[image: C:\Users\jenlin\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\KN5ONHWU\dep_WindowsLogo.png]
HID Sensors Usages - 2
[bookmark: _GoBack]HID Sensors Usages
Annotations for Windows HID Sensor Class Driver
September 28, 2012
Abstract
This paper provides information about the HID Sensor Class Driver for Windows 8. It provides guidelines for developing sensor hardware and firmware that take full advantage of and work correctly with the in-box driver.
This information applies to the following operating systems:
	Windows 8

References and resources discussed here are listed at the end of this paper.
The current version of this paper is maintained on the Web at: 	
	HID Sensors Usages

Disclaimer: This document is provided “as-is”. Information and views expressed in this document, including URL and other Internet website references, may change without notice. Some information relates to pre-released product which may be substantially modified before it’s commercially released. Microsoft makes no warranties, express or implied, with respect to the information provided here. You bear the risk of using it.
Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred.
This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your internal, reference purposes. You may modify this document for your internal, reference purposes.
© 2012 Microsoft. All rights reserved.

[image: C:\Users\jenlin\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\KN5ONHWU\dep_MicrosoftLogotype.png]

Document History
	Date
	Change
	
	
	

	September 28, 2012
	Updated to reflect rebranding

	July 13, 2012
	Updated HID_USAGE_SENSOR_PROPERTY_REPORTING_STAT

	May 31, 2012
	First publication

Contents
0.	Introduction	4
0.1	Summary	4
0.2	Background	4
0.3	Approach	4
1.	Sensor Page (0x20)	5
1.1 	Sensor Device Usages	5
1.2 	Sensor Field Usages: Modifiers	14
1.3 	Sensor Field Usages: States	15
1.4 	Sensor Field Usages: Events	16
1.5 	Sensor Field Usages: Properties	16
1.5.1	HID sensor property usages	16
1.5.2 	HID sensor property defaults	32
1.5.3	HID sensor input report properties and datafield usages	45
1.6	Biometric Sensor Field Usages	47
1.7	Electrical Sensor Field Usages	48
1.8	Environmental Sensor Field Usages	50
1.9	Light Sensor Field Usages	51
1.10	Location Sensor Field Usages	52
0.11	Mechanical Sensor Field Usages	52
0.12	Motion Sensor Field Usages	53
0.13	Orientation Sensor Field Usages	56
0.14	Scanner Sensor Field Usages	62
0.15	Time Sensor Field Usages	62
0.16	Custom Sensor Field Usages	62
0.17	Generic Sensor Field Usages	69
1.	Sensor Backgrounder	70
1.1	Glossary	70
1.2	Sensor Taxonomy and Object Model	71
2.	Sensor Interaction via HID	71
2.1	Related Documents	71
2.2	Functional Overview	71
2.3	HID Logical Devices	71
2.4	HID Reports	71
2.5	HID Report IDs	71
2.6	HID Report Items	72
2.6.1	HID Report Item packing options	72
2.7	HID Usages	72
2.7.1	HID Usage Types	72
2.7.2	HID Selectors	72
2.8	HID Usage Page	73
2.9	HID Units	73
2.10	HID Unit Exponents	73
2.11	3D Coordinates and Compass Points	73
3.	Illustrative Examples	73
3.1	Include File Definitions	74
3.2	Special Constructions	99
3.2.1	Values, Types, and Unit Exponents	99
3.2.2	Extended Properties	101
3.2.3	Modifiers: Per-datafield Properties	107
3.2.4	Event Thresholds	112
3.2.5	Sensor Collections	112
3.2.6	Custom Sensor	116
3.2.7	Generic Sensor	127
3.3	Illustrative Sensor Report Descriptors	130
3.3.1	Biometric: Human Presence	130
3.3.2	Biometric: Human Proximity	133
3.3.3	Biometric: Touch	136
3.3.4	Electrical: Current	138
3.3.5	Electrical: Power	141
3.3.6	Electrical: Voltage	144
3.3.7	Electrical: Potentiometer	147
3.3.8	Electrical: Frequency	150
3.3.9	Environmental: Atmospheric Pressure	153
3.3.10	Environmental: Humidity	156
3.3.11	Environmental: Temperature	159
3.3.12	Light: Ambient Light	161
3.3.13	Location: GPS	165
3.3.14	Mechanical: Switches	165
3.3.15	Motion: Accelerometer	172
3.3.16	Motion: Gyrometer	182
3.3.17	Motion: Motion Detector	190
3.3.18	Orientation: Compass	193
3.3.19	Orientation: Inclinometer	200
3.3.20	Orientation: Distance	209
3.3.21	Orientation: Device Orientation	218
4.	Sensor Implementation and Debugging – Tips & Tricks	222
4.1	Using required and optional datafields	222
4.1.1	Out-of-range datafield values	223
4.1.2	Controlling datafield values	223
4.2	Using dynamic datafields	223
4.3	Using dynamic properties	224
4.4	Using Custom sensors and datafields	224
4.5	Setting device properties	225
4.6	Debugging a sensor or sensor collection	225
4.7	Using sensor logging	227

0. [bookmark: _Toc335659880]
Introduction

[bookmark: _Toc335659881] Summary
This is a companion document to the HID Sensor Usage Tables document. Its purpose is to provide an annotated guide to the HID Sensor Page and explain what is and is not supported by the Windows 8 HID Sensor Class Driver and how that support is used by a sensor device.
0.2 [bookmark: _Toc335659882]Background
The HID Sensor Usage Tables document describes HID Usages for the Sensor Page. While this document goes into great detail about the various usage definitions, it is less prescriptive about how hardware developers use the information to build sensor devices that are compliant with the HID specification and with device drivers that support those sensors. This companion document is intended as a supplement to provide prescriptive guidance specifically for the Windows HID Sensor Class Driver and how to access the sensors defined by this specification from the Windows Sensor API.
For more information, see the Windows Sensor API documentation.
This document does not specify the means by which the sensor gathers the data reported to the driver. For guidance on how to gather sensor data that is useful to the Windows operating system, see the following documents:
· Motion Sensor applications
http://msdn.microsoft.com/en-us/library/windows/hardware/br259127.aspx
· Ambient Light Sensor applications
http://msdn.microsoft.com/en-us/windows/hardware/gg463470
· More information on the HID Sensor Class Driver
http://msdn.microsoft.com/en-us/library/windows/hardware/br259128.aspx
0.3 [bookmark: _Toc335659883]Approach
The organization of the HID Sensor Usage Tables document has been preserved in this document but, for the most part, the content of that document is not repeated. Rather, this companion document provides additional clarifying content and implementation recommendations.
Throughout this document, the following terms are used for the sake of brevity:
· API: The Windows Sensor Platform API
· Client: An application communicating with a sensor through the API
· Device: A sensor device implemented to conform to the Specification and the API
· Driver: The Windows HID Sensor Class Driver
· Implementer: The organization implementing a device
· PC: The system hosting the Windows operating system
· Sensor: An individual sensor implemented on a device. A device may support more than one sensor, and may support more than one sensor of the same category and type
· Specification: The HID Sensor Usage Tables document

1. [bookmark: _Toc335659884]Sensor Page (0x20)
The sensor page defined in the Specification provides usages for sensors. There are no sensor page additions to those defined in the Specification.

[bookmark: _Toc321224852][bookmark: _Toc335659885]1.1 	Sensor Device Usages
The Windows Sensor API describes sensors as being comprised of a Sensory Category (a GUID), a Sensor Type (a GUID), and a collection of Sensor Datafields (each a PROPERTYKEY.) There is no explicit mapping between the Sensor Type and the Sensor Datafield. As far as the API is concerned, any Sensor Type can contain any collection of Sensor Datafields. Table 1 provides the recommended mapping for each supported Sensor Category/Type and the collection of supported Sensor Datafields. This table further extends the mapping to include the relationship between the HID Sensor Usage and the Sensor Category/Type.
[bookmark: _Toc321224932]When it is stated that a datafield is required for the sensor at the API, the equivalent HID Usage must be available in the input report as defined by the input report descriptor. If it is not present, the value for that datafield at the API is VT_EMPTY. When it is stated that a datafield is optional for the sensor at the API, the equivalent HID Usage may be available in the input report as defined by the input report descriptor. If it is not present in the input report, that datafield does not appear at the API.
Table 1. HID sensor usage to Windows sensor datafield mapping
	Driver supports the following Sensor Device Usages: Usage ID
	Windows Sensor Category and Type
	Windows Sensor Datafields

	Time
No equivalent HID Usage
	All Sensor Categories

All Sensor Types
	Required datafields
SENSOR_DATA_TYPE_TIMESTAMP
Note: this datafield will be present in all sensors. The value of this is assigned by the driver when an input packet is received by the driver.
The driver does not support the “time” usages in the specification. See section 1.15.

	Biometric: Human Presence
0x11
HID_USAGE_SENSOR_TYPE_BIOMETRIC_PRESENCE

	SENSOR_CATEGORY_BIOMETRIC

SENSOR_TYPE_HUMAN_PRESENCE

	Required datafields:
SENSOR_DATA_TYPE_HUMAN_PRESENCE
Optional datafields: none

	Biometric: Human Proximity
0x12
HID_USAGE_SENSOR_TYPE_BIOMETRIC_PROXIMITY

	SENSOR_CATEGORY_BIOMETRIC

SENSOR_TYPE_HUMAN_PROXIMITY
	Required datafields:
SENSOR_DATA_TYPE_HUMAN_PROXIMITY_METERS
Optional datafields: none

	Biometric: Human Touch
0x13
HID_USAGE_SENSOR_TYPE_BIOMETRIC_TOUCH

	SENSOR_CATEGORY_BIOMETRIC

SENSOR_TYPE_TOUCH
	Required datafields:
SENSOR_DATA_TYPE_TOUCH_STATE
Optional datafields: none

	Electrical: Current
0x22
HID_USAGE_SENSOR_TYPE_ELECTRICAL_CURRENT

	SENSOR_CATEGORY_ELECTRICAL

SENSOR_TYPE_CURRENT

	Required datafields:
SENSOR_DATA_TYPE_CURRENT_AMPS
Optional datafields: none

	Electrical: Power
0x23
HID_USAGE_SENSOR_TYPE_ELECTRICAL_POWER

	SENSOR_CATEGORY_ELECTRICAL

SENSOR_TYPE_ELECTRICAL_POWER
	Required datafields:
SENSOR_DATA_TYPE_ELECTRICAL_POWER_WATTS
Optional datafields: none

	Electrical: Voltage
0x26
HID_USAGE_SENSOR_TYPE_ELECTRICAL_VOLTAGE

	SENSOR_CATEGORY_ELECTRICAL

SENSOR_TYPE_VOLTAGE
	Required datafields:
SENSOR_DATA_TYPE_VOLTAGE_VOLTS
Optional datafields: none

	Electrical: Potentiometer
0x27
HID_USAGE_SENSOR_TYPE_ELECTRICAL_POTENTIOMETER

	SENSOR_CATEGORY_ELECTRICAL

SENSOR_TYPE_POTENTIOMETER

	Required datafields:
SENSOR_DATA_TYPE_ELECTRICAL_PERCENT_OF_RANGE
Optional datafields: none

	Electrical: Frequency
0x28
HID_USAGE_SENSOR_TYPE_ELECTRICAL_FREQUENCY

	SENSOR_CATEGORY_ELECTRICAL

SENSOR_TYPE_FREQUENCY

	Required datafields:
SENSOR_DATA_TYPE_ELECTRICAL_FREQUENCY_HERTZ
Optional datafields: none

	Environmental: Atmospheric Pressure
0x31
HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE

	SENSOR_CATEGORY_ENVIRONMENTAL

SENSOR_TYPE_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE

	Required datafields:
SENSOR_DATA_TYPE_ATMOSPHERIC_PRESSURE_BAR
Optional datafields: none

	Environmental: Humidity
0x32
HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_HUMIDITY

	SENSOR_CATEGORY_ENVIRONMENTAL

SENSOR_TYPE_ENVIRONMENTAL_HUMIDITY

	Required datafields:
SENSOR_DATA_TYPE_RELATIVE_HUMIDITY_PERCENT
Optional datafields: none

	Environmental: Temperature
0x33
HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_TEMPERATURE

	SENSOR_CATEGORY_ENVIRONMENTAL

SENSOR_TYPE_ENVIRONMENTAL_TEMPERATURE

	Required datafields:
SENSOR_DATA_TYPE_TEMPERATURE_CELSIUS
Optional datafields: none

	Light: Ambient Light
0x41
HID_USAGE_SENSOR_TYPE_LIGHT_AMBIENTLIGHT

	SENSOR_CATEGORY_LIGHT

SENSOR_TYPE_AMBIENT_LIGHT

	Required datafields:
SENSOR_DATA_TYPE_LIGHT_LEVEL_LUX
Optional datafields:
SENSOR_DATA_TYPE_LIGHT_TEMPERATURE_KELVIN
SENSOR_DATA_TYPE_LIGHT_CHROMACITY

	Mechanical: Boolean Switch
0x61
HID_USAGE_SENSOR_TYPE_MECHANICAL_BOOLEAN_SWITCH

	SENSOR_CATEGORY_MECHANICAL

SENSOR_TYPE_BOOLEAN_SWITCH

	Required datafields:
SENSOR_DATA_TYPE_BOOLEAN_SWITCH_STATE
Optional datafields: none

	Mechanical: Boolean Switch Array
0x62
HID_USAGE_SENSOR_TYPE_MECHANICAL_BOOLEAN_SWITCH_ARRAY

	SENSOR_CATEGORY_MECHANICAL

SENSOR_TYPE_BOOLEAN_SWITCH_ARRAY

	Required datafields:
SENSOR_DATA_TYPE_BOOLEAN_SWITCH_ARRAY_STATES
Optional datafields: none

	Mechanical: Multivalue Switch
0x63
HID_USAGE_SENSOR_TYPE_MECHANICAL_MULTIVALUE_SWITCH

	SENSOR_CATEGORY_MECHANICAL

SENSOR_TYPE_MULTIVALUE_SWITCH

	Required datafields:
SENSOR_DATA_TYPE_MULTIVALUE_SWITCH_STATE
Optional datafields: none

	Motion: Accelerometer 1D
0x71
HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_1D

	SENSOR_CATEGORY_MOTION

SENSOR_TYPE_ACCELEROMETER_1D

	Required datafields:
SENSOR_DATA_TYPE_ACCELERATION_X_G
Optional datafields: none

	Motion: Accelerometer 2D
0x72
HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_2D

	SENSOR_CATEGORY_MOTION

SENSOR_TYPE_ACCELEROMETER_2D

	Required datafields:
SENSOR_DATA_TYPE_ACCELERATION_X_G
SENSOR_DATA_TYPE_ACCELERATION_Y_G
Optional datafields: none

	Motion: Accelerometer 3D
0x73
HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_3D

	SENSOR_CATEGORY_MOTION

SENSOR_TYPE_ACCELEROMETER_3D

	Required datafields:
SENSOR_DATA_TYPE_ACCELERATION_X_G
SENSOR_DATA_TYPE_ACCELERATION_Y_G
SENSOR_DATA_TYPE_ACCELERATION_Z_G
Optional datafields: none

	Motion: Gyrometer 1D
0x74
HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_1D

	SENSOR_CATEGORY_MOTION

SENSOR_TYPE_GYROMETER_1D

	Required datafields:
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND
Optional datafields: none

	Motion: Gyrometer 2D
0x75
HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_2D

	SENSOR_CATEGORY_MOTION

SENSOR_TYPE_GYROMETER_2D

	Required datafields:
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Y_DEGREES_PER_SECOND
Optional datafields: none

	Motion: Gyrometer 3D
0x76
HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_3D

	SENSOR_CATEGORY_MOTION

SENSOR_TYPE_GYROMETER_3D

	Required datafields:
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND

SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Y_DEGREES_PER_SECOND

SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Z_DEGREES_PER_SECOND

Optional datafields: none

	Motion: Motion Detector
0x77
HID_USAGE_SENSOR_TYPE_MOTION_MOTION_DETECTOR

	SENSOR_CATEGORY_MOTION

SENSOR_TYPE_MOTION_DETECTOR

	Required datafields:
SENSOR_DATA_TYPE_MOTION_STATE
Optional datafields: none

	Orientation: Compass 1D
0x81
HID_USAGE_SENSOR_TYPE_ORIENTATION_COMPASS_1D

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_COMPASS_1D

	Required datafields:
SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_MAGNETIC_NORTH_DEGREES
Optional datafields:
SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_TRUE_NORTH_DEGREES
SENSOR_DATA_TYPE_MAGNETIC_HEADING_MAGNETIC_NORTH_DEGREES
SENSOR_DATA_TYPE_MAGNETIC_HEADING_TRUE_NORTH_DEGREES
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_X_MILLIGAUSS
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Y_MILLIGAUSS
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Z_MILLIGAUSS

	Orientation: Compass 3D
0x83
HID_USAGE_SENSOR_TYPE_ORIENTATION_COMPASS_3D

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_COMPASS_3D

	Required datafields:
SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_MAGNETIC_NORTH_DEGREES
Optional datafields:
SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_TRUE_NORTH_DEGREES
SENSOR_DATA_TYPE_MAGNETIC_HEADING_MAGNETIC_NORTH_DEGREES
SENSOR_DATA_TYPE_MAGNETIC_HEADING_TRUE_NORTH_DEGREES
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_X_MILLIGAUSS
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Y_MILLIGAUSS
SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Z_MILLIGAUSS

	Orientation: Inclinometer 1D
0x84
HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_1D

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_INCLINOMETER_1D

	Required datafields:
SENSOR_DATA_TYPE_TILT_X_DEGREES
Optional datafields: none

	Orientation: Inclinometer 2D
0x85
HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_2D

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_INCLINOMETER_2D

	Required datafields:
SENSOR_DATA_TYPE_TILT_X_DEGREES
SENSOR_DATA_TYPE_TILT_Y_DEGREES
Optional datafields: none

	Orientation: Inclinometer 3D
0x86
HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_3D

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_INCLINOMETER_3D

	Required datafields:
SENSOR_DATA_TYPE_TILT_X_DEGREES
SENSOR_DATA_TYPE_TILT_Y_DEGREES
SENSOR_DATA_TYPE_TILT_Z_DEGREES
Optional datafields: none

	Orientation: Distance 1D
0x87
HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_1D

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_DISTANCE_1D

	Required datafields:
SENSOR_DATA_TYPE_DISTANCE_X_METERS
Optional datafields: none

	Orientation: Distance 2D
0x88
HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_2D

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_DISTANCE_2D

	Required datafields:
SENSOR_DATA_TYPE_DISTANCE_X_METERS
SENSOR_DATA_TYPE_DISTANCE_Y_METERS
Optional datafields: none

	Orientation: Distance 3D
0x89
HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_3D

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_DISTANCE_3D

	Required datafields:
SENSOR_DATA_TYPE_DISTANCE_X_METERS
SENSOR_DATA_TYPE_DISTANCE_Y_METERS
SENSOR_DATA_TYPE_DISTANCE_Z_METERS
Optional datafields: none

	Orientation: Device Orientation
0x8A
HID_USAGE_SENSOR_TYPE_ORIENTATION_DEVICE_ORIENTATION

	SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_AGGREGATED_DEVICE_ORIENTATION

	Required datafields:
SENSOR_DATA_TYPE_QUATERNION
Optional datafields:
SENSOR_DATA_TYPE_ROTATION_MATRIX

	Other: Custom
0xE1
HID_USAGE_SENSOR_TYPE_OTHER_CUSTOM

	SENSOR_CATEGORY_OTHER

SENSOR_TYPE_CUSTOM

	Required datafields:
SENSOR_DATA_TYPE_CUSTOM_VALUE1
Optional datafields:
SENSOR_DATA_TYPE_CUSTOM_USAGE

SENSOR_DATA_TYPE_CUSTOM_BOOLEAN_ARRAY

SENSOR_DATA_TYPE_CUSTOM_VALUE2

SENSOR_DATA_TYPE_CUSTOM_VALUE3

SENSOR_DATA_TYPE_CUSTOM_VALUE4

SENSOR_DATA_TYPE_CUSTOM_VALUE5

SENSOR_DATA_TYPE_CUSTOM_VALUE6

	Other: Generic
0xE2
HID_USAGE_SENSOR_TYPE_OTHER_GENERIC

	SENSOR_CATEGORY_OTHER

Note: The Sensor Type is dependent upon the implementation of the sensor. Refer to section 4.2.7.
	Required datafields:
Note: The required datafields are dependent upon the implementation of the sensor. Refer to section 4.2.7.
Optional datafields: none

[bookmark: _Toc321224853][bookmark: _Toc335659886]1.2 	Sensor Field Usages: Modifiers
The fields listed in Table 2 are optionally supported by the driver for all sensors.
Table 2. Selection values for Sensor Modifier Usage
	Modifier
	Description

	Modifier: None
	US – The information contained in the data field is the unmodified meaning for that data field.

	Modifier: Change Sensitivity Absolute
	US – Specifies the change sensitivity set for a particular data field. Units are the same as the data field being modified. For example, if the data field is “Temperature, Degrees Celsius”, and the absolute sensitivity is “3” then that would mean “change of ±3 Degrees Celsius”.

	Modifier: Maximum
	US – The information contained in the data field is the maximum value for that data field.

	Modifier: Minimum
	US – The information contained in the data field is the minimum value for that data field.

	Modifier: Accuracy
	US – The information contained in the data field specifies the absolute accuracy with which that data field is reported.

	Modifier: Resolution
	US – The information contained in the data field specifies the absolute precision with which that data field is reported.

	Modifier: Change Sensitivity Percent Relative
	US – Specifies the change sensitivity set for a particular data field. Units are a percentage of the “prior reading”. For example, if the data field is “Temperature, Degrees Celsius”, the prior reading was +24.0, and the percent relative sensitivity is “4” then that would mean “change of 4% from 24.0 Degrees Celsius”, (i.e., ±0.96 Degrees Celsius).

[bookmark: _Toc321224854][bookmark: _Toc335659887]1.3 	Sensor Field Usages: States
The fields listed in Table 3 are supported by the Driver for all sensors. The meaning is common for all sensors.
Table 3. Selection values for Sensor State Usage
	Sel Usage
	State Name
	Comment

	0x 0800
	Unknown
	The sensor state is unknown.

	0x 0801
	Not Available
	The sensor not available.

	0x 0802
	Ready
	Sensor is able to provide new complete and accurate data.

	0x 0803
	No Data
	The sensor is available, but is not yet providing data. It is not known in what timeframe data will, if ever, be provided.

	0x 0804
	Initializing
	The sensor is available, but is not yet providing data due to initialization activities. It is expected the sensor will provide data, but the timeframe in which that data will be available is not known.

	0x 0805
	Access Denied
	In the case where an ID must be provided to access sensor data, and the requester fails to match the ID, this state will be returned.

	0x 0806
	Error
	The sensor has encountered a major error. The sensor may recover from the state, but the time frame for recovery is unknown.

[bookmark: _Toc321224855][bookmark: _Toc335659888]1.4 	Sensor Field Usages: Events
The fields listed in Table 4 are supported by the Driver for all sensors. The meaning is common for all sensors.
Table 4. Selection values for Sensor Event Usage
	Sel Usage
	Event Name
	Comment

	0x 0810
	Unknown
	The sensor event type is not known

	0x 0811
	State Changed
	The sensor state as specified in (1.3) has changed

	0x 0812
	Property Changed
	A property value has changed

	0x 0813
	Data Updated
	A data field has changed

	0x 0814
	Poll Response
	The most current sensor data is being returned as the result of a poll request (Get Input)

	0x 0815
	Change Sensitivity
	The change sensitivity has been exceeded for a data field

[bookmark: _Toc321224856][bookmark: _Toc335659889]1.5 	Sensor Field Usages: Properties
These fields are supported by the driver for all sensors. The meaning is common for all sensors except where noted. From the perspective of the sensor device, all properties are optional: a valid sensor can be created that supports no properties whatsoever (for example, no defined Feature Report) but a sensor defined in this manner will not pass Windows Hardware Certification requirements.
However, from the perspective of the API, all the listed properties are required. In those cases, where a property is not present in the feature report, a default value is created by the driver and is present for that sensor at the API.
In order to pass Windows Hardware Certification requirements, a property with the annotation “Usage is required for certification” must be present in the feature report as defined by the feature report descriptor for that sensor.
1.5.1 [bookmark: _Toc321224857][bookmark: _Toc335659890]HID sensor property usages
Each HID usage that describes a property maps to an equivalent Windows Sensor API property. This section specifies that mapping.
[bookmark: _Toc321224935]Table 5. HID sensor usage to Windows sensor property mapping
	Usage ID
	Supported Values
	Windows Sensor Property

	Friendly Name
0x0301
HID_USAGE_SENSOR_PROPERTY_FRIENDLY_NAME

	Wide character zero-terminated string up to 31 characters
Usage is optional.
	SENSOR_PROPERTY_FRIENDLY_NAME
Default value is provided by the Driver.
Value is read-only

	Persistent Unique ID
0x0302
HID_USAGE_SENSOR_PROPERTY_PERSISTENT_UNIQUE_ID

	Wide character zero-terminated string up to 31 characters
Usage is optional.
	SENSOR_PROPERTY_PERSISTENT_UNIQUE_ID
Default value is provided by the Driver.
Value is read-only

	Sensor State
0x0201
HID_USAGE_SENSOR_STATE

	Enumerated values as described in section 1.3
Usage is required for Windows Hardware Certification.
	SENSOR_PROPERTY_STATE

	Minimum Report Interval
0x0304
HID_USAGE_SENSOR_PROPERTY_MINIMUM_REPORT_INTERVAL

	8-bit, 16-bit or 32-bit unsigned integer value
Default Unit is milliseconds
Usage is optional.
	SENSOR_PROPERTY_MIN_REPORT_INTERVAL
Default value is provided by the Driver.
Value is read-only

	Sensor Manufacturer
0x0305
HID_USAGE_SENSOR_PROPERTY_SENSOR_MANUFACTURER

	Wide character zero-terminated string up to 31 characters
Usage is optional.
	SENSOR_PROPERTY_MANUFACTURER
Default value is provided by the Driver.
Value is read-only

	Sensor Model
0x0306
HID_USAGE_SENSOR_PROPERTY_SENSOR_MODEL

	Wide character zero-terminated string up to 31 characters
Usage is optional.
	SENSOR_PROPERTY_MODEL
Default value is provided by the Driver.
Value is read-only

	Sensor Serial Number
0x0307
HID_USAGE_SENSOR_PROPERTY_SENSOR_SERIAL_NUMBER

	Wide character zero-terminated string up to 31 characters
Usage is optional.
	SENSOR_PROPERTY_SERIAL_NUMBER
Default value is provided by the driver.
Value is read-only

	Sensor Description
0x0308
HID_USAGE_SENSOR_PROPERTY_SENSOR_DESCRIPTION

	Wide character zero-terminated string up to 31 characters
Usage is optional.
	SENSOR_PROPERTY_DESCRIPTION
Default value is provided by the driver.
Value is read-only

	Sensor Connection Type
0x0309
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE

	Enumerated values as described in the clarifying notes at the end of this section.
Usage is required for Windows Hardware certification.
	SENSOR_PROPERTY_CONNECTION_TYPE
Default value is provided by the driver.
Value is read-only

	Report Interval
0x030E
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL

	32-bit unsigned value
Default Unit is milliseconds
Usage is required for Windows Hardware certification.
	SENSOR_PROPERTY_CURRENT_REPORT_INTERVAL

Default value is provided by the driver.
Value is read/write.

	Change Sensitivity Absolute
0x030F
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS

	Global form of the per-datafield property
16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is the default unit specified for the datafield to which the change sensitivity applies
Usage is required for Windows Hardware certification. See notes on per-datafield properties in section 4.2.3
Note that all sensor datafields except for the Illuminance datafield use this Absolute version of Change Sensitivity.
	SENSOR_PROPERTY_CHANGE_SENSITIVITY
Default value is provided by the driver and is dependent upon the type of sensor.
Value is read/write
See section 4.2.3 regarding per-datafield properties

	Change Sensitivity relative percent
0x0311
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_REL_PCT

	Global form of the per-datafield property
16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is the default unit specified for the datafield to which the change sensitivity applies
Usage is required for Windows Hardware certification. See notes on per-datafield properties in section 4.2.3
Note that only the Illuminance datafield uses the Relative Percent version of Change Sensitivity.
	SENSOR_PROPERTY_CHANGE_SENSITIVITY
Note: Change Sensitivity relative percent is only supported by SENSOR_TYPE_AMBIENT_LIGHT only for SENSOR_DATA_TYPE_LIGHT_LEVEL_LUX
Default value is provided by the driver, specifically by the Ambient Light sensor.
Value is read/write
See section 4.2.3 regarding per-datafield properties

	Sensor Accuracy
0x0312
HID_USAGE_SENSOR_PROPERTY_ACCURACY

	Global form of the per-datafield property
16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is the default unit specified for the datafield to which the change sensitivity applies
Usage is optional. See notes on per-datafield properties in section 4.2.3
	SENSOR_PROPERTY_ACCURACY

Default value is FLT_MAX
Value is read-only
See section 4.2.3 regarding per-datafield properties

	Sensor Resolution
0x0313
HID_USAGE_SENSOR_PROPERTY_RESOLUTION

	Global form of the per-datafield property
16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is the default unit specified for the datafield to which the change sensitivity applies
Usage is optional. See notes on per-datafield properties in section 4.2.3
	SENSOR_PROPERTY_RESOLUTION

Default value is FLT_MAX
Value is read-only
See section 4.2.3 regarding per-datafield properties

	Range Maximum
0x0314
HID_USAGE_SENSOR_PROPERTY_RANGE_MAXIMUM

	Global form of the per-datafield property
16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is the default unit specified for the datafield to which the change sensitivity applies
Usage is optional. See notes on per-datafield properties in section 4.2.3
	SENSOR_PROPERTY_RANGE_MAXIMUM

Default value is FLT_MAX
Value is read-only
See section 4.2.3 regarding per-datafield properties

	Range Minimum
0x0315
HID_USAGE_SENSOR_PROPERTY_RANGE_MINIMUM

	Global form of the per-datafield property
16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is the default unit specified for the datafield to which the change sensitivity applies
Usage is optional. See notes on per-datafield properties in section 4.2.3
	SENSOR_PROPERTY_RANGE_MINIMUM

Default value is -FLT_MAX
Value is read-only
See section 4.2.3 regarding per-datafield properties

	Reporting State
0x0316
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE

	Enumerated values as described in the clarifying notes of this section.
Usage is required for Windows Hardware certification. See notes on using Reporting State in the clarifying notes of this section
	Note: no corresponding API property. Refer to the clarifying notes of this section
Value is read/write.

	Response Curve
0x0318
HID_USAGE_SENSOR_PROPERTY_RESPONSE_CURVE

	An array of pairs of 16-bit integer or fixed point values. See the clarifying notes of this section.
Default Unit is not specified
Usage is optional. See notes on specifying the response curve in the clarifying notes of this section.
	SENSOR_PROPERTY_LIGHT_RESPONSE_CURVE

Note: Response Curve is only supported as a property by Ambient Light Sensors
Default values are provided by the Sensor API.
Value is read-only

	Power State
0x0319
HID_USAGE_SENSOR_PROPERTY_POWER_STATE

	Enumerated values as described in the clarifying notes of this section.
Usage is required for Windows Hardware certification. See notes on using Power State in the clarifying notes of this section.
	Note: no corresponding API property. Refer to the clarifying notes of this section.
Value is read/write.

	HID Usage
0x0541
HID_USAGE_SENSOR_DATA_CUSTOM_USAGE

	NOTE: the behavior here is specific to this datafield being used as a dynamic property.
To be available as a property at the API, this datafield must be present in an input report.
8-bit, 16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Usage is optional. See notes on dynamic properties in section 5.3.

	SENSOR_PROPERTY_HID_USAGE
Default value is n/a. If this field is not specified in the input report, it is not present at the API.
Value is read-only.

Clarification about how the Driver supports several of these usages follows in Table 6. This list is ordered in the likelihood of use, with the most likely usages at the top of the table and the least likely usages at the bottom.
[bookmark: _Toc321224936]Table 6. Sensor property usage clarifying notes
	Usage ID
	Clarifying Notes

	Sensor Connection Type
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE

	Read-only.
This property is a means by which the Driver can detect the method by which the Device is connected to the PC. This matters for certain applications.
The value is an 8-bit enumerated value representing the Sensor Connection Type. This can be one of three values:
1 = Sensor is internal to the physical body of the PC. This is the required connection type for any sensor that is expected to support the User Experience for sensor fusion applications on Windows 8. This includes the Accelerometer, Gyrometer, Inclinometer, Compass, Device Orientation and Ambient Light sensors.
2 = Sensor is external to the PC but attached by a cable or wireless connection (such as Bluetooth)
3 = Sensor is external to the PC but not directly attached. This might, for example, be a network connection.
The Driver will read this value from the Device and expose a corresponding value at the Sensor API.
While each sensor must specify this value, typically this value is common for all Sensors supported by a single Device.

	Reporting State
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE

	Read/Write.
This property is a means by which the Driver can minimize the power consumption of the Sensor, the Device and the PC.
The value is an 8-bit enumerated value representing the Sensor Reporting State. This can be one of two supported values, though more values are defined by the Specification:
1 = Sensor will not send any Input reports asynchronously
2 = Sensor will send Input reports asynchronously
The Driver will both read and write this value. Under normal circumstances, the Driver will write a “1” to the Sensor, and the Sensor is expected to comply by ceasing to send asynchronous input reports. This indicates that the Driver has no clients interested in periodic asynchronous data from the Sensor. This state should persist until the Driver writes a “2” to the Sensor indicating asynchronous Input reports should be sent.
It is important to note that even if the Driver has requested the Sensor cease sending asynchronous input reports, the Driver still expects the Sensor to be able to respond to a GET_INPUT command by sending a timely (within 15mS from the perspective of the Driver is suggested) asynchronous input report. This combination of a GET_INPUT followed by sending an asynchronous input report is equivalent to a synchronous request from the driver, also referred to as a polled response. This creates a requirement that, even if the Sensor is in a lower power-state it is still expected to respond in a (within 15mS from the perspective of the Driver is suggested) manner to a GET_INPUT command. A further hint is provided by the Power State. If Reporting State is “2” the Power State will set by the driver will be “Full Power.” If the Reporting State is “1” and there are clients connected to the API that can be expected to request data at any time via a GET_INPUT report, the Power State set by the driver will be “Low Power.”
Though other values are defined by the Specification, the Driver will send no other values than those noted above.
The best practice here is that the Reporting State should be controlled by the Device on a per-Sensor basis. This permits fine-grained control over Device power use by quiescing those Sensors for which there is no Client interest.

	Power State
HID_USAGE_SENSOR_PROPERTY_POWER_STATE

	Read/Write.
This property is a means by which the Driver can minimize the power consumption of the Sensor, the Device and the PC.
The value is an 8-bit enumerated value representing the Sensor Power State. This can be one of three supported values, though more values are defined by the Specification:
2 = Full Power. This is selected by the driver when the driver also requests the Sensor send Input reports asynchronously
3 = Low Power. This is selected by the driver when the driver also requests the Sensor to not send Input reports asynchronously. In this power state, the Sensor is expected to respond to synchronous requests for Input reports.
6 = Power Off. This is selected by the driver when there are no clients at the API for this Sensor.
The Driver will both read and write this value.
This value is used in conjunction with the Reporting State. If the Reporting State is “2” the driver will always accompany this with setting the Power State to “2”, or Full Power. If the Reporting State is “1” the driver can accompany this with the Power State set to either “3” (Low Power) if Clients remain connected at the API and can be expected to request data at any time, or to “6” (Power Off) if there are no Clients connected at the API.
If all Sensors on a Device are set by the driver to “Power Off” then the Device should take steps to minimize power consumption until it receives a “Low Power” or “Full Power” request for at least one sensor.

	Sensor State
HID_USAGE_SENSOR_STATE

	Read-only.
This property is a means by which the Driver can determine the current state of the Sensor. Strictly speaking this is not a property defined as are the rest of the properties for use in a Feature report. Rather, this is a property that is defined for use in the Input report. The use in a Feature report is identical to the use in an Input report.
The value is an 8-bit enumerated value representing the current state of the device. This can be one of these seven supported values:
1 = Sensor State Unknown
2 = Sensor State Ready
3 = Sensor State Unavailable
4 = Sensor State No Data
5 = Sensor State Initializing
6 = Sensor State Access Denied
7 = Sensor State Error
The Driver will read this value from the Sensor and expose a corresponding value at the Sensor API.
As noted, this same property and values must be available in the Input report. The difference in use is that this property carried in an Input report is sent asynchronously so can communicate a change in the Sensor state; this property carried in a Feature report can only be read synchronously by the Driver, and this typically happens only during Sensor initialization and during a change in Client count or requests by Clients for changes to the Report Interval or Change Sensitivities for a Sensor.
The Sensor should send an asynchronous Input report whenever the state of the sensor changes (e.g. from Initializing to Ready.) This Input report should be sent no matter the current state of Reporting State or the Power State (unless the power is physically turned off the sensor and it is unable to respond.)

	Report Interval
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL

	Read/Write.
This property is a means by which the Driver can control the rate of events passing through the system. This is not meant to control the rate at which sampling occurs on the Sensor, only the rate at which asynchronous events are sent by the Sensor to the PC.
The value is a 32-bit unsigned integer representing in milliseconds the minimum time between successive asynchronous Input reports sent by the Device to the Driver. The value is meant for each individual Sensor, but the Device may interpret this value as for the collection of Sensors on the Device.
When sending a Feature report, the Sensor should send the value of the current Report Interval.
When receiving a Feature report, the Sensor should evaluate the requested Report Interval and set the Sensor value to the nearest value below the requested value the Sensor is able to support and immediately place that value in feature report buffer for an anticipated request for a Feature report. If the requested value is less than the Minimum Report Interval supported by the Device, the Device should set the Current Report Interval to the Minimum Report Interval.
From the Driver side, the Driver will choose a requested Report Interval from amongst the Report Intervals requested by the connected Clients. The value chosen will be the lowest value requested by all currently connected Clients that have actually specified a Report Interval. If there are only connected Clients that have not specified a Report Interval (i.e. that have accepted the default value) then the default value will be selected, This default value is determined for the driver when the driver is created.. The Driver will then write that value to the Sensor with a SET_FEATURE call and then immediately issue a GET_FEATURE to read back the value the Device was able to support. That value is then available at the API.
It is important to note that when testing the implementation of this property that the value written to the Sensor is dependent upon the values requested by the current Sensor Clients. It is best when testing this property to have only a single Client connected, and that Client is the Client evaluating the proper function of this property from the API.

	Minimum Report Interval
HID_USAGE_SENSOR_PROPERTY_MINIMUM_REPORT_INTERVAL

	Read-only.
This property is a means by which the Driver can determine the shortest supported Report Interval. By knowing this, the Driver can avoid sending unsupported Report Interval requests to the Device.
The value is an 8-bit, 16-bit or 32-bit unsigned integer value representing in milliseconds the minimum supported time between successive asynchronous Input reports sent by the Device to the Driver. The value is meant for an individual Sensor supported by the Device.

	Change Sensitivity Absolute
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS

Change Sensitivity relative percent
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_REL_PCT

	Read/Write.
Change Sensitivity is one of five per-datafield properties supported by the Driver; the other four (minimum, maximum, accuracy and resolution,) described in another section of this table, are read-only.
This value is a 16-bit or 32-bit fixed point value representing the value of this property as requested by the Driver and supported by the Device.
Note that this section describes the global use of these properties; the bulk and specific use of these properties is described in section 4.2.3.
When receiving a Feature report, the Sensor should evaluate the requested Change Sensitivity and set the Sensor value to the nearest value below the requested value the Sensor is able to support and immediate place that value in the buffer for an anticipated request for a Feature report. For most Sensors, the Sensor should avoid setting the Change Sensitivity to a value of ‘0’ as this may cause an excessive rate of events reported to the Driver. (Exceptions to this include Sensors such as Switches, which are binary in nature.)
From the Driver side, the Driver will choose a requested Change Sensitivity from amongst the Change Sensitivities requested by the connected Clients for a particular datafield. The value chosen will be the lowest value requested by all currently connected Clients that have actually specified a Change Sensitivity for that datafield. If there are only connected Clients that have not specified a Change Sensitivity (i.e. that have accepted the default value for that datafield) then the default value will be selected. This default value is determined for the driver when the driver is created. The Driver will then write that value to the Sensor with a SET_FEATURE call and then immediately issue a GET_FEATURE to read back the value the Device was able to support. That value is then available at the API.
It is important to note that when testing the implementation of this property that the value written to the Sensor is dependent upon the values requested by the current Sensor Clients. It is best when testing this property to have only a single Client connected, and that Client is the Client evaluating the proper function of this property from the API.
Care should be taken when defining the Report Descriptor for the fields that no greater precision is implied than can actually be achieved by the Sensor. For example, an 8-bit analog-to-digital converter is unlikely to support the precision supported by a 32-bit fixed point value, but is better represented by a 16-bit fixed point value.

	Sensor Accuracy
HID_USAGE_SENSOR_PROPERTY_ACCURACY

Sensor Resolution
HID_USAGE_SENSOR_PROPERTY_RESOLUTION

Range Maximum
HID_USAGE_SENSOR_PROPERTY_RANGE_MAXIMUM

Range Minimum
HID_USAGE_SENSOR_PROPERTY_RANGE_MINIMUM

	Read-only.
These four per-datafield properties are handled identically though their individual meanings vary.
The value is a 16-bit or 32-bit fixed point value representing the value of this property as supported by the Device.
Note that this section describes the global use of these properties; the bulk and specific use of these properties is described in section 4.2.3.
The Sensor may support these properties at its discretion after due consideration of the Client needs.
Maximum and Minimum should be supported if the Client may have some interest in the Maximum and Minimum range of the valid Sensor datafield values. As an example, this permits the Client to determine if the Sensor is close to or exceeded its measurement range, enabling the Client to act appropriately. An inappropriate use of Maximum and Minimum would be for any Sensor that only supports a binary value, such as Switches.
Accuracy (how close is the measured value to the actual value) should be supported if it is important for the Client to know the Accuracy with which a Sensor measurement is being made.
Resolution (to what degree can the Sensor analog-to-digital conversion process resolve a value) should be supported if it is important for the Client to know the Resolution supported by the underlying Sensor hardware.
Care should be taken when defining the Report Descriptor for the fields that no greater precision is implied than can actually be achieved by the Sensor. An 8-bit analog-to-digital converter is unlikely to support the precision supported by a 32-bit fixed point value, but is better represented by a 16-bit fixed point value.

	Response Curve
HID_USAGE_SENSOR_PROPERTY_RESPONSE_CURVE

	Read-only.
The means by which a Sensor can specify a response curve mapping for the Driver to be consumed at the API. The Driver only uses this property for the Sensor category Light type Ambient Light.
This collection of values is an n x 2 (ex. int v[3][2]) array of either 16-bit unsigned integers, or of 16-bit fixed point numbers. Whichever Units Exponent is chosen for value specification applies to all values in the array.
On the Sensor side, the buffer constructed to hold the array of values should be in the following format:
If the buffer is specified as v[3][2] the elements are stored (in increasing addresses) as
 v[0][0], v[0][1], v[1][0], v[1][1], v[2][0], v[2][1]
Arranged in this way, the array is correctly interpreted by the Driver and presented at the API.
Note that this property is optional. If it is not present, then the API will use the default values specified for the Ambient Light sensor.

	Friendly Name
HID_USAGE_SENSOR_PROPERTY_FRIENDLY_NAME

Persistent Unique ID
HID_USAGE_SENSOR_PROPERTY_PERSISTENT_UNIQUE_ID
Sensor Manufacturer
HID_USAGE_SENSOR_PROPERTY_SENSOR_MANUFACTURER

Sensor Model
HID_USAGE_SENSOR_PROPERTY_SENSOR_MODEL

Sensor Serial Number
HID_USAGE_SENSOR_PROPERTY_SENSOR_SERIAL_NUMBER

Sensor Description
HID_USAGE_SENSOR_PROPERTY_SENSOR_DESCRIPTION

	Read only.
The means by which a Sensor can specify an alternative to the default values for these properties generated by the Driver.
Each property is a zero-terminated wide-character array of no more than 31 wide characters followed by a zero termination. No Unit or Exponent is used. The character set used is the default wide character set for the PC.
Care should be used when using these properties and specifying them in the Report Descriptor. The largest Feature Report that is supported by the Driver is a total of 64-bytes (63-bytes of payload plus the 1-byte Report ID.) Note that specifying a 31 character string will exceed this maximum Feature Report size. The Report Descriptor must take into account the definition for all other specified properties and only then specify a string length that will not exceed this maximum Feature Report size.

	HID Usage
HID_USAGE_SENSOR_DATA_CUSTOM_USAGE

	Read only.
A vendor-specific means by which a Sensor can distinguish itself from a sensor of the same category and type.
This property is available dynamically by means of its inclusion in the input report of any sensor.

[bookmark: _Toc321224858]

[bookmark: _Toc335659891]1.5.2 	HID sensor property defaults
Table 7 provides a detailed description of the various property defaults for each Sensor supported by the Driver. The default Sensor values are used as follows:
· Report Interval: The default value is chosen by the Driver on behalf of a Client in the case where the connected Client has not requested a specific Report Interval. The Driver then chooses the lowest Report Interval value from among the connected Clients that have specified a Report Interval. If there are only connected Clients that have not specified a Report Interval (i.e., that have accepted the default value), then the default value will be selected. That chosen value is written to the Sensor by means of a SET_FEATURE report. The Sensor should examine this requested value and immediately respond to an anticipated GET_FEATURE request from the driver by setting the value for Report Interval to a value that can be supported by the Sensor. If the Sensor cannot support the requested value, the value should be set to the next lowest supported value. For example, if the request is for 6ms, but the Sensor can only support 5ms, the value should be set to 5ms for the Driver to retrieve by means of a GET_FEATURE report.
· Change Sensitivity: The default value is chosen by the Driver on behalf of a Client in the case where the connected Client has not requested a specific Change Sensitivity for a datafield. The Driver then chooses the lowest Change Sensitivity value for that datafield from among the connected Clients that have specified a Change Sensitivity for that datafield. If there are only connected Clients that have not specified a Change Sensitivity for that datafield (i.e., that have accepted the default value), then the default value will be selected. That chosen value is written to the Sensor by means of a SET_FEATURE report. The Sensor should examine this requested value and immediately respond to an anticipated GET_FEATURE request from the driver by setting the value for Change Sensitivity to a value that can be supported by the Sensor. If the Sensor cannot support the requested value, the value should be set to the next lowest supported value. For example, if the request is for 0.12g, but the Sensor can only support 0.1g, the value should be set to 0.1g for the Driver to retrieve by means of a GET_FEATURE report.
· Range Maximum: The default value is used at the API unless a value is provided by the Sensor Device by means of a valid response to a GET_FEATURE request from the Driver.
· Range Minimum: The default value is used at the API unless a value is provided by the Sensor Device by means of a valid response to a GET_FEATURE request from the Driver.
· Accuracy: The default value is used at the API unless a value is provided by the Sensor Device by means of a valid response to a GET_FEATURE request from the Driver.
· Resolution: The default value is used at the API unless a value is provided by the Sensor Device by means of a valid response to a GET_FEATURE request from the Driver.
The default values are typically chosen to be a value that minimizes CPU and power use for that Sensor type while optimizing the value for a range of applications. Many applications simply opt for the default value, while those applications to which the value is important choose a specific value and over-ride the default.
Note: Datafield properties Change Sensitivity, Range Maximum, Range Minimum, Accuracy, and Resolution are all treated by the Driver (and at the API) as per-datafield properties. The Sensor, however, can choose how these per-datafield properties are supported, either as Global, Bulk, or Specific:
· Global: The value understood by and supplied to a Sensor is common to all datafields supported by that Sensor
· Bulk: The value understood by and supplied to a Sensor is common to those datafields that are related by the use of a Bulk datafield usage
· Specific: The value understood by and supplied to a Sensor is used for only a single datafield
Which of the three forms of per-datafield property support is used for a Sensor is up to the Implementer. Table 7 does not address Global per-datafield properties; only Bulk and Specific are addressed. See sections 4.2.2 and 4.2.3 for further discussion.

Table 7. Sensor properties default values
	Sensor Category, Type and Datafield
	Per-Sensor property
	Per-datafield properties

	
	Default Report Interval
	Default Change Sensitivity
	Default Range Maximum and Minimum
	Default Accuracy and Resolution

	Biometric: Human Presence
SENSOR_CATEGORY_BIOMETRIC
SENSOR_TYPE_HUMAN_PRESENCE

	Report Interval = 100 mS
Default Min Report Interval = 50 mS
	Not supported
	Not supported
	Not supported

	Biometric: Human Proximity
SENSOR_CATEGORY_BIOMETRIC
SENSOR_TYPE_HUMAN_PROXIMITY

	Report Interval = 100 mS
Default Min Report Interval = 50 mS
	SENSOR_DATA_TYPE_HUMAN_PROXIMITY_METERS
Sensitivity = 0.01 M
	SENSOR_DATA_TYPE_HUMAN_PROXIMITY_METERS
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_HUMAN_PROXIMITY_METERS
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Biometric: Human Touch
SENSOR_CATEGORY_BIOMETRIC
SENSOR_TYPE_TOUCH

	Report Interval = 100 mS
Default Min Report Interval = 20 mS
	Not supported
	Not supported
	Not supported

	Electrical: Current
SENSOR_CATEGORY_ELECTRICAL

SENSOR_TYPE_CURRENT

	Report Interval = 100 mS

Default Min Report Interval = 50 mS
	SENSOR_DATA_TYPE_CURRENT_AMPS

Sensitivity = 0.02 Amp
	SENSOR_DATA_TYPE_CURRENT_AMPS

Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_CURRENT_AMPS

Accuracy = FLT_MAX
Resolution = FLT_MAX

	Electrical: Power
SENSOR_CATEGORY_ELECTRICAL
SENSOR_TYPE_ELECTRICAL_POWER
	Report Interval = 100 mS
Default Min Report Interval = 50 mS
	SENSOR_DATA_TYPE_ELECTRICAL_POWER_WATTS
Sensitivity = 0.05 Watt
	SENSOR_DATA_TYPE_ELECTRICAL_POWER_WATTS
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_ELECTRICAL_POWER_WATTS
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Electrical: Voltage
SENSOR_CATEGORY_ELECTRICAL
SENSOR_TYPE_VOLTAGE
	Report Interval = 100 mS
Default Min Report Interval = 50 mS
	SENSOR_DATA_TYPE_VOLTAGE_VOLTS
Sensitivity = 0.02 Volt
	SENSOR_DATA_TYPE_VOLTAGE_VOLTS
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_VOLTAGE_VOLTS
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Electrical: Potentiometer
SENSOR_CATEGORY_ELECTRICAL
SENSOR_TYPE_POTENTIOMETER

	Report Interval = 100 mS
Default Min Report Interval = 50 mS
	SENSOR_DATA_TYPE_ELECTRICAL_PERCENT_OF_RANGE
Sensitivity = 0.25 Percent
	SENSOR_DATA_TYPE_ELECTRICAL_PERCENT_OF_RANGE
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_ELECTRICAL_PERCENT_OF_RANGE
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Electrical: Frequency
SENSOR_CATEGORY_ELECTRICAL

SENSOR_TYPE_FREQUENCY

	Report Interval = 100 mS

Default Min Report Interval = 50 mS
	SENSOR_DATA_TYPE_ELECTRICAL_FREQUENCY_HERTZ

Sensitivity = 0.5 Hertz
	SENSOR_DATA_TYPE_ELECTRICAL_FREQUENCY_HERTZ

Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_ELECTRICAL_FREQUENCY_HERTZ

Accuracy = FLT_MAX
Resolution = FLT_MAX

	Environmental: Atmospheric Pressure
SENSOR_CATEGORY_ENVIRONMENTAL
SENSOR_TYPE_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE
	Report Interval = 100 mS
Default Min Report Interval = 50 mS

	SENSOR_DATA_TYPE_ATMOSPHERIC_PRESSURE_BAR
Sensitivity = 0.00001 Bar
	SENSOR_DATA_TYPE_ATMOSPHERIC_PRESSURE_BAR
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_ATMOSPHERIC_PRESSURE_BAR
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Environmental: Humidity
SENSOR_CATEGORY_ENVIRONMENTAL
SENSOR_TYPE_ENVIRONMENTAL_HUMIDITY

	Report Interval = 100 mS
Default Min Report Interval = 50 mS
	SENSOR_DATA_TYPE_RELATIVE_HUMIDITY_PERCENT
Sensitivity = 0.25 Percent
	SENSOR_DATA_TYPE_RELATIVE_HUMIDITY_PERCENT
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_RELATIVE_HUMIDITY_PERCENT
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Environmental: Temperature
SENSOR_CATEGORY_ENVIRONMENTAL
SENSOR_TYPE_ENVIRONMENTAL_TEMPERATURE

	Report Interval = 100 mS
Default Min Report Interval = 50 mS

	SENSOR_DATA_TYPE_TEMPERATURE_CELSIUS
Sensitivity = 0.25 C
	SENSOR_DATA_TYPE_TEMPERATURE_CELSIUS
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_TEMPERATURE_CELSIUS
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Light: Ambient Light
SENSOR_CATEGORY_LIGHT
SENSOR_TYPE_AMBIENT_LIGHT

	Report Interval = 100 mS
Default Min Report Interval = 50 mS

	SENSOR_DATA_TYPE_LIGHT_LEVEL_LUX
Sensitivity = 1.0 Percent
SENSOR_DATA_TYPE_LIGHT_TEMPERATURE_KELVIN
Sensitivity = 0.2 K
SENSOR_DATA_TYPE_LIGHT_CHROMACITY
Sensitivity = 0.2
	SENSOR_DATA_TYPE_LIGHT_LEVEL_LUX
Max = FLT_MAX
Min = -FLT_MAX
SENSOR_DATA_TYPE_LIGHT_TEMPERATURE_KELVIN
Max = FLT_MAX
Min = -FLT_MAX
SENSOR_DATA_TYPE_LIGHT_CHROMACITY
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_LIGHT_LEVEL_LUX
Accuracy = FLT_MAX
Resolution = FLT_MAX
SENSOR_DATA_TYPE_LIGHT_TEMPERATURE_KELVIN
Accuracy = FLT_MAX
Resolution = FLT_MAX
SENSOR_DATA_TYPE_LIGHT_CHROMACITY
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Mechanical: Boolean Switch
SENSOR_CATEGORY_MECHANICAL
SENSOR_TYPE_BOOLEAN_SWITCH

	Report Interval = 100 mS
Default Min Report Interval = 20 mS

	Not supported
	Not supported
	Not supported.

	Mechanical: Boolean Switch Array
SENSOR_CATEGORY_MECHANICAL
SENSOR_TYPE_BOOLEAN_SWITCH_ARRAY

	Report Interval = 100 mS
Default Min Report Interval = 20 mS

	Not supported
	Not supported.
	Not supported

	Mechanical: Multivalue Switch
SENSOR_CATEGORY_MECHANICAL

SENSOR_TYPE_MULTIVALUE_SWITCH

	Report Interval = 100 mS

Default Min Report Interval = 20 mS

	SENSOR_DATA_TYPE_MULTIVALUE_SWITCH_STATE

Sensitivity = 0.0
	SENSOR_DATA_TYPE_MULTIVALUE_SWITCH_STATE

Max = FLT_MAX
Min = -FLT_MAX
	Not supported.

	Motion: Accelerometer 1D
SENSOR_CATEGORY_MOTION

SENSOR_TYPE_ACCELEROMETER_1D

	See Accelerometer 3D

	See Accelerometer 3D
	See Accelerometer 3D
	See Accelerometer 3D

	Motion: Accelerometer 2D
SENSOR_CATEGORY_MOTION

SENSOR_TYPE_ACCELEROMETER_2D

	See Accelerometer 3D

	See Accelerometer 3D
	See Accelerometer 3D
	See Accelerometer 3D

	Motion: Accelerometer 3D
SENSOR_CATEGORY_MOTION
SENSOR_TYPE_ACCELEROMETER_3D

	Report Interval = 100 mS
Default Min Report Interval = 16 mS

	SENSOR_DATA_TYPE_ACCELERATION_X_G
SENSOR_DATA_TYPE_ACCELERATION_Y_G
SENSOR_DATA_TYPE_ACCELERATION_Z_G
 Sensitivity = 0.02 G
	SENSOR_DATA_TYPE_ACCELERATION_X_G
SENSOR_DATA_TYPE_ACCELERATION_Y_G
SENSOR_DATA_TYPE_ACCELERATION_Z_G
 Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_ACCELERATION_X_G
SENSOR_DATA_TYPE_ACCELERATION_Y_G
SENSOR_DATA_TYPE_ACCELERATION_Z_G
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Motion: Gyrometer 1D
SENSOR_CATEGORY_MOTION

SENSOR_TYPE_GYROMETER_1D
	See Gyrometer 3D

	See Gyrometer 3D
	See Gyrometer 3D
	See Gyrometer 3D

	Motion: Gyrometer 2D
SENSOR_CATEGORY_MOTION

SENSOR_TYPE_GYROMETER_2D

	See Gyrometer 3D

	See Gyrometer 3D
	See Gyrometer 3D
	See Gyrometer 3D

	Motion: Gyrometer 3D
SENSOR_CATEGORY_MOTION
SENSOR_TYPE_GYROMETER_3D

	Report Interval = 100 mS
Default Min Report Interval = 16 mS

	SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Y_DEGREES_PER_SECOND
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Z_DEGREES_PER_SECOND
Sensitivity = 0.5 Degrees-per-Second
	SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Y_DEGREES_PER_SECOND
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Z_DEGREES_PER_SECOND
Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Y_DEGREES_PER_SECOND
SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Z_DEGREES_PER_SECOND
Accuracy = FLT_MAX
Resolution = FLT_MAX

	Motion: Motion Detector
SENSOR_CATEGORY_MOTION
SENSOR_TYPE_MOTION_DETECTOR

	Report Interval = 100 mS
Default Min Report Interval = 20 mS

	Not supported
	Not supported
	Not supported

	Orientation: Compass 1D
SENSOR_CATEGORY_ORIENTATION
SENSOR_TYPE_COMPASS_1D

	See Compass 3D

	See Compass 3D

	See Compass 3D

	See Compass 3D

	Orientation: Compass 3D
SENSOR_CATEGORY_ORIENTATION
SENSOR_TYPE_COMPASS_3D

	Report Interval = 100 mS
Default Min Report Interval = 50 mS

	SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_MAGNETIC_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_TRUE_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_MAGNETIC_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_TRUE_NORTH_DEGREES

Sensitivity = 0.2 Degree

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_X_MILLIGAUSS

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Y_MILLIGAUSS

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Z_MILLIGAUSS

Sensitivity = 0.2 Milligauss
	SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_MAGNETIC_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_TRUE_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_MAGNETIC_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_TRUE_NORTH_DEGREES

Max = FLT_MAX
Min = -FLT_MAX

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_X_MILLIGAUSS

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Y_MILLIGAUSS

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Z_MILLIGAUSS

Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_MAGNETIC_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_TRUE_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_MAGNETIC_NORTH_DEGREES

SENSOR_DATA_TYPE_MAGNETIC_HEADING_TRUE_NORTH_DEGREES

Accuracy = FLT_MAX
Resolution = FLT_MAX

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_X_MILLIGAUSS

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Y_MILLIGAUSS

SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Z_MILLIGAUSS

Accuracy = FLT_MAX
Resolution = FLT_MAX

	Orientation: Inclinometer 1D
SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_INCLINOMETER_1D

	See Inclinometer 3D

	See Inclinometer 3D
	See Inclinometer 3D
	See Inclinometer 3D

	Orientation: Inclinometer 2D
SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_INCLINOMETER_2D

	See Inclinometer 3D

	See Inclinometer 3D
	See Inclinometer 3D
	See Inclinometer 3D

	Orientation: Inclinometer 3D
SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_INCLINOMETER_3D

	Report Interval = 50 mS

Default Min Report Interval = 16 mS

	SENSOR_DATA_TYPE_TILT_X_DEGREES

SENSOR_DATA_TYPE_TILT_Y_DEGREES

SENSOR_DATA_TYPE_TILT_Z_DEGREES

Sensitivity = 0.5 Degree
	SENSOR_DATA_TYPE_TILT_X_DEGREES

SENSOR_DATA_TYPE_TILT_Y_DEGREES

SENSOR_DATA_TYPE_TILT_Z_DEGREES

Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_TILT_X_DEGREES

SENSOR_DATA_TYPE_TILT_Y_DEGREES

SENSOR_DATA_TYPE_TILT_Z_DEGREES

Accuracy = FLT_MAX
Resolution = FLT_MAX

	Orientation: Distance 1D
SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_DISTANCE_1D

	See Distance 3D

	See Distance 3D
	See Distance 3D
	See Distance 3D

	Orientation: Distance 2D
SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_DISTANCE_2D

	See Distance 3D

	See Distance 3D
	See Distance 3D
	See Distance 3D

	Orientation: Distance 3D
SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_DISTANCE_3D

	Report Interval = 100 mS

Default Min Report Interval = 50 mS

	SENSOR_DATA_TYPE_DISTANCE_X_METERS

SENSOR_DATA_TYPE_DISTANCE_Y_METERS

SENSOR_DATA_TYPE_DISTANCE_Z_METERS

Sensitivity = 0.01 M
	SENSOR_DATA_TYPE_DISTANCE_X_METERS

SENSOR_DATA_TYPE_DISTANCE_Y_METERS

SENSOR_DATA_TYPE_DISTANCE_Z_METERS

Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_DISTANCE_X_METERS

SENSOR_DATA_TYPE_DISTANCE_Y_METERS

SENSOR_DATA_TYPE_DISTANCE_Z_METERS

Accuracy = FLT_MAX
Resolution = FLT_MAX

	Orientation: Device Orientation
SENSOR_CATEGORY_ORIENTATION

SENSOR_TYPE_AGGREGATED_DEVICE_ORIENTATION

	Report Interval = 50 mS

Default Min Report Interval = 16 mS

	SENSOR_DATA_TYPE_QUATERNION

Sensitivity = 0.2

SENSOR_DATA_TYPE_ROTATION_MATRIX

Sensitivity = 0.2
	SENSOR_DATA_TYPE_QUATERNION

Max = FLT_MAX
Min = -FLT_MAX

SENSOR_DATA_TYPE_ROTATION_MATRIX

Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_QUATERNION

Accuracy = FLT_MAX
Resolution = FLT_MAX

SENSOR_DATA_TYPE_ROTATION_MATRIX

Accuracy = FLT_MAX
Resolution = FLT_MAX

	Other: Custom
SENSOR_CATEGORY_OTHER

SENSOR_TYPE_CUSTOM

	Report Interval = 100 mS

Default Min Report Interval = 50 mS

	SENSOR_DATA_TYPE_CUSTOM_USAGE

Sensitivity = 0.05 (Note that this value is not used except to provide a placeholder for the required per-datafield property. The value is the global sensitivity default for this sensor)

SENSOR_DATA_TYPE_CUSTOM_BOOLEAN_ARRAY

Sensitivity = 0.05 (Note that this value is not used except to provide a placeholder for the required per-datafield property. The value is the global sensitivity default for this sensor)

SENSOR_DATA_TYPE_CUSTOM_VALUE1

through

SENSOR_DATA_TYPE_CUSTOM_VALUE28

Sensitivity = 0.05
	SENSOR_DATA_TYPE_CUSTOM_USAGE

Max = FLT_MAX
Min = -FLT_MAX

SENSOR_DATA_TYPE_CUSTOM_BOOLEAN_ARRAY

Max = FLT_MAX
Min = -FLT_MAX

SENSOR_DATA_TYPE_CUSTOM_VALUE1

SENSOR_DATA_TYPE_CUSTOM_VALUE2

SENSOR_DATA_TYPE_CUSTOM_VALUE3

SENSOR_DATA_TYPE_CUSTOM_VALUE4

SENSOR_DATA_TYPE_CUSTOM_VALUE5

SENSOR_DATA_TYPE_CUSTOM_VALUE6

Max = FLT_MAX
Min = -FLT_MAX
	SENSOR_DATA_TYPE_CUSTOM_USAGE

Accuracy = FLT_MAX
Resolution = FLT_MAX

SENSOR_DATA_TYPE_CUSTOM_BOOLEAN_ARRAY

Accuracy = FLT_MAX
Resolution = FLT_MAX

SENSOR_DATA_TYPE_CUSTOM_VALUE1

SENSOR_DATA_TYPE_CUSTOM_VALUE2

SENSOR_DATA_TYPE_CUSTOM_VALUE3

SENSOR_DATA_TYPE_CUSTOM_VALUE4

SENSOR_DATA_TYPE_CUSTOM_VALUE5

SENSOR_DATA_TYPE_CUSTOM_VALUE6

Accuracy = FLT_MAX
Resolution = FLT_MAX

	Other: Generic
SENSOR_CATEGORY_OTHER

Note: The Sensor Type is dependent upon the implementation of the sensor. Refer to section 4.2.7
	Report Interval = 100 mS

Default Min Report Interval = 16 mS

	Note: The specific datafields used are dependent upon the implementation of the sensor. Refer to section 4.2.7
Sensitivity = 0.05
	Note: The specific datafields used are dependent upon the implementation of the sensor. Refer to section 4.2.7
Max = FLT_MAX
Min = -FLT_MAX
	Note: The specific datafields used are dependent upon the implementation of the sensor. Refer to section 4.2.7
Accuracy = FLT_MAX
Resolution = FLT_MAX

[bookmark: _Toc321224859][bookmark: _Toc335659892]1.5.3	HID sensor input report properties and datafield usages
There is no single section in the Specification that defines usages for datafields. Rather, these usages are described in sections 1.6 through 1.17. Regarding the datafield usages described in sections 1.6 through 1.17, there is some background information required how the Driver handles datafields.
The Driver supports three kinds of datafields:
1. Required datafields: Required for that particular Sensor in order for the Driver to be able to support that Sensor up through the API. The required datafields for each sensor are noted in section 1.1 of this document. If a datafield is required for a sensor and the corresponding HID usage for that sensor is not present in the input report as defined by the report descriptor, that datafield will have a value of VT_EMPTY at the API.
2. Optional datafields: Optional for a specific Sensor. The Sensor that does not include these optional datafields will be correctly supported by the Driver up through the API. Even though certain datafields are optional, the implementer should be sure that the correct optional fields are supported if Hardware Certification compliance is required. The optional datafields for each sensor are noted in section 1.1 of this document. If a datafield is optional for a sensor and the corresponding HID usage for that sensor is not present in the input report as defined by the report descriptor, that datafield will not be present at the API. For further information on using optional datafields see section 5.1.
3. Dynamic datafields: Essentially any Sensor can include any supported datafield in the report descriptor and have that datafield exposed by the Driver for that Sensor at the API. There are restrictions on certain datafields as well as on how per-datafield properties should be defined in order for the Driver to provide support. For specific information on which datafields cannot be dynamic for specific sensors, refer to sections 1.6 through 1.17. If the HID usage for a dynamic datafield is included for a sensor in the input report as defined by the report descriptor, that datafield will be present at the API. If it is not included, it will not be present. For further information on using dynamic datafields, see section 5.2.
The Driver, upon initialization or upon the first connection of a Client, will issue a GET_INPUT request to the Sensor. The Sensor must respond, asynchronously, with the most recent valid value for that sensor. If the Sensor does not do so, the SENSOR_PROPERTY_STATE at the API will be NO_DATA, and this may prevent interested Clients from connecting to the Sensor. If a Client is able to connect to the Sensor, another GET_INPUT is issued by the Driver in order to acquire the most recent data available from the Sensor.
In addition to the datafields supported in the Input Report for each Sensor, a Sensor Input Report should support the following two usages in Table 8.
Note that a valid Sensor can be created that does not support these usages in the Input Report (i.e. only datafields are supported) but that a Sensor defined in this manner will not pass Hardware Certification requirements.
[bookmark: _Toc321224937]Table 8. Input report properties
	Usage ID
	Supported Values
	Windows Sensor Property

	Sensor State
0x0201
HID_USAGE_SENSOR_STATE

	Enumerated values as described in section 1.3
	SENSOR_PROPERTY_STATE

Default value is SENSOR_STATE_NO_DATA.
Value is read-only

	Event Type
0x0202
HID_USAGE_SENSOR_EVENT

	Enumerated values as described in section 1.3
	There is no corresponding Windows Sensor Property. Event types are made known to Clients by subscription to events for a particular sensor.

Clarification of the specific way in which the Driver supports these usages follows in Table 9.
[bookmark: _Toc321224938]Table 9. Input report properties clarifying notes
	Usage ID
	Clarifying Notes

	Sensor State
0x0201
HID_USAGE_SENSOR_STATE

	Read-only.
This property is a means by which the Driver can determine the current state of the Sensor. This property is also used in the Feature report.
The value is an 8-bit enumerated value representing the current state of the device. This can be one of 7 supported values:
1 = Sensor State Unknown
2 = Sensor State Unavailable
3 = Sensor State Ready
4 = Sensor State No Data
5 = Sensor State Initializing
6 = Sensor State Access Denied
7 = Sensor State Error
The Driver will read this value from the Sensor and expose a corresponding value at the Sensor API.

	Event Type
0x0202
HID_USAGE_SENSOR_EVENT

	Read-only.
This property is a means by which the Driver can determine the reason the Driver is being sent an asynchronous Input Report.
The value is an 8-bit enumerated value representing the current state of the device. This can be one of 6 supported values:
1 = Sensor Event Unknown
2 = Sensor Event State Changed
3 = Sensor Event Property Changed
4 = Sensor Event Data Updated
5 = Sensor Event Poll Response (GET_INPUT response)
6 = Sensor Event Change Sensitivity
Other values are defined in the Specification, but only these values are supported by the Driver. The Driver will read this value from the Sensor and expose a corresponding value at the Sensor API.
This value is only used in an Input report.
Note that the sensor should send an asynchronous Input report on any change of Sensor state (e.g. from Initializing to Ready) regardless of the state of Reporting State.

[bookmark: _Toc321224860][bookmark: _Toc335659893]1.6	Biometric Sensor Field Usages
The fields listed in Table 10 are supported by the Driver for biometric sensors.
[bookmark: _Toc321224939]Table 10. Biometric sensor field usages
	Usage ID
	Supported Values
	Windows Sensor Datafield

	Human Presence
0x04B1
HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PRESENCE

	Boolean value
	SENSOR_DATA_TYPE_HUMAN_PRESENCE

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Human Proximity Range
0x04B2
HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_RANGE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is meters.

No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_HUMAN_PROXIMITY_METERS

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Human Proximity Out-of-Range
0x04B3
HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_OUT_OF_RANGE
	Boolean value
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

	This value is used internally by the driver and is not available at the API
Dynamic datafield support:
Not supported in any Sensor but Human Proximity Range.

	Human Touch State
0x04B4
HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_TOUCH_STATE

	Boolean value
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

	SENSOR_DATA_TYPE_TOUCH_STATE

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

[bookmark: _Toc335659894]1.7	Electrical Sensor Field Usages
The fields listed in Table 11 are supported by the Driver for electrical sensors.
[bookmark: _Toc321224940]Table 11. Electrical sensor field usages
	Usage ID
	Supported values
	Windows Sensor datafield

	Current
0x0502
HID_USAGE_SENSOR_DATA_ELECTRICAL_CURRENT

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Ampere.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

	SENSOR_DATA_TYPE_CURRENT_AMPS
Type = VT_R8
Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Electrical Power
0x0503
HID_USAGE_SENSOR_DATA_ELECTRICAL_POWER

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Watt.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

	SENSOR_DATA_TYPE_ELECTRICAL_POWER_WATTS
Type = VT_R8
Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Voltage
0x0506
HID_USAGE_SENSOR_DATA_ELECTRICAL_VOLTAGE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Volts.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_VOLTAGE_VOLTS
Type = VT_R8
Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Frequency
0x0507
HID_USAGE_SENSOR_DATA_ELECTRICAL_FREQUENCY

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Hertz.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ELECTRICAL_FREQUENCY_HERTZ
Type = VT_R8
Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Percent of Range
0x0509
HID_USAGE_SENSOR_DATA_ELECTRICAL_PERCENT_OF_RANGE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Percent
	SENSOR_DATA_TYPE_ELECTRICAL_PERCENT_OF_RANGE
Type = VT_R8
Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

[bookmark: _Toc321224862][bookmark: _Toc335659895]1.8	Environmental Sensor Field Usages
The fields listed in Table 12 are supported by the Driver for environmental sensors.
Table 12. Environmental Sensor Field Usages
	Usage ID
	Supported Values
	Windows Sensor Datafield

	Atmospheric Pressure
0x0431
HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Bar.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ATMOSPHERIC_PRESSURE_BAR
Type = VT_R4
Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Relative Humidity Percent
0x0433
HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_RELATIVE_HUMIDITY

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Percent.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

	SENSOR_DATA_TYPE_RELATIVE_HUMIDITY_PERCENT
Type = VT_R4
Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Temperature
0x0434
HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Celsius.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_TEMPERATURE_CELSIUS
Type = VT_R4
Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

[bookmark: _Toc321224863]
[bookmark: _Toc335659896]1.9	Light Sensor Field Usages

The fields listed in Table 13 are supported by the Driver for light sensors.
[bookmark: _Toc321224942]Table 13. Light sensor field usages
	Usage ID
	Supported Values
	Windows Sensor Datafield

	Illuminance
0x04D1
HID_USAGE_SENSOR_DATA_LIGHT_ILLUMINANCE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Lux.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

	SENSOR_DATA_TYPE_LIGHT_LEVEL_LUX

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor, but the Change Sensitivity for any Sensor other than Ambient Light will be interpreted as Change Sensitivity Absolute.

	Color Temperature
0x04D2
HID_USAGE_SENSOR_DATA_LIGHT_COLOR_TEMPERATURE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Kelvin.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

	SENSOR_DATA_TYPE_LIGHT_TEMPERATURE_KELVIN

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
Not supported in any Sensor but Ambient Light Sensor.

	Chromaticity
0x04D3
HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is not available at the API. It is only used with a data modifier to specify a per-datafield property. See section 4.2.3

	Chromaticity X
0x04D4
HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY_X
Chromaticity Y
0x04D5
HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY_Y
	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

If either Chromaticity X or Chromaticity Y values are used, both must be used to result in a valid value at the API
	SENSOR_DATA_TYPE_LIGHT_CHROMACITY

Type = [VT_VECTOR | VT_UI1]

Default value is VT_EMPTY
Note that at the API, the values for the two axes of Chromaticity (X & Y) are combined into a 2-value array.
Dynamic datafield support:
Not supported in any Sensor but Ambient Light Sensor.

[bookmark: _Toc321224864][bookmark: _Toc335659897]1.10	Location Sensor Field Usages
No location sensor fields are supported by the Driver.
0. [bookmark: _Toc322512449][bookmark: _Toc322512706][bookmark: _Toc322604559][bookmark: _Toc321224865][bookmark: _Toc335659898]Mechanical Sensor Field Usages
The fields listed in Table 14 are supported by the Driver for mechanical sensors.
[bookmark: _Toc321224943]Table 14. Mechanical sensor field usages
	Usage ID
	Supported Values
	Windows Sensor Datafield

	Boolean Switch State
0x0491
HID_USAGE_SENSOR_DATA_MECHANICAL_BOOLEAN_SWITCH_STATE

	Boolean value
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.

	SENSOR_DATA_TYPE_BOOLEAN_SWITCH_STATE

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Boolean Switch Array State
0x0492
HID_USAGE_SENSOR_DATA_MECHANICAL_BOOLEAN_SWITCH_ARRAY_STATES

	8-bit, 16-bit or 32-bit array of Boolean values represented by a single 8-bit, 16-bit or 32-bit unsigned integer value.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_BOOLEAN_SWITCH_ARRAY_STATES

Type = VT_UI4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Multivalue Switch Value
0x0493
HID_USAGE_SENSOR_DATA_MECHANICAL_MULTIVALUE_SWITCH_VALUE

	8-bit, 16-bit or 32-bit unsigned integer value representing switch value
Default Unit is Not Specified
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_MULTIVALUE_SWITCH_STATE

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

[bookmark: _Toc321224866][bookmark: _Toc335659899]Motion Sensor Field Usages
The fields listed in Table 15 are supported by the Driver for motion sensors.
[bookmark: _Toc321224944]Table 15. Motion sensor field usages
	Usage ID
	Supported Values
	Windows Sensor Datafield

	Motion State
0x0451
HID_USAGE_SENSOR_DATA_MOTION_STATE

	Boolean value
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
Note that this value if present in an Accelerometer Input report is interpreted by the Driver as a “shake” event, and as such should be sent in an asynchronous Input report (along with the current accelerometer datafield values) whenever a “shake sequence” has been detected. This report should be sent immediately without regard to the current Report Interval as long as the Reporting State is set to All Events.
	SENSOR_DATA_TYPE_MOTION_STATE

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Motion Intensity
0x045F
HID_USAGE_SENSOR_DATA_MOTION_INTENSITY

	8-bit, 16-bit or 32-bit value representing motion intensity value.
Default Unit is Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
This value will be treated as a Boolean value at the API.
Note that this value if present in an Accelerometer Input report is interpreted by the Driver as a “shake” event, and as such should be sent in an asynchronous Input report (along with the current accelerometer datafield values) whenever a “shake sequence” has been detected. This report should be sent immediately without regard to the current Report Interval as long as the Reporting State is set to All Events.
	SENSOR_DATA_TYPE_MOTION_STATE

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Acceleration
0x0452
HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is G.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is not available at the API. It is only used with a data modifier to specify a per-datafield property. See section 4.2.3
Dynamic datafield support:
Not valid for use in any Sensor but Accelerometer

	Acceleration Axis X
0x0453
HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is G.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ACCELERATION_X_G

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Acceleration Axis Y
0x0454
HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is G.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ACCELERATION_Y_G

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Acceleration Axis Z
0x0455
HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is G.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ACCELERATION_Z_G

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Angular Velocity
0x0456
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees-per-Second.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is not available at the API. It is only used with a data modifier to specify a per-datafield property. See section 4.2.3
Dynamic datafield support:
Not valid for use in any Sensor but Gyrometer

	Angular Velocity X Axis
0x0457
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_X_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees-per-Second.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Angular Velocity Y Axis
0x0458
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_Y_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees-per-Second.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Y_DEGREES_PER_SECOND

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Angular Velocity Z Axis
0x0459
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_Z_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees-per-Second.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Z_DEGREES_PER_SECOND

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

[bookmark: _Toc321224867][bookmark: _Toc335659900]Orientation Sensor Field Usages
The fields listed in Table 16 are supported by the Driver for orientation sensors.
[bookmark: _Toc321224945]Table 16. Orientation sensor field usages
	Usage ID
	Supported Values
	Windows Sensor Datafield

	Heading
0x0471
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is not available at the API. It is only used with a data modifier to specify a per-datafield property. See section 4.2.3
Dynamic datafield support:
Not valid for use in any Sensor but Compass

	Heading Compensated Magnetic North
0x0475
HID_USAGE_SENSOR_DATA_ORIENTATION_COMPENSATED_MAGNETIC_NORTH

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_MAGNETIC_NORTH_DEGREES

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Heading Compensated True North
0x0476
HID_USAGE_SENSOR_DATA_ORIENTATION_COMPENSATED_TRUE_NORTH

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_MAGNETIC_HEADING_COMPENSATED_TRUE_NORTH_DEGREES

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Heading Magnetic North
0x0477
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_NORTH

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_MAGNETIC_HEADING_MAGNETIC_NORTH_DEGREES

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Heading True North
0x0478
HID_USAGE_SENSOR_DATA_ORIENTATION_TRUE_NORTH

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_MAGNETIC_HEADING_TRUE_NORTH_DEGREES

Type = VT_R8

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Distance
0x0479
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Meters.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is not available at the API. It is only used with a data modifier to specify a per-datafield property. See section 4.2.3
Dynamic datafield support:
Not valid for use in any Sensor but Distance

	Distance X Axis
0x047A
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_X

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Meters.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_DISTANCE_X_METERS

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Distance Y Axis
0x047B
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_Y

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Meters.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_DISTANCE_Y_METERS

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Distance Z Axis
0x047C
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_Z

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Meters.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_DISTANCE_Z_METERS

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Distance Out-of-Range
0x047D
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_OUT_OF_RANGE

	Boolean value
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is used internally by the driver and is not available at the API
Dynamic datafield support:
Not valid for use in any Sensor but Distance

	Tilt
0x047E
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is not available at the API. It is only used with a data modifier to specify a per-datafield property. See section 4.2.3
Dynamic datafield support:
Not valid for use in any Sensor but Inclinometer

	Tilt X Axis
0x047F
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_X

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_TILT_X_DEGREES

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Tilt Y Axis
0x0480
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_Y

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_TILT_Y_DEGREES

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Tilt Z Axis
0x0481
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_Z

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Degrees.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_DISTANCE_Z_METERS

Type = VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Rotation Matrix
0x0482
HID_USAGE_SENSOR_DATA_ORIENTATION_ROTATION_MATRIX

	A 3 x 3 array of 16-bit fixed point values.
Default Unit is Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
This collection of values is a 3 x 3 (ex. int v[3][3]) array of 16-bit fixed point numbers. Whichever Units Exponent is chosen for value specification applies to all values in the array.
On the Sensor side, the buffer constructed to hold the array of values should be in the following format:
If the buffer is specified as v[3][3] the elements are stored (in increasing addresses) as
 v[0][0], v[0][1], v[0][2], v[1][0], v[1][1], v[1][2], v[2][0], v[2][1], v[2][2]
Arranged in this way, the array is correctly interpreted by the Driver and presented at the API.
See section 4.3.21 for more information.
	SENSOR_DATA_TYPE_ROTATION_MATRIX

Type = [VT_VECTOR | VT_UI1]

Default value is VT_EMPTY
Dynamic datafield support:
Not valid for use in any Sensor but Orientation

	Quaternion
0x0483
HID_USAGE_SENSOR_DATA_ORIENTATION_QUATERNION

	A 4 x 1 array of 16-bit fixed point values.
Default Unit is Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
This collection of values is a 4 x 1 (ex. int v[4]) array of 16-bit fixed point numbers. Whichever Units Exponent is chosen for value specification applies to all values in the array.
On the Sensor side, the buffer constructed to hold the array of values should be in the following format:
If the buffer is specified as v[4] the elements are stored (in increasing addresses) as
 v[0], v[1], v[2], v[3]
Arranged in this way, the array is correctly interpreted by the Driver and presented at the API.
See section 4.3.21 for more information.
	SENSOR_DATA_TYPE_QUATERNION

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
Not valid for use in any Sensor but Orientation

	Magnetic Flux
0x0484
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Milligauss.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is not available at the API. It is only used with a data modifier to specify a per-datafield property. See section 4.2.3
Dynamic datafield support:
Not valid for use in any Sensor but Compass

	Magnetic Flux X Axis
0x0485
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_X_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Milligauss.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ACCELERATION_X_G

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Magnetic Flux Y Axis
0x0486
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_Y_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Milligauss.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ACCELERATION_X_G

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Magnetic Flux Z Axis
0x0487
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_Z_AXIS

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Default Unit is Milligauss.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_DATA_TYPE_ACCELERATION_X_G

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

[bookmark: _Toc321224868][bookmark: _Toc335659901]Scanner Sensor Field Usages
No Scanner fields are supported by the Driver.
[bookmark: _Toc321224869][bookmark: _Toc335659902]Time Sensor Field Usages
No Time Sensor fields are supported by the Driver. The Driver does assign a timestamp to the input report sent by a sensor at the time the input report is received. This assigned value is available in the datafield SENSOR_DATA_TYPE_TIMESTAMP.
[bookmark: _Toc321224870][bookmark: _Toc335659903]Custom Sensor Field Usages
The fields listed in Table 17 are supported by the Driver for custom sensors.
[bookmark: _Toc321224946]Table 17. Custom sensor field usages
	Usage ID
	Supported Values
	Windows Sensor Datafield

	Custom Usage
0x0541
HID_USAGE_SENSOR_DATA_CUSTOM_USAGE

	Boolean value
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
This datafield may be included in the input report of any sensor. If it is present, the property SENSOR_PROPERTY_HID_USAGE will appear as a property supported by that sensor.
	SENSOR_DATA_TYPE_CUSTOM_USAGE

Type = VT_UI4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Boolean Array
0x0542
HID_USAGE_SENSOR_DATA_CUSTOM_BOOLEAN_ARRAY

	8-bit, 16-bit or 32-bit array of Boolean values.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_BOOLEAN_ARRAY

Type = VT_BOOL

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value
0x0543
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE

	16-bit or 32-bit fixed point value. See section 4.2.1 for use of fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	This value is not available at the API. It is only used with a data modifier to specify a per-datafield property. See section 4.2.3
Dynamic datafield support:
Not valid for use in any Sensor but Custom

	Custom Value 1
0x0544
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_1

	8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_1

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 2
0x0545
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_2

	8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_2

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 3
0x0546
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_3

	8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_3

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 4
0x0547
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_4

	8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_4

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 5
0x0548
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_5

	8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_5

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 6
0x0549
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_6

	8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_6

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 7
0x054A
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_7

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_7

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 8
0x054B
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_8

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_8

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 9
0x054C
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_9

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_9

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 10
0x054D
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_10

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_10

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 11
0x054E
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_11

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_11

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 12
0x054F
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_12

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_12

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 13
0x0550
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_13

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_13

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 14
0x0551
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_14

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_14

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 15
0x0552
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_15

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_15

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 16
0x0553
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_16

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_16

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 17
0x0554
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_17

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_17

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 18
0x0555
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_18

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_18

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 19
0x0556
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_19

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_19

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 20
0x0557
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_20

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_20

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 21
0x0558
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_21

	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_21

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 22
0x0559
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_22
	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_22

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 23
0x055A
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_23
	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_23

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 24
0x055B
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_24
	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_24

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 25
0x055C
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_25
	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_25

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 26
0x055D
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_26
	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_26

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 27
0x055E
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_27
	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_27

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

	Custom Value 28
0x055F
Vendor-specific
HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_28
	NOTE: Use of this is vendor-specific and not defined in the specification.
8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_28

Type = VT_UI4 or VT_R4

Default value is VT_EMPTY
Dynamic datafield support:
May be used in any Sensor.

[bookmark: _Toc321224871][bookmark: _Toc335659904]Generic Sensor Field Usages
The fields listed in Table 18 are supported by the Driver for generic sensors.
[bookmark: _Toc321224947]Table 18. Generic sensor field usages
	Usage ID
	Supported Values
	Windows Sensor Datafield

	Generic Category GUID
0x0562
HID_USAGE_SENSOR_DATA_GENERIC_CATEGORY_GUID

	16-bit GUID. See section 4.2.7 for specification of GUIDs.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	WPD_OBJECT_PROPERTY

The GUID carried in this field is used at the API to directly specify the sensor category.
Default value is SENSOR_CATEGORY_OTHER

Dynamic datafield support:
Not valid for use in any Sensor but Generic

	Generic Type GUID
0x0563
HID_USAGE_SENSOR_DATA_GENERIC_TYPE_GUID

	16-bit GUID. See section 4.2.7 for specification of GUIDs.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	SENSOR_PROPERTY_TYPE

The GUID carried in this field is used at the API to directly specify the sensor type.
Default value is SENSOR_TYPE_UNKNOWN

Dynamic datafield support:
Not valid for use in any Sensor but Generic

	Generic Data Field PROPERTYKEY
0x0566
HID_USAGE_SENSOR_DATA_GENERIC_DATAFIELD_PROPERTYKEY

	A 20-byte PROPERTYKEY followed by an 8-bit, 16-bit or 32-bit unsigned integer value or 16-bit or 32-bit fixed point value. See section 4.2.1 for use of integer and fixed-point values. See section 4.2.7 for specification of PROPERTYKEYs.
Unit may be Not Specified.
No unit may be specified other than HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED.
	The PROPERTYKEY carried in this field is used at the API to directly specify the datafield.

Type = VT_BOOL

Default value is VT_EMPTY

Dynamic datafield support:
Not valid for use in any Sensor but Generic

[bookmark: _Toc321224872][bookmark: _Toc335659905]Sensor Backgrounder
This section describes Sensor terminology and the conceptual object model associated with the HID Sensor Usages. This section is informative and meant for orientation and guidance only.
[bookmark: _Toc296077153][bookmark: _Toc296081433][bookmark: _Toc296085713][bookmark: _Toc296089992][bookmark: _Toc296094299][bookmark: _Toc296077154][bookmark: _Toc296081434][bookmark: _Toc296085714][bookmark: _Toc296089993][bookmark: _Toc296094300][bookmark: _Toc295134901][bookmark: _Toc295142185][bookmark: _Toc295143751][bookmark: _Toc296077162][bookmark: _Toc296081442][bookmark: _Toc296085722][bookmark: _Toc296090001][bookmark: _Toc296094308][bookmark: _Toc296077167][bookmark: _Toc296081447][bookmark: _Toc296085727][bookmark: _Toc296090006][bookmark: _Toc296094313][bookmark: _Toc296077168][bookmark: _Toc296081448][bookmark: _Toc296085728][bookmark: _Toc296090007][bookmark: _Toc296094314][bookmark: _Toc321224873][bookmark: _Toc335659906][bookmark: _Toc456348693]Glossary
A number of additional terms specific to the Sensor, Windows Sensor Platform, and Windows HID Sensor Class Driver subject matter are used in the context of this document. The following list defines these terms:
API: The Windows Sensor Platform API
Client: An application communicating with a Sensor through the API
Device: A sensor device implemented to conform to the Specification and the API
Driver: The Windows HID Sensor Class Driver
Implementer: The organization implementing a Device
PC: The system hosting the Windows operating system
Sensor: An individual sensor implemented on a Device. A Device may support more than one sensor, and may support more than one sensor of the same category and type
Specification: The HID Sensor Usage Tables document
[bookmark: _Toc321224874][bookmark: _Toc335659907]Sensor Taxonomy and Object Model
No further clarification required.

[bookmark: _Toc321224875][bookmark: _Toc335659908]Sensor Interaction via HID
This section describes how communication with Sensors is mapped to HID mechanisms. This section is informative and meant only for orientation and guidance.
[bookmark: _Toc321224876][bookmark: _Toc335659909]Related Documents
No additional clarification required.
[bookmark: _Toc321224877][bookmark: _Toc335659910]Functional Overview
The Specification states that for Sensor Devices, the HID Input Pipe is mandatory, and the HID Output Pipe is optional. This is true, except that for sensors that are expected to meet Windows Hardware Certification specifications, the HID Output Pipe is required as certain sensor properties communicated in the HID Feature Report as described in the HID class Report Descriptor are required.
[bookmark: _Toc321224878][bookmark: _Toc335659911]HID Logical Devices
[bookmark: _Toc295134909][bookmark: _Toc295142193][bookmark: _Toc295143759][bookmark: _Toc295134910][bookmark: _Toc295142194][bookmark: _Toc295143760][bookmark: _Toc295134911][bookmark: _Toc295142195][bookmark: _Toc295143761]The Driver will support collections either with or without nesting. A sensor with nesting will appear in Windows as a single Device Object with a collection of sensors. A sensor without nesting will appear as a single Device Object and as an individual sensor. Multiple sensors without nesting will appear as a set of Device Objects with each appearing as an individual sensors.
[bookmark: _Toc321224879][bookmark: _Toc335659912]HID Reports
As previously noted, it is not necessary to support SET_REPORT in order to build a sensor that will work with the Driver, though not doing so would render the senor unable to be Windows Hardware Certification compliant.
It is also not necessary to support a HID_GET_INPUT_REPORT to build a sensor that will work with the driver, though not doing so will result in no data being available at the API until the first asynchronous Input report is received. This may result in an inability to be Windows Hardware Certification compliant.
[bookmark: _Toc321224880][bookmark: _Toc335659913]HID Report IDs
The driver only supports one Report ID per sensor, and that Report ID is the same for both Feature reports and Input reports. The Driver interprets the Report ID in an asynchronous Input Report as the specific Sensor from which that Input Report was received.
If there is only one sensor specified by the TLC, then the Report ID is “0.” If there is more than one sensor specified by the TLC, then the Report Id of the first sensor in the TLC must be “1” and the Report IDs for the remaining sensors are incremented sequentially by “1” for each sensor in order of their appearance in the Report Descriptor for that Device.
[bookmark: _Toc321224881][bookmark: _Toc335659914]HID Report Items
The Driver does not support HID Report Items.
[bookmark: _Toc321224882][bookmark: _Toc335659915]HID Report Item packing options
The Driver does not support HID Report Item packing options.
[bookmark: _Toc295134916][bookmark: _Toc295142200][bookmark: _Toc295143766][bookmark: _Toc321224883][bookmark: _Toc335659916]HID Usages
No additional clarification required.
[bookmark: _Toc321224884][bookmark: _Toc335659917]HID Usage Types
There is a clarification required with respect to the use of Static and Dynamic flags (SF and DF, respectively.)
The Driver expects these to be specified in the Report Descriptor as 8-bit values, of which only two values are used: ‘0’ and ‘1.’ For further information see the Report Descriptor examples.
[bookmark: _Toc321224885][bookmark: _Toc335659918]HID Selectors
Some clarification is required as to how to use this mechanism. This section is based on the example in the Specification.
The Report Descriptor example in the Specification is used in conjunction with the following C-language enumerated set of values.
enum
{	
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL_ENUM = 1,
	HID_USAGE_SENSOR_STATE_READY_SEL_ENUM,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL_ENUM,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL_ENUM,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL_ENUM,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL_ENUM,
	HID_USAGE_SENSOR_STATE_ERROR_SEL_ENUM,

} HID_USAGE_SENSOR_STATE_VALUES;
Note that the enumerated values above begin at “1”, whereas the enumerated values in the specification incorrectly start at “0.”
On the Sensor side, the implementer will insert the enumerated value into the location in the Feature or Input buffer that represents HID_INPUT(Data_Arr_Abs) or HID_FEATURE(Data_Arr_Abs) for that usage. On the Driver side, this will be interpreted according to the position of the selector value in the list of selects, so the enumerated value order and the selector usage order must be the same.
As an example, if the Device implementer inserts a “2” into the Input buffer, the Driver will actually receive the Usage for HID_USAGE_SENSOR_STATE_READY_SEL when the Input report is parsed.
When a selector is to be written to the Device by the Driver, the selector Usage is specified by the Driver and the Device will receive the corresponding enumerated value in the buffer.
[bookmark: _Toc321224886][bookmark: _Toc335659919]HID Usage Page
No additional clarification required.
[bookmark: _Toc321224887][bookmark: _Toc335659920]HID Units
As noted in the Specification, Usages have by definition a default Unit of Measure, which will be mentioned in the Usages Table. These default units are noted in sections 1.6 through 1.17.
In no case may the default unit for a sensor supported by the driver be overridden.
[bookmark: _Toc321224888][bookmark: _Toc335659921]HID Unit Exponents
No additional clarification is required.
[bookmark: _Toc295142205][bookmark: _Toc295143771][bookmark: _Toc321224889][bookmark: _Toc335659922]3D Coordinates and Compass Points
Please see Integrating Motion and Orientation Sensors.

[bookmark: _Toc321224890][bookmark: _Toc335659923]Illustrative Examples
This section clarifies what is and is not supported by the Driver and the specifics about how to make a Sensor compliant with the Driver.
Section 4.1 provides a sample “C” language “include file” the version of which in this document should be used by implementers building Sensors compliant with the Driver. Implementers are strongly encouraged to use this include file when creating report descriptors.
Section 4.2 provides descriptions of the special constructions supported by the Driver such as: Modifiers, Thresholds, Custom Sensors, and Generic Sensors.
Section 4.3 provides prescriptive examples of HID Report Descriptors for all sensor types compliant with the Driver. All of these examples employ use of the “include file” described in Section 4.1 of this companion document to the Specification.
[bookmark: _Toc321224891][bookmark: _Toc335659924]Include File Definitions
These definitions are based on the Specification definitions, but have been extended where clarification was needed, particularly for the “enum” values that accompany the “selector” usages. Implementers should use this version of the definitions when building a Device to work with the Driver.
Implementers are strongly encouraged to use this include file when defining report descriptors.
Note that the #defines in this include file are not identical to the similar include file in the Specification; certain enhancements have been included for ease in creating report descriptors.
This include file is compatible with all of the sample Sensor Report Descriptors in Section 4.3. This include file is also used for the examples in Section 4.2.
A machine readable header file containing these macros is available as part of the Windows 8 SensorsHIDDriverSample, part of the Windows 8 WDK:
hid_sensor_spec.h.
//
//
// HidSensorSpec.h : Defines compliant with released HID Sensor Usages.
//
//
#ifndef _HIDSENSORSPEC_H_
#define _HIDSENSORSPEC_H_

#define HID_USAGE_PAGE_SENSOR 0x05,0x20

//sensor category usages
#define HID_USAGE_SENSOR_TYPE_COLLECTION 0x09,0x01
//sensor category biometric
#define HID_USAGE_SENSOR_CATEGORY_BIOMETRIC 0x09,0x10
#define HID_USAGE_SENSOR_TYPE_BIOMETRIC_PRESENCE 0x09,0x11
#define HID_USAGE_SENSOR_TYPE_BIOMETRIC_PROXIMITY 0x09,0x12
#define HID_USAGE_SENSOR_TYPE_BIOMETRIC_TOUCH 0x09,0x13
//sensor category electrical
#define HID_USAGE_SENSOR_CATEGORY_ELECTRICAL 0x09,0x20
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_CAPACITANCE 0x09,0x21
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_CURRENT 0x09,0x22
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_POWER 0x09,0x23
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_INDUCTANCE 0x09,0x24
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_RESISTANCE 0x09,0x25
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_VOLTAGE 0x09,0x26
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_POTENTIOMETER 0x09,0x27
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_FREQUENCY 0x09,0x28
#define HID_USAGE_SENSOR_TYPE_ELECTRICAL_PERIOD 0x09,0x29
//sensor category environmental
#define HID_USAGE_SENSOR_CATEGORY_ENVIRONMENTAL 0x09,0x30
#define HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE 0x09,0x31
#define HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_HUMIDITY 0x09,0x32
#define HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_TEMPERATURE 0x09,0x33
#define HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_WIND_DIRECTION 0x09,0x34
#define HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_WIND_SPEED 0x09,0x35
//sensor category light
#define HID_USAGE_SENSOR_CATEGORY_LIGHT 0x09,0x40
#define HID_USAGE_SENSOR_TYPE_LIGHT_AMBIENTLIGHT 0x09,0x41
#define HID_USAGE_SENSOR_TYPE_LIGHT_CONSUMER_INFRARED 0x09,0x42
//sensor category location
#define HID_USAGE_SENSOR_CATEGORY_LOCATION 0x09,0x50
#define HID_USAGE_SENSOR_TYPE_LOCATION_BROADCAST 0x09,0x51
#define HID_USAGE_SENSOR_TYPE_LOCATION_DEAD_RECKONING 0x09,0x52
#define HID_USAGE_SENSOR_TYPE_LOCATION_GPS 0x09,0x53
#define HID_USAGE_SENSOR_TYPE_LOCATION_LOOKUP 0x09,0x54
#define HID_USAGE_SENSOR_TYPE_LOCATION_OTHER 0x09,0x55
#define HID_USAGE_SENSOR_TYPE_LOCATION_STATIC 0x09,0x56
#define HID_USAGE_SENSOR_TYPE_LOCATION_TRIANGULATION 0x09,0x57
//sensor category mechanical
#define HID_USAGE_SENSOR_CATEGORY_MECHANICAL 0x09,0x60
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_BOOLEAN_SWITCH 0x09,0x61
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_BOOLEAN_SWITCH_ARRAY 0x09,0x62
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_MULTIVALUE_SWITCH 0x09,0x63
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_FORCE 0x09,0x64
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_PRESSURE 0x09,0x65
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_STRAIN 0x09,0x66
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_SCALE_WEIGHT 0x09,0x67
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_VIBRATOR 0x09,0x68
#define HID_USAGE_SENSOR_TYPE_MECHANICAL_HALL_EFFECT_SWITCH 0x09,0x69
//sensor category motion
#define HID_USAGE_SENSOR_CATEGORY_MOTION 0x09,0x70
#define HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_1D 0x09,0x71
#define HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_2D 0x09,0x72
#define HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_3D 0x09,0x73
#define HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_1D 0x09,0x74
#define HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_2D 0x09,0x75
#define HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_3D 0x09,0x76
#define HID_USAGE_SENSOR_TYPE_MOTION_MOTION_DETECTOR 0x09,0x77
#define HID_USAGE_SENSOR_TYPE_MOTION_SPEEDOMETER 0x09,0x78
#define HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER 0x09,0x79
#define HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER 0x09,0x7A
//sensor category orientation
#define HID_USAGE_SENSOR_CATEGORY_ORIENTATION 0x09,0x80
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_COMPASS_1D 0x09,0x81
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_COMPASS_2D 0x09,0x82
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_COMPASS_3D 0x09,0x83
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_1D 0x09,0x84
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_2D 0x09,0x85
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_3D 0x09,0x86
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_1D 0x09,0x87
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_2D 0x09,0x88
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_3D 0x09,0x89
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_DEVICE_ORIENTATION 0x09,0x8A
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_COMPASS 0x09,0x8B
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER 0x09,0x8C
#define HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE 0x09,0x8D
//sensor category scanner
#define HID_USAGE_SENSOR_CATEGORY_SCANNER 0x09,0x90
#define HID_USAGE_SENSOR_TYPE_SCANNER_BARCODE 0x09,0x91
#define HID_USAGE_SENSOR_TYPE_SCANNER_RFID 0x09,0x92
#define HID_USAGE_SENSOR_TYPE_SCANNER_NFC 0x09,0x93
//sensor category time
#define HID_USAGE_SENSOR_CATEGORY_TIME 0x09,0xA0
#define HID_USAGE_SENSOR_TYPE_TIME_ALARM 0x09,0xA1
#define HID_USAGE_SENSOR_TYPE_TIME_RTC 0x09,0xA2
//sensor category other
#define HID_USAGE_SENSOR_CATEGORY_OTHER 0x09,0xE0
#define HID_USAGE_SENSOR_TYPE_OTHER_CUSTOM 0x09,0xE1
#define HID_USAGE_SENSOR_TYPE_OTHER_GENERIC 0x09,0xE2
#define HID_USAGE_SENSOR_TYPE_OTHER_GENERIC_ENUMERATOR 0x09,0xE3

//unit usages
#define HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED 0x65,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_LUX 0x67,0xE1,0x00,0x00,0x01 // Unit
#define HID_USAGE_SENSOR_UNITS_KELVIN 0x67,0x01,0x00,0x01,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_FAHRENHEIT 0x67,0x03,0x00,0x01,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_PASCAL 0x66,0xF1,0xE1 // Unit
#define HID_USAGE_SENSOR_UNITS_NEWTON 0x66,0x11,0xE1 // Unit
#define HID_USAGE_SENSOR_UNITS_METERS_PER_SECOND 0x66,0x11,0xF0 // Unit
#define HID_USAGE_SENSOR_UNITS_METERS_PER_SEC_SQRD 0x66,0x11,0xE0 // Unit
#define HID_USAGE_SENSOR_UNITS_FARAD 0x67,0xE1,0x4F,0x20,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_AMPERE 0x67,0x01,0x00,0x10,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_WATT 0x66,0x21,0xD1 // Unit
#define HID_USAGE_SENSOR_UNITS_HENRY 0x67,0x21,0xE1,0xE0,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_OHM 0x67,0x21,0xD1,0xE0,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_VOLT 0x67,0x21,0xD1,0xF0,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_HERTZ 0x66,0x01,0xF0 // Unit
#define HID_USAGE_SENSOR_UNITS_DEGREES 0x65,0x14 // Unit
#define HID_USAGE_SENSOR_UNITS_DEGREES_PER_SECOND 0x66,0x14,0xF0 // Unit
#define HID_USAGE_SENSOR_UNITS_DEGREES_PER_SEC_SQRD 0x66,0x14,0xE0 // Unit
#define HID_USAGE_SENSOR_UNITS_RADIANS 0x65,0x12 // Unit
#define HID_USAGE_SENSOR_UNITS_RADIANS_PER_SECOND 0x66,0x12,0xF0 // Unit
#define HID_USAGE_SENSOR_UNITS_RADIANS_PER_SEC_SQRD 0x66,0x12,0xE0 // Unit
#define HID_USAGE_SENSOR_UNITS_SECOND 0x66,0x01,0x10 // Unit
#define HID_USAGE_SENSOR_UNITS_GAUSS 0x67,0x01,0xE1,0xF0,0x00 // Unit
#define HID_USAGE_SENSOR_UNITS_GRAM 0x66,0x01,0x01 // Unit
#define HID_USAGE_SENSOR_UNITS_CENTIMETER 0x65,0x11 // Unit
#ifdef DEFINE_NON_HID_UNITS
#define HID_USAGE_SENSOR_UNITS_CELSIUS “Use Unit(Kelvin) and subtract 273.15”
#define HID_USAGE_SENSOR_UNITS_KILOGRAM “Use Unit(gram) and UnitExponent(0x03)”
#define HID_USAGE_SENSOR_UNITS_METER “Use Unit(centimeter) and UnitExponent(0x02)”
#define HID_USAGE_SENSOR_UNITS_BAR “Use Unit(Pascal) and UnitExponent(0x05)”
#define HID_USAGE_SENSOR_UNITS_KNOT “Use Unit(m/s) and multiply by 1852/3600”
#define HID_USAGE_SENSOR_UNITS_PERCENT “Use Unit(Not_Specified)”
#define HID_USAGE_SENSOR_UNITS_G “Use Unit(m/s2) and divide by 9.8”
#define HID_USAGE_SENSOR_UNITS_MILLISECOND “Use Unit(second) and UnitExponent(0x0D)”
#define HID_USAGE_SENSOR_UNITS_MILLIGAUSS “Use Unit(Gauss) and UnitExponent(0x0D)”
#endif
//unit deprecated usages
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_LUX 0x01
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_KELVIN 0x02
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_CELSIUS 0x03
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_PASCAL 0x04
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_NEWTON 0x05
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_METERS_PER_SECOND 0x06
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_KILOGRAM 0x07
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_METER 0x08
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_METERS_PER_SEC_SQRD 0x09
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_FARAD 0x0A
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_AMPERE 0x0B
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_WATT 0x0C
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_HENRY 0x0D
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_OHM 0x0E
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_VOLT 0x0F
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_HERTZ 0x10
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_BAR 0x11
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_DEGREES_ANTI_CLOCKWISE 0x12
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_DEGREES_CLOCKWISE 0x13
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_DEGREE 0x14
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_DEGREES_PER_SECOND 0x15
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_KNOT 0x16
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_PERCENT 0x17
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_SECOND 0x18
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_MILLISECOND 0x19
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_G 0x1A
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_BYTES 0x1B
#define HID_USAGE_SENSOR_UNITS_DEPRECATED_MILLIGAUSS 0x1C

//data type usage modifiers -- we use them as modifiers for sensor properties & data fields
//to create thresholds, for example.
//NOTE: the usage tables actually define these as two bytes, but in order
//to get the define macros to work so these are ‘or-ed’ these are defined
//here as only one byte.
#define HID_USAGE_SENSOR_DATA_MOD_NONE 0x00 // US
#define HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS 0x10 // US
#define HID_USAGE_SENSOR_DATA_MOD_MAX 0x20 // US
#define HID_USAGE_SENSOR_DATA_MOD_MIN 0x30 // US
#define HID_USAGE_SENSOR_DATA_MOD_ACCURACY 0x40 // US
#define HID_USAGE_SENSOR_DATA_MOD_RESOLUTION 0x50 // US
#define HID_USAGE_SENSOR_DATA_MOD_THRESHOLD_HIGH 0x60 // US
#define HID_USAGE_SENSOR_DATA_MOD_THRESHOLD_LOW 0x70 // US
#define HID_USAGE_SENSOR_DATA_MOD_CALIBRATION_OFFSET 0x80 // US
#define HID_USAGE_SENSOR_DATA_MOD_CALIBRATION_MULTIPLIER 0x90 // US
#define HID_USAGE_SENSOR_DATA_MOD_REPORT_INTERVAL 0xA0 // US
#define HID_USAGE_SENSOR_DATA_MOD_FREQUENCY_MAX 0xB0 // US
#define HID_USAGE_SENSOR_DATA_MOD_PERIOD_MAX 0xC0 // US
#define HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_RANGE_PCT 0xD0 // US
#define HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_REL_PCT 0xE0 // US
#define HID_USAGE_SENSOR_DATA_MOD_VENDOR_RESERVED 0xF0 // US

//state usages
#define HID_USAGE_SENSOR_STATE 0x0A,0x01,0x02 // NAry
//state selectors
#define HID_USAGE_SENSOR_STATE_UNKNOWN_SEL_SEL 0x0A,0x00,0x08 // Sel
#define HID_USAGE_SENSOR_STATE_READY_SEL_SEL 0x0A,0x01,0x08 // Sel
#define HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL_SEL 0x0A,0x02,0x08 // Sel
#define HID_USAGE_SENSOR_STATE_NO_DATA_SEL_SEL 0x0A,0x03,0x08 // Sel
#define HID_USAGE_SENSOR_STATE_INITIALIZING_SEL_SEL 0x0A,0x04,0x08 // Sel
#define HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL_SEL 0x0A,0x05,0x08 // Sel
#define HID_USAGE_SENSOR_STATE_ERROR_SEL_SEL 0x0A,0x06,0x08 // Sel
//state enums
#define HID_USAGE_SENSOR_STATE_UNKNOWN_SEL_ENUM 0x01 // Enum
#define HID_USAGE_SENSOR_STATE_READY_SEL_ENUM 0x02 // Enum
#define HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL_ENUM 0x03 // Enum
#define HID_USAGE_SENSOR_STATE_NO_DATA_SEL_ENUM 0x04 // Enum
#define HID_USAGE_SENSOR_STATE_INITIALIZING_SEL_ENUM 0x05 // Enum
#define HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL_ENUM 0x06 // Enum
#define HID_USAGE_SENSOR_STATE_ERROR_SEL_ENUM 0x07 // Enum
//state deprecated enums
#define HID_USAGE_SENSOR_STATE_DEPRECATED_UNKNOWN_ENUM 0x00
#define HID_USAGE_SENSOR_STATE_DEPRECATED_NOT_AVAILABLE_ENUM 0x01
#define HID_USAGE_SENSOR_STATE_DEPRECATED_READY_ENUM 0x02
#define HID_USAGE_SENSOR_STATE_DEPRECATED_NO_DATA_ENUM 0x03
#define HID_USAGE_SENSOR_STATE_DEPRECATED_INITIALIZING_ENUM 0x04
#define HID_USAGE_SENSOR_STATE_DEPRECATED_ACCESS_DENIED_ENUM 0x05
#define HID_USAGE_SENSOR_STATE_DEPRECATED_ERROR_ENUM 0x06

//event usages
#define HID_USAGE_SENSOR_EVENT 0x0A,0x02,0x02 // NAry
//event selectors
#define HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL_SEL 0x0A,0x10,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL_SEL 0x0A,0x11,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL_SEL 0x0A,0x12,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL_SEL 0x0A,0x13,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL_SEL 0x0A,0x14,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL_SEL 0x0A,0x15,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_MAX_REACHED_SEL 0x0A,0x16,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_MIN_REACHED_SEL 0x0A,0x17,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_UPWARD_SEL 0x0A,0x18,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_HIGH_THESHOLD_CROSS_ABOVE_SEL HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_UPWARD_SEL
#define HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_DOWNWARD_SEL 0x0A,0x19,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_BELOW_SEL HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_DOWNWARD_SEL
#define HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_UPWARD_SEL 0x0A,0x1A,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_ABOVE_SEL HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_UPWARD_SEL
#define HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_DOWNWARD_SEL 0x0A,0x1B,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_BELOW_SEL HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_DOWNWARD_SEL
#define HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_UPWARD_SEL 0x0A,0x1C,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_ABOVE_SEL HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_UPWARD_SEL
#define HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_DOWNWARD_SEL 0x0A,0x1D,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_BELOW_SEL HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_DOWNWARD_SEL
#define HID_USAGE_SENSOR_EVENT_PERIOD_EXCEEDED_SEL 0x0A,0x1E,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_FREQUENCY_EXCEEDED_SEL 0x0A,0x1F,0x08 // Sel
#define HID_USAGE_SENSOR_EVENT_COMPLEX_TRIGGER_SEL 0x0A,0x20,0x08 // Sel
//event enums
#define HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL_ENUM 0x01 // Enum
#define HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL_ENUM 0x02 // Enum
#define HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL_ENUM 0x03 // Enum
#define HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL_ENUM 0x04 // Enum
#define HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL_ENUM 0x05 // Enum
#define HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL_ENUM 0x06 // Enum
#define HID_USAGE_SENSOR_EVENT_MAX_REACHED_ENUM 0x07 // Enum
#define HID_USAGE_SENSOR_EVENT_MIN_REACHED_ENUM 0x08 // Enum
#define HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_UPWARD_ENUM 0x09 // Enum
#define HID_USAGE_SENSOR_EVENT_HIGH_THESHOLD_CROSS_ABOVE_ENUM HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_UPWARD_ENUM
#define HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_DOWNWARD_ENUM 0x0A // Enum
#define HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_BELOW_ENUM HID_USAGE_SENSOR_EVENT_HIGH_THRESHOLD_CROSS_DOWNWARD_ENUM
#define HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_UPWARD_ENUM 0x0B // Enum
#define HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_ABOVE_ENUM HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_UPWARD_ENUM
#define HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_DOWNWARD_ENUM 0x0C // Enum
#define HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_BELOW_ENUM HID_USAGE_SENSOR_EVENT_LOW_THRESHOLD_CROSS_DOWNWARD_ENUM
#define HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_UPWARD_ENUM 0x0D // Enum
#define HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_ABOVE_ENUM HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_UPWARD_ENUM
#define HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_DOWNWARD_ENUM 0x0E // Enum
#define HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_BELOW_ENUM HID_USAGE_SENSOR_EVENT_ZERO_THRESHOLD_CROSS_DOWNWARD_ENUM
#define HID_USAGE_SENSOR_EVENT_PERIOD_EXCEEDED_ENUM 0x0F // Enum
#define HID_USAGE_SENSOR_EVENT_FREQUENCY_EXCEEDED_ENUM 0x10 // Enum
#define HID_USAGE_SENSOR_EVENT_COMPLEX_TRIGGER_ENUM 0x11 // Enum
//event deprecated enums
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_UNKNOWN_ENUM 0x00
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_STATE_CHANGED_ENUM 0x01
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_PROPERTY_CHANGED_ENUM 0x02
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_DATA_UPDATE_ENUM 0x03
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_POLL_RESPONSE_ENUM 0x04
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_CHANGE_SENSITIVITY_ENUM 0x05
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_MAX_REACHED_ENUM 0x06
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_MIN_REACHED_ENUM 0x07
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_HIGH_THRESHHOLD_CROSS_ABOVE_ENUM 0x08
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_HIGH_THRESHHOLD_CROSS_BELOW_ENUM 0x09
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_LOW_THRESHHOLD_CROSS_ABOVE_ENUM 0x0A
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_LOW_THRESHHOLD_CROSS_BELOW_ENUM 0x0B
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_ZERO_THRESHOLD_CROSS_ABOVE_ENUM 0x0C
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_ZERO_THRESHOLD_CROSS_BELOW_ENUM 0x0D
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_PERIOD_EXCEEDED_ENUM 0x0E
#define HID_USAGE_SENSOR_EVENT_DEPRECATED_FREQUENCY_EXCEEDED_ENUM 0x0F

//property usages (get/set feature report)
#define HID_USAGE_SENSOR_PROPERTY 0x0A,0x00,0x03
#define HID_USAGE_SENSOR_PROPERTY_FRIENDLY_NAME 0x0A,0x01,0x03
#define HID_USAGE_SENSOR_PROPERTY_PERSISTENT_UNIQUE_ID 0x0A,0x02,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_STATUS 0x0A,0x03,0x03
#define HID_USAGE_SENSOR_PROPERTY_MINIMUM_REPORT_INTERVAL 0x0A,0x04,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_MANUFACTURER 0x0A,0x05,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_MODEL 0x0A,0x06,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_SERIAL_NUMBER 0x0A,0x07,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_DESCRIPTION 0x0A,0x08,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE 0x0A,0x09,0x03 // NAry
//begin connection type selectors
#define HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL 0x0A,0x30,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL_SEL 0x0A,0x31,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL_SEL 0x0A,0x32,0x08 // Sel
//end connection type selectors
//begin connection type enums
#define HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_ENUM 0x01 // Enum
#define HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL_ENUM 0x02 // Enum
#define HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL_ENUM 0x03 // Enum
//end connection type enums
//begin connection type deprecated enums
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_CONNECTION_TYPE_PC_INTEGRATED_ENUM 0x00 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_CONNECTION_TYPE_PC_ATTACHED_ENUM 0x01 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_CONNECTION_TYPE_PC_EXTERNAL_ENUM 0x02 // Enum
//end connection type deprecated enums
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_DEVICE_PATH 0x0A,0x0A,0x03
#define HID_USAGE_SENSOR_PROPERTY_HARDWARE_REVISION 0x0A,0x0B,0x03
#define HID_USAGE_SENSOR_PROPERTY_FIRMWARE_VERSION 0x0A,0x0C,0x03
#define HID_USAGE_SENSOR_PROPERTY_RELEASE_DATE 0x0A,0x0D,0x03
#define HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL 0x0A,0x0E,0x03
#define HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS 0x0A,0x0F,0x03
#define HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_RANGE_PCT 0x0A,0x10,0x03
#define HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_REL_PCT 0x0A,0x11,0x03
#define HID_USAGE_SENSOR_PROPERTY_ACCURACY 0x0A,0x12,0x03
#define HID_USAGE_SENSOR_PROPERTY_RESOLUTION 0x0A,0x13,0x03
#define HID_USAGE_SENSOR_PROPERTY_RANGE_MAXIMUM 0x0A,0x14,0x03
#define HID_USAGE_SENSOR_PROPERTY_RANGE_MINIMUM 0x0A,0x15,0x03
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE 0x0A,0x16,0x03 // NAry
//begin reporting state selectors
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL_SEL 0x0A,0x40,0x08 // Sel
#define HID_USAGE_REPORTING_STATE_ON_NONE_SEL HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL_SEL
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL_SEL 0x0A,0x41,0x08 // Sel
#define HID_USAGE_REPORTING_STATE_ON_ALL_SEL HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL_SEL
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL_SEL 0x0A,0x42,0x08 // Sel
#define HID_USAGE_REPORTING_STATE_ON_THRESHOLD_SEL HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL_SEL
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL_WAKE_SEL 0x0A,0x43,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL_WAKE_SEL 0x0A,0x44,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL_SEL 0x0A,0x45,0x08 // Sel
//end reporting state selectors
//begin reporting state enums
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL_ENUM 0x01 // Enum
#define HID_USAGE_REPORTING_STATE_ON_NONE_ENUM HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL_ENUM
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL_ENUM 0x02 // Enum
#define HID_USAGE_REPORTING_STATE_ON_ALL_ENUM HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL_ENUM
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL_ENUM 0x03 // Enum
#define HID_USAGE_REPORTING_STATE_ON_THRESHOLD_ENUM HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL_ENUM
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL_WAKE_ENUM 0x04 // Enum
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL_WAKE_ENUM 0x05 // Enum
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL_ENUM 0x06 // Enum
//end reporting state enums
//begin reporting state deprecated enums
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_NO_EVENTS_ENUM 0x00 // Enum
#define HID_USAGE_DEPRECATED_REPORTING_STATE_ON_NONE_ENUM HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_NO_EVENTS_ENUM
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_ALL_EVENTS_ENUM 0x01 // Enum
#define HID_USAGE_DEPRECATED_REPORTING_STATE_ON_ALL_ENUM HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_ALL_EVENTS_ENUM
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_THRESHOLD_EVENTS_ENUM 0x02 // Enum
#define HID_USAGE_DEPRECATED_REPORTING_STATE_ON_THRESHOLD_ENUM HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_THRESHOLD_EVENTS_ENUM
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_NO_EVENTS_WAKE_ENUM 0x03 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_ALL_EVENTS_WAKE_ENUM 0x04 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_ENUM 0x05 // Enum
//end reporting state deprecated enums
#define HID_USAGE_SENSOR_PROPERTY_SAMPLING_RATE 0x0A,0x17,0x03
#define HID_USAGE_SENSOR_PROPERTY_RESPONSE_CURVE 0x0A,0x18,0x03
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE 0x0A,0x19,0x03 // NAry
//begin power state selectors
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL 0x0A,0x50,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL 0x0A,0x51,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL 0x0A,0x52,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL 0x0A,0x53,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL 0x0A,0x54,0x08 // Sel
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL 0x0A,0x55,0x08 // Sel
//end power state selectors
//begin power state enums
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_ENUM 0x01 // Enum
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_ENUM 0x02 // Enum
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_ENUM 0x03 // Enum
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_ENUM 0x04 // Enum
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_ENUM 0x05 // Enum
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_ENUM 0x06 // Enum
//end power state enums
//begin deprecated power state enums
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_POWER_STATE_UNDEFINED_ENUM 0x00 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_POWER_STATE_D0_FULL_POWER_ENUM 0x01 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_POWER_STATE_D1_LOW_POWER_ENUM 0x02 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_POWER_STATE_D2_STANDBY_WITH_WAKE_ENUM 0x03 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_POWER_STATE_D3_SLEEP_WITH_WAKE_ENUM 0x04 // Enum
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_POWER_STATE_D4_POWER_OFF_ENUM 0x05 // Enum
//end deprecated power state enums
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_FEATURE_PAGE_COUNT 0x0A,0x1A,0x03
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_FEATURE_PAGE_ID 0x0A,0x1B,0x03
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_INPUT_PAGE_COUNT 0x0A,0x1C,0x03
#define HID_USAGE_SENSOR_PROPERTY_DEPRECATED_INPUT_PAGE_ID 0x0A,0x1D,0x03

//data type location
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_LOCATION 0x0A,0x00,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_DESIRED_ACCURACY 0x0A,0x01,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_ALTITUDE_ANTENNA_SEALEVEL 0x0A,0x02,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_DIFFERENTIAL_REFERENCE_STATION_ID 0x0A,0x03,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_ALTITIDE_ELIPSOID_ERROR 0x0A,0x04,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_ALTITIDE_ELIPSOID 0x0A,0x05,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_ALTITUDE_SEALEVEL_ERROR 0x0A,0x06,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_ALTITUDE_SEALEVEL 0x0A,0x07,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_DGPS_DATA_AGE 0x0A,0x08,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_ERROR_RADIUS 0x0A,0x09,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_FIX_QUALITY 0x0A,0x0A,0x04 // NAry
//begin fix quality selectors
#define HID_USAGE_SENSOR_DATA_FIX_QUALITY_NO_FIX 0x0A,0x70,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_QUALITY_GPS 0x0A,0x71,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_QUALITY_DGPS 0x0A,0x72,0x08 // Sel
//end fix quality selectors
#define HID_USAGE_SENSOR_DATA_LOCATION_FIX_TYPE 0x0A,0x0B,0x04 // NAry
//begin fix type selectors
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_NO_FIX 0x0A,0x80,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_GPS_SPS_MODE_FIX_VALID 0x0A,0x81,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_DGPS_SPS_MODE_FIX_VALID 0x0A,0x82,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_GPS_PPS_MODE_FIX_VALID 0x0A,0x83,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_REAL_TIME_KINEMATIC 0x0A,0x84,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_FLOAT_RTK 0x0A,0x85,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_ESTIMATED_DEAD_RECKONING 0x0A,0x86,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_MANUAL_INPUT_MODE 0x0A,0x87,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_FIX_TYPE_SIMULATOR_MODE 0x0A,0x88,0x08 // Sel
//end fix type selectors
#define HID_USAGE_SENSOR_DATA_LOCATION_GEOIDAL_SEPARATION 0x0A,0x0C,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_GPS_OPERATION_MODE 0x0A,0x0D,0x04 // NAry
//begin gps operation mode selectors
#define HID_USAGE_SENSOR_DATA_GPS_OP_MODE_MANUAL 0x0A,0x90,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_GPS_OP_MODE_AUTOMATIC 0x0A,0x91,0x08 // Sel
//end gps operation mode selectors
#define HID_USAGE_SENSOR_DATA_LOCATION_GPS_SELECTION_MODE 0x0A,0x0E,0x04 // NAry
//begin gps selection mode selectors
#define HID_USAGE_SENSOR_DATA_GPS_SEL_MODE_AUTONOMOUS 0x0A,0xA0,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_GPS_SEL_MODE_DGPS 0x0A,0xA1,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_GPS_SEL_MODE_ESTIMATED_DEAD_RECKONING 0x0A,0xA2,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_GPS_SEL_MODE_MANUAL_INPUT 0x0A,0xA3,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_GPS_SEL_MODE_SIMULATOR 0x0A,0xA4,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_GPS_SEL_MODE_DATA_NOT_VALID 0x0A,0xA5,0x08 // Sel
//end gps selection mode selectors
#define HID_USAGE_SENSOR_DATA_LOCATION_GPS_STATUS 0x0A,0x0F,0x04 // NAry
//begin gps status selectors
#define HID_USAGE_SENSOR_DATA_GPS_STATUS_DATA_VALID 0x0A,0xB0,0x08 // Sel
#define HID_USAGE_SENSOR_DATA_GPS_STATUS_DATA_NOT_VALID 0x0A,0xB1,0x08 // Sel
//end gps status selectors
#define HID_USAGE_SENSOR_DATA_LOCATION_POSITION_DILUTION_OF_PRECISION 0x0A,0x10,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_HORIZONTAL_DILUTION_OF_PRECISION 0x0A,0x11,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_VERTICAL_DILUTION_OF_PRECISION 0x0A,0x12,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_LATITUDE 0x0A,0x13,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_LONGITUDE 0x0A,0x14,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_TRUE_HEADING 0x0A,0x15,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_MAGNETIC_HEADING 0x0A,0x16,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_MAGNETIC_VARIATION 0x0A,0x17,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SPEED 0x0A,0x18,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SATELLITES_IN_VIEW 0x0A,0x19,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SATELLITES_IN_VIEW_AZIMUTH 0x0A,0x1A,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SATELLITES_IN_VIEW_ELEVATION 0x0A,0x1B,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SATELLITES_IN_VIEW_ID 0x0A,0x1C,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SATELLITES_IN_VIEW_PRNs 0x0A,0x1D,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SATELLITES_IN_VIEW_STN_RATIO 0x0A,0x1E,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SATELLITES_USED_COUNT 0x0A,0x1F,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_SATELLITES_USED_PRNs 0x0A,0x20,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_NMEA_SENTENCE 0x0A,0x21,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_ADDRESS_LINE_1 0x0A,0x22,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_ADDRESS_LINE_2 0x0A,0x23,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_CITY 0x0A,0x24,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_STATE_OR_PROVINCE 0x0A,0x25,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_COUNTRY_OR_REGION 0x0A,0x26,0x04
#define HID_USAGE_SENSOR_DATA_LOCATION_POSTAL_CODE 0x0A,0x27,0x04
//property usages (get/set feature report)
#define HID_USAGE_SENSOR_PROPERTY_LOCATION 0x0A,0x2A,0x04
#define HID_USAGE_SENSOR_PROPERTY_LOCATION_DESIRED_ACCURACY 0x0A,0x2B,0x04 // NAry
//begin location desired accuracy selectors
#define HID_USAGE_SENSOR_DESIRED_ACCURACY_DEFAULT 0x0A,0x60,0x08 // Sel
#define HID_USAGE_SENSOR_DESIRED_ACCURACY_HIGH 0x0A,0x61,0x08 // Sel
#define HID_USAGE_SENSOR_DESIRED_ACCURACY_MEDIUM 0x0A,0x62,0x08 // Sel
#define HID_USAGE_SENSOR_DESIRED_ACCURACY_LOW 0x0A,0x63,0x08 // Sel
//end location desired accuracy selectors

//data type environmental
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_ENVIRONMENTAL 0x0A,0x30,0x04
#define HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE 0x0A,0x31,0x04
#define HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_REFERENCE_PRESSURE 0x0A,0x32,0x04
#define HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_RELATIVE_HUMIDITY 0x0A,0x33,0x04
#define HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE 0x0A,0x34,0x04
#define HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_WIND_DIRECTION 0x0A,0x35,0x04
#define HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_WIND_SPEED 0x0A,0x36,0x04
//property usages (get/set feature report)
#define HID_USAGE_SENSOR_PROPERTY_ENVIRONMENTAL 0x0A,0x40,0x04
#define HID_USAGE_SENSOR_PROPERTY_ENVIRONMENTAL_REFERENCE_PRESSURE 0x0A,0x41,0x04

//data type motion
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_MOTION 0x0A,0x50,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_STATE 0x0A,0x51,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION 0x0A,0x52,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS 0x0A,0x53,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS 0x0A,0x54,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS 0x0A,0x55,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY 0x0A,0x56,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_X_AXIS 0x0A,0x57,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_Y_AXIS 0x0A,0x58,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_Z_AXIS 0x0A,0x59,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_POSITION 0x0A,0x5A,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_POSITION_X_AXIS 0x0A,0x5B,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_POSITION_Y_AXIS 0x0A,0x5C,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_POSITION_Z_AXIS 0x0A,0x5D,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_SPEED 0x0A,0x5E,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_INTENSITY 0x0A,0x5F,0x04

//data type orientation
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_ORIENTATION 0x0A,0x70,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING 0x0A,0x71,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING_X 0x0A,0x72,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING_Y 0x0A,0x73,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING_Z 0x0A,0x74,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_COMPENSATED_MAGNETIC_NORTH 0x0A,0x75,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_COMPENSATED_TRUE_NORTH 0x0A,0x76,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_NORTH 0x0A,0x77,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_TRUE_NORTH 0x0A,0x78,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE 0x0A,0x79,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_X 0x0A,0x7A,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_Y 0x0A,0x7B,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_Z 0x0A,0x7C,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_OUT_OF_RANGE 0x0A,0x7D,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_TILT 0x0A,0x7E,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_X 0x0A,0x7F,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_Y 0x0A,0x80,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_Z 0x0A,0x81,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_ROTATION_MATRIX 0x0A,0x82,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_QUATERNION 0x0A,0x83,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX 0x0A,0x84,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_X_AXIS 0x0A,0x85,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_Y_AXIS 0x0A,0x86,0x04
#define HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_Z_AXIS 0x0A,0x87,0x04

//data type mechanical
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_MECHANICAL 0x0A,0x90,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_BOOLEAN_SWITCH_STATE 0x0A,0x91,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_BOOLEAN_SWITCH_ARRAY_STATES 0x0A,0x92,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_MULTIVALUE_SWITCH_VALUE 0x0A,0x93,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_FORCE 0x0A,0x94,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_ABSOLUTE_PRESSURE 0x0A,0x95,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_GAUGE_PRESSURE 0x0A,0x96,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_STRAIN 0x0A,0x97,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_WEIGHT 0x0A,0x98,0x04
//property usages (get/set feature report)
#define HID_USAGE_SENSOR_PROPERTY_MECHANICAL 0x0A,0xA0,0x04
#define HID_USAGE_SENSOR_PROPERTY_MECHANICAL_VIBRATION_STATE 0x0A,0xA1,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_VIBRATION_SPEED_FORWARD 0x0A,0xA2,0x04
#define HID_USAGE_SENSOR_DATA_MECHANICAL_VIBRATION_SPEED_BACKWARD 0x0A,0xA3,0x04

//data type biometric
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_BIOMETRIC 0x0A,0xB0,0x04
#define HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PRESENCE 0x0A,0xB1,0x04
#define HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_RANGE 0x0A,0xB2,0x04
#define HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_OUT_OF_RANGE 0x0A,0xB3,0x04
#define HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_TOUCH_STATE 0x0A,0xB4,0x04

//data type light sensor
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_LIGHT 0x0A,0xD0,0x04
#define HID_USAGE_SENSOR_DATA_LIGHT_ILLUMINANCE 0x0A,0xD1,0x04
#define HID_USAGE_SENSOR_DATA_LIGHT_COLOR_TEMPERATURE 0x0A,0xD2,0x04
#define HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY 0x0A,0xD3,0x04
#define HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY_X 0x0A,0xD4,0x04
#define HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY_Y 0x0A,0xD5,0x04
#define HID_USAGE_SENSOR_DATA_LIGHT_CONSUMER_IR_SENTENCE_RECEIVE 0x0A,0xD6,0x04
//property usages (get/set feature report)
#define HID_USAGE_SENSOR_PROPERTY_LIGHT 0x0A,0xE0,0x04
#define HID_USAGE_SENSOR_PROPERTY_LIGHT_CONSUMER_IR_SENTENCE_SEND 0x0A,0xE1,0x04

//data type scanner
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_SCANNER 0x0A,0xF0,0x04
#define HID_USAGE_SENSOR_DATA_SCANNER_RFID_TAG 0x0A,0xF1,0x04
#define HID_USAGE_SENSOR_DATA_SCANNER_NFC_SENTENCE_RECEIVE 0x0A,0xF2,0x04
//property usages (get/set feature report)
#define HID_USAGE_SENSOR_PROPERTY_SCANNER 0x0A,0xF8,0x04
#define HID_USAGE_SENSOR_PROPERTY_SCANNER_NFC_SENTENCE_SEND 0x0A,0xF9,0x04

//data type electrical
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_ELECTRICAL 0x0A,0x00,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_CAPACITANCE 0x0A,0x01,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_CURRENT 0x0A,0x02,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_POWER 0x0A,0x03,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_INDUCTANCE 0x0A,0x04,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_RESISTANCE 0x0A,0x05,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_VOLTAGE 0x0A,0x06,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_FREQUENCY 0x0A,0x07,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_PERIOD 0x0A,0x08,0x05
#define HID_USAGE_SENSOR_DATA_ELECTRICAL_PERCENT_OF_RANGE 0x0A,0x09,0x05

//data type time
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_TIME 0x0A,0x20,0x05
#define HID_USAGE_SENSOR_DATA_TIME_YEAR 0x0A,0x21,0x05
#define HID_USAGE_SENSOR_DATA_TIME_MONTH 0x0A,0x22,0x05
#define HID_USAGE_SENSOR_DATA_TIME_DAY 0x0A,0x23,0x05
#define HID_USAGE_SENSOR_DATA_TIME_DAY_OF_WEEK 0x0A,0x24,0x05
#define HID_USAGE_SENSOR_DATA_TIME_HOUR 0x0A,0x25,0x05
#define HID_USAGE_SENSOR_DATA_TIME_MINUTE 0x0A,0x26,0x05
#define HID_USAGE_SENSOR_DATA_TIME_SECOND 0x0A,0x27,0x05
#define HID_USAGE_SENSOR_DATA_TIME_MILLISECOND 0x0A,0x28,0x05
#define HID_USAGE_SENSOR_DATA_TIME_TIMESTAMP 0x0A,0x29,0x05
#define HID_USAGE_SENSOR_DATA_TIME_JULIAN_DAY_OF_YEAR 0x0A,0x2A,0x05
//property usages (get/set feature report)
#define HID_USAGE_SENSOR_PROPERTY_TIME 0x0A,0x30,0x05
#define HID_USAGE_SENSOR_PROPERTY_TIME_TIME_ZONE_OFFSET_FROM_UTC 0x0A,0x31,0x05
#define HID_USAGE_SENSOR_PROPERTY_TIME_TIME_ZONE_NAME 0x0A,0x32,0x05
#define HID_USAGE_SENSOR_PROPERTY_TIME_DAYLIGHT_SAVINGS_TIME_OBSERVED 0x0A,0x33,0x05
#define HID_USAGE_SENSOR_PROPERTY_TIME_TIME_TRIM_ADJUSTMENT 0x0A,0x34,0x05
#define HID_USAGE_SENSOR_PROPERTY_TIME_ARM_ALARM 0x0A,0x35,0x05

//data type custom
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_CUSTOM 0x0A,0x40,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_USAGE 0x0A,0x41,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_BOOLEAN_ARRAY 0x0A,0x42,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE 0x0A,0x43,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_1 0x0A,0x44,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_2 0x0A,0x45,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_3 0x0A,0x46,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_4 0x0A,0x47,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_5 0x0A,0x48,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_6 0x0A,0x49,0x05

#if 1 //define vendor-specific (non-spec) custom datafields
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_7 0x0A,0x4A,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_8 0x0A,0x4B,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_9 0x0A,0x4C,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_10 0x0A,0x4D,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_11 0x0A,0x4E,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_12 0x0A,0x4F,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_13 0x0A,0x50,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_14 0x0A,0x51,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_15 0x0A,0x52,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_16 0x0A,0x53,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_17 0x0A,0x54,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_18 0x0A,0x55,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_19 0x0A,0x56,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_20 0x0A,0x57,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_21 0x0A,0x58,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_22 0x0A,0x59,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_23 0x0A,0x5A,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_24 0x0A,0x5B,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_25 0x0A,0x5C,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_26 0x0A,0x5D,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_27 0x0A,0x5E,0x05
#define HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_28 0x0A,0x5F,0x05
#endif

//data type generic
//data field usages (input report)
#define HID_USAGE_SENSOR_DATA_GENERIC 0x0A,0x60,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_GUID_OR_PROPERTYKEY 0x0A,0x61,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_CATEGORY_GUID 0x0A,0x62,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_TYPE_GUID 0x0A,0x63,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_EVENT_PROPERTYKEY 0x0A,0x64,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_PROPERTY_PROPERTYKEY 0x0A,0x65,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_DATAFIELD_PROPERTYKEY 0x0A,0x66,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_EVENT 0x0A,0x67,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_PROPERTY 0x0A,0x68,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_DATAFIELD 0x0A,0x69,0x05
#define HID_USAGE_SENSOR_DATA_ENUMERATOR_TABLE_ROW_INDEX 0x0A,0x6A,0x05
#define HID_USAGE_SENSOR_DATA_ENUMERATOR_TABLE_ROW_COUNT 0x0A,0x6B,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_GUID_OR_PROPERTYKEY_KIND 0x0A,0x6C,0x05 // NAry
//begin GorPK kind selectors
#define HID_USAGE_SENSOR_GORPK_KIND_CATEGORY 0x0A,0xD0,0x08 // Sel
#define HID_USAGE_SENSOR_GORPK_KIND_TYPE 0x0A,0xD1,0x08 // Sel
#define HID_USAGE_SENSOR_GORPK_KIND_EVENT 0x0A,0xD2,0x08 // Sel
#define HID_USAGE_SENSOR_GORPK_KIND_PROPERTY 0x0A,0xD3,0x08 // Sel
#define HID_USAGE_SENSOR_GORPK_KIND_DATAFIELD 0x0A,0xD4,0x08 // Sel
//end GorPK kind selectors
#define HID_USAGE_SENSOR_DATA_GENERIC_GUID 0x0A,0x6D,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_PROPERTYKEY 0x0A,0x6E,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_TOP_LEVEL_COLLECTION_ID 0x0A,0x6F,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_REPORT_ID 0x0A,0x70,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_REPORT_ITEM_POSITION_INDEX 0x0A,0x71,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_FIRMWARE_VARTYPE 0x0A,0x72,0x05 // NAry
//begin firmware vartype selectors
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_NULL 0x0A,0x00,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_BOOL 0x0A,0x01,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_UI1 0x0A,0x02,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_I1 0x0A,0x03,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_UI2 0x0A,0x04,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_I2 0x0A,0x05,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_UI4 0x0A,0x06,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_I4 0x0A,0x07,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_UI8 0x0A,0x08,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_I8 0x0A,0x09,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_R4 0x0A,0x0A,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_R8 0x0A,0x0B,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_WSTR 0x0A,0x0C,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_STR 0x0A,0x0D,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_CLSID 0x0A,0x0E,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_VECTOR_VT_UI1 0x0A,0x0F,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E0 0x0A,0x10,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E1 0x0A,0x11,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E2 0x0A,0x12,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E3 0x0A,0x13,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E4 0x0A,0x14,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E5 0x0A,0x15,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E6 0x0A,0x16,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E7 0x0A,0x17,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E8 0x0A,0x18,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16E9 0x0A,0x19,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16EA 0x0A,0x1A,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16EB 0x0A,0x1B,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16EC 0x0A,0x1C,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16ED 0x0A,0x1D,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16EE 0x0A,0x1E,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F16EF 0x0A,0x1F,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E0 0x0A,0x20,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E1 0x0A,0x21,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E2 0x0A,0x22,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E3 0x0A,0x23,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E4 0x0A,0x24,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E5 0x0A,0x25,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E6 0x0A,0x26,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E7 0x0A,0x27,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E8 0x0A,0x28,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32E9 0x0A,0x29,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32EA 0x0A,0x2A,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32EB 0x0A,0x2B,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32EC 0x0A,0x2C,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32ED 0x0A,0x2D,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32EE 0x0A,0x2E,0x09 // Sel
#define HID_USAGE_SENSOR_FIRMWARE_VARTYPE_VT_F32EF 0x0A,0x2F,0x09 // Sel
//end firmware vartype selectors
#define HID_USAGE_SENSOR_DATA_GENERIC_UNIT_OF_MEASURE 0x0A,0x73,0x05 // NAry
//begin unit of measure selectors
#define HID_USAGE_SENSOR_GENERIC_UNIT_NOT_SPECIFIED 0x0A,0x40,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_LUX 0x0A,0x41,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_DEGREES_KELVIN 0x0A,0x42,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_DEGREES_CELSIUS 0x0A,0x43,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_PASCAL 0x0A,0x44,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_NEWTON 0x0A,0x45,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_METERS_PER_SECOND 0x0A,0x46,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_KILOGRAM 0x0A,0x47,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_METER 0x0A,0x48,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_METERS_PER_SEC_SQRD 0x0A,0x49,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_FARAD 0x0A,0x4A,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_AMPERE 0x0A,0x4B,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_WATT 0x0A,0x4C,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_HENRY 0x0A,0x4D,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_OHM 0x0A,0x4E,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_VOLT 0x0A,0x4F,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_HERTZ 0x0A,0x50,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_BAR 0x0A,0x51,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_DEGREES_ANTI_CLOCKWISE 0x0A,0x52,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_DEGREES_CLOCKWISE 0x0A,0x53,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_DEGREES 0x0A,0x54,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_DEGREES_PER_SECOND 0x0A,0x55,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_DEGREES_PER_SEC_SQRD 0x0A,0x56,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_KNOT 0x0A,0x57,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_PERCENT 0x0A,0x58,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_SECOND 0x0A,0x59,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_MILLISECOND 0x0A,0x5A,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_G 0x0A,0x5B,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_BYTES 0x0A,0x5C,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_MILLIGAUSS 0x0A,0x5D,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_UNIT_BITS 0x0A,0x5E,0x09 // Sel
//end unit of measure selectors
#define HID_USAGE_SENSOR_DATA_GENERIC_UNIT_EXPONENT 0x0A,0x74,0x05 // NAry
//begin unit exponent selectors
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_0 0x0A,0x70,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_1 0x0A,0x71,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_2 0x0A,0x72,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_3 0x0A,0x73,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_4 0x0A,0x74,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_5 0x0A,0x75,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_6 0x0A,0x76,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_7 0x0A,0x77,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_8 0x0A,0x78,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_9 0x0A,0x79,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_A 0x0A,0x7A,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_B 0x0A,0x7B,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_C 0x0A,0x7C,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_D 0x0A,0x7D,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_E 0x0A,0x7E,0x09 // Sel
#define HID_USAGE_SENSOR_GENERIC_EXPONENT_F 0x0A,0x7F,0x09 // Sel
//end unit exponent selectors
#define HID_USAGE_SENSOR_DATA_GENERIC_REPORT_SIZE 0x0A,0x75,0x05
#define HID_USAGE_SENSOR_DATA_GENERIC_REPORT_COUNT 0x0A,0x76,0x05
//property usages (get/set feature report)
#define HID_USAGE_SENSOR_PROPERTY_GENERIC 0x0A,0x80,0x05
#define HID_USAGE_SENSOR_PROPERTY_ENUMERATOR_TABLE_ROW_INDEX 0x0A,0x81,0x05
#define HID_USAGE_SENSOR_PROPERTY_ENUMERATOR_TABLE_ROW_COUNT 0x0A,0x82,0x05

//
//
// Other HID definitions
//
//

//NOTE: These definitions are designed to permit compiling the HID report descriptors
// with somewhat self-explanatory information to help readability and reduce errors

//input,output,feature flags
#define Data_Arr_Abs 0x00
#define Const_Arr_Abs 0x01
#define Data_Var_Abs 0x02
#define Const_Var_Abs 0x03
#define Data_Var_Rel 0x06
//collection flags
#define Physical 0x00
#define Application 0x01
#define Logical 0x02
#define NamedArray 0x04
#define UsageSwitch 0x05
//other
#define Undefined 0x00

#define HID_USAGE_PAGE(a) 0x05,a
#define HID_USAGE(a) 0x09,a
#define HID_USAGE16(a,b) 0x0A,a,b
#define HID_USAGE_SENSOR_DATA(a,b) a|b //This or-s the mod into usage
#define HID_COLLECTION(a) 0xA1,a
#define HID_REPORT_ID(a) 0x85,a
#define HID_REPORT_SIZE(a) 0x75,a
#define HID_REPORT_COUNT(a) 0x95,a
#define HID_USAGE_MIN_8(a) 0x19,a
#define HID_USAGE_MIN_16(a,b) 0x1A,a,b
#define HID_USAGE_MAX_8(a) 0x29,a
#define HID_USAGE_MAX_16(a,b) 0x2A,a,b
#define HID_LOGICAL_MIN_8(a) 0x15,a
#define HID_LOGICAL_MIN_16(a,b) 0x16,a,b
#define HID_LOGICAL_MIN_32(a,b,c,d) 0x17,a,b,c,d
#define HID_LOGICAL_MAX_8(a) 0x25,a
#define HID_LOGICAL_MAX_16(a,b) 0x26,a,b
#define HID_LOGICAL_MAX_32(a,b,c,d) 0x27,a,b,c,d
#define HID_UNIT_EXPONENT(a) 0x55,a
#define HID_INPUT(a) 0x81,a
#define HID_OUTPUT(a) 0x91,a
#define HID_FEATURE(a) 0xB1,a
#define HID_END_COLLECTION 0xC0

#endif

[bookmark: _Toc321224892][bookmark: _Toc335659925]Special Constructions
[bookmark: _Toc321224893][bookmark: _Toc335659926]Values, Types, and Unit Exponents
The content of the Specification is included here for convenience. Additional clarifications are provided for certain special constructions.
The HID Report Descriptors in this section use the following definitions for values, units and unit
exponents.

The value communicated as part of a Report Descriptor is in terms of the Report Size and Report Count
attributes, combined with the Logical Minimum, Logical Maximum, and Units for data values associated
with that Report Item.

The value is treated in one of three ways:
· As a bitfield
· As a signed or unsigned integer value
· As a float value

Bitfield
A value is identified as a bitfield when the Report Size field = 1. In this section, this is expressed as HID_REPORT_SIZE(1). In this case, Logical Maximum, Logical Minimum, Units and Units Exponent are not used.
Additional clarification follows:
The Driver always requires a Report Size field = 8 when describing a bitfield. The Driver identifies a value as a bitfield by the Usage rather than by the Report Size field. Any value present in the UsageValue of a bitfield Usage is interpreted as a boolean value. In this case, Logical Maximum, Logical Minimum, Units and Units Exponent are not used.
This provides for some economy of expression in the Report Descriptor by eliminating the need to provide padding for the remaining unused bits in a bitfield.
All of the Report Descriptor examples in this document use this bitfield definition.
Unsigned Integer
A value is identified as an unsigned integer when the ReportSize field = 8, 16 or 32 while the Units Exponent value = 0. In this section, this is expressed as HID_REPORT_SIZE(8), HID_REPORT_SIZE(16), or HID_REPORT_SIZE(32) respectively. Logical Minimum and Logical Maximum must both be positive values. Units can be specified or remain unspecified. Units Exponent must be = 0.
Signed Integer
A value is identified as a signed integer when the ReportSize field = 8, 16 or 32 while the Units Exponent value = 0. In this section, this is expressed as HID_REPORT_SIZE(8), HID_REPORT_SIZE(16), or HID_REPORT_SIZE(32) respectively. Logical Minimum must less than Logical Maximum. If Logical Minimum is = 0, the value of the field is treated as an unsigned number. If Logical Minimum > 0, care must be taken that the sign bit (MSb) is not = ‘1’ or the value will be treated as a negative number. Units can be specified or remain unspecified. Units Exponent must be = 0.
Float Value
Essentially, a float is expressed as a combination of a mantissa carried in the value field, and the
exponent expressed as power of 10 carried in the Unit Exponent field. A value is identified as a
float value when the ReportSize field = 16 or 32 while the Units Exponent value is not 0. In this
section, this is expressed as HID_REPORT_SIZE(16) or HID_REPORT_SIZE(32) respectively.
Logical Minimum must be less than Logical Maximum. If Logical Minimum is = 0, the value of the field is treated as an unsigned number. If Logical Minimum > 0, care must be taken that the sign bit (MSb) is not = ‘1’ or the value will be treated as a negative number. Units
can be specified or remain unspecified. Units Exponent must not be = 0. The Unit Exponent field is translated into powers of 10 as specified in Table 19.

[bookmark: _Toc321224948]Table 19. HID Unit Exponent encoding and meanings
	Value
	Exponent
	Power of Ten

	0x00
	1x10E0
	1

	0x01
	1x10E1
	10

	0x02
	1x10E2
	100

	0x03
	1x10E3
	1 000

	0x04
	1x10E4
	10 000

	0x05
	1x10E5
	100 000

	0x06
	1x10E6
	1 000 000

	0x07
	1x10E7
	10 000 000

	0x08
	1x10E-8
	0.00 000 001

	0x09
	1x10E-7
	0.0 000 001

	0x0A
	1x10E-6
	0.000 001

	0x0B
	1x10E-5
	0.00 001

	0x0C
	1x10E-4
	0.0 001

	0x0D
	1x10E-3
	0.001

	0x0E
	1x10E-2
	0.01

	0x0F
	1x10E-1
	0.1

These Unit Exponent field usages are not unique to this specification, but are the same as the standard HID definitions.
[bookmark: _Toc321224894][bookmark: _Toc335659927]Extended Properties
The HID Report Descriptors illustrations in Section 4.3 are meant to be examples and not prescriptive, but if Windows Hardware Certification compliance is desired they should be interpreted as prescriptive.
As previously noted, a Sensor need not support any properties whatsoever in the Feature report and only datafields in the Input Report if Windows Hardware Certification compliance is not expected. This minimal version of the Report Descriptor can enable the use of Device hardware that may not support Feature Reports.
Typically, to be Windows Hardware Certification compliant the sensor must include the following sensor properties:
.
.
.
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),

.
.
This pattern will be used in almost every sensor example.The examples also typically include the following per-datafield properties, like these taken from the Barometer report descriptor:
.
.
.
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE,HID_USAGE_SENSOR_DATA_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “bar” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “bar” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “bar” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
.
.
.
Change Sensitivity should be included unless it is not supported the the sensor; a few sensors do not support this property, particularly those that output Boolean values such as Switches.
Minimum and Maximum should be included if there is some reason the application using the sensor at the API may need to know the range of the sensor. See further discussion of this in section 5.1.
A further discussion of per-datafield properties is left to Section 4.2.3; this section will focus on the ‘extended’ Properties not used as explicit examples in Section 4.3.
For reference, the set of sensor Properties supported by the Driver is repeated below for convenience. An indication is shown as to recommended use:
// required in Feature report for Logo certification
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE			0x0A,0x09,0x03 // NAry
#define HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE				0x0A,0x16,0x03 // Nary
#define HID_USAGE_SENSOR_PROPERTY_POWER_STATE				0x0A,0x19,0x03 // Nary
#define HID_USAGE_SENSOR_STATE 					0x0A,0x01,0x02 // Nary
#define HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL				0x0A,0x0E,0x03

// required by most Sensors for Logo certification (only one of the two may be required, typically ABS)
// NOTE: this should take the bulk or specific modifier form – see section the discussion in this section
#define HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS			0x0A,0x0F,0x03
#define HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_REL_PCT		0x0A,0x11,0x03

// optional for all Sensors
#define HID_USAGE_SENSOR_PROPERTY_RANGE_MAXIMUM				0x0A,0x14,0x03
#define HID_USAGE_SENSOR_PROPERTY_RANGE_MINIMUM				0x0A,0x15,0x03

// optional for all Sensors
#define HID_USAGE_SENSOR_PROPERTY_ACCURACY				0x0A,0x12,0x03
#define HID_USAGE_SENSOR_PROPERTY_RESOLUTION				0x0A,0x13,0x03

// optional for the AmbientLight Sensor
#define HID_USAGE_SENSOR_PROPERTY_RESPONSE_CURVE				0x0A,0x18,0x03

// for use at (careful) discretion of implementer
#define HID_USAGE_SENSOR_PROPERTY_FRIENDLY_NAME				0x0A,0x01,0x03
#define HID_USAGE_SENSOR_PROPERTY_PERSISTENT_UNIQUE_ID			0x0A,0x02,0x03
#define HID_USAGE_SENSOR_PROPERTY_MINIMUM_REPORT_INTERVAL			0x0A,0x04,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_MANUFACTURER			0x0A,0x05,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_MODEL				0x0A,0x06,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_SERIAL_NUMBER			0x0A,0x07,0x03
#define HID_USAGE_SENSOR_PROPERTY_SENSOR_DESCRIPTION			0x0A,0x08,0x03

// required in Input report for Logo certification
#define HID_USAGE_SENSOR_STATE 					0x0A,0x01,0x02 // Nary
#define HID_USAGE_SENSOR_EVENT 					0x0A,0x02,0x02 // NAry
Though not strictly a property, the following Usage included in the above list is also used in a Feature Report as well as in an Input Report:
#define HID_USAGE_SENSOR_STATE 					0x0A,0x01,0x02 // Nary
Finally, the following Usage included in the above list is used in an Input report:
#define HID_USAGE_SENSOR_EVENT 					0x0A,0x02,0x02 // NAry
The following extracts from a hypothetical HID Report Descriptor shows how to represent each of these. Note that in the case of string descriptors such as FRIENDLY_NAME and PERSISTENT_UNIQUE_ID the report count should be large enough to contain the expected value (16-bits for each wide character, plus 16-bits for a wide NULL termination) but need be not larger (16 is used here for reference, long enough to hold a 15 wide-character string – the constraint on use of these string descriptors in a Feature report is that the overall length of the Feature report, including the Report ID, cannot exceed 64 bytes):
.
.
.
HID_USAGE_SENSOR_PROPERTY_FRIENDLY_NAME,
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(16),
HID_FEATURE(Data_Arr_Abs),

HID_USAGE_SENSOR_PROPERTY_PERSISTENT_UNIQUE_ID,
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(16),
HID_FEATURE(Data_Arr_Abs),

HID_USAGE_SENSOR_PROPERTY_MINIMUM_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),

HID_USAGE_SENSOR_PROPERTY_SENSOR_MANUFACTURER,
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(16),
HID_FEATURE(Data_Arr_Abs),

HID_USAGE_SENSOR_PROPERTY_SENSOR_MODEL,
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(16),
HID_FEATURE(Data_Var_Abs),

HID_USAGE_SENSOR_PROPERTY_SENSOR_SERIAL_NUMBER,
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(16),
HID_FEATURE(Data_Arr_Abs),

HID_USAGE_SENSOR_PROPERTY_SENSOR_DESCRIPTION,
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(16),
HID_FEATURE(Data_Arr_Abs),

HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,

HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),

HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_REL_PCT, //only used for the AmbientLight sensor
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,

HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,

HID_USAGE_SENSOR_PROPERTY_RESPONSE_CURVE,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(10), //as required for n pair of values
HID_UNIT_EXPONENT(0x0), // scale default unit to provide 0 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
.
.
.
Though not defined as a property, the following is also used in a Feature report as a property as well as in an Input report.
.
.
.
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
.
.
.
Finally, two property-like construction are used in the Input report:
.
.
.
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,

HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
.
.
.
It is up to the device to expose these as required by the particular application in which the device is used.
Note that many of these are strings. In the case of string descriptors such as FRIENDLY_NAME and PERSISTENT_UNIQUE_ID the report count should be large enough to contain the expected value (16-bits for each wide character, plus 16-bits for a wide NULL termination) but need be not larger (16 is used here for reference, long enough to hold a 15 wide-character string – the constraint on use of these string descriptors in a Feature report is that the overall length of the Feature report, including the Report ID, cannot exceed 64 bytes.)
[bookmark: _Toc321224895][bookmark: _Toc335659928]Modifiers: Per-datafield Properties
A number of Properties (transferred in Feature Reports) that can be applied to Data Fields (transferred in Input Reports) are on a per-datafield basis. This presents some options in how these per-datafield Properties can be expressed using the definitions in this document.
One way to do so assumes there is only a single type of Data Field, and that the Property applies to all Data Fields of no matter what their type. These are considered global datafield properties.
.
.
.
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS,
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_REL_PCT,
HID_USAGE_SENSOR_PROPERTY_MAXIMUM,
HID_USAGE_SENSOR_PROPERTY_MINIMUM,
HID_USAGE_SENSOR_PROPERTY_ACCURACY,
HID_USAGE_SENSOR_PROPERTY_RESOLUTION,
.
.
.
Even though the Data Field is not stated, it is assumed that there is only one type supported and that the Property specified applies in the same way to all examples of that type. For example, if this were a single Data Field for a thermometer:
HID_USAGE_SENSOR_DATA_EVNIRONMENTAL_TEMPERATURE,
then the Properties specified would apply only to that Data Field. If instead this were a tuple of Data Fields for an accelerometer:
HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X,
HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y,
HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z,
Then the Properties specified would apply to all the Data Fields in the same way.
This can be an issue when more than one datafield property bear no relationship to each other. For example, consider these three datafields:
HID_USAGE_SENSOR_DATA_LIGHT_ILLUMINANCE,
HID_USAGE_SENSOR_DATA_LIGHT_COLOR_TEMPERATURE,
HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY_X,
Change sensitivity, maximum, minimum, accuracy and resolution for these three datafields are very unlikely to have any relationship common between the three datafields. It is best in general to be more explicit in stating per-datafield properties, so this use of this construction is discouraged.
This can also be an issue if a dynamic datafield (ex. HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X) is used in an unrelated Sensor (ex. Accelerometer.) Using the global datafield property will apply that property to ALL datafields no matter their type.
A more explicit construction has been provided that is semantically equivalent. Data Fields are expressed by means of a Data Field type and a Modifier Usage Switch.
The per-datafield properties expressed as Data Field Modifiers are defined elsewhere in the document. Those defined in this document are repeated below for convenience:
//data type usages modifiers
//NOTE: the usage tables actually define these as two bytes, but in order
//to get the define macros to work so these are ‘or-ed’ these are defined
//here as only one byte.
#define HID_USAGE_SENSOR_DATA_MOD_NONE				0x00 //US
#define HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS		0x10 //US
#define HID_USAGE_SENSOR_DATA_MOD_MAX				0x20 //US
#define HID_USAGE_SENSOR_DATA_MOD_MIN				0x30 //US
#define HID_USAGE_SENSOR_DATA_MOD_ACCURACY			0x40 //US
#define HID_USAGE_SENSOR_DATA_MOD_RESOLUTION			0x50 //US
#define HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_REL_PCT	0xE0 //US
Any of these Modifiers can be applied to any Data Field. Below is an example extracted from a HID Report Descriptor that again uses the single Data Field thermometer example. This use is referred to as a specific property:
.
.
.	
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_ACCURACY),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_PRECISION),
.
.
.
Provision has been made for this sytax to apply to those cases where there are multiple Data Fields defined for the sensor. In each case where multiple Data Fields are defined, a definition has been created that refers to all of them collectively. This use is referred to as a bulk property. Using again the accelerometer as an example, the collective and individual Data Field defintions are below:
#define HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION			0x0A,0x52,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS		0x0A,0x53,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS		0x0A,0x54,0x04
#define HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS		0x0A,0x55,0x04
Applying the list of Properties to the bulk version of the Data Field would be done as follows:
.
.
.	 HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_ACCURACY),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_PRECISION),
.
.
.
Note that in each case the Data Field to which the Modifier applies is specified, and that in each case the Data Field specified is for the collective version of the Data Field. This is mostly equivalent to the following definitions presented previously and repeated here for convenience:
.
.
.
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS,
HID_USAGE_SENSOR_PROPERTY_MAXIMUM,
HID_USAGE_SENSOR_PROPERTY_MINIMUM,
HID_USAGE_SENSOR_PROPERTY_ACCURACY,
HID_USAGE_SENSOR_PROPERTY_RESOLUTION,
.
.
.
In the case of the collective Data Field specification, this will only apply to Data Fields of that type. In the case of the HID_USAGE_SENSOR_PROPERTY_xxx construction, this would apply to all Data Fields even if they are not of the same type.
In the case of specifying Properties that are applied per-datafield with the expectation that the Property may change depending on the Data Field, the following specific construction again using the accelerometer follows:
.
.
.
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,HID_USAGE_SENSOR_DATA_MOD_ACCURACY),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS,HID_USAGE_SENSOR_DATA_MOD_ACCURACY),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS,HID_USAGE_SENSOR_DATA_MOD_ACCURACY),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,HID_USAGE_SENSOR_DATA_MOD_RESOLUTION),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS,HID_USAGE_SENSOR_DATA_MOD_RESOLUTION),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS,HID_USAGE_SENSOR_DATA_MOD_RESOLUTION),
.
.
.
Note that in each case the Data Field is the specific Data Field and not the bulk version, and that the Property modifier only applies to that Data Field. This specificity is the most desireable way to express per-datafield properties, though this comes at some cost to the device that must support these Report Descriptors.
A heterogenous example, from a hypothetical 1D accelerometer combined with a thermometer follows:
.
.
.	
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_ACCURACY),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,HID_USAGE_SENSOR_DATA_MOD_ACCURACY),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_RESOLUTION),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,HID_USAGE_SENSOR_DATA_MOD_RESOLUTION),
.
.
.
So far, the discussion applies to required datafields as well as optional datafields. One final consideration must be made for dynamic datafields.
A dynamic datafield is a datafield that is supported in any Sensor aside from that Sensor in which that datafield is required or optional. When supporting a dynamic datafield, using the global per-datafield property should be avoided. Further, the bulk per-datafield property would not apply since by definition the dynamic datafield is being implemented in a heterogenous Sensor. The only remaining alternative is to use the specific per-datafield constructin described in the previous paragraphs.
There is no requirement that per-datafield Properties be supported at all for any Data Field; it follows, too, that these can be mixed and matched to express Properties that are important to the device implementer. However, if Windows Hardware Certification compliance is expected it will almost always be necessary to support Change Sensitivity.
[bookmark: _Toc321224896][bookmark: _Toc335659929]Event Thresholds
Aside from Change Sensitivity, event thresholds are not supported by the Driver. Change Sensitivity is interpreted by the driver as a Data Updated event.
[bookmark: _Toc321224897][bookmark: _Toc335659930]Sensor Collections
The way in which Sensor Collection is described requires further elaboration. The implementer should be careful to use Report Descriptors for their specific device based on the examples in this document rather than the sensor collection examples in the Specification.
Sensor Collections must always take the same form, illustrated by the following skeleton example using two sensors:
// Two sensor collection skeleton example:
const unsigned char col1_report_descriptor[] = {
 	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_TYPE_COLLECTION,
 	HID_COLLECTION(Application),

 	HID_REPORT_ID(1),
 	HID_USAGE_PAGE_SENSOR,

 	HID_USAGE_SENSOR_TYPE_ihv1,
 	HID_COLLECTION(Physical),

	//Feature Report Descriptor for Sensor Report ID = 1

	//Input Report Descriptor for Sensor Report ID = 1

 	HID_END_COLLECTION, //for Report ID = 1

 	HID_REPORT_ID(2),
 	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_TYPE_ihv2,
 	HID_COLLECTION(Physical),

	//Feature Report Descriptor for Sensor Report ID = 2

	//Input Report Descriptor for Sensor Report ID = 2

 	HID_END_COLLECTION, //for Report ID = 2

	//More sensors follow using the same pattern

 	HID_END_COLLECTION //Application
};

Note that in this example the Report ID begins at “1”, and this is required by the driver. The folowing report IDs increment by “1” for each additional sensor. The commented sections for Feature and Input report descriptors are identical to those for any other sensor.
This Sensor report descriptor could be followed, or preceeded by, report descriptors for other devices such as a Mouse or a Keyboard. The following example illustrates this.
const unsigned char col2_report_descriptor[] = {
//keyboard
 0x05U, 0x01U, // USAGE PAGE (Generic Desktop)
 0x09U, 0x06U, // USAGE (Keyboard)
 0xA1U, 0x01U, // COLLECTION (Application)

 0x85U, 0x03U, // REPORT_ID (1)

 0x15U, 0x00U, // LOGICAL MINIMUM (0)
 0x25U, 0x01U, // LOGICAL MAXIMUM (1)
 0x75U, 0x01U, // REPORT SIZE (1)
 0x95U, 0x08U, // REPORT COUNT (8)
 0x05U, 0x07U, // USAGE PAGE (Keyboard)
 0x19U, 0xE0U, // USAGE MINIMUM (Keyboard LeftControl)
 0x29U, 0xE7U, // USAGE MAXIMUM (Keyboard Right GUI)
 0x81U, 0x02U, // INPUT (Var)

 0x75U, 0x08U, // REPORT SIZE (8)
 0x95U, 0x0AU, // REPORT COUNT (10)
 0x19U, 0x00U, // USAGE MINIMUM (No event)
 0x29U, 0x91U, // USAGE MAXIMUM (Keyboard LANG2)
 0x26U, 0xFFU, 0x00U, // LOGICAL MAXIMUM (0xFF)
 0x81U, 0x00U, // INPUT (Data,Ary,Abs)

 0xC0U, // END COLLECTION, //keyboard

// Two sensor collection skeleton example:
 	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_TYPE_COLLECTION,
 	HID_COLLECTION(Application),

 	HID_REPORT_ID(2),
 	HID_USAGE_PAGE_SENSOR,

 	HID_USAGE_SENSOR_TYPE_ihv1,
 	HID_COLLECTION(Physical),

	//Feature Report Descriptor for Sensor Report ID = 2

	//Input Report Descriptor for Sensor Report ID = 2

 	HID_END_COLLECTION, //for Report ID = 2

 	HID_REPORT_ID(3),
 	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_TYPE_ihv2,
 	HID_COLLECTION(Physical),

	//Feature Report Descriptor for Sensor Report ID = 3

	//Input Report Descriptor for Sensor Report ID = 3

 	HID_END_COLLECTION, //for Report ID = 3

	//More sensors follow using the same pattern

 	HID_END_COLLECTION //Sensor collection

//mouse
 0x05U, 0x01U, // USAGE PAGE (Generic Desktop)
 0x09U, 0x02U, // USAGE (Mouse)
 0xA1U, 0x01U, // COLLECTION (Application)
 0x85U, 0x04U, // REPORT_ID (4)

 // 5 mouse buttons
 0x05U, 0x09U, // USAGE PAGE (Button)
 0x19U, 0x01U, // USAGE MINIMUM (Button 1)
 0x29U, 0x05U, // USAGE MAXIMUM (Button 5)
 0x15U, 0x00U, // LOGICAL MINIMUM (0)
 0x25U, 0x01U, // LOGICAL MAXIMUM (1)
 0x95U, 0x05U, // REPORT COUNT (5)
 0x75U, 0x01U, // REPORT SIZE (1)
 0x81U, 0x02U, // INPUT (Data,Var,Abs)

 // 3 unused buttons:
 0x95U, 0x01U, // REPORT COUNT (1)
 0x75U, 0x03U, // REPORT SIZE (3)
 0x81U, 0x03U, // INPUT (Cnst,Var,Abs)

 // mouse (delta x, delta y) position
 0x15U, 0x81U, // LOGICAL MINIMUM (-127)
 0x25U, 0x7fU, // LOGICAL MAXIMUM (+127)
 0x75U, 0x08U, // REPORT SIZE (8)
 0x95U, 0x02U, // REPORT COUNT (2)
 0x05U, 0x01U, // USAGE PAGE (Generic Desktop)
 0x09U, 0x30U, // USAGE(X)
 0x09U, 0x31U, // USAGE (Y)
 0x81U, 0x06U, // INPUT (Data,Var,Rel)

 0xC0U, // END COLLECTION //mouse
};

//end of report descriptor

Note that in this example there are three physcial devices: one keyboard, one sensor collection and one mouse. The sensor collection contains two sensors. If there is only a single sensor, it still must be enclosed within a sensor collection as shown in the following example.
const unsigned char col3_report_descriptor[] = {
//keyboard
 0x05U, 0x01U, // USAGE PAGE (Generic Desktop)
 0x09U, 0x06U, // USAGE (Keyboard)
 0xA1U, 0x01U, // COLLECTION (Application)

 0x85U, 0x03U, // REPORT_ID (1)

 0x15U, 0x00U, // LOGICAL MINIMUM (0)
 0x25U, 0x01U, // LOGICAL MAXIMUM (1)
 0x75U, 0x01U, // REPORT SIZE (1)
 0x95U, 0x08U, // REPORT COUNT (8)
 0x05U, 0x07U, // USAGE PAGE (Keyboard)
 0x19U, 0xE0U, // USAGE MINIMUM (Keyboard LeftControl)
 0x29U, 0xE7U, // USAGE MAXIMUM (Keyboard Right GUI)
 0x81U, 0x02U, // INPUT (Var)

 0x75U, 0x08U, // REPORT SIZE (8)
 0x95U, 0x0AU, // REPORT COUNT (10)
 0x19U, 0x00U, // USAGE MINIMUM (No event)
 0x29U, 0x91U, // USAGE MAXIMUM (Keyboard LANG2)
 0x26U, 0xFFU, 0x00U, // LOGICAL MAXIMUM (0xFF)
 0x81U, 0x00U, // INPUT (Data,Ary,Abs)

 0xC0U, // END COLLECTION, //keyboard

// One sensor collection skeleton example:
 	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_TYPE_COLLECTION,
 	HID_COLLECTION(Application),

 	HID_REPORT_ID(2),
 	HID_USAGE_PAGE_SENSOR,

 	HID_USAGE_SENSOR_TYPE_ihv2,
 	HID_COLLECTION(Physical),

	//Feature Report Descriptor for Sensor Report ID = 2

	//Input Report Descriptor for Sensor Report ID = 2

 	HID_END_COLLECTION, //for Report ID = 2

 	HID_END_COLLECTION //Sensor collection

//mouse
 0x05U, 0x01U, // USAGE PAGE (Generic Desktop)
 0x09U, 0x02U, // USAGE (Mouse)
 0xA1U, 0x01U, // COLLECTION (Application)
 0x85U, 0x04U, // REPORT_ID (3)

 // 5 mouse buttons
 0x05U, 0x09U, // USAGE PAGE (Button)
 0x19U, 0x01U, // USAGE MINIMUM (Button 1)
 0x29U, 0x05U, // USAGE MAXIMUM (Button 5)
 0x15U, 0x00U, // LOGICAL MINIMUM (0)
 0x25U, 0x01U, // LOGICAL MAXIMUM (1)
 0x95U, 0x05U, // REPORT COUNT (5)
 0x75U, 0x01U, // REPORT SIZE (1)
 0x81U, 0x02U, // INPUT (Data,Var,Abs)

 // 3 unused buttons:
 0x95U, 0x01U, // REPORT COUNT (1)
 0x75U, 0x03U, // REPORT SIZE (3)
 0x81U, 0x03U, // INPUT (Cnst,Var,Abs)

 // mouse (delta x, delta y) position
 0x15U, 0x81U, // LOGICAL MINIMUM (-127)
 0x25U, 0x7fU, // LOGICAL MAXIMUM (+127)
 0x75U, 0x08U, // REPORT SIZE (8)
 0x95U, 0x02U, // REPORT COUNT (2)
 0x05U, 0x01U, // USAGE PAGE (Generic Desktop)
 0x09U, 0x30U, // USAGE(X)
 0x09U, 0x31U, // USAGE (Y)
 0x81U, 0x06U, // INPUT (Data,Var,Rel)

 0xC0U, // END COLLECTION //mouse
};

//end of report descriptor

Note that in this example they mouse report ID has been changed to “3” to reflect the fact there is only a single sensor in the sensor collection.
[bookmark: _Toc321224898][bookmark: _Toc335659931]Custom Sensor
Certain of the custom sensor datafields, as well as the Feature report, are optional. Following are several examples. Do not omit the Feature report, nor the required fields in the Feature report, if the Device is expected to be Windows Hardware Certification-compliant.
The first example is a minimally-functional custom sensor Report Descriptor that includes the only required datafield. Be advised this example is not Windows Hardware Certification-compliant.
const unsigned char cus1_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR, // USAGE_PAGE (Sensor)
	HID_USAGE_SENSOR_TYPE_OTHER_CUSTOM, // USAGE (Simple Custom)
	HID_COLLECTION(Physical),
	
	//input reports (transmit)	
HID_USAGE_PAGE_SENSOR,
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_1,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_DATA_MOTION_SPEED value

	HID_END_COLLECTION
};
The second example is a minimally-functional customer sensor Report Descriptor that includes the optional Custom Sensor datafields. Be advised this example is not Windows Hardware Certification-compliant.
const unsigned char cus2_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR, // USAGE_PAGE (Sensor)
	HID_USAGE_SENSOR_TYPE_OTHER_CUSTOM, // USAGE (Simple Custom)
	HID_COLLECTION(Physical),
	
	//input reports (transmit)	
HID_USAGE_PAGE_SENSOR,
	HID_USAGE_SENSOR_DATA_CUSTOM_USAGE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_TYPE_MOTION_SPEEDOMETER
	HID_USAGE_SENSOR_DATA_CUSTOM_BOOLEAN_ARRAY,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_TYPE_MOTION_SPEEDOMETER
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_1,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_DATA_MOTION_SPEED value
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_2,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_DATA_MOTION_SPEED value
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_3,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_DATA_MOTION_SPEED value
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_4,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_DATA_MOTION_SPEED value
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_5,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_DATA_MOTION_SPEED value
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_6,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_DATA_MOTION_SPEED value

	HID_END_COLLECTION
};
Following is a Custom Sensor Report Descriptor that illustrates these concepts. If we apply this example, the encapsulated fields would be populated as follows for a Speedometer sensor (HID Usage = HID_USAGE_SENSOR_TYPE_MOTION_SPEEDOMETER).
const unsigned char cus3_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR, // USAGE_PAGE (Sensor)
	HID_USAGE_SENSOR_TYPE_OTHER_CUSTOM, // USAGE (Simple Custom)
	HID_COLLECTION(Physical),
	
	//feature reports (xmit/receive)
	HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_CUSTOM,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_CUSTOM,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_CUSTOM,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),

	//input reports (transmit)	
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
	HID_USAGE_SENSOR_DATA_CUSTOM_USAGE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_TYPE_MOTION_SPEEDOMETER
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_1,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs), // = HID_USAGE_SENSOR_DATA_MOTION_SPEED value

	HID_END_COLLECTION
};
Following is a complete report descriptor that illustrates fields not used in the above example. Aside from choosing how many optional datafields to choose for a specific application, this is the recommended Report Descriptor for a Custom sensor:
// Complete HID report descriptor

const unsigned char cus4_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR, // USAGE_PAGE (Sensor)
	HID_USAGE_SENSOR_TYPE_OTHER_CUSTOM, // USAGE (Simple Custom)
	HID_COLLECTION(Application),
	
	//feature reports (xmit/receive)
	HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_CUSTOM,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_CUSTOM,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_CUSTOM,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),

	//input reports (transmit)
	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
	HID_USAGE_SENSOR_DATA_CUSTOM_USAGE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_BOOLEAN_ARRAY,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_1,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_2,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_3,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_4,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_5,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_6,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),

#if 1 //define vendor-specific (non-spec) custom datafields
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_7,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_8,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_9,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_10,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_11,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_12,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_13,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_14,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_15,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_16,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_17,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_18,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_19,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_20,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_21,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_22,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_23,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_24,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_25,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_26,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_27,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA_CUSTOM_VALUE_28,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),
#endif
	HID_END_COLLECTION
};

typedef struct _CUS_FEATURE_REPORT
{
 Unsigned char ucReportId;
 unsigned char ucConnectionType;
 unsigned char ucReportingState;
 unsigned char ucPowerState;
 unsigned char ucSensorState;
 unsigned long ulReportInterval;
 unsigned short usCustomSensitivity;

} CUS_FEATURE_REPORT, *PCUS_FEATURE_REPORT;

typedef struct _CUS_INPUT_REPORT
{
 Unsigned char ucReportId;
 unsigned char ucSensorState;
 unsigned char ucEventType;
 unsigned short usUsage;
 short sValueArray[28]; //1 //6 max //28

} CUS_INPUT_REPORT, *PCUS_INPUT_REPORT;

Additional discussion of report descriptor variations to be provided: fully described per-datafield properties, using all properties.
[bookmark: _Toc321224899][bookmark: _Toc335659932]Generic Sensor
The Driver supports only a single, simple form of the Generic sensor. This form is described in the examples below.
Only a single method is used to identify a Property or Data Field:
1. Using simply the PROPERTYKEY field;
This 20-bit PROPERTYKEY field is followed by a single 16-bit or 32-bit value. This value is interpreted as an unsigned integer if the Exponent is ‘0’ and a fixed-point value when the Exponent is anything other than ‘0.’
Following is a Generic Sensor Report Descriptor that illustrates these simplified concepts supported by the Driver. If we apply this example, the encapsulated fields would be populated as follows for a Speedometer sensor (HID Usage = HID_USAGE_SENSOR_TYPE_MOTION_SPEEDOMETER).
// Complete HID report descriptor

const unsigned char gensen_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_OTHER_GENERIC,
HID_COLLECTION(Application),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_GENERIC_CATEGORY_GUID,
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(16),
HID_FEATURE(Data_Arr_Abs), //= Sensor Category Motion
HID_USAGE_SENSOR_DATA_GENERIC_TYPE_GUID,
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(16),
HID_FEATURE(Data_Arr_Abs), //= Sensor Type Speedometer
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “G” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
	HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_GENERIC_DATAFIELD_PROPERTYKEY, //datafield
//opt HID_LOGICAL_MIN_8(0),
//opt HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(24),
//opt HID_UNIT_EXPONENT(0x0E), // scale default unit “G” to provide 2 digits past the decimal point
HID_INPUT(Data_Arr_Abs), //= Sensor Datafield Speed + 32-bit value

HID_END_COLLECTION
};

typedef struct _GENSEN_FEATURE_REPORT
{
 unsigned char ucReportId;
 unsigned char ucConnectionType;
 unsigned char ucReportingState;
 unsigned char ucPowerState;
 unsigned char ucSensorState;

 GUID guidSensorCategory;
 GUID guidSensorType;

 unsigned long ulReportInterval;

 PROPERTYKEY pkGensenDatafieldKey;
 unsigned short usGensenChangeSensitivity;
 unsigned short usGensenChangeSensitivity;

} GENSEN_FEATURE_REPORT, *PGENSEN_FEATURE_REPORT;

typedef struct _GENSEN_INPUT_REPORT
{
 unsigned short ucReportId;
 unsigned short ucSensorState;
 unsigned short ucEventType;

 PROPERTYKEY pkGensenDatafieldKey;
 long lGensenDatafieldValue;

} GENSEN_INPUT_REPORT, *PGENSEN_INPUT_REPORT;

Generic Enumerator
The Generic Enumerator is not supported by the Driver.
[bookmark: _Toc321224900][bookmark: _Toc335659933]Illustrative Sensor Report Descriptors
As noted in the Custom Sensor discussion (section 4.2.6) a sensor does not require a Feature Report or the two additional fields in the Input Report in order to work properly with the Driver. That concept can be extended to all other supported drivers, so for the sake of brevity those minimal Report Descriptor constructions are not shown in the following examples. Also, the extended properties beyond those recommended in section 4.2.6 are not shown in the following examples though these constructs can be used if desired.
For the most part, the following examples are the recommended Report Descriptors for these Sensor types. These will work with the Driver as well as, when properly implemented, be Windows Hardware Certification compliant.
These descriptions should be read carefully. Certain conditions apply to certain Sensors and not to others. The implementer should always comply with the notes for the Sensors to be implemented.
Structure typedefs that match the report descriptors for each sensor have been included in the descriptions. These include both the Feature report and the Input report. The following typedefs are used to define these structures:
typedef unsigned char HID_UCHAR; //8-bits
typedef char HID_CHAR; //8-bits
typedef unsigned short HID_USHORT; //16-bits
typedef short HID_SHORT; //16-bits
typedef unsigned long HID_ULONG; //32-bits
typedef long HID_LONG; //32-bits
A machine readable header file containing these descriptions is available as part of the sources for the Windows 8 SensorsHIDDriverSample, part of the Windows 8 WDK:
hid_sensor_spec_report_descriptors.h.
This file, along with the hid_sensor_spec_macros.h are intended to be compiled with an ANSI C compiler. The implementer is advised to treat those files as the source for the report descriptors in the following sections.

[bookmark: _Toc321224901][bookmark: _Toc335659934]Biometric: Human Presence
// Complete HID report descriptor

//Human Presence
const unsigned char pres_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_BIOMETRIC_PRESENCE,
HID_COLLECTION(Physical),
	
//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PRESENCE,
HID_LOGICAL_MIN_8(0), // False
HID_LOGICAL_MAX_8(1), // True
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _PRES_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor

} PRES_FEATURE_REPORT, *PPRES_FEATURE_REPORT;

typedef struct _PRES_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_UCHAR ucPresenceState;

} PRES_INPUT_REPORT, *PPRES_INPUT_REPORT;

[bookmark: _Toc321224902][bookmark: _Toc335659935]Biometric: Human Proximity
// For reference: Complete HID report descriptor

const unsigned char prox_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_BIOMETRIC_PROXIMITY,
HID_COLLECTION(Physical),
	
//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_RANGE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0D), // scale default unit “meter” to “centimeter” to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_RANGE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0D), // scale default unit “meter” to “centimeter” to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_RANGE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0D), // scale default unit “meter” to “centimeter” to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_OUT_OF_RANGE,
HID_LOGICAL_MIN_8(0), // False
HID_LOGICAL_MAX_8(1), // True
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_PROXIMITY_RANGE,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0D), // scale default unit “meter” to “centimeter” to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _PROX_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usProximityChangeSensitivity;
 HID_SHORT sProximityMaximum;
 HID_SHORT sProximityMinimum;

} PROX_FEATURE_REPORT, *PPROX_FEATURE_REPORT;

typedef struct _PROX_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_UCHAR ucOutOfRange;
 HID_SHORT sProximityValue;

} PROX_INPUT_REPORT, *PPROX_INPUT_REPORT;

[bookmark: _Toc321224903][bookmark: _Toc335659936]Biometric: Touch
This example describes a sensor that detects human touch for biometric purposes. It is not to be confused with a touch-screen that uses touch for graphical navigation control.
// For reference: Complete HID report descriptor

//Touch sensor
const unsigned char biotouch_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_BIOMETRIC_TOUCH,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_BIOMETRIC_HUMAN_TOUCH_STATE,
HID_LOGICAL_MIN_8(0), // False
HID_LOGICAL_MAX_8(1), // True
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _BIOTOUCH_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor

} BIOTOUCH_FEATURE_REPORT, *PBIOTOUCH_FEATURE_REPORT;

typedef struct _BIOTOUCH_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_UCHAR ucTouchState;

} BIOTOUCH_INPUT_REPORT, *PBIOTOUCH_INPUT_REPORT;

[bookmark: _Toc321224904][bookmark: _Toc335659937]Electrical: Current
// Complete HID report descriptor

const unsigned char amp_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ELECTRICAL_CURRENT,
HID_COLLECTION(Physical),
	
//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_CURRENT,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_CURRENT,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_CURRENT,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),

	//input reports (transmit)
	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
	HID_USAGE_SENSOR_DATA_ELECTRICAL_CURRENT,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),

	HID_END_COLLECTION
};

typedef struct _AMP_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usAmpChangeSensitivity;
 HID_SHORT sAmpMaximum;
 HID_SHORT sAmpMinimum;

} AMP_FEATURE_REPORT, *PAMP_FEATURE_REPORT;

typedef struct _AMP_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sAmpValue;

} AMP_INPUT_REPORT, *PAMP_INPUT_REPORT;

[bookmark: _Toc321224905][bookmark: _Toc335659938]Electrical: Power
// Complete HID report descriptor

const unsigned char watt_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ELECTRICAL_POWER,
HID_COLLECTION(Physical),
	
	//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_POWER,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_POWER,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_POWER,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),

	//input reports (transmit)
	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
	HID_USAGE_SENSOR_DATA_ELECTRICAL_POWER,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),

	HID_END_COLLECTION
};

typedef struct _WATT_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usWattChangeSensitivity;
 HID_USHORT usWattMaximum;
 HID_USHORT usWattMinimum;

} WATT_FEATURE_REPORT, *PWATT_FEATURE_REPORT;

typedef struct _WATT_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_USHORT usWattValue;

} WATT_INPUT_REPORT, *PWATT_INPUT_REPORT;

[bookmark: _Toc321224906][bookmark: _Toc335659939]Electrical: Voltage
// Complete HID report descriptor

const unsigned char volt_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ELECTRICAL_VOLTAGE,
HID_COLLECTION(Physical),
	
//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_VOLTAGE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_VOLTAGE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_VOLTAGE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ELECTRICAL_VOLTAGE,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _VOLT_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usVoltChangeSensitivity;
 HID_SHORT sVoltMaximum;
 HID_SHORT sVoltMinimum;

} VOLT_FEATURE_REPORT, *PVOLT_FEATURE_REPORT;

typedef struct _VOLT_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sVoltValue;

} VOLT_INPUT_REPORT, *PVOLT_INPUT_REPORT;

[bookmark: _Toc321224907][bookmark: _Toc335659940]Electrical: Potentiometer
// Complete HID report descriptor

const unsigned char pot_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
	HID_USAGE_SENSOR_TYPE_ELECTRICAL_POTENTIOMETER,
	HID_COLLECTION(Physical),
	
	//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_PERCENT_OF_RANGE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_PERCENT_OF_RANGE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0x10,0x27), // 10000 = 0.00 to 100.00 percent with 2 digits past decimal point
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_PERCENT_OF_RANGE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_8(0),	
HID_LOGICAL_MAX_16(0x10,0x27), // 10000 = 0.00 to 100.00 percent with 2 digits past decimal point
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
	HID_USAGE_SENSOR_DATA_ELECTRICAL_PERCENT_OF_RANGE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0x10,0x27), // 10000 = 0.00 to 100.00 percent with 2 digits past decimal point
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “percent” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),

	HID_END_COLLECTION
};

typedef struct _POT_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usPotChangeSensitivity;
 HID_USHORT usPotMaximum;
 HID_USHORT usPotMinimum;

} POT_FEATURE_REPORT, *PPOT_FEATURE_REPORT;

typedef struct _POT_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_USHORT usPotValue;

} POT_INPUT_REPORT, *PPOT_INPUT_REPORT;

[bookmark: _Toc321224908][bookmark: _Toc335659941]Electrical: Frequency
// Complete HID report descriptor

const unsigned char hertz_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ELECTRICAL_FREQUENCY,
HID_COLLECTION(Physical),
	
//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_FREQUENCY,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_FREQUENCY,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ELECTRICAL_FREQUENCY,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_FEATURE(Data_Var_Abs),

	//input reports (transmit)
	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
	HID_USAGE_SENSOR_DATA_ELECTRICAL_FREQUENCY,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
	HID_INPUT(Data_Var_Abs),

	HID_END_COLLECTION
};

typedef struct _HERTZ_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usHertzChangeSensitivity;
 HID_USHORT usHertzMaximum;
 HID_USHORT usHertzMinimum;

} HERTZ_FEATURE_REPORT, *PHERTZ_FEATURE_REPORT;

typedef struct _HERTZ_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_USHORT usHertzValue;

} HERTZ_INPUT_REPORT, *PHERTZ_INPUT_REPORT;

[bookmark: _Toc321224909][bookmark: _Toc335659942]Environmental: Atmospheric Pressure
// For reference: Complete HID report descriptor

const unsigned char bar_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “Bar” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “Bar” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE,
HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “Bar” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_ATMOSPHERIC_PRESSURE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “Bar” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _BAR_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usBarChangeSensitivity;
 HID_USHORT usBarMaximum;
 HID_USHORT usBarMinimum;

} BAR_FEATURE_REPORT, *PBAR_FEATURE_REPORT;

typedef struct _BAR_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_USHORT usBarValue;

} BAR_INPUT_REPORT, *PBAR_INPUT_REPORT;

[bookmark: _Toc321224910][bookmark: _Toc335659943]Environmental: Humidity
// For reference: Complete HID report descriptor

const unsigned char hyg_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_HUMIDITY,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_RELATIVE_HUMIDITY,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0x10,0x27), // 10000 = 0.00 to 100.00 percent with 2 digits past decimal point
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_RELATIVE_HUMIDITY,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0x10,0x27), // 10000 = 0.00 to 100.00 percent with 2 digits past decimal point
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_RELATIVE_HUMIDITY,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0x10,0x27), // 10000 = 0.00 to 100.00 percent with 2 digits past decimal point
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_RELATIVE_HUMIDITY,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0x10,0x27), // 10000 = 0.00 to 100.00 percent with 2 digits past decimal point
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “percent” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _HYG_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usHygChangeSensitivity;
 HID_USHORT usHygMaximum;
 HID_USHORT usHygMinimum;

} HYG_FEATURE_REPORT, *PHYG_FEATURE_REPORT;

typedef struct _HYG_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_USHORT usHygValue;

} HYG_INPUT_REPORT, *PHYG_INPUT_REPORT;

[bookmark: _Toc321224911][bookmark: _Toc335659944]Environmental: Temperature
// For reference: Complete HID report descriptor

const unsigned char temp_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ENVIRONMENTAL_TEMPERATURE,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “Celsius” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “Celsius” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “Celsius” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(16),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ENVIRONMENTAL_TEMPERATURE,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “Celsius” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _TEMP_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usTempChangeSensitivity;
 HID_SHORT sTempMaximum;
 HID_SHORT sTempMinimum;

} TEMP_FEATURE_REPORT, *PTEMP_FEATURE_REPORT;

typedef struct _TEMP_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sTempValue;

} TEMP_INPUT_REPORT, *PTEMP_INPUT_REPORT;

[bookmark: _Toc321224912][bookmark: _Toc335659945]Light: Ambient Light
// For reference: Complete HID report descriptor

const unsigned char als_report_descriptor[] = {
 	HID_USAGE_PAGE_SENSOR, // USAGE_PAGE (Sensor)
 	HID_USAGE_SENSOR_TYPE_LIGHT_AMBIENTLIGHT, // USAGE (AmbientLight)
 	HID_COLLECTION(Physical),

//feature reports (xmit/receive)
 	HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_LIGHT_ILLUMINANCE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_REL_PCT),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0x10,0x27), // 10000 = 0.00 to 100.00 percent with 2 digits past decimal point
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_LIGHT_ILLUMINANCE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_LIGHT_ILLUMINANCE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_FEATURE(Data_Var_Abs),

//add this definition if required by the specific application
HID_USAGE_SENSOR_PROPERTY_RESPONSE_CURVE,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(10), //as required for n pair of values
HID_UNIT_EXPONENT(0x0), // scale default unit to provide 0 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_LIGHT_ILLUMINANCE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_LIGHT_COLOR_TEMPERATURE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_UNIT_EXPONENT(0),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY_X,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_UNIT_EXPONENT(0x0C), // scale default unit to provide 4 digits past decimal point
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_LIGHT_CHROMATICITY_Y,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_UNIT_EXPONENT(0x0C), // scale default unit to provide 4 digits past decimal point
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _ALS_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usIlluminanceChangeSensitivity;
 HID_USHORT usIlluminanceMaximum;
 HID_USHORT usIlluminanceMinimum;

 //add this definition if required by the specific application
 HID_USHORT usResponseCurve[5][2]; //10 elements matches descriptor

} ALS_FEATURE_REPORT, *PALS_FEATURE_REPORT;

typedef struct _ALS_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_USHORT usIlluminanceValue;
 HID_USHORT usColorTempValue;
 HID_USHORT usChromaticityXValue;
 HID_USHORT usChromaticityYValue;

} ALS_INPUT_REPORT, *PALS_INPUT_REPORT;

[bookmark: _Toc321224913][bookmark: _Toc335659946]Location: GPS
Location category sensors are not supported by the Driver.
[bookmark: _Toc321224914][bookmark: _Toc335659947]Mechanical: Switches
// For reference: Complete HID report descriptor

//Boolean Switch
const unsigned char swi_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MECHANICAL_BOOLEAN_SWITCH,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_MECHANICAL_BOOLEAN_SWITCH_STATE,
HID_LOGICAL_MIN_8(0), // Off
HID_LOGICAL_MAX_8(1), // On
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _SWI_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor

} SWI_FEATURE_REPORT, *PSWI_FEATURE_REPORT;

typedef struct _SWI_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_UCHAR ucSwiState;

} SWI_INPUT_REPORT, *PSWI_INPUT_REPORT;

//Multi-value Switch
const unsigned char swm_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MECHANICAL_MULTIVALUE_SWITCH,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MECHANICAL_MULTIVALUE_SWITCH_VALUE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // allow for fractional positions
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MECHANICAL_MULTIVALUE_SWITCH_VALUE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // allow for fractional positions
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_MECHANICAL_MULTIVALUE_SWITCH_VALUE,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _SWM_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_SHORT sSwmMaximum;
 HID_SHORT sSwmMinimum;

} SWM_FEATURE_REPORT, *PSWM_FEATURE_REPORT;

typedef struct _SWM_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sSwmValue;

} SWM_INPUT_REPORT, *PSWM_INPUT_REPORT;

//Boolean switch array
const unsigned char swa_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MECHANICAL_BOOLEAN_SWITCH_ARRAY,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_MECHANICAL_BOOLEAN_SWITCH_ARRAY_STATES,
HID_LOGICAL_MIN_8(0), // Off
HID_LOGICAL_MAX_8(1), // On
HID_REPORT_SIZE(1),
HID_REPORT_COUNT(8),
HID_INPUT(Data_Arr_Abs),

HID_END_COLLECTION
};

typedef struct _SWA_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor

} SWA_FEATURE_REPORT, *PSWA_FEATURE_REPORT;

typedef struct _SWA_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_UCHAR ucSwaStates;

} SWA_INPUT_REPORT, *PSWA_INPUT_REPORT;

[bookmark: _Toc321224915][bookmark: _Toc335659948]Motion: Accelerometer
// For reference: Complete HID report descriptor

// 1D Accelerometer
const unsigned char accel1_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_1D,
	HID_COLLECTION(Physical),

	//feature reports (xmit/receive)
 	HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
HID_FEATURE(Data_Var_Abs),

 	//input reports (transmit)
 	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
 	HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
 	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_INPUT(Data_Var_Abs),

 	HID_END_COLLECTION
};

typedef struct _ACCEL1_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usAccelChangeSensitivity;
 HID_SHORT sAccelMaximum;
 HID_SHORT sAccelMinimum;

} ACCEL1_FEATURE_REPORT, *PACCEL1_FEATURE_REPORT;

typedef struct _ACCEL1_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sAccelXValue;

} ACCEL1_INPUT_REPORT, *PACCEL1_INPUT_REPORT;

// 2D Accelerometer
const unsigned char accel2_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_2D,
	HID_COLLECTION(Physical),

	//feature reports (xmit/receive)
 	HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
HID_FEATURE(Data_Var_Abs),

 	//input reports (transmit)
 	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
 	HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_INPUT(Data_Var_Abs),
 	HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_INPUT(Data_Var_Abs),

 	HID_END_COLLECTION
};

typedef struct _ACCEL2_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usAccelChangeSensitivity;
 HID_SHORT sAccelMaximum;
 HID_SHORT sAccelMinimum;

} ACCEL2_FEATURE_REPORT, *PACCEL2_FEATURE_REPORT;

typedef struct _ACCEL2_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sAccelXValue;
 HID_SHORT sAccelYValue;

} ACCEL2_INPUT_REPORT, *PACCEL2_INPUT_REPORT;

// 3D Accelerometer
const unsigned char accel3_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MOTION_ACCELEROMETER_3D,
	HID_COLLECTION(Physical),

	//feature reports (xmit/receive)
 	HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
	HID_FEATURE(Data_Var_Abs),
	HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
	HID_REPORT_SIZE(16),
	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
HID_FEATURE(Data_Var_Abs),

 	//input reports (transmit)
 	HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
 	HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_X_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_INPUT(Data_Var_Abs),
 	HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Y_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_INPUT(Data_Var_Abs),
 	HID_USAGE_SENSOR_DATA_MOTION_ACCELERATION_Z_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
 	HID_REPORT_SIZE(16),
 	HID_REPORT_COUNT(1),
	HID_UNIT_EXPONENT(0x0E), // scale default unit Gs to “centi-Gs” to provide 2 digits past Gs decimal point
 	HID_INPUT(Data_Var_Abs),

	//include the following datafield if required to support the “shake” event
HID_USAGE_SENSOR_DATA_MOTION_STATE,
HID_LOGICAL_MIN_8(0), // False = Still
HID_LOGICAL_MAX_8(1), // True = In Motion
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),

 	HID_END_COLLECTION
};

typedef struct _ACCEL3_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usAccelChangeSensitivity;
 HID_SHORT sAccelMaximum;
 HID_SHORT sAccelMinimum;

} ACCEL3_FEATURE_REPORT, *PACCEL3_FEATURE_REPORT;

typedef struct _ACCEL3_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sAccelXValue;
 HID_SHORT sAccelYValue;
 HID_SHORT sAccelZValue;

 //include if required to support the "shake" event
 HID_UCHAR ucShakeDetectState;

} ACCEL3_INPUT_REPORT, *PACCEL3_INPUT_REPORT;

[bookmark: _Toc295818027][bookmark: _Toc295818459][bookmark: _Toc295818690][bookmark: _Toc295818800][bookmark: _Toc295818910][bookmark: _Toc295819018][bookmark: _Toc295819127][bookmark: _Toc295819343][bookmark: _Toc295819449][bookmark: _Toc295819555][bookmark: _Toc295819659][bookmark: _Toc295819757][bookmark: _Toc295819855][bookmark: _Toc321224916][bookmark: _Toc335659949]Motion: Gyrometer
// For reference: Complete HID report descriptor

// 1D Gyrometer
const unsigned char gyro1_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_1D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3]HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_X_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _GYRO1_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usGyroChangeSensitivity;
 HID_SHORT sGyroMaximum;
 HID_SHORT sGyroMinimum;

} GYRO1_FEATURE_REPORT, *PGYRO1_FEATURE_REPORT;

typedef struct _GYRO1_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sGyroXValue;

} GYRO1_INPUT_REPORT, *PGYRO1_INPUT_REPORT;

// 2D Gyrometer
const unsigned char gyro2_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_2D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_X_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_Y_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _GYRO2_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usGyroChangeSensitivity;
 HID_SHORT sGyroMaximum;
 HID_SHORT sGyroMinimum;

} GYRO2_FEATURE_REPORT, *PGYRO2_FEATURE_REPORT;

typedef struct _GYRO2_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sGyroXValue;
 HID_SHORT sGyroYValue;

} GYRO2_INPUT_REPORT, *PGYRO2_INPUT_REPORT;

// 3D Gyrometer
const unsigned char gyro3_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MOTION_GYROMETER_3D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_X_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_Y_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_MOTION_ANGULAR_VELOCITY_Z_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _GYRO3_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usGyroChangeSensitivity;
 HID_SHORT sGyroMaximum;
 HID_SHORT sGyroMinimum;

} GYRO3_FEATURE_REPORT, *PGYRO3_FEATURE_REPORT;

typedef struct _GYRO3_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sGyroXValue;
 HID_SHORT sGyroYValue;
 HID_SHORT sGyroZValue;

} GYRO3_INPUT_REPORT, *PGYRO3_INPUT_REPORT;

[bookmark: _Toc321224917][bookmark: _Toc335659950]Motion: Motion Detector
// For reference: Complete HID report descriptor

//Motion sensor
const unsigned char mot_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_MOTION_MOTION_DETECTOR,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_MOTION_STATE,
HID_LOGICAL_MIN_8(0), // False = Still
HID_LOGICAL_MAX_8(1), // True = In Motion
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_MOTION_INTENSITY,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(100), // percent
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _MOT_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor

} MOT_FEATURE_REPORT, *PMOT_FEATURE_REPORT;

typedef struct _MOT_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_UCHAR ucMotState;
 HID_UCHAR ucMotValue;

} MOT_INPUT_REPORT, *PMOT_INPUT_REPORT;

[bookmark: _Toc321224918][bookmark: _Toc335659951]Orientation: Compass
// For reference: Complete HID report descriptor

// 1D Compass, like a “traditional” Boy Scouts compass
const unsigned char comp1_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_COMPASS_1D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_NORTH,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _COMP1_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usHeadingChangeSensitivity;
 HID_SHORT sHeadingMaximum;
 HID_SHORT sHeadingMinimum;

} COMP1_FEATURE_REPORT, *PCOMP1_FEATURE_REPORT;

typedef struct _COMP1_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sHeadingValue;

} COMP1_INPUT_REPORT, *PCOMP1_INPUT_REPORT;

// 3D Compass, a 3-axis flux magnetometer
const unsigned char comp3_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_COMPASS_3D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_HEADING,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_COMPENSATED_MAGNETIC_NORTH,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_COMPENSATED_TRUE_NORTH,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_NORTH,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_TRUE_NORTH,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0F), // scale default unit to provide 1 digit past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_X_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0D), // scale default unit to “milliGauss”; provide 3 digits past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_Y_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0D), // scale default unit to “milliGauss”; provide 3 digits past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_MAGNETIC_FLUX_Z_AXIS,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0D), // scale default unit to “milliGauss”; provide 3 digits past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _COMP3_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usHeadingChangeSensitivity;
 HID_SHORT sHeadingMaximum;
 HID_SHORT sHeadingMinimum;
 HID_USHORT usFluxChangeSensitivity;
 HID_SHORT sFluxMaximum;
 HID_SHORT sFluxMinimum;

} COMP3_FEATURE_REPORT, *PCOMP3_FEATURE_REPORT;

typedef struct _COMP3_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sHeadingCompensatedMagneticNorthValue;
 HID_SHORT sHeadingCompensatedTrueNorthValue;
 HID_SHORT sHeadingMagneticNorthValue;
 HID_SHORT sHeadingTrueNorthValue;
 HID_SHORT sFluxXValue;
 HID_SHORT sFluxYValue;
 HID_SHORT sFluxZValue;

} COMP3_INPUT_REPORT, *PCOMP3_INPUT_REPORT;

[bookmark: _Toc321224919][bookmark: _Toc335659952]Orientation: Inclinometer
// For reference: Complete HID report descriptor

// 1D Inclinometer
const unsigned char inc1_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_1D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_X,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _INC1_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usIncChangeSensitivity;
 HID_SHORT sIncMaximum;
 HID_SHORT sIncMinimum;

} INC1_FEATURE_REPORT, *PINC1_FEATURE_REPORT;

typedef struct _INC1_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sIncXValue;

} INC1_INPUT_REPORT, *PINC1_INPUT_REPORT;

// 2D Inclinometer
const unsigned char inc2_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_2D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_X,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_Y,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _INC2_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usIncChangeSensitivity;
 HID_SHORT sIncMaximum;
 HID_SHORT sIncMinimum;

} INC2_FEATURE_REPORT, *PINC2_FEATURE_REPORT;

typedef struct _INC2_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sIncXValue;
 HID_SHORT sIncYValue;

} INC2_INPUT_REPORT, *PINC2_INPUT_REPORT;

// 3D Inclinometer
const unsigned char inc3_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_INCLINOMETER_3D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_TILT,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_X,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_Y,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_TILT_Z,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit to provide 2 digits past decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _INC3_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usIncChangeSensitivity;
 HID_SHORT sIncMaximum;
 HID_SHORT sIncMinimum;

} INC3_FEATURE_REPORT, *PINC3_FEATURE_REPORT;

typedef struct _INC3_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sIncXValue;
 HID_SHORT sIncYValue;
 HID_SHORT sIncZValue;

} INC3_INPUT_REPORT, *PINC3_INPUT_REPORT;

[bookmark: _Toc321224920][bookmark: _Toc335659953]Orientation: Distance
// For reference: Complete HID report descriptor

//Distance 1D
const unsigned char dis1_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_1D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
	HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_X,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _DIS1_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usDisChangeSensitivity;
 HID_SHORT sDisMaximum;
 HID_SHORT sDisMinimum;

} DIS1_FEATURE_REPORT, *PDIS1_FEATURE_REPORT;

typedef struct _DIS1_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sDisXValue;

} DIS1_INPUT_REPORT, *PDIS1_INPUT_REPORT;

//Distance 2D
const unsigned char dis2_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_2D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_X,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_Y,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _DIS2_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usDisChangeSensitivity;
 HID_SHORT sDisMaximum;
 HID_SHORT sDisMinimum;

} DIS2_FEATURE_REPORT, *PDIS2_FEATURE_REPORT;

typedef struct _DIS2_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sDisXValue;
 HID_SHORT sDisYValue;

} DIS2_INPUT_REPORT, *PDIS2_INPUT_REPORT;

//Distance 3D
const unsigned char dis3_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_DISTANCE_3D,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_X,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_Y,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),
HID_USAGE_SENSOR_DATA_ORIENTATION_DISTANCE_Z,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_INPUT(Data_Var_Abs),

HID_END_COLLECTION
};

typedef struct _DIS3_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usDisChangeSensitivity;
 HID_SHORT sDisMaximum;
 HID_SHORT sDisMinimum;

} DIS3_FEATURE_REPORT, *PDIS3_FEATURE_REPORT;

typedef struct _DIS3_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sDisXValue;
 HID_SHORT sDisYValue;
 HID_SHORT sDisZValue;

} DIS3_INPUT_REPORT, *PDIS3_INPUT_REPORT;

[bookmark: _Toc321224921][bookmark: _Toc335659954]Orientation: Device Orientation
// For reference: Complete HID report descriptor

// Device Orientation sensor
const unsigned char devor_report_descriptor[] = {
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_TYPE_ORIENTATION_DEVICE_ORIENTATION,
HID_COLLECTION(Physical),

//feature reports (xmit/receive)
HID_USAGE_PAGE_SENSOR,
HID_USAGE_SENSOR_PROPERTY_SENSOR_CONNECTION_TYPE, // NAry
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(2),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_INTEGRATED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_ATTACHED_SEL,
HID_USAGE_SENSOR_PROPERTY_CONNECTION_TYPE_PC_EXTERNAL_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
	HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_SEL, HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_NO_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_ALL_EVENTS_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_REPORTING_STATE_THRESHOLD_EVENTS_WAKE_SEL,
 	HID_FEATURE(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_UNDEFINED_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D0_FULL_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D1_LOW_POWER_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D2_STANDBY_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D3_SLEEP_WITH_WAKE_SEL,
HID_USAGE_SENSOR_PROPERTY_POWER_STATE_D4_POWER_OFF_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
	HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
	HID_USAGE_SENSOR_STATE_READY_SEL,
	HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
	HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
	HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
	HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
	HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_FEATURE(Data_Arr_Abs),
HID_END_COLLECTION,
HID_USAGE_SENSOR_PROPERTY_REPORT_INTERVAL,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_32(0xFF,0xFF,0xFF,0xFF),
HID_REPORT_SIZE(32),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_PROPERTY_CHANGE_SENSITIVITY_ABS,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E), // scale default unit “meter” to provide 2 digits past the decimal point
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_QUATERNION,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_QUATERNION,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x01),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_QUATERNION,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x01),
HID_FEATURE(Data_Var_Abs),

//include this if the values are calculated in firmware
//otherwise, the driver will calculate these values from the Quaternion
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_ROTATION_MATRIX,
HID_USAGE_SENSOR_DATA_MOD_CHANGE_SENSITIVITY_ABS),
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_16(0xFF,0xFF),
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_ROTATION_MATRIX,HID_USAGE_SENSOR_DATA_MOD_MAX),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E),
HID_FEATURE(Data_Var_Abs),
HID_USAGE_SENSOR_DATA(HID_USAGE_SENSOR_DATA_ORIENTATION_ROTATION_MATRIX,HID_USAGE_SENSOR_DATA_MOD_MIN),
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(1),
HID_UNIT_EXPONENT(0x0E),
HID_FEATURE(Data_Var_Abs),

//input reports (transmit)
HID_USAGE_PAGE_SENSOR,
 	HID_USAGE_SENSOR_STATE,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(6),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
HID_COLLECTION(Logical),
		HID_USAGE_SENSOR_STATE_UNKNOWN_SEL,
		HID_USAGE_SENSOR_STATE_READY_SEL,
		HID_USAGE_SENSOR_STATE_NOT_AVAILABLE_SEL,
		HID_USAGE_SENSOR_STATE_NO_DATA_SEL,
		HID_USAGE_SENSOR_STATE_INITIALIZING_SEL,
		HID_USAGE_SENSOR_STATE_ACCESS_DENIED_SEL,
		HID_USAGE_SENSOR_STATE_ERROR_SEL,
HID_INPUT(Data_Arr_Abs),
HID_END_COLLECTION,
 	HID_USAGE_SENSOR_EVENT,
HID_LOGICAL_MIN_8(0),
HID_LOGICAL_MAX_8(5),
 	HID_REPORT_SIZE(8),
 	HID_REPORT_COUNT(1),
	HID_COLLECTION(Logical),
HID_USAGE_SENSOR_EVENT_UNKNOWN_SEL,
HID_USAGE_SENSOR_EVENT_STATE_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_PROPERTY_CHANGED_SEL,
HID_USAGE_SENSOR_EVENT_DATA_UPDATED_SEL,
HID_USAGE_SENSOR_EVENT_POLL_RESPONSE_SEL,
HID_USAGE_SENSOR_EVENT_CHANGE_SENSITIVITY_SEL,
HID_INPUT(Data_Arr_Abs),
		HID_END_COLLECTION,
HID_USAGE_SENSOR_DATA_ORIENTATION_QUATERNION,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(4),
HID_UNIT_EXPONENT(0x0E),
HID_INPUT(Data_Arr_Abs),

//include this if the values are calculated in firmware
//otherwise, the driver will calculate these values from the Quaternion
HID_USAGE_SENSOR_DATA_ORIENTATION_ROTATION_MATRIX,
HID_LOGICAL_MIN_16(0x01,0x80), // LOGICAL_MINIMUM (-32767)
HID_LOGICAL_MAX_16(0xFF,0x7F), // LOGICAL_MAXIMUM (32767)
HID_REPORT_SIZE(16),
HID_REPORT_COUNT(9),
HID_UNIT_EXPONENT(0x0F),
HID_INPUT(Data_Arr_Abs),

HID_END_COLLECTION
};

typedef struct _DEVOR_FEATURE_REPORT
{
 //common properties
 HID_UCHAR ucReportId;
 HID_UCHAR ucConnectionType;
 HID_UCHAR ucReportingState;
 HID_UCHAR ucPowerState;
 HID_UCHAR ucSensorState;
 HID_ULONG ulReportInterval;

 //properties specific to this sensor
 HID_USHORT usQuaternionChangeSensitivity;
 HID_SHORT sQuaternionMaximum;
 HID_SHORT sQuaternionMinimum;

 //include this if the values are calculated in firmware
 //otherwise, the driver will calculate these values from the Quaternion
 HID_USHORT usRotationChangeSensitivity;
 HID_SHORT sRotationMaximum;
 HID_SHORT sRotationMinimum;

} DEVOR_FEATURE_REPORT, *PDEVOR_FEATURE_REPORT;

typedef struct _DEVOR_INPUT_REPORT
{
 //common values
 HID_UCHAR ucReportId;
 HID_UCHAR ucSensorState;
 HID_UCHAR ucEventType;

 //values specific to this sensor
 HID_SHORT sQuaternionXValue;
 HID_SHORT sQuaternionYValue;
 HID_SHORT sQuaternionZValue;
 HID_SHORT sQuaternionWValue;

 //include this if the values are calculated in firmware
 //otherwise, the driver will calculate these values from the Quaternion
 HID_SHORT sRotationValue[3][3];

} DEVOR_INPUT_REPORT, *PDEVOR_INPUT_REPORT;

[bookmark: _Toc321224922][bookmark: _Toc335659955]Sensor Implementation and Debugging – Tips & Tricks
This section provides additional information, supplemental to the Specification, that may be of aid to the IHV in creating a Sensor that will work correctly with the Driver.

[bookmark: _Toc321224923][bookmark: _Toc335659956]Using required and optional datafields
The driver supports three kinds of datafields:
1) Required
2) Optional
3) Dynamic
The required datafields are those that must be available in the input report descriptor for the sensor to work correctly. For example, a 3D Accelerometer must include specifications for the X, Y and Z acceleration or it will not work correctly with the sensor platform: specifically, any value that is not provided by the sensor will remain of type VT_EMPTY at the API, and this is interpreted by clients of the API as that datafield not being available. Most of the datafields defined in the sensors supported by driver are required.

Certain datafields are optional, and these work differently than the required datafields. These datafields are not actually available at the API until an input report bearing the data for an optional datafield defined in the input report descriptor is actually received by the driver. When such an input report is received by the driver, that datafield is added to the list of datafields supported by the driver for that sensor and is then available at the API.

The optional datafields that are supported by the driver are the following:
1) AmbientLight – color temperature and chromaticity X and Y
2) Compass – all other than compensated magnetic north, which is required
3) Orientation – rotation matrix.
4) Custom – all datafields are considered optional. If there are no datafields defined in the input report descriptor, or no input report bearing values for the optional datafields has been received by the driver, the only datafield available at the API will be for the timestamp.
Dynamic datafields are described in the section 5.2.
[bookmark: _Toc321224924][bookmark: _Toc335659957]Out-of-range datafield values
In almost all cases, the value of a datafield is either the value provided by the sensor device or the value of VT_EMPTY in the cases noted above. However there is one case in which a value may be provided by the sensor device and the value at the API will be VT_NULL.

This case will occur when the sensor is in SENSOR_STATE_READY with at least one valid datafield value but any of the other datafield values are out of the range specified by Range Maximum and Range Minimum. The defaults for Range Maximum and Range Minimum are FLT_MAX and –FLT_MAX for all datafields, respectively, so unless these default per-datafield properties have been specified by the sensor device there is little possibility of exceeding these values.

This behavior is applicable to all datafields in all sensors with the exception of those datafields that do not support Range Maximum and Range Minimum as part of the defaults for that sensor (typically the sensor datafields that are of type BOOLEAN.)
[bookmark: _Toc321224925][bookmark: _Toc335659958]Controlling datafield values
Consider the case where a sensor device has some value it can provide only under certain circumstances. For example, a Compass 3D sensor that supports the True North datafield which is derived from a GPS device that provides the True North heading will only have a valid value for this when the GPS has a fix and is providing valid data. The sensor device will need some way to indicate to the driver that, while the other compass datafields may be valid, the True North heading is not available.
This case is handled in the following way:
· The IHV will specify the Range Maximum and Range Minimum values in the Report Descriptor for the sensor in question. This must be specified as a specific datafield property unless the same range is used for all datafields that may be subject to the above behavior, in which case the bulk property may be used. See section 4.2.3 for more information on how to specify these per-datafield properties.
· In the case above, should the GPS be unavailable to provide the True North Heading value, the compass device would insert a value that is outside the range defined by Range Maximum and Range Minimum.
· The value available at the API for the True North Heading datafield will then be set to VT_NULL by the driver. This is an indication to the application that the sensor is working correctly but that this specific datafield is not available.
· In the case above, when the GPS again becomes available to provide the True North Heading value, the compass device would then insert a valid in-range value and that value would again appear at the API.
[bookmark: _Toc321224926][bookmark: _Toc335659959]Using dynamic datafields
In general, any datafield defined for any sensor can be defined in the input report descriptor for any other sensor. So, for example, an Accelerometer could include the definition for a Custom_1 datafield. Such datafields are considered dynamic, and there is a small performance penalty for using them as the driver must search upon the receipt of every input packet whether the dynamic datafield present in the packet has previously been recognized, if not, and added to the list of datafields supported by the driver for that sensor.

Like the optional datafield, these dynamic datafields are not actually available at the API until an input report bearing the data for a dynamic datafield defined in the input report descriptor is actually received by the driver. When such an input report is received by the driver, that datafield is added to the list of datafields supported by the driver for that sensor and is then available at the API.
[bookmark: _Toc321224927][bookmark: _Toc335659960]Using dynamic properties
Most of the properties defined for a sensor are static, which is to say they are defined at compile time for that sensor. Default values are chosen for these properties unless that value is over-ridden by a value received in a feature report from the sensor device.

One exception to this is the use of SENSOR_PROPERTY_HID_USAGE. This property is only available when HID_USAGE_SENSOR_DATA_CUSTOM_USAGE is defined in an input report (yes, input report.) The presence of this datafield in an input report for any sensor will cause SENSOR_PROPERTY_HID_USAGE to appear as a property for that sensor at the API. The value for this usage is vendor-specific.
This mechanism is typically used as a means by which similar sensors can be distinguished from one another if more than one sensor of a particular type is available on a sensor device.

Similar to the optional and dynamic datafields, this dynamic property is not actually available at the API until an input report bearing the data for the datafield defined in the input report descriptor is actually received by the driver.

This mechanism can be a bit confusing. The specification defines HID_USAGE_SENSOR_DATA_CUSTOM_USAGE as a datafield, but if used only in this manner the ability to distinguish one sensor from another at the API would be dependent upon the client receiving data from a sensor and deciding on the basis of the datafield value for each of several similar sensors which sensor is of interest. By causing this datafield to show up at the API as a property, the ability to distinguish one sensor from another can be done by querying the supported properties for each sensor.
[bookmark: _Toc321224928][bookmark: _Toc335659961]Using Custom sensors and datafields
Custom sensors can be very useful in at least two circumstances:
1) An IHV creates a sensor that is not directly supported by the Driver
2) An IHV needs to get data from individual sensors, or from the device as a whole, and make this data available to clients at the API
The first case was the reason the Custom sensor was originally specified. Essentially, any sensor can be supported through a custom sensor. The purpose of that sensor is obscured (it is a “Custom” sensor to clients at the API no matter what kind of sensor technology is being supported) and it is up the IHV, should they so wish, to make available the information that un-obscures that sensor for clients at the API.

In some circumstances, for example the second case, the IHV may not wish to make the un-obscuring information available. For example, the IHV may wish to create custom sensors that return certain information from the device. There are two ways to return this information:
1) By means of a custom sensor
2) By means of custom datafields used with other supported sensors
For example, should the IHV wish to make raw data, timestamp or calibration information available about an accelerometer, it might be best to use method 2. If instead the IHV wishes to return information common to all sensors, it might be best to use method 1.
[bookmark: _Toc321224929][bookmark: _Toc335659962]Setting device properties
The Sensor Platform does not directly support anything other than being able to write the defined writeable properties. There are two of these:
1) Current Report Interval
2) Change Sensitivity for each datafield
Aside from their intended purpose, there are other ways in which these two writeable properties can be used to control the sensor device. Some possible ways are:
1) To put the device into a particular mode (firmware update, calibration, …)
2) To write specific data to the device
The means by which this can be accomplished is to use specific values of Current Report Interval that are recognized by the firmware. Current Report Interval is a 32-bit unsigned value and specifies in milliseconds the desired report interval of a sensor. It is unlikely that clients at the API will specify very large values for the report interval, so these high values could be used to trigger actions on the device. For example, a value of 0xFFFFFFFE could represent calibration mode, and a value of 0xFFFFFFFD could represent firmware update mode. For greater security against accidentally putting the device into an unwanted mode, a sequence of report interval values could be issued instead of a single value.

It is a bit more complex to write data to the device. Per-datafield change sensitivity would need to be specified in the feature report descriptor for any data to be written. The client could then issue a Current Report Interval sequence that would take the data values carried in the change sensitivity values and use them as data rather than as change sensitivities for particular datafields. This could be best accomplished by using change sensitivities specified for custom datafields for that sensor.
[bookmark: _Toc321224930][bookmark: _Toc335659963]Debugging a sensor or sensor collection
Suggested steps for bringing up a new sensor implentation:
1) Read this document fully – there are quite a number of details the implementor must take into account when designing a Sensor device implementation.
2) Begin with one of the sample report descriptors in this document, or better yet, use one of the report descriptors in “hid_sensor_spec_report_descriptors.h.” These have all been tested against the driver and are known to work. Use the machine-readable headers in “hid_sensor_spec_macros.h” provided along with the document.
3) Start with only a single sensor – do not start with a collection of sensors. Once a single sensor is working, it can then be convereted to a collection of one or more working sensors.
4) Comment out the Feature Report section of the driver – the driver will accept data from a sensor that only provides an Input report. Start the Sensor Diagnostic Tool (SDT) and expand the “Sensors” tree view to observe that the sensor is present in the left pane of the SDT. The right top (Properties) pane of the SDT will show all the device properties which, since the sensor at this point does not support Feature Reports, will be the defaults chosen for that sensor by the driver. The right middle (Data) pane of the SDT will show the datafields of the driver.
5) Cause the sensor to generate data – observe the the Data pane should now show the datafields described in the Input report. Note that the optional and dynamic datafields, if used, will not be visible in the SDT until a valid input report is received from the device.
6) Do not proceed past this point until the previous steps are successful.
7) Uncomment out the Feature Report section of the driver. At this point the sensor will need to respond to GET_FEATURE requests from the driver. A simple way to check that this is happening is to set the Sensor Connection Type property to = ‘PC External’ In the SDT Properties pane you should see that SENSOR_PROPERTY_CONNECTION_TYPE is = ‘2.’ Or the acccompanying text may say “PC EXTERNAL.” The default for this value is ‘1,’ so this means the driver successfully retrieved this property from the sensor.
8) Ensure the writable properties for the sensor (Reporting State, Power State, Report Interval and Change Sensitivities) are working correctly. Referring to section 5.7 of this document, be sure that the sensor is running without errors on Trace Level Error. Pay attention to any warning seen on Trace Level Warning as these likely need attention to have a properly functioning sensor.
9) If the application requires more than one sensor, build a sensor collection with only the first two sensors to be supported. Each of these sensors should have been already proven to work individually as in step 8. Verify that these two sensors can be observed in the SDT Data pane and that all datafields described in both input reports are present.
10) Add new sensors one at a time in a manner similar to step 8. If a sensor just added causes the other sensors to break, there is a problem with the newly added sensor.
Once all sensors have been added and been observed to be working correctly, other Top Level Collection devices (ex. mouse, keyboard, vendor specific devices) can be added. At each step be sure nothing has broken from the earlier steps.
Common failures that are seen might be caused by the following:
1) No Sensor or Sensor collection appears in the Device Manager under the category Sensors. The cause of this is almost certainly:
a. A syntax mistake in the report descriptor
b. A mismatch between the report descriptor and the buffer(s) described by the report descriptor
c. Check to see if the device appears under Human Interface Devices in the Device Manager by examining the VID/PID of each device until the device of interest is located. If it appears as a HID device, but does not appear as a Sensor device, this likely means the Usage Page or Usage is incorrect for either a sensor collection or the individual sensor.
2) Sensor appears in Device Manager under Sensors, but it banged-out. Right-click on the banged-out sensor and select Properties. There should be a code for why the sensor is not working:
a. Code 10 – this indicates that the driver loaded, but something about the information it received in a feature or input report caused the driver to fail to start. Refer to section 5.7 regading using sensor logging and examine the generated logs for clues as to why the driver failed to start. This error can also occur in the case of a bad Report Descriptor, though Code 31 is the more common case.
b. Code 31 – this indicates the driver did not load for some reason. This is usually because of errors in the report descriptor, or a mismatch between the report descriptor and the buffer(s) described by the report descriptor.
c. Code 43 – this is a USB-level error and has nothing to do with the fact the device is a Sensor.
[bookmark: _Toc321224931][bookmark: _Toc335659964]Using sensor logging
Use TraceView.exe from the latest WDK release. This is found under:
c:\Program Files\Windows Kits\8.0\Tools\{arch}\traceview.exe

Locate the symbols (.pdb) for your specific build.

Launch TraceView.exe.
[image: cid:image001.png@01CCAA05.B8127EC0]
Figure 1. Administrator: cmd window with TraceView.exe

Select File > Create New Log Session.

[image: cid:image002.png@01CCAA05.B8127EC0]
Figure 2. TraceView windows with File menu options

If you are using pdb’s, check PDB radio button and select the symbols for your build.
Click Open.

[image: cid:image003.png@01CCAA05.B8127EC0]
Figure 3. Pbd files

Click OK.
Click Next.
Select your logging level. Click the “>>” beside “Set Flags and Level”.
Select Logging Level Information.
Click Finish.
[image: cid:image004.png@01CCAA05.B8127EC0]
Figure 4. Tracing Flags and Level Selection window

Start using your HID Sensor Device. You will see the traces appear.

[image: cid:image005.png@01CCAA05.B8127EC0]
Figure 5. TraceView window with traces running

Right-click on the Logging Group to bring up a context menu. From here, you can Stop Trace. You can also Save Workspace so that you don’t have to keep specifying the provider info (pdb file) or logging level desired.

[image: cid:image006.png@01CCAA05.B8127EC0]
Figure 6. Context menu options
Similarly you can right-click on the Trace Window to bring up a context menu that allows the addition and removal of information columns. The line number column can be especially helpful.
[image: cid:image007.png@01CCAA05.B8127EC0]
Figure 7. Select Column to View options

September 28, 2012
© 2012 Microsoft. All rights reserved.
image1.png
Microsoft

image2.png

image3.png

image4.png
CeaEm
Dsemodiies
T 2s0p

Open
Cancel

image5.png
Log Session Options

Log Session Name.

Log Trace Event Data To Fie

Log File Name
[Logsession_112511_170652 28

[Jopend ToistngLog e St Flags and Tracing Flags and Level Selection

elect which Fiags and Level to enable for
each avaiable GUID.

P
© None
© Fatal
© Error
© Warning

termination of an
potential civil and

For testing purposes

image6.png
File Options Help

Group D/ Session Name State Event Count Lost Events BuffersRead Flags MaxBuf MinBuf Level WinDbg Ignore TraceView
0 LogSessiond RUNNING 74 [2 SET 21 4 SET FALSE FALSE [z

i] 3

|| Msg# Name ProcessiD ThreadID CPUZ Sequence# SystemTime Message 3

0 w0 6 11\23\2011-... [CSensorDDE:OnClientSubscribeTokvents]Client 00837388 Subscribed t
o we 0w TN\ [CMyDevice:OnSurpriseRemovallCMyDevice:OnSurpriseRemoval Entr
w0 we 0 8 TN\ [CMyDevice:EnterShutdown]CMyDevice: EnterShutdown Entry

0 w0 6 TNZ\DT1-.. [CMyDevice:OnDOENICMyDevice: OnDOBsit Entry

0 w0 6 TNZ\DT1-... [CMyDevice:OnDOBNICMyDevice: OnDOEsit it hr = 0x8007045b(ERR
0 w0 6 TN\ [CMyDevice:OnReleaseHardwerelCMyDevice:

w0 we 0 & TN\ [CMyDevice:EnterShutdown]CMyDevice: Enters}

0 w0 11232011-... [CSensorManager:StoplCSensorManager:Stop E [CMyDevice:OnRel
w0 w0 & 1N\Z3\2D11-... [CSensorDDI:DelnitSensorDevicelCSensorDDI;Dq <2seHardwarelCM
w0 w0 1N\23\2011-... [CSensorDDI:DelnitSensorDevicelCSensorD! {“:f;:j:,:’[",ﬁj;“‘
o w07 11\23\2011-... [CSensorManager:StoplCSensorManager:Stop.

o w0 m» TN\ [CMyDevice:OnReleaseHardwerelCMyDevice: OneleaseHardware Exi
w0 we 0 B TNZ\DT1-.. [CMyDevice:OnReleaseHardwarelSensorsHIDClassDriver - Tl.x:luq:r|z
w0 we 0 o TN\ [CMyDevice:OnReleaseHardwarel- EnD -

i]

For Help, Press F1 NUM

image7.png
Stop Trace
Group Sessions

Ungroup Sessions

Remove Log Session
Save Workspac..
Manage Fiters...

image8.png
<J<J<[<]x

Func Name
Process ID

Thread ID

cous

Sequence®

System Time

Kernel Time.

User Time.

Indent

Flags Neme

Level Name
Component Name
SubComponent Name
‘Save As Default

image9.png
23 Windows

