THE MICROSOFT JOURNAL FOR DEVELOPERS MARCH 2014 VOL 29 NO 3

magazine

I I I S d I I Asynchronous
Programming................ 18, 26

Zero to Dashboard in Record Time.

DevExpress Dashboard is the right tool for business because it delivers flexible, interactive and

fully customizable user experiences so you can create enterprise-ready decision support systems
in the shortest possible time.

Get started today: DevExpress.com/Dashboard

: xipord R
aencye) DS P
P\\f\9 An ERpRESS N :::K‘lf;\nqk\c} '?"\"Q .‘\%

QNS A

% DevExpress’

www.devexpress.com/dashboard

Become o
Ul Supevhero!

Leavw Move at
DevExpress.com/Supevhevo

a DevExpress

www.devexpress.com/superhero

THE MICROSOFT JOURNAL FOR DEVELOPERS

msd

Patterns for Asynchronous COLUMNS
MVVM Applications: Data Binding CUTTING EDGE

Stephen Cleary...............ccooovmiiiiiiiii e 18 A First Look at ASPNET Identity
Dino Esposito, page 6

Asynchronous TCP Sockets WINDOWS AZURE INSIDER

as an Alternative to WCF The Windows Azure Service Bus
James McCaffreyoooveiiiiiiiie e 26 and the Internet of Things, Part 2

Bruno Terkaly and
Ricardo Villalobos, page 12

magazine

Asynchronous
Programming

A .NET Developer Primer for
THE WORKING

Single-Page Applications PROGRAMMER
Long Le .. 34 Gettmg Started Wlth Oak:

A . Data Validation and
BU|Id|ng a Netduino-Based Wrapping Up
HID Sensor for WinRT Ted Neward, page 62
DONN IMOFSE ... oo, 52 MODERN APPS

A Look at the Hub Project and
Control in Windows Store Apps
Rachel Appel, page 66

DIRECTX FACTOR
Triangles and Tessellation
Charles Petzold, page 74

DON’'T GET ME STARTED

The Peasants Are Revolting!
David Platt, page 80

m Microsoft

www.OnTimeNow.com/msdn

VS.

(QOOn'Iime THE #1 SELLING SCRUM SOFTWARE

New Request Approved In Progress Completed

3: Search Policy Documents 1: New Page Dislog 1: Secure Login Bucure Luyie
37: Schema Changes for login
;a_ugna: To: Cathy O'Reily :mo; To:Hc.'.:hmy OReity ;ﬂmou To: David Rolf
riority: Low : Viry rioity:
P.nlor:‘ura'. Releasa: V1.0 ﬁahnu’:‘?;ml 1 Assigned To: David Roll
Priority: Medium
TOheN — b Release: Sprint 1
B s 4Oy Bhes e S e Ohrs.
Subitoms: 5
4: Banefits info page 12: Advanced Empl. Search Seoms kg Bacure Lapt
38: Login Page 40: cauth token
Assigned To: David Ralf Assigned To: David Rodl
Priarity: Medi Priarity: Modi
R:Jbr:\;?hdum mr?:;r“?hﬁum Assigned To: Jacob Carusa Assigned To: David Roll
Pricaity: Very High Priariy. Hi
Release: Sprint 1 Redaase: Sprint 1
B e By s s BB IS c— Bhe 1SRN — O

15: Search dept. by function
Assigned To: Donald Rowlett
Priarity: Viery High

Releasa:

Ohrg e X hew

14: Rotate On-cal status by
dept.

Assigned To: Donald Rowlatt
Priodity; Low

Releasa:

D s B

22: Directory Page

Assigned To: Cathy O'Rally
Priaty: High
Releasa:

] T —

Employee Directory
42: unit-testing (pair with main
AP| call)
Assignad To: David Roif

Priary. Medium
Release: Sprint 1

M m— Ol

Boosting your Scrum team'’s efficiency is easy. Make the switch from
sticky notes and upgrade to OnTime at OnTimeNow.com/MSDN.

www.OnTimeNow.com/msdn

.

Instantly Search
Terabytes of Text

25+ fielded and full-text search types

dtSearch’s own document filters
support “"Office,” PDF, HTML, XML, ZIP,
emails (with nested attachments), and
many other file types

Supports databases as well as static
and dynamic websites

Highlights hits in all of the above
APIs for .NET, Java, C++, SQL, etc.
64-bit and 32-bit; Win and Linux

"lightning fast" Redmond Magazine
"covers all data sources" eWeek

"results in less than a second"”
InfoWorld

hundreds more reviews and developer
case studies at www.dtsearch.com

dtSearch products:
Desktop with Spider ~ Web with Spider

Network with Spider Engine for Win & .NET

Publish (portable media) Engine for Linux

Document filters also available for separate
licensing

Ask about fully-functional evaluations

The Smart Choice for Text Retrieval® since 1991

www.dtSearch.com 1-800-IT-FINDS

J

msdn

MARCH 2014 VOLUME 29 NUMBER 3 m a g a Z | n e

MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
KENT SHARKEY Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor

SHARON TERDEMAN Features Editor

WENDY HERNANDEZ Group Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, Charles Petzold, David S. Platt,

Bruno Terkaly, Ricardo Villalobos

'# RedmondMediaGroup

Henry Allain President, Redmond Media Group

Michele Imgrund Sr. Director of Marketing & Audience Engagement
Tracy Cook Director of Online Marketing

Irene Fincher Audience Development Manager

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Vice President, Group Publisher

Chris Kourtoglou Regional Sales Manager

Danna Vedder Regional Sales Manager/Microsoft Account Manager

David Seymour Director, Print & Online Production

Serena Barnes Production Coordinator/msdnadproduction@1105media.com

vivi -

1241105 MEDIAZ

Neal Vitale President & Chief Executive Officer

Richard Vitale Senior Vice President & Chief Financial Officer
Michael J. Valenti Executive Vice President

Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
PO. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, PO. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: PO. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” ¢/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed orimplied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc.,9201 Oakdale Ave., Ste 101, Chatsworth, CA91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Jane Long, Merit Direct. Phone: 913-
685-1301; E-mail: jlong@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

a5 Microsoft

@BPA

Printed in the USA

http://www.dtSearch.com
mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com

DOCUMENT MEDICAL

* OCR, Barcode & Forms Recognition » DICOM

* PDF Read, Write & Edit *» PACS

» Cleanup and Preprocessing : » Medical Workstation

* Annotation and Markup D * Image Processing E
MULTIMEDIA IMAGING

» Playback, Capture & Conversion » Raster and Vector Imaging

» MPEG-2 Transport Stream » Viewers

e Distributed Transcoding — * Imaging Processing

* DVR Tl » 150+ Formats

LEADTOOLS comprehensive line of imaging SDKs have all the document,
medical, imaging and multimedia technology you need to develop powerful
applications on any platform including .NET, Windows API, WInRT, i0S, OS X,
Android, HTML5 and more.

(=] i =]
(il
DOWNLOAD OUR 60 DAY EVALUATION LEADT OOLS SALES@LEADTOOLS.COM %
[=]

WWW.LEADTOOLS.COM THE WORLD LEADER IN IMAGING SDKs 800.637.1840

www.leadtools.com

MICHAEL DESMOND

Fverything | Need to Know
| Learned from Calvin and Hobbes

Don't Get Me Started columnist David Platt this month dives
into the revolt at Avon over the company’s attempt to deploy an
SAP-based order entry and customer management system. Our
back-page columnist takes his cues from many a muse, be they Nobel-
winning physicists or cartoon characters from the funny pages. And
in that last regard, he and I share common inspiration.

When Bill Wattersons brilliant Calvin and Hobbes comic strip
exploded onto newspaper pages in 1985, it was an unexpected
well spring of insight and wisdom. As a parent, I've marveled at
Wattersons ability to capture the simple genius of a boy at play. And
as editor in chief of MSDN Magazine, I've found that Watterson’s
incorrigible 6-year-old, Calvin, and his loyal tiger, Hobbes, offer
real lessons for working developers. Here are just a few.

Test, Test, Test! The Duplicator story arc is one of my favorites in
the 10-year run of the comic, but its a cautionary tale for developers.
Calvin invented a box that creates copies of himself, who he hoped
would do all his chores and school work. But Calvin never tested
his Duplicator, and he quickly faced a squad of ill-behaved dupes. If
Calvin had designed a test to determine the actual behavior of the
dupes his invention created, he might have saved himselfa lot of work.

Remediate: Calvin later developed
an add-on for his Duplicator, called the
Ethicator, which let the operator set each
dupes personality to either Good or Evil.
A simple patch saved what would other-
wise have been a costly project failure, as
Calvin created a compliant, good-aligned
dupe to do his chores.

Fail Gracefully: Alas, the good Calvin
dupe tried to befriend Calvins nemesis Susie Derkins. “T don't mind
ifhe cleans my room and gets me good grades, Calvin griped, “but
when he starts talking to girls thats going too darn far” The unpre-
dicted behavior led to an angry confrontation between Calvin and
his dupe, who suddenly cried “Oops! I've had an evil thought!” and
vanished in a puft of smoke. An exception-handling routine could
have preserved the investment in the duplicate Calvin.

TOUR DUPLICATOR | ARE OU
1S p BIG SUCCESS.| KIDDING ?

Value Extensibility Then there was the Transmogrifier, which
could turn anyone into one of four target animals: eel, baboon, giant
bug or dinosaur. Calvin showed great awareness allowing support
for additional targets, including an extensible UI to handle them.
The Transmogrifier would later support worms, elephants, tigers
and giant slugs. I wonder if he used XML?

Leverage the platform Both the Duplicator and Transmogrifier—
as wellas later Calvin inventions the Cerebral Enhance-O-Tron and
the Time Machine—were built on a common, corrugated cardboard
box platform and permanent marker UT. Simple geometries, famil-
iar materials and streamlined interfaces defined all four inventions.

Don't Skimp on Security When Calvin
and Hobbes created their exclusive club,
“Get Rid Of Slimy girlS (G.R.O.S.S);” they
secured entry to the club treechouse with a
long, multi-verse password about tigers,
which ended with the line “Tigers are
great! They'e the toast of the town. Lifes
always better when a tiger's around!” That
final stanza alone is a 308-bit password,
and I haven't even described the dancing component. But Calvin
struggled to remember the verse, illuminating the deep challenge
of balancing usability and security.

Mind the org chart: G.R.OS.S. offered a final, valuable lesson—the
danger posed by vague, shifting or tangled lines of authority. Calvin
may have been “Dictator for Life” of G.R.O.S.S., but that didn't stop
“First Tiger” Hobbes from trying to usurp his authority. Constant
management reorgs created a volatile environment that produced
hijacked meetings, failed initiatives and constant, internecine bicker-
ing. G.R.O.S.S. never did mount a successful attack on Susie Derkins.

Make Space for Creativity If Wattersons protagonists have
one message for developers, its this: Dare to dream. Some of
Calvins greatest insights occur while careening through the woods
in a toboggan or wagon. Take risks. Make mistakes. And, remem-

ber, lifes always better whena /(/ :

tiger's around.

TS AMAZING WHAT THEX DO
TED CARDBOARD

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

© 2014 Microsoft Corporation. All rights reserved.

Complymg with all applicable copynght laws is the responsibility of the user. Without limiting the rights under copyright, you are not itted to rep!
i properly acquired a copy of MSDN Magazine in paper format, you are permnted to phy5|cally transfer this paper copy in unmodified form. Otherwise, you are not permitted to transmit

If you have pi d or have otherwi
copies of MSDN Magazme (or any part of MSDN Magazine) in any form or by any means without the express written

store, or i into a retrieval system MSDN Magazine or any part of MSDN

of M|

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affiliated with Mi

recommendations and technical guidelines in MSDN Magazine are based on specific envi and

any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other inf

used by 1105 Media, Inc. under license from owner.

4 msdn magazine

Corporati i Corp is solely for the edltonal contents of this magazine. The
These dations or guidelines may not apply to dissimilar configl i ft Corporation does not make
MSDN M: MSDN, and Mi logos are

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

EmMpower You
CUSTOMErS

Create & Edit PDFs in .Net - ActiveX - WinRT
Edit, process and print PDF 1.7 documents

Create, fill-out and annotate PDF forms era"(_QE
Fast and lightweight 32- and 64-bit components w
Cun_‘\”fg[_tler

for .Net and ActiveX/COM

New WinRT Component enables publishing
C#, C++CX or Javascript apps to Windows Store

A0YED Y0

New Postscript/EPS to PDF conversion module

Complete Suite of Accurate PDF Components

= All your PDF processing, conversion Our high-performance printer driver

and editing in a single package optimized for Web, Application and
Print Servers. Print to PDF in a
fraction of the time needed with other
tools. WHQL tested for Windows 32

. - ; and 64-bit including Windows Server
= Includes our Microsoft certified 2012 and Windows 8

PDF Converter printer driver

= Combines Amyuni PDF Converter and
PDF Creator for easy licensing,
integration and deployment

Standard PDF features included with a
number of unique features. Interface
with any .Net or ActiveX programming
language

= Export PDF documents into other formats
such as JPeg, PNG, XAML or HTML5

Easy licensing and deployment to fit
Advanced HTML to PDF & XAML system administrator's requirements

= Direct conversion of HTML files into
PDF and XAML without the use of
a web browser or a printer driver

= Easy Integration and deployment

within developer's applications CERTIFIED FOR
Windows

= WebkitPDF is based on the Webkit : Server=x
Open Source library and Amyuni 3 .
PDF Creator

AMYUNI"s

USA and Canada Europe

Toll Free: 1866 926 9864 UK: 0800-015-4682
Support: 514 868 9227 Germany: 0800-183-0923
sales@amyuni.com France: 0800-911-248

All trademarks are property of their respective owners, Amyuni Technologies Inc. Al rights reserved

www.amyuni.com

| .I;',..
i’hCUTTING EDGE

DINO ESPOSITO

A First Look at ASPNET Identity

Offspring of the “One ASPNET” approach to Web development that
came with Visual Studio 2013, the new ASPNET Identity system is the
preferred way to handle user authentication in ASPNET applications,
whether based on Web Forms or MVC. In this column, I'll review
the basics of ASPNET authentication and explore the new ASPNET
Identity system from the perspective of ASPNET MVC 5 developers.

ASPNET has long supported two basic types of authentication:
Windows authentication and forms authentication. Windows
authentication is seldom practical for public Web sites because
it's based on Windows accounts and access control list (ACL)
tokens. Thus, it requires users to have a Windows account in the
applications domain, and it also assumes clients are connecting
from Windows-equipped machines. The other option is forms
authentication, a widely adopted approach. Forms authentication
is based on a simple idea. For each access to a protected resource,
the application ensures the request includes a valid authentica-
tion cookie. Ifa valid cookie is found, then the request is served as
usual; otherwise, the user is redirected to a login page and asked
to provide credentials. If these credentials are recognized as valid,
then the application issues an authentication cookie with a given
expiration policy. Its simple and it just works.

The simple membership APl has
become quite a popular way of
managing authentication.

Implementation of any forms authentication module can't happen
withouta distinct module that takes care of collecting user creden-
tials and checking them against a database of known users. Writing
this membership subsystem has been one of the key responsibilities
of development teams—but also one of the most annoying things
ever. Writing a membership system is not hard, per se. It mostly
requires running a query against some sort of storage system and
checking a user name and password. This code is boilerplate and
can grow fairly big as you add new authentication features such as
changing and recovering passwords, handling a changing number
of online users and so on. In addition, it has to be rewritten nearly
from scratch if you change the structure of the storage or add more
information to the object that describes the user. Back in 2005, with
the release of ASPNET 2.0, Microsoft addressed this problem by

6 msdn magazine

Figure 1 Foundation of a Controller Based on ASPNET Identity

public class AccountController : Controller

{
public UserManager<ApplicationUser> UserManager { get; private set; }

public AccountController(UserManager<ApplicationUser> manager)
{

UserManager = manager;
}

public AccountController() :
this(new UserManager<ApplicationUser>(
new UserStore<ApplicationUser>(new ApplicationDbContext())))
{
}

introducing right into the framework a provider-based architecture
and the membership provider. Instead of reinventing the wheel
every time, you could just derive membership from the built-in
system and override only the functions you intended to change.

The ASPNET native membership provider is a standalone
component that exposes a contracted interface. The ASPNET
runtime, which orchestrates the authentication process, is aware
of the membership interface and can invoke whatever component
is configured as the membership provider of the application.
ASPNET came with a default membership provider based on a
new given database schema. However, you could easily write your
own membership provider to basically target a different database—
typically, an existing database of users.

Does that sound like a great chunk of architecture? In the begin-
ning, nearly everybody thought so. In the long run, though, quite
a few people who repeatedly tried to build a custom membership
provider started complaining about the verbosity of the interface.
Actually, the membership provider comes in the form of an inher-
itable base class, MembershipProvider, which includes more than
30 members marked as abstract. This means that for any new mem-
bership provider you wanted to create, there were at least 30 mem-
bers to override. Worse yet, you didn' really need many of them
most of the time. A simpler membership architecture was needed.

Introducing the Simple Membership Provider

To save you from the burden of creating a custom membership layer
completely from scratch, Microsoft introduced with Visual Studio
2010 SP1 another option: the simple membership APIL Originally
available in WebMatrix and Web Pages, the simple membership

Built for Today... Ready for Tomorrow
Touch-Enabled .NET Controls by DevExpress.

Create solutions your customers expect today and leverage your existing skillsets to build next generation
applications for tomorrow. DevExpress Controls are built to emulate the Ul experiences at the heart of

Microsoft Office AND to enable touch-first experiences for next-generation devices like iPad and Surface.

Your next great app starts here.
DevExpress.com/Touch

'd DevExpress

All trademarks or registered trademarks are property of their respective owners.

www.devexpress.com/touch

APT has become quite a popular way of managing authentication,
especially in ASPNET MVC. In particular, the Internet application
template in ASPNET MVC 4 uses the simple membership API to
support user management and authentication.

Looking under the hood of the API, it turns out that its just a
wrapper on top of the classic ASPNET membership APT and its
SQL Server-based data stores. Simple membership lets you work
with any data store you have and requires only that you indicate
which columns in the table serve as the user name and user ID.

The Internet application
template in ASPNET MVC 4 uses
the simple membership APIto
support user management
and authentication.

The major difference from the classic membership API is a
significantly shorter list of parameters for any methods. In addi-
tion, you get a lot more freedom as far as the schema of the mem-
bership storage is concerned. As an example of the simplified API,
consider what it takes to create a new user:

WebSecurity.CreateUserAndAccount(username, password,
new { FirstName = fname, LastName = Tname, Email = email });

You do most of the membership chores via the WebSecurity class.
In ASPNET MVC 4, however, the WebSecurity class expects to work
withan extended membership provider, nota classic membership pro-
vider. The additional capabilities in an extended membership provider
are related to dealing with OAuth accounts. As a result, in ASPNET
MVC 4, you have two parallel routes for membership implemen-
tation: classic membership API using the MembershipProvider
class and simple membership API using the ExtendedMember-
shipProvider class. The two APIs are incompatible.

Before the arrival of Visual Studio 2013 and ASPNET MVC 5,
ASPNET already offered quite a few ways to handle user authen-
tication. With forms authentication, you could rely on classic
membership, the simple membership APl as defined in Web Pages
and a variety of custom membership systems. Consider the com-
mon position among ASPNET experts was that complex real-world
applications require their own membership provider. More often

Figure 2 Definition of the Default User Class in ASPNET Identity

namespace Microsoft.AspNet.Identity.EntityFramework
{
public class IdentityUser :
{
public string Id { get; }
public string UserName { get; set; }
public string PasswordHash { get; set; }
public string SecurityStamp { get; set; }
public ICollection<IdentityUserRole> Roles { get; private set; }
public ICollection<IdentityUserClaim> Claims { get; private set; }
public ICollection<IdentityUserLogin> Logins { get; private set; }
}
}

IUser

8 msdn magazine

than not, the main reason for having a custom membership system
was to circumvent structural differences between the required
database format and the format of the existing database of user
credentials, which might have been in use for years.

Clearly, this wasn'ta situation that could last forever. The commu-
nity of developers demanded with loud voices a unified system for
membership thats simple to use, narrowly focused and usable in the
same way from within any flavor of ASPNET. This idea weds together
well with the One ASPNET approach pushed by Visual Studio 2013.

One Identity Framework

The purpose of authentication is getting the identity associated with
the current user. The identity is retrieved and the provided credentials
are compared to records stored in a database. Subsequently, an iden-
tity system such as ASPNET Identity is based on two primary blocks:
the authentication manager and the store manager. In the ASPNET
Identity framework, the authentication manager takes the form of
the UserManager<TUser> class. This class basically provides a fagade
for signing users in and out. The store manager is an instance of the
UserStore<TUser> class. Figure 1 shows the skeleton ofan ASPNET
MVC account controller class thats based on ASPNET Identity.

The controller holds a reference to the authentication identity
manager, UserManager. This instance of UserManager is injected
into the controller. You can use either an Inversion of Control (IoC)
framework or the poor man’s alternative, the dependency injection
(DI) pattern, which uses two controllers, one of which gets a
default value (see Figure 1).

The identity store, in turn, is injected into the authentication
identity manager, where its used to verify credentials. The identity
store takes the form of the UserStore<TUser> class. This class
results from the composition of multiple types:

public class UserStore<TUser> :
IUserLoginStore<TUser>,
IUserClaimStore<TUser>,
IUserRoleStore<TUser>,
IUserPasswordStore<TUser>,
IUserSecurityStampStore<TUser>,
IUserStore<TUser>,
IDisposable where TUser :
{
}

All interfaces implemented by UserStore<TUser> are basic
repositories for optional user-related data such as passwords, roles,
claims and, of course, user data. The identity store needs to know
about the actual data source, though. As shown in Figure 1, the data
source is injected in the UserStore class through the constructor.

Storage of users data is managed through the Entity Framework
Code Firstapproach. This means you dont strictly need to create a
physical database to store your users’ credentials; you can, instead,
define a User class and have the underlying framework create the
most appropriate database to store such records.

The ApplicationDbContext class wraps up the Entity Framework
context to save users data. Heres a possible definition for the
ApplicationDbContext class:

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
{
}

Basically, the database context of ASPNET Identity handles the
persistence ofa given user type. The user type must implement the

IdentityUser

Cutting Edge

Figure 3 Finalizing the Authentication Process
through an External Endpoint

public async Task<ActionResult> ExternalloginCallback(
string loginProvider, string returnUrl)

{
ClaimsIdentity id = await UserManager
.Authentication
.GetExternalldentityAsync(AuthenticationManager);

var result = await UserManager
.Authentication
.SignInExternalldentityAsync(
AuthenticationManager, id);
if (result.Success)
return RedirectTolocal(returnUrl);
else if (User.Identity.IsAuthenticated)
{
result = await UserManager
.Authentication
.LinkExternalldentityAsync(
id, User.Identity.GetUserId());
if (result.Success)
return RedirectTolocal(returnlrl);
else
return View("ExternalloginFailure");

IUser interface or just inherit from IdentityUser. Figure 2 presents
the source code of the default IdentityUser class.

Heres an example of a realistic custom user class you might want
to use in your applications:

public class ApplicationUser :
{

public DateTime Birthdate { get; set; }
}

The use of Entity Framework Code First is a great move here as it
makes the structure of the database a secondary point. You still need
one, but to create it, you can use code based on classes. In addition,
you can use Entity Framework Code First migration tools to modify
apreviously created database as you make changes to the class behind
it. (For more information on this, see the “Code First Migrations”
article in the MSDN Data Developer Center at bit.ly/Th92qf.)

IdentityUser

Authenticating Users

ASPNET Identity is based on the newest Open Web Interface for
NET (OWIN) authentication middleware. This means the typical
steps of authentication (for example, creating and checking cookies)
can be carried out through the abstract OWIN interfaces and not
directly via ASPNET/IIS interfaces. Support for OWIN requires
the account controller to have another handy property, like this:

private TAuthenticationManager AuthenticationManager
{
get {
return HttpContext.GetOwinContext().Authentication;
}
}

The IAuthenticationManager interface is defined in the
Microsoft.Owin.Security namespace. This property is import-
ant because it needs to be injected into any operation that involves
authentication-related steps. Heres a typical login method:

private async Task SignInAsync(ApplicationUser user, bool isPersistent)
{
var identity = await UserManager.CreateldentityAsync(user,
DefaultAuthenticationTypes.ApplicationCookie);
AuthenticationManager.SignIn(new AuthenticationProperties() {
IsPersistent = isPersistent }, identity);
}

msdnmagazine.com

The method SignInAsync checks the specified user name and
password against the store associated with the authentication
manager. To register a user and add the user to the membership
database, you use code like this:

var user = new ApplicationUser() { UserName = model.UserName };
var result = await UserManager.CreateAsync(user, model.Password);
if (result.Succeeded)
{

await SignInAsync(user, isPersistent: false);

return RedirectToAction("Index", "Home");
}

All'in all, ASPNET Identity provides a unified API for tasks
related to authentication. For example, it unifies the code required
to authenticate against a proprietary database or a social network
OAuth-based endpoint. Figure 3 shows a fragment of the code
you need to authenticate users against an external login engine.
The code in Figure 3 gets called once the OAuth authentication
(for example, against Facebook) has been completed successfully.

ASPNET Identity is bound to
Visual Studio 2013, butit's also
expected to have an autonomous
life of its own when it comes to
future builds and releases.

The Bottom Line

AsTseethings, ASPNET Identity is an overdue solution that should
have come years ago. The key issue concerning ASPNET Identity
right now is the development team is trying to come up with a
programming interface thats generic and testable enough to last
for along time—or at least until something newer and better shows
up in the industry.

For the foreseeable future, ASPNET Identity promises to be
as good as old-fashioned membership was perceived to be a
decade ago. Personally, I like the expressiveness of the API and the
attempt to fuse together different forms of authentication—built-in
and OAuth-based, for example. Another great plus is the integra-
tion with OWIN, which makes it somewhat independent from a
specific runtime such as [IS/ASPNET.

ASPNET Identity is bound to Visual Studio 2013, but its also
expected to have an autonomous life of its own when it comes to
tuture builds and releases. I've just scratched the surface of the new
identity API here. Stay tuned for newer builds and releases! ~ =

Dino EsposiTo is the author of “Architecting Mobile Solutions for the Enterprise”
(Microsoft Press, 2012) and the upcoming “Programming ASPNET MVC 5™
(Microsoft Press). A technical evangelist for the NET and Android platforms at Jet-
Brains and frequent speaker at industry events worldwide, Esposito shares his vision
of software at software2cents.wordpress.com and on Twitter at twitter.com/despos.

THANKS to the following technical expert for reviewing this article:
Pranav Rastogi (Microsoft)

March 2014 9

www.msdnmagazine.com
www.bit.ly/Th92qf
www.wordpress.com
www.twitter.com/despos

WORKING WITH FILES?

US Sales:

+1 888 277 6734 fogsAsﬁvfn%I:

sales@aspose.com

European Sales: @ AS POSE S

+44 141 416 1112 Your File Format Experts O
sales.europe@aspose.com

www.aspose.com

Every Aspose component combined in
ONE powerful suitel

Powerful

File Format APIs

>

Aspose.Words
DOC, DOCX, RTF, HTML, PDF,
XPS & other document formats.

Aspose.Cells
XLS, XLSX, XLSM, XLTX, CSV,

SpreadsheetML & image formats.

Aspose.BarCode

JPG, PNG, BMP, GIF, TIF, WMF,
ICON & other image formats.

Aspose.Pdf
PDF, XML, XLS-FO, HTML, BMP,

JPG, PNG & other image formats.

e.Email

~ MISG, EML, PST, EMLX &

other formats.

Aspose.Slides

PPT. PRPIX;: POT, POIX XBS]
HTML, PNG, PDF & other formats.

Aspose.Diagram

VSD, VSDX, VSS, VST, VSX &
other formats.

... anad many others!

Get your FREE evaluation copy at www.aspose.com

www.aspose.com

WIiNnDows AZURE INSIDER

BRUNO TERKALY AND
RICARDO VILLALOBOS

The Windows Azure Service Bus and the
Internet of Things, Part 2

In our last column (msdn.microsoft.com/magazine/dn574801), we discussed
the current technology landscape for machine-to-machine (M2M)
computing, which refers to technologies that interconnect devices,
usually for industrial instrumentation, in the form of sensors or meters.
The proliferation of affordable and easy-to-program tiny computers
has expanded this concept into what’ called the Internet-of-Things
(IoT), opening the door to scenarios where even ordinary home
appliances can be controlled or used as sources of information to
generate events. This way, it isn't difficult to send alerts when it's time
to replenish the fridge, automatically close the window blinds as
night falls or set the thermostat based on the family habits.

We also made the case for using the Windows Azure Service Bus for
device connectivity, as an alternative to using a VPN, when trying to
solve the addressability, security, and performance concerns associated
with deploying alarge number of sensors or meters. This is becoming
increasingly relevant considering that, according to the latest B Intel-
ligence report from Business Insider, there will be more than 9 billion
connections directly related to the IoT by the year 2018 (read.bi/18L5cg8).

Using a designated Service Bus queue or topic for a device
provides an elegant way to incorporate resiliency and occasional
connectivity for IoT applications. In this article, we'll walk through
ahands-on Windows Azure implementation that illustrates these
concepts, designing a Service Bus blueprint with device queues,
deployinga listening worker role in Cloud Services, and program-
ming an Arduino device that executes commands sent remotely
by mobile clients, as shown in Figure 1.

If you look at the diagram, the Windows Azure Service Bus
component becomes the centerpiece of the design, providing the
authentication, message distribution and scalability to support
the multiple devices that will be sending data or receiving remote
commands. The Service Bus is available in all Microsoft datacenters
that offer Windows Azure services, and its backed up by a highly
redundant storage infrastructure. Also, like all other Windows
Azure components, it offers an open and easy-to-understand REST
interface, along with multiple SDKs (Microsoft NET Framework,
Java, PHP, Ruby, among others) built on top of it.

BUILD A FREE DEV/TEST SANDBOX IN THE CLOUD

MSDN subscribers can quickly spin up a dev/test environment on
Windows Azure at no cost. Get up to $150 in credits each month!

aka.ms/msdnmag

Code download available at msdn.microsoft.com/magazine/msdnmag0314.

12 msdn magazine

In our proposed architecture, devices “talk” to a.NET application
running on Windows Azure Cloud Services, which acts as a gate-
way to the Service Bus in order to simplify the communication
process with its assigned queue. This approach fully enables
any of the four IoT communication patterns described in our
previous column: Telemetry, Inquiry, Command and Notification.
Here, well implement a scenario in which a mobile device sends
a command to another device in order to execute an action—in
this case, turn an LED on or off. One of the benefits of this solu-
tion is that if the device is temporarily offline, it can pick up the
commands whenever it reconnects to the Internet. You can also
set up an expiration time in a message to avoid the execution of a
task at an inconvenient moment or schedule messages to be sent
ata specific time in the future.

For this example, we'll use the well-known, well-documented
Arduino device, as described in our previous column. For the
mobile client portion of the proof-of-concept, we'll create a
Windows Phone application.

Heres our simple scenario:

1. When the Arduino device is started, it sends an identifica-
tion signal to the gateway application running on Windows
Azure Cloud Services. The gateway creates a Service Bus

B

Mobile and Desktop Devices

ol ’

REST Interface/SDKs

TCP Connection

-

TCP Connection

> Arduino

TCP Connection 2
»)
-

Figure 1 An Internet-of-Things Architecture Using the
Windows Azure Service Bus

http://msdn.microsoft.com/magazine/dn574801
http://read.bi/18L5cg8
http://aka.ms/msdnmag
http://msdn.microsoft.com/magazine/msdnmag0314

queue for the device in case it doesn't exist, and establishes
a TCP connection, ready to send commands.

2. A Windows Phone application sends a command to the
Windows Azure Service Bus queue assigned to the device.

3. The message remains in the queue until the gateway appli-
cation picks it up and sends the command to the Arduino
device via the established TCP connection.

4. The Arduino device turns the LED on or oft based on
the command.

Lets look at the steps to make this happen, one by one.

Step 1: Create the Windows Azure Service Bus Namespace
Using your Windows Azure credentials (you can request a trial
account at bit.ly/latsgSa), log in to the Web portal and click on the
SERVICE BUS section (see Figure 2). Select the CREATE option,
and enter a name for your namespace. Then, click on CONNEC-
TION INFORMATION and copy the text in the Connection String
box, which you'll need later.

Step 2: Create the Gateway Application and Deploy to Windows
Azure Cloud Services Code for the gateway application, which
retrieves messages from the Service Bus queue and relays the commands
to the Arduino device, is included with the code download (available
at msdn.microsoft.com/magazine/msdnmag0314). It's based on the work of
Clemens Vaster, who kindly contributed his guidance and expertise
to this article. His original project can be found at bit.ly/LOuKOv.

Before we dive into this code, be sure you have Visual Studio
2013 installed, along with version 2.2 of the Windows Azure SDK
for NET (bit.ly/J¥x5n). The solution includes three different projects:

« ArduinoListener—contains the main WorkerRole code.

« ConsoleListener—the console version of the Arduino-
Listener, for local testing.

« MSDNArduinoListener—the Windows Azure deploy-
ment project for ArduinoListener.

Ifyou inspect the ServiceConfiguration.cscfg files (for both cloud
and local deployment) for the MSDNArduinoListener project,
you'll see a setting that stores the connection string for the Service
Bus. Replace its value with the one obtained in Step 1. The rest is
already configured for the solution to work, including the defini-
tion of port 10100 for receiving connections from the devices. Next,
open the WorkerRole.cs file in the ArduinoListener project, where
the main code is located.

There are four main sections to analyze.

First, a TepListener is created, and connections from devices

are accepted:

var deviceServer = new TcpListener(deviceEP);
deviceServer.Start(10);
try
{
do

TepClient connection = await deviceServer.AcceptTcpClientAsync();
if (connection !=null)

(

Oncea connection with the device has been established, a Network-
Stream is defined and set to listening mode. The readBufter variable

will contain the identifier value sent by each Arduino device:

NetworkStream deviceConnectionStream = connection.GetStream();
var readBuffer = new byte[64];
if (await deviceConnectionStream.ReadAsync(readBuffer, 0, 4) == 4)
{
int deviceld = IPAddress.NetworkToHostOrder(BitConverter.ToInt32(readBuffer, 0));

Next, a queue is created based on the deviceld value (in case it
doesnt exist), and a message receiver object is defined (see Figure
3). Then, the device queue receiver is set to asynchronous mode to
pull messages (commands from the queue). This queue will store
commands sent by mobile devices, such as a Windows Phone.

Whenamessage is received in the queue, its content is inspected and
ifit matches the “ON” or “OFF” commands, the information is written

to the connection stream established

service bus

NAMESPACE NAME STATUS LOCATION

with the device (see Figure 4).
Notice that the message isn't
removed from the queue (message.

madnsenvicebus o Aaiive Westus

e 4

Rt

CompleteAsync) unless the writing
operation to the device connection
stream is successful. Also, in order

to keep the connection alive, the
device is expected to send a ping
heartbeat. For this proof of concept,
wearentexpecting confirmation from
the device when it receives the message.
Ina production system, however, this
would be required to comply with the
‘command” pattern.

Step 3: Deploy the Arduino-
Listener Windows Azure Project
to Cloud Services Deploying the
ArduinoListener to Windows Azure
is extremely simple. In Visual Studio
2013, right-click on the MSDN-
ArduinoListener project and

Figure 2 Creating the Windows Azure Service Bus Namespace

msdnmagazine.com

select the Publish option. You'll find

March 2014 13

www.msdnmagazine.com
www.bit.ly/1atsgSa
http://msdn.microsoft.com/magazine/msdnmag0314
www.bit.ly/L0uK0v
www.bit.ly/JYXx5n

1&12eCOM

| ﬁﬁwm

i
. I
flar LT g

s o e i T i

MEMBER OF

united

inBernet DOMAINS | E-MAIL | WEB HOSTING | eCOMMERCE | SERVERS

* Offer valid for a limited time only. Complete packages come with a 30 day money back guarantee and no minimum contract term. The $7.99 per month price reflects a 12 month
pre-payment option for the 1&1 Online Store Starter package. After 12 months, regular price of $9.99 per month applies. Some features listed are only available with package upgrade.

SELL MORE WITH A
PROFESSIONAL DESIGN.

B Whether beginner or professional, create
your store online in a few easy steps

B Choose from over a hundred high-quality
designs and templates between industries

M Store links easily with an existing domain
or your new included domain (free)*

Bl Whether PC, tablet or smartphone your
shop will be displayed optimally on
all devices

www.1and1.com

YOU MAY ALS0 LIKE THIS
POPULAR TTEM:

MORE POSSIBILITIES.
MORE SUCCESS.

M Your shop can grow with your
business

M Target customers with special
promotions and cross selling

M Product rating capability: Build
trust by letting customers share
feedback

M Sell internationally: Wide selection
of languages, currencies and
payment options

TEST

30 DAY MONEY
BACK GUARANTEE

Call 1 (877) 461-2631 Wi*x*g

O of oM
”"‘“‘1 amazon

s35 :
— Y

FIND CUSTOMERS.
KEEP CUSTOMERS.

M Search engine optimization (SEO):
rank higher on Google and other
search engines

M Easy synchronization with Amazon,
Ebay, and more

M Easily create your own Facebook Store

M Create customer loyalty by providing
free newsletters and coupons

MONTH

FLEXIBLE PAYMENT
OPTIONS

* * 4

1&1 ONLINE STORE
COMPLETE PACKAGES

starting at

99

. month*

Try now! 30 day money back guarantee.

MAXIMUM RELIABILITY.
PROFESSIONAL SUPPORT.

M Convenient shipping processing
via UPS, FedEx, etc.

M Reliability through geo-
redundant operation in two
separate 1&1 Data Centers

B 24/7 expert customer service
by experienced eCommerce
professionals

1&1

1and1.com

CALL

SPEAK WITH AN
EXPERT 24/7

x5 *
Nl
>

Visit www.1and1.com for billing information and full promotional details. Program and pricing specifications and availability subject to change without notice. 1&1 and the 1&1 logo are
trademarks of 1&1 internet, all other trademarks are the property of their respective owners. © 2014 1&1 Internet. All rights reserved.

http://www.1and1.com
www.1and1.com

Figure 3 Creating a Queue

Figure 4 Writing to the Connection Stream

var namespaceManager = NamespaceManager.
CreateFromConnectionString(RoleEnvironment.
GetConfigurationSettingValue("serviceBusConnectionString"));

if (InamespaceManager.QueueExists(string.Format("dev{0:X8}", deviceld)))

namespaceManager.CreateQueue(string.Format("dev{0:X8}", deviceld));
}
var deviceQueueReceiver = messagingFactory.CreateMessageReceiver(
string.Format("dev{0:X8}", deviceld), ReceiveMode.PeekLock);
do
{
BrokeredMessage message = null;
message = await deviceQueueReceiver.ReceiveAsync();

specific instructions for the Publish Windows Azure Application
Wizard atbit.ly/1iP9g2p. After completing the wizard, you end up with
a cloud service located at xyz.cloudapp.net. Record this name, as
you'll need it when you create the Arduino client in the next step.
Step 4: Program the Arduino Device to Talk to the Gateway
(Listener) Arduino devices offer a rich interface for performing net-
work operations using a simple Web client object. For our prototype,
we decided to use the Arduino Uno R3 model (bit.ly/18ZIcM8), along
with its corresponding Ethernet shield (bit.ly/1do6eRD). To install,
interact and program Arduino devices using Windows, follow the
guide at bit.ly/1dNBi9R. You'll end up with an easy-to-use IDE (called
the Arduino application), where you can write programs (called
sketches) using JavaScript, as shown in Figure 5.
Figure 6 shows the sketch for interacting with the Arduino
Listener created in Step 3, and now deployed in Windows Azure.
Sketches for the Arduino have two main sections: setup and
loop. Instructions in the setup section are executed once, and this
is where variables are initialized and connections established. In
our example, the Ethernet client and related values are defined, a
serial connection (for debugging purposes) is established, and the
pin where the LED is connected is initialized as an output port.
Code in the loop section is executed constantly, and it includes
two main blocks based on the status
of the TCP connection between the &

ArduinoClient | Arduino 105

if (message != null)

Stream stream = message.GetBody<Stream>();
StreamReader reader = new StreamReader(stream);
string command = reader.ReadToEnd();

if (command != null)
(
switch (command.ToUpperInvariant())
{
case "ON":
await deviceConnectionStream.WriteAsync(OnFrame, 0, OnFrame.Length);
await message.CompleteAsync();
break;
case "OFF":
await deviceConnectionStream.WriteAsync(0ffFrame, 0, OffFrame.Length);
await message.CompleteAsync();
break;

data into the bufarray when it arrives. If a value of “1” is detected,
the LED is turned on, if the value is “2) the LED is turned off. The
stopwatch object is reset after each command.

Once the sketch has been uploaded to the device, the code runs on
the Arduino controller in an infinite loop, trying to connect toa cloud
service. When connected, it forwards the device id so the cloud service
knows to which device its talking. Then the code begins to read input
from the cloud service, telling the device whether to turn on or off the
LED light (in this case, its connected to digital port 8 of the device).

Step 5: Creating a Windows Phone Client to Send to Device
Queue Interacting with the device is as simple as sending messages
to the device queue. As we mentioned at the beginning of the
article, the Windows Azure Service Bus provides a REST interface
that lets you interact with it from multiple programming languages.
Because theres no official SDK for Windows Phone developers, we
used one of the examples from the Windows Phone community,
which shows how to authenticate and interact with the Service

_ Bus using HTTP requests and the
SIS WebClient object. The source code

Arduino device and the listener run- | Lfile Edit Sketch Tools Help
ning in Windows Azure Cloud Services: 1B

connected or disconnected. When the
connection is established for the first
time, a stopWatch object is started to
keep track of the time elapsed for the

ArduinoClient

#include <SPI.h>
#include <Ethernet.h>
#include <Svopiatch.h>

#define DEBUG

isalso included with the code down-
load, in the Visual Studio 2013 project
called MSDNArduinoClient. Figure
7 shows the clients main screen, from
which you send commands to the
Arduino device.

connection. Also, the device identifier
is sent to the listener, to be used as the
name of the queue where messages and
commands will be stored.

The code block that handles the
Arduino behavior after the connec-
tion has been established keeps track
of the time elapsed since the connec-
tion was created, pinging the listener
every 200,000 ms, to keep the con-
nection alive when no commands are
received. This code also tries to read
data from the listener, putting the

16 msdn magazine

// Enter a HAC address and IP address for your controller belox
£/ The IP address will be dependent on your local network, and
byte mac[] = { 0x90, OxAZ, OxDA, 0x0D, OxBC, OxAE }:

IPAddress ip(l92,168,15,177);

static const byte deviceld[] = { 0x00, 0x00, Ox00, OxO1 }:
static const wine8 t ACK = Ox0l:

static const inc LED_PIN = &

int connecred = 0:

EthernetClient clienc:

Sranifatch sataniiarch s

<

Figure 5 The Arduino Application

Creating similar clients for other
mobile devices (including iOS and
Android) wouldn't be difficult, as most
of them provide libraries to gener-
ate REST commands using HTTP
request clients. Moreover, it's possible
to directly interact with the Windows
Azure Service Bus using traditional
languages such as Java, PHP or Ruby,
which simplifies this process. These
SDKs are published under an open
source license, and can be found
at github.com/WindowsAzure.

Windows Azure Insider

www.bit.ly/1iP9g2p
www.bit.ly/18ZlcM8
www.bit.ly/1do6eRD
www.bit.ly/1dNBi9R
www.github.com/WindowsAzure

Figure 6 The Arduino Device Code

finclude <SPI.h>
#include <Ethernet.h>
finclude <StopWatch.h>
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network
// and it's optional if DHCP is enabled.
byte mac[] = { 0x90, 0xA2, O0xDA, 0x0D, OxBC, OXAE };
static const byte deviceId[] = { 0x00, 0x00, 0x00, 0x01 };
static const uint8_t ACK = 0x01;
static const int LED_PIN = 8;
int connected = 0;
EthernetClient client;
StopWatch stopWatch;
Tong pingInterval = 200000;
void setup()
{
Serial.begin(9600);
Serial.printIn("Initialized");
Ethernet.begin(mac);
pinMode(LED_PIN, OUTPUT);
}
void turnLedOn()
{
digitalWrite(LED_PIN, HIGH);
}
void turnLed0ff()
{
digitalWrite(LED_PIN, LOW);
}
void Toop()
{
if (connected == 0)
{
Serial.printin("Trying to connect");
char* host = "xyz.cloudapp.net";
client.setTimeout(10000);
connected = client.connect(host, 10100);
if (connected)
{
Serial.printin(

"Connected to port, writing deviceld and waiting for commands...");
client.write(deviceld, sizeof(deviceld));
stopWatch.start();

}

Wrapping Up

Building an Internet-
of-Things architecture
using the Windows Azure
Service Bus to manage
devices and services con-
nections provides an easy
way to secure, scale and
address clients individ-
ually without incurring
costly VPN solutions, with
the benefit of efficiently
handling occasionally
disconnected scenarios.
Queues act as dedicated
mailboxes where messages
between devices and
services are exchanged,
supporting the different
communication use cases
and patterns commonly
foundin the field. Windows
Azure provides a reliable,

Arduino Client

ce Name

Tumn Led On

Turn Led Off

Figure 7 The Windows Phone Cli-
ent Interface

msdnmagazine.com

else

{
Serial.printin("Connection unsuccessful");
client.stop();
stopWatch.reset();

}

}

if (connected = 1)

(
if (stopWatch.elapsed() > pingInterval)
(

Serial.printIn("Pinging Server to keep connection alive...");
client.write(deviceld, sizeof(deviceld));
stopWatch.reset();
stopWatch.start();
}
byte buf[16];
int readResult = client.read(buf, 1);
if (readResult == 0)
(
Serial.printin("Can't find Tistener, disconnecting...");
connected = 0;
stopWatch.reset();
}
else if (readResult == 1)
{
Serial.printin("Data acquired, processing...");
switch (buf[0])
(
case 1:
Serial.printin("Command to turn led on received...");
turnLedOn();
break;
case 2:
Serial.printin("Command to turn led off received...");
turnLed0ff();
break;
}
stopWatch.reset();
stopWatch.start();

geo-distributed and robust infrastructure for deploying the services
required with a high volume of interconnected sensors and
meters—a trend that will continue to grow in the years ahead. =

Bruno TERKALY is a developer evangelist for Microsoft. His depth of knowledge
comes from years of experience in the field, writing code using a multitude of
platforms, languages, frameworks, SDKs, libraries and APIs. He spends time
writing code, blogging and giving live presentations on building cloud-based
applications, specifically using the Windows Azure platform. You can read his
blog at blogs.msdn.com/b/brunoterkaly.

RicarDo VILLALOBOS is a seasoned software architect with more than 15 years
of experience designing and creating applications for companies in multiple
industries. Holding different technical certifications, as well as a masters degree
in business administration from the University of Dallas, he works as a cloud
architect in the DPE Globally Engaged Partners team for Microsoft, helping
companies worldwide to implement solutions in Windows Azure. You can read
his blog at blog.ricardovillalobos.com.

Terkaly and Villalobos jointly present at large industry conferences. They
encourage readers of Windows Azure Insider to contact them for availability.
Terkaly can be reached at bterkaly@microsoft.com and Villalobos can be reached
at Ricardo. Villalobos@microsoft.com.

THANKS to the following Microsoft technical experts for reviewing this article:

Abhishek Lal and Clemens Vasters

March 2014 17

www.msdnmagazine.com
http://blogs.msdn.com/b/brunoterkaly
http://blog.ricardovillalobos.com
mailto:bterkaly@microsoft.com
mailto:Ricardo.Villalobos@microsoft.com

ASYNC PROGRAMMING

Patterns for
Asyncnrono
MVVM App

Data Igle

Stephen Cleary

3INC

Asyn chronous code usin g theasyncand await keywords
is transforming the way programs are written, and with good
reason. Although async and await can be useful for server software,
most of the current focus is on applications that have a UL For
such applications, these keywords can yield a more responsive Ul
However, its not immediately obvious how to use async and await
with established patterns such as Model-View-ViewModel (MVVM).
This article is the first in a short series that will consider patterns
for combining async and await with MVVM.

To be clear, my first article on async, “Best Practices in Asyn-
chronous Programming” (msdn.microsoft.com/magazine/jj991977), was
relevant to all applications that use async/await, both client and
server. This new series builds on the best practices in that article
and introduces patterns specifically for client-side MVVM appli-
cations. These patterns are just patterns, however, and may not
necessarily be the best solutions for a specific scenario. If you find
a better way, let me know!

This article discusses:

« Combining asynchronous programming with the MVVM pattern
« Developing an asynchronous data-bound property

» Common mistakes with ViewModels

+ An approach that's data-binding friendly

Technologies discussed:

Asynchronous Programming, MVVM

18 msdn magazine

JS
ications:

As of this writing, the async and await keywords are supported
on a wide number of MVVM platforms: desktop (Windows
Presentation Foundation [WPF] on the Microsoft NET Framework 4
and higher), i0S/Android (Xamarin), Windows Store (Windows 8
and higher), Windows Phone (version 7.1 and higher), Silverlight
(version 4 and higher), as well as Portable Class Libraries (PCLs)
targeting any mix of these platforms (such as MvvmCross). The
time is now ripe for “async MVVM” patterns to develop.

I'm assuming you're somewhat familiar with async and await
and quite familiar with MVVM. If that’s not the case, there are a
number of helpful introductory materials available online. My blog
(bit.ly/191kogW) includes an async/await intro that lists additional
resources at the end, and the MSDN documentation on async is
quite good (search for “Task-based Asynchronous Programming’”).
For more information on MVVM, I recommend pretty much
anything written by Josh Smith.

A Simple Application
In this article, 'm going to build an incredibly simple application,
as Figure 1 shows. When the application loads, it starts an HTTP
request and counts the number of bytes returned. The HTTP
request may complete successfully or with an exception, and the
application will update using data binding. The application is fully
responsive at all times.

First, though, I want to mention that I follow the MVVM pattern
rather loosely in my own projects, sometimes using a proper
domain Model, but more often using a set of services and data

http://msdn.microsoft.com/magazine/jj991977
www.bit.ly/19IkogW

Loading...

1270

Figure 1 The Sample Application

transfer objects (essentially a data access layer) instead of an actual
Model. I'm also rather pragmatic when it comes to the View; I
don' shy away from a few lines of codebehind if the alternative is
dozens of lines of code in supporting classes and XAML. So, when
I talk about MVVM, understand that I'm not using any particular
strict definition of the term.

One of the first things you have to consider when introducing
async and await to the MVVM pattern is identifying which parts of
your solution need the UI threading context. Windows platforms
are serious about UI components being accessed only from the UI
thread that owns them. Obviously, the view is entirely tied to the
UI context. I also take the stand in my applications that anything
linked to the view via data binding is tied to the UI context.
Recent versions of WPF have loosened this restriction, allowing
some sharing of data between the UI thread and background
threads (for example, BindingOperations.EnableCollection-
Synchronization). However, support for cross-thread data binding
isnt guaranteed on every MVVM platform (WPE i0S/Android/
Windows Phone, Windows Store), so in my own projects I just
treat anything data-bound to the UT as having Ul-thread affinity.

As a result, I always treat my ViewModels as though theye
tied to the UI context. In my applications, the ViewModel is more
closely related to the View than the Model—and the ViewModel
layer is essentially an API for the entire application. The View
literally provides just the shell of UI elements in which the actual
application exists. The ViewModel layer is conceptually a testable
UL complete with a UT thread afhinity. If your Model is an actual
domain model (not a data access layer) and theres data binding
between the Model and ViewModel, then the Model itself also
has UlI-thread affinity. Once you've identified which layers have
Ul affinity, you should be able to draw a mental line between the
“Ul-affine code” (View and ViewModel, and possibly the Model)

msdnmagazine.com

and the “Ul-agnostic code” (probably the Model and definitely all
other layers, such as services and data access).

Furthermore, all code outside the View layer (that is, the View-
Model and Model layers, services, and so on) should not depend on
any type tied to a specific UI platform. Any direct use of Dispatcher
(WPF/Xamarin/Windows Phone/Silverlight), CoreDispatcher
(Windows Store), or ISynchronizelnvoke (Windows Forms) is a
bad idea. (SynchronizationContext is marginally better, but barely.)
For example, theres a lot of code on the Internet that does some
asynchronous work and then uses Dispatcher to update the UL; a
more portable and less cumbersome solution is to use await for
asynchronous work and update the UI without using Dispatcher.

ViewModels are the most interesting layer because they have Ul
afhinity but don't depend on a specific UI context. In this series, I'll
combine async and MVVM in ways that avoid specific UI types
while also following async best practices; this first article focuses
on asynchronous data binding.

Asynchronous Data-Bound Properties

The term “asynchronous property” is actually an oxymoron.
Property getters should execute immediately and retrieve current
values, not kick oft background operations. This is likely one of the
reasons the async keyword can'tbe used on a property getter. If you
find your design asking for an asynchronous property, consider
some alternatives first. In particular, should the property actually
be a method (or a command)? If the property getter needs to kick
offanewasynchronous operation each time its accessed, that’s not
aproperty atall. Asynchronous methods are straightforward, and
I'll cover asynchronous commands in another article.

In thisarticle, I'm going to develop an asynchronous data-bound
property; that is, a data-bound property that I update with the
results of an async operation. One common scenario is when a
ViewModel needs to retrieve data from some external source.

As I explained earlier, for my sample application, I'm going to
define a service that counts the bytes in a Web page. To illustrate
the responsiveness aspect of async/await, this service will also
delay a few seconds. I'll cover more realistic asynchronous services
in a later article; for now, the “service” is just the single method
shown in Figure 2.

Figure 2 MyStaticService.cs

using System;
using System.Net.Http;
using System.Threading.Tasks;

public static class MyStaticService
{
public static async Task<int> CountBytesInUrlAsync(string url)
{
/] Artificial delay to show responsiveness.
await Task.Delay(TimeSpan.FromSeconds(3)).ConfigureAwait(false);

// Download the actual data and count it.

using (var client = new HttpClient())

{
var data = await client.GetByteArrayAsync(url).ConfigureAwait(false);
return data.length;

}

}
}

March 2014 19

www.msdnmagazine.com

Note that this is considered a service, so its UI-agnostic. Because
the service is Ul-agnostic, it uses Configure Await(false) every time
it does an await (as discussed in my other article, “Best Practices in
Asynchronous Programming”).

Lets add a simple View and ViewModel that starts an HTTP
request on startup. The example code uses WPF windows with
the Views creating their ViewModels on construction. This is just
for simplicity; the async principles and patterns discussed in this
series of articles apply across all MVVM platforms, frameworks
and libraries. The View for now will consist of a single main
window with a single label. The XAML for the main View just binds
to the UrlByteCount member:

<Window x:Class="MainWindow"
xmins="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x="http://schemas.microsoft.com/winfx/2006/xam1">
<Grid>
<Label Content="{Binding Ur1ByteCount}"/>
</erid>
</Window>

The codebehind for the main window creates the ViewModel:

public partial class MainWindow
{
pubTic MainWindow()
{
DataContext = new BadMainViewModelA();
InitializeComponent();
}
}

Common Mistakes

You might notice the ViewModel type is called BadMainView-
ModelA. This is because I'm going to first look at a couple of
common mistakes relating to ViewModels. One common mistake
is to synchronously block on the operation, like so:

public class BadMainViewModelA
{
public BadMainViewModelA()
{
// BAD CODE!!!
Ur1ByteCount =
MyStaticService.CountBytesInUrTAsync("http://www.example.com").Result;
}

} public int UriByteCount { get; private set; }

This is a violation of the async guideline “async all the way, but
sometimes developers try this if they feel theyre out of options.
If you execute that code, you'll see it works, to a certain extent.
Code that uses Task.Wait or Task<T>Result instead of await is
synchronously blocking on that operation.

There are a few problems with synchronous blocking. The most
obvious is the code is now taking an asynchronous operation and
blocking on it; by doing so, it loses all the benefits of asynchronicity.
If you execute the current code, you'll see the application does
nothing for a few seconds, and then the UT window springs fully
formed into view with its results already populated. The problem
is the application is unresponsive, which is unacceptable for many
modern applications. The example code has a deliberate delay to
empbhasize that unresponsiveness; in a real-world application, this
problem might go unnoticed during development and show up only
in “unusual” client scenarios (such as loss of network connectivity).

Another problem with synchronous blocking is more subtle: The
code is more brittle. My example service uses Configure Await(false)

20 msdn magazine

properly, just as a service should. However, this is easy to forget,
especially if you (or your coworkers) don't regularly use async.
Consider what could happen over time as the service code is main-
tained. A maintenance developer might forget a Configure Await,
and at that point the blocking of the UI thread would become a
deadlock of the UI thread. (This is described in more detail in my
previous article on async best practices.)

OK, so you should use “async all the way” However, many devel-
opers proceed to the second faulty approach, illustrated in Figure 3.

Again, if you execute this code, you'll find that it works. The UI
now shows immediately, with “0” in the label for a few seconds
before its updated with the correct value. The Ul is responsive, and
everything seems fine. However, the problem in this case is han-
dling errors. With an async void method, any errors raised by the
asynchronous operation will crash the application by default. This is
another situation that’s easy to miss during development and shows
up only in “weird” conditions on client devices. Even changing the
codein Figure 3 from async void to async Task barely improves the
application; all errors would be silently ignored, leaving the user
wondering what happened. Neither method of handling errors is
appropriate. And though its possible to deal with this by catching
exceptions from the asynchronous operation and updating other
data-bound properties, that would result in a lot of tedious code.

A Better Approach

Ideally, what I really want is a type just like Task<T> with properties
for getting results or error details. Unfortunately, Task<T> is not
data-binding friendly for two reasons: it doesnt implement INotify-
PropertyChanged and its Result property is blocking. However, you
can define a “Task watcher” of sorts, such as the type in Figure 4.

Figure 3 BadMainViewModelB.cs

using System.ComponentModel;
using System.Runtime.CompilerServices;

public sealed class BadMainViewModelB : INotifyPropertyChanged
(
public BadMainViewModelB()
(
Initialize();
}

// BAD CODE!!!
private async void Initialize()
(
Ur1ByteCount = await MyStaticService.CountBytesInUrlAsync(
"http://www.example.com");
}

private int _urlByteCount;
public int Ur1ByteCount
{
get { return _urlByteCount; }
private set { _urlByteCount = value; OnPropertyChanged(); }
}

public event PropertyChangedEventHandler PropertyChanged;
private void OnPropertyChanged([CallerMemberName] string propertyName = null)
{
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
handler(this, new PropertyChangedEventArgs(propertyName));

Async Programming

DEVELOPED FOR
USE

ceTe Software’'s DynamicPDF products provide real-time PDF generation, manipulation, conversion,
printing, viewing, and much more. Providing the best of both worlds, the object models are extremely
flexible but still supply the rich features you need as a developer. Reliable and efficient, the high-
performance software is easy to learn and use. If you do encounter a question with any of our

components, simply contact ceTe Software's readily available, industry-leading support team.

' TRY OUR PDF SOLUTIONS FREE TODAY!

www.DynamicPDF.com/eval or call 800.631.5006 | +1 410.772.8620

DynamicPDF

WWW.DYNAMICPDF.COM

& ceTesoftware

www.dynamicpdf.com

Figure 4 NotifyTaskCompletion.cs

using System;
using System.ComponentModel;
using System.Threading.Tasks;

public sealed class NotifyTaskCompletion<TResult> : INotifyPropertyChanged

public NotifyTaskCompletion(Task<TResult> task)
{

Task = task;

if (!task.IsCompleted)

{

var _ = WatchTaskAsync(task);

}

}

private async Task WatchTaskAsync(Task task)
{

try

{

await task;

}

catch

{

}

var propertyChanged = PropertyChanged;
if (propertyChanged == null)
return;

propertyChanged(this, new PropertyChangedEventArgs("Status"));
propertyChanged(this, new PropertyChangedEventArgs("IsCompleted"));
propertyChanged(this, new PropertyChangedEventArgs("IsNotCompleted"));
if (task.IsCanceled)
{

propertyChanged(this, new PropertyChangedEventArgs("IsCanceled"));

Lets walk through the core method NotifyTaskCompletion<T>.
WatchTaskAsync. This method takes a task representing the asynchro-
nous operation, and (asynchronously) waits for it to complete. Note
that the await does not use Configure Await(false); I want to return to
the UT context before raising the PropertyChanged notifications. This
method violates a common coding guideline here: It has an empty
general catch clause. In this case, though, thats exactly what I want. I
dontwantto propagate exceptions directly back to the main UTloop;
I want to capture any exceptions and set properties so that the error
handling is done via data binding. When the task completes, the type
raises PropertyChanged notifications for all the appropriate properties.

An updated ViewModel using NotifyTaskCompletion<T>
would look like this:

public class MainViewModel
{
public MainViewModel()
{
Ur1ByteCount = new NotifyTaskCompletion<int>(
MyStaticService.CountBytesInUrTAsync("http://www.example.com"));
}

public NotifyTaskCompletion<int> Ur1ByteCount { get; private set; }
}

This ViewModel will start the operation immediately and then
create a data-bound “watcher” for the resulting task. The View
data-binding code needs to be updated to bind explicitly to the
result of the operation, like this:

<Window x:Class="MainWindow"
xmins="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x="http://schemas.microsoft.com/winfx/2006/xam1">
<Grid>
<Label Content="{Binding Ur1ByteCount.Result}"/>
</Grid>
</Window>

22 msdn magazine

}
else if (task.IsFaulted)
{
propertyChanged(this, new PropertyChangedEventArgs("IsFaulted"));
propertyChanged(this, new PropertyChangedEventArgs("Exception"));
propertyChanged(this,
new PropertyChangedEventArgs("InnerException"));
propertyChanged(this, new PropertyChangedEventArgs("ErrorMessage"));
}
else
(
propertyChanged(this,
new PropertyChangedEventArgs("IsSuccessfullyCompleted"));
propertyChanged(this, new PropertyChangedEventArgs("Result"));

}

public Task<TResult> Task { get; private set; }

public TResult Result { get { return (Task.Status = TaskStatus.RanToCompletion) ?
Task.Result : default(TResult); } }

public TaskStatus Status { get { return Task.Status; } }

public bool IsCompleted { get { return Task.IsCompleted; } }

public bool IsNotCompleted { get { return !Task.IsCompleted; } }

public bool IsSuccessfullyCompleted { get { return Task.Status =
TaskStatus.RanToCompletion; } }

public bool IsCanceled { get { return Task.IsCanceled; } }

public bool IsFaulted { get { return Task.IsFaulted; } }

public AggregateException Exception { get { return Task.Exception; } }

public Exception InnerException { get { return (Exception == null) ?
null : Exception.InnerException; } }

public string ErrorMessage { get { return (InnerException == null) ?
null : InnerException.Message; } }

public event PropertyChangedEventHandler PropertyChanged;

Note that the label content is data-bound to NotifyTask-
Completion<T> Result, not Task<T>.Result. NotifyTaskComple-
tion<T>.Result is data-binding friendly: It is not blocking, and it
will notify the binding when the task completes. If you run the code
now, you'll find it behaves just like the previous example: The UT
is responsive and loads immediately (displaying the default value
of “0”) and then updates in a few seconds with the actual results.

The benefit of NotifyTaskCompletion<T> is it has many other
properties as well, so you can use data binding to show busy
indicators or error details. It isn't difficult to use some of these
convenience properties to create a busy indicator and error

Figure 5 MainWindow.xaml

<Window x:Class="MainWindow"
xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmins:x="http://schemas.microsoft.com/winfx/2006/xam1">
<Window.Resources>
<BooleanToVisibilityConverter x:Key="BooleanToVisibilityConverter"/>
</Window.Resources>
<Grid>
<!-- Busy indicator -->
<Label Content="Loading..." Visibility="{Binding Ur1ByteCount.IsNotCompleted,
Converter={StaticResource BooleanToVisibilityConverter}}"/>

<!-- Results -->

<Label Content="{Binding Ur1ByteCount.Result}" Visibility="{Binding
Ur1ByteCount.IsSuccessfullyCompleted,
Converter={StaticResource BooleanToVisibilityConverter}}"/>

<l-- Error details -->
<Label Content="{Binding Ur1ByteCount.ErrorMessage}" Background="Red"
Visibility="{Binding Ur1ByteCount.IsFaulted,
Converter={StaticResource BooleanToVisibilityConverter}}"/>
</Grid>
</Window>

Async Programming

details completely in the View, such as the updated data-binding
code in Figure 5.

With this latest update, which changes only the View, the appli-
cation displays “Loading...” for a few seconds (while remaining
responsive) and then updates to either the results of the operation
or to an error message displayed on a red background.

NotifyTaskCompletion<T> handles one use case: When you
have an asynchronous operation and want to data bind the results.
This is a common scenario when doing data lookups or loading

in mind the community is still developing these patterns; feel free
to adjust them for your particular needs. =

STePHEN CLEARY is a husband, father and programmer living in northern Michigan.
He has worked with multithreading and asynchronous programming for 16 years
and has used async support in the Microsoft NET Framework since the first CTP,
His homepage, including his blog, is at stephencleary.com.

THANKS to the following Microsoft technical experts for reviewing this article:
James McCaffrey and Stephen Toub

during startup. However, it doesnt help much

when you have an actual command that’s

asynchronous, for example, “save the current
record” (I'll consider asynchronous com-
mands in my next article.)

At first glance, it seems like its a lot more
work to build an asynchronous UL and thats
true to some extent. Proper use of the async
and await keywords strongly encourages you
to design a better UX. When you move to
an asynchronous U, you find you can no

longer block the UI while an asynchronous
operation is in progress. You must think
about what the UI should look like during
the loading process, and purposefully
design for that state. This is more work, but it
is work that should be done for most modern
applications. And its one reason that newer
platforms such as the Windows Store sup-
portonlyasynchronous APIs: to encourage
developers to design a more responsive UX.

Wrapping Up

When a code base is converted from syn-
chronous to asynchronous, usually the ser-
vice or data access components change first,
and async grows from there toward the UL
Once you've done it a few times, translating a
method from synchronous to asynchronous
becomes fairly straightforward. I expect (and
hope) that this translation will be automated

CodeFluent
AES

by future tooling. However, when async hits
the UL, thats when real changes are necessary.

When the UTbecomes asynchronous, you
must address situations where your applica-
tions are unresponsive by enhancing their
Ul design. The end result is a more respon-
sive, more modern application. “Fast and
fluid” if you will.

This article introduced a simple type that
can be summed up as a Task<T> for data
binding. Next time, I'll look at asynchronous
commands, and explore a concept thats
essentially an “ICommand for async Then,
in the final article in the series, I'll wrap up
by considering asynchronous services. Keep

msdnmagazine.com

CodeFluent Entities allows you to generate rock-solid foundations for your
.NET applications from Visual Studio and focus on what matters!

"I recently spent a week attending a course on Entity Framework but CodeFluent Entities provides
so much more and is decidedly easier to understand and implement " *
Peter Stanford - Artefaction - Australia

* Source : hitp://visualstudiogallery.msdn.microsoft.com/B6299BBF-1EF1-436D-B618-66E8C16AB410

To get a license worth $399 for free
Go to www.softfluent.com/forms/msdn-2014

) 4CodeFluent Entities

[c tools for developers, by developers

More information: www.softfluent.com Contact us: info@softfluent.com

March 2014 23

www.msdnmagazine.com
www.softfluent.com/forms/msdn-2014
www.softfluent.com
mailto:info@softfluent.com
www.stephencleary.com

PRODUCED BY
1105 MEDIAZ

nivi

....a..-.. " >

! Ly, SL 5 1 ! P * c =
. i - - - ¥ L1 o i - 5 e Y LR g A x - ~ A
OTOOTTTOLTO00TOTOTO000TTOTTO0TTIOTOT000TO0T000TOTOTO0TO00TOTOTO0TOTOTOTOTTOOTOTOTO0TOT000TOTOTIO00TOTOTO0TITOTOTOTOTO0TO0TOTOTOTO0TITO
000TO0TO0TTTOTO000TTTO0T0000TOTOTTOTOTO00TOOTTTIOTOTOTOOTOTO0TO00TOTOTOTTO00000TO0TOTOOTOTOTTOTOTOTOTOOTTOTTOTOTTTOOTOTOTO0TO00TOTOTQO)
OTTTIOTLTO00TOTOTOTTIO00TOTOTITOOTTITOOTOTOTOTOTTOOTTO00TOTO0000TO0TITTIOTOTOTTOTOTTOTO000TOTTOTOTO0TOTOTITIO00T00T000TOTO0TT0000T0000TO0TOTOTT
OTOTOTOTOOOTTTOTTO0TTOOTO000TO0TOTOTOTOTOOTOO0TOTOTTIOTOTOTOTOTO0TOOTOTOTO0TOTOOTOTOOTOTOTTOTOTOTOTOOTOTTOTOTOTOOTOTOTO0TOTO0TO0TTOO| —

O

0

EXPERT SOLUTIONS FOR .NET DEVELOPERS

SUPPORTED BY

5
wv
o
S
=

PLATINUM SPONSOR

V
@ esri

www.vslive.com/lasvegas

- LAS UEGAS 204 (@%\’E'
March 10 - 14 | Planet Hollywood Resort & Casino | 60

COMPREHENSIVE

TRAINING
¢ DEVELOPER

WORLD.

i R : . Visual Studio Live! Las Vegas is part of
Visual Studio Live! is your guide Live! 360 DEV, which means you'll have

to the .NET Development universe, . : access to four (4) other co-located events
featuring code-filled days, at no additional cost:

networking nights and independent

education.gWhgether you arepa .NET SQI— Server
developer, software architect or a TR e prEeTEE
designer, Visual Studio Live!’s
multi-track events include focused,
cutting-edge education on the .NET
platform that you'll be ready to MOdern Apps @
implement as soon as you get back : MOBILE, CROSS-DEVICE & CLOUD DEVELOPMENT

to the office.

Visual Studio, LIVE!

- ONIVERSE.

§ R e v @
- - e

AND INTRODUCING Web Dev Live!

Web Dev @

HTMLS, JAVASCRIPT & ASP.NET TRAINING

Five (5) events means over a hundred
sessions to choose from — mix and match
sessions to create your own, custom event
line-up - it's like no other dev conference
available today!

Sessions are filling up
quickly — Register Today!
Use promo code VSLMAR?2

" :J register or for more
41 &L event details.

vslive.com/lasvegas

www.vslive.com/lasvegas

ASYNC PROGRAMMING

Asynchronr

OUS

TCP Sockets as an
Alternative to WCF

James McCaffrey

In a Microsoft technologies environment, using Windows
Communication Foundation (WCF) is a common approach for
creating a client-server system. There are many alternatives to WCE
of course, each with its own advantages and disadvantages, including
HTTP Web Services, Web API, DCOM, AJAX Web technologies,
named pipe programming and raw TCP socket programming. But
if you take into account factors such as development effort, man-
ageability, scalability, performance and security, in many situations
using WCF is the most efficient approach.

However, WCF can be extremely complicated and mightbe overkill
for some programming situations. Prior to the release of the Microsoft
NET Framework 4.5, asynchronous socket programming was,
in my opinion, too difficult in most cases to justify its use. But
the ease of using the new C# await and async language features

This article discusses:

« Setting up a TCP socket-based service

« Creating a Windows Forms application demo client
« Creating a Web application demo client
Technologies discussed:

Visual Studio 2012, Microsoft .NET Framework 4.5, C#

Code download available at:

msdn.microsoft.com/magazine/msdnmag0314

26 msdn magazine

changes the balance, so using socket programming for asynchronous
client-server systems is now a more attractive option than it used
to be. This article explains how to use these new asynchronous
features of the NET Framework 4.5 to create low-level, high-
performance asynchronous client-server software systems.

The best way to see where I'm headed is to take a look at the demo
client-server system shown in Figure 1. At the top of the image
a command shell is running an asynchronous TCP socket-based
service that accepts requests to compute the average or minimum of
aset of numeric values. In the middle part of the image isa Windows
Forms (WinForm) application that has sent a request to compute
the average of (3, 1, 8). Notice the client is asynchronous—after the
request is sent, while waiting for the service to respond, the user is
able to click on the button labeled Say Hello three times, and the
application is responsive.

The bottom part of Figure 1 shows a Web application client in
action. The client has sent an asynchronous request to find the
minimum value of (5, 2, 7, 4). Although its not apparent from the
screenshot, while the Web application is waiting for the service
response, the application is responsive to user input.

In the sections that follow, I'll show how to code the service, the
WinForm client and the Web application client. Along the way T'll
discuss the pros and cons of using sockets. This article assumes you
have at least intermediate-level C# programming skill, but does
not assume you have deep understanding or significant experi-
ence with asynchronous programming. The code download that

http://msdn.microsoft.com/magazine/msdnmag0314

accompanies this article has the complete source code
for the three programs shown in Figure 1. T have
removed most normal error checking to keep the
main ideas as clear as possible.

Creating the Service
The overall structure of the demo service, with a few
minor edits to save space, is presented in Figure 2. To
create the service, I launched Visual Studio 2012, which
has the required .NET Framework 4.5, and created a
new C# console application named DemoService.
Because socket-based services tend to have specific,
limited functionality, using a more descriptive name
would be preferable in a real-life scenario.

After the template code loaded into the editor, I
modified the using statements at the top of the source

from 123.45.678.999
ethod=averagefkdata=3 1 8&eor

From 123
method=ninim

939
=5 2 7 4keor

[winForm TCP Service | = [=[3}
Select melhod
Iavelage -
Enter space-delimited data (ke 31 8)
B1s
Send request
S| [T ivmim oo =

Sent request, waiting for response
Hello

code to include System.Net and System.Net.Sockets.

Hello
Feceived response: 4.00

In the Solution Explorer window, I renamed file /6 Demo - Windows Internet Explorer i =lox|
Program.cs to ServiceProgram.cs and Visual Studio @T// | @ hitprfflocahost DemoclentiDemawebctent.sspx P 7| | B[] X | & ¢ &3
automatically renamed class Program for me. Starting © Demo x|
. L. Flz Edt Wiew Favorites Tools Help
the service is simple: : S
int port = 50000; Enter service method: |minin1|_|m
AsyncService service = new AsyncService(port);
service.Run(); Enter data:[527 4
Each custom socket-based service on a server
must use a unique port. Port numbers between 49152 _Sj“i_“'"’s‘_J
and 65535 are generally used for custom services. Re N
5 Sponse; <.
Avoiding port number collisions can be tricky. It's
possible to reserve port numbers on a server using the Dumy responsive controk
system registry ReservedPorts entry. The service uses
an object-oriented programming (OOP) design and
is instantiated via a constructor that accepts the port E
RI00% - =

number. Because service port numbers are fixed, the
port number can be hardcoded rather than passed as
a parameter. The Run method contains a while loop
that will accept and process client requests until the console shell
receives an <enter> key press.

Fach custom socket-based
service on aserver must use a
unique port.

The AsyncService class has two private members, ipAddress and
port. These two values essentially define a socket. The constructor
accepts a port number and programmatically determines the IP
address of the server. Public method Run does all the work of
accepting requests, then computing and sending responses. The
Run method calls helper method Process, which in turn calls helper
Response. Method Response calls helpers Average and Minimum.

There are many ways to organize a socket-based server. The struc-
ture used in the demo tries to strike a balance between modularity
and simplicity, and has worked well for me in practice.

msdnmagazine.com

Figure 1 Demo TCP-Based Service with Two Clients

The Service Constructor and Run Methods
The two public methods of the socket-based demo service are presented
in Figure 3. After storing the port name, the constructor uses method
GetHostName to determine the name of the server, and to then fetch a
structure that contains information about the server. The AddressList
collection holds different machine addresses, including IPv4 and IPv6
addresses. The InterNetwork enum value means an IPv4 address.
This approach restricts the server to listen to requests using only
the server's first assigned IPv4 address. A simpler alternative could
allow the server to accept requests sent to any of its addresses by
just assigning the member field as this.ipAddress = IPAddress.Any.
Notice the services Run method signature uses the async modi-
fier, indicating that in the body of the method some asynchronous
method will be called in conjunction with the await keyword. The
method returns void rather than the more usual Task because Run
is called by the Main method, which, as a special case, does not
allow the async modifier. An alternative is to define method Run
to return type Task and then call the method as service.Run(). Wait.
The services Run method instantiates a TcpListener object using
the servers IP address and port number. The listener’s Start method
begins monitoring the specified port, waiting fora connection request.

March 2014 27

www.msdnmagazine.com

Figure 2 The Demo Service Program Structure

using System;
using System.Net;
using System.Net.Sockets;
using System.I0;
using System.Threading.Tasks;
namespace DemoService
{
class ServiceProgram
{
static void Main(string[] args)
{

try

{
int port = 50000;
AsyncService service = new AsyncService(port);
service.Run();
Console.ReadLine();

}

catch (Exception ex)

{
Console.WriteLine(ex.Message);
Console.ReadLine();

}

}
}

public class AsyncService

{
private IPAddress ipAddress;
private int port;

public AsyncService(int port) { . . }

public async void Run() { . .}

private async Task Process(TcpClient tcpClient) { . . }
private static string Response(string request)

private static double Average(double[] vals) { . .}
private static double Minimum(double[] vals) { . . }

Figure 3 Service Constructor and Run Methods

public AsyncService(int port)
{
this.port = port;
string hostName = Dns.GetHostName();
IPHostEntry ipHostInfo = Dns.GetHostEntry(hostName);
this.ipAddress = null;
for (int i =0; i < ipHostInfo.AddressList.Length; ++i) {
if (ipHostInfo.AddressList[i].AddressFamily ==
AddressFamily.InterNetwork)
{
this.ipAddress = ipHostInfo.AddressList[i];
break;
}
}
if (this.ipAddress == null)
throw new Exception("No IPv4 address for server");
}

public async void Run()

{
TepListener listener = new TcpListener(this.ipAddress, this.port);
Tistener.Start();
Console.Write("Array Min and Avg service is now running"
Console.WriteLine(" on port " + this.port);
Console.WriteLine("Hit <enter> to stop service\n");

while (true) {
try {
TepClient tepClient = await listener.AcceptTcpClientAsync();
Task t = Process(tcpClient);
await t;
}
catch (Exception ex) {
Console.WriteLine(ex.Message);
}
}
}

28 msdn magazine

Inside the main processing while loop, a TepClient object, which
you can think of as an intelligent socket, is created and waits for
a connection via the AcceptTepClientAsync method. Prior to the
NET Framework 4.5, youd have to use BeginAcceptTcpClient
and then write custom asynchronous coordination code, which,
believe me, is not simple. The .NET Framework 4.5 adds many new
methods that, by convention, end with ‘Async?” These new methods,
combined with the async and await keywords, make asynchronous
programming much, much easier.

Method Run calls method Process using two statements. An
alternative is to use shortcut syntax and call method Process in a
single statement: await Process(tcpClient).

One of the advantages of using
low-level sockets instead of
WCF is that you can easily insert
diagnostic WriteLine statements
anywhere you choose.

To summarize, the service uses TepListener and TepClient objects
to hide the complexity of raw socket programming, and uses the
new AcceptTepClientAsync method in conjunction with the new
asyncand await keywords to hide the complexity of asynchronous
programming. Method Run sets up and coordinates connection
activities, and calls method Process to process requests and then
asecond statement to await on the return Task.

The Service Process and Response Methods

The Process and Response methods of the service object are
presented in Figure 4. The Process methods signature uses the
async modifier and returns type Task.

One of the advantages of using low-level sockets instead of
Windows Communication Foundation (WCF) is that you can
easily insert diagnostic WriteLine statements anywhere you choose.
In the demo, I replaced clientEndPoint with the dummy IP address
value 123.45.678.999 for security reasons.

The three key lines in method Process are:
string request = await reader.ReadLineAsync();

string response = Response(request);

é&éit writer.WritelLineAsync(response);

You can interpret the first statement to mean, “read a line of the
request asynchronously, allowing other statements to execute if
necessary. Once the request string is obtained, its passed to the
Response helper. Then the response is sent back to the requesting
client asynchronously.

The server is using a read-request, write-response cycle. Its sim-
ple, but there are several caveats of which you should be aware. If
the server reads without writing, it can't detect a half-open situation.
If the server writes without reading (for example, responding
with a large amount of data), it could deadlock with the client. A

Async Programming

/update/2014/03 Component YIRS

The Definitive Source of Software Components

www.componentsource.com

sesTSELLER (R Help & Manual Professional ‘ from $583.10

Easily create documentation for Windows, the Web and iPad.

- Powerful features in an easy accessible and intuitive user interface

« As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor
« Single source, multi-channel publishing with conditional and customized output features
« Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

« Styles and Templates give you full design control

Aspose.Total for .NET ‘ from $2,449.02 6 ASPOSE

Your File Format Experts

Every Aspose .NET component in one package.

- Programmatically manage popular file formats including Word, Excel, PowerPoint and PDF

» Work with charts, diagrams, images, project plans, emails, barcodes, OCR, and document
management in .NET applications

« Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the fly and extracting text from PDF files

BT SELLER g — B GdPicture.NET Ultimate ‘ from $4,127.59 Ldrichwe

All-in-one AnyCPU document-imaging and PDF toolkit for NET and ActiveX.

» Document viewing, processing, printing, scanning, OMR, OCR, Barcode Recognition, DICOM
« Annotate image and PDF within your Windows & Web applications
+ Read, write and convert vector & raster images in more than 90 formats, including PDF

« Color detection engine for image and PDF compression

+ 100% royalty-free and world leading Imaging SDK

BEST SELLER

ComponentOne ActiveReports 8 ‘ from $1,567.02 @ comnonentone

The award-winning .NET reporting tool for HTML5, WPF, WinForms, ASP.NET & Windows Azure.
- Create sophisticated, fast and powerful reports
- Generate flexible layouts using Section, Region and Fixed page designers

- Experience a new scalable, distributed and load balanced Enterprise-grade report server

« Utilize the just released HTML5 and touch-optimized report viewers for mobile devices

- Explore an array of data visualization options including charts, maps and more

We accept purchase orders.
© 1996-2014 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts. Contact us to apply for a credit account.

US Headquarters European Headquarters Asia/ Pacific Headquarters 8 o DISC_VER
ComponentSource ComponentSource ComponentSource Sales HOtI Ine - U S & Ca nada- ho = V’SA -
650 Claremore Prof Way 30 Greyfriars Road 3F Kojimachi Square Bldg

Suite 100 Reading 3-8 Kojimachi Chiyoda-ku 8 8 8 8 5 O — 9 9 1 1
Woodstock Berkshire Tokyo

GA 30188-5188 RG1 1PE NETEN]

UsA United Kingdon 102-0083 www.componentsource.com

[eBY Schedule

http://www.componentsource.com

read-write design is acceptable for simple in-house services but
shouldn't be used for services that are critical or public-facing.

The Response method accepts the request string, parses the
request and computes a response string. A simultaneous strength and
weakness of a socket-based service is that you must craft some sort
of custom protocol. In this case, requests are assumed to look like:

method=average&data=1.1 2.2 3.3&eor

In other words, the service expects the literal “method="followed
by the string “average” or “minimum;’ then an ampersand character
(“&”) followed by the literal “data=" The actual input data must be in
space-delimited form. The request is terminated by an “&” followed
by the literal “eor;” which stands for end-of-request. A disadvan-
tage of socket-based services compared to WCF is that serializing
complex parameter types can be a bit tricky sometimes.

In this demo example, the service response is simple, just a string
representation of the average or minimum of an array of numeric
values. In many custom client-server situations, you'll have to
design some protocol for the service response. For example,

Figure 4 The Demo Service Process and Response Methods

private async Task Process(TcpClient tcpClient)
{
string clientEndPoint =
tepClient.Client.RemoteEndPoint.ToString();
Console.WriteLine("Received connection request from "
+ clientEndPoint);
try {
NetworkStream networkStream = tcpClient.GetStream();
StreamReader reader = new StreamReader(networkStream);
StreamWriter writer = new StreamWriter(networkStream);
writer.AutoFlush = true;
while (true) {
string request = await reader.ReadlLineAsync();
if (request != null) {
Console.WriteLine("Received service request: " + request);
string response = Response(request);
Console.WriteLine("Computed response is: " + response + "\n");
await writer.WritelineAsync(response);
}
else
break; // Client closed connection
}
tepClient.Close();
}
catch (Exception ex) {
Console.WriteLine(ex.Message);
if (tcpClient.Connected)
tcpClient.Close();
}
}

private static string Response(string request)
{
string[] pairs = request.Split('&');
string methodName = pairs[0].Split('=")[1];
string valueString = pairs[1].Split('=")[1];

string[] values = valueString.Split("' ');

doubTe[] vals = new double[values.Lengthl;

for (int i =0; i < values.Length; ++i)
vals[i] = double.Parse(values[i]);

string response = "";

if (methodName == "average") response += Average(vals);

else if (methodName == "minimum") response += Minimum(vals);

else response += "BAD methodName: " + methodName;

int delay = ((int)vals[0]) * 1000; // Dummy delay
System.Threading.Thread.Sleep(delay);

return response;

30 msdn magazine

instead of sending a response justas “4.00,” you might want to send
the response as “average=4.00

Method Process uses a relatively crude approach to close a
connection if an Exception occurs. An alternative is to use the C#
using statement (which will automatically close any connection)
and remove the explicit call to method Close.

An advantage of
low-level services is that you
have greater control over your
data-access approach.

Helper methods Average and Minimum are defined as:

private static double Average(double[] vals)
{
doubTe sum = 0.0;
for (int 1 = 0; 1 < vals.Llength; ++i)
sum += vals[i];
return sum / vals.Length;
}
private static double Minimum(double[] vals)
{
double min = vals[0]; ;
for (int i =0; i < vals.Length; ++i)
if (vals[i] < min) min = vals[i];
return min;
}

In most situations, if youe using a program structure similar
to the demo service, your helper methods at this point would
connect to some data source and fetch some data. An advantage
of low-level services is that you have greater control over your
data-access approach. For example, if youre getting data from
SQL, you can use classic ADO.NET, the Entity Framework or any
other data access method.

A disadvantage of a low-level approach is you must explicitly
determine how to handle errors in your system. Here, if the demo
service is unable to satisfactorily parse the request string, instead of
returning a valid response (as a string), the service returns an error
message. Based on my experience, there are very few general princi-
ples on which to rely. Each service requires custom error handling.

Notice the Response method has a dummy delay:

int delay = ((int)vals[0]) * 1000;
System.Threading.Thread.STeep(delay);

This response delay, arbitrarily based on the first numeric value
of the request, was inserted to slow the service down so that the
WinForm and Web application clients could demonstrate UI
responsiveness while waiting for a response.

The WinForm Application Demo Client

To create the WinForm client shown in Figure 1, T launched Visual
Studio 2012 and created a new C# WinForm application named
DemoFormClient. Note that, by default, Visual Studio modularizes a
WinForm application into several files that separate the UT code from
the logic code. For the code download that accompanies this article,
I refactored the modularized Visual Studio code into a single source
codefile. You can compile the application by launchinga Visual Studio

Async Programming

2 software

We didn't invent the Internet..

...but our components help you power the apps that bring it to business.

TOOLS « COMPONENTS « ENTERPRISE ADAPTERS

AS2, EDI/X12, NAESB, OFTP ... FTP, SMTP, IMAP, POP, WebDav ...
Authorize.Net, TSYS, FDMS ... SSH, SFTP, SSL, Certificates ...
FedEx, UPS, USPS ... S/MIME, OpenPGP ...
QuickBooks, OFX ... SNMP, MIB, LDAP, Monitoring ...
Amazon, eBay, PayPal ... Zip, Gzip, Jar, AES ...

‘NE; P BTk Server 2 S0 Server ;ﬂﬁ&hle a@;fmﬁ

il L
#* SharePoint 2010 B vewes B cesmuILDER L--f, = -

Java

The Market Leader in Internet Communications, Security, & E-Business Components

Each day, as you click around the Web or use any connected any application, on any platform, anywhere, and you do the rest.
application, chances are that directly or indirectly some bits are Since 1994, we have had one goal: to provide the very best
flowing through applications that use our components, on a server, connectivity solutions for our professional developer customers.
on a device, or right on your desktop. It's your code and our code With more than 100,000 developers worldwide using our software
working together to move data, information, and business. We and millions of installations in almost every Fortune 500 and

give you the most robust suite of components for adding Internet Global 2000 company, our business is to connect business, one
Communications, Security, and E-Business Connectivity to application at a time.

connectivity To learn more please visit our website >

i?owaraé b7 v

Microsoft .NET, | Java | ActiveX | C++ | Delphi | C++ Builder | PHP | Objective-C | Windows | Windows Mobile | Mac OS X | Linux/Unix | iPhone

www.nsoftware.com

Figure 5WinForm Demo Client Button Click Handlers

private async void buttonl_Click(object sender, EventArgs e)
{
try {
string server = "mymachine.network.microsoft.com";
int port = 50000;
string method = (string)comboBoxl.SelectedItem;
string data = textBoxl.Text;
Task<string> tsResponse = SendRequest(server, port, method, data);
TistBox1l.Items.Add("Sent request, waiting for response");
await tsResponse;
double dResponse = double.Parse(tsResponse.Result);
istBoxl.Items.Add("Received response: " + dResponse.ToString("F2"));
}
catch (Exception ex) {
TistBox1l.Items.Add(ex.Message);
}
}

private void button2_Click(object sender, EventArgs e)
{

TistBox1.Items.Add("Hello");
}

Figure 6 WinForm Demo Client SendRequest Method

private static async Task<string> SendRequest(string server,
int port, string method, string data)
{
try {
IPAddress ipAddress = null;
IPHostEntry ipHostInfo = Dns.GetHostEntry(server);
for (int i = 0; i < ipHostInfo.AddressList.Length; ++i) {
if (ipHostInfo.AddressList[i].AddressFamily ==
AddressFamily.InterNetwork)
{
ipAddress = ipHostInfo.AddressList[i];
break;
}

}
if (ipAddress == null)
throw new Exception("No IPv4 address for server");

TepClient client = new TcpClient();
await client.ConnectAsync(ipAddress, port); // Connect

NetworkStream networkStream = client.GetStream();
StreamWriter writer = new StreamWriter(networkStream);
StreamReader reader = new StreamReader(networkStream);

writer.AutoFlush = true;

string requestData = "method=" + method + "&" + "data=" +
data + "&eor"; // 'End-of-request’

await writer.WriteLineAsync(requestData);

string response = await reader.ReadLineAsync();

client.Close();
return response;
}
catch (Exception ex) {
return ex.Message;
}
}

command shell (which knows where the C# compiler is), and exe-
cuting the command: csc.exe /target:winexe DemoFormClient.cs.

Using the Visual Studio design tools, [added a ComboBox control,
a TextBox control, two Button controls and a ListBox control, along
with four Label controls. For the ComboBox control, T added strings
“average” and “minimum’ to the controls Items collection property.
I changed the Text properties of buttonl and button2 to Send Async
and Say Hello, respectively. Then, in design view, I double-clicked
on the buttonl and button2 controls to register their event handlers.
I edited the click handlers as shown in Figure 5.

32 msdn magazine

Notice the signature of the buttonl controls click handler was
changed to include the async modifier. The handler sets up a
hardcoded server machine name as a string and port number.
When using low-level socket-based services, theres no automatic
discovery mechanism and so clients must have access to the server
name or [P address and port information.

The key lines of code are:

Task<string> tsResponse = SendRequest(server, port, method, data);
/1 Perform some actions here if necessary

await tsResponse;

double dResponse = double.Parse(tsResponse.Result);

SendRequest is a program-defined asynchronous method. The
call can be loosely interpreted as “send an asynchronous request
that will return a string, and when finished continue execution at
the statement ‘await tsResponse; which occurs later” This allows
the application to perform other actions while waiting for the
response. Because the response is encapsulated in a Task, the
actual string result must be extracted using the Result property.
That string result is converted to type double so that it can be
formatted nicely to two decimal places.

An alternative calling approach is:

string sResponse = await SendRequest(server, port, method, data);
double dResponse = double.Parse(sResponse);
TistBox1l.Items.Add("Received response: " + dResponse.ToString("F2"));

A disadvantage of a low-level
approach is that you must
explicitly determine how to

handle errorsinyour system.

Here, the await keyword is placed in-line with the asynchronous
call to SendRequest. This simplifies the calling code a bitand also al-
lows the return string to be fetched without a call to Task.Result. The
choice of using an inline await call or using a separate-statement await
call will vary from situation to situation, but as a general rule of thumb,
its better to avoid the explicit use of a Task objects Result property.

Most of the asynchronous work is performed in the Send-
Request method, which is listed in Figure 6. Because SendRequest
is asynchronous, it might better be named SendRequestAsync or
MySendRequestAsync.

SendRequest accepts a string representing the server name
and begins by resolving that name to an IP address using the
same code logic that was used in the service class constructor.
A simpler alternative is to just pass the name of the server: await
client.ConnectAsync(server, port).

After the servers IP address is determined, a TcpClient
intelligent-socket object is instantiated and the objects Connect-
Async method is used to send a connection request to the server.
After setting up a network StreamWriter object to send data to the
server and a StreamReader object to receive data from the server, a
request string is created using the formatting expected by the server.
The request is sent and received asynchronously and returned by
the method as a string.

Async Programming

. . CHICARGO 20

) May 5 - 8 | Chicago Hilton
Visual Studio @@ T Dl i (F LI¥E' ‘ﬂ
Y Vlsual Studlo \

YOUR GUIDE TO THE .NET DEVELOPMENT

*UNIVERS‘-_ \

Intense Take-Home
Training for Developers

and Desers e ot "chaﬁ° ;

Topics include: REGISTER BY

> Visual Studio/.NET APRIL 2 AND

> Windows Client (Windows 8.1/ SAVE $200!
WinRT/WPF)

> JavaScript/HTMLS5 Client

> ASPNET

> Cloud Computing

> Windows Phone

> Cross-Platform Mobile Development
> SharePoint/Office k
> SQL Server Use promo code CHTIP1

’ vslive.com/chicago
Y -

www.vslive.com/chicago

. 1~ CHICAGO 204
\4!}§SHJ§JS F§EH590IPEQS @ May 5 - 8 | Chicago Hilton

F
This May, developers, software R EG I ST E R BY

architects, engineers, and designers APRIL 2

& ' m will blast off in the windy city for four 1
_ |_|¥E, AND SAVE $200!

days of unbiased and cutting-edge .)
education on the Microsoft Platform. g%, vslive.com/chicago

f
Live long and code with .NET gurus, : j‘

Vlsual StUle launch ideas with industry experts

[CONNECT WITH VISUAL STUDIO LIVE!
" ¥ | twittercom/vslive — @VSLive

MOURIGDEOIRHEEN ETIDEVEDEMENT] and rub elbows with Microsoft stars ™
UN I VERSE in pre-conference workshops, ,,L;'; f | facebook.com - Search "VSLive"
Live) 60+ sessions and fun networking b in | linkedin.com - Join the
events - all designed to make you ” “Visual Studio Live” group!

CH’CGGO better at your job.
. Plus, explore hot topics like Web API,
v jQuery, MongoDB, SQL Server Data
vslive.com/chicago Tools and more!

ﬁ ¥"- 3 ,I,,_ s L8 Use promo code CHTIP1

nivi

SUPPORTED BY PRODUCGED BY
241105 MEDIAZ

Microsoft 0 VisualStudio mMsdn Visual Studio

magazine MAGAZINE

www.vslive.com/chicago
www.vslive.com/chicago
www.twitter.com/vslive
https://www.facebook.com/VSLiveEvents
http://www.linkedin.com/groups?gid=1844781&trk=hb_side_g

The Web Application Demo Client

I created the demo Web application client shown in Figure 1 in
two steps. First, I used Visual Studio to create a Web site to host the
application, and then I coded the Web application using Notepad.
I launched Visual Studio 2012 and created a new C# Empty Web
Site named DemoClient at http://localhost/. This set up all the
necessary IIS plumbing to host an application and created the phys-
ical location associated with the Web site at C:\inetpub\wwwroot\
DemoClient\. The process also created a basic configuration file,
Web.config, which contains information to allow applications in
the site to access async functionality in the NET Framework 4.5:

<?xml version="1.0"?>
<configuration>
<system.web>
<compilation debug="false" targetFramework="4.5" />
<httpRuntime targetFramework="4.5" />
</system.web>
</configuration>

Next, Ilaunched Notepad with administrative privileges. When
creating simple ASPNET applications, I sometimes prefer using
Notepad instead of Visual Studio so I can keep all application code
in a single .aspx file, rather than generating multiple files and un-
wanted example code. I saved the empty file as DemoWebClient.
aspx at C:\inetpub\wwwroot\DemoClient.

The overall structure of the Web application is shown in Figure 7.

At the top of the page I added Import statements to bring the
relevant NET namespaces into scope, and a Page directive that
includes the Async=true attribute.

The C# script region contains two methods, SendRequest
and Buttonl_Click. The application page body has two TextBox
controls and one Button control for input, an output TextBox con-
trol to hold the service response, and a dummy, unused TextBox

Figure 7 Web Application Demo Client Structure

<%@ Page Language="C#" Async="true" AutoEventWireup="true"%>
<%@ Import Namespace="System.Threading.Tasks" %>

<%@ Import Namespace="System.Net" %>

<%@ Import Namespace="System.Net.Sockets" %>

<%@ Import Namespace="System.I0" %>

<script runat="server" language="C#">

private static async Task<string> SendRequest(string server,

private async void Buttonl_Click(object sender, System.EventArgs e) { . . }
{/sceript>

<head>
<titledDemo</title>
</head>

<body>
<form id="forml" runat="server">
<div>

<p>Enter service method:

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox></p>
{p>Enter data:

<asp:TextBox ID="TextBox2" runat="server"></asp:TextBox></p>
{p><asp:Button Text="Send Request" id="Buttonl"

runat="server" OnClick="Buttonl_Click"> </asp:Button> </p>
{p>Response:

<asp:TextBox ID="TextBox3" runat="server"></asp:TextBox></p>
<p>Dummy responsive control:

<asp:TextBox ID="TextBox4" runat="server"></asp:TextBox></p>

</div>

</form>
</body>
</htm1>

msdnmagazine.com

control to demonstrate UI responsiveness while the application
waits for the service to respond to a request.

The code for the Web applications SendRequest method is
exactly the same as the code in the WinForm applications Send-
Request. The code for the Web applications Buttonl_Click handler
differs only slightly from the WinForms buttonl_Click handler to
accommodate the different UT:

try {
string server = "mymachine.network.microsoft.com";
int port = 50000;
string method = TextBoxl.Text;
string data = TextBox2.Text;
string sResponse = await SendRequest(server, port, method, data);
doubTe dResponse = double.Parse(sResponse);
TextBox3.Text = dResponse.ToString("F2");

}

catch (Exception ex) {
TextBox3.Text = ex.Message;

}

Even though the code for the Web application is essentially the
same as the code for the WinForm application, the calling mech-
anism is quite a bit different. When a user makes a request using
the WinForm, the WinForm issues the call directly to the service
and the service responds directly to the WinForm. When a user
makes a request from the Web application, the Web application
sends the request information to the Web server thats hosting
the application, the Web server makes the call to the service, the
service responds to the Web server, the Web server constructs a
response page that includes the response and the response page is
sent back to the client browser.

Wrapping Up

So, when should you consider using asynchronous TCP sockets
instead of WCF? Roughly 10 years ago, before the creation of WCF
and its predecessor technology ASPNET Web Services, if you wanted
to create a client-server system, using sockets was often the most log-
ical option. The introduction of WCF was a big advance, but because
of the huge number of scenarios WCF is designed to handle, using it
for simple client-server systems might be overkill in some situations.
Although the latest version of WCEF is easier to configure than
previous versions, it can still be tricky to work with WCE.

For situations where the clientand server are on different networks,
making security a major consideration, I always use WCE But for
many client-server systems where client and server are located ona
single secure enterprise network, I often prefer using TCP sockets.

A relatively new approach for implementing client-server sys-
tems is to use the ASPNET Web API framework for HTTP-based
services combined with the ASPNET SignalR library for asyn-
chronous methods. This approach, in many cases, is simpler to
implement than using WCF and avoids many of the low-level
details involved with a socket approach. u

Dr. James McCarereY works for Microsoft Research in Redmond, Wash. He has
worked on several Microsoft products including Internet Explorer and Bing. He
can be reached at jammc@microsoft.com.

THANKS to the following technical experts for their advice and for reviewing
this article: Piali Choudhury (MS Research), Stephen Cleary (consultant),
Adam Eversole (MS Research) Lynn Powers (MS Research) and

Stephen Toub (Microsoft)

March 2014 33

www.msdnmagazine.com
mailto:jammc@microsoft.com

ASP.NET MVC 5

A NET Developer
Primer for Single-Page

Applications

Long Le

A majority of Microsoft .NET Framework developers
have spent most of their professional lives on the server side, coding
with C# or Visual Basic. NET when building Web applications. Of
course, JavaScript has been used for simple things such as modal
windows, validation, AJAX calls and so on. However, JavaScript
(client-side code for the most part) has been leveraged as a utility
language, and applications were largely driven from the server side.

Lately theres been a huge trend of Web application code
migrating from the server side to the client side (browser) to meet
users’ expectations for fluid and responsive UX. With this being
the case, alot of NET developers (especially in the enterprise) are
dealing with an extreme amount of anxiety about JavaScript best
practices, architecture, unit testing, maintainability and the recent

This article discusses:

« Steps to convertan ASPNET MVC 5 application to a single-page
application (SPA)

» Setting up an SPA infrastructure

- Adding create, read, update and delete functionality

Technologies discussed:

ASPNET MVCS5, JavaScript, Single-Page Applications, Kendo Ul,
RequirelS, Entity Framework, Web API, OData

Code download available at:

easyspa.codeplex.com

34 msdn magazine

explosion of different kinds of JavaScript libraries. Part of the trend
of moving to the client side is the increasing use of single-page
applications (SPAs). To say that SPA development is the future
is an extreme understatement. SPAs are how some of the best
applications on the Web offer fluid UX and responsiveness, while
minimizing payloads (traffic) and round-trips to the server.

To say that SPA development
isthe future is an extreme
understatement.

In thisarticle, T'll address the anxieties you might experience when
making the transition from the server side into the SPA realm. The
best way to deal with these anxieties is to embrace JavaScript as a
first-class language just like any NET language, such as C#, Visual
Basic .NET, Python and so on.

Following are some fundamental principles of NET development
that are sometimes ignored or forgotten when developing apps
in JavaScript:

« Your code base is manageable in .NET because you're
decisive with class boundaries and where classes actually
live within your projects.

http://easyspa.codeplex.com

« You separate concerns, so you dont
have classes that are responsible for
hundreds of different things with
overlapping responsibilities.

« You have reusable repositories, queries,
entities (models) and data sources.

« You put some thought into naming
your classes and files so theyre
more meaningful.

« You practice good use of design patterns,
coding conventions and organization.

Because this article is for NET developers
who are being introduced to the SPA world,
I'll incorporate the least number of frame-
works possible to build a manageable SPA
with sound architecture.

Creating an SPA in Seven Key Steps
Following are seven key steps to convert a
new ASPNET Web Application that was
created with the out-of-the-box Visual
Studio 2013 ASPNET MVC template into
an SPA (with references to the appropriate
project files that can be found in the accom-
panying code download).

1. Download and install the NuGet
packages Require]S, Require]S text
plug-in and Kendo UT Web.

2. Add a configuration module

(Northwind. Web/Scripts/app/main.js).

Solution Explorer
a ©-
4 @] Northwind.Web
b & M Properties
=-B References
W Api
M App_Data
Ml App_Start
M Content
Ml Controllers
M fonts
il Models
4 @] Scripts
4 @l app
4 @] datasources
a L] customerDatasource.js
4 @] models
customerModel js
4 @] viewModels
4 fml customer
all editViewModeljs
gL/ indexViewModeljs

4
b
4
4
[
b
[

ome
boutViewModel.js
contactViewModel,js
| indexViewModel js

app.js

main.js
all routerjs
b Ml kendo

Figure 1 ASPNET MVC Project Structure

7. Update the layout navigation (menu)
links to match the new SPA-friendly
URLs (Northwind. Web/Views/Shared/
_Layout.cshtml).

After these seven steps have been carried
out, your Web application project structure
should look something like Figure 1.

I'll show how to build an awesome SPA
in ASPNET MVC with the following
JavaScript libraries, available via NuGet:

« Require]JS (requirejs.org): This is a Java-
Script fileand moduleloader. Require]S
will provide #include/import/require
APIs and the ability to load nested
dependencies with dependency
injection (DI). The Require]S design
approach uses the Asynchronous
Module Definition (AMD) API for
JavaScript modules, which helps to
encapsulate pieces of code into useful
units. Italso provides an intuitive way to
refer to other units of code (modules).
Require]S modules also follow the
module pattern (bit.ly/18byc2Q). A simpli-
fiedimplementation of this pattern uses
JavaScript functions for encapsulation.
You'll see this pattern in action later as
all JavaScript modules will be wrapped
within a “defin€” or “require” function.

Those familiar with DI and Inversion of Control (IoC)

3. Add an app module (Northwind.Web/Scripts/app/app.js).

4. Addarouter module (Northwind. Web/Scripts/app/router;s).

5. Add an action and view both named Spa (Northwind.
Web/Controllers/HomeController.cs and Northwind.
Web/Views/Home/Spa.cshtml).

6. Modify the _ViewStart.cshtml file so MVC will load
views without using the _Layout.cshtml file by default
(Northwind. Web/Views/_ViewStart.cshtml).

Figure 2 RequireJS Configuration

require.config({
paths: {
// Packages
'jquery': '/scripts/jquery-2.0.3.min',
"kendo': '/scripts/kendo/2013.3.1119/kendo.web.min",
"text': '/scripts/text',
'router': '/scripts/app/router

I
shim : {

"kendo' : ['jquery']
Bo
priority: ['text', 'router', 'app'l,
Jjquery: '2.0.3",
waitSeconds: 30
)8

require([

"app’
1, function (app) {
app.initialize();
)8

msdnmagazine.com

concepts can think of this as a client-side DI framework. If thats
as clear as mud at the moment, no worries—I'll soon get into
some coded illustrations where all this will make sense.

« Text plug-in for Require]JS (bit.ly/1cd811Z): This will be used to
remotely load chunks of HTML (views) into the SPA.

« Entity Framework (bitly/1bKiz91): This is pretty self-explanatory,
and because the focus of this article is on SPA, I won' get too
much into Entity Framework. However, if youre new to this,
theres plenty of documentation available.

« Kendo UI Web (bit.ly/t4VkVp): This is a comprehensive JavaScript/
HTMLS5 framework that encompasses Web UI Widgets, Data-
Sources, templates, the Model-View-ViewModel (MVVM)
pattern, SPAs, styling, and so on to help deliver a responsive and
adaptive application that will look great.

Figure 3 Registered Route Definitions and Corresponding URLs

Registered Route (Definition) Actual Full (Bookmarkable) URL

/ localhost:25061/home/spa/home/index

/home/index localhost:25061/home/spa/#/home/index/
home/about

/home/about localhost:25061/home/spa/#/home/
about/home/contact

/home/contact localhost:25061/home/spa/#/home/

contact/customer/index

/customer/index localhost:25061/home/spa/#/customer/index

March 2014 35

www.msdnmagazine.com
www.requirejs.org
www.bit.ly/18byc2Q
www.bit.ly/1cd8lTZ
www.bit.ly/1bKiZ9I
www.bit.ly/t4VkVp

Setting up the SPA Infrastructure

To show how to set up the SPA infrastructure, first I'll explain how
to create the Require]S (config) module (Northwind. Web/Scripts/
app/main.js). This module will be the app start-up entry point. If
you've created a console app, you can think of this as the Main
entry point in Program.cs. It basically contains the first class and
the method thats called when the SPA starts up. The main.js file
basically serves as the SPAs manifest and is where you'll define
where all things in the SPA are and their dependencies, if any. The
code for RequireJS configuration is shown in Figure 2.

You have two options
for SPA views that will be loaded
into the SPA: standard HTML
(*.html) or ASPNET MVC Razor
(*.cshtml) pages.

In Figure 2, the paths property contains a list of where all the
modulesare located and their names. Shim is the name of a module
defined previously. The shim property includes any dependencies
the module may have. In this case, you're loading a module named
kendoandithasadependency ona module

This view will basically load up the shell or all the HTML for the
layout of the SPA. From this view, I'll load in the other views (for
example, About.cshtml, Contact.cshtml, Index.cshtml and so on)
as the user navigates through the SPA, by swapping the views that
replace all the HTML in the “content” div.

Creating the SPA Landing Page (Layout) (Northwind.Web/
Views/Spa.cshtml) Because the Spa.cshtml view is the SPA’
landing page where you'll load in all your other views, there won'
be much markup here, other than referencing the required style
sheets and RequireJS. Note the data-main attribute in the following
code, which tells Require]S which module to load first:

@f{

ViewBag.Title = "Spa";

Layout = "~/Views/Shared/_Layout.cshtml";
}

<link href=
"~/Content/kendo/2013.3.1119/kendo.common.min.css" rel="stylesheet" />
<link href=
"~/Content/kendo/2013.3.1119/kendo.bootstrap.min.css" rel="stylesheet" />
<script src=
"@Url.Content("~/scripts/require.js")"
data-main="/scripts/app/main"></script>
<div id="app"></div>

Adding an Action for the SPA Layout (Northwind.Web/
Controllers/HomeController.cs) To create and load the Spa.cshtml
view, add an action and view:

public ActionResult Spa()
{
return View();

Create the Application Module

named jquery, so ifa module requires the
kendo module, go ahead and load jQuery

first, because jQuery has been defined asa

Solution Explorer

& ©°-

(Northwind.Web/Scripts/app/app.js)
Heres the Application module, respon-
sible for initializing and starting the

dependency for the kendo module.

In Figure 2, the code “require([],
function(){})” will load in the next module,
which is the module I named app. Note
that I've deliberately given meaningful
names to modules.

So, how does your SPA know to invoke
this module first? You configure this on
the first landing page in the SPA with the
data-main attribute in the script reference
tag for Require]S. I've specified that it run
the main module (main.js). Require]S will
handle all the heavy lifting involved in
loading this module; you just have to tell
it which module to load first.

You have two options for SPA views that
will beloaded into the SPA: standard HTML
(*html) or ASPNET MVC Razor (*.cshtml)
pages. Because thisarticleis intended for NET
developers—and a lot of enterprises have
server-side libraries and frameworks theyd
like to continue using in their views—TI'll go
with the latter option of creating Razor views.

I'll start oft by adding a view and name
it Spa.cshtml, as mentioned previously.

36 msdn magazine

!;Q__'I Solution 'Northwind' (3 projects)
4 Morthwind.Data
b & Properties
P =m References
b Bl Mapping
¢.) App.config
b = NorthwindContext.cs

P S Properties
=B References
b ol Models

%] Northwind.Web

M App_Start
B Content
Controllers

M Models
M Scripts
Wl Views

"}_j £
¢ packages.config

I Project_Readme.html
¢) Web.config

Figure 4 A Best-Practice Solution Structure

Kendo UI Router:

define([
‘router’
1, function (router) {
var initialize = function() {
router.start();
IH

return {
initialize: initialize
'

Create the Router Module (North-
wind.Web/Scripts/app/router.js) This
is called by app.js. If youe already familiar
with ASPNET MVC routes, it's the same
notion here. These are the SPA routes for
your views. I'll define all the routes for all
the SPA views so when the user navigates
through the SPA, the Kendo Ul router will
know what views to load into the SPA. See
Listing 1 in the accompanying download.

The Kendo Ul Router class is responsible
for tracking the application state and nav-
igating between the application states. The
router integrates into the browser history
using the fragment part of the URL (#page),
making the application states bookmark-
able and linkable. When a routable URL

ASPNET MVC 5

ALEXSYS

TEAM

.

WORKFLOW APPLICATIONS | HELP DESK | BUG TRACKING

MADE EASY!

Alexsys Team® offers flexible task management software for Windows, Web, and Mobile Devices.
Track whatever you need to get the job done - anywhere, anytime on practically any device!

Thousands are using Alexsys Team® to create workflow solutions and web apps - without coding!
Fortune 500 companies, state, local, DOD, and other federal agencies use Team to manage their tasks.
Easily tailor Team to meet your exact requirements - even if they change daily, weekly, or even every minute.

Alexsys Team® Features Include: Our renowned tech support team is here to
- Form and Database customization make you and your team a success. Don’t
- Custom workflows have enough resources? Our professional
- Role-based security services staff has helped companies large
- Adaptive Rules Engine and small use Alexsys Team® at a fraction
- DOD CAC card support of the cost of those big consulting firms.

- Time recording

- Automated Escalations, Find out yourself:
Notifications, and SOAP Messaging Free Trial and Single User FreePack™ FIND OUT MORE!
- Supports MS-SQL, MySQL, and available at Alexcorp.com 1-888-880-ALEX (2539)
Orcale databases ALEXCORP.COM

www.alexcorp.com

Figure 5 Customer Grid View Markup with an MVVM Widget
and Event Bindings

<div class="demo-section">
<div class="k-content" style="width: 100%">
<div id="grid"

data-role="grid"
data-sortable="true"
data-pageable="true"
data-filterable="true"
data-editable="inline"
data-selectable="true"
data-toolbar="[{ template: kendo.template($("#toolbar™).htm1()) } 1’
data-columns="[

{ field: "CustomerID", title: "ID", width: "75px" }
{ field: "CompanyName", title: "Company"},

{ field: "ContactName", title: "Contact" },

{ field: "ContactTitle", title: "Title" },

{ field: "Address" },

{ field: "City" },

{ field: "PostalCode" },

{ field: "Country" },

{ field: "Phone" },

{ field: "Fax" } 1"

data-bind="source: dataSource, events:
{ change: onChange, dataBound: onDataBound }">
</div>
{style scoped>
#grid .k-toolbar {
padding: 15px;
}

.toolbar {
float: right;
}
{Istyle>
<Jdivy
</div>

{script type="text/x-kendo-template" id="toolbar">
<div>
<div class="toolbar">

Edit
{span data-role="button" data-bind="click: destroy">
Delete
{span data-role="button" data-bind="click: details">
Edit Details
</div>
<div class="toolbar" style="display:none">

Save

Cancel
</div>
</div>
{/seript>

is clicked, the router kicks in and tells the application to put itself
back into the state that was encoded into the route. The route defi-
nition is a string representing a path used to identify the state of
the application the user wants to see. When a route definition is
matched from the browser's URL hash fragment, the route handler
is called (see Figure 3).

As for the Kendo UI layout widget, its name speaks for itself.
You're probably familiar with the ASPNET Web Forms MasterPage
or MVC layout included in the project when you create a new
ASPNET MVC Web Application. In this SPA project, its located
at the path Northwind. Web/Views/Shared/_Layout.cshtml. Theres
little difference between the Kendo UT layout and MVC layout,
except the Kendo Ul layout runs on the client side. Just as the lay-
out worked on the server side, where the MVC runtime would
swap out the content of the layout with other views, the Kendo UI

38 msdn magazine

layout works the same exact way. You swap out the view (content)
of the Kendo Ul layout using the showIn method. View contents
(HTML) will be placed in the div with the ID “content;” which
was passed into the Kendo Ul layout when it was initialized. After
initializing the layout, you then render it inside the div with the ID
“app. which is a div in the landing page (Northwind. Web/Views/
Home/Spa.cshtml). I'll review that shortly.

The Kendo Ul Router class is
responsible for tracking the
application state and navigating
between the application states.

TheloadView helper method takes in a view model, a view and—if
needed—a callback to invoke once the view and view model binding
takes place. Within the loadView method, you leverage the Kendo
UI FX library to aesthetically enhance the UX by adding some
simple animation to the view swapping process. This is done by
sliding the current loaded view to the left, remotely loading in the
new view and then sliding the new loaded view back to the center.
Obviously, you can easily change this to a variety of different
animations using the Kendo UI EX library. One of the key benefits
of using the Kendo Ul layout is shown when you invoke the show-
In method to swap out views. It will ensure the view is unloaded,
destroyed properly and removed from the browsers DOM, thus
ensuring the SPA can scale and is performant.

Figure 6 Customer Web APl OData Controller

public class CustomerController : EntitySetController<Customer, string>
(

private readonly NorthwindContext _northwindContext;

public CustomerController()
(

_northwindContext = new NorthwindContext();
}

public override IQueryable<Customer> Get()
(

return _northwindContext.Customers;
}

protected override Customer GetEntityByKey(string key)
{

return _northwindContext.Customers.Find(key);
}

protected override Customer UpdateEntity(string key, Customer update)
(
_northwindContext.Customers.AddOrUpdate(update);
_northwindContext.SaveChanges();
return update;
}

public override void Delete(string key)
{
var customer = _northwindContext.Customers.Find(key);
_northwindContext.Customers.Remove(customer);
_northwindContext.SaveChanges();
}
}

ASPNET MVC 5

X ®
TEXTCONTROL

word processing components

There are many .NET ‘Rich Text Editors' out there...

Men, sorry!

There is only one

B HODDM™E-| Table Tools Object Tools TX Text Control Words* - O

Home Insert | Pagelayout Mailings View Layout Farmat ~ 0
hE B WEE B 2 28 @

Blank Page Table Image Chart Barcode Hyperink Bookmark Header Footer Page Tedt File Symbol
Page Break Number= Frame~ -

Pages Tables llustratio Links Heac ters Text Symbols

= _‘F ‘\f.l_.‘_‘.I_\"H.“.{l.”.‘.‘f.“_.‘\?”._lwﬁ
I dWEbUI I IC 1 Awesome Road

i CO m pa n / NC 28226, Awesome City

1 Table Properties
P o 4o Cut

1 Copy Frame and Color | Size and Fommatting

- First Header . Change Image... Frame:

Invoice E— -
i Format.. Top and Botto
Select Object Data Source » Square % Al Grid
Behind Text
- Edit Object Name... ehin - Ly lnewdn: 5o
- In Front of Tex i

Ling color: | il Dark Gray | | Other.

- awesome compan ez BICyCles
: b Milton Albury o [@ote v | gher
- 1 Awesome Road R B 5
NC 28226 Awesome City coo Ve e ol Margins
. 85004 Phoenix Top 000] e Let 00] non

| -_-- ST
-

Cancel
FR-MS4B-43 HL Mountain Frame - Black, 48 809w ee—
§ - AT
- FR-MQ4R-47 HI Mauintain Frame - Black 4?2 1 S714 70 571470 = I
Section: 171 | Page:1/2 | Lne:3 | Column:1 | Englsh (Unied States) | | | Hum | +

Reporting = Rich Text Editing = Spell Checking = Barcodes

www.textcontrol.com

B Y ool US 1 EsSSITEXT >q Visual Studio

EU: +49 421 427 067-10 Partner

http://www.textcontrol.com
https://twitter.com/txtextcontrol
https://www.facebook.com/txtextcontrol
https://plus.google.com/+textcontrol/posts

Figure 7 Configuring ASPNET MVC Web API Routes for OData

public static void Register(HttpConfiguration config)
{
// Web API configuration and services

ODataModelBuilder modelBuilder = new ODataConventionModelBuilder();

var customerkntitySetConfiguration =
model1Builder.EntitySet<Customer>("Customer");

customerEntitySetConfiguration.EntityType.Ignore(t => t.0rders);
customerkntitySetConfiguration.EntityType.Ignore(t =>
t.CustomerDemographics);

var model = modelBuilder.GetEdmModel();

config.Routes.MapODataRoute("ODataRoute", "odata", model);

config.EnableQuerySupport();

/1 Web APT routes
config.MapHttpAttributeRoutes();

config.Routes.MapHttpRoute(
"DefaultApi", "api/{controller}/{id}",
new {id = RouteParameter.Optional});
}

Edit the _ViewStart.cshtml View (Northwind.Web/Views/
_ViewStart.cshtml) Heres how to configure all views to not use
the ASPNET MVC layout by default:

e{
Layout = null;
}

At this point, the SPA should be working. When clicking on
any of the navigation links on the menu, you see the current
content is being swapped out via AJAX thanks to the Kendo Ul
router and Require]S.

These seven steps needed to convert a fresh ASPNET Web
Application into an SPA aren' too bad, are they?

Now that the SPA is up and running, I'll go ahead and do what
most developers will end up doing with an SPA, which is adding
some create, read, update and delete (CRUD) functionality.

Adding CRUD Functionality to the SPA
Here are the key steps needed to add a Customer grid view to the
SPA (and the related project code files):
« Add a CustomerController MVC controller
(Northwind.Web/Controllers/CustomerController.cs).
« Add a REST OData Customer Web API controller
(Northwind.Web/Api/CustomerController.cs).
« Add a Customer grid view (Northwind.Web/Views/
Customer/Index.cshtml).

There’s little difference between
the Kendo Ul layout and MVC
layout, except the Kendo U
layout runs on the client side.

« Add a CustomerModel module (Northwind. Web/Scripts/
app/models/CustomerModel).

« Add a customerDatasource module for the Customer
grid (Northwind.Web/Scripts/app/datasources/
customerDatasource.js).

« Add an indexViewModel module for the Customer
grid view (Northwind.Web/Scripts/app/viewModels/

LINGPad 4

..j = Connection | htpe//localhost:25051/odata

indexViewModel js).
Setting Up the Solution Struc-
— ol turewith Entity Framework Figure
e “""""“’“:"“: 4 shows the solution structure,

[Costomer-Toke (89 highlighting three projects: North-
B
[} ottt | wind.Data (1), Northwind.Entity
i | -] et & rme- oo 5 % | (2) and Northwind. Web (3). Tl
e [Contacte_Adoress ___[cly___[Ragln.[PetalcodeCountry___[#hon 1" briefly discuss each, along with
T8 PemtaCorta ik e ?sam it 030- I K
i i’:«f’m‘?;"m s " R o irs':"s‘s;“ | Entity Framework Power Tools.
L1 Foviogy reiy il « Northwind.Data: This
e i — P~ includes everything related
squeria | L
e : to the Entity Framework
NE | Object-Relational Mapping
___________ ol (ORM) tool, for persistence.
______ nall - I . . .
' , |+ Northwind.Entity: This
4 ¥ ull 13008 |France |91.24.45.40|91.24.45.41 . . L.
T e e e el | includes domain entities,
S o T - Fa d of Plain Old CLR
g My sl null |ECZ SNT |UK 512':12) 555 |null i compose [0) aim
- Wy o [(1ot g) 138 ({1 - | Object (POCO) classes. These
3 (Wesice DF. (rai [osead [wes [555|955 ' are all the persistent-ignorant
comercial Manager |Granada 9563 | | 3392 :’29) . .
Giors(aopsver R T T P sz domain .ob)ects‘
||| |commn | coméreia Sales Associate EA\!. dos |SaoPaule |SP [05432- |Bram [(11) 585~ |l . Northwmd.Web:This indudes
_fvimaie hsssszs | | L7
CoNSH | Consobdated L im“ [tondon —[mul |wk1 6T |UK |;:=:121 s |y sss | the ASPNET MVC 5 Web
|| [pracs—cachurin ot Vi3t machen |t s (Gamay e o |v| Application, the presentation
HESTES IS =]

layer, where you'll build out

Figure 8 Querying the Customer Controller Web APl OData Via a LINQPad Query

40 msdn magazine

the SPA with two previously
ASPNET MVC 5

mentioned libraries—Kendo Ul and Require]S—and the rest of
the server-side stack: Entity Framework, Web APIand OData.

« Entity Framework Power Tools: To create all the POCO
entities and mappings (database-first), I used the Entity
Framework Power Tools from the Entity Framework
team (bit.ly/1cdobhk). After the code generation, all T did
here is simply copy the entities into a separate project
(Northwind.Entity) to address separation concerns.

Note: Both the Northwind SQL install script and a backup of the
database are included in the downloadable source code under the
Northwind.Web/App_Data folder (bit.ly/1cph5qc).

Now that the solution is set up to access the database, I'll go ahead
and write the MVC CustomerController.cs class to serve up the
index and edit views. Because the controllers only responsibility is to
serve up an HTML view for the SPA, the code here will be minimal.

Creating MVC Customer Controller (Northwind.Web/
Controllers/CustomerController.cs) Here’s how to create the
Customer controller with the actions for the index and edit views:

public class CustomerController : Controller
{
public ActionResult Index()
{
return View();
}

public ActionResult Edit()
{
return View();
}
}

Creating the View with the Customers Grid (Northwind.Web/
Views/Customers/Index.cshtml) Figure 5 shows how to create
the view with the Customers grid.

If the markup in Figure 5 isn't familiar, don't panic—it’s just the
Kendo UIMVVM (HTML) markup. It simply configuresan HTML
element, in this case the div with an ID of “grid” Later on when
you bind this view to a view model with the Kendo Ul MVVM
framework, this markup will be converted to Kendo UI widgets.
You can read more on this at bit.ly/1d2Bgfj.

Creating MVC (OData) Web API Customer Controller (North-
wind.Web/Api/CustomerController.cs) Now I'll show how to
create the MVC (OData) Web API Customer controller. ODataisa
data-access protocol for the Web that provides a uniform way to query

Figure 9 Creating the Customer (Kendo Ul Observable) Model

define(['kendo'],
function (kendo) {
var customerModel = kendo.data.Model.define({
id: "CustomerID",
fields: {
CustomerID: { type: "string", editable: false, nullable: false },
CompanyName: { title: "Company", type: "string" },
ContactName: { title: "Contact", type: "string" },
ContactTitle: { title: "Title", type: "string" },
Address: { type: "string" },
City: { type: "string" },
PostalCode: { type: "string" },
Country: { type: "string" },
Phone: { type: "string" },
Fax: { type: "string" },
State: { type: "string" }
}
s
return customerModel;
)8

msdnmagazine.com

Figure 10 The Customer Grid View Model

define(['kendo", 'customerDatasource'],
function (kendo, customerDatasource) {

var lastSelectedDataltem = null;

var onClick = function (event, delegate) {

event.preventDefault();
var grid = $("ffgrid").data("kendoGrid");
var selectedRow = grid.select();
var dataltem = grid.dataltem(selectedRow);
if (selectedRow.length > 0)

delegate(grid, selectedRow, dataltem);
else

alert("Please select a row.");
g

var indexViewModel = new kendo.data.ObservableObject({

save: function (event) {
onClick(event, function (grid) {
grid.saveRow();
$(".toolbar").toggle();
I N
Bo

cancel: function (event) {
onClick(event, function (grid) {
grid.cancelRow();
$(".toolbar").toggle();
1)g
B

details: function (event) {
onClick(event, function (grid, row, dataltem) {

1)
P

edit: function (event) {
onClick(event, function (grid, row) {
grid.editRow(row);
$(".toolhar").toggle();
1
I8

destroy: function (event)

onClick(event, function

grid.dataSource.remove

grid.dataSource.sync();

1;
Jo

(
(grid, row, dataltem) {
(dataltem);

onChange: function (arg) {

var grid = arg.sender;

lastSelectedDataltem = grid.dataltem(grid.select());
B

dataSource: customerDatasource,

onDataBound: function (arg) {
// Check if a row was selected
if (lastSelectedDataltem == null) return;
// Get all the rows
var view = this.dataSource.view();
// Iterate through rows
for (var i =0; 1 < view.length; i++) {
// Find row with the TastSelectedProduct

router.navigate('/customer/edit/"' + dataltem.CustomerID);

if (view[i].CustomerID == lastSelectedDataltem.CustomerID) {

/] Get the grid
var grid = arg.sender;
/] Set the selected row

grid.select(grid.table.find("tr[data-uid="" + view[i].uid + "'1"));

break;

return indexViewModel;

March 2014 41

www.msdnmagazine.com
www.bit.ly/1cdobhk
www.bit.ly/1cph5qc
www.bit.ly/1d2Bgfj

Figure 11 RequireJS Configuration Additions

paths: {
// Packages
'jquery': '/scripts/jquery-2.0.3.min",
"kendo': '/scripts/kendo/2013.3.1119/kendo.web.min",
"text': '/scripts/text',
'router': '/scripts/app/router',
/1 Models
'customerModel"': '/scripts/app/models/customerModel’,
// View models
‘customer-indexViewModel': '/scripts/app/viewmodels/customer/indexViewModel',
‘customer-editViewModel': '/scripts/app/viewmodels/customer/editViewModel",
// Data sources
'customerDatasource': '/scripts/app/datasources/customerDatasource’,
/1 Utils
'util': "/scripts/util’

and manipulate data sets through CRUD operations. Using ASPNET
Web APL its easy to create an OData endpoint. You can control which
OData operations are exposed. You can host multiple OData endpoints
alongside non-OData endpoints. You have full control over your data
model, back-end business logic and data layer. Figure 6 shows the
code for the Customer Web API OData controller.

The code in Figure 6 just creates an OData Web API controller
to expose Customer data from the Northwind database. Once this
is created, you can run the project, and with tools such as Fiddler
(a free Web debugger at fiddler2.com) or LINQPad, you can actually
query customer data.

Configuring and Exposing OData from the Customer Table for
the Grid (Northwind.Web/App_Start/WebApiConfig.cs) Figure
7 configures and exposes OData from the Customer table for the grid.

Querying OData Web API with LINQPad If you haven't used
LINQPad (lingpad.net) yet, please add this tool to your developer
toolkit; its a must-have and is available in a free version. Figure 8
shows LINQPad with a connection to the Web API OData
(localhost:2501/0data), displaying the results of the LINQ query,
“Customer.Take (100)”

Creating the (Observable) Customer Model (Northwind.Web/
Scripts/app/models/customerModel.js) Next is creating the
(Kendo UI Observable) Customer model. You can think of this
as a client-side Customer entity domain model. I created the
Customer model so it can easily be reused by both the Customer
grid view and the edit view. The code is shown in Figure 9.

ODatais a data-access protocol
for the Web that provides a
uniform way to query and
manipulate data sets through
CRUD operations.

Creating a DataSource for the Customers Grid (North-
wind.Web/Scripts/app/datasources/customersDatasource.js)
If you're familiar with data sources from ASPNET Web Forms,
the concept is the same here, where you create a data source for

the Customers grid (Northwind. Web/

Scripts/app/datasources/customers-

> O | [localhost25061/Home/Spa#/customer/index
dpps [l Gatsing Started

;(| Spa - My ASPNET Appbe: % |

[1] @ company (@ Contact @@ Tite @ Agdress @ City @ PostalCode @ Couniry
Adireds Sales
ALFHI i Maria Ancers _ Dbers Sy 5T Berin 12200 Germany
Ana Trujiio Avda. de la
ANATR Emparedades Ana Trujilo Ouner Constituckén ~ Méko D.F. 05021 Mesico
¥ helados nn
Antonio
ANTON Moreno dakiini Owmer Haacas, México D.F. 05023 Mexico
% Morens a2
Taqueria
| Asourd the Sales 120 Hanover
AROUT Hean Thomas Hardy 2 L. Lendon WA 10P UK
Berglunds Christina Crder Berguvsvagen
BERGS Lused 5058 22 Sweden
snabbkap Berghnd Administralor @
Blauer See Sales
M Fi 7
BLAUS Dellalossen AN Moos | Forslerst 57 Mannhein 68306 Germary
Blondesdasl Frédénque Marketing 24, place
BLONP Strasho 67000 F
pére el fils Cieau Manager Hagber § v iy
Mastin
BOLID Comidas : Cmer CfAraquil, 57 Madrid 28023 Spain
| preparadas "
| Laurente 12, rue des
| BOHAR Bon app' A Crmer ey Marssile 13008 France
Boftom-Dollar Elizabeth Accounting 23 Tsawassen
TTH T: T2F 84
| o Markets Lincoin Manager Bivd. TR 58 Gannd
o n FAE AR AR AE AR RE RE IS &
© 2013 - My ASPNET Application

Datasource.js). The Kendo UI Data-
Source (bit.ly/ 1d0¥cvd) component is an
abstraction for using local (arrays of

Figure 12 The Customer Grid View with MVVM Using the Index View Model

42 msdn magazine

JavaScript objects) or remote (XML,
Gl [T JSON or JSONP) data. It fully supports
@|Prore @lFm @ CRUD data operations and provides
E07iG) | Uenvatedss both local and server-side support
PRSI, I for sorting, paging, filtering, grouping
and aggregates.
(5585303 Creating the View Model for the
Customers Grid View Ifyou're familiar
{171) 555- {171) 555-) .
% 6750 with MVVM from Windows Presenta-
0921128485 0921-12.3467 tion Foundation (WPF) or Silverlight,
oezrosisn 052108004 this is the same exact concept, just on
the client side (found in this projectin
88.60.1531 88.60.15.32 . 3 .
Northwind. Web/Scripts/ViewModels/
(15552202 (91) 5559199 Customer/indexViewModel.cs). MVVM
is an architectural separation pattern
91244540 91244541 .)
used to separate the view and its data
(504) 555- (604) 555- K . X .)
) a7 and business logic. You'll see in a bit
- that all the data, business logic and so
on is in the view model and that the
view is purely HTML (presentation).
Figure 10 shows the code for the

Customer grid view.

ASPNET MVC 5

www.fiddler2.com
www.linqpad.net
www.bit.ly/1d0Ycvd

The fastest rendering data visualization components
for WPF and WinFormes...

. LightningChart

?

HEAVY-DUTY DATA VISUALIZATION TOOLS FOR SCIENCE, ENGINEERING AND TRADING

WPF charts performance comparison

Opening large dataset | LightningChart is up to 977,000 % faster
Real-time monitoring | LightningChart is up to 2,700,000 % faster|

* Entirely DirectX GPU accelerated
» Superior 2D and 3D rendering performance
e Optimized for real-time data monitoring

Winforms charts performance comparison » Touch-enabled operations
Opening large dataset | LightningChart is up to 37,000 % faster * SuPPorts glgantu‘: data sets
Real-time monitoring | LightningChart is up to 2,300,000 % faster * On-line and off-line maps
Results compared to average of other chart controls. See details at ¢ Great customer Support

www.LightningChart.com/benchmark. LightningChart results apply for Ultimate edition.

e Compatible with Visual Studio 2005...2013

\.

IE.-;!']E Download a free 30-day evaluation from

& www.LightningChart.com AICLIOI]

Pioneers of high-performance data visualization

http://www.LightningChart.com/benchmark
http://www.LightningChart.com

Figure 13 Edit View Markup with an MVVM Widget and Event Binding

<div class="demo-section">
<div class="k-block" style="padding: 20px">
<div class="k-block k-info-colored">
Note: Please fill out all of the fields in this form.
</div>
<div>
<d1>
<dt>
<label for="companyName">Company Name:</label>
</dt>
<dd>
<input id="companyName" type="text"
data-bind="value: Customer.CompanyName" class="k-textbox" />
</dd>
dt>
<label for="contactName">Contact:</label>
</dt>
<dd>
<input id="contactName" type="text"
data-bind="value: Customer.ContactName" class="k-textbox" />
</dd>
<dt>
{label for="title">Title:</Tabel>
</dt>
<dd>
{input id="title" type="text"
data-bind="value: Customer.ContactTitle" class="k-textbox" />
</dd>
dt>
<label for="address">Address:</Tlabel>
</dt>
<dd>
<input id="address" type="text"
data-bind="value: Customer.Address" class="k-textbox" />
</dd>
<dt>
<{label for="city">City:</label>
</dt>
<dd>
<input id="city" type="text"
data-bind="value: Customer.City" class="k-textbox" />
</dd>
<dt>
<label for="zip">Zip:</Tabel>
</dt>
<dd>
<input id="zip" type="text"
data-bind="value: Customer.PostalCode" class="k-textbox" />
</dd>
dt>
<{label for="country">Country:</Tabel>

I'll briefly describe various components of the code in Figure 10:

« onClick (helper): This method isa helper function, which
getsan instance of the Customer grid, the current selected
row and a JSON model of the representation of the
Customer for the selected row.

« save: This saves changes when doing an inline edit
of a Customer.

« cancel: This cancels out of inline edit mode.

« details: This navigates the SPA to the edit Customer view,
appending the Customer’s ID to the URL.

« edit: This activates inline editing for the current
selected Customer.

« destroy: This deletes the current selected Customer.

- onChange (event): This fires every time a Customer is
selected. You store the last selected Customer so you can
maintain state. After performing any updates or navigating
away from the Customer grid, when navigating back to the
grid you reselect the last selected Customer.

44 msdn magazine

</dt>
<dd>

<input id="country" type="text"

data-bind="value: Customer.Country" class="k-textbox" />
</dd>
<dt>

<label for="phone">Phone:</1abel>
</dt>
<dd>

<input id="phone" type="text"

data-bind="value: Customer.Phone" class="k-textbox" />

</dd>
<dt>

<label for="fax">Fax:</1abel>
</dt>
<dd>

<input id="fax" type="text"

data-bind="value: Customer.Fax" class="k-textbox" />
</dd>
</d1>

<button data-role="button"
data-bind="click: saveCustomer"
data-sprite-css-class="k-icon k-i-tick">Save</button>
<button data-role="button" data-bind="click: cancel">Cancel</button>

<style scoped>

dd

{
margin: Opx Opx 20px Opx;
width: 100%;

}

label

{

font-size: small;
font-weight: normal;
}

.k-textbox

{
width: 100%;
}

.k-info-colored
{
padding: 10px;
margin: 10px;

}
</style>
</div>
</div>
</divy

Now add customerModel, indexViewModel and customersData-
source modules to your RequireJS configuration (Northwind. Web/
Scripts/app/main.js). The code is shown in Figure 11.

Figure 14 The Utility Module

define([],
function () {

var util;
util = {

getld:
function ()
var array
var id = ar
return id;
}
I8

(
= window.location.href.split('/');
ray[array.length - 11;

return util;

1

ASPNET MVC 5

SNCache

100% .NET

In-Memory Distributed Cache

» Extremely fast & linearly scalable with 100% uptime
» Mirrored, Replicated, Partitioned, and Client Cache
» NHibernate & Entity Framework Level-2 Cache

ASP.NET Optimization in Web Farms

o ASP.NET Session State storage

° ASP.NET View State cache

o ASP.NET Output Cache provider
» ASP.NET JavaScript merge/minify

Runtime Data Sharing
» Powerful event notifications for pub/sub data sharing

www.alachisoft.com
sales@alachisoft.com

For .NET & Java Apps
(Windows Azure & Amazon AWS Supported)

Download a FREE trial!

Extreme Performance Linear Scalability

ﬁv Cache

100% Java

Remove data storage performance bottlenecks and scale your apps to extreme transaction processing (XTP).
Cache data in memory and reduce expensive database trips. NCache scales linearly by letting you add
inexpensive cache servers at runtime. JvCache is 100% native Java implementation of NCache.

US: +1 (925) 236 3830
UK: +44 (20) 7993 8327

www.alachisoft.com
mailto:sales@alachisoft.com

Figure 15 RequirelJS Configuration Additions
for the Customer Edit Modules

require.config({
paths: {
// Packages
"jquery': '/scripts/jquery-2.0.3.min",
"kendo': '/scripts/kendo/2013.3.1119/kendo.web.min",
"text': '/scripts/text',
"router': '/scripts/app/router’,
/] Models
"customerModel': '/scripts/app/models/customerModel’,
/1 View models
‘customer-indexViewModel': '/scripts/app/viewmodels/customer/indexViewModel",
'customer-editViewModel': '/scripts/app/viewmodels/customer/editViewModel",
// Data sources
'customerDatasource': '/scripts/app/datasources/customerDatasource’,
/1 Utils
'util's "/scripts/util’
B
shim : {
"kendo' : ['jquery'l]
P
priority: ['text', 'router', 'app'l],
Jquery: '2.0.3",
waitSeconds: 30
)8

require([

Yapp’
1, function (app) {
app.initialize();
)8

Add a Route for the New Customers Grid View Note that in
the loadView callback (in Northwind. Web/Scripts/app/router.js)
you'e binding the toolbar of the grid after it has been initialized
and MVVM binding has taken place. This is because the first time
you bind your grid, the toolbar hasnt initialized, because it exists in
the grid. When the grid is first initialized via MVVM, it will load
in the toolbar from the Kendo UI template. When its loaded into
the grid, you then bind only the toolbar to your view model so the
buttons in your toolbar are bound to the save and cancel methods
in your view model. Heres the relevant code to register the route
definition for the Customer edit view:

router.route("/customer/index", function () {
require(['customer-indexViewModel", 'text!/customer/index'],
function (viewModel, view) {

ToadView(viewModel, view, function () {
kendo.bind($("#grid").find(".k-grid-toolbar"), viewModel);
1)

1)
1)

You now have a fully functional Customers grid view. Load up
localhost:25061/Home/Spa#/customer/index (the port number will
likely vary on your machine) in a browser and you'll see Figure 12.

Wiring Up the Customers Edit View Here are the key steps to
add a Customer edit view to the SPA:

« Create a customer edit view bound to your Customer
model via MVVM

(Northwind.Web/Views/Customer/Edit.cshtml).

« Add an edit view model module for the Customer
edit view (Northwind.Web/Scripts/app/viewModels/
editViewModel.js).

« Add a utility helper module to get IDs from the URL
(Northwind.Web/Scripts/app/util js).

Because you're using the Kendo UI framework, go ahead and
style your edit view with Kendo Ul styles. You can learn more about

46 msdn magazine

that at bit.ly/1f3zWuC. Figure 13 shows the edit view markup with an
MVVM widget and event binding.

Create a Utility to Get the ID of the Customer from the URL
Because you're creating concise modules with clean boundaries
to create a nice separation of concerns, I'll demonstrate how to
create a Util module where all of your utility helpers will reside.
I'll start with a utility method that can retrieve the customer ID
in the URL for the Customer DataSource (Northwind.Web/
Scripts/app/datasources/customerDatasource.js), as shown
in Figure 14.

Add the Edit View Model and Util Modules to the RequireJS
Configuration (Northwind.Web/Scripts/app/main.js) The
code in Figure 15 shows Require]S configuration additions for
the Customer edit modules.

Add the Customer Edit View Model (Northwind.Web/Scripts/
app/viewModels/editViewModel.js) The code in Figure 16 shows
how to add a Customer edit view model.

I'll briefly describe various components of the code in Figure 16:

« saveCustomer: This method is responsible for saving any
changes on the Customer. It also resets the DataSources
filter so the grid will be hydrated with all Customers.

« cancel: This method will navigate the SPA back to the
Customer grid view. It also resets the DataSources filter
so that the grid will be hydrated with all Customers.

« filter: This invokes the DataSources filter method and
queries for a specific Customer by the ID that's in the URL.

Figure 16 Customer Edit View Model Module
for the Customer View

define(['customerDatasource', 'customerModel', 'util'l],
function (customerDatasource, customerModel, util) {

var editViewModel = new kendo.data.ObservableObject({

ToadData: function () {
var viewModel = new kendo.data.ObservableObject({
saveCustomer: function (s) {
customerDatasource.sync();

customerDatasource.filter({});
router.navigate('/customer/index');
1,
cancel: function (s) {
customerDatasource.filter({});
router.navigate('/customer/index");
}
15

customerDatasource.filter({
field: "CustomerID",
operator: "equals",
value: util.getId()

18

customerDatasource.fetch(function () {
console.log('editViewModel fetching');
if (customerDatasource.view().length > 0) {
viewModel.set("Customer", customerDatasource.at(0));
} else
viewModel.set("Customer", new customerModel());
18
return viewModel;
I8
18

return editViewModel;
1)g

ASPNET MVC 5

www.bit.ly/1f3zWuC

router.route("/customer/edit/:id",
require(['customer-editViewModel",
"text!/customer/edit'],
@save | | @Cancel function (viewModel, view) {
ToadView(viewModel.loadData(), view);
ID @ Company @ Contact @ Tile @ Address @ City @ PostalCode @ Country @ Phone ® Fax ® 1);
ml Alfreds Futter II MarlaAndeFII Sales Repret II Obaere Str. 5¢II Berlin II 12209 II Germany II 030-0074321 Il 030-0076545]f- }) H
Ava Tl Avia. dola Note that when the Customer edit view
Emparedados Ana Trujillo Qumer Constitucion México D.F 05021 Mexico (5)555-4729 () 555-3745 . . N
y helados 222 model is requested from Require]S, you'e
Ao e — able to retrieve the Customer by invoking
ANTON Moreno Wi Owner 2312 Meéxico D.F. 05023 Mexico (5) §55-3932 .
Tequeria the loadData method from the view model.
. — This way you're able to load the correct
Figure 17 The Customer Edit View Customer data based on the ID that’s in the
URL each and every time the Customer
edit view isloaded. A route doesn't have to
be justa hardcoded string. It can also con-
Rl | Goss || G R baie tain parameters, such as a back-end server
ID @ Company (@ Conlact @ Title @ Address @ City @ PostalCode @ Countty (@ Phone @ Fax @ router (Ruby on RallS, ASPNET MVC’
ALFKI Maria Anderss e Obere Str. 57 Berlin 12209 030-0074321 030-0076548 DJal'lgO and SO On)' TO dO thls’ you name
Futterkiste2 Representative .
a route segment with a colon before the
Ana Trujillo Avda. de la
e m = S mm Variable name you want.
y helados
wno s You can now load the Customer edit view
io i | _)
o Merano 2 WeimBE: | e L b in the browser (localhost:25061/Home/
Spa#/customer/edit/ ANATR) and see the

Figure 18 The Customer Grid View

« fetch: This invokes the DataSources fetch method after
setting up the filter. In the callback of the fetch, you set the
Customer property of your view model with the Customer
that was returned from your DataSource fetch, which will
be used to bind to your Customer edit view.

When RequireJS loads a module, code within the “define” method
body will only get invoked once—which is when Require]S loads
the module—so you expose a method (loadData) in your edit view
model so you have a mechanism to load data after the edit view
model module has already been loaded (see this in Northwind. Web/
Scripts/app/router.js).

Add a Route for the New Customer Edit View (Northwind.Web/
Scripts/app/router.js) Heres the relevant code to add the router:

screen depicted in Figure 17.

Note: Although the delete (destroy)
functionality on the Customer grid view has been wired up, when
clicking the “Delete” button in the toolbar (see Figure 18), you'll
see an exception, as shown in Figure 19.

This exception is by design, because most Customer IDs are
foreign keys in other tables, for example, Orders, Invoices and so
on. Youd have to wire up a cascading delete that would delete all
records from all tables where Customer ID is a foreign key.
Although you aren't able to delete anything, I still wanted to show
the steps and code for the delete functionality.

So there you have it. I've demonstrated how quick and easy it is
to convert an out-of-the-box ASPNET Web Application into an
SPA using Require]S and Kendo UL Then I showed how easy it is
to add CRUD-like functionality to the SPA.

You can see a live demo of the project at

View Detail

2 bit.ly/ 1bkMAIK and you can see the CodePlex

Exception snapshot:

4 System.Data.Entity. Dbl

[System.Data.Entit DI

b Data
b Entries

{System.Collections.ListDictionarylnternal}
{SystemLin

{"An error occurred while updating the entries. See the inner exception for details."}
{"An error occurred while updating the entries. See the inner exception for details."}

project site (and downloadable code) at easys-
pa.codeplex.com.
Happy coding! [

Data.Entity.Core.Objects.C

HelpLink null
HResult -2146233087
InnerException
[System.Data.Entity.Core.UpdateException]
b Data {System.Collections.ListDictionarylnternal}
HelpLink null
HResult -2146233087

Data.Entity.Core.M:

{*An error occurred while updating the entries. See the inner exception for details."}
{"An error occurred while updating the entries. See the inner exception for details."}

{"The DELETE statement conflicted with the REFERENCE constraint \"FK_Orders_Customers\".
Message An error occurred while updating the enties. See the inner exception for details.
Source EntityFramework
i ing.Update.Internal.

LonG LE is the principal NET app/dev architect at CBRE
Inc. and a Telerik/Kendo Ul MVP. He spends most of his
time developing frameworks and application blocks, pro-
viding guidance for best practices and patterns and stan-

StackTrace
b StateEntries
b TargetSite
Message
Source
StackTrace

b TargetSite

at Syste
Count= 1
{Int32 Update0}

EntityFramework

{Int32 SaveChanges}

An error occurred while updating the entries. See the inner exception for details.

at System.Data.Entity.Intemal.IntermalContext.SaveChanges() at System.Dat:

Update() at System|

dardizing the enterprise technology stack. He has been
working with Microsoft technologies for more than 10
years. In his spare time, he enjoys blogging (blog.longle.
net) and playing Call of Duty. You can reach and follow
him on Twitter at twitter.com/LeLong37.

Figure 19 Expected Exception When Deleting a Customer Due to CustomerID

Foreign Key Referential Integrity

msdnmagazine.com

THANKS to the following technical experts for
reviewing this article: Derick Bailey (Telerik) and
Mike Wasson (Microsoft)

March 2014 47

www.msdnmagazine.com
www.bit.ly/1bkMAlK
http://easyspa.codeplex.com
http://easyspa.codeplex.com
http://blog.longle.net
http://blog.longle.net
www.twitter.com/LeLong37

o

MiCI‘OSOft M Visual Studio de r! Visual Studio ,"‘_!“1105 MEDIAZ

magazine MAGAZINE

www.vslive.com/chicago

CHICAGO 2014

I¥EI n - May 5 - 8| Chicago Hilton

F/ISUEﬂ Studio

YOUR GUIDE TO THE .NET DEVELOPMENT

 ONIVERS:.

Clﬂca<1°

This May, developers, software architects,
engineers, and designers will blast off in the
windy city for four days of unbiased and
cutting-edge education on the Microsoft
Platform. Live long and code with .NET gurus,
launch ideas with industry experts and rub
elbows with Microsoft stars in pre-conference *
workshops, 60+ sessions and fun networking e
events — all designed to make you better at your
job. Plus, explore hot topics like Web API, X
jQuery, MongoDB, SQL Server Data Tools P |
and more!

Register by April 2
and Save $200!

Use promo code VSLMAR4

Tracks Include:

> Visual Studio/.NET Framework

> Windows Client

> JavaScript/HTML5 Client

> ASPNET

> Cloud Computing

> Windows Phone

> Cross-Platform Mobile Development
> SharePoint

> SQL Server

TURN THE PAGE FOR MORE EVENT DETAILS

vslive.com/chicago

www.vslive.com/chicago

V|Sual StUdIO@{‘ i

EXPERT SOLUTIONS FOR .NET DEVELOPERS

i " %

‘ it "

"SEUERAL OF THE
- PRESENTATIONS WERE

o e CUTTING EDGE — THEY
WOoulLD HAUE INSIDER
TIPS THAT YOU CAN'T
ERSILY SEARRCH FOR OR
wouLbdn't HNow TO
LOOH FOR.”

John Kilic
Web Application Developer
Grand Canyon University

AGENDA AT-A-GLANCE

Visual Studio /
.NET Framework

Windows Cloud
Client Computing

Cross-Platform
Mobile
Development

Windows
Phone

START TIME ‘ END TIME ‘ Visual Studio Live! Pre-Conference Workshops: Monday, May 5,

9:00 AM 6:00 PM

Pre-Conference Workshop Registrat

Dine-A-Round Dinner
START TIME ‘ END TIME ‘ Visual Studio Live! Day 1: Tuesday, May 6, 2014

8:00 AM Registration

Keynote: To Be Announced

TO1 - What's New in WinRT Development

Rockford Lhotka

TO5 - What's New for XAML Windows
Store Apps - Ben Dewey

Lunch - Visit Exhibitors

T09 - Interaction Design Principles and
Patterns - Billy Hollis

3 00 PM 4:15 PM T13 - Applying UX Design in XAML -
Billy Hollis

4:45 PM Networking Break - Visit Exhibitors

4:45 PM 6:00 PM T17 - What's New for HTML/WinJS
Windows Store Apps - Ben Dewey

MWO1 - Workshop: Modern UX Design - Billy Hollis

T02 - What's New in the Visual Studio
2013 IDE

T06 - ALM with Visual Studio 2013 and Team
Foundation Server 2013 - Brian Randell

T10 - What's New for Web Developers in
Visual Studio this Year? - Mads Kristensen

T14 - Why Browser Link Changes Things,
and How You Can Write Extensions? -
Mads Kristensen

T18 - Katana, OWIN, and Other Awesome
Codenames: What's coming? -
Howard Dierking

Exhibitor Welcome Reception

STARTTIME | ENDTIME | Visual Studio Live! Day 2: Wednesday, May 7, 2014

9:00 AM Keynote: To Be Announced

9:15 AM 10:30 AM | WO1 - Windows 8 HTML/JS Apps for the
ASP.NET Developer - Adam Tuliper

10:45 AM 12:00 PM | WOS5 - Developing Awesome 3D
Applications with Unity and
C#/JavaScript - Adam Tuliper

Birds-of-a-Feather Lunch & Exhibitor Raffle at 1:15pm MUST be present to win

W09 - What's New in WPF 4.5 -
Walt Ritscher

3 00 PM 4:15 PM W13 - Implementing M-V-VM
(Model-View-View Model) for WPF -
Philip Japikse

0 PM

5:45 PM W17 - Build Maintainable Windows Store
Apps with MVVM and Prism - Brian Noyes

Blues after Dark at Buddy Guy’s Legends

W02 - Creating Data-Driven Mobile Web
Apps with ASPNET MVC and jQuery Mobile
- Rachel Appel

W06 - Getting Started with Xamarin -
Walt Ritscher

W10 - Building Multi-Platform Mobile Apps
with Push Notifications - Nick Landry

W14 - Getting Started with Windows Phone
Development - Nick Landry

‘W18 - Build Your First Mobile App in 1 Hour
with Microsoft App Studio - Nick Landry

START TIME ‘ END TIME ‘ Visual Studio Live! Day 3: Thursday, May 8, 2014

12:15PM 1:30 PM

1:30 PM 2:45 PM
“ o

*Speakers and sessions subject to

Registration

THO1 - Leveraging Windows Azure Web
Sites (WAWS) - Rockford Lhotka

THOS5 - Zero to Connected with Windows
Azure Mobile Services - Brian Noyes

THO9 - Building Services with ASP.NET
MVC Web API Deep Dive - Marcel de Vries

TH13 - Beyond Hello World: A Practical
Introduction to Node.js on Windows
Azure Websites - Rick Garibay

TH17 - From the Internet of Things to
Intelligent Systems: A Developer's
Primer - Rick Garibay

THO2 - To Be Announced

THO6 - Essential C# 6.0 - Mark Michaelis

TH10 - Performance and Diagnostics Hub
in Visual Studio 2013 - Brian Peek

TH14 - Visual Studio 2013 Release Manager:
Reduce Your Cycle Time to Improve Your
Value Delivery - Marcel de Vries

TH18 - Create Automated Cross Browser
Testing of Your Web Applications with
Visual Studio CodedUl - Marcel de Vries

Co erence Wrap-Up Panel: Andrew Brust, Miguel Castro, Rockford Lhotka, Ted Newa

change

www.vslive.com/chicago

JavaScript / HTML5
ASP.NET Chent

SharePoint SQL Server

2014 (Separate entry fee required)

MWO02 - Workshop: Data-Centric Single Page MWO03 - Workshop: SQL Server for Developers -
Applications with Durandal, Knockout, Breeze, Andrew Brust & Leonard Lobel
and Web API - Brian Noyes

T03 - HTMLS for Better Web Sites - T04 - Introduction to Windows Azure - Vishwas Lele
Robert Boedigheimer

TO7 - Great User Experiences with CSS 3 - T08 - Windows Azure Cloud Services - Vishwas Lele
Robert Boedigheimer

T11 - Build Angular Applications Using TypeScipt - T12 - Windows Azure SQL Database — SQL Server in
Part 1 - Sergey Barskiy the Cloud - Leonard Lobel

T15 - Build Angular Applications Using TypeScipt - T16 - Solving Security and Compliance Challenges with
Part 2 - Sergey Barskiy Hybrid Clouds - Eric D. Boyd

T19 - Building Real Time Applications with ASP.NET T20 - Learning Entity Framework 6 - Leonard Lobel
SignalR - Rachel Appel

W03 - Leveraging Visual Studio Online - W04 - Programming the T-SQL Enhancements in
Brian Randell SQL Server 2012 - Leonard Lobel

W07 - JavaScript for the C# Developer - W08 - SQL Server 2014: Features Drill-down - Scott Klein
Philip Japikse

W11 - Build Data-Centric HTML5 Single Page W12 - SQL Server 2014 In-memory OLTP - Deep Dive -
Applications with Breeze - Brian Noyes Scott Klein

W15 - Knocking it Out of the Park, with Knockout. W16 - To Be Announced
JS - Miguel Castro

W19 - JavaScript: Turtles, All the Way Down -

W20 - Building Apps for SharePoint - Mark Michaelis
Ted Neward

THO3 - What's New in MVC 5 - Miguel Castro THO4 - Excel, Power Bl and You: An Analytics Superhub
- Andrew Brust

THO7 - What's New in Web API 2 - Miguel Castro THOS - Big Data 101 with HDInsight - Andrew Brust

TH11 - Upgrading Your Existing ASP.NET Apps - TH12 - NoSQL for the SQL Guy - Ted Neward
Pranav Rastogi

TH15 - Finding and Consuming Public Data APIs -

TH16 - Git for the Microsoft Developer - Eric D. Boyd
G. Andrew Duthie

TH19 - Provide Value to Customers and
Enhance Site Stickiness By Creating an API -
G. Andrew Duthie

& Brian Peek

TH20 - Writing Asynchronous Code Using .NET 4.5
and C# 5.0 - Brian Peek

CHICAGO 2014
May 5 - 8 | Chicago Hilton

Visual Studio Live! Chicago Blues After Dark
Reception at Buddy Guy's Legends

CONNECT WITH VISUAL STUDIO LIVE!
g twitter.com/vslive - @VSLive

. facebook.com - Search “VSLive”

linkedin.com - Join the
“Visual Studio Live” group!

REGISTER BY APRIL 2
AND SAVE $200!

Use Promo Code VSLMAR4

Scan the QR code to
register or for more
event details.

vslive.com/chicago

www.vslive.com/chicago
www.vslive.com/chicago
https://twitter.com/VSLive
https://www.facebook.com/VSLiveEvents
http://www.linkedin.com/groups?gid=1844781&trk=hb_side_g

WINDOWS 8.1

Ul
o

ding a

‘duino-Based HID

Sensor for WINnRT

Donn Morse

The Human Interface Device (HID) protocol was origi-
nally intended to simplify the use of devices such as mice, keyboards
and joysticks. However, because of its unique features—including
its self-descriptive nature—device manufacturers use the protocol
to support medical devices, health and fitness devices, and custom
sensors. If youre new to the HID API, refer to the USB HID
Information site (bit.ly/1mbtyTz) to find more information. Another
great resource is Jan Axelsons book, “USB Complete: The Devloper's
Guide, Fourth Edition” (Lakeview Research LLC, 2009).

Prior to Windows 8.1, if you were writing an application for a
HID device you wrote a native Win32 app. But if you were a Web
or a NET developer, the ramp was steep. To address this, Microsoft

This article discusses:

+ Building a temperature-sensor device
* The beta firmware for the Netduino

* The sensor firmware

» The HID protocol

» The HID temperature-sensor app
Technologies discussed:

Windows 8.1, HID WinRT API, Microsoft .NET Micro Framework,
C#, Netduino Board

Code download available at:

msdn.microsoft.com/magazine/msdnmag0314

52 msdn magazine

introduced the HID Windows Runtime (WinRT) API with
Windows 8.1 (bit.ly/1aot1by). This new API lets you write Windows
Store apps for your device using JavaScript, Visual Basic, C# or C++.

In addition, Microsoft recently added support for several new
transports, so you arent limited to a USB cable. Today, you can
create a HID device that transmits and receives packets over USB,
Bluetooth, Bluetooth LE, and I2C. (For more information, see “HID
Transports™ at bit.ly/ 1asvwgé.)

In thisarticle, I'll show how you can build a simple temperature
sensor thats compatible with the HID protocol. Then I'll describe
a sample Windows Store app that can display temperature data
from the device.

Constructing the Temperature Sensor
The sample device is based on the Netduino development board
(netduino.com). This open source board is used by hobbyists, academics
and industrial engineers to build working prototype devices. And,
because the Netduino is pin-compatible with the Arduino, you can
attach your Arduino shields to quickly add functionality. (A shield
is a board with specific functionality, such as wireless communi-
cation, motor control, Ethernet, R$232, LCD display and so on.)
My sample device uses an RS232 shield to download the firmware.
It uses the onboard USB connector to transmit and receive data.

The Netduino supports the NET Micro Framework and its firm-
ware is created with a free copy of Visual C# Express.

To obtain temperature data, the sample device uses the Texas
Instruments LM35 sensor. The sensor takes 5 volts of input from

http://msdn.microsoft.com/magazine/msdnmag0314
www.bit.ly/1mbtyTz
www.bit.ly/1aot1by
www.bit.ly/1asvwg6
www.netduino.com

Figure 1 The Complete HID Temperature Sensor Setup

the Netduino and converts it into an output voltage proportional
to the current Celsius temperature.
Here are the parts you need to build your own HID sensor:

« Netduino 1 or Netduino Plus 1 (Amazon, amzn.to/1dvTeLh): A
development board with programmable microcontroller
that supports the NET Micro Framework.

« RS232 shield (CuteDigi, bit.ly/1j7uaMR): The RS232 module
for downloading and debugging the firmware. (This shield
is required for the beta version of the firmware being used.)

« LM35 Sensor (DigiKey, bit.ly/KjbQkN): The temperature sen-
sor that converts input voltage to output voltage based on
the current temperature.

« RS232-to-USB converter cable (Parallax, bit.ly/1iVmP0Oa): The
cable for downloading the temperature-sensor firmware via
the RS232 shield. (Note that an FTDI chipset is required
for compatibility with the shield.)

+ 9V 650mA power supply (Amazon, amzn.to/1d6R8LH): The
power supply for the Netduino board.

+ USB to Micro-USB cable (Amazon, amzn.to/Kjc8li): The
cable for sending HID packets from the Netduino to your
Windows 8.1 tablet or laptop.

Figure 1 shows the complete HID temperature sensor setup.

The RS232 shield is attached to the top of the Netduino. The
breadboard contains the LM35 sensor, which is attached to 5V,
ground and Pin 0. (Pin 0 is one of six analog-to-digital [ADC] pins
on the board). So, let’s get started.

The firmware your Netduino 1 (or Netduino Plus 1) comes with
doesn't support the HID protocol. You'll need to configure your
development board by installing version 4.1.1 of

: g Y
~ . P9 ~a g e B .

Figure2 A;ctaching the RS232 Shield to the Netduino

After you've upgraded the firmware on your board, you're ready
to begin constructing the temperature-sensor circuit. The first step
requires you to attach the RS232 shield to your board. (As T already
mentioned, the Netduino is pin-compatible with the Arduino, so if
you've been working with the Arduino and have an RS232 shield
handy, you can use it.) Snap the RS232 shield onto the Netduino
as shown in Figure 2.

After you've attached the RS232 shield, the next step is to attach
the temperature sensor to the 5V power source, ground and pin
0 of the Netduino. Figure 3, from the TI datasheet for the sensor,
shows the pin-outs.

Installing the Sensor Firmware

There are two layers, or instances, of firmware on the Netduino.
The first is the manufacturer’s firmware, which includes the NET
Micro Framework; the second is your devices firmware. The man-
ufacturer’s firmware processes requests from the device firmware.
The manufacturer’s firmware is loaded once onto the development
board and executes each time you power up the device. In contrast,
you typically refresh your device firmware multiple times during
the development and prototyping process.

In order to install any device firmware, you first need to install
an instance of Visual C# Express 2010 on your development
machine. You'll find a link to the download at bit.ly/1eRBed1.

For most Netduino projects, you can download and debug your
firmware using the native USB connection. However, the beta ver-
sion of the manufacturer’s firmware requires an RS232 connection
(which is why the RS232 shield is required).

Once Visual C# Express is installed, attach the

the beta firmware, which includes support for
HID. You'll find a zip folder containing the beta
firmware at bit.ly/1a7f6MB. (You'll need to create an |

+5V

RS232-to-USB cable and open Windows Device
Manager to determine which COM port Windows
assigned to that cable.

account by registering with Secret Labs in order
to download the file.)
The download page on the Web site includes

LM35

When T attached the Parallax RS232-to-USB
converter to my development machine, Windows
mapped it to COM6, as Figure 4 shows.

— Pin 0

instructions for updating the firmware. However,
these instructions are fairly complex, particularly
if youre new to the Netduino. The video at bit.ly/
1d73P9x is a helpful, concise description of the

L

GND

Now that I know the COM port associated
with the converter, I can power up my Netduino
Plus 1, attach the RS232-to-USB cable, and start
an instance of Visual C# Express to complete

firmware upgrade process.

msdnmagazine.com

Figure 3 The Sensor Pin-Outs

the download.

March 2014 53

www.msdnmagazine.com
www.amzn.to/1dvTeLh
www.bit.ly/1j7uaMR
www.bit.ly/KjbQkN
www.bit.ly/1iVmP0a
www.amzn.to/1d6R8LH
www.amzn.to/Kjc8Ii
www.bit.ly/1a7f6MB
www.bit.ly/1d73P9x
www.bit.ly/1d73P9x
www.bit.ly/1eRBed1

File
e | @ Hml e

Action View Help

b %5 Imaging devices
p = Keyboards
b)3 Mice and other pointing devices
b !E'— Monitors
b & Network adapters
4[5 Other devices

s Unknown device
» BB Portable Devices
4 77 Ports (COM & LPT)
3" ECP Printer Port (LPT1)

RyACHvE tanagement Technology - SOL (COM3)

erial Port (COME)

& USBS
b = Printque
b @1 Printers
> [2} Processors

» B SD host adapters
b 2 Security devices
n R Conenre

Figure 4 The COM Port Assigned to the RS232-to-USB Cable

The first thing to do after starting Visual C# Express is to identify
the correct transport and COM port. You do this by right-clicking
on the project name in the Solution Explorer pane and choosing

the Properties menu.

When the Properties dialogappears, choose the NET Micro Frame-
work tab and make the necessary selections, as shown in Figure 5.
After specifying the Transport and Device, you can deploy

the firmware. Again, right-click the project name in the
Explorer pane and, this time, choose Deploy.

When the deployment completes, Visual C# Express will report

the success in the Output pane.

You'e now ready to attach your device toa Windows 8.1 tablet or
laptop and test it with the Custom Temperature Sensor sample app.
First, detach the RS232 cable, power down the Netduino,
restart it with the auxiliary power supply. Give the device several sec-
onds to power up and then attach the USB cable to the Netduino.

After doing this, you should see your device added to the

Solution

and then

Supporting the USB Transport As I noted earlier, Microsoft
supports HID devices running over USB, Bluetooth, Bluetooth LE
and I2C. However, the sample device described in this article uses
the USB transport. What this actually means is that USB drivers will
be moving packets in both directions: packets originating with the
device are passed up to the HID driver (which passes them on to
the API if there are interested apps); packets originating with the
HID driver are passed back down to the device.

Windows uses specific data issued by the device upon connec-
tion to identify which USB drivers it should load.

The first thing to do after
starting Visual C# Expressisto
identify the correct transport
and COM port.

Defining the Firmware Classes The firmware for the tempera-
ture-sensor device is built around two classes: Program and Sensor.
The Program class supports a single Main routine thats invoked
at startup. The Sensor class defines the USB and HID settings for
the temperature sensor. In addition, it supports the methods that
send input reports and read output reports.

The Sensor class contains all of the code required to configure
the USB transport. This includes the code that:

« Configures a read endpoint

« Configures a write endpoint

« Specifies the vendor ID (VID)

« Specifies the product ID (PID)

« Specifies friendly names (manufacturer name, product
name and so on)

« Specifies other required USB settings for a HID device

Most of the USB configuration code is found in the Configure-
HID method in the Sensors.cs module. This method, in turn, creates

collection of HID devices in Device Manager. (The VID
and PID in Figure 6 correspond to the VID and PID of
the sample device; these are the vendor and product IDs.)
Once the device is installed on your Windows 8.1
machine, you'll want to install and build the sample app.
When the app starts, you can select the sensor and begin
monitoring the ambient temperature in your office.

The Device Firmware

Now let’s take a detailed look at the device firmware
for the temperature sensor. At the outset, Id like to
thank the folks at Secret Labs (the manufacturers of
the Netduino) for the work they've done to support
HID over USB on the Netduino platform. The starting

point for this firmware was a sample on the forum, the

Application
Build

Build Events
Debug
Resources

Reference Paths

JMET Micro Framework

Configuration: | Active (Debug) v v

Platform: | Active (Any CPU)

Deployment
Transport:
| Seial

Device:

O

ative stubs for internal

Root name for native stub files:

NetduinoSensor

Create stub files in this directory:

4)

\Stubs\,

I CodeFlawh
odeFlowhF

UsbHidEchoNetduinoApp, available at bit.ly/ 1eUYxAM.

54 msdn magazine

Figure 5 Configuring the .NET Micro Framework Properties

Windows 8.1

www.bit.ly/1eUYxAM

Build A Mobhile Document Viewer with Annotations,
Touch Interfaces, Zooming, Pagination, and More

Download
- AFree
- 30 Day Trial

.NET Web Scanning & Imaging SDKs [=]; EI
ft 1.413.572.4443 & www.atalasoft.com =]

A Kofax Company

www.atalasoft.com

current report interval in millisec-
z z - =3) .
= Device Manager onds. (The sensor firmware issues
o :
;°$T"°“| 5*;"’1‘"9‘ T an input report at the frequency
i 4 5| 8| B RS . .
i specified by the report interval.)
4 = donnmBlue ~
5 4 AudisToutsandoupots The output report for the sample
> ?;’ o device is even simpler—it’s a single
(1] uetool . .
> {1 Computer byte that specifies the report interval.
‘i; g::;:‘;i . USB Input Device Properties (This is an integer value that repre-
b o DVD/CD-ROM drives [General | Diver | Detols | Everts | Power bk | sents the interval in milliseconds.)
a Q;;’, Human Interface Devices '"" o . N
85, Airplane Mode Switch 2 ... US8 lput D Creating the Report Descriptor
g;amrphne Mode Switch Collection As I mentioned earlier, one of the
% HID-compliant consumer control device . ..
5 HID-complisnt system controller e . . features of a HID device is its self-
U5, HID-compliant vendor-defined device reporting nature: Upon connecting
E‘-‘} HID-compliant vendor-defined device Value h h d) d
05 HID-compliant vendor-defined device [USBWID_ 16C08PID_00126REV_ 0100 to a host, the device provides a
gg S USBAVID_16C0PID_0012 description of its purpose, capabili-
~compliant vendor-denne: EVICE . . N
£ USB Input Device ties and packet format in whats called
% = :::: o a report descriptor. This descriptor
0% USB Input Device (Logitech Download Assist indicates where the device fits in the
-1 ing devi 3 e i
o Rkt HID universe (is it a mouse, a key-
Vi3 Wcoundotherpoiig bihees 3 board, a vendor-defined device?). The
v WG Manitors K .
descriptor also specifies the format of
=——— = the individual feature reports, input
ok || Cancal | reports and output reports.
The report descriptor for the

Figure 6 The Vendor and Product IDs of the Sample Device

and initializes a Configuration object (bitly/1i11cQ3) that contains the
devices USB settings (endpoints, VID, PID and so on).

The read endpoint allows the device to receive packets from the
API and the HID driver. The write endpoint allows the driver to
send packets up through the driver stack to the APL

Windows uses the vendor ID, product ID, and other USB
settings (which were specified in the ConfigureHID method) to
determine whether the device is a valid USB device and then to
load the appropriate drivers.

Opening the Device Connection The Sensor class includes
an Open method thats called from within the Main routine of
the Program class. As you can see in Figure 7, the Open method:

« Retrieves the available USB controllers

« Invokes the ConfigureHID method to establish the devices
USB and HID settings

« Invokes the Start method on the first available controller

« Creates a USB stream object with read and write endpoints

The Sensor class also includes a Close method, which is called
when the device is detached from the host laptop or tablet.

Supporting the HID Protocol
The HID protocol is based on reports: feature reports, input
reports and output reports. Feature reports can be sent by either
the host (that is, a connected laptop or tablet) or the device. Input
reports are sent by the device to the host. Output reports are sent
by the host to the device.

In the case of our sample temperature sensor, the input report is
a very simple two-byte packet. The first byte specifies the current
temperature in degrees Fahrenheit; the second byte indicates the

56 msdn magazine

temperature sensor is found in
Sensors.cs, as shown in Figure 8.
The first two lines of the descriptor inform the host that this
particular device is vendor-defined:

0x06,0x55,0xFF, //HID_USAGE_PAGE_VENDOR_DEFINED
0x09,0xA5, //HID_USAGE (vendor_defined)

Lines four through 15 indicate the format of the two-byte input
report. Lines four through nine describe the first byte of the input
report, which specifies the temperature reading:

0x09,0xA7, //HID_USAGE (vendor_defined)
0x15,0x00, //HID_LOGICAL_MIN_8(0), // Minimum temp is O degrees F
0x25,0x96, //HID_LOGICAL_MAX_8(150), // Max supported temp is
// 150 degrees F
0x75,0x08, //HID_REPORT_SIZE(8),
0x95,0x01, //HID_REPORT_COUNT(1),
0x81,0x02, //HID_INPUT(Data_Var_Abs),

The HID protocolis based on
reports: feature reports, input
reports and output reports.

The 10th through 15th lines describe the second byte of the
input report, which specifies the report interval (in milliseconds):

0x09,0xA8, //HID_USAGE (vendor_defined)

0x15,0x48, //HID_LOGICAL_MIN_8(75), // minimum 75 ms
0x25,0xFF, //HID_LOGICAL_MAX_8(255), // maximum 255 ms
0x75,0x08, //HID_REPORT_SIZE(8),

0x95,0x01, //HID_REPORT_COUNT(1),

0x81,0x02, //HID_INPUT(Data_Var_Abs),

The report descriptor for the sample device is included as part
of the UsbController.Configuration object (bit.ly/1cveg56) that's
created within the ConfigureHID method in Sensor.cs.

Windows 8.1

www.bit.ly/1i1IcQ3
www.bit.ly/1cvcq5G

Spreadsheets Made Easy

Silverlight ~ WPE.

,Fastest Calcula_

Evaluate complex Exce~)ASE
and business rules Wlth the f' test an

- most complete Excel~ ggle
~ calculation englne avalla" l¢

_, _xc'é-l;t:Ompatible-
,-.-iformattlng

Comprehenswe_Chartm_g .j__Sz,calable Reportmg

Enable users to visualize datawith =~~~ Easnly create rlchly formatted Excel
comprehensuve Excel-cornpatlble chartmg '_ -__' - reports \ without Excel from any
which makes creating, modifying, rendenng ASP.NET, Windows Forms \WPF or
-and interacting with complex charts easner -Sllverlrght apphcatlon

_than ever before. R e i

Download your free fully functlonal evaluatlon at Spreadsheelﬁear com

— spreadsheel

Vo TolI Free: USA {888)_??4-32?3 | Phone {9_13].390-4?_9? | sale_s@spreadsheetgear.com'

www.spreadsheetgear.com

Figure 7 The Open Method

public bool Open()
{
bool succeed = true;

started = false;
UsbController[] usbControllers = UsbController.GetControllers();

if (usbControllers.Length < 1)
{

succeed = false;
}

if (succeed)
{
usbController = usbControllers[0];

try
{

succeed = ConfigureHID();

if (succeed)
{

succeed = usbController.Start();
}

if (succeed)
{

stream = usbController.CreateUsbStream(WRITE_ENDPOINT, READ_ENDPOINT);
}

catch (Exception)
{
succeed = false;
}
}

started = true;

return succeed;
}

Figure 8 The Report Descriptor for the Temperature Sensor

hidGenericReportDescriptorPayload = new byte[]

{
0x06,0x55,0xFF, //HID_USAGE_PAGE_VENDOR_DEFINED
0x09,0xA5, //HID_USAGE (vendor_defined)
0xA1,0x01, //HID_COLLECTION(Application),

// Input report (device-transmits)

0x09,0xA7, //HID_USAGE (vendor_defined)

0x15,0x00, //HID_LOGICAL_MIN_8(0), // Minimum temp is 0 degrees F

0x25,0x96, //HID_LOGICAL_MAX_8(150), // Max supported temp is
/1 150 degrees F

0x75,0x08, //HID_REPORT_SIZE(8),

0x95,0x01, //HID_REPORT_COUNT(1),

0x81,0x02, //HID_INPUT(Data_Var_Abs),

0x09,0xA8, //HID_USAGE (vendor_defined)

0x15,0x48, //HID_LOGICAL_MIN_8(75), // minimum 75 ms

0x25,0xFF, //HID_LOGICAL_MAX_8(255), // maximum 255 ms

0x75,0x08, //HID_REPORT_SIZE(8),

0x95,0x01, //HID_REPORT_COUNT(1),

0x81,0x02, //HID_INPUT(Data_Var_Abs),

// Output report (device-receives)

0x09,0xA9, //HID_USAGE (vendor_defined)

0x15,0x48, //HID_LOGICAL_MIN_8(75), // minimum 75 ms
0x25, 0xFF, //HID_LOGICAL_MAX_8(255), // maximum 255 ms
0x75,0x08, //HID_REPORT_SIZE(8),

0x95,0x01, //HID_REPORT_COUNT(1),

0x91,0x02, //HID_OUTPUT(Data_Var_Abs),

0xC0 //HID_END_COLLECTION

I8

58 msdn magazine

Supporting the HID Input Report The input report is defined
as a structure in the Sensor.cs module:

struct InputReport
{

public byte Temperature; // Temperature in degrees Fahrenheit

public byte Interval; /1 Report interval (or frequency) in seconds
}

The firmware issues input reports using the UsbStream object
(bit.ly/1KEIUZ) it created in the Open method. These input reports
are issued from the SendInputReport method when the firmware
invokes the stream.Write method:

protected void SendInputReport(InputReport report)

{

byte[] inputReport = new byte[2];

inputReport[0] = (byte)report.Temperature;
inputReport[1] = (byte)report.Interval;

stream.Write(inputReport, 0, 2);
}

Issuing Temperature Data with Input Reports The Update method
in the Sensor class issues an input report to the connected host:

public int Update(int iTemperature, int ilnterval)
{
InputReport inputReport = new InputReport();
byte Interval = 0;

inputReport.Temperature = (byte)iTemperature;
inputReport.Interval = (byte)ilnterval;

SendInputReport(inputReport);

Interval = GetOutputReport();
return (int)Interval;
}

The Update method is invoked from within an infinite while
loop, shown in Figure 9, which executes in the firmwares Main
routine (found in Program.cs).

Thisnew API lets your app
retrieve data from HID devices,
and control them as well.

Supporting the HID Output Report The output report is
defined as a structure in the Sensor.cs module:

struct OutputReport
{
public byte Interval; // Report interval (or frequency) in seconds

The firmware receives output reports via the same UsbStream
object it created in the Open method. These output reports are
received within the GetOutputReport method:

protected byte GetOutputReport()
{
byte[] outputReport = new byte[1];
int bytesRead = 0;
if (stream.CanRead)
{
bytesRead = stream.Read(outputReport, 0, 1);
}
if (bytesRead > 0)
return outputReport[0];
else
return 0;

Windows 8.1

www.bit.ly/1kElfUZ

Figure 9 The While Loop That Invokes the Update Method

while (true)
{
/1 Retrieve the current temperature reading

// Read returns a value in the
// specified range

/1 Sensor returns 10mV per

// degree Centigrade

// Convert to degrees Fahrenheit

mi1liVolts = (double)voltsPin.Read();
tempC = milliVolts / 10.0;

tempF = 1.8 * tempC + 32;
simpleTemp = (int)tempF

// Because there are voltage fluctuations when the externa
/1 power supply is connected to the Netduino, use a running
// average to "smooth" the values

if (firstReading)
{
firstReading = false;
currentTemp = simpleTemp;
for (i =0; i < 12; i++)
tempArray[i] = simpleTemp;

}
else
{
tempArray = Shift(simpleTemp, tempArray); // Shift the array elements and
/] insert the new temp
// Compute a running average of

// the last 12 readings

currentTemp = Average(tempArray);

}
RequestedInterval = sensor.Update(currentTemp, CurrentInterval);

// Check for a possible new interval requested via an
// output report

if (RequestedInterval !=0)
{

CurrentInterval = RequestedInterval;
}

Ted.Write(true);
Thread.Sleep(CurrentInterval);
Ted.Write(false);
}

}

Adjusting the Report Interval with Output Reports The
tirmware supports a report interval specified in milliseconds.
The minimum supported interval is 75 ms; the maximum
interval is 255 ms. An app requests a new interval by sending an
output report to the device. The device, in turn, reports
the current interval in each input report that it sends to any

The sample is designed to work with an attached HID device that
detects temperatures from 0 to 150 degrees Fahrenheit. The app
monitors and then displays the temperature sensor’s current reading.

The app supports three “scenarios,” each of which maps to
specific features in the apps Ul. In addition, each scenario maps to
acorresponding XAML and C# source file. The following lists each
scenario, its corresponding modules and its function:

Device Connect (Scenariol_ConnectToSensor.xaml; Scenariol _
ConnectToSensor.xaml.cs)

« Supports connecting a HID device to a Windows 8.1 PC.

« Enumerates the connected temperature sensors so the
user can select one.

« Establishes a device watcher that monitors the status of
the device. (The device watcher fires an event when the
user disconnects or reconnects the selected HID device.)

Get Temperature Data (Scenario2_GetTemperatureData.xaml;
Scenario2_GetTemperatureData.xaml.cs)

« Monitors the selected temperature sensor.

« Depicts a temperature gauge and renders the current
reading using a slider control.

Set Report Interval (Scenario3_SetReportInterval.xaml;
Scenario3_SetReportInterval xaml.cs)

« Allows the user to control the frequency at which the tem-
perature sensor reports its status. (The default interval is 250
ms, but users can choose intervals from 75 ms to 250 ms.)

Supporting Device Connections

The device-connect scenario enables several aspects of connecting a
HID device to a Windows 8.1 PC: enumerating connected devices,
establishing a device watcher, handling device disconnection and
handling device reconnection.

Establishing a Device Connection The code that handles the
device connection is found in three modules: Scenariol_Connect-
ToSensorxaml.cs, EventHandlerForDevices.cs and DeviceList.cs.
(The first module contains the primary code for this scenario; the
other two contain supporting functionality.)

The first phase of the connection occurs before the Ul is visible. In
this phase, the app creates a DeviceWatcher object that notifies the
app when devices are added, removed or changed. The second phase

connected app.
The tirmware applies the current interval by
invoking the Thread.Sleep method (bitly/LaSWF) for the

number of seconds specified by the current interval: tnput
Select Scenario:
Ted.Write(true); e

Thread.Sleep(CurrentInterval); !
Ted.Write(false);

By pausing the while loop for this duration,
registered apps receive input reports at the
specified interval.

3) Set report interval

The HID Temperature-Sensor App

The sample app demonstrates how you can display
temperature data from an attached HID tempera-
ture sensor using the new HID WinRT API for
Windows 8.1. This new APl lets your app retrieve

Output

53 Windows SDK Samples
Custom Temperature Sensor

~ Description:

2) Get terperatune data

Currently connectad to: WRHIDSVID 16C0&PID_0012#68:5236084 80800004 1655021 6f-11cf-B8cb-001111000030)

This scenario locates the device and opens a handle,

Connect to device Disconnect from device

Select a Hid Device:

HIDAVID_16C0SPID. 0012y

LdE0E0000

data from HID devices, and control them as well.

msdnmagazine.com

Figure 10 The Windows 8.1 App Connected to a HID Device

March 2014 59

www.msdnmagazine.com
www.bit.ly/LaSYVF

Figure 11 The InitializeDeviceWatchers Method

private void InitializeDeviceWatchers()
{
// Custom sensor
var CustomSensorSelector =
HidDevice.GetDeviceSelector(CustomSensor.Device.UsagePage,
CustomSensor.Device.Usageld, CustomSensor.Device.Vid,
CustomSensor.Device.Pid);

// Create a device watcher to Took for instances of the custom sensor
var CustomSensorWatcher =
DeviceInformation.CreateWatcher(CustomSensorSelector);

// Allow EventHandlerForDevice to handle device watcher events that
// relate or affect the device (device removal, addition, app

// suspension/resume)

AddDeviceWatcher(CustomSensorWatcher, CustomSensorSelector);

occursafter the UTis displayed and the user isable to choose a specific
device from the connected HID devices. The app displays a Device-
Instanceld string for each connected device; the string includes the
VID and PID for the given device. In the case of the sample tempera-
ture sensor, the Devicelnstanceld string has the form:

HID\VID_16C0&PTD_0012\6852369848080000

Figure 10 shows the app as it appears after enumeration has
completed and the user has connected to the device.

The First Stage of Device Connection Here are the methods
called during the first stage of device connection (before the Ul is
displayed), along with tasks accomplished by each method:

DeviceConnect (Scenariol_DeviceConnect.xaml.cs) invokes
the CustomTemperatureSensor.InitializeComponent method,
which initializes the apps UI components such as the text blocks
and buttons.

InitializeDeviceWatchers (Scenariol_DeviceConnect.xaml.cs)
invokes the HidDevice.GetDeviceSelector method to retrieve a
device selector string. (The selector is required in order to create
a device watcher.) Once the selector is obtained, the app invokes
Devicelnformation.Cre-
ateWatcher to create the
DeviceWatcher object
e and then EventHandler-
' ForDevice.Current. Add-
DeviceWatcher. (This
N last method allows the
app to monitor changes
in device status.)

i AddDeviceWatcher
(EventHandlerForDe-
vices.cs) creates the event
handlers for three device
events: Enumeration
Completed, Device Add-
T edand Device Removed.

e SelectDeviceInList
(Scenariol_DeviceCon-
nect.xaml.cs) checks to
seeifthe user has selected
adeviceand, ifso, it saves
the index for that device.

£ Windows SDK Samples
Custom Temperature Sensor

1) Connect 1o sensor

3) Set report interval

Output

70 degrees Fahrenheit, 250 millisecond report-interval

Figure 12 Displaying the Current
Temperature

60 msdn magazine

In terms of the HID API, the primary code of interest is found
in the InitializeDeviceWatchers method, shown in Figure 11.
This code invokes the HidDevice.GetDeviceSelector method
(bitly/1eGQI1k) and passes the UsagePage, Usageld, VID and PID for
the temperature sensor.

The UsagePage and Usageld values are defined in the file constants.cs:

public class Device

{
public const UIntl6 Vid = 0x16C0;
public const UIntl6 Pid = 0x0012;
public const UIntl6 UsagePage = 0xFF55;
public const UIntl6 Usageld = 0xA5;

}

These class members correspond to values specified in the HID
report descriptor thats defined in the devices firmware:

hidGenericReportDescriptorPayload = new byte[]

{
0x06,0x55,0xFF, //HID_USAGE_PAGE_VENDOR_DEFINED
0x09,0xA5, //HID_USAGE (vendor_defined)

The GetDeviceSelector method returns an Advanced Query
Syntax (AQS) string in the CustomSensorSelector variable. The app
then uses this string when it creates a device watcher and when it
enumerates the DeviceInformation objects.

The Second Stage of Device Connection The second stage of
device connection allows the user to make a selection from the list
of connected devices. This stage establishes the currently selected
device. Here are the methods (all in EventHandlerForDevices.cs)
called and what each one does.

OpenDeviceAsync opens the connection to the device.

RegisterForAppEvents registers for app suspension and
resume events.

RegisterForDeviceAccessStatusChange listens for changes
in device-access permissions.

RegisterForDeviceWatcherEvents registers for the added
and removed events.

StartDeviceWatcher starts the device watcher.

SelectDeviceInList checks to see if the user has selected a
device and, if so, saves the index for that device. It also writes a
“Currently connected .. string to the output window if the con-
nection is successful.

Figure 13 Reading and Displaying Sensor Data

private async void OnInputReportEvent(HidDevice sender,
HidInputReportReceivedEventArgs eventArgs)

(
// Retrieve the sensor data
HidInputReport inputReport = eventArgs.Report;
IBuffer buffer = inputReport.Data;
DataReader dr = DataReader.FromBuffer(buffer);
byte[] bytes = new byte[inputReport.Data.Length];
dr.ReadBytes(bytes);

// Render the sensor data

await Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>

(
CurrentReadingText.TextAlignment = TextAlignment.Center;
CurrentReadingText.Text = bytes[1].ToString();
TemperatureSlider.Value = (int)bytes[1];

rootPage.NotifyUser(bytes[1].ToString() + " degrees Fahrenheit, " +
bytes[2].ToString() +
" millisecond report-interval™, NotifyType.StatusMessage);
1)

Windows 8.1

www.bit.ly/1eGQI1k

=1 Windows SDK Samples
Custom Temperature Sensor

Input

Select Scenario: Description:

I 1

| 1) Connect to sensor This scenario shows how to set the sensor's report interval using output reports.

MNumeric Values:
Update Report Interval Report Interval: lF3

|
| 2) Get temperature data

Quitput

Figure 14 Setting the Report Interval

In terms of the HID API, the primary code of interest is in the
OpenDeviceAsync method. This code invokes the HidDevice.From-
IdAsync method (bit.ly/ LhyhVpl), which returns a HidDevice object
(bit.ly/1dsD2rR) that the app uses to access the device, retrieve input
reports and send output reports:

public async Task<Boolean> OpenDeviceAsync(DeviceInformation deviceInfo,
String deviceSelector)
{
/] This sample uses FileAccessMode.ReadWrite to open the device
// because you don’t want other apps opening the device and
// changing the state of the device.
/1 FileAccessMode.Read can be used instead.
device = await HidDevice.FromIdAsync(devicelnfo.ld, FileAccessMode.ReadWrite);

Supporting the Device Watcher Device enumeration occurs
when the app is first started and begins even before the Ul is dis-
played. After enumeration completes, the app monitors device status.

Device status is reported by a DeviceWatcher object (bit.ly/1dBPMPd).
As the name implies, this object “watches” the connected devices—
if the user removes or connects his device, the watcher reports the
event to theapp. (These events are only reported after the enumer-
ation process is finished.)

Retrieving Input Reports

The temperature-retrieval scenario monitors the input reports
issued by the temperature-sensor and uses a slider control to
display the current temperature, as shown in Figure 12. (Note that
this control is limited to displaying temperature data. The proper-
ties IsDoubleTapEnabled, IsHoldingEnabled, IsRightTapEnabled
and IsTapEnabled have all been set to False.)

Figure 15 SetReportinterval Async

private async Task SetReportIntervalAsync(Byte valueToWrite)
{
var outputReport =
EventHandlerForDevice.Current.Device.CreateOutputReport();
var dataWriter = new DataWriter();

// First byte contains the report id
dataWriter.WriteByte((Byte)outputReport.Id);
dataWiriter.WriteByte((Byte)valueToWrite);
outputReport.Data = dataWriter.DetachBuffer();

uint bytesWritten =
await EventHandlerForDevice.Current.Device.
SendOutputReportAsync(outputReport);

rootPage.NotifyUser("Bytes written: " + bytesWritten.ToString() + ";
Value Written: " + valueToWrite.ToString(), NotifyType.StatusMessage);

msdnmagazine.com

The primary method supporting this scenario is the OnInput-
ReportEvent event handler, found in Scenario2_GetTemperature-
Data.xaml.cs. The app registers this event handler when the user
chooses the Get temperature data scenario and presses the Regis-
ter for Temperature Detection button. The app registers the event
handler within the RegisterForInputReportEvents method. In
addition to registering the handler, this method saves an event
token so it can unregister.

private void RegisterForInputReportEvents()
{

if (!isRegisteredForInputReportEvents)

{

inputReportEventHandler = new TypedEventHandler<HidDevice,
HidInputReportReceivedEventArgs>(this.OnInputReportEvent);

registeredDevice = EventHandlerForDevice.Current.Device;
registeredDevice.InputReportReceived += inputReportEventHandler;

isRegisteredForInputReportEvents = true;
}
}

Once the event handler is registered, it reads each input report
issued by the sensor and uses the new temperature value to update
the TemperatureSlider control. After it updates the control, this
method writes the current temperature and report interval values
to the Output section of the app, as shown in Figure 13.

Sending Output Reports

The report-interval scenario sends an output report to the tem-
perature sensor and writes the count of bytes as well as the value
written to the Output area of the apps window. The app sends
an output report after the user chooses the Set report interval
scenario, selects a value from the Value to Write dropdown, and
then presses the Send Output Report button.

Figure 14 shows the Set report interval scenario and the drop-
down thats populated with the report interval options. (These
values represent a report-interval in milliseconds; so, by selecting
100, the app will receive 10 readings every second.)

The primary method of the report-interval scenario is
SetReportInterval Async, found in the Scenario3_SetReport-
Interval.xaml.cs module (see Figure 15). This method invokes
the HidDevice.SendOutputReportAsync method (bit.ly/1ad6unK)
to send an output report to the device.

Wrapping Up
First I gave you a quick look at building a HID device that moni-
tors the voltage emitted by a simple sensor. For an example of how
you could monitor a sensor that toggles a digital I/O pin (rather
than emitting a range of voltages), see the motion-sensor sample
on MSDN at bit.ly/1gWO0IcC.

Then you took a quick look at writing a simple app that moni-
tors and controls a HID device. For more information about the
HID WinRT API, visit bit.ly/laotlby. [

Donn MorsE is a senior content developer at Microsoft. Reach him
at donnm@microsoft.com.

THANKS to the following technical expert for reviewing this article:
Arvind Aiyar (Microsoft)

March 2014 61

www.msdnmagazine.com
www.bit.ly/1hyhVpI
www.bit.ly/1dsD2rR
www.bit.ly/1dBPMPd
www.bit.ly/1ad6unK
www.bit.ly/1gWOlcC
mailto:donnm@microsoft.com

THE WORKING PROGRAMMER

TED NEWARD

Getting Started with Oak:
Data Validation and Wrapping Up

For three columns now, I've been exploring the “dynamic-y” object
approach that Oak brings to the Web application space, and it’s
been an interesting ride, complete with a few challenges to long-
held beliefs about how Web applications need to be built (or about
the platform on which they're built). But every ride has to come to
an end sometime, and its about time to wrap up my exploration of
Oak. I've got to figure out how to ensure data put into the system
by the user is actually good data, for starters.
But first ...

Commentary

If you go back and look at the system as I left off last time, trying
to add a comment yields another of those helpful errors, this time
informing you that “Blog.Controllers.Blog does not contain a defi-
nition for AddComment.” Contrary to what might happen in a
statically typed system—where the lack of this method would trip a
compilation error at the front of the compile/deploy/run cycle—in
a dynamic system, these errors won' be seen until they're actually
attempted. Some dynamic-language proponents claim this is part of
the charm of dynamic languages, and certainly not having to worry
about keeping everything consistent across the entire system can be
agreat boon when the mind is on fire with an idea and you just need
to get that idea out into the world. But most Ruby-on-Rails devel-
opers I know whove done a project larger than your typical Todo
listapplication will be the first to admit that in a dynamic-language
application, comprehensive tests are critical to keeping the project’s
quality high and the developer’s sanity strong. So testing has to be a
part of any serious effort with Oak.

Notice how the dynamic
nature of the system lets you be
extremely frugal in the code.

Unfortunately, as soon as I start talking about testing, I start
getting into several areas of discussion (unit tests, behavior tests,
integration tests, Test-Driven Development and so on) that could
easily consume another half-dozen magazine issues on their own,
and I don't want to crack that Pandoras box here. Whatever your
testing methodology or preference, suffice it to say that you must
have some kind of testing presence in an Oak application (or any

62 msdn magazine

application, but the need is much higher in any dynamically typed
environment), however you choose to test.
Meanwhile, the AddComment method is still missing.

Comment Away

In this particular case, when the user types a comment into the
view, it POSTs to the HomeController Comments method, which
looks like so:

[HttpPost]
public ActionResult Comments(dynamic @params)
{

dynamic blog = blogs.Single(@params.Blogld);

bTog.AddComment (@params);
return RedirectToAction("Index");

}

Asyou cansee, the controller is first obtaining the blog ID tucked
away in the Blogld parameter coming from the form, then using
it to find the corresponding blog entry via the Single method on
the DynamicRepository, then calling blog. AddComment to store
the comment. (Again, just to make the points, both “pro” and
“‘con”: This code has been in place since the second part of this
series, and I'm just now running into the fact that the AddComment
method hasn't existed until now.)

Defining this method is pretty straightforward; on the Blog class,
add this method:

void AddComment(dynamic comment)
{
// Ignore addition if the body is empty
if (string.IsNul10rEmpty(comment.Body)) return;

// Any dynamic property on this instance can be accessed
// through the "_" property
var commentToSave = _.NewComment(comment);

comments. Insert(commentToSave);

}

The only real question mark in this method is the use of the
underscore (_.NewComment(comment)), which is a placeholder
for the “this” reference. The underscore has full awareness of the
dynamic nature of this object, which the “this” reference wouldn't;
rather than having to worry about the differences, the underscore
lets you use everything “this” would, plus more.

Notice how the dynamic nature of the system lets you be
extremely frugal in the code. The form parameters are captured
in a named bundle in “@params” coming in to the controller, and
those are passed without unpacking any of them directly into Add-
Comment, which in turn passes them into NewComment, which

@

The essential set of WPF controls for all your line-of-business
solutions. Includes the industry-leading Xceed DataGrid for WPF.
A total of 85 tools!

uuuuuuuuuuuuuuuuuuuuuuu

www.xceed.com

constructs a dynamic object out of them, and the resulting object
just gets inserted into the comments DynamicRepository. Where
do the names of the objects properties come from? From the HTML
form that originated all of this.
Wacky, huh? Almost feels like you're being lazy or something.
Anyway, give it a run, and sure enough, now comments are

being added in.
Validate Me

As written, though, the system has a major flaw (well, according
to user requirements, anyway): Its perfectly permissible for two
blog entries to have the exact same title, and thats not OK. (Read-
ers might get confused as to which one to read, the one titled “LOL
Kittehs” or the other one titled “LOL Kittehs”) Thus, you need a
way of enforcing some kind of uniqueness on the code, so users
cantaccidentally put in duplicate-titled blog entries.

In a traditional Web framework, this would be a two-part job.
First, the model object (Blog) would have to define some kind of
“ask me if I'm valid” method, which I'll call IsValid for lack of any-
thing really original, and a definition of said validation within the
object, which T'll call Validates. And, as one might suspect from
the way the Associates method worked to help define the link
between Blog and Comment objects (meaning, its a predefined
name for which Oak knows to look), the Validates method works
in the same way—ifan object defines a Validates method, then Oak
will call the already-defined IsValid method on the object, which
in turn will look for a Validates method and ask it for all the con-
ditions that make this object valid.

In code, that looks like this:

IEnumerable<dynamic> Validates()

{
// And define the association
/] For other examples of validations, check out the Oak wiki
yield return new Uniqueness("Name", blogs);

}

Again, you see the use of a stream of objects that describe the val-
idation requirements, handed back as an IEnumerable<dynamic>
to the stream, generated through the use of the “yield return”
facility of C#. And, as with the Schema class from last time, the
way to extend this is to just tack on additional elements that are
“yield returned like so:

IEnumerable<dynamic> Validates()
{
// And define the association
/] For other examples of validations check out the Oak wiki
yield return new Uniqueness("Name", blogs);
yield return new Length("Name") { Minimum=10, Maximum=199 };
}

The Oak Wiki defines the full list and usage of validation objects,
but some of the notable ones are:

« Presence: A field is not optional and must be present on
the object.

« Acceptance: A field on the object must contain a par-
ticular value, such as a LegalDocument object contain-
ing a TypedOutAcceptance field in which the user typed
the string “T Accept” in order to indicate he accepted the
legal restrictions.

« Exclusion: A field can't include certain values.

« Inclusion: A field must be one of a set of certain values.

64 msdn magazine

« Format: The general-purpose regular-expression (using
the Microsoft .NET Framework Regex class) validation.

« Numericality: Pretty much everything to do with numeric
values, including marking a field as “integer-only; greater-
than and less-than restrictions, or simple even/odd tests.

« Conditional: The catch-all “escape hatch” for any
validation not covered elsewhere—a field must satisfy
a condition described using a lambda function.

The last one, Conditional, isnt actually a validation type in
and of itself, but a feature present on most (if not all) of the other
validation types, and therefore deserves a little more explanation.
Imagine an Order object, for orders in a traditional e-commerce
system. For said systems, a credit card number is only necessary
if the user wants to use a credit card for payment. Similarly, an
address to which to ship the product is only necessary if the user
purchased anything other than a digital download. These two con-
tingencies are neatly expressed using two conditional validations,
as shown in Figure 1.

While it's usually better to use
Oak asawhole, itdoes support
the idea of ripping out bits of it.

Each of the Conditional objects is making use of a property on the
Presence object—along with alambda that yields a true/false value—to
indicate whether the Presence validates successfully. In the first case,
Presence returns true (pass) if d. PaidWithCard, a local method that
returns true if the PaymentType field equals “Card; returns true.
In the second case, Presence returns true unless isDigitalPurchase
returns true, meaning that if its a digital item, no address is necessary.

Allof these are ready for use with any Oak DynamicModel-derived
object, and, as noted in the prior column (msdn.microsoft.com/magazine/
dn519929) and in the introduction of this one, the DynamicModel-
derived object needn't explicitly define the fields that these valida-
tions reference. Should these validations not be sufficient to the task,
by the way, these are all defined in the Validations.cs file inside the
Oak folder of the scaffolded project. Its pretty straightforward to
define a new one if desired: Just inherit from Oak.Validation and
define at minimum a Validate method that returns true/false. The
Exclusion validation, for example, is this:

public class Exclusion : Validation
{
public Exclusion(string property)
: base(property)

}
public dynamic[] In { get; set; }

public bool Validate(dynamic entity)
{
return !In.Contains(PropertyValueln(entity) as object);
}
}

The In property in this code is the field in which the excluded
values are stored; beyond that, this is pretty straightforward. If a
descriptive error message needs to be included, Validation provides

The Working Programmer

http://msdn.microsoft.com/magazine/dn519929
http://msdn.microsoft.com/magazine/dn519929

abase property, ErrorMessage, in which a descriptive message can
be stored for use if validation fails.

(For those who are curious about the “associations” from
the database discussions last time, these are defined in
Association.cs in the same folder, derive from Oak.Association,
and—as one might expect—are a little bit trickier to explain.
Fortunately, Oak has most of the traditional relational associations
already defined, so there shouldnt be much need to customize here.)

Pieces of Oak

Sometimes parts of a library seem really cool, but obstacles stand in
the way of adopting the whole thing, and you just wish you could
rip out a small part of it and keep going. While its usually better
to use Oak as a whole, it does support the idea of ripping out bits
of it (such as the dynamic database portions, or perhaps just the
dynamic object portions, called Gemini, which I covered in the
August 2013 issue, at msdn.microsoft.com/magazine/dn342877) and using
them standalone, without the rest of the system. The Oak GitHub
page on the subject (bit.ly/1cjGuou) has the NuGet packages for each
of the standalone Oak parts, reproduced here (as of this writing)
for your convenience:

« install-package oak: This is the full Oak suite, it includes
MVC model binders, schema generation, the Oak
DynamicModel and supporting classes, an altered
version of Massive (DynamicRepository), and the Oak
core dynamic construct Gemini.

« install-package oak-json: This is the part of Oak with
regard to JSON serialization (can be used in REST APIs).

« install-package cambium: This is the part of Oak that
excludes the MVC-specific components and excludes schema
generation. Cambium includes the Oak DynamicDDb,

Figure 1 Conditional Validation

public class Order :
{

public Order()

{

DynamicModel

}

public IEnumerable<dynamic> Validates()
{
yield return new Presence("CardNumber") {
If =d => d.PaidWithCard()
Ik

yield return new Presence("Address") {
Unless = d => d.IsDigitalPurchase()

IH

}

public bool PaidWithCard()

{
// Could use This().PaymentType instead
return _.PaymentType == "Card";

}
public bool IsDigitalPurchase()

{
/1 Could use This().ItemType instead
return _.ItemType == "Digital";

}
}

msdnmagazine.com

DynamicModel, an altered version of Massive (Dynamic-
Repository) and the Oak core dynamic construct Gemini.

- install-package seed: This is the schema generation of
Oak. This NuGet package also includes the altered version
of Massive (used to insert sample data). It doesn't contain
any of the MVC model binders, or the Oak DynamicModel
or supporting classes.

- install-package gemini: This will install just the core
dynamic construct upon which all the dynamic goodness
in Oak is built.

Thisis one of those
times when awhole lot of
interesting functionality and
ideas come out of a pretty small
(relatively speaking) package.

Before trying out any of them in pieces, Id suggest trying the
whole experience to get a feel for how each of them fit into the
larger picture.

Benefits, Cost and Pain
As might be inferred from these four columns, there are definite
benefits to being able to just “wing it” and work with a more dynam-
ically typed system. Without question, costs and pain will raise their
ugly heads in such a system (particularly for the unwary, and those
unused to writing tests), but even those who are the most diehard
statically typed bigots can learn some valuable ideas from a system
like Oak. More important, Oak can be a hugely valuable tool for
prototyping the early development of a system, when the object
model is still highly mutable and undefined. Best of all, thanks to
the underlying platform of Oak (that is, NET), it becomes quite
teasible to suggest buildingan MVCapp in Oak in the early stages,
then slowly flipping parts of it over to a more statically typed (and,
thus, compiler-checked and compiler-enforced) approach as the
details of the application get more tightly locked down.
Personally speaking, withouta doubt, Oak is a cool little project.
To my mind, this is one of those times when a whole lot of interesting
functionality and ideas come out of a pretty small (relatively speaking)
package. Oak definitely goes into my personal toolbox of tricks.
Happy coding!

Tep NEWARD is the principal of Neward & Associates LLC. He has written
more than 100 articles and authored and coauthored a dozen books, including
“Professional F# 2.0” (Wrox, 2010). Hes an F# MVP and speaks at confer-
ences around the world. He consults and mentors regularly—reach him at
ted@tedneward.com if you're interested in having him come work with your team,
or read his blog at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Amir Rajan (Oak project creator)

March 2014 65

mailto:ted@tedneward.com
www.msdnmagazine.com
http://msdn.microsoft.com/magazine/dn342877
www.bit.ly/1cjGuou
http://blogs.tedneward.com

MODERN APPS

RACHEL APPEL

A Look at the Hub Project and Control in
Windows Store Apps

When it comes to development on Windows with Visual Studio,
the built-in project templates are a good place to start. If youre new
to Windows Store (or any Microsoft stack) development, the tem-
plates can serve as alearning tool. In this article, I'll look at the Hub
control, but in context of the Hub project template. I'll examine all
the important things to know about the Hub project and control
for both HTML and XAML apps.

The Hub project in particular enables you to deliver a large
volume of content to the user while using a modern UX. This is
because you can break the apps content into parts called HubSections,
so the app doesn't overwhelm the user visually with large amounts
of data. While this is just my opinion, I find the Hub project to be
the most aesthetically interesting of all the Windows Store app
templates. The content layout is in distinct sections that are easy
to digest. You can parade a favorite piece of content in the front-
and-center “hero” section of the hub, while the remaining content
items are easily accessible in groups.

The Hub controlis what you
use to create a modern layout
that's more thanjust boring
groups of squares,

Of course, its not mandatory that you use the templates—you can
start fromablank project. However, for many developers, its far easier to
customize and expand upon the templates, as the code s set up for you.

The Hub Project Template

Visual Studio 2013 contains Hub project templates for both
HTML and XAML. Upon creating a new HTML project using the
template, you'll see some familiar project folders such as the css,
images and js folders. In addition to the customary folders are the
Hub-specific folders: pages\hub, pages\item and pages\section.
As you might expect, each of these folders contains files that
correspond to their purpose in the app. In the project root is the file
for the package manifest as well as default.html, the apps starting
point, which loads default.js and performs functions related to the
app and lifecycle management. Default.html contains references
to not just the \js\default.js file but also \js\data.js, which contains

66 msdn magazine

sample data, and \js\navigator.js, which performs navigation. Fora
refresher on navigation, see my August 2013 column, “Navigation
Essentials in Windows Store Apps, at msdn.microsoft.com/magazine/
dn342878. In short, the Hub project template, like other templates,
is a quick way to publish visually interesting modern apps.

s s the first hub section.

WinJSHub

WinJSHub

WinJSHub

Figure 1 The Hub Control at Run Time for Both HTML and
XAML Apps

http://msdn.microsoft.com/magazine/dn342878
http://msdn.microsoft.com/magazine/dn342878

YNV

RUMSEAT TLE

expertise worth sharing

Washington State Convention Center « April 1-3, 2014

Register now at alm-forum.com

keynote speakers

Scott Ambler
ALM Thought Leader and Co-creator of DAD Framework

Disciplined Agile Delivery: The Foundation for Scaling Agile

Ken Schwaber

Industry Legend and Co-Creator of Scrum

The State of Agile

plenary speakers
Mike Brittain

Director of Engineering, Etsy

=

{

Principles and Practices of Continuous
Deployment

SpONsors

‘w.Scrum
© Alliance’

diamond

B% Microsoft & Serumoorg

followuson f & in

Steve Denning
Award-winning Author

|

Transforming Management through Agile

Sam Guckenheimer
Product Owner, Microsoft Visual Studio

Transforming software development in a world of devices
and services

Dave West
Chief Product Officer, Tasktop

James Whittaker

Distinguished Technical Evangelist, Microsoft

Intent Commerce Lean ALM

SEADENCE

platinum

-_avanade”

Results Realized

http://www.alm-forum.com
https://www.facebook.com/ALMForum
https://twitter.com/almforum
http://www.linkedin.com/groups/ALM-Forum-5058388?home=&gid=5058388&trk=anet_ug_hm&goback=.gmp_5058388

Of course, the centerpiece of the Hub project is the Hub control.
While default.html s the project starting point in an app built with the
Windows Library for JavaScript (Win]S), onceit loads, it immediately
navigates to the hub.html file. Hub.html contains the Hub control
and lives in the \pages\hub directory. The Hub control is what you
use to create a modern layout that's more than just boring groups of
squares. Instead, the Hub control, coupled with asynchronous data
fetching, enables you to present large amounts of data—or data that
has distinct groups—in an organized yet fashionable manner.

The Hub template implements the hub, or hierarchical, naviga-
tional pattern. This means that from the starting point (that is, hub
page), the user can navigate to a page containing all the members
of a particular section, or the user can navigate to an individual
item from the hub page. The template also contains navigation
to an item page from a section page. While the template contains
navigation code only between section 3 and its groups and items
(see Figure 1), you can use the ListView or Repeater controls to
do the same type of navigation for other sections if it makes sense
for your app. Figure 1 illustrates what the default Hub app with
sample data looks like at run time.

With the reimagining of Windows came the notion of putting
content front and center, and, as you can see, this template does
just that.

The XAML Hub template project works the same conceptually
as does the HTML template, relying on the hub as the main entry
point, being navigable to sections and details. Of course, the
implementation is different, and you can see this by examining
the folder structure, which reveals the following directories:

Figure 2 The HTML that Creates the Hub Control

Assets, Common, DataModel and Strings. These folders contain what
you might expect: assets such as graphics, data in the DataModel
folder and localized strings in the Strings folder. In the root of the
project lies the following working files needed so the app can run:
« App.xaml/.cs: This is the XAML equivalent of
default.html. It has a tiny bit of code that assists in
navigation and general tasks.
- HubPage.xaml/.cs: This is the crowning jewel of the app,
containing the Hub control.
« ItemPage.xaml/.cs: This contains the individual items
you can navigate to from the hub or section pages.
« SectionPage.xaml/.cs: This shows all individual data
members that belong to a particular group.
« Package.appmanifest: This contains the app settings.

INn HTML apps, the Hub
control works just like any other
WinJS control.

The XAML Hub project templates HubPage xaml file reveals the
Hub control firmly seats itself in a Grid control that serves as the
root container for the page and Hub.

In the DataModel folder is a file named SampleData.json con-
taining sample data. Also in the folder is a SampleDataSource.cs file
that transforms the JSON data into usable classes for C# or Visual

<div class="hub" data-win-control="WinJS.UI.Hub">
<div class="hero" data-win-control="WinJS.UI.HubSection"></div>
<div class="sectionl" data-win-control="WinJS.UI.HubSection"
data-win-options="{ isHeaderStatic: true }"
data-win-res="{ winControl: {'header': 'Sectionl'} }">

<div class="subtext win-type-x-Tlarge" data-win-res="
{ textContent: 'SectionlSubtext' }"></div>
<div class="win-type-medium"
data-win-res="{ textContent: 'DescriptionText' }"></div>
<div class="win-type-small">

{span data-win-res="{ textContent: 'SectionlDescription' }">
<Jdiv>
</div>
<div class="section2" data-win-control="WinJS.UI.HubSection"
data-win-options="{ isHeaderStatic: true }"
data-win-res="{ winControl: {'header': 'Section2'} }">
<div class="item-title win-type-medium"
data-win-res="{ textContent: 'Section2ItemTitle' }"></div>
<div class="article-header win-type-x-large"
data-win-res="{ textContent: 'Section2Subtext' }"></div>
<div class="win-type-xx-small"
data-win-res="{ textContent: 'Section2ItemSubTitle' }"></div>
<div class="win-type-small">
<span data-win-res="{ textContent:
<span data-win-res="{ textContent:
<span data-win-res="{ textContent:
<span data-win-res="{ textContent:
<span data-win-res="{ textContent:
<span data-win-res="{ textContent:
</div>
</div>

'Section2Description' }">
'Section2Description' }">
'Section2Description' }">
'Section2Description’ }">
'Section2Description' }">
'Section2Description' }">

<div class="section3" data-win-control="WinJS.UI.HubSection"
data-win-res="{ winControl: {'header': 'Section3'} }

68 msdn magazine

"data-win-options="{ onheaderinvoked:
select('.pagecontrol').winControl.section3HeaderNavigate }">
<div class="itemTemplate" data-win-control="WinJS.Binding.Template">

<div class="win-type-medium" data-win-bind="textContent: title"></div>
<div class="win-type-small"
data-win-bind="textContent: description"></div>
</div>
<div class="itemslist win-selectionstylefilled" data-win-control=
"WindS.UI.ListView" data-win-options=
"{layout: {type: WindS.UI.GridLayout},
selectionMode: 'none’,
itemTemplate: select('.section3 .itemTemplate'), itemDataSource:
select('.pagecontrol’).winControl.section3DataSource, oniteminvoked:
select('.pagecontrol').winControl.section3ItemNavigate

<div class="section4" data-win-control="WinJS.UI.HubSection"
data-win-options="{ isHeaderStatic: true }"
data-win-res="{ winControl: {'header': 'Section4'} }">
<div class="top-image-row">

</div>
<div class="sub-image-row">

</div>
<div class="win-type-medium"
data-win-res="{ textContent:
<div class="win-type-small">

</div>
</div>
</div>

'DescriptionText' }"></div>

Modern Apps

Basic.NET consumption and XAML data binding. You can replace
this with your own data, much like the data.s file in Win]S apps.

The Common folder contains several files that perform a variety
of tasks such as navigation and other generally app-related tasks for
working with data in view models. In addition, the Common folder
contains the SuspensionManager.cs file, which performs process
lifecycle tasks. Finally, the Strings folder contains localized strings
for publishing in different locales.

Figure 3 The XAML for a Hub Control

The Hub Control
Both HTML and XAML project templates use the Hub control.
In HTML apps, the Hub control works just like any other WinJS
control. Use the data-win-control attribute of an HTML element,
usually a <div>, to define it as a Hub control, as this code shows:
<div class="hub" data-win-control="WinJS.UI.Hub"></div>
This means the WinJS.ULHub object is the brains behind the
Hub control. The Hub control acts as a container for the HubSection

<Hub SectionHeaderC1ick="Hub_SectionHeaderClick">
<Hub.Header>
<!-- Back button and page title -->
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="*"/>
</Grid.ColumnDefinitions>
<Button x:Name="backButton" Style=
"{StaticResource NavigationBackButtonNormalStyle}"
Margin="-1,-1,39,0"
VerticalAlignment="Top"
Command="{Binding NavigationHelper.GoBackCommand,
ElementName=pageRoot}"
AutomationProperties.Name="Back"
AutomationProperties.AutomationId="BackButton"
AutomationProperties.ItemType="Navigation Button"/>
<TextBlock x:Name="pageTitle" Text="{StaticResource AppName}"
Style="{StaticResource HeaderTextBlockStyle}" Grid.Column="1"
VerticalAlignment="Top" IsHitTestVisible="false"
TextWrapping="NoWrap" />
</Grid>
</Hub.Header>
<HubSection Width="780" Margin="0,0,80,0">
<HubSection.Background>
<ImageBrush ImageSource="Assets/MediumGray.png"
Stretch="UniformToFi11" />
</HubSection.Background>
</HubSection>
<HubSection Width="500" x:Uid="SectionlHeader" Header="Section 1">
<DataTemplate>
<Grid>
<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>
<Image Source="Assets/MediumGray.png" Stretch="Fill"
Width="420" Height="280"/>
<TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
Grid.Row="1" Margin="0,10,0,0" TextWrapping="Wrap"
x:Uid="SectionlSubtitle" Text="Lorem ipsum dolor sit nonumy
sed consectetuer ising elit, sed diam"/>
{TextBlock Style="{StaticResource TitleTextBlockStyle}"
Grid.Row="2" Margin="0,10,0,0" x:Uid="DescriptionHeader"
Text="Description text:"/>
{TextBlock Style="{StaticResource BodyTextBlockStyle}"

Grid.Row="3"
x:Uid="SectionlDescriptionText"
Text="Lorem ipsum dolor sit amet... "/>
</Grid>
{/DataTemplate>
</HubSection>
<HubSection Width="520" x:Uid="Section2Header" Header="Section 2">
<DataTemplate>
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>
{TextBlock Style="{StaticResource TitleTextBlockStyle}"
Margin="0,0,0,10" x:Uid="ItemTitle" Text="Item Title" />
{TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
Grid.Row="1" x:Uid="Section2UnderTitle" Text="Quisque in porta

msdnmagazine.com

Torem dolor amet sed consectetuer ising elit, sed diam non
my nibh uis mod wisi quip."/>
{TextBlock Style="{StaticResource SubtitleTextBlockStyle}"
Grid.Row="2" Margin="0,20,0,0" x:Uid="ItemSubTitle"
Text="Item Sub Title"/>
{TextBlock Style="{StaticResource BodyTextBlockStyle}" Grid.Row="3"
x:Uid="LongText" Text="Lorem ipsum dolor sit amet..."/>
</Grid>
{/DataTemplate>
</HubSection>
<HubSection IsHeaderInteractive="True"
DataContext="{Binding Section3Items}" d:DataContext="{Binding Groups[3],
Source={d:DesignData Source=/DataModel/SampleData.json,
Type=data:SampleDataSource}}" x:Uid="Section3Header" Header="Section 3"
Padding="40,40,40,32">
<DataTemplate>
<GridView
x:Name="itemGridView"
ItemsSource="{Binding Items}"
Margin="-9,-14,0,0"
AutomationProperties.AutomationId="ItemGridView"
AutomationProperties.Name="Items In Group"
ItemTemplate="{StaticResource Standard310x260ItemTemplate}"
SelectionMode="None"
IsSwipeEnabled="false"
IsItemClickEnabled="True"
ItemClick="ItemView_ItemClick">
</GridView>
{/DataTemplate>
</HubSection>
<HubSection x:Uid="Section4Header" Header="Section 4">
<DataTemplate>
<!-- width of 400 -->
{StackPanel Orientation="Vertical">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="130"/>
<ColumnDefinition Width="5"/>
<ColumnDefinition Width="130"/>
<ColumnDefinition Width="5"/>
<ColumnDefinition Width="130"/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="270"/>
<RowDefinition Height="95"/>
<RowDefinition Height="Auto" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>
<Image Source="Assets/MediumGray.png"
Grid.ColumnSpan="5" Margin="0,0,0,10" Stretch="Fill" />
<Image Source="Assets/MediumGray.png" Grid.Row="1" Stretch="Fi11"/>
<Image Source="Assets/MediumGray.png" Grid.Row="1"
Grid.Column="2" Stretch="Fil1"/>
<Image Source="Assets/MediumGray.png" Grid.Row="1"
Grid.Column="4" Stretch="Fil1"/>
{TextBlock Style="{StaticResource TitleTextBlockStyle}"
Grid.Row="2" Grid.ColumnSpan="5" Margin="0,15,0,0"
x:Uid="DescriptionHeader" Text="Description text:"/>
<TextBlock Style="{StaticResource BodyTextBlockStyle}"
Grid.Row="3" Grid.ColumnSpan="5" x:Uid="LongText"
Text="Lorem ipsum dolor sit amet...."/>
</Grid>
</StackPanel>
{/DataTemplate>
</HubSection>
</Hub>

March 2014 69

www.msdnmagazine.com

Figure 4 The CSS That Shapes and Styles the HTML Hub Control

.hubpage header[role=banner] {
position: relative;

z-index: 2;

}
.hubpage section[role=main] {

-ms-grid-row: 1;

-ms-grid-row-span: 2;

z-index: 1;

}
.hubpage .hub .win-hub-surface {

height: 100%;

}
.hubpage .hub .hero {

-ms-high-contrast-adjust: none;

background-image: url(/images/gray.png);

background-size: cover;

margin-left: -80px;

margin-right: 80px;

padding: 0;

width: 780px;

}

.hubpage .hub .hero:-ms-Tlang(
ar, dv, fa, he, ku-Arab, pa-Arab, prs, ps, sd-Arab,
syr, ug, ur, gps-plocm) {
margin-left: 80px;
margin-right: -80px;

}

.hubpage .hub .hero .win-hub-section-header {
display: none;

}

.hubpage .hub .sectionl {
width: 420px;

}

.hubpage .hub .sectionl
overflow-y: hidden;

}

.hubpage .hub .sectionl
margin-bottom: 7px;
margin-top: 9px;

}

.hubpage .hub .section2 {
width: 440px;
}

.hubpage .hub .section2
overflow-y: hidden;

}

.hubpage .hub .section2

margin-top: 4px;
margin-bottom: 10px;

.win-hub-section-content {

.subtext {

.win-hub-section-content {

.dtem-title {

controls, which define sections or groups of data. HubSections can
contain any valid HTML tags, such as <div> or , ora WinJ$S
control, such as the ListView control. By default, the hub.html files
Hub control encloses five sections, one named hero and four more
designated by their class attributes (such as sectionl, section2 and
soon). In the HubSections, the <div> and tags are the most
common child elements, but any valid HTML or Win]S controls
will work to display data in a different layout. Changing the layout
is a great way to personalize your app, but don' forget to adhere
to the Windows UX guidelines at bit.ly/1gBDHaW. Figure 2 shows a
complete sample of the necessary HTML (you'll see its CSS later)
to create a Hub control with five sections. Inspecting the code in
Figure 2 shows section 3 is the navigable section, while the rest
are not navigable.

In XAML, the Hub control uses a <Hub> element that contains
<Hub.Header>and <HubSection> elements. In turn, the child head-
ings and sections contain Grid and other XAML controls, such as the
StackPanel, as well as text blocks. Figure 3 shows the XAML required
to create the Hub control used in the Visual Studio templates.

70 msdn magazine

.hubpage .hub .section2 .article-header {
margin-bottom: 15px;
}
.hubpage .hub .section3 {
}
.hubpage .hub .section3 .itemslist {
height: 100%;
margin-Teft: -10px;
margin-right: -10px;
margin-top: -5px;
}
.hubpage .hub .section3 .win-container {
margin-bottom: 36px;
margin-Teft: 10px;
margin-right: 10px;
}
.hubpage .hub .section3 .win-item {
height: 229px;
width: 310px;

.hubpage .hub .section3 .win-item img {
height: 150px;
margin-bottom: 10px;
width: 310px;
}
.hubpage .hub .section4 {
width: 400px;
}
.hubpage .hub .section4 .win-hub-section-content {
overflow-y: hidden;
}
.hubpage .hub .section4 .top-image-row {
height: 260px;
margin-bottom: 10px;
width: 400px;
}
.hubpage .hub .section4 .top-image-row img {
height: 100%;
width: 100%;
}
.hubpage .hub .section4 .sub-image-row {
margin-bottom: 20px;
display: -ms-flexbox;
-ms-flex-flow: row nowrap;
-ms-flex-pack: justify;
}
.hubpage .hub .section4 .sub-image-row img {
height: 95px;
width: 130px;
}

Asyou can see, XAML syntax is a bit more verbose than HTML.
That's because you code layout and styles right in the XAML page
(though XAML styles can be placed in a resource dictionary), while
in HTML the layout and style rules are CSS (more on styling later).

Data Binding and the Hub Control
Arrays or JSON (which usually serializes to an array anyway) are
the customary ways to work with data in WinJS, as well as in many
other Web or client languages. This is no different with the Hub
project. You can replace the data in \js\data.js with custom data
broken into however many groups you plan to use. You'll find two
arrays as sample data in the data s file, one for grouping and one
for individual items that tie into a specific group. If you're familiar
with some of the other WinJS project templates, then you'll notice
this is the same sample data.

In the \pages\hub\hub.js file are the calls to the members of the
Data namespace that obtain group and item data:

var section3Group = Data.resolveGroupReference("groupd");
var section3Items = Data.getItemsFromGroup(section3Group);

Modern Apps

www.bit.ly/1gBDHaW

The section3Group and section3Items are global objects.
Figure 2 shows the data-binding syntax for the ListView control. In
hub.js, after the ready function, the code sets section3DataSource,
a property of the Hub control:

section3DataSource: section3Items.dataSource,

The Hub control uses the preceding code to data bind to the
ListView (Figure 2 shows the data-bound ListView code).

In Windows Store apps built with
JavaScript, you can style the Hub
control with CSS.

In XAML apps using C#, you have the same basic occurrences,
as code from the HubPage.xaml.cs file indicates the following
declaration for a view model of type ObservableDictionary, along
with its corresponding property declaration (this is where you can
return your own data):

private ObservableDictionary defaultViewModel = new ObservableDictionary();
public ObservableDictionary DefaultViewModel
{
get { return this.defaultViewModel; }
}

Later in the file, code sets a page-level view model by calling
GetGroupAsync, which, as its name implies, runs asynchronously:

var sampleDataGroup = await SampleDataSource.GetGroupAsync("Group-4");

Although the call obtains Group-4 data, you assign it to a view
model named Section3Items to assign it to those items. Consider
the hero section as Section 0, meaning the Section 3 items will align
with the Group-4 data:

this.DefaultViewModel["Section3Items"] = sampleDataGroup;

This is all you need in the codebehind. In XAML, notice the
DataContext attribute binds to Section3Items. The other attributes
arent necessary for data binding, but act as an aid for the design
tools in Visual Studio or Blend, as designated by the “d” namespace:

<HubSection IsHeaderInteractive="True" DataContext="{Binding Section3Items}"
d:DataContext="{Binding Groups[3], Source={d:DesignData
Source=/DataModel/SampleData.json, Type=data:SampleDataSource}}"
x:Uid="Section3Header" Header="Section 3" Padding="40,40,40,32">

While working with local sample data, you have many options
for data access, including File 10, SQLite, Web Storage, Indexed DB,
REST services and Windows Azure, to name a few. If you want to
review what data options are available, see my March 2013 arti-
cle, “Data Access and Storage Options in Windows Store Apps,
at msdn.microsoft.com/magazine/jj991982.

Styling the Hub Control

In Windows Store apps built with JavaScript, you can style the Hub
control with CSS. The \hub\hub.css file contains all the default
CSS related to the Hub control. Feel free to add your own styles to
change the size of the elements or their layout. Figure 4 shows the
complete CSS in hub.css. Notice theres a .hubpage class selector that
uses HTML5 semantic role attributes such as header[role=banner]
and section[role=main] to designate the general styles for the hub.
After that, the CSS in Figure 4 shows the “hubpage .hub .hero”
descendant selector, which creates the featured (hero) section

msdnmagazine.com

of the Hub control. The hero fills roughly half of the left side of
the viewable part of screen with a light gray background and, of
course, its a great way to put a special piece of content where no
user can miss it! You can fill it with lots of data, and graphic data or
multimedia works quite nicely to show off here.

As you can see, the CSS in Figure 4 shapes and styles the Hub
control, and most of it deals with the layout and sizing of the
HubSections. Elements and Win]JS controls inside the HubSections
apply the styles from ui-light.css or ui-dark.css, until you overwrite
them with your own styles.

HTML apps rely on CSS for styling. XAML apps rely on XAML
for styling. This means that XAML has several attributes you
apply to tags to enforce styling definitions called resources. For
example, the code that styles a TextBlock is the Style attribute and
it references a built-in (static resource dictionary) style named
SubheaderTextBlockStyle:

<TextBlock Style="{StaticResource SubheaderTextBlockStyle} />

The layout of a page is also XAML, as all the Hubs, Grids and other
elements contain inline coordinates for their on-screen position as
wellas size. You can see throughout Figure 3 there are margins, posi-
tioning, and row and column settings that position elements, all inline
in the XAML. HTML is originally a Web technology, and conserving
bandwidth by using CSS instead of HTML is a real benefit. Here in
the land of XAML, its all client-side, so UI caching isn't so much of
an issue and styles can go inline. A nice upside of XAML is that you
need to do very little to ensure a responsive design. Just be sure to set
two <RowDefinition> elements to a height of “Auto” and “*™:

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="*"/>

</Grid.RowDefinitions>

The rows will automatically respond to app view state changes,
making the layout fluid while saving extra code. Figure 3 shows a
few references to auto-height row definitions.

Samples Available
Once you've modified the Hub control, performed data retrieval
and binding, and set styles, youre good to go. Dontt forget to add
modern touches such as tiles, search and other Windows integra-
tion to your app. The Hub project template is an easy way to build
and publish apps quickly, whether in HTML or XAML. Using the
hub navigational pattern with the Hub control enables you to build
an effective and rich UX that adheres to modern UI principles.
You can download Hub control samples covering many aspects of
Windows app development at the following locations:

« HTML sample: bit.ly/ ImOsWTE

« XAML sample: bit.ly/1eGsVAH]

RacHeL APPEL is a consultant, author, mentor and former Microsoft employee with
more than 20 years of experience in the IT industry. She speaks at top industry
conferences such as Visual Studio Live!, DevConnections, MIX and more. Her
expertise lies within developing solutions that align business and technology
focusing on the Microsoft dev stack and open Web. For more about Appel, visit
her Web site at rachelappel.com.

THANKS to the following technical expert for reviewing this article:
Frank La Vigne (Microsoft)

March 2014 71

www.msdnmagazine.com
http://msdn.microsoft.com/magazine/jj991982
www.bit.ly/1m0sWTE
www.bit.ly/1eGsVAH
www.rachelappel.com

’ 1
@LI%EG m March 10 - 14, 2014 I Las Vegas, NV Planet Hollywood Resort & Casino

. PLANET HOLLYWOOD
RESORT AND CASINO

COMPREHENSIVE TRAINING FOR THE

DEVELOPER WORLD

LIVE! LIVE! ‘ LIVE! LIVE) -
Visual Studio - SQL.Sér_ver ‘.S-harePoin_t ~ WebDev. Modern Ap.ps. .

-

REHENSIVE TRAINING

The Developer World'-is.al_/vays chaﬁgiﬁg; new.technologies emérge,
current onres evolve and‘demands on your time grow. Live! 360 DEV
- offers comprehensive training through 5 co-located events on the
most relevant and leading edge technolégies in your world today.
You'll learn from pre-eminent experts in the industry, network with
like-minded peers, and return.home with the-knowledge and

solutions you need to tackle your I'oigges;t development challenges.

-
-

www.live360events.com/lasvegas

live360events.com/lasvegas

leel 360 DEV Explores

=> Visual Studlo Live! - May the Code be with you. The most trusted
source in the universe for :NET Training for 21 years and counting.

-9 Web Dev Live! - NEW EVENT! Web Dev Lival W|II dive deep to
explore all.that is HTML5, JavaScript and ASP.NET. ..

-> Modern Apps Live! - Launch your ‘mobile; cross-device & cloud development
training here. ' i ' :

" => SharePoint Live! — Set your course for colllabdration with these sessions
designed strictly for devs. :

=3 SQL Server Live! - Your Mission? Conquering coding against SQL Server.

THis means you have five events with over a hundred sessions to choose from -

‘mix and match sessipns to create your own, custom event line-up - it’s like no

FOR THE DEVELOPER WORLD

CONNECT WITH LIVE! 360

¥ twitter.com/live360events

Scan the QR code to
register or for more
event details.

% rfacebook.com/live360events é

in' Join the “Live! 360" Group

SESSIONS ARE FILLING UP QUICKLY

REGISTER TODAY!

Use prome code DEVMAR2

@esri MICI’OSOft M Visual Studio m§ﬂd!] Visual §F99I9 ,"I!‘I-”os MEDIAZ

www.live360events.com/lasvegas
www.live360events.com/lasvegas
www.live360events.com/lasvegas
https://twitter.com/Live360events
https://www.facebook.com/live360events
http://www.linkedin.com/groups?gid=4974888&trk=hb_side_g

.. DIRECTX FACTOR

CHARLES PETZOLD

Triangles and Tessellation

The triangle is the most basic two-dimensional figure. Its nothing
more than three points connected by three lines, and if you try to
make it any simpler, it collapses into a single dimension. On the
other hand, any other type of polygon can be decomposed into a
collection of triangles.

Even in three dimensions, a triangle is always flat. Indeed, one
way to define a plane in 3D space is with three non-collinear points,
and that’s a triangle. A square in 3D space isn't guaranteed to be
flat because the fourth point might not be in the same plane as
the other three. But that square can be divided into two triangles,
each of which is flat, although not necessarily on the same plane.

In Direct2D, tessellation is the
process of decomposing a two-
dimensional area into triangles.

In 3D graphics programming, triangles form the surfaces of solid
figures, starting with the simplest of all three-dimensional figures,
the triangular pyramid, or tetrahedron. Assembling a seemingly
solid figure from triangle “building blocks is the most fundamental
process in 3D computer graphics. Of course, the surfaces of
real-world objects are often curved, but if you make the triangles
small enough, they can approximate curved surfaces to a degree
sufficient to fool the human eye.

The illusion of curvature is enhanced by exploiting another
characteristic of triangles: If the three vertices of a triangle are
associated with three different values—for example, three different
colors or three different geometric vectors—these values can be
interpolated over the surface of the triangle and used to color that
surface. This is how triangles are shaded to mimic the reflection of
light seen in real-world objects.

Triangles in Direct2D

Triangles are ubiquitous in 3D computer graphics. Much of the
work performed by a modern graphics processing unit (GPU)
involves rendering triangles, so of course Direct3D programming
involves working with triangles to define solid figures.

Code download available at msdn.microsoft.com/magazine/msdnmag0314.

74 msdn magazine

In contrast, triangles arent found at all in most 2D graphics pro-
gramming interfaces, where the most common two-dimensional
primitives are lines, curves, rectangles and ellipses. So its somewhat
surprising to find triangles pop up in a rather obscure corner of
Direct2D. Or maybe its really not that surprising: Because Direct2D
is built on top of Direct3D, it seems reasonable for Direct2D to
take advantage of the triangle support in Direct3D and the GPU.

The triangle structure defined in Direct2D is simple:

struct D2D1_TRIANGLE

{
D2D1_POINT_2F pointl;
D2D1_POINT_2F point2;
D2D1_POINT_2F point3;

5

As faras I can determine, this structure is used in Direct2D only
in connection with a “mesh;” which isa collection of triangles stored
in an object of type ID2D1Mesh. The ID2D1RenderTarget (from
which ID2D1DeviceContext derives) supports a method named
CreateMesh that creates such an object:

ID2D1Mesh * mesh;
deviceContext->CreateMesh(&mesh);

(To keep things simple, I'm not showing the use of ComPtr or
checking HRESULT values in these brief code examples.) The
ID2D1Mesh interface defines a single method named Open. This
method returns an object of type ID2D1TessellationSink:

ID2D1TessellationSink * tessellationSink;
mesh->Open(&tessellationSink);

In general, “tessellation” refers to the process of covering a surface
with a mosaic pattern, but the term is used somewhat differently in

Figure1The Relevant Code of InterrogableTessellationSink

// 1D2D1TessellationSink methods
void InterrogableTessellationSink::AddTriangles(_In_ const D2D1_TRIANGLE *triangles,
UINT trianglesCount)

for (UINT i = 0; i < trianglesCount; i++)
{
m_triangles.push_back(triangles[i]);
}
}

HRESULT InterrogableTessellationSink::Close()

{
// Assume the class accessing the tessellation sink knows what it's doing
return S_0K;

}

// Method for this implementation
std::vector<D2D1_TRIANGLE> InterrogableTessellationSink::GetTriangles()
{
return m_triangles;
}

http://msdn.microsoft.com/magazine/msdnmag0314

[]
[]
o
[]
L]
[]
[]
[]
[]

Figure 2 A Rounded Rectangle Decomposed into Triangles

Direct2D and Direct3D programming. In Direct2D, tessellation is
the process of decomposing a two-dimensional area into triangles.

The ID2DITessellationSink interface has just two methods: Add-
Triangles (which addsa collection of D2D1_TRIANGLE objects to
the collection) and Close, which makes the mesh object immutable.

Although your program can call AddTriangles itself, often it will
pass the ID2D1TessellationSink object to the Tessellate method
defined by the ID2D1Geometry interface:

geometry->Tessellate(IdentityMatrix(), tessellationSink);
tessellationSink->Close();

The Tessellate method generates triangles that cover the areas
enclosed by the geometry. After you call the Close method, the sink
can be discarded and you'e left with an ID2DIMesh object. The
process of generating the contents of an ID2D1Mesh object using
an ID2D1TessellationSink is similar to defining an ID2D1Path-
Geometry using an ID2D1GeometrySink.

You can then render this ID2D1Mesh object using the FillMesh
method of ID2DIRenderTarget. A brush governs how the mesh
is colored:

deviceContext->FilTMesh(mesh, brush);

Keep in mind that these mesh triangles define an area and not
an outline of an area. There is no DrawMesh method.

FillMesh has a limitation: Anti-aliasing can't be enabled when
FillMesh is called. Precede FillMesh with a call to SetAntialiasMode:

deviceContext->SetAntialiasMode(D2D1_ANTIALIAS_MODE_ALIASED);

You might wonder: Whats the point? Why not just call
FillGeometry on the original geometry object? The visuals should
be the same (aside from the anti-aliasing). But theres actually a

[]
[]
[]
[]
L]
[]
[]
[]
o

Figure 3 Text Decomposed into Triangles

msdnmagazine.com

profound difference between ID2D1Geometry and ID2D1Mesh
objects that’s revealed by how you create these two objects.

Geometries are mostly just collections of coordinate points, so
geometries are device-independent objects. You can create various
types of geometries by calling methods defined by ID2D1Factory.

A mesh is a collection of triangles, which are just triplets of
coordinate points, so a mesh should be a device-independent
object as well. But you create an ID2D1Mesh object by calling a
method defined by ID2D1RenderTarget. This means the mesh is
adevice-dependent object, like a brush.

This tells you the triangles that comprise the mesh are stored
in a device-dependent manner, most likely in a form suitable for
processing by the GPU, or actually on the GPU. And this means
that FillMesh should execute much faster than FillGeometry for
the equivalent figure.

Shall we test that hypothesis?

Among the downloadable code for this article is a program
named MeshTest that creates a path geometry for a 201-point star,
and slowly rotates it while calculating and displaying the frame rate.
When the program is compiled in Debug mode for the x86 and
runs on my Surface Pro, I get a frame rate of less than 30 frames
per second (FPS) when rendering the path geometry (even if the
geometry is outlined to eliminate overlapping areas and flattened
to eliminate curves), but the frame rate leaps up to 60FPS when
rendering the mesh.

Geometries are mostly
just collections of coordinate
pOoINts, SO geometries are
device-independent objects.

Conclusion: For complex geometries, it makes sense to convert
them to meshes for rendering. If the need to disable anti-aliasing
to render this mesh is a deal-breaker, you might want to check out
ID2D1GeometryRealization, introduced in Windows 8.1. This
combines the performance of ID2D1Mesh but allows anti-aliasing.
Keep in mind meshes and geometry realizations must be recreated if
the display device is recreated, just as with other device-dependent
resources such as brushes.

Examining the Triangles

I was curious about the triangles generated by the tessellation
process. Could they actually be visualized? The ID2D1Mesh object
doesn' allow you to access the triangles that comprise the mesh,
but it’s possible to write your own class that implements the
ID2DI1TessellationSink interface, and pass an instance of that class
to the Tessellate method.

I called my ID2D1TessellationSink implementation Interrogable-
TessellationSink, and it turned out to be embarrassingly simple. It
contains a private data member for storing triangle objects:

std::vector<D2D1_TRIANGLE> m_triangles;

March 2014 75

www.msdnmagazine.com

Most of the code is dedicated to implementing the IUnknown
interface. Figure 1 shows the code required to implement the two
ID2DITessellationSink methods and obtain the resultant triangles.

I incorporated this class in a project named Tessellation-
Visualization. The program creates geometries of various sorts—
everything from a simple rectangle geometry to geometries
generated from text glyphs—and uses InterrogableTessellationSink
to obtain the collection of triangles created by the Tessellate method.
Each triangle is then converted into an ID2D1PathGeometry
object consisting of three straight lines. These path geometries are
then rendered using DrawGeometry.

Asyou might expect,an ID2D1RectangleGeometry is tessellated
into just two triangles, but the other geometries are more interesting.
Figure 2 shows the triangles that comprise an ID2DI1Rounded-
RectangleGeometry.

This isn't the way a human being would tessellate the rounded
rectangle. A human being would probably divide the rounded
rectangle into five rectangles and four quarter-circles, and tessel-
late each of those figures separately. In particular, a human would
slice the four quarter-circles into pie wedges.

In other words, a human being would define several more points
in the interior of the geometry to aid in the tessellation. But the
tessellation algorithm defined by the geometry object doesn't use
any points beyond those created by the flattening of the geometry.

Figure 3 shows two characters rendered with the Pescadero font
decomposed into triangles.

I'was also curious about the order in which these triangles were
generated, and by clicking the Gradient Fill option at the bottom
left of the window, you can find out. When this option is checked,
the program calls FillGeometry for each of the triangle geometries.
Assolid color brush is passed to FillGeometry but the color depends
on the triangles index in the collection.

What you'll find is that the FillGeometry option renders some-
thing akin to a top-down gradient brush, which means that triangles
are stored in the collection in a visual top-down order. It appears
the tessellation algorithm attempts to maximize the width of hor-
izontal scan lines in the triangles, which probably maximizes the
rendering performance.

Although I clearly recognize the wisdom of this approach, I must
confess I was a little disappointed. I was hoping that a widened
Bézier curve (for example) might be tessellated beginning at one
end of the line and continuing to the other, so the triangles could
be rendered with a gradient from one end to the other, which is
not a type of gradient commonly seen in a DirectX program! But
this was not to be.

Interestingly, I needed to turn oft anti-aliasing before the Fill-
Geometry calls in Tessellation Visualization or faint lines appeared
between the rendered triangles. These faint lines result from the
anti-aliasing algorithm, which involves partially transparent pixels
that dont become opaque when overlapped. This leads me to suspect
that using anti-aliasing with FillMesh isn't a hardware or software
limitation, but a restriction mandated to avoid visual anomalies.

Figure 4 Tessellation and Rendering Code in SparklingTextRenderer

void SparklingTextRenderer::Tessellate()
{

// Tessellate geometry into triangles
ComPtr<InterrogableTessellationSink> tessellationSink =

new InterrogableTessellationSink();
pathGeometry->Tessellate(IdentityMatrix(), tessellationSink.Get());
std::vector<D2D1_TRIANGLE> triangles = tessellationSink->GetTriangles();

if (m_useMeshesNotGeometries)
{
// Generate a separate mesh from each triangle
1D2D1DeviceContext* context = m_deviceResources->GetD2DDeviceContext();

for (D2D1_TRIANGLE triangle :

{
ComPtr<ID2DIMesh> triangleMesh;
context->CreateMesh(&triangleMesh);
ComPtr<ID2D1TessellationSink> sink;
triangleMesh->0pen(&sink);
sink->AddTriangles(&triangle, 1);
sink->Close();

triangles)

m_triangleMeshes.push_back(triangleMesh);
}
}
else
{
// Generate a path geometry from each triangle
for (D2D1_TRIANGLE triangle : triangles)
{
ComPtr<ID2D1PathGeometry> triangleGeometry;
d2dFactory->CreatePathGeometry(&triangleGeometry);
ComPtr<ID2D1GeometrySink> geometrySink;
triangleGeometry->0pen(&geometrySink);
geometrySink->BeginFigure(triangle.pointl, D2D1_FIGURE_BEGIN_FILLED);
geometrySink->AddLine(triangle.point2);
geometrySink->AddLine(triangle.point3);
geometrySink->EndFigure(D2D1_FIGURE_END_CLOSED);

76 msdn magazine

geometrySink->Close();

m_triangleGeometries.push_back(triangleGeometry);
}
}
}

void SparklingTextRenderer::Render()
(

Matrix3x2F centerMatrix = D2D1::Matrix3x2F::Translation(
(logicalSize.Width - (m_geometryBounds.right + m_geometryBounds.left)) / 2,
(TogicalSize.Height - (m_geometryBounds.bottom + m_geometryBounds.top)) / 2);

context->SetTransform(centerMatrix *
m_deviceResources->GetOrientationTransform2D());
context->SetAntialiasMode(D2D1_ANTIALIAS_MODE_ALIASED);

if (m_useMeshesNotGeometries)
(
for (ComPtr<ID2DIMesh>& triangleMesh : m_triangleMeshes)
{
float gray = (rand() % 1000) * 0.001f;
m_solidBrush->SetColor(ColorF(gray, gray, gray));
context->FillMesh(triangleMesh.Get(), m_solidBrush.Get());
}
}
else
(
for (ComPtr<ID2D1PathGeometry>& triangleGeometry : m_triangleGeometries)
{
float gray = (rand() % 1000) * 0.001f;
m_solidBrush->SetColor(ColorF(gray, gray, gray));
context->FillGeometry(triangleGeometry.Get(), m_solidBrush.Get());
}
}

DirectX Factor

o

YOUR ™
NET Resources

~msdn

Mmadazine

Visual Studio

MAGAZINE

Visual Studlo LIVE!

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ONLINE | NEWSLETTERS | PRINT | CONFERENCES

www.msdnmagazine.com
www.visualstudiomagazine.com
www.vslive.com

WUse a Mesh for each triangle instead of a PathGeometry

Figure 5 The SparklingText Display

Trianglesin 2D and 3D

After working just a little while with ID2DIMesh objects, I began
visualizing all two-dimensional areas as mosaics of triangles. This
mindset is normal when doing 3D programming, but I had never
extended such a triangle-centric vision to the 2D world.

The documentation of the Tessellate method indicates the gener-
ated triangles are “clockwise-wound, which means that the pointl,
point2 and point3 members of the D2D1_TRIANGLE structure are
ordered ina clockwise direction. This isn't very useful information
when using these triangles in 2D graphics programming, but it
becomes quite important in the 3D world, where the ordering of the
points in a triangle usually indicates the front or back of the figure.

Of course, I'm very interested in using these two-dimensional
tessellated triangles to break through the third dimension, where
triangles are most comfortably at home. But I don't want to be in
such a rush that I neglect to explore some interesting effects with
tessellated triangles in two dimensions.

Coloring Triangles Uniquely
For me, the biggest thrill in graphics programming is creating images
on the computer screen of a sort I've never seen before, and I don't
think I've ever seen text tessellated into triangles whose colors change
inarandom manner. This happens ina program I call SparklingText.
Keep in mind that both FillGeometry and FillMesh involve only
asingle brush, so if you need to render hundreds of triangles with
difterent colors, you'll need hundreds of FillGeometry or FillMesh
calls, each rendering a single triangle. Which is more efficient? A
FillGeometry call to render an ID2D1PathGeometry that consists

of three straight lines? Or a FillMesh call with an ID2DIMesh
containing a single triangle?

Tassumed that FillMesh would be more efticient than FillGeom-
etry only if the mesh contained multiple triangles, and it would be
slower for one triangle, so I originally wrote the program to gener-
ate path geometries from the tessellated triangles. Only later did I
add a CheckBox labeled “Use a Mesh for each triangle instead of a
PathGeometry” and incorporated that logic as well.

The strategy in the SparklingTextRenderer class of SparklingText
is to use the GetGlyphRunOutline method of ID2D1FontFace to
obtain a path geometry for the character outlines. The program
then calls the Tessellate method on this geometry with the Inter-
rogableGeometrySink to get a collection of D2D1_TRIANGLE
objects. These are then converted into path geometries or meshes
(depending on the CheckBox value) and stored in one of two vector
collections named m_triangleGeometries and m_triangleMeshes.

After working just a little while
with ID2D1IMesh objects, | began
visualizing all two-dimensional
areas as mosaics of triangles.

Figure 4 shows a pertinent chunk of the Tessellate method that
fills these collections, and the Render method that renders the
resultant triangles. As usual, HRESULT-checking has been removed
to simplify the code listings.

Based on the video frame rate (which the program displays), my
Surface Pro renders the meshes faster than the path geometries,
despite the fact that each mesh contains just a single triangle.

The animation of the colors is unnervingly reminiscent of a scin-
tillating migraine aura, so you might want to exercise some caution
when viewing it. Figure 5 shows a still image from the program,
which should be much safer.

Moving the Tessellated Triangles

The remaining two programs use a strategy similar to Sparkling-
Text to generate a collection of triangles to form glyph outlines,
but then move the little triangles around the screen.

Render using a single FillMesh call 36 FPS

Pl * 'g-zq-‘- . - =
E BT L omr e AT g
s F .z WMEET T, F s
) TTEATSE £ k=R
- %-& = ST o 2

58 FPS

Figure 6 A Still from the OutThereAndBackAgain Program

78 msdn magazine

Figure 7 The TextMorphing Display

DirectX Factor

For OutThereAndBackAgain, I envisioned text that would fly
apartinto its composite triangles, which would then come back to
form the text again. Figure 6 shows this process at 3 percent into
the flying-apart animation.

The CreateWindowSizeDependentResources method in the
OutThereAndBackAgainRenderer class assembles information
about each triangle in a structure I call TriangleInfo. This structure

Figure 8 Update and Render in TextMorphing

void TextMorphingRenderer::Update(DX::StepTimer const& timer)
{

// Calculate an interpolation factor

float t = (float)fmod(timer.GetTotalSeconds(), 10) / 10;

t = std::cos(t * 2 * 3.14159f); //'1to0to-1to0tol
t=(l-1t)/2; //0tolto0

// Two functions for interpolation
std::function<D2D1_POINT_2F(D2D1_POINT_2F, D2D1_POINT_2F, float)>
InterpolatePoint =
[1(D2D1_POINT_2F pt0, D2D1_POINT_2F ptl, float t)
{
return Point2F((1 - t) * pt0.x + t * ptl.x,
(1 -t)*pt0.y +t * ptl.y);
g

std::function<D2D1_TRIANGLE(D2D1_TRIANGLE, D2D1_TRIANGLE, float)>
InterpolateTriangle =
[InterpolatePoint](D2D1_TRIANGLE tri0, D2DI_TRIANGLE tril, float t)

D2D1_TRIANGLE triangle;
triangle.pointl = InterpolatePoint(tri0.pointl, tril.pointl, t);
triangle.point2 = InterpolatePoint(tri0.point2, tril.point2, t);
triangle.point3 = InterpolatePoint(tri0.point3, tril.point3, t);
return triangle;

I

// Interpolate the triangles
int count = m_triangleInfos.size();
std::vector<D2D1_TRIANGLE> triangles(count);

for (int index = 0; index < count; index++)
{
triangles.at(index) =
InterpolateTriangle(m_triangleInfos.at(index).triangle[0],
m_triangleInfos.at(index).triangle[1], t);
}

// Create a mesh with the interpolated triangles
m_deviceResources->GetD2DDeviceContext()->CreateMesh(&m_textMesh);
ComPtr<ID2D1TessellationSink> tessellationSink;
m_textMesh->0pen(&tessellationSink);
tessellationSink->AddTriangles(triangles.data(), triangles.size());
tessellationSink->Close();

}

// Renders a frame to the screen
void TextMorphingRenderer::Render()
{

if (m_textMesh != nullptr)
{
Matrix3x2F centerMatrix = D2D1::Matrix3x2F::Translation(
(logicalSize.Width - (m_geometryBounds.right + m_geometryBounds.left)) / 2,
(TogicalSize.Height - (m_geometryBounds.bottom + m_geometryBounds.top)) / 2);

context->SetTransform(centerMatrix *
m_deviceResources->GetOrientationTransform2D());

context->SetAntialiasMode(D2D1_ANTIALIAS_MODE_ALIASED);

context->Fil1Mesh(m_textMesh.Get(), m_blueBrush.Get());

msdnmagazine.com

contains a single-triangle ID2D1Mesh object, as well as informa-
tion necessary to take that triangle on a journey outward and back
again. This journey takes advantage of a feature of geometries you
can use independently of rendering. The ComputeLength method
in ID2D1Geometry returns the total length of a geometry, while
ComputePointAtLength returnsa point on the curve and a tangent
to the curve at any length. From that information you can derive
translate and rotate matrices.

Asyou can see in Figure 6, I used a gradient brush for the text
so that triangles of slightly different colors would cross paths
and intermingle a bit. Even though I'm using only one brush, the
desired effect requires the Render method to call SetTransform and
FillMesh for every single-triangle mesh. The gradient brush is applied
as if the mesh were in its original position prior to the transform.

I wondered if it would be efficient for the Update method to
transform all the individual triangles “manually” with calls to the
TransformPoint method of the Matrix3x2F class, and to consol-
idate these in a single ID2D1Mesh object, which would then be
rendered with a single FillMesh call. Tadded an option for that, and
sure enough, it was faster. I woudn't have imagined that creating
an ID2D1Mesh in each Update call would work well, but it does.
The visuals are slightly different, however: The gradient brush is
applied to the transformed triangles in the mesh, so theres no
intermingling of colors.

Text Morphing?

Suppose you tessellate the glyph outline geometries of two text
strings—for example, the words “DirectX” and “Factor” that make
up the name of this column—and pair up the triangles for inter-
polation. An animation could then be defined that transforms one
word into the other. Its not exactly a morphing effect, but I don't
know what else to call it.

Figure 7 shows the effect midway between the two words, and
with alittle imagination you can almost make out either “DirectX”
or “Factor” in the image.

Optimally, each pair of morphing triangles should be spatially
close, but minimizing the distances between all the pairs of trian-
gles is akin to the Traveling Salesman Problem. I took a relatively
simpler approach by sorting the two collections of triangles by
the X coordinates of the triangle center, and then separating the
collections into groups representing ranges of X coordinates, and
sorting those by the Y coordinates. Of course, the two triangle col-
lections are different sizes, so some triangles in the word “Factor”
correspond to two triangles in the word “DirectX”

Figure 8 shows the interpolation logic in Update and the
rendering logic in Render.

With that, I think I've satisfied my curiosity about 2D triangles
and I'm ready to give those triangles a third dimension. u

CHaRLEs PETZOLD is a longtime contributor to MSDN Magazine and the author
of “Programming Windows, 6th edition” (Microsoft Press, 2012), a book about
writing applications for Windows 8. His Web site is charlespetzold.com.

THANKS to the following Microsoft technical experts for reviewing this article:
Jim Galasyn and Mike Riches

March 2014 79

www.msdnmagazine.com
www.charlespetzold.com

DoN'T GET ME STARTED

DAVID S. PLATT

lllustration: Reprinted with permission of John Hart Studios Inc.

The Peasants Are Revolting!

I've always enjoyed the comic strip, “Wizard
of Id) which is set in medieval times. Its
creators died in 2008, but their descendants
have kept the strip current for today’s Inter-
net age (see bitly/1d7elVK). Peasants (known, of
course, as Idiots) rampage through the town
waving signs that read, “The king is a fink!”
Figure 1 shows the king’s response.

That same scenario is now exploding in the
field of enterprise software. Last December,
Avon (the makeup guys) pulled the plugona
new version of their order management soft-
ware based on SAP. The Wall Street Journal in
December reported the company’s sales force
of independent reps “found the new system
so burdensome and disruptive to their daily
routine that many left Avon”

A spokesman for SAP was later quoted
saying that Avons order management system
“is working as designed, despite any issues
with the implementation of this project”

Really? That means unless Avons goal was to reduce its workforce
through bad software instead of layoffs, the company implemented
aterrible design. And that weasel spokesman (but, like Mark Twain,
I repeat myself) should read my column about the word “issue”
(See msdn.microsoft.com/magazine/ff955613.)

As smoking in public was once common, it was once common
to force users to contort themselves into five-dimensional hyper-
pretzels to match their software—to become “computer literate,
in the term of that day. UX guru Alan Cooper wrote that a com-
puter literate user is one who “has been hurt so often that the scar
tissue is so thick that he no longer feels the pain” Users accepted
this as the price of getting their computing jobs done. That attitude
doesn't cut it anymore.

Success in consumer-sector software and hardware has been
driven by usability for seven years now; since the first Apple iPhone.
But its taken much longer for that requirement to cross over into
the enterprise sector. The whole bring-your-own-device move-
ment arose from early adopter iPhone and iPad users wanting
their enterprise software to work as easily as their consumer apps.
And now, like the Wizards newspaper pagemate Popeye the Sailor,
enterprise users have stood up and roared, “Thats all T can stands!
I can't stands no more!” (See bit.ly/1a7BiWZ.)

80 msdn magazine

Figure 1 Avon's management was slow
to recognize unrest in the ranks.

Youd think that enterprise developers by
now would've realized the importance of
usability, as they directly benefit from greater
user productivity, fewer catastrophic errors,
and lower training and support costs. But the
strongest bastions of bad usability are places
where users are locked in and can't choose.
Cormac Herley of Microsoft Research,
investigating the burden security policies
place on users, found them highest not where
data was most sensitive, but rather in captive
situations, especially governments and uni-
versities, where the enterprise didn't suffer
the market consequences of its bad usability
(see bit.ly/1eK6Dhu). Avon is the tipping point
where this phenomenon starts to change.

Whether youre dealing with the enter-
prise or consumer sector, UX design has
to happen before anything else can. To
meet today’s standard of care, you can't wait
until your program works and then throw it
over the fence for the decorators to pretty up. The decorators can
round off the corners of the File Open/Save dialog box and give it
nice color gradients. But the UX interaction designer determines
whether to make the user save documents manually (a la Word),
or implement automatic saving (a la OneNote). That choice very
much dictates the code to write. So UX design has to come first.
And with Avon, clearly, it didn't.

That needs to change. As Steve Rosenbush wrote in his CIO
Journal blog on wsj.com: “People who are accustomed to using
simple, well-designed applications in their personal lives have no
patience for disappointing technology at work” Amen.

And so, my friends, when you work on your enterprise apps,
you had better start paying attention to usability. Because the
enterprise-sector peasants are indeed revolting. And theres no
stopping them. If your boss won't let you put UX first, ask him how
he feels about wearing tar and feathers. =

Davip S. PLATT teaches programming NET at Harvard University Extension School
and at companies all over the world. Hes the author of 11 programming books, including
“Why Software Sucks™ (Addison-Wesley Professional, 2006) and “Introducing
Microsoft NET” (Microsoft Press, 2002). Microsoft named him a Software Legend
in 2002. He wonders whether he should tape down two of his daughters fingers so
she learns how to count in octal. You can contact him at rollthunder.com.

www.bit.ly/1d7eIYK
http://msdn.microsoft.com/magazine/ff955613
www.bit.ly/1a7BiWZ
www.bit.ly/1eK6Dhu
www.wsj.com
www.rollthunder.com

facebook

Linked in

.’ﬂ @ csbenrw

WORLD AS ° ssa o

SQLServer

A DATABASE

\ n‘lk‘ﬁ:ﬂk‘
ADO.NET = JDBC = ODBC * SQL SSIS = ODATA
MYSQL = EXCEL = POWEF

O Visial studic =’ Java ODBC & 5QLServer [MExcel & Bizfalk mysal [MOData

Work With Relational Data, Not Complex APIs or Services

Whether you are a developer using ADO.NET, JDBC, OData, or MySQL, or a systems integrator working
with SQL Server or Biztalk, or even an information worker familiar with ODBC or Excel — our products
give you bi-directional access to live data through easy-to-use technologies that you are already familiar
with. If you can connect to a database, then you will already know how to connect to Salesforce, SAP,
SharePoint, Dynamics CRM, Google Apps, QuickBooks, and much more!

Give RSSBus a try today and see what mean:

visit us online at www.rssbus.com to learn more or download a free trial.

fAIrssous

Copyright © 2013 RSSBus, Inc. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. INTEGRATION YOUR WAY

www.rssbus.com

INTRODUCING
THE LATEST E-BOOK IN THE

SYNCFUSION
SUCCINCTLY SERIES

Assembly
Language

Succinctly JEMKICLS

by Christopher Rose
by Peter Shaw WP!C

b}'.ﬁ'ud O'%y‘; ,
i3,

e, !

" b5
-g,,%‘}:(};) /fcyj

o

25 titles and growing | Ad-free | 100 pages PDF and Kindle formats

DOWNLOAD YOUR FREE COPY TODAY!

syncfusion.com/succinctlyseries

[K4
=az oyncfusion

www.syncfusion.com/succinctlyseries

& ASPOSE

Powerful File APIs that are easy and intuitive to use

Native APIs for
NET, Java, Android & Cloud

!

Aspose APIs help developers
with all file related tasks, from
conversions to reporting.

DOC, XLS, JPG, PNG, PDF
BMP, MSG, PPT, VSD, XPS
& many other formats.

US Sales: +1 888 277 6734 EU Sales: +44 141 416 1112 Al Sales: +61 2 8003 5926
sales@aspose.com sales.europe@aspose.com sales.asiapacific@aspose.com

&) www.aspose.com

mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com
http://www.aspose.com
http://www.aspose.com

WORKING WITH FILES?

VACON
A PRIN
VEGCRE,
VA COI
VAIIOL

100% Standalone - No Office Au-tma_ti

US Sales:
+1 888 277 6734 S SAVINGS
sales@aspose.com

European Sales: @ AS POSE Sl

+44 141 416 1112 ur File Format APIs &
sales.europe@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com

ASPOSE.TOTAL

Every Aspose component combined in

ONE powertul suitel

Powerful
File Format APIs

p Aspose.Words
DOC, DOCX, RTF, HTML, PDF,

XPS & other document formats.

» Aspose.Cells
XLS, XLSX, XLSM, XLTX, CSV,
SpreadsheetML & image formats.

p Aspose.BarCode

JPG, PNG, BMP, GIF, TIF, WMF,
ICON & other image formats.

p Aspose.Pdf
PDF, XML, XLS-FO, HTML, BMP,
JPG, PNG & other image formats.

Aspose.Total for .NET
Aspose.Total for Java

SG EML PST, EMLX &
other formats.

p» Aspose.Slides
PPT, PPTX, POT, POTX, XPS,
HTML, PNG, PDF & other formats.

» Aspose.Diagram

VSD, VSDX, VSS, VST, VSX &
other formats.

.and many athﬂrs!

Aspose.Total for Cloud
Aspose.Total for Android

Get your FREE evaluation copy at www.aspose.com

http://www.aspose.com
http://www.aspose.com

Aspose.Cells

Work with spreadsheets and data without depending on Microsoft Excel
« Solution for spreadsheet creation, manipulation and conversion.

- Import and export data.

ASPOSE.CELLSISA
PROGRAMMING API that allows
developers to create, manipulate
and convert Microsoft Excel
spreadsheet files from within their
own applications. Its powerful
features make it easy to convert
worksheets and charts to graphics
or save

reports to

PDF. ,

Reoe: A ﬂe.xrble API

Cells for simple

T ATl and complex

working BEGIEET HREE

with '
rogramming.

Microsoft b J

Excel

files. The

APl is a flexible tool for simple
tasks such as file conversion, as
well as complex tasks like building
models. Developers control page
layout, formatting, charts and
formulas. They can read and write
spreadsheet files and save out to a
wide variety of image and text file
formats.

Fast and reliable, Aspose.Cells saves
time and effort compared to using
Microsoft Office Automation.

G2 - S| =LINEST(E2:E12,42:D12, TRUE, TRUE)

| 4| A B c Lo | E T
1 Floor Space [x1) Dfﬁmi{:l} Entrances [x3) Age (x4) Assessed Value ()

2] 2w 2 2 20 142000
3 | 2333 2 2 12 144000 13..26801
a 2366 3 15 33 151000 0.996748
5| 2379 3 2 43 150000
6 | 2402 2 3 53 139000
7| 2425 4 2 23 165000

Aspose.Cells lets developers work with data sources, formatting, even formulas.
Common Uses Supported File Formats

« Building dynamic reports on
the fly.

« Creating Excel dashboards with
charts and pivot tables.

= Rendering and printing
spreadsheets and graphics with
high fidelity.

» Exporting data to, or importing
from, Excel spreadsheets.

» Generating, manipulating and
editing spreadsheets.

« Converting spreadsheets to
images or other file formats.

Key Features

« A complete spreadsheet
manipulation solution.

+ Flexible data visualization and

reporting.

Powerful formula engine.

« Complete formatting control.

XLS, XLSX, XLSM, XMPS5, XLTX,
XLTM, ODS, SpreadsheetML, tab
delim., CSV, TXT, PDF, HTML, and
many image formats including TIFF,
JPEG, PNG and GIF.

Format support varies across platforms.

Platforms

‘980

Pricing Info
Standard Enhanced i Standard Enhanced
Developer Small Business ~ $999 51498 Site Small Business $4995 $7490
Developer OEM $2997 $4494 Site OEM $13986 $20972

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

US: +1 888 277 6734
sales@aspose.com

EU: +44 141 416 1112
sales.europe@aspose.com

Cceania: +61 2 8003 5926
sales.asiapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Aspose.Cells for

.NET, Java, Cloud & Android

File Formats

XLS XLSX TXT PDF HTML CSV TIFF PNG JPG BMP
SpreadsheetML and many others.

Spreadsheet Manipulation

Aspose.Cells lets you create, import, and export spreadsheets
and also allows you to manipulate contents, cell formatting,
and file protection.

Creating Charts

Aspose.Cells comes with complete support for charting and
supports all standard chart types. Also, you can convert charts
to images.

Graphics Capabilities

Easily convert worksheets to images as well as adding images
to worksheets at runtime.

US Sales: +1 888 73
FAX: +1 866 810 9465
sales@aspose.com

EU Sales: +44 141 416 1117
sales.europe@aspose.com

No Office Automation

i.(' \ AS P OS E Aspose.Cells does not require Microsoft Office to
be installed on the machine in order to work.

Your File Format APIls

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
http://www.aspose.com

Aspose.Words

Program with word processing documents independently of Microsoft Word
« Solution for document creation, manipulation and conversion.

« Advanced mail merge functionality.

ADVANCED PROGRAN
ADVANCED PROGRAMMING _
API that lets developers perform a Column1 Column2 Column3 Column4
wide range of document processing ' ' o ' 2 "'2 ' o | & I-l4
tasks with their own applications. | _m" : | s _ s - | : _ :
AsposeWords makes it possible to Row 2 Cell 1 Cell 2 Cell 3
generate, modify, convert, render ' o= T

Row 3 Cell 1 Cell 2

and print documents without
Microsoft Office Automation.

It provides sophisticated and
flexible access to, and control over,

Aspose.Words has sophisticated controls for formatting and managing tables and other content.

Microsoft Common Uses Key Features
Word files. + Generating reports with + A complete Microsoft Word
- Generate, complex mail merging; mail document manipulation
el modify, convert, merging images. solution.
powerful render and print - Populating tables and » Extensive mail merge features.
ear : oCuiTants documents with data from a « Complete formatting control.
friendly : database. « High-fidelity conversion,
arid W{thGUt - Inserting formatted text, rendering and printing.
feature Microsoft Office paragraphs, tables and Supported File Formats
ion. images into Microsoft Word

rich. It Automation % Gcﬂm e DOC, DOCX, ODT, OOXML, XML,
saves) HTML, XHTML, MHTML, EPUE, PDF,

; + Adding barcodes to documents. ! t e
developers time and effort g XPS, RTF, and a number of image

- Inserting diagrams and

compared to using Microsoft Office formats, including TIFF, JPEG, PNG

Automation and makes gives them watermarks into Word and GIF.
powerful document management docu me‘nts.
tools. + Formatting date and numeric Format support varies across platforms.
Aspose.Words makes creating, s Platiorms
changing and converting DOC and @ g @ 0
other word processing file formats
fast and easy. ‘ @ g
Pricing Info
Standard Enhanced Standard Enhanced
Developer Small Business ~ $999 51498 Site Small Business $4995 $7490
Developer OEM $2997 $4494 Site OEM $13986 $20972

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

US: +1 888 277 6734
sales@aspose.com

EU: +44 141 416 1112
sales.europe@aspose.com

Oceania: +61 2 8003 5926
sales.asiapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Case Study: Aspose.Words for .NET

Lulu helps authors, publishers, businesses, and educators publish and
sell print on demand books and ebooks. Why do they use Aspose?

LULU IS A TECHNOLOGY
COMPANY THAT PROVIDES AN
OPEN PUBLISHING PLATFORM
where customers from all over the
world can create, publish and sell
print-on-demand books, ebooks,
photobooks and calendars.

The basic function of Lulu’s
publishing platform is to receive
manuscripts from
customers and send
them to printers

for printing. The

It took only 10

higher number of manuscripts,
some problems with the existing
platform became apparent.

« Itdid not scale,

« itdid not support the latest
Microsoft Word document
formats, and

« it was not robust.

Looking for a Solution

The company
decided to build a
new platform using

i components that
printers receive the Irngs Cpixes could support their
manuscripts in PDF 1o integrate continued growth.
format but that is not Aspose Words - i
always its original for .NET into the wo—
farreat R team tested Aspose.

new solution. Words for NET
Customers can submit alongside the existing
manuscripts in any Microsoft Automation
number of formats: _ system and other applications.
many use Microsoft Word. Lulu's Each solution had its strengths and
publishing platform converts

incoming manuscripts to PDFs that
can then be sent to the printer.

The conversion is automatic: the
document comes in, is converted
and goes off to print withouthuman
intervention or review.

Updating the Platform

Lulu has been running for several
years. The original conversion
platform depended on Microsoft
Automation for converting DOC
files to PDFs. As the business grew
and had to accommodate a much

Us: +1 888 277 6734
sales@aspose.com

weaknesses but in the end, Aspose.
Words for .NET won because

+ ittook only 10 lines of code
to integrate it into the new
platform,

« itis robust and scalable,

« it supports all the file formats
that Lulu needs, and

+ the licensing structure is
straight-forward and cheaper
over time than other solutions.

Outcome

The result was a product that can
take any Microsoft Word document
that a customer submits, regardless
of how the customer may have
embellish their manuscript, and
convert it to a PDF file that can be
printed anywhere.

This is an extract from a case study on
our website, For the full version, go to:
www.aspose.com/corporate/
customers/case-studies.aspx

Customers create manuscripts that can be printed by any printer.

EU: +44 141 416 1112
sales.europe@aspose.com

Oceania: +61 2 8003 5926
sales.asiapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

& GroupDocs"

work faster together..

POWERFUL
DOCUMENT MANAGEMENT

http://groupdocs.com
sales@groupdocs.com

'NET, JAVA, CLOUD APIS

HIERANIESSANIBIGIIGWIETARIS
FOR YOUR WEB AND |
MOBILE APPLICATIONS z’%

GroupDocs @
Viewer
True text, high-fidelity embedded

document viewer with support for over
50 file formats.

GroupDocs _‘/
Annotation =%

A powerful API that lets you annotate
Microsoft Office, PDF and other documents
within your own applications.

GroupDocs E|
Conversion >
Universal document converter with an

independent engine for fast conversion
between more than 50 file formats.

GroupDocs /
Signature QJ

Electronic signature capture API that gives
your apps legally binding e-signature
capabilities.

GroupDocs ~ -
As;embly EEB

Incorporates data entered by users in
online forms into PDF and Microsoft Office
documents using merge fields.

GroupDocs Ea
Comparison
A diff view API that allows end users to

quickly find differences between two
revisions of a document.

Sales: +1 (214) 329-9760

http://www.groupdocs.com
mailto:sales@groupdocs.com
http://www.groupdocs.com

& GroupDocs’

| ASPNET J JAVA J CLOUD AP |

Powerful Document Management Solutions for Your Web and Mobile Applications

GroupDaocs offers professional stand-alone NET & Java libraries along with cloud APls that allow end-users to view, annotate,
convert, e-sign, assemble and compare documents and images of more than 35 file formats within your own web and mobile

applications. Key benefits include:

» All GroupDocs APls are 100% independent, and don't require any 3rd party software installation,
* Being extremely lightweight, .MET & Java libraries can be integrated with just a single DLL
* Cloud APls are supported by SDKs to help developers on .NET, Java, JavaScript, PHP, Python and Ruby seamlessly integrate GroupDocs solutions

into any web or mobile apps.

+ Mo need for client-side installation. End-users can work with documents from any web-enabled device and modern web-browser.
+ All GroupDocs' products come with a 30-day fully-functional trial and free support during the integration period.

Stand-Alone .NET & Java Libraries Pricing

GroupDocs .MET & lava licenses are based on the number of developers and the number of locations where the components will be used:

Developer Small Business

License for one developer v
Licenses for up to 10 developers

Use derived work at one location v
Use derived work at up to 10 locations
Royalty free/deploy to unlimited locations
Discount applied to multiple purchases

Can be used to create unlimited applications
Updates and hotfixes for one year

Free technical support

Price $2.499

T

Cloud API Pricing

Developer DEM Site Small Business Site DEM

v
L L
L

v v

v L L

v v v

v L L

v v v

$7.497 $9,996 $29,988

GroupDocs’ cloud APls use a different licensing model. Instead of licenses, they are charged by use: the number of calls made to the APL To
find out more about our cloud API pricing, please visit our website: www.groupdocs.com

GroupDocs Viewer o

A powerful document viewer AP that allows you to display over 35 document
formats in your web or mobile application. The viewer can both rasterize
documents and convert them to SWGHHTMLHCSS, delivering true-text
high-fidelity rendering.

Supported file formats include: Microsoft Offica, Visio, Project and Outlook
documents, PDFs, AutoCAD, image files (TIFF, JPG, BMP, GIF, TIFF, etc) and more,

GroupDocs Annotation g

With support for over 35 file formats, this AP1 allows your app users to annotate
documents of all common business formats, including Microsoft Office and PDF.
And thanks to the advanced document management options, users can store,
share, print, download and export the annotated documents easily - all from
within your own application.

GroupDocs Conversion E},

GroupDocs Conversion API allows end users to convert back and forth between
over 25 document formats within your own application. It supports all Microsoft
Office document formats as well as PDF, HTML and common image file formats
(TIFF, IPEG, GIF, PG, BMP). Your users can convert documents one by one on the
fly, or add several documents at a time to a conversion queue.

GroupDocs Signature =

GroupDocs Signature APl is an easy way to give your apps legally binding
e-signature capabilities. Your users are then able to get documents signed
electronically using only a web-browser,

The AP gives developers access to sophisticated online signature faatures, from
e-signature capture control and different signing workflows, to reminder
management, contact management and signer roles.

GroupDocs Assembly Eh

GroupDocs Assembly automatically incorporates data submitted through online
forms into existing document ternplates in PDF or Microsoft Word formats. For
each completed form a new custom document is generated. The AP lets you
build document assembly solutions without getting into the details of working
with templates, flelds and merging data.

GroupDocs Comparison &)

A document comparison APl that allows users to quickly and easily find
differences between two revisions of a document right in your web or mobile app.
It merges two uploaded documents into a single one and displays it, highlighting
differances with the redline view approach -similar to the Microsoft Word change
tracking feature, but online. Works with Microsoft Word, Excel, and PowerPoint
documents, as well as Adobe Acrobat PDF files.

page 9

http://www.groupdocs.com

Adding File Conversion and Manipulation
to Business Systems

How often do people in your organization complain that they can’t get information in the file format
and layout they want? Converting documents from one format to another without losing layout and
formatting should be simple, but it can be frustrating for both users and developers.

EXTRACTING DATA FROM A Automation lets you use Microsoft ~ barcodes and OCR. The APIs are
DATABASE AND DELIVERING Office programs server-side. It is optimised for stability, speed and
ITTO THE SALESTEAM AS A not how the Office products were ease of use. Our APIs save users

REPORT, complete with chartsand ~ designed to be used. It can work weeks, sometimes months, of effort.

corporate branding, is fine. Until the
sales team says that they want it as

a Microsoft Excel file,
and could you add a

well but you might notice issues
with the stability, security and
speed of the system,
as well as cost.

Hashised: Aspose creates [ELT LY
Using information APls that work APl market has lots of
from online forms in . free and commercial
letters that can are IndEPEHdEnﬂy solutions, some
printed and posted of Microsoft very focused, some

is easy. But what if Office feature-rich. An API
you also want to add Automation. integrates with your

tracking barcodes and
archive a digital copy
as a PDF?

Ensuring that your business system
supports all the different Microsoft
Office file formats your users want
can be difficult. Sometimes the
native file format support of your
system lets you down. When that is
the case, use tools that extend that
capability. A good tool can save you
time and effort.

Document Conversion Options

Building your own solution: Time-
consuming and costly, this option
is only sensible if the solution you
develop is central to your business.

Using Microsoft Office
Automation: Microsoft Office

US: +1 888 277 6734
sales@aspose.com

code and gives you
access to a range of
new features.

Look to Aspose

Aspose are APl experts. We create
APls, components and extensions
that work independently of
Microsoft Automation to extend
a platform’s native file format
manipulation capabilities.

Aspose have developed APIs for
NET, Java, Cloud and Android that
lets developers convert, create and
manipulate Microsoft Office files -
Microsoft Word, Excel, PowerPoint,
Visio and Project - and other
popular business formats, from
PDFs and images to emails. We also
have APIs for working with images,

EU: +44 141 416 1112
sales.europe@aspose.com

Finding the Right Tool

To find the product that's right for
you, take a systematic approach:

List must-have and nice-to-

have features.

Research the market.

Ask for recommendations.

Select a few candidates .

Run trials.

Evaluate

« ease of use,
support and
documentation,
performance, and
current and future
needs.

Oceania: +61 2 8003 5926
sales.asiapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Aspose.BarCode

A complete toolkit for barcode generation and recognition
« Generate barcodes with customer defined size and color.

- Recognize a large number of barcode types from images.

ASPOSE.BARCODEIS A
ROBUST AND RELIABLE
BARCODE GENERATION

AND RECOGNITION API that
allows developers to add barcode
generation and recognition
functionality to their applications
quickly and easily.

Aspose.BarCode supports most
established barcode specifications.
It can export generated barcodes to
multiple image formats, including

BMP. GIF, JPED, PNG and TIFF.
Aspose.

BarCode

gives Robust and

you full reliable barcode
Skl generation and
over every i

aspect recognition.

of the

barcode

image, from background and
bar color, through image quality,
rotation angle, X-dimension,
captions, and resolution.

Aspose.BarCode can read and

Aspose.BarCode offers a large number of
symbologies and formatting options.

clean up difficult to read images to
improve recognition.

Common Uses

+ Generating and recognizing
barcode images.

« Printing barcode labels.

» Enhancing workflow by adding
barcode functionality.

+ Using recognition functions to
drive real-life work processes.

Key Features

- Barcode generation and
recognition.

» Comprehensive support for 1D
and 2D symbologies.

- Image processing for improved

EXIP and ICON.

Format support varies across platforms.

Supported Barcodes

Linear: EAN13, EANS, UPCA, UPCE,
Interleaved2of5, Standard2of5, MSl,
Codel1, Codabar, EAN14(SCC14),
55CC18, ITF14, Matrix 2 of 5, PZN,
Codel128, Code39 Extended,
Code39 Standard, OPC, Code93
Extended, Code93 Standard,

IATA 2 of 5, GS1Code128, ISBN,
ISMN, ISSN, ITF6, Pharmacode,
DatabarOmniDirectional, VIN,
DatabarTruncated, DatabarLimited,
DatabarExpanded, PatchCode,
Supplement 2D: PDF417,
MacroPDF417, DataMatrix, Aztec,
QR, Italian Post 25, Codel6K,
GS1DataMatrix Postal: Postnet,
Planet, USPS OneCode, Australia
Post, Deutsche Post Identcode,
AustralianPosteParcel, Deutsche
Post Leticode, RM45CC,
SingaporePost, SwissPostParcel

Platforms

recognize most commeon 1D and recognition.
2D barcodes from anyimageand at g\, rted File Formats @ g @ 0
any angle. Filters help developers o :ﬁ! g
JPG, TIFF, PNG, BMP, GIF, EMF, WMF, =2
Pricing Info
Standard Enhanced Standard Enhanced
Developer Small Business 5599 51098 Site Small Business $2995 $5490
Developer OEM $1797 $3294 Site OEM $8386 $15372

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

US: +1 888 277 6734
sales@aspose.com

EU: +44 141 416 1112
sales.europe@aspose.com

Oceania: +61 2 8003 5926
sales.asiapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

C\(i)\ Aspose for Cloud

The easiest API to
Create, Convert & Automate Documents in the cloud.

Aspose Words Aspose.Cells @
for Cloud for Cloud
Create and convert docs ~ Create spreadsheets
Manipulate text Convert spreadsheets
Render documents Manipulate cells and
Annotate formulas
Render spreadsheets
Aspose Slides Aspose.Pdf ‘@
for Cloud for Cloud =
CD nve rt Create presentations Create and convert PDFs
I:: nage shdﬁ Manipulate text, images
it text and images Add pages, split, encrypt
Cl'ea te Read and convert Mansgg m;ﬁps Y
Render
. Aspose.OCR Aspose.BarCode ‘3
Combine ok OF u
M O d | Fy Scan images Generate barcodes
Recognize characters Read barcodes
Read font information Set attributes
Read font style Multiple image formats
without installing anything!

Free Evaluation at www.aspose.com

» sales@aspose.com » sales.europe@aspose.com = sales.asiapacific@aspose.com
+1 888 277 6734 +44 141 416 1112 +61 2 8003 5926

& ASPOSE

Your File Format APls

http://www.aspose.com
http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Aspose.Email

Work with emails and calendars without Microsoft Outlook
« Complete email processing solution.

- Message file format support.

ASPOSE.EMAIL IS AN EMAIL
PROGRAMMING API that allows
developers to access and work
with PST, EML, MSG and MHT files.
It also offers an advanced API for
interacting with enterprise mail
systems like Exchange and Gmail.

Aspose.Email can work with HTML
and plain text emails, attachments
and embedded OLE objects. It
allows

f:ﬂ?fm Aspose.Email
against works with
Aol HTML and plain
ALEICEI text emails,
'E""::;:‘;Zf: attachments
servers. It and embedded
supports OINNele][TaEH
mail

merge

and iCalendar features, customized

=1 To | |iho@ebocom
Send Subject: | Monthly sales review meeting |
[Account = | | Location: | Meeting room C [=]
Start time: | Thu 03.0472014 [=] 1100 [=] [gy event
Endtime: | Thu 0304/2014 [=] 1200 [=]

1. Rewviaw: local sales

2. Review: global sales

3. Update: 3-month forecast
4, ADB

The agenda for the monthly review mesting is:

Aspose.Emall lets your applications work with emalls, attachments, notes and calendars .

Common Uses

- Sending email with HTML
formatting and attachments.

« Mail merging and sending mass
mail.

» Connecting to POP3 and
IMAP mail servers to list and
download messages.

« Connecting to Microsoft
Exchange Servers to list,
download and send messages.

« Create and update tasks using

Key Features

+ A complete email processing

solution.

Support for MSG and PST

formats.

« Microsoft Exchange Server
support.

« Complete recurrence pattern
solution.

Supported File Formats

MSG, MHT, OST, PST, EMLX, TMEF,
and EML.

header and body, searching iCalendar.
archives and has many other useful + Load from and save messages Format support varies across platforms.
features. to file or stream (EML, MSG or
Aspose.Email allows developers to MHT formats). Platforms
focus on managing email without
getting into the core of email and @ g @ 0
network programming. It gives you
the controls you need. a @ @
Pricing Info
Standard Enhanced Standard Enhanced
Developer Small Business ~ $599 51059 Site Small Business $2995 $5490
Developer OEM 51797 $3294 Site OEM 58386 515372

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

US: +1 8BB8 277 6734
sales@aspose.com

EU: +44 141 416 1112
sales.europe@aspose.com

Oceania: +61 2 8003 5926
sales.asiapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Aspose.Pdf

Create PDF documents without using Adobe Acrobat
« A complete solution for programming with PDF files.

» Work with PDF forms and form fields.

ASPOSE.PDF IS A PDF

DOCUMENT CREATION AND 3

MANIPULATION API that

developers use to read, write and A B . C |

manipulate PDF documents without ID Name Gender

using Adobe Acrobat. Aspose. 1 John Male

Pdfis a sophisticated product that 2 Tommy Male

integrates with your application to 3 Sandra Female

add PDF capabilities. 4 Nayyer Male

Aspose.Pdf offers a wealth of 5 Cindy Female

features that lets developers a2%x1in 4 |

c{;nr.:l:;reks: files, create tables, work Aspose.Pdf can be used to automatically complete PDF forms with external data.

with links,

add and extract or inset pages, and print Key Features

::-Iu‘:ﬁ Read witeand Hitbatiabuis . Em; creation from XML or XLS-
: i O documents.

handle manipulate PDF SN - PDF form and field support.

custom documents - Creating and editing PDF files. Adicanced seuriteand

fonts, independenﬂy " Iniertin?' extracting, encryption.

integrate R FNA Ta o appending, concatenatingand | High-fidelity printing and

with Acrobat splitting POEs. conversion.

external : « Working with text, images, supported File Formats

data tables, images, headers,and _ ppg ppE/a, PDF/A_1b, PCL, XLS-

sources, footers, FO, LaTeX, HTML, XPS, TXT and

manage bookmarks, create table of *+ Applying security, passwords a range of image formats.

form fields. « Working with forms and form

Platforms
It helps developers add, work with fields.

attachments, annotations and PDF @ g @ o

form data, add, replace or remove

text and images, split, concatenate, o @ g

Pricing Info
Standard Enhanced i Standard Enhanced
Developer Small Business ~ $799 51298 Site Small Business $3995 56490
Developer OEM $2397 $3894 Site OEM 511186 $18172

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

US: +1 888 277 6734 EU: +44 141 416 1112 Oceania: +61 2 8003 5926
sales@aspose.com sales.europe@aspose.com sales.aslapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

S NS NS S NS NS -
i EFEETE mEET geTen IF! 7TH EEEE EE
lll R | | I

me «Working with Android? &_

2" want to work with real business documerls?

Aspose.Cells for Android

Create and manipulate Microsoft Excel spreadsheets, import and
export data, formatspreadsheets and run complex calculations.

Aspose.Words for Android

Create and manipulate Microsoft Word
documents, control structure, content and
formatting.

Aspose.Email for Android

Create, manipulate and manage Microsoft Outlook emails and
archives.

Aspose.Pdf for Android

Create and manipulate Adobe Acrobat PDF documents, work with forms and

form fields.
No Office Automation
|
m Get your FREE TRIAL at www.aspose.com i
i
- a .
9
l m m. N
s @)\ASPOSE 5 u Enet
.... .. Yo FlleFormatﬂPls m EEE EEE
EE N EEEE Eu EE O 4 NEE FEENE

http://www.aspose.com

Ba anle http://banckle.com/

Customer Service 2.0 sales@banckle.com

Post Sale Engagement - - Direct Engagement

- Banckle Chat - Banckle Chat
O Banckle Helpdesk
." Banckle Campaign
Pre Sale - Customer
Engagement Engagement Data
Bl Ganckle Meeting - Banckle CRM
. Banckle Email
Browser Based Powerful APls Device Compatibility

Customer Service Tools that Run in a Web-Browser

Banckle's online customer service tools help companies large and small engage with
customers. Just log in and go: no plugin or software installation necessary.
Platform, OS and browser independent.

Build powerful SaaS apps with Banckle's robust Cloud APIs.

Contact sales@banckle.com for API pricing information and an extended 30 day free
trial. Alternatively, visit banckle.com and use promo code MiniMag2014 at checkout
for a 20% discount.

mailto:sales@banckle.com
www.banckle.com
http://www.banckle.com
mailto:sales@banckle.com
http://www.banckle.com

Banckle.com - customer Service 2.0

Customer Service Apps that Help Grow Your Business

Banckle's professional web apps help companies engage with customers.,

B Banckle Chat

Chat live with your customers to give them the help they
want, when they need it. Embeddable HTML makes it
easy to integrate Banckle's live chat service into your
website.

Prices start from § 6, 3 0 /month.

FE] Banckie CRM

Keep the team up to date with projects and customer
contacts. Keep an eye on the pipeline, manage tasks and
log contacts in one central place to improve team work
and customer focus.

Prices start from 5-{;_ 2 0 /month.

(Banckle Campaign

Find out how effective your email campaigns are and
keep in touch with your customers. Design, test and send
campaigns, manage mailing lists and learn from
campaign reports.

Prices start from § 9, 8 0 /month.

Banckle Total

L8 Try our APIs

Want to build your own solution?, Consider our RESTful
APl's

the next level.

All Banckle's customer service tools in one package,
Banckle Total helps you take customer support to

| ¢« ' Banckle Meeting

Give your customers a great online meeting experience
with an intuitive interface. Share screen, presentations,
work with a whiteboard and use video conferencing from
a web browser.

Prices start from § 10,5 0/month.

F &
<7 Banckle Helpdesk

Stay on top of your customers' issues with an online
service desk and ticketing system. Never lose a ticket but
let the team collaborate to deliver the best possible
customer support.

Prices start from $ 11.00/month.

g Banckle Email

Manage email from an affordable, secure and intuitive
online platform. Use all the email features you are used
to: attachments, folders and simple account
administration.

Prices start from $ 1 3.3 0/month.

Subscriptions start at

$31.00/month.

Contact sales@banckle.com for AP pricing
information and an extended 30 day free trial.
Alternatively, visit banckle.com and use promo

code MiniMag2014 at checkout for a 20%
discount

www.banckle.com
www.banckle.com
mailto:sales@banckle.com

Aspose.Slides

Work with presentations without using Microsoft PowerPoint
- Complete solution for working with presentation files.

- Export presentations and slides to portable or image formats.

ASPOSE.SLIDES IS A FLEXIBLE
PRESENTATION MANAGEMENT
API that helps developers read,
write and manipulate Microsoft
PowerPoint documents. Slides

and presentations can be saved

to PDF, HTML and image file k 5;-.,:;,

y 3 ™ . Erterpnse
formats without Microsoft Office o —m__
Automation. . "
Aspose.
Slides Aspose.Slides has advanced features for working with every aspect of a presentation.

TR Aspose.Slides
LS gives you the
tools you need

Common Uses + OLE integration for embedding
external content.

» Creating new slides and clonin
. e Wide support for input and

advanced

features e existing slides from templates.

that make to work with « Handling text and shape output file formats.

oIl Presentation formatting. Supported File Formats
perform files. - Applying and removing PPT. POT, PPS, PPTX, POTX, PPSX,
tasks protection. ODP, PresentationML, XPS, PDF and
such as ¥ Bpstiing grseiannnsto image formats including TIFF and
rendering slides, exporting images and PDF. PG,

presentations, exporting slides to « Embedding Excel charts as OLE)

SVG and printing. Developers use objects. Format support varies across platforms.
Aspose.Slides to build customizable -+ Generate presentations from

slide decks, add or remove standard database.

graphics and automatically publish Key Features
presentations to other formats.

- Acomplete presentation Platforms
Aspose.Slides gives developers development solution.
the tools they need to work with . Control over text, formatting @ @ 0
presentation files. It integrates srd ol elefhante, s
quickly and saves time and money. ‘
Pricing Info
Standard Enhanced Standard Enhanced
Developer Small Business ~ $799 51298 Site Small Business $3995 56490
Developer OEM $2397 $3894 Site OEM $11186 518172

The pricing info above is for .NET: prices for other platforms may differ. For the latest, contact sales.

US: +1 888 277 6734 EU: +44 141 416 1112 Oceania: +61 2 8003 5926
sales@aspose.com sales.europe@aspose.com sales.asiapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

Support Services
Get the assistance you need, when you need it, from the people who know our products best.
« Use experienced Aspose developers for your projects
« Get the level of support that suits you and your team

NO ONE KNOWS OUR PRODUCTS
AS WELL AS WE DO. We develop
them, support them and use them.
Our experience is available to you,
whether you want us to develop a
solution for you, or you just need

a little help to solve a particular
problem.

Consulting
Aspose’s developers are expert users

of Aspose

ﬂ:;e:;ht:: d Aspose’s file
howtouse UGN
our products FEUEE ARG

and have help you with
AU 2 project or
z:z:;:‘:"m your s.lupport
thiim for questions
software

development. Aspose’s developers
are skilled not just with Aspose tools
but in a wide range of programming
languages, tools and techniques.

When you need help to get a project
off the ground, Aspose’s developers
can help.

Work with the most experienced Aspose
developers in the world.

Consulting Benefits

» Use Aspose engineers to work
on your products

« Get peace of mind from a
fully managed development
process

« Get a custom-built solution
that meets your exact needs

Support Options

Free

Everyone who uses Aspose products
have access to our free support. Our
software developers are on stand-
by to help you succeed with your
project, from the evaluation to roll-
out of your solution.

Priority

If you want to know when you'll hear
back from us on an issue, and know
that your issue is prioritized, Priority
Support is for you. It provides a more
formal support structure and has its
own forum that is monitored by our
software engineers.

Enterprise

Enterprise customers often have
very specific needs. Our Enterprise
Support option gives them access
to the product development team
and influence over the roadmap.
Enterprise Support customers have
their own, dedicated Issue tracking
system.

G P
o

Pricing Info

Each consulting project s evaluated individually; no two projects have exactly the same requirements.
To see the Priority and Enterprise support rates, refer to the product price list, or contact our sales team.

US: +1 888 277 6734
sales@aspose.com

EU: +44 141 416 1112
sales.europe@aspose.com

Oceania: +61 2 8003 5926
sales.asiapacific@aspose.com

http://www.aspose.com
mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com

We’'re Here
to Help YOU

Aspose has 4 Support Services to best suit your needs

Free Support Support Forums with no Charge

24 hour response time in the
Priority Support week, issue escalation,
dedicated forum

Communicate with product
managers, influence the roadmap

NI RVl Jg @l Get the feature you need built now

Email Live Chat -

CONTACT US

US Sales: +1 888 277 6734
sales@aspose.com

EU Sales: +44 141 416 1112
sales.europe@aspose.com

Technical Support is an issue
that Aspose takes very seriously.
Software must work quickly and
dependably. When problems arise,
developers need answers in a hurry.
We ensure that our clients receive
useful answers and solutions quickly.

Forums

(A —
AU Sales: +61 2 8003 5926 I'_; AS P|0 E.
sales.asiapacific@aspose.com . (Ygur“e Format APls

mailto:sales@aspose.com
mailto:sales.europe@aspose.com
mailto:sales.asiapacific@aspose.com
http://www.aspose.com

	Back
	Print
	MSDN Magazine, March 2014
	Cover Tip
	Front
	Back

	Contents
	CUTTING EDGE: A First Look at ASP.NET Identity
	WINDOWS AZURE INSIDER: The Windows Azure Service Bus and the Internet of Things, Part 2
	Patterns for Asynchronous MVVM Applications: Data Binding
	Asynchronous TCP Sockets as an Alternative to WCF
	A .NET Developer Primer for Single-Page Applications
	Building a Netduino-Based HID Sensor for WinRT
	THE WORKING PROGRAMMER: Getting Started with Oak: Data Validation and Wrapping Up
	MODERN APPS: A Look at the Hub Project and Control in Windows Store Apps
	DIRECTX FACTOR: Triangles and Tessellation
	DON’T GET ME STARTED The Peasants Are Revolting!

	Visual Studio Live!, Chicago 2014 - Insert
	Aspose Outsert

