
Part III

Deployment, Help, and 
Advanced Projects

C13618747.fm  Page 395  Friday, January 10, 2003  3:54 PM



C13618747.fm  Page 396  Friday, January 10, 2003  3:54 PM



397

Designing Setup Projects
When creating a new application, the last thing a developer usually thinks
about is how to get the application onto the user’s computer. In this chapter,
we’ll explore the tools in Microsoft Visual Studio .NET that help you create
setup files for use with Windows Installer.

Microsoft Windows Installer (MSI) Background
In the early days of Microsoft Windows development, an application rarely con-
sisted of more than a single executable file and maybe a DLL or two, so install-
ing the application was as simple as copying the files from a floppy disk onto
the computer. Changes to the system settings were rare, and when necessary
they were simply a few changes to the win.ini and system.ini files in the
C:\Windows folder.

Much has changed since those days; preparing even the simplest of appli-
cations so the user can run it on modern versions of Windows requires many
changes to the user’s computer. The setup process for a modern Windows
application must modify the system registry to associate files with your applica-
tion so when the user double-clicks on the file it automatically opens. It must
place COM DLLs in various locations on disk and register them, causing
changes to the system registry. It must modify the Start menu so the user can
conveniently find and run your application. In the case of Web applications and
XML Web services, installing an application on a Web server requires not only
placing the files on the server’s hard drive but also configuring Microsoft Inter-
net Information Services (IIS) to serve the Web application to the user.

Since those early days of Windows development, countless setup devel-
opment tools have become available. One of the most popular ones, which

C13618747.fm  Page 397  Friday, January 10, 2003  3:54 PM



398 Part III Deployment, Help, and Advanced Projects

Microsoft used, was called Acme Setup; it was used in programs such as
Microsoft Office 95 and Microsoft Visual Studio 6.0. Acme Setup and many of
the other setup technologies got the job done, but they were complicated to
develop for and didn’t provide the user with a consistent experience from one
application to another. These setup technologies could also be dangerous to
the user’s computer. If a problem occurred during installation, such as an error
in installing a component, or if the user canceled the installation, the state of the
computer would become unstable; some components or registry settings would
be left behind or incorrectly removed.

To make developing setup programs easier and to solve the problems
associated with existing setup programs, the Office product group set out to
develop a new type of setup program. This technology is called Windows
Installer. When a Windows Installer setup program is built, a file with the .msi
extension is created; the user can double-click on this file to start installing a
program. The files that make up the program to be installed can be either com-
pressed and stored within the .msi file or stored loosely (on a distribution
medium such as a floppy disk, CD, or DVD that’s separate from the .msi file).

Because logic is built into Windows Installer for handling the system reg-
istry, COM objects, and (with version 2.0 of Windows Installer, the same ver-
sion used by Visual Studio .NET and the .NET Framework) .NET components
and .NET Web applications, installing these components is easy. Windows
Installer also takes care of mundane setup chores such as making sure the
computer has enough disk space, and it creates an entry in Control Panel’s Add
Or Remove Programs applet for uninstalling the program. Lastly, Windows
Installer is transactional, which means the state of the computer is preserved
when you install a component or a registry key. If a problem occurs during
setup, a rollback is performed that restores the computer to the state it was in
before setup was started.

Creating Custom Installation Projects
With the tools in Visual Studio .NET, you can easily create a setup project that,
when built, generates an .msi file. You can find the templates for creating a
setup project in the New Project dialog box, by selecting the Setup And Deploy-
ment Projects node in the Project Types tree. The Setup Project type is used to
install client software, such as a .NET or Win32 program, onto a user’s com-
puter, and the Web Setup Project type is used to install a Web application or
Web service onto a server computer. The Merge Module template (discussed
later in this chapter) is used to create setup project components.

C13618747.fm  Page 398  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 399

If you were to add a setup project to an existing solution and then choose
Build | Build Solution to build your solution, the setup project wouldn’t build
because in the Configuration Manager dialog box the setup project isn’t
selected by default to build. Setup projects can take a while to build, and
because you usually don’t need to recompile the .msi file each time you want
to debug a project, not building the setup project each time you compile the
solution saves you some time. When you’re ready to test your setup project,
you can right-click on it in Solution Explorer and choose Build or you can select
the Build check box in the Configuration Manager dialog box. If you’re creating
a setup project in a new solution file, the Build check box is selected by default
because no other projects are in the solution.

Once a setup project has been added to a solution, you can choose
among six editors to build your setup project: File System, Registry, File Types,
User Interface, Custom Actions, and Launch Conditions. You can use any of
these editors to configure how your software is installed onto a user’s com-
puter. You can display any of these editor windows by selecting a setup project
in Solution Explorer and then clicking the appropriate button on the command
bar or right-clicking on the project in Solution Explorer and choosing View and
then the editor.

File System Editor
You use the File System editor to graphically indicate where files that make up
your software project should be placed on disk when the .msi file is installed.
In this editor, you can add folders and files compiled by a project to create a
directory structure that’s logical for your application.

Specifying an Installation Folder
To install your program, you must create the directory structure that will contain
the program’s files. Many default installation folders are available in the File Sys-
tem editor, giving you a starting point for a directory structure. To add a file to
a folder, right-click on the appropriate folder, point to Add, and then select one
of the file types—Folder to create a subfolder, Project Output to add a file gen-
erated by another project in the solution, File for a file on disk, or Assembly for
an assembly file. Visual Studio .NET defines the following folders that you can
add files or folders to:

� Common Files Folder For files that are common among all pro-
grams installed on the computer. This folder can be found at C:\Pro-
gram Files\Common Files.

C13618747.fm  Page 399  Friday, January 10, 2003  3:54 PM



400 Part III Deployment, Help, and Advanced Projects

� Fonts Folder For all the font files installed on the computer. The
default location of this folder is C:\Windows\Fonts.

� Program Files Folder The folder where all programs installed on
the computer should be stored. It can be found at C:\Program Files.

� System Folder For storing operating system components. This
folder should be modified only in the rarest of situations. It can be
found at C:\Windows\System32.

� User’s Application Data Folder The folder where applications
can store data files that the user shouldn’t manipulate. It can be
found at C:\Documents and Settings\username\Application Data.

� User’s Desktop For all the items shown on the user’s desktop. The
default location for this folder is C:\Documents and Settings\user-
name\Desktop.

� User’s Favorites Folder For links to favorite items. The default
location for this folder is C:\Documents and Settings\user-
name\Favorites.

� User’s Personal Data Folder For documents that the user creates.
This folder can be found at C:\Documents and Settings\user-
name\My Documents.

� User’s Programs Menu For shortcuts to programs that will be
shown on the Start menu. This folder can be found at C:\Documents
and Settings\username\Start Menu\Programs.

� User’s Send To Menu For Send To menu items, which you can see
by clicking on a file in Windows Explorer and selecting the Send To
menu. This folder can be found at C:\Documents and Settings\user-
name\SendTo.

� User’s Start Menu For Start menu items. This folder can be found
at C:\Documents and Settings\username\Start Menu.

� User’s Startup Folder For all programs (or shortcuts to programs)
that will run when the user logs in to the operating system. This
folder can be found at C:\Documents and Settings\username\Start
Menu\Programs\Startup.

� User’s Template Folder For templates to create new files. This is
the source folder where the items on the New menu of the desktop’s
shortcut menu are located. This folder can be found at C:\Docu-
ments and Settings\username\Templates.

C13618747.fm  Page 400  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 401

� Windows Folder For operating system files. A typical location is
C:\Windows.

� Global Assembly Cache Folder For the computer’s global assem-
bly cache (GAC). Any files placed in this folder are accessible by the
.NET Framework for all users of the computer.

� Application Folder The folder where you should store most of
the files and project output you’re installing onto the user’s com-
puter. This folder defaults to C:\Program Files\Manufacturer\Pro-
ductName, where Manufacturer and ProductName are the property
values in the Properties window when the setup project is selected
in Solution Explorer.

� Web Application Folder A folder that’s available only if the setup
project is a Web Setup Project. Items added to this folder are installed
in the IIS virtual folder and are available (security settings permitting)
to users of your Web server.

You can also create a new folder on the computer that’s not a child of any
of the default folders. To do this, right-click on the File System On Target
Machine node in the File System editor and choose Add Special Folder | Cus-
tom Folder. The name you enter for the folder is not the path for the folder that
will be created on the computer—it’s for display purposes in the File System
editor only. You set the folder path by selecting the newly created custom
folder and typing the path to create in the DefaultLocation property in the
Properties window. However, be careful when you create a custom folder and
give it a hard-coded path; if you enter a disk drive that’s not available on the
computer, an error is generated. Later in this chapter, you’ll see how you can set
the path of the folder dynamically at installation time.

Project Output
Once you create a program and the directory structure to hold the program,
you need a way to add the files to the File System editor. You could build your
code project and then manually select each file generated by the project and
add them to the File System editor. However, this approach can lead to prob-
lems. For example, if you switch the project type from Debug to Release, you
must manually modify the setup project to make sure the correct build version
of the files is copied into the setup project. Another problem is that you might
inadvertently omit a file or add a file that is not needed, causing the program to
not function properly or causing the .msi file to be bigger than it needs to be.
To make selecting files to install for a project easier, you can include the project
output in a setup project.

C13618747.fm  Page 401  Friday, January 10, 2003  3:54 PM



402 Part III Deployment, Help, and Advanced Projects

To add a project’s output to the File System editor, right-click on the folder
that should contain the output and choose Add | Project Output. The Add
Project Output Group dialog box opens and lists the projects that generate out-
put and lists output types you can add to the setup project. The project output
types you can add to a setup project are:

� Documentation Files This type adds any files generated by Intel-
liDoc to the File System editor. IntelliDoc files can be generated only
from C# projects, so this option appears only if the project selected
in the Project box is a C# project.

� Primary Output This group contains the DLL or EXE file that the
project creates when compiled. You must add this output to the File
System editor to enable the user to run your program.

� Localized Resources If you add this output type to the File System
editor, all resource satellite DLLs are copied into the selected folder.

� Debug Symbols This output type contains all the debug symbols,
such as .pdb files, that are used to debug the application. If you want
users of your application to be able to debug problems, you should
add this output type to the File System editor. However, placing
debugging symbols on the user’s computer increases the size of the
.msi file. In addition, you make it easier for people to reverse-engineer
your application and possibly gain access to your intellectual property.

� Content Files This output type includes all files within the
selected project that were added as content files.

� Source Files This project output type includes all the source files
used to build a project.

� Built Outputs This output type is available only if the selected
project is another setup project. Adding this output type to a setup
project allows you to install an .msi file onto the installer’s disk.

When a project’s output is added to a setup project, Visual Studio .NET
automatically scans the output and adds to the setup project any files (such as
assemblies, unmanaged DLLs, or type libraries) that the project is dependent
on. When the setup project is compiled, these dependent DLLs are packaged
up into the .msi file and installed alongside the code that’s dependent on those
DLLs. These dependent DLLs appear in the File System editor alongside the file
or project output that is dependent on them, and they’re added to Solution
Explorer underneath the Detected Dependencies folder of your setup project.

C13618747.fm  Page 402  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 403

You can control which dependencies are installed on the user’s computer
by excluding a dependency; you simply right-click on a dependency file and
choose Exclude. There can be many reasons for excluding a file, the most com-
mon of which is that the user has the dependency file on her computer and
therefore you don’t need to package that file into the .msi file. In addition,
when a project’s output is added to the File System editor, a project depen-
dency is created from the setup project to the project generating output. As a
result, when a solution build is started, the project, which has its output in the
setup project, is built before the setup project is compiled, which ensures that
the files in the setup project are up-to-date. 

Have Your Wizards Stopped Working?
When you test your setup project to make sure it installs and uninstalls
properly, you might find that some programs have stopped working—
especially after you uninstalled the .msi file. This problem is common when
you’re building a setup program for wizards or add-ins. Suppose you refer-
ence the assembly VSLangProj within your add-in project. When you build
the setup project for the add-in, the setup project sees that you referenced
the VSLangProj assembly and automatically adds it to the setup project as
a dependency. Also, because VSLangProj is a Primary Interop Assembly
(PIA) for the type library VSLangProj.tlb, the type library is added to the
setup project as a dependency. This last file is where you can run into trou-
ble. When COM objects (including type libraries) are added to the File Sys-
tem editor, they’re automatically set to be registered when installed.

If the .msi file for your add-in or wizard is uninstalled, Windows
Installer removes all the files that it installed on the system. Because the
VSLangProj.tlb type library is being uninstalled, it also unregisters itself as a
type library. Other components, such as Visual Studio .NET wizards, use this
type library, and if the type library is not registered, the wizards cannot run.

To fix this problem and prevent it from recurring, you can scan your
setup project after adding a new project output to the File System editor,
to look for components added as dependencies that aren’t part of your
project. If you find such a file, right-click on that file and choose Exclude,
or if you know that the dependency is located within a merge module,
add the merge module to your setup project. This ensures that the com-
ponent is properly installed on the computer. (VSLangProj is not in a
merge module, so this is not an option for a wizard or an add-in.)

C13618747.fm  Page 403  Friday, January 10, 2003  3:54 PM



404 Part III Deployment, Help, and Advanced Projects

If you’ve already uninstalled an .msi file that contains a dependency
that shouldn’t have been installed and you want to repair your computer,
you have a few options. The first is to run the repair option of the appli-
cation that has stopped working. If the application is Visual Studio .NET,
the repair process will be lengthy and you might not want to go through
it. An alternative way of fixing the problem is to find and then manually
reregister the type libraries and COM objects that were unregistered. You
can do this only if you have the necessary tools. The third option is to cre-
ate a throwaway setup project, add the necessary components (such as
VSLangProj.tlb) to the setup project, and then build and install that setup
project. This causes the file to be registered, and as long as you do not
uninstall this .msi file, everything should once again work fine.

Registry Editor
With the Registry editor, you can point and click your way to creating entries in
the system registry when the .msi file is installed. During installation, the regis-
try keys and values you create within this editor are copied into the system reg-
istry, mirroring the structure you create. You can see an example of the Registry
editor being used to help set up an add-in when you run the Add-in Wizard.
The purpose of a setup project being added to a solution when you run this
wizard is not to install files (although the setup project also helps do that) but
to create the registry keys necessary for Visual Studio .NET to find, load, and
run your add-in.

You’ll notice that the Registry editor window closely resembles the Regis-
try Editor program (regedit.exe) that’s installed with Windows. Just as you can
edit the system registry using regedit.exe, you can edit the registry using the
Registry editor, except that registry settings declared in the Visual Studio .NET
Registry editor window are created at install time.

If you use a setup project to install a COM object created with the C++
programming language, you must decide whether to define the registry keys for
that COM object within the Registry editor or let the COM object register itself
during installation. When the output of a COM object project is added to the
File System editor, the Register property in the Properties window for that out-
put is set to vsdrpCOM, which means the COM object knows how to register
itself, and the DllRegisterServer and DllUnregisterServer methods are called on
installation or uninstallation of that object. However, if a COM object registers
itself, the keys it creates aren’t included in the transactional feature of Windows

C13618747.fm  Page 404  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 405

Installer. If installation fails, the DllUnregisterServer method is called to try and
roll back the registry key creation; if that fails, some registry entries might be left
behind. On the other hand, creating the registry entries for a COM object can be
a tedious, error-prone chore. If all you need to do is copy the entries in an .rgs
file to the Registry editor, it isn’t a problem, but you must create multiple regis-
try keys and values for every interface defined by that COM object so the proxy
and stub DLL for that interface are set up correctly. The choice is yours, but you
should consider the options carefully.

The User/Machine Hive
The Registry editor lets you modify the registry settings for the four main registry
root sections, or hives: HKEY_CLASSES_ROOT, HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE, and HKEY_USERS. However, the Registry editor for an
.msi setup project has one additional node that’s not a root key within the system
registry: the User/Machine Hive key. This key is used to conditionally modify the
HKEY_LOCAL_MACHINE key or HKEY_CURRENT_USER key and is dependent
on an option the user selects when installing an .msi file. If you create a setup
project and then build and install the resulting .msi file, the second page of the
setup user interface appears as shown in Figure 13-1. On the bottom left of this
dialog box are two options, Everyone and Just Me. If the user selects Everyone, all
the registry keys you create in the User/Machine Hive key are placed in the sys-
tem registry under the HKEY_LOCAL_MACHINE key. If the user selects Just Me,
all these settings are placed in the HKEY_CURRENT_USER key of the system reg-
istry. If the person running the .msi file has reduced permissions, such as Guest,
these two option buttons are not displayed and the setting defaults to Just Me.

F13MO01Figure 13-1 The Select Installation Folder page of an .msi setup file

C13618747.fm  Page 405  Friday, January 10, 2003  3:54 PM



406 Part III Deployment, Help, and Advanced Projects

Installer Properties
Although the Registry editor provides an easy-to-use, point-and-click way to
create registry settings for your program, the registry modifications you make
are static. That is, the key names, value names, and data values you enter are
copied into the registry during setup exactly as you’ve typed them. However, at
times you’ll need to create a registry key with a name or value that’s dynamic,
reflecting the state of the computer when the user installs an .msi file. Such
dynamic values are known as installer properties. Using an installer property in
the Registry editor is as simple as placing the installer property name within
square brackets; when the .msi file is run, Windows Installer notices these
installer properties and replaces them with the appropriate values.

Table 13-1 lists the most commonly used installer properties of the nearly
200 that are available. New ones are being added with each new version of Win-
dows Installer. You should consult MSDN for an up-to-date listing of the avail-
able installer properties. As an example, to place the date on which the user
installed the .msi file into the registry, you use [Date] as the registry key name,
value name, or value. You can combine installer properties by placing them next
to one another, and you can add string data where appropriate. For example,
the value [Time]-[Date] is expanded to create the value 17:54:35-11/10/2002 for
November 10, 2002, at 5:54:35PM. You can see one of these installer properties
being used when you first create a setup project. If you look in the Registry edi-
tor of a setup project, you can see that the keys HKEY_LOCAL_MACHINE\Soft-
ware\[Manufacturer] and HKEY_CURRENT_USER\Software\[Manufacturer] are
automatically created for you. These keys are where you can place data specific
to your company’s software; the token [Manufacturer] expands into the name of
your company, which you can enter as the Manufacturer property in the Prop-
erties window when the setup project is selected in Solution Explorer.

Table 13-1 Commonly Used Installer Properties

Installer Property Description Example

AdminToolsFolder Folder where tools to administer 
the computer are stored.

C:\Documents and Settings\user-
name\Start Menu\Programs\Administra-
tive Tools\

AdminUser This value is 1 if the installing 
user has administrator privi-
leges, 0 if not.

1

AppDataFolder Folder where application-
specific data is stored.

C:\Documents and Settings\username\
Application Data\

C13618747.fm  Page 406  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 407

ARPCONTACT The name of the technical sup-
port contact person. This value 
is set using the Author property 
in the Properties window when 
the setup project is selected.

Default Company Name

Author The author of the installer. The 
value of this property is set in 
the Properties window when 
the setup project is selected in 
Solution Explorer.

Default Company Name

CommonApp-
DataFolder

The folder shared by all users 
for storing application-specific 
data.

C:\Documents and Settings\All Users\
Application Data\

CommonFilesFolder The folder where shared soft-
ware components are stored. 

C:\Program Files\Common Files\

ComputerName The network name of the com-
puter.

CRAIGS4000

Date The date on which the .msi file 
is installed.

11/10/2002

DesktopFolder The folder for installing user’s 
desktop items.

C:\Documents and Settings\username\
Desktop\

FavoritesFolder The folder where Internet 
Explorer favorites are stored.

C:\Documents and Settings\username\
Favorites\

FontsFolder The folder where fonts are 
stored.

C:\Windows\Fonts\

Intel If setup is running on a com-
puter with one or more Intel 
processors, this value is the pro-
cessor class being used: 4 for a 
486, 5 for a Pentium, 6 for a P6, 
and so on.

6

LocalAppDataFolder The folder for nonroaming, 
application-specific user data.

C:\Documents and Settings\username\
Local Settings\Application Data\

LogonUser The user name of the person 
running the .msi file.

Craig Skibo

Manufacturer The name of the company that 
created the .msi file.

Default Company Name

MyPicturesFolder The folder where user images 
are stored.

C:\Documents and Settings\username\
My Documents\My Pictures\

Table 13-1 Commonly Used Installer Properties (continued)

Installer Property Description Example

C13618747.fm  Page 407  Friday, January 10, 2003  3:54 PM



408 Part III Deployment, Help, and Advanced Projects

MsiNTProductType The type of the operating sys-
tem installed. A value of 1 
means that the computer is a 
workstation, 2 means that the 
computer is a domain controller, 
and 3 means it’s a server.

1

NetHoodFolder The Network Neighborhood 
folder.

C:\Documents and Settings\username\
NetHood\

PersonalFolder Folder where user documents 
are stored.

C:\Documents and Settings\username\
My Documents\

PhysicalMemory The amount of memory, in 
megabytes, on the computer 
where the .msi file is being run.

384

PrintHoodFolder The folder where printers are 
installed.

C:\Documents and Settings\username\
PrintHood\

Privileged This value is 1 if the installation 
is performed under elevated 
user privileges.

1

ProductID The serial number entered in 
the Serial Number edit box in 
the User Information dialog box 
(described later in this chapter).

111-7000000

ProductName The name of the product being 
installed. You set this value by 
changing the ProductName 
property in the Visual Studio 
.NET Properties window when 
the setup project is selected.

Setup1

ProductVersion The version of the .msi file 
being installed. You set this 
value in the Version property in 
the Properties window when 
the setup project is selected in 
Solution Explorer.

1.0.0

ProgramFilesFolder The Program Files folder. C:\Program Files\

ProgramMenuFolder The folder where Start menu 
program shortcuts are stored.

C:\Documents and Settings\username\
Start Menu\Programs\

RecentFolder The folder where shortcuts to 
recently used documents are 
stored.

C:\Documents and Settings\user-
name\Recent\

Table 13-1 Commonly Used Installer Properties (continued)

Installer Property Description Example

C13618747.fm  Page 408  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 409

RemoteAdminTS This value is 1 if the computer 
has terminal services installed 
and configured.

1

ROOTDRIVE The drive on which to install the 
program.

C:\

ScreenX The width, in pixels, of the 
user’s primary monitor.

1024

ScreenY The height, in pixels, of the 
user’s primary monitor.

768

SendToFolder The folder containing items 
shown on the context menu 
when you right-click on a file in 
Windows Explorer and choose 
Send To.

C:\Documents and Settings\user-
name\SendTo\

ServicePackLevel The current service pack ver-
sion installed on the computer.

1

ServicePackLevel-
Minor

The minor version number of 
the service pack installed.

0

SourceDir The folder containing the .msi 
file.

C:\Documents and Settings\username\
My Documents\Visual Studio Projects\ 
Setup1\Debug\

StartMenuFolder The folder where Start menu 
shortcuts are stored.

C:\Documents and Settings\username\
Start Menu\

StartupFolder The folder containing links to 
programs that are started when 
the user logs in to the operating 
system.

C:\Documents and Settings\username\
Start Menu\Programs\Startup\

SystemFolder The Windows system folder. C:\Windows\System32\

SystemLanguageID The locale identifier (LCID) of 
the operating system.

1033

TARGETDIR The folder where the setup 
project is being installed. 

C:\Program Files\Default Company 
Name\ Setup1\

TempFolder The folder for temporary files. C:\ Documents and Settings\ username\
Local Settings\Temp\

TemplateFolder The folder where templates are 
stored. Templates are the items 
shown on the New menu when 
the context menu of the desk-
top is displayed.

C:\Documents and Settings\username\
Templates\

Table 13-1 Commonly Used Installer Properties (continued)

Installer Property Description Example

C13618747.fm  Page 409  Friday, January 10, 2003  3:54 PM



410 Part III Deployment, Help, and Advanced Projects

You can use these installer property values not only in the Registry editor
but also in the File System editor. The previous section described how you can
define custom folders that are created when the .msi file is installed, but the
path to those folders was hard-coded. Using installer properties, you can spec-
ify that the path of a custom folder be determined at install time.

Suppose you need to create a folder for storing application-specific data.
The installer property AppDataFolder is typically set to the value C:\Documents
and Settings\username\Application Data\, which is the folder where user-spe-
cific data for a program, such as configuration options, should be stored. The
installer property ProductName is set to the name of the product being installed,
which defaults to the name of the setup project. You could set the custom
folder’s location to point to the path C:\Documents and Settings\user-
name\Application Data\ProductName, but if the user installs the operating sys-
tem to the D drive or changes the application data path, this won’t be the correct
location to store data. You can combine the installer properties AppDataFolder
and ProductName and set the DefaultLocation property for the folder to create
within the Properties window into [AppDataFolder][ProductName]. This auto-
matically creates the folder C:\Documents and Settings\username\Application
Data\Setup1 (where the name of the setup project is Setup1). 

Time The time when the .msi file is 
being installed, in the format 
HH:MM:SS.

17:54:35

UserLanguageID The locale identifier (LCID) in 
use by the user.

1033

USERNAME The logon name of the user 
installing the .msi file.

craigs

VersionNT The version of operating system 
being used if the operating sys-
tem is 32-bit NT class.

501

VirtualMemory The amount of memory, in 
megabytes, assigned to the vir-
tual memory page.

576

WindowsBuild The build number of the operat-
ing system.

2600

WindowsFolder The folder in which the operat-
ing system is installed.

C:\Windows\

WindowsVolume The hard disk drive on which 
Windows is installed.

C:\

Table 13-1 Commonly Used Installer Properties (continued)

Installer Property Description Example

C13618747.fm  Page 410  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 411

File Types Editor
Of all the technologies built into Windows to help users get started using their
computers, file associations are probably the most overlooked. Back in the days
of MS-DOS, if you wanted to view or edit a data file, you had to know which
application could be used to edit that file, and then you had to know how to
start that application to view it. With Windows, all you need to know is how to
double-click, because when you double-click the icon in Windows Explorer,
the application associated with that file is automatically run and the data file is
loaded. You create associations by creating a set of system registry keys and val-
ues that link the extension of a data file to the program that views or edits that
file. You can use the Registry editor of a setup project to define your file asso-
ciations, but this can be complicated. The File Types editor in Visual Studio
.NET lets you easily define your file associations.

Suppose you create a new way of storing image data in a compressed for-
mat that’s better than any other image format available. You’ve also created a
.NET program named MyImageViewer to make viewing, printing, and editing
that file format possible. If the user of this file format wants to print the image,
she can open your viewer application, choose File | Open, browse to the
image (which has the file extension .myimage), and then choose File | Print to
print the image. Or, she can let Windows handle all the work for her using a file
association. For the purposes of this example, we’ll leave the theories about
image file formats to other books and use a bitmap file, renamed to have the
.myimage extension, as our file format.

To create a .myimage file association within a setup project, first open the
File Types editor for the setup project by right-clicking the setup project in Solu-
tion Explorer and choosing View | File Types. Right-click on the File Types On
Target Machine node, and select Add File Type. This creates a file association
for the Open verb. A verb is an action you take against the file; the default verb
(denoted within the File Types editor using boldface) is the action performed
when the user double-clicks on the file in Windows Explorer. Other common
verbs are Print and Edit. For our example, we’ll add both of these.

To add the Print verb, right-click on the file type node you just created,
choose Add Action, and then type &Print. The verb name is preceded by an
ampersand because this text will be displayed to the user when a .myimage file
is right-clicked in Windows Explorer and the P key will be the shortcut key for
printing. Next, you set how the verb will tell your program that it has been
invoked. Select &Print and, in the Properties window, type the command-line
argument for the Print verb in the Arguments property. For this example, the
command-line argument is –print “%1”. The –print value is a command-line
switch that tells your program it should print a file. Windows Explorer replaces

C13618747.fm  Page 411  Friday, January 10, 2003  3:54 PM



412 Part III Deployment, Help, and Advanced Projects

the %1 token with the file path of the image that is to be printed. This token
should be surrounded by double quotes. If it isn’t and the file path has an
embedded space, two or more strings will be passed as the filename to the pro-
gram’s command line arguments, not just one, thereby confusing the program
that handles the verb. Next, in the Properties window, type the name of the
verb, Print, in the Verb property. For the purposes of this example, you should
also repeat the process to create another verb, using the verb Edit in place of
Print where appropriate.

Now you need to tell the setup project which program to run when the
user selects one of these verbs. Select the file type node you created under-
neath the File Types On Target Machine node, and then open the Properties
window. The Command property specifies the program that will run when the
verb is invoked; you can set the target of the verb to any file that’s been added
to the File System editor, including project output such as the primary output.
To specify an extension that is associated with the program, type one or more
extensions, separated by semicolons, in the Extensions property. For this sam-
ple, type myimage; a period preceding the extension isn’t required. If you
want to use a custom icon for your file format when the file is viewed in Win-
dows Explorer, you can add an icon to the File System editor and then browse
to that icon using the Icon property.

The last step is to modify your program to accept the command-line
parameters passed to the program. If your program is a Windows Forms appli-
cation and the main form in the program is called Form1, you can add the fol-
lowing constructor to the Form1 class:

public Form1(string []args)
{

InitializeComponent();
if(args.Length == 1)
{

pictureBox1.Image = System.Drawing.Bitmap.FromFile(args[0]);
this.Text = this.Text + “ - “ +

System.IO.Path.GetFileName(args[0]);
}
else if (args.Length == 2)
{

//The two command line switches that are recognized:
string printCommand = “-print";
string editCommand = “-edit";
if(System.String.Compare(printCommand, args[0], true) == 0)
{

//We were asked to print the image. Load the image, then use
// the PrintDocument class to print
pictureBox1.Image = System.Drawing.Bitmap.FromFile(args[1]);
PrintDocument printDocument = new PrintDocument();
printDocument.PrintPage += new

PrintPageEventHandler(printDocument_PrintPage);

C13618747.fm  Page 412  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 413

printDocument.Print();
System.Diagnostics.Process.GetCurrentProcess().Kill();

}
else if(System.String.Compare(editCommand, args[0], true) == 0)
{

//We were asked to edit the image.
//Spawn off to MSPaint to edit:
System.Diagnostics.Process.Start(“mspaint.exe", “\"“ 

+ args[1] + “\"“);
System.Diagnostics.Process.GetCurrentProcess().Kill();

}
}

}

Next, change the Main function to the following:

static void Main(string []args)
{

Application.Run(new Form1(args));
}

When the Edit or Print verbs are invoked, the command line to the pro-
gram is –edit filename or –print filename. This code examines the parameters,
and if –print or –edit is specified, it takes the appropriate action, either printing
the image or calling to mspaint.exe to display the image passed on the com-
mand line, and then it exits. If neither verb is specified and the user wants to
view the image, the image file is loaded and displayed on the form. The
MyImageViewer sample contains the complete source code for a .myimage
viewer and a setup project that includes the settings to register a file extension. 

User Interface Editor
When an .msi file is installed, a setup wizard walks the user through the install
process. The wizard’s dialog boxes do little more than tell the user which pro-
gram he’s installing, ask for the name of the folder on disk in which to install
the program, and provide feedback during installation. Using the setup tools
built into Visual Studio .NET, you can add dialog boxes that ask for more infor-
mation about how to configure your program’s installation.

You can customize any dialog box within a setup project by modifying
two properties in its Properties window: BannerText and BannerBitmap. Ban-
nerText specifies the text in the banner at the top of the dialog box, which
describes that step of the setup wizard. BannerBitmap specifies a bitmap file to
show along the top of the dialog box; you must add this bitmap to the File Sys-
tem editor before you can browse to it, and it must be 496 pixels wide and 68
pixels high. The bitmap can look any way you want, but keep in mind that the
value of the BannerText property will appear on top of the bitmap; you should
use a color that will allow this text to be visible.

C13618747.fm  Page 413  Friday, January 10, 2003  3:54 PM



414 Part III Deployment, Help, and Advanced Projects

In the User Interface editor, you’ll notice two branches of a tree, Install
and Administrative Install. The Install branch is where you do most of the
work to design the user interface of a setup project. The dialog boxes shown
in this branch make up the user interface that most users see; they walk users
through the steps of setting up your application.  The Administrative Install
branch, as its name suggests, is for system administrators. If a network admin-
istrator runs an .msi file with the –a switch on a command line, such as
msiexec.exe –a msifile.msi, the files contained in the .msi file are installed so
the users of the network can perform a network installation of the program.
Only a subset of the dialog boxes available in the Install branch can be used
in the Administrative Install branch. In most situations, you don’t need to
make changes to the Administrative Install branch of the User Interface editor;
Windows Installer handles all the details of an administrative install for you.

Splash Screen
The purpose of a splash screen page is simply to display an image to users that
identifies what program they’re installing. The image must be a bitmap or JPG
file that’s 480 pixels wide and 320 pixels high. To set the image to display in this
dialog box, first add the image to an appropriate folder in the File System editor,
select the Splash dialog box in the User Interface editor, and then set the Splash-
Bitmap property in the Properties window to the image file you just added to
the File System. Figure 13-2 shows a splash screen of a setup project with the
cover of this book used as the image.

F13MO02Figure 13-2 A splash screen for a setup project showing the Inside
Microsoft Visual Studio .NET book cover

C13618747.fm  Page 414  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 415

Options Dialog Boxes
The options dialog boxes—RadioButtons (2 Buttons), RadioButtons (3 But-
tons), RadioButtons (4 Buttons), Checkboxes (A), Checkboxes (B), and Check-
boxes (C)—give you a way to offer users installation options. The
RadioButtons dialog boxes display 2, 3, or 4 option buttons that the user can
choose from, respectively; the Checkboxes dialog boxes display between 0 and
4 check boxes. (See Figure 13-3.)

F13MO03Figure 13-3 One of the Checkboxes dialog boxes

You can manipulate the settings for each option button and check box in
these dialog boxes in the Properties window. You can set an option’s default
state (selected or unselected, checked or unchecked), installer property name,
and label. The most interesting value is the installer property name, which is
denoted in the Properties window as ButtonProperty for RadioButtons dialog
boxes and CheckBoxXProperty (where X is a number from 1 to 4) for Check-
boxes dialog boxes. You can use the value of these properties in other editors,
such as the Registry editor, as key names, value names, or values, just as you
would for the installer properties listed earlier in Table 13-1.

You can use the value of an option in a RadioButtons dialog box (shown
in Figure 13-4) in the Registry editor in the same way you use a check box value.
Only one option can be selected at a time, so only one property is available for
each dialog box; the value of ButtonXValue is used when the installer populates
the system registry. For example, the RadioButtons (2 Buttons) dialog box has
two value properties, Button1Value and Button2Value, which are set to 1 and 2,

C13618747.fm  Page 415  Friday, January 10, 2003  3:54 PM



416 Part III Deployment, Help, and Advanced Projects

respectively. The property name of these buttons is BUTTON2, so in the Registry
editor you can use the value [BUTTON2] for a registry key name, value name, or
value. If the first radio button (Button1) is selected, the data placed into the reg-
istry is 1; if the second button (Button2) is selected, the data is 2.

F13MO04Figure 13-4 The RadioButtons (4 Buttons) dialog box

Later in this chapter, we’ll discuss how you can use the options dialog
boxes to conditionally install the registry keys and files you place in the Registry
and File System editors.

Data Entry Dialog Boxes
You use the data entry dialog boxes—Textboxes (A), Textboxes (B), and Text-
boxes (C)—to ask the user for text data. Figure 13-5 shows one of these dialog
boxes. Each data entry dialog box has four text boxes. For example, if you need
to show only two of the text boxes, you can hide the other two text boxes by
selecting the appropriate data entry dialog box in the User Interface editor and
then, in the Properties window, setting the EditXVisible property (where X is
the edit box number) to False. Each text box in a dialog box has a name, and
this name is listed in the Properties window using the EditXProperty property.
You can use the value of this property, surrounded by square brackets, in the
Registry Editor just as you use the other installer properties. For example, the
first text box in the Textboxes (A) dialog box has the value EDITA1 for the

C13618747.fm  Page 416  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 417

Edit1Property property, so you can enter the registry key name, value name, or
the value [EDITA1] to represent what the user typed in the text box.

F13MO05Figure 13-5 One of the TextBoxes dialog boxes

Customer Information Dialog Box
You use the Customer Information dialog box to gather information from users
such as their name, the company they work for, and optionally a serial number
for the program. To verify that a user has entered a correct serial number, a val-
idation algorithm is performed on the serial number, with the algorithm being
based on the value of the SerialNumberTemplate property in the Properties
window. The value of the SerialNumberTemplate property creates the user
interface for the serial number in the Customer Information dialog box and ver-
ifies that the serial number entered is valid. To define the serial number that the
user can enter, you string together a special set of tokens to create a template.
This template is surrounded by the less-than and greater-than symbols.
Between these two characters, you can place any number of the characters #,
%, ?, ^, and -. The # and % symbols are placeholders for digits, and ? and ^ are
placeholders for alphanumeric characters, with ^ denoting an uppercase char-
acter. When a dash character is encountered within the template, a new text
box is created in the dialog box. The dialog box determines whether the serial
number entered is valid by adding all the numbers appearing in place of % in
the template and dividing by seven. (The dialog box ignores all other charac-
ters in the template.) If the remainder is 0, the number entered by the user is
considered valid and the user is allowed to continue installing the application;

C13618747.fm  Page 417  Friday, January 10, 2003  3:54 PM



418 Part III Deployment, Help, and Advanced Projects

otherwise, an error message is shown and the user must either reenter the
serial number to continue or exit the installation program. The dialog box
shown in Figure 13-6 uses the default serial number template of <###-
%%%%%%%>; the number entered is invalid because the sum of the numbers
4, 5, 6, 7, 8, 9, and 9 is 48, which is not evenly divisible by 7. Once the serial
number has been validated, the value of the serial number entered is stored in
the installer ProductID property.

F13MO06Figure 13-6 The Customer Information dialog box

License Agreement and Read Me Dialog Boxes
Just about every software program comes with some legal restrictions on how the
program can and cannot be used. These restrictions, in the form of a license
agreement, generally inform the user that the software cannot be illegally copied,
cannot be reverse-engineered, and so forth. You can use the License Agreement
dialog box to display license information to the user; unless the user selects an
option to accept the license agreement, the user cannot continue installing the
software. The options for accepting or not accepting the terms of the license
agreement are shown in Figure 13-7. If the user selects the I Do Not Agree option,
the Next button is disabled. Selecting the I Agree option is legally binding; a user
who accepts the license agreement can continue installing the program.

To create the text to display in the License Agreement dialog box, you
must create a rich text format (RTF) text file. You can use tools such as
Microsoft Word or even WordPad, the better-than-Notepad text editor installed

C13618747.fm  Page 418  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 419

with Windows, to create an RTF file. After creating this file, you can add it to the
File System editor and then set the text to appear in the License Agreement dia-
log box by first adding and then selecting the License Agreement dialog box in
the User Interface editor and then in the Properties window browsing to the
RTF file with the LicenseFile property.

F13MO07Figure 13-7 The License Agreement dialog box with richly formatted text

The Read Me dialog box looks and works much like the License Agree-
ment dialog box, except it doesn’t have I Do Not Agree and I Agree options.
Text in the Read Me dialog box, like that in the License Agreement dialog box,
is defined using an RTF file, so it can contain text that’s formatted with colors,
fonts, and styles.

Register User Dialog Box
Many software packages ask users for personal information such as name and
e-mail address so when new versions or bug fixes are available, the software
company can send them upgrade information. You can add the Register User
dialog box, shown in Figure 13-8, to your setup program to gather this informa-
tion. This dialog box doesn’t contain entries for users to type their name, e-mail
address, land-based address, or other data; instead, it contains a simple button
that, when clicked, invokes any executable program that has been added to the
File System editor of your setup project.

C13618747.fm  Page 419  Friday, January 10, 2003  3:54 PM



420 Part III Deployment, Help, and Advanced Projects

F13MO08Figure 13-8 The Register User dialog box

To associate your registration program with the Register Now button, you
must first create a registration program and add the primary output of this pro-
gram to your setup project’s File System editor. Next, select the Register User
dialog box in the User Interface editor, and in Visual Studio .NET’s Properties
tool window, browse to the executable using the Executable property.

Creating the registration program isn’t complicated—you can simply run
the C# Windows Application Wizard and use the executable file—but you can
find the source code for a registration project among the book’s sample files.
This project, RegisterUser, gathers the appropriate information from the user.
Another sample project, called ProductRegistration, is a .NET Web application
that you can install on a Web server. When the RegisterUser program is run and
the user clicks the Register Online button, the information entered is packaged
up into a HTTP request header and then posted to the ProductRegistration Web
application. The Web application then unpacks this information from the
request header and sends a message back to the RegisterUser project that can
be displayed to the user.

To use the RegisterUser and ProductRegistration samples, install the Pro-
ductRegistration sample onto your Web server and add the output of the Regis-
terUser project to your setup program. Within the ProductRegistration code,
open the code-behind file for the ProductRegistration.aspx file and find the
TODO comment toward the end of this file. You should replace this comment
with custom code to store the user’s information for later use, such as within a

C13618747.fm  Page 420  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 421

database. You can also modify the text message returned to the user, customiz-
ing the message to suit your needs. The second step is to modify the Register-
User Form1.cs file to point to the server containing the ProductRegistration Web
application. To do this, search for the string localhost and change it to point to
the server and virtual directory where the ProductRegistration Web application
is installed. 

Custom Actions
Windows Installer offers a lot of functionality to help you install your applica-
tion, but at times you might need to run code during an installation to help get
your program onto the user’s computer. This helper code is called a custom
action. We looked briefly at a custom action in Chapter 7 to help create and
remove commands for Visual Studio .NET, but you can create a custom action
to do anything you want. You can build three types of custom actions for a
setup project: .NET Custom Actions, Script Custom Actions, and Win32 Custom
Actions. The samples for this book include the CustomActions sample, which
demonstrates creating and using each of these custom action types.

You add custom actions to the Custom Actions editor by first adding the
primary output of the project implementing the custom action to the File System
editor and then right-clicking on the appropriate installation action in the Cus-
tom Actions editor and browsing to the project output. Four installation actions
are defined: Install, Commit, Rollback, and Uninstall. Which one you add your
custom action to will depend on the work your custom action performs. An
Install custom action is called when an .msi file is being installed. If an error
occurs during installation, custom actions in the Rollback group are called. A
Rollback custom action is run when an error occurs during installation; it can be
used to repair a computer, removing data such as files or registry keys created
within the Install action. If the installation completed successfully, custom
actions in the Commit group are called, allowing you to complete setup on the
computer. When a program is uninstalled, custom actions in the Uninstall group
are called, giving your custom action the chance to clean up any data that might
have been left behind by your program.

.NET Custom Actions
You can build custom actions by using the .NET Framework with an executable
program, such as a Windows Forms application or a console application, or
with a .NET class library that derives from a class found in the .NET base class
libraries. Choosing which type of custom action to create is a tradeoff between
how your user interacts with your custom action and how easy it is for you to
develop and test your custom action.

C13618747.fm  Page 421  Friday, January 10, 2003  3:54 PM



422 Part III Deployment, Help, and Advanced Projects

If you want your custom action to display a user interface, the best option
is to create a Windows Forms custom action. You simply add a Windows Forms
application to your solution, add the output of this project first to your setup
application’s File System editor and then to the Custom Actions editor, and then
select the appropriate installation stage in which the custom action should be
run. When that stage is run, the custom action program is called, allowing the
user to interact with the user interface the custom action displays. Creating a
Windows Forms custom action is also a good choice for ease of developing and
testing your custom action. Because a Windows Forms custom action is a pro-
gram, you can run, test, and debug the custom action without needing to build
and install the .msi file; this increases your productivity. Creating a custom
action with a Windows Forms application is not the best choice if you don’t
intend to display a user interface because the form will block the install
progress until dismissed, and you don’t want to display a dialog box to the user
that simply says “Click me to continue installing”—that’s just poor style.

The second option is to create a console application custom action. This
custom action type offers the benefits of a Windows Forms custom action in
terms of the ease of testing and debugging, and it displays a user interface to
the user. Depending on what your custom action does, the user interface can be
either a blessing or a curse. Users don’t like seeing console windows—they’re
not pretty to look at and are hard to use. If the custom action you’re creating
does its job quickly, the screen will flash with a console application, causing the
user to question what the installer is doing to his computer. However, if you
need to display text information such as the output of another console applica-
tion, a console custom action is a good choice. If you’ve created a custom
action using either a Windows Forms or console application using a language
supported by the .NET Framework, you must change the InstallerClass property
in the Properties window from True to False when the custom action is selected
in the Custom Actions editor. If this property is False, Windows Installer knows
it should invoke the custom action as a program. If this property is True, Win-
dows Installer searches the program for a class with a specific attribute, which
is used by the third type of .NET custom action—a .NET class library.

A .NET class library is a good choice if your custom action should run
silently in the background without any user interaction. A custom action of this
type is more complicated to test and debug because a class library isn’t a free-
standing executable that you can run without a hosting application. To create a
class library custom action, you create a class library using your favorite .NET-
enabled programming language, right-click on that project in Solution Explorer,
choose Add | Add New Item, and then add an Installer Class item to the project.
The item added is a class that derives from the class System.Configura-

C13618747.fm  Page 422  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 423

tion.Install.Installer and uses the attribute RunInstaller. When the .msi project is
run and starts to run custom actions, it examines all classes within an assembly
that implement the custom action; if it finds a class with the RunInstaller attribute,
the class is instantiated and a proper method of the class is called. The class Sys-
tem.Configuration.Install.Installer defines four methods you can override that
are called during certain actions of the install process: Commit, Install, Rollback,
and Uninstall. You can add these to the class from the Class View window. 

Script Custom Actions
Creating a custom action by using script code involves little more than creating
a VBScript or JScript file, adding that file to the File System editor, and then add-
ing it as a custom action in the Custom Actions editor. A script custom action is
just a list of commands that the ActiveX Scripting engine loads and runs. When
these script custom actions start running, one global variable of type Session
named Session is created so you can find out information about the currently
installing .msi file. Listing 13-1 shows a simple VBScript custom action, and List-
ing 13-2 shows its JScript equivalent. The custom action does little more than
show a message box to the user containing these custom actions.

VBScriptCustomAction.vbs
‘Can use the object Session to peek into the MSI
‘ file being installed. See the MSDN topic located at
‘ ms-help://MS.VSCC.2003/MS.MSDNQTR.2003FEB.1033/msi/vref_8xis.htm
‘ for information about how to use this object.
msgbox(“VBScript Custom Action”)

Listing 13-1 Source code for a VBScript custom action

JScriptCustomAction.js
//Can use the object Session to peek into the MSI
// file being installed. See the MSDN topic located at
// ms-help://MS.VSCC.2003/MS.MSDNQTR.2003FEB.1033/msi/vref_8xis.htm
// for information about how to use this object.
var wshShell = new ActiveXObject(“WScript.Shell”);
wshShell.Popup(“JScript Custom Action”);

Listing 13-2 Source code for a JScript custom action

You might choose to create a script custom action rather than another type
of custom action for a couple reasons. First, you might have built up a library
of scripts written using VBScript or JScript to help configure a computer. Rather
than rewriting these into a .NET custom action, you can simply add the scripts
to the setup project and run them. Another reason you might want to create a
custom action using script is ease of development. Scripts are lines of text that

C13618747.fm  Page 423  Friday, January 10, 2003  3:54 PM



424 Part III Deployment, Help, and Advanced Projects

are interpreted, which means you don’t need to compile them. To create and
test a script custom action, you simply open any text editor (even Notepad),
write code, and then run that script code by double-clicking on the file in Win-
dows Explorer.

Win32 Custom Actions
If the software you’re trying to install is not a .NET application and the user
doesn’t have the .NET Framework installed on his computer, your choices are
either script or Win32 custom actions. Script custom actions are easy to write
but don’t have full access to the Windows API and therefore might not be an
option. The only remaining choice is to use a language such as Visual C++ to
create a Win32 custom action. To create a Win32 custom action, you must first
create a Visual C++ Win32 DLL and export a function that uses the __stdcall
calling convention. This exported function must return a value of type unsigned
int, which is a status code. If the custom action returns anything other than
ERROR_SUCCESS, Windows Installer thinks it failed and rolls back the installa-
tion. The exported function takes as its only argument a value of type MSIHAN-
DLE that can be used to query the setup project for information. To let
Windows Installer know which exported function it should call within a DLL
when a custom action is run, you must set the EntryPoint property in the Prop-
erties window when the custom action is selected in the Custom Actions editor.
If you were to write a custom action like that shown in Listing 13-3, for exam-
ple, you would enter Install for the EntryPoint property because that’s the
exported function for handling the custom action invocation.

Win32CustomAction.cpp
#include “stdafx.h"
#include <tchar.h>
#include <msi.h>
#include <Msiquery.h>

BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call,
LPVOID lpReserved)

{
return TRUE;

}

__declspec(dllexport) unsigned int __stdcall Install(MSIHANDLE hInstall)
{

MessageBox(NULL, “CustomAction", “VC++", MB_OK);
return ERROR_SUCCESS;

}

Listing 13-3 Source code for a Win32 custom action

C13618747.fm  Page 424  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 425

Lab: Debugging Custom Actions
Debugging a custom action when it’s running inside an .msi file isn’t as
simple as it might seem. An .msi file doesn’t run code—it’s a collection of
compressed files with data describing how those files should be installed.
To debug a custom action, you must start installing the .msi file and attach
the debugger at just the right time—after the code has started executing
but before the code you want to debug has run. As you can guess, getting
the timing just right can be nearly impossible. A trick I use to debug cus-
tom actions is to place a message box inside the custom action just before
the code that I want to debug and then build and install the .msi file.
When the message box appears, I know I can attach the debugger to that
code and start debugging. Execution of the custom action stops while the
message box is shown, so I know I’m connecting the debugger at the cor-
rect time. But what program do you attach the debugger to? It depends on
which type of custom action you created. If the custom action is a .NET
class library and you open the debugger’s Processes dialog box, you’ll see
that three msiexec.exe processes are running that you can attach to. One
of these processes will have the word .NET in the Type column of this dia-
log box. This is the process to attach to because it has the .NET Frame-
work loaded and is executing your custom action.

If the custom action you created is a .NET Windows Forms applica-
tion or a .NET console application, you’ll see the programs listed in the
Processes dialog box by their executable names; you can attach to those
processes without attaching to the msiexec.exe process. To debug a Win32
DLL custom action, you must look in the Processes dialog box for an
msiexec.exe process that has the same title you used for your message box
in the Title column. Currently, there’s no way to debug a script custom
action; you have to use an alternative method of debugging, such as dis-
playing a message box with information so you can trace through the code.

When you’re done debugging, don’t forget to remove your message
boxes; otherwise, the user will see them when installing an .msi file.

Launch Conditions Editor
Sometimes the software you create will have special requirements for running.
For instance, suppose you take advantage of the latest technology in Windows
XP and therefore the user must run that operating system to run your program.

C13618747.fm  Page 425  Friday, January 10, 2003  3:54 PM



426 Part III Deployment, Help, and Advanced Projects

Or suppose your program is an add-in and therefore cannot run without Visual
Studio .NET installed on the computer. You could write a custom action that
checks for these requirements during install time, but it’s better to let the .msi
file ensure that these requirements are met before the files are placed on the
user’s computer.

You can define the requirements in a setup project with a launch condi-
tion in the Launch Conditions editor. To add a launch condition, open the
Launch Conditions editor, right-click on the Launch Conditions node, and
choose Add Launch Condition. In the Properties window, you can type an
expression in the Condition property that must evaluate to true for the .msi file
to install. If this expression doesn’t evaluate to true, the user cannot install your
program and sees the error message contained in the Message property. If the
InstallURL property for the condition is set to anything other than an empty
string and the condition evaluates to false, the user has the option to go to a
Web page to find more information about why installation failed. A condition
expression must use a special syntax, or condition algebra, in order for Win-
dows Installer to be able to evaluate the expression.

Condition Algebra
To define a condition, you must use a Visual Basic .NET–like syntax to define
an expression. The variables you can use in an expression are the same installer
properties listed earlier in Table 13-1 or those found in the various dialog boxes
in the User Interface editor. However, when you define a condition, you don’t
need to include the brackets around the installer property names as you do in
other editor windows.

Table 13-2 lists the operators you can use in an expression. These opera-
tors, when combined with string or integral constants (floating-point compari-
sons aren’t supported) and installer property names, create the algebra you use
to create a condition.

Table 13-2 Condition Algebra Operators

Operator Description

Not Logically negates the term.

And True if the two terms evaluate to True, False otherwise.

Or True if one of the two terms is True. 

Xor True if only one of the two terms is True.

Eqv Logical equivalence operator. True if both terms are True or both are 
False.

C13618747.fm  Page 426  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 427

Here are some examples of using these operators and installer Properties
in the Condition property:

� Not Privileged True if the user isn’t running under elevated privi-
leges.

� (VersionNT = 501) And (ServicePackLevel = 1) True if the .msi
file is being installed on Windows XP (version 501) and with Service
Pack 1 installed.

� (VersionNT = 500) Or (VersionNT = 501) True if the .msi file is
being installed on Windows 2000 (version 500) or Windows XP (ver-
sion 501).

� (ScreenX >= 800) And (ScreenY >= 600) True if the user is run-
ning at a screen resolution of 800 × 600 or greater.

Imp Implication operator. True if the left term is False or the right term is 
True.

= Equality operator. True if both terms are equal; otherwise evaluates to 
False.

<> True if the two terms are not equivalent.

> True if the left term is greater than the right term.

>= True if the left term is greater than or equal to the right term.

< True if the left term is less than the right term.

<= True if the left term is less than or equal to the right term.

>< Bitwise And operator. True if any bits in the two terms match.

>< String comparison operator. True if the left string contains the right 
string.

<< Bitwise comparison operator. True if the high 16 bits of the left integer 
term equal the right term integer.

<< String comparison operator. True if the left string starts with the right 
string.

>> Bitwise comparison operator. True if the low 16 bits of the left integer 
term equal the right term integer.

>> String comparison operator. True if the left string ends with the right 
string.

Table 13-2 Condition Algebra Operators (continued)

Operator Description

C13618747.fm  Page 427  Friday, January 10, 2003  3:54 PM



428 Part III Deployment, Help, and Advanced Projects

� PhysicalMemory > 128 True if the computer has more than 128
MB of memory installed.

� PhysicalMemory >= 128 True if the computer has 128 MB or
more of memory installed.

� “Hello World” >< “Hello” True if the string on the right is con-
tained in the first string.

� “Hello World” << “Hello” True if the string on the left starts with
the string on the right.

� “Hello World” >> “World” True if the string on the left ends with
the string on the right.

� Intel > 4 True if the computer’s processor is an Intel Pentium or
later. This rule is useful if your software is compiled to use only the
Pentium (or compatible) processor instruction set.

� Intel = “5” True if the computer’s processor is an Intel Pentium.
This expression is similar to the previous one, except with the num-
ber 5 is surrounded by quotes, the greater-than operator cannot be
used because you cannot evaluate a string that includes a numerical
operator.

� BUTTON2 = 1 True if you added the RadioButtons (2 Buttons) dia-
log box to the User Interface editor and the user has selected the first
option button in that dialog box.

Defining Custom Installer Properties
You’ve seen the use of installer properties in the Registry, Launch Conditions,
User Interface, and File System editors. However, these installer properties,
defined by either Windows Installer or dialog boxes added to the setup project,
might not always meet your needs. Using the Launch Conditions editor, you can
create custom installer properties to use wherever installer properties are
allowed. To create a custom installer property, right-click on the Search Target
Machine node in the Launch Conditions editor and choose File Search or Reg-
istry Search.

A File Search installer property searches the computer for a file, and if the
file is found, the property is set to the path of that file. To specify the file to
search for, add a File Search launch condition and then set the folder in which
to start the search and the file to search for (in the Properties window’s Folder
and FileName properties, respectively). If you know that the file to search for is

C13618747.fm  Page 428  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 429

somewhere in one of the subfolders of the folder specified, you can set the
Depth property to the number of folder levels into the folder hierarchy that
should be searched.

For example, suppose you need to set an installer property to the path of
the file dte.olb, which contains the type library for the Visual Studio .NET object
model. Because Visual Studio .NET installs this file in the Program Files folder,
you set the FolderName property of a file search launch condition to [Program-
FilesFolder], the File property to dte.olb, and the Depth property to 20 (an arbi-
trary value that will ensure that all the necessary folders are searched). If the
installer property name of the file search launch condition is FILEEXISTS1 (the
default installer property name of the first file search launch condition created),
you can use the installer property FILEEXISTS1 in the File System editor, Regis-
try editor, or any other place that installer properties can be used where the
path to dte.olb is needed.

A Registry Search launch condition works much like a File Search launch
condition, except it searches the system registry rather than the user’s disk
drive, and an installer property is set to a registry value rather than a file path.
For example, suppose you want to verify that Visual Studio .NET 2003 is
installed before you try to install an add-in. You can do this by using a Registry
Search condition. First, create a Registry Search condition by right-clicking on
the Search Target Machine node, choosing Add Registry Search, and typing a
name for the condition. In the Properties window, type the registry key hive
for  Visual  S tudio .NET in the RegKey  proper ty ,  which is  SOFT-
WARE\Microsoft\VisualStudio\7.1, and type InstallDir as the Value prop-
erty. The InstallDir registry value holds the location on disk where Visual
Studio .NET has been installed. The other values can be left as their defaults,
but you should note the value of the Property property. This is the installer
property you’ll use for creating the condition. (By default, this value is
REGISTRYVALUE1 for the first registry search condition.) Next, create a condi-
tion by right-clicking on the Launch Conditions node in the Launch Conditions
editor and choosing Add Launch Condition. Open the Properties window, type
REGISTRYVALUE1 <> "" for the Condition property, and type any message
you want in the Message and InstallURL properties. When the .msi file for the
Add-in is run, it creates an installer property called REGISTRYVALUE1 that’s set
to the installation location of Visual Studio .NET. If this installer property is
anything other than an empty string, the expression is True and setup contin-
ues; otherwise, a message is shown to the user with the value you entered in
the Message property.

C13618747.fm  Page 429  Friday, January 10, 2003  3:54 PM



430 Part III Deployment, Help, and Advanced Projects

Installing an Assembly in the PublicAssemblies Folder
As we’ve said a couple times in this book, if you build an assembly that
you want to call from a macro, you must put the assembly into a specific
folder so you can add a reference to that assembly in the Macros editor. If
you use the default installation location of Visual Studio .NET, which is
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\Pub-
licAssemblies, you cannot assume it’s correct because the user might have
selected a different installation location for Visual Studio .NET. You can
use the custom Registry Search installer property we just described to ver-
ify that Visual Studio .NET is installed, and then install the assembly in the
correct location so it can be used by a macro.

To place the assembly in the correct place, open the File System edi-
tor, right-click on the File System On Target Machine node, and choose
Add Special Folder | Custom Folder. In the Properties window for this
custom folder, type the name of the custom Registry Search installer prop-
erty surrounded by square brackets (in this case, [REGISTRYVALUE1]), and
then type \PublicAssemblies in the DefaultLocation property. Then add
the primary output of the assembly to the custom folder. When the .msi
file is installed, it places the assembly in the correct location so it can be
referenced in the Macros editor.

Conditions
If you looked closely at the Properties window while working with the File Sys-
tem, Registry, Custom Actions, or File Types editors, you might have noticed
the Condition property. This property controls whether a project output, regis-
try key, or file type is installed on the computer or if a custom action is run. You
can use the same condition algebra you use to create a launch condition to set
the Condition property. For example, suppose you want to give the user the
option of installing the source code for an add-in that you created. To do this,
you run the Add-in Wizard to completion, and after the source files have been
generated, you open the User Interface editor for the setup project. Insert a
RadioButtons (2 Buttons) dialog box into the User Interface editor, open the
Properties window, and set the Button1Label property to Yes, install source
code and set the Button2Label property to No, do not install source code.
Make note of the installer property name of this dialog box, BUTTON2, and the
values of the buttons in the dialog box, 1 and 2.

C13618747.fm  Page 430  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 431

Next, open the File System editor for the setup project, right-click on the
Application Folder node, choose Add | Folder, and then enter source. This cre-
ates the folder to hold the source files for the add-in. To add the source files
output, right-click on the source folder, choose Add | Project Output, and select
the Source Files output. If you build and install the .msi file for the add-in after
making these changes, the source files are always installed because the condi-
tion on the source files output isn’t connected to the option the user selects in
the RadioButtons (2 Buttons) dialog box. To connect the dialog box to the
source files folder you created, select the source folder in the File System editor,
and in the Properties window enter the expression BUTTON2 = 1 in the Con-
dition property. Now if you install the .msi file and if the user selects the first
option button, the sources are installed in a folder called sources. But if the user
selects the second option button—the one that corresponds to the value 2—
the expression BUTTON2 = 1 evaluates to False and the source folder isn’t cre-
ated. Because the source file output is contained in the source folder, that
project output is also not installed. You could place the condition BUTTON2 =
1 on the source file project output so that if the user selects the second option
button, the source files are not installed, but the source folder will have been
created, leaving an empty folder on the user’s computer. The samples for this
book contain the setup project for the SourceFilesAddin sample, which demon-
strates how you can optionally install the source code to an add-in project. 

Merge Modules
When creating software for the Windows operating system, developers com-
monly place code into DLLs so it can be shared among multiple applications.
To distribute software to your customers, you could install the DLLs you create
with a .msi setup project, but this would be a less-than-ideal way to install the
code. Suppose you’ve built a .NET user control library that you want to sell;
your customers can use this library to build their own applications. How can
customers redistribute this library to their own customers? You could provide
detailed instructions that explain to your users how to include the component
in their own .msi setup. However, this could be problematic because if they
don’t install your component properly, other software that uses your compo-
nent might stop functioning. Alternatively, you could create a setup project that
installs and uninstalls your library, but that’s not a good option because your
users would have to give their customers two .msi files and make sure they
were installed in the correct order.

To make installing your library easy and reduce the risk of a user incor-
rectly installing and uninstalling a component, you can store your library in a

C13618747.fm  Page 431  Friday, January 10, 2003  3:54 PM



432 Part III Deployment, Help, and Advanced Projects

merge module (.msm file). Merge modules are like the DLLs of a setup project.
You can use a DLL to store code shared among different applications; a merge
module contains installation logic shared among many .msi files. Merge module
projects are similar to setup projects, except you cannot use the User Interface
and Launch Conditions editors. One other difference between a setup project
and a merge module project is that with a merge module project, the File Sys-
tem editor adds the folders Web Custom Folder and Module Retargetable
Folder. If you place files in these folders, the user consuming your merge mod-
ule can choose which location on disk to place the files. The user can change
the installation path of the merge module contents by selecting the merge mod-
ule in Solution Explorer and modifying the ModuleRetargetableFolder property
in the Properties window. Consuming a merge module in a setup project is
easy; you select the setup project in Solution Explorer and choose Project | Add
| Merge Module.

Setup for .NET Programs
Suppose you’re taking the setup-building capabilities of Visual Studio .NET out
for a spin, trying out the various features. You’ve built a .NET application,
added the project output to a setup project, built the solution, and tested the
.msi file by installing the project. Everything has installed perfectly, and you
were able to run your application. Being the good developer you are, and
because you want to be sure your program works in all scenarios, you try
installing the same .msi file on a clean computer—a computer with nothing
more than the base operating system installed. When you run the setup project
on the clean computer, you’re presented with the dialog box shown in Figure
13-9. What went wrong, and why did it work fine on the development com-
puter but not the clean computer? Visual Studio .NET cannot run without the
.NET Framework installed, and the clean computer, with only the operating sys-
tem installed, doesn’t have the .NET Framework.

F13MO09Figure 13-9 The error message you see when you try to install a .NET
program on a computer that doesn’t have the .NET Framework installed

C13618747.fm  Page 432  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 433

When you add output from a C# or Visual Basic .NET project to the File
System editor, Visual Studio .NET automatically adds a condition to the Launch
Conditions editor that verifies that the .NET Framework is installed. Because the
clean computer doesn’t have the .NET Framework installed, the launch condi-
tion was not satisfied and an error was displayed to the user to that effect.

To run an .msi file that contains components that use the .NET Frame-
work, you have two options. The option you choose will depend on how you
plan on distributing your software. The first option is to let the user click the
Yes button in the dialog box shown in Figure 13-9 and then install the .NET
Framework manually. This option is best if you’re distributing your software on
the Internet or using a limited-size medium such as a floppy disk that doesn’t
have enough room to hold the .NET Framework redistributable files.

If you’re shipping your program on a large media format such as a CD,
another option is better. You store the .NET Framework redistributable files on
the CD, and use a bootstrapping program to install the .NET Framework and
then your .msi file. A bootstrap program is a small bit of code that takes care of
getting the installation up and running. The bootstrap program makes sure the
.NET Framework is installed and then starts installing the .msi file. To install a
program, you should run the bootstrap program but not run the .msi file. By
default, when you build a setup project, a bootstrap program named Setup.exe
is generated and placed in the output folder for your setup project. This boot-
strap program only makes sure that the Windows Installer program is installed,
and not the .NET Framework. You don’t need to redistribute this bootstrap pro-
gram if you’re trying to install the .NET Framework because the setup program
for the .NET Framework installs the .msi installer if it isn’t on the user’s com-
puter, and you can turn off generating this bootstrap file in the setup project
Properties dialog box.

When you first add a .NET component to a setup project, a dependency to
the merge module dotnetfxredist_x86.msm is added to your project and is
marked to be excluded. You might assume that you can include this merge
module in your setup project (instead of exclude it) to set up the .NET Frame-
work if needed, but this is not what this merge module does. This merge mod-
ule contains assemblies that are part of the .NET Framework—such as
System.XML, System.Web, and so forth—and should be on the user’s computer
if the use has the .NET Framework installed. This merge module doesn’t contain
files that make up the common language runtime (CLR), so if you were to
include this merge module in your setup project, you’d be including many
assemblies that the user should already have installed but not everything the
user needs to run a .NET program.

C13618747.fm  Page 433  Friday, January 10, 2003  3:54 PM



434 Part III Deployment, Help, and Advanced Projects

To make installing the .NET Framework with your program easier, you can
use the Bootstrapper sample, which is included with the samples for this book.
This sample, written using Visual C++, performs a couple of steps when it first
runs. First, it checks to make sure another instance of the bootstrapping pro-
gram isn’t running because if one is already running, errors can arise if the other
instance is started. To ensure that another instance is not running, the bootstrap
program creates a mutex; mutexes are shared across process boundaries, so an
error is generated if the mutex has already been created by another instance of
the bootstrap program. This error condition signals that another instance is run-
ning; a message is displayed to the user and then the bootstrap program exits.
The second step the bootstrap program performs is to read a file called
Setup.ini, which needs to be located in the same folder as the bootstrap execut-
able. This file describes to setup where it can find, among other things, the
.NET Framework redistributable file. An example Setup.ini file is shown here:

[Setup]
InstallName=Setup
FrameworkVersionRequired=v1.1
UseLocaleForFindingRedist=1
FrameworkRedistName=DotNetfx
FrameworkInstallPath=FrameworkRedist
MSIFilePath=Setup.msi

All the values in this INI file are optional; if a particular key and value
aren’t found, the value as shown in this example is used. The meanings of these
values are:

� InstallName The name of the product being installed. The value
defaults to Setup if a name is not supplied. This string is used to dis-
play the name of your program in the user interface of the bootstrap
program.

� FrameworkVersionRequired The version of the .NET Frame-
work in use by the program being installed. If a currently installed
.NET Framework with the version that matches this string is found,
installation of the .NET Framework is skipped. This value can be
v1.0 (the letter v must precede the version number, and the trailing 0
is required) or v1.1. v1.0 is the version of the .NET Framework
installed with Visual Studio .NET 2002, and v1.1 is the version of the
.NET Framework installed with Visual Studio .NET 2003.

� FrameworkRedistName The name of the executable file (with-
out the .exe filename extension) that holds the .NET Framework

C13618747.fm  Page 434  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 435

redistributable file. The name of this executable is always DotNetfx,
so in most situations you don’t need to specify this value.

� UseLocaleForFindingRedist If this value is 1, the bootstrap pro-
gram attempts to find and install a localized version of the .NET
Framework redistributable from the CD. Up to this point, the .NET
Framework has been localized into nine languages: English, French,
German, Italian, Japanese, Spanish, Chinese Traditional, Chinese
Simplified, and Korean. If a localized version needs to be installed,
the bootstrap program retrieves the language used by the operating
system and uses this language, or locale, when searching for the
redistributable. If this value is 0, the bootstrap program doesn’t use
the operating system language when searching for the redistributable
file. If your program is not localized into different languages, you
should distribute the localized version of the .NET Framework that
your user customer would use and set this value to 0.

� FrameworkInstallPath The path relative to the bootstrap pro-
gram where the .NET Framework redistributable file can be found.
Suppose you have the bootstrap code in the folder D:\MyProgram-
Setup and the FrameworkInstallPath value is set to its default value,
FrameworkRedist. The bootstrap program will look for the .NET
Framework redistributable file in the path C:\MyProgramSetup\
FrameworkRedist\DotNetfx.exe. If the value of UseLocaleForFinding-
Redist is set to 1, the language identifier is inserted into this path
between the value for FrameworkInstallPath and the FrameworkRe-
distName value. Table 13-3 shows the language identifiers for the var-
ious languages used; if the language is English, for example, the
redistributable is searched for at D:\MyProgramSetup\FrameworkRe-
dist\9\DotNetfx.exe. If the redistributable is not found in the path
with the language identifier or if a language being used by the oper-
ating system is not supported, the path without the language identifier
is searched. If all the search options have been exhausted and the
redistributable hasn’t been found, an error is given and setup exits.

� MSIFilePath The path relative to the bootstrap program where
the setup .msi file can be found. If the bootstrap program is in the
folder D:\MyProgramSetup and the default value of Setup.msi is
used for  th is  key,  the path searched is  D:\MyProgram-
Setup\Setup.msi.

C13618747.fm  Page 435  Friday, January 10, 2003  3:54 PM



436 Part III Deployment, Help, and Advanced Projects

Note Installing the proper language version of the .NET Framework
is important because although it might seem that only the program
being installed will be affected, your users have to live with the lan-
guage of the .NET Framework you install unless they uninstall and
then install a new version of the language they want to use.

Creating a Setup CD
Today, most computers have a CD burner installed, and you can find blank CDs
at your local discount store for well under 50 cents each. The availability of CD
burners, cheap media, and the setup development tools available with Visual
Studio .NET make distributing your software programs easy. To create a CD
with your .msi file on it, you must combine the bootstrap program, the .msi file
to install your program, and a few other files to make installation as seamless as
possible for your users.

Note If you intend to place the .NET Framework redistributable on
the CD for your program or make it available for download from a non-
Microsoft Web site, you must read and agree to the Microsoft .NET
Framework SDK end user license agreement (EULA) before redistrib-
uting the .NET Framework.

Table 13-3 Languages and Their Identifiers

Language Language Identifier

English 9

French 12

German 7

Italian 16

Japanese 17

Spanish 10

Chinese If the operating system is using Chinese Traditional, the lan-
guage identifier is 1228. Otherwise, Chinese Simplified is used, 
which is language ID 2052.

Korean 18

C13618747.fm  Page 436  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 437

The Windows operating system simplifies installing software on a CD with
AutoPlay. When a CD is inserted into the computer’s CD drive, Windows exam-
ines the root folder of the CD, and if it finds a file called autorun.inf, it reads,
parses, and then does the work as described in that file. Here’s an example
autorun.inf file that you can place in the root folder of a CD to automatically
start running the bootstrap program when the CD is inserted into the drive:

[autorun]
open=setup.exe
icon=setup.ico
label=My Setup
shell\launch\command=Setup.exe
shell\launch=&Install this program

The meanings of each entry in this file are:

� open When the CD is inserted into the CD drive, this is the path to
a file (without the drive letter) that will be run. If you’re using the
bootstrap program to install the .NET Framework and your program,
you should give the path to the bootstrap program; otherwise, you
can specify the relative path to the .msi file.

� icon The path to an icon on the disk (without the drive letter)
that’s displayed in Windows Explorer for the CD. The path can
point to an .ico file or to an executable or DLL file. If the path is to
an executable or DLL file, the path should be followed by a comma
and then the zero-based index of an icon within the resources of
that file.

� label The text to display as a label next to the CD drive in Win-
dows Explorer.

� shell\verbname If the user right-clicks on the CD drive in Win-
dows Explorer, the text following this entry is shown on the shortcut
menu. The text verbname is arbitrary and can be any string, as long
as it contains only alphanumeric characters. The text following this
key name can contain any character, and if the ampersand character
is used, the accelerator key follows; use a double ampersand if you
want the string to contain the ampersand character.

� shell\verbname\command If the user right-clicks on the CD
drive in Windows Explorer and chooses the command specified in
the shell\verbname line, the program pointed to by the path spec-
ified is run. The verbname string here is also arbitrary, but it

C13618747.fm  Page 437  Friday, January 10, 2003  3:54 PM



438 Part III Deployment, Help, and Advanced Projects

should match the name used in the previous line. The autorun.inf
file can contain any number of these shell\verbname pairs
(including 0 entries), with each item appearing on the CD drive
shortcut menu, but each pair of items should use a matching but
unique pair.

Once you create your autorun.inf file, you must gather all the files that will
be placed on the CD; this requires you to download the .NET redistributable
files from Microsoft’s Web site. Because the redistributable file is over 20 MB in
size, this file (or files, if you intend to offer your users localized versions of the
redistributable files) is not included with the samples for this book. Figure 13-10
shows the layout of the CD with the typical components necessary to install
your program. This layout (without the .NET Framework redistributable files)
can be found among the samples for this book in the folder SetupCD. To build
a setup CD, you simply copy your .msi file into this folder, burn its contents to
a writable CD, and you’re done! You’ve just created a professional setup for
your software.  

F13MO10Figure 13-10 The directory structure of a setup CD if you offer localized
versions of the .NET Framework (left) and a nonlocalized setup (right)

C13618747.fm  Page 438  Friday, January 10, 2003  3:54 PM



Chapter 13 Designing Setup Projects 439

Setting Up the Book’s Samples
If you downloaded and installed the sample files that accompany this
book, you ran an .msi file that was built with the setup tools in Visual Stu-
dio .NET. This setup .msi file was built using many of the concepts
described in this chapter, including installer properties, custom actions,
the Registry editor, Web setup projects, and more. The source code for the
setup project and the custom actions used can be found in the folder
InsideVSNetSetup. For details about how to rebuild the Inside Visual Stu-
dio .NET 2003 samples .msi file, consult the Readme.htm file in the
InsideVSNetSetup folder.

Looking Ahead

All users, regardless of their skill level, sometimes need help completing a task.
Visual Studio .NET provides a full-featured help system to display MSDN con-
tents. In the next chapter, we’ll look at how you can use that system and how
you can customize it to include your own help topics.

C13618747.fm  Page 439  Friday, January 10, 2003  3:54 PM



C13618747.fm  Page 440  Friday, January 10, 2003  3:54 PM


