sharing information. By mapping out the
architecture space, we can organize and share knowledge
more effectively. By using this map as a backdrop, we can
also overlay principles, patterns, technologies, and key
solutions assets in meaningful and relevant ways. Rather
than a sea of information, we can quickly browse hot
spots for relevant solutions.

A Language for Software
Architecture

Sc
en

ar
io

s

M
ob

ile

RI
A

Ri
ch

 C
lie

nt

Se
rv

ic
e

W
eb

 A
p

p
lic

at
io

n

N
...

N
...

SO
A

C
lie

nt
 S

er
ve

r

C
om

p
on

an
t-

Ba
se

d

La
ye

re
d

A
rc

hi
te

ct
ur

e

M
es

sa
g

e
Bu

s

M
V

C
 A

rc
hi

te
ct

ur
e

N
-T

ie
r

O
b

je
ct

-O
ri

en
te

d

App Types

App Feature Frame

Architectural Styles

Q
ua

lit
y

A
tt

ri
b

ut
es

Re
q

ui
re

m
en

ts
/C

on
st

ra
in

ts

� Caching
� Communication
� Concurrency and Transactions
� Configuration Management
� Coupling and Cohesion
� Data Access
� Exception Management

� Layering
� Logging and Instrumentation
� State Management
� Structure
� Validation
� Workflow

Figure 1: Architecture Frame

37The Architecture Journal #19

A Language for Architecture

also found today’s applications have a lot more services, both in terms
of exposing and in terms of consuming. We also noticed that some of
today’s applications are flatter and have fewer layers. Beyond that, many
things such as the types of components and the types of layers were
fairly consistent with the original model.

• Layers and tiers. This was one of the more painful exercises. Early in
the project, we met each week with our development team, along
with other reviewers. The goal was to map out the common layers,
tiers, and components. While there was a lot of consistency with
the original application architecture guide, we wanted to reflect
any learnings and changes since the original model. Once we had a
working map of the layers, tiers, and components, we vetted the map
with multiple customers.

• Application types. We originally explored organizing applications
around business purposes or dominant functionality, customer
feedback told us we were better off optimizing around technical
types, such as Web application or mobile client. They were easy
for customers to identify with. They also made it easy to overlay
patterns, technologies, and key patterns & practices solution assets.
The technical application types also made it easy to map out
relevant technologies.

• Architectural styles. This is where we had a lot of debate. While we
ultimately agreed that it was helpful to have a simple language for
abstracting the shapes of applications and the underlying principles
from the technology, it was difficult to create a map that everybody
was happy with. Things got easier once we changed some of the
terminology and we organized the architectural styles by common hot
spots. It then became obvious that the architectural styles are simply
named sets of principles. We could then have a higher level conversation
around whether to go with object-based community or message-based
and SOA, for example. It was also easy to describe deployments in terms
of 2-tier, 3-tier, and N-tier.

• Hot spots for architecture. When you build applications, there’s a
common set of challenges that show up again, such as caching,
data access, exception management, logging, and so on. These are
application infrastructure problems or cross-cutting concerns. You
usually don’t want to make these decisions ad hoc on any significant
application. Instead, you want to have a set of patterns and guidelines
or ideally reusable code that the team can leverage throughout the
application. What makes these hot spots is that they are actionable,
key engineering decisions. You want to avoid do-overs where you can.
Some do-overs are more expensive than others. One of the beauties of
the architecture hot spots is that they helped show the backdrop behind
Enterprise Library. For example, there’s a data access block, a caching
block, a validation block, and so forth.

• Hot spots for application types. When you build certain classes of
application, there’s recurring hot spots. For example, when you build
a rich client, one of the common hot spots to figure out is how to
handle occasionally disconnected scenarios. The collection of hot
spots for architecture served as a baseline for finding hot spots in
the other application types. For example, from the common set of
hot spots, we could then figure out which ones are relevant for Web
applications, or which additional hot spots would we need to include.

• Patterns. Mapping out patterns was a lengthy process. Ultimately,
we probably ended up with more information in our workspace than
made it into the guide. To map out the patterns, we created multiple
mind maps of various pattern depots. We summarized patterns so
that we could quickly map them from problems to solutions. We then
used our architecture hot spots and our hot spots for application
types as a filter to find the relevant patterns. We then vetted the
patterns with customers to see if the mapping was useful. We cut any

patterns that didn’t seem high enough priority. We also cut many of
our pattern descriptions when they started to weight the guide down.
We figured we had plenty of material and insight to carve out future
pattern guides and we didn’t want to overshadow the value of the
main chapters in the guide. We decided the best move for now was to
provide a Pattern Map at the end of each application chapter to show
which patterns are relevant for key hot spots. Customers seemed to like
this approach, and it kept things lightweight.

• Patterns & practices solution assets. This was the ultimate exercise in
organizing our catalog. We actually have a large body of documented
patterns. We also have several application blocks and factories, as well
as guides. By using our architecture frame, it was easier to organize
the catalog. For example, the factories and reference implementations
mapped to the application types. The Enterprise Library blocks mapped
to the architecture hot spots. Several of the guides mapped to the quality
attributes frame. For more information, see Cheat Sheet – patterns &
practices Catalog at a Glance posted to CodePlex at http://blogs.msdn.
com/jmeier/archive/2008/10/09/cheat-sheet-patterns-practices-catalog-
at-a-glance-posted-to-codeplex.aspx .

• Microsoft platform. This was a challenge. It meant slicing and dicing the
platform stack in a meaningful way as well as finding the right product
team contacts. Once we had our application types in place, it got a lot
easier. Depending on which type of application you were building —
rich internet application (RIA), Web, mobile, for example — this quickly
narrowed down relevant technology options. We created technology
matrices for presentation technologies, integration technologies,
workflow technologies, and data access technologies. Since the bulk of
the guide is principle and pattern based, we kept these matrices in the
appendix for fast lookups.

Key Components of the Application Architecture Map
Over the weeks and months of the project, a very definite map of the
landscape emerged. We found ourselves consistently looking for the same
frames to organize information. While we tuned and pruned specific hot
spots in areas, the overall model of common frames was helping us move
through the space quickly.

•	 Architecture frame. The architecture frame was the main organizing
map. It brought together the context (scenarios, quality attributes,
requirements/constraints), application types, architectural styles, and the
application hot spots.

•	 Application types. For application types, we optimized around a simple,
technical set that resonated with customers, such as Web application,
RIA, and mobile.

•	 Quality attributes. We organized quality attributes by key hot spots:
system, runtime, design-time, and user qualities.

•	 Architectural styles. We organized architectural styles by key hot spots:
communication, deployment, domain, interaction, and structure.

•	 Requirements and constraints. We organized requirements by key
types: functional, non-functional, technological. We thought of
constraints in terms of industry and organizational constraints, as well
as by which concern (for example, constraints for security or privacy).

•	 Application feature frame. The application feature frame became a
solid backdrop for organizing many guidelines through the guide.
The hot spots resonated: caching, communication, concurrency and
transactions, configuration management, coupling and cohesion, data
access, exception management, layering, logging and instrumentation,
state management, structure, validation and workflow.

•	 Application type frames. The application type frames are simply hot spots
for key application types. We created frames for: Web applications, RIA,
mobile applications, rich client applications and services.

38 The Architecture Journal #19

A Language for Architecture

•	 Layered architecture reference model. The canonical application is
actually a layered architecture reference model. It helps show the layers
and components in context.

•	 Layers and tiers. We used layers to represent logical partitions and tiers
for physical partitions (this precedent was set in the original guide.) We
identified key components within the key layers: presentation layer,
business layer, data layer, and service layer.

•	 Pattern maps. Pattern maps are simply overlays of key patterns on top of
relevant hot spots. We created pattern maps for the application types.

•	 Product and technology maps. We created technology matrices for
relevant products and technologies. To put the technologies in context,
we used application types where relevant. We also used scenarios. To
help make trade-off decisions, we included benefits and considerations
for each technology.

User, Business, and System Perspective
One thing that helped early on was creating a Venn diagram of the three
perspectives, user, business, and system, as shown in Figure 2.
	 In application architecture, it’s easy to lose perspective. It helps to
keep three perspectives in mind. By having a quick visual of the three
perspectives, it was easy to remind ourselves that architecture is always
a trade-off among these perspectives. It also helped remind us to be
clear which perspective we’re talking about at any point in time. This also
helped resolve many debates. The problem in architecture debates is that
everybody is usually right, but only from their perspective. Once we showed
people where their perspective fit in the bigger picture, debates quickly
turned from conflict to collaboration. It was easy to move through user
goals, business goals, and system goals once people knew the map.

Architecture Frame
The Architecture Frame is a simple way to organize the space (Figure 1). It’s
a durable, evolvable backdrop. You can extend it to suit your needs. The
strength of the frame is that it combines multiple lenses.
Here are the key lenses:

•	 Scenarios. This sets the context. You can’t evaluate architecture in a
vacuum. You need a backdrop. Scenarios provide the backdrop for
evaluation and relevancy.

•	 Quality attributes. This includes your system qualities, your runtime
qualities, your design-time qualities and user qualities.

•	 Requirements / constraints. Requirements and constraints includes

functional requirements, non-functional requirements, technological
requirements, industry constraints and organizational constraints.

•	 Application types. This is an extensible set of common types of
applications or clients. You can imagine extending for business
types. You can imagine including just the types of applications your
organization builds. Think of it as product-line engineering. When you
know the types of applications you build, you can optimize it.

•	 Architectural styles. This is a flat list of common architectural styles. The
list of architectural styles is flexible and most applications are a mash up
of various styles. Architectural styles become more useful when they are
organized by key decisions or concerns.

•	 Application feature frame. The application feature frame is a concise
set of hot spots that show up time and again across applications. They
reflect cross-cutting concerns and common application infrastructure
challenges.

Application Types
We defined a simple set of technical application types:

•	 Web applications. Applications of this type typically support connected
scenarios and can support different browsers running on a range of
operating systems and platforms.

•	 RIA. applications of this type can be developed to support multiple
platforms and multiple browsers, displaying rich media or graphical
content. Rich Internet applications run in a browser sandbox that
restricts access to some devices on the client.

•	 Mobile applications. Applications of this type can be developed as
thin client or rich client applications. Rich client mobile applications
can support disconnected or occasionally connected scenarios. Web
or thin client applications support connected scenarios only. The
device resources may prove to be a constraint when designing mobile
applications.

•	 Rich client applications. Applications of this type are usually developed
as stand-alone applications with a graphical user interface that displays
data using a range of controls. Rich client applications can be designed
for disconnected and occasionally connected scenarios because the
applications run on the client machine.

•	 Services. Services expose complex functionality and allow clients to
access them from local or remote machine. Service operations are
called using messages, based on XML schemas, passed over a transport
channel. The goal in this type of application is to achieve loose coupling
between the client and the server.

Application Feature Frame
This is the set of hot spots for applications we defined:
•	 Authentication and authorization. Authentication and authorization

allow you to identify the users of your application with confidence,
and to determine the resources and operations to which they should
have access.

•	 Caching and state. Caching improves performance, reduces server round
trips, and can be used to maintain the state of your application.

•	 Communication. Communication strategies determine how you will
communicate between layers and tiers, including protocol, security, and
communication-style decisions.

•	 Composition. Composition strategies determine how you manage
component dependencies and the interactions between components.

•	 Concurrency and transactions. Concurrency is concerned with the way
that your application handles conflicts caused by multiple users creating,
reading, updating, and deleting data at the same time. Transactions
are used for important multi-step operations in order to treat them as

User Business

System

Figure 2: User, Business, and System Perspectives

39The Architecture Journal #19

A Language for Architecture

though they were atomic, and to recover in the case of a failure or error.
•	 Configuration management. Configuration management defines how

you configure your application after deployment, where you store
configuration data, and how you protect the configuration data.

•	 Coupling and cohesion. Coupling and cohesion are strategies concerned
with layering, separating application components and layers, and
organizing your application trust and functionality boundaries.

•	 Data access. Data access strategies describe techniques for abstracting
and accessing data in your data store. This includes data entity design,
error management, and managing database connections.

•	 Exception management. Exception-management strategies describe
techniques for handling errors, logging errors for auditing purposes, and
notifying users of error conditions.

•	 Logging and instrumentation. Logging and instrumentation represents
the strategies for logging key business events, security actions, and
provision of an audit trail in the case of an attack or failure.

•	 User experience. User experience is the interaction between your users
and your application. A good user experience can improve the efficiency
and effectiveness of the application, while a poor user experience may
deter users from using an otherwise well-designed application.

•	 Validation. Validation is the means by which your application checks and
verifies input from all sources before trusting and processing it. A good
input and data-validation strategy takes into account not only the source
of the data, but also how the data will be used, when determining how
to validate it.

•	 Workflow. Workflow is a system-assisted process that is divided into a
series of execution steps, events, and conditions. The workflow may be
an orchestration between a set of components and systems, or it may
include human collaboration.

Architectural Styles
For architectural styles, we first framed the key concerns to organize the
architectural styles, and then we defined some common architectural styles.

Organizing Architectural Styles
These are the hot spots we used to organize architectural styles:

•	 Communication. Service-Oriented Architecture(SOA) and/or Message
Bus and/or Pipes and Filters.

•	 Deployment. Client/server or 3-Tier or N-Tier.
•	 Domain. Domain Model or Gateway.
•	 Interaction. Separated Presentation.
•	 Structure. Component-Based and/or Object-Oriented and/or Layered

Architecture.

Architectural Style Frame
These are some commonly recognized architectural styles:

•	 Client-server. Segregates the system into two applications, where the
client makes a service request to the server.

•	 Component-based architecture. Decomposes application design into
reusable functional or logical components that are location-transparent
and expose well-defined communication interfaces.

•	 Layered architecture. Partitions the concerns of the application into
stacked groups (layers) such as presentation layer, business layer, data
layer, and services layer.

•	 Message-bus. A software system that can receive and send messages that
are based on a set of known formats, so that systems can communicate
with each other without needing to know the actual recipient.

•	 N-tier/3-tier. Segregates functionality into separate segments in much
the same way as the layered style, but with each segment being a tier

located on a physically separate computer.
•	 Object-oriented. An architectural style based on division of tasks for an

application or system into individual reusable and self-sufficient objects,
each containing the data and the behavior relevant to the object.

•	 Separated presentation. Separates the logic for managing user
interaction from the user interface (UI) view and from the data with
which the user works.

•	 Service-oriented architecture. Refers to Applications that expose and
consume functionality as a service using contracts and messages.

Quality Attributes
For quality attributes, we first framed the key categories to organize the
quality attributes, and then we defined some common quality attributes.

Organizing Quality Attributes
Table 1 shows a simple way to organize and group quality attributes:

Quality Attribute Frame
Some common quality attributes include:

•	 Availability. Availability is the proportion of time that the system is
functional and working. It can be measured as a percentage of the
total system downtime over a predefined period. Availability will be
affected by system errors, infrastructure problems, malicious attacks,
and system load.

•	 Conceptual integrity. Conceptual integrity is the consistency and
coherence of the overall design. This includes the way that components
or modules are designed, as well as factors such as coding style and
variable naming.

•	 Flexibility. The ability of a system to adapt to varying environments and
situations, and to cope with changes in business policies and rules. A
flexible system is one that is easy to reconfigure or adapt in response to
different user and system requirements.

•	 Interoperability. Interoperability is the ability of diverse components of
a system or different systems to operate successfully by exchanging
information, often by using services. An interoperable system makes it
easier to exchange and reuse information internally as well as externally.

•	 Maintainability. Maintainability is the ability of a system to undergo
changes to its components, services, features, and interfaces as may be
required when adding or changing the functionality, fixing errors, and
meeting new business requirements.

Table 1: Quality Attributes

Type Quality attributes

System Qualities • Supportability
 • Testability

Run-time Qualities • Availability
 • Interoperability
 • Manageability
 • Performance
 • Reliability
 • Scalability
 • Security

Design Qualities • Conceptual Integrity
 • Flexibility
 • Maintainability
 • Reusability

User Qualities • User Experience / Usability

40

A Language for Architecture

The Architecture Journal #19

•	 Manageability. Manageability is how easy it is to manage the
application, usually through sufficient and useful instrumentation
exposed for use in monitoring systems and for debugging and
performance tuning.

•	 Performance. Performance is an indication of the responsiveness of
a system to execute any action within a given time interval. It can be
measured in terms of latency or throughput. Latency is the time taken
to respond to any event. Throughput is the number of events that take
place within a given amount of time.

•	 Reliability. Reliability is the ability of a system to remain operational over
time. Reliability is measured as the probability that a system will not fail
to perform its intended functions over a specified time interval.

•	 Reusability. Reusability is the capability for components and subsystems
to be suitable for use in other applications and in other scenarios.
Reusability minimizes the duplication of components and also the
implementation time.

•	 Scalability. Scalability is the ability of a system to function well when
there are changes to the load or demand. Typically, the system will be
able to be extended over more powerful or more numerous servers as
demand and load increase.

•	 Security. Security is the ways that a system is protected from disclosure
or loss of information, and the possibility of a successful malicious
attack. A secure system aims to protect assets and prevent unauthorized
modification of information.

•	 Supportability. Supportability is how easy it is for operators, developers,
and users to understand and use the application, and how easy it is to
resolve errors when the system fails to work correctly.

•	 Testability. Testability is a measure of how easy it is to create test
criteria for the system and its components, and to execute these
tests in order to determine if the criteria are met. Good testability
makes it more likely that faults in a system can be isolated in a
timely and effective manner.

•	 Usability. Usability defines how well the application meets the
requirements of the user and consumer by being intuitive, easy to
localize and globalize, and able to provide good access for disabled
users and a good overall user experience.

Layered Architecture Reference Model
Figure 3 shows our canonical application example. It’s a layered architecture
showing the common components within each layer:	
The canonical application model helped us show how the various layers
and components work together. It was an easy diagram to pull up and
talk through when we were discussing various design trade-offs at the
different layers.

Layers
We identified the following layers:

•	 Presentation layer
•	 Business layer
•	 Data layer
•	 Service layer

They are logical layers. The important thing about layers is that they help
factor and group your logic. They are also fractal. For example, a service can
have multiple types of layers within it. The following is a quick explanation
of the key components within each layer.

Presentation Layer Components
•	 User interface (UI) components. UI components provide a way for

users to interact with the application. They render and format data for
users and acquire and validate data input by the user.

•	 User process components. To help synchronize and orchestrate these
user interactions, it can be useful to drive the process by using
separate user process components. This means that the process-flow
and state-management logic is not hard-coded in the UI elements
themselves, and the same basic user interaction patterns can be
reused by multiple UIs.

Business Layer Components
•	 Application facade (optional). Use a façade to combine multiple

business operations into a single message-based operation. You
might access the application façade from the presentation layer by
using different communication technologies.

•	 Business components. Business components implement the business
logic of the application. Regardless of whether a business process
consists of a single step or an orchestrated workflow, your application
will probably require components that implement business rules and
perform business tasks.

•	 Business entity components. Business entities are used to pass data
between components. The data represents real-world business
entities, such as products and orders. The business entities used
internally in the application are usually data structures, such as
DataSets, DataReaders, or Extensible Markup Language (XML)
streams, but they can also be implemented by using custom
object-oriented classes that represent the real-world entities your
application has to work with, such as a product or an order.

•	 Business workflows. Many business processes involve multiple steps
that must be performed in the correct order and orchestrated.
Business workflows define and coordinate long-running, multi-step
business processes, and can be implemented using business process
management tools.

Figure 3: Layered Architecture Model

D
at

a
La

ye
r

Se
rv

ic
e

La
ye

r
Bu

si
ne

ss
La

ye
r

Users

UI
Components

UI Process
Components

Service Interfaces Message Types

Application Facade

Business
Workflows

Business
Components

Business
Entities

Service
Agents

Data Helpers/
Utilities

Data Access
Components

External Systems

Service Consumers

Pr
es

en
ta

tio
n

La
ye

r

Data
Sources Services

C
ro

ss
-C

ut
tin

g

Se
cu

ri
ty

O
p

er
at

io
na

l M
an

ag
em

en
t

C
om

m
un

ic
at

io
n

41

A Language for Architecture

The Architecture Journal #19

Data Layer Components
•	 Data access logic components. Data access components abstract

the logic necessary to access your underlying data stores. Doing so
centralizes data access functionality, and makes the process easier to
configure and maintain.

•	 Data helpers / utility components. Helper functions and utilities assist
in data manipulation, data transformation, and data access within
the layer. They consist of specialized libraries and/or custom routines
especially designed to maximize data access performance and reduce
the development requirements of the logic components and the
service agent parts of the layer.

•	 Service agents. Service agents isolate your application from the
idiosyncrasies of calling diverse services from your application, and can
provide additional services such as basic mapping between the format
of the data exposed by the service and the format your application
requires.

Service Layer Components
•	 Service interfaces. Services expose a service interface to which all

inbound messages are sent. The definition of the set of messages that
must be exchanged with a service, in order for the service to perform a
specific business task, constitutes a contract. You can think of a service
interface as a façade that exposes the business logic implemented in the
service to potential consumers.

•	 Message types. When exchanging data across the service layer, data
structures are wrapped by message structures that support different
types of operations. For example, you might have a Command message,
a Document message, or another type of message. These message
types are the “message contracts” for communication between service
consumers and providers.

Tiers
Tiers represent the physical separation of the presentation, business,
services, and data functionality of your design across separate computers
and systems. Some common tiered design patterns include two-tier,
three-tier, and n-tier.

Two-Tier
The two-tier pattern represents a basic structure with two main
components, a client and a server (Figure 4).

Three-Tier
In a three-tier design, the client interacts with application software
deployed on a separate server, and the application server interacts with
a database that is also located on a separate server (Figure 5). This is a
very common pattern for most Web applications and Web services.

N-Tier
In this scenario, the Web server (which contains the presentation layer logic)
is physically separated from the application server that implements the
business logic (Figure 6).

Conclusion
It’s easier to find your way around when you have a map. By having
a map, you know where the key hot spots are. The map helps you
organize and share relevant information more effectively. More
importantly, the map helps bring together archetypes, arch styles, and
hot spots in a meaningful way. When you put it all together, you have a
simple language for describing large classes of applications, as well as a
common language for application architecture.

Resources
•	 Guide – The patterns & practices Application Architecture Guide 2.0

is available online in HTML and PDF at http://www.codeplex.com/
AppArchGuide

•	 Knowledge Base (KB) – The companion knowledge base, which includes
videos, How Tos, checklists and diagrams is available at http://www.
codeplex.com/AppArch

•	 Project News – For projects news and announcements, you can follow
along at http://blogs.msdn.com/jmeier

About the Author
J.D. Meier is a Principal Program Manager at Microsoft on the patterns
& practices team. In addition to the Microsoft Application Architecture
2.0 guide, he has the following additional patterns & practices books
under his belt: Improving Web Services Security, Performance Testing
Guidance for Web Applications, Team Development with Visual Studio
Team Foundation Server, Security Engineering Explained, Improving
.NET Application Performance, Improving Web Application Security,
and Building Secure ASP.NET Applications. You can follow along at
his work blog at http://blogs.msdn.com/jmeier, his software success

blog at http://ShapingSoftware.com and personal
development blog at http://SourcesOfInsight.com.

Follow up on this topic
• Patterns and Practices (Solutions Architecture

Guidance): http://msdn.microsoft.com/practices
• Solution Accelerator (Infrastructure Guidance):

http://technet.microsoft.com/solutionaccelerators/

Figure 4: Two-Tier Deployment

Client

Client Tier Database Tier

Database

Figure 6: N-Tier Deployment

Database Tier

Database

Business Logic Teir

App ServerClient

Client Tier WebTier

App Server

Figure 5: Three-Tier Deployment

Client

Client Tier Web/App Tier

Web/App
Server

Database Tier

Database

http://www.codeplex.com/AppArchGuide
http://www.codeplex.com/AppArchGuide
http://www.codeplex.com/AppArch
http://www.codeplex.com/AppArch

098-110486 19 subscribe at

www.architecturejournal.net

