
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
CUTTING EDGE
Dynamic Keyword in C# 4.0
Dino Esposito page 6

CLR INSIDE OUT
Production Diagnostics
Jon Langdon page 12

DATA POINTS
LINQ Projection in WCF Services
Julie Lerman page 23

TEST RUN
Combinations and
Permutations with F#
James McCaffrey page 68

FOUNDATIONS
Service Bus Buffers
Juval Lowy page 74

SECURITY BRIEFS
DoS Attacks and Defenses
Bryan Sullivan page 82

THE WORKING
PROGRAMMER
Going NoSQL with MongoDB
Ted Neward page 86

UI FRONTIERS
Thinking Outside the Grid
Charles Petzold page 90

DON’T GET ME STARTED
Fundamental Laws
David Platt page 96

MAY 2010 VOL 25 NO 5

NOW PLAYING
Building Custom Players with the Silverlight
Media Framework
Ben Rush . 30

SILVERLIGHT SECURITY
Securing Your Silverlight Applications
Josh Twist . 42

RIA SERVICES
Enterprise Patterns with WCF RIA Services
Michael D. Brown . 50

WORKFLOW SERVICES
Visual Design of Workfl ows with WCF and WF 4
Leon Welicki . 58

Untitled-5 2 3/5/10 10:16 AM

www.infragistics.com

Sure, Visual Studio 2010 has a lot of great functionality—
we’re excited that it’s only making our User Interface
components even better! We’re here to help you go

beyond what Visual Studio 2010 gives you so you can create
Killer Apps quickly, easily and without breaking a sweat! Go

to infragistics.com/beyondthebox today to expand your
toolbox with the fastest, best-performing and most powerful

UI controls available. You’ll be surprised
by your own strength!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

Untitled-5 3 3/5/10 10:16 AM

www.infragistics.com

magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director
KERI GRASSL Site Manager

KEITH WARD Editor in Chief
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
MARTI LONGWORTH Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in U.S. funds: U.S. $35; Canada $45;
International $60. Single copies/back issues: U.S. $10, all others $12. Send orders with payment
to: MSDN Magazine, P.O. Box 3167, Carol Stream, IL 60132, e-mail MSDNmag@1105service.com or
call 847-763-9560. POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie,
IL 60076. Canada Publications Mail Agreement No: 40612608. Return Undeliverable Canadian
Addresses to Circulation Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

MAY 2010 VOLUME 25 NUMBER 5

mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtsearch.com

S
N
A
P

I
T

Untitled-1 1 3/25/10 10:38 AM

www.VisualStudio.com

msdn magazine4

This Way-Cool ‘Internet’ Doohickey
sized (and -weight) devices with long antennas, and you couldn’t
do anything with them but call people.

Th ose days now belong to the archives, and that Internet thingy
continues to mature and grow. Rich Internet Applications, like
Silverlight 4, continue to push forward like Lewis and Clark, exploring
new ways to build and deliver apps. Th at’s our focus this month.

Product Reviews from Readers, for Readers
In much the same way, MSDN Magazine is similarly moving ahead.
We’re going to be adding something special to both the print and
online versions of MSDN Magazine, starting in a few months. And
we want you—need you, in fact—to be a part of it.

We’re going to start running product reviews written by our readers.
So if you’re a developer using something you think is exceptionally
cool, let us know about how you use it and what it does for you. On
the other hand, if you’re using something that just doesn’t work, or
work well, that’s valuable information, too. We’d love to hear from you.

We’re looking for articles in the range of 500 to 1,000 words. Th e
products can be from Microsoft or another source—anything you use to
help you in your job. We’re looking for honest, open and clear reviews.

You don’t have to be a published author to write a review. We’re
looking for passionate developers who have something interesting
to say and want to share their experiences with their colleagues.

Authors will be paid for articles. Th e reviews will appear both in
the print issue of the magazine and the online version.

One thing to note: we will verify the authenticity of all authors
and products. Th at means if you’re a vendor posing as an author,
with the goal of touting your latest ground-breaking product by
disguising it as a review, we’ll fi nd out about it. Remember that
these reviews are only as valuable as the honesty of the reviewer,
so please avoid any of those types of shenanigans.

For more information about the process, and guidelines for the
review, contact us at mmeditor@microsoft .com. Make sure you put
“Reader Product Reviews” in the subject line, so we’ll be sure to fl ag it.

We’re looking forward to
hearing from you!

Hey, have you heard about this groovy new thing called the
“Internet”? Some people call it the “World Wide Web,” or “Web” for
short, although I think the Web is just part of it.

Anyway, it’s a way that your computer connects to other computers.
It’s mostly done by visiting these things called “Web sites.” Web sites
can be almost anything—places to chat with friends, stores that
only exist on computers (special ones called “servers”), newspapers
that you can read with a computer or even just some guy who has
“posted” tons of stuff about that TV show “Baywatch.” When you’re
there, it’s called being “online.” You can buy books and clothes and
cars and even trade junk with other people.

I’ve even heard that eventually stuff like video and audio will be
available on this Internet thingy. Pretty cool, huh?

Bet you haven’t had a conversation like that in a while, eh? In
reality (you know, non-geek years), the Internet—as a commercial
and social medium—hasn’t been around all that long. I remember
working as a news director at a Baltimore TV station’s Web site in
2000. It was my fi rst real exposure to the day-to-day workings of
the Web. I remember learning about things called “HTML” and
“Cascading Style Sheets” and “alt tags” and wondering what the
heck I was getting myself into.

Now here we are a decade later, and it’s hard to remember the
days when I got my news from the plastic-wrapped paper deposited
on my front yard every morning. Or had to drive to a bookstore
to get the latest Stephen King novel. Portable phones were brick-

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

Rich Internet Applications, like
Silverlight 4, continue to push
forward like Lewis and Clark,
exploring new ways to build

and deliver apps.

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx

Untitled-1 1 3/10/10 2:49 PM

www.axosoft.com

msdn magazine6

individual features of a programming language than to the lan-
guage as a whole.

Let’s briefl y consider Python and PHP. Both are dynamic languages,
let you use variables, and allow the runtime environment to fi gure
out the actual type stored in it. But with PHP you can store, say,
integers and strings in the same variable in the same scope. In this
regard, PHP (like JavaScript) is a weakly typed, dynamic language.

On the other hand, Python gives you only one chance to set the
type of a variable, which makes it more strongly typed. You can
dynamically assign the type to a variable and have the runtime
infer it from the assigned value. Aft er that, though, you’re not
allowed to store any value of an inappropriate type in that variable.

Dynamic Types in C#
C# 4.0 has features that make it both dynamic and static, as well as
both weakly and strongly typed. Th ough born as a statically typed
language, C# becomes dynamically typed in any context in which
you use the dynamic keyword, such as this:

dynamic number = 10;
Console.WriteLine(number);

And because dynamic is a contextual keyword, not a reserved one,
this still holds if you have existing variables or methods named dynamic.

Note that C# 4.0 doesn’t force you to use dynamic, in the same
way that C# 3.0 didn’t force you to use var, lambdas or object ini-
tializers. C# 4.0 provides the new dynamic keyword specifi cally to
make a few well-known scenarios easier to deal with. Th e language
remains essentially statically typed, even though it has added the
ability to interact in a more eff ective way with dynamic objects.

Why would you want to use a dynamic object? First, you may
not know the type of the object you’re dealing with. You may have
clues but not the certainty to statically type a given variable—
which is just what happens in many common situations, such as
when you work with COM objects, or when you use refl ection to
grab instances. In this context, the dynamic keyword makes some
situations less painful to deal with. Code written with dynamic is
easier to read and write, making for an application that’s easier to
understand and maintain.

Second, your object may have an inherently changing nature.
You may be working with objects created in dynamic programming
environments such as IronPython and IronRuby. But you can also
use this functionality with HTML DOM objects (subject to expando
properties) and the Microsoft .NET Framework 4 objects specifi -
cally created to have dynamic natures.

 Using the Dynamic Keyword in C# 4.0

Th e introduction of static type checking represented an important
milestone in the history of programming languages. In the 1970s,
languages such as Pascal and C started enforcing static types and
strong type checking. With static type checking, the compiler will
produce an error for any call that fails to pass a method argument
of the appropriate type. Likewise, you should expect a compiler
error if you attempt to call a missing method on a type instance.

Other languages that push forward the opposite approach—
dynamic type checking—have come along over the years. Dynamic
type checking contradicts the idea that the type of a variable has
to be statically determined at compile time and can never change
while the variable is in scope. Note, however, that dynamic
type checking doesn’t confer wholesale freedom to mix types,
pretend ing they’re the same. For example, even with dynamic
type checking, you still can’t add a Boolean value to an integer. Th e
diff erence with dynamic type checking is that the check occurs
when the program executes rather than when it compiles.

Statically Typed or Dynamically Typed
Visual Studio 2010 and C# 4.0 provide a new keyword, dynamic,
that enables dynamic typing in what has traditionally been a stat-
ically typed language. Before diving into the dynamic aspects of
C# 4.0, though, we need to get some basic terminology down.

Let’s defi ne a variable as a storage location that’s restricted
to values of a particular type. Next, let’s specify four fundamental
properties of a statically typed language:

• Every expression is of a type known at compile time.
• Variables are restricted to a type known at compile time.
• Th e compiler guarantees that type restrictions on assignments of

expressions into variables meet the restrictions on the variables.
• Semantic analysis tasks, such as overload resolution, occur

at compile time and the results are baked into the assembly.
A dynamic language has the opposite properties. Not every

expression is of a known type at compile time, nor is every variable.
Storage restrictions, if any, are checked at run time and ignored at
compile time. Semantic analysis occurs only at run time.

A statically typed language does let you make some operations
dynamic. Th e cast operator exists so you can attempt a type conversion
as a runtime operation. Th e conversion is part of the program code,
and you can summarize the semantic expressed by the cast operator
as “dynamically check the validity of this conversion at run time.”

However, concerning attributes such as dynamic and static
(or perhaps strong and weak): Today they’re better applied to

CUTTING EDGE DINO ESPOSITO

programmersparadise.com866-719-1528

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

NEW
RELEASE!

Professional Edition
Paradise #

T79 02101A02
$848.99

programmers.com/ca

CA ERwin® Data Modeler
r7.3 – Product Plus 1 Year
Enterprise Maintenance
by CA
CA ERwin Data Modeler is a data modeling
solution that enables you to create and
maintain databases, data warehouses
and enterprise data resource models.
These models help you visualize data
structures so that you can effectively
organize, manage and moderate data
complexities, database technologies
and the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

Pragma Fortress SSH—SSH
Server & Client for Windows
by Pragma Systems
Contains SSH, SFTP, SCP servers and clients
for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Offers FIPS mode
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/7/

Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01
$3,931.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Recognition
SDK v16.5
by LEAD Technologies
Develop robust 32/64 bit document
imaging and recognition functionality into
your applications with accurate and
high-speed multi-threaded Forms, OCR,
OMR, and 1D/2D barcode engines.
• Supports text, OMR, image, and

barcode fields
• Auto-registration and clean-up to

improve recognition results
• Provided as both high and low

level interface
• Includes comprehensive confidence

reports to assess performance

Paradise #
L05 26301A01
$3,214.99

Certified
for Windows
7/2008R2

VMware vSphere
Put time back into your day.
Your business depends on how you spend
your time. You need to manage IT costs
without losing time or performance. With
proven cost-effective virtualization solutions
from VMware, you can:

• Increase the productivity of your existing
staff three times over

• Control downtime—whether planned
or not

• Save more than 50% on the cost of
managing, powering and cooling servers

Make your time (and money) count for
more with virtualization from VMware.

VMware
Advanced

Acceleration Kit
for 6 processors

Paradise #
V55 78101A01

$9,234.99

programmers.com/flexera

AdminStudio & Application
Virtualization Pack
by Flexera Software
One Application Software Deployment Tool
for Reliable MSI Packaging, Application
Virtualization, and Windows 7 Migration.
Top choice of Microsoft®, Novell®, LANDesk®

and other software management solutions.
Cut MSI packaging time by up to 70%,
Deploy software to desktops with 99%
success or better. AdminStudio is the only
MSI packaging solution to support multiple
virtualization formats, including Microsoft®

App-V™, VMware® ThinApp™ and
Citrix® XenApp™.

Professional
Upgrade from
any Active AS
Pro + Silver Mtn
Paradise #
I21 09401S05

$4,228.99

programmers.com/multiedit

Multi-EditX

by Multi Edit Software

Multi-EditX is “The Solution”
for your editing needs with
support for over 50 languages.
Edit plain text, ANY Unicode, hex,
XML, HTML, PHP, Java, Javascript,
Perl and more! No more file size
limitations, unlimited line length,
any file, any size Multi-EditX is
“The Solution”!

Pre-Order Your Copy and Save!

1-49 Users
Paradise #

A30Z10101A01
$198.40

ActiveReports 6
by GrapeCity
Integrate Business Intelligence/Reporting/Data
Analysis into your .NET applications using the
NEW ActiveReports 6.

• Fast and Flexible reporting engine

• Data Visualization and Layout Controls such
as Chart, Barcode and Table Cross Section
Controls

• Wide range of Export and Preview formats
including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• Royalty-Free Licensing for Web and
Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

BUILD ON
VMWARE ESXi
AND VSPHERE
for Centralized Management,
Continuous Application
Availability, and Maximum
Operational Efficiency in Your
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES:
REGISTER TODAY! TechXtend.com/Webinars

2010

DISCOVER MICROSOFT
VISUAL STUDIO 2010...
TAKE YOUR DEVELOPMENT
TEAM TO THE NEXT LEVEL!
Call your Programmer’s Paradise
Representative Today!

programmers.com/grapecity

programmers.com/globalgraphics

gDoc Fusion
by Global Graphics
gDoc Fusion is the easiest way to
assemble information from a range of
sources and formats and quickly create
enterprise-quality PDF, XPS or Microsoft
Word documents for sharing, printing
or collaboration.

• One-click PDF/XPS creation
• Merge and combine documents quickly
• Flick through large documents like

a book
• Context sensitive text editing

* Price per user.

1-4 Users Includes
Maint & Support

Paradise #
F39 ZSP0008

$181.99

*

programmers.com/techsmith

Camtasia Studio 7
Powerful Screen Recording and
Editing for High-quality Videos
by TechSmith
Delight audiences near or far with
training videos, presentations, demos,
and screencasts that get results and
look fantastic.

Easily record onscreen activity in front of a
live audience or from your desk. Capture
PowerPoint presentations, webcam video,
audio and more. Produce and share high-
quality videos at any screen size instantly
to YouTube, portable devices and more.
Make them wonder how you did it.

Windows
Single User
Paradise #

T08 10501A01
$274.99

• Set your ideas free
• Simplicity through integration
• Quality tools help

ensure quality results

DON’T BE LEFT BEHIND!
STAY ON THE CUTTING EDGE OF TECHNOLOGY:
NEW! MICROSOFT® VISUAL STUDIO®

2010 MAKES IT EASY!

NEW
RELEASE!

NEW
RELEASE!

Untitled-2 1 4/5/10 3:35 PM

www.programmersparadise.com

msdn magazine8 Cutting Edge

Using dynamic
It’s important to understand the concept that in the C# type
system, dynamic is a type. It has a very special meaning, but it’s
defi nitely a type and it’s important to treat it as such. You can in-
dicate dynamic as the type of a variable you declare, the type of
items in a collection or the return value of a method. You can also
use dynamic as the type of a method parameter. Conversely, you
can’t use dynamic with the typeof operator and you can’t use it as
the base type of a class.

Th e following code shows how to declare a dynamic variable in
the body of a method:

public void Execute() {
 dynamic calc = GetCalculator();
 int result = calc.Sum(1, 1);
}

If you know enough about the type of the object being returned
by the GetCalculator method, you can declare the variable calc of
that type, or you can declare the variable as var, letting the compiler
fi gure out the exact details. But using var or an explicit static type
would require you to be certain that a method Sum exists on the
contract exposed by the type GetCalculator returns. If the method
doesn’t exist, you get a compiler error.

With dynamic, you delay any decision about the correctness
of the expression at execution time. The code compiles and is
resolved at run time as long as a method Sum is available on the
type stored in the variable calc.

You can also use the keyword to defi ne a property on a class. In
doing so, you can decorate the member with any visibility modi-
fi er you like, such as public, protected, and even static.

Figure 1 shows the versatility of the dynamic keyword. In the
main program I have a dynamic variable instantiated with the
return value of a function call. Th at would be no big deal if it
weren’t for the fact that the function receives and returns a dynamic
object. It’s interesting to see what happens when, as in the example,
you pass a number, then try to double it within the function.

If you feed in a value of 2 and try this code, you receive a value
of 4. If you feed in 2 as a string, you’ll get 22 instead. Within the
function, the + operator is resolved dynamically based on the run
time type of the operands. If you change the type to System.Object,
you get a compile error, because the + operator isn’t defined on

System.Object. Th e dynamic keyword enables scenarios that weren’t
possible without it.

dynamic vs. System.Object
Until the .NET Framework 4, having a method return diff er-
ent types according to diff erent conditions was possible only by
resorting to a common base class. You’ve probably solved this problem
by resorting to System.Object. A function that returns System.Ob-
ject makes available to the caller an instance that can be cast to nearly
anything. So how is using dynamic better than using System.Object?

In C# 4, the actual type behind the variable that’s declared
dynamic is resolved at run time, and the compiler simply assumes
that the object in a variable declared dynamic just supports any
operations. Th is means you can really write code that calls a method
on the object you expect to be there at run time, as illustrated here:

dynamic p = GetSomeReturnValue();
p.DoSomething();

In C# 4.0, the compiler won’t complain about that code. Th e analo-
gous code using System.Object won’t compile and requires some hacks
on your own—refl ection or adventurous casting—in order to work.

var vs. dynamic
Th e keywords var and dynamic are only apparently similar. Var
indicates that the type of the variable has to be set to the compile-
time type of the initializer.

But dynamic means that the type of the variable is the dynamic
type as available in C# 4.0. In the end, dynamic and var have quite
opposite meanings. Var is about reinforcing and improving static
typing. It aims to ensure that the type of a variable is inferred by the
compiler looking at the exact type being returned by the initializer.

Th e keyword dynamic is about avoiding static typing altogether.
When used in a variable declaration, dynamic instructs the compiler
to stop working out the type of the variable at all. Th e type has to be
intended as the type it happens to have at run time. With var, your
code is as statically typed as it would have been had you opted for
the classic approach of using explicit types in a variable declaration.

Another diff erence between the two keywords is that var can
only appear within a local variable declaration. You can’t use var
to defi ne a property on a class, nor can you use it to specify the
return value or a parameter of a function.

As a developer, you use the dynamic keyword with variables
expected to contain objects of uncertain type such as objects re-
turned from a COM or DOM API; obtained from a dynamic lan-
guage (IronRuby, for example); from refl ection; from objects built
dynamically in C# 4.0 using the new expand capabilities.

Th e dynamic type doesn’t bypass type checks, though. It only
moves them all to run time. If type incompatibilities are discovered
at run time, then exceptions are thrown.

DINO ESPOSITO is the author of the upcoming “Programming ASP.NET MVC”
from Microsoft Press and coauthor of “Microsoft .NET: Architecting Applications
for the Enterprise” (Microsoft Press, 2008). Esposito, who is based in Italy, is a frequent
speaker at industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article:
Eric Lippert

class Program {
 static void Main(string[] args) {
 // The dynamic variable gets the return
 // value of a function call and outputs it.
 dynamic x = DoubleIt(2);
 Console.WriteLine(x);

 // Stop and wait
 Console.WriteLine("Press any key");
 Console.ReadLine();
 }

 // The function receives and returns a dynamic object
 private static dynamic DoubleIt(dynamic p) {
 // Attempt to "double" the argument whatever
 // that happens to produce

 return p + p;
 }
}

Figure 1 Using dynamic in the Signature of a Function

http://weblogs.asp.net/despos

Untitled-1 1 4/14/10 3:23 PM

www.codefluententities.com/msdn
www.codefluententities.com

Untitled-2 2 4/9/10 10:50 AM

www.telerik.com

Untitled-2 3 4/9/10 10:50 AM

www.telerik.com

msdn magazine12

taking to solve them and the types of tools they enable. Specifi cally,
I will explain how we’ve evolved the debugging API to support
dump debugging for application-crash and -hang scenarios, and
how we’ve made it easier to detect when hangs are caused by multi-
threading issues.

I will also describe how adding the ability to attach profi ling tools
to an already-running application will further ease troubleshooting
these same scenarios, and greatly reduce the amount of time it takes
to diagnose problems caused by excessive memory consumption.

Finally, I will briefl y explain how we made profi ling tools easier
to deploy by removing the dependency on the registry. Th rough-
out, the focus is primarily on the types of new tools our work
enables, but where applicable I have included references to
additional resources that will help you understand how you can
take advantage of our work through Visual Studio.

Dump Debugging
One popular feature we’re delivering with Visual Studio 2010 is
managed dump debugging. Process dumps, typically referred
to just as dumps, are commonly used in production debugging
scenarios for both native and managed code. A dump is essentially
a snapshot of a process’ state at a given point in time. Specifi cally,
it’s the contents of the process’s virtual memory (or some subset
thereof) dumped into a fi le.

Prior to Visual Studio 2010, in order to debug managed code
in dumps you needed to use the specialized Windows Debugger
extension sos.dll to analyze the dumps, instead of more familiar
tools like Visual Studio (where you probably wrote and debugged
your code during product development). Our goal for the high-level
experience we want you to have when using a dump to diagnose
issues in Visual Studio is that of stopped-state live debugging:
what you experience when you’re debugging code and stopped
at a breakpoint.

Th e most common point in time to collect a dump is when there’s
an unhandled exception in an application—a crash. You use the
dump to fi gure out why the crash occurred, typically starting by
looking at the call stack of the faulting thread. Other scenarios where
dumps are used are application hangs and memory-usage issues.

Production Diagnostics Improvements
in CLR 4

 On the Common Language Runtime (CLR) team, we have a group
whose focus is providing APIs and services that enable others
to build diagnostics tools for managed code. Th e two biggest
components we own (in terms of engineering resources dedicated)
are the managed debugging and profi ling APIs (ICorDebug* and
ICorProfi ler*, respectively).

Like the rest of the CLR and framework teams, our value is
realized only through the applications built on top of our contribu-
tions. For example, Visual Studio teams consume these debugging
and profi ling APIs for their managed debugger and performance
profi ling tools, and a number of third-party developers are building
tools with the profi ling API.

For the past 10 years, much of the focus in this area, for both the
CLR and Visual Studio, has been on enabling developer desktop
scenarios: source-stepping in a debugger to fi nd code errors; launch-
ing an application under a performance profi ler to help pinpoint
slow code paths; edit-and-continue to help reduce time spent in
the edit-build-debug cycle; and so on. Th ese tools can be useful
for fi nding bugs in your applications aft er they’ve been installed
on a user’s machine or deployed to a server (both cases hereaft er
referred to as production), and we do have a number of third-par-
ty vendors building world-class production diagnostics tools on
top of our work.

However, we consistently get feedback from customers and these
vendors stressing the importance of making it even easier to fi nd
bugs throughout the life of an application. Aft er all, soft ware bugs
are generally considered to be more costly to fi x the later they’re
found in the application lifecycle.

CLR 4 (the runtime underlying the Microsoft .NET Framework
4) is the fi rst release in which we’ve made a signifi cant eff ort to
address that feedback and to begin expanding the scenarios our
diagnostic APIs support toward the production end of the spectrum.

In this article, I will take a look at some of the scenarios we
understand to be particularly painful today, the approach we’re

CLR INSIDE OUT JON LANGDON

This article discusses prerelease versions of the Microsoft .NET Framework 4
and Visual Studio 2010. All information is subject to change.

Post your questions and comments on the CLR Team blog at
blogs.msdn.com/clrteam.

Bugs are more costly to fi x
the later they’re found in the

application lifecycle.

http://blogs.msdn.com/clrteam

Untitled-3 1 4/20/10 9:40 AM

www.DevExpress.com/eval

msdn magazine14 CLR Inside Out

For example, if your Web site has stopped processing requests, you
might attach a debugger, gather a dump and restart the application.
Offl ine analysis of the dump might show, for example, that all of
your threads processing requests are waiting on a connection to the
database, or perhaps you fi nd a deadlock in your code. Memory-
usage issues can manifest in various ways from an end user’s
perspective: the application slows down because of excessive
garbage collection; service is interrupted because the application
ran out of virtual memory and needed to be restarted; and so forth.

Th rough CLR 2, the debugging APIs provided support for
debugging running processes only, which made it diffi cult for
tools to target the scenarios just described. Basically, the API was
not designed with dump debugging scenarios in mind. Th e fact
that the API uses a helper thread running in the target process to
service debugger requests underscores this point.

For example, in CLR 2, when a managed debugger wants to walk
a thread’s stack, it sends a request to the helper thread in the process
being debugged. Th e CLR in that process services the request and
returns the results to the debugger. Because a dump is just a fi le,
there’s no helper thread to service requests in this case.

To provide a solution for debugging managed code in a dump fi le,
we needed to build an API that did not require running code in the
target to inspect managed-code state. Yet because debugger writers
(primarily Visual Studio) already have a signifi cant investment
in the CLR debugging API to provide live debugging, we did not
want to force the use of two diff erent APIs.

Where we landed in CLR 4 was reimplementing a number of the
debugger APIs (primarily those required for code and data inspec-
tion) to remove the use of the helper thread. Th e result is that the
existing API no longer needs to care whether the target is a dump
fi le or a live process. In addition, debugger writers are able to use the
same API to target both live and dump debugging scenarios. When
live debugging specifi cally for execution control—setting breakpoints
and stepping through code—the debugging API still uses a helper
thread. Over the long term, we intend to remove the dependency
for these scenarios as well. Rick Byers (a former developer on the
debugging services API) has a useful blog post describing this work
in more detail at blogs.msdn.com/rmbyers/archive/2008/10/27/icordebug-re-

architecture-in-clr-4-0.aspx.
You can now use ICorDebug to inspect managed code and data

in a dump fi le: walk stacks, enumerate locals, get the exception
type and so on. For crashes and hangs, there’s oft en enough
context available from the thread stacks and ancillary data to fi nd
the cause of the issue.

While we know the memory diagnostics and other scenarios
are also important, we simply did not have enough time in the

CLR 4 schedule to build new APIs that give debuggers the ability
to inspect the managed heap in the way this scenario requires.
Moving forward, as we continue to expand the production diag-
nostics scenarios we support, I expect this is something we will
add. Later in the article I discuss other work we’ve done to help
address that scenario.

I’d also like to explicitly call out that this work supports both
32- and 64-bit targets and both managed-only and mixed-mode
(native and managed) debugging. Visual Studio 2010 provides
mixed-mode for dumps containing managed code.

Monitor Lock Inspection
Multi-threaded programming can be diffi cult. Whether you are
explicitly writing multi-threaded code or leveraging frameworks or
libraries that are doing it for you, diagnosing issues in asynchronous
and parallel code can be quite challenging. When you have a logical
unit of work executing on a single thread, understanding causality
is much more straightforward and can oft en be determined by
simply looking at the thread’s call stack. But when that work is
divided among multiple threads, tracing the fl ow becomes much
harder. Why is the work not completing? Is some portion of it
blocked on something?

With multiple cores becoming commonplace, developers are
looking more and more to parallel programming as a means for
performance improvement, rather than simply relying on chip
speed advancements. Microsoft developers are included in this
lot, and over the past few years we’ve been signifi cantly focused on
making it easier for developers to be successful in this area. From
a diagnostics perspective, we’ve added a few simple-yet-helpful
APIs that enable tools to help developers better cope with the
complexities of multi-threaded code.

To the CLR debugger APIs we’ve added inspection APIs for
monitor locks. Simply put, monitors provide a way for programs to
synchronize access to a shared resource (some object in your .NET
code) across multiple threads. So while one thread has the resource
locked, another thread waits for it. When the thread owning the lock
releases it, the fi rst thread waiting may now acquire the resource.

In the .NET Framework, monitors are exposed directly through the
System.Th reading.Monitor namespace, but more commonly through
the lock and SyncLock keywords in C# and Visual Basic, respectively.
Th ey’re also used in the implementation of synchronized methods, the
Task Parallel Library (TPL) and other asynchronous programming
models. Th e new debugger APIs let you better understand what
object, if any, a given thread is blocked on and what thread, if any,
holds a lock on a given object. Leveraging these APIs, debuggers can
help developers pinpoint deadlocks and understand when multiple
threads contending for a resource (lock convoys) may be aff ecting an
application’s performance.

For an example of the type of tools this work enables, check
out the parallel debugging features in Visual Studio 2010. Daniel
Moth and Stephen Toub provided a great overview of these in
the September 2009 issue of MSDN Magazine (msdn.microsoft.com/

magazine/ ee410778).
One of the things that excites us the most about the dump debugging

work is that building an abstracted view of the debug target means

A dump is essentially a snapshot
of a process’ state at a given

point in time.

http://blogs.msdn.com/rmbyers/archive/2008/10/27/icordebug-re-architecture-in-clr-4-0.aspx
http://blogs.msdn.com/rmbyers/archive/2008/10/27/icordebug-re-architecture-in-clr-4-0.aspx
http://msdn.microsoft.com/magazine/ee410778
http://msdn.microsoft.com/magazine/ee410778

Untitled-3 1 4/20/10 9:41 AM

www.DevExpress.com/eval

msdn magazine16 CLR Inside Out

new inspection functionality is added, such as the monitor-lock-
inspection feature, which provides value for both live and dump
debugging scenarios. While I expect this feature to be extremely
valuable for developers while they’re initially developing an
application, it’s the dump debugging support that makes monitor-
lock inspection a compelling addition to the production diagnostic
features in CLR 4.

Tess Ferrandez, a Microsoft support engineer, has a Channel 9 video
(channel9.msdn.com/posts/Glucose/Hanselminutes-on-9-Debugging-Crash-Dumps-

with-Tess-Ferrandez-and-VS2010/) in which she simulates a lock-convoy
scenario common to what she has found when troubleshooting
customer applications. She then walks through how to use Visual
Studio 2010 to diagnose the problem. It’s a great example of the
types of scenarios these new features enable.

Beyond Dumps
While we believe the tools these features enable will help decrease the
amount of time it takes developers to resolve issues in production,
we do not expect (nor want) dump debugging to be the only way
to diagnose production issues.

In the case of diagnosing issues of excessive memory use issues, we
usually start with a list of object instances grouped by type with their
count and aggregate size and progress toward understanding object
reference chains. Shuttling dump fi les containing this information
between production and development machines, operations
staff , support engineers and developers can be unwieldy and
time- consuming. And as applications grow in size—this is
especially prevalent with 64-bit applications—the dump fi les also
grow in size and take longer to move around and process. It was with
these high-level scenarios in mind that we undertook the profi ling
features described in the following sections.

Profi ling Tools
Th ere are a number of diff erent types of tools built on top of the
CLR’s profi ling API. Scenarios involving the profi ling API gener-
ally focus on three functional categories: performance, memory
and instrumentation.

Performance profi lers (like the one that ships in some of the Visual
Studio versions) focus on telling you where your code is spending
time. Memory profi lers focus on detailing your application’s memory
consumption. Instrumenting profi lers do, well, everything else.

Let me clarify that last statement a bit. One of the facilities the
profi ling API provides is the ability to insert intermediate language
(IL) into managed code at run time. We call this code instrumentation.
Customers use this functionality to build tools that deliver a
wide range of scenarios from code coverage to fault injection to
enterprise-class production monitoring of .NET Framework-
based applications.

One of the benefi ts the profi ling API has over the debugging
API is that it is designed to be extremely lightweight. Both are
event-driven APIs—for example, there are events in both for
assembly load, thread create, exception thrown and so on—but with
the profi ling API you register only for the events you care about.
Additionally, the profi ling DLL is loaded inside the target process,
ensuring fast access to run time state.

In contrast, the debugger API reports every event to an out-of-
process debugger, when attached, and suspends the runtime on
each event. Th ese are just a couple of the reasons the profi ling API
is an attractive option for building online diagnostics tools targeting
production environments.

Profi ler Attach and Detach
While several vendors are building always-on, production-application-
monitoring tools via IL instrumentation, we do not have many tools
leveraging the performance- and memory-monitoring facilities in
the profi ling API to provide reactive diagnostics support. Th e main
impediment in this scenario has been the inability to attach CLR
profi ling API-based tools to an already-running process.

In versions preceding CLR 4, the CLR checks during startup to
see if a profi ler was registered. If it fi nds a registered profi ler, the
CLR loads it and delivers callbacks as requested. Th e DLL is never
unloaded. Th is is generally fi ne if the tool’s job is to build an end-
to-end picture of application behavior, but it does not work for
problems you didn’t know existed when the application started.

Perhaps the most painful example of this is the memory-usage-
diagnostics scenario. Today, in this scenario we oft en fi nd that the
pattern of diagnostics is to gather multiple dumps, look at the diff er-
ences in allocated types between each, build a timeline of growth, and
then fi nd in the application code where the suspicious types are being
referenced. Perhaps the issue is a poorly implemented caching
scheme, or maybe event handlers in one type are holding references
to another type that’s otherwise out of scope. Customers and support
engineers spend a lot of time diagnosing these types of issues.

For starters, as I briefl y mentioned earlier, dumps of large
processes are large themselves, and getting them to an expert for
diagnosis can introduce long delays in the time to resolution. Further,
there is the problem that you have to involve an expert, primarily
due to the fact that the data is only exposed via a Windows Debugger
extension. Th ere’s no public API that allows tools to consume the
data and build intuitive views on top of it or integrate it with other
tools that could aid in analysis.

To ease the pain of this scenario (and some others), we added a new
API that allows profi lers to attach to a running process and leverage
a subset of the existing profi ling APIs. Th ose available aft er attaching
to the process allow sampling (see “VS 2010: Attaching the Profi ler
to a Managed Application” at blogs.msdn.com/profi ler/archive/2009/12/07/

vs2010-attaching-the-profi ler-to-a-managed-application.aspx) and memory
diagnostics: walking the stack; mapping function addresses to
symbolic names; most of the Garbage Collector (GC) callbacks;
and object inspection.

In the scenario I just described, tools can leverage this functionality
to allow customers to attach to an application experiencing slow
response times or excessive memory growth, understand what’s

Multi-threaded programming
can be diffi cult.

http://channel9.msdn.com/posts/Glucose/Hanselminutes-on-9-Debugging-Crash-Dumps-with-Tess-Ferrandez-and-VS2010/
http://channel9.msdn.com/posts/Glucose/Hanselminutes-on-9-Debugging-Crash-Dumps-with-Tess-Ferrandez-and-VS2010/
http://blogs.msdn.com/profiler/archive/2009/12/07/vs2010-attaching-the-profiler-to-a-managed-application.aspx
http://blogs.msdn.com/profiler/archive/2009/12/07/vs2010-attaching-the-profiler-to-a-managed-application.aspx

Untitled-3 1 4/20/10 9:42 AM

www.DevExpress.com/eval

msdn magazine18 CLR Inside Out

currently executing, and know what types are alive on the managed
heap and what’s keeping them alive. Aft er gathering the information,
you can detach the tool and the CLR will unload the profi ler DLL.
While the rest of the workfl ow will be similar—fi nding where these
types are referenced or created in your code—we expect tools of this
nature to have a sizeable impact on the mean-time-to-resolution
for these issues. Dave Broman, developer on the CLR profi ling
API, discusses this and other profi ling features in more depth on
his blog (blogs.msdn.com/davbr).

I do, however, want to call out two limitations explicitly in this
article. First, memory-diagnostics on attach is limited to non-con-
current (or blocking) GC modes: when the GC suspends execution
of all managed code while performing a GC. While concurrent
GC is the default, ASP.NET uses server-mode GC, which is a non-
concurrent mode. Th is is the environment in which we see most
of these issues. We do appreciate the usefulness of attach-profi ling
diagnostics for client applications and expect to deliver this in a
future release. We simply prioritized the more common case for CLR 4.

Second, you are unable to use the profi ling API to instrument IL
aft er attach. Th is functionality is especially important to our enterprise-
monitoring tool vendors who want to be able to change their
instrumentation dynamically in response to runtime conditions.
We commonly refer to this feature as re-JIT. Today, you have one
opportunity to change the IL body of a method: when it’s fi rst
being JIT-compiled. We expect delivering re-JIT to be a signifi cant
and important undertaking and are actively investigating both the
customer value and technical implications as we consider delivering
the work in a future release.

Registry-Free Activation for Profi lers
Profi ler attach and the supporting work of enabling specifi c
profi ling APIs aft er attach was the biggest piece of work we did in the
CLR profi ling API for CLR 4. But we were delighted to fi nd another
very small (in terms of engineering cost) feature that has a surprisingly
large impact on customers building production-class tools.

Prior to CLR 4, for a tool to get its profi ler DLL loaded in a man-
aged application it had to create two key pieces of confi guration
information. Th e fi rst was a pair of environment variables that told
the CLR to enable profi ling and what profi ler implementation to
load (its CLSID or ProgID) when the CLR starts up. Given that
profi ler DLLs are implemented as in-process COM servers (with
the CLR being the client), the second piece of confi guration data
was the corresponding COM registration information stored in the
registry. Th is basically told the runtime, by way of COM, where to
fi nd the DLL on disk.

During CLR 4 planning, while trying to understand how we could
make it easier for vendors to build production-class tools, we had

some interesting conversations with some of our support engineers
and tools vendors. Th e feedback we received was that, when faced
with an application failure in production, customers oft en care less
about impact to the application (it’s already failing; they just want to
get the diagnostic information and move on) and more about impact
to the state of the machine. Many customers go to great lengths
to document and police the confi guration of their machines, and
introducing changes to that confi guration can introduce risk.

So, with respect to the CLR’s part of the solution, we wanted to
make it possible to enable xcopy-deployable diagnostics tools to
both minimize the risk of state changes and to reduce the time it
takes to get the tools up and running on the machine.

In CLR 4 we removed the need to register the COM profi ler
DLL in the registry. We still require environment variables if you
want to launch your application under the profi ler, but in the
attach scenarios detailed previously, there is no confi guration
required. A tool simply calls the new attach API, passes the path
to the DLL and the CLR loads the profi ler. Moving forward, we’re
looking into ways to further simplify profi ler confi guration as
customers still fi nd the environment-variable solution challenging
in some scenarios.

Combined, the two profi ling features I just discussed enable
a class of low-overhead tools that customers can, in the case of
unexpected failures, quickly deploy to a production machine to
gather performance or memory diagnostic information to help
pinpoint the cause of the problem. Th en, just as quickly, the user
can return the machine to its original state.

Wrapping Up
Working on diagnostics features for the CLR is bittersweet. I see
many examples of how much customers struggle with certain issues,
and yet there’s always cool work we can do to help ease development
and make customers happier. If that list of issues challenging our
customers isn’t changing—that is, we’re not removing items from
it—then we’re not succeeding.

In CLR 4 I think we built features that not only provide immediate
value in addressing some top customer problems, but also lay a foun-
dation upon which we can continue to build in the future. Moving
forward, we will continue to invest in APIs and services that make it
even easier to expose meaningful diagnostic information in all phases
of an application’s life so you can focus more time on building new
features for your customers and less time debugging existing ones.

If you’re interested in providing us feedback on diagnostics work
we’re considering for our next release, we’ve posted a survey at
surveymonkey.com/s/developer-productivity-survey. As we are now about to ship
CLR 4, we’re focusing much of our time on planning for upcoming
releases and data from the survey will help us prioritize our eff orts.
If you have a few minutes, we would love to hear from you.

JON LANGDON is a program manager on the CLR team where he focuses
on diagnostics. Prior to joining the CLR team, he was a consultant with
Micro soft Services, helping customers diagnose and fi x problems with large-scale,
enterprise applications.

THANKS to the following technical expert for reviewing this article:
Rick Byers

Memory profi lers focus on
detailing your application’s

memory consumption.

http://blogs.msdn.com/davbr
http://surveymonkey.com/s/developer-productivity-survey

Untitled-1 1 4/6/10 1:23 PM

www.syncfusion.com

AMCOM
Software

Untitled-1 2 3/25/10 2:58 PM

http://msdn.com/vsip

Untitled-1 3 3/25/10 2:59 PM

http://msdn.com/vsip

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 4/29/10 5:01 PM

mailto:sales@dart.com
www.dart.com
www.dart.com
www.dart.com

23May 2010

When you’re working with services, there are many scenarios
where you want to work with a particular view of data without
paying the price of moving larger types across the wire.

It turns out, there are more options besides creating an extra type
in your domain to satisfy this temporary need.

New Projection Capability in WCF Data Services
Th e Data Services Update for the .NET Framework 3.5 SP1 intro-
duces a handful of powerful features for WCF Data Services, which
are also part of the .NET Framework 4. Among these features is the
ability to use projections in queries against the data services. I highly
recommend checking out the WCF Data Services team blog post on all
that’s new in this update at blogs.msdn.com/astoriateam/ archive/2010/01/27/
data-services-update-for-net-3-5-sp1-available-for-download.aspx.

Th e $select operator has been added to the data services URI syn-
tax. It allows for property and even navigation property projection.

Here’s a simple example of a projection that gets a few scalar
properties for a customer along with the SalesOrderHeaders
navigation property:

http://localhost /DataService.svc/Customers(609)
 ?$select=CustomerID,LastName,FirstName,SalesOrderHeaders&$expand=
 SalesOrderHeaders

Th e expand operator forces the results to include not just a link
to those orders, but the data for each order as well.

Figure 1 shows the results of this query. Th e expanded Sales-
OrderHeaders (which contains only a single order) is highlighted
in yellow while the customer information is highlighted in green.

Th e LINQ to REST feature in the .NET Framework and Silver-
light client APIs for WCF Data Services has been updated to
allow projections as well:

var projectedCust = (from c in context.Customers
 where c.CustomerID==609
 select new {c.CustomerID, c.LastName})
 .FirstOrDefault();

ProjectedCust is now an anonymous type I can use in my
client application.

It’s also possible to project into known entity types, and in some
cases, the DataContext can keep track of changes made by the
client and these changes can be persisted back through the service’s
SaveChanges method. Be aware that any missing properties will
get populated with their defaults (or null if they’re nullable) and
be persisted to the database.

LINQ Projection Queries
and Alternatives in WCF Services

Th e presenter at my local .NET user group was writing a LINQ
query during his session last month when I asked him, “How did
we ever live without LINQ?” “I have no idea,” he replied.

It’s true. Since it was introduced in Visual Studio 2008, LINQ
has made such a diff erence in how we code in the Microsoft .NET
Framework. In combination with the many new language features
that were introduced in Visual Basic and C#, it’s a consistent problem
solver for querying in-memory objects and data sources.

One of LINQ’s abilities that is both a blessing and an occasional
source of frustration is that it can project randomly shaped data
into anonymous types. When you simply need to grab a special
view of your data, without having to declare a new class for this
throwaway type, anonymous types are a great solution. LINQ
projections and anonymous types have certainly spoiled us. So why
do I say they can also be a source of frustration?

If you have ever used a LINQ projection in a method that
needs to return data to another method—or worse, used a LINQ
projection in a Windows Communication Foundation (WCF)
service operation—you may understand.

Because anonymous types are throwaway types, they have no
declaration and are understood only within the method where
they’re created. If you write a query that returns a list of anony-
mous types, there’s no way to defi ne a method argument to say
“I’m going to return a list of … ” because there’s no way to express
“… of anonymous types.”

Here’s a LINQ to Entities query with a simple projection:
 var custQuery = from c in context.Customers
 select new {c.CustomerID, Name=c.LastName.Trim() +
 ", " + c.FirstName};

At run time, the custQuery variable will actually be an
ObjectQuery<<>f__AnonymousType0<int,string>>.

Th e var (and the alternate use of Visual Basic Dim) allows us to get
away with not having (or needing) a way to express this non-type.

If you want to return the results of that query from a method,
the only reasonable solution is to create a class to represent the
type being returned. Doing this, however, renders the beauty of
the anonymous type moot. Now you have to write more code,
defi ne classes and (possibly) new projects to house the new classes,
ensure the various assemblies using these classes have
access to them and so on.

Until recently, data services provided an additional conundrum.
In order to project data, you had to create a custom operation in
a service, execute your own query and then return some type of
pre-defi ned class that could be understood by the client.

DATA POINTS JULIE LERMAN

Code download available at code.msdn.microsoft.com/mag201005DataPoints.

http://blogs.msdn.com/astoriateam/archive/2010/01/27/data-services-update-for-net-3-5-sp1-available-for-download.aspx
http://blogs.msdn.com/astoriateam/archive/2010/01/27/data-services-update-for-net-3-5-sp1-available-for-download.aspx
http://code.msdn.microsoft.com/mag201005DataPoints

msdn magazine24 Data Points

Enabling Projected Strong Types from an EDM
If you’re using an Entity Framework Entity Data Model (EDM), there’s
a convenient way to avoid being stuck with anonymous types when
you need to pass them out of the method in which they were created.

Th e EDM has a mapping called QueryView. I’ve pointed many
clients to this in the past, prior to data services projection support.
Not only does it solve the problem nicely for data services, but for
custom WCF Services and RIA Services as well.

What is a QueryView? It’s a special type of mapping in the Entity
Framework metadata. Typically, you map properties of an entity
to database tables or view columns as they’re described in the
store model—Storage Schema Defi nition Language (SSDL)—of
metadata, as shown in Figure 2.

A QueryView, however, lets you create a view over those SSDL table
columns rather than map directly to them. Th ere are many reasons to
use a QueryView. Some examples include: to expose your entities as
read-only, to fi lter entities in a way that conditional mapping does not
allow or to provide diff erent views of the data tables from the database.

It’s the last of these purposes that I will focus on as an alternative
to the anonymous types you frequently fi nd yourself projecting in
your application. One example would be a pick list. Why return an
entire customer type for a drop-down that needs only an ID and
the customer’s name?

Building a QueryView
Before creating a QueryView, you
need to create an entity in the model
that represents the shape of the view
you’re aiming for—for example,
the CustomerName AndID entity.

But you can’t map this entity
directly to the Customer table in
SSDL. Mapping both the Customer
entity and the CustomerName And-
ID entity to the table’s Customer ID
column would create a confl ict.

Instead, just as you can create a
view of a table in your database, you
can create a view of the SSDL Cus-
tomer directly in the metadata. A
QueryView is literally an Entity SQL
expression over the SSDL. It’s part of
the mapping specifi cation language
(MSL) metadata of the model. Th ere
is no designer support to create the
QueryView, so you’ll need to type
it directly in the XML.

Because you’ll be mapping
to the store schema of the table,
it’s a good idea to see what that
looks like. Figure 3 lists the SSDL
description of the Customer data-
base table, which looks similar to the
Customer entity in the conceptual
model’s metadata, except for the
use of provider data types.

Another important element for the QueryView will be the store
schema’s namespace, ModelStoreContainer. Now you have the
pieces necessary to construct the QueryView expression. Here’s a
QueryView that projects the three required fi elds from the SSDL
into the CustomerNameAndID entity that I created in the model:

 SELECT VALUE AWModel.CustomerNameAndID(c.CustomerID, c.FirstName,
 c.LastName) FROM ModelStoreContainer.Customer as c

Translating the Entity SQL to English: “Query the Customer
in the store schema, pull out these three columns and give them
back to me as a CustomerNameAndID entity.” AWModel is the

Figure 2 Mapping Table Columns Directly to Entity Properties

 Figure 1 Results of a Data Services Query Projection Requesting Three Customer Properties
and the Customer’s SalesOrderHeaders

The Altova MissionKit includes multiple intelligent tools

for data integration:

Experience how the Altova MissionKit®, the

integrated suite of XML, data mapping, and database

tools, can help you leverage existing technology

and business software investments while integrating

modern technologies – without breaking your budget.

MapForce® – Graphical data mapping,

transformation, & conversion tool

 • Drag-and-drop data conversion with instant

 transformation & code generation

• Support for mapping XML, DBs, EDI, XBRL,

 Excel®2007+, XBRL, text files, Web services

XMLSpy® – XML editor and Web services tool

 • XML editor with strong database integration

 • Web services tool, JSON <> XML converter

DatabaseSpy® – multi-database query,

 design, comparison tool

 • Support for all major relational databases and

 translation between DB types

 • SQL editor, graphical database design

 & content editor

Download a 30 day free trial!

Try before you buy with a free, fully

functional, trial from www.altova.com

Connect legacy

technologies

affordably with the

complete set of data

integration tools from Altova®

•

• 64-bit version

• Support for WSDL 2.0 editing & mapping

• Numerous enhancements for data mapping

• Optimizations for creating, mapping,

 & transforming XBRL data

• JSON editing & conversion

• Support for IBM® iSeries® 6.1

ionNew in Version 2010:

Untitled-3 1 3/25/10 12:04 PM

http://www.altova.com

msdn magazine26 Data Points

namespace of the conceptual model’s entity container. You’re
required to use the strongly typed names of both the Conceptual
Schema Definition Language (CSDL) and SSDL types that are
referenced in the expression.

As long as the results of the projection (an integer, a string and a
string) match the schema of the target entity, the mapping will suc-
ceed. I’ve tried to use functions and concatenation within the projec-
tion—for example, (c.CustomerID, c.FirstName + c.LastName)—but
this fails with an error stating that FUNCTIONs are not allowed.
So I’m forced to use the FirstName and LastName properties and
let the client deal with concatenation.

Placing the QueryView into the Metadata
You must place the QueryView expression within the Entity-
SetMapping element for the entity that goes inside the Entity-
ContainerMapping in the metadata. Figure 4 shows this QueryView
(highlighted in yellow) in the raw XML of my EDMX fi le.

Now my CustomerNameAndID is part of my model and will be
available to any consumer. And there is another advantage to the
Query View. Even though the goal of this QueryView is to create a
read-only reference list, you can also update entities that are mapped
using QueryViews. Th e context will track changes to Customer-
NameAndID objects. Although Entity Framework is not able to
auto-generate insert, update and delete commands for this entity,
you can map stored procedures to it.

Reaping the Benefi ts of
the QueryView
Now that you have the QueryView
in the model, you don’t need to
depend on projections or anony-
mous types to retrieve these views
of your data. In WCF Data Services,
CustomerNameAndIDs becomes
a valid entity set to query against,
as shown here:

List<CustomerNameAndID> custPickList =
 context.CustomerNameAndIDs.ToList();

No messy projections. Better yet, you can create service opera-
tions in your custom WCF Services that are now able to return this
strongly typed object without having to defi ne new types in your
application and project into them.

 public List<CustomerNameAndID> GetCustomerPickList()
 {
 using (var context = new AWEntities())
 {
 return context.CustomerNameAndIDs.OrderBy(
 c => c.LastName).ToList();
 }
 }

Because of the limitation that prevents us from concatenating
the fi rst and last names in the QueryView, it’s up to the developers
who consume the service to do this concatenation on their end.

WCF RIA Services can also benefi t from the QueryView. You
may want to expose a method for retrieving a restaurant pick list
from your domain service. Rather than having to create an extra
class in the domain service to represent the projected properties,
this RestaurantPickList entity is backed by a QueryView in the
model, which makes it easy to provide this data:

 public IQueryable<RestaurantPickList> GetRestaurantPickList()
 {
 return context.RestaurantPickLists;
 }

QueryViews or Projections—
We’ve Got You Covered
Having the ability to project views over your data types is a huge
benefi t in querying, and it’s a great addition to WCF Data Services.
Even so, there are times when having access to these views, without
having to project and without having to worry about sharing the
result, will simplify some of your coding tasks.

One last note: With the introduction of foreign keys in the .NET
Framework 4 version of Entity Framework, QueryView pick lists
make even more sense because you can return read-only entities
and simply use their properties to update foreign key properties
in the entities you’re editing.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. Lerman blogs at
thedatafarm.com/blog and is the author of the highly acclaimed book, “Programming
Entity Framework” (O’Reilly Media, 2009). Follow her on Twitter: julielerman.

THANKS to the following technical expert for reviewing this article:
Alex James

<EntityType Name="Customer">
 <Key>
 <PropertyRef Name="CustomerID" />
 </Key>
 <Property Name="CustomerID" Type="int" Nullable="false"
 StoreGeneratedPattern="Identity" />
 <Property Name="Title" Type="nvarchar" MaxLength="8" />
 <Property Name="FirstName" Type="nvarchar" Nullable="false"
 MaxLength="50" />
 <Property Name="MiddleName" Type="nvarchar" MaxLength="50" />
 <Property Name="LastName" Type="nvarchar" Nullable="false"
 MaxLength="50" />
 <Property Name="Suffix" Type="nvarchar" MaxLength="10" />
 <Property Name="CompanyName" Type="nvarchar" MaxLength="128" />
 <Property Name="SalesPerson" Type="nvarchar" MaxLength="256" />
 <Property Name="EmailAddress" Type="nvarchar" MaxLength="50" />
 <Property Name="Phone" Type="nvarchar" MaxLength="25" />
 <Property Name="ModifiedDate" Type="datetime" Nullable="false" />
 <Property Name="TimeStamp" Type="timestamp" Nullable="false"
 StoreGeneratedPattern="Computed" />
</EntityType>

Figure 3 The SSDL Description of the Database Customer Table

Figure 4 A QueryView in the Mappings Section

http://thedatafarm.com/blog

Untitled-3 1 4/1/10 1:48 PM

www.purecm.com/start10-1

© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-4 2 4/6/10 3:30 PM

www.componentone.com/here

ComponentOne Sales: 1.800.858.2739 or 1.412.681.4343

Untitled-4 3 4/6/10 3:30 PM

www.componentone.com/ajax

msdn magazine30

N O W PL AY ING

Building Custom
Players with the Silverlight
Media Framework

Streaming media has become ubiquitous on the Web.
It seems like everyone—from news sites to social networks to your
next-door neighbor—is involved in the online video experience. Due
to this surge in popularity, most sites want to present high-quality
video—and oft en high-quality bandwidth-aware video—to their
consumers in a reliable and user-friendly manner.

A key element in the online media delivery experience is the player
itself. Th e player is what the customer interacts with, and it drives
every element of the user’s online experience. With so much attention
centered on the player, it’s no surprise that modern, Web-based media
players have become a great deal more complicated to implement

Ben Rush

than they were even a couple years ago. As a result, developers
need a robust framework on which they can build their players.

Th e Silverlight Media Framework (SMF) is an open source
project that was released by Microsoft at the 2009 Microsoft
Professional Developers Conference. It is an extensible and highly
scalable Silverlight video framework that directly answers the need
for a stable core upon which developers and designers can create
their own players. Th e code at the center of the Silverlight Media
Framework has been refi ned based on lessons learned from the
NBC Olympics and Sunday Night Football Web video projects.

Th is article will explain the basic elements of SMF, demonstrate
how you can integrate SMF into your own player projects and walk
you through a simple project that uses SMF to create a custom
player experience. I’ll show you how to use the logging, settings,
and event-handling features of SMF. Finally, I’ll create a player
application that displays suggested videos for further viewing when
the current video ends.

Getting Started with SMF
To get started, the fi rst thing you’ll want to do is download the
framework from Codeplex (smf.codeplex.com). You also need to
download the Smooth Streaming Player Development Kit (iis.net/
expand/smoothplayer) and reference it in any projects using SMF. Th e
Smooth Streaming Player Development Kit is not part of SMF—it’s a
completely separate, closed-source component. However, SMF
leverages a core set of functionality from the kit, in particular the

This article is based on the Smooth Streaming Player Development
Kit beta 2. All information is subject to change.

This article discusses:
• Getting started with SMF

• Creating and displaying the player

• Logging, settings and events

• Showing recommended video buttons

Technologies discussed:
Silverlight Media Framework, Smooth Streaming Player
Development Kit

Code download available at:
code.msdn.microsoft.com/mag201005CustPlay

http://code.msdn.microsoft.com/mag201005CustPlay
http://smf.codeplex.com
http://iis.net/expand/smoothplayer
http://iis.net/expand/smoothplayer

31May 2010msdnmagazine.com

video player itself. As of the writing of this article, the Smooth
Streaming Player Development Kit is in beta 2.

SMF consists of a number of Microsoft .NET assemblies (as shown in
Figure 1), each a diff erent functional part of the overall framework.

Th e core assembly is Microsoft .SilverlightMediaFramework.dll,
which comprises a number of utility classes and types referenced
throughout the rest of the framework. When using any aspect of
SMF, you must also reference the Microsoft .SilverlightMedia-
Framework.dll assembly.

Th e Microsoft .SilverlightMediaFramework.Data namespace
provides helper classes for consuming data external to the
player and for encapsulating data within the player. Th e data can be
general, with any form, but it can also be settings information for
the player itself. Th ere’s another namespace, Microsoft .Silverlight-
MediaFramework.Data.Settings, for types representing and dealing
with player settings.

Apart from data used for settings, the type within the Data
namespace you’ll most likely interact with is the out-of-stream
DataClient class, which can retrieve data from an external source.
You reference this assembly if you want to download and use data
external to the player.

The SMF player includes the robust Microsoft.Silverlight-
MediaFramework.Logging framework that uses a callback-style
paradigm in which writing to the logging infrastructure raises
events. You register your own callback methods with the logging
system, and these callbacks carry out additional operations once
invoked—such as posting information to a Web service or displaying
information to a text box. You reference this assembly if you
wish to use the built-in logging facilities of SMF.

Th e Microsoft .SilverlightMediaFramework.Player assembly
implements the player itself. It also provides a number of controls
the player relies on, such as a scrubber, volume control and timeline
markers. Th e default SMF player is sleek and clean, a great starting
point for any project requiring a Silverlight player. However,
central to all controls defi ned within SMF is the notion of control
templating, so each control can be themed by using tools such as
Expression Blend or Visual Studio.

Building and Referencing SMF
SMF downloads as a single .zip fi le in which you’ll fi nd a solution
fi le, a project for each output library, and test projects for running
and verifying the player itself.

SMF relies on the Smooth Streaming Player Development
Kit. To reference the kit, move the Smooth Streaming assembly
(Microsoft .Web.Media.SmoothStreaming.dll) into the \Lib folder
of the SMF project.

Next, open the SMF solution in Visual Studio and build it, creating
all the assemblies needed to leverage the framework. To verify that
everything executes as expected, press F5 to begin debugging. Th e
solution will build and the Microsoft .SilverlightMedia Framework.
Test.Web target will execute, presenting you with the default SMF
player streaming a “Big Buck Bunny” video (see Figure 2). Note
how complete the default player already is, with a position
element for scrubbing, play/stop/pause buttons, volume controls,
full screen controls and so forth.

The next step is to create your own separate Silverlight proj-
ect and leverage SMF from within it. In Visual Studio click
File | New | Project | Silverlight Application. Call the solution
SMFPlayer Test and click OK. A modal dialog will pop up, ask-
ing whether you wish to host the Silverlight application in a
new Web site. Click OK and you’ll see a basic Silverlight appli-
cation solution consisting of two projects, SMFPlayerTest and
SMFPlayerTest.Web.

Th e fi nal step is to reference the Smooth Streaming Player
Development Kit and SMF assemblies from your newly created
project. Copy the output SMF assemblies and Smooth Streaming
Player Development Kit from the SMF solution’s Debug folder and
paste them into your new project as shown in Figure 3. Your new
solution now includes all the assembly references required to take
full advantage of the SMF.

Displaying the Player
To begin using the SMF, include the SMF player’s namespace
within your MainPage.xaml page. Th is ensures that all references
resolve properly:

xmlns:p="clr-namespace:Microsoft.SilverlightMediaFramework.
Player;assembly=Microsoft.SilverlightMediaFramework.Player"

Now insert player’s XAML within the page’s LayoutRoot Grid
control.

<Grid x:Name="LayoutRoot">
 <p:Player>
 </p:Player>
</Grid>

Pressing F5 will launch the project and bring up the SMF
player. However, because the player hasn’t been told what to play,
it does nothing. All you get is a player with no content to play.

Figure 1 The Silverlight Media Framework Assemblies

Microsoft.SilverlightMediaFramework.Logging Microsoft.SilverlightMediaFramework

Microsoft.SilverlightMediaFramework.PlayerSmooth Streaming
Player

Development Kit

Microsoft.SilverlightMediaFramework.Data

Figure 2 The SMF Player and the Big Buck Bunny Video

www.msdnmagazine.com

msdn magazine32 Now Playing

SMF uses SmoothStreamingMediaElement (from the Smooth
Streaming Player Development Kit) to play video. From Smooth-
StreamingMediaElement, SMF inherits its own player, called
CoreSmoothStreamingMediaElement. Th is object is required if
you want the player to stream content. Be sure to set the Smooth-
StreamingSource property to a valid smooth streaming media URL:

<Grid x:Name="LayoutRoot">
 <p:Player>
 <p:CoreSmoothStreamingMediaElement
 AutoPlay="True"
 SmoothStreamingSource="replace with address to content here"/>
 </p:Player>
</Grid>

As mentioned earlier, Microsoft provides the “Big Buck Bunny”
sample video stream, which developers can use to test Silverlight
projects. To use this test stream, set the SmoothStreamingSource
property on the CoreSmoothStreamingMediaElement to:

http://video3.smoothhd.com.edgesuite.net/ondemand/Big%20Buck%20Bunny%20
Adaptive.ism/Manifest

Once again, press F5 to build and run the project. Th e browser
will execute with the same player as before, but this time the “Big
Buck Bunny” video will begin streaming moments aft er the player
has fully loaded. If your task was to create a basic Silverlight player
to stream content, you’ve done it.

However, the SMF off ers quite a bit more than we’ve seen thus
far. Let’s add some basic logging.

Logging in the Player
Logging in SMF is simple—whenever an event is logged, it raises a Log-
Received event. You register an event handler for this event, and thereby
receive a notifi cation for each logging event as it’s raised. What you do
with the notifi cation is up to you; you can display it in a new window
within the player, fi lter the events and notify a Web service whenever a
certain event gets raised, or do whatever is necessary for your scenario.

The LogReceived event is statically defined on the Logger
class itself (defi ned within Microsoft .SilverlightMedia Framework.Logg-
ing.dll), so it’s possible to register for logging events anywhere within
the project. Here’s an example of registering for and defi ning the event
handler within the MainPage.xaml fi le of the SMFPlayerTest project:

public partial class MainPage : UserControl {
 public MainPage() {
 InitializeComponent();

 Logger.LogReceived +=
 new EventHandler<SimpleEventArgs<Log>>(
 Logger_LogReceived);
 }

 void Logger_LogReceived(object sender,
 Microsoft.SilverlightMediaFramework.SimpleEventArgs<Log> e) {
 throw new NotImplementedException();
 }
}

SMF raises quite a few events out of the box. To see them, create
a breakpoint within the Logger_LogReceived method and run
the player once again in Debug mode. Almost immediately your
breakpoint will get hit, allowing you to step through the method’s
parameters and see the information passed to it.

Log event data is packaged within a special messaging object whose
type must inherit from an abstract class named Log. Th is abstract
Log type has three properties: Sender, Message and TimeStamp.
Sender references the object that raised the event. Message is an

object of type System.String that holds the text for the logging event.
TimeStamp simply holds the date and time at which the logging
object was fi rst instantiated. Th e SimpleEventArgs<> object passed
as the second parameter to your event handler holds a reference to
the Log object through its Result property.

To raise a log event, all that’s required is to instantiate a type that
inherits from the Log base class, then pass this type to the statically
defi ned Log method on the Logger type. Th e framework supplies
a DebugLog class that already inherits from the Log base type.
What’s special about the DebugLog type, however, is that if the
libraries being referenced by your Silverlight project were created
under a Debug build of the SMF, passing a DebugLog type to the
SMF logging framework will raise a corresponding logging event
(and therefore invoke your event handlers). On the other hand, a
Release build of the SMF will ignore any call to the Log method
that gets passed the DebugLog class. In short, if you have debugging
statements you only want to use Debug builds, with the Debug-
Log object as the log event argument; otherwise you will need to
construct your own type that inherits from the abstract Log type.

Here’s an example that raises a Listening event through the SMF
event system by instantiating a DebugLog object and passing it to
the Logger’s static Log method (be sure your Smooth Streaming
Player Development Kit fi les were built under Debug settings):

public MainPage() {
 InitializeComponent();

 Logger.LogReceived +=
 new EventHandler<SimpleEventArgs<Log>>(
 Logger_LogReceived);

 Logger.Log(new DebugLog {
 Message = "Listening!", Sender = this });
}

Inheriting from the Player Class
Although logging is a central feature of the player, the SMF play-
back features are only accessible when you inherit from and begin
extending the SMF Player type itself.

To see how this works, you need to create a new class called SMF-
Player that inherits from the Player type.

Figure 3 Referencing the Required Assemblies

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

msdn magazine34 Now Playing

Th e new SMFPlayer class looks like this:
namespace SMFPlayerTest {
 public class SMFPlayer : Player {
 public override void OnApplyTemplate() {
 base.OnApplyTemplate();
 }
 }
}

Every FrameworkElement type (such as Player in SMF) has an
OnApplyTemplate method that is called whenever the Apply-
Template event is raised. This method often serves as a useful
starting point when initializing a FrameworkElement type.

In this case, I override the default OnApplyTemplate method
from within the new SMFPlayer class. To demonstrate that the
new SMFPlayer type is executed instead of the default Player type,
you can set a breakpoint within the override. When you debug the
player in Visual Studio, this breakpoint will be enountered when
Silverlight executes the SMFPlayer.

Now update the MainPage.xaml fi le to use the new player class.
First, include the player’s namespace in the list of namespaces
already referenced (just as you did the player namespace earlier):

xmlns:smf="clr-namespace:SMFPlayerTest"

Th en simply update the Player tags within the XAML to use
SMFPlayer instead of Player:

<Grid x:Name="LayoutRoot">
 <smf:SMFPlayer>
 <p:CoreSmoothStreamingMediaElement
 AutoPlay="true"
 SmoothStreamingSource="http://..."/>
 </smf:SMFPlayer>
</Grid>

Next, instantiate a DebugLog class and pass it to the Log method
as shown earlier. Doing so will fi re the event for which you previously
registered an event handler:

public override void OnApplyTemplate() {
 Logger.Log(new DebugLog {
 Message = "Hello from OnApplyTemplate!",
 Sender = this
 });

 base.OnApplyTemplate();
}

To listen specifi cally for this event from within the event handler,
fi lter the Message property of the DebugLog object itself. In this
example, look for any message that contains “OnApplyTemplate”:

void Logger_LogReceived(
 object sender, SimpleEventArgs<Log> e) {
 if (e.Result.Message.Contains("OnApplyTemplate")) {
 return;
 }
}

Using Settings Data
A mature framework for dealing with settings is crucial to most large-
scale soft ware projects. Th e code for handling settings in SMF is built
on the Microsoft .SilverlightMediaFrame work.Data.dll assembly,
which allows you to download generic, external data. Th e settings

layer of SMF uses this infrastructure to reach out and download a
specially formatted XML settings fi le hosted on a Web server. Once
the settings data has been successfully downloaded and read, the
SMF settings layer encapsulates it with a SettingsBase object whose
methods are then used to retrieve the settings values.

Th e SettingsBase class, as the name suggests, serves as a base
for a more specifi c class that can provide strongly typed access to
your settings values. Here’s an example of a class that inherits from
SettingsBase. It has two properties, one for retrieving a video player
source URL and another for retrieving a Boolean value that
indicates whether the video player should start automatically or
wait for the viewer to press the play button:

namespace SMFPlayerTest {
 public class SMFPlayerTestSettings : SettingsBase {
 public Uri VideoPlayerSource {
 get { return new Uri(
 GetParameterValue("videoSource")); }
 }

 public bool? AutoStartVideo {
 get { return GetParameterBoolean(
 "autoStart"); }
 }
 }
}

Th e property methods use functions implemented by the
SettingsBase class to inspect the underlying collection of settings
name/value pairs loaded into the type (through a mechanism
discussed shortly). This provides a type-safe and IntelliSense-
friendly method of retrieving settings information.

Now create a new XML fi le in the SMFPlayerTest.Web project,
name it SMFPlayerSettings.xml, and add the following to it:

<?xml version="1.0" encoding="utf-8" ?>
<settings>
 <Parameters>
 <Parameter
 Name="videoSource"
 Value="http://video3.smoothhd.com.edgesuite.net/ondemand/Big%20
Buck%20Bunny%20Adaptive.ism/Manifest"/>
 <Parameter Name="autoStart" Value="True"/>
 </Parameters>
</settings>

Next, create a SettingsClient object into which you’ll load the settings
XML. SettingsClient takes a URI pointing to the settings fi le:

m_settingsGetter = new SettingsClient(
 new Uri("http://localhost:10205/SMFPlayerSettings.xml"));

Th e process of retrieving the settings data is asynchronous, so
a callback method must be assigned to the RequestCompleted
method on SettingsClient:

m_settingsGetter.RequestCompleted +=
 new EventHandler<SimpleEventArgs<SettingsBase>>
 (m_settingsGetter_RequestCompleted);

Th e last step is to invoke the parameterless Fetch method on
the SettingsClient object. When the data is retrieved, the settings-
Getter_RequestCompleted event handler will be invoked and a
SettingsBase object will be passed to it:

void m_settingsGetter_RequestCompleted(
 object sender, SimpleEventArgs<SettingsBase> e) {

 SettingsBase settingsBase = e.Result;
 return;
}

Th e SettingsBase object passed to the settingsGetter_Request-
Completed method is loaded with the name/value pairs parsed for
you by the underlying framework from the fi le SMFPlayerSettings.xml.

Built into the SMF player is a
robust logging framework.

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/05

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive and animated charts for ASP and ASP.NET apps.

BEST SELLER

BEST SELLERNEW RELEASE LEADTOOLS Recognition SDK from $3,595.50
Add robust 32/64 bit document imaging & recognition functionality into your applications.

Untitled-1 1 4/14/10 10:59 AM

http://www.componentsource.com

msdn magazine36 Now Playing

In order to load this data into your
SMFPlayerTestSettings object, you
simply call the Merge method, which
merges settings information from
one SettingsBase-derived object with
that of another:

SettingsBase settingsBase = e.Result;
m_settings.Merge(settingsBase);

this.mediaElement.SmoothStreamingSource =
 m_settings.VideoPlayerSource;
this.mediaElement.AutoPlay =
 (bool)m_settings.AutoStartVideo;

return;

You no longer have to hard-
code the AutoPlay and Smooth-
StreamingSource properties on the
CoreSmoothStreaming MediaElement
within the page XAML, because the
player settings are being downloaded
from within the OnApplyTemplate
method. Th is is all you need for the
player XAML:

<Grid x:Name="LayoutRoot">
 <smf:SMFPlayer>
 <p:CoreSmoothStreamingMediaElement/>
 </smf:SMFPlayer>
</Grid>

When you run the player, all the settings data will load, the call-
back will load the values into the player’s media element, and the
video will begin to stream just as it did before.

Extending the SMF Player
On many popular video sites, when video playback has completed,
you see a list of similar or recommended videos. To illustrate how easy
it is to extend the SMF player, let’s walk through the steps to build a
similar suggested-viewing feature into the SMFPlayerTest project.

Start by adding an x:Name attribute to the Player element in the
MainPage.xaml fi le:

<Grid x:Name="LayoutRoot">
 <smf:SMFPlayer x:Name="myPlayer">
 <p:CoreSmoothStreamingMediaElement/>
 </smf:SMFPlayer>
</Grid>

Th is makes it easier to refer to the SMFPlayer object by name
within both Visual Studio and Expression Blend.

Now, right-click on the MainPage.xaml fi le in Solution Explorer
and select Open in Expression Blend. Expression Blend 3 will launch
and display a design interface to the SMF player. In the Objects and
Timeline section, you’ll fi nd a myPlayer node in the tree of visual
objects that corresponds to the name given to the SMFPlayer object
previously. Th e goal is to create a template for SMFPlayer, then to
add three Suggestion buttons to the template. By using a template
in Expression Blend, you can add, edit or remove controls built
into the player itself.

To create a template, right-click myPlayer in the Objects and
Timeline window and select Edit Template | Edit a Copy. A
Create Style Resource dialog will be displayed, click OK. To insert
the three buttons on top of the video player, double-click the button

icon in the Tools window for each
button you want to add. Th ree but-
tons should now be visible in the tree
of controls that make up the player
template (see Figure 4).

Select all three buttons in the tree, go
to the properties window for the con-
trols and set the horizontal and vertical
alignment to be centered (see Figure 5),
thus aligning the buttons down the
center and middle of the video player.

Th e buttons are the default size and
lie on top of each other. Set the width
of each button to 400, and the height
to 75. Next, adjust the margins so that
one button has a 175-pixel off set from
the bottom, another 175-pixel off -
set from the top and the last has no
margin off sets at all. Th e end result
will look like Figure 6.

To verify the buttons have been
properly placed on the player, save
all open fi les in Expression Blend and

return to Visual Studio. Visual Studio may prompt you to reload
documents that were changed by Expression Blend. If so, click OK.
From within Visual Studio, press F5 to relaunch the SMF player
in Debug mode. Th e player should now appear with three buttons
aligned down the center of the video screen as shown in Figure 7.

Hooking up Event Handlers
Event handlers must now be associated with the buttons. To reference
the buttons from code, you need to assign names to them, which
you do via the Name text box in the Properties tab. For simplicity,
name the buttons Button1, Button2 and Button3. When you’re
done, the Objects and Timeline window should update and display
the button names adjacent to the button icons in the visual tree.

Within the Properties tab for each button you’ll fi nd an Events
button that’s used to assign event handlers for a visual component.
Select one of the buttons, click the Event button within the Properties
tab, and double-click the Click text box to auto-generate an event
handler within the MainPage.xaml.cs. Th e properties window for
each button will now have an event handler assigned to its Click
event (see Figure 8), and the MainPage.xaml.cs fi le will have event
handlers assigned to each button’s Click event.

You can now debug the player. Clicking any of the buttons on
the screen will raise a Click event, which is now handled by the
auto-generated methods within MainPage.xaml.cs.

Suggested Videos
Now let’s use these buttons to enable the suggested video feature.
Th e following XML will represent the suggestions:

<?xml version="1.0" encoding="utf-8" ?>
<Suggestions>
 <Suggestion DisplayName="A suggestion" Url=""/>
 <Suggestion DisplayName="Another suggestion" Url=""/>
 <Suggestion DisplayName="My final suggestion" Url=""/>
</Suggestions>

Figure 4 Button Controls Added to the Control Tree

Figure 5 Setting Button Control Alignment

I KNOW A PLACE THAT’S
DIFFERENT, BUT FAMILIAR

Code in the cloud … with the development
technologies you already know
With Windows AzureTM

You have the freedom to focus.

You can code in the language you choose.

You’re already equipped for the cloud.

® ®

Find out more.

® www.windowsazure.com/msdn

Untitled-1 1 4/15/10 11:51 AM

http://www.windowsazure.com/msdn%ED%AF%80%ED%B0%83%ED%AF%80%ED%B1%91%ED%AF%80%ED%B1%92%ED%AF%80%ED%B1%9A%ED%AF%80%ED%B0%91

msdn magazine38 Now Playing

Th e value of the Url attribute will specify the video the player is
to load when the button is clicked, and the DisplayName attribute
is the text to be written on the button. Save this fi le with the name
Suggestions.xml in the SMFPlayerTest.Web project.

The DataClient type (within the Microsoft.Silverlight-
MediaFramework. Data namespace) will be used to download the
XML document and to represent the content in a type-safe manner.
To represent each Suggestion read from the XML fi le in a strongly
 typed fashion, create a class called SMFPlayer TestSuggestion in
your Silverlight project:

namespace SMFPlayerTest {
 public class SMFPlayerTestSuggestion {
 public string DisplayName;
 public Uri Url;
 }
}

DataClient, like SettingsBase, is intended to be derived from
by a class that enables a strongly typed representation of the data
from the XML content (in this case, an array of SMFPlayerTest-
Suggestion objects).

Create another class fi le within the SMFPlayerTest project called
SMFPlayerTestDataClient:

namespace SMFPlayerTest {
 public class SMFPlayerTestDataClient :
 DataClient<SMFPlayerTestSuggestion[]> {

 public SMFPlayerTestDataClient(Uri Url) : base(Url) { }

 protected override void OnRequestCompleted(
 object sender, SimpleEventArgs<string> e) {

 throw new NotImplementedException();
 }
 }
}

SMFPlayerTestDataClient inherits from DataClient and sets its
template argument to an array of SMFPlayerTestSuggestion types.
Th e DataClient base class provides all the necessary asynchronous
networking logic to go online and download the external XML fi le.
Once the content has been downloaded, however, the DataClient
base will invoke OnRequestCompleted and expect all processing
of the XML data to take place then. In other words, the DataClient
base class downloads the content, but the implementer is responsible
for doing something with it.

Here’s a more complete implementation of OnRequestCompleted:
protected override void OnRequestCompleted(
 object sender, SimpleEventArgs<string> e) {

 XDocument doc = XDocument.Parse(e.Result);
 List<SMFPlayerTestSuggestion> suggestions =
 new List<SMFPlayerTestSuggestion>();
 foreach (XElement element in doc.Descendants("Suggestion")) {
 suggestions.Add(new SMFPlayerTestSuggestion {
 DisplayName = element.Attribute("DisplayName").GetValue(),
 Url = element.Attribute("Url").GetValueAsUri()
 });
 }

 base.OnFetchCompleted(suggestions.ToArray());
}

For the sake of simplicity, I’ve used LINQ to XML in this
implementation to parse the required elements and attributes in the
XML. Once the DisplayName and Url attribute values from each
Suggestion node have been retrieved, a SMFPlayerTestSuggestion
object is instantiated and the values are assigned.

The final step is the invocation of OnFetchCompleted
event. Outside consumers of SMFPlayerTestDataClient may
register event handlers to the FetchCompleted event to be
notified when the suggested video data has been downloaded.
Because OnRequestCompleted has packaged the XML data
in a type-safe manner, each event handler will receive a
handy array of SMFPlayer TestSuggestion objects, one for each
Suggestion element in the XML document the DataClient base
class downloaded.

The underlying DataClient provides a method called Fetch
that, once invoked, begins the process of asynchronously
downloading content. To begin downloading the suggestion
data when the video has ended, attach an event handler called
media Element_Media Ended to the MediaEnded event on the
MediaElement object:

void mediaElement_MediaEnded(
 object sender, RoutedEventArgs e) {

 m_client = new SMFPlayerTestDataClient(
 new Uri("http://localhost:10205/Suggestions.xml"));
 m_client.FetchCompleted +=
 new EventHandler<SimpleEventArgs<
 SMFPlayerTestSuggestion[]>>(m_client_FetchCompleted);
 m_client.Fetch();
}

Th e mediaElement_MediaEnded method creates an instance of
the SMFPlayerTestDataClient type, assigns another event handler
to the FetchCompleted event, and then invokes Fetch to begin the

Figure 6 The Centered Buttons in Expression Blend

Figure 7 The Centered Buttons in the SMF Player

39May 2010msdnmagazine.com

download process. Th e FetchComplet-
ed handler will be invoked by the call
to OnFetchCompleted implemented
previously within OnRequestCom-
pleted (which is invoked by the Data-
Client base type once the content has
downloaded).

Th e implementation of suggestion_
FetchCompleted, registered within
mediaElement_MediaEnded, takes
the strongly typed array of Suggestion
data and assigns one Suggestion to
each button:

void m_client_FetchCompleted(
 object sender, SimpleEventArgs<
 SMFPlayerTestSuggestion[]> e) {
 for (int c = 1; c <= 3; c++) {
 Button btn = (Button)GetTemplateChild(
 "Button" + c.ToString());
 btn.Tag = e.Result[c - 1].Url;
 btn.Content =
 e.Result[c - 1].DisplayName;
 }
}

GetTemplateChild, a method on the
underlying FrameworkElement type,
gets a reference to each of the buttons
defi ned in the MainPage XAML. For
each button, the display text is assigned
to the Content property, and the URI
is assigned to the Tag property. Each
button’s click event handler can then
pull the URI from the Tag property and
assign the URL to the player’s Media-
Element to play the stream:

private void Button1_Click(
 object sender, System.Windows.RoutedEventArgs e) {

 Uri redirectUrl = (Uri)((Button)sender).Tag;
 myPlayer.MediaElement.SmoothStreamingSource =
 redirectUrl;
}

Showing the Buttons
Th e fi nal step is to hide the buttons until the currently streaming
video has ended, at which point the buttons become visible. Once
a user clicks a button, the buttons are hidden again.

Within Visual Studio, edit the SMFPlayer class by decorating it
with two TemplateVisualState attributes:

[TemplateVisualState(Name = "Hide", GroupName = "SuggestionStates")]
[TemplateVisualState(Name = "Show", GroupName = "SuggestionStates")]
public class SMFPlayer : Player

TemplateVisualState is a fascinatingly powerful attribute that
defi nes visual states under which an object may exist. Once a visual
state becomes active, Silverlight will update properties of visual
elements belonging to the class as instructed—such as the visibility
of a child button control.

To set the current visual state, use the static GoToState method
of the VisualStateManager class (a native Silverlight type). Th e
GroupName property of the TemplateVisualState groups like states
together, whereas the Name property of the TemplateVisualState
specifi es the individual state.

Return to Expression Blend. In the
myPlayer template, click myPlayer
directly above the designer window,
then click Edit Template | Edit Current.
Click the States tab and scroll down
SuggestionStates as shown in Figure 9.

Th e two SuggestionStates created
by the attributes appear as Hide and
Show. If you click on Hide, a red circle
appears just to the left, indicating
Expression Blend is recording any
property changes made within the
designer. Expression Blend continues
to record property changes until Hide
is clicked again, which causes the red
recording circle to disappear.

With Expression Blend actively
recording for the Hide visual state,
set the buttons to Collapsed. Select
all three buttons under the Objects
and Timeline window and choose
Collapsed as their Visibility in the
Properties tab. Stop recording for the
Hide visual state by clicking the Hide
button once again. Now click Show
so that a red circle appears to the left
of the Show visual state. Th is time
explicitly record Visible as the visibility
status by clicking the Advanced
Property Options button just to the
right of the Visibility drop-down and

selecting Record Current Value. Save all open documents and once
again return to Visual Studio.

Th e native Silverlight class, VisualStateManager, is used to explicitly
set a currently active visual state. From within the OnApplyTemplate
method of the player, set Hide as the currently active visual state:

VisualStateManager.GoToState(this, "Hide", true);

Within suggestion_FetchCompleted, set Show as the currently
active state to display the buttons once the stream has ended and
the Suggestion data download has completed:

VisualStateManager.GoToState(this, "Show", true);

To hide the buttons once a button is clicked (or the original stream
is replayed), create a new event handler for the MediaElement’s
MediaOpened event, and set the visual state to Hide.

Launch and debug the player one fi nal time. You’ll see the buttons
are invisible until the very end of the video, at which point they
become visible. Clicking a button navigates the player to whatever
URL was specifi ed in the button’s corresponding Suggestion setting.

Th e SMF project space on Codeplex gives you access to the code
base, documentation, discussions and the issue tracker. Take a look
and contribute what you can. Th e more creative minds applied to
the project, the better the result for everyone.

BEN RUSH is an 18-year veteran software developer specializing in the
Microsoft .NET Framework and related Microsoft technologies. He enjoys smart
code and fast bike rides.

Figure 8 Setting the Event Handler

Figure 9 Visual States for SuggestionStates

www.msdnmagazine.com

Untitled-2 2 3/2/10 10:44 AM

www.xceed.com

Untitled-2 3 3/2/10 10:45 AM

www.xceed.com

msdn magazine42

S I LV E RL I G HT SEC UR IT Y

Securing Your
Silverlight Application

In my role as a consultant with Microsoft Services, I
have regular discussions with customers and partners about
application security. In this article, I’ll explore some of the themes
that arise in those discussions. In particular, I’ll focus on the new
challenges programmers face when trying to secure Silverlight
applications, and I’ll consider where development teams should
focus their resources.

Th is article touches on many technical concepts that you’ll fi nd
covered in more detail elsewhere (including this magazine). For
this reason, I won’t explore these topics in great technical depth.
Instead, the goal of the article is to “connect the dots” and show
how you can exploit these concepts to secure your applications.

Josh Twist

When planning security for an application, it’s useful to think of
three A’s: authentication, authorization and audit.
Authentication is the act of confi rming that users are who they
claim to be. We usually do this with a user name and password.
Authorization is the process of confi rming that a user, once
authenticated, actually has the appropriate permissions to perform
a particular action or access a particular resource.
Audit is the act of maintaining a record of activity such that actions
and requests made upon a system can’t be denied by the user.

I will focus on the fi rst two, authentication and authorization,
in the context of a Silverlight application. As this is a Rich Internet
Application (RIA), the majority of concepts described in this article
apply equally to Asynchronous JavaScript and XML (AJAX)
or other RIA approaches. I’ll also discuss how you can prevent
unwanted access to your Silverlight application fi les.

Topology
Silverlight is a cross-browser plug-in that leverages many of the
graphical concepts pioneered by Windows Presentation Foundation
(WPF), enabling Web developers to create rich user experiences far
beyond what’s possible with only HTML and JavaScript.

Unlike ASP.NET, Silverlight is a client-side technology, so it runs
on users’ computers. So Silverlight development arguably has more
in common with Windows Forms or WPF than with ASP.NET.
In many ways, this is one of Silverlight’s greatest advantages, as
it removes many of the problems caused by the stateless nature

This article discusses:
• Silverlight topology

• Windows authentication

• Forms authentication

• ASP.NET authorization

• Authorization in WCF Services and WCF Data Services

• Cross-domain authentication

• Securing XAP fi les

Technologies discussed:
Silverlight, WCF Services, WCF Data Services,
Windows Presentation Foundation, ASP.NET

43May 2010msdnmagazine.com

of Web applications. However, because all the UI code runs on
client computers, you can’t trust it anymore.

Services
Unlike Windows Forms, Silverlight operates within the browser
sandbox and has a reduced set of capabilities, so it provides an
increased degree of security (though in Silverlight 4, users can
identify certain applications as trusted and promote the programs’
privileges to allow COM interop). Because of this, Silverlight can’t
connect to a database directly, so you must create a layer of services
that provide access to your data and business logic.

Typically, you host these services on your Web server, just as you
would with your ASP.NET Web forms, for example. Given that
Silverlight code runs on the wrong side of the trust boundary
between your servers and the real world (see Figure 1), the focus
of your team’s eff ort should always be to secure the services.

Th ere’s little point in implementing rigorous security checks
within your Silverlight code itself. Aft er all, it would be easy for
an attacker to do away with the Silverlight application altogether
and invoke your services directly, side-stepping any security
measures you implemented. Alternatively, a malicious person could
use a utility like Silverlight Spy or Debugging Tools for Windows
to change the behavior of your application at runtime.

Th is is an important realization—a service can’t know for sure
what application is invoking it or that the app hasn’t been modifi ed
in some way. Th erefore your services have to ensure that:

• Th e caller is properly authenticated
• Th e caller is authorized to perform the requested action

For those reasons, most of this article focuses on how to secure
services in a way that’s compatible with Silverlight. Specifi cally,
I’ll consider two diff erent types of services hosted via ASP.NET
in Microsoft IIS. Th e fi rst type, services created using Windows
Communication Foundation (WCF), provides a unifi ed programming
model for building services. Th e second, WCF Data Services (formerly
ADO.NET Data Services), builds on WCF to let you rapidly expose data
using standard HTTP verbs, an approach known as Representational
State Transfer (REST).

Naturally, if security is a concern, it’s always wise to encrypt
any communication between clients and servers. The use of
HTTPS/SSL encryption is recommended and assumed through-
out this article.

Today, the two most common authentication methods Web
developers use on the Microsoft platform are Windows authenti-
cation and forms authentication.

Windows Authentication
Windows authentication leverages the Local Security Authority or
Active Directory to validate user credentials. Th is is a big advantage
in many scenarios; it means you can centrally manage users with tools
already familiar to systems administrators. Windows authentication
can use any scheme supported by IIS including basic, digest, integrated
authentication (NTLM/Kerberos) and certifi cates.

Th e integrated scheme is the most common choice for use with
Windows authentication, because users don’t have to provide their
user names and passwords a second time. Once a user logs on to
Windows, the browser can forward credentials in the form of a token
or a handshake that confi rms the person’s identity. Th ere are some
disadvantages to using integrated authentication, because both the
client and server need visibility of the user’s domain. As a result, it’s
best targeted at intranet scenarios. Furthermore, though it works
with Microsoft Internet Explorer automatically, other browsers,
such as Mozilla Firefox, require additional confi guration.

Both basic and digest authentication typically require users
to re-enter their user names and passwords when they initiate a
session with your Web site. But because both are part of the HTTP
specifi cation, they work in most browsers and even when accessed
from outside your organization.

Silverlight leverages the browser for communication, so Windows
authentication is easy to implement with any of the IIS authentica-
tion methods just discussed. For a detailed description of how to
do so, I recommend reading the step-by-step guide “How to: Use
basicHttpBinding with Windows Authentication and Transport-
CredentialOnly in WCF from Windows Forms” at msdn.microsoft.com/
library/cc949012. Th is example actually uses a Windows Forms test
client, but the same approach applies to Silverlight.

Forms Authentication
Forms authentication is a mechanism that provides simple support
for custom authentication in ASP.NET. As such, it’s specifi c to HTTP,
which means it’s also easy to use in Silverlight.

Th e user enters a user name and password combination, which
is submitted to the server for verifi cation. Th e server checks the
credentials against a trusted data source (oft en a database of
users), and if they’re correct, returns a FormsAuthentication cookie.
Th e client then presents this cookie with subsequent requests. Th e
cookie is signed and encrypted, so only the server can decrypt it—
a malicious user can neither decrypt nor tamper with it.

Exactly how you invoke forms authentication varies depending on
how you implement your login screen. For example, if you’ve used
an ASP.NET Web form that redirects to your Silverlight application
aft er the user’s credentials have been validated, you probably have no
more authentication work to do. Th e cookie already will have been
sent to the browser and your Silverlight application will continue
to use the cookie whenever making a request to that domain.

If, however, you want to implement the login screen
inside your Silverlight application, you’ll need to create a

Figure 1 Silverlight Runs on the Wrong Side of the Trust
Boundary

Trust
Boundary

Browser

Silverlight

Your
Application

IIS

WCF
Service
(.svc)

WCF
Data Service

(.svc)

Content
(.html, .xap,
.aspx, .ashx)

ASP.NET

www.msdnmagazine.com
http://msdn.microsoft.com/library/cc949012
http://msdn.microsoft.com/library/cc949012

msdn magazine44 Silverlight Security

service that exposes your authentication
methods and sends the appropriate cookie.
Fortunately, ASP.NET already provides
what you need—the authentication
service. You just need to enable it in your
application. For detailed guidance, I
recommend reading “How to: Use the
ASP.NET Authentication Service to Log
In through Silverlight Applications” at
msdn.microsoft.com/ library/dd560704(VS.96).

Another great feature of ASP.NET
authen tication is its extensibility. A mem-
bership provider describes the mechanism
by which the user name and password are
verifi ed. Fortunately, there are a number of
membership providers available as part of ASP.NET, including
one that can use SQL Server databases and another that uses
Active Directory. However, if a provider that meets your
requirement isn’t available, it’s straightforward to create a
custom implementation.

ASP.NET Authorization
Once your users are authenticated, it’s important to ensure that
only they can attempt to invoke the services. Both ordinary WCF
services and WCF Data Services are represented by a .svc fi le in
ASP.NET applications. In this example, the services are going to
be hosted via ASP.NET in IIS, and I’ll demonstrate how you can
use folders to secure access to the services.

Securing .svc files this way is a little confusing because, by
default, a request for such a fi le actually skips most of the ASP.NET
pipeline, bypassing the authorization modules. As a result, to be able to
rely on many ASP.NET features, you’ll have to enable ASP.NET com-
patibility mode. In any case, the WCF Data Services mandate that you
enable it. A simple switch inside your confi guration fi le achieves the task:

<system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>
</system.serviceModel>
<system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
</system.web>

With ASP.NET compatibility enabled, it’s possible to prevent
access to unauthenticated users by using the authorization section
of a web.confi g fi le, also shown in the previous code snippet.

When using forms authentication, the developer must think
carefully about which parts of the site need to be accessible, even
to unauthenticated users. For example, if all parts are restricted to
authenticated users only, how will an unauthenticated user log in?

It’s oft en easiest to create a folder structure that supports your
basic authorization requirements. In this example, I’ve created a
“Secured” folder that contains the MyWcfService.svc and MyWcf-
DataService.svc fi les, and I’ve deployed a web.confi g fi le. In Figure 2
you can see the folder structure, and the previous code snippet
shows the contents of the web.confi g fi le.

Note that the root of the application must have anonymous
access allowed, otherwise users won’t be able to reach the login page.

For sites using Windows authentication,
things can be somewhat simpler in this respect,
as authentication takes place before the user
gets to the resources contained within the
application, so there’s no need for a specifi c
login page. Using this approach, it’s actually
possible to restrict access to services in a more
detailed way, allowing only specifi c groups of
users or roles to access resources. For more
information, see “ASP.NET Authorization”
(msdn.microsoft.com/library/wce3kxhd).

Th is example implements authorization
somewhat, but folder-level authorization
alone is far too coarse-grained to rely on
for most scenarios.

Authorization in WCF Services
Using the PrincipalPermission attribute is an easy way to demand
that an invoker of a Microsoft .NET Framework method be within
a specifi c role. Th is code sample demonstrates how this might be
applied to a ServiceOperation in WCF where the calling user must
be part of the “OrderApprovers” role:

[PrincipalPermission(SecurityAction.Demand, Role = "OrderApprovers")]
public void ApproveOrder(int orderId)
{
 OrderManager.ApproveOrder(orderId);
}

Th is is easily implemented in applications that use Windows
authentication to leverage the existing facility to create Active
Directory groups for organizing users. With applications using forms
authentication, it’s possible to leverage another great provider-based
feature of ASP.NET: RoleProviders. Again, there are a number of
these available, but if none are suitable, you can implement your own.

Of course, even per-method authorization is rarely enough to
meet all your security needs, and you can always fall back to writing
procedural code inside your services as shown in Figure 3.

WCF is a highly extensible platform, and as with all things in
WCF, there are many approaches to implementing authorization
in your services. Dominick Baier and Christian Weyer discussed
a number of the possibilities in detail in the October 2008 issue
of MSDN Magazine. Th e article, “Authorization in WCF-Based
Services” (msdn.microsoft.com/magazine/cc948343), even ventures

Public void CancelOrder(int orderId)
{
 // retrieve order using Entity Framework ObjectContext
 OrdersEntities entities = new OrdersEntities();
 Order orderForProcessing = entities.Orders.Where(o => o.Id ==
 orderId).First();

 if (orderForProcessing.CreatedBy !=
 Thread.CurrentPrincipal.Identity.Name)
 {
 throw new SecurityException(
 "Orders can only be canceled by the user who created them");
 }

 OrderManager.CancelOrder(orderForProcessing);
}

Figure 3 Using Procedural Code to Implement
Specifi c Authorization

Figure 2 Secured Folder Containing the
Web.confi g File

http://msdn.microsoft.com/library/dd560704(VS.96)
http://msdn.microsoft.com/library/wce3kxhd
http://msdn.microsoft.com/magazine/cc948343

Why is Amyuni PDF
so interesting?

Develop with the fastest PDF
conversion on the market, designed
to perform in multithreaded and
64-bit Windows environments.

License and distribute products
quickly and easily with a PDF
technology that does not rely on
external open-source libraries.

Produce accurate and stable PDF
documents using reliable tools
built by experts with over ten years
of experience.

Let our experienced consultants
help you turn your software
requirements into customized
PDF solutions.

Integrate PDF conversion, creation
and editing into your .NET and
ActiveX applications with just a few
lines of code.

Choose a PDF technology that is
integrated into thousands of
applications behind millions of
desktops worldwide.

High-Performance

OEM LicensesExpertise

Rapid IntegrationProven

Customization

We understand the challenges that come with PDF integration.
From research and development, through design and
implementation, we work with you every step of the way.

Get 30 days of FREE technical support with your trial download!

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2009 AMYUNI Technologies. All rights reserved.

www.amyuni.com

Now v4.0!

Project1 12/2/09 12:51 PM Page 1

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com
http://www.amyuni.com

msdn magazine46 Silverlight Security

into claims-based security, a structured way of organizing the
authorization in your application.

Authorization in WCF Data Services
WCF Data Services, as the name suggests, builds on WCF to provide
REST-based access to a data source—perhaps most oft en a LINQ-to-
SQL or LINQ-to-Entity Framework data source. In brief, this lets you
provide access to your data using a URL that maps to the entity sets
exposed by your data source (an entity set typically maps to a table in
your database). Permissions to these entity sets can be confi gured
inside the services code-behind file. Figure 4 shows the content
of the MyWcfDataService.svc.cs fi le.

Here, I’ve given Read permissions over the Orders entity set and
confi gured the Products entity set to allow full reading, the inserting
of new records and the deletion of existing records.

However, because WCF Data Services automatically renders
access to your data based on this confi guration, you don’t have direct
access to the code, so there’s no obvious place to implement any specifi c
authorization logic. WCF Data Services supports interceptors that
allow developers to implement logic between the client and the data
source. For example, it’s possible to specify a query interceptor that
fi lters the results for a particular entity set. Th e example in Figure 5
shows two query interceptors added to the MyWcfDataService class.

Th e fi rst is applied to the Products entity set and ensures that users
can retrieve only products created by them. Th e second ensures that
only users in the PrivateOrders role can read orders fl agged Private.

Likewise, it’s possible to specify change interceptors that run
before an entity is inserted, modifi ed or deleted as demonstrated here:

[ChangeInterceptor("Products")]
public void OnChangeProducts(Product product, UpdateOperations operations
{
 if (product.CreatedBy != Thread.CurrentPrincipal.Identity.Name)
 {
 throw new DataServiceException(
 "Only products created by a user can be deleted by that user");
 }
}

On initial viewing, the OnChangeProducts change interceptor
in this code sample appears to expose a security vulnerability,
because the implementation relies on data passed from an external
source—specifi cally the “product” parameter. But when deleting
an entity in WCF Data Services, only an entity key is passed from
the client to the server. Th at means the entity itself, in this case the
Product, has to be fetched again from the database and therefore
can be trusted.

However, in the case of an update to an existing entity (for example,
when the operations parameter equals UpdateOperations.Change),

the product parameter is the de-serialized entity sent by the client,
therefore it can’t be trusted. Th e client application may have been
modifi ed to specify the CreatedBy property of this particular
product to a malicious user’s own identity, thereby elevating the
usurper’s privileges. Th at could allow modifi cation of a product by
an individual who shouldn’t be able to do so. To avoid this, I recom-
mend that you re-fetch the original entity from the trusted data source
based on the entity key alone, as shown in Figure 6.

Because this implementation relies so much on the CreatedBy
property of the Product entity, it’s critically important that this is
enforced in a reliable way from the moment the data is created.
Figure 6 also shows how this might be achieved by overriding any
value passed by the client for an Add operation.

Note that as the example currently stands, handling operations of
type UpdateOperations.Change wouldn’t be an issue. In Figure 4,
the service was confi gured to allow only AllRead, WriteAppend
(insert) and WriteDelete actions to occur on the Products entity
sets. Th erefore, the ChangeInterceptor would never be invoked
for a Change operation, as the service would immediately reject
any request to modify a Product entity at this endpoint. To enable
updates, the call to SetEntitySetAccessRule in Figure 4 would have
to include WriteMerge, WriteReplace or both.

Cross-Domain Authentication
Th e Silverlight plug-in can make cross-domain HTTP requests. A
cross-domain call is an HTTP request made to a domain other than
the one from which the Silverlight application was downloaded.
Th e ability to make such calls has traditionally been viewed as a
security vulnerability. It would allow a malicious developer to make
requests to another site (for example, your online banking site) and
automatically forward any cookies associated with that domain.
Potentially, this could give the attacker access to another logged-in
session within the same browser process.

For this reason, sites have to opt in to allowing cross-domain
calls through the deployment of a cross-domain policy fi le. Th is
is an XML fi le that describes what types of cross-domain calls
are allowed—for example, from what domain to what URLs. For
more information, see “Making a Service Available Across Domain
Boundaries” (msdn.microsoft.com/library/cc197955(VS.95)).

You should always exercise caution when deciding to expose
any sensitive information to cross-domain calls. But if you decide
this is a scenario you need to support alongside authentication, it’s
important to note that cookie-based authentication methods—like

Public class MyWcfDataService : DataService<SalesEntities>
{
 // This method is called only once to initialize service-wide policies.
 Public static void InitializeService(IDataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule("Orders", EntitySetRights.AllRead);
 config.SetEntitySetAccessRule("Products", EntitySetRights.AllRead |
 EntitySetRights.WriteAppend | EntitySetRights.WriteDelete);
 }}

Figure 4 A WCF Data Services Code-Behind File
with Confi guration of Entity Set Access Rules

[QueryInterceptor("Products")]
Public Expression<Func<Product, bool>> OnQueryProducts()
{
 String userName =ServiceSecurityContext.Current.PrimaryIdentity.Name;
 return product => product.CreatedBy == userName;
}

[QueryInterceptor("Orders")]
Public Expression<Func<Comments, bool>> OnQueryOrders()
{
 bool userInPrivateOrdersRole =
 Thread.CurrentPrincipal.IsInRole("PrivateOrders");
 return order => !order.Private|| userInPowerUserRole;
}

Figure 5 Query Interceptors in WCF Data Services

http://msdn.microsoft.com/library/cc197955(VS.95)

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

At Infragistics, we make sure our NetAdvantage for
.NET controls make every part of your User Interface
the very best it can be. That’s why we’ve tested and
re-tested to make sure our Data Grids are the very
fastest grids on the market and our Data Charts
outperform any you’ve ever experienced. Use our
controls and not only will you get the fastest load
times, but your apps will always look good too. Fast
and good-looking…that’s a killer app. Try them for
yourself at infragistics.com/wow.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Fast Data Chart

WPF Grid

Silverlight Grid

ASP.NET Grid

Untitled-12 1 4/9/10 2:27 PM

www.infragistics.com/wow

msdn magazine48 Silverlight Security

forms authentication described earlier—are no longer suitable.
Instead, you could consider leveraging message credentials, where
the user name and password are passed to the server and validated
with every call. WCF supports this through the TransportWith-
MessageCredential security mode. For more information, see “How
to: Use Message Credentials to Secure a Service for Silverlight
Applications” (msdn.microsoft.com/library/dd833059(VS.95)).

Of course, this approach removes ASP.NET from the authentica-
tion process altogether, so it’s diffi cult to leverage alongside ASP.NET
authorization, discussed earlier.

Securing Your Silverlight XAP fi les
People concerned about Silverlight security oft en ask, “How can
I protect my XAP fi les?” Sometimes the motivation behind this
query is to protect the intellectual property contained within the
code. In this case, you’ll need to look at obfuscation to make it more
diffi cult for people to understand your code.

Another common motivation is to prevent malicious users from
interrogating the code and understanding how the Silverlight appli-
cation works—giving them the potential to break into your services.

I usually respond to this with two points. First, although it’s
possible to restrict the download of your Silverlight application (.xap
fi le) to authenticated and authorized users only, there’s no reason to
trust these users to be any less malicious than an unauthenticated
user. Once the application has been downloaded to the client, there’s
absolutely nothing to stop users from interrogating the code in an
attempt to elevate their own privileges or forward the libraries to
somebody else. Obfuscation may make this process a little more
diffi cult, but it isn’t good enough to make your application secure.

Second, it’s critically important to remember that anybody who
can legitimately call services via your Silverlight application can
also call those services directly, using an Internet browser and some
JavaScript, for example. Th ere’s nothing you can do to stop this from
happening, so it’s paramount that you focus your security eff orts on
shoring up your services. Do this right and it doesn’t matter what a

malicious user can garner from your Silverlight application’s code.
Nonetheless, some people would still like to make sure that only
authenticated users can access their .xap fi les. Th is is possible, but
how easy it is depends on the version of IIS you’re using and your
chosen authentication method.

If you’re using Windows authentication, then you can easily
protect your .xap fi les using IIS Directory Security. If, however,
you’re using forms authentication, then things get a little more
complicated. In this case, it’s up to the FormsAuthenticationModule
to intercept and verify the cookie accompanying any request and
allow or deny access to the requested resource.

Because the FormsAuthenticationModule is an ASP.NET module,
the request must pass through the ASP.NET pipeline for this inspection
to take place. In IIS6 (Windows Server 2003) and previous versions,
requests for .xap fi les will not, by default, be routed via ASP.NET.

IIS7 (Windows Server 2008), though, introduced the Integrated
Pipeline, which allows all requests to be routed through the ASP.NET
pipeline. If you can deploy to IIS7 and use an application pool
running in Integrated Pipeline mode, then securing your .xap fi les
is no more diffi cult than securing your .svc fi les as described earlier
in the ASP.NET Authorization section. But if you have to deploy
to IIS6 or earlier, you probably have some additional work to do.

One popular approach involves streaming the bytes that make
up your .xap fi le through another extension that the ASP.NET pipe-
line does handle. Th e typical way to do this is via an IHttpHandler
implementation (in an .ashx fi le). For more information see “Intro-
duction to HTTP Handlers” (msdn.microsoft.com/library/ms227675(VS.80)).

Another approach is to change the confi guration of IIS so that
.xap fi les are routed through the ASP.NET pipeline. However,
because this requires a nontrivial change to your IIS confi guration,
the former approach is more common.

Another issue to consider with forms authentication is the
login screen. If, as proposed earlier in this article, you opt for an
ASP.NET Web form, then there are no problems. But if you’d prefer
the login screen to be authored in Silverlight, you’ll need to break
the application into parts. One part (the login module) should
be available to unauthenticated users, and another (the secured
application) should be available to authenticated users only.

You can take two approaches:
1. Have two separate Silverlight applications. Th e fi rst would

contain the login dialog and be in an unsecured area of the site.
On successful login, this would then redirect to a page speci-
fying a .xap fi le in a secure area of your site.

2. Break your application into two or more modules. Th e initial
.xap, located in an unsecured area of your site, would perform
the authentication process. If successful, that .xap fi le would
request a subsequent one from a secure area that could
be dynamically loaded into the Silverlight application. I
recently blogged about how you can do this (thejoyofcode.com/
How_to_download_and_crack_a_Xap_in_Silverlight.aspx).

JOSH TWIST is a principal consultant with the Microsoft Application Development
Consulting team in the United Kingdom and can be found blogging at thejoyofcode.com.

THANKS to the following technical experts for reviewing this article:
Zulfi qar Ahmed, Chris Barker and Simon Ince

[ChangeInterceptor("Products")]
Public void OnChangeProducts(Product product, UpdateOperations operations)
{
 if (operations == UpdateOperations.Add)
 {
 product.CreatedBy = Thread.CurrentPrincipal.Identity.Name;
 }
 else if (operations == UpdateOperations.Change)
 {
 Product sourceProduct = this.CurrentDataSource.Products.Where(p =>
 p.Id == product.Id).First();
 if (sourceProduct.CreatedBy != Thread.CurrentPrincipal.Identity.Name)
 {
 throw new DataServiceException(
 "Only records created by a user can be modified by that user");
 }
 }
 else if (operations == UpdateOperations.Delete &&
 product.CreatedBy != Thread.CurrentPrincipal.Identity.Name)
 {
 Throw new DataServiceException(
 "Only records created by a user can be deleted by that user");
 }
}

Figure 6 A Change Interceptor Preventing Unauthorized
Insert, Update and Delete Operations

http://msdn.microsoft.com/library/dd833059(VS.95)
http://msdn.microsoft.com/library/ms227675(VS.80)
http://thejoyofcode.com/How_to_download_and_crack_a_Xap_in_Silverlight.aspx
http://thejoyofcode.com/How_to_download_and_crack_a_Xap_in_Silverlight.aspx
http://thejoyofcode.com

Untitled-1 1 1/29/10 10:18 AM

www.aspose.com

msdn magazine50

R IA S E RV IC ES

Enterprise Patterns
with WCF RIA Services

Two major announcements from PDC09 and Mix10
were the availability of the Silverlight 4 beta and RC, respectively. By the
time you read this, the full release to Web of Silverlight 4 will be avail-
able for download. Along with extensive printing support, it includes
support for elevated permissions, webcams, microphones, toast, clip-
board access and more. With its new feature set, Silverlight 4 is poised
to go toe-to-toe with Adobe AIR as a multiplatform rich UI framework.

Although all of that does excite me, I’m primarily a business-
application developer, and one thing I would love is a simple way
to get my business data and logic into a Silverlight application.

One concern with line-of-business Silverlight applications is
connecting to data. Nothing prevents you from creating your own
Windows Communication Foundation (WCF) service and connecting
to it in Silverlight 3, but that leaves a lot to be desired, especially when
you consider the myriad ways you can connect to data from ASP.NET
or desktop applications. Whereas desktop and Web applications can
connect directly to the database via NHibernate, Entity Framework

Michael D. Brown

(EF) or raw ADO.NET constructs, Silverlight apps are separated from
my data by “the cloud.” I call this separation the data chasm.

Crossing this chasm may seem deceptively simple at fi rst. Obviously,
it has been done to some degree in a number of existing data-rich
Silverlight applications. But what initially appears to be an easy task
becomes increasingly complicated as you address more concerns. How
do you track changes over the wire or encapsulate business logic in
entities that live on both sides of the fi rewall? How do you keep the
details of transmission from leaking into your business concerns?

Th ird-party tools are emerging to address these concerns, but
Microsoft also saw it needed to provide a solution, so it introduced
WCF RIA Services (formerly .NET RIA Services), or for brevity, RIA
Services. (You’ll fi nd a full introduction to RIA Services in “Building
a Data-Driven Expense App with Silverlight 3” in the May 2009
edition of MSDN Magazine (msdn.microsoft.com/magazine/dd695920).
I’ve been following it since I was fi rst invited into the beta program,
providing suggestions to the development team and learning how
to leverage the framework within my own applications.

A common question in the RIA Services forums is how RIA
Services fi t into best practices architecture. I was always impressed
with the basic forms-over-data capabilities of RIA Services, but I
defi nitely saw the opportunity to better architect my application so
the framework concerns didn’t leak into the logic of my application.

Introducing KharaPOS
I’ve developed an exemplar application, KharaPOS, to provide a
tangible example of the concepts I present in this article. It’s a point-
of-sale (POS) application implemented in Silverlight 4 using RIA
Services, Entity Framework and SQL Server 2008. Th e ultimate goal
is to enable the application to be hosted in the Windows Azure
platform and SQL Azure, but there’s the little problem of Microsoft
.NET Framework 4 support (or lack thereof) with the Windows
Azure platform.

In the interim, KharaPOS provides a good example of using the
.NET Framework 4 to create a real-world application. Th e project

This article discusses prerelease versions of Silverlight 4 and WCF
RIA Services. All information is subject to change.

This article discusses:
• The forms and controls pattern

• The table data gateway pattern

• The Model-View-ViewModel pattern

• The transaction script pattern

• The domain model pattern

• Repository and query objects

Technologies discussed:
Silverlight, WCF RIA Services, Microsoft .NET Framework,
ASP.NET, Entity Framework

Code download available at:
KharaPOS.codeplex.com

http://KharaPOS.codeplex.com
http://msdn.microsoft.com/magazine/dd695920

51May 2010msdnmagazine.com

is hosted via CodePlex at KharaPOS.codeplex.com. You can visit the site
to download the code, view documentation and join the discus-
sion surrounding development of the application.

I should note that I borrowed from the book, “Object Models:
Strategies, Patterns, and Applications, Second Edition” (Prentice Hall
PTR, 1996), by Peter Coad with David North and Mark Mayfi eld,
for the majority of the design and functionality of the KharaPOS
application. I’ll focus on a single subsystem of the application,
catalog management (see Figure 1).

Enterprise Patterns
A number of excellent books discuss design patterns for enterprise
application development. One book I constantly use as a reference is
“Patterns of Enterprise Application Architecture” (Addison-Wesley,
2003) by Martin Fowler. Th is book and its supplemental Web site
(martinfowler.com/eaaCatalog/) provide an excellent summary of helpful
soft ware patterns for developing enterprise business applications.

A handful of patterns in Fowler’s catalog deal with the presentation
and manipulation of data, and interestingly enough, they occupy
the same space as RIA Services. Understanding these will give a
clearer picture of how RIA Services can be adapted to meet the
needs of the simplest to the most complex business applications.
I’ll discuss the following patterns:

• Forms and controls
• Transaction script
• Domain model
• Application service layer

Let’s take a quick tour of these patterns. Th e fi rst three concern
diff erent ways of dealing with the logic surrounding your data. As
you progress through them, the logic moves from being scattered
throughout the application and repeated as needed to being
centralized and focused.

Forms and Controls
Th e forms-and-controls pattern (or as I refer to it, forms over data)
places all of the logic within the UI. At fi rst glance, this seems like
a bad idea. But for simple data-entry and master-detail views, it’s
the simplest and most direct approach to get from UI to database.
Many frameworks have intrinsic support for this pattern (Ruby
on Rails scaff olding, ASP.NET Dynamic Data and SubSonic are
three prime examples), so there’s defi nitely a time and place for
what some call an anti-pattern. While many developers relegate
the forms-over-data approach to initial prototyping only, there
are defi nite uses for it in fi nal applications.

Regardless of your opinion on its utility, there’s no denying the
simplicity or approachability of forms over data. It’s not called rapid
application development (RAD) because it’s tedious. WCF RIA
Services brings RAD to Silverlight. Leveraging Entity Framework,
RIA Services and the Silverlight Designer, it’s possible to create a
simple forms-over-data editor against a database table in fi ve steps:
1. Create a new Silverlight business application.
2. Add a new Entity Data Model (EDM) to the created Web

application (using the wizard to import the database).
3. Add a domain service to the Web application (be sure to build it fi rst

so that the EDM is properly discovered) referencing the data model.

4. Use the data sources panel to drag an entity exposed by RIA
Services onto the surface of a page or user control in the
Silverlight application (be sure to build again so it can see the
new domain service).

5. Add a button and code-behind to save changes on the form to
the database with this simple line:
this.categoryDomainDataSource.SubmitChanges();

You now have a simple data grid that can be used to directly edit
existing rows in your table. With a few more additions, you can
create a form that lets you add new rows to the table.

Although this pattern has been demonstrated repeatedly,
showing the advantage of RAD with WCF RIA Services, it’s still
relevant here because it provides a baseline for development with
the framework. Also, as mentioned, this is a valid pattern within
RIA Services-based applications.
Recommendation As with ASP.NET dynamic data, the forms-
over-data pattern should be used for simple administration UIs
(such as the KharaPOS product category editor), where the logic
is simple and straightforward: add, remove and edit rows within a
lookup table. But Silverlight and RIA Services scale to much more
complex applications, as we’ll see now.
Table Data Gateway Th e standard, out-of-the box approach
to RIA Services applications I just discussed can also be viewed as
an implementation of the table data gateway pattern as presented
on pp. 144–151 of Fowler’s book. Th rough two levels of indirection
(EF mapping over the database followed by domain service map-
ping over EF), I’ve created a simple gateway to the database tables
using basic create, read, update and delete (CRUD) operations
returning strongly typed data transfer objects (DTOs).

Technically, this doesn’t qualify as a pure table data gateway because
of its dual layers of indirection. But if you squint, it closely resembles
the table data gateway pattern. To be honest, it would have been a
more logical progression to discuss the mapping between the RIA
Services and the table data gateway pattern, because all the remaining

Figure 1 The Entity Data Model for Catalog Management

www.msdnmagazine.com
http://KharaPOS.codeplex.com
http://martinfowler.com/eaaCatalog/

msdn magazine52 RIA Services

patterns in the list are data interface patterns, but forms over data is
mostly a UI pattern. However, I felt it more prudent to start with the
basic scenario and focus on the UI moving back toward the database.
Model-View-ViewModel (MVVM) Even though it’s simple
to create a functional form using forms over data, there’s still some friction
involved. Figure 2, the XAML for category management, illustrates this.

Th e column for the parent category in the data grid is a combo-
box that uses a list of the existing categories so users can select

the parent category by name instead of memorizing the ID of the
category. Unfortunately, Silverlight doesn’t like it when the same
object is loaded twice within the visual tree. Th erefore, I had to
declare two domain data sources: one for the grid and one for the
lookup combobox. Also, the code-behind for managing categories
is rather convoluted (see Figure 3).

I’m not going to give a full tutorial on MVVM here—see the
 article, “WPF Apps with the Model-View-ViewModel Design
Pattern” in the February 2009 issue (msdn.microsoft.com/magazine/
dd419663) for an excellent treatise on the topic. Figure 4 shows
one way to leverage MVVM within an RIA Services application.

As you see, the ViewModel is responsible for initializing the
domain context and informing the UI when a load is occurring, along
with handling the requests from the UI to create new categories,
save changes to existing categories and reload the data from the
domain service. Th is leaves a clean separation between the UI and
the logic that drives it. Th e MVVM pattern may appear to require
more work, but its beauty reveals itself the fi rst time you have to
change the logic for getting data into the UI. Also, moving the
process of loading the categories into the ViewModel allows us to
clean up the view signifi cantly (XAML and code-behind alike).
Recommendation Use MVVM to prevent complex UI logic
from cluttering your UI—or worse, from cluttering your business
object model.

Transaction Script
As you begin adding logic to your application, the forms-over-
data pattern becomes cumbersome. Because the logic regarding
what can be done with the data is embedded in the UI (or in the
ViewModel, if you’ve taken that step), it will be scattered across
the application. Another side eff ect of decentralized logic is that
developers may not be aware that specifi c functionality already
exists in the application, which can lead to duplication. Th is creates
nightmares when the logic changes, because it needs to be updated
in all locations (assuming that all locations implementing the logic
have been properly cataloged).

The transaction script pattern (pp. 110–115 in Fowler’s book)
provides some relief. It allows you to separate the business logic
that manages the data from the UI.

As defi ned by Fowler, the transaction script “organizes business
logic by procedures where each procedure handles a single
request from the presentation.” Transaction scripts are much more
than simple CRUD operations. In fact, they sit in front of the table
data gateway to handle CRUD operations. Taken to the extreme,
a separate transaction script would handle every retrieval and
submission to the database. But, being logical people, we know
there’s a time and place for everything.

A transaction script is useful when your application has to
coordinate an interaction between two entities, such as when you
create an association between two instances of diff erent entity
classes. For example, in the catalog management system, I signify that a
product is available for a business unit to order for its inventory
by creating a catalog entry. Th e entry identifi es the product, the
business unit, a product SKU and the time during which it can be
ordered both internally and externally. To simplify the creation

<Controls:TabItem Header="Categories">
 <Controls:TabItem.Resources>
 <DataSource:DomainDataSource
 x:Key="LookupSource"
 AutoLoad="True"
 LoadedData="DomainDataSourceLoaded"
 QueryName="GetCategoriesQuery"
 Width="0">
 <DataSource:DomainDataSource.DomainContext>
 <my:CatalogContext />
 </DataSource:DomainDataSource.DomainContext>
 </DataSource:DomainDataSource>
 <DataSource:DomainDataSource
 x:Name="CategoryDomainDataSource"
 AutoLoad="True"
 LoadedData="DomainDataSourceLoaded"
 QueryName="GetCategoriesQuery"
 Width="0">
 <DataSource:DomainDataSource.DomainContext>
 <my:CatalogContext />
 </DataSource:DomainDataSource.DomainContext>
 <DataSource:DomainDataSource.FilterDescriptors>
 <DataSource:FilterDescriptor
 PropertyPath="Id"
 Operator="IsNotEqualTo" Value="3"/>
 </DataSource:DomainDataSource.FilterDescriptors>
 </DataSource:DomainDataSource>
 </Controls:TabItem.Resources>
 <Grid>
 <DataControls:DataGrid
 AutoGenerateColumns="False"
 ItemsSource="{Binding Path=Data,
 Source={StaticResource CategoryDomainDataSource}}"
 x:Name="CategoryDataGrid">
 <DataControls:DataGrid.Columns>
 <DataControls:DataGridTextColumn
 Binding="{Binding Name}" Header="Name" Width="100" />
 <DataControls:DataGridTemplateColumn
 Header="Parent Category" Width="125">
 <DataControls:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <ComboBox
 IsSynchronizedWithCurrentItem="False"
 ItemsSource="{Binding Source=
 {StaticResource LookupSource}, Path=Data}"
 SelectedValue="{Binding ParentId}"
 SelectedValuePath="Id"
 DisplayMemberPath="Name"/>
 </DataTemplate>
 </DataControls:DataGridTemplateColumn.CellEditingTemplate>
 <DataControls:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=Parent.Name}"/>
 </DataTemplate>
 </DataControls:DataGridTemplateColumn.CellTemplate>
 </DataControls:DataGridTemplateColumn>
 <DataControls:DataGridTextColumn
 Binding="{Binding ShortDescription}"
 Header="Short Description" Width="150" />
 <DataControls:DataGridTextColumn
 Binding="{Binding LongDescription}"
 Header="Long Description" Width="*" />
 </DataControls:DataGrid.Columns>
 </DataControls:DataGrid>
 </Grid>
</Controls:TabItem>

Figure 2 XAML for Category Management

http://msdn.microsoft.com/magazine/dd419663
http://msdn.microsoft.com/magazine/dd419663

53May 2010msdnmagazine.com

of catalog entries, I created a method on the domain service (see
the following code snippet) that provides a transaction script for
modifying product availability for a business unit without the UI
having to manipulate catalog entries directly.

In fact, catalog entries aren’t even exposed through the domain
service, as shown here:

public void CatalogProductForBusinessUnit(Product product, int businessUnitId)
{
 var entry = ObjectContext.CreateObject<CatalogEntry>();
 entry.BusinessUnitId = businessUnitId;
 entry.ProductId = product.Id;
 entry.DateAdded = DateTime.Now;
 ObjectContext.CatalogEntries.AddObject(entry);
 ObjectContext.SaveChanges();
}

Rather than being exposed as a function on the client-side
domain context, RIA Services generates a function on the entity in
question (in this case Product) that when called, places a change
notifi cation on the object that on the server side gets interpreted
as a call to the method on the domain service.

Fowler recommends two approaches for implementing the
transaction script:
1. With commands that encapsulate the operations and can be

passed around
2. With a single class that holds a collection of transaction scripts

I took the second approach here, but there’s nothing preventing
you from using commands. Th e benefi t of not exposing the catalog
entry to the UI layer is that the transaction script becomes the
only means of creating catalog entries. If you use the command
pattern, the rule is enforced by convention. If a developer forgets a
command exists, you’ll end up right back where you started with
logic fragmentation and duplication.

Another benefi t of placing the transaction script on the domain
service is that the logic executes server side (as I mentioned earlier).
If you have proprietary algorithms or want to be certain the user
hasn’t manipulated your data maliciously, placing the transaction
script on the domain service is the way to go.
Recommendation Use the transaction script when your business
logic becomes too complex for forms over data, you want to execute
the logic for an operation on the server side, or both.
Business Logic vs. UI Logic I make several references to UI
logic versus business logic, and though the diff erence may seem
subtle at fi rst, it’s important. UI logic is the logic concerned with
the presentation—what’s shown on screen and how (for exam-
ple, the items used to populate a combobox). Business logic, on
the other hand, is what drives the application itself (for example,
the discount applied to an online purchase). Both are important
facets of an application, and another pattern emerges when they’re
allowed to mix—see the article, “Big Ball of Mud,” by Brian Foote
and Joseph Yoder (laputan.org/mud).
Passing Multiple Entities to the Domain Service By default,
you can pass only one entity to a custom domain service method.
For example, the method

public void CatalogProductForBusinessUnit(Product product, int businessUnitId)

will not work if you attempt to use this signature instead of an integer:
public void CatalogProductForBusinessUnit(Product product, BusinessUnit bu)

RIA Services would not generate a client proxy for this function
because … well, those are the rules. You can have only one entity

in a custom service method. Th is shouldn’t pose a problem in most
situations, because if you have an entity, you have its key and can
retrieve it on the back end again.

Let’s just say, for the sake of demonstration, that it’s an expensive
operation to retrieve an entity (perhaps it’s on the other side of a
Web service). It’s possible to tell the domain service that you want
it to hold a copy of a given entity, as shown here:

public void StoreBusinessUnit(BusinessUnit bu)
{
 HttpContext.Current.Session[bu.GetType().FullName+bu.Id] = bu;
}

public void CatalogProductForBusinessUnit(Product product, int businessUnitId)
{
 var currentBu = (BusinessUnit)HttpContext.Current.
 Session[typeof(BusinessUnit).FullName + businessUnitId];
 // Use the retrieved BusinessUnit Here.
}

Because the domain service is running under ASP.NET, it has
full access to the ASP.NET session and the cache, as well, in case
you want to automatically remove the object from memory aft er a
certain period of time. I’m actually using this technique on a project
where I have to retrieve customer relationship management (CRM)
data from multiple remote Web services and present it to the user
under a unifi ed UI. I use an explicit method because some data is
worth caching and some isn’t.

Domain Model
Sometimes business logic becomes so complex that even trans-
action scripts can’t properly manage it. Frequently, this shows up
as complex branching logic within a transaction script or multiple
transaction scripts to account for nuances in the logic. Another
sign that an application has outgrown the utility of transaction
scripts is the need for frequent updates to address rapidly chang-
ing business requirements.

If you’ve noticed any of those symptoms, it’s time to consider a
rich domain model (pp. 116–124 in the Fowler book). Th e patterns
covered so far have one thing in common: Th e entities are little more
than DTOs—they contain no logic (this is considered by some to
be an anti-pattern referred to as Anemic Domain Model). One of

private void DomainDataSourceLoaded(object sender, LoadedDataEventArgs e)
{
 if (e.HasError)
 {
 MessageBox.Show(e.Error.ToString(), "Load Error", MessageBoxButton.OK);
 e.MarkErrorAsHandled();
 }
}

private void SaveButtonClick(object sender, RoutedEventArgs e)
{
 CategoryDomainDataSource.SubmitChanges();
}

private void CancelButtonClick(object sender, RoutedEventArgs e)
{
 CategoryDomainDataSource.Load();
}

void ReloadChanges(object sender, SubmittedChangesEventArgs e)
{
 CategoryDomainDataSource.Load();
}

Figure 3 Code-Behind for Managing Categories

www.msdnmagazine.com
http://laputan.org/mud

msdn magazine54 RIA Services

the major benefi ts of object-oriented development is the ability to
encapsulate data and the logic associated with it. A rich domain
model takes advantage of that benefit by putting the logic back into the
entity where it belongs.

Th e details of designing a domain model are beyond the scope of
this article. See the book, “Domain-Driven Design: Tackling Com-
plexity in the Heart of Soft ware” (Addison-Wesley, 2004), by Eric
Evans, or the previously mentioned Coad book on object models for
great coverage on this topic. I can, though, provide a scenario that
helps illustrate how a domain model can manage some of this stress.

Some KharaPOS customers want to look at historical sales of certain
lines and decide, on a market-by-market basis, whether the lines will be
expanded (making more products from it available), reduced, cut
all together or remain fl at for a given season.

I already have the sales data in another subsystem of KharaPOS,
and everything else I need is here in the catalog system. I’ll just
bring a read-only view of product sales into our entity data model
as shown in Figure 5.

Now all I have to do is add the product-selection logic to the
domain model. Because I’m selecting products for a market, I’ll

put the logic on the BusinessUnit class (use a partial class with a
shared.cs or shared.vb extension to inform RIA Services you want
this function to be shuttled to the client). Figure 6 shows the code.

Performing an auto-select for products to carry over a season is
as simple as calling the new function on BusinessUnit and following
that by a call to the SubmitChanges function on DomainContext.
In the future, if a bug is found in the logic or the logic needs to be
updated, I know exactly where to look. Not only have I centralized
the logic, I’ve also made the object model more expressive of the
intent. On p. 246 of his “Domain-Driven Design” book, Evans
explains why this is a good thing:

If a developer must consider the implementation of a component in
order to use it, the value of encapsulation is lost. If someone other
than the original developer must infer the purpose of an object or
operation based on its implementation, that new developer may
infer a purpose that the operation or class fulfi lls only by chance.
If that was not the intent, the code may work for the moment, but
the conceptual basis of the design will have been corrupted, and
the two developers will be working at cross-purposes.
To paraphrase, by explicitly naming the function for its purpose

and encapsulating the logic (along with a few comments to make
it clear what’s happening), I’ve made it easy for the next guy (even
if the next guy is me fi ve months from now) to determine what’s
happening before I even go to the implementation. Putting this logic
with the data to which it’s naturally associated takes advantage of
the expressive nature of object-oriented languages.
Recommendation Use a domain model when your logic is
complex and gnarly and may involve several entities at once. Bundle
the logic with the object to which it has the most affi nity and provide
a meaningful, intentional name for the operation.
The Difference Between Domain Model and Transac-
tion Script in RIA Services You may have noticed that for both
the transaction script and the domain model, the call was made
directly on the entity. Note, though, the logic for the two patterns lies
in two separate places. In the case of the transaction script, calling

Figure 5 Entity Data Model Updated with Sales Data

public CategoryManagementViewModel()
{
 _dataContext = new CatalogContext();
 LoadCategories();
}

private void LoadCategories()
{
 IsLoading = true;
 var loadOperation= _dataContext.Load(_dataContext.
 GetCategoriesQuery());
 loadOperation.Completed += FinishedLoading;
}

protected bool IsLoading
{
 get { return _IsLoading; }
 set
 {
 _IsLoading = value;
 NotifyPropertyChanged("IsLoading");
 }
}

private void NotifyPropertyChanged(string propertyName)
{
 if (PropertyChanged!=null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
}

void FinishedLoading(object sender, EventArgs e)
{
 IsLoading = false;
 AvailableCategories=
 new ObservableCollection<Category>(_dataContext.Categories);
}

public ObservableCollection<Category>AvailableCategories
{
 get
 {
 return _AvailableCategories;
 }
 set
 {
 _AvailableCategories = value;
 NotifyPropertyChanged("AvailableCategories");
 }
}

Figure 4 Category Management Through a View Model

Give your users an effective way to visualize and analyze their data

so they can make more informed decisions and solve business problems.

By subscribing to the ESRI® Developer Network (EDNSM), you have access to the complete ESRI

geographic information system (GIS) software suite for developing and testing applications on

every platform. Whether you’re a desktop, mobile, server, or Web developer, EDN provides the

tools you need to quickly and cost-effectively integrate mapping and GIS into your applications.

Subscribe to EDN and leverage the power of GIS to get more from your data.
Visit www.esri.com/edn.

ESRI
®

 Developer Network
Integrate Mapping and GIS into Your Applications

Copyright © 2009 ESRI. All rights reserved. The ESRI globe logo, ESRI, EDN, and www.esri.com are trademarks, registered trademarks, or service marks of ESRI in the United States, the European Community, or
certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

Project2 12/3/09 10:01 AM Page 1

http://www.esri.com/edn
http://www.esri.com

msdn magazine56 RIA Services

the function on the entity just serves to indicate to the domain
context/service that the corresponding function should be called
on the domain service the next time submit changes is called. In
the case of the domain model, the logic is executed client side and
then committed when submit changes is called.
The Repository and Query Objects Th e domain service natu-
rally implements the repository pattern (see Fowler, p. 322). In the
WCF RIA Services Code Gallery (code.msdn.microsoft.com/RiaServices),
the RIA Services team provides an excellent example of creating an
explicit implementation of the pattern over the DomainContext.
Th is allows for increased testability of your application without the
need to actually hit the service layer and the database. Also, in my
blog (azurecoding.net/blogs/brownie) I provide an implementation of
the query object pattern (Fowler, p. 316) over the repository, which
defers server-side execution of the query until actual enumeration.

Application Service Layer
Quick question: What do you do when you want to leverage a rich
domain model but don’t want to expose its logic to the UI layer?
Th at’s where the application service layer pattern (Fowler, p. 133)
comes in handy. Once you have the domain model, this pattern is
simple to implement by moving the domain logic out of shared.cs
into a separate partial class and placing a function on the domain
service that invokes the function on the entity.

Th e application service layer acts as a simplifi ed facade over your
domain model, exposing operations but not their details. Another
benefi t is that your domain objects will be able to take internal
dependencies without requiring the service layer clients to take
them as well. In some cases (see the seasonal product-selection
example shown in Figure 6), the domain service makes one simple call
on your domain. Sometimes it might orchestrate a few entities, but be
careful—too much orchestration turns it back into a transaction script,
and the benefi ts of encapsulating the logic within the domain are lost.
Recommendation Use the application service layer to provide a
simple facade over the domain model and remove the requirement
the UI layer needs to take dependencies your entities might take.

Extra Credit: The Bounded Context
In the RIA forums, participants oft en ask, “How do I break up
my very large database across domain services so that it’s more
manageable?” A follow-up question is, “How do I handle entities
that need to exist in multiple domain services?” Initially I thought
there shouldn’t be a need to do these things; the domain service
should act as a service layer over your domain model and a single
domain service should serve as a facade over your entire domain.

During my research for this article, though, I came across the
bounded-context pattern (Evans, p. 336), which I’d read about before
but hadn’t remembered when I originally responded to those ques-
tions. Th e basic premise of the pattern is that on any large project
there will be multiple sub-domains in play. Take for example Khara-
POS, where I have a domain for catalogs and a separate one for sales.

Th e bounded context allows those domains to coexist peacefully
even though there are elements shared between them (such as Sale,
Business Unit, Product and LineItem, which are in both the sales
and catalog domains). Diff erent rules apply to the entities based on
which domain is interacting with them (Sale and LineItem are
read-only in the catalog domain). A fi nal rule is that operations
never cross over contexts. Th is is makes life convenient, because
Silverlight doesn’t support transactions over multiple domain services.
Recommendation Use bounded contexts to divide a large system
into logical subsystems.

The Pit of Success
In this article, we’ve seen how RIA Services support the major
enterprise patterns with very little eff ort. Rarely are frameworks
so approachable while also being fl exible enough to support
everything from the simplest spreadsheet data-entry applications
to the most complex business applications without requiring
major eff ort to make the transition. Th is is the “Pit of Success”
Brad Abrams mentioned in his blog posting,of the same name
(blogs.msdn.com/brada/archive/2003/10/02/50420.aspx).

MIKE BROWN is the president and cofounder of KharaSoft Inc. (kharasoft .com),
a technology fi rm specializing in training, custom soft ware development and
Soft ware as a Service. He is an accomplished technology specialist with more than
14 years of industry experience, a back-to-back MVP Award recipient, cofounder
of the Indy Alt.NET user group (indyalt.net) and die-hard Bears fan!

THANKS to the following technical expert for reviewing this article:
Brad Abrams

public partial class BusinessUnit
{
 public void SelectSeasonalProductsForBusinessUnit(
 DateTime seasonStart, DateTime seasonEnd)
 {
 // Get the total sales for the season
 var totalSales = (from sale in Sales
 where sale.DateOfSale > seasonStart
 && sale.DateOfSale < seasonEnd
 select sale.LineItems.Sum(line => line.Cost)).
 Sum(total=>total);
 // Get the manufacturers for the business unit
 var manufacturers =
 Catalogs.Select(c =>c.Product.ManuFacturer).
 Distinct(new Equality<ManuFacturer>(i => i.Id));
 // Group the sales by manufacturer
 var salesByManufacturer =
 (from sale in Sales
 where sale.DateOfSale > seasonStart
 && sale.DateOfSale < seasonEnd
 from lineitem in sale.LineItems
 join manufacturer in manufacturers on
 lineitem.Product.ManufacturerId equals manuFacturer.Id
 select new
 {
 Manfacturer = manuFacturer,
 Amount = lineitem.Cost
 }).GroupBy(i => i.Manfacturer);
 foreach (var group in salesByManufacturer)
 {
 var manufacturer = group.Key;
 var pct = group.Sum(t => t.Amount)/totalSales;
 SelectCatalogItemsBasedOnPercentage(manufacturer, pct);
 }
 }

 private void SelectCatalogItemsBasedOnPercentage(
 ManuFacturer manufacturer, decimal pct)
 {
 // Rest of logic here.
 }
}

Figure 6 Domain Logic for Selecting Products for a Business Unit

http://code.msdn.microsoft.com/RiaServices
http://azurecoding.net/blogs/brownie
http://blogs.msdn.com/brada/archive/2003/10/02/50420.aspx

You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization, you
can create Web-based data visualizations and
dashboard-driven applications on Microsoft Silverlight
(and coming soon for WPF) that will not only impress
decision makers, it actually empowers them. Go to
infragistics.com/sldv today and get inspired to create
killer apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-12 1 4/9/10 2:28 PM

www.infragistics.com/sldv

msdn magazine58

WO RK FLOW SER V IC ES

Visual Design
of Workfl ows with
WCF and WF 4

Developers are increasingly adopting service-oriented
architecture (SOA) as a way of building distributed applications.
For the uninitiated, designing and implementing service-oriented
distributed apps can be intimidating. However, the Microsoft .NET
Framework 4 makes it easier than ever to implement Windows
Communication Foundation (WCF) services using Windows
Workfl ow Foundation (WF).

WCF workfl ow services provide a productive environment for
authoring long-running, durable operations or services where
enforcing an application protocol via ordering of operations is
important. Workfl ow services are implemented using WF activities
that can make use of WCF for sending and receiving data.

In this article, I will explain how to combine several features
of WCF and WF that were introduced in the .NET Framework 4

Leon Welicki

to model a long-running, durable and instrumented mortgage-
approval process for a real estate company, without having to write
code. Th is article is not intended to be a general introduction to
WCF or WF, nor does it walk you through the entire process of
creating a working solution. Instead, I’m going to focus on the use
of important new .NET Framework 4 features through a practical
business scenario. A full working solution is included in the code
download for this article.

The Scenario
Let’s start by outlining the scenario around which the workfl ow
application was built. Contoso Housing is a real estate company
that sells houses and condos. To provide better customer service
and an end-to-end buying experience, Contoso partners with three
mortgage companies that assist potential customers with their
mortgage needs. Each mortgage company off ers diff erent interest
rates. Contoso prioritizes mortgage vendors by their interest rates
to ensure that customers get the best deal (using the assumption
that a better rate makes the house more likely to sell).

Customers provide their mortgage request data via a Web
application. Each customer enters a customer ID, the price of the
house, the amount of down payment, the loan period in years, salary
information and some background verifi cation information.

Th e fi rst step in the application workfl ow (see Figure 1) uses
the customer-entered data to screen the customer and determine
eligibility prior to sending the request on to the mortgage vendors.

This article discusses:
• Describing processes in Flowcharts

• Branching workfl ows

• Asynchronous processes and persistence

• Deploying and consuming the service

Technologies discussed:
Windows Communication Foundation, Windows Workfl ow Foundation

Code download available at:
code.msdn.microsoft.com/mag201005WCF

http://code.msdn.microsoft.com/mag201005WCF

59May 2010msdnmagazine.com

Th e application follows these rules:
• If the applicant had a foreclosure, a bankruptcy or is in a law-

suit, the petition will be rejected.
• If the applicant does not have credit history and provides a down

payment less than 20 percent, the application is returned for
revision (incorrect petition), but is not rejected. Th e customer
must provide at least a 20 percent down payment to continue.

• If none of the above apply, the petition is approved.
Th e mortgage vendors are contacted according to Contoso’s

preferred order to petition the mortgage request. If a mortgage
vendor rejects the applicant, the next one is asked. Th ere’s a standard
service contract for mortgage approval requests that all vendors
implement. During this stage in the process, customers should be
able to query the state of their request.

Once the mortgage petition is resolved (one vendor accepted
or all rejected), the customer interaction is recorded in Contoso’s
customer relationship management (CRM) system through a service
exposed by the CRM system. Th e result is returned to the customer.

Note that the mortgage approval process shown in Figure 1
provides a general description of the business process, but does
not have any indication about how to implement it. Th e workfl ow
service will be an implementation of this process.

Creating a Declarative Service
Th e workfl ow service will receive data from the customer, do the
initial screening, coordinate the conversation with the mortgage
vendors, register the interaction in the CRM service and expose
the result to the customer.

Th e service will be long-running (it can take days or months
to complete), durable (it can save the state and resume later), and
instrumented (both developers and users will be able to know
what’s going on without having to debug the service). By using
WCF and WF, you can achieve all this declaratively without writ-
ing any code—you just have to assemble and confi gure components
provided by the .NET Framework. Figure 2 shows an architectural
diagram of the solution.

A WCF workfl ow service is contained in a .xamlx fi le that
defi nes the workfl ow. You can defi ne business processes visually
using the WF designer, and the service contract is inferred based
on the structure of the workfl ow.

To create a workfl ow service in Visual Studio 2010, create a
new project, then select the WCF Workfl ow Service Application
template. Th is project template creates a very simple (but running)
workfl ow with Receive and SendReply activities. Th is is similar to
a class with a method that receives an integer and returns a string.
You can extend the workfl ow by adding more activities to it. Th ese
activities might add execution logic or service operations.

To defi ne the service contract, you use the messaging activities
provided by WF. Th e confi guration for the service is stored in
the web.confi g fi le, just like in regular WCF services. If you open
web.confi g, you’ll see a very clean confi guration fi le because WCF
workfl ow services take advantage of the service confi guration
improvements introduced in WCF 4.

Messaging activities combine WF and WCF in a seamless way.
Th ey’re designed to support message-oriented workfl ows and provide

better integration of messaging into workfl ows. Messaging activities
enable workfl ows to send data out to other systems (Send, SendReply
and SendAndReceiveReply), and to receive data from other systems
(Receive, ReceiveReply and ReceiveAndSendReply). Th ey also
include activities for working with correlation (InitializeCorrelation,
CorrelationScope) and transactions (TransactedReceiveScope).

Receive and Send activities allow modeling the messaging inter-
actions within a workfl ow. Th e contract in a service can be defi ned
by confi guring the Receive and Send activities in it. Each Receive is
exposed as an operation. Each Send activity sends a message to a service.
Th e target service does not have to utilize WCF or even the .NET
Framework because you interact with it through standard protocols.

Send and Receive can be confi gured to use either a message-based or
parameter-based (RPC) approach for receiving and sending the actual
data. Th is controls the wire-format in which the data is sent or received.

Describing Processes in Flowcharts
You can model the process using a Sequence, but a quick look at
Figure 1 shows that at some point the process requires looping back

Figure 1 The Mortgage Approval Process

Incorrect

Rejected

Approved

Yes

Yes

No

No

Get Data
from Customer

Do Screening

Send Result
to Customer

Ask Vendor 1

Ask Vendor 3

Screening Result

Approved?

Save in CRM

Expose Result
to Customer

Ask Vendor 2

Approved?

www.msdnmagazine.com

msdn magazine60 Workfl ow Services

to a previous step, and that’s not directly supported in sequential
workfl ows. (It would require modeling the loop manually using
constructs such as a While activity with a carefully modeled
condition.) A Flowchart is a better fi t for modeling this scenario.

Flowchart is a new control-fl ow activity introduced in WF 4 that
lets you describe your processes much as you would on a whiteboard.
Flowchart describes processes that are sequential in nature, with a single
path of execution that may require looping back to a previous step
under certain circumstances. To describe the process, the Flowchart
uses arrows and boxes, a popular approach among many disciplines.

Th e default workfl ow created by the WCF Workfl ow Service
project template is a Sequence, but this does not mean it’s the only
control-fl ow activity you can use in workfl ow services. To use a
Flowchart (or any other composite activity) as the root activity in
a service, simply delete the Sequence and add a Flowchart.

Figure 3 shows how easily a Flowchart can be created from the
diagrams that business users typically draft to describe a process.

Flowchart is a great tool for describing business processes,
minimizing the mismatch between executable processes and the
way they’re specifi ed. In this case, the Flowchart defi nition is the
documentation of the process.

But let’s slow down a bit. We’ve jumped from an empty Flowchart
to a complete one in no time. Let’s go back to the empty Flowchart
and start working on it.

Th e potential home buyer introduces his data through a Web
application. Th is data is passed to the workfl ow through a Receive
activity. Th e result of including a Receive activity in the Flowchart
is that the Workfl owServiceHost exposes an endpoint that allows
users to communicate with the workfl ow by sending messages to it.

As I mentioned earlier, you can configure Send and Receive
activities to use either a message-based or RPC-based approach. In this
case I confi gured the Receive activity to use a RPC-based approach.
Th is means it receives a set of input arguments, similar to a method
call. To make them available to the workfl ow, I need to create variables
and bind them to the parameters (see Figure 4). Another possible
approach would be having a DataContract that collapses all these fi elds.

If you want to create and start a new instance of the workfl ow upon
receiving a message, you need to set the CanCreateInstance property in
the Receive activity to true. Th is means the Workfl ow ServiceHost will
create a new instance when it receives a message from this endpoint.

Modeling the Screening Step with WF Composition
Once you have data in the workfl ow, you can start working with
it. The first step is screening, which means verifying a set of
conditions in order to determine whether the applicant is eligible
for a mortgage before contacting the vendors.

One approach is to add several decision shapes (FlowDecision)
to the main Flowchart. Th is works, but makes the overall process
hard to read. Furthermore, any modifi cations to the screening
rules would require updating the main fl ow. Flowchart seems to be
a good fi t for expressing conditions visually, but we want to keep
the main process lean.

A solution is to add a new Flowchart inside the existing Flowchart.
WF 4 has strong support for composition at its core, so activities
can be freely composed. Th is means you can add a new Flowchart
wherever you need it, including inside an existing Flowchart. More-
over, the composition is arbitrary and doesn’t impose any limits.
You can combine existing activities at your convenience.

Th e child fl owchart is displayed collapsed in the parent (the Flow-
chart designer does not support expand-in-place). You will need to
double-click it to model the screening logic. Th e screening Flowchart
(see Figure 5) is a child of the main Flowchart and has access to its
variables and arguments.

What if you want to write some code? You could certainly write
code to describe the screening process. In this case, for example,
you could author a CodeActivity that receives the data from the
customer as input, performs the verifi cation (a set of chained if
statements in your language of choice), and returns the result. Th is
has its own pro and cons. It off ers potentially better performance
(all verifi cations are executed within a single pulse of execution)
and more compact representation than the declarative approach.
On the other hand, you lose the visual representation of the

process (opacity), and changing
the process requires modifying
the code and recompiling.

Sending Results
to the Customer
When the screening verifi cation is
complete, I need to return the result
to the applicant. I received the appli-
cant data through a Receive activity
at the beginning of the workfl ow. To
send the reply back I use a Send-
Reply activity (a Send Reply for an
existing Receive can be created by
right-clicking on the Receive and
selecting Create SendReply). Th e
combination of Receive and Send-
Reply allows implementing the
request-response message exchange Figure 2 Architecture of the Solution

Customers

ASP.NET
Client App

SQL Server WF
Instance Store

Windows
Event Log

Contoso CRM

A B C

WorkflowServiceHost

Mortgage Vendor 2

A B C
Mortgage Vendor 3

A B C
Mortgage Vendor 1

A B C

A B C

WF4 Activities
Toolbox

Custom
Activities

Content-based
Correlation

Simplified SVC
Configuration

Messaging
ActivitiesA

B
C

WCF Service
Client Proxy

SqlWorflowInstanceStore

EtwTrackingParticipant

61May 2010msdnmagazine.com

pattern. SendReply is configured to send back the result of the
operation and a description message to the customer.

Why SendReply and not Send? You can use a pair of Receive
and Send activities to model duplex messaging exchange patterns
like “request and wait for a response” (similar to a callback), but
SendReply is better suited to modeling request-response message
exchange patterns (similar to a method invocation).

Deciding Where to Go Next
When the screening is complete, the workfl ow can continue with the
mortgage petition process. Th ere are two branches at this point: Reject
and Approved, but when the applicant needs to provide more data,
the workfl ow must go back to a prior step. Flowchart allows modeling
this drawing-a-line action to the step where the workfl ow will proceed.

To decide the path to be taken based on the result of the screen-
ing, I use a FlowSwitch activity (similar to a switch statement), as
shown in Figure 6.

Correlation
When the mortgage request is deemed incorrect, the workfl ow asks
the customer to provide additional data to an existing workfl ow
instance. How can the Receive activity know that the data it’s
receiving is a correction of the data the customer provided earlier?

In other words, how can you send another message to a running
instance of a workfl ow? Th e answer is correlation.

WF 4 introduces a framework for correlation. A correlation is
actually one of two things:

• A way of grouping messages together. A classic example of
this is sessions in WCF, or even more simply the relationship
between a request message and its reply.

• A way of mapping a piece of data to a workfl ow service instance.
Th ere are several types of correlation available in the .NET

Framework 4. I use content-based correlation in this example workfl ow.
A content-based correlation takes data from the incoming message
and maps it to an existing instance. Content-based correlation
is used when a workfl ow service has multiple methods that are
accessed by a single client and a piece of data in the exchanged
messages identifi es the desired instance.

To set up the correlation, I declare a variable of type Correlation-
Handle. Th is is the handle used to store the correlation information
(customerCorrelationHandle in the companion solution). Th e next
step is using the correlation handle. Th e Receive activity’s property grid
has a Correlations section to confi gure correlation. It has properties
for confi guring a correlation handle (CorrelatesWith), for specifying
the data that you correlate on through a correlation query (Correlates-
On) and for initializing a correlation handler (CorrelationInitializers).
I confi gured the CorrelatesWith and CorrelatesOn arguments in the
Receive activity to correlate on the customerCode fi eld.

CorrelatesOn and CorrelatesWith can be confusing. Here’s a rule
that can help you: a Receive CorrelatesWith an existing correlation
handle and CorrelatesOn data specifi ed by a correlation query.

All this can be set up using the WF designer.
I want to correlate on the customer identifi cation so I create a

correlation query that extracts the customerCode from the message.
Note that correlation queries are authored using XPath, but you
don’t need to know XPath because the WF designer creates the
query by inspecting the contract of the received message for you.

Th e fi rst Receive activity in the workfl ow is confi gured to create
a new workfl ow instance upon receiving a message. However, it
won’t create a new instance when I loop back to it because it’s also
confi gured to correlate on the customerCode. Before creating a new
instance, it looks for an existing instance with that correlation key.

Figure 4 Confi guring Input Parameters

Figure 3 The Mortgage Approval Process as a Flowchart

www.msdnmagazine.com

msdn magazine62 Workfl ow Services

Asking Vendors for Rates
If the petition passes the screening, it’s sent to the vendors for
aluation. Remember that Contoso works with three vendors and
has a preferred order for doing business with them. Th erefore the
process asks vendors in sequential order until one approves.

All vendors implement a standard service contract for requesting
mortgage approval. Th e only diff erence between the interest rate
requests to the three mortgage vendors is the URI of the service. How-
ever, the vendor interest rate request is complicated by the fact that it
involves sending a message and waiting asynchronously for a response
while simultaneously responding to customer requests for status.

I could model this process once and copy it three times in the
workfl ow, but this would result in lots of unnecessary duplication
and thus a serious maintainability issue. I want to abstract this
step so I can use the same process multiple times. Ideally, I would
provide the workfl ow with some input data and get a result when
it’s done, and that’s exactly what custom activities are for.

WF 4 provides two approaches for creating custom activities:
• Declarative create a new activity by composing other

existing activities.
• Imperative create a new activity by writing code. Th ere

are several base classes with diff erent capabilities that can be
derived, including CodeActivity (simple imperative behavior),
AsyncCodeActivity (do work asynchronously) and Native-
Activity (interact with the WF runtime).
Activities have arguments that defi ne their public signatures in

terms of what data they can receive (InArgument) and what data
they will return (OutArgument) when they complete. My activity
will receive customer mortgage information and a service URI as
input, and will return an interest rate and result string message.

I use the Activity item template in Visual Studio to create a new
activity declaratively using the WF designer. Th e designer allows you

Figure 5 Adding the Screening Flowchart

Figure 6 Each Outbound Arrow in the FlowSwitch Represents
a Case in the Switch

63May 2010msdnmagazine.com

to author custom activities visually by dragging and dropping existing
activities and setting their arguments. Th e result of authoring a custom
activity with the designer is a XAML fi le that defi nes an x:Class.

I called the activity AskVendor. Th e AskVendor activity receives
mortgage information from the customer and the URI of the service
as input, and provides an interest rate and a result string message
as output. If the rate is 0, the petition has been rejected.

AskVendor sends a message to a mortgage vendor asking for an inter-
est rate and waits for a response from the vendor. Th e response may take
minutes, hours or even days to arrive. While waiting for the response,
the applicant may want to know the state of the process. Th erefore, the
activity also responds to status-request messages from the applicant.

To process both actions simultaneously I use a Parallel activity
as the root of the custom activity. In one branch I have all the
activities for communicating with a mortgage vendor, and in the
other the activities to listen for the customer while waiting for the
vendor’s response. All messaging activities used within AskVendor
are confi gured to correlate on the customerCode fi eld. Figure 7
shows AskVendor custom activity.

As mentioned, the root of the custom activity is a Parallel. Th e left
branch sends a message to a vendor and waits for a response. Once the
response is received, it formats the resulting string message and sets the
completed fl ag to true. Th e right branch listens for state-query requests

from the applicant. Th e Receive and SendReply are inside of a While
activity that’s executed until the completed fl ag is true. Th e Parallel
activity’s completion condition (executed when a branch is completed)
sets the completed fl ag to true. Th erefore, when the left branch
completes (the message from the vendor is received), the completed
variable is signaled as true and the While at the right is also completed.

Custom activities are just like any other activity. When you create a
custom activity it shows up automatically in the activities toolbox. And
using it is no diff erent from using any other existing activity: drag it from
the toolbox, drop it in the designer and confi gure its arguments. Because
I haven’t created a designer for this activity, the default designer is
assigned to it (a rectangle where you can set the DisplayName property).
Th e property grid automatically displays all the arguments of the activity.

I mentioned earlier the strong support for composition in WF 4. Th is
also applies to the custom activities. If you create your own composite
activity, you’ll be able to freely compose it with any other existing activity
like Sequence, Flowchart, Parallel or even other custom activities.

Invoking the CRM service
Contoso’s CRM system exposes its core functionality as services. One
of these services allows registering an interaction with a customer. I
could invoke it using a Send activity, but this would imply confi guring
the activity manually and importing its service data contracts.

Figure 7 AskVendor Custom Activity

www.msdnmagazine.com

msdn magazine64 Workfl ow Services

It would be great if I could just import the service into WF and
execute it. Th is is exactly what Add Service Reference in a workfl ow
service project does: given the contract of a service, it automatically
creates proxy activities (one for each operation in the service) that
can be used to invoke the service (see Figure 8). In this case, the
CRM service contract has three operations so “Add service reference”
has created three activities, which are displayed in the toolbox.

Communicating the Result
Finally, I need to provide the results to the customer. To keep the
app simple, I just use a ReceiveAndSendReply activity that exposes
the result to the customer. Once the customer reads the result, the
workfl ow completes.

To do this, I need to drop a ReceiveAndSendReply in the
Flowchart. Note that when you drop the activity in the designer
surface, you get a collapsed Sequence. This is because Receive-
AndSendReply is an activity template, which means that it’s a
preconfigured set of activities (in this case a Sequence with a
Receive and a SendReply). You saw this earlier when I added the
child Flowchart for screening.

To confi gure ReceiveAndSendReply, I need to drill in and set
the endpoint information in the Receive activity. I also need to
confi gure Receive to correlate by customer identifi cation so that,
when the customer sends a message with his customerCode, he
will get a response.

Long-Running Work
Once the workfl ow sends an approval request to a vendor, the
service instance will be sitting idle waiting for a response. Th e
response can come in minutes, hours, days or even weeks. Th is
poses some interesting challenges. You probably don’t want to keep
all instances in memory because that would consume unnecessary
system resources and wouldn’t scale. And if the host process crashes
(or in a less apocalyptic scenario, needs to be shut down for main-
tenance), any unfi nished instances would be lost.

Wouldn’t it be great if, when an instance is not doing any work,
you could just save it to durable storage and remove it from memory?
You can—via the WF persistence framework, which allows saving
a workfl ow instance to a storage medium to be retrieved later.

Th is means instances are not tied to any existing process or
machine. In the example workfl ow, the screening can occur in one
process, asking the fi rst vendor for a rate can occur in another,
and receiving the response can occur in a third—without aff ect-
ing the workfl ow instance’s execution or its data. Th is achieves
better use of resources, improving scalability and providing
resilience—a crash in the host does not produce the loss of the
active instances because they can be resumed from the point at
which they were last persisted.

Workfl ow instances are saved to an instance store. WF 4 includes
a SQL Server-based instance store, and the persistence framework
is extensible so you can write your own. (Th e PurchaseProcess
sample in the SDK shows how to write a very simple text fi le
instance store, for example.)

I use the built-in SQL Server instance store to persist instances
of the Contoso workfl ow. Th e good news is that you don’t need
to write any code to use it. In workfl ow services, persistence is a
behavior that can be confi gured in the web.confi g fi le like so:

<!--Set up SQL Instance Store-->
<sqlWorkflowInstanceStore connectionString="Data Source=.\
SQLExpress;Initial Catalog=InstanceStore;Integrated
Security=True;Asynchronous Processing=True"/>

<!--Set the TimeToUnload to 0 to force the WF to be unloaded. To have a
durable delay, the workflow needs to be unloaded-->
<workflowIdle timeToUnload="0"/>

Th e fi rst line confi gures the persistence behavior to use the SQL
Server instance store. Th e second line instructs the persistence
framework to persist and unload instances as soon as they become
idle (this means that when you execute a Receive and become idle
waiting for a response, the workfl ow instance will be unloaded and
saved in the database).

If a workfl ow is confi gured to be persistent and has correlation
confi gured, the host (Workfl owServiceHost) is responsible for

<tracking>
 <profiles>
 <!--The health monitoring profile queries for workflow instance level
records and for workflow activity fault propagation records-->
 <trackingProfile
 name="HealthMonitoring">
 <workflow activityDefinitionId="*">
 <workflowInstanceQueries>
 <workflowInstanceQuery>
 <states>
 <state name="Started"/>
 <state name="Completed"/>
 <state name="Aborted"/>
 <state name="UnhandledException"/>
 </states>
 </workflowInstanceQuery>
 </workflowInstanceQueries>
 <faultPropagationQueries>
 <faultPropagationQuery
 faultSourceActivityName ="*"
 faultHandlerActivityName="*"/>
 </faultPropagationQueries>
 </workflow>
 </trackingProfile>
 </profiles>
</tracking>

Figure 9 Specifying the Tracking Participant Profi le

Figure 8 Adding a Service Reference to the CRM Service

Image Formats & Compression: Supports 150+ image formats and
compressions including TIFF, EXIF, PDF, JPEG2000, JBIG and CCITT.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing: 200+ lters, transforms, color conversion and dra ing

functions supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64

bit development.
Forms Recognition and Processing: Automatically identify forms and

extract user lled data.
Barcode: Detect, read and rite 1D and 2D barcodes for multithreaded 32 and

64 bit development.
Document Cleanup/Preprocessing: Des e , despec le, hole punch, line

and border removal, inverted text correction and more.
PDF and PDF/A: ead and rite searchable PDF ith text, images and

annotations.
Annotations: Interactive UI for document mark-up, redaction and image

measurement (including support for DICOM annotations).
Medical Web Viewer Framework: Plug-in enabled frame ork to uickly

build high- uality, full-featured, eb-based medical image delivery and vie er
applications.
Medical Image Viewer: igh level display control ith built-in tools for image

mark-up, indo level, measurement, zoom pan, cine, and UT manipulation.
DICOM: Full support for all IOD classes and modalities de ned in the 200

DICOM standard (including Encapsulated PDF CDA and a Data).
PACS Communications: Full support for DICOM messaging and secure

communication enabling uick implementation of any DICOM SCU and SCP
services.
JPIP: Client and Server components for interactive streaming of large images

and associated image data using the minimum possible band idth.
Scanning: TWAIN 2.0 and WIA (32 and 64-bit), autodetect optimum driver

settings for high speed scanning.
DVD: Play, create, convert and burn DVD images.
DVR: Pause, re ind and fast-for ard live capture and UDP or TCP IP streams.
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3,

OGG, ISO, DVD and more.
Enterprise Development: Includes WCF services and WF activities to

create scalable, robust enterprise applications.

Mark-up

DICOM Medical

Form Recognition
& Processing

Multimedia

Barcode

Document

ig evel Design ow evel Control

Develop your application ith the same robust imaging technologies used by
Microsoft, HP, Sony, Canon, Kodak, GE, Siemens, the US Air Force and
Veterans Affairs Hospitals.

EADTOO S provides developers easy access to decades of
expertise in color, grayscale, document, medical, vector and multmedia
imaging development. Install EADTOO S to eliminate months of research
and programming time hile maintaining high levels of uality, performance
and functionality.

.NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Free 60 Day Evaluation! www.leadtools.com/msdn 800 637-1840

Untitled-1 1 3/30/10 3:50 PM

http://www.leadtools.com/msdn

msdn magazine66 Workfl ow Services

loading the correct instance when a message arrives based on the
correlation information.

 Suppose you have an instance that’s confi gured to correlate on
customerCode, say for customerCode = 43. You ask a mortgage
vendor for a rate and the instance is persisted while waiting for the
response (persistence includes saving correlation information).
When the mortgage company sends back a message for customer-
Code = 43, Workfl owServiceHost automatically loads that instance
from the instance store and dispatches the message.

Note that the SQL instance store is not installed by default. You
need to explicitly install it by running a set of scripts provided with
the .NET Framework 4.

Tracking the Service
So I have a long-running service that communicates with other
services in a message-based fashion. Th e service is confi gured to
be durable, does some of its work in parallel, and can execute asyn-
chronous activities. Th is seems pretty complex. What if something
goes wrong? How can you tell which activity failed? What if you
just want to know what is going on with an instance of the service?

Visual Studio allows debugging workfl ows (and you can do step
debugging in the WF designer by setting breakpoints, just as you
do in code), but this is not an option in production environments.

Instead, WF includes a rich tracking infrastructure that provides
data about running workfl ows. Tracking tells you about things that
happen in the workfl ow (tracking events) to a tracking participant that
saves these events. Tracking profi les allow fi ltering the events that a
tracking participant receives so it can get just the information it needs.

WF 4 provides a tracking participant that saves data in the
Windows Event Log (EtwTrackingParticipant). You can create your
own tracking participants by extending TrackingParticipant. For
this workfl ow I used the default EtwTrackingParticipant. You don’t
need to write any code to use it; just provide proper confi guration
in the web.confi g fi le. I start by confi guring the service to use the
EtwTrackingParticipant:

<!--Set up ETW tracking -->
<etwTracking profileName="HealthMonitoring "/>

I also set it to use a HealthMonitoring profi le that provides events
that will help to assess the health of our service (see Figure 9).
Now the service provides information on events that help monitor
its health and fi x problems as they appear. Th e SDK supplies sev-
eral samples that show how to create your own tracking participant
and how to write a troubleshooting profi le.

Deploying and Consuming the Service
So I’ve created a workfl ow using the designer and confi gured it to use
persistence and tracking. Th e only remaining task is to host and run it.

While developing, you can host the service with the built-in Web
service host in Visual Studio 2010. To do this, you just need to run
the project with the service and you are done.

Hosting the service in a production environment is only slightly
more complex. You can host WCF workfl ow services in IIS or App-
Fabric application server extensions. With Visual Studio 2010, you
can create a package that can be directly imported to IIS. If you
decide to use AppFabric, you’ll be able to take advantage of features
like the dashboard, which provides summarized information about
instances of your service, and query the recorded tracking.

Th e fi nal step is to actually use the service. In this scenario, Contoso
wanted a Web-based interface to allow users to interact with the service.
Th is means consuming the service from an ASP.NET application.

Th e example WCF workfl ow service you’ve seen here is just like
any other WCF service you can write in plain code. To consume
it, you need to add a service reference in the client project. Th is
service reference creates the client proxies to invoke the service.

With the reference in hand you can invoke the service. Th e
client for this service has one operation for each Receive activity in
the service. Figure 10 shows the code used to request a mortgage
approval (and therefore start a new instance of the service).

Closing Notes
As you’ve seen, the .NET Framework 4 provides a rich feature set that
can be used to build complex real-world solutions by assembling
existing components. Th e framework also provides extensibility
points to tailor these components to specifi c needs that accom-
modate a wide variety of scenarios.

WCF workfl ow services let you describe a long-running, durable,
instrumented process declaratively by simply composing existing
activities and confi guring the service—though you can also write
your own code if necessary.

In this article, I combined several features in WF 4 and WCF 4
to build a service that does some work on its own and coordinates
conversations with other existing services. I built the entire service
without writing code, including a new artifact (a custom activity).

Th ere’s a lot more you can do with these .NET Framework 4
technologies.

LEON WELICKI is a program manager in the WF team at Microsoft focusing on
Activities and the WF runtime. Prior to joining Microsoft , he worked as lead architect and
dev manager for a large Spanish telecom company and as external associate professor on
the graduate computer science faculty at the Pontifi cal University of Salamanca at Madrid.

THANKS to the following technical experts for reviewing this article:
Dave Cliff e, Vikram Desai, Kavita Kamani and Bob Schmidt

protected void OnSubmit(object sender, EventArgs e) {
 using (ContosoRealEstate.ContosoRealEstateClient client =
 new ContosoRealEstate.ContosoRealEstateClient()) {

 string message = "";
 string result = client.EvaluateMortgage(
 out message,
 this.txtId.Text,
 Convert.ToInt32(this.txtHousePrice.Text),
 Convert.ToInt32(this.txtDownpayment.Text),
 Convert.ToInt32(this.txtYears.Text),
 Convert.ToInt32(this.txtSalary.Text),
 this.chkCreditHistory.Checked,
 this.chkBankrupcy.Checked,
 this.chkLawsuit.Checked,
 this.chkForeclosure.Checked);
 lblMessage.CssClass= result;
 lblMessage.Text = message + " (" + result + ")";

 this.btnSubmit.Visible = result.Equals("Incorrect");
 this.btnMonitor.Visible = result.Equals("Approved");
 }
}

Figure 10 Consuming the Service

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine68

listing all mathematical combinations of fi ve items selected three at
a time. Next, it uses a helper method to apply the last combination
element {2,3,4}, to an array of strings {ant, bat, cow, dog, elk} to yield
{cow, dog, elk}—that is, the three strings from the original set that
are located at index values 2, 3 and 4.

My demo program continues by computing and displaying the
value of Choose(200,10), the number of ways to select 10 items
from a set of 200 items where order does not matter.

Next, the demo code computes and displays the value of
Factorial(52), which is the total number of ways to arrange the cards
in a standard deck of 52 cards. Notice that the result is a very, very
large number. As I’ll explain, F# has the ability to work with arbi-
trarily large integer values.

My demo program concludes by listing all mathematical
permutations of order n = 3.

In the sections that follow, I describe in detail the F# code in the
CombinatoricsLib module and the code in the F# demo program
shown running in Figure 1. Along the way, I compare the use of
F# with other languages such as Visual Basic and C# for working
with combinations and permutations.

This column assumes you have beginner-to-intermediate
experience with a .NET language such as C#, and a very basic
familiarity with F#. But even if you are completely new to F#, you
should be able to follow my explanations without too much diffi culty.

The F# CombinatoricsLib Library
To create my combinatorics library, I used the beta 2 release of
Visual Studio 2010, which has the F# language and tools built in. I
expect the F# code I present here to work with the release version
of Visual Studio 2010 without any signifi cant changes. If you are
using an earlier version of Visual Studio, you can fi nd the F# tools
on the Microsoft F# Developer Center (msdn.microsoft.com/fsharp).
In addition to the F# language, Visual Studio 2010 ships with the
Microsoft .NET Framework 4, which my library uses.

I created my library by launching Visual Studio 2010 and selecting
File | New | Project. On the new project dialog, I selected the F#
Library template and named my library CombinatoricsLib. Th e
overall structure of my CombinatoricsLib is listed in Figure 2.

Th e library code begins with Visual Studio-generated code
that names my library Module1. I used this rather nondescript
default name instead of changing to something more descriptive
so that the syntax for accessing the library will stand out later
in this article.

Understanding combinations and permutations is a fundamental
skill in soft ware testing. In this month’s Test Run column I show
you how to work with combinations and permutations using code
written in the new F# language.

A mathematical combination is a subset of k items selected from
a set of n items, where order does not matter. For example, if n = 5
and k = 2, all possible ways to select two items from fi ve items are:

{0,1}, {0,2}, {0,3}, {0,4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}

Notice that I do not list the combination {1,0} because it is considered
the same as {0,1}. Also, I have listed the 10 combinations of fi ve items
selected two at a time using what is called lexicographical order, where
the values in each combination element are listed in increasing order.

A mathematical permutation is all possible rearrangements of
n items. For example, if n = 4, all possible permutations listed in
lexicographical order are:

{0,1,2,3}, {0,1,3,2}, {0,2,1,3}, {0,2,3,1}, {0,3,1,2}, {0,3,2,1},
{1,0,2,3}, {1,0,3,2}, {1,2,0,3}, {1,2,3,0}, {1,3,0,2}, {1,3,2,0},
{2,0,1,3}, {2,0,3,1}, {2,1,0,3}, {2,1,3,0}, {2,3,0,1}, {2,3,1,0},
{3,0,1,2}, {3,0,2,1}, {3,1,0,2}, {3,1,2,0}, {3,2,0,1}, {3,2,1,0}

When working with combinations and permutations, two impor-
tant functions are Choose(n,k) and Factorial(n). You are probably
familiar with the Factorial(n) function, which is oft en abbreviated
as n! Th e Factorial(n) function returns the total number of permu-
tations of order n. For example:

4! = 4 * 3 * 2 * 1 = 24.

Th e Choose(n,k) function returns the total number of combi-
nations of k items selected from n items.

Choose(n,k) = n! / (k! * (n-k)!)

For example:
Choose(5,2) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = 120 / 12 = 10.

Combinations and permutations are part of an area of study usually
called combinatorial mathematics, or just combinatorics for short.

A good way for you to see where I’m headed in this month’s
column is to take a look at the screenshot in Figure 1. I used
Windows PowerShell to host my F# demo application, but I could
have just as easily used a command shell. I modifi ed my Windows
PowerShell startup script to automatically navigate to the location
of my CombinatoricsDemo.exe program.

Behind the scenes, the demo program references and calls into
an F# code library named CombinatoricsLib. Th e demo begins by

Combinations and Permutations with F#

TEST RUN JAMES MCCAFFREY

This article discusses a prerelease version of Visual Studio 2010. All information
is subject to change.

Code download available at code.msdn.microsoft.com/mag201005TestRun.

http://code.msdn.microsoft.com/mag201005TestRun.
http://msdn.microsoft.com/fsharp

69May 2010msdnmagazine.com

Next, I added two F# open statements to the top-level System
namespace and the new System.Numerics namespace so I can
access the classes in these namespaces without fully qualifying the
class names. Th e System.Numerics namespace is part of the .NET
Framework 4 and contains a BigInteger defi nition that allows me
to work with arbitrarily large integer values.

Defi ning a type in F# is diff erent from defi ning a conceptually
equivalent C# class. Th e type defi nition has a signature that contains
 the input arguments for the primary type constructor:

type Combination(n : int, k : int, a : int[]) =

Th is signature means, “I am defi ning a type named Combination
that has a primary constructor that accepts int arguments n (the
total number of items), and k (the subset size), and an integer array
a that specifi es the individual combination values, such as {0,1,4}.”

F# types may have optional secondary constructors, such as the
one listed in Figure 2:

new(n : int, k : int) =

Notice that secondary constructors use the explicit new keyword
as opposed to type primary constructors. Th is secondary constructor
accepts values just for n and k. With other programming languages
such as C#, you would likely defi ne the simpler constructor as the

primary constructor, that is, before constructors that accept argu-
ments. But as you’ll see in F#, for types with multiple constructors,
it is usually better to create a type in such a way that the primary
constructor is the one with the most parameters. Th e structure of
my Combination type continues with three member functions:

member this.IsLast() : bool =
 ...
member this.Successor() : Combination =
 ...
member this.ApplyTo(a : string[]) : string[] =
 ...

The this keyword binds member methods that are publicly
visible to external calling code. The IsLast function returns true
if the associated Combination object is the last element in lexi-
cographical order, such as {2,3,4} for n = 5 and k = 3, as shown
in Figure 1.

Th e Successor function returns the next Combination element
in lexicographical order to the current element.

Th e ApplyTo function accepts an array of strings and returns an
array of strings that corresponds to the current Combination element.

My next type member function provides a way to display a
Combination element:

override this.ToString() : string =

Figure 1 Combinations and Permutations with F#

www.msdnmagazine.com

msdn magazine70 Test Run

I use the override keyword to distinguish my custom ToString
function from the base ToString method. Because F# is a .NET
language, all objects inherit from a common base Object that
has a ToString method. Notice that even though the overridden
ToString function has public scope, I do not use the member keyword.

Th e last two member functions in the Combination type defi ne
the Choose and Factorial functions:

static member Choose(n : int, k : int) : BigInteger = ...
static member Factorial(n : int) : BigInteger = ...

Both functions are static, which means that the functions are
associated with and called directly from the context of the Com-
bination type rather than a particular instance of a Combination
object. Both functions return type BigInteger, defi ned in namespace
System.Numerics, which is directly visible by default to F# code.

In addition to a Combination type, I defi ne a Permutation type
as shown in the listing in Figure 2.

The F# Combinatorics Library Implementation
Now let’s go over the details of the implementation of the
CombinatoricsLib library. The Combination primary construc-
tor begins:

type Combination(n : int, k : int, a : int[]) =
 do if n < 0 || k < 0 then failwith
 "Negative argument in Combination ctor"
 do if n < k then failwith
 "Subset size k is larger than n in Combination"

Interestingly, to perform input argument validation in a primary
constructor you should use the do keyword, which indicates an
action, rather than the default of a value, which is typically assumed
by functional languages such as F#. Th e failwith keyword throws
an exception, which can be caught by calling code.

Next, I set up the Combination type private members:
let n : int = n // private
let k : int = k
let data =
 [| for i = 0 to a.Length-1 do yield a.[i] |]

Th e let keyword binds values to private members. Notice that
I can use lowercase n and k as both input parameters and as
private fi elds. Th is looks a bit awkward and so in most situations I use
uppercase notation for either the parameters or the private members.

Copying the values from the input argument array a into the
type fi eld data uses a standard F# idiom. Th e [| . . |] delimiters
indicate a mutable array. Th e secondary Combination constructor
creates an initial Combination object and is defi ned as:

new(n : int, k : int) =
 do if n < 0 || k < 0 then failwith
 "Negative argument in Combination ctor"
 do if n < k then failwith
 "Subset size k is larger than n in Combination"
 let starters = [| for i in 0..k-1 -> i |]
 new Combination(n,k,starters)

In F#, secondary constructors must call the primary constructor.
So I defi ne an int array named starters with values 0 through k-1
and pass it along with n and k to the primary constructor. Th is F#
mechanism is why it is advisable to defi ne any primary construc-
tor as the constructor with the most parameters.

Th e IsLast member function is defi ned as:
member this.IsLast() : bool =
 if data.[0] = n-k then true
 else false

In Figure 1, notice that only the last element in a list of all
combinations has value n-k located in the fi rst position of the
array. F# does not use an explicit return keyword as most languages
do; the implied return is the last value in a function, in this case
either true or false. Th e = token checks for equality in F# and is not
an assignment operator. Th e Combination.Successor function is:

member this.Successor() : Combination =
 // copy input to temp array
 let temp = [| for i in 0..k-1 -> data.[i] |]
 // find "x" - right-most index to change
 let mutable x = k-1
 while x > 0 && temp.[x] = n - k + x do
 x <- x - 1
 temp.[x] <- temp.[x] + 1 // increment value at x
 // increment all values to the right of x
 for j = x to k-2 do
 temp.[j+1] <- temp.[j] + 1
 // use primary ctor
 let result = new Combination(n, k, temp)
 result

I begin by copying the values of the current Combination
object context into a mutable array named temp. Next, I defi ne an
index variable named x and position it at the end of the temp array.
I must use the mutable keyword so that I can decrement this index
variable because, by default, most variables in F# are immutable. I
use the <- assignment operator.

Once I locate the key index of the current Combination object,
I increment that value and all values to the right of the key index.
Th en I pass the temp array, which now has the value of the successor
Combination element, into the primary constructor and return the
newly created object.

Notice that I do not return null when I am at the last Combina-
tion element—in F# it is considered poor style to do so. Th e code I
present in this article uses a style that is not very F#-ish. F# experts

module Module1

open System
open System.Numerics // BigInteger class

type Combination(n : int, k : int, a : int[]) =
 // primary constructor code
 new(n : int, k : int) =
 ...
 member this.IsLast() : bool =
 ...
 member this.Successor() : Combination =
 ...
 member this.ApplyTo(a : string[]) : string[] =
 ...
 override this.ToString() : string =
 ...
 static member Choose(n : int, k : int) : BigInteger =
 ...
 static member Factorial(n : int) : BigInteger =
 ...
// end type Combination

type Permutation(n : int, a : int[]) =
 // primary constructor code
 new(n : int) =
 ...
 override this.ToString() : string =
 ...
 member this.Successor() : Permutation =
 ...
 member this.ApplyTo(a : string[]) : string[] =
 ...
 member this.IsLast() : bool =
// end type Permutation

Figure 2 F# CombinatoricsLib Structure

71May 2010msdnmagazine.com

would likely use a recursive approach, but because I am assuming you
are new to F#, I wanted to make my F# code as familiar as possible.

An alternative approach to writing a Successor function is to
implement the .NET IEnumerable interface.

The ApplyTo function provides a way to map a combination
element to a set of string values:

member this.ApplyTo(a : string[]) : string[] =
 if a.Length <> n then failwith
 "Invalid array size in ApplyTo()"
 // array of int
 let result = Array.zeroCreate k
 for i = 0 to k-1 do
 // bind to array of string
 result.[i] <- a.[data.[i]]
 result

When performing input argument checks in a member function, I
do not need to use the do keyword as is required in type constructors.
Th e static Array.zeroCreate method creates an integer array initialized to
all 0 values as you might expect. Th e ApplyTo function is easy because
the range of values in a mathematical combination with subset size k
(0..k-1) is exactly the same as the indexes of any .NET array of size k.

Th e overridden ToString member function simply builds a string
made up of the context object’s values:

override this.ToString() : string =
 let mutable s : string = "^ "
 for i in 0..k-1 do
 s <- s + data.[i].ToString() + " "
 s <- s + "^"
 s

I decided to delimit my Combination elements with the ̂ (caret)
character, which starts with the letter c, and to delimit my Permu-
tation elements with the % (percent) character, which starts with
p, to help me identify whether a string of digits represents a
Combination or a Permutation object.

Th e static Choose function is coded as shown in Figure 3.
Instead of computing Choose from the defi nition described

earlier in this article, I use two optimizations. First, I use the fact
that Choose(n, k) = Choose(n, n-k). For example Choose(9,6) =
Choose(9,3). Second, rather than compute three separate factorials,
each of which can be very large, I compute a series of partial
products. In order to explicitly convert int values to type Big Integer,
I use the built-in F# bigint function.

Th e implementation of the Permutation type is quite similar
to the implementation of the Combination type. You can get the
complete source code for the CombinationLib library from the
Microsoft Code Gallery Web site at code.msdn.microsoft.com.

Using the CombinatoricsLib
In this section I explain how to call the function in the
Combinatorics Lib library to produce the run shown in the screen-
shot in Figure 1. I begin by launching Visual Studio 2010 and
creating a new F# Application project named Combinatorics Demo. Th e
entire program is listed in Figure 4.

Before writing any code, I right-clicked on the Project name in
the Solution Explorer window of Visual Studio and selected the
Add Reference option from the context menu. I then selected the
Browse tab and navigated to the CombinatoricsLib.dll assembly.

I begin the demo program code by adding open statements to
the System and Module1 assemblies. Recall that the module name
of the CombinatorcsLib is Module1. I wrap all program statements
in a try/with block to capture and handle exceptions. I instantiate
a Combination object using the secondary constructor to make
an initial mathematical combination object c of fi ve items taken
three at a time: {0,1,2}. I use the neat F# %A format specifi er, which
instructs F# to infer how to print my Combination object. I could
also have used the %s string format.

Next, I use the F# while..do loop to iterate through and display
all 10 Combination(5,3) elements. At this point, the Combination

static member Choose(n : int, k : int) : BigInteger =
 if n < 0 || k < 0 then failwith
 "Negative argument in Choose()"
 if n < k then failwith
 "Subset size k is larger than n in Choose()"
 let (delta, iMax) =
 if k < n-k then
 (n-k, k)
 else
 (k, n-k)
 let mutable answer : BigInteger =
 bigint delta + bigint 1
 for i = 2 to iMax do
 answer <- (answer * (bigint delta + bigint i))
 / bigint i
 answer

Figure 3 The Choose Function

open System
open Module1 // the Combinatorics Lib

try

 printfn "\nBegin combinations and permutations with F# demo\n"
 printfn "All combinations of 5 items 3 at a time in lexicographical
order are: \n"
 let mutable c = new Combination(5,3)
 printfn "%A" c // print initial combination

 // objects cannot be null in F# so use an explicit method
 while c.IsLast() = false do
 c <- c.Successor()
 printfn "%A" c

 printf "\nThe last combination applied to array [| \"ant\"; \"bat\";
\"cow\"; \"dog\"; \"elk\" |] is: \n"
 let animals = [| "ant"; "bat"; "cow"; "dog"; "elk" |]
 //let result = c.ApplyTo(animals)
 let result = animals |> c.ApplyTo
 printfn "%A" result

 printfn "\nThe number of ways to Choose 200 items 10 at a time =
Choose(200,10) ="
 let Choose_200_10 = Combination.Choose(200,10).ToString("000,000")
 printfn "%s" Choose_200_10

 printfn "\nThe number of ways to arrange 52 cards = 52! = "
 let Factorial_52 = Combination.Factorial(52).ToString("000,000")
 printfn "%s" Factorial_52

 printfn "\nAll permutations of 3 items in lexicographical order are:
\n"
 let mutable p = new Permutation(3)
 printfn "%A" p // print initial permutation
 while p.IsLast() = false do
 p <- p.Successor()
 printfn "%A" p

 printfn "\nEnd demo\n"
 Console.ReadLine() |> ignore

with
 | Failure(errorMsg) -> printfn "Fatal error: %s" errorMsg

// end program

Figure 4 Using the CobinatoricsLib

www.msdnmagazine.com
http://code.msdn.microsoft.com

msdn magazine72 Test Run

object c is the last element and I call the ApplyTo function to map
that combination onto an array of strings.

Notice that I call the Choose and Factorial functions from the
context of the Combination type rather than the c Combination
object. Aft er calling the Permutation type code in a similar way,
the demo program concludes by pausing for user input with the
Console.ReadLine method, where I pipe the return value to the
built-in ignore object. I handle any exceptions in the with block,
by simply displaying the exception error message.

In addition to calling an F# library from an F# program as I’ve
just demonstrated, you can call an F# library from any .NET-com-
pliant language. Additionally, Visual Studio allows you to use the
handy F# interactive window to make ad hoc calls, as shown in
Figure 5. In the F# interactive window at the bottom of the screen,
I add a reference to the CombinatoricsLib assembly by typing:

#r @"C:\(path)\CombinatoricsLib.dll";;

In this case #r means add a reference, and ;; terminates an
interactive F# statement. Now I can interactively call the functions
in the library. Neat!

 In my opinion, there are several pros and cons to using F#. On
the negative side, I found that the learning curve for F# was much

steeper than I expected. Writing in a functional style was a big
paradigm shift for me. Also, much more so than other languages,
F# has multiple ways of coding a particular task, which led me to
feel uneasy about whether any F# code I wrote was written in the
optimal way.

However, in my case at least, I feel the benefi ts of learning F#
defi nitely outweigh the costs. When talking to experienced F#
coders, most told me that in many cases, even though there are in
fact several ways to code a task, the approach taken is more a matter
of personal preference than technical effi ciency. Also, grappling
with F# syntax and coding paradigms (such as default immuta-
bility) gave me what I felt was some good insight into coding in
procedural languages such as C#.

Dr. James McCaff rey works for Volt Information Sciences Inc., where he manages
technical training for soft ware engineers working at the Microsoft Redmond, Wash.,
campus. He has worked on several Microsoft products including Internet Explorer
and MSN Search. Dr. McCarthy is the author of “.NET Test Automation Recipes”
(Apress, 2006). He can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Brian McNamara, Paul Newson and Matthew Podwysocki

Figure 5 Interactive Use of an F# Library

mailto:jammc@microsoft .com

You have the vision, but time, budget and staff
constraints prevent you from seeing it through.
With rich user interface controls like Gantt Charts
that Infragistics NetAdvantage® for .NET adds to
your Visual Studio 2010 toolbox, you can go to market
faster with extreme functionality, complete usability
and the “Wow-factor!” Go to infragistics.com/spark
now to get innovative controls for creating Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc. All other trademarks or registered trademarks are the property of their respective owner(s).

Gantt Chart

Untitled-12 1 4/9/10 2:29 PM

www.infragistics.com/spark

msdn magazine74

• Th e buff ered messages are capped in size, at 64KB each.
Although MSMQ also imposes its own maximum message size,
it’s substantially larger (4MB per message).
Th us buff ers do not provide true queued calls over the cloud; rather,

they provide for elasticity in the connection, with calls falling some-
where in between queued calls and fi re-and-forget asynchronous calls.

Th ere are two scenarios where buff ers are useful. One is an application
where the client and the service are interacting over a shaky connection,
and dropping the connection and picking it up again is tolerated as
long as the messages are buff ered during the short offl ine period. A
second (and more common) scenario is a client issuing asynchronous
one-way calls and utilizing a response buff er (as described later in
the Response Service section) to handle the results of the calls. Such
interaction is like viewing the network connection more as a bungee
cord rather than a rigid network wire that has no storage capacity.

Working with Buffers
Th e buff er address must be unique; you can have only a single buff er
associated with an address and the address can’t already be used by a
buff er or a service. However, multiple parties can retrieve messages
from the same buff er. In addition, the buff er address must use either
HTTP or HTTPS for the scheme. To send and retrieve messages
from the buff er, the service bus off ers an API similar to that of
System. Messaging; that is, it requires you to interact with raw messages.
Th e service bus administrator manages the buff ers independently
of services or clients. Each buff er must have a policy governing its
behavior and lifetime. Out of the box, the service bus administrator
must perform programmatic calls to create and manage buff ers.

Each buff er policy is expressed via an instance of the Message-
Buff erPolicy class as shown in Figure 2.

Service Bus Buffers

In my October 2009 column, “Routers in the Service Bus”
(msdn.micro soft.com/magazine/ee335696), I presented the likely future
direction of the Windows Azure AppFabric Service Bus—becoming
the ultimate interceptor. I presented the routers feature and promised
to write about queues next.

Since then, both routers and queues have been postponed to the
second release of the service bus, and instead—for now—the service
bus will provide buff ers. Future releases will likely add logging,
diagnostic and various instrumentation options. I will visit those
aspects in a future article. In this article, I’ll describe the buff ers
aspect, and also show you some advanced Windows Communication
Foundation (WCF) programming techniques.

Service Bus Buffers
 In the service bus, every URI in the service namespace is actually an
addressable messaging junction. Th e client can send a message to
that junction, and the junction can relay it to the services. However,
each junction can also function as a buff er (see Figure 1).

Th e messages are stored in the buff er for a confi gurable period of
time, even when no service is monitoring the buff er. Note that multiple
services can monitor the buff er, but unless you explicitly peek and
lock the message, only one of them will be able to retrieve a message.

Th e client is decoupled from the services behind the buff er, and the
client and service need not be running at the same time. Because the
client interacts with a buff er and not with an actual service endpoint,
all the messages are one-way, and there is no way (out of the box)
to obtain the results of the message invocation or any errors.

Th e service bus buff ers should not be equated with queues, such
as Microsoft Message Queuing (MSMQ) queues or WCF queued
services; they have a number of crucial diff erences:

• Th e service bus buff ers are not durable, and the messages are
stored in memory. Th is implies a risk of losing messages in
the (somewhat unlikely) event of a catastrophic failure of the
service bus itself.

• Th e service bus buff ers are not transactional; neither sending
nor retrieving messages can be done as part of a transaction.

• Th e buff ers can’t handle long-lasting messages. Th e service
must retrieve a message from the buff er within 10 minutes or
the message is discarded. Although the WCF MSMQ-based
messages also feature a time-to-live, that period is much longer,
defaulting to one day. Th is enables a far broader range of truly
disjointed operations and disconnected applications.

• Th e buff ers are limited in size and can’t hold more than 50 messages.

FOUNDATIONS JUVAL LOWY

Code download available at code.msdn.microsoft.com/mag201005ServBus.

Figure 1 Buffers in the Service Bus

Sender

Reader

http://msdn.microsoft.com/magazine/ee335696
http://code.msdn.microsoft.com/mag201005ServBus

75May 2010msdnmagazine.com

Th e Discoverability policy property is an enum of the type
DiscoverabilityPolicy, controlling whether or not the buff er is
included in the service bus registry (the ATOM feed):

public enum DiscoverabilityPolicy
{
 Managers,
 ManagersListeners,
 ManagersListenersSenders,
 Public
}

Discoverability defaults to DiscoverabilityPolicy.Managers, which
means it requires a managed authorization claim. Setting it to Discover-
abilityPolicy.Public publishes it to the feed without any authorization.

Th e ExpiresAft er property controls the lifetime of messages in
the buff er. Th e default is fi ve minutes, the minimum value is one
minute and the maximum allowed value is 10 minutes. Any attempt
to confi gure a longer lifetime is silently ignored.

Th e MaxMessageCount property caps the buff er size. Th e policy
defaults to 10 messages, and the minimum value is, of course, set
to one. As mentioned already, the maximum buff er size is 50, and
attempts to confi gure a larger size are silently ignored.

Th e Overfl owPolicy property is an enum with a single value defi ned as:
public enum OverflowPolicy
{
 RejectIncomingMessage
}

Overfl owPolicy controls what to do with the message when
the buff er is maxed out; that is, when it’s already fi lled to capacity
(defi ned by MaxMessageCount). Th e only possible option is to
reject the message—send it back with an error to the sender.

Th e single-value enum serves as a placeholder for future options,
such as discarding the message without informing the sender or
removing messages from the buff er and accepting the new message.

Th e last two properties are responsible for security confi guration.
Th e AuthorizationPolicy property instructs the service bus whether
or not to authorize the client’s token:

public enum AuthorizationPolicy
{
 NotRequired,
 RequiredToSend,
 RequiredToReceive,
 Required
}

Th e default value of AuthorizationPolicy.Required requires
authorizing both sending and receiving clients.

Finally, the TransportProtection property stipulates the minimum
level of transfer security for the message to the buff er, using an
enum of the type TransportProtectionPolicy:

public enum TransportProtectionPolicy
{
 None,
 AllPaths,
}

Transport security via TransportProtectionPolicy.AllPaths is
the default for all buff er policies, and it mandates the use of an
HTTPS address.

You can use the MessageBuff erClient class to administer your
buff er, as shown in Figure 3.

You use the static methods of MessageBuff erClient to obtain
an authenticated instance of MessageBuff erClient by providing
the static methods with the service bus credentials (of the type
Transport ClientEndpointBehavior). Whenever using Message-

Buff erClient, you typically need to check if the buff er already
exists in the service bus by calling the GetMessageBuff er method.
If there’s no buff er, GetMessageBuff er throws an exception.

Here’s how to create a buff er programmatically:
Uri bufferAddress =
 new Uri(@"https://MyNamespace.servicebus.windows.net/MyBuffer/");

TransportClientEndpointBehavior credential = ...

MessageBufferPolicy bufferPolicy = new MessageBufferPolicy();

bufferPolicy.MaxMessageCount = 12;
bufferPolicy.ExpiresAfter = TimeSpan.FromMinutes(3);
bufferPolicy.Discoverability = DiscoverabilityPolicy.Public;

MessageBufferClient.CreateMessageBuffer(credential,bufferAddress,
 bufferPolicy);

In this example, you instantiate a buff er policy object and set
the policy to some desired values. All it takes to install the buff er is
calling the CreateMessageBuff er method of MessageBuff erClient
with the policy and some valid credentials.

As an alternative to programmatic calls, you can use my Service
Bus Explorer (presented in my routers article and also available
online with the sample code for this article) to both view and modify
buff ers. Figure 4 shows how to create a new buff er by specifying its
address and various policy properties. In much the same way, you
can also delete all buff ers in the service namespace.

[DataContract]
public class MessageBufferPolicy : ...
{
 public MessageBufferPolicy();
 public MessageBufferPolicy(MessageBufferPolicy policyToCopy);

 public DiscoverabilityPolicy Discoverability
 {get;set;}

 public TimeSpan ExpiresAfter
 {get;set;}

 public int MaxMessageCount
 {get;set;}

 public OverflowPolicy OverflowPolicy
 {get;set;}

 public AuthorizationPolicy Authorization
 {get;set;}

 public TransportProtectionPolicy TransportProtection
 {get;set;}
}

Figure 2 The MessageBufferPolicy Class

public sealed class MessageBufferClient
{
 public Uri MessageBufferUri
 {get;}

 public static MessageBufferClient CreateMessageBuffer(
 TransportClientEndpointBehavior credential,
 Uri messageBufferUri,MessageBufferPolicy policy);

 public static MessageBufferClient GetMessageBuffer(
 TransportClientEndpointBehavior credential,Uri messageBufferUri);
 public MessageBufferPolicy GetPolicy();
 public void DeleteMessageBuffer();

 // More members
}

Figure 3 The MessageBufferClient Class

www.msdnmagazine.com

msdn magazine76 Foundations

You can also review and modify the policies of existing buff ers,
purge messages from the buff er and even delete a buff er by selecting
the buff er in the service namespace tree and interacting with the
buff er properties in the right pane, as shown in Figure 5.

Streamlining Administration
When creating buff ers, it’s best to maximize both the buff er size and
its lifespan, to give the clients and services more time to interact.
Moreover, it’s a good idea to make the buff er discoverable so you
can view it on the service bus registry. When it comes to using the
buff er, both the client and the service should verify that the buff er
is already created, or else proceed to create it.

To automate these steps, I created the ServiceBusHelper class:
public static partial class ServiceBusHelper
{
 public static void CreateBuffer(string bufferAddress,string secret);
 public static void CreateBuffer(string bufferAddress,string issuer,
 string secret);

 public static void VerifyBuffer(string bufferAddress,string secret);
 public static void VerifyBuffer(string bufferAddress,string issuer,
 string secret);
 public static void PurgeBuffer(Uri bufferAddress,
 TransportClientEndpointBehavior credential);
 public static void DeleteBuffer(Uri bufferAddress,
 TransportClientEndpointBehavior credential);
}

Th e CreateBuff er method creates a new discoverable buff er with
a maximum capacity of 50 messages and a duration of 10 minutes.
If the buff er already exists, CreateBuff er deletes the old buff er. Th e
Verify Buff er method verifi es that a buff er exists and, if it doesn’t,
creates a new buff er. PurgeBuff er is useful for purging all buff ered
messages during diagnostics or debugging. DeleteBuff er simply
deletes the buff er. Figure 6 shows partial listing of the implemen-
tation of these methods.

Th e Buff erExists method uses the GetPolicy method of Message-
Buff erClient to see if a buff er exists, and it interprets an error as an
indication that the buff er does not exist. Purging a buff er is done
by copying its policy, deleting the buff er and creating a new buff er
(with the same address) with the old policy.

Sending and Retrieving Messages
As mentioned already, the service bus buff ers require interactions with
raw WCF messages. Th is is done with the Send and Retrieve methods
of MessageBuff erClient (obtained when creating or getting a buff er):

public sealed class MessageBufferClient
{
 public void Send(Message message);
 public void Send(Message message,TimeSpan timeout);

 public Message Retrieve();
 public Message Retrieve(TimeSpan timeout);

 // More members
}

Both methods are subject to a timeout that defaults to one
minute for the parameter-less versions. For the sender, the timeout
means how long to wait in case the buff er is full. For the retriever,
the timeout means how long to wait in case the buff er is empty.

Here’s the sender-side code for sending raw messages to the buff er:
TransportClientEndpointBehavior credential = ...;
Uri bufferUri = new Uri(@"sb://MyNamespace.servicebus.windows.net/MyBuffer/");

MessageBufferClient client =
 MessageBufferClient.GetMessageBuffer(credential,bufferUri);

Message message = Message.CreateMessage(MessageVersion.Default,"Hello");

client.Send(message,TimeSpan.MaxValue);

Th e sender fi rst creates a credentials object and uses it to obtain
an instance of MessageBuff erClient. Th e sender then creates a WCF
message and sends it to the buff er. Here is the retrieving-side code
for retrieving raw messages from the buff er:

TransportClientEndpointBehavior credential = ...;
Uri bufferUri = new Uri(@"sb://MyNamespace.servicebus.windows.net/MyBuffer/");

MessageBufferClient client =
 MessageBufferClient.GetMessageBuffer(credential,bufferUri);
Message message = client.Retrieve();

Debug.Assert(message.Headers.Action == "Hello");

Buffered Services
Using raw WCF messages as in the preceding code snippets is
what the service bus has to off er. And yet, such a programming
model leaves much to be desired. It’s cumbersome, tedious, non-
structured, not object-oriented and not type safe. It’s a throwback
to the days before WCF itself, with explicit programming against
MSMQ using the System.Messaging API. You need to parse the
message content and switch on its elements.

Figure 4 Creating a Buffer Using the Service Bus Explorer

Figure 5 A Buffer in the Service Bus Explorer

77May 2010msdnmagazine.com

Fortunately, you can improve on the basic off ering. Instead of
interacting with raw messages, you should elevate the interaction
to structured calls between clients and services. Although this
requires a considerable degree of low-level advanced work, I was
able to encapsulate it with a small set of helper classes.

To provide for structured buff ered calls on the service side, I
wrote Buff eredServiceBusHost<T> defi ned as:

// Generic type parameter based host
public class ServiceHost<T> : ServiceHost
{...}

public class BufferedServiceBusHost<T> : ServiceHost<T>,...
{
 public BufferedServiceBusHost(params Uri[] bufferAddresses);
 public BufferedServiceBusHost(
 T singleton,params Uri[] bufferAddresses);

 /* Additional constructors */
}

I modeled Buff eredServiceBusHost<T> aft er using WCF with
the MSMQ binding. You need to provide its constructor with the
address or addresses of the buff ers to retrieve messages from. Th e
rest is just as with a regular WCF service host:

Uri buffer = new Uri(@"https://MyNamespace.servicebus.windows.net/MyBuffer");
ServiceHost host = new BufferedServiceBusHost<MyService>(buffer);
host.Open();

Note that you can provide the constructors with multiple buff er
addresses to monitor, just like a WCF service host can open multiple
endpoints with diff erent queues. Th ere’s no need (or way) to provide
any of these buff er addresses in the service endpoint section in the
confi g fi le (although the buff er addresses can come from the app
settings section if you so design).

While the actual communication with the service bus buff er
is done with raw WCF messages, that work is encapsulated. Buff ered-
ServiceBusHost<T> will verify that the buff ers provided actually exist
and will create them if they don’t, using the buff er policy of ServiceBus-
Helper.VerifyBuff er shown in Figure 6. Buff ered ServiceBusHost<T>
will use the default transfer security of securing all paths. It will also
verify that the contracts of the provided service generic type parameter
T are all one-way; that is, they all have only one-way operations (just
as the one-way relay binding does). One last feature: when closing the
host, in debug builds only, Buff eredServiceBusHost<T> will purge all
its buff ers to ensure a smooth start for the next debug session.

Buff eredServiceBusHost<T> operates by hosting the specifi ed
service locally. For each service contract on the type parameter T,
Buff eredServiceBusHost<T> adds an endpoint over IPC (named pipes).
Th e IPC binding to those endpoints is confi gured to never time out.

Although IPC always has a transport session, to mimic MSMQ
behavior even per-session services are treated as per-call services.
Each dequeued WCF message is played to a new instance of the
service, potentially concurrently with previous messages, just as
with the MSMQ binding. If the provided service type is a singleton,
Buff eredServiceBusHost<T> respects that and will send all messages
across all buff ers and endpoints to the same service instance, just
as with the MSMQ binding.

Buff eredServiceBusHost<T> monitors each specifi ed buff er on the
separate background worker thread. When a message is deposited in
the buff er, Buff eredServiceBusHost<T> retrieves it and converts the
raw WCF message into a call to the appropriate endpoint over IPC.

public static partial class ServiceBusHelper
{
 public static void CreateBuffer(string bufferAddress,
 string issuer,string secret)
 {
 TransportClientEndpointBehavior credentials = ...;
 CreateBuffer(bufferAddress,credentials);
 }
 static void CreateBuffer(string bufferAddress,
 TransportClientEndpointBehavior credentials)
 {
 MessageBufferPolicy policy = CreateBufferPolicy();
 CreateBuffer(bufferAddress,policy,credentials);
 }
 static internal MessageBufferPolicy CreateBufferPolicy()
 {
 MessageBufferPolicy policy = new MessageBufferPolicy();
 policy.Discoverability = DiscoverabilityPolicy.Public;
 policy.ExpiresAfter = TimeSpan.Fromminutes(10);
 policy.MaxMessageCount = 50;

 return policy;
 }
 public static void PurgeBuffer(Uri bufferAddress,
 TransportClientEndpointBehavior credentials)
 {
 Debug.Assert(BufferExists(bufferAddress,credentials));
 MessageBufferClient client =
 MessageBufferClient.GetMessageBuffer(credentials,bufferAddress);
 MessageBufferPolicy policy = client.GetPolicy();
 client.DeleteMessageBuffer();

 MessageBufferClient.CreateMessageBuffer(credential,bufferAddress,policy);
 }
 public static void VerifyBuffer(string bufferAddress,
 string issuer,string secret)
 {
 TransportClientEndpointBehavior credentials = ...;
 VerifyBuffer(bufferAddress,credentials);

 }
 internal static void VerifyBuffer(string bufferAddress,
 TransportClientEndpointBehavior credentials)
 {
 if(BufferExists(bufferAddress,credentials))
 {
 return;
 }
 CreateBuffer(bufferAddress,credentials);
 }
 internal static bool BufferExists(Uri bufferAddress,
 TransportClientEndpointBehavior credentials)
 {
 try
 {
 MessageBufferClient client =
 MessageBufferClient.GetMessageBuffer(credentials,bufferAddress);
 client.GetPolicy();
 return true;
 }
 catch(FaultException)
 {}

 return false;
 }
 static void CreateBuffer(string bufferAddress,
 MessageBufferPolicy policy,
 TransportClientEndpointBehavior credentials)
 {
 Uri address = new Uri(bufferAddress);
 if(BufferExists(address,credentials))
 {
 MessageBufferClient client =
 MessageBufferClient.GetMessageBuffer(credentials,address);
 client.DeleteMessageBuffer();
 }
 MessageBufferClient.CreateMessageBuffer(credentials,address,policy);
 }
}

Figure 6 Partial Listing of the Buffer Helper Methods

www.msdnmagazine.com

msdn magazine78 Foundations

Figure 7 provides a partial listing of Buff eredServiceBusHost<T>,
with most of the error handling and security removed.

Buff eredServiceBusHost<T> stores the proxies to the locally
hosted IPC endpoints in a dictionary called m_Proxies:

Dictionary<string,IDuplexSessionChannel> m_Proxies;

Th e key into the dictionary is the endpoints’ contract type name.
Th e constructors store the provided buff er addresses and then

use refl ection to obtain a collection of all the interfaces on the
service type. For each interface, Buff eredServiceBusHost<T> verifi es
it has only one-way operations, then calls the base AddService-
Endpoint to add an endpoint for that contract type. Th e address is
an IPC address using a GUID for the pipe’s name. Th e constructors

use the IPC binding to build a channel factory of the type IChannel-
Factory<IDuplexSessionChannel>. IChannelFactory<T> is used
to create a non-strongly typed channel over the binding:

public interface IChannelFactory<T> : IChannelFactory
{
 T CreateChannel(EndpointAddress to);
 // More members
}

Aft er opening the internal host with all its IPC endpoints, the
OnOpened method creates the internal proxies to those endpoints
and the buff ered listeners. Th ese two steps are the heart of
Buff eredServiceBusHost<T>. To create the proxies, it iterates over
the collection of endpoints. It obtains each endpoint’s address and

public class BufferedServiceBusHost<T> :
 ServiceHost<T>,IServiceBusProperties
{
 Uri[] m_BufferAddresses;
 List<Thread> m_RetrievingThreads;
 IChannelFactory<IDuplexSessionChannel>
 m_Factory;
 Dictionary<string,IDuplexSessionChannel>
 m_Proxies;

 const string CloseAction =
 "BufferedServiceBusHost.CloseThread";

 public BufferedServiceBusHost(params Uri[]
 bufferAddresses)
 {
 m_BufferAddresses = bufferAddresses;
 Binding binding = new NetNamedPipeBinding();
 binding.SendTimeout = TimeSpan.MaxValue;

 Type[] interfaces =
 typeof(T).GetInterfaces();

 foreach(Type interfaceType in interfaces)
 {
 VerifyOneway(interfaceType);
 string address =
 @"net.pipe://localhost/" + Guid.NewGuid();
 AddServiceEndpoint(interfaceType,binding,
 address);
 }
 m_Factory =
 binding.BuildChannelFactory
 <IDuplexSessionChannel>();
 m_Factory.Open();
 }
 protected override void OnOpened()
 {
 CreateProxies();
 CreateListeners();
 base.OnOpened();
 }
 protected override void OnClosing()
 {
 CloseListeners();

 foreach(IDuplexSessionChannel proxy in
 m_Proxies.Values)
 {
 proxy.Close();
 }

 m_Factory.Close();

 PurgeBuffers();

 base.OnClosing();
 }

 // Verify all operations are one-way

 void VerifyOneway(Type interfaceType)
 {...}
 void CreateProxies()
 {
 m_Proxies =
 new Dictionary
 <string,IDuplexSessionChannel>();

 foreach(ServiceEndpoint endpoint in
 Description.Endpoints)
 {
 IDuplexSessionChannel channel =
 m_Factory.CreateChannel(endpoint.Address);
 channel.Open();
 m_Proxies[endpoint.Contract.Name] =
 channel;
 }
 }

 void CreateListeners()
 {
 m_RetrievingThreads = new List<Thread>();

 foreach(Uri bufferAddress in
 m_BufferAddresses)
 {
 ServiceBusHelper.VerifyBuffer(
 bufferAddress.AbsoluteUri,m_Credential);

 Thread thread = new Thread(Dequeue);

 m_RetrievingThreads.Add(thread);
 thread.IsBackground = true;
 thread.Start(bufferAddress);
 }
 }

 void Dequeue(object arg)
 {
 Uri bufferAddress = arg as Uri;

 MessageBufferClient buf ferClient =
 MessageBufferClient.GetMessageBuffer(
 m_Credential,bufferAddress);
 while(true)
 {
 Message message =
 bufferClient.Retrieve(TimeSpan.MaxValue);
 if(message.Headers.Action == CloseAction)
 {
 return;
 }
 else
 {
 Dispatch(message);
 }
 }
 }

 void Dispatch(Message message)
 {
 string contract = ExtractContract(message);
 m_Proxies[contract].Send(message);
 }
 string ExtractContract(Message message)
 {
 string[] elements =
 message.Headers.Action.Split('/');
 return elements[elements.Length-2];
 }
 protected override void OnClosing()
 {
 CloseListeners();
 foreach(IDuplexSessionChannel proxy in
 m_Proxies.Values)
 {
 proxy.Close();
 }
 m_Factory.Close();

 PurgeBuffers();
 base.OnClosing();
 }
 void SendCloseMessages()
 {
 foreach(Uri bufferAddress in
 m_BufferAddresses)
 {
 MessageBufferClient bufferClient =
 MessageBufferClient.GetMessageBuffer(
 m_Credential,bufferAddress);
 Message message =
 Message.CreateMessage(
 MessageVersion.Default,CloseAction);
 bufferClient.Send(message);
 }
 }
 void CloseListeners()
 {
 SendCloseMessages();

 foreach(Thread thread in m_RetrievingThreads)
 {
 thread.Join();
 }
 }

 [Conditional("DEBUG")]
 void PurgeBuffers()
 {
 foreach(Uri bufferAddress in
 m_BufferAddresses)
 {
 ServiceBusHelper.PurgeBuffer(
 bufferAddress,m_Credential);
 }
 }
}

Figure 7 Partial Listing of BufferedServiceBusHost<T>

79May 2010msdnmagazine.com

uses the IChannelFactory<IDuplexSessionChannel> to create
a channel against that address. Th at channel (or proxy) is then
stored in the dictionary. Th e CreateListeners method iterates
over the specifi ed buff er addresses. For each address, it verifi es the
buff er and creates a worker thread to dequeue its messages.

Th e Dequeue method uses a MessageBuff erClient to retrieve the
messages in an infi nite loop and dispatch them using the Dispatch
method. Dispatch extracts from the message the target contract
name and uses it to look up the IDuplexChannel from the proxies
dictionary and send the message over IPC. IDuplexChannel is
supported by the underlying IPC channel and it provides for a
way to send raw messages:

public interface IOutputChannel : ...
{
 void Send(Message message,TimeSpan timeout);
 // More members
}
public interface IDuplexSessionChannel : IOutputChannel,...
{}

If an error occurred during the IPC call, Buff eredServiceBusHost<T>
will recreate the channel it manages against that endpoint (not shown
in Figure 7). When you close the host, you need to close the proxies.
Th is will gracefully wait for the calls in progress to complete. Th e
problem is how to gracefully close all the retrieving threads, because
MessageBuff erClient.Retrieve is a blocking operation and there is

no built-in way to abort it. Th e solution is to post to each monitored
buff er a special private message whose action signals the retrieving
thread to exit. Th is is what the SendCloseMessages method does.
The CloseListeners method posts that private message to the
buff ers and then waits for all the listening threads to terminate by
joining them. Closing the listening threads stops feeding messages
to the internal proxies, and once the proxies are closed (when all
current calls in progress have returned), the host is ready to shut
down. Buff eredServiceBusHost<T> also supports an ungraceful
Abort method that just aborts all threads (not shown in Figure 7).

Finally, note that Buff eredServiceBusHost<T> supports the
interface IServiceBusProperties I defi ned as:

public interface IServiceBusProperties
{
 TransportClientEndpointBehavior Credential
 {get;set;}

 Uri[] Addresses
 {get;}
}

I needed such an interface in a few places in building my frame-
work, especially in streamlining buff ering. For the client, I wrote
the class Buff eredServiceBusClient<T> defi ned as:

public abstract class BufferedServiceBusClient<T> :
 HeaderClientBase<T,ResponseContext>,IServiceBusProperties
{
 // Buffer address from config
 public BufferedServiceBusClient()
 {}
 // No need for config file
 public BufferedServiceBusClient(Uri bufferAddress);

 /* Additional constructors with different credentials */
 protected virtual void Enqueue(Action action);
}

Buff eredServiceBusClient<T> derives from my HeaderClient-
Base<T,H> (a helper proxy used to pass information in the
message headers; see my November 2007 article, “Synchronization
Contexts in WCF,” available at msdn.microsoft.com/magazine/cc163321):

public abstract class HeaderClientBase<T,H> : InterceptorClientBase<T>
 where T : class
{
 protected H Header
 {get;set;}

 // More members
}

Th e purpose of that base class is to support a response service, as
discussed in the following section. For a plain client of a buff ered
service, that derivation is immaterial.

You can use Buff eredServiceBusClient<T> with or without a
client confi g fi le. Th e constructors that accept the buff er address

public abstract class BufferedServiceBusClient<T> :
 HeaderClientBase<T,ResponseContext>,IServiceBusProperties where T : class
{
 MessageBufferClient m_BufferClient;

 public BufferedServiceBusClient(Uri bufferAddress) :
 base(new NetOnewayRelayBinding(),new EndpointAddress(bufferAddress))
 {}

 protected virtual void Enqueue(Action action)
 {
 try
 {
 action();
 }
 catch(InvalidOperationException exception)
 {
 Debug.Assert(exception.Message ==
 "This message cannot support the operation " +
 "because it has been written.");
 }
 }
 protected override T CreateChannel()
 {
 ServiceBusHelper.VerifyBuffer(Endpoint.Address.Uri.AbsoluteUri,Credential);
 m_BufferClient =
 MessageBufferClient.GetMessageBuffer(Credential,m_BufferAddress);

 return base.CreateChannel();
 }
 protected override void PreInvoke(ref Message request)
 {
 base.PreInvoke(ref request);

 m_BufferClient.Send(request);
 }
 protected TransportClientEndpointBehavior Credential
 {
 get
 {...}
 set
 {...}
 }
}

Figure 8 Partial Listing of BufferedServiceBusClient<T>

Figure 9 Service Bus Buffered Response Service

Service Buffer

Response Buffer

Client Service

Response
Service

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/cc163321

msdn magazine80 Foundations

do not require a confi g fi le. Th e parameter-less constructor or the
constructors that accept the endpoint name expect the confi g
fi le to contain an endpoint matching the contract type with the
one-way relay binding (although that binding is completely ignored
by Buff eredServiceBusClient<T>).

When deriving your proxy from Buff eredServiceBusClient<T>,
you will need to use the protected Enqueue method instead of
directly using the Channel property:

[ServiceContract]
interface IMyContract
{
 [OperationContract(IsOneWay = true)]
 void MyMethod(int number);
}

class MyContractClient : BufferedServiceBusClient<IMyContract>,IMyContract
{
 public void MyMethod(int number)
 {
 Enqueue(()=>Channel.MyMethod(number));
 }
}

Enqueue accepts a delegate (or a lambda expression) that wraps
the use of the Channel property. Th e result is still type safe. Figure 8
shows a partial listing of the Buff eredServiceBusClient<T> class.

Th e constructors of Buff eredServiceBusClient<T> supply its
base constructor with the buff er address and the binding, which is
always a one-way relay binding to enforce the one-way operations
validation. Th e CreateChannel method verifi es that the target
buff er exists and obtains a MessageBuff erClient representing it. Th e
heart of Buff eredServiceBusClient<T> is the PreInvoke method.
PreInvoke is a virtual method provided by InterceptorClientBase<T>,
the base class of HeaderClientBase<T,H>:

public abstract class InterceptorClientBase<T> : ClientBase<T> where T : class
{
 protected virtual void PreInvoke(ref Message request);
 // Rest of the implementation
}

PreInvoke allows you to easily process the WCF messages before
they’re dispatched by the client. Buff eredServiceBusClient<T> over-
rides PreInvoke and uses the buff er client to send the message to
the buff er. Th at way, the client maintains a structured programming
model and Buff eredServiceBusClient<T> encapsulates the inter-
action with the WCF message. Th e downside is that the message
can only be sent once, and when the root class of ClientBase tries
to send it, it throws an InvalidOperationException. Th is is where
Enqueue comes in handy by snuffi ng out that exception.

Response Service
In my February 2007 column, “Build a Queued WCF Response
Service” (msdn.microsoft.com/magazine/cc163482), I explained that the only
way to receive the result (or errors) of a queued call is to use a queued
response service. I showed how to pass in the message headers a
response context object that contains the logical method ID and the
response address:

[DataContract]
public class ResponseContext
{
 [DataMember]
 public readonly string ResponseAddress;

 [DataMember]
 public readonly string MethodId;

 public ResponseContext(string responseAddress,string methodId);

 public static ResponseContext Current
 {get;set;}

 // More members
}

Th e same design pattern holds true when dealing with buff ers. Th e
client needs to provide a dedicated response buff er for the service to
buff er the response to. Th e client also needs to pass the response address
and the method ID in the message headers, just as with the MSMQ-
based calls. Th e main diff erence between MSMQ-based response
service and the service bus is that the response buff er must also reside

[ServiceContract]
interface ICalculator
{
 [OperationContract(IsOneWay = true)]
 void Add(int number1,int number2);
}

class CalculatorClient : ClientBufferResponseBase<ICalculator>,ICalculator
{
 public CalculatorClient(Uri responseAddress) : base(responseAddress)
 {}

 public void Add(int number1,int number2)
 {
 Enqueue(()=>Channel.Add(number1,number2));
 }
}

Figure 10 Streamlining the Client Side

public abstract class ClientBufferResponseBase<T> :
 BufferedServiceBusClient<T> where T : class
{
 public readonly Uri ResponseAddress;

 public ClientBufferResponseBase(Uri responseAddress)
 {
 ResponseAddress = responseAddress;
 }

 /* More Constructors */

 protected override void PreInvoke(ref Message request)
 {
 string methodId = GenerateMethodId();
 Header = new ResponseContext(ResponseAddress.AbsoluteUri,methodId);
 base.PreInvoke(ref request);
 }

 protected virtual string GenerateMethodId()
 {
 return Guid.NewGuid().ToString();
 }

 // Rest of the implementation
}

Figure 11 Implementing ClientBufferResponseBase<T>

It’s best to maximize the
buffer size and its lifespan

to give clients and services more
time to interact.

http://msdn.microsoft.com/magazine/cc163482

81May 2010msdnmagazine.com

in the service bus, as shown in Figure 9. To streamline the client side,
I wrote the class ClientBuff er ResponseBase<T> defi ned as:

public abstract class ClientBufferResponseBase<T> :
 BufferedServiceBusClient<T> where T : class
{
 protected readonly Uri ResponseAddress;

 public ClientBufferResponseBase(Uri responseAddress);

 /* Additional constructors with different credentials */

 protected virtual string GenerateMethodId();
}

ClientBufferResponseBase<T> is a specialized subclass of
Buff eredServiceBusClient<T>, and it adds the response context to the
message headers. Th is is why I made Buff eredServiceBusClient<T>
derive from HeaderClientBase<T,H> and not merely from
InterceptorClientBase<T>. You can use ClientBuff erResponseBase<T>
just like Buff eredServiceBusClient, as shown in Figure 10. Using
the subclass of ClientBuff erResponseBase<T> is straightforward:

Uri resposeAddress =
 new Uri(@"sb://MyNamespace.servicebus.windows.net/MyResponseBuffer/");

CalculatorClient proxy = new CalculatorClient(responseAddress);
proxy.Add(2,3);
proxy.Close();

It’s handy when managing the responses on the client side to
have the invoking client obtain the method ID used to dispatch
the call. Th is is easily done via the Header property:

CalculatorClient proxy = new CalculatorClient(responseAddress);
proxy.Add(2,3);
string methodId = proxy.Header.MethodId;

Figure 11 lists the implementation of ClientBuff erResponseBase<T>.
ClientBuff erResponseBase<T> overrides the PreInvoke method

of HeaderClientBase<T,H> so that it could generate a new method
ID for each call and set it into the headers. To streamline the work
required by the buff ered service to call the response service, I wrote
the class ServiceBuff erResponseBase<T> shown in Figure 12.

Although the service could use a plain Buff eredServiceBusClient<T>
to enqueue the response, you will need to extract the response buff er
address from the headers and somehow obtain the credentials to log into
the service bus buff er. You will also need to provide the headers of the
outgoing call with the response context. All these steps can be streamlined
with ServiceBuff erResponseBase<T>. ServiceBuff erResponseBase<T>
provides its base constructor with the address out of the response
context, and it also sets that context into the outgoing headers.

Another simplifying assumption ServiceBuff erResponseBase<T>
makes is that the responding service can use the same credentials its
host used (to retrieve messages from its own buff er) to send messages

to the response buff er. To that end, ServiceBuff erResponseBase<T>
obtains a reference to its own host from the operation context and
reads the credentials using the IServiceBusProperties implementation
of the host. ServiceBuff erResponseBase<T> copies those credentials
for its own use (done inside Buff eredServiceBusClient<T>). Th is,
of course, mandates the use of Buff eredServiceBusHost<T> to host
the service in the fi rst place. Your service needs to derive a proxy
class from Service Buff erResponseBase<T> and use it to respond.
For example, given this response contract:

[ServiceContract]
interface ICalculatorResponse
{
 [OperationContract(IsOneWay = true)]
 void OnAddCompleted(int result,ExceptionDetail error);
}

Th is would be the defi nition of the proxy to the response service:
class CalculatorResponseClient :
 ServiceBufferResponseBase<ICalculatorResponse>,ICalculatorResponse
{
 public void OnAddCompleted(int result,ExceptionDetail error)
 {
 Enqueue(()=>Channel.OnAddCompleted(result,error));
 }
}

Figure 13 shows a simple buff ered service responding to its client.
All the response service needs is to access the method ID from

the message headers as shown here:
class MyCalculatorResponse : ICalculatorResponse
{
 public void OnAddCompleted(int result,ExceptionDetail error)
 {
 string methodId = ResponseContext.Current.MethodId;
 ...
 }
}

Stay tuned for further exploration of the service bus.

JUVAL LOWY is a soft ware architect with IDesign providing WCF training and
architecture consulting. This article contains excerpts from his recent book,
“Programming WCF Services, Third Edition” (O’Reilly, 2010). He’s also the
Microsoft regional director for the Silicon Valley. Contact Lowy at idesign.net.

THANKS to the following technical expert for reviewing this article:
Jeanne Baker

public abstract class ServiceBufferResponseBase<T> :
 BufferedServiceBusClient<T> where T : class
{
 public ServiceBufferResponseBase() :
 base(new Uri(ResponseContext.Current.ResponseAddress))
 {
 Header = ResponseContext.Current;

 // Grab the credentials the host was using

 IServiceBusProperties properties =
 OperationContext.Current.Host as IServiceBusProperties;
 Credential = properties.Credential;
 }
}

Figure 12 The ServiceBufferResponseBase<T> Class

class MyCalculator : ICalculator
{
 [OperationBehavior(TransactionScopeRequired = true)]
 public void Add(int number1,int number2)
 {
 int result = 0;
 ExceptionDetail error = null;
 try
 {
 result = number1 + number2;
 }
 // Don't rethrow
 catch(Exception exception)
 {
 error = new ExceptionDetail(exception);
 }
 finally
 {
 CalculatorResponseClient proxy = new CalculatorResponseClient();
 proxy.OnAddCompleted(result,error);
 proxy.Close();
 }
 }
}

Figure 13 Using ServiceBufferResponseBase<T>

www.msdnmagazine.com
http://idesign.net

msdn magazine82

(Note: For this article, I assume you are familiar with the
syntax of regular expressions. If this is not the case, you might
want to brush up by reading the article “.NET Framework Regular
Expressions” at msdn.microsoft.com/library/hs600312, or for a deeper dive,
read Jeff rey Friedl’s excellent reference book, “Mastering Regular
Expressions 3rd Edition” (O’Reilly, 2006).

Backtracking: The Root of the Problem
Th ere are essentially two diff erent types of regular expression
engines: Deterministic Finite Automaton (DFA) engines and Non-
deterministic Finite Automaton (NFA) engines. A complete analysis
of the diff erences between these two engine types is beyond the
scope of this article; we only need to focus on two facts:
1. NFA engines are backtracking engines. Unlike DFAs, which

evaluate each character in an input string at most one time,
NFA engines can evaluate each character in an input string
multiple times. (I’ll later demonstrate how this backtracking
evaluation algorithm works.) Th e backtracking approach has
benefi ts, in that these engines can process more-complex
regular expressions, such as those containing backreferences
or capturing parentheses. It also has drawbacks, in that their
processing time can far exceed that of DFAs.

2. Th e Microsoft .NET Framework System.Text.Regular Expression
classes use NFA engines.
One important side eff ect of backtracking is that while the

regex engine can fairly quickly confi rm a positive match (that is,
an input string does match a given regex), confi rming a negative
match (the input string does not match the regex) can take quite a
bit longer. In fact, the engine must confi rm that none of the possible
“paths” through the input string match the regex, which means that
all paths have to be tested.

With a simple non-grouping regular expression, the time spent
to confi rm negative matches is not a huge problem. For example,
assume that the regular expression to be matched against is:

^\d+$

Th is is a fairly simple regex that matches if the entire input string
is made up of only numeric characters. Th e ^ and $ characters
represent the beginning and end of the string respectively, the
expression \d represents a numeric character, and + indicates that
one or more characters will match. Let’s test this expression using
123456X as an input string.

Th is input string is obviously not a match, because X is not a
numeric character. But how many paths would the sample regex have

Regular Expression Denial
of Service Attacks and Defenses

In the November 2009 issue, I wrote an article titled “XML Denial
of Service Attacks and Defenses” (msdn.microsoft.com/magazine/ee335713),
in which I described some particularly eff ective denial of service
(DoS) attack techniques against XML parsers. I received a lot of
e-mail about this article from readers wanting to know more,
which really encourages me that people understand how serious
DoS attacks can be.

I believe that in the next four to fi ve years, as privilege escalation
attacks become more diffi cult to execute due to increased adoption
of memory protections such as Data Execution Prevention (DEP),
Address Space Layout Randomization (ASLR), and isolation and
privilege reduction techniques, attackers will shift their focus
to DoS blackmail attacks. Developers can continue to protect
their applications by staying ahead of the attack trend curve and
addressing potential future DoS vectors today.

One of those potential future DoS vectors is the regular expression
DoS. At the Open Web Application Security Project (OWASP)
Israel Conference 2009, Checkmarx Chief Architect Alex Roichman
and Senior Programmer Adar Weidman presented some excellent
research on the topic of regular expression DoS, or “ReDoS.” Th eir
research revealed that a poorly written regular expression can be
exploited so that a relatively short attack string (fewer than 50
characters) can take hours or more to evaluate. In the worst-case
scenario, the processing time is actually exponential to the number
of characters in the input string, meaning that adding a single
character to the string doubles the processing time.

In this article, I will describe what makes a regex vulnerable
to these attacks. I will also present code for a Regex Fuzzer, a test
utility designed to identify vulnerable regexes by evaluating them
against thousands of random inputs and fl agging whether any of
the inputs take an unacceptably long time to complete processing.

SECURITY BRIEFS BRYAN SULLIVAN

A poorly written regular
expression can be exploited

so that a relatively short attack
string can take hours or

more to evaluate.

http://msdn.microsoft.com/magazine/ee335713
http://msdn.microsoft.com/library/hs600312

83May 2010msdnmagazine.com

to evaluate to come to this conclusion? It would start its evaluation
at the beginning of the string and see that the character 1 is a valid
numeric character and matches the regex. It would then move on to
the character 2, which also would match. So the regex has matched
the string 12 at this point. Next it would try 3 (and match 123), and
so on until it got to X, which would not match.

However, because our engine is a backtracking NFA engine, it
does not give up at this point. Instead, it backs up from its current
match (123456) to its last known good match (12345) and tries
again from there. Because the next character aft er 5 is not the end
of the string, the regex is not a match, and it backs up to its previous
last known good match (1234) and tries again. Th is proceeds all
the way until the engine gets back to its fi rst match (1) and fi nds
that the character aft er 1 is not the end of the string. At this point
the regex gives up; no match has been found.

All in all, the engine evaluated six paths: 123456, 12345, 1234, 123,
12 and 1. If the input string had been one character longer, the engine
would have evaluated one more path. So this regular expression is a
linear algorithm against the length of the string and is not at risk of
causing a DoS. A System.Text.RegularExpressions.Regex object using
^\d+$ for its pattern is fast enough to tear through even enormous
input strings (more than 10,000 characters) virtually instantly.

Now let’s change the regular expression to group on the nu-
meric characters:

^(\d+)$

Th is does not substantially change the outcome of the evaluations;
it simply lets the developer access any match as a captured group. (Th is
technique can be useful in more complicated regular expressions
where you might want to apply repetition operators, but in this
particular case it has no value.) Adding grouping parentheses in this
case does not substantially change the expression’s execution speed,
either. Testing the pattern against the input 123456X still causes the
engine to evaluate just six diff erent paths. However, the situation is
dramatically d iff erent if we make one more tiny change to the regex:

^(\d+)+$

Th e extra + character aft er the group expression (\d+) tells the
regex engine to match any number of captured groups. Th e engine
proceeds as before, getting to 123456 before backtracking to 12345.

Here is where things get “interesting” (as in horribly dangerous).
Instead of just checking that the next character aft er 5 is not the end
of the string, the engine treats the next character, 6, as a new capture
group and starts rechecking from there. Once that route fails, it
backs up to 1234 and then tries 56 as a separate capture group, then

5 and 6 each as separate capture groups. Th e end result is that the
engine actually ends up evaluating 32 diff erent paths.

If we now add just one more numeric character to the evaluation
string, the engine will have to evaluate 64 paths—twice as many—
to determine that it’s not a match. Th is is an exponential increase
in the amount of work being performed by the regex engine. An
attacker could provide a relatively short input string—30 characters
or so—and force the engine to process hundreds of millions of
paths, tying it up for hours or days.

Airing Your Dirty Laundry
It’s bad enough when an application has DoS-able exponential
regexes tucked away in server-side code. It’s even worse when an
application advertises its vulnerabilities in client-side code. Many of
the ASP.NET validator controls derived from System.Web.UI.Web-
Controls.BaseValidator, including RegularExpression Validator,
will automatically execute the same validation logic on the client
in JavaScript as they do on the server in .NET code.

Most of the time, this is a good thing. It’s good to save the user
the round-trip time of a form submission to the server just to have
it rejected by a validator because the user mistyped an input fi eld.
It’s good to save the server the processing time, too. However, if the
application is using a bad regex in its server code, that bad regex is also
going to be used in its client code, and now it will be extremely easy
for an attacker to fi nd that regex and develop an attack string for it.

For example, say I create a new Web form and add a TextBox
and a RegularExpressionValidator to that form. I set the validator’s
ControlToValidate property to the name of the text box and set
its ValidationExpression to one of the bad regexes I’ve discussed:

this.RegularExpressionValidator1.ControlToValidate = "TextBox1";
this.RegularExpressionValidator1.ValidationExpression = @"^(\d+)+$";

If I now open this page in a browser and view its source, I see the
following JavaScript code close to the bottom of the page:

<scripttype="text/javascript">
//<![CDATA[
var RegularExpressionValidator1 = document.all ?
 document.all["RegularExpressionValidator1"] :
 document.getElementById("RegularExpressionValidator1");
RegularExpressionValidator1.controltovalidate = "TextBox1";
RegularExpressionValidator1.validationexpression = "^(\\d+)+$";
//]]>
</script>

Th ere it is, for the whole world to see: the exponential regex in
plain sight on the last line of the script block.

More Problem Patterns
Of course, ^(\d+)+$ is not the only bad regular expression in the
world. Basically, any regular expression containing a grouping
expression with repetition that is itself repeated is going to be
vulnerable. Th is includes regexes such as:

^(\d+)*$
^(\d*)*$
^(\d+|\s+)*$

In addition, any group containing alternation where the alternate
subexpressions overlap one another is also vulnerable:

^(\d|\d\d)+$
^(\d|\d?)+$

If you saw an expression like the previous sample in your code now,
you’d probably be able to identify it as vulnerable just from looking at

Any regular expression
containing a grouping

expression with repetition that
is itself repeated is going

to be vulnerable.

www.msdnmagazine.com

msdn magazine84 Security Briefs

it. But you might miss a vulnerability in a longer, more complicated
(and more realistic) expression:

^([0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@(([0-9a-zA-Z])+([-\w]*[0-9a-zA-
Z])*\.)+[a-zA-Z]{2,9})$

Th is is a regular expression found on the Regular Expression
Library Web site (regexlib.com) that is intended to be used to
validate an e-mail address. However, it’s also vulnerable to attack.
You might fi nd this vulnerability through manual code inspection,
or you might not. A better technique to fi nd these problems is
required, and that’s what I’m going to discuss next.

Finding Bad Regexes in Your Code
Ideally, there would be a way to fi nd exponential regexes in your
code at compile time and warn you about them. Presumably, in
order to parse a regex string and analyze it for potential weaknesses,
you would need yet another regex. At this point, I feel like a regex
addict: “I don’t need help, I just need more regexes!” Sadly, my regex
skills are not up to the task of writing a regex to analyze regexes. If
you believe you have working code for this, send it to me and I’ll
be happy to give you credit in next month’s Security Briefs column.
In the meantime, because I don’t have a way to detect bad regexes
at compile time, I’ll do the next best thing: I’ll write a regex fuzzer.

Fuzzing is the process of supplying random, malformed data
to an application’s inputs to try to make it fail. Th e more fuzzing
iterations you run, the better the chance you’ll fi nd a bug, so it’s
common for teams to run thousands or millions of iterations per
input. Microsoft security teams have found this to be an incredibly
eff ective way to fi nd bugs, so the Security Development Lifecycle team
has made fuzzing a requirement for all product and service teams.

For my fuzzer, I want to fuzz random input strings to my regular
expression. I’ll start by defi ning a const string for my regex, a
testInputValue method that checks the regex and a runTest method
that will collect random input strings to feed to testInputValue.

const string regexToTest = @"^(\d+)+$";

static void testInputValue(string inputToTest)
{
 System.Text.RegularExpressions.Regex.Match(inputToTest, regexToTest);
}

void runTest()
{
 string[] inputsToTest = {};

 foreach (string inputToTest in inputsToTest)
 testInputValue(inputToTest);
}

Note that there’s no code yet to generate the fuzzed input values;
I’ll get to that shortly. Also note that the code doesn’t bother to
check the return value from Regex.Match. Th is is because I don’t
actually care whether the input matches the pattern or not. All I
care about in this situation is whether the regex engine takes too
long to decide whether the input matches.

Normally fuzzers are used to try to fi nd exploitable privilege
elevation vulnerabilities, but again, in this case, I’m only interested
in fi nding DoS vulnerabilities. I can’t simply feed my test application
data to see if it crashes; I have to be able to detect whether it’s
locked up. Although it may not be the most scientifi c method, I can
accomplish this eff ectively by running each regex test sequentially
on a separate worker thread and setting a timeout value for that

thread’s completion. If the thread does not complete its processing
within a reasonable amount of time, say fi ve seconds to test a single
input, we assume that the regular expression has been DoS’d. I’ll add
a ManualResetEvent and modify the testInputValue and runTest
methods accordingly, as shown in Figure 1.

Now it’s time to generate the input values. Th is is actually more
diffi cult than it sounds. If I just generate completely random data, it’s
unlikely any of it would match enough of the regex to reveal a
vulnerability. For example, if I test the regex ̂ (\d+)+$ with the input
XdO(*iLy@Lm4p$, the regex will instantly not match and the problem
will remain hidden. I need to generate input that’s fairly close to what
the application expects for the test to be useful, and for that I need a
way to generate random data that matches a given regex.

Data Generation Plans to the Rescue
Fortunately, there is a feature in Visual Studio Database Projects
that can do just that: the data generation plan. If you’re using Visual
Studio Team Suite, you also have access to this feature. Data
generation plans are used to quickly fi ll databases with test data. Th ey
can fi ll tables with random strings, or numeric values or (luckily
for us) strings matching specifi ed regular expressions.

You fi rst need to create a table in a SQL Server 2005 or 2008
database into which you can generate test data. Once that’s done,
come back into Visual Studio and create a new SQL Server Database
project. Edit the database project properties to provide it with
a connection string to your database. Once you’ve entered a
connection string and tested it to make sure it works, return to the
Solution Explorer and add a new Data Generation Plan item to
the project. At this point, you should see something like Figure 2.

Now choose the table and column you want to fi ll with fuzzer
input data. In the table section, set the number of test values to be
generated (the Rows to Insert column). I wrote earlier that fuzzers

static ManualResetEvent threadComplete = new ManualResetEvent(false);

static void testInputValue(object inputToTest)
{
 System.Text.RegularExpressions.Regex.Match((string)inputToTest,
 regexToTest);
 threadComplete.Set();
}

void runTest()
{
 string[] inputsToTest = {};

 foreach (string inputToTest in inputsToTest)
 {
 Thread thread = new Thread(testInputValue);
 thread.Start(inputToTest);

 if (!threadComplete.WaitOne(5000))
 {
 Console.WriteLine("Regex exceeded time limit for input " +
 inputToTest);
 return;
 }

 threadComplete.Reset();
 }

 Console.WriteLine("All tests succeeded within the time limit.");
}

Figure 1 Testing Using Separate Worker Threads

85May 2010msdnmagazine.com

generally test hundreds of thousands or millions of iterations to try
to fi nd problems. Th ough I usually approve of this level of rigor, it’s
overkill for the purposes of this regex fuzzer. If a regex is going to
lock up, it’s going to do so within a couple hundred test iterations.
I suggest setting the Rows to Insert value to 200, but if you want
to test more, please feel free.

In the column section, now set the Generator to Regular Expression
and enter the regex pattern value you want to test as the value of the
Expression property in the column’s Properties tab. It’s important
to note that the Expression property doesn’t support every legal
regular expression character. You can’t enter the beginning- and
end-of-line anchors ^ and $ (or more accurately, you can enter
them, but the generator will generate a literal ^ or $ character in
the test input). Just leave these characters out. You’ll fi nd a full list
of operators supported by the Regular Expression Generator at
msdn.microsoft.com/library/aa833197(VS.80).

A bigger problem is that the Expression property also doesn’t
support common shorthand notations such as \d for numeric digits
or \w for word characters. If your regex uses these, you’ll have to
replace them with their character class equivalents: [0-9] instead
of \d, [a-zA-Z0-9_] instead of \w and so on. If you need to replace
\s (whitespace character), you can enter a literal space in its place.

Your last task in the database project is to actually fi ll the data-
base with the test data according to your specifi cations. Do this by
choosing the Data | DataGenerator | Generate Data menu item,
or just press F5.

Adding the Attack
Back in the fuzzer code, modify the runTest
method so it pulls the generated test data
from the database. You might think you’re
done aft er this, but in fact there’s one more
important change to make. If you run the
fuzzer now, even against a known bad regex
such as ̂ (\d+)+$, it will fail to fi nd any prob-
lems and report that all tests succeeded. Th is
is because all the test data you’ve generated
is a valid match for your regex.

Remember earlier I stated that NFA
regex engines can fairly quickly confi rm
a positive match and that problems really
only happen on negative matches. Further-
more, because of NFAs’ backtracking nature,
problems only occur when there are a large
number of matching characters at the start
of the input and the bad character appears at

the end. If a bad character appeared at the front of the input string,
the test would fi nish instantly.

Th e fi nal change to make to the fuzzer code is to append bad char-
acters onto the ends of the test inputs. Make a string array containing
numeric, alphabetic, punctuation and whitespace characters:

string[] attackChars = { "0", "1", "9", "X", "x", "+",

"-", "@", "!", "(", ")", "[", "]", "\\", "/",

"?", "<", ">", ".", ",", ":", ";", " ", "" };

Now modify the code so each input string retrieved from the data-
base is tested with each of these attack characters appended to it. So
the fi rst input string would be tested with a 0 character appended to
it, then with a 1 character appended to it and so on. Once that input
string has been tested with each of the attack characters, move to
the next input string and test it with each of the attack characters.

foreach (string inputToTest in inputsToTest)
{
 foreach (string attackChar in attackChars)
 {
 Threadthread = new Thread(testInputValue);
 thread.Start(inputToTest + attackChar);
...

Now You Have Two Problems
Th ere is a famous quote by ex-Netscape engineer Jamie Zawinski
concerning regular expressions:

“Some people, when confronted with a problem, think, ‘I know, I’ll
use regular expressions.’ Now they have two problems.”

While I am nowhere near as cynical about regexes as Mr. Zawinski,
I will admit that it can be quite challenging just to write a correct regex,
much less a correct regex that is secure against DoS attacks. I encourage
you to examine all of your regexes for exponential complexity, and
to use fuzzing techniques to verify your fi ndings.

BRYAN SULLIVAN is a security program manager for the Microsoft Security
Development Lifecycle team, where he specializes in Web application and .NET
security issues. He is the author of “Ajax Security” (Addison-Wesley, 2007).

THANKS to the following technical experts for reviewing this article:
Barclay Hill, Michael Howard, Ron Petrusha and Justin van Patten

Figure 2 A Data Generation Plan Item in Visual Studio

In the worst-case scenario,
the processing time is actually
exponential to the number of
characters in the input string.

www.msdnmagazine.com
http://msdn.microsoft.com/library/aa833197(VS.80)

msdn magazine86

relational model. And if you add to this the basic “given” that
relational databases assume an infl exible structure to the data—
the database schema—trying to support ad hoc “additionals” to
the data becomes awkward. (Quick, show of hands: How many of
you out there work with databases that have a Notes column, or
even better, Note1, Note2, Note3 …?)

Nobody within the NoSQL movement is going to suggest that
the relational model doesn’t have its strengths or that the relational
database is going to go away, but a basic fact of developer life in
the past two decades is that developers have frequently stored data
in relational databases that isn’t inherently (or sometimes even
remotely) relational in nature.

Th e document-oriented database stores “documents” (tightly knit
collections of data that are generally not connected to other data
elements in the system) instead of “relations.” For example, blog
entries in a blog system are entirely unconnected to one another, and
even when one does reference another, most oft en the connection is
through a hyperlink that is intended to be dereferenced by the user’s
browser, not internally. Comments on that blog entry are entirely
scoped to that blog entry, and rarely do users ever want to see the
aggregation of all comments, regardless of the entry they comment on.

Moreover, document-oriented databases tend to excel in high-
performance or high-concurrency environments; MongoDB is
particularly geared toward high performance, whereas a close cousin
of it, CouchDB, aims more at high-concurrency scenarios. Both
forgo any sort of multi-object transaction support, meaning
that although they support concurrent modifi cation of a single
object in a database, any attempt to modify more than one at a time
leaves a small window of time where those modifi cations can be
seen “in passing.” Documents are updated atomically, but there’s no
concept of a transaction that spans multiple-document updates.

Going NoSQL with MongoDB

Over the past decade or so, since the announcement of the Microsoft
.NET Framework in 2000 and its fi rst release in 2002, .NET developers
have struggled to keep up with all the new things Microsoft has
thrown at them. And as if that wasn’t enough, “the community”—
meaning both developers who use .NET on a daily basis and those
who don’t—has gone off and created a few more things to fi ll in
holes that Microsoft doesn’t cover—or just to create chaos and
confusion (you pick).

One of those “new” things to emerge from the community from
outside of the Microsoft aegis is the NoSQL movement, a group of
developers who openly challenge the idea that all data is/will/must
be stored in a relational database system of some form. Tables, rows,
columns, primary keys, foreign key constraints, and arguments
over nulls and whether a primary key should be a natural or unnatural
one … is nothing sacred?

In this article and its successors, I’ll examine one of the principal tools
advocated by those in the NoSQL movement: MongoDB, whose name
comes from “humongous,” according to the MongoDB Web site (and no,
I’m not making that up). Most everything MongoDB-ish will be covered:
installing, exploring and working with it from the .NET Framework,
including the LINQ support off ered; using it from other environments
(desktop apps and Web apps and services); and how to set it up so the
production Windows admins don’t burn you in effi gy.

Problem (or, Why Do I Care, Again?)
Before getting too deep into the details of MongoDB, it’s fair to ask
why any .NET Framework developers should sacrifi ce the next
half-hour or so of their lives reading this article and following
along on their laptops. Aft er all, SQL Server comes in a free and
redistributable Express edition that provides a lighter-weight data
storage option than the traditional enterprise- or datacenter-bound
relational database, and there are certainly plenty of tools and
libraries available to provide easier access to it, including Microsoft ’s
own LINQ and Entity Framework.

Th e problem is that the strength of the relational model—the
relational model itself—is also its greatest weakness. Most developers,
whether .NET, Java or something else entirely, can—aft er only a
few years’ experience—describe in painful detail how everything
doesn’t fi t nicely into a tables/rows/columns “square” model. Trying
to model hierarchical data can drive even the most experienced
developer completely bonkers, so much so that Joe Celko wrote
a book—“SQL for Smarties, Th ird Edition,” (Morgan-Kaufmann,
2005)—entirely about the concept of modeling hierarchical data in a

THE WORKING PROGRAMMER TED NEWARD

Code download available at code.msdn.microsoft.com/mag201005WorkProg.

The problem is that the strength
of the relational model—the

relational model itself—is also its
greatest weakness.

http://code.msdn.microsoft.com/mag201005WorkProg

87May 2010msdnmagazine.com

Th is doesn’t mean that MongoDB doesn’t have any durability—it
just means that the MongoDB instance isn’t going to survive a power
failure as well as a SQL Server instance does. Systems requiring
full atomicity, consistency, isolation and durability (ACID)
semantics are better off with traditional relational database systems,
so mission-critical data most likely won’t be seeing the inside of a
MongoDB instance any time soon, except perhaps as replicated or
cached data living on a Web server.

In general, MongoDB will work well for applications and
components that need to store data that can be accessed quickly
and is used oft en. Web site analytics, user
preferences and settings—and any sort of
system in which the data isn’t fully structured
or needs to be structurally fl exible—are
natural candidates for MongoDB. Th is doesn’t
mean that MongoDB isn’t fully prepared to
be a primary data store for operational data;
it just means that MongoDB works well in
areas that the traditional RDBMS doesn’t,
as well as a number of areas that could be
served by either.

Getting Started
As mentioned earlier, MongoDB is an open-
source soft ware package easily downloaded
from the MongoDB Web site, mongodb.com.

Opening the Web site in a browser should
be suffi cient to fi nd the links to the Windows
downloadable binary bundle; look at the
right-hand side of the page for the Down-
loads link. Or, if you prefer direct links, use
mongodb.org/display/DOCS/Downloads. As of this
writing, the stable version is the 1.2.4 release.
It’s nothing more than a .zip fi le bundle, so
installing it is, comparatively speaking,
ridiculously easy: just unzip the contents
anywhere desired.

Seriously. Th at’s it.
Th e .zip fi le explodes into three directories:

bin, include and lib. Th e only directory of
interest is bin, which contains eight executables.

No other binary (or runtime) dependencies are necessary, and in
fact, only two of those executables are of interest at the moment.
Th ese are mongod.exe, the MongoDB database process itself, and
mongo.exe, the command-line shell client, which is typically used
in the same manner as the old isql.exe SQL Server command-line
shell client—to make sure things are installed correctly and working;
browse the data directly; and perform administrative tasks.

Verifying that everything installed correctly is as easy as fi ring up
mongod from a command-line client. By default, MongoDB wants
to store data in the default fi le system path, c:\data\db, but this is
confi gurable with a text fi le passed by name on the command line
via --confi g. Assuming a subdirectory named db exists wherever
mongod will be launched, verifying that everything is kosher is as
easy as what you see in Figure 1.

If the directory doesn’t exist, MongoDB will not create it. Note
that on my Windows 7 box, when MongoDB is launched, the usual
“Th is application wants to open a port” dialog box pops up. Make
sure the port (27017 by default) is accessible, or connecting to it
will be … awkward, at best. (More on this in a subsequent article,
when I discuss putting MongoDB into a production environment.)

Once the server is running, connecting to it with the shell is just
as trivial—the mongo.exe application launches a command-line
environment that allows direct interaction with the server, as
shown in Figure 2.

Figure 1 Firing up Mongod.exe to Verify Successful Installation

Figure 2 Mongo.exe Launches a Command-Line Environment that Allows Direct
Interaction with the Server

Document-oriented
databases tend to excel in

high-performance and high-
concurrency environments;

MongoDB is particularly geared
toward high performance.

www.msdnmagazine.com
http://mongodb.com
http://mongodb.org/display/DOCS/Downloads

msdn magazine88 The Working Programmer

By default, the shell connects to the “test”
database. Because the goal here is just to
verify that everything is working, test is fi ne.
Of course, from here it’s fairly easy to create
some sample data to work with MongoDB,
such as a quick object that describes a person.
It’s a quick glimpse into how MongoDB views
data to boot, as we see in Figure 3.

Essentially, MongoDB uses JavaScript
Object Notation (JSON) as its data notation,
which explains both its fl exibility and the
manner in which clients will interact with it.
Internally, MongoDB stores things in BSON,
a binary superset of JSON, for easier storage
and indexing. JSON remains MongoDB’s
preferred input/output format, however, and is usually the
documented format used across the MongoDB Web site and wiki. If
you’re not familiar with JSON, it’s a good idea to brush up on it before
getting heavily into MongoDB. Meanwhile, just for grins, peer into the
directory in which mongod is storing data and you’ll see that a couple
of “test”-named fi les have shown up.

Enough playing—time to write some code. Quitting the shell is as
easy as typing “exit,” and shutting the server down requires only a
Ctrl+C in the window or closing it; the server captures the close signal
and shuts everything down properly before exiting the process.

MongoDB’s server (and the shell, though it’s not as much of an issue)
is written as a native C++ application—remember those?—so access-
ing it requires some kind of .NET Framework driver that knows how
to connect over the open socket to feed it commands and data. Th e
MongoDB distribution doesn’t have a .NET Framework driver bundled
with it, but fortunately the community has provided one, where “the
community” in this case is a developer by the name of Sam Corder,
who has built a .NET Framework driver and LINQ support for access-
ing MongoDB. His work is available in both source and binary form,
from github.com/samus/mongodb-csharp. Download either the binaries on
that page (look in the upper-right corner) or the sources and build
it. Either way, the result is two assemblies: MongoDB.Driver.dll and
MongoDB.Linq.dll. A quick Add Reference to the References node of
the project, and the .NET Framework is ready to rock.

Writing Code
Fundamentally, opening a connection to a running MongoDB
server is not much diff erent from opening a connection to any

other database, as shown in Figure 4.
Discovering the object created earlier isn’t hard, just … diff erent …

from what .NET Framework developers have used before (see Figure 5).
If this looks a bit overwhelming, relax—it’s written out “the long way”

because MongoDB stores things diff erently than traditional databases.
For starters, remember that the data inserted earlier had three

fi elds on it—fi rstname, lastname and age, and any of these are
elements by which the data can be retrieved. But more importantly,
the line that stored them, tossed off rather cavalierly, was
“test.things.save()”—which implies that the data is being stored in
something called “things.” In MongoDB terminology, “things” is a
collection, and implicitly all data is stored in a collection. Collections
in turn hold documents, which hold key/value pairs where the
values can be additional collections. In this case, “things” is a
collection stored inside of a database, which as mentioned earlier
is the test database.

As a result, fetching the data means connecting first to the
MongoDB server, then to the test database, then finding the
collection “things.” This is what the first four lines in Figure
5 do—create a Mongo object that represents the connection,
connects to the server, connects to the test database and then
obtains the “things” collection.

Once the collection is returned, the code can issue a query
to fi nd a single document via the FindOne call. But as with all
databases, the client doesn’t want to fetch every document in the
collection and then fi nd the one it’s interested in—somehow, the
query needs to be constrained. In MongoDB, this is done by creating
a Document that contains the fi elds and the data to search for in

Figure 3 Creating Sample Data

The MongoDB distribution
doesn’t have a .NET Framework

driver bundled with it, but
fortunately the community has

provided one.

In general, MongoDB will
work well for applications and

components that need to store
data that can be accessed quickly

and is used often.

http://github.com/samus/mongodb-csharp

89May 2010msdnmagazine.com

those fi elds, a concept known as query by example, or QBE for short.
Because the goal is to fi nd the document containing a lastname
fi eld whose value is set to “Neward,” a Document containing one
lastname fi eld and its value is created and passed in as the parameter
to FindOne. If the query is successful, it returns another Document
containing all the data in question (plus one more fi eld); other-
wise it returns null.

By the way, the short version of this description can be as terse as:
 Document anotherResult =
 db["test"]["things"].FindOne(
 new Document().Append("lastname", "Neward"));
 Console.WriteLine(anotherResult);

When run, not only do the original values sent in show up, but
a new one appears as well, an _id fi eld that contains an ObjectId
object. Th is is the unique identifi er for the object, and it was
silently inserted by the database when the new data was stored.
Any attempt to modify this object must preserve that fi eld or the
database will assume it’s a new object being sent in. Typically, this is
done by modifying the Document that was returned by the query:

 anotherResult["age"] = 39;
 things.Update(resultDoc);
 Console.WriteLine(
 db["test"]["things"].FindOne(
 new Document().Append("lastname", "Neward")));

However, it’s always possible to create a new Document instance
and manually fi ll out the _id fi eld to match the ObjectId, if that
makes more sense:

 Document ted = new Document();
 ted["_id"] = new MongoDB.Driver.Oid("4b61494aff75000000002e77");
 ted["firstname"] = "Ted";
 ted["lastname"] = "Neward";
 ted["age"] = 40;
 things.Update(ted);
 Console.WriteLine(
 db["test"]["things"].FindOne(
 new Document().Append("lastname", "Neward")));

Of course, if the _id is already known, that can be used as the
query criteria, as well.

Notice that the Document is eff ectively untyped—almost
anything can be stored in a fi eld by any name, including some core
.NET Framework value types, such as DateTime. Technically, as
mentioned, MongoDB stores BSON data, which includes some
extensions to traditional JSON types (string, integer, Boolean,
double and null—though nulls are only allowed on objects, not in
collections) such as the aforementioned ObjectId, binary data, reg-
ular expressions and embedded JavaScript code. For the moment,
we’ll leave the latter two alone—the fact that BSON can store binary

data means that anything that can be reduced to a byte array can be
stored, which eff ectively means that MongoDB can store anything,
though it might not be able to query into that binary blob.

Not Dead (or Done) Yet!
Th ere’s much more to discuss about MongoDB, including LINQ
support; doing more complex server-side queries that exceed the
simple QBE-style query capabilities shown so far; and getting
MongoDB to live happily in a production server farm. But for
now, this article and careful examination of IntelliSense should
be enough to get the working programmer started.

By the way, if there’s a particular topic you’d like to see explored,
don’t hesitate to drop me a note. In a very real way, it’s your column,
aft er all. Happy coding!

TED NEWARD is a principal with Neward & Associates, an independent fi rm
specializing in enterprise .NET Framework and Java platform systems. He has
written more than 100 articles, is a C# MVP, INETA speaker and has authored
and coauthored a dozen books, including the forthcoming “Professional F# 2.0”
(Wrox). He consults and mentors regularly—reach him at ted@tedneward.com
or read his blog at blogs.tedneward.com.

THANKS to the following technical experts for reviewing this article:
Kyle Banker and Sam Corder

using System;
using MongoDB.Driver;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 Mongo db = new Mongo();
 db.Connect(); //Connect to localhost on the default port.
 Database test = db.getDB("test");
 IMongoCollection things = test.GetCollection("things");
 Document queryDoc = new Document();
 queryDoc.Append("lastname", "Neward");
 Document resultDoc = things.FindOne(queryDoc);
 Console.WriteLine(resultDoc);
 db.Disconnect();
 }
 }
}

Figure 5 Discovering a Created Mongo Object

The fact that BSON can store
binary data means that anything

that can be reduced to a byte
array can be stored, which

effectively means that MongoDB
can store anything.

using System;
using MongoDB.Driver;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 Mongo db = new Mongo();
 db.Connect(); //Connect to localhost on the default port
 db.Disconnect();
 }
 }
}

Figure 4 Opening a Connection to a MongoDB Server

mailto:ted@tedneward.com
www.msdnmagazine.com
http://blogs.tedneward.com

msdn magazine90

Suppose you have a bunch of Polygon elements that form some
kind of cartoon-like vector graphics image. If you put all these Polygon
elements in a single-cell Grid, the size of the Grid is based on the
maximum horizontal and vertical coordinates of the polygons.
Th e Grid can then be treated as a normal fi nite-sized element
within the layout system because its size properly refl ects the size
of the composite image. (Actually, this works correctly only if the
upper-left corner of the image is at the point (0, 0), and there are
no negative coordinates.)

Put all those polygons in a Canvas, however, and the Canvas
reports to the layout system that it has a size of zero. In general,
when integrating a composite vector graphics image into your
application, you almost certainly want the behavior of the single-cell
Grid rather than the Canvas.

So is the Canvas entirely useless? Not at all. Th e trick is to use the
peculiarities of the Canvas to your advantage. In a very real sense, the
Canvas doesn’t participate in layout. Hence, you can use it whenever
you need to transcend layout—to display graphics that break the
bounds of the layout system and fl oat outside it. By default the
Canvas doesn’t clip its children, so even if it is very small, it can still
host children outside its bounds. Th e Canvas is more of a reference
point for displaying elements or graphics than it is a container.

Th e Canvas is great for techniques I have come to regard as
“thinking outside the Grid.” Although I’ll be showing the code
examples in Silverlight, you can use the same techniques in WPF. Th e
downloadable source code that accompanies this article is a Visual
Studio solution named Th inkingOutsideTh eGrid, and you can play
with the programs at charlespetzold.com/silverlight/ThinkingOutsideTheGrid.

Visual Linking of Controls
Suppose you have a bunch of controls in your Silverlight or WPF
application and you need to provide some kind of visual link
between two or more controls. Perhaps you want to draw a line
from one control to another, and perhaps this line will cross other
controls in between.

Certainly this line must react to changes in layout, perhaps as
the window or page is resized by the user. Being informed when a
layout is updated is an excellent application of the LayoutUpdated
event—an event I never had occasion to use before exploring the
problems I describe in this article. LayoutUpdated is defi ned by

Thinking Outside the Grid

Th e Canvas is one of several layout options available in Windows
Presentation Foundation (WPF) and Silverlight, and it’s the one
most fi rmly rooted in tradition. When fi lling the Canvas with
children, you position each child by specifying coordinates using
the Canvas.Left and Canvas.Top attached properties. Th is is quite
a diff erent paradigm from the other panels, which arrange child
elements based on simple algorithms without any need for the
programmer to fi gure out the actual locations.

When you hear the word “canvas,” you probably think about
painting and drawing. For that reason, perhaps, programmers
using WPF and Silverlight tend to relegate the Canvas to the display
of vector graphics. Yet, when you use the Canvas to display Line,
Polyline, Polygon and Path elements, the elements themselves include
coordinate points that position them within the Canvas. As a result,
you don’t need to bother with the Canvas.Left and Canvas.Top
attached properties.

So why use a Canvas if you don’t need the attached properties it
provides? Is there a better approach?

Canvas vs. Grid
Over the years, I have increasingly tended to reject the Canvas for
displaying vector graphics, gravitating instead toward the use of a
single-cell Grid. A single-cell Grid is just like a regular Grid except
without any row or column defi nitions. If the Grid has only one cell,
you can put multiple elements into the Grid cell and you don’t use
any of the Grid’s attached properties to indicate rows or columns.

Initially, using a Canvas or a single-cell Grid seems very similar.
Regardless which one you use for vector graphics, Line, Polyline,
Polygon and Path elements will be positioned relative to the
upper-left corner of the container based on their coordinate points.

Th e diff erence between the Canvas and the single-cell Grid is in
how the container appears to the rest of the layout system. WPF and
Silverlight incorporate a two-pass, top-down layout where every
element interrogates the size of its children and is then responsible
for arranging its children relative to itself. Within this layout system,
the Canvas and the single-cell Grid are very diff erent:

• To its children, the Grid has the same dimensions as the
dimensions of its own parent. Th ese are usually fi nite dimensions,
but the Canvas always appears to have infi nite dimensions to
its children.

• Th e Grid reports the composite size of its children to its parent.
However, the Canvas always has an apparent size of zero,
regardless of the children it contains.

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201005UIFrontiers.

http://charlespetzold.com/silverlight/ThinkingOutsideTheGrid
http://code.msdn.microsoft.com/mag201005UIFrontiers

DynamicPDF Viewer
O u r n e w, c u s t o m i z a b l e

DynamicPDF Viewer allows you
to display PDF documents within

any WinForm application. No longer
rely on an external viewer for displaying

your PDF documents. DynamicPDF Viewer
utilizes the proven reliable and efficient

Foxit PDF viewing engine and maximizes
performance and compatibility with our other

DynamicPDF products.

DynamicPDF Converter
Our DynamicPDF Converter library can efficiently

convert over 30 document types (including HTML and
all common Office file formats) to PDF. Events can be

used to manage the action taken on a successful or failed
conversion. It is highly intuitive and flexible and

integrates well with our other DynamicPDF products.

DynamicPDF Rasterizer
Our DynamicPDF Rasterizer library can quickly convert PDF
documents to over 10 common image formats including
multi-page TIFF. Rasterizing form field values as well as
annotations is fully supported. PDFs can also be rasterized
to a System.Drawing.Bitmap class for further manipulation.

To learn more about these or any of our other popular tools:
DynamicPDF Generator, DynamicPDF Merger, DynamicPDF ReportWriter,
DynamicPDF Suite, DynamicPDF WebCache or Firemail, visit us online.

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

Try our three
new products
FREE today!

Fully functional and never
expiring evaluation

editions available at
www.cete.com/download

Project1 10/30/09 1:28 PM Page 1

http://www.cete.com

msdn magazine92 UI Frontiers

UIElement in WPF and by FrameworkElement in Silverlight. As the
name suggests, the event is fi red aft er a layout pass has rearranged
elements on the screen.

When processing the LayoutUpdated event, you don’t want
to do anything that will cause another layout pass and get you
embroiled in an infi nite recursion. Th at’s where the Canvas comes
in handy: Because it always reports a zero size to its parent, you can
alter elements in the Canvas without aff ecting layout.

Th e XAML fi le of the ConnectTh eElements program is struc-
tured like this:

<UserControl … >
 <Grid ... >
 <local:SimpleUniformGrid … >
 <Button ... />
 <Button ... />
 ...
 </local:SimpleUniformGrid>

 <Canvas>
 <Path ... />
 <Path ... />
 <Path ... />
 </Canvas>
 </Grid>
</UserControl>

Th e Grid contains a SimpleUniformGrid that calculates the
number of rows and columns to display its children based on its
overall size and aspect ratio. As you change the size of the window,
the number of rows and columns will change and cells will shift
around. Of the 32 buttons in this SimpleUniformGrid, two of the
buttons have names of btnA and btnB. Th e Canvas occupies the
same area as the SimpleUniformGrid, but sits on top of it. Th is
Canvas contains Path elements that the program uses to draw
ellipses around the two named buttons and a line between them.

Th e code-behind fi le does all its work during the LayoutUpdated
event. It needs to fi nd the location of the two named buttons
relative to the Canvas, which conveniently is also aligned with the
SimpleUniformGrid, the Grid and MainPage itself.

To fi nd a location of any element relative to any other element
in the same visual tree, use the TransformToVisual method. Th is
method is defi ned by the Visual class in WPF and by UIElement in
Silverlight, but it works the same way in both environments. Suppose
the element el1 is somewhere within the area occupied by el2. (In
ConnectTh eElements, el1 is a Button and el2 is MainPage.) Th is
method call returns an object of type GeneralTransform, which is
the abstract parent class to all the other graphics transform classes:

el1.TransformToVisual(el2)

You can’t really do anything with GeneralTransform except call its
Transform method, which transforms a point from one coordinate
space to another.

Suppose you want to fi nd the center of el1 but in el2’s coordinate
space. Here’s the code:

Point el1Center = new Point(
 el1.ActualWidth / 2, el1.ActualHeight / 2);
Point centerInEl2 =
 el1.TransformToVisual(el2).Transform(el1Center);

If el2 is either the Canvas or aligned with the Canvas, you can
then use that centerInEl2 point to set a graphic in the Canvas that
will seemingly be positioned in the center of el1.

ConnectTh eElements performs this transform in its Wrap-
EllipseAroundElement method to draw ellipses around the two
named buttons, and then calculates the coordinates of the line
between the ellipses, based on an intersection of the line between
the centers of the buttons. Figure 1 shows the result.

If you try this program in WPF, change the SimpleUniformGrid
to a WrapPanel for a more dynamic change in layout as you resize
the program’s window.

Tracking Sliders
Changing graphics and other visuals in response to changes in a
scrollbar or slider is very basic, and in WPF and Silverlight you can
do it in either code or a XAML binding. But what if you want to
align the graphics exactly with the actual slider thumb?

Th is is the idea behind the TriangleAngles project, which I
conceived as a type of interactive trigonometry demonstration.
I arranged two sliders, one vertical and one horizontal, at right
angles to each other. Th e two slider thumbs defi ne the two vertices
of a right triangle, as shown in Figure 2.

Notice how the semi-transparent triangle sits on top of the two
sliders. As you move the slider thumbs, the sides of the triangle
change size and proportion, as indicated by the inscribed angles
and the labels on the vertical and horizontal legs.

Th is is obviously another job for a Canvas overlay, but with an
added layer of complexity because the program needs to get access to
the slider thumb. Th at slider thumb is part of a control template: the
thumbs are assigned names within the template, but unfortunately
these names can’t be accessed outside the template.

Instead, the frequently essential VisualTreeHelper static class
comes to the rescue. This class lets you walk (or rather climb)
any visual tree in WPF or Silverlight through the GetParent,
GetChilden Count and GetChild methods. To generalize the
process of locating a specific type child, I wrote a little recursive
generic method:

T FindChild<T>(DependencyObject parent)
 where T : DependencyObject

I call it like this:
Thumb vertThumb = FindChild<Thumb>(vertSlider);
Thumb horzThumb = FindChild<Thumb>(horzSlider);

At that point, I could use TransformToVisual on the two thumbs
to obtain their coordinates relative to the Canvas overlay.

Well, it worked for one slider, but not the other, and it took me
awhile to recall that the control template for the Slider contains
two thumbs—one for the horizontal orientation and one for the
vertical. Depending on the orientation set for the Slider, half the

Figure 1 The ConnectTheElements Display

93May 2010msdnmagazine.com

template has its Visibility property set to Collapsed. I added a
second argument to the FindChild method called mustBeVisible
and used that to abandon the search down any child branch where
an element is not visible.

Setting HitTestVisible to false on the Polygon that forms the
triangle helped prevent it from interfering with mouse input to
the Slider thumb.

Scrolling Outside the ItemsControl
Suppose you’re using an ItemsControl or a ListBox with a Data-
Template to display the objects in the control’s collection. Can you
include a Canvas in that DataTemplate so information concerning
a particular item can be displayed outside the control, but seems
to track the item as the control is scrolled?

I haven’t found a good way to do precisely that. Th e big problem
seems to be a clipping region imposed by the ScrollViewer. Th is
ScrollViewer clips any Canvas that happens to dangle outside its
boundary, and consequently anything on that Canvas.

However, with a little additional knowledge of the Items Control
inner workings, you can do something close to what you want.

I think of this feature as a pop-out in that it’s something
that pertains to an item in an ItemsControl, but is actually
popped out of the ItemsControl itself. Th e ItemsControlPopouts
project demonstrates the technique. To provide something for
the Items Control to display, I created a little database called Produce -
Items.xml that resides in the Data subdirectory of ClientBin.
Produce Items consists of a number of elements with the tag name
of Produce Item, each of which contains a Name attribute, a Photo
attribute referencing a bitmap picture of the item and an optional
Message, which will be displayed “popped-out” of the Items Control.
(Th e photos and other artwork are Microsoft Offi ce clip art.)

Th e ProduceItem and ProduceItems classes provide code support
for the XML fi le, and ProduceItemsPresenter reads the XML fi le and
deserializes it into a ProduceItems object. Th is is set to the Data-
Context property of the visual tree that contains the ScrollViewer
and ItemsControl. Th e ItemsControl contains a simple Data-
Template for displaying the items.

By now you may detect a bit of a problem. Th e program is
eff ectively inserting business objects of type ProduceItem into

the Items Control. Internally the ItemsControl is building a
visual tree for each item based on the DataTemplate. To track the
movement of these items you need access to that item’s internal
visual tree to fi gure out where exactly the items are relative to the
rest of the program.

Th is information is available. ItemsControl defi nes a get-only
property named ItemContainerGenerator that returns an object
of type ItemContainerGenerator. Th is is the class responsible for
generating the visual trees associated with each item in the Items-
Control, and it contains handy methods such as ContainerFromItem,
which provides the container (which is actually a ContentPresenter)
for each object in the control.

Like the two other programs, the ItemsControlPopouts
program covers the whole page with a Canvas. Once again the
LayoutUpdated event allows the program to check whether some-
thing on the Canvas needs to be altered. The LayoutUpdated
handler in this program enumerates through the ProduceItem
objects in the ItemsControl and checks for a non-null and
non-empty Message property. Each of these Message properties
should correspond to an object of type PopOut in the Canvas. Th e
PopOut is simply a small class that derives from ContentControl
with a template to display a line and the message text. If the
PopOut is not present, it’s created and added to the Canvas. If it is
present, it’s simply reused.

Th e PopOut then must be positioned within the Canvas. Th e
program obtains the container that corresponds to the data
object and transforms its location relative to the canvas. If that
location is between the top and bottom of the ScrollViewer, the
PopOut has its Visibility property set to Visible. Otherwise the
PopOut is hidden.

Breaking out of the Cell
WPF and Silverlight have certainly given the great gift of ease
in layout. Th e Grid and other panels put elements neatly in cells
and ensure that’s where they stay. It would be a shame if you then
assumed that convenience was a necessary limitation to the freedom
to put elements wherever you want them.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine.
His most recent book is “Th e Annotated Turing: A Guided Tour Th rough Alan
Turing’s Historic Paper on Computability and the Turing Machine” (Wiley, 2008).
Petzold blogs on his Web site charlespetzold.com.

THANKS to the following technical experts for reviewing this article:
Arathi Ramani and the WPF Layout TeamFigure 2 The TriangleAngles Display

The Canvas is great for
techniques I have come

to regard as “thinking outside
the Grid.”

www.msdnmagazine.com
http://charlespetzold.com

Untitled-7 2 4/5/10 5:02 PM

www.vslive.com

Untitled-7 3 4/5/10 5:03 PM

www.vslive.com

msdn magazine96

better example in the role of sports referees. Th ey
set and enforce the context (rules of the game,
operation of the program) for interactions be-
tween the parties (the two teams, the user and
the business problem), while ideally taking no
discernible part in it themselves. Retired NFL
referee Jerry Markbreit writes of an early men-
tor, who said (emphasis added): “Gentlemen,

this is the biggest game of the year. Maybe the
biggest game in a hundred years. We must do an outstanding job
today because we don’t want anyone to remember us. We must work
this game so expertly that, later, it will seem as if we weren’t even
there.” Th at should be the goal of our programs as well.

To guide the industry toward this goal, I announce the fi rst
annual Plattski Awards, for the program or Web site that does the
best job of implementing Platt’s 3 Laws of Soft ware, making its
users happy while demanding as little attention as possible for
itself. An example is the Carbonite automated backup program,
about which I’ve written. I’d give it the nod over Mozy, its nearest
competitor, because Carbonite requires somewhat less thinking
and confi guration.

Go to Rollthunder.com and tell me about applications or Web
sites that best accomplish this goal, or that fail most spectacu-
larly. I’ll give out gold(ish) and silver(y) medals to the best, and
tin(plated) ones to the worst, in my own cranky and opinionated
judgment. Do not send products: all testing will be conducted with
publicly downloadable versions. Th e deadline for submissions is
three months from the publication of this column. I can’t wait to
see what you come up with.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Software Sucks” and “Introducing Microsoft .NET.”
Microsoft named him a Soft ware Legend in 2002. He wonders whether he should
tape down two of his daughter’s fi ngers so she learns how to count in octal. You
can contact him at rollthunder.com.

Fundamental Laws

Whenever I fi nd a program or Web site that sucks,
it’s invariably because the developer or designer
forgot the user’s goals and started embellish-
ing the program for its own sake. Th at violates
Platt’s 3 Laws of Soft ware. Like the 3 Laws of
Th ermodynamics, they’ll turn around and bite
you if you do that. My laws are:

1 Your soft ware has zero value in and of itself.
Nothing. Nada. Zero point zero zero. Th e only value it ever has
or ever will have is the degree to which it enhances the happiness
of your user in some way.

2 Soft ware can increase users’ happiness in one of two ways. It
can help a user accomplish a task that she wants done, such as
paying her bills or writing this column. Microsoft Word is an
example of this type of application. Or, it can place the user
into a state he fi nds pleasurable. Games fall into this category,
as does Skype, with which my daughters make video calls to
their grandparents.

3 In neither of these cases do users want to think about your
computer program. At all. Ever. In the former case, she wants
to think about the problem she’s solving: the wording of the
document she’s writing; or whether she has enough money to
pay all her bills, and which unpaid creditor would hurt her the
most if she doesn’t. Her only goal is to fi nish the task quickly
and successfully, so she can get on with her life, or at least with
her next task. In the latter case, the user wants to enter that
pleasurable state as quickly as possible and stay there as long
as possible. Anything that delays the start of his pleasure, or
distracts him from it while he’s enjoying it, is even less welcome
than the interruption of a work task. My parents want to see
and talk with and gush over their grandchildren. Any attention
that the program diverts to itself is a negative in either case.

To summarize: Users don’t care about your program in and of
itself. Never have, never will. Your mother might, because you
wrote it and she loves you, and then again she might not; but no
one else does. Users care only about their own productivity or
their own pleasure.

Donald Norman discussed this phenomenon in his excellent
book, “Th e Invisible Computer” (Th e MIT Press, 1999). But I see a

DON’T GET ME STARTED DAVID S. PLATT

Your software has zero value in
and of itself. Nothing. Nada.

Zero point zero zero.

http://rollthunder.com

Untitled-4 1 2/9/10 2:23 PM

www.farpointspread.com
www.DataDynamics.com
www.farpointspread.com

Untitled-1 1 4/12/10 2:38 PM

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, May 2010
	Contents
	CUTTING EDGE: Dynamic Keyword in C# 4.0
	CLR INSIDE OUT: Production Diagnostics
	DATA POINTS: LINQ Projection in WCF Services
	NOW PLAYING: Building Custom Players with the Silverlight Media Framework
	SILVERLIGHT SECURITY: Securing Your Silverlight Applications
	RIA SERVICESE: nterprise Patterns with WCF RIA Services
	WORKFLOW SERVICES: Visual Design of Workfl ows with WCF and WF 4
	TEST RUN: Combinations and Permutations with F#
	FOUNDATIONS: Service Bus Buffers
	SECURITY BRIEFS: DoS Attacks and Defenses
	THE WORKING PROGRAMMER: Going NoSQL with MongoDB
	UI FRONTIERS: Thinking Outside the Grid
	DON’T GET ME STARTED: Fundamental Laws

