
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS MARCH 2014 VOL 29 NO 3

Asynchronous
Programming................18, 26

 0314msdn_CoverTip.indd 1 2/20/14 12:12 PM

www.devexpress.com/dashboard

0314msdn_CoverTip.indd 2 2/6/14 10:52 AM

www.devexpress.com/superhero

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS MARCH 2014 VOL 29 NO 3

Patterns for Asynchronous
MVVM Applications: Data Binding
Stephen Cleary . 18

Asynchronous TCP Sockets
as an Alternative to WCF
James McCaffrey . 26

A .NET Developer Primer for
Single-Page Applications
Long Le . 34

Building a Netduino-Based
HID Sensor for WinRT
Donn Morse . 52

COLUMNS
CUTTING EDGE
A First Look at ASP.NET Identity
Dino Esposito, page 6

WINDOWS AZURE INSIDER
The Windows Azure Service Bus
and the Internet of Things, Part 2
Bruno Terkaly and
Ricardo Villalobos, page 12

THE WORKING
PROGRAMMER
Getting Started with Oak:
Data Validation and
Wrapping Up
Ted Neward, page 62

MODERN APPS
A Look at the Hub Project and
Control in Windows Store Apps
Rachel Appel, page 66

DIRECTX FACTOR
Triangles and Tessellation
Charles Petzold, page 74

DON’T GET ME STARTED
The Peasants Are Revolting!
David Platt, page 80

Asynchronous
Programming................18, 26

Untitled-11 2 2/5/14 4:05 PM

www.OnTimeNow.com/msdn

Untitled-11 3 2/5/14 4:05 PM

www.OnTimeNow.com/msdn

"lightning fast" Redmond Magazine

"covers all data sources" eWeek

"results in less than a second"
 InfoWorld

hundreds more reviews and developer
case studies at www.dtsearch.com

The Smart Choice for Text Retrieval® since 1991

www.dtSearch.com 1-800-IT-FINDS

Instantly Search
Terabytes of Text

®

Ask about fully-functional evaluations

25+ fielded and full-text search types

dtSearch’s own document filters
support “Office,” PDF, HTML, XML, ZIP,
emails (with nested attachments), and
many other file types

Supports databases as well as static
and dynamic websites

Highlights hits in all of the above

APIs for .NET, Java, C++, SQL, etc.

64-bit and 32-bit; Win and Linux

dtSearch products:
Desktop with Spider Web with Spider
Network with Spider Engine for Win & .NET
Publish (portable media) Engine for Linux
Document filters also available for separate
licensing

Printed in the USA

magazineMARCH 2014 VOLUME 29 NUMBER 3

MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
KENT SHARKEY Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY HERNANDEZ Group Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt,
Bruno Terkaly, Ricardo Villalobos

Henry Allain President, Redmond Media Group
Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing
Irene Fincher Audience Development Manager

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Vice President, Group Publisher
Chris Kourtoglou Regional Sales Manager
Danna Vedder Regional Sales Manager/Microsoft Account Manager
David Seymour Director, Print & Online Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Jane Long, Merit Direct. Phone: 913-
685-1301; E-mail: jlong@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

http://www.dtSearch.com
mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com

Untitled-5 1 1/13/14 12:22 PM

www.leadtools.com

msdn magazine4

Don’t Get Me Started columnist David Platt this month dives
into the revolt at Avon over the company’s attempt to deploy an
SAP-based order entry and customer management system. Our
back-page columnist takes his cues from many a muse, be they Nobel-
winning physicists or cartoon characters from the funny pages. And
in that last regard, he and I share common inspiration.

When Bill Watterson’s brilliant Calvin and Hobbes comic strip
exploded onto newspaper pages in 1985, it was an unexpected
well spring of insight and wisdom. As a parent, I’ve marveled at
Watterson’s ability to capture the simple genius of a boy at play. And
as editor in chief of MSDN Magazine, I’ve found that Watterson’s
incorrigible 6-year-old, Calvin, and his loyal tiger, Hobbes, off er
real lessons for working developers. Here are just a few.

Test, Test, Test! Th e Duplicator story arc is one of my favorites in
the 10-year run of the comic, but it’s a cautionary tale for developers.
Calvin invented a box that creates copies of himself, who he hoped
would do all his chores and school work. But Calvin never tested
his Duplicator, and he quickly faced a squad of ill-behaved dupes. If
Calvin had designed a test to determine the actual behavior of the
dupes his invention created, he might have saved himself a lot of work.

Remediate: Calvin later developed
an add-on for his Duplicator, called the
Ethicator, which let the operator set each
dupe’s personality to either Good or Evil.
A simple patch saved what would other-
wise have been a costly project failure, as
Calvin created a compliant, good-aligned
dupe to do his chores.

Fail Gracefully: Alas, the good Calvin
dupe tried to befriend Calvin’s nemesis Susie Derkins. “I don't mind
if he cleans my room and gets me good grades,” Calvin griped, “but
when he starts talking to girls that’s going too darn far.” Th e unpre-
dicted behavior led to an angry confrontation between Calvin and
his dupe, who suddenly cried “Oops! I’ve had an evil thought!” and
vanished in a puff of smoke. An exception-handling routine could
have preserved the investment in the duplicate Calvin.

Value Extensibility Th en there was the Transmogrifi er, which
could turn anyone into one of four target animals: eel, baboon, giant
bug or dinosaur. Calvin showed great awareness allowing support
for additional targets, including an extensible UI to handle them.
Th e Transmogrifi er would later support worms, elephants, tigers
and giant slugs. I wonder if he used XML?

Leverage the platform Both the Duplicator and Transmogrifi er—
as well as later Calvin inventions the Cerebral Enhance-O-Tron and
the Time Machine—were built on a common, corrugated cardboard
box platform and permanent marker UI. Simple geometries, famil-
iar materials and streamlined interfaces defi ned all four inventions.

Don’t Skimp on Security When Calvin
and Hobbes created their exclusive club,
“Get Rid Of Slimy girlS (G.R.O.S.S),” they
secured entry to the club treehouse with a
long, multi-verse password about tigers,
which ended with the line “Tigers are
great! Th ey’re the toast of the town. Life’s
always better when a tiger’s around!” Th at
final stanza alone is a 308-bit password,
and I haven’t even described the dancing component. But Calvin
struggled to remember the verse, illuminating the deep challenge
of balancing usability and security.

Mind the org chart: G.R.O.S.S. off ered a fi nal, valuable lesson—the
danger posed by vague, shift ing or tangled lines of authority. Calvin
may have been “Dictator for Life” of G.R.O.S.S., but that didn’t stop
“First Tiger” Hobbes from trying to usurp his authority. Constant
management reorgs created a volatile environment that produced
hijacked meetings, failed initiatives and constant, internecine bicker-
ing. G.R.O.S.S. never did mount a successful attack on Susie Derkins.

Make Space for Creativity If Watterson’s protagonists have
one message for developers, it’s this: Dare to dream. Some of
Calvin’s greatest insights occur while careening through the woods
in a toboggan or wagon. Take risks. Make mistakes. And, remem-
ber, life’s always better when a
tiger’s around.

Everything I Need to Know
I Learned from Calvin and Hobbes

© 2014 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEDITOR’S NOTE

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-2 1 4/30/13 10:48 AM

www.amyuni.com

msdn magazine6

Off spring of the “One ASP.NET” approach to Web development that
came with Visual Studio 2013, the new ASP.NET Identity system is the
preferred way to handle user authentication in ASP.NET applications,
whether based on Web Forms or MVC. In this column, I’ll review
the basics of ASP.NET authentication and explore the new ASP.NET
Identity system from the perspective of ASP.NET MVC 5 developers.

ASP.NET has long supported two basic types of authentication:
Windows authentication and forms authentication. Windows
authentication is seldom practical for public Web sites because
it’s based on Windows accounts and access control list (ACL)
tokens. Th us, it requires users to have a Windows account in the
application’s domain, and it also assumes clients are connecting
from Windows-equipped machines. The other option is forms
authentication, a widely adopted approach. Forms authentication
is based on a simple idea. For each access to a protected resource,
the application ensures the request includes a valid authentica-
tion cookie. If a valid cookie is found, then the request is served as
usual; otherwise, the user is redirected to a login page and asked
to provide credentials. If these credentials are recognized as valid,
then the application issues an authentication cookie with a given
expiration policy. It’s simple and it just works.

Implementation of any forms authentication module can’t happen
without a distinct module that takes care of collecting user creden-
tials and checking them against a database of known users. Writing
this membership subsystem has been one of the key responsibilities
of development teams—but also one of the most annoying things
ever. Writing a membership system is not hard, per se. It mostly
requires running a query against some sort of storage system and
checking a user name and password. Th is code is boilerplate and
can grow fairly big as you add new authentication features such as
changing and recovering passwords, handling a changing number
of online users and so on. In addition, it has to be rewritten nearly
from scratch if you change the structure of the storage or add more
information to the object that describes the user. Back in 2005, with
the release of ASP.NET 2.0, Microsoft addressed this problem by

introducing right into the framework a provider-based architecture
and the membership provider. Instead of reinventing the wheel
every time, you could just derive membership from the built-in
system and override only the functions you intended to change.

The ASP.NET native membership provider is a standalone
component that exposes a contracted interface. The ASP.NET
runtime, which orchestrates the authentication process, is aware
of the membership interface and can invoke whatever component
is configured as the membership provider of the application.
ASP.NET came with a default membership provider based on a
new given database schema. However, you could easily write your
own membership provider to basically target a diff erent database—
typically, an existing database of users.

Does that sound like a great chunk of architecture? In the begin-
ning, nearly everybody thought so. In the long run, though, quite
a few people who repeatedly tried to build a custom membership
provider started complaining about the verbosity of the interface.
Actually, the membership provider comes in the form of an inher-
itable base class, MembershipProvider, which includes more than
30 members marked as abstract. Th is means that for any new mem-
bership provider you wanted to create, there were at least 30 mem-
bers to override. Worse yet, you didn’t really need many of them
most of the time. A simpler membership architecture was needed.

Introducing the Simple Membership Provider
To save you from the burden of creating a custom membership layer
completely from scratch, Microsoft introduced with Visual Studio
2010 SP1 another option: the simple membership API. Originally
available in WebMatrix and Web Pages, the simple membership

 A First Look at ASP.NET Identity

CUTTING EDGE DINO ESPOSITO

public class AccountController : Controller
{
 public UserManager<ApplicationUser> UserManager { get; private set; }

 public AccountController(UserManager<ApplicationUser> manager)
 {
 UserManager = manager;
 }

 public AccountController() :
 this(new UserManager<ApplicationUser>(
 new UserStore<ApplicationUser>(new ApplicationDbContext())))
 {
 }

 ...
}

Figure 1 Foundation of a Controller Based on ASP.NET Identity

The simple membership API has
become quite a popular way of

managing authentication.

Untitled-2 1 2/6/14 10:45 AM

www.devexpress.com/touch

msdn magazine8 Cutting Edge

API has become quite a popular way of managing authentication,
especially in ASP.NET MVC. In particular, the Internet application
template in ASP.NET MVC 4 uses the simple membership API to
support user management and authentication.

Looking under the hood of the API, it turns out that it’s just a
wrapper on top of the classic ASP.NET membership API and its
SQL Server-based data stores. Simple membership lets you work
with any data store you have and requires only that you indicate
which columns in the table serve as the user name and user ID.

The major difference from the classic membership API is a
signifi cantly shorter list of parameters for any methods. In addi-
tion, you get a lot more freedom as far as the schema of the mem-
bership storage is concerned. As an example of the simplifi ed API,
consider what it takes to create a new user:

WebSecurity.CreateUserAndAccount(username, password,
 new { FirstName = fname, LastName = lname, Email = email });

You do most of the membership chores via the WebSecurity class.
In ASP.NET MVC 4, however, the WebSecurity class expects to work
with an extended membership provider, not a classic membership pro-
vider. Th e additional capabilities in an extended membership provider
are related to dealing with OAuth accounts. As a result, in ASP.NET
MVC 4, you have two parallel routes for membership implemen-
tation: classic membership API using the MembershipProvider
class and simple membership API using the ExtendedMember-
shipProvider class. Th e two APIs are incompatible.

Before the arrival of Visual Studio 2013 and ASP.NET MVC 5,
ASP.NET already off ered quite a few ways to handle user authen-
tication. With forms authentication, you could rely on classic
membership, the simple membership API as defi ned in Web Pages
and a variety of custom membership systems. Consider the com-
mon position among ASP.NET experts was that complex real-world
applications require their own membership provider. More oft en

than not, the main reason for having a custom membership system
was to circumvent structural differences between the required
database format and the format of the existing database of user
credentials, which might have been in use for years.

Clearly, this wasn’t a situation that could last forever. Th e commu-
nity of developers demanded with loud voices a unifi ed system for
membership that’s simple to use, narrowly focused and usable in the
same way from within any fl avor of ASP.NET. Th is idea weds together
well with the One ASP.NET approach pushed by Visual Studio 2013.

One Identity Framework
Th e purpose of authentication is getting the identity associated with
the current user. Th e identity is retrieved and the provided credentials
are compared to records stored in a database. Subsequently, an iden-
tity system such as ASP.NET Identity is based on two primary blocks:
the authentication manager and the store manager. In the ASP.NET
Identity framework, the authentication manager takes the form of
the UserManager<TUser> class. Th is class basically provides a façade
for signing users in and out. Th e store manager is an instance of the
UserStore<TUser> class. Figure 1 shows the skeleton of an ASP.NET
MVC account controller class that’s based on ASP.NET Identity.

Th e controller holds a reference to the authentication identity
manager, UserManager. Th is instance of UserManager is injected
into the controller. You can use either an Inversion of Control (IoC)
framework or the poor man’s alternative, the dependency injection
(DI) pattern, which uses two controllers, one of which gets a
default value (see Figure 1).

Th e identity store, in turn, is injected into the authentication
identity manager, where it’s used to verify credentials. Th e identity
store takes the form of the UserStore<TUser> class. This class
results from the composition of multiple types:

public class UserStore<TUser> :
 IUserLoginStore<TUser>,
 IUserClaimStore<TUser>,
 IUserRoleStore<TUser>,
 IUserPasswordStore<TUser>,
 IUserSecurityStampStore<TUser>,
 IUserStore<TUser>,
 IDisposable where TUser : IdentityUser
 {
 }

All interfaces implemented by UserStore<TUser> are basic
repositories for optional user-related data such as passwords, roles,
claims and, of course, user data. Th e identity store needs to know
about the actual data source, though. As shown in Figure 1, the data
source is injected in the UserStore class through the constructor.

Storage of users’ data is managed through the Entity Framework
Code First approach. Th is means you don’t strictly need to create a
physical database to store your users’ credentials; you can, instead,
defi ne a User class and have the underlying framework create the
most appropriate database to store such records.

Th e ApplicationDbContext class wraps up the Entity Framework
context to save users’ data. Here’s a possible definition for the
ApplicationDbContext class:

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
{
}

Basically, the database context of ASP.NET Identity handles the
persistence of a given user type. Th e user type must implement the

namespace Microsoft.AspNet.Identity.EntityFramework
{
 public class IdentityUser : IUser
 {
 public string Id { get; }
 public string UserName { get; set; }
 public string PasswordHash { get; set; }
 public string SecurityStamp { get; set; }
 public ICollection<IdentityUserRole> Roles { get; private set; }
 public ICollection<IdentityUserClaim> Claims { get; private set; }
 public ICollection<IdentityUserLogin> Logins { get; private set; }
 }
}

Figure 2 Defi nition of the Default User Class in ASP.NET Identity

The Internet application
template in ASP.NET MVC 4 uses
the simple membership API to

support user management
and authentication.

9March 2014msdnmagazine.com

IUser interface or just inherit from IdentityUser. Figure 2 presents
the source code of the default IdentityUser class.

Here’s an example of a realistic custom user class you might want
to use in your applications:

public class ApplicationUser : IdentityUser
{
 public DateTime Birthdate { get; set; }
}

Th e use of Entity Framework Code First is a great move here as it
makes the structure of the database a secondary point. You still need
one, but to create it, you can use code based on classes. In addition,
you can use Entity Framework Code First migration tools to modify
a previously created database as you make changes to the class behind
it. (For more information on this, see the “Code First Migrations”
article in the MSDN Data Developer Center at bit.ly/Th92qf.)

Authenticating Users
ASP.NET Identity is based on the newest Open Web Interface for
.NET (OWIN) authentication middleware. Th is means the typical
steps of authentication (for example, creating and checking cookies)
can be carried out through the abstract OWIN interfaces and not
directly via ASP.NET/IIS interfaces. Support for OWIN requires
the account controller to have another handy property, like this:

private IAuthenticationManager AuthenticationManager
{
 get {
 return HttpContext.GetOwinContext().Authentication;
 }
}

The IAuthenticationManager interface is defined in the
Microsoft.Owin.Security namespace. This property is import-
ant because it needs to be injected into any operation that involves
authentication-related steps. Here’s a typical login method:

private async Task SignInAsync(ApplicationUser user, bool isPersistent)
{
 var identity = await UserManager.CreateIdentityAsync(user,
 DefaultAuthenticationTypes.ApplicationCookie);
 AuthenticationManager.SignIn(new AuthenticationProperties() {
 IsPersistent = isPersistent }, identity);
}

Th e method SignInAsync checks the specifi ed user name and
password against the store associated with the authentication
manager. To register a user and add the user to the membership
database, you use code like this:

var user = new ApplicationUser() { UserName = model.UserName };
var result = await UserManager.CreateAsync(user, model.Password);
if (result.Succeeded)
{
 await SignInAsync(user, isPersistent: false);
 return RedirectToAction("Index", "Home");
}

All in all, ASP.NET Identity provides a unified API for tasks
related to authentication. For example, it unifi es the code required
to authenticate against a proprietary database or a social network
OAuth-based endpoint. Figure 3 shows a fragment of the code
you need to authenticate users against an external login engine.
Th e code in Figure 3 gets called once the OAuth authentication
(for example, against Facebook) has been completed successfully.

The Bottom Line
As I see things, ASP.NET Identity is an overdue solution that should
have come years ago. Th e key issue concerning ASP.NET Identity
right now is the development team is trying to come up with a
programming interface that’s generic and testable enough to last
for a long time—or at least until something newer and better shows
up in the industry.

For the foreseeable future, ASP.NET Identity promises to be
as good as old-fashioned membership was perceived to be a
decade ago. Personally, I like the expressiveness of the API and the
attempt to fuse together diff erent forms of authentication—built-in
and OAuth-based, for example. Another great plus is the integra-
tion with OWIN, which makes it somewhat independent from a
specifi c runtime such as IIS/ASP.NET.

ASP.NET Identity is bound to Visual Studio 2013, but it’s also
expected to have an autonomous life of its own when it comes to
future builds and releases. I’ve just scratched the surface of the new
identity API here. Stay tuned for newer builds and releases!

DINO ESPOSITO is the author of “Architecting Mobile Solutions for the Enterprise”
(Microsoft Press, 2012) and the upcoming “Programming ASP.NET MVC 5”
(Microsoft Press). A technical evangelist for the .NET and Android platforms at Jet-
Brains and frequent speaker at industry events worldwide, Esposito shares his vision
of soft ware at soft ware2cents.wordpress.com and on Twitter at twitter.com/despos.

THANKS to the following technical expert for reviewing this article:
Pranav Rastogi (Microsoft)

ASP.NET Identity is bound to
Visual Studio 2013, but it’s also

expected to have an autonomous
life of its own when it comes to

future builds and releases.

public async Task<ActionResult> ExternalLoginCallback(
 string loginProvider, string returnUrl)
{
 ClaimsIdentity id = await UserManager
 .Authentication
 .GetExternalIdentityAsync(AuthenticationManager);

 var result = await UserManager
 .Authentication
 .SignInExternalIdentityAsync(
 AuthenticationManager, id);
 if (result.Success)
 return RedirectToLocal(returnUrl);
 else if (User.Identity.IsAuthenticated)
 {
 result = await UserManager
 .Authentication
 .LinkExternalIdentityAsync(
 id, User.Identity.GetUserId());
 if (result.Success)
 return RedirectToLocal(returnUrl);
 else
 return View("ExternalLoginFailure");
 }
}

Figure 3 Finalizing the Authentication Process
through an External Endpoint

www.msdnmagazine.com
www.bit.ly/Th92qf
www.wordpress.com
www.twitter.com/despos

Untitled-12 2 1/27/14 3:07 PM

www.aspose.com

Untitled-12 3 1/27/14 3:04 PM

www.aspose.com

msdn magazine12

In our last column (msdn.microsoft.com/magazine/dn574801), we discussed
the current technology landscape for machine-to-machine (M2M)
computing, which refers to technologies that interconnect devices,
usually for industrial instrumentation, in the form of sensors or meters.
Th e proliferation of aff ordable and easy-to-program tiny computers
has expanded this concept into what’s called the Internet-of-Th ings
(IoT), opening the door to scenarios where even ordinary home
appliances can be controlled or used as sources of information to
generate events. Th is way, it isn’t diffi cult to send alerts when it’s time
to replenish the fridge, automatically close the window blinds as
night falls or set the thermostat based on the family habits.

We also made the case for using the Windows Azure Service Bus for
device connectivity, as an alternative to using a VPN, when trying to
solve the addressability, security, and performance concerns associated
with deploying a large number of sensors or meters. Th is is becoming
increasingly relevant considering that, according to the latest BI Intel-
ligence report from Business Insider, there will be more than 9 billion
connections directly related to the IoT by the year 2018 (read.bi/18L5cg8).

Using a designated Service Bus queue or topic for a device
provides an elegant way to incorporate resiliency and occasional
connectivity for IoT applications. In this article, we’ll walk through
a hands-on Windows Azure implementation that illustrates these
concepts, designing a Service Bus blueprint with device queues,
deploying a listening worker role in Cloud Services, and program-
ming an Arduino device that executes commands sent remotely
by mobile clients, as shown in Figure 1.

If you look at the diagram, the Windows Azure Service Bus
component becomes the centerpiece of the design, providing the
authentication, message distribution and scalability to support
the multiple devices that will be sending data or receiving remote
commands. Th e Service Bus is available in all Microsoft datacenters
that off er Windows Azure services, and it’s backed up by a highly
redundant storage infrastructure. Also, like all other Windows
Azure components, it off ers an open and easy-to-understand REST
interface, along with multiple SDKs (Microsoft .NET Framework,
Java, PHP, Ruby, among others) built on top of it.

In our proposed architecture, devices “talk” to a .NET application
running on Windows Azure Cloud Services, which acts as a gate-
way to the Service Bus in order to simplify the communication
process with its assigned queue. This approach fully enables
any of the four IoT communication patterns described in our
previous column: Telemetry, Inquiry, Command and Notifi cation.
Here, we’ll implement a scenario in which a mobile device sends
a command to another device in order to execute an action—in
this case, turn an LED on or off . One of the benefi ts of this solu-
tion is that if the device is temporarily offl ine, it can pick up the
commands whenever it reconnects to the Internet. You can also
set up an expiration time in a message to avoid the execution of a
task at an inconvenient moment or schedule messages to be sent
at a specifi c time in the future.

For this example, we’ll use the well-known, well-documented
Arduino device, as described in our previous column. For the
mobile client portion of the proof-of-concept, we’ll create a
Windows Phone application.

Here’s our simple scenario:
1. When the Arduino device is started, it sends an identifi ca-

tion signal to the gateway application running on Windows
Azure Cloud Services. Th e gateway creates a Service Bus

The Windows Azure Service Bus and the
Internet of Things, Part 2

Code download available at msdn.microsoft.com/magazine/msdnmag0314.

WINDOWS AZURE INSIDER
BRUNO TERKALY AND

RICARDO VILLALOBOS

BUILD A FREE DEV/TEST SANDBOX IN THE CLOUD

MSDN subscribers can quickly spin up a dev/test environment on
Windows Azure at no cost. Get up to $150 in credits each month!

aka.ms/msdnmag

Figure 1 An Internet-of-Things Architecture Using the
Windows Azure Service Bus

TCP Connection

Arduino
TCP Connection

TCP Connection

REST Interface/SDKs

Windows Azure Service Bus

Windows Azure
Cloud Service

Mobile and Desktop Devices

http://msdn.microsoft.com/magazine/dn574801
http://read.bi/18L5cg8
http://aka.ms/msdnmag
http://msdn.microsoft.com/magazine/msdnmag0314

13March 2014msdnmagazine.com

queue for the device in case it doesn’t exist, and establishes
a TCP connection, ready to send commands.

2. A Windows Phone application sends a command to the
Windows Azure Service Bus queue assigned to the device.

3. Th e message remains in the queue until the gateway appli-
cation picks it up and sends the command to the Arduino
device via the established TCP connection.

4. Th e Arduino device turns the LED on or off based on
the command.

Let’s look at the steps to make this happen, one by one.
Step 1: Create the Windows Azure Service Bus Namespace

Using your Windows Azure credentials (you can request a trial
account at bit.ly/1atsgSa), log in to the Web portal and click on the
SERVICE BUS section (see Figure 2). Select the CREATE option,
and enter a name for your namespace. Th en, click on CONNEC-
TION INFORMATION and copy the text in the Connection String
box, which you’ll need later.

Step 2: Create the Gateway Application and Deploy to Windows
Azure Cloud Services Code for the gateway application, which
retrieves messages from the Service Bus queue and relays the commands
to the Arduino device, is included with the code download (available
at msdn.microsoft.com/magazine/msdnmag0314). It’s based on the work of
Clemens Vaster, who kindly contributed his guidance and expertise
to this article. His original project can be found at bit.ly/L0uK0v.

Before we dive into this code, be sure you have Visual Studio
2013 installed, along with version 2.2 of the Windows Azure SDK
for .NET (bit.ly/JYXx5n). Th e solution includes three diff erent projects:

• ArduinoListener—contains the main WorkerRole code.
• ConsoleListener—the console version of the Arduino-

Listener, for local testing.
• MSDNArduinoListener—the Windows Azure deploy-

ment project for ArduinoListener.

If you inspect the ServiceConfi guration.cscfg fi les (for both cloud
and local deployment) for the MSDNArduinoListener project,
you’ll see a setting that stores the connection string for the Service
Bus. Replace its value with the one obtained in Step 1. Th e rest is
already confi gured for the solution to work, including the defi ni-
tion of port 10100 for receiving connections from the devices. Next,
open the WorkerRole.cs fi le in the ArduinoListener project, where
the main code is located.

Th ere are four main sections to analyze.
First, a TcpListener is created, and connections from devices

are accepted:
var deviceServer = new TcpListener(deviceEP);
deviceServer.Start(10);
try
{
 do
 {
 TcpClient connection = await deviceServer.AcceptTcpClientAsync();
 if (connection != null)
 {
 ...

Once a connection with the device has been established, a Network-
Stream is defi ned and set to listening mode. Th e readBuff er variable
will contain the identifi er value sent by each Arduino device:

NetworkStream deviceConnectionStream = connection.GetStream();
var readBuffer = new byte[64];
if (await deviceConnectionStream.ReadAsync(readBuffer, 0, 4) == 4)
{
 int deviceId = IPAddress.NetworkToHostOrder(BitConverter.ToInt32(readBuffer, 0));
 ...

Next, a queue is created based on the deviceId value (in case it
doesn’t exist), and a message receiver object is defi ned (see Figure
3). Th en, the device queue receiver is set to asynchronous mode to
pull messages (commands from the queue). Th is queue will store
commands sent by mobile devices, such as a Windows Phone.

When a message is received in the queue, its content is inspected and
if it matches the “ON” or “OFF” commands, the information is written

to the connection stream established
with the device (see Figure 4).

Notice that the message isn’t
removed from the queue (message.
Complete Async) unless the writing
operation to the device connection
stream is successful. Also, in order
to keep the connection alive, the
device is expected to send a ping
heartbeat. For this proof of concept,
we aren’t expecting confi rmation from
the device when it receives the message.
In a production system, however, this
would be required to comply with the
“command” pattern.

Step 3: Deploy the Arduino-
Listener Windows Azure Project
to Cloud Services Deploying the
ArduinoListener to Windows Azure
is extremely simple. In Visual Studio
2013, right-click on the MSDN-
ArduinoListener project and
select the Publish option. You’ll fi nd Figure 2 Creating the Windows Azure Service Bus Namespace

www.msdnmagazine.com
www.bit.ly/1atsgSa
http://msdn.microsoft.com/magazine/msdnmag0314
www.bit.ly/L0uK0v
www.bit.ly/JYXx5n

 * Offer valid for a limited time only. Complete packages come with a 30 day money back guarantee and no minimum contract term. The $7.99 per month price refl ects a 12 month
pre-payment option for the 1&1 Online Store Starter package. After 12 months, regular price of $9.99 per month applies. Some features listed are only available with package upgrade.

DOMAINS | E-MAIL | WEB HOSTING | eCOMMERCE | SERVERS

1&1 NE
W eCOM

SELL MORE WITH A
PROFESSIONAL DESIGN.

 Whether beginner or professional, create
your store online in a few easy steps

 Choose from over a hundred high-quality
designs and templates between industries

 Store links easily with an existing domain
or your new included domain (free)*

 Whether PC, tablet or smartphone your
shop will be displayed optimally on
all devices

Untitled-5 2 2/10/14 11:05 AM

www.1and1.com

START SELLING NOW!

Visit www.1and1.com for billing information and full promotional details. Program and pricing specifi cations and availability subject to change without notice. 1&1 and the 1&1 logo are
trademarks of 1&1 internet, all other trademarks are the property of their respective owners. © 2014 1&1 Internet. All rights reserved.

Call 1 (877) 461-2631

TEST
30 DAY MONEY
BACK GUARANTEE

MONTH
FLEXIBLE PAYMENT
OPTIONS

CALL
SPEAK WITH AN
EXPERT 24/7

1and1.com

MERCE 1&1 ONLINE STORE
COMPLETE PACKAGES
starting at

Try now! 30 day money back guarantee.

$7.99month*

MORE POSSIBILITIES.
MORE SUCCESS.

 Your shop can grow with your
business

 Target customers with special
promotions and cross selling

 Product rating capability: Build
trust by letting customers share
feedback

 Sell internationally: Wide selection
of languages, currencies and
payment options

MAXIMUM RELIABILITY.
PROFESSIONAL SUPPORT.

 Convenient shipping processing
via UPS, FedEx, etc.

 Reliability through geo-
redundant operation in two
separate 1&1 Data Centers

 24/7 expert customer service
by experienced eCommerce
professionals

FIND CUSTOMERS.
KEEP CUSTOMERS.

 Search engine optimization (SEO):
rank higher on Google and other
search engines

 Easy synchronization with Amazon,
Ebay, and more

 Easily create your own Facebook Store

 Create customer loyalty by providing
free newsletters and coupons

®

Untitled-5 3 2/10/14 11:06 AM

http://www.1and1.com
www.1and1.com

msdn magazine16 Windows Azure Insider

specifi c instructions for the Publish Windows Azure Application
Wizard at bit.ly/1iP9g2p. Aft er completing the wizard, you end up with
a cloud service located at xyz.cloudapp.net. Record this name, as
you’ll need it when you create the Arduino client in the next step.

Step 4: Program the Arduino Device to Talk to the Gateway
(Listener) Arduino devices off er a rich interface for performing net-
work operations using a simple Web client object. For our prototype,
we decided to use the Arduino Uno R3 model (bit.ly/18ZlcM8), along
with its corresponding Ethernet shield (bit.ly/1do6eRD). To install,
interact and program Arduino devices using Windows, follow the
guide at bit.ly/1dNBi9R. You’ll end up with an easy-to-use IDE (called
the Arduino application), where you can write programs (called
sketches) using JavaScript, as shown in Figure 5.

Figure 6 shows the sketch for interacting with the Arduino
Listener created in Step 3, and now deployed in Windows Azure.

Sketches for the Arduino have two main sections: setup and
loop. Instructions in the setup section are executed once, and this
is where variables are initialized and connections established. In
our example, the Ethernet client and related values are defi ned, a
serial connection (for debugging purposes) is established, and the
pin where the LED is connected is initialized as an output port.

Code in the loop section is executed constantly, and it includes
two main blocks based on the status
of the TCP connection between the
Arduino device and the listener run-
ning in Windows Azure Cloud Services:
connected or disconnected. When the
connection is established for the fi rst
time, a stopWatch object is started to
keep track of the time elapsed for the
connection. Also, the device identifi er
is sent to the listener, to be used as the
name of the queue where messages and
commands will be stored.

The code block that handles the
Arduino behavior aft er the connec-
tion has been established keeps track
of the time elapsed since the connec-
tion was created, pinging the listener
every 200,000 ms, to keep the con-
nection alive when no commands are
received. Th is code also tries to read
data from the listener, putting the

data into the buf array when it arrives. If a value of “1” is detected,
the LED is turned on, if the value is “2,” the LED is turned off . Th e
stopwatch object is reset aft er each command.

Once the sketch has been uploaded to the device, the code runs on
the Arduino controller in an infi nite loop, trying to connect to a cloud
service. When connected, it forwards the device id so the cloud service
knows to which device it’s talking. Th en the code begins to read input
from the cloud service, telling the device whether to turn on or off the
LED light (in this case, it’s connected to digital port 8 of the device).

Step 5: Creating a Windows Phone Client to Send to Device
Queue Interacting with the device is as simple as sending messages
to the device queue. As we mentioned at the beginning of the
article, the Windows Azure Service Bus provides a REST interface
that lets you interact with it from multiple programming languages.
Because there’s no offi cial SDK for Windows Phone developers, we
used one of the examples from the Windows Phone community,
which shows how to authenticate and interact with the Service

Bus using HTTP requests and the
WebClient object. The source code
is also included with the code down-
load, in the Visual Studio 2013 project
called MSDNArduinoClient. Figure
7 shows the client’s main screen, from
which you send commands to the
Arduino device.

Creating similar clients for other
mobile devices (including iOS and
Android) wouldn’t be diffi cult, as most
of them provide libraries to gener-
ate REST commands using HTTP
request clients. Moreover, it’s possible
to directly interact with the Windows
Azure Service Bus using traditional
languages such as Java, PHP or Ruby,
which simplifi es this process. Th ese
SDKs are published under an open
source license, and can be found
at github.com/WindowsAzure.

if (message != null)
{
 Stream stream = message.GetBody<Stream>();
 StreamReader reader = new StreamReader(stream);
 string command = reader.ReadToEnd();

 if (command != null)
 {
 switch (command.ToUpperInvariant())
 {
 case "ON":
 await deviceConnectionStream.WriteAsync(OnFrame, 0, OnFrame.Length);
 await message.CompleteAsync();
 break;
 case "OFF":
 await deviceConnectionStream.WriteAsync(OffFrame, 0, OffFrame.Length);
 await message.CompleteAsync();
 break;
 }
 }
}

Figure 4 Writing to the Connection Stream

Figure 5 The Arduino Application

var namespaceManager = NamespaceManager.
CreateFromConnectionString(RoleEnvironment.
GetConfigurationSettingValue("serviceBusConnectionString"));
if (!namespaceManager.QueueExists(string.Format("dev{0:X8}", deviceId)))
{
 namespaceManager.CreateQueue(string.Format("dev{0:X8}", deviceId));
}
var deviceQueueReceiver = messagingFactory.CreateMessageReceiver(
 string.Format("dev{0:X8}", deviceId), ReceiveMode.PeekLock);
do
{
 BrokeredMessage message = null;
 message = await deviceQueueReceiver.ReceiveAsync();
 ...

Figure 3 Creating a Queue

www.bit.ly/1iP9g2p
www.bit.ly/18ZlcM8
www.bit.ly/1do6eRD
www.bit.ly/1dNBi9R
www.github.com/WindowsAzure

17March 2014msdnmagazine.com

Wrapping Up
Building an Internet-
of-Things architecture
using the Windows Azure
Service Bus to manage
devices and services con-
nections provides an easy
way to secure, scale and
address clients individ-
ually without incurring
costly VPN solutions, with
the benefit of efficiently
handling occasionally
disconnected scenarios.
Queues act as dedicated
mailboxes where messages
between devices and
services are exchanged,
supporting the different
communication use cases
and patterns commonly
found in the fi eld. Windows
Azure provides a reliable,

geo-distributed and robust infrastructure for deploying the services
required with a high volume of interconnected sensors and
meters—a trend that will continue to grow in the years ahead.

BRUNO TERKALY is a developer evangelist for Microsoft . His depth of knowledge
comes from years of experience in the fi eld, writing code using a multitude of
platforms, languages, frameworks, SDKs, libraries and APIs. He spends time
writing code, blogging and giving live presentations on building cloud-based
applications, specifi cally using the Windows Azure platform. You can read his
blog at blogs.msdn.com/b/brunoterkaly.

RICARDO VILLALOBOS is a seasoned soft ware architect with more than 15 years
of experience designing and creating applications for companies in multiple
industries. Holding diff erent technical certifi cations, as well as a master’s degree
in business administration from the University of Dallas, he works as a cloud
architect in the DPE Globally Engaged Partners team for Microsoft, helping
companies worldwide to implement solutions in Windows Azure. You can read
his blog at blog.ricardovillalobos.com.

Terkaly and Villalobos jointly present at large industry conferences. They
encourage readers of Windows Azure Insider to contact them for availability.
Terkaly can be reached at bterkaly@microsoft .com and Villalobos can be reached
at Ricardo.Villalobos@microsoft .com.

THANKS to the following Microsoft technical experts for reviewing this article:
Abhishek Lal and Clemens Vasters

Figure 6 The Arduino Device Code

#include <SPI.h>
#include <Ethernet.h>
#include <StopWatch.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network,
// and it's optional if DHCP is enabled.
byte mac[] = { 0x90, 0xA2, 0xDA, 0x0D, 0xBC, 0xAE };
static const byte deviceId[] = { 0x00, 0x00, 0x00, 0x01 };
static const uint8_t ACK = 0x01;
static const int LED_PIN = 8;
int connected = 0;
EthernetClient client;
StopWatch stopWatch;
long pingInterval = 200000;
void setup()
{
 Serial.begin(9600);
 Serial.println("Initialized");
 Ethernet.begin(mac);
 pinMode(LED_PIN, OUTPUT);
}
void turnLedOn()
{
 digitalWrite(LED_PIN, HIGH);
}
void turnLedOff()
{
 digitalWrite(LED_PIN, LOW);
}
void loop()
{
 if (connected == 0)
 {
 Serial.println("Trying to connect");
 char* host = "xyz.cloudapp.net";
 client.setTimeout(10000);
 connected = client.connect(host, 10100);
 if (connected)
 {
 Serial.println(
 "Connected to port, writing deviceId and waiting for commands...");
 client.write(deviceId, sizeof(deviceId));
 stopWatch.start();
 }

 else
 {
 Serial.println("Connection unsuccessful");
 client.stop();
 stopWatch.reset();
 }
 }
 if (connected == 1)
 {
 if (stopWatch.elapsed() > pingInterval)
 {
 Serial.println("Pinging Server to keep connection alive...");
 client.write(deviceId, sizeof(deviceId));
 stopWatch.reset();
 stopWatch.start();
 }
 byte buf[16];
 int readResult = client.read(buf, 1);
 if (readResult == 0)
 {
 Serial.println("Can't find listener, disconnecting...");
 connected = 0;
 stopWatch.reset();
 }
 else if (readResult == 1)
 {
 Serial.println("Data acquired, processing...");
 switch (buf[0])
 {
 case 1:
 Serial.println("Command to turn led on received...");
 turnLedOn();
 break;
 case 2:
 Serial.println("Command to turn led off received...");
 turnLedOff();
 break;
 }
 stopWatch.reset();
 stopWatch.start();
 }
 }
}

Figure 7 The Windows Phone Cli-
ent Interface

www.msdnmagazine.com
http://blogs.msdn.com/b/brunoterkaly
http://blog.ricardovillalobos.com
mailto:bterkaly@microsoft.com
mailto:Ricardo.Villalobos@microsoft.com

msdn magazine18

Asynchronous code using the async and await keywords
is transforming the way programs are written, and with good
reason. Although async and await can be useful for server soft ware,
most of the current focus is on applications that have a UI. For
such applications, these keywords can yield a more responsive UI.
However, it’s not immediately obvious how to use async and await
with established patterns such as Model-View-ViewModel (MVVM).
Th is article is the fi rst in a short series that will consider patterns
for combining async and await with MVVM.

To be clear, my fi rst article on async, “Best Practices in Asyn-
chronous Programming” (msdn.microsoft.com/magazine/jj991977), was
relevant to all applications that use async/await, both client and
server. Th is new series builds on the best practices in that article
and introduces patterns specifi cally for client-side MVVM appli-
cations. Th ese patterns are just patterns, however, and may not
necessarily be the best solutions for a specifi c scenario. If you fi nd
a better way, let me know!

As of this writing, the async and await keywords are supported
on a wide number of MVVM platforms: desktop (Windows
Presentation Foundation [WPF] on the Microsoft .NET Framework 4
and higher), iOS/Android (Xamarin), Windows Store (Windows 8
and higher), Windows Phone (version 7.1 and higher), Silverlight
(version 4 and higher), as well as Portable Class Libraries (PCLs)
targeting any mix of these platforms (such as MvvmCross). Th e
time is now ripe for “async MVVM” patterns to develop.

I’m assuming you’re somewhat familiar with async and await
and quite familiar with MVVM. If that’s not the case, there are a
number of helpful introductory materials available online. My blog
(bit.ly/19IkogW) includes an async/await intro that lists additional
resources at the end, and the MSDN documentation on async is
quite good (search for “Task-based Asynchronous Programming”).
For more information on MVVM, I recommend pretty much
anything written by Josh Smith.

A Simple Application
In this article, I’m going to build an incredibly simple application,
as Figure 1 shows. When the application loads, it starts an HTTP
request and counts the number of bytes returned. The HTTP
request may complete successfully or with an exception, and the
application will update using data binding. Th e application is fully
responsive at all times.

First, though, I want to mention that I follow the MVVM pattern
rather loosely in my own projects, sometimes using a proper
domain Model, but more often using a set of services and data

A S YN C PR OGR AMMING

Patterns for
Asynchronous
MVVM Applications:
Data Binding
Stephen Cleary

This article discusses:
• Combining asynchronous programming with the MVVM pattern

• Developing an asynchronous data-bound property

• Common mistakes with ViewModels

• An approach that’s data-binding friendly

Technologies discussed:
Asynchronous Programming, MVVM

http://msdn.microsoft.com/magazine/jj991977
www.bit.ly/19IkogW

19March 2014msdnmagazine.com

transfer objects (essentially a data access layer) instead of an actual
Model. I’m also rather pragmatic when it comes to the View; I
don’t shy away from a few lines of codebehind if the alternative is
dozens of lines of code in supporting classes and XAML. So, when
I talk about MVVM, understand that I’m not using any particular
strict defi nition of the term.

One of the fi rst things you have to consider when introducing
async and await to the MVVM pattern is identifying which parts of
your solution need the UI threading context. Windows platforms
are serious about UI components being accessed only from the UI
thread that owns them. Obviously, the view is entirely tied to the
UI context. I also take the stand in my applications that anything
linked to the view via data binding is tied to the UI context.
Recent versions of WPF have loosened this restriction, allowing
some sharing of data between the UI thread and background
threads (for example, BindingOperations.EnableCollection-
Synchronization). However, support for cross-thread data binding
isn’t guaranteed on every MVVM platform (WPF, iOS/Android/
Windows Phone, Windows Store), so in my own projects I just
treat anything data-bound to the UI as having UI-thread affi nity.

As a result, I always treat my ViewModels as though they’re
tied to the UI context. In my applications, the ViewModel is more
closely related to the View than the Model—and the ViewModel
layer is essentially an API for the entire application. The View
literally provides just the shell of UI elements in which the actual
application exists. Th e ViewModel layer is conceptually a testable
UI, complete with a UI thread affi nity. If your Model is an actual
domain model (not a data access layer) and there’s data binding
between the Model and ViewModel, then the Model itself also
has UI-thread affi nity. Once you’ve identifi ed which layers have
UI affi nity, you should be able to draw a mental line between the
“UI-affi ne code” (View and ViewModel, and possibly the Model)

and the “UI-agnostic code” (probably the Model and defi nitely all
other layers, such as services and data access).

Furthermore, all code outside the View layer (that is, the View-
Model and Model layers, services, and so on) should not depend on
any type tied to a specifi c UI platform. Any direct use of Dispatcher
(WPF/Xamarin/Windows Phone/Silverlight), CoreDispatcher
(Windows Store), or ISynchronizeInvoke (Windows Forms) is a
bad idea. (SynchronizationContext is marginally better, but barely.)
For example, there’s a lot of code on the Internet that does some
asynchronous work and then uses Dispatcher to update the UI; a
more portable and less cumbersome solution is to use await for
asynchronous work and update the UI without using Dispatcher.

ViewModels are the most interesting layer because they have UI
affi nity but don’t depend on a specifi c UI context. In this series, I’ll
combine async and MVVM in ways that avoid specifi c UI types
while also following async best practices; this fi rst article focuses
on asynchronous data binding.

Asynchronous Data-Bound Properties
The term “asynchronous property” is actually an oxymoron.
Property getters should execute immediately and retrieve current
values, not kick off background operations. Th is is likely one of the
reasons the async keyword can’t be used on a property getter. If you
fi nd your design asking for an asynchronous property, consider
some alternatives fi rst. In particular, should the property actually
be a method (or a command)? If the property getter needs to kick
off a new asynchronous operation each time it’s accessed, that’s not
a property at all. Asynchronous methods are straightforward, and
I’ll cover asynchronous commands in another article.

In this article, I’m going to develop an asynchronous data-bound
property; that is, a data-bound property that I update with the
results of an async operation. One common scenario is when a
ViewModel needs to retrieve data from some external source.

As I explained earlier, for my sample application, I’m going to
defi ne a service that counts the bytes in a Web page. To illustrate
the responsiveness aspect of async/await, this service will also
delay a few seconds. I’ll cover more realistic asynchronous services
in a later article; for now, the “service” is just the single method
shown in Figure 2.

Figure 1 The Sample Application

using System;
using System.Net.Http;
using System.Threading.Tasks;

public static class MyStaticService
{
 public static async Task<int> CountBytesInUrlAsync(string url)
 {
 // Artificial delay to show responsiveness.
 await Task.Delay(TimeSpan.FromSeconds(3)).ConfigureAwait(false);

 // Download the actual data and count it.
 using (var client = new HttpClient())
 {
 var data = await client.GetByteArrayAsync(url).ConfigureAwait(false);
 return data.Length;
 }
 }
}

Figure 2 MyStaticService.cs

www.msdnmagazine.com

msdn magazine20 Async Programming

 Note that this is considered a service, so it’s UI-agnostic. Because
the service is UI-agnostic, it uses Confi gureAwait(false) every time
it does an await (as discussed in my other article, “Best Practices in
Asynchronous Programming”).

Let’s add a simple View and ViewModel that starts an HTTP
request on startup. Th e example code uses WPF windows with
the Views creating their ViewModels on construction. Th is is just
for simplicity; the async principles and patterns discussed in this
series of articles apply across all MVVM platforms, frameworks
and libraries. The View for now will consist of a single main
window with a single label. Th e XAML for the main View just binds
to the UrlByteCount member:

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>
 <Label Content="{Binding UrlByteCount}"/>
 </Grid>
</Window>

Th e codebehind for the main window creates the ViewModel:
public partial class MainWindow
{
 public MainWindow()
 {
 DataContext = new BadMainViewModelA();
 InitializeComponent();
 }
}

Common Mistakes
You might notice the ViewModel type is called BadMainView-
ModelA. This is because I’m going to first look at a couple of
common mistakes relating to ViewModels. One common mistake
is to synchronously block on the operation, like so:

public class BadMainViewModelA
{
 public BadMainViewModelA()
 {
 // BAD CODE!!!
 UrlByteCount =
 MyStaticService.CountBytesInUrlAsync("http://www.example.com").Result;
 }

 public int UrlByteCount { get; private set; }
}

Th is is a violation of the async guideline “async all the way,” but
sometimes developers try this if they feel they’re out of options.
If you execute that code, you’ll see it works, to a certain extent.
Code that uses Task.Wait or Task<T>.Result instead of await is
synchronously blocking on that operation.

Th ere are a few problems with synchronous blocking. Th e most
obvious is the code is now taking an asynchronous operation and
blocking on it; by doing so, it loses all the benefi ts of asynchronicity.
If you execute the current code, you’ll see the application does
nothing for a few seconds, and then the UI window springs fully
formed into view with its results already populated. Th e problem
is the application is unresponsive, which is unacceptable for many
modern applications. Th e example code has a deliberate delay to
emphasize that unresponsiveness; in a real-world application, this
problem might go unnoticed during development and show up only
in “unusual” client scenarios (such as loss of network connectivity).

Another problem with synchronous blocking is more subtle: Th e
code is more brittle. My example service uses Confi gureAwait(false)

properly, just as a service should. However, this is easy to forget,
especially if you (or your coworkers) don’t regularly use async.
Consider what could happen over time as the service code is main-
tained. A maintenance developer might forget a Confi gureAwait,
and at that point the blocking of the UI thread would become a
deadlock of the UI thread. (Th is is described in more detail in my
previous article on async best practices.)

OK, so you should use “async all the way.” However, many devel-
opers proceed to the second faulty approach, illustrated in Figure 3.

Again, if you execute this code, you’ll fi nd that it works. Th e UI
now shows immediately, with “0” in the label for a few seconds
before it’s updated with the correct value. Th e UI is responsive, and
everything seems fi ne. However, the problem in this case is han-
dling errors. With an async void method, any errors raised by the
asynchronous operation will crash the application by default. Th is is
another situation that’s easy to miss during development and shows
up only in “weird” conditions on client devices. Even changing the
code in Figure 3 from async void to async Task barely improves the
application; all errors would be silently ignored, leaving the user
wondering what happened. Neither method of handling errors is
appropriate. And though it’s possible to deal with this by catching
exceptions from the asynchronous operation and updating other
data-bound properties, that would result in a lot of tedious code.

A Better Approach
Ideally, what I really want is a type just like Task<T> with properties
for getting results or error details. Unfortunately, Task<T> is not
data-binding friendly for two reasons: it doesn’t implement INotify-
PropertyChanged and its Result property is blocking. However, you
can defi ne a “Task watcher” of sorts, such as the type in Figure 4.

using System.ComponentModel;
using System.Runtime.CompilerServices;

public sealed class BadMainViewModelB : INotifyPropertyChanged
{
 public BadMainViewModelB()
 {
 Initialize();
 }

 // BAD CODE!!!
 private async void Initialize()
 {
 UrlByteCount = await MyStaticService.CountBytesInUrlAsync(
 "http://www.example.com");
 }

 private int _urlByteCount;
 public int UrlByteCount
 {
 get { return _urlByteCount; }
 private set { _urlByteCount = value; OnPropertyChanged(); }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChangedEventHandler handler = PropertyChanged;
 if (handler != null)
 handler(this, new PropertyChangedEventArgs(propertyName));
 }
}

Figure 3 BadMainViewModelB.cs

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BarCoa C de bbarCoarCCode =de = newn EEanEan113SuS pp5(“12234556789001212345”, x, y + 21); barCode.X += (204 - barCodee.Get

ddUPCVersionA(GrouGroup elemenem ts, float x, floatfloa y) { AddCaptionAndRectangle(elemente s, “UPC Version A Bar Code”, x, y, 2y, 204, 99);9)99);9) Bar BarB rBa CodeC barbarCCode = neew UpcVepcVersionAA(“12345678901”, x, y + 21); barCode.X += (204 - baarCo

ddUPCVersionASSup2(up2 Grououpp elements,, floatoa xx, float y) { AddCaptionAndRectangle(ele(ments, “UPC Version E Bar Code, 2 digit git supsuppsuppup lement”nt”, x,x, x y, 204, 999); BaarCodde barCCode = new UpcVersionASup2(“123456787 90112”, xx, yx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup5(Group elements, float x, floato y) { AddCaptionAndRectangle(eleementmmentm s, “s, “UPC UPC VerVersion EE Bar Code, 5 diggit suupplemment”, x, y, 204, 99); BarCode barCode = n ew UpcVeeersio

ode.GetSymbolWWidth(dth)) / 2; 2 elements.AddAdd(bar(ba Code); } privatee voi v d AddEANEAN8(Group p elements, float x, float y) { AddCddCaptitionAnonAn dRecReccecttaangle(elemments, “EANN/JANN 8 BBar Codde”, x, y, 204, 99); BarCode barCode == newn Ean8(“123434

g(); fileDialog.Title =le = “Op “Open Fen File Dialogg”; filfi eDialog.Filter = “AdAdobe PDFF fileses (*.pdf)f)|*.pdf|All Files (*.*)|*.*”; if (fileDieDialog.log.ShSSShowwDDiallog()og == DialoggResult.OK) { pdfVieweewer.OppenFile(fileDialog.FileName, “”); } SaveSav FileF Diallog saavaveFa

File Dialog”; s saveFveFileDialoal gg.Filter = “AdoAdobee PDF files (*.pdf)f)|*.pdf|All Files (**.*)|*.*”; if (saveFileDialog.ShowDowDialoialoa g()=g()==DiaDi=DiaDi logResulsule t .OOK) {{ pdfVfVieweewerr.SaveAs(saveFileDiaDialog.FileNamee);); } } if (p(dfVidfV ewewer.PPagP e

WithDialog(); } e else se { MessMe aageBox.SShow(w “PPlease open a fifile tto printt”); } OOpenFileF Dialog fileDiD aloglog = n = nnnew Oew Oe pepenpenFileDDialog(); fifile Dialog.Tiitle = “Open File Dialoog”; filleDialog.InitialDirecectoory = @”c:\”:\ ; fi fileDleDialoglo .Filterter = “= “All F

) == DialogResules t.Ot.OK) { Dy D nnamicPDFFViewewerrClass test = new Dew DynammicPDFVieewerCr lass(); PDFDFPrinPrintter prinprinninterter er = = test.OpenFpe ileForPorPrinnter (file(fileDiaalog.FileName); pprinnter.PrintQuieQuiet();() } bytbybytby ee[] contcontentst =

pServices; GCHGC andandle gcchh = GCHandled .AllAl occ(contents, GCHHandndleTypType.Pinnedd); IntIntPtr contcontentsentsIntPtr ===gcch.ch.h.AAAddrOfPinnednn Objeect()ct ;ppdf Viewer.O.OpenBpepe ufffefeuff r(cor(r(cor(ntentsIntPtrt ,

kmark Page Elemelement:”, x,x, y); y); p pageEleementen s.AAdd(new Bookkmarrk(“(BBookB marked Text”x , x , x + 5,+ 5, y + 20,0 parpareenenttOe utline)); pageElg emennts.Ats.Add (new Label(“This tes texxt is bookmaokmaokmarkedrked ”, .”, xx + 5, y + 20, 2

ageElements, fls, float a x, float at y) {{ // Addsdss a circltt to the pageEllemeents AddCaptioonnAndRAndRectaectangle(paggpagpaggeEleeEl mentmen s, “Circle PPaage Elemment:ent:”, x, y); pageElgeElements.As.Add(ndddd(ndd ew CCircle(x (x + 112.5f2 ,

shLarge)); } pprivavate te void AddFAd orormattedteede TextArrea(Group pp ageeEg lemennts, float x,x, floafloat yt y)t { /{ / AdA dsds ads a for forfofoo matttedd text area too tthepageEeElle ments strring formattm edHtedHtml = “<p“<p><<i>Dynamic</i>PDb>P F</bb>&tm>&tmmtm; Generaeraaator oro v6.0 foror .NE

matting suppoort for or text thath t aappears s in the ddocument. Yt. Youuu havve “ + “comcompletetple e cooontrorol ovovovovver 8r 8e parar agraph pph properties: ssppacing befoeforee, spacingg after, firfirst liine “ + “indentantation, left indentatitation, righr t ininndentdentdentntatiotionn, a, aaliignment, alalllowi

fontt fac f e, </fonnt>t>><f> ont ppoino tSizSize=’6’>fffont “ + “““size, </</fonfonntn ><fo<f nt ct coolorloolorlol =’FF000000 ’>>coloor, >b old, </b<<i>italic aannd </i><<u>uunderline</u>>; “ + “and 2 line proopertrties: leaeadingng, anndd leleeeaadinaad g type. Text

extArea = neew FoFormatrm tedTdTextAArea(fororrmmattedHHtmtml, x + 5, y +++ 20,, 21555, 60, F, FontontFamilmmi y.HeHeelvvelveteticaica, 9, ffalse)e); // SSets the the indent properoperty foformatteatt ddTextAreeaa.Styyle.PParagrapph.Inndent = 18; AddCCapttionAndRectRectanglgle(pae(papa(paapae geEgeElements, ts, “F

ageElemem ntts, “Fo“FormmattedTdTextAtArea OOvvverflow flow TText:”, x + 27999, y); pagpaggeEleeEleementmen ss.AdAdAdd(fod(foodd ormrrmatrmatmatatttedTextAtArea)); // CCreate e an oa verflow formatteded t text art a ea for tr the ooverflflow textt FoormattedTextArea ova oveerflowForFormattma edTeTTeextArxtArxtArtxttArea =ea =e formatte

a(x + 284, y + 20)20); pap geEElemenements.Adddd(o(overflverflowwFowFoow rmatarm tedTeextAe rrea); } privprivate ate vvooidov AddAddA dA Imagmagmagmage(Group up paggeElememeents, float x, float y) { // A/ dds an in magee tto thhe paageElemmenents AddCaptionAndRedRectangle((pagpageElemmmentsenntstsnts, “Imagegee Pag

es/DPDFLoogo.pn.png”), x ++ 1112.55f, y ++ 550f,50f, 0.20.244f);4f // Image is sizeed annnd centeenteredd in tn tthe rrrrectataec nglengle imam ge.SetBoB unds(215, 60); image.VAlign = VAlign.Cenenterr; imaage.Alignn = Align.Center; paggeEeElements.Ad.Addd(imaggee)g ;; } } privvate ate vvoidv A

pageElemennts AdAddCapdC tiononAndRectaannglengle(pag(paggeeEleeElements, “LLabell & PPagePageNumbeerinerine gLgLabg bel PPage ElememE entts:”, x, y); string labelText = “Labels can be rottaated”; strring numbermbe Text = “PageNummbeeringLabelsels contcontaiain ppage nummbeerib ngTT

xt, x + 5, y + 12+ 12, 22220, 80, F0 ontt.TimemessRomRoman,an, 12, TextAlign..Cennter);; l lababel.AngAngglle = 8; 8; 8; PagePageeNNumNumbN erinri gLagLabel pageNumLabel = new PageNumberb ingLabelab (nnumbberText, x +x + 5, y + 55, 220, 880, FFont.TimesResRoman, 1212, TextAltAligignign.n Ce

mem nts.Add(labeabel); l); } private voe id AAddLdLinne(Gne(Groupp pageElemennts, flflfloat x, floaoat y) {{{) { / // Addss a l a lla inne to the phe pageEag lements AddCaptionAndRectangle(p(ageElemee nnts, ““Line Paage Element:”, x, y); ppageeElemennts.As.Add(neew Lw ine(x +x + + x 5, y5 +

w Liw ne(xx + 2+ 220, y + 20, x + + 5, yy + 8 + 0,0, 30, 3, Rg, RgbCoolor.Green)); } prprivivaate vvoid Ad AddLiinknk(Groupup p pagpap eElementments, float x, float y) { // Adds a link to the ppageElemeem ntts Foont font == Foont.TimesRoman;; st string text = “TThisT iss s a lia nk tnk tk o o Dynaamic

mentm :”, x, y); Label label == newne LaLabbbel(textt, x + 5, y + 20, 2155,5, 800, fonnnnt, 1t, 2, R2, RgbbColor.or.BBluelu); l; abel.UndUndererline = true; Link link = new Link(x + 5, y + 20, font.on GGetTeextWidthh(texxt, 12), 12 - font.GGetDDescendder(1r(12), neeww ee UrlUrlAlAction(“n(“hhttp

EleE mennts.Add(li(nk);; } p } privavate ve voidd AAddPath(ath Grroup pageElemmentts, floatoatfl x, floatt y) y) {{ // AddAd s a s pathh to the pageElements ceTe.DynamicPDF.PageElementen s.Pathh path = nneww ceTe.DynamicPDPDF.PF.PageElemenmennnts.Ps.Paaath(h(x + x + 55, y, y + + 2+ 20, R

PathP s.AAdd(new LineeSubPatPa h(xx ++ 2215, y + 4+ 0))); path.Suh.S bPatths.Ahs.AAAdddd((new CurvurveeToSubPatPa h(x h(x + 1008, y + 80, x + 160, y + 80)); path.SubPaths.Add(neww CCurvveSuubPath(x + 55, y + 40, x + 65, 6 y + y + 80, x + 5, y5, yy + + 60))); AddAddCCaCaptC ionAAnd

AAdd(ppaaath); } privatee void AAddRReccttaangle(GrG oupp pageeEElemennnts, flflflofloatat x, float yat y)) oorderee dLisdL t = t = ordderedList.GetOverFlowList(x + 5, y + 20); AddCaptionAnAndRRectaanggle(pagge.Elements, “Orderr ed Led List Pagegee Ele EleEl mentttn OOOve Ovev rflowrfl :”, x, y, 2

88; /8; // C/ Create an unoordereedd list UUnnornorderede List uunorderere edListt =t =stt neeew UUnonorderrderedLLied st(xx + 55, yy + 20+ 20, 400, 90, Font.Helvetica, 10); unorderedList.Items.Add(Add(“Fruits””); uunorderedere List.Items.Add(“d “VegeVegeg tablees””); UnU U ordeeer redSreedSd ubbList unord

tt((); (); unorderedSubList.Items.ms.Add(“dd((““ Citrus”); unordorderededederedSuSubLiist.Iteeemss.AdAddd(“ Nonn-Citrt us”)s” ; AdAddCCaptionAndRectangle(page.Elemennts, “Unordered Lisst Pagee Elemmente :”, x, yx, y, 225, 110); Unonn rddereedSubLisbLisst ununnu ordederedSredSdredSdd ubLiub st2 = uno

rederer SubbbList2.Items.Add((“PoPotato”); unorderedSSubLiiubLisstt2.Itemmms.Addddd(“BBeans”); Unorno derederedSubdSubLisst subUnorderedSubList = unorderede SubLS ist.Items[0]].SuubLists.AAddddUnorderrde edSubList(); subs bUnorUnorderedSubdSSubbLListLLL .Iteteeems.Ams.Am Addd(“Lime”); s

LList subbbUnorderedSSubList2st = unorderedSubLbLS iist.ist.Itemss[1].SuubLissts.AAddUnordeeredSuedS bLisbL t();t() suubUnorderedSubList2.Items.Add(“Mana go”); subUnorrdereedSSubList2.It2 temms.AAdd(“Banana”);); UnUnordderedSSuSubdS ListLissLis sububUnorn derede dSubList

tt(()(); subUUnordereddSSubList3.Items.Add(“SweSweew t PoPotato””); Unoorderred dSSubList subbUnorUno dereer dSubdSubListList44 = unorrderedSubList2.It2 ems[1].S].SubLists.AddUnoordeereddSubbList(s); subUnubU orderedSubLibubListst4.s Iteems.AdAdAdA d(“Sd(“S“Strining BeeBeean”)an” ; subUnoU rde

AAdddd(“Kiddney Beanean”); x += 279; paga e.Elemeements.Addd(ud nnordereedLisst); uunorderedListLis == unordnorderedere List.GetOvere FlowList(x + 5, y + 20);) AddA CaptionAndRecctanngle(ppageag .Elemeents, “UnorUnorderederer d Lid st PPage e ElemElemmmeent ee Oveverve flow:flow:flo ”, x, y, 225

ooiddd AdddTedTextFxtField(Group pageElemenme ts, , flofloat x,, flooat y)) { TexxtField txtt = new TextFixtF eeld(“txt“t fnafname”, x + 20, y + 40, 120, 20); txt.Defaulu tValue = “This iis s a Scrrollabble Te extFFieldd”; txt.BordederColrColC or =o RgbRgbCColoor.Br.Br.Br.Black; txtxttxtxt.BacackgrokgroundCun o

(td(d xt); TTexTextField txt1 = new TextFiField(ld “txxtf1naf1 me”,me” x + 175, yy + 440, 120, 20); txtt1.DefDe aultu Valualue = “TextField”; txt1.Password = true; ttxt1.MaxLength = = 99; txtt1.BoordderColor = RgbCollor.BBor.Black; txt1.B1.Backgckgrounou dCololor =oror =or = RgbRgbR ColoColor Alr.Al

eree ies(); pieSeries.DataLabel == da;a;da plop tAreAreaa.Sea riesrie .Add(pieSSeriess); ppieSeries.Elemelementss.Add(Add(27,27, “Website A”); pieSeries.Elements.Addd (19, “Website BB”)); pieSerrieses.Elementmen s.Add(21d(21, “WWWebsiseb te Cee ”); ”);); pieSpieSp eries.ElElemenmeements[0ts[0s[0s[0].Co].C lor or == a

esess.Elements[2].Color = aututograog diendientt3;”RgbCRgbColoor.AliceeBlue; txt2.Too.ToolTip = “Multilinnee”; pagepageElElements.Add(txt2); AddCaptionAndRectangle(pageElememennts, “TexxtFiField Formorm PagPage Ele Elemenemenemennnt:”,:”, x, y, 5, 5y 0404, 85);5) } p} rivaate ve ve ooid oid AddCdCombomb

CombCCC ooBox(“cmmbnambna e”, e”, x + x + 51, 51, y + y + 40,40, 150,15 220); cb.BBorderColoor = RgbColor.BlacBlack; ccb.Bab.BackckgroundColor = RgbColor.AliceBlue; cb.Font = Font.Helveelveticaa; cbb.FonFo tSizzSizze = e 12; cb.Icb.Itemsstemsstems.AddA (“Item 1eme ”);); cb.cb.Itemstems.AddAdAd.Add(“It(“It(“It(Item 2em ”); ”); cbcb

didd table””)”); cb.Itemms[s[“[“Editaabble”].Selectcteded = true; c; cb.Editable = truue; ccb.ToolTip == “Edi“Ed tablab e CoC mmbo Box”; pageElements.Add(cb); ComboBox cb1 = new Cew omboombbb Box(B x(“cmbmb1nammee”, x + 303,3303, y + y + 40, 150, 20 20); c); cb1.BBb1 ordedederderrColor == R

= F== ont.HHHelveticca;a; ca; cbb1.FontSnt ize = 122; cb1.Itemss.AAdd(“IItem 1”); ccb1.Ittems.Add(“It“Item 2em ”); ”) cb1.cb1.ItItems.Add(“Item 3”); cb1.Items.Add(“Item 4”); cb1.Itemss.AAddd(“Noon-Ediditabtablee”);); c cb1.Items[““[“Non-Non-EditEditableable”].S”].Seelected = tr= ue; ue; cb1.1 Edita

ntnntts.Ads dd(cb(cb(cb1); Converter.CoC nvert(“http://www.gogoogogle.ccom”, “Outputt.pdf”);Convertve er.Cer.Conveonvert(GetDocPath(“DocumentA.rtf”), “Output.pdf”);System.Diaiagnooosticscss.ProoPP cesssess.SStart(“Outptput.pput.pdf”)df”); As; AsyncCncConverterrt aCooCoonnvenverteer = new A

errr((aC(aCo(nverrter_Converted); aConverter.ConversionErroor += nnew ConnversionErrorEvventHtHandler(aConverter_ConversionError); aConverter.Convert(@”C:\tC:\ emmp\mpmm DDocummenmenttAA.rtf”, @”C:\tememmmp\Oup\OutputtputA.pdA.pdf”);f”);) aConverv rter.ter.Coonvert(@”C

verve t(@”C:\temp\DocumentC.rtf”, @”C:\temp\OutputCC.pdf”)); aCoonveerter.Convert(e “hhttp://p://www.yahoo.com”, @”C:\Temp\yahoo.pdf”); ConversionOptionsoni ooptop ionnsnsns = = new CConversiosionOptnOpttionsions(720(720, 72, 720, 72, ttrue); ceeTe.DTe. yynamicPDF

tempte \\ooutput.pdf”, options); ceTe.DynamicPDF.Conveersion.Connvertter.Convert(“C:\\\teemp\\Document2.docx”, “C:\\temp\\output.pdf”, options); string sg ammmpamplmpam eHtmH ml = l “<hth ml><ml><bodybody><p>><p>pp TThis is a very ssimplm e HTML ML strring includ

<tab<t le bborder=\”1\”>1 <tr><td>100</td><td>200</td>”” + “<ttd>3300<</td></tr><tr><<td>>400</td><td>500</td><td>600</t< d></tr></table><></bod/body><y><//</</hhthtmhtmlhtmhtm >”;Conveveo rsion.Con.CoCC nvernverter.ter.CConvvertHtmlString(saamplempleHtmll, “C“C:\\\temp\emp\\Sam\Sam

ererNamee”, Path.Combo ine(GetPath(), “LetterPortrait.pdff”)); prrintJoob.DDocumentNamee = “LettLetter Pe ortrait”; if (printJob.Pob. rinter.Color) prinprinprinprinpri tJobtJob P.PrintOpntOn tions.Cos. lor o = trtrue; ue; if (if (prinprinri tJobtJo .Printer.ColC late) printJob.Pb.P.PPrrintr OOptiOptip ons.ons.onons CoCoollollate at = tr= tr= uurr

innt

;ppd

t:: ,

Untitled-1 1 9/8/11 12:41 PM

www.dynamicpdf.com

msdn magazine22 Async Programming

Let’s walk through the core method NotifyTaskCompletion<T>.
WatchTaskAsync. Th is method takes a task representing the asynchro-
nous operation, and (asynchronously) waits for it to complete. Note
that the await does not use Confi gureAwait(false); I want to return to
the UI context before raising the PropertyChanged notifi cations. Th is
method violates a common coding guideline here: It has an empty
general catch clause. In this case, though, that’s exactly what I want. I
don’t want to propagate exceptions directly back to the main UI loop;
I want to capture any exceptions and set properties so that the error
handling is done via data binding. When the task completes, the type
raises PropertyChanged notifi cations for all the appropriate properties.

An updated ViewModel using NotifyTaskCompletion<T>
would look like this:

public class MainViewModel
{
 public MainViewModel()
 {
 UrlByteCount = new NotifyTaskCompletion<int>(
 MyStaticService.CountBytesInUrlAsync("http://www.example.com"));
 }

 public NotifyTaskCompletion<int> UrlByteCount { get; private set; }
}

Th is ViewModel will start the operation immediately and then
create a data-bound “watcher” for the resulting task. The View
data-binding code needs to be updated to bind explicitly to the
result of the operation, like this:

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid>
 <Label Content="{Binding UrlByteCount.Result}"/>
 </Grid>
</Window>

Note that the label content is data-bound to NotifyTask-
Completion<T>.Result, not Task<T>.Result. NotifyTaskComple-
tion<T>.Result is data-binding friendly: It is not blocking, and it
will notify the binding when the task completes. If you run the code
now, you’ll fi nd it behaves just like the previous example: Th e UI
is responsive and loads immediately (displaying the default value
of “0”) and then updates in a few seconds with the actual results.

Th e benefi t of NotifyTaskCompletion<T> is it has many other
properties as well, so you can use data binding to show busy
indicators or error details. It isn’t difficult to use some of these
convenience properties to create a busy indicator and error

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Window.Resources>
 <BooleanToVisibilityConverter x:Key="BooleanToVisibilityConverter"/>
 </Window.Resources>
 <Grid>
 <!-- Busy indicator -->
 <Label Content="Loading..." Visibility="{Binding UrlByteCount.IsNotCompleted,
 Converter={StaticResource BooleanToVisibilityConverter}}"/>

 <!-- Results -->
 <Label Content="{Binding UrlByteCount.Result}" Visibility="{Binding
 UrlByteCount.IsSuccessfullyCompleted,
 Converter={StaticResource BooleanToVisibilityConverter}}"/>

 <!-- Error details -->
 <Label Content="{Binding UrlByteCount.ErrorMessage}" Background="Red"
 Visibility="{Binding UrlByteCount.IsFaulted,
 Converter={StaticResource BooleanToVisibilityConverter}}"/>
 </Grid>
</Window>

Figure 5 MainWindow.xaml

Figure 4 NotifyTaskCompletion.cs

using System;
using System.ComponentModel;
using System.Threading.Tasks;

public sealed class NotifyTaskCompletion<TResult> : INotifyPropertyChanged
{
 public NotifyTaskCompletion(Task<TResult> task)
 {
 Task = task;
 if (!task.IsCompleted)
 {
 var _ = WatchTaskAsync(task);
 }
 }

 private async Task WatchTaskAsync(Task task)
 {
 try
 {
 await task;
 }
 catch
 {
 }

 var propertyChanged = PropertyChanged;
 if (propertyChanged == null)
 return;

 propertyChanged(this, new PropertyChangedEventArgs("Status"));
 propertyChanged(this, new PropertyChangedEventArgs("IsCompleted"));
 propertyChanged(this, new PropertyChangedEventArgs("IsNotCompleted"));
 if (task.IsCanceled)
 {
 propertyChanged(this, new PropertyChangedEventArgs("IsCanceled"));

 }
 else if (task.IsFaulted)
 {
 propertyChanged(this, new PropertyChangedEventArgs("IsFaulted"));
 propertyChanged(this, new PropertyChangedEventArgs("Exception"));
 propertyChanged(this,
 new PropertyChangedEventArgs("InnerException"));
 propertyChanged(this, new PropertyChangedEventArgs("ErrorMessage"));
 }
 else
 {
 propertyChanged(this,
 new PropertyChangedEventArgs("IsSuccessfullyCompleted"));
 propertyChanged(this, new PropertyChangedEventArgs("Result"));
 }
 }

 public Task<TResult> Task { get; private set; }
 public TResult Result { get { return (Task.Status == TaskStatus.RanToCompletion) ?
 Task.Result : default(TResult); } }
 public TaskStatus Status { get { return Task.Status; } }
 public bool IsCompleted { get { return Task.IsCompleted; } }
 public bool IsNotCompleted { get { return !Task.IsCompleted; } }
 public bool IsSuccessfullyCompleted { get { return Task.Status ==
 TaskStatus.RanToCompletion; } }
 public bool IsCanceled { get { return Task.IsCanceled; } }
 public bool IsFaulted { get { return Task.IsFaulted; } }
 public AggregateException Exception { get { return Task.Exception; } }
 public Exception InnerException { get { return (Exception == null) ?
 null : Exception.InnerException; } }
 public string ErrorMessage { get { return (InnerException == null) ?
 null : InnerException.Message; } }

 public event PropertyChangedEventHandler PropertyChanged;
}

23March 2014msdnmagazine.com

details completely in the View, such as the updated data-binding
code in Figure 5.

With this latest update, which changes only the View, the appli-
cation displays “Loading…” for a few seconds (while remaining
responsive) and then updates to either the results of the operation
or to an error message displayed on a red background.

NotifyTaskCompletion<T> handles one use case: When you
have an asynchronous operation and want to data bind the results.
Th is is a common scenario when doing data lookups or loading
during startup. However, it doesn’t help much
when you have an actual command that’s
asynchronous, for example, “save the current
record.” (I’ll consider asynchronous com-
mands in my next article.)

At fi rst glance, it seems like it’s a lot more
work to build an asynchronous UI, and that’s
true to some extent. Proper use of the async
and await keywords strongly encourages you
to design a better UX. When you move to
an asynchronous UI, you fi nd you can no
longer block the UI while an asynchronous
operation is in progress. You must think
about what the UI should look like during
the loading process, and purposefully
design for that state. Th is is more work, but it
is work that should be done for most modern
applications. And it’s one reason that newer
platforms such as the Windows Store sup-
port only asynchronous APIs: to encourage
developers to design a more responsive UX.

Wrapping Up
When a code base is converted from syn-
chronous to asynchronous, usually the ser-
vice or data access components change fi rst,
and async grows from there toward the UI.
Once you’ve done it a few times, translating a
method from synchronous to asynchronous
becomes fairly straightforward. I expect (and
hope) that this translation will be automated
by future tooling. However, when async hits
the UI, that’s when real changes are necessary.

When the UI becomes asynchronous, you
must address situations where your applica-
tions are unresponsive by enhancing their
UI design. Th e end result is a more respon-
sive, more modern application. “Fast and
fl uid,” if you will.

Th is article introduced a simple type that
can be summed up as a Task<T> for data
binding. Next time, I’ll look at asynchronous
commands, and explore a concept that’s
essentially an “ICommand for async.” Th en,
in the fi nal article in the series, I’ll wrap up
by considering asynchronous services. Keep

in mind the community is still developing these patterns; feel free
to adjust them for your particular needs.

STEPHEN CLEARY is a husband, father and programmer living in northern Michigan.
He has worked with multithreading and asynchronous programming for 16 years
and has used async support in the Microsoft .NET Framework since the fi rst CTP.
His homepage, including his blog, is at stephencleary.com.

THANKS to the following Microsoft technical experts for reviewing this article:
James McCaff rey and Stephen Toub

www.msdnmagazine.com
www.softfluent.com/forms/msdn-2014
www.softfluent.com
mailto:info@softfluent.com
www.stephencleary.com

PRODUCED BYSUPPORTED BY

magazine

WITH

MAY
THE
CODE
BE

YOU!

0
0
1
1
0
0
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
1
0
1
0
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
0
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
1
1
1
0
0
0
1
0
1
0
1
0
1
0

1
1
0
1
0
1
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
0
1
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
1
0
0
1
0
1
0
1
1
0
1
0
0
0
0
1
0
1
1
0
1
0
1
1
0
1
0
1
0
1
1
1
0
0
1
0
0
0
0
1
0
1
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
1
1
0
0
1
1
0
1
0
1
0
0
0
1
1
0
1
0
1
0
1
0
0
0
1
1
0
1
1
1
0

0
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
0
1
0
1
0
0
1
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
0
0
0
1
0
1
0
1
1
0
1
0
1
0
0
0
0
1
0
0
1
1
1
0
0
0
0
1
0
1
1
1
0
0
1
0
0
1
0
0
0

0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
0
0
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
0
0
0
1
0
1
0
0
1
0
1
0
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
0
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
0
1
1
0
0
0
0
1
0
1
0
1
0
0
0
1
1
0
1
1
1
0
0
1
0

PLATINUM SPONSOR

Untitled-4 2 1/27/14 11:18 AM

www.vslive.com/lasvegas

LAS VEGAS 2O14
March 10 - 14 | Planet Hollywood Resort & Casino

Visual Studio Live! is your guide
to the .NET Development universe,
featuring code- lled days,
networking nights and independent
education. Whether you are a .NET
developer, software architect or a
designer, Visual Studio Live!’s
multi-track events include focused,
cutting-edge education on the .NET
platform that you’ll be ready to
implement as soon as you get back
to the of ce.

vslive.com/lasvegas

Visual Studio Live! Las Vegas is part of
Live! 360 DEV, which means you’ll have
access to four (4) other co-located events
at no additional cost:

Five (5) events means over a hundred
sessions to choose from – mix and match
sessions to create your own, custom event
line-up - it’s like no other dev conference
available today!

AND INTRODUCING Web Dev Live!

Sessions are lling up
quickly – Register Today!
Use promo code VSLMAR2

COMPREHENSIVE
TRAINING

FO
R

TH
E DEVELOPER

WORLD.

Scan the QR code to
register or for more
event details.

vslive.com/lasvegas

Untitled-4 3 1/27/14 11:18 AM

www.vslive.com/lasvegas

msdn magazine26

In a Microsoft technologies environment, using Windows
Communication Foundation (WCF) is a common approach for
creating a client-server system. Th ere are many alternatives to WCF,
of course, each with its own advantages and disadvantages, including
HTTP Web Services, Web API, DCOM, AJAX Web technologies,
named pipe programming and raw TCP socket programming. But
if you take into account factors such as development eff ort, man-
ageability, scalability, performance and security, in many situations
using WCF is the most effi cient approach.

However, WCF can be extremely complicated and might be overkill
for some programming situations. Prior to the release of the Microsoft
.NET Framework 4.5, asynchronous socket programming was,
in my opinion, too diffi cult in most cases to justify its use. But
the ease of using the new C# await and async language features

changes the balance, so using socket programming for asynchronous
client-server systems is now a more attractive option than it used
to be. This article explains how to use these new asynchronous
features of the .NET Framework 4.5 to create low-level, high-
performance asynchronous client-server soft ware systems.

Th e best way to see where I’m headed is to take a look at the demo
client-server system shown in Figure 1. At the top of the image
a command shell is running an asynchronous TCP socket-based
service that accepts requests to compute the average or minimum of
a set of numeric values. In the middle part of the image is a Windows
Forms (WinForm) application that has sent a request to compute
the average of (3, 1, 8). Notice the client is asynchronous—aft er the
request is sent, while waiting for the service to respond, the user is
able to click on the button labeled Say Hello three times, and the
application is responsive.

Th e bottom part of Figure 1 shows a Web application client in
action. The client has sent an asynchronous request to find the
minimum value of (5, 2, 7, 4). Although it’s not apparent from the
screenshot, while the Web application is waiting for the service
response, the application is responsive to user input.

In the sections that follow, I’ll show how to code the service, the
WinForm client and the Web application client. Along the way I’ll
discuss the pros and cons of using sockets. Th is article assumes you
have at least intermediate-level C# programming skill, but does
not assume you have deep understanding or significant experi-
ence with asynchronous programming. Th e code download that

A S YN C PR OGR AMMING

Asynchronous
TCP Sockets as an
Alternative to WCF
James McCaffrey

This article discusses:
• Setting up a TCP socket-based service

• Creating a Windows Forms application demo client

• Creating a Web application demo client

Technologies discussed:
Visual Studio 2012, Microsoft .NET Framework 4.5, C#

Code download available at:
msdn.microsoft.com/magazine/msdnmag0314

http://msdn.microsoft.com/magazine/msdnmag0314

27March 2014msdnmagazine.com

accompanies this article has the complete source code
for the three programs shown in Figure 1. I have
removed most normal error checking to keep the
main ideas as clear as possible.

Creating the Service
Th e overall structure of the demo service, with a few
minor edits to save space, is presented in Figure 2. To
create the service, I launched Visual Studio 2012, which
has the required .NET Framework 4.5, and created a
new C# console application named DemoService.
Because socket-based services tend to have specifi c,
limited functionality, using a more descriptive name
would be preferable in a real-life scenario.

Aft er the template code loaded into the editor, I
modifi ed the using statements at the top of the source
code to include System.Net and System.Net.Sockets.
In the Solution Explorer window, I renamed file
Program.cs to ServiceProgram.cs and Visual Studio
automatically renamed class Program for me. Starting
the service is simple:

int port = 50000;
AsyncService service = new AsyncService(port);
service.Run();

Each custom socket-based service on a server
must use a unique port. Port numbers between 49152
and 65535 are generally used for custom services.
Avoiding port number collisions can be tricky. It’s
possible to reserve port numbers on a server using the
system registry ReservedPorts entry. Th e service uses
an object-oriented programming (OOP) design and
is instantiated via a constructor that accepts the port
number. Because service port numbers are fi xed, the
port number can be hardcoded rather than passed as
a parameter. Th e Run method contains a while loop
that will accept and process client requests until the console shell
receives an <enter> key press.

Th e AsyncService class has two private members, ipAddress and
port. Th ese two values essentially defi ne a socket. Th e constructor
accepts a port number and programmatically determines the IP
address of the server. Public method Run does all the work of
accepting requests, then computing and sending responses. The
Run method calls helper method Process, which in turn calls helper
Response. Method Response calls helpers Average and Minimum.

Th ere are many ways to organize a socket-based server. Th e struc-
ture used in the demo tries to strike a balance between modularity
and simplicity, and has worked well for me in practice.

The Service Constructor and Run Methods
Th e two public methods of the socket-based demo service are presented
in Figure 3. Aft er storing the port name, the constructor uses method
GetHostName to determine the name of the server, and to then fetch a
structure that contains information about the server. Th e AddressList
collection holds diff erent machine addresses, including IPv4 and IPv6
addresses. Th e InterNetwork enum value means an IPv4 address.

Th is approach restricts the server to listen to requests using only
the server’s fi rst assigned IPv4 address. A simpler alternative could
allow the server to accept requests sent to any of its addresses by
just assigning the member fi eld as this.ipAddress = IPAddress.Any.

Notice the service’s Run method signature uses the async modi-
fi er, indicating that in the body of the method some asynchronous
method will be called in conjunction with the await keyword. Th e
method returns void rather than the more usual Task because Run
is called by the Main method, which, as a special case, does not
allow the async modifi er. An alternative is to defi ne method Run
to return type Task and then call the method as service.Run().Wait.

Th e service’s Run method instantiates a TcpListener object using
the server’s IP address and port number. Th e listener’s Start method
begins monitoring the specifi ed port, waiting for a connection request.

Figure 1 Demo TCP-Based Service with Two Clients

Each custom socket-based
service on a server must use a

unique port.

www.msdnmagazine.com

msdn magazine28 Async Programming

Inside the main processing while loop, a TcpClient object, which
you can think of as an intelligent socket, is created and waits for
a connection via the AcceptTcpClientAsync method. Prior to the
.NET Framework 4.5, you’d have to use BeginAcceptTcpClient
and then write custom asynchronous coordination code, which,
believe me, is not simple. Th e .NET Framework 4.5 adds many new
methods that, by convention, end with “Async.” Th ese new methods,
combined with the async and await keywords, make asynchronous
programming much, much easier.

Method Run calls method Process using two statements. An
alternative is to use shortcut syntax and call method Process in a
single statement: await Process(tcpClient).

To summarize, the service uses TcpListener and TcpClient objects
to hide the complexity of raw socket programming, and uses the
new AcceptTcpClientAsync method in conjunction with the new
async and await keywords to hide the complexity of asynchronous
programming. Method Run sets up and coordinates connection
activities, and calls method Process to process requests and then
a second statement to await on the return Task.

The Service Process and Response Methods
The Process and Response methods of the service object are
presented in Figure 4. Th e Process method’s signature uses the
async modifi er and returns type Task.

One of the advantages of using low-level sockets instead of
Windows Communication Foundation (WCF) is that you can
easily insert diagnostic WriteLine statements anywhere you choose.
In the demo, I replaced clientEndPoint with the dummy IP address
value 123.45.678.999 for security reasons.

Th e three key lines in method Process are:
string request = await reader.ReadLineAsync();
...
string response = Response(request);
...
await writer.WriteLineAsync(response);

You can interpret the fi rst statement to mean, “read a line of the
request asynchronously, allowing other statements to execute if
necessary.” Once the request string is obtained, it’s passed to the
Response helper. Th en the response is sent back to the requesting
client asynchronously.

Th e server is using a read-request, write-response cycle. It’s sim-
ple, but there are several caveats of which you should be aware. If
the server reads without writing, it can’t detect a half-open situation.
If the server writes without reading (for example, responding
with a large amount of data), it could deadlock with the client. A

public AsyncService(int port)
{
 this.port = port;
 string hostName = Dns.GetHostName();
 IPHostEntry ipHostInfo = Dns.GetHostEntry(hostName);
 this.ipAddress = null;
 for (int i = 0; i < ipHostInfo.AddressList.Length; ++i) {
 if (ipHostInfo.AddressList[i].AddressFamily ==
 AddressFamily.InterNetwork)
 {
 this.ipAddress = ipHostInfo.AddressList[i];
 break;
 }
 }
 if (this.ipAddress == null)
 throw new Exception("No IPv4 address for server");
}

public async void Run()
{
 TcpListener listener = new TcpListener(this.ipAddress, this.port);
 listener.Start();
 Console.Write("Array Min and Avg service is now running"
 Console.WriteLine(" on port " + this.port);
 Console.WriteLine("Hit <enter> to stop service\n");

 while (true) {
 try {
 TcpClient tcpClient = await listener.AcceptTcpClientAsync();
 Task t = Process(tcpClient);
 await t;
 }
 catch (Exception ex) {
 Console.WriteLine(ex.Message);
 }
 }
}

Figure 3 Service Constructor and Run Methods

using System;
using System.Net;
using System.Net.Sockets;
using System.IO;
using System.Threading.Tasks;
namespace DemoService
{
 class ServiceProgram
 {
 static void Main(string[] args)
 {
 try
 {
 int port = 50000;
 AsyncService service = new AsyncService(port);
 service.Run();
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
 }
 }

 public class AsyncService
 {
 private IPAddress ipAddress;
 private int port;

 public AsyncService(int port) { . . }
 public async void Run() { . . }
 private async Task Process(TcpClient tcpClient) { . . }
 private static string Response(string request)
 private static double Average(double[] vals) { . . }
 private static double Minimum(double[] vals) { . . }
 }
}

Figure 2 The Demo Service Program Structure

One of the advantages of using
low-level sockets instead of

WCF is that you can easily insert
diagnostic WriteLine statements

anywhere you choose.

(888) 850-9911
Sales Hotline - US & Canada:

/update/2014/03

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2014 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular fi le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR, and document
management in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the fl y and extracting text from PDF fi les

BEST SELLER

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

BEST SELLER GdPicture.NET Ultimate from $4,127.59
All-in-one AnyCPU document-imaging and PDF toolkit for .NET and ActiveX.

• Document viewing, processing, printing, scanning, OMR, OCR, Barcode Recognition, DICOM

• Annotate image and PDF within your Windows & Web applications

• Read, write and convert vector & raster images in more than 90 formats, including PDF

• Color detection engine for image and PDF compression

• 100% royalty-free and world leading Imaging SDK

BEST SELLER ComponentOne ActiveReports 8 from $1,567.02
The award-winning .NET reporting tool for HTML5, WPF, WinForms, ASP.NET & Windows Azure.

• Create sophisticated, fast and powerful reports

• Generate fl exible layouts using Section, Region and Fixed page designers

• Experience a new scalable, distributed and load balanced Enterprise-grade report server

• Utilize the just released HTML5 and touch-optimized report viewers for mobile devices

• Explore an array of data visualization options including charts, maps and more

BEST SELLER

Untitled-6 1 1/30/14 12:29 PM

http://www.componentsource.com

msdn magazine30 Async Programming

read-write design is acceptable for simple in-house services but
shouldn’t be used for services that are critical or public-facing.

The Response method accepts the request string, parses the
request and computes a response string. A simultaneous strength and
weakness of a socket-based service is that you must craft some sort
of custom protocol. In this case, requests are assumed to look like:

method=average&data=1.1 2.2 3.3&eor

In other words, the service expects the literal “method=” followed
by the string “average” or “minimum,” then an ampersand character
(“&”) followed by the literal “data=”. Th e actual input data must be in
space-delimited form. Th e request is terminated by an “&” followed
by the literal “eor,” which stands for end-of-request. A disadvan-
tage of socket-based services compared to WCF is that serializing
complex parameter types can be a bit tricky sometimes.

In this demo example, the service response is simple, just a string
representation of the average or minimum of an array of numeric
values. In many custom client-server situations, you’ll have to
design some protocol for the service response. For example,

instead of sending a response just as “4.00,” you might want to send
the response as “average=4.00.”

Method Process uses a relatively crude approach to close a
connection if an Exception occurs. An alternative is to use the C#
using statement (which will automatically close any connection)
and remove the explicit call to method Close.

Helper methods Average and Minimum are defi ned as:
private static double Average(double[] vals)
{
 double sum = 0.0;
 for (int i = 0; i < vals.Length; ++i)
 sum += vals[i];
 return sum / vals.Length;
}
private static double Minimum(double[] vals)
{
 double min = vals[0]; ;
 for (int i = 0; i < vals.Length; ++i)
 if (vals[i] < min) min = vals[i];
 return min;
}

In most situations, if you’re using a program structure similar
to the demo service, your helper methods at this point would
connect to some data source and fetch some data. An advantage
of low-level services is that you have greater control over your
data-access approach. For example, if you’re getting data from
SQL, you can use classic ADO.NET, the Entity Framework or any
other data access method.

A disadvantage of a low-level approach is you must explicitly
determine how to handle errors in your system. Here, if the demo
service is unable to satisfactorily parse the request string, instead of
returning a valid response (as a string), the service returns an error
message. Based on my experience, there are very few general princi-
ples on which to rely. Each service requires custom error handling.

Notice the Response method has a dummy delay:
int delay = ((int)vals[0]) * 1000;
System.Threading.Thread.Sleep(delay);

Th is response delay, arbitrarily based on the fi rst numeric value
of the request, was inserted to slow the service down so that the
WinForm and Web application clients could demonstrate UI
responsiveness while waiting for a response.

The WinForm Application Demo Client
To create the WinForm client shown in Figure 1, I launched Visual
Studio 2012 and created a new C# WinForm application named
DemoFormClient. Note that, by default, Visual Studio modularizes a
WinForm application into several fi les that separate the UI code from
the logic code. For the code download that accompanies this article,
I refactored the modularized Visual Studio code into a single source
code fi le. You can compile the application by launching a Visual Studio

private async Task Process(TcpClient tcpClient)
{
 string clientEndPoint =
 tcpClient.Client.RemoteEndPoint.ToString();
 Console.WriteLine("Received connection request from "
 + clientEndPoint);
 try {
 NetworkStream networkStream = tcpClient.GetStream();
 StreamReader reader = new StreamReader(networkStream);
 StreamWriter writer = new StreamWriter(networkStream);
 writer.AutoFlush = true;
 while (true) {
 string request = await reader.ReadLineAsync();
 if (request != null) {
 Console.WriteLine("Received service request: " + request);
 string response = Response(request);
 Console.WriteLine("Computed response is: " + response + "\n");
 await writer.WriteLineAsync(response);
 }
 else
 break; // Client closed connection
 }
 tcpClient.Close();
 }
 catch (Exception ex) {
 Console.WriteLine(ex.Message);
 if (tcpClient.Connected)
 tcpClient.Close();
 }
}

private static string Response(string request)
{
 string[] pairs = request.Split('&');
 string methodName = pairs[0].Split('=')[1];
 string valueString = pairs[1].Split('=')[1];

 string[] values = valueString.Split(' ');
 double[] vals = new double[values.Length];
 for (int i = 0; i < values.Length; ++i)
 vals[i] = double.Parse(values[i]);

 string response = "";
 if (methodName == "average") response += Average(vals);
 else if (methodName == "minimum") response += Minimum(vals);
 else response += "BAD methodName: " + methodName;

 int delay = ((int)vals[0]) * 1000; // Dummy delay
 System.Threading.Thread.Sleep(delay);

 return response;
}

Figure 4 The Demo Service Process and Response Methods

An advantage of
low-level services is that you

have greater control over your
data-access approach.

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine32 Async Programming

command shell (which knows where the C# compiler is), and exe-
cuting the command: csc.exe /target:winexe DemoFormClient.cs.

Using the Visual Studio design tools, I added a ComboBox control,
a TextBox control, two Button controls and a ListBox control, along
with four Label controls. For the ComboBox control, I added strings
“average” and “minimum” to the control’s Items collection property.
I changed the Text properties of button1 and button2 to Send Async
and Say Hello, respectively. Th en, in design view, I double-clicked
on the button1 and button2 controls to register their event handlers.
I edited the click handlers as shown in Figure 5.

Notice the signature of the button1 control’s click handler was
changed to include the async modifier. The handler sets up a
hardcoded server machine name as a string and port number.
When using low-level socket-based services, there’s no automatic
discovery mechanism and so clients must have access to the server
name or IP address and port information.

Th e key lines of code are:
Task<string> tsResponse = SendRequest(server, port, method, data);
// Perform some actions here if necessary
await tsResponse;
double dResponse = double.Parse(tsResponse.Result);

SendRequest is a program-defi ned asynchronous method. Th e
call can be loosely interpreted as “send an asynchronous request
that will return a string, and when fi nished continue execution at
the statement ‘await tsResponse,’ which occurs later.” Th is allows
the application to perform other actions while waiting for the
response. Because the response is encapsulated in a Task, the
actual string result must be extracted using the Result property.
That string result is converted to type double so that it can be
formatted nicely to two decimal places.

An alternative calling approach is:
string sResponse = await SendRequest(server, port, method, data);
double dResponse = double.Parse(sResponse);
listBox1.Items.Add("Received response: " + dResponse.ToString("F2"));

Here, the await keyword is placed in-line with the asynchronous
call to SendRequest. Th is simplifi es the calling code a bit and also al-
lows the return string to be fetched without a call to Task.Result. Th e
choice of using an inline await call or using a separate-statement await
call will vary from situation to situation, but as a general rule of thumb,
it’s better to avoid the explicit use of a Task object’s Result property.

Most of the asynchronous work is performed in the Send-
Request method, which is listed in Figure 6. Because SendRequest
is asynchronous, it might better be named SendRequestAsync or
MySendRequestAsync.

SendRequest accepts a string representing the server name
and begins by resolving that name to an IP address using the
same code logic that was used in the service class constructor.
A simpler alternative is to just pass the name of the server: await
client.ConnectAsync(server, port).

After the server’s IP address is determined, a TcpClient
intelligent-socket object is instantiated and the object’s Connect-
Async method is used to send a connection request to the server.
Aft er setting up a network StreamWriter object to send data to the
server and a StreamReader object to receive data from the server, a
request string is created using the formatting expected by the server.
Th e request is sent and received asynchronously and returned by
the method as a string.

private static async Task<string> SendRequest(string server,
 int port, string method, string data)
{
 try {
 IPAddress ipAddress = null;
 IPHostEntry ipHostInfo = Dns.GetHostEntry(server);
 for (int i = 0; i < ipHostInfo.AddressList.Length; ++i) {
 if (ipHostInfo.AddressList[i].AddressFamily ==
 AddressFamily.InterNetwork)
 {
 ipAddress = ipHostInfo.AddressList[i];
 break;
 }
 }
 if (ipAddress == null)
 throw new Exception("No IPv4 address for server");

 TcpClient client = new TcpClient();
 await client.ConnectAsync(ipAddress, port); // Connect

 NetworkStream networkStream = client.GetStream();
 StreamWriter writer = new StreamWriter(networkStream);
 StreamReader reader = new StreamReader(networkStream);

 writer.AutoFlush = true;
 string requestData = "method=" + method + "&" + "data=" +
 data + "&eor"; // 'End-of-request'
 await writer.WriteLineAsync(requestData);
 string response = await reader.ReadLineAsync();

 client.Close();
 return response;
 }
 catch (Exception ex) {
 return ex.Message;
 }
}

Figure 6 WinForm Demo Client SendRequest Method

private async void button1_Click(object sender, EventArgs e)
{
 try {
 string server = "mymachine.network.microsoft.com";
 int port = 50000;
 string method = (string)comboBox1.SelectedItem;
 string data = textBox1.Text;
 Task<string> tsResponse = SendRequest(server, port, method, data);
 listBox1.Items.Add("Sent request, waiting for response");
 await tsResponse;
 double dResponse = double.Parse(tsResponse.Result);
 istBox1.Items.Add("Received response: " + dResponse.ToString("F2"));
 }
 catch (Exception ex) {
 listBox1.Items.Add(ex.Message);
 }
}

private void button2_Click(object sender, EventArgs e)
{
 listBox1.Items.Add("Hello");
}

Figure 5 WinForm Demo Client Button Click Handlers

A disadvantage of a low-level
approach is that you must
explicitly determine how to

handle errors in your system.

vslive.com/chicago

CHICAGO 2O14
May 5 - 8 | Chicago Hilton
vslive.com/chicago

4
on

live long
and code Intense Take-Home

Training for Developers,
Software Architects
and Designers

Topics include:

 Visual Studio/.NET

 Windows Client (Windows 8.1/
WinRT/WPF)

 JavaScript/HTML5 Client

 ASP.NET

 Cloud Computing

 Windows Phone

 Cross-Platform Mobile Development

 SharePoint/Of ce

 SQL Server Use promo code CHTIP1

REGISTER BY
APRIL 2 AND
SAVE $200!

Untitled-1 1 1/27/14 10:21 AM

www.vslive.com/chicago

Use promo code CHTIP1

SUPPORTED BY PRODUCED BY

magazine

REGISTER BY
APRIL 2
AND SAVE $200!
vslive.com/chicago

CONNECT WITH VISUAL STUDIO LIVE!

 twitter.com/vslive – @VSLive

 facebook.com – Search ”VSLive”

 linkedin.com – Join the
“Visual Studio Live” group!

CHICAGO 2O14
May 5 – 8 | Chicago Hilton

This May, developers, software
architects, engineers, and designers
will blast off in the windy city for four
days of unbiased and cutting-edge
education on the Microsoft Platform.

Live long and code with .NET gurus,
launch ideas with industry experts
and rub elbows with Microsoft stars
in pre-conference workshops,
60+ sessions and fun networking
events – all designed to make you
better at your job.

Plus, explore hot topics like Web API,
jQuery, MongoDB, SQL Server Data
Tools and more!vslive.com/chicago

Untitled-1 2 1/27/14 10:21 AM

www.vslive.com/chicago
www.vslive.com/chicago
www.twitter.com/vslive
https://www.facebook.com/VSLiveEvents
http://www.linkedin.com/groups?gid=1844781&trk=hb_side_g

33March 2014msdnmagazine.com

The Web Application Demo Client
I created the demo Web application client shown in Figure 1 in
two steps. First, I used Visual Studio to create a Web site to host the
application, and then I coded the Web application using Notepad.
I launched Visual Studio 2012 and created a new C# Empty Web
Site named DemoClient at http://localhost/. This set up all the
necessary IIS plumbing to host an application and created the phys-
ical location associated with the Web site at C:\inetpub\wwwroot\
DemoClient\. Th e process also created a basic confi guration fi le,
Web.confi g, which contains information to allow applications in
the site to access async functionality in the .NET Framework 4.5:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <compilation debug="false" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />
 </system.web>
</configuration>

Next, I launched Notepad with administrative privileges. When
creating simple ASP.NET applications, I sometimes prefer using
Notepad instead of Visual Studio so I can keep all application code
in a single .aspx fi le, rather than generating multiple fi les and un-
wanted example code. I saved the empty file as DemoWeb Client.
aspx at C:\inetpub\wwwroot\DemoClient.

Th e overall structure of the Web application is shown in Figure 7.
At the top of the page I added Import statements to bring the

relevant .NET namespaces into scope, and a Page directive that
includes the Async=true attribute.

The C# script region contains two methods, SendRequest
and Button1_Click. Th e application page body has two TextBox
controls and one Button control for input, an output TextBox con-
trol to hold the service response, and a dummy, unused TextBox

control to demonstrate UI responsiveness while the application
waits for the service to respond to a request.

The code for the Web application’s SendRequest method is
exactly the same as the code in the WinForm application’s Send-
Request. Th e code for the Web application’s Button1_Click handler
diff ers only slightly from the WinForm’s button1_Click handler to
accommodate the diff erent UI:

try {
 string server = "mymachine.network.microsoft.com";
 int port = 50000;
 string method = TextBox1.Text;
 string data = TextBox2.Text;
 string sResponse = await SendRequest(server, port, method, data);
 double dResponse = double.Parse(sResponse);
 TextBox3.Text = dResponse.ToString("F2");
}
catch (Exception ex) {
 TextBox3.Text = ex.Message;
}

Even though the code for the Web application is essentially the
same as the code for the WinForm application, the calling mech-
anism is quite a bit diff erent. When a user makes a request using
the WinForm, the WinForm issues the call directly to the service
and the service responds directly to the WinForm. When a user
makes a request from the Web application, the Web application
sends the request information to the Web server that’s hosting
the application, the Web server makes the call to the service, the
service responds to the Web server, the Web server constructs a
response page that includes the response and the response page is
sent back to the client browser.

Wrapping Up
So, when should you consider using asynchronous TCP sockets
instead of WCF? Roughly 10 years ago, before the creation of WCF
and its predecessor technology ASP.NET Web Services, if you wanted
to create a client-server system, using sockets was oft en the most log-
ical option. Th e introduction of WCF was a big advance, but because
of the huge number of scenarios WCF is designed to handle, using it
for simple client-server systems might be overkill in some situations.
Although the latest version of WCF is easier to configure than
previous versions, it can still be tricky to work with WCF.

For situations where the client and server are on diff erent networks,
making security a major consideration, I always use WCF. But for
many client-server systems where client and server are located on a
single secure enterprise network, I oft en prefer using TCP sockets.

A relatively new approach for implementing client-server sys-
tems is to use the ASP.NET Web API framework for HTTP-based
services combined with the ASP.NET SignalR library for asyn-
chronous methods. Th is approach, in many cases, is simpler to
implement than using WCF and avoids many of the low-level
details involved with a socket approach.

DR. JAMES MCCAFFREY works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products including Internet Explorer and Bing. He
can be reached at jammc@microsoft .com.

THANKS to the following technical experts for their advice and for reviewing
this article: Piali Choudhury (MS Research), Stephen Cleary (consultant),
Adam Eversole (MS Research) Lynn Powers (MS Research) and
Stephen Toub (Microsoft)

<%@ Page Language="C#" Async="true" AutoEventWireup="true"%>
<%@ Import Namespace="System.Threading.Tasks" %>
<%@ Import Namespace="System.Net" %>
<%@ Import Namespace="System.Net.Sockets" %>
<%@ Import Namespace="System.IO" %>

<script runat="server" language="C#">
 private static async Task<string> SendRequest(string server,
 private async void Button1_Click(object sender, System.EventArgs e) { . . }
</script>

<head>
 <title>Demo</title>
</head>

<body>
 <form id="form1" runat="server">
 <div>

 <p>Enter service method:
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox></p>
 <p>Enter data:
 <asp:TextBox ID="TextBox2" runat="server"></asp:TextBox></p>
 <p><asp:Button Text="Send Request" id="Button1"
 runat="server" OnClick="Button1_Click"> </asp:Button> </p>
 <p>Response:
 <asp:TextBox ID="TextBox3" runat="server"></asp:TextBox></p>
 <p>Dummy responsive control:
 <asp:TextBox ID="TextBox4" runat="server"></asp:TextBox></p>

 </div>
 </form>
</body>
</html>

Figure 7 Web Application Demo Client Structure

www.msdnmagazine.com
mailto:jammc@microsoft.com

msdn magazine34

A majority of Microsoft .NET Framework developers
have spent most of their professional lives on the server side, coding
with C# or Visual Basic .NET when building Web applications. Of
course, JavaScript has been used for simple things such as modal
windows, validation, AJAX calls and so on. However, JavaScript
(client-side code for the most part) has been leveraged as a utility
language, and applications were largely driven from the server side.

Lately there’s been a huge trend of Web application code
migrating from the server side to the client side (browser) to meet
users’ expectations for fl uid and responsive UX. With this being
the case, a lot of .NET developers (especially in the enterprise) are
dealing with an extreme amount of anxiety about JavaScript best
practices, architecture, unit testing, maintainability and the recent

explosion of diff erent kinds of JavaScript libraries. Part of the trend
of moving to the client side is the increasing use of single-page
applications (SPAs). To say that SPA development is the future
is an extreme understatement. SPAs are how some of the best
applications on the Web off er fl uid UX and responsiveness, while
minimizing payloads (traffi c) and round-trips to the server.

In this article, I’ll address the anxieties you might experience when
making the transition from the server side into the SPA realm. Th e
best way to deal with these anxieties is to embrace JavaScript as a
fi rst-class language just like any .NET language, such as C#, Visual
Basic .NET, Python and so on.

Following are some fundamental principles of .NET development
that are sometimes ignored or forgotten when developing apps
in JavaScript:

• Your code base is manageable in .NET because you’re
decisive with class boundaries and where classes actually
live within your projects.

A S P. N E T MVC 5

A .NET Developer
Primer for Single-Page
Applications
Long Le

This article discusses:
• Steps to convert an ASP.NET MVC 5 application to a single-page

application (SPA)
• Setting up an SPA infrastructure
• Adding create, read, update and delete functionality

Technologies discussed:
ASP.NET MVC 5, JavaScript, Single-Page Applications, Kendo UI,
RequireJS, Entity Framework, Web API, OData

Code download available at:
easyspa.codeplex.com

To say that SPA development
is the future is an extreme

understatement.

http://easyspa.codeplex.com

35March 2014msdnmagazine.com

• You separate concerns, so you don’t
have classes that are responsible for
hundreds of different things with
overlapping responsibilities.

• You have reusable repositories, queries,
entities (models) and data sources.

• You put some thought into naming
your classes and fi les so they’re
more meaningful.

• You practice good use of design patterns,
coding conventions and organization.

Because this article is for .NET developers
who are being introduced to the SPA world,
I’ll incorporate the least number of frame-
works possible to build a manageable SPA
with sound architecture.

Creating an SPA in Seven Key Steps
Following are seven key steps to convert a
new ASP.NET Web Application that was
created with the out-of-the-box Visual
Studio 2013 ASP.NET MVC template into
an SPA (with references to the appropriate
project fi les that can be found in the accom-
panying code download).

1. Download and install the NuGet
packages RequireJS, RequireJS text
plug-in and Kendo UI Web.

2. Add a confi guration module
(Northwind.Web/Scripts/app/main.js).

3. Add an app module (Northwind.Web/Scripts/app/app.js).
4. Add a router module (Northwind.Web/Scripts/app/router.js).
5. Add an action and view both named Spa (Northwind.

Web/Controllers/HomeController.cs and Northwind.
Web/Views/Home/Spa.cshtml).

6. Modify the _ViewStart.cshtml fi le so MVC will load
views without using the _Layout.cshtml fi le by default
(Northwind.Web/Views/_ViewStart.cshtml).

7. Update the layout navigation (menu)
links to match the new SPA-friendly
URLs (Northwind.Web/Views/Shared/
_Layout.cshtml).

Aft er these seven steps have been carried
out, your Web application project structure
should look something like Figure 1.

I’ll show how to build an awesome SPA
in ASP.NET MVC with the following
JavaScript libraries, available via NuGet:

• RequireJS (requirejs.org): Th is is a Java-
Script fi le and module loader. RequireJS
will provide #include/import/require
APIs and the ability to load nested
dependencies with dependency
injection (DI). Th e RequireJS design
approach uses the Asynchronous
Module Definition (AMD) API for
JavaScript modules, which helps to
encapsulate pieces of code into useful
units. It also provides an intuitive way to
refer to other units of code (modules).
RequireJS modules also follow the
module pattern (bit.ly/18byc2Q). A simpli-
fi ed implementation of this pattern uses
JavaScript functions for encapsulation.
You’ll see this pattern in action later as
all JavaScript modules will be wrapped
within a “defi ne” or “require” function.

Those familiar with DI and Inversion of Control (IoC)
concepts can think of this as a client-side DI framework. If that’s
as clear as mud at the moment, no worries—I’ll soon get into
some coded illustrations where all this will make sense.

• Text plug-in for RequireJS (bit.ly/1cd8lTZ): Th is will be used to
remotely load chunks of HTML (views) into the SPA.

• Entity Framework (bit.ly/1bKiZ9I): Th is is pretty self-explanatory,
and because the focus of this article is on SPA, I won’t get too
much into Entity Framework. However, if you’re new to this,
there’s plenty of documentation available.

• Kendo UI Web (bit.ly/t4VkVp): Th is is a comprehensive JavaScript/
HTML5 framework that encompasses Web UI Widgets, Data-
Sources, templates, the Model-View-ViewModel (MVVM)
pattern, SPAs, styling, and so on to help deliver a responsive and
adaptive application that will look great.

require.config({
 paths: {
 // Packages
 'jquery': '/scripts/jquery-2.0.3.min',
 'kendo': '/scripts/kendo/2013.3.1119/kendo.web.min',
 'text': '/scripts/text',
 'router': '/scripts/app/router'
 },
 shim : {
 'kendo' : ['jquery']
 },
 priority: ['text', 'router', 'app'],
 jquery: '2.0.3',
 waitSeconds: 30
});

require([
 'app'
], function (app) {
 app.initialize();
});

Figure 2 RequireJS Confi guration

Figure 1 ASP.NET MVC Project Structure

Registered Route (Defi nition) Actual Full (Bookmarkable) URL
/ localhost:25061/home/spa/home/index
/home/index localhost:25061/home/spa/#/home/index/

home/about
/home/about localhost:25061/home/spa/#/home/

about/home/contact
/home/contact localhost:25061/home/spa/#/home/

contact/customer/index
/customer/index localhost:25061/home/spa/#/customer/index

Figure 3 Registered Route Defi nitions and Corresponding URLs

www.msdnmagazine.com
www.requirejs.org
www.bit.ly/18byc2Q
www.bit.ly/1cd8lTZ
www.bit.ly/1bKiZ9I
www.bit.ly/t4VkVp

msdn magazine36 ASP.NET MVC 5

Setting up the SPA Infrastructure
To show how to set up the SPA infrastructure, fi rst I’ll explain how
to create the RequireJS (confi g) module (Northwind.Web/Scripts/
app/main.js). Th is module will be the app start-up entry point. If
you’ve created a console app, you can think of this as the Main
entry point in Program.cs. It basically contains the fi rst class and
the method that’s called when the SPA starts up. Th e main.js fi le
basically serves as the SPA’s manifest and is where you’ll define
where all things in the SPA are and their dependencies, if any. Th e
code for RequireJS confi guration is shown in Figure 2.

In Figure 2, the paths property contains a list of where all the
modules are located and their names. Shim is the name of a module
defi ned previously. Th e shim property includes any dependencies
the module may have. In this case, you’re loading a module named
kendo and it has a dependency on a module
named jquery, so if a module requires the
kendo module, go ahead and load jQuery
fi rst, because jQuery has been defi ned as a
dependency for the kendo module.

In Figure 2, the code “require([],
function(){})” will load in the next module,
which is the module I named app. Note
that I’ve deliberately given meaningful
names to modules.

So, how does your SPA know to invoke
this module fi rst? You confi gure this on
the fi rst landing page in the SPA with the
data-main attribute in the script reference
tag for RequireJS. I’ve specifi ed that it run
the main module (main.js). RequireJS will
handle all the heavy lifting involved in
loading this module; you just have to tell
it which module to load fi rst.

You have two options for SPA views that
will be loaded into the SPA: standard HTML
(*.html) or ASP.NET MVC Razor (*.cshtml)
pages. Because this article is intended for .NET
developers—and a lot of enterprises have
server-side libraries and frameworks they’d
like to continue using in their views—I’ll go
with the latter option of creating Razor views.

I’ll start off by adding a view and name
it Spa.cshtml, as mentioned previously.

Th is view will basically load up the shell or all the HTML for the
layout of the SPA. From this view, I’ll load in the other views (for
example, About.cshtml, Contact.cshtml, Index.cshtml and so on)
as the user navigates through the SPA, by swapping the views that
replace all the HTML in the “content” div.

Creating the SPA Landing Page (Layout) (Northwind.Web/
Views/Spa.cshtml) Because the Spa.cshtml view is the SPA’s
landing page where you’ll load in all your other views, there won’t
be much markup here, other than referencing the required style
sheets and RequireJS. Note the data-main attribute in the following
code, which tells RequireJS which module to load fi rst:

@{
 ViewBag.Title = "Spa";
 Layout = "~/Views/Shared/_Layout.cshtml";
}

<link href=
 "~/Content/kendo/2013.3.1119/kendo.common.min.css" rel="stylesheet" />
<link href=
 "~/Content/kendo/2013.3.1119/kendo.bootstrap.min.css" rel="stylesheet" />
<script src=
 "@Url.Content("~/scripts/require.js")"
 data-main="/scripts/app/main"></script>
<div id="app"></div>

Adding an Action for the SPA Layout (Northwind.Web/
Controllers/HomeController.cs) To create and load the Spa.cshtml
view, add an action and view:

public ActionResult Spa()
{
 return View();
}

Create the Application Module
(Northwind.Web/Scripts/app/app.js)
Here’s the Application module, respon-
sible for initializing and starting the
Kendo UI Router:
 define([
 'router'
], function (router) {
 var initialize = function() {
 router.start();
 };

 return {
 initialize: initialize
 };
 });

Create the Router Module (North-
wind.Web/Scripts/app/router.js) Th is
is called by app.js. If you’re already familiar
with ASP.NET MVC routes, it’s the same
notion here. Th ese are the SPA routes for
your views. I’ll defi ne all the routes for all
the SPA views so when the user navigates
through the SPA, the Kendo UI router will
know what views to load into the SPA. See
Listing 1 in the accompanying download.

Th e Kendo UI Router class is responsible
for tracking the application state and nav-
igating between the application states. Th e
router integrates into the browser history
using the fragment part of the URL (#page),
making the application states bookmark-
able and linkable. When a routable URL Figure 4 A Best-Practice Solution Structure

You have two options
for SPA views that will be loaded

into the SPA: standard HTML
(*.html) or ASP.NET MVC Razor

(*.cshtml) pages.

Alexsys Team®

Free Trial and Single User FreePack™
available at Alexcorp.com

Alexsys Team® Features Include:

Untitled-1 1 7/15/13 10:18 AM

www.alexcorp.com

msdn magazine38 ASP.NET MVC 5

is clicked, the router kicks in and tells the application to put itself
back into the state that was encoded into the route. Th e route defi -
nition is a string representing a path used to identify the state of
the application the user wants to see. When a route defi nition is
matched from the browser’s URL hash fragment, the route handler
is called (see Figure 3).

As for the Kendo UI layout widget, its name speaks for itself.
You’re probably familiar with the ASP.NET Web Forms MasterPage
or MVC layout included in the project when you create a new
ASP.NET MVC Web Application. In this SPA project, it’s located
at the path Northwind.Web/Views/Shared/_Layout.cshtml. Th ere’s
little diff erence between the Kendo UI layout and MVC layout,
except the Kendo UI layout runs on the client side. Just as the lay-
out worked on the server side, where the MVC runtime would
swap out the content of the layout with other views, the Kendo UI

layout works the same exact way. You swap out the view (content)
of the Kendo UI layout using the showIn method. View contents
(HTML) will be placed in the div with the ID “content,” which
was passed into the Kendo UI layout when it was initialized. Aft er
initializing the layout, you then render it inside the div with the ID
“app,” which is a div in the landing page (Northwind.Web/Views/
Home/Spa.cshtml). I’ll review that shortly.

Th e loadView helper method takes in a view model, a view and—if
needed—a callback to invoke once the view and view model binding
takes place. Within the loadView method, you leverage the Kendo
UI FX library to aesthetically enhance the UX by adding some
simple animation to the view swapping process. Th is is done by
sliding the current loaded view to the left , remotely loading in the
new view and then sliding the new loaded view back to the center.
Obviously, you can easily change this to a variety of different
animations using the Kendo UI FX library. One of the key benefi ts
of using the Kendo UI layout is shown when you invoke the show-
In method to swap out views. It will ensure the view is unloaded,
destroyed properly and removed from the browser’s DOM, thus
ensuring the SPA can scale and is performant.

<div class="demo-section">
 <div class="k-content" style="width: 100%">
 <div id="grid"
 data-role="grid"
 data-sortable="true"
 data-pageable="true"
 data-filterable="true"
 data-editable="inline"
 data-selectable="true"
 data-toolbar='[{ template: kendo.template($("#toolbar").html()) }]'
 data-columns='[
 { field: "CustomerID", title: "ID", width: "75px" },
 { field: "CompanyName", title: "Company"},
 { field: "ContactName", title: "Contact" },
 { field: "ContactTitle", title: "Title" },
 { field: "Address" },
 { field: "City" },
 { field: "PostalCode" },
 { field: "Country" },
 { field: "Phone" },
 { field: "Fax" }]'
 data-bind="source: dataSource, events:
 { change: onChange, dataBound: onDataBound }">
 </div>
 <style scoped>
 #grid .k-toolbar {
 padding: 15px;
 }

 .toolbar {
 float: right;
 }
 </style>
 </div>
</div>

<script type="text/x-kendo-template" id="toolbar">
 <div>
 <div class="toolbar">

 Edit

 Delete

 Edit Details
 </div>
 <div class="toolbar" style="display:none">

 Save

 Cancel
 </div>
 </div>
</script>

Figure 5 Customer Grid View Markup with an MVVM Widget
and Event Bindings

The Kendo UI Router class is
responsible for tracking the

application state and navigating
between the application states.

public class CustomerController : EntitySetController<Customer, string>
{
 private readonly NorthwindContext _northwindContext;

 public CustomerController()
 {
 _northwindContext = new NorthwindContext();
 }

 public override IQueryable<Customer> Get()
 {
 return _northwindContext.Customers;
 }

 protected override Customer GetEntityByKey(string key)
 {
 return _northwindContext.Customers.Find(key);
 }

 protected override Customer UpdateEntity(string key, Customer update)
 {
 _northwindContext.Customers.AddOrUpdate(update);
 _northwindContext.SaveChanges();
 return update;
 }

 public override void Delete(string key)
 {
 var customer = _northwindContext.Customers.Find(key);
 _northwindContext.Customers.Remove(customer);
 _northwindContext.SaveChanges();
 }
}

Figure 6 Customer Web API OData Controller

There are many .NET ‘Rich Text Editors’ out there...

www.textcontrol.com

There is only one

Meh, sorry!

/txtextcontrol US: +1 855-533-TEXT
EU: +49 421 427 067-10

Untitled-5 1 2/4/14 11:43 AM

http://www.textcontrol.com
https://twitter.com/txtextcontrol
https://www.facebook.com/txtextcontrol
https://plus.google.com/+textcontrol/posts

msdn magazine40 ASP.NET MVC 5

Edit the _ViewStart.cshtml View (Northwind.Web/Views/
_ViewStart.cshtml) Here’s how to confi gure all views to not use
the ASP.NET MVC layout by default:

@{
 Layout = null;
}

At this point, the SPA should be working. When clicking on
any of the navigation links on the menu, you see the current
content is being swapped out via AJAX thanks to the Kendo UI
router and RequireJS.

These seven steps needed to convert a fresh ASP.NET Web
Application into an SPA aren’t too bad, are they?

Now that the SPA is up and running, I’ll go ahead and do what
most developers will end up doing with an SPA, which is adding
some create, read, update and delete (CRUD) functionality.

Adding CRUD Functionality to the SPA
Here are the key steps needed to add a Customer grid view to the
SPA (and the related project code fi les):

• Add a CustomerController MVC controller
(Northwind.Web/Controllers/CustomerController.cs).

• Add a REST OData Customer Web API controller
(Northwind.Web/Api/CustomerController.cs).

• Add a Customer grid view (Northwind.Web/Views/
Customer/Index.cshtml).

• Add a CustomerModel module (Northwind.Web/Scripts/
app/models/CustomerModel).

• Add a customerDatasource module for the Customer
grid (Northwind.Web/Scripts/app/datasources/
customer Datasource.js).

• Add an indexViewModel module for the Customer
grid view (Northwind.Web/Scripts/app/viewModels/
indexViewModel.js).

Setting Up the Solution Struc-
ture with Entity Framework Figure
4 shows the solution structure,
high lighting three projects: North-
wind.Data (1), Northwind.Entity
(2) and Northwind.Web (3). I’ll
briefly discuss each, along with
Entity Framework Power Tools.
• Northwind.Data: Th is

includes everything related
to the Entity Framework
Object-Relational Mapping
(ORM) tool, for persistence.

• Northwind.Entity: Th is
includes domain entities,
composed of Plain Old CLR
Object (POCO) classes. Th ese
are all the persistent-ignorant
domain objects.

• Northwind.Web: Th is includes
the ASP.NET MVC 5 Web
Application, the presentation
layer, where you’ll build out
the SPA with two previously

public static void Register(HttpConfiguration config)
{
 // Web API configuration and services

 ODataModelBuilder modelBuilder = new ODataConventionModelBuilder();

 var customerEntitySetConfiguration =
 modelBuilder.EntitySet<Customer>("Customer");

 customerEntitySetConfiguration.EntityType.Ignore(t => t.Orders);
 customerEntitySetConfiguration.EntityType.Ignore(t =>
 t.CustomerDemographics);

 var model = modelBuilder.GetEdmModel();
 config.Routes.MapODataRoute("ODataRoute", "odata", model);

 config.EnableQuerySupport();

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 "DefaultApi", "api/{controller}/{id}",
 new {id = RouteParameter.Optional});
}

Figure 7 Confi guring ASP.NET MVC Web API Routes for OData

Figure 8 Querying the Customer Controller Web API OData Via a LINQPad Query

There’s little difference between
the Kendo UI layout and MVC
layout, except the Kendo UI

layout runs on the client side.

41March 2014msdnmagazine.com

mentioned libraries—Kendo UI and RequireJS—and the rest of
the server-side stack: Entity Framework, Web API and OData.

• Entity Framework Power Tools: To create all the POCO
entities and mappings (database-fi rst), I used the Entity
Framework Power Tools from the Entity Framework
team (bit.ly/1cdobhk). After the code generation, all I did
here is simply copy the entities into a separate project
(Northwind.Entity) to address separation concerns.

Note: Both the Northwind SQL install script and a backup of the
database are included in the downloadable source code under the
Northwind.Web/App_Data folder (bit.ly/1cph5qc).

Now that the solution is set up to access the database, I’ll go ahead
and write the MVC CustomerController.cs class to serve up the
index and edit views. Because the controller’s only responsibility is to
serve up an HTML view for the SPA, the code here will be minimal.

Creating MVC Customer Controller (Northwind.Web/
Controllers/CustomerController.cs) Here’s how to create the
Customer controller with the actions for the index and edit views:

public class CustomerController : Controller
{
 public ActionResult Index()
 {
 return View();
 }

 public ActionResult Edit()
 {
 return View();
 }
}

Creating the View with the Customers Grid (Northwind.Web/
Views/Customers/Index.cshtml) Figure 5 shows how to create
the view with the Customers grid.

If the markup in Figure 5 isn’t familiar, don’t panic—it’s just the
Kendo UI MVVM (HTML) markup. It simply confi gures an HTML
element, in this case the div with an ID of “grid.” Later on when
you bind this view to a view model with the Kendo UI MVVM
framework, this markup will be converted to Kendo UI widgets.
You can read more on this at bit.ly/1d2Bgfj.

Creating MVC (OData) Web API Customer Controller (North-
wind.Web/Api/CustomerController.cs) Now I’ll show how to
create the MVC (OData) Web API Customer controller. OData is a
data-access protocol for the Web that provides a uniform way to query

define(['kendo'],
 function (kendo) {
 var customerModel = kendo.data.Model.define({
 id: "CustomerID",
 fields: {
 CustomerID: { type: "string", editable: false, nullable: false },
 CompanyName: { title: "Company", type: "string" },
 ContactName: { title: "Contact", type: "string" },
 ContactTitle: { title: "Title", type: "string" },
 Address: { type: "string" },
 City: { type: "string" },
 PostalCode: { type: "string" },
 Country: { type: "string" },
 Phone: { type: "string" },
 Fax: { type: "string" },
 State: { type: "string" }
 }
 });
 return customerModel;
 });

Figure 9 Creating the Customer (Kendo UI Observable) Model

define(['kendo', 'customerDatasource'],
 function (kendo, customerDatasource) {
 var lastSelectedDataItem = null;

 var onClick = function (event, delegate) {
 event.preventDefault();
 var grid = $("#grid").data("kendoGrid");
 var selectedRow = grid.select();
 var dataItem = grid.dataItem(selectedRow);
 if (selectedRow.length > 0)
 delegate(grid, selectedRow, dataItem);
 else
 alert("Please select a row.");
 };

 var indexViewModel = new kendo.data.ObservableObject({

 save: function (event) {
 onClick(event, function (grid) {
 grid.saveRow();
 $(".toolbar").toggle();
 });
 },

 cancel: function (event) {
 onClick(event, function (grid) {
 grid.cancelRow();
 $(".toolbar").toggle();
 });
 },

 details: function (event) {
 onClick(event, function (grid, row, dataItem) {
 router.navigate('/customer/edit/' + dataItem.CustomerID);
 });
 },

 edit: function (event) {
 onClick(event, function (grid, row) {
 grid.editRow(row);
 $(".toolbar").toggle();
 });
 },

 destroy: function (event) {
 onClick(event, function (grid, row, dataItem) {
 grid.dataSource.remove(dataItem);
 grid.dataSource.sync();
 });
 },

 onChange: function (arg) {
 var grid = arg.sender;
 lastSelectedDataItem = grid.dataItem(grid.select());
 },

 dataSource: customerDatasource,

 onDataBound: function (arg) {
 // Check if a row was selected
 if (lastSelectedDataItem == null) return;
 // Get all the rows
 var view = this.dataSource.view();
 // Iterate through rows
 for (var i = 0; i < view.length; i++) {
 // Find row with the lastSelectedProduct
 if (view[i].CustomerID == lastSelectedDataItem.CustomerID) {
 // Get the grid
 var grid = arg.sender;
 // Set the selected row
 grid.select(grid.table.find("tr[data-uid='" + view[i].uid + "']"));
 break;
 }
 }
 },
 });

 return indexViewModel;

 });

Figure 10 The Customer Grid View Model

www.msdnmagazine.com
www.bit.ly/1cdobhk
www.bit.ly/1cph5qc
www.bit.ly/1d2Bgfj

msdn magazine42 ASP.NET MVC 5

and manipulate data sets through CRUD operations. Using ASP.NET
Web API, it’s easy to create an OData endpoint. You can control which
OData operations are exposed. You can host multiple OData endpoints
alongside non-OData endpoints. You have full control over your data
model, back-end business logic and data layer. Figure 6 shows the
code for the Customer Web API OData controller.

Th e code in Figure 6 just creates an OData Web API controller
to expose Customer data from the Northwind database. Once this
is created, you can run the project, and with tools such as Fiddler
(a free Web debugger at fi ddler2.com) or LINQPad, you can actually
query customer data.

Confi guring and Exposing OData from the Customer Table for
the Grid (Northwind.Web/App_Start/WebApiConfi g.cs) Figure
7 confi gures and exposes OData from the Customer table for the grid.

Querying OData Web API with LINQPad If you haven’t used
LINQPad (linqpad.net) yet, please add this tool to your developer
toolkit; it’s a must-have and is available in a free version. Figure 8
shows LINQPad with a connection to the Web API OData
(localhost:2501/odata), displaying the results of the LINQ query,
“Customer.Take (100).”

Creating the (Observable) Customer Model (Northwind.Web/
Scripts/app/models/customerModel.js) Next is creating the
(Kendo UI Observable) Customer model. You can think of this
as a client-side Customer entity domain model. I created the
Customer model so it can easily be reused by both the Customer
grid view and the edit view. Th e code is shown in Figure 9.

Creating a DataSource for the Customers Grid (North-
wind.Web/Scripts/app/datasources/customersDatasource.js)
If you’re familiar with data sources from ASP.NET Web Forms,
the concept is the same here, where you create a data source for

the Customers grid (Northwind.Web/
Scripts/app/datasources/customers-
Datasource.js). The Kendo UI Data-
Source (bit.ly/1d0Ycvd) component is an
abstraction for using local (arrays of
JavaScript objects) or remote (XML,
JSON or JSONP) data. It fully supports
CRUD data operations and provides
both local and server-side support
for sorting, paging, fi ltering, grouping
and aggregates.

Creating the View Model for the
Customers Grid View If you’re familiar
with MVVM from Windows Presenta-
tion Foundation (WPF) or Silverlight,
this is the same exact concept, just on
the client side (found in this project in
Northwind.Web/Scripts/ViewModels/
Customer/indexViewModel.cs). MVVM
is an architectural separation pattern
used to separate the view and its data
and business logic. You’ll see in a bit
that all the data, business logic and so
on is in the view model and that the
view is purely HTML (presentation).
Figure 10 shows the code for the
Customer grid view.Figure 12 The Customer Grid View with MVVM Using the Index View Model

paths: {
 // Packages
 'jquery': '/scripts/jquery-2.0.3.min',
 'kendo': '/scripts/kendo/2013.3.1119/kendo.web.min',
 'text': '/scripts/text',
 'router': '/scripts/app/router',
 // Models
 'customerModel': '/scripts/app/models/customerModel',
 // View models
 'customer-indexViewModel': '/scripts/app/viewmodels/customer/indexViewModel',
 'customer-editViewModel': '/scripts/app/viewmodels/customer/editViewModel',
 // Data sources
 'customerDatasource': '/scripts/app/datasources/customerDatasource',
 // Utils
 'util': '/scripts/util'
}

Figure 11 RequireJS Confi guration Additions

OData is a data-access protocol
for the Web that provides a
uniform way to query and

manipulate data sets through
CRUD operations.

www.fiddler2.com
www.linqpad.net
www.bit.ly/1d0Ycvd

Pioneers of high-performance data visualization

The fastest rendering data visualization components

for WPF and WinForms...

Results compared to average of other chart controls. See details at
www.LightningChart.com/benchmark. LightningChart results apply for Ultimate edition.

Opening large dataset LightningChart is up to faster977,000 %

WPF charts performance comparison

Winforms charts performance comparison

Real-time monitoring LightningChart is up to faster2,700,000 %

Opening large dataset LightningChart is up to faster37,000 %

Real-time monitoring LightningChart is up to faster2,300,000 %

�Entirely DirectX GPU accelerated

�Superior 2D and 3D rendering performance

�Optimized for real-time data monitoring

�Touch-enabled operations

�Supports gigantic data sets

�On-line and off-line maps

�Great customer support

�Compatible with Visual Studio 2005...2013

LightningChartLightningChart

Download a free 30-day evaluation from

 www.LightningChart.com

HEAVY-DUTY DATA VISUALIZATION TOOLS FOR SCIENCE, ENGINEERING AND TRADING

Untitled-1 1 1/29/14 10:10 AM

http://www.LightningChart.com/benchmark
http://www.LightningChart.com

msdn magazine44 ASP.NET MVC 5

I’ll briefl y describe various components of the code in Figure 10:
• onClick (helper): Th is method is a helper function, which

gets an instance of the Customer grid, the current selected
row and a JSON model of the representation of the
Customer for the selected row.

• save: Th is saves changes when doing an inline edit
of a Customer.

• cancel: Th is cancels out of inline edit mode.
• details: Th is navigates the SPA to the edit Customer view,

appending the Customer’s ID to the URL.
• edit: Th is activates inline editing for the current

selected Customer.
• destroy: Th is deletes the current selected Customer.
• onChange (event): Th is fi res every time a Customer is

selected. You store the last selected Customer so you can
maintain state. Aft er performing any updates or navigating
away from the Customer grid, when navigating back to the
grid you reselect the last selected Customer.

Now add customerModel, indexViewModel and customersData-
source modules to your RequireJS confi guration (Northwind.Web/
Scripts/app/main.js). Th e code is shown in Figure 11.

Figure 13 Edit View Markup with an MVVM Widget and Event Binding

<div class="demo-section">
 <div class="k-block" style="padding: 20px">
 <div class="k-block k-info-colored">
 Note: Please fill out all of the fields in this form.
 </div>
 <div>
 <dl>
 <dt>
 <label for="companyName">Company Name:</label>
 </dt>
 <dd>
 <input id="companyName" type="text"
 data-bind="value: Customer.CompanyName" class="k-textbox" />
 </dd>
 <dt>
 <label for="contactName">Contact:</label>
 </dt>
 <dd>
 <input id="contactName" type="text"
 data-bind="value: Customer.ContactName" class="k-textbox" />
 </dd>
 <dt>
 <label for="title">Title:</label>
 </dt>
 <dd>
 <input id="title" type="text"
 data-bind="value: Customer.ContactTitle" class="k-textbox" />
 </dd>
 <dt>
 <label for="address">Address:</label>
 </dt>
 <dd>
 <input id="address" type="text"
 data-bind="value: Customer.Address" class="k-textbox" />
 </dd>
 <dt>
 <label for="city">City:</label>
 </dt>
 <dd>
 <input id="city" type="text"
 data-bind="value: Customer.City" class="k-textbox" />
 </dd>
 <dt>
 <label for="zip">Zip:</label>
 </dt>
 <dd>
 <input id="zip" type="text"
 data-bind="value: Customer.PostalCode" class="k-textbox" />
 </dd>
 <dt>
 <label for="country">Country:</label>

 </dt>
 <dd>
 <input id="country" type="text"
 data-bind="value: Customer.Country" class="k-textbox" />
 </dd>
 <dt>
 <label for="phone">Phone:</label>
 </dt>
 <dd>
 <input id="phone" type="text"
 data-bind="value: Customer.Phone" class="k-textbox" />
 </dd>
 <dt>
 <label for="fax">Fax:</label>
 </dt>
 <dd>
 <input id="fax" type="text"
 data-bind="value: Customer.Fax" class="k-textbox" />
 </dd>
 </dl>

 <button data-role="button"
 data-bind="click: saveCustomer"
 data-sprite-css-class="k-icon k-i-tick">Save</button>
 <button data-role="button" data-bind="click: cancel">Cancel</button>

 <style scoped>
 dd
 {
 margin: 0px 0px 20px 0px;
 width: 100%;
 }

 label
 {
 font-size: small;
 font-weight: normal;
 }

 .k-textbox
 {
 width: 100%;
 }

 .k-info-colored
 {
 padding: 10px;
 margin: 10px;
 }
 </style>
 </div>
 </div>
</div>

define([],
 function () {

 var util;

 util = {

 getId:
 function () {
 var array = window.location.href.split('/');
 var id = array[array.length - 1];
 return id;
 }
 };

 return util;

 });

Figure 14 The Utility Module

Untitled-1 1 2/7/14 11:02 AM

www.alachisoft.com
mailto:sales@alachisoft.com

msdn magazine46 ASP.NET MVC 5

Add a Route for the New Customers Grid View Note that in
the loadView callback (in Northwind.Web/Scripts/app/router.js)
you’re binding the toolbar of the grid aft er it has been initialized
and MVVM binding has taken place. Th is is because the fi rst time
you bind your grid, the toolbar hasn’t initialized, because it exists in
the grid. When the grid is fi rst initialized via MVVM, it will load
in the toolbar from the Kendo UI template. When it’s loaded into
the grid, you then bind only the toolbar to your view model so the
buttons in your toolbar are bound to the save and cancel methods
in your view model. Here’s the relevant code to register the route
defi nition for the Customer edit view:

router.route("/customer/index", function () {
 require(['customer-indexViewModel', 'text!/customer/index'],
 function (viewModel, view) {
 loadView(viewModel, view, function () {
 kendo.bind($("#grid").find(".k-grid-toolbar"), viewModel);
 });
 });
});

You now have a fully functional Customers grid view. Load up
localhost:25061/Home/Spa#/customer/index (the port number will
likely vary on your machine) in a browser and you’ll see Figure 12.

Wiring Up the Customers Edit View Here are the key steps to
add a Customer edit view to the SPA:

• Create a customer edit view bound to your Customer
model via MVVM

(Northwind.Web/Views/Customer/Edit.cshtml).
• Add an edit view model module for the Customer

edit view (Northwind.Web/Scripts/app/viewModels/
editViewModel.js).

• Add a utility helper module to get IDs from the URL
(Northwind.Web/Scripts/app/util.js).

Because you’re using the Kendo UI framework, go ahead and
style your edit view with Kendo UI styles. You can learn more about

that at bit.ly/1f3zWuC. Figure 13 shows the edit view markup with an
MVVM widget and event binding.

Create a Utility to Get the ID of the Customer from the URL
Because you’re creating concise modules with clean boundaries
to create a nice separation of concerns, I’ll demonstrate how to
create a Util module where all of your utility helpers will reside.
I’ll start with a utility method that can retrieve the customer ID
in the URL for the Customer DataSource (Northwind.Web/
Scripts/app/datasources/customerDatasource.js), as shown
in Figure 14.

Add the Edit View Model and Util Modules to the RequireJS
Configuration (Northwind.Web/Scripts/app/main.js) The
code in Figure 15 shows RequireJS confi guration additions for
the Customer edit modules.

Add the Customer Edit View Model (Northwind.Web/Scripts/
app/viewModels/editViewModel.js) Th e code in Figure 16 shows
how to add a Customer edit view model.

I’ll briefl y describe various components of the code in Figure 16:
• saveCustomer: Th is method is responsible for saving any

changes on the Customer. It also resets the DataSource’s
fi lter so the grid will be hydrated with all Customers.

• cancel: Th is method will navigate the SPA back to the
Customer grid view. It also resets the DataSource’s fi lter
so that the grid will be hydrated with all Customers.

• filter: This invokes the DataSource’s filter method and
queries for a specifi c Customer by the ID that’s in the URL.

require.config({
 paths: {
 // Packages
 'jquery': '/scripts/jquery-2.0.3.min',
 'kendo': '/scripts/kendo/2013.3.1119/kendo.web.min',
 'text': '/scripts/text',
 'router': '/scripts/app/router',
 // Models
 'customerModel': '/scripts/app/models/customerModel',
 // View models
 'customer-indexViewModel': '/scripts/app/viewmodels/customer/indexViewModel',
 'customer-editViewModel': '/scripts/app/viewmodels/customer/editViewModel',
 // Data sources
 'customerDatasource': '/scripts/app/datasources/customerDatasource',
 // Utils
 'util': '/scripts/util'
 },
 shim : {
 'kendo' : ['jquery']
 },
 priority: ['text', 'router', 'app'],
 jquery: '2.0.3',
 waitSeconds: 30
 });

require([
 'app'
], function (app) {
 app.initialize();
});

Figure 15 RequireJS Confi guration Additions
for the Customer Edit Modules

define(['customerDatasource', 'customerModel', 'util'],
 function (customerDatasource, customerModel, util) {

 var editViewModel = new kendo.data.ObservableObject({

 loadData: function () {
 var viewModel = new kendo.data.ObservableObject({
 saveCustomer: function (s) {
 customerDatasource.sync();

 customerDatasource.filter({});
 router.navigate('/customer/index');
 },
 cancel: function (s) {
 customerDatasource.filter({});
 router.navigate('/customer/index');
 }
 });

 customerDatasource.filter({
 field: "CustomerID",
 operator: "equals",
 value: util.getId()
 });

 customerDatasource.fetch(function () {
 console.log('editViewModel fetching');
 if (customerDatasource.view().length > 0) {
 viewModel.set("Customer", customerDatasource.at(0));
 } else
 viewModel.set("Customer", new customerModel());
 });
 return viewModel;
 },
 });

 return editViewModel;
 });

Figure 16 Customer Edit View Model Module
for the Customer View

www.bit.ly/1f3zWuC

47March 2014msdnmagazine.com

• fetch: This invokes the DataSource’s fetch method after
setting up the fi lter. In the callback of the fetch, you set the
Customer property of your view model with the Customer
that was returned from your DataSource fetch, which will
be used to bind to your Customer edit view.

When RequireJS loads a module, code within the “defi ne” method
body will only get invoked once—which is when RequireJS loads
the module—so you expose a method (loadData) in your edit view
model so you have a mechanism to load data aft er the edit view
model module has already been loaded (see this in Northwind.Web/
Scripts/app/router.js).

Add a Route for the New Customer Edit View (Northwind.Web/
Scripts/app/router.js) Here’s the relevant code to add the router:

 router.route("/customer/edit/:id",
 function () {

 require(['customer-editViewModel',
 'text!/customer/edit'],

 function (viewModel, view) {
 loadView(viewModel.loadData(), view);
 });
 });

Note that when the Customer edit view
model is requested from RequireJS, you’re
able to retrieve the Customer by invoking
the loadData method from the view model.
This way you’re able to load the correct
Customer data based on the ID that’s in the
URL each and every time the Customer
edit view is loaded. A route doesn’t have to
be just a hardcoded string. It can also con-
tain parameters, such as a back-end server
router (Ruby on Rails, ASP.NET MVC,
Django and so on). To do this, you name
a route segment with a colon before the
variable name you want.

You can now load the Customer edit view
in the browser (localhost:25061/Home/
Spa#/customer/edit/ANATR) and see the
screen depicted in Figure 17.

Note: Although the delete (destroy)
functionality on the Customer grid view has been wired up, when
clicking the “Delete” button in the toolbar (see Figure 18), you’ll
see an exception, as shown in Figure 19.

This exception is by design, because most Customer IDs are
foreign keys in other tables, for example, Orders, Invoices and so
on. You’d have to wire up a cascading delete that would delete all
records from all tables where Customer ID is a foreign key.
Although you aren’t able to delete anything, I still wanted to show
the steps and code for the delete functionality.

So there you have it. I’ve demonstrated how quick and easy it is
to convert an out-of-the-box ASP.NET Web Application into an
SPA using RequireJS and Kendo UI. Th en I showed how easy it is
to add CRUD-like functionality to the SPA.

You can see a live demo of the project at
bit.ly/1bkMAlK and you can see the CodePlex
project site (and downloadable code) at easys-

pa.codeplex.com.
Happy coding!

LONG LE is the principal .NET app/dev architect at CBRE
Inc. and a Telerik/Kendo UI MVP. He spends most of his
time developing frameworks and application blocks, pro-
viding guidance for best practices and patterns and stan-
dardizing the enterprise technology stack. He has been
working with Microsoft technologies for more than 10
years. In his spare time, he enjoys blogging (blog.longle.
net) and playing Call of Duty. You can reach and follow
him on Twitter at twitter.com/LeLong37.

THANKS to the following technical experts for
reviewing this article: Derick Bailey (Telerik) and
Mike Wasson (Microsoft)

Figure 17 The Customer Edit View

Figure 18 The Customer Grid View

Figure 19 Expected Exception When Deleting a Customer Due to CustomerID
Foreign Key Referential Integrity

www.msdnmagazine.com
www.bit.ly/1bkMAlK
http://easyspa.codeplex.com
http://easyspa.codeplex.com
http://blog.longle.net
http://blog.longle.net
www.twitter.com/LeLong37

PRODUCED BYSUPPORTED BY

magazine

live long
and code

Untitled-9 2 2/6/14 12:53 PM

www.vslive.com/chicago

vslive.com/chicago

This May, developers, software architects,
engineers, and designers will blast off in the
windy city for four days of unbiased and
cutting-edge education on the Microsoft
Platform. Live long and code with .NET gurus,
launch ideas with industry experts and rub
elbows with Microsoft stars in pre-conference
workshops, 60+ sessions and fun networking
events – all designed to make you better at your
job. Plus, explore hot topics like Web API,
jQuery, MongoDB, SQL Server Data Tools
and more!

Tracks Include:
Visual Studio/.NET Framework
Windows Client
JavaScript/HTML5 Client
ASP.NET
Cloud Computing
Windows Phone
Cross-Platform Mobile Development
SharePoint
SQL Server

TURN THE PAGE FOR MORE EVENT DETAILS

Register by April 2
and Save $200!
Use promo code VSLMAR4

Scan the QR code to
register or for more
event details.

CHICAGO 2O14
May 5 – 8 | Chicago Hilton

Untitled-9 3 2/6/14 12:53 PM

www.vslive.com/chicago

AGENDA AT-A-GLANCE

" Several of the
presentations were
cutting edge – they
would have insider
tips that you can’t
easily search for or
wouldn’t know to
look for.”
John Kilic
Web Application Developer
Grand Canyon University

START TIME END TIME Visual Studio Live! Pre-Conference Workshops: Monday, May 5,

7:30 AM 9:00 AM Pre-Conference Workshop Registration

9:00 AM 6:00 PM MW01 - Workshop: Modern UX Design - Billy Hollis

6:00 PM 9:00 PM Dine-A-Round Dinner

START TIME END TIME Visual Studio Live! Day 1: Tuesday, May 6, 2014

7:00 AM 8:00 AM Registration

8:00 AM 9:00 AM Keynote: To Be Announced

9:15 AM 10:30 AM T01 - What's New in WinRT Development
- Rockford Lhotka

T02 - What's New in the Visual Studio
2013 IDE

10:45 AM 12:00 PM T05 - What's New for XAML Windows
Store Apps - Ben Dewey

T06 - ALM with Visual Studio 2013 and Team
Foundation Server 2013 - Brian Randell

12:00 PM 1:30 PM Lunch - Visit Exhibitors

1:30 PM 2:45 PM T09 - Interaction Design Principles and
Patterns - Billy Hollis

T10 - What's New for Web Developers in
Visual Studio this Year? - Mads Kristensen

3:00 PM 4:15 PM T13 - Applying UX Design in XAML -
Billy Hollis

T14 - Why Browser Link Changes Things,
and How You Can Write Extensions? -
Mads Kristensen

4:15 PM 4:45 PM Networking Break - Visit Exhibitors

4:45 PM 6:00 PM T17 - What's New for HTML/WinJS
Windows Store Apps - Ben Dewey

T18 - Katana, OWIN, and Other Awesome
Codenames: What's coming? -
Howard Dierking

6:00 PM 7:30 PM Exhibitor Welcome Reception

START TIME END TIME Visual Studio Live! Day 2: Wednesday, May 7, 2014
7:00 AM 8:00 AM Registration

8:00 AM 9:00 AM Keynote: To Be Announced

9:15 AM 10:30 AM W01 - Windows 8 HTML/JS Apps for the
ASP.NET Developer - Adam Tuliper

W02 - Creating Data-Driven Mobile Web
Apps with ASPNET MVC and jQuery Mobile
- Rachel Appel

10:45 AM 12:00 PM W05 - Developing Awesome 3D
Applications with Unity and
C#/JavaScript - Adam Tuliper

W06 - Getting Started with Xamarin -
Walt Ritscher

12:00 PM 1:30 PM Birds-of-a-Feather Lunch & Exhibitor Raf e at 1:15pm MUST be present to win

1:30 PM 2:45 PM W09 - What's New in WPF 4.5 -
Walt Ritscher

W10 - Building Multi-Platform Mobile Apps
with Push Noti cations - Nick Landry

3:00 PM 4:15 PM W13 - Implementing M-V-VM
(Model-View-View Model) for WPF -
Philip Japikse

W14 - Getting Started with Windows Phone
Development - Nick Landry

4:30 PM 5:45 PM W17 - Build Maintainable Windows Store
Apps with MVVM and Prism - Brian Noyes

W18 - Build Your First Mobile App in 1 Hour
with Microsoft App Studio - Nick Landry

7:00 PM 9:00 PM Blues after Dark at Buddy Guy’s Legends

START TIME END TIME Visual Studio Live! Day 3: Thursday, May 8, 2014
7:30 AM 8:00 AM Registration

8:00 AM 9:15 AM TH01 - Leveraging Windows Azure Web
Sites (WAWS) - Rockford Lhotka

TH02 - To Be Announced

9:30 AM 10:45 AM TH05 - Zero to Connected with Windows
Azure Mobile Services - Brian Noyes

TH06 - Essential C# 6.0 - Mark Michaelis

11:00 AM 12:15 PM TH09 - Building Services with ASP.NET
MVC Web API Deep Dive - Marcel de Vries

TH10 - Performance and Diagnostics Hub
in Visual Studio 2013 - Brian Peek

12:15 PM 1:30 PM Lunch

1:30 PM 2:45 PM TH13 - Beyond Hello World: A Practical
Introduction to Node.js on Windows
Azure Websites - Rick Garibay

TH14 - Visual Studio 2013 Release Manager:
Reduce Your Cycle Time to Improve Your
Value Delivery - Marcel de Vries

3:00 PM 4:15 PM TH17 - From the Internet of Things to
Intelligent Systems: A Developer's
Primer - Rick Garibay

TH18 - Create Automated Cross Browser
Testing of Your Web Applications with
Visual Studio CodedUI - Marcel de Vries

4:30 PM 5:30 PM Conference Wrap-Up Panel: Andrew Brust, Miguel Castro, Rockford Lhotka, Ted Neward,

*Speakers and sessions subject to change

Visual Studio /
.NET Framework

Windows
Client

Cloud
Computing

Windows
Phone

Cross-Platform
Mobile

Development

Untitled-9 4 2/6/14 12:54 PM

www.vslive.com/chicago

, 2014 (Separate entry fee required)

MW02 - Workshop: Data-Centric Single Page
Applications with Durandal, Knockout, Breeze,
and Web API - Brian Noyes

MW03 - Workshop: SQL Server for Developers -
Andrew Brust & Leonard Lobel

T03 - HTML5 for Better Web Sites -
Robert Boedigheimer

T04 - Introduction to Windows Azure - Vishwas Lele

m T07 - Great User Experiences with CSS 3 -
Robert Boedigheimer

T08 - Windows Azure Cloud Services - Vishwas Lele

T11 - Build Angular Applications Using TypeScipt -
Part 1 - Sergey Barskiy

T12 - Windows Azure SQL Database – SQL Server in
the Cloud - Leonard Lobel

T15 - Build Angular Applications Using TypeScipt -
Part 2 - Sergey Barskiy

T16 - Solving Security and Compliance Challenges with
Hybrid Clouds - Eric D. Boyd

T19 - Building Real Time Applications with ASP.NET
SignalR - Rachel Appel

T20 - Learning Entity Framework 6 - Leonard Lobel

e
W03 - Leveraging Visual Studio Online -
Brian Randell

W04 - Programming the T-SQL Enhancements in
SQL Server 2012 - Leonard Lobel

W07 - JavaScript for the C# Developer -
Philip Japikse

W08 - SQL Server 2014: Features Drill-down - Scott Klein

ps W11 - Build Data-Centric HTML5 Single Page
Applications with Breeze - Brian Noyes

W12 - SQL Server 2014 In-memory OLTP - Deep Dive -
Scott Klein

e W15 - Knocking it Out of the Park, with Knockout.
JS - Miguel Castro

W16 - To Be Announced

ur W19 - JavaScript: Turtles, All the Way Down -
Ted Neward

W20 - Building Apps for SharePoint - Mark Michaelis

TH03 - What's New in MVC 5 - Miguel Castro TH04 - Excel, Power BI and You: An Analytics Superhub
- Andrew Brust

TH07 - What's New in Web API 2 - Miguel Castro TH08 - Big Data 101 with HDInsight - Andrew Brust

TH11 - Upgrading Your Existing ASP.NET Apps -
Pranav Rastogi

TH12 - NoSQL for the SQL Guy - Ted Neward

: TH15 - Finding and Consuming Public Data APIs -
G. Andrew Duthie

TH16 - Git for the Microsoft Developer - Eric D. Boyd

TH19 - Provide Value to Customers and
Enhance Site Stickiness By Creating an API -
G. Andrew Duthie

TH20 - Writing Asynchronous Code Using .NET 4.5
and C# 5.0 - Brian Peek

d, & Brian Peek

ASP.NET JavaScript / HTML5
Client SharePoint SQL Server

vslive.com/chicago

CONNECT WITH VISUAL STUDIO LIVE!

twitter.com/vslive – @VSLive

facebook.com – Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group!

CHICAGO 2O14
May 5 – 8 | Chicago Hilton

Scan the QR code to
register or for more
event details.

REGISTER BY APRIL 2
AND SAVE $200!
Use Promo Code VSLMAR4

Visual Studio Live! Chicago Blues After Dark
Reception at Buddy Guy's Legends

Untitled-9 5 2/6/14 12:54 PM

www.vslive.com/chicago
www.vslive.com/chicago
https://twitter.com/VSLive
https://www.facebook.com/VSLiveEvents
http://www.linkedin.com/groups?gid=1844781&trk=hb_side_g

msdn magazine52

The Human Interface Device (HID) protocol was origi-
nally intended to simplify the use of devices such as mice, keyboards
and joysticks. However, because of its unique features—including
its self-descriptive nature—device manufacturers use the protocol
to support medical devices, health and fi tness devices, and custom
sensors. If you’re new to the HID API, refer to the USB HID
Information site (bit.ly/1mbtyTz) to fi nd more information. Another
great resource is Jan Axelson’s book, “USB Complete: Th e Devloper’s
Guide, Fourth Edition” (Lakeview Research LLC, 2009).

Prior to Windows 8.1, if you were writing an application for a
HID device you wrote a native Win32 app. But if you were a Web
or a .NET developer, the ramp was steep. To address this, Microsoft

introduced the HID Windows Runtime (WinRT) API with
Windows 8.1 (bit.ly/1aot1by). Th is new API lets you write Windows
Store apps for your device using JavaScript, Visual Basic, C# or C++.

In addition, Microsoft recently added support for several new
transports, so you aren’t limited to a USB cable. Today, you can
create a HID device that transmits and receives packets over USB,
Bluetooth, Bluetooth LE, and I2C. (For more information, see “HID
Transports” at bit.ly/1asvwg6.)

In this article, I’ll show how you can build a simple temperature
sensor that’s compatible with the HID protocol. Th en I’ll describe
a sample Windows Store app that can display temperature data
from the device.

Constructing the Temperature Sensor
The sample device is based on the Netduino development board
(netduino.com). Th is open source board is used by hobbyists, academics
and industrial engineers to build working prototype devices. And,
because the Netduino is pin-compatible with the Arduino, you can
attach your Arduino shields to quickly add functionality. (A shield
is a board with specifi c functionality, such as wireless communi-
cation, motor control, Ethernet, RS232, LCD display and so on.)
My sample device uses an RS232 shield to download the fi rmware.
It uses the onboard USB connector to transmit and receive data.

Th e Netduino supports the .NET Micro Framework and its fi rm-
ware is created with a free copy of Visual C# Express.

To obtain temperature data, the sample device uses the Texas
Instruments LM35 sensor. Th e sensor takes 5 volts of input from

WIN DOWS 8 . 1

Building a
Netduino-Based HID
Sensor for WinRT
Donn Morse

This article discusses:
• Building a temperature-sensor device

• The beta fi rmware for the Netduino

• The sensor fi rmware

• The HID protocol

• The HID temperature-sensor app

Technologies discussed:
Windows 8.1, HID WinRT API, Microsoft .NET Micro Framework,
C#, Netduino Board

Code download available at:
msdn.microsoft.com/magazine/msdnmag0314

http://msdn.microsoft.com/magazine/msdnmag0314
www.bit.ly/1mbtyTz
www.bit.ly/1aot1by
www.bit.ly/1asvwg6
www.netduino.com

53March 2014msdnmagazine.com

the Netduino and converts it into an output voltage proportional
to the current Celsius temperature.

Here are the parts you need to build your own HID sensor:
• Netduino 1 or Netduino Plus 1 (Amazon, amzn.to/1dvTeLh): A

development board with programmable microcontroller
that supports the .NET Micro Framework.

• RS232 shield (CuteDigi, bit.ly/1j7uaMR): Th e RS232 module
for downloading and debugging the fi rmware. (Th is shield
is required for the beta version of the fi rmware being used.)

• LM35 Sensor (DigiKey, bit.ly/KjbQkN): Th e temperature sen-
sor that converts input voltage to output voltage based on
the current temperature.

• RS232-to-USB converter cable (Parallax, bit.ly/1iVmP0a): Th e
cable for downloading the temperature-sensor fi rmware via
the RS232 shield. (Note that an FTDI chipset is required
for compatibility with the shield.)

• 9V 650mA power supply (Amazon, amzn.to/1d6R8LH): Th e
power supply for the Netduino board.

• USB to Micro-USB cable (Amazon, amzn.to/Kjc8Ii): The
cable for sending HID packets from the Netduino to your
Windows 8.1 tablet or laptop.

Figure 1 shows the complete HID temperature sensor setup.
Th e RS232 shield is attached to the top of the Netduino. Th e

breadboard contains the LM35 sensor, which is attached to 5V,
ground and Pin 0. (Pin 0 is one of six analog-to-digital [ADC] pins
on the board). So, let’s get started.

Th e fi rmware your Netduino 1 (or Netduino Plus 1) comes with
doesn’t support the HID protocol. You’ll need to confi gure your
development board by installing version 4.1.1 of
the beta firmware, which includes support for
HID. You’ll fi nd a zip folder containing the beta
fi rmware at bit.ly/1a7f6MB. (You’ll need to create an
account by registering with Secret Labs in order
to download the fi le.)

Th e download page on the Web site includes
instructions for updating the fi rmware. However,
these instructions are fairly complex, particularly
if you’re new to the Netduino. Th e video at bit.ly/
1d73P9x is a helpful, concise description of the
fi rmware upgrade process.

Aft er you’ve upgraded the fi rmware on your board, you’re ready
to begin constructing the temperature-sensor circuit. Th e fi rst step
requires you to attach the RS232 shield to your board. (As I already
mentioned, the Netduino is pin-compatible with the Arduino, so if
you’ve been working with the Arduino and have an RS232 shield
handy, you can use it.) Snap the RS232 shield onto the Netduino
as shown in Figure 2.

Aft er you’ve attached the RS232 shield, the next step is to attach
the temperature sensor to the 5V power source, ground and pin
0 of the Netduino. Figure 3, from the TI datasheet for the sensor,
shows the pin-outs.

Installing the Sensor Firmware
Th ere are two layers, or instances, of fi rmware on the Netduino.
Th e fi rst is the manufacturer’s fi rmware, which includes the .NET
Micro Framework; the second is your device’s fi rmware. Th e man-
ufacturer’s fi rmware processes requests from the device fi rmware.
Th e manufacturer’s fi rmware is loaded once onto the development
board and executes each time you power up the device. In contrast,
you typically refresh your device fi rmware multiple times during
the development and prototyping process.

In order to install any device fi rmware, you fi rst need to install
an instance of Visual C# Express 2010 on your development
machine. You’ll fi nd a link to the download at bit.ly/1eRBed1.

For most Netduino projects, you can download and debug your
fi rmware using the native USB connection. However, the beta ver-
sion of the manufacturer’s fi rmware requires an RS232 connection
(which is why the RS232 shield is required).

Once Visual C# Express is installed, attach the
RS232-to-USB cable and open Windows Device
Manager to determine which COM port Windows
assigned to that cable.

When I attached the Parallax RS232-to-USB
converter to my development machine, Windows
mapped it to COM6, as Figure 4 shows.

Now that I know the COM port associated
with the converter, I can power up my Netduino
Plus 1, attach the RS232-to-USB cable, and start
an instance of Visual C# Express to complete
the download.

Figure 2 Attaching the RS232 Shield to the Netduino

Figure 3 The Sensor Pin-Outs

Figure 1 The Complete HID Temperature Sensor Setup

www.msdnmagazine.com
www.amzn.to/1dvTeLh
www.bit.ly/1j7uaMR
www.bit.ly/KjbQkN
www.bit.ly/1iVmP0a
www.amzn.to/1d6R8LH
www.amzn.to/Kjc8Ii
www.bit.ly/1a7f6MB
www.bit.ly/1d73P9x
www.bit.ly/1d73P9x
www.bit.ly/1eRBed1

msdn magazine54 Windows 8.1

Th e fi rst thing to do aft er starting Visual C# Express is to identify
the correct transport and COM port. You do this by right-clicking
on the project name in the Solution Explorer pane and choosing
the Properties menu.

When the Properties dialog appears, choose the .NET Micro Frame-
work tab and make the necessary selections, as shown in Figure 5.

After specifying the Transport and Device, you can deploy
the fi rmware. Again, right-click the project name in the Solution
Explorer pane and, this time, choose Deploy.

When the deployment completes, Visual C# Express will report
the success in the Output pane.

You’re now ready to attach your device to a Windows 8.1 tablet or
laptop and test it with the Custom Temperature Sensor sample app.

First, detach the RS232 cable, power down the Netduino, and then
restart it with the auxiliary power supply. Give the device several sec-
onds to power up and then attach the USB cable to the Netduino.
Aft er doing this, you should see your device added to the
collection of HID devices in Device Manager. (Th e VID
and PID in Figure 6 correspond to the VID and PID of
the sample device; these are the vendor and product IDs.)

Once the device is installed on your Windows 8.1
machine, you’ll want to install and build the sample app.
When the app starts, you can select the sensor and begin
monitoring the ambient temperature in your offi ce.

The Device Firmware
Now let’s take a detailed look at the device fi rmware
for the temperature sensor. At the outset, I’d like to
thank the folks at Secret Labs (the manufacturers of
the Netduino) for the work they’ve done to support
HID over USB on the Netduino platform. Th e starting
point for this fi rmware was a sample on the forum, the
UsbHidEchoNetduinoApp, available at bit.ly/1eUYxAM.

Supporting the USB Transport As I noted earlier, Microsoft
supports HID devices running over USB, Bluetooth, Bluetooth LE
and I2C. However, the sample device described in this article uses
the USB transport. What this actually means is that USB drivers will
be moving packets in both directions: packets originating with the
device are passed up to the HID driver (which passes them on to
the API if there are interested apps); packets originating with the
HID driver are passed back down to the device.

Windows uses specifi c data issued by the device upon connec-
tion to identify which USB drivers it should load.

Defi ning the Firmware Classes Th e fi rmware for the tempera-
ture-sensor device is built around two classes: Program and Sensor.
Th e Program class supports a single Main routine that’s invoked
at startup. Th e Sensor class defi nes the USB and HID settings for
the temperature sensor. In addition, it supports the methods that
send input reports and read output reports.

Th e Sensor class contains all of the code required to confi gure
the USB transport. Th is includes the code that:

• Confi gures a read endpoint
• Confi gures a write endpoint
• Specifi es the vendor ID (VID)
• Specifi es the product ID (PID)
• Specifi es friendly names (manufacturer name, product

name and so on)
• Specifi es other required USB settings for a HID device

Most of the USB confi guration code is found in the Confi gure-
HID method in the Sensors.cs module. Th is method, in turn, creates

Figure 5 Confi guring the .NET Micro Framework Properties

The fi rst thing to do after
starting Visual C# Express is to
identify the correct transport

and COM port.
Figure 4 The COM Port Assigned to the RS232-to-USB Cable

www.bit.ly/1eUYxAM

Untitled-1 1 10/10/13 10:10 AM

www.atalasoft.com

msdn magazine56 Windows 8.1

and initializes a Confi guration object (bit.ly/1i1IcQ3) that contains the
device’s USB settings (endpoints, VID, PID and so on).

Th e read endpoint allows the device to receive packets from the
API and the HID driver. Th e write endpoint allows the driver to
send packets up through the driver stack to the API.

Windows uses the vendor ID, product ID, and other USB
settings (which were specifi ed in the Confi gureHID method) to
determine whether the device is a valid USB device and then to
load the appropriate drivers.

Opening the Device Connection Th e Sensor class includes
an Open method that’s called from within the Main routine of
the Program class. As you can see in Figure 7, the Open method:

• Retrieves the available USB controllers
• Invokes the Confi gureHID method to establish the device’s

USB and HID settings
• Invokes the Start method on the fi rst available controller
• Creates a USB stream object with read and write endpoints

Th e Sensor class also includes a Close method, which is called
when the device is detached from the host laptop or tablet.

Supporting the HID Protocol
The HID protocol is based on reports: feature reports, input
reports and output reports. Feature reports can be sent by either
the host (that is, a connected laptop or tablet) or the device. Input
reports are sent by the device to the host. Output reports are sent
by the host to the device.

In the case of our sample temperature sensor, the input report is
a very simple two-byte packet. Th e fi rst byte specifi es the current
temperature in degrees Fahrenheit; the second byte indicates the

current report interval in millisec-
onds. (The sensor firmware issues
an input report at the frequency
specifi ed by the report interval.)

Th e output report for the sample
device is even simpler—it’s a single
byte that specifi es the report interval.
(Th is is an integer value that repre-
sents the interval in milliseconds.)

Creating the Report Descriptor
As I mentioned earlier, one of the
features of a HID device is its self-
reporting nature: Upon connecting
to a host, the device provides a
description of its purpose, capabili-
ties and packet format in what’s called
a report descriptor. Th is descriptor
indicates where the device fi ts in the
HID universe (is it a mouse, a key-
board, a vendor-defi ned device?). Th e
descriptor also specifi es the format of
the individual feature reports, input
reports and output reports.

The report descriptor for the
temperature sensor is found in
Sensors.cs, as shown in Figure 8.

Th e fi rst two lines of the descriptor inform the host that this
particular device is vendor-defi ned:

0x06,0x55,0xFF, //HID_USAGE_PAGE_VENDOR_DEFINED
0x09,0xA5, //HID_USAGE (vendor_defined)

Lines four through 15 indicate the format of the two-byte input
report. Lines four through nine describe the fi rst byte of the input
report, which specifi es the temperature reading:

0x09,0xA7, //HID_USAGE (vendor_defined)
0x15,0x00, //HID_LOGICAL_MIN_8(0), // Minimum temp is 0 degrees F
0x25,0x96, //HID_LOGICAL_MAX_8(150), // Max supported temp is
 // 150 degrees F
0x75,0x08, //HID_REPORT_SIZE(8),
0x95,0x01, //HID_REPORT_COUNT(1),
0x81,0x02, //HID_INPUT(Data_Var_Abs),

The 10th through 15th lines describe the second byte of the
input report, which specifi es the report interval (in milliseconds):

0x09,0xA8, //HID_USAGE (vendor_defined)
0x15,0x4B, //HID_LOGICAL_MIN_8(75), // minimum 75 ms
0x25,0xFF, //HID_LOGICAL_MAX_8(255), // maximum 255 ms
0x75,0x08, //HID_REPORT_SIZE(8),
0x95,0x01, //HID_REPORT_COUNT(1),
0x81,0x02, //HID_INPUT(Data_Var_Abs),

Th e report descriptor for the sample device is included as part
of the UsbController.Configuration object (bit.ly/1cvcq5G) that’s
created within the Confi gureHID method in Sensor.cs.

Figure 6 The Vendor and Product IDs of the Sample Device

The HID protocol is based on
reports: feature reports, input
reports and output reports.

www.bit.ly/1i1IcQ3
www.bit.ly/1cvcq5G

Untitled-1 1 1/13/14 10:11 AM

www.spreadsheetgear.com

msdn magazine58 Windows 8.1

Supporting the HID Input Report Th e input report is defi ned
as a structure in the Sensor.cs module:

struct InputReport
{
 public byte Temperature; // Temperature in degrees Fahrenheit
 public byte Interval; // Report interval (or frequency) in seconds
}

Th e fi rmware issues input reports using the UsbStream object
(bit.ly/1kElfUZ) it created in the Open method. Th ese input reports
are issued from the SendInputReport method when the fi rmware
invokes the stream.Write method:

protected void SendInputReport(InputReport report)
{

 byte[] inputReport = new byte[2];

 inputReport[0] = (byte)report.Temperature;
 inputReport[1] = (byte)report.Interval;

 stream.Write(inputReport, 0, 2);
}

Issuing Temperature Data with Input Reports Th e Update method
in the Sensor class issues an input report to the connected host:

public int Update(int iTemperature, int iInterval)
{
 InputReport inputReport = new InputReport();
 byte Interval = 0;

 inputReport.Temperature = (byte)iTemperature;
 inputReport.Interval = (byte)iInterval;

 SendInputReport(inputReport);

 Interval = GetOutputReport();
 return (int)Interval;
}

Th e Update method is invoked from within an infi nite while
loop, shown in Figure 9, which executes in the fi rmware’s Main
routine (found in Program.cs).

Supporting the HID Output Report The output report is
defi ned as a structure in the Sensor.cs module:

struct OutputReport
{
 public byte Interval; // Report interval (or frequency) in seconds
}

Th e fi rmware receives output reports via the same UsbStream
object it created in the Open method. These output reports are
received within the GetOutputReport method:

protected byte GetOutputReport()
{
 byte[] outputReport = new byte[1];
 int bytesRead = 0;
 if (stream.CanRead)
 {
 bytesRead = stream.Read(outputReport, 0, 1);
 }
 if (bytesRead > 0)
 return outputReport[0];
 else
 return 0;
}

 hidGenericReportDescriptorPayload = new byte[]
 {
 0x06,0x55,0xFF, //HID_USAGE_PAGE_VENDOR_DEFINED
 0x09,0xA5, //HID_USAGE (vendor_defined)

 0xA1,0x01, //HID_COLLECTION(Application),

 // Input report (device-transmits)
 0x09,0xA7, //HID_USAGE (vendor_defined)
 0x15,0x00, //HID_LOGICAL_MIN_8(0), // Minimum temp is 0 degrees F
 0x25,0x96, //HID_LOGICAL_MAX_8(150), // Max supported temp is
 // 150 degrees F
 0x75,0x08, //HID_REPORT_SIZE(8),
 0x95,0x01, //HID_REPORT_COUNT(1),
 0x81,0x02, //HID_INPUT(Data_Var_Abs),

 0x09,0xA8, //HID_USAGE (vendor_defined)
 0x15,0x4B, //HID_LOGICAL_MIN_8(75), // minimum 75 ms
 0x25,0xFF, //HID_LOGICAL_MAX_8(255), // maximum 255 ms
 0x75,0x08, //HID_REPORT_SIZE(8),
 0x95,0x01, //HID_REPORT_COUNT(1),
 0x81,0x02, //HID_INPUT(Data_Var_Abs),

 // Output report (device-receives)
 0x09,0xA9, //HID_USAGE (vendor_defined)
 0x15,0x4B, //HID_LOGICAL_MIN_8(75), // minimum 75 ms
 0x25,0xFF, //HID_LOGICAL_MAX_8(255), // maximum 255 ms
 0x75,0x08, //HID_REPORT_SIZE(8),
 0x95,0x01, //HID_REPORT_COUNT(1),
 0x91,0x02, //HID_OUTPUT(Data_Var_Abs),

 0xC0 //HID_END_COLLECTION

 };

Figure 8 The Report Descriptor for the Temperature Sensor

This new API lets your app
retrieve data from HID devices,

and control them as well.

public bool Open()
{
 bool succeed = true;

 started = false;

 UsbController[] usbControllers = UsbController.GetControllers();

 if (usbControllers.Length < 1)
 {
 succeed = false;
 }

 if (succeed)
 {
 usbController = usbControllers[0];

 try
 {

 succeed = ConfigureHID();

 if (succeed)
 {
 succeed = usbController.Start();
 }

 if (succeed)
 {
 stream = usbController.CreateUsbStream(WRITE_ENDPOINT, READ_ENDPOINT);
 }
 }
 catch (Exception)
 {
 succeed = false;
 }
 }

 started = true;
 return succeed;
}

Figure 7 The Open Method

www.bit.ly/1kElfUZ

59March 2014msdnmagazine.com

Adjusting the Report Interval with Output Reports The
firmware supports a report interval specified in milliseconds.
The minimum supported interval is 75 ms; the maximum
interval is 255 ms. An app requests a new interval by sending an
output report to the device. The device, in turn, reports
the current interval in each input report that it sends to any
connected app.

The firmware applies the current interval by
invoking the Th read.Sleep method (bit.ly/LaSYVF) for the
number of seconds specifi ed by the current interval:

led.Write(true);
Thread.Sleep(CurrentInterval);
led.Write(false);

By pausing the while loop for this duration,
registered apps receive input reports at the
specifi ed interval.

The HID Temperature-Sensor App
Th e sample app demonstrates how you can display
temperature data from an attached HID tempera-
ture sensor using the new HID WinRT API for
Windows 8.1. Th is new API lets your app retrieve
data from HID devices, and control them as well.

Th e sample is designed to work with an attached HID device that
detects temperatures from 0 to 150 degrees Fahrenheit. Th e app
monitors and then displays the temperature sensor’s current reading.

The app supports three “scenarios,” each of which maps to
specifi c features in the app’s UI. In addition, each scenario maps to
a corresponding XAML and C# source fi le. Th e following lists each
scenario, its corresponding modules and its function:

Device Connect (Scenario1_ConnectToSensor.xaml; Scenario1_
ConnectToSensor.xaml.cs)

• Supports connecting a HID device to a Windows 8.1 PC.
• Enumerates the connected temperature sensors so the

user can select one.
• Establishes a device watcher that monitors the status of

the device. (Th e device watcher fi res an event when the
user disconnects or reconnects the selected HID device.)

Get Temperature Data (Scenario2_GetTemperatureData.xaml;
Scenario2_GetTemperatureData.xaml.cs)

• Monitors the selected temperature sensor.
• Depicts a temperature gauge and renders the current

reading using a slider control.
Set Report Interval (Scenario3_SetReportInterval.xaml;

Scenario3_SetReportInterval.xaml.cs)
• Allows the user to control the frequency at which the tem-

perature sensor reports its status. (Th e default interval is 250
ms, but users can choose intervals from 75 ms to 250 ms.)

Supporting Device Connections
Th e device-connect scenario enables several aspects of connecting a
HID device to a Windows 8.1 PC: enumerating connected devices,
establishing a device watcher, handling device disconnection and
handling device reconnection.

Establishing a Device Connection Th e code that handles the
device connection is found in three modules: Scenario1_Connect-
ToSensor.xaml.cs, EventHandlerForDevices.cs and DeviceList.cs.
(Th e fi rst module contains the primary code for this scenario; the
other two contain supporting functionality.)

Th e fi rst phase of the connection occurs before the UI is visible. In
this phase, the app creates a DeviceWatcher object that notifi es the
app when devices are added, removed or changed. Th e second phase

while (true)
{
 // Retrieve the current temperature reading

 milliVolts = (double)voltsPin.Read(); // Read returns a value in the
 // specified range
 tempC = milliVolts / 10.0; // Sensor returns 10mV per
 // degree Centigrade
 tempF = 1.8 * tempC + 32; // Convert to degrees Fahrenheit
 simpleTemp = (int)tempF;

 // Because there are voltage fluctuations when the external
 // power supply is connected to the Netduino, use a running
 // average to "smooth" the values

 if (firstReading)
 {
 firstReading = false;
 currentTemp = simpleTemp;
 for (i = 0; i < 12; i++)
 tempArray[i] = simpleTemp;

 }
 else
 {
 tempArray = Shift(simpleTemp, tempArray); // Shift the array elements and
 // insert the new temp
 currentTemp = Average(tempArray); // Compute a running average of
 // the last 12 readings
 }

 RequestedInterval = sensor.Update(currentTemp, CurrentInterval);

 // Check for a possible new interval requested via an
 // output report

 if (RequestedInterval != 0)
 {
 CurrentInterval = RequestedInterval;
 }

 led.Write(true);
 Thread.Sleep(CurrentInterval);
 led.Write(false);
 }
}

Figure 9 The While Loop That Invokes the Update Method

Figure 10 The Windows 8.1 App Connected to a HID Device

www.msdnmagazine.com
www.bit.ly/LaSYVF

msdn magazine60 Windows 8.1

occurs aft er the UI is displayed and the user is able to choose a specifi c
device from the connected HID devices. Th e app displays a Device-
InstanceId string for each connected device; the string includes the
VID and PID for the given device. In the case of the sample tempera-
ture sensor, the DeviceInstanceId string has the form:

HID\VID_16C0&PID_0012\6&523698d&0&0000

Figure 10 shows the app as it appears aft er enumeration has
completed and the user has connected to the device.

The First Stage of Device Connection Here are the methods
called during the fi rst stage of device connection (before the UI is
displayed), along with tasks accomplished by each method:

DeviceConnect (Scenario1_DeviceConnect.xaml.cs) invokes
the CustomTemperatureSensor.InitializeComponent method,
which initializes the app’s UI components such as the text blocks
and buttons.

InitializeDeviceWatchers (Scenario1_DeviceConnect.xaml.cs)
invokes the HidDevice.GetDeviceSelector method to retrieve a
device selector string. (Th e selector is required in order to create
a device watcher.) Once the selector is obtained, the app invokes

DeviceInformation.Cre-
ateWatcher to create the
DeviceWatcher object
and then EventHandler-
ForDevice.Current.Add-
DeviceWatcher. (This
last method allows the
app to monitor changes
in device status.)

AddDeviceWatcher
(EventHandlerForDe-
vices.cs) creates the event
handlers for three device
events: Enumeration
Completed, Device Add-
ed and Device Removed.

SelectDeviceInList
(Scenario1_DeviceCon-
nect.xaml.cs) checks to
see if the user has selected
a device and, if so, it saves
the index for that device.

In terms of the HID API, the primary code of interest is found
in the InitializeDeviceWatchers method, shown in Figure 11.
This code invokes the HidDevice.GetDeviceSelector method
(bit.ly/1eGQI1k) and passes the UsagePage, UsageId, VID and PID for
the temperature sensor.

Th e UsagePage and UsageId values are defi ned in the fi le constants.cs:
public class Device
{
 public const UInt16 Vid = 0x16C0;
 public const UInt16 Pid = 0x0012;
 public const UInt16 UsagePage = 0xFF55;
 public const UInt16 UsageId = 0xA5;
}

Th ese class members correspond to values specifi ed in the HID
report descriptor that’s defi ned in the device’s fi rmware:

hidGenericReportDescriptorPayload = new byte[]
{
 0x06,0x55,0xFF, //HID_USAGE_PAGE_VENDOR_DEFINED
 0x09,0xA5, //HID_USAGE (vendor_defined)

The GetDeviceSelector method returns an Advanced Query
Syntax (AQS) string in the CustomSensorSelector variable. Th e app
then uses this string when it creates a device watcher and when it
enumerates the DeviceInformation objects.

The Second Stage of Device Connection Th e second stage of
device connection allows the user to make a selection from the list
of connected devices. Th is stage establishes the currently selected
device. Here are the methods (all in EventHandlerForDevices.cs)
called and what each one does.

OpenDeviceAsync opens the connection to the device.
RegisterForAppEvents registers for app suspension and

resume events.
RegisterForDeviceAccessStatusChange listens for changes

in device-access permissions.
RegisterForDeviceWatcherEvents registers for the added

and removed events.
StartDeviceWatcher starts the device watcher.
SelectDeviceInList checks to see if the user has selected a

device and, if so, saves the index for that device. It also writes a
“Currently connected …” string to the output window if the con-
nection is successful.

private void InitializeDeviceWatchers()
{
 // Custom sensor
 var CustomSensorSelector =
 HidDevice.GetDeviceSelector(CustomSensor.Device.UsagePage,
 CustomSensor.Device.UsageId, CustomSensor.Device.Vid,
 CustomSensor.Device.Pid);

 // Create a device watcher to look for instances of the custom sensor
 var CustomSensorWatcher =
 DeviceInformation.CreateWatcher(CustomSensorSelector);

 // Allow EventHandlerForDevice to handle device watcher events that
 // relate or affect the device (device removal, addition, app
 // suspension/resume)
 AddDeviceWatcher(CustomSensorWatcher, CustomSensorSelector);
}

Figure 11 The InitializeDeviceWatchers Method

private async void OnInputReportEvent(HidDevice sender,
 HidInputReportReceivedEventArgs eventArgs)
{
 // Retrieve the sensor data
 HidInputReport inputReport = eventArgs.Report;
 IBuffer buffer = inputReport.Data;
 DataReader dr = DataReader.FromBuffer(buffer);
 byte[] bytes = new byte[inputReport.Data.Length];
 dr.ReadBytes(bytes);

 // Render the sensor data
 await Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 CurrentReadingText.TextAlignment = TextAlignment.Center;
 CurrentReadingText.Text = bytes[1].ToString();
 TemperatureSlider.Value = (int)bytes[1];

 rootPage.NotifyUser(bytes[1].ToString() + " degrees Fahrenheit, " +
 bytes[2].ToString() +
 " millisecond report-interval", NotifyType.StatusMessage);
 });
}

Figure 13 Reading and Displaying Sensor Data

Figure 12 Displaying the Current
Temperature

www.bit.ly/1eGQI1k

61March 2014msdnmagazine.com

In terms of the HID API, the primary code of interest is in the
OpenDeviceAsync method. Th is code invokes the HidDevice.From-
IdAsync method (bit.ly/1hyhVpI), which returns a HidDevice object
(bit.ly/1dsD2rR) that the app uses to access the device, retrieve input
reports and send output reports:

public async Task<Boolean> OpenDeviceAsync(DeviceInformation deviceInfo,
 String deviceSelector)
 {
 // This sample uses FileAccessMode.ReadWrite to open the device
 // because you don’t want other apps opening the device and
 // changing the state of the device.
 // FileAccessMode.Read can be used instead.
 device = await HidDevice.FromIdAsync(deviceInfo.Id, FileAccessMode.ReadWrite);
...

Supporting the Device Watcher Device enumeration occurs
when the app is fi rst started and begins even before the UI is dis-
played. Aft er enumeration completes, the app monitors device status.

Device status is reported by a DeviceWatcher object (bit.ly/1dBPMPd).
As the name implies, this object “watches” the connected devices—
if the user removes or connects his device, the watcher reports the
event to the app. (Th ese events are only reported aft er the enumer-
ation process is fi nished.)

Retrieving Input Reports
The temperature-retrieval scenario monitors the input reports
issued by the temperature-sensor and uses a slider control to
display the current temperature, as shown in Figure 12. (Note that
this control is limited to displaying temperature data. Th e proper-
ties IsDoubleTapEnabled, IsHoldingEnabled, IsRightTapEnabled
and IsTapEnabled have all been set to False.)

Th e primary method supporting this scenario is the OnInput-
ReportEvent event handler, found in Scenario2_GetTemperature-
Data.xaml.cs. Th e app registers this event handler when the user
chooses the Get temperature data scenario and presses the Regis-
ter for Temperature Detection button. Th e app registers the event
handler within the RegisterForInputReportEvents method. In
addition to registering the handler, this method saves an event
token so it can unregister.

private void RegisterForInputReportEvents()
{
 if (!isRegisteredForInputReportEvents)
 {
 inputReportEventHandler = new TypedEventHandler<HidDevice,
 HidInputReportReceivedEventArgs>(this.OnInputReportEvent);

 registeredDevice = EventHandlerForDevice.Current.Device;

 registeredDevice.InputReportReceived += inputReportEventHandler;

 isRegisteredForInputReportEvents = true;
 }
}

Once the event handler is registered, it reads each input report
issued by the sensor and uses the new temperature value to update
the TemperatureSlider control. Aft er it updates the control, this
method writes the current temperature and report interval values
to the Output section of the app, as shown in Figure 13.

Sending Output Reports
Th e report-interval scenario sends an output report to the tem-
perature sensor and writes the count of bytes as well as the value
written to the Output area of the app’s window. The app sends
an output report after the user chooses the Set report interval
scenario, selects a value from the Value to Write dropdown, and
then presses the Send Output Report button.

Figure 14 shows the Set report interval scenario and the drop-
down that’s populated with the report interval options. (These
values represent a report-interval in milliseconds; so, by selecting
100, the app will receive 10 readings every second.)

The primary method of the report-interval scenario is
SetReportIntervalAsync, found in the Scenario3_SetReport-
Interval.xaml.cs module (see Figure 15). Th is method invokes
the HidDevice.SendOutputReportAsync method (bit.ly/1ad6unK)
to send an output report to the device.

Wrapping Up
First I gave you a quick look at building a HID device that moni-
tors the voltage emitted by a simple sensor. For an example of how
you could monitor a sensor that toggles a digital I/O pin (rather
than emitting a range of voltages), see the motion-sensor sample
on MSDN at bit.ly/1gWOlcC.

Th en you took a quick look at writing a simple app that moni-
tors and controls a HID device. For more information about the
HID WinRT API, visit bit.ly/1aot1by.

DONN MORSE is a senior content developer at Microsoft . Reach him
at donnm@microsoft .com.

THANKS to the following technical expert for reviewing this article:
Arvind Aiyar (Microsoft)

private async Task SetReportIntervalAsync(Byte valueToWrite)
{
 var outputReport =
 EventHandlerForDevice.Current.Device.CreateOutputReport();
 var dataWriter = new DataWriter();

 // First byte contains the report id
 dataWriter.WriteByte((Byte)outputReport.Id);
 dataWriter.WriteByte((Byte)valueToWrite);
 outputReport.Data = dataWriter.DetachBuffer();

 uint bytesWritten =
 await EventHandlerForDevice.Current.Device.
 SendOutputReportAsync(outputReport);

 rootPage.NotifyUser("Bytes written: " + bytesWritten.ToString() + ";
 Value Written: " + valueToWrite.ToString(), NotifyType.StatusMessage);
}

Figure 15 SetReportIntervalAsync

Figure 14 Setting the Report Interval

www.msdnmagazine.com
www.bit.ly/1hyhVpI
www.bit.ly/1dsD2rR
www.bit.ly/1dBPMPd
www.bit.ly/1ad6unK
www.bit.ly/1gWOlcC
mailto:donnm@microsoft.com

msdn magazine62

For three columns now, I’ve been exploring the “dynamic-y” object
approach that Oak brings to the Web application space, and it’s
been an interesting ride, complete with a few challenges to long-
held beliefs about how Web applications need to be built (or about
the platform on which they’re built). But every ride has to come to
an end sometime, and it’s about time to wrap up my exploration of
Oak. I’ve got to fi gure out how to ensure data put into the system
by the user is actually good data, for starters.

But fi rst ...

Commentary
If you go back and look at the system as I left off last time, trying
to add a comment yields another of those helpful errors, this time
informing you that “Blog.Controllers.Blog does not contain a defi -
nition for ‘AddComment.’” Contrary to what might happen in a
statically typed system—where the lack of this method would trip a
compilation error at the front of the compile/deploy/run cycle—in
a dynamic system, these errors won’t be seen until they’re actually
attempted. Some dynamic-language proponents claim this is part of
the charm of dynamic languages, and certainly not having to worry
about keeping everything consistent across the entire system can be
a great boon when the mind is on fi re with an idea and you just need
to get that idea out into the world. But most Ruby-on-Rails devel-
opers I know who’ve done a project larger than your typical Todo
list application will be the fi rst to admit that in a dynamic-language
application, comprehensive tests are critical to keeping the project’s
quality high and the developer’s sanity strong. So testing has to be a
part of any serious eff ort with Oak.

Unfortunately, as soon as I start talking about testing, I start
getting into several areas of discussion (unit tests, behavior tests,
integration tests, Test-Driven Development and so on) that could
easily consume another half-dozen magazine issues on their own,
and I don’t want to crack that Pandora’s box here. Whatever your
testing methodology or preference, suffi ce it to say that you must
have some kind of testing presence in an Oak application (or any

application, but the need is much higher in any dynamically typed
environment), however you choose to test.

Meanwhile, the AddComment method is still missing.

Comment Away
In this particular case, when the user types a comment into the
view, it POSTs to the HomeController Comments method, which
looks like so:

[HttpPost]
public ActionResult Comments(dynamic @params)
{
 dynamic blog = blogs.Single(@params.BlogId);

 blog.AddComment(@params);

 return RedirectToAction("Index");
}

As you can see, the controller is fi rst obtaining the blog ID tucked
away in the BlogId parameter coming from the form, then using
it to fi nd the corresponding blog entry via the Single method on
the DynamicRepository, then calling blog.AddComment to store
the comment. (Again, just to make the points, both “pro” and
“con”: Th is code has been in place since the second part of this
series, and I’m just now running into the fact that the AddComment
method hasn’t existed until now.)

Defi ning this method is pretty straightforward; on the Blog class,
add this method:

void AddComment(dynamic comment)
{
 // Ignore addition if the body is empty
 if (string.IsNullOrEmpty(comment.Body)) return;

 // Any dynamic property on this instance can be accessed
 // through the "_" property
 var commentToSave = _.NewComment(comment);

 comments.Insert(commentToSave);
}

The only real question mark in this method is the use of the
underscore (_.NewComment(comment)), which is a placeholder
for the “this” reference. Th e underscore has full awareness of the
dynamic nature of this object, which the “this” reference wouldn’t;
rather than having to worry about the diff erences, the underscore
lets you use everything “this” would, plus more.

Notice how the dynamic nature of the system lets you be
extremely frugal in the code. Th e form parameters are captured
in a named bundle in “@params” coming in to the controller, and
those are passed without unpacking any of them directly into Add-
Comment, which in turn passes them into NewComment, which

Getting Started with Oak:
Data Validation and Wrapping Up

THE WORKING PROGRAMMER TED NEWARD

Notice how the dynamic
nature of the system lets you be

extremely frugal in the code.

Untitled-1 1 11/26/12 3:02 PM

www.xceed.com

msdn magazine64 The Working Programmer

constructs a dynamic object out of them, and the resulting object
just gets inserted into the comments DynamicRepository. Where
do the names of the object’s properties come from? From the HTML
form that originated all of this.

Wacky, huh? Almost feels like you’re being lazy or something.
Anyway, give it a run, and sure enough, now comments are

being added in.

Validate Me
As written, though, the system has a major fl aw (well, according
to user requirements, anyway): It’s perfectly permissible for two
blog entries to have the exact same title, and that’s not OK. (Read-
ers might get confused as to which one to read, the one titled “LOL
Kittehs” or the other one titled “LOL Kittehs.”) Th us, you need a
way of enforcing some kind of uniqueness on the code, so users
can’t accidentally put in duplicate-titled blog entries.

In a traditional Web framework, this would be a two-part job.
First, the model object (Blog) would have to defi ne some kind of
“ask me if I’m valid” method, which I’ll call IsValid for lack of any-
thing really original, and a defi nition of said validation within the
object, which I’ll call Validates. And, as one might suspect from
the way the Associates method worked to help define the link
between Blog and Comment objects (meaning, it’s a predefi ned
name for which Oak knows to look), the Validates method works
in the same way—if an object defi nes a Validates method, then Oak
will call the already-defi ned IsValid method on the object, which
in turn will look for a Validates method and ask it for all the con-
ditions that make this object valid.

In code, that looks like this:
IEnumerable<dynamic> Validates()
{
 // And define the association
 // For other examples of validations, check out the Oak wiki
 yield return new Uniqueness("Name", blogs);
}

Again, you see the use of a stream of objects that describe the val-
idation requirements, handed back as an IEnumerable<dynamic>
to the stream, generated through the use of the “yield return”
facility of C#. And, as with the Schema class from last time, the
way to extend this is to just tack on additional elements that are
“yield returned,” like so:

IEnumerable<dynamic> Validates()
{
 // And define the association
 // For other examples of validations check out the Oak wiki
 yield return new Uniqueness("Name", blogs);
 yield return new Length("Name") { Minimum=10, Maximum=199 };
}

Th e Oak Wiki defi nes the full list and usage of validation objects,
but some of the notable ones are:

• Presence: A fi eld is not optional and must be present on
the object.

• Acceptance: A field on the object must contain a par-
ticular value, such as a LegalDocument object contain-
ing a TypedOutAcceptance fi eld in which the user typed
the string “I Accept” in order to indicate he accepted the
legal restrictions.

• Exclusion: A fi eld can’t include certain values.
• Inclusion: A fi eld must be one of a set of certain values.

• Format: Th e general-purpose regular-expression (using
the Microsoft .NET Framework Regex class) validation.

• Numericality: Pretty much everything to do with numeric
values, including marking a fi eld as “integer-only,” greater-
than and less-than restrictions, or simple even/odd tests.

• Conditional: Th e catch-all “escape hatch” for any
validation not covered elsewhere—a fi eld must satisfy
a condition described using a lambda function.

Th e last one, Conditional, isn’t actually a validation type in
and of itself, but a feature present on most (if not all) of the other
validation types, and therefore deserves a little more explanation.
Imagine an Order object, for orders in a traditional e-commerce
system. For said systems, a credit card number is only necessary
if the user wants to use a credit card for payment. Similarly, an
address to which to ship the product is only necessary if the user
purchased anything other than a digital download. Th ese two con-
tingencies are neatly expressed using two conditional validations,
as shown in Figure 1.

Each of the Conditional objects is making use of a property on the
Presence object—along with a lambda that yields a true/false value—to
indicate whether the Presence validates successfully. In the fi rst case,
Presence returns true (pass) if d.PaidWithCard, a local method that
returns true if the PaymentType fi eld equals “Card,” returns true.
In the second case, Presence returns true unless isDigitalPurchase
returns true, meaning that if it’s a digital item, no address is necessary.

All of these are ready for use with any Oak DynamicModel-derived
object, and, as noted in the prior column (msdn.microsoft.com/magazine/
dn519929) and in the introduction of this one, the DynamicModel-
derived object needn’t explicitly defi ne the fi elds that these valida-
tions reference. Should these validations not be suffi cient to the task,
by the way, these are all defi ned in the Validations.cs fi le inside the
Oak folder of the scaff olded project. It’s pretty straightforward to
defi ne a new one if desired: Just inherit from Oak.Validation and
defi ne at minimum a Validate method that returns true/false. Th e
Exclusion validation, for example, is this:

public class Exclusion : Validation
{
 public Exclusion(string property)
 : base(property)
 {

 }
 public dynamic[] In { get; set; }

 public bool Validate(dynamic entity)
 {
 return !In.Contains(PropertyValueIn(entity) as object);
 }
}

Th e In property in this code is the fi eld in which the excluded
values are stored; beyond that, this is pretty straightforward. If a
descriptive error message needs to be included, Validation provides

While it’s usually better to use
Oak as a whole, it does support
the idea of ripping out bits of it.

http://msdn.microsoft.com/magazine/dn519929
http://msdn.microsoft.com/magazine/dn519929

65March 2014msdnmagazine.com

a base property, ErrorMessage, in which a descriptive message can
be stored for use if validation fails.

(For those who are curious about the “associations” from
the database discussions last time, these are defined in
Association.cs in the same folder, derive from Oak.Association,
and—as one might expect—are a little bit trickier to explain.
Fortunately, Oak has most of the traditional relational associations
already defi ned, so there shouldn’t be much need to customize here.)

Pieces of Oak
Sometimes parts of a library seem really cool, but obstacles stand in
the way of adopting the whole thing, and you just wish you could
rip out a small part of it and keep going. While it’s usually better
to use Oak as a whole, it does support the idea of ripping out bits
of it (such as the dynamic database portions, or perhaps just the
dynamic object portions, called Gemini, which I covered in the
August 2013 issue, at msdn.microsoft.com/magazine/dn342877) and using
them standalone, without the rest of the system. Th e Oak GitHub
page on the subject (bit.ly/1cjGuou) has the NuGet packages for each
of the standalone Oak parts, reproduced here (as of this writing)
for your convenience:

• install-package oak: Th is is the full Oak suite, it includes
MVC model binders, schema generation, the Oak
DynamicModel and supporting classes, an altered
version of Massive (DynamicRepository), and the Oak
core dynamic construct Gemini.

• install-package oak-json: Th is is the part of Oak with
regard to JSON serialization (can be used in REST APIs).

• install-package cambium: Th is is the part of Oak that
excludes the MVC-specifi c components and excludes schema
generation. Cambium includes the Oak DynamicDb,

DynamicModel, an altered version of Massive (Dynamic-
Repository) and the Oak core dynamic construct Gemini.

• install-package seed: Th is is the schema generation of
Oak. Th is NuGet package also includes the altered version
of Massive (used to insert sample data). It doesn’t contain
any of the MVC model binders, or the Oak DynamicModel
or supporting classes.

• install-package gemini: Th is will install just the core
dynamic construct upon which all the dynamic goodness
in Oak is built.

Before trying out any of them in pieces, I’d suggest trying the
whole experience to get a feel for how each of them fi t into the
larger picture.

Benefi ts, Cost and Pain
As might be inferred from these four columns, there are defi nite
benefi ts to being able to just “wing it” and work with a more dynam-
ically typed system. Without question, costs and pain will raise their
ugly heads in such a system (particularly for the unwary, and those
unused to writing tests), but even those who are the most diehard
statically typed bigots can learn some valuable ideas from a system
like Oak. More important, Oak can be a hugely valuable tool for
prototyping the early development of a system, when the object
model is still highly mutable and undefi ned. Best of all, thanks to
the underlying platform of Oak (that is, .NET), it becomes quite
feasible to suggest building an MVC app in Oak in the early stages,
then slowly fl ipping parts of it over to a more statically typed (and,
thus, compiler-checked and compiler-enforced) approach as the
details of the application get more tightly locked down.

Personally speaking, without a doubt, Oak is a cool little project.
To my mind, this is one of those times when a whole lot of interesting
functionality and ideas come out of a pretty small (relatively speaking)
package. Oak defi nitely goes into my personal toolbox of tricks.

Happy coding!

TED NEWARD is the principal of Neward & Associates LLC. He has written
more than 100 articles and authored and coauthored a dozen books, including
“Professional F# 2.0” (Wrox, 2010). He’s an F# MVP and speaks at confer-
ences around the world. He consults and mentors regularly—reach him at
ted@tedneward.com if you’re interested in having him come work with your team,
or read his blog at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Amir Rajan (Oak project creator)

public class Order : DynamicModel
{
 public Order()
 {

 }

 public IEnumerable<dynamic> Validates()
 {
 yield return new Presence("CardNumber") {
 If = d => d.PaidWithCard()
 };

 yield return new Presence("Address") {
 Unless = d => d.IsDigitalPurchase()
 };
 }

 public bool PaidWithCard()
 {
 // Could use This().PaymentType instead
 return _.PaymentType == "Card";

 }

 public bool IsDigitalPurchase()

 {
 // Could use This().ItemType instead
 return _.ItemType == "Digital";
 }
}

Figure 1 Conditional Validation

This is one of those
times when a whole lot of

interesting functionality and
ideas come out of a pretty small
(relatively speaking) package.

mailto:ted@tedneward.com
www.msdnmagazine.com
http://msdn.microsoft.com/magazine/dn342877
www.bit.ly/1cjGuou
http://blogs.tedneward.com

msdn magazine66

When it comes to development on Windows with Visual Studio,
the built-in project templates are a good place to start. If you’re new
to Windows Store (or any Microsoft stack) development, the tem-
plates can serve as a learning tool. In this article, I’ll look at the Hub
control, but in context of the Hub project template. I’ll examine all
the important things to know about the Hub project and control
for both HTML and XAML apps.

The Hub project in particular enables you to deliver a large
volume of content to the user while using a modern UX. Th is is
because you can break the app’s content into parts called HubSections,
so the app doesn’t overwhelm the user visually with large amounts
of data. While this is just my opinion, I fi nd the Hub project to be
the most aesthetically interesting of all the Windows Store app
templates. Th e content layout is in distinct sections that are easy
to digest. You can parade a favorite piece of content in the front-
and-center “hero” section of the hub, while the remaining content
items are easily accessible in groups.

Of course, it’s not mandatory that you use the templates—you can
start from a blank project. However, for many developers, it’s far easier to
customize and expand upon the templates, as the code is set up for you.

The Hub Project Template
Visual Studio 2013 contains Hub project templates for both
HTML and XAML. Upon creating a new HTML project using the
template, you’ll see some familiar project folders such as the css,
images and js folders. In addition to the customary folders are the
Hub-specific folders: pages\hub, pages\item and pages\section.
As you might expect, each of these folders contains files that
correspond to their purpose in the app. In the project root is the fi le
for the package manifest as well as default.html, the app’s starting
point, which loads default.js and performs functions related to the
app and lifecycle management. Default.html contains references
to not just the \js\default.js fi le but also \js\data.js, which contains

sample data, and \js\navigator.js, which performs navigation. For a
refresher on navigation, see my August 2013 column, “Navigation
Essentials in Windows Store Apps,” at msdn.microsoft.com/magazine/
dn342878. In short, the Hub project template, like other templates,
is a quick way to publish visually interesting modern apps.

A Look at the Hub Project and Control in
Windows Store Apps

MODERN APPS RACHEL APPEL

Figure 1 The Hub Control at Run Time for Both HTML and
XAML Apps

The Hub control is what you
use to create a modern layout
that’s more than just boring

groups of squares.

http://msdn.microsoft.com/magazine/dn342878
http://msdn.microsoft.com/magazine/dn342878

expertise worth sharing

Register now at alm-forum.com follow us on

keynote speakers

Washington State Convention Center April 1-3, 2014

sponsors

diamond platinum

Mike Brittain
Director of Engineering, Etsy

Principles and Practices of Continuous
Deployment

plenary speakers

James Whittaker
Distinguished Technical Evangelist, Microsoft

Intent Commerce

Dave West
Chief Product Offi cer, Tasktop

Lean ALM

Ken Schwaber
Industry Legend and Co-Creator of Scrum

The State of Agile

Sam Guckenheimer
Product Owner, Microsoft Visual Studio

Transforming software development in a world of devices
and services

Scott Ambler
ALM Thought Leader and Co-creator of DAD Framework

Disciplined Agile Delivery: The Foundation for Scaling Agile

Steve Denning
Award-winning Author

Transforming Management through Agile

Untitled-1 1 2/10/14 4:04 PM

http://www.alm-forum.com
https://www.facebook.com/ALMForum
https://twitter.com/almforum
http://www.linkedin.com/groups/ALM-Forum-5058388?home=&gid=5058388&trk=anet_ug_hm&goback=.gmp_5058388

msdn magazine68 Modern Apps

Of course, the centerpiece of the Hub project is the Hub control.
While default.html is the project starting point in an app built with the
Windows Library for JavaScript (WinJS), once it loads, it immediately
navigates to the hub.html fi le. Hub.html contains the Hub control
and lives in the \pages\hub directory. Th e Hub control is what you
use to create a modern layout that’s more than just boring groups of
squares. Instead, the Hub control, coupled with asynchronous data
fetching, enables you to present large amounts of data—or data that
has distinct groups—in an organized yet fashionable manner.

Th e Hub template implements the hub, or hierarchical, naviga-
tional pattern. Th is means that from the starting point (that is, hub
page), the user can navigate to a page containing all the members
of a particular section, or the user can navigate to an individual
item from the hub page. The template also contains navigation
to an item page from a section page. While the template contains
navigation code only between section 3 and its groups and items
(see Figure 1), you can use the ListView or Repeater controls to
do the same type of navigation for other sections if it makes sense
for your app. Figure 1 illustrates what the default Hub app with
sample data looks like at run time.

With the reimagining of Windows came the notion of putting
content front and center, and, as you can see, this template does
just that.

Th e XAML Hub template project works the same conceptually
as does the HTML template, relying on the hub as the main entry
point, being navigable to sections and details. Of course, the
implementation is diff erent, and you can see this by examining
the folder structure, which reveals the following directories:

Assets, Common, DataModel and Strings. Th ese folders contain what
you might expect: assets such as graphics, data in the DataModel
folder and localized strings in the Strings folder. In the root of the
project lies the following working fi les needed so the app can run:

• App.xaml/.cs: Th is is the XAML equivalent of
default.html. It has a tiny bit of code that assists in
navigation and general tasks.

• HubPage.xaml/.cs: Th is is the crowning jewel of the app,
containing the Hub control.

• ItemPage.xaml/.cs: Th is contains the individual items
you can navigate to from the hub or section pages.

• SectionPage.xaml/.cs: Th is shows all individual data
members that belong to a particular group.

• Package.appmanifest: Th is contains the app settings.

Th e XAML Hub project template’s HubPage.xaml fi le reveals the
Hub control fi rmly seats itself in a Grid control that serves as the
root container for the page and Hub.

In the DataModel folder is a fi le named SampleData.json con-
taining sample data. Also in the folder is a SampleDataSource.cs fi le
that transforms the JSON data into usable classes for C# or Visual

Figure 2 The HTML that Creates the Hub Control

<div class="hub" data-win-control="WinJS.UI.Hub">
 <div class="hero" data-win-control="WinJS.UI.HubSection"></div>
 <div class="section1" data-win-control="WinJS.UI.HubSection"
 data-win-options="{ isHeaderStatic: true }"
 data-win-res="{ winControl: {'header': 'Section1'} }">

 <div class="subtext win-type-x-large" data-win-res="
 { textContent: 'Section1Subtext' }"></div>
 <div class="win-type-medium"
 data-win-res="{ textContent: 'DescriptionText' }"></div>
 <div class="win-type-small">

 </div>
 </div>
 <div class="section2" data-win-control="WinJS.UI.HubSection"
 data-win-options="{ isHeaderStatic: true }"
 data-win-res="{ winControl: {'header': 'Section2'} }">
 <div class="item-title win-type-medium"
 data-win-res="{ textContent: 'Section2ItemTitle' }"></div>
 <div class="article-header win-type-x-large"
 data-win-res="{ textContent: 'Section2Subtext' }"></div>
 <div class="win-type-xx-small"
 data-win-res="{ textContent: 'Section2ItemSubTitle' }"></div>
 <div class="win-type-small">

 </div>
 </div>

 <div class="section3" data-win-control="WinJS.UI.HubSection"
 data-win-res="{ winControl: {'header': 'Section3'} }

 "data-win-options="{ onheaderinvoked:
 select('.pagecontrol').winControl.section3HeaderNavigate }">
 <div class="itemTemplate" data-win-control="WinJS.Binding.Template">

 <div class="win-type-medium" data-win-bind="textContent: title"></div>
 <div class="win-type-small"
 data-win-bind="textContent: description"></div>
 </div>
 <div class="itemslist win-selectionstylefilled" data-win-control=
 "WinJS.UI.ListView" data-win-options=
 "{layout: {type: WinJS.UI.GridLayout},
 selectionMode: 'none',
 itemTemplate: select('.section3 .itemTemplate'), itemDataSource:
 select('.pagecontrol').winControl.section3DataSource, oniteminvoked:
 select('.pagecontrol').winControl.section3ItemNavigate
 }">
 </div>
 </div>
 <div class="section4" data-win-control="WinJS.UI.HubSection"
 data-win-options="{ isHeaderStatic: true }"
 data-win-res="{ winControl: {'header': 'Section4'} }">
 <div class="top-image-row">

 </div>
 <div class="sub-image-row">

 </div>
 <div class="win-type-medium"
 data-win-res="{ textContent: 'DescriptionText' }"></div>
 <div class="win-type-small">

 </div>
 </div>
</div>

In HTML apps, the Hub
control works just like any other

WinJS control.

69March 2014msdnmagazine.com

Basic .NET consumption and XAML data binding. You can replace
this with your own data, much like the data.js fi le in WinJS apps.

Th e Common folder contains several fi les that perform a variety
of tasks such as navigation and other generally app-related tasks for
working with data in view models. In addition, the Common folder
contains the SuspensionManager.cs fi le, which performs process
lifecycle tasks. Finally, the Strings folder contains localized strings
for publishing in diff erent locales.

The Hub Control
Both HTML and XAML project templates use the Hub control.
In HTML apps, the Hub control works just like any other WinJS
control. Use the data-win-control attribute of an HTML element,
usually a <div>, to defi ne it as a Hub control, as this code shows:

<div class="hub" data-win-control="WinJS.UI.Hub"></div>

Th is means the WinJS.UI.Hub object is the brains behind the
Hub control. Th e Hub control acts as a container for the HubSection

Figure 3 The XAML for a Hub Control

<Hub SectionHeaderClick="Hub_SectionHeaderClick">
 <Hub.Header>
 <!-- Back button and page title -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="80"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Button x:Name="backButton" Style=
 "{StaticResource NavigationBackButtonNormalStyle}"
 Margin="-1,-1,39,0"
 VerticalAlignment="Top"
 Command="{Binding NavigationHelper.GoBackCommand,
 ElementName=pageRoot}"
 AutomationProperties.Name="Back"
 AutomationProperties.AutomationId="BackButton"
 AutomationProperties.ItemType="Navigation Button"/>
 <TextBlock x:Name="pageTitle" Text="{StaticResource AppName}"
 Style="{StaticResource HeaderTextBlockStyle}" Grid.Column="1"
 VerticalAlignment="Top" IsHitTestVisible="false"
 TextWrapping="NoWrap" />
 </Grid>
 </Hub.Header>
 <HubSection Width="780" Margin="0,0,80,0">
 <HubSection.Background>
 <ImageBrush ImageSource="Assets/MediumGray.png"
 Stretch="UniformToFill" />
 </HubSection.Background>
 </HubSection>
 <HubSection Width="500" x:Uid="Section1Header" Header="Section 1">
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Image Source="Assets/MediumGray.png" Stretch="Fill"
 Width="420" Height="280"/>
 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Grid.Row="1" Margin="0,10,0,0" TextWrapping="Wrap"
 x:Uid="Section1Subtitle" Text="Lorem ipsum dolor sit nonumy
 sed consectetuer ising elit, sed diam"/>
 <TextBlock Style="{StaticResource TitleTextBlockStyle}"
 Grid.Row="2" Margin="0,10,0,0" x:Uid="DescriptionHeader"
 Text="Description text:"/>
 <TextBlock Style="{StaticResource BodyTextBlockStyle}"
 Grid.Row="3"
 x:Uid="Section1DescriptionText"
 Text="Lorem ipsum dolor sit amet... "/>
 </Grid>
 </DataTemplate>
 </HubSection>
 <HubSection Width="520" x:Uid="Section2Header" Header="Section 2">
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <TextBlock Style="{StaticResource TitleTextBlockStyle}"
 Margin="0,0,0,10" x:Uid="ItemTitle" Text="Item Title" />
 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Grid.Row="1" x:Uid="Section2UnderTitle" Text="Quisque in porta

 lorem dolor amet sed consectetuer ising elit, sed diam non
 my nibh uis mod wisi quip."/>
 <TextBlock Style="{StaticResource SubtitleTextBlockStyle}"
 Grid.Row="2" Margin="0,20,0,0" x:Uid="ItemSubTitle"
 Text="Item Sub Title"/>
 <TextBlock Style="{StaticResource BodyTextBlockStyle}" Grid.Row="3"
 x:Uid="LongText" Text="Lorem ipsum dolor sit amet..."/>
 </Grid>
 </DataTemplate>
 </HubSection>
 <HubSection IsHeaderInteractive="True"
 DataContext="{Binding Section3Items}" d:DataContext="{Binding Groups[3],
 Source={d:DesignData Source=/DataModel/SampleData.json,
 Type=data:SampleDataSource}}" x:Uid="Section3Header" Header="Section 3"
 Padding="40,40,40,32">
 <DataTemplate>
 <GridView
 x:Name="itemGridView"
 ItemsSource="{Binding Items}"
 Margin="-9,-14,0,0"
 AutomationProperties.AutomationId="ItemGridView"
 AutomationProperties.Name="Items In Group"
 ItemTemplate="{StaticResource Standard310x260ItemTemplate}"
 SelectionMode="None"
 IsSwipeEnabled="false"
 IsItemClickEnabled="True"
 ItemClick="ItemView_ItemClick">
 </GridView>
 </DataTemplate>
 </HubSection>
 <HubSection x:Uid="Section4Header" Header="Section 4">
 <DataTemplate>
 <!-- width of 400 -->
 <StackPanel Orientation="Vertical">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="130"/>
 <ColumnDefinition Width="5"/>
 <ColumnDefinition Width="130"/>
 <ColumnDefinition Width="5"/>
 <ColumnDefinition Width="130"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="270"/>
 <RowDefinition Height="95"/>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Image Source="Assets/MediumGray.png"
 Grid.ColumnSpan="5" Margin="0,0,0,10" Stretch="Fill" />
 <Image Source="Assets/MediumGray.png" Grid.Row="1" Stretch="Fill"/>
 <Image Source="Assets/MediumGray.png" Grid.Row="1"
 Grid.Column="2" Stretch="Fill"/>
 <Image Source="Assets/MediumGray.png" Grid.Row="1"
 Grid.Column="4" Stretch="Fill"/>
 <TextBlock Style="{StaticResource TitleTextBlockStyle}"
 Grid.Row="2" Grid.ColumnSpan="5" Margin="0,15,0,0"
 x:Uid="DescriptionHeader" Text="Description text:"/>
 <TextBlock Style="{StaticResource BodyTextBlockStyle}"
 Grid.Row="3" Grid.ColumnSpan="5" x:Uid="LongText"
 Text="Lorem ipsum dolor sit amet...."/>
 </Grid>
 </StackPanel>
 </DataTemplate>
 </HubSection>
</Hub>

www.msdnmagazine.com

msdn magazine70 Modern Apps

controls, which defi ne sections or groups of data. HubSections can
contain any valid HTML tags, such as <div> or , or a WinJS
control, such as the ListView control. By default, the hub.html fi le’s
Hub control encloses fi ve sections, one named hero and four more
designated by their class attributes (such as section1, section2 and
so on). In the HubSections, the <div> and tags are the most
common child elements, but any valid HTML or WinJS controls
will work to display data in a diff erent layout. Changing the layout
is a great way to personalize your app, but don’t forget to adhere
to the Windows UX guidelines at bit.ly/1gBDHaW. Figure 2 shows a
complete sample of the necessary HTML (you’ll see its CSS later)
to create a Hub control with fi ve sections. Inspecting the code in
Figure 2 shows section 3 is the navigable section, while the rest
are not navigable.

In XAML, the Hub control uses a <Hub> element that contains
<Hub.Header> and <HubSection> elements. In turn, the child head-
ings and sections contain Grid and other XAML controls, such as the
StackPanel, as well as text blocks. Figure 3 shows the XAML required
to create the Hub control used in the Visual Studio templates.

As you can see, XAML syntax is a bit more verbose than HTML.
Th at’s because you code layout and styles right in the XAML page
(though XAML styles can be placed in a resource dictionary), while
in HTML the layout and style rules are CSS (more on styling later).

Data Binding and the Hub Control
Arrays or JSON (which usually serializes to an array anyway) are
the customary ways to work with data in WinJS, as well as in many
other Web or client languages. Th is is no diff erent with the Hub
project. You can replace the data in \js\data.js with custom data
broken into however many groups you plan to use. You’ll fi nd two
arrays as sample data in the data.js fi le, one for grouping and one
for individual items that tie into a specifi c group. If you’re familiar
with some of the other WinJS project templates, then you’ll notice
this is the same sample data.

In the \pages\hub\hub.js fi le are the calls to the members of the
Data namespace that obtain group and item data:

var section3Group = Data.resolveGroupReference("group4");
var section3Items = Data.getItemsFromGroup(section3Group);

Figure 4 The CSS That Shapes and Styles the HTML Hub Control

.hubpage header[role=banner] {
 position: relative;
 z-index: 2;
}
.hubpage section[role=main] {
 -ms-grid-row: 1;
 -ms-grid-row-span: 2;
 z-index: 1;
}
.hubpage .hub .win-hub-surface {
 height: 100%;
}
.hubpage .hub .hero {
 -ms-high-contrast-adjust: none;
 background-image: url(/images/gray.png);
 background-size: cover;
 margin-left: -80px;
 margin-right: 80px;
 padding: 0;
 width: 780px;
}
 .hubpage .hub .hero:-ms-lang(
 ar, dv, fa, he, ku-Arab, pa-Arab, prs, ps, sd-Arab,
 syr, ug, ur, qps-plocm) {
 margin-left: 80px;
 margin-right: -80px;
 }
 .hubpage .hub .hero .win-hub-section-header {
 display: none;
 }
 .hubpage .hub .section1 {
 width: 420px;
 }
 .hubpage .hub .section1 .win-hub-section-content {
 overflow-y: hidden;
 }
 .hubpage .hub .section1 .subtext {
 margin-bottom: 7px;
 margin-top: 9px;
 }
.hubpage .hub .section2 {
 width: 440px;
}
 .hubpage .hub .section2 .win-hub-section-content {
 overflow-y: hidden;
 }
 .hubpage .hub .section2 .item-title {
 margin-top: 4px;
 margin-bottom: 10px;
 }

 .hubpage .hub .section2 .article-header {
 margin-bottom: 15px;
 }
.hubpage .hub .section3 {
}
 .hubpage .hub .section3 .itemslist {
 height: 100%;
 margin-left: -10px;
 margin-right: -10px;
 margin-top: -5px;
 }
 .hubpage .hub .section3 .win-container {
 margin-bottom: 36px;
 margin-left: 10px;
 margin-right: 10px;
 }
 .hubpage .hub .section3 .win-item {
 height: 229px;
 width: 310px;
 }
 .hubpage .hub .section3 .win-item img {
 height: 150px;
 margin-bottom: 10px;
 width: 310px;
 }
.hubpage .hub .section4 {
 width: 400px;
}
 .hubpage .hub .section4 .win-hub-section-content {
 overflow-y: hidden;
 }
 .hubpage .hub .section4 .top-image-row {
 height: 260px;
 margin-bottom: 10px;
 width: 400px;
 }
 .hubpage .hub .section4 .top-image-row img {
 height: 100%;
 width: 100%;
 }
.hubpage .hub .section4 .sub-image-row {
 margin-bottom: 20px;
 display: -ms-flexbox;
 -ms-flex-flow: row nowrap;
 -ms-flex-pack: justify;
}
 .hubpage .hub .section4 .sub-image-row img {
 height: 95px;
 width: 130px;
 }

www.bit.ly/1gBDHaW

71March 2014msdnmagazine.com

The section3Group and section3Items are global objects.
Figure 2 shows the data-binding syntax for the ListView control. In
hub.js, aft er the ready function, the code sets section3DataSource,
a property of the Hub control:

section3DataSource: section3Items.dataSource,

The Hub control uses the preceding code to data bind to the
ListView (Figure 2 shows the data-bound ListView code).

In XAML apps using C#, you have the same basic occurrences,
as code from the HubPage.xaml.cs file indicates the following
declaration for a view model of type ObservableDictionary, along
with its corresponding property declaration (this is where you can
return your own data):

private ObservableDictionary defaultViewModel = new ObservableDictionary();
public ObservableDictionary DefaultViewModel
{
 get { return this.defaultViewModel; }
}

Later in the file, code sets a page-level view model by calling
GetGroupAsync, which, as its name implies, runs asynchronously:

var sampleDataGroup = await SampleDataSource.GetGroupAsync("Group-4");

Although the call obtains Group-4 data, you assign it to a view
model named Section3Items to assign it to those items. Consider
the hero section as Section 0, meaning the Section 3 items will align
with the Group-4 data:

this.DefaultViewModel["Section3Items"] = sampleDataGroup;

Th is is all you need in the codebehind. In XAML, notice the
DataContext attribute binds to Section3Items.Th e other attributes
aren’t necessary for data binding, but act as an aid for the design
tools in Visual Studio or Blend, as designated by the “d” namespace:

<HubSection IsHeaderInteractive="True" DataContext="{Binding Section3Items}"
 d:DataContext="{Binding Groups[3], Source={d:DesignData
 Source=/DataModel/SampleData.json, Type=data:SampleDataSource}}"
 x:Uid="Section3Header" Header="Section 3" Padding="40,40,40,32">

While working with local sample data, you have many options
for data access, including File IO, SQLite, Web Storage, IndexedDB,
REST services and Windows Azure, to name a few. If you want to
review what data options are available, see my March 2013 arti-
cle, “Data Access and Storage Options in Windows Store Apps,”
at msdn.microsoft.com/magazine/jj991982.

Styling the Hub Control
In Windows Store apps built with JavaScript, you can style the Hub
control with CSS. Th e \hub\hub.css fi le contains all the default
CSS related to the Hub control. Feel free to add your own styles to
change the size of the elements or their layout. Figure 4 shows the
complete CSS in hub.css. Notice there’s a .hubpage class selector that
uses HTML5 semantic role attributes such as header[role=banner]
and section[role=main] to designate the general styles for the hub.
After that, the CSS in Figure 4 shows the “.hubpage .hub .hero”
descendant selector, which creates the featured (hero) section

of the Hub control. Th e hero fi lls roughly half of the left side of
the viewable part of screen with a light gray background and, of
course, it’s a great way to put a special piece of content where no
user can miss it! You can fi ll it with lots of data, and graphic data or
multimedia works quite nicely to show off here.

As you can see, the CSS in Figure 4 shapes and styles the Hub
control, and most of it deals with the layout and sizing of the
HubSections. Elements and WinJS controls inside the HubSections
apply the styles from ui-light.css or ui-dark.css, until you overwrite
them with your own styles.

HTML apps rely on CSS for styling. XAML apps rely on XAML
for styling. This means that XAML has several attributes you
apply to tags to enforce styling defi nitions called resources. For
example, the code that styles a TextBlock is the Style attribute and
it references a built-in (static resource dictionary) style named
SubheaderTextBlockStyle:

<TextBlock Style="{StaticResource SubheaderTextBlockStyle} />

Th e layout of a page is also XAML, as all the Hubs, Grids and other
elements contain inline coordinates for their on-screen position as
well as size. You can see throughout Figure 3 there are margins, posi-
tioning, and row and column settings that position elements, all inline
in the XAML. HTML is originally a Web technology, and conserving
bandwidth by using CSS instead of HTML is a real benefi t. Here in
the land of XAML, it’s all client-side, so UI caching isn’t so much of
an issue and styles can go inline. A nice upside of XAML is that you
need to do very little to ensure a responsive design. Just be sure to set
two <RowDefi nition> elements to a height of “Auto” and “*”:

<Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
</Grid.RowDefinitions>

Th e rows will automatically respond to app view state changes,
making the layout fl uid while saving extra code. Figure 3 shows a
few references to auto-height row defi nitions.

Samples Available
Once you’ve modifi ed the Hub control, performed data retrieval
and binding, and set styles, you’re good to go. Don’t forget to add
modern touches such as tiles, search and other Windows integra-
tion to your app. Th e Hub project template is an easy way to build
and publish apps quickly, whether in HTML or XAML. Using the
hub navigational pattern with the Hub control enables you to build
an effective and rich UX that adheres to modern UI principles.
You can download Hub control samples covering many aspects of
Windows app development at the following locations:

• HTML sample: bit.ly/1m0sWTE
• XAML sample: bit.ly/1eGsVAH

RACHEL APPEL is a consultant, author, mentor and former Microsoft employee with
more than 20 years of experience in the IT industry. She speaks at top industry
conferences such as Visual Studio Live!, DevConnections, MIX and more. Her
expertise lies within developing solutions that align business and technology
focusing on the Microsoft dev stack and open Web. For more about Appel, visit
her Web site at rachelappel.com.

THANKS to the following technical expert for reviewing this article:
Frank La Vigne (Microsoft)

In Windows Store apps built with
JavaScript, you can style the Hub

control with CSS.

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/jj991982
www.bit.ly/1m0sWTE
www.bit.ly/1eGsVAH
www.rachelappel.com

The Developer World is always changing; new technologies emerge,
current ones evolve and demands on your time grow. Live! 360 DEV
offers comprehensive training through 5 co-located events on the
most relevant and leading edge technologies in your world today.
You'll learn from pre-eminent experts in the industry, network with
like-minded peers, and return home with the knowledge and
solutions you need to tackle your biggest development challenges.

March 10 - 14, 2014 | Las Vegas, NV Planet Hollywood Resort & Casino

Untitled-4 2 1/27/14 11:20 AM

www.live360events.com/lasvegas

Live! 360 DEV Explores:
Visual Studio Live! – May the Code be with you. The most trusted
source in the universe for .NET Training for 21 years and counting.

Web Dev Live! – NEW EVENT! Web Dev Live! will dive deep to
explore all that is HTML5, JavaScript and ASP.NET.

Modern Apps Live! – Launch your mobile, cross-device & cloud development
training here.

SharePoint Live! – Set your course for collaboration with these sessions
designed strictly for devs.

SQL Server Live! – Your Mission? Conquering coding against SQL Server.

This means you have ve events with over a hundred sessions to choose from –
mix and match sessions to create your own, custom event line-up - it’s like no
other dev conference available today.

live360events.com/lasvegas

SESSIONS ARE FILLING UP QUICKLY
REGISTER TODAY!
Use promo code DEVMAR2

Scan the QR code to
register or for more

event details.

CONNECT WITH LIVE! 360
twitter.com/live360events

facebook.com/live360events

Join the "Live! 360" Group

t

f

J

PRODUCED BYSUPPORTED BY

magazine

PLATINUM SPONSOR

Untitled-4 3 1/27/14 11:20 AM

www.live360events.com/lasvegas
www.live360events.com/lasvegas
www.live360events.com/lasvegas
https://twitter.com/Live360events
https://www.facebook.com/live360events
http://www.linkedin.com/groups?gid=4974888&trk=hb_side_g

msdn magazine74

Th e triangle is the most basic two-dimensional fi gure. It’s nothing
more than three points connected by three lines, and if you try to
make it any simpler, it collapses into a single dimension. On the
other hand, any other type of polygon can be decomposed into a
collection of triangles.

Even in three dimensions, a triangle is always fl at. Indeed, one
way to defi ne a plane in 3D space is with three non-collinear points,
and that’s a triangle. A square in 3D space isn’t guaranteed to be
fl at because the fourth point might not be in the same plane as
the other three. But that square can be divided into two triangles,
each of which is fl at, although not necessarily on the same plane.

In 3D graphics programming, triangles form the surfaces of solid
fi gures, starting with the simplest of all three-dimensional fi gures,
the triangular pyramid, or tetrahedron. Assembling a seemingly
solid fi gure from triangle “building blocks” is the most fundamental
process in 3D computer graphics. Of course, the surfaces of
real-world objects are oft en curved, but if you make the triangles
small enough, they can approximate curved surfaces to a degree
suffi cient to fool the human eye.

The illusion of curvature is enhanced by exploiting another
characteristic of triangles: If the three vertices of a triangle are
associated with three diff erent values—for example, three diff erent
colors or three different geometric vectors—these values can be
interpolated over the surface of the triangle and used to color that
surface. Th is is how triangles are shaded to mimic the refl ection of
light seen in real-world objects.

Triangles in Direct2D
Triangles are ubiquitous in 3D computer graphics. Much of the
work performed by a modern graphics processing unit (GPU)
involves rendering triangles, so of course Direct3D programming
involves working with triangles to defi ne solid fi gures.

In contrast, triangles aren’t found at all in most 2D graphics pro-
gramming interfaces, where the most common two-dimensional
primitives are lines, curves, rectangles and ellipses. So it’s somewhat
surprising to fi nd triangles pop up in a rather obscure corner of
Direct2D. Or maybe it’s really not that surprising: Because Direct2D
is built on top of Direct3D, it seems reasonable for Direct2D to
take advantage of the triangle support in Direct3D and the GPU.

Th e triangle structure defi ned in Direct2D is simple:
struct D2D1_TRIANGLE
{
 D2D1_POINT_2F point1;
 D2D1_POINT_2F point2;
 D2D1_POINT_2F point3;
};

As far as I can determine, this structure is used in Direct2D only
in connection with a “mesh,” which is a collection of triangles stored
in an object of type ID2D1Mesh. Th e ID2D1RenderTarget (from
which ID2D1DeviceContext derives) supports a method named
CreateMesh that creates such an object:

ID2D1Mesh * mesh;
deviceContext->CreateMesh(&mesh);

(To keep things simple, I’m not showing the use of ComPtr or
checking HRESULT values in these brief code examples.) The
ID2D1Mesh interface defi nes a single method named Open. Th is
method returns an object of type ID2D1TessellationSink:

ID2D1TessellationSink * tessellationSink;
mesh->Open(&tessellationSink);

In general, “tessellation” refers to the process of covering a surface
with a mosaic pattern, but the term is used somewhat diff erently in

Triangles and Tessellation

DIRECTX FACTOR CHARLES PETZOLD

Code download available at msdn.microsoft.com/magazine/msdnmag0314.

// ID2D1TessellationSink methods
void InterrogableTessellationSink::AddTriangles(_In_ const D2D1_TRIANGLE *triangles,
 UINT trianglesCount)
{
 for (UINT i = 0; i < trianglesCount; i++)
 {
 m_triangles.push_back(triangles[i]);
 }
}

HRESULT InterrogableTessellationSink::Close()
{
 // Assume the class accessing the tessellation sink knows what it's doing
 return S_OK;
}

// Method for this implementation
std::vector<D2D1_TRIANGLE> InterrogableTessellationSink::GetTriangles()
{
 return m_triangles;
}

Figure 1 The Relevant Code of InterrogableTessellationSink

In Direct2D, tessellation is the
process of decomposing a two-
dimensional area into triangles.

http://msdn.microsoft.com/magazine/msdnmag0314

75March 2014msdnmagazine.com

Direct2D and Direct3D programming. In Direct2D, tessellation is
the process of decomposing a two-dimensional area into triangles.

Th e ID2D1TessellationSink interface has just two methods: Add-
Triangles (which adds a collection of D2D1_TRIANGLE objects to
the collection) and Close, which makes the mesh object immutable.

Although your program can call AddTriangles itself, oft en it will
pass the ID2D1TessellationSink object to the Tessellate method
defi ned by the ID2D1Geometry interface:

geometry->Tessellate(IdentityMatrix(), tessellationSink);
tessellationSink->Close();

Th e Tessellate method generates triangles that cover the areas
enclosed by the geometry. Aft er you call the Close method, the sink
can be discarded and you’re left with an ID2D1Mesh object. Th e
process of generating the contents of an ID2D1Mesh object using
an ID2D1TessellationSink is similar to defining an ID2D1Path-
Geometry using an ID2D1GeometrySink.

You can then render this ID2D1Mesh object using the FillMesh
method of ID2D1RenderTarget. A brush governs how the mesh
is colored:

deviceContext->FillMesh(mesh, brush);

Keep in mind that these mesh triangles defi ne an area and not
an outline of an area. Th ere is no DrawMesh method.

FillMesh has a limitation: Anti-aliasing can’t be enabled when
FillMesh is called. Precede FillMesh with a call to SetAntialiasMode:

deviceContext->SetAntialiasMode(D2D1_ANTIALIAS_MODE_ALIASED);

You might wonder: What’s the point? Why not just call
FillGeometry on the original geometry object? Th e visuals should
be the same (aside from the anti-aliasing). But there’s actually a

profound diff erence between ID2D1Geometry and ID2D1Mesh
objects that’s revealed by how you create these two objects.

Geometries are mostly just collections of coordinate points, so
geometries are device-independent objects. You can create various
types of geometries by calling methods defi ned by ID2D1Factory.

A mesh is a collection of triangles, which are just triplets of
coordinate points, so a mesh should be a device-independent
object as well. But you create an ID2D1Mesh object by calling a
method defi ned by ID2D1RenderTarget. Th is means the mesh is
a device-dependent object, like a brush.

Th is tells you the triangles that comprise the mesh are stored
in a device-dependent manner, most likely in a form suitable for
processing by the GPU, or actually on the GPU. And this means
that FillMesh should execute much faster than FillGeometry for
the equivalent fi gure.

Shall we test that hypothesis?
Among the downloadable code for this article is a program

named MeshTest that creates a path geometry for a 201-point star,
and slowly rotates it while calculating and displaying the frame rate.
When the program is compiled in Debug mode for the x86 and
runs on my Surface Pro, I get a frame rate of less than 30 frames
per second (FPS) when rendering the path geometry (even if the
geometry is outlined to eliminate overlapping areas and fl attened
to eliminate curves), but the frame rate leaps up to 60FPS when
rendering the mesh.

Conclusion: For complex geometries, it makes sense to convert
them to meshes for rendering. If the need to disable anti-aliasing
to render this mesh is a deal-breaker, you might want to check out
ID2D1GeometryRealization, introduced in Windows 8.1. Th is
combines the performance of ID2D1Mesh but allows anti-aliasing.
Keep in mind meshes and geometry realizations must be recreated if
the display device is recreated, just as with other device-dependent
resources such as brushes.

Examining the Triangles
I was curious about the triangles generated by the tessellation
process. Could they actually be visualized? Th e ID2D1Mesh object
doesn’t allow you to access the triangles that comprise the mesh,
but it’s possible to write your own class that implements the
ID2D1TessellationSink interface, and pass an instance of that class
to the Tessellate method.

I called my ID2D1TessellationSink implementation Interrogable-
TessellationSink, and it turned out to be embarrassingly simple. It
contains a private data member for storing triangle objects:

std::vector<D2D1_TRIANGLE> m_triangles;

Figure 2 A Rounded Rectangle Decomposed into Triangles

Figure 3 Text Decomposed into Triangles

Geometries are mostly
just collections of coordinate

points, so geometries are
device-independent objects.

www.msdnmagazine.com

msdn magazine76 DirectX Factor

Most of the code is dedicated to implementing the IUnknown
interface. Figure 1 shows the code required to implement the two
ID2D1TessellationSink methods and obtain the resultant triangles.

I incorporated this class in a project named Tessellation-
Visualization. Th e program creates geometries of various sorts—
everything from a simple rectangle geometry to geometries
generated from text glyphs—and uses InterrogableTessellationSink
to obtain the collection of triangles created by the Tessellate method.
Each triangle is then converted into an ID2D1PathGeometry
object consisting of three straight lines. Th ese path geometries are
then rendered using DrawGeometry.

As you might expect, an ID2D1RectangleGeometry is tessellated
into just two triangles, but the other geometries are more interesting.
Figure 2 shows the triangles that comprise an ID2D1Rounded-
RectangleGeometry.

Th is isn’t the way a human being would tessellate the rounded
rectangle. A human being would probably divide the rounded
rectangle into fi ve rectangles and four quarter-circles, and tessel-
late each of those fi gures separately. In particular, a human would
slice the four quarter-circles into pie wedges.

In other words, a human being would defi ne several more points
in the interior of the geometry to aid in the tessellation. But the
tessellation algorithm defi ned by the geometry object doesn’t use
any points beyond those created by the fl attening of the geometry.

Figure 3 shows two characters rendered with the Pescadero font
decomposed into triangles.

I was also curious about the order in which these triangles were
generated, and by clicking the Gradient Fill option at the bottom
left of the window, you can fi nd out. When this option is checked,
the program calls FillGeometry for each of the triangle geometries.
A solid color brush is passed to FillGeometry but the color depends
on the triangle’s index in the collection.

What you’ll fi nd is that the FillGeometry option renders some-
thing akin to a top-down gradient brush, which means that triangles
are stored in the collection in a visual top-down order. It appears
the tessellation algorithm attempts to maximize the width of hor-
izontal scan lines in the triangles, which probably maximizes the
rendering performance.

Although I clearly recognize the wisdom of this approach, I must
confess I was a little disappointed. I was hoping that a widened
Bézier curve (for example) might be tessellated beginning at one
end of the line and continuing to the other, so the triangles could
be rendered with a gradient from one end to the other, which is
not a type of gradient commonly seen in a DirectX program! But
this was not to be.

Interestingly, I needed to turn off anti-aliasing before the Fill-
Geometry calls in TessellationVisualization or faint lines appeared
between the rendered triangles. Th ese faint lines result from the
anti-aliasing algorithm, which involves partially transparent pixels
that don’t become opaque when overlapped. Th is leads me to suspect
that using anti-aliasing with FillMesh isn’t a hardware or soft ware
limitation, but a restriction mandated to avoid visual anomalies.

Figure 4 Tessellation and Rendering Code in SparklingTextRenderer

void SparklingTextRenderer::Tessellate()
{
 ...

 // Tessellate geometry into triangles
 ComPtr<InterrogableTessellationSink> tessellationSink =
 new InterrogableTessellationSink();
 pathGeometry->Tessellate(IdentityMatrix(), tessellationSink.Get());
 std::vector<D2D1_TRIANGLE> triangles = tessellationSink->GetTriangles();

 if (m_useMeshesNotGeometries)
 {
 // Generate a separate mesh from each triangle
 ID2D1DeviceContext* context = m_deviceResources->GetD2DDeviceContext();

 for (D2D1_TRIANGLE triangle : triangles)
 {
 ComPtr<ID2D1Mesh> triangleMesh;
 context->CreateMesh(&triangleMesh);
 ComPtr<ID2D1TessellationSink> sink;
 triangleMesh->Open(&sink);
 sink->AddTriangles(&triangle, 1);
 sink->Close();

 m_triangleMeshes.push_back(triangleMesh);
 }
 }
 else
 {
 // Generate a path geometry from each triangle
 for (D2D1_TRIANGLE triangle : triangles)
 {
 ComPtr<ID2D1PathGeometry> triangleGeometry;
 d2dFactory->CreatePathGeometry(&triangleGeometry);
 ComPtr<ID2D1GeometrySink> geometrySink;
 triangleGeometry->Open(&geometrySink);
 geometrySink->BeginFigure(triangle.point1, D2D1_FIGURE_BEGIN_FILLED);
 geometrySink->AddLine(triangle.point2);
 geometrySink->AddLine(triangle.point3);
 geometrySink->EndFigure(D2D1_FIGURE_END_CLOSED);

 geometrySink->Close();

 m_triangleGeometries.push_back(triangleGeometry);
 }
 }
}

void SparklingTextRenderer::Render()
{
 ...

 Matrix3x2F centerMatrix = D2D1::Matrix3x2F::Translation(
 (logicalSize.Width - (m_geometryBounds.right + m_geometryBounds.left)) / 2,
 (logicalSize.Height - (m_geometryBounds.bottom + m_geometryBounds.top)) / 2);

 context->SetTransform(centerMatrix *
 m_deviceResources->GetOrientationTransform2D());
 context->SetAntialiasMode(D2D1_ANTIALIAS_MODE_ALIASED);

 if (m_useMeshesNotGeometries)
 {
 for (ComPtr<ID2D1Mesh>& triangleMesh : m_triangleMeshes)
 {
 float gray = (rand() % 1000) * 0.001f;
 m_solidBrush->SetColor(ColorF(gray, gray, gray));
 context->FillMesh(triangleMesh.Get(), m_solidBrush.Get());
 }
 }
 else
 {
 for (ComPtr<ID2D1PathGeometry>& triangleGeometry : m_triangleGeometries)
 {
 float gray = (rand() % 1000) * 0.001f;
 m_solidBrush->SetColor(ColorF(gray, gray, gray));
 context->FillGeometry(triangleGeometry.Get(), m_solidBrush.Get());
 }
 }

 ...
}

Untitled-1 1 10/13/11 1:15 PM

www.msdnmagazine.com
www.visualstudiomagazine.com
www.vslive.com

msdn magazine78 DirectX Factor

Triangles in 2D and 3D
Aft er working just a little while with ID2D1Mesh objects, I began
visualizing all two-dimensional areas as mosaics of triangles. Th is
mindset is normal when doing 3D programming, but I had never
extended such a triangle-centric vision to the 2D world.

Th e documentation of the Tessellate method indicates the gener-
ated triangles are “clockwise-wound,” which means that the point1,
point2 and point3 members of the D2D1_TRIANGLE structure are
ordered in a clockwise direction. Th is isn’t very useful information
when using these triangles in 2D graphics programming, but it
becomes quite important in the 3D world, where the ordering of the
points in a triangle usually indicates the front or back of the fi gure.

Of course, I’m very interested in using these two-dimensional
tessellated triangles to break through the third dimension, where
triangles are most comfortably at home. But I don’t want to be in
such a rush that I neglect to explore some interesting eff ects with
tessellated triangles in two dimensions.

Coloring Triangles Uniquely
For me, the biggest thrill in graphics programming is creating images
on the computer screen of a sort I’ve never seen before, and I don’t
think I’ve ever seen text tessellated into triangles whose colors change
in a random manner. Th is happens in a program I call SparklingText.

Keep in mind that both FillGeometry and FillMesh involve only
a single brush, so if you need to render hundreds of triangles with
diff erent colors, you’ll need hundreds of FillGeometry or FillMesh
calls, each rendering a single triangle. Which is more effi cient? A
FillGeometry call to render an ID2D1PathGeometry that consists

of three straight lines? Or a FillMesh call with an ID2D1Mesh
containing a single triangle?

I assumed that FillMesh would be more effi cient than FillGeom-
etry only if the mesh contained multiple triangles, and it would be
slower for one triangle, so I originally wrote the program to gener-
ate path geometries from the tessellated triangles. Only later did I
add a CheckBox labeled “Use a Mesh for each triangle instead of a
PathGeometry” and incorporated that logic as well.

Th e strategy in the SparklingTextRenderer class of SparklingText
is to use the GetGlyphRunOutline method of ID2D1FontFace to
obtain a path geometry for the character outlines. Th e program
then calls the Tessellate method on this geometry with the Inter-
rogableGeometrySink to get a collection of D2D1_TRIANGLE
objects. Th ese are then converted into path geometries or meshes
(depending on the CheckBox value) and stored in one of two vector
collections named m_triangleGeometries and m_triangleMeshes.

Figure 4 shows a pertinent chunk of the Tessellate method that
fills these collections, and the Render method that renders the
resultant triangles. As usual, HRESULT-checking has been removed
to simplify the code listings.

Based on the video frame rate (which the program displays), my
Surface Pro renders the meshes faster than the path geometries,
despite the fact that each mesh contains just a single triangle.

Th e animation of the colors is unnervingly reminiscent of a scin-
tillating migraine aura, so you might want to exercise some caution
when viewing it. Figure 5 shows a still image from the program,
which should be much safer.

Moving the Tessellated Triangles
Th e remaining two programs use a strategy similar to Sparkling-
Text to generate a collection of triangles to form glyph outlines,
but then move the little triangles around the screen.

Figure 5 The SparklingText Display

Figure 7 The TextMorphing Display Figure 6 A Still from the OutThereAndBackAgain Program

After working just a little while
with ID2D1Mesh objects, I began
visualizing all two-dimensional
areas as mosaics of triangles.

79March 2014msdnmagazine.com

For OutTh ereAndBackAgain, I envisioned text that would fl y
apart into its composite triangles, which would then come back to
form the text again. Figure 6 shows this process at 3 percent into
the fl ying-apart animation.

The CreateWindowSizeDependentResources method in the
OutTh ereAndBackAgainRenderer class assembles information
about each triangle in a structure I call TriangleInfo. Th is structure

contains a single-triangle ID2D1Mesh object, as well as informa-
tion necessary to take that triangle on a journey outward and back
again. Th is journey takes advantage of a feature of geometries you
can use independently of rendering. Th e ComputeLength method
in ID2D1Geometry returns the total length of a geometry, while
ComputePointAtLength returns a point on the curve and a tangent
to the curve at any length. From that information you can derive
translate and rotate matrices.

As you can see in Figure 6, I used a gradient brush for the text
so that triangles of slightly different colors would cross paths
and intermingle a bit. Even though I’m using only one brush, the
desired eff ect requires the Render method to call SetTransform and
FillMesh for every single-triangle mesh. Th e gradient brush is applied
as if the mesh were in its original position prior to the transform.

I wondered if it would be effi cient for the Update method to
transform all the individual triangles “manually” with calls to the
TransformPoint method of the Matrix3x2F class, and to consol-
idate these in a single ID2D1Mesh object, which would then be
rendered with a single FillMesh call. I added an option for that, and
sure enough, it was faster. I woudn’t have imagined that creating
an ID2D1Mesh in each Update call would work well, but it does.
Th e visuals are slightly diff erent, however: Th e gradient brush is
applied to the transformed triangles in the mesh, so there’s no
intermingling of colors.

Text Morphing?
Suppose you tessellate the glyph outline geometries of two text
strings—for example, the words “DirectX” and “Factor” that make
up the name of this column—and pair up the triangles for inter-
polation. An animation could then be defi ned that transforms one
word into the other. It’s not exactly a morphing eff ect, but I don’t
know what else to call it.

Figure 7 shows the eff ect midway between the two words, and
with a little imagination you can almost make out either “DirectX”
or “Factor” in the image.

Optimally, each pair of morphing triangles should be spatially
close, but minimizing the distances between all the pairs of trian-
gles is akin to the Traveling Salesman Problem. I took a relatively
simpler approach by sorting the two collections of triangles by
the X coordinates of the triangle center, and then separating the
collections into groups representing ranges of X coordinates, and
sorting those by the Y coordinates. Of course, the two triangle col-
lections are diff erent sizes, so some triangles in the word “Factor”
correspond to two triangles in the word “DirectX.”

Figure 8 shows the interpolation logic in Update and the
rendering logic in Render.

With that, I think I’ve satisfi ed my curiosity about 2D triangles
and I’m ready to give those triangles a third dimension.

CHARLES PETZOLD is a longtime contributor to MSDN Magazine and the author
of “Programming Windows, 6th edition” (Microsoft Press, 2012), a book about
writing applications for Windows 8. His Web site is charlespetzold.com.

THANKS to the following Microsoft technical experts for reviewing this article:
Jim Galasyn and Mike Riches

void TextMorphingRenderer::Update(DX::StepTimer const& timer)
{
 ...

 // Calculate an interpolation factor
 float t = (float)fmod(timer.GetTotalSeconds(), 10) / 10;
 t = std::cos(t * 2 * 3.14159f); // 1 to 0 to -1 to 0 to 1
 t = (1 - t) / 2; // 0 to 1 to 0

 // Two functions for interpolation
 std::function<D2D1_POINT_2F(D2D1_POINT_2F, D2D1_POINT_2F, float)>
 InterpolatePoint =
 [](D2D1_POINT_2F pt0, D2D1_POINT_2F pt1, float t)
 {
 return Point2F((1 - t) * pt0.x + t * pt1.x,
 (1 - t) * pt0.y + t * pt1.y);
 };

 std::function<D2D1_TRIANGLE(D2D1_TRIANGLE, D2D1_TRIANGLE, float)>
 InterpolateTriangle =
 [InterpolatePoint](D2D1_TRIANGLE tri0, D2D1_TRIANGLE tri1, float t)
 {
 D2D1_TRIANGLE triangle;
 triangle.point1 = InterpolatePoint(tri0.point1, tri1.point1, t);
 triangle.point2 = InterpolatePoint(tri0.point2, tri1.point2, t);
 triangle.point3 = InterpolatePoint(tri0.point3, tri1.point3, t);
 return triangle;
 };

 // Interpolate the triangles
 int count = m_triangleInfos.size();
 std::vector<D2D1_TRIANGLE> triangles(count);

 for (int index = 0; index < count; index++)
 {
 triangles.at(index) =
 InterpolateTriangle(m_triangleInfos.at(index).triangle[0],
 m_triangleInfos.at(index).triangle[1], t);
 }

 // Create a mesh with the interpolated triangles
 m_deviceResources->GetD2DDeviceContext()->CreateMesh(&m_textMesh);
 ComPtr<ID2D1TessellationSink> tessellationSink;
 m_textMesh->Open(&tessellationSink);
 tessellationSink->AddTriangles(triangles.data(), triangles.size());
 tessellationSink->Close();
}

// Renders a frame to the screen
void TextMorphingRenderer::Render()
{
 ...

 if (m_textMesh != nullptr)
 {
 Matrix3x2F centerMatrix = D2D1::Matrix3x2F::Translation(
 (logicalSize.Width - (m_geometryBounds.right + m_geometryBounds.left)) / 2,
 (logicalSize.Height - (m_geometryBounds.bottom + m_geometryBounds.top)) / 2);

 context->SetTransform(centerMatrix *
 m_deviceResources->GetOrientationTransform2D());
 context->SetAntialiasMode(D2D1_ANTIALIAS_MODE_ALIASED);
 context->FillMesh(m_textMesh.Get(), m_blueBrush.Get());
 }

 ...
}

Figure 8 Update and Render in TextMorphing

www.msdnmagazine.com
www.charlespetzold.com

msdn magazine80

I’ve always enjoyed the comic strip, “Wizard
of Id,” which is set in medieval times. Its
creators died in 2008, but their descendants
have kept the strip current for today’s Inter-
net age (see bit.ly/1d7eIYK). Peasants (known, of
course, as Idiots) rampage through the town
waving signs that read, “Th e king is a fi nk!”
Figure 1 shows the king’s response.

Th at same scenario is now exploding in the
fi eld of enterprise soft ware. Last December,
Avon (the makeup guys) pulled the plug on a
new version of their order management soft -
ware based on SAP. Th e Wall Street Journal in
December reported the company’s sales force
of independent reps “found the new system
so burdensome and disruptive to their daily
routine that many left Avon.”

A spokesman for SAP was later quoted
saying that Avon’s order management system
“is working as designed, despite any issues
with the implementation of this project.”

Really? Th at means unless Avon’s goal was to reduce its workforce
through bad soft ware instead of layoff s, the company implemented
a terrible design. And that weasel spokesman (but, like Mark Twain,
I repeat myself) should read my column about the word “issue.”
(See msdn.microsoft.com/magazine/ff955613.)

As smoking in public was once common, it was once common
to force users to contort themselves into fi ve-dimensional hyper-
pretzels to match their soft ware—to become “computer literate,”
in the term of that day. UX guru Alan Cooper wrote that a com-
puter literate user is one who “has been hurt so oft en that the scar
tissue is so thick that he no longer feels the pain.” Users accepted
this as the price of getting their computing jobs done. Th at attitude
doesn’t cut it anymore.

Success in consumer-sector soft ware and hardware has been
driven by usability for seven years now, since the fi rst Apple iPhone.
But it’s taken much longer for that requirement to cross over into
the enterprise sector. The whole bring-your-own-device move-
ment arose from early adopter iPhone and iPad users wanting
their enterprise soft ware to work as easily as their consumer apps.
And now, like the Wizard’s newspaper pagemate Popeye the Sailor,
enterprise users have stood up and roared, “Th at’s all I can stands!
I can’t stands no more!” (See bit.ly/1a7BiWZ.)

You’d think that enterprise developers by
now would’ve realized the importance of
usability, as they directly benefi t from greater
user productivity, fewer catastrophic errors,
and lower training and support costs. But the
strongest bastions of bad usability are places
where users are locked in and can’t choose.
Cormac Herley of Microsoft Research,
investigating the burden security policies
place on users, found them highest not where
data was most sensitive, but rather in captive
situations, especially governments and uni-
versities, where the enterprise didn’t suff er
the market consequences of its bad usability
(see bit.ly/1eK6Dhu). Avon is the tipping point
where this phenomenon starts to change.

Whether you’re dealing with the enter-
prise or consumer sector, UX design has
to happen before anything else can. To
meet today’s standard of care, you can’t wait
until your program works and then throw it

over the fence for the decorators to pretty up. Th e decorators can
round off the corners of the File Open/Save dialog box and give it
nice color gradients. But the UX interaction designer determines
whether to make the user save documents manually (a la Word),
or implement automatic saving (a la OneNote). Th at choice very
much dictates the code to write. So UX design has to come fi rst.
And with Avon, clearly, it didn’t.

That needs to change. As Steve Rosenbush wrote in his CIO
Journal blog on wsj.com: “People who are accustomed to using
simple, well-designed applications in their personal lives have no
patience for disappointing technology at work.” Amen.

And so, my friends, when you work on your enterprise apps,
you had better start paying attention to usability. Because the
enterprise-sector peasants are indeed revolting. And there’s no
stopping them. If your boss won’t let you put UX fi rst, ask him how
he feels about wearing tar and feathers.

DAVID S. PLATT teaches programming .NET at Harvard University Extension School
and at companies all over the world. He’s the author of 11 programming books, including
“Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and “Introducing
Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Soft ware Legend
in 2002. He wonders whether he should tape down two of his daughter’s fi ngers so
she learns how to count in octal. You can contact him at rollthunder.com.

The Peasants Are Revolting!

DON’T GET ME STARTED DAVID S. PLATT

Figure 1 Avon’s management was slow
to recognize unrest in the ranks.

Illustration: Reprinted with permission of John Hart Studios Inc.

www.bit.ly/1d7eIYK
http://msdn.microsoft.com/magazine/ff955613
www.bit.ly/1a7BiWZ
www.bit.ly/1eK6Dhu
www.wsj.com
www.rollthunder.com

Untitled-2 1 5/31/13 10:57 AM

www.rssbus.com

Untitled-5 1 2/4/14 1:21 PM

www.syncfusion.com/succinctlyseries

DOC, XLS, JPG, PNG, PDF
BMP, MSG, PPT, VSD, XPS
& many other formats.

Native APIs for
.NET, Java, Android & Cloud

Aspose APIs help developers
with all file related tasks, from
conversions to reporting.

US Sales: +1 888 277 6734
sales@aspose.com

EU Sales: +44 141 416 1112
sales.europe@aspose.com

AU Sales: +61 2 8003 5926
sales.asiapacific@aspose.com

Also Powering

www.aspose.com

Powerful File APIs that are easy and intuitive to use

mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com
http://www.aspose.com
http://www.aspose.com

CONVERT
PRINT
CREATE
COMBINE
MODIFY

CONVERT
PRINT
CREATE
COMBINE
MODIFY

100% Standalone - No Office Automation







http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com

AndroidCloudJava.NET

Aspose.Total for Cloud

Aspose.Total for Android

Aspose.Total for .NET

Aspose.Total for Java

ASPOSE.TOTALASPOSE.TOTALASPOSE.TOTAL

http://www.aspose.com
http://www.aspose.com

page 4

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Aspose.Cells

XLS XLSX TXT PDF HTML CSV TIFF PNG JPG BMP
SpreadsheetML and many others.

Aspose.Cells comes with complete support for charting and
supports all standard chart types. Also, you can convert charts
to images.

Easily convert worksheets to images as well as adding images
to worksheets at runtime.

Aspose.Cells lets you create, import, and export spreadsheets
and also allows you to manipulate contents, cell formatting,
and file protection.

US Sales: +1 888 277 6734
FAX: +1 866 810 9465
sales@aspose.com

EU Sales: +44 141 416 1112
sales.europe@aspose.com No Office Automation

Get your FREE Trial at
http://www.aspose.com

Aspose.Cells does not require Microsoft Office to
be installed on the machine in order to work.

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
http://www.aspose.com

page 6

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

page 7

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

http://www.groupdocs.com
mailto:sales@groupdocs.com
http://www.groupdocs.com

http://www.groupdocs.com

page 10

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

page 11

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

http://www.aspose.com
http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

page 13

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

page 14

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Get your FREE TRIAL at www.aspose.com

Now you can!

Want to work with real business documents?

http://www.aspose.com

mailto:sales@banckle.com
www.banckle.com
http://www.banckle.com
mailto:sales@banckle.com
http://www.banckle.com

www.banckle.com
www.banckle.com
mailto:sales@banckle.com

page 18

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

page 19

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Get the feature you need built now

Communicate with product
managers, influence the roadmap

Support Forums with no Charge

24 hour response time in the
week, issue escalation,
dedicated forum

Technical Support is an issue
that Aspose takes very seriously.
Software must work quickly and
dependably. When problems arise,
developers need answers in a hurry.
We ensure that our clients receive
useful answers and solutions quickluseful answers and solutions quickly.

CONTACT US

US Sales: +1 888 277 6734
sales@aspose.com

EU Sales: +44 141 416 1112
sales.europe@aspose.com

AU Sales: +61 2 8003 5926
sales.asiapacific@aspose.com

Email • Live Chat • Forums

Free Support

Priority Support

Enterprise Support

Sponsored Support

Aspose has 4 Support Services to best suit your needs

mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com
http://www.aspose.com

	Back
	Print
	MSDN Magazine, March 2014
	Cover Tip
	Front
	Back

	Contents
	CUTTING EDGE: A First Look at ASP.NET Identity
	WINDOWS AZURE INSIDER: The Windows Azure Service Bus and the Internet of Things, Part 2
	Patterns for Asynchronous MVVM Applications: Data Binding
	Asynchronous TCP Sockets as an Alternative to WCF
	A .NET Developer Primer for Single-Page Applications
	Building a Netduino-Based HID Sensor for WinRT
	THE WORKING PROGRAMMER: Getting Started with Oak: Data Validation and Wrapping Up
	MODERN APPS: A Look at the Hub Project and Control in Windows Store Apps
	DIRECTX FACTOR: Triangles and Tessellation
	DON’T GET ME STARTED The Peasants Are Revolting!

	Visual Studio Live!, Chicago 2014 - Insert
	Aspose Outsert

